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Editorial on the Research Topic

Phagocytosis: Molecular Mechanisms and Physiological Implications

Phagocytosis is a conserved cellular process for ingesting and eliminating large (≥0.5µm)
particles, including microorganisms, foreign substances, and apoptotic cells. Phagocytosis is
performed by many cell types and it constitutes an essential process for tissue homeostasis. It
was long considered that only specialized cells, and in particular cells of the immune system,
termed professional phagocytes (macrophages, neutrophils, monocytes, dendritic cells, microglia,
osteoclasts), accomplish phagocytosis with high efficiency. Other cells, such as retinal pigment
epithelial cells or hepatocytes, however, are also potent phagocytes. This Research Topic provides a
timely overview of the biological importance of phagocytosis for immune-related functions and for
tissue homeostasis, with focus on phagocytosis of apoptotic bodies and necrotic debris that could
activate undesirable inflammatory responses. This article collection goes through the latest insights
on themechanisms controlling phagocytic receptor activation, particle engulfment, and phagosome
maturation. The review by Uribe-Querol and Rosales provides a bird’s-eye view of multiple aspects
of the process of phagocytosis. It describes the types of phagocytosis receptors known today and
the phases involved in phagocytosis, including (i) detection of the particle to be ingested, (ii)
activation of the internalization process, (iii) formation of a specialized vacuole called phagosome,
and (iv) maturation of the phagosome to transform it into a phagolysosome. Once the process of
phagocytosis is activated, the phagocyte requires profound reorganization of its cell morphology
around the target in a controlled manner. This process is limited by biophysical constraints
involving the receptors, the membrane, and the actin cytoskeleton. The article by Jaumouillé and
Waterman discusses themajor physical constraints involved in the particle internalization resulting
in the formation of a phagosome and provides an extensive review of the underlying molecular
mechanisms coping with these constraints. They focus on the two most-studied types phagocytic
receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin). They revise the
importance of receptor accessibility and diffusion at the membrane, the protrusive forces generated
by actin polymerization and describe a molecular clutch for the phagocytic integrin αMβ2 involved
in mechanosensing. Integrin phagocytic receptors initiate phagocytosis by a process that seems,
at least initially, different from antibody-mediated phagocytosis. The review by Torres-Gomez et
al. describes the phagocytic integrins and the molecular events controlling integrin activation and
the downstream signaling driving particle engulfment. Authors focus on complement receptor
(CR) 3/integrin αMβ2, and on CR4/integrin αXβ2. In addition, they briefly mention other
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integrins that do not bind complement, but that also function as
phagocytic receptors, such as αVβ5 and αVβ3 integrins.

Phagocytosis is more efficient when foreign particles are
labeled for phagocytosis by opsonins, which are host-derived
proteins that bind specific receptors on phagocytic cells.
Important opsonins promoting efficient phagocytosis include
antibody (IgG) molecules and complement components. Other
opsonins are not so well-known. In the article by Cockram et
al. two novel opsonins for bacteria calreticulin and galectin-
3, are described. Microglia, the brain-resident macrophages,
release calreticulin and galectin-3 when activated by bacterial
lipopolysaccharide. Both lectins can bind lipopolysaccharide on
the surface of bacteria and are also recognized by the phagocytic
receptors LRP1 and MerTK, respectively. These findings provide
insight on how this innate immune response of microglia may
promote clearance of bacteria in the brain.

Foreign particles can also be recognized directly by
phagocytes. This is accomplished by non-opsonic receptors
that directly bind pathogen-associated molecular patters
(PAMPs) and can induce phagocytosis. Members of the family
of C-type lectin receptors, including Dectin-1 (dendritic cell-
associated C-type lectin-1), Mincle (macrophage-inducible
C-type lectin), and DC-SIGN (dendritic cell-specific ICAM-
3-grabbing non-integrin), as well as the mannose receptor
have been described as important phagocytic receptors.
In the review by Bonsignore et al., the carcinoembryonic
antigen-related cell adhesion molecule 3 (CEACAM3)
is presented as a novel and important non-opsonic
phagocytic receptor of highly specialized, host-restricted
bacteria. Authors also discuss the importance of CEACAM3
polymorphisms for human innate immunity against bacteria
through phagocytosis.

After the particle has been internalized in a phagosome,
this novel organelle suffers dramatic changes both in its
membrane composition and in its contents by fusing with
other intracellular vesicles. This process known as phagosome
maturation, can be determined by phosphoinositide (PI) lipids,
which are pivotal determinants of organelle identity, membrane
dynamics, and vesicle trafficking. Yet, some microbial pathogens
can modify the phosphoinositide pattern in phagocytic cells
for their own benefit. The article by Leoni Swart and Hilbi
describes how Legionella pneumophila, the causative agent
of a severe pneumonia called Legionnaires’ disease, alters
the phosphoinositide pattern of the phagosome to create
a new vesicle known as the Legionella-containing vacuole
(LCV), where the bacterium can live and replicate inside lung
macrophages. The authors summarize strategies, by which L.
pneumophila subverts macrophage phosphoinositide lipids,
particularly the important conversion from phosphatidylinositol
(3) phosphate to phosphatidylinositol (4) phosphate, to promote
LCV formation and intracellular replication. As mentioned,
another important aspect of phagosome maturation is the
change of its contents into a potent microbicidal environment.
Acidification the phagosome is essential for achieving activation
of many microbicidal enzymes in the phagosome. The
article by Yoon et al. presents a novel mechanism by which
macrophages regulate phagosome acidification upon exposure

to Gram-negative bacteria. Evidence is provided on how
the thioredoxin-interacting protein (TXNIP)-associated
inflammasome plays a role in pH modulation through the
activated caspase-1-mediated inhibition of NADPH oxidase.
This acidification pathway is relevant for controlling bacterial
clearance by macrophages.

Concomitant with phagocytosis, primed phagocytes perform
additional functions that contribute to eliminate the ingested
pathogen and to regulate inflammation. The article by Acharya
et al. describes that murine macrophages increase their levels
of tumor necrosis alpha (TNF-α), interleukin (IL)-1β, IL-6,
and matrix metalloproteinase 9 (MMP-9) during complement-
mediated phagocytosis. Authors also provide evidence that
this upregulation of proinflammatory mediators downstream
of CRs may be dependent on calpain-mediated inhibition of
IκBα and NF-κB activation. Another cell response associated
to phagocytosis is the generation of extracellular vesicles with
antibacterial properties (aEV). The article by Lörincz et al.
describes that complement receptor CR3 is decisive for both
processes in human neutrophils. By using bone marrow derived
neutrophils from genetically modified mice, they confirm that
CR3 is involved in both processes. Although this receptor plays
a critical role in both responses, authors also present evidence
for phagocytosis and biogenesis of antibacterial extracellular
vesicles to be independent processes regulated by different
signaling pathways.

Phagocytosis is not only an important process for eliminating
microorganisms but also for eliminating damaged and apoptotic
cells. In this manner phagocytosis contributes to maintain tissue
homeostasis. Detection of apoptotic cells requires particular
receptors for molecules that only appear on the membrane of
dying cells. These molecules include lysophosphatidylcholine,
and phosphatidyl serine (PS) and they deliver to phagocytes an
“eat me” signal. Because some normal cells, including activated
B and T cells, may express significant levels of PS on their
surface, other molecules, for example CD47, function as “don’t
eat me” signals. Recognition and elimination of apoptotic cells
by macrophages, a process known as efferocytosis, is also
essential for the resolution of inflammation. The review by
Kourtzelis et al., presents our current understanding about
the mechanisms regulating macrophage efferocytosis during
resolution of inflammation. In special tissues, such as the brain,
phagocytosis also plays an essential role in eliminating dead cells
and protein aggregates. A particular type of efficient phagocytes,
the microglia, is responsible for this function. In the review
by Márquez-Ropero et al., the differences in the origin, lineage
and population maintenance of microglia and macrophages is
presented. They discuss the principles that govern efferocytosis,
and describe the epigenetic, transcriptional, and metabolic
rewiring by microglia and its implication in trained immunity
and brain function.

Most of the studies on the clearance of cellular debris
have been strongly biased toward the removal of apoptotic
bodies. As a result, the mechanisms underlying the removal
of necrotic cells have remained relatively unexplored. In the
review by Westman et al., our emergent understanding of the
phagocytosis of necrotic debris is presented. They explain the
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process from recognition of necrotic cells to their internalization
and disposal by phagocytes. The review describes the classes
of “find me” and “eat me” signals presented by necrotic cells
and their cognate receptors in phagocytes, which in most
cases differ from the extensively characterized counterparts in
apoptotic cell phagocytosis. An example of the importance of
phagocytosis of necrotic and cell debris is found in the disease
retinitis pigmentosa, characterized by progressive loss of retinal
photoreceptors, resulting in blindness. A special form of this
disease is caused by mutations in the clearance phagocytic
receptor Mer tyrosine kinase (MerTK) and the failure of retinal
pigment epithelial cells to eliminate photoreceptor outer segment
debris during diurnal phagocytosis. Now, a novel role for
microglia in the onset of retinitis pigmentosa is presented in the
paper by Lew et al.. They describe how loss of the phagocytic
receptor MerTK causes microglia activation and relocalization
in the retina, and that microglia activities accelerate loss of
photoreceptors. These findings suggest that therapies targeting
microglia may slow down the development of this blinding
disease. Another example of phagocytosis eliminating necrotic
cells and facilitating uptake of protein antigens is presented in
the article by Murshid et al.. They describe how cells undergoing
necrosis can release heat shock proteins (HSP) a highly abundant
class of molecular chaperones that when released can couple
to client binding proteins in the extracellular milieu. HSP can
be recognized through the scavenger receptors LOX-1 (class
E member oxidized low-density lipoprotein receptor-1) and
SCARF1 (scavenger receptor class F member 1), expressed by
dendritic cells (DC) and macrophages activating inflammatory
pathways and innate immunity. Additionally, these receptors
facilitate uptake of HSP and coupled antigens, and their
delivery to the proteasome, leading to antigen processing, cross
presentation, and stimulation of adaptive immunity.

Elimination of altered, but not dying cells, is also an
essential aspect of tissue homeostasis. Several cancer cells can
be recognized and eliminated through phagocytosis. Yet, some
tumor cells can also block this response by expressing the anti-
phagocytic (don’t eat me") CD47 molecule. In the case of the
non-small-cell lung cancer (NSCLC) it has been observed that
some tumors develop tyrosine kinase inhibitor (TKI) resistance
in patients with EGFR-mutant-mediated NSCLC. In the paper
by Nigro et al., a transcriptomic analysis of NSCLC cell lines
revealed selective overexpression of CD47 in patients carrying
EGFR mutations. Also, CD47 expression became up-regulated
following in vitro TKI resistance development. By inhibiting the
CD47 protein using a specificmonoclonal antibody, the clearance
of EGFR-TKI resistant cells by phagocytes is increased. Thus,
this report supports that some tumors enhance CD47 expression
to avoid phagocytosis, and that CD47 neutralization by specific
monoclonal antibody may be a promising immunotherapeutic
option for resistant EGFR-mutant NSCLC. An interesting
example of elimination of foreign cells through phagocytosis is
also presented in the paper by Gavin et al.. A promising tool in the
treatment of chronic inflammatory diseases is the administration
of mesenchymal stromal cell (MSC). The outcomes of this
therapy have been ascribed to the capacity of MSC to release

a large variety of immune-modulatory factors. However, after
administration most of the infused MSC are undetectable in
the circulation within hours. In this report, authors found that
upon contact with blood, complement proteins were deposited
on MSC and complement opsonization of MSC enhanced their
phagocytosis by monocytes. These findings imply that at least
some of the MSC immune-modulatory effects could be mediated
by monocytes that have phagocytosed them.

Phagocytosis is a complex process performed by many
cell types. Much of our knowledge comes from studies of
model professional phagocytes. However, one must bear in
mind that not all phagocytes behave the same. An important
example illustrating this notion, is presented in the article
by Zajd et al.. They remind us that macrophages are a
heterogeneous and plastic population of cells whose phenotype
changes in response to their environment, and they explore
the functional differences between peritoneal (pMAC) and
bone marrow-derived macrophages (BMDM). Contrary to their
hypothesis, authors found that BMDM were generally more
responsive and poised to respond to their environment than
pMAC. These findings are relevant for future studies, since
many times these two types of phagocytes were considered
to behave similarly. Finally, the review by Davies et al.,
describes some properties of a non-professional phagocyte, the
hepatocyte, which is very important in drug detoxification
and immunity. Liver function can have profound effects
in metabolism, inflammation and cancer. In addition to
phagocytosis/efferocytosis this review presents the latest findings
on other types of endocytosis (entosis, emperipolesis, and
enclysis) by hepatocytes.

Phagocytosis is a fundamental process for the ingestion and
elimination of microbial pathogens and apoptotic cells. Thus,
phagocytosis is vital for tissue homeostasis. In this Research
Topic, we have collected a series of articles that gives us
better understanding of the process of phagocytosis, however
many important questions remain unsolved. For example, how
different phagocytic receptors on the same cell work together?
What is the role of different phagocytes in tissue homeostasis? An
improved understanding of phagocytosis is essential for future
therapeutics related to infections and inflammation.
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Mesenchymal stromal cell (MSC) therapy is a promising tool in the treatment of chronic

inflammatory diseases. This has been ascribed to the capacity of MSC to release

a large variety of immune-modulatory factors. However, all aspects of the mode of

therapeutic MSC action in different diseases remain unresolved, mainly because most

of the infused MSC are undetectable in the circulation within hours after infusion. The

aim of this study was to elucidate the fate of MSC after contact with plasma. We found

that upon contact with blood, complement proteins including C3b/iC3b are deposited

on MSC. Importantly, we also found that complement bound to MSC enhanced their

phagocytosis by classical and intermediate monocytes via a mechanism that involves

C3 but not C5. Thus, we describe for the first time a mechanism which might explain,

at least partly, why MSC are not found in the blood circulation after infusion. Our results

indicate that MSC immune-modulatory effects could be mediated by monocytes that

have phagocytosed them.

Keywords: MSC, phagocytosis, monocytes, complement, fate, plasma, live

INTRODUCTION

Mesenchymal stromal cells (MSC) have emerged as a possible new treatment for several chronic
inflammatory diseases including diabetes, graft versus host disease, andmultiple sclerosis (1). Their
immune-modulatory function has mainly been ascribed to paracrine mechanisms associated with
secretion of immunoregulatory mediators including cytokines and growth factors which modulate
inflammatory response and balance immune profiles (2). The soluble immune secretomes include
prostaglandin E2 (PGE-2), indoleamine 2,3-dioxygenase (IDO), or nitric oxide (NO)(3). In
numerous clinical trials, MSC have been infused to the circulation (4) but the infused cells have
been difficult to detect in the blood already at short time points after infusion (5). Furthermore,
tracing studies of injected MSC have revealed that only few MSC were detectable at the site of
injury or inflammation despite encouraging clinical outcomes (6–8). Hence, the actual modes of
action of intravenous infusion of MSC in several diseases remain unresolved.
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Previous studies have shown that MSC have a very short
half-life (9) and that their infusion leads to an instant blood
mediated inflammatory reaction (10). Indeed, hypotheses that
MSC may be trapped in the lungs where they would interact
with local macrophages are gaining in popularity (9, 11, 12).
Moreover, Galleu et al. have demonstrated that infused MSC
are subject to perforin-induced apoptosis through recipient
cytotoxic cells, which favor their phagocytosis by monocytes
(13). Also, complement activation by MSC plays a role in
immunosuppression of peripheral blood cells via a mechanism
that involves CD11b+ cells (14). On the other hand, another
study also suggested that MSC may get injured after contact with
blood compounds due to the complement system (15). Thus,
further studies are needed to understand the interactions of MSC
with different components of the immune system, in order to
shed light on their fate after infusion and their mechanisms
of action.

The complement system, which comprises more than 30
proteins, plays an important role in innate immunity during
inflammatory responses against foreign agents (16). It can
be activated through three different pathways; the classical,
the lectin and the alternative pathway. The classical pathway
which uses the circulating C1q molecule is mainly activated
by antibodies bound to the surface of a target cell. The lectin
pathway uses mannose-binding lectins that bind carbohydrate
molecules at the surface of various pathogens. The alternative
pathway is constitutively active at a low level in normal
serum via spontaneous hydrolysis of C3. Each of these three
pathways leads to the generation of labile C3 convertases, which
cleave C3 into C3a and C3b that can thereafter participate
in forming distinct complexes. Ultimately, the complement
cascade results in activation of C5 that initiates the formation
of the C5b-7 complex that finally forms the membrane attack
complex (MAC), resulting in cell lysis (17). Complement
activation is regulated by soluble and cell surface-bound
complement inhibitors, which limit uncontrolled complement
activation. These complement regulators, including CD46 and
CD55, prevent C3b which binds to the host surface, from
either forming C3 convertases or from initiating decay of
the complexes (18). Other complement regulators such as
CD59 prevent MAC assembly and pore formation in the cell
membrane (19).

Receptors for complement components have been previously
described in various cell types including monocytes. The
complement receptor 3 (CR3), comprising CD11b, and CD18,
is expressed by all monocytes and critical for facilitating
phagocytosis of complement-opsonized cells or pathogens
(20). In addition, an increased percentage of suppressive
cells including M2 monocytes was found in vivo after MSC
infusion (13, 21–23). Thus, we here hypothesized that
MSC interact with complement components in plasma,
which might facilitate their phagocytosis by monocytes,
explaining their disappearance directly after infusion. We
here demonstrate that live complement-opsonised MSC are
phagocytosed by classical CD14+CD16− and intermediate
CD14+CD16− monocytes via a mechanism that involves C3 but
not C5.

MATERIALS AND METHODS

MSC Donors, Isolation, and Expansion
The study was approved by the Stockholm regional ethics
committee. All patients provided written consent (ethical permit
number: DNR 2016/338-32-4). Human bone marrow (BM)
derived MSC were isolated from 12 healthy volunteer donors as
described previously (24). Briefly, under local anesthesia, 30–50
mL aspirate was obtained from posterior iliac crest bone marrow
(BM). MSC were isolated from the BM-mononuclear cell (MNC)
fraction by Percoll density gradient centrifugation. Cells were
washed and expanded in Dulbecco’s modified Eagle’s medium
(DMEM) low-glucose complete medium, supplemented with
10% heat inactivated fetal calf serum and antibiotic-antimycotic
(A/A; Gibco, Grand Island, NY), and plated at a density of 1.7
× 105 cells per cm2. Cells were prepared for harvest, washed
with phosphate-buffered saline (PBS) and detached with 0.05%
Trypsin-EDTA (Gibco, Grand Island, NY) for maximum 10min
at 37◦C, thereafter replated at a density of 3,400–4,000 cells
per cm2 and detached at a minimum confluence of 70%. Cells
were either replated or cryopreserved in 10% DMSO/DMEM
complete medium until further use, in liquid nitrogen. The
guidelines of the International Society for Cellular Therapy were
applied to analyse the MSC prior to use in research. For in
vitro assays, MSC from passage 2–4 were thawed in DMEM
complete medium on the day of experiments. Cultures were
performed under sterile conditions in humidified atmosphere at
37◦C in 5% CO2. Co-culture experiments were carried out in 96-
well-plates (Costar Ultra-low Cluster, Corning) in Roswell Park
Memorial Institute 1640 (RPMI) GlutaMAX R© (Gibco, Grand
Island, NY) complete medium, supplemented with 10% heat-
inactivated pooled human blood type AB serum or 10% FCS,
penicillin (100 U/mL) and streptomycin (0.1 mg/mL).

Plasma Preparation
Thrombin inhibitor Lepirudin (Refludan R©) was added
immediately to fresh peripheral blood samples obtained
from healthy volunteers. The samples were centrifuged at 2,000
× g for 10min at 4◦C. The plasma was removed and kept
on ice until further use. To focus on the complement system
and exclude the coagulation cascade, we used a thrombin
inhibitor in both the blood and plasma experiments. Heat
inactivated (HI) plasma (30min at 60◦C) or K3EDTA (final
concentration of 10mM, pH 7.3, Alfa Aesar) were used as
negative controls. C3 inhibitor (10µM, Compstatin, CP-
20 a generous gift from Professor John D. Lambris, Professor of
ResearchMedicine in the Department of Pathology & Laboratory
Medicine at the University of Pennsylvania, Philadelphia, PA,
USA) or C5 inhibitor (250µg/mL, Eculizimab, Soliris, Alexion
Pharmaceuticals) were used in order to inhibit the binding of
complement factor C3 or C5 to the cell surface.

Blood-Chamber and Blood Isolation

Procedure
The blood chamber technique has been previously described
(25). Briefly, thrombin inhibitor Lepirudin (final concentration
50µg/mL [50mg in 1mL NaCl]) (Refludan R©) was added
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immediately to fresh peripheral blood obtained from healthy
donors, and collected in pre-heparinized tubes. As a negative
control K3EDTA (pH 7.4) was added at a final concentration of
10mM. Blood was added into pre-heparinized chambers, where
MSC were added and incubated on a rotator at 37◦C at different
time points. The experiment was stopped by adding K3EDTA
(pH 7.4). In selected experiments one fraction of MSC was
exposed to 10µg/mL complement inhibitors (all fromBiolegend)
for 30min at 4◦C. The effect of fresh blood on MSC was assessed
for viability and C3b/iC3b binding [revealed using anti-C3c FITC
which binds to C3b and iC3b fragments on MSC (14)] using
FlowSight system (Merckmillipore). Lysis buffer (BD Pharm
Lyse R©, BD Biosciences) was used to remove red blood cells before
antibody staining.

MSC Expansion and Differentiation
MSC were thawed and seeded in DMEM culture for 1 week.
MSC were trypsinised, washed and cultured in DMEM (Gibco)
containing 50% plasma ± 10mM K3EDTA, HI plasma or
DMEM complete medium alone for 1, 3, or 24 h. Cells were
centrifuged, washed and plated in fresh DMEM complete
medium, and thereafter examined for adhesion to plastic and
expansion for 6 days. Expanded MSC were used for subsequent
in vitro experiments. Retained differentiation capacity of MSC
was assessed using media and instruction protocols from
either adipogenic (Stempro, Invitrogen) or osteogenic (Miltenyi
Biotech, GmbH). Adipocyte and osteocyte differentiations
were evaluated by Oil Red O (Sigma-Aldrich) and alkaline
phosphatase (Sigma Fast, BCIP/NBT), respectively. Presence of
lipid vacuoles or calcium deposits was analyzed under a wide field
optical microscope.

T Cell Stimulation and Suppression Assay
PBMCs were freshly isolated from buffy coats using density
gradient centrifugation on Ficoll-Isopaque (Lymphoprep R©;
Axis-Shield, Norway), according to the manufacturer’s protocol.
Human CD3+ T cells were isolated by negative selection
(Miltenyi Biotec; Human Pan T Cell Isolation Kit) according
to the manufacturer’s instructions. CD3+ T cells (purity
>95%) were then stained with carboxyfluorescein succinimidyl
ester (CFSE) (Invitrogen) and activated using anti-CD3/CD28
microbeads (Miltenyi Biotec) for 5 days. Using flow cytometry
(BD Fortessa LSR-II), proliferation of T cells was assessed in
the presence or absence of MSC. All antibodies used for T cell
staining are presented inTable 1. Depending on conditions, MSC
were treated for 1 h with plasma or heat-inactivated plasma prior
to co-culture with T cells. Data were analyzed using FlowJo
software (Ashland, OH).

Cell Surface Staining
MSC treated with plasma as described above were stained with
MSC markers described in Table 1. Briefly, after 20min of
incubation at 4◦C with specific antibodies, cells were centrifuged
for 5min at 400x g at 4◦C. The supernatant was removed and
the cell pellet of each well was taken up in 200 µL PBS. The
contents of each well were then acquired using flow cytometry

TABLE 1 | Antibodies used in the current study.

Target Fluorochrome Clone Dilution Company

C3c FITC 1:100 Dako

CD3 APC-Cy7 OKT3 1:100 BD Biosciences

CD3 PerCP-Cy5.5 OKT3 1:100 BD Biosciences

CD4 PE-Cy5 OKT4 1:200 BD Biosciences

CDS Alexa488 RPA-T8 1:400 BD Biosciences

CD11b FITC M1/70 1:100 Biolegend

CD14 PerCp-Cy5.5 HCD14 1:200 Biolegend

CD16 PE-CF594 3G8 1:400 BD Biosciences

CD32 PE FUN-2 1:100 Biolegend

CD46 FITC MEM-258 1:100 Biolegend

CD55 PE-Cy7 JS11 1:100 Biolegend

CD59 PE p282(H19)L 1:200 Biolegend

CD64 PE-Cy7 10.1 1:200 Biolegend

CD73 APC-Cy7 AD2 1:100 Biolegend

CD73 FITC AD2 1:100 Biolegend

CD73 APC AD2 1:100 BD Biosciences

IDO Alexa Fluor 488 1:100 RD systems

IL-6 PE-CF594 MQ2-1 1:100 BD Biosciences

LIVE/DEA DTM Fixable V525 1:1,000 Invitrogen

7AAD PerCp-Cy5.5 1:100 BD Pharmingen

(BD LSRFortessa, BD Biosciences) and data were analyzed using
the FlowJo software (Ashland, OH).

Licensing Assay
MSC production of interleukin (IL)-6 and Indoleamine 2,3-
dioxygenase (IDO) in response to licensing by proinflammatory
stimuli was assessed after exposure to plasma. MSC were thawed
and exposed to 50% plasma ± 10mM K3EDTA or 50% heat
inactivated plasma. As negative control, MSC were cultured in
DMEM complete medium only for 1 h as described for previous
experiments. Cells were washed, replated and thereafter licensed
with 10 ng/mL tumor necrosis factor (TNF)-α, and 100 U/mL
interferon (IFN)-γ for 72 h. For detection of intracellular IL-6 or
IDO, GolgiPlugTM (BD Biosciences) was added 5 h prior to the
end of the experiment (according to manufacturer’s protocol).
Cells were acquired using flow cytometry (BD LSR Fortessa, BD
Biosciences) and data were analyzed using the FlowJo software
(FlowJo, Ashland, OH).

Complement Lysis Assay
Freshly thawed MSC were loaded with calcein red-orange
acetoxymethyl ester (calcein RO AM) (Molecular Probes) at a
concentration of 2.5µg/mL in PBS, and incubated for 10min
at 37◦C. Cells were then centrifuged and resuspended in PBS
(control), in 50% plasma or in 50% heat-inactivated plasma as
negative control. The blocking antibodies CD46, CD55, or CD59
against complement regulators (Table 1) were added and the
experiment was analyzed after 1 h incubation at 37◦C. Staining
for flow cytometry was performed as described above.
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Phagocytosis Assay
Freshly thawed MSC were stained with 51 nmol/L pHrodo
succinimidyl ester (Molecular Probes) in PBS for 10min at
RT, centrifuged at 500 × g for 7min and resuspended in
DMEM. Cells were incubated for 1 h at 37◦C with either of
the following conditions: control DMEM complete medium, or
medium with 50% plasma, 50% HI plasma or 50% plasma with
10mM K3EDTA. MSC under each condition were also divided
up in the following fractions: MSC alone, MSC with C3 inhibitor
(10µM, Compstatin) or MSC with C5 inhibitor (250µg/mL,
Soliris) added, respectively. One further fraction was exposed
to complete medium with added C3 complement protein (15
mg/mL, Sigma C2910). MSC were washed and resuspended in
complete DMEMmedium. The cell line THP-1 or freshly isolated
PBMCs containing monocytes were used as phagocytes. To
increase the phagocytic activity of THP-1 cells, 15 ng/mL phorbol
12-myristate 13-acetate were added for 15min at 37◦C. Further,
10µg/mL Cytochalasin D (Sigma-Aldrich) was added to negative
control cells in order to block phagocytosis for a minimum of
30min at 37◦C. MSC were co-cultured with phagocytic cells at
1:1 ratio and incubated for 2 h at 37◦C. Thereafter, cells were
centrifuged at 400x g for 5min and stained on ice for analysis
by flow cytometry (BD LSRFortessa, BD Biosciences). Monocytes
were identified by forward scatter/side scatter (FSC/SSC) and
gating on CD14+ cells. Phagocytosis was detected by pHrodo
fluorescence. The positive gate was set based on the negative
control with Cytochalasin D. Cells were acquired using flow
cytometry (BD LSRFortessa, BD Biosciences) and data were
analyzed using the FlowJo software (FlowJo, Ashland, OH).

Statistical Analysis
Statistical analysis using paired t-test or one way ANOVA
(described in figure legends) were performed using Graph Pad
Prism (Graph Pad Prism Software Incl. San Diego, USA). p <

0.05 was considered statistically significant.

RESULTS

Survival and Function of MSC Upon

Contact With Plasma
Due to the fast clearance of MSC from blood circulation after
i.v. infusion, it remains unclear whether MSC die after contact
with plasma. To test this, we incubated MSC with freshly
isolated plasma in different time periods stretching from one
up to 24 h (Figures 1A–C) and data not shown. It has been
recently demonstrated that the anti-human C3c antibody detects
C3b/iC3b deposition on the surface of MSC after incubation
with serum (14). To check for potential MSC interaction with
the complement system, we stained for the presence of the
complement components C3b/iC3b on the surface of MSC by
using the same antibody (Figures 1A–C). MSC from different
healthy donors displayed heterogeneity in C3b/iC3b deposition,
ranging from 10 to 60% after 1 h of incubation with plasma
(Figure 1C). Heterogeneity of C3b/iC3b deposition was also
observed when we used purified C3 protein together with MSC
(Figure 1C). Using flow cytometry, we found thatMSC incubated
with plasma displayed the same shape and granularity with

no significant changes in viability compared to control MSC
(Figure 1D). This was also observed when MSC were incubated
with all blood compounds using the blood chamber technique
(25) (Figure 1B and data not shown). It should be noted that
the intact coagulation system was inhibited in all experiments
by the addition of a thrombin inhibitor. Altogether, these results
indicate that MSC survive in vitro during the first hours when
they interact with plasma.

Moreover, we found that MSC pre-treated with plasma
suppressed the proliferation of activated CD3+ T cells similarly
to MSC pre-treated with heat inactivated (HI) plasma or non-
treated MSC, suggesting that the immune-suppressive properties
of MSC are not altered after interaction with plasma compounds
(Figure 1E). In response to high concentrations of IFNγ, and
TNFα, MSC pre-incubated with plasma still produced substantial
levels of IL-6 and IDO (Figure 1F). Using the appropriate media
for MSC differentiation, we found that MSC pre-incubated with
plasma differentiate to adipocytes and chondrocytes similarly
to control MSC suggesting that the differentiation capacity
of MSC was maintained (Data not shown). Interestingly,
expression levels of the complement regulators CD46, CD55,
and CD59 were not affected following contact between MSC
and plasma (Figure 1G). Altogether, these results indicate that
MSC survive and are fully functional, after contact with plasma
and that this protection might be due to the expression of
complement regulators.

Effects of Blocking Complement

Regulators on MSC Pre-treated With

Plasma
We tested whether expression of complement regulators CD46,
CD55, and CD59 is important for the survival of MSC following
incubation with plasma.MSCwere labeled with calcein which is a
cytosolic dye that leaks out if the membrane of MSC is damaged
by the membrane attack complex (26). MSC were treated with
specific blocking antibodies, washed, then incubated later with
plasma. Thereafter, MSC were stained for C3b/iC3b deposition
on their surface (Figures 2A–C). Addition of an anti-CD59
specific antibody but not anti-CD46 nor anti-CD55 resulted
in calcein leakage when MSC were pre-treated with plasma
(Figures 2A–C). Importantly, blocking of any complement
inhibitor did not induce calcein leakage when MSC were pre-
treated with HI plasma or untreated MSC (Figure S1). The shape
and granularity of MSC were dramatically changed with an
accumulation of cell debris when MSC were pre-treated with
plasma and antibodies blocking the complement inhibitor CD59
(Figure S2). Moreover, inhibition of CD59 led to a pronounced
increase of C3b/iC3b deposition on the surface of MSC pre-
treated with plasma compared to controls (Figures 2A–C). Using
FlowSight, we found that blocking of CD59, but not other
complement regulators resulted in cell death as shown by 7-AAD
staining (Figure 2D) and data not shown. Similarly, using flow
cytometry, we found that almost all MSC stained positive for the
dead cell marker after pre-treatment with complement inhibitor
CD59 and plasma (Figure 2E). CD59 was expressed at a much
higher levels compared to CD46 and CD55 on the surface of
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FIGURE 1 | Survival and function of MSC after their contact with plasma. (A) Contour plots from flow cytometry analysis of MSC stained with anti-C3c FITC or

specific isotope control to detect C3b/iC3b deposition after exposure to plasma, heat inactivated (HI) plasma or untreated MSC. (B) FlowSight images of MSC

incubated with blood compounds in the presence or absence of 10mM EDTA for 30min. MSC were stained with C3c-FITC and CD73-PE. Brightfield image of MSC

is shown in the left part of the image. (C) Percentage of C3c-FITC binding to MSC after exposure to different conditions (media, EDTA-plasma, HI-plasma, plasma,

purified C3 protein) for 1 h. (D) Representative contour plot showing FSC and SSC of MSC after their exposure to plasma. Bars represent percentage of live (aqua live

dead negative) MSC after 1 h incubation in control vs. plasma from two different experiments. Data shown are representative of two experiments of five different MSC.

(E) Inhibition of proliferation of 5 days activated T cells (n = 3) in the presence of MSC (n = 7) at the indicated ratios. Data shown are means and SD of two

independent experiments. (F) Intracellular IDO or IL-6 expression was measured by flow cytometry in MSC exposed to control media, inactive complement plasma

(+ EDTA, 10mM) or active complement plasma for 1 h, thereafter washed and treated with TNF-α and IFN-γ for 72 h. Data shown are representative from four MSC.

(G) Expression of complement regulatory proteins CD46, CD55, and CD59 on MSC cultured in complete medium, HI plasma or plasma was analyzed by flow

cytometry. Mean fluorescent intensities of MSC from five MSC in two different experiments are displayed with mean and SD.

all analyzed MSC. Thus, the different expression levels of CD46,
CD55, and CD59 do not exclude the possibility that both CD46
and CD55 may also be important for protection. Furthermore,

although this result is interesting, it should be noted that blocking
of CD59 by this specific IgG2a isotype may also induce killing of
MSC through the activation of the classical pathway (27). Thus,
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FIGURE 2 | Effects of blocking complement regulators on MSC pre-treated with plasma. (A) Representative contour plots of calcein RO-stained MSC exposed to

plasma, HI plasma or medium for 1 h in the presence or absence of blocking antibodies against complement inhibitors CD46, CD55, or CD59. (B) Percentage of

calcein leakage, and (C) percentage of C3b/iC3b binding to MSC pre-treated with anti-CD46, anti-CD55, and anti-CD59 blocking antibodies in the presence of active

plasma. Data shown are means and SD (n = 4). (D) FlowSight images showing C3b/iC3b binding and 7-AAD (death marker) on MSC in the presence or absence of

anti-CD59 blocking antibody in the blood chamber experiments. (E) Percentage of live cells (aqua live dead negative) of MSC pre-treated with plasma in the presence

or absence of anti-CD59 blocking antibodies. Data shown are means and SD (n = 4). Data are representative of two independent experiments. Statistical significance

was determined using paired t-test *p = 0.05 and ***p = 0.0001.

at this stage, our results which suggest that CD59 may protect
MSC from complement lysis should be considered as suggestive,
but not conclusive.

Complement Factors Enhance

Phagocytosis of MSC by Monocytes
Phagocytosis is considered to be an important pathway for
removal of complement-opsonized cells from circulation (28).
We hypothesized that MSC are phagocytosed via a mechanism
that involves complement proteins. To address this, we labeled
MSC with the pH-sensitive dye pHrodo, which has a low
fluorescence at neutral pH that increases with decreasing pH,
for instance upon entering phagolysosomes where the pH is
significantly reduced (29). This approach allows to clearly address
active phagocytosis of MSC by monocytes. As a negative control,
Cytochalasin D (CytoD) was added to the co-culture in order
to inhibit phagocytosis. We initially used the monocytic cell line
THP-1, which has been extensively used in phagocytosis studies
(30). Although the phagocytic capacity of THP-1 cells was not
high, we consistently observed higher phagocytosis if MSC were
pre-treated with plasma, compared to heat inactivated plasma or

medium alone (Figures 3A,B). Therefore, we set-up experiments
using fresh PBMC from healthy donors (Figures 3C–E) and
gated on CD14+ cells in order to analyze phagocytosis by
monocytes (Figure 3C). After 2 h of co-culture, around 15% of
monocytes showed a higher pHrodo fluorescence indicating that
MSC are phagocytosed by monocytes in the absence of plasma
(Figures 3D,E). Interestingly, almost half of the monocytes
phagocytosed MSC if they were pre-incubated with plasma
and washed prior to co-culture (Figures 3D,E). When MSC
were pre-incubated with HI plasma, we observed a significant
decrease in phagocytosis of MSC by monocytes compared
with plasma (Figures 3D,E). These results suggest that plasma
factors interacting with MSC are responsible for the increased
phagocytic capacity of monocytes.

Phagocytosis of MSC Is Mediated by

Classical and Intermediate Monocytes
In humans, monocytes can be divided into three subsets
based on the expression of CD14 and the Fcγ receptor III
CD16 (31), including classical monocytes (CD14+ CD16−),
intermediate monocytes (CD14+ CD16+) and non-classical
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FIGURE 3 | Complement enhances phagocytosis of MSC by monocytes. MSC were labeled with pHrodo and incubated with or without active plasma for 1 h,

washed and co-cultured with THP-1 cells (A,B) or PBMC (D,E). Phagocytosis was analyzed after 2 h co-culture. Phagocytosis inhibitor Cytochalasin D (CytoD) was

added as a negative control. (A) Representative plots of flow-cytometric analysis of phagocytosis by THP-1 cells. pHrodo bright fluorescence indicates cells that have

phagocytosed labeled MSC. (B) Pooled data of THP-1 cell phagocytosis, bars represent means with SD (n = 4) from two independent experiments. (C) Gating

strategy of CD14+ monocytes in freshly isolated PBMC. (D) Representative plots of flow-cytometry analysis of phagocytosis by monocytes. pHrodo bright

fluorescence indicates cells that have phagocytosed labeled MSC. (E) Pooled data from MSC phagocytosis by monocytes, bars represent means with SD (n = 4) of

two independent experiments. Statistical significance was determined using ANOVA followed by Holm-Sidak’s multiple comparisons test *p = 0.05, **p = 0.001.

monocytes (CD14− CD16+). Here, we made use of the CD14
and CD16 surface markers to identify these three subsets in our
assays (Figure 4A). We addressed whether MSC phagocytosis,

mediated by plasma factors, involves a specific subset of
monocytes. Indeed, monocytes with phagocytosedMSC (pHrodo
Bright) were mainly classical CD14+ CD16− and intermediate
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FIGURE 4 | Phagocytosis of MSC is mediated by classical and intermediate monocytes. (A) Gating strategy on different subsets of monocytes in freshly isolated

PBMC. Classical monocytes (CD14+ CD16−), intermediate monocytes (CD14+ CD16+), and non-classical monocytes (CD14− CD16+). (B) Representative flow

cytometry plots showing distribution of different subsets of monocytes on gated pHrodo Bright and pHrodo Low. (C) Distribution of the three monocyte subsets within

the pHrodo Bright population. Bars represent mean values with SD (n = 4 PBMC) of pooled data from two different experiments.

CD14+ CD16+ monocytes while non-classical CD14− CD16+

monocytes did not phagocytose MSC (Figures 4B,C) and
Figure S3. Since intermediate monocytes represent only a small
fraction of the total number of monocytes, the majority of
pHrodo bright cells were classical monocytes (Figures 4B,C).
The distribution of monocyte subsets that phagocytose MSC pre-
treated with plasma was similar when we compared them to non-
treated MSC or MSC treated with HI plasma (data not shown).

Mechanism of MSC Phagocytosis by

Monocytes
To better understand which plasma components are involved in
the phagocytosis by monocytes of MSC pre-treated with plasma,
we first tested whether complement factors may play a role in
this process. The complement factors C3 and C5 were selected
due to their important roles in monocyte-mediated phagocytosis
(17, 20, 32). As anticipated, inhibition of complement factors C3
or C5 did not change the percentage of phagocytosis of control
MSC or MSC pre-incubated with HI plasma (Figures 5A,B).
However, we observed a significant decrease in the phagocytosis
of MSC pre-incubated with plasma in the presence of a C3
inhibitor. On the other hand, inhibition of C5 had no effect on
monocyte phagocytosis (Figures 5A,B). Following subtraction
of basal phagocytosis of MSC (phagocytosis which is observed
in plasma free medium), ∼80% of plasma-mediated increase of
phagocytosis was due to C3 binding (Figure 5C). In addition,
a significant positive correlation between C3b/iC3b binding

and the percentage of pHrodo bright monocytes was detected
(Figure 5D). Altogether, these results indicate that C3 is an
important mediator for phagocytosis of MSC by monocytes
(Figure 6). Further investigations are required to unravel the
exact molecular mechanisms underlying the role of C3 in
phagocytosis of MSC by monocytes.

DISCUSSION

The current consensus in the field of MSC therapy has hitherto
been that intravenous infusion ofMSC leads to quick clearance of
MSC from the blood circulation. The remaining debate has been
focused on the fate of administrated MSC (5). Here, we report
that MSC survive and conserve their phenotypic and functional
activities if they are in contact with complement active plasma.
Furthermore, our results demonstrate that the complement
factor C3 facilitates phagocytosis of live MSC by classical and
intermediate monocytes.

One of the first lines of innate defense of the immune
system is the complement system, which during infection
or entry of foreign cells will bind to their cell surface and
amplify a cascade of enzymatic reactions (16). To prevent
uncontrolled complement activation, cells express a number of
complement regulators at their surface (18). Based on our and
other previous reports showing that MSC express complement
inhibitors including CD46, CD55, and CD59 (14, 15, 33),
we hypothesized that MSC are protected from complement
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FIGURE 5 | Mechanism of MSC phagocytosis by monocytes. MSC were labeled with pHrodo and incubated with or without active plasma for 1 h in the presence or

absence of the C3 inhibitor compstatin or the C5 inhibitor soliris. Cells were washed and co-cultured with PBMC for 2 h. (A) Representative plots of flow-cytometric

analysis of phagocytosis by monocytes. pHrodo bright fluorescence indicates cells that have phagocytosed labeled MSC. (B) Pooled data from two independent

experiments using a total of four different MSC. Bars represent mean values with SD (n = 4). Statistical significance was determined using ANOVA followed by

Holm-Sidak’s multiple comparisons test **p = 0.001. (C) Percentage of reduction in phagocytosis in the presence of C3 or C5 inhibitor calculated from the data

shown in (B) and the percentage of phagocytosis observed in plasma free medium was subtracted. (D) Correlation between percentage of C3b/iC3b binding to MSC

and percentage of pHrodo bright monocytes from HI plasma and plasma in the phagocytosis experiments.

attacks. Our results suggest that CD59 might protect MSC from
complement lysis. However, this result must be taken with
caution since the specific isotype (IgG2b) of the anti-CD59

antibody used within the present study may lead to the
activation of the classical complement pathway as previously
reported (27).
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FIGURE 6 | Model of MSC fate after interaction with blood. (A) Increase in C3 binding and decrease in the survival of plasma pre-treated MSC in the presence of

anti-CD59. (B) C3 binds to the surface of MSC, probably through the alternative complement pathway. CD59 blocks the membrane attack complex from forming.

MSC are phagocytosed by classical and intermediate monocytes, mainly mediated by the presence of C3 on the MSC surface. The receptor binding to C3 and

inducing the phagocytosis remains unknown.
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On the other hand, our results are also in accordance with
Feng et al. who demonstrated that CD59 plays an important
role in protection against complement-mediated cytotoxicity
(15). However, the same report also suggested a role for CD55,
which we did not observe in our study. The latter could
be due to different expression levels of CD46, CD55, and
CD59 on the surface of MSC. Furthermore, it has also been
shown that despite CD59 and CD55 expression, MSC were
injured after complement binding, as revealed by release of the
fluorescent dye bis-carboxyethyl-carboxyfluorescein (BCECF)
from MSC (15). In our study, we did not observe calcein
leakage when MSC were treated with plasma suggesting
that MSC were not injured. Thus, it is plausible that the
different dyes used to detect cytotoxicity might be the reason
for the different results obtained. Indeed, calcein has been
reported to display higher sensitivity and less spontaneous
leakage than BCECF (34). Moreover, plasma pre-treated MSC
stained negative for all the three commonly used cell death
markers in both flow cytometry and FlowSight techniques
and displayed full functional capability favoring the hypothesis
that MSC survive after contact with plasma. Our data are in
accordance with mouse and human in vivo tracing experiments,
which identified MSC in different organs hours to days after
infusion (7, 8, 21, 35).

We observed an increase in C3b/iC3b deposition on MSC
after CD59 inhibition. Here again, we are not excluding the
clear possibility that this could be due to the activation of the
classical complement pathway (27). However, recent findings
suggest a role for CD59 not only as a major controller of
the membrane attack complex (19) but also in C3 regulation
(36, 37). Furthermore, although CD55 was suggested to regulate
C3 (36), we did not observe any significant changes in
C3b/iC3b deposition when CD55 was blocked on MSC. More
experiments are therefore required for further clarification.
It should be noted that interaction with complement is not
unique to bone marrow MSC as adipocyte stromal cells have
been shown to interact with complement in rat peritonitis
model (38).

Complement deposition on the cell surface serves as target
for complement receptors present on mononuclear phagocytic
cells in particular monocytes and macrophages (28). Our results
revealed that live MSC were targeted by monocytes via a
mechanism that involves complement. Such a mechanism might
explain in part the observed rapid clearance of MSC when
infused to the circulation. Indeed, only 2 h of incubation led to
phagocytosis of complement-opsonized MSC by more than 45%
of monocytes. A recent study by the Hoogduijn research group
used umbilical cord MSC (uMSC) labeled with the lipophilic
membrane dye PKH26, which were mixed with monocytes
in blood. They found PKH26-labeled uMSC fragments on
monocytes 3 h after co-culture (22). Also, Braza et al. found in
an asthma model in mice that injected PKH26-labeled MSC were
engulfed by lung macrophages within 24 h following i.v. injection
(21). However, the use of PKH26 may be disadvantageous since
it also could incorporate itself into other cells (in this case to
monocytes or macrophages) through a cell-to-cell membrane
transfer process called trogocytosis, giving rise to false positive

signals without phagocytosis (39, 40). In the current study,
MSC were labeled with pHrodo, which has the advantage that
it is only fluorescent under acidic conditions, consequently
it will only be fluorescent in phagolysosomes (pH 4) but
neither outside of the cell nor in the cytoplasm where the
pH is around 7 (29, 41). Thus, our data demonstrated that
live complement-opsonized bone marrow MSC were indeed
phagocytosed by monocytes. Intriguingly, we showed that MSC
were also phagocytosed by monocytes in the absence of plasma
albeit to a lesser extent. These observations are consistent with
the paradigm that MSC can be engulfed by cancer cells in the
absence of plasma (42). One possible explanation might be that
MSC express adhesion molecules that allow a tight contact with
monocytes, which could facilitate their phagocytosis (28, 43).
A recent study suggested that apoptosis of MSC is induced by
cytotoxic T cells which favor their engulfment by phagocytic
cells (13). Our data complement this study and reveal that
live MSC can also be subjected to phagocytosis by monocytes.
This might explain recent pre-clinical studies showing positive
effect of living MSC in the treatment of sepsis (44, 45).
Nevertheless, a comparative study on the immunomodulatory
potential of monocytes which phagocyte apoptotic vs. live MSC
is required.

With further evaluation of the mechanism of complement-
mediated phagocytosis, we found that addition of compstatin,
which blocks the activation of complement at the C3 level
(32) significantly affected phagocytosis of MSC by monocytes.
Adding the C3 inhibitor reduced C3b/iC3b deposition on
the surface of MSC suggesting that binding of C3 at the
surface of MSC is associated with complement activation
confirming previous observations (14). However, the exact
mechanisms underlying how C3 deposition triggers phagocytosis
remain to be investigated. An interesting question, which
needs further investigation, is which receptor on monocytes
is involved in MSC phagocytosis. Monocytes express receptors
for different C3 derivative fragments including CR1 (CD35),
CR2 (CD21), CR3 (CD11b/CD18), and CR4 (CD11c/CD18)
(46). Among these receptors, CR1 and CR2 on monocytes
are involved in phagocytosis via interactions with the C3
complement during infection (47). Thus, a similar mechanism
might occur for MSC. Interestingly, phagocytosis mediated
via complement receptors is not always associated with
inflammation (47). Therefore, it is reasonable to speculate
that monocytes might be the final destination of MSC
after their infusion into the circulation without inducing
an excessive inflammation. This might partly explain the
mild inflammation detected after intravenous infusion of
MSC (48).

Another question addressed in our study is which type of
monocytes phagocyte MSC. Moll et al. showed that depletion
of CD14+CD11bhigh monocytes was associated with strong
decrease in the immunosuppressive function of MSC in vitro
in both alloantigen- and PHA-stimulated mixed lymphocyte
reactions (14). We found that classical CD16− CD14+ and
intermediate CD16+ CD14+ monocytes were first in engulfing
MSC supporting recent findings (22). However, we did not
see any significant changes in expression of the other Fc
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receptors CD32 or CD64 on phagocytic monocytes which
have been involved in complement-mediated phagocytosis
during certain infection (data not shown). However, kinetic
experiments are needed to see whether non-classical CD16+

CD14− monocytes are also involved in the phagocytosis
of MSC at a later time point. Indeed, de Witte et al.
suggested that 24 h after engulfment of uMSC, monocytes
polarize from CD14+ CD16− to CD14+ CD16+ expressing
cells (22).

In conclusion, we propose that complement opsonization
plays a crucial role in the fate of MSC after intravenous infusion
(Figure 6). It mediates their rapid phagocytosis by classical and
intermediate CD14+ monocytes. MSC are protected against
complement injury through CD59, which is in contrast to the
previous dogma that MSC disappear from circulation due to
destruction. Our results provide new insights on the fate of
MSC after intravenous infusion, which needs to be taken into
consideration in order to improve the therapeutic role of MSC
in various diseases.
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Figure S1 | Complement inhibitors CD46, CD55, or CD59 are not toxic on MSC.

Representative contour plots of calcein RO stained MSC and exposed to plasma,

HI plasma or medium for 1 h in the presence or absence of complement inhibitors

CD46, CD55, or CD59. Data is representative of 5 MSC of two independent

experiments.

Figure S2 | Representative contour plots showing shape (FSS) and granulosity

(SSC) of MSC after incubation for one hour with or without active plasma, in the

presence or absence of complement inhibitor anti-CD59. Data are representative

of at least three different experiments.

Figure S3 | Phagocytosis of MSC is mediated by classical and intermediate

monocytes. Presence of non classical monocytes among other subsets on gated

pHrodo Low MSC. Pooled data of two different donors (PBMC = 4).
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Opsonins are soluble, extracellular proteins, released by activated immune cells, and

when bound to a target cell, can induce phagocytes to phagocytose the target cell.

There are three known classes of opsonin: antibodies, complement factors and secreted

pattern recognition receptors, but these have limited access to the brain. We identify

here two novel opsonins of bacteria, calreticulin, and galectin-3 (both lectins that can

bind lipopolysaccharide), which were released by microglia (brain-resident macrophages)

when activated by bacterial lipopolysaccharide. Calreticulin and galectin-3 both bound to

Escherichia coli, and when bound increased phagocytosis of these bacteria by microglia.

Furthermore, lipopolysaccharide-induced microglial phagocytosis of E. coli bacteria was

partially inhibited by: sugars, an anti-calreticulin antibody, a blocker of the calreticulin

phagocytic receptor LRP1, a blocker of the galectin-3 phagocytic receptor MerTK, or

simply removing factors released from the microglia, indicating this phagocytosis is

dependent on extracellular calreticulin and galectin-3. Thus, calreticulin and galectin-3

are opsonins, released by activated microglia to promote clearance of bacteria. This

innate immune response of microglia may help clear bacterial infections of the brain.

Keywords: calreticulin, galectin-3, opsonin, MerTK, LRP1, microglia, bacteria

INTRODUCTION

Bacterial infections of the brain are serious, often causing death or irreversible brain damage
(1). They are relatively rare in developed countries, but still relatively common in some
developing countries (2). Infections include bacterial meningitis, bacterial encephalitis, bacterial
meningoencephalitis, and brain abscess (1). Bacterial infection of the brain appears to increase in
Alzheimer’s disease, and might contribute to this disease (3). Brain infections are serious partly
because antibodies and leucocytes have limited access to the brain, so that microglia (brain-resident
macrophages) act as the primary innate immune response to bacterial infection of the brain. One
of the main ways that microglia combat bacterial infection is by phagocytosing the bacteria (4).

Phagocytosis is the cellular engulfment and digestion by cells of large extracellular particles,
including bacteria. Phagocytes are cells specialized in phagocytosis, and their phagocytosis of other
cells (the target cell) normally requires: an “eat-me” signal on the target cell, a phagocytic receptor
on the phagocyte, and an opsonin to link the receptor and eat-me signal (5). An eat-me signal is a
molecule normally found inside the target cell, but when exposed on the surface of the target cell
promotes a phagocyte to phagocytose that cell. A phagocytic receptor is a receptor on a phagocyte
that, when activated by an eat-me signal or opsonin on the target cell, induces engulfment of the
target cell by the phagocyte. Opsonins are normally soluble, extracellular proteins that when bound
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to the surface of cells promote phagocytosis of those cells.
Classical opsonins include IgG antibodies and complement
components, but also pentraxins, collectins, and ficolins.
Here, we identify two novel opsonins of bacteria, galectin-3,
and calreticulin.

Galectin-3 (gal-3), also known as Mac-2 or LGALS3, is a
protein expressed and released by macrophages and microglia
(6–9). It is a galactose-binding lectin (galectin) that preferentially
binds to N-acetyl-lactosamine (a disaccharide of galactose
and N-acetyl-glucosamine) in glycoproteins or gangliosides
(7, 10). Galectin-3 is normally monomeric, but when the C-
terminal carbohydrate recognition domain (CRD) binds N-
acetyl-lactosamine, the N-terminal oligomerizes, so that galectin-
3 can cross link glycoproteins or gangliosides (7, 10). By binding
to sugars on target cells and then crosslinking to phagocytic
receptors on phagocytes, galectin-3 can potentially act as an eat-
me signal or opsonin (9, 11). However, it is not known whether
galectin-3 can opsonise bacteria.

Calreticulin is a protein normally found in the endoplasmic
reticulum where it acts as a chaperone, binding to terminal
glucose residues on developing glycoprotein oligosaccharides
(12). However, in conditions of apoptosis or endoplasmic
reticulum stress, calreticulin can translocate to the cell surface,
and some cells such as neutrophils constitutively express
calreticulin on the cell surface (13, 14). Surface-exposed
calreticulin has been demonstrated to act as an eat-me signal
to macrophages (13, 15–17). Surface-exposed calreticulin is
recognized by the phagocytic receptor LRP1 on phagocytes (13,
18), although calreticulin is also found associated with LRP1 on
the phagocyte membrane where it acts as a co-receptor for LRP1
ligands such as C1q and alpha-2-macroglobulin (19, 20). Note,
however, that calreticulin is a soluble protein, and therefore has
the potential to be released into the extracellular space (21), where
in principle it might act as an opsonin.

In this paper, we show that calreticulin and galectin-3 can be
released by a phagocyte, microglia, when activated, and can then
bind to and opsonise bacteria for phagocytosis by the microglia.

MATERIALS AND METHODS

All experiments were performed in accordance with the UK
Animals (Scientific Procedures) Act (1986) and approved by the
Cambridge University Local Research Ethics Committee.

Cell Culture and Treatments
Primary microglia were prepared from mixed glial cultures
from the cortices of postnatal day 4–6 mice or rats as
described (22, 23). After removal of meninges and mechanical
dissociation, cortices were matured in vitro for at least 6
days using Dulbecco’s modified Eagle’s medium (DMEM)

Abbreviations: LRP1, low-density lipoprotein receptor-related protein 1;

sLRP1, soluble low-density lipoprotein receptor-related protein 1; LPS,

lipopolysaccharide; Gal-3, galectin-3; MHCII, major histocompatibility

complex II; MerTK, Mer tyrosine kinase; TAMRA, 5-(and-6)-carboxytetra-

methylrhodamine; TREM2, triggering receptor expressed on myeloid cells 2;

TLR4, toll-like receptor 4; mLRPAP (or RAP), mouse LRP-associated protein; CSF,

cerebrospinal fluid.

(ThermoFisher, California, USA) supplemented with 10%
performance-plus fetal bovine serum (FBS) (ThermoFisher,
California, USA), before removing microglia by shaking-
off and plating in culture medium (a 1:2 ratio of old
“conditioned” medium: fresh medium) on well-plates pre-
coated with poly-L-lysine (Sigma, Missouri, USA). BV2 mouse
microglial cells were maintained in DMEM supplemented with
10% FBS. All tissue culture medium was supplemented with
100 U/ml penicillin/streptomycin (ThermoFisher, California,
USA). DH5α Escherichia coli for phagocytosis experiments
were grown shaking in LB media at 37◦C. The following
reagents were used: lipopolysaccharide (LPS) from Salmonella
(serotype: typhimurium) or E. coli, 5-(and-6)-carboxytetra-
methylrhodamine (TAMRA), Cytochalasin D, D-glucose and
D-lactose were from Sigma-Aldrich. Recombinant human
Calreticulin protein (Abcam, Cambridge, UK), pHRODO Red
succinimidyl-ester and sucrose (ThermoFisher, California, USA),
recombinant human LRPAP protein (RAP) (R&D systems,
Minneapolis, MN, USA), UNC569 (Calbiochem, MA, USA),
UNC2881 (Selleckchem, TX, USA), anti-Calreticulin polyclonal
antibody (Enzo Life Sciences, NY, USA), rabbit polyclonal
IgG antibody (Southern Biotech, AL, USA). Human galectin-
3 was provided as a kind gift from Tomas Deierborg (Lund
university). Antibodies were Fc-blocked using an Affinipure
Fab fragment goat anti-rabbit IgG (Jackson ImmunoResearch,
Cambridge, UK).

RNA Isolation and RT-qPCR
RNA was isolated from microglial BV2 cells using Monarch
Total RNA Miniprep Kit (New England Biolabs, Massachusetts,
USA), and cDNA was generated from 1 µg RNA and random
hexamer primers using the SuperScript II Reverse Transcriptase
Kit (ThermoFisher, California, USA). qT-PCR was run with
the Platinum SYBR Green qPCR SuperMix (ThermoFisher,
California, USA) using a Rotor-Gene Q cycler (Qiagen, Hilden,
Germany). Primers against mouse CALR, LGALS3, and IL6
were used, with ACTB (β-actin) as the internal control
(Sigma, Missouri, USA). Relative mRNA levels of target genes
were analyzed by comparing fold-changes in the delta-delta
threshold cycle, after normalizing against the internal control for
each condition.

Enzyme-Linked Immunosorbent Assay

(ELISA)
Primary microglia from mice—chosen for species-specificity
of available antibodies—were plated at densities of 10,000
cells/100 µl/well (96 well-plate format) in culture medium.
Cells were treated for 24 h, and cell media was extracted
and subjected to a calreticulin ELISA (Abbexa, Cambridge,
UK) or galectin-3 ELISA (R&D Systems, Minneapolis,
USA) as per manufacturer’s instructions. Absorbances
at 450 nm were measured using a FLUOstar Optima
plate reader (BMG Labtech, Ortenberg, Germany) and
represented as protein concentration calculated against a
standard curve.
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TAMRA-Conjugated Protein Binding

Assays
Calreticulin and galectin-3 were incubated with amine-reactive
5-(and-6)-carboxytetra-methylrhodamine (TAMRA, 50µM) for
20min at 37◦C before diluting in 15ml PBS. Proteins were spun
down using an Amicon Ultracentrifuge filter (Millipore, Merck,
New Jersey, USA) with a molecular weight cut-off 10,000 Daltons
to remove unbound TAMRA. E. coli were then resuspended in
either the protein-positive fraction, or the protein-free eluant as
a control.

Microglial Phagocytosis Assays
Primary microglia from rat (chosen due to greater cellular yield
compared to mice) were plated at densities of 50,000 cells/200
µl/well (96 well-plate format) in culture medium. For LPS
experiments, cells were treated with vehicle or 100 ng/ml LPS
within 60min of seeding. LPS from S. enterica was used in all
cases except for Figure 5C, which was LPS from E. coli. E. coli
were grown shaking overnight in LB media (37◦C). Bacteria
were heat-inactivated at 65◦C for 15min before centrifuging
at 6,000× g for 5min and resuspending in PBS. Bacteria were
stained with amine-reactive pHrodo Red succinimidyl-ester at
10µM for 20min (37◦C) before washing several times in PBS
via centrifugation and resuspension to remove unconjugated
pHrodo. Bacteria were resuspended in PBS, and either incubated
for 90min with opsonins (followed by several wash steps) or
added directly to cells, and maintained in an incubator (37◦C, 5%
CO2-infused) for the 1-h phagocytosis assay. Primary microglia
were detached via trypsinization and resuspended in 60 µl PBS.
Samples were maintained in darkness on ice and taken directly
for FACS analysis using an Accuri C6 Flow Cytometer (BD
services, San Jose, CA, USA). Sucrose (50mM), lactose (50mM),
UNC569 (5µM), UNC2881 (200 nM), mLRPAP (250 nM or
500 nM) or cytochalasin D (10µM) were added to cells 60min
prior to bacteria; anti-calreticulin or IgG serotype control
(2µg/ml) were added to cells 3 h prior to bacteria.

Cell Viability Assay
Cell viability was measured using the DNA-staining dye
propidium iodide (Sigma, Missouri, USA). Cells were stained
with propidium iodide (1.5µM) for 20min and staining was
quantified via flow cytometry using anAccuri C6 FlowCytometer
(BD, New Jersey, USA).

Statistical Analysis
All statistical analyses were performed using GraphPad Prism
version 8. All results contained herein represent mean values
averaged from at least three independent experiments. Standard
error of the mean (SEM) is represented as error bars in all cases.
Figures comparing just two conditions were analyzed using a
Student’s t-test; all other data was analyzed using one- or two-way
ANOVA and post-hoc Tukey’s multiple comparison test.

RESULTS

Calreticulin is known to function as an eat-me signal or as
a phagocytic co-receptor, but it is unclear whether it can act

as an opsonin, which would require that it was released from
cells, normally inflammatory-activated immune cells. Therefore,
we tested whether calreticulin is released extracellularly from
microglial cells, and whether any such release was enhanced
by inflammatory activation of the microglia. Supernatants from
primary mouse microglia ± LPS were isolated, and calreticulin
was measured by ELISA (Figure 1A). We found that media
conditioned with vehicle-treated microglia contained small, but
statistically insignificant levels of calreticulin (1.29± 0.93 ng/ml),
when compared to media which had not seen cells (p = 0.695).
However, 24 h of LPS treatment triggered a dramatic increase in
calreticulin released from these cells (7.28 ± 1.87 ng/ml), which
was significantly higher than that from non-activated cells (p =

0.017), or when compared to cell-free media (p = 0.004). To
rule out the possibility of necrotic leakage of calreticulin from
cells after treatment, cells were stained with propidium iodide
and quantified—no significant increases in necrosis after LPS
treatment was observed (data not shown).

Galectin-3 is known to be released from blood-marrow
macrophages and BV2 cells in response to LPS stimulation (8, 9,
24). So, we tested whether primary mouse microglia also released
galectin-3 into the culture medium using an ELISA. We found
that unstimulated microglia released galectin-3 into the medium
(1.09 ± 0.185 ng/ml, p < 0.01), and this release was increased by
LPS (1.73± 0.13 ng/ml) (Figure 1B; p= 0.02).

To test whether LPS affected calreticulin expression, RNA was
isolated from mouse microglial BV2 cells treated ± LPS for 24 h,
and calreticulin RNA was measured by qPCR. LPS was found
to increase calreticulin mRNA by 35% (± 4) at this time-point
(Figure S1A). Similarly, LPS increased galectin-3 mRNA by 19%
(± 5) (Figure S1B), suggesting that LPS triggers upregulation as
well as release of calreticulin and galectin-3 in microglia.

To assay microglial phagocytosis of bacteria, we labeled
E. coli with amine-reactive pHrodo Red succinimidyl ester
(10µM), which covalently binds the bacteria, but only fluoresces
when the bacteria are delivered into the acidic lysosome
during phagocytosis. Labeled bacteria were incubated with
microglial BV2 cells (used initially to optimize the assay)
and phagocytosis was quantified by flow cytometry—there was
a linear increase in fluorescence over the first 120min of
incubation (Figure S2). Having optimized the assay in BV2
cells, we then switched to using primary rat microglia, because
they are more physiologically relevant than BV2 cells, and
are obtainable in higher yields than primary mouse microglia.
Labeled bacteria were incubated with primary rat microglia for
60min; phagocytosis was confirmed by microscopy (Figure 2A)
and quantified by flow cytometry (Figure 2B). Cytochalasin D, an
inhibitor of phagocytosis, completely abolished the fluorescence
increase when applied at 10µM (p < 0.0001; p = 0.528 vs.
the control without bacteria), confirming that the fluorescence
increase was due to phagocytosis.

Calreticulin and galectin-3 are sugar-binding proteins
known to have binding affinity for bacterial LPS (25, 26).
LPS (lipopolysaccharide) contains many sugar residues and
constitutes much of the surface of gram-negative bacteria. So
calreticulin and galectin-3 could potentially bind gram-negative
bacteria such as E. coli. To test whether calreticulin or galectin-3
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FIGURE 1 | Microglial calreticulin and galectin-3 are released extracellularly following LPS stimulation. (A,B) Primary microglia from mice were treated with vehicle or

LPS (100 ng/ml) for 24 h. Cell-conditioned supernatant was tested for calreticulin protein (A) or galectin-3 (B) presence via ELISA and compared with the “no cells”

control. Statistical comparisons were made via one-way ANOVA. Values are means ± SEM of at least three independent experiments. NS p ≥ 0.05, *p < 0.05, **p <

0.01, ****p < 0.0001 vs. controls, except where indicated by bars over relevant columns.

can bind E. coli, we labeled recombinant calreticulin and
galectin-3 with the amine-reactive fluorophore TAMRA (5-(and
6-)carboxytetramethylrhodamine) (50µM) and incubated
this with heat-inactivated E. coli for 1 h to measure protein
binding to the bacteria via flow cytometry. Bacterial fluorescence
readings were significantly increased in the presence of TAMRA-
calreticulin protein compared to the protein-free control
(Figure 3A). Similarly, TAMRA-labeled galectin-3 bound to E.
coli (Figure 3A), indicating that both calreticulin and galectin-3
can bind to bacteria.

We next tested whether calreticulin can opsonize bacteria
for microglial phagocytosis. pHrodo-conjugated E. coli were
incubated with 500 nM calreticulin for 90min (followed by
several washing steps to remove unbound protein), and this
increased their phagocytic removal by microglia by 118%
(±29) compared to E. coli not incubated with calreticulin
(Figure 3B). This opsonization was abolished in the presence of
sucrose (Figure 3C), consistent with a role for the carbohydrate-
recognition domain of calreticulin in bacterial binding. Sucrose
was not able to significantly inhibit microglial phagocytosis
of bacteria in the absence of exogenous calreticulin. This is
consistent with the lack of a significant release of calreticulin by
non-activated microglia demonstrated previously (Figure 1A),
and suggests that calreticulin can promote, but is not required,
for bacterial clearance by unstimulated microglia.

We have previously shown that calreticulin can opsonise
PC12 cells via the microglial phagocytic receptor LRP1, which is

inhibited by the LRP1-specific ligand RAP (27). So, to investigate
whether exogenous calreticulin mediates microglial phagocytosis
of bacteria via LRP1, we tested whether RAP affected the
calreticulin-induced microglial phagocytosis of bacteria. We
found that treating the cells with RAP inhibited this phagocytosis
to control levels (Figure 3D). Together, these data suggest that
calreticulin opsonized bacteria for microglial phagocytosis via
(i) it’s carbohydrate-recognition domain and (ii) the microglial
LRP1 receptor.

We next tested whether galectin-3 can also opsonize
bacteria for microglial phagocytosis. E. coli were incubated
with 20 nM galectin-3 (followed by several washes)
and added to primary rat microglia for 90min before
measuring phagocytosis. Pre-incubation of the bacteria
with galectin-3 enhanced their phagocytosis by microglia
by 73% (±24) (Figure 4A). Thus, added galectin-3 can also
opsonise bacteria. Galectin-3 binds lactose, and lactose can
inhibit the ability of galectin-3 to opsonise mammalian
cells (9). So, we tested the effect of lactose on our cells.
Treating with lactose inhibited microglial phagocytosis of
bacteria in the presence or absence of exogenous galectin-
3 (Figure 4B), suggesting that sugars are involved in
this phagocytosis.

It is known that galectin-3 can opsonise mammalian cells
by bridging between sugars on the target cells and the
phagocytic receptor MerTK to promote microglial phagocytosis
of certain cell types (9, 11). To test whether the galectin-3
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FIGURE 2 | Primary rat microglia rapidly phagocytose E. coli bacteria in vitro. (A) Primary rat microglia phagocytose pHrodo-conjugated E. coli over 60min in culture,

which was prevented by cytochalasin D (10µM). (B) Microglial phagocytosis of pHrodo-conjugated E. coli was quantified as mean red fluorescence via flow

cytometry; there is a significant increase in microglial fluorescence after 60-min with E. coli which is abolished by cytochalasin D, when compared to the “-bacteria”

control. Values are means ± SEM of at least three independent experiments. Statistical comparisons were made via one-way ANOVA. NS p ≥ 0.05, ***p < 0.001,

****p < 0.0001 vs. controls, except where indicated by bars over relevant columns.

opsonization of bacteria activates phagocytosis via microglial
MerTK, cells were briefly treated (or not) with the MerTK-
specific inhibitor UNC569 and bacterial phagocytosis was
measured as before. In the presence and absence of exogenous
galectin-3, UNC569 strongly inhibited microglial phagocytosis
of bacteria (Figure 4C), without affecting microglial viability
(Figure 4D). This is consistent with MerTK being the main
phagocytic receptor for microglial phagocytosis of the bacteria
in the presence or absence of exogenous galectin-3; and suggests
that galectin-3 opsonizes bacteria for microglial phagocytosis
via MerTK.

LPS, along with other agonists for microglial TLR4, is
known to promote increased phagocytosis of bacteria and
other pathogenic species by microglia (28–30). Given LPS
induces calreticulin and galectin-3 release from microglia, and
that these proteins are capable of opsonizing bacteria for
phagocytic removal in culture, we hypothesized that these
opsonins may mediate the LPS-induction increase in microglial
phagocytosis of bacteria. To investigate this, microglia were
stimulated with LPS for 24 h before co-incubation with E.
coli for an hour, and phagocytosis was measured as before
(Figure 5A). LPS did indeed increase microglial phagocytosis

Frontiers in Immunology | www.frontiersin.org 5 November 2019 | Volume 10 | Article 264725

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Cockram et al. Calreticulin and Galectin-3 Opsonise Bacteria

FIGURE 3 | Calreticulin opsonizes E. coli for microglial phagocytosis. (A) TAMRA-conjugated calreticulin (500 nM) and galectin-3 (20 nM) bind E. coli after 90min

co-incubation, measured in terms of relative fluorescence unit increase vs. the vehicle (protein-free) control. (B) Recombinant calreticulin (500 nM) opsonizes E. coli for

microglial phagocytosis when pre-incubated for 90min (and subsequently washed to remove unbound protein). (C,D) Opsonization of E. coli for microglial

phagocytosis by recombinant calreticulin is inhibitable by 50mM sucrose when compared to “–calreticulin – sucrose” control (C) or 500 nM RAP (a LRP1 inhibitor)

when compared to “–calreticulin – RAP” control (D). Values are means ± SEM of at least three independent experiments. Statistical comparisons were made via one-

or two-way ANOVA except for (B), which was by pair-wise student’s t-test. NS p ≥ 0.05, **p < 0.01, ***p < 0.001 vs. controls, except where indicated by bars over

relevant columns.

of bacteria by 56% on average (±22%). To test whether this
LPS-induced phagocytosis depends on extracellular components
(including opsonins), a media swap was performed (removing
any factors released by the microglia) immediately prior
to bacterial addition and the effect on phagocytosis was
determined (Figure 5B). Phagocytosis by unstimulated microglia

was unaffected by the media swap, but phagocytosis by LPS-
stimulated microglia was significantly inhibited (p = 0.015)
to levels not significantly different from the control (p =

0.944). This indicates that factors released by the microglia in
response to LPS are responsible for the increased phagocytosis,
consistent with the increased phagocytosis being due to a released
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FIGURE 4 | Galectin-3 opsonizes E. coli for microglial phagocytosis. (A) Recombinant galectin-3 (20 nM) opsonizes E. coli for microglial phagocytosis when

pre-incubated for 90min (and subsequently washed to remove unbound protein). (B,C) Opsonization of E. coli for microglial phagocytosis by recombinant galectin-3

is inhibitable by 50mM lactose when compared to “–gal-3 – lactose” control (B), or 5µM UNC569 (a MerTK inhibitor) when compared to “–gal-3 – UNC569” control

(C) (note that a statistically significant difference between “–gal-3 – lactose” and “–gal-3 + lactose” was observed). (D) UNC569 (5µM for 2 h) does not promote

necrotic death of primary rat microglial cells in culture compared to the “vehicle” control, determined by propidium-iodide staining and quantified via flow cytometry.

Manganese chloride (MnCl2, 1mM) was used as a positive control for necrotic death. Values are means ± SEM of at least three independent experiments. Statistical

comparisons were made via one- or two-way ANOVA except for (A), which was by pair-wise student’s t-test. NS p ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001 vs.

controls, except where indicated by bars over relevant columns.

opsonin, rather than an increased phagocytic capacity of the
microglia themselves.

To test more directly whether extracellular calreticulin
mediates LPS-induced microglial phagocytosis of bacteria,
microglia were treated for 3 h with a function-blocking anti-
calreticulin antibody prior to co-incubation with bacteria, and
the induction of phagocytosis by LPS was measured. Anti-
calreticulin was able to inhibit the LPS-induced increase in

phagocytosis when compared to a serotype control IgG (p =

0.029, Figure 5C). Anti-calreticulin had no effect on phagocytosis
in the absence of LPS (Figure 5C), consistent with calreticulin
being absent in this condition (Figure 1A). Together, this
indicates that the LPS-induced phagocytosis is at least partly due
to the LPS-induced release of calreticulin.

We further tested whether lactose or sucrose could inhibit this
LPS induction of phagocytosis. Phagocytosis in the presence of
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FIGURE 5 | LPS-induced phagocytosis of bacteria by primary microglia is mediated by extracellular calreticulin. (A) Primary rat microglia stimulated by LPS

(100 ng/ml) for 24 h significantly increase their phagocytosis of E. coli compared to the “-LPS” control. (B) LPS-induced phagocytosis is inhibited by applying a media

swap immediately prior to bacterial addition, compared to the “–LPS – media swap” control. (C) LPS-induced phagocytosis is inhibited in the presence of a

function-blocking anti-calreticulin antibody, compared to the “–LPS + IgG” control. Values are means ± SEM of at least three independent experiments. Statistical

comparisons were made via student’s t-test (A) or via two-way ANOVA (B,C). NS p ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001 vs. controls, except where indicated

by bars over relevant columns.

LPS was significantly inhibited by lactose (p= 0.0012) or sucrose
(p < 0.0001) to levels not significantly different from the control
in the absence of LPS (Figure 6A).

Given that the LRP1 inhibitor RAP was able to inhibit
calreticulin-induced opsonization of the E. coli, we tested

whether RAP could also inhibit the LPS-induced microglial
phagocytosis of the bacteria. We found that RAP significantly
inhibited the LPS-induced phagocytosis (p = 0.021, Figure 6B).
The MerTK-specific antagonist UNC2881 also inhibited LPS-
inducedmicroglial phagocytosis of bacteria (p= 0.02; p= 0.26 vs.
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FIGURE 6 | LPS-induced phagocytosis of bacteria by primary microglia is inhibited by sugars, or by blocking microglial LRP1 or MerTK. Primary rat microglia

stimulated by LPS (100 ng/ml) for 24 h increased their phagocytosis of E. coli compared to “–LPS” control, inhibitable by (A) 50mM lactose or sucrose, (B) RAP

(250 nM), or (C) UNC2881 (200 nM). Note that a statistically significant difference between “–LPS + lactose” and “+LPS + lactose” was observed in (A). Values are

means ± SEM of at least three independent experiments. Statistical comparisons were made via two-way ANOVA. NS p ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001 vs. controls, except where indicated by bars over relevant columns.

the “–LPS –UNC2881” control) (Figure 6C), indicating a role for
galectin-3 and MerTK. Taken together, these data demonstrate
that both calreticulin and galectin-3 are required for the LPS-
induction of bacterial phagocytosis, and this is mediated via their
carbohydrate-binding domains and the microglial phagocytic
receptors LRP1 and MerTK.

DISCUSSION

As calreticulin has been described alternatively as: (i) an eat-
me signal and (ii) a phagocytic receptor, and in this paper we

find it acts as (iii) an opsonin, it is important to distinguish
between use of these terms. An eat-me signal is a signal
normally inside the cell that when exposed on the surface
of a cell induces phagocytes to phagocytose that cell. The
classical eat-me signal is phosphatidylserine, normally found
on the inner leaflet of the plasma membrane but exposed
on the outer leaflet during apoptosis in order to promote
phagocytosis of the apoptotic cell. Calreticulin is normally
found within the cell but can translocate to the surface of
apoptotic cells to promote phagocytosis of these cells, and
therefore can act as an eat-me signal (13). Calreticulin can
also translocate to the surface of phagocytes, where it can act
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as a phagocytic receptor together with LRP1 (31). However,
in contrast to typical eat-me signals and phagocytic receptors,
calreticulin is a soluble protein, which can potentially dissociate
from the surface of cells into the extracellular space, where
it has the potential to act as an opsonin. Galectin-3 has a
similarly ambiguous status: it has been described as an eat-
me signal (11), but it is also found in the extracellular space
and when binding to the surface of target cells can potentially
act as an opsonin (11), and in principle when galectin-3
binds to a phagocytic receptor on a phagocyte it could act
as co-receptor.

We found that microglia activated with LPS released
calreticulin into the extracellular space. These are two important
characteristics of an opsonin, that it can exist as a soluble,
extracellular protein, and that it can be released according to
need, in this case in response to LPS, a marker of the presence
of gram-negative bacteria. Additionally, recombinant calreticulin
bound to the surface of the gram-negative bacteria E. coli,
and when bound promoted phagocytosis of these bacteria by
microglia. Furthermore, LPS-induced phagocytosis of bacteria
was at least in part mediated by the released calreticulin. Thus,
calreticulin fits the core definition of an opsonin: it binds cells
and promotes the phagocytosis of those cells when bound.

So, is calreticulin a eat-me signal, an opsonin or a phagocytic
receptor? It meets the criteria for all three, although it would be
better described as a co-receptor (with LRP1) than a receptor,
as it has no transmembrane signaling capacity. When released
from a target cell onto the target cell surface, it acts as an eat-me
signal. When released from a phagocyte and binding to a target
cell, it acts as an opsonin. When released from a phagocyte onto
the surface of a phagocyte and binding to LRP, it can act as a
co-receptor (31).

What about galectin-3? We found evidence that: galectin-
3 was released from LPS-activated microglia, added galectin-
3 could bind E. coli bacteria and stimulate their phagocytosis
by microglia, and LPS-induced phagocytosis of bacteria was
partly mediated by released galectin-3, indicating that galectin-
3 is an opsonin. Galectin-3 has been described as an eat-me
signal (11), however, although these authors found that galectin-
3 could induce and mediate phagocytosis, they did not find
that galectin-3 was released from the target cells onto their
surface. Thus, they did not provide evidence that galectin-3
can act as an eat-me signal, rather than as an opsonin. We
(9) reported that galectin-3 was released from LPS-activated
microglia, and the galectin-3 could bind to PC12 cells only
when these cells were desialylated, and when bound could
opsonise these cells for phagocytosis by microglia. Galectin-
3 preferentially binds to N-acetyl-lactosamine residues on
glycoproteins and glycolipids, but this binding is normally
blocked by terminal sialic acid residues on mammalian cells
(32). On bacteria, galectin-3 normally binds the sugar residues of
LPS, although for some bacterial species the binding of galectin-
3 to LPS is not mediated by sugar residues (33). Galectin-
3 opsonized cells may stimulate microglial phagocytosis via
binding to microglial MerTK (9). However, we (34) recently
reported that galectin-3 can also bind the phagocytic receptor
TREM2, and thus galectin-3 could potentially opsonise via

TREM2 on microglia, but this requires further investigation.
Galectin-3 can also act as an alarmin via activating TLR4 on
microglia (8). Thus, like calreticulin, galectin-3 can have multiple
adaptive roles in orchestrating the response to LPS or gram-
negative bacteria.

What is the relevance of this work to the in vivo situation,
and what is the translational potential of this work for treatment
of disease? Calreticulin can be found in the serum of healthy
humans (at 5 ng/ml), and increases with inflammatory disease
(35). Thus, serum calreticulin has the potential to opsonise
bacteria in vivo, and the finding of calreticulin bound to LPS in
the sera of patients with chronic bacterial infections suggests that
is does (26).

Calreticulin is also found in human CSF (36), and thus has
the potential to opsonise bacteria in the brain. Macrophages have
been shown to release calreticulin that opsonizes mammalian
cells for phagocytosis by the macrophages (37), supporting
the possibility that this may occur also with bacteria as
targets. Phagocytosis of cancer cells induced by calreticulin
on their surface has been shown to result in presentation
of antigens from the cancer cell on the phagocyte together
with MHCII, resulting in an adaptive immune response to
the cancer (14, 15). Indeed, calreticulin has been used as
an adjuvant to induce an adaptive response to antigen (38).
Thus, phagocytosis of bacteria opsonized with calreticulin
might in principle result in presentation of antigens from
the bacteria by phagocytes to T cells, but this would have
to be tested. If this is correct, it may be worth testing
whether calreticulin injections during a bacterial infection help
clear the infection by (i) opsonizing the bacteria, and (ii)
enhancing phagocytosis and presentation of antigens from
the bacteria.

Galectin-3 is also found in human plasma and CSF, and
levels increases with disease (39, 40). Galectin-3 levels also
increase in mouse and humans during fungal infection and play
roles in reducing infection (41). The interaction of galectin-
3 with LPS from different species of bacteria enhances the
binding and interaction of LPS with neutrophils (33). Galectin-
3 has been shown to limit infections by the gram-negative
bacteria Helicobacter pylori (42), but also limits infection by
gram-positive Streptococcus pneumoniae partly by increasing
neutrophil phagocytosis of the bacteria (43). Thus, there is at least
indirect evidence that galectin-3 may limit bacterial infections
in vivo, potentially by acting as an opsonin, but this requires
further investigation. If so, it may be worth testing whether
galectin-3 injections during a bacterial infection help clear
the infection by opsonizing the bacteria. As with calreticulin,
there is also the possibility that injection of dead bacteria
opsonized with galectin-3might induce phagocytosis and antigen
presentation by antigen-presenting cells, promoting an adaptive
immune response.
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Figure S1 | Microglial calreticulin and galectin-3 are upregulated following LPS

stimulation. Calreticulin (A) and galectin-3 (B) mRNA were quantified in BV2

microglial cells treated with or without LPS (100 ng/ml) for 24 h, and expression

normalized to actin mRNA levels. Values are means ± SEM of at least three

independent experiments. Statistical comparisons were made via student’s t-test.
∗p < 0.05, ∗∗p < 0.01.

Figure S2 | BV2 microglia rapidly phagocytose pHrodo-conjugated E. coli

bacteria in vitro. Significant levels of phagocytosis were detected within 60min

(compared to the “0 min” control) with phagocytic saturation reached between

120 and 180min. Values are means ± SEM of at least three independent

experiments. Statistical comparisons were made via one-way ANOVA. ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.
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In host defense, it is crucial to maintain the acidity of the macrophage phagosome

for effective bacterial clearance. However, the mechanisms governing phagosomal

acidification upon exposure to gram-negative bacteria have not been fully elucidated.

In this study, we demonstrate that in macrophages exposed to Escherichia coli, the

thioredoxin-interacting protein (TXNIP)-associated inflammasome plays a role in pH

modulation through the activated caspase-1-mediated inhibition of NADPH oxidase.

While there was no difference in early-phase bacterial engulfment between Txnip

knockout (KO) macrophages and wild-type (WT) macrophages, Txnip KO macrophages

were less efficient at destroying intracellular bacteria in the late phase, and their

phagosomes failed to undergo appropriate acidification. These phenomena were

associated with reactive oxygen species production and were reversed by treatment

with an NADPH oxidase inhibitor or a caspase inhibitor. In line with these results,

Txnip KO mice were more susceptible to both intraperitoneally administered E. coli

and sepsis induced by cecum ligation and puncture than WT mice. Taken together,

this study suggests that the TXNIP-associated inflammasome-caspase-1 axis regulates

NADPH oxidase to modulate the pH of the phagosome, controlling bacterial clearance

by macrophages.

Keywords: thioredoxin-interacting protein, Escherichia coli, caspase, phagosome, macrophage

INTRODUCTION

Phagocytosis by professional phagocytes, including macrophages, neutrophils, and monocytes, is a
crucial process for host defense against bacterial pathogens. Phagocytosis occurs in two distinct
phases, namely, bacterial internalization followed by phagosomal maturation (1). To allow for
sufficient clearance of pathogenic microorganisms, phagocytes should be able to detect, engulf, and
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ultimately kill the pathogens (2). During phagosomalmaturation,
the phagosomes interact with endosomes and lysosomes,
changing the phagosomal protein composition (3, 4). For
example, phagosomes fuse with early endosomes and acquire
the small GTPase Rab5 (5). The transition from early to late
phagosomes is marked by the conversion from Rab5 to Rab7
(6). Following this, phagosomes acquire lysosomal-associated
membrane protein (LAMP)-1 and LAMP-2, which are required
for phagolysosomal fusion (4). The further fusion of phagosomes
with lysosomes produces phagolysosomes enriched in hydrolytic
enzymes, reactive oxygen species (ROS), and antimicrobial
peptides, which are required for bacterial killing (4, 7).

During phagosomal maturation, the phagosomes undergo
progressive acidification of the lumen, which is mainly achieved
through proton pumping by the vacuolar-type H+-ATPase
(V-ATPase) (1, 8). As phagosomes mature from early to
late phagosomes, luminal pH gradually decreases from being
mildly acidic (pH 6.1–6.5) to more acidic (pH 5.5–6.0) (1, 9).
Furthermore, the phagolysosome is characterized by a highly
acidic luminal pH (as low as 4.5) (1). In addition to its role in
bactericidal activity through the generation of ROS, the activity
of NADPH oxidase counteracts the activity of V-ATPase, tending
toward neutralizing phagosomal pH (10–12). To ensure efficient
bactericidal activity, it is therefore important to regulate the
activity of proteins such as V-ATPase and NADPH oxidase in
the phagosome.

One of the mechanisms responsible for regulating the activity
of NADPH oxidase is the inflammasome (8). Inflammasomes
are multiprotein complexes that activate caspase-1 and consist
of nucleotide-binding oligomerization domain-like receptors
(NLRs), such as NLR family pyrin domain containing 3
(NLRP3) and NLR family CARD domain containing 4 (NLRC4)
(13). Inflammasome-activated caspase-1 causes the proteolytic
processing of pro-interleukin (IL)-1β and pro-IL-18, which
results in the secretion of functional IL-1β and IL-18 (14).
Similarly, caspase-1 activated by the NLRP3 inflammasome
accumulates in phagosomes and modulates buffering through
the NADPH oxidase NOX2 to control the pH upon exposure
to gram-positive bacteria (8). However, the molecular pathway
regulating inflammasome-mediated NADPH oxidase has not
been clearly identified.

Recent studies have shown that thioredoxin-interacting
protein (TXNIP) activates the NLRP3 inflammasome under
various conditions (15–18). TXNIP, first described as vitaminD3-
upregulated protein 1 in acute promyelocytic leukemia HL-60
cells (19), is known to be a regulator of oxidative stress, acting
as an inhibitor of the activity of thioredoxin (20, 21). In addition
to these well-known functions, the dissociation of TXNIP from
thioredoxin allows TXNIP to bind to NLRP3 and activate
the NLRP3 inflammasome in a ROS-sensitive manner (18).
Because of this, we speculated that TXNIP could be a modulator
of inflammasome-mediated pH control in macrophages upon
exposure to bacterial pathogens.

In this study, we investigated the roles of TXNIP in
modulating the phagosomal acidity in macrophages that
facilitates the destruction of bacteria through activation of the
NLRP3 inflammasome-caspase-1 pathway. We first examined

the clearance of bacteria by macrophages obtained from Txnip
wild-type (WT) and knockout (KO) mice. Then, we examined
the recruitment of proteins to the phagosomes, the pH of the
phagosomal lumen, and the ROS levels in Txnip WT and KO
macrophages upon treatment with bacteria. To decipher the
pathways involved, specific inhibitors of the phosphoinositide
3-kinases (PI3K)/Akt pathway, V-ATPase, and caspases were
employed. Based on our findings, we propose that the TXNIP-
NLRP3 inflammasome-caspase-1 regulates NADPH oxidase
to induce the acidification of phagosomes to clear bacteria
in macrophages.

MATERIALS AND METHODS

Animals
The animal study was approved by the Institutional Animal Care
and Use Committee of the Korea Research Institute of Bioscience
and Biotechnology (KRIBB-IACUC, approval number: KRIBB-
AEC-11044). All procedures were performed in accordance with
guidelines regarding the use of laboratory animals (National
Institutes of Health). WT C57BL/6 mice were obtained from the
Korea Research Institute of Bioscience and Biotechnology, and
Txnip KO mice were prepared as previously described (16). All
mice were housed in a pathogen-free animal facility under a
standard light-dark cycle with standard rodent chow and water
provided ad libitum. The experimental groups were all age-
and sex-matched.

Preparation of Peritoneal Macrophage
Mouse peritoneal macrophages were harvested and cultured
as described previously (16). Cells were harvested 4 days
after intraperitoneal injection of 3% thioglycollate (Sigma).
Macrophages were washed and plated in a 24-well-plate at 5
× 105 cells per well. After incubation with serum-free RPMI
medium for 2 h at 37◦C, the wells were washed three times to
remove non-adherent cells, and the culture mediumwas replaced
with RPMI supplemented with 10% fetal bovine serum (FBS) and
1% Antibiotic-Antimycotic (Thermo Fisher).

Phagocytosis Assay
Mouse peritoneal macrophage cells were plated in 24-well-plates
at 5 × 105 cells per well and incubated with GFP-expressing
E. coli, which were prepared as previously described (22). For
the detection of engulfment, cells were incubated with GFP-
expressing E. coli at indicated ratios (macrophage:bacteria CFU)
at 37◦C for 30min. After the incubation, cells were washed
three times with cold PBS to remove remaining bacteria, and
the cells were scraped. For the detection of remaining bacteria
in mouse peritoneal macrophages, cells were incubated with
GFP-expressing E. coli at 37◦C for 1 h and washed five times
with cold PBS. Then, the culture medium was replaced with
RPMI supplemented with 10% FBS, 1% Antibiotic-Antimycotic
(Thermo Fisher), and 10µg/ml gentamicin to inhibit the growth
of extracellular bacteria for the indicated periods. Cells were
analyzed immediately using a FACSCanto II flow cytometer
(BD), and the data were processed using the FACSDiva software
(BD). For the treatment of inhibitors, cells were incubated
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with 10µM wortmannin (Selleckchem) or 20 nM bafilomycin
A (Selleckchem) for 30min before the addition of bacteria. For
the phagosomal maturation assay using pHrodoTM Red E. coli
Bioparticles, cells were plated in 48-well-plates at 2 × 105 cells
per well and incubated with pHrodoTM Red E. coli Bioparticles at
20 µg per well at the indicated periods. After the incubation, cells
were washed three times with cold PBS and then immediately
analyzed using a FACSCanto II flow cytometer (BD).

Immunostaining
Cells were immunostained as previously described (22).
Peritoneal macrophages (1 × 105 cells per well) were plated
on round glass coverslips in 24-well-plates and incubated
with bacteria multiplicity of infection (MOI) of 10. For the
phagocytosis of yellow-green fluorescent FluoSpheres beads
of size 2.0µm (Thermo Fisher), peritoneal macrophages were
plated on round glass coverslips in 24-well-plates and incubated
with 5 × 105 beads/ml per well for 1 h at 37◦C. After incubation,
the cells were washed with cold PBS, fixed for 15min at room
temperature (RT) in 4% paraformaldehyde, and then washed
again with cold PBS. Before staining with primary antibodies,
cells were permeabilized for 10min at RT in 0.2% Triton X-100
in PBS and incubated overnight at 4◦C with primary antibodies
specific for Lamp1 (Abcam) as indicated. Cells were then
washed with PBS and incubated for 2 h at RT with Alexa Fluor
555-conjugated donkey-anti-rabbit IgG (Thermo Fisher). Nuclei
were stained with 4′,6-diamidino-2-phenylindole (Thermo
Fisher). The cells were imaged using a×60 objective and an IX81
inverted microscope (Olympus). Images were obtained using the
DP30BW digital camera (Olympus) and X-Cite R© 120 XL light
source. The acquired images were analyzed using Metamorph
7.1 program (Molecular Devices). To count the yellow-green
fluorescent FluoSpheres beads, four areas of each image field of
bead-containing macrophages were analyzed. For the inhibition
of NADPH oxidase or caspase-1, cells were incubated with
GFP-expressing bacteria for 1 h at 37◦C and then incubated
with 5µM diphenyleneiodonium (DPI; Selleckchem) and 10µM
Z-VAD (Enzo) with 10µg/ml gentamicin for 6 h at 37◦C.

Gentamicin Protection Assay
The survival of bacteria was determined with the treatment
of gentamicin as previously described (23). Briefly, mouse
peritoneal macrophages were incubated with E. coli or GFP-
expressing E. coli for 1 h, and then the medium was replaced with
the one containing 100µg/ml gentamicin to kill extracellular
bacteria. For treatment with inhibitors, the cells were incubated
with 20 nM bafilomycin A (Selleckchem) for 30min before the
addition of bacteria. After 1 h, the medium was changed with
the fresh one containing 10µg/ml gentamicin at the time. The
cells were washed with 1X PBS and lysed with 0.5% Triton X-100
in sterile water for 15min at RT. Finally, the extract was plated
directly onto LB agar plates and incubated at 37◦C overnight.

Isolation of Phagosomes
Phagosomes from macrophages were isolated as previously
described (9). Briefly, after the incubation of peritoneal
macrophages with E. coli, the cells were washed in cold PBS,

pelleted, resuspended in 1ml of homogenization buffer (250mM
sucrose, 3mM imidazole, pH 7.4), and homogenized on ice
using a Dounce homogenizer. Phagosomes were then isolated
by flotation in a sucrose step gradient during centrifugation for
1 h at 100,000 g at 4◦C. The fraction was then collected from the
interface of the 10% and 25% sucrose solutions and resuspended
in RIPA buffer.

Western Blotting Analysis
For Western blotting, the protein extracts were prepared by
resuspending cells or phagosomes in the lysis buffer [50mM
Tris, pH 7.5, 1mM ethylenediaminetetraacetic acid, 150mM
NaCl, 0.1% sodium dodecyl sulfate (SDS), and 1% NP-40]
containing a 1X protease inhibitor cocktail solution and 1X
phosphatase inhibitor cocktail. Proteins were separated via SDS-
polyacrylamide gel electrophoresis (PAGE) and subsequently
transferred to Immobilon-P membranes (Millipore). Primary
antibodies specific for Rab5 (catalog no. 3547), Rab7 (catalog no.
9367), caspase-1 (catalog no. 24232), and GAPDH (catalog no.
2118) were purchased from Cell Signaling. Primary antibodies
specific for Lamp1 (catalog no. sc-19992) and β-actin (catalog no.
sc-47778) were purchased from Santa Cruz. Primary antibodies
specific for TXNIP (catalog no. K0205-3) were purchased from
MBL. Primary antibodies specific for V-ATPase (catalog no.
GTX110815) were purchased from GeneTex. The densitometry
analysis of Western blot was carried out using Image Lab
6.0.1 (Bio-Rad).

ROS Detection
For the detection of the amount of superoxide, mouse peritoneal
macrophages were incubated with GFP-expressing E. coli (MOI
of 20) at 37◦C for 1 h, washed three times with cold PBS, and
incubated with 1µM dihydroethidium (DHE, Thermo Fisher)
at 37◦C for 20min. For the demonstration of the effects of
the clearance after the engulfment, cells were incubated with
GFP-expressing E. coli (MOI of 20) at 37◦C for 1 h, washed
three times with cold PBS, and then incubated with 100µg/ml
gentamicin to remove the extracellular bacteria. After 1 h, the
culturemediumwas replaced with RPMI supplemented with 10%
fetal bovine serum, 1% penicillin/streptomycin, and 10µg/ml
gentamicin at the indicated periods. After 6 h of incubation
of bacteria with macrophage, cells were incubated with 1µM
dihydroethidium (DHE, Thermo Fisher) at 37◦C for 20min.
The GFP-positive population represented the cells engulfing
bacteria. The fluorescence intensities of both GFP-positive and
-negative populations were analyzed to estimate the amounts
of superoxide. To measure the ROS production after 6 h of
phagocytosis, mouse peritoneal macrophages were incubated
with bacteria, not expressing GFP, at the indicated periods and
washed three times with cold PBS. Then, cells were incubated
with 2µM H2DCFDA (Thermo Fisher) at 37◦C for 30min.
Data were analyzed using a FACSCanto II flow cytometer
(BD) and the FlowJo software (BD). For the kinetic assay of
ROS production, mouse peritoneal macrophages were incubated
with 1µM dihydroethidium (DHE, Thermo Fisher) and 2µM
H2DCFDA (Thermo Fisher) at 37◦C for 20min, washed three
times with PBS, and incubated with E. coli. The fluorescence
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was detected using SpectraMax R© iD3 (Molecular Devices) and
analyzed using SoftMax Pro 7.0.3 (Molecular Devices).

pH Detection
Mouse peritoneal macrophages were plated in 24-well-plates
at 5 × 105 cells per well, incubated with the pHrodoTM Red
E. coli Bioparticles (Thermo Fisher) at 37◦C for 30min, and
then washed three times with the cold Live Cell Imaging
Solution (Thermo Fisher). pH values were compared with
a standard curve obtained by the incubation with standard
pH buffers (ranging from pH 4.5–7.7, Thermo Fisher). The
cells were immediately analyzed using a FACSCanto II flow
cytometer (BD).

ELISA
Mouse peritoneal macrophages were incubated with bacteria at
37◦C for the indicated periods, and then the culture medium
was harvested. The amounts of IL-1β were analyzed using
the DuoSet ELISA (R&D). After the treatment of the TMB
substrate reagent (Thermo Fisher), absorbance was measured
at 450 nm using the SpectraMax iD3 Multi-Mode Microplate
Reader (Molecular Devices).

Caspase-1 Activity Assay
The activity of caspase-1 was assessed using the Caspase-1/ICE
Colorimetric Protease Assay Kit (cat. no. ALX-850-211, ENZO),
as recommended by the manufacturer. Briefly, mouse peritoneal
macrophage protein extracts were prepared by the Cell lysis
buffer contained in the Assay Kit. The protein extracts (100
µg per each sample) were incubated with 200µM YVAD-pNA
substrate at 37◦C for 2 h, and the absorbance at 405 nm was
read using the SpectraMax iD3 Multi-Mode Microplate Reader
(Molecular Devices).

Bacterial Infection
For bacterial infection, mice were injected intraperitoneally with
live E. coli (5 × 106 CFUs/g) at the age of 8–10 weeks (16).
For the cecal ligation and puncture experiments, the cecum
was ligated at half the distance between the distal pole and
the base of the cecum. Cecal puncture (through-and-through)
was performed from mesenteric toward antimesenteric direction
after the ligation (24, 25).

TUNEL Assay
The TUNEL assay was performed as previously described (22).
Briefly, the tissues were fixed in formalin and embedded in
paraffin prior to sectioning. The TUNEL assay was performed
using the DeadEnd colorimetric TUNEL System (Promega),
according to the manufacturer’s instructions.

Statistical Analysis
The statistical significance of differences in mean values was
calculated using unpaired, two-tailed Student’s t-test. The
statistical significance of the effect for time and treatments was
analyzed using two-way ANOVA. The statistical significance was
determined using GraphPad software version 8.1.1 (Prism, La
Jolla, CA). A p < 0.05 was considered statistically significant.

RESULTS

TXNIP Regulates the Clearance of Bacteria
From Macrophages
Macrophages are professional phagocytes that engulf large
particles (≥0.5µm) including microorganisms and are capable
of destroying pathogens (1). To investigate the roles of TXNIP
in the regulation of phagocytosis, peritoneal macrophages were
isolated from WT and Txnip KO mice. There was no difference
in the engulfment of yellow-green fluorescent FluoSpheres beads
or of GFP-expressing E. coli in both types of macrophages
at 1 h (Figures 1A,B). To evaluate the effects of TXNIP on
phagosome maturation, the fluorescence of the GFP-expressing
E. coli in the macrophages was measured by flow cytometry
and confocal microscopy at different times after bacterial
uptake. To do this, after 1 h of treatment with bacteria, the
medium was replaced with fresh medium to remove any
extracellular bacteria. Interestingly, Txnip KO macrophages
showed higher fluorescence levels of GFP-expressing E. coli
than WT macrophages (Figure 1C; Supplementary Figure 1A).
Furthermore, immunofluorescence microscopy also showed
that Txnip KO macrophages retained more GFP-expressing
E. coli than WT macrophages (Figure 1D). Based on these
findings, we performed a phagocytosis assay using live imaging.
In these data, we can observe that the reduction of the
fluorescent bacteria is higher in the WT than in the Txnip
KO macrophages (Supplementary Video 1). Consistent with
these findings, the levels of remaining extracellular bacteria
were significantly higher in Txnip KO macrophages than in
WT macrophages (Supplementary Figure 1B). These results
indicated that Txnip KO macrophages are less able to clear
E. coli after engulfment compared to WT macrophages. To
make sure, we assessed whether TXNIP could regulate the
number of engulfed bacteria in macrophages. The gentamycin
protection assay revealed that the number of bacterial cell
colony-forming units (CFUs) present over time in extracts of
bacterially exposed Txnip KO macrophages was higher than
in WT macrophages (Figures 1E,F). These results indicate that
TXNIP has an essential role in regulating the clearance of bacteria
by macrophages.

TXNIP Controls the Acidification of
Phagosomes in Macrophages After the
Engulfment of Bacteria
Rab5 and Rab7 are markers for early and late phagosomes,
respectively, whereas LAMP-1 and V-ATPase are markers
for phagolysosome fusion (4, 26, 27). Although Txnip KO
macrophages showed a decreased clearance of bacteria after
engulfment, there were no differences in the protein expression
levels of Rab7, LAMP-1, and V-ATPase in phagosomes isolated
from WT and Txnip KO macrophages after treatment with
bacteria. However, Txnip KO macrophages recruited less Rab5
into the phagosomes at 1 and 2 h after the treatment of bacteria
(Figure 2A; Supplementary Figure 2), although there were no
differences in total Rab5 expression in whole-cell lysates of Txnip
WT and KO macrophages (Supplementary Figures 3A,B).
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FIGURE 1 | Thioredoxin-interacting protein (TXNIP) regulates the clearance of bacteria from macrophages. (A) (Left) The proportion of yellow-green fluorescent

FluoSpheres bead numbers in wild-type (WT) and Txnip knockout (KO) mouse peritoneal macrophages. (Right) Representative images showing 2-µm microbeads in

WT and Txnip KO macrophages at 1 h after incubation with microbeads (Lamp1, red; DAPI, blue). (B) The proportion of WT and Txnip KO peritoneal macrophages

(Continued)
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FIGURE 1 | that engulfed GFP-expressing E. coli at 1 h after incubation with bacteria assessed at different macrophage to bacteria [colony-forming units (CFUs)]

ratios. (C) The proportion of WT and Txnip KO peritoneal macrophages that retained GFP-expressing E. coli at the indicated time points after treatment with bacteria

at a multiplicity of infection (MOI) of 20 (***P < 0.001 compared with WT). (D) Representative images of WT and Txnip KO mouse peritoneal macrophages at the

indicated time points after treatment with GFP-expressing E. coli at an MOI of 10. Scale bars, 20µm. (E) Representative LB agar plates after overnight incubation with

cell extracts derived from WT and Txnip KO peritoneal macrophages incubated with E. coli for the indicated times. (F) CFUs on LB agar plates after overnight

incubation with cell extracts derived from WT and Txnip KO mouse peritoneal macrophages incubated with E. coli for the indicated times. Data are expressed as the

mean ± SD (n = 3, **P < 0.01, ***P < 0.001 compared with WT).

These results suggest that TXNIP might be involved in
the recruitment of Rab5 to the phagosomes in the early
phase (1–2 h after the treatment of bacteria). To investigate
whether these effects on differential Rab5 expression were
related to the clearance of the bacteria in the late phase (4–
6 h after infection with bacteria as shown in Figures 1C–F;
Supplementary Figures 1A,B), we pretreated macrophages with
wortmannin (Supplementary Figure 3C), an inhibitor of the
PI3K/Akt pathway, which modulates Rab5 recruitment to
phagosomes (26). Interestingly, wortmannin decreased the
engulfment of bacteria in both Txnip WT and KO macrophages
but did not affect the different patterns of bacterial clearance
between both cell types (Figure 2B).

As stated above, WT and Txnip KO macrophages showed
similar patterns of recruitment of Rab7, LAMP-1, and V-
ATPase to the phagosomes (Figure 2A). On the other hand,
we found that there was a striking difference in phagosome
maturation between WT and Txnip KO macrophages in
terms of acidification (Figures 2C,D). To assess phagosomal
maturation, macrophages were incubated with pHrodo Red
E. coli Bioparticles, which is an indicator for phagolysosomal
maturation, for the indicated times. The data showed that WT
macrophages had higher levels of phagolysosomal maturation
compared with Txnip KO macrophages (Figure 2C). The pH,
which indicates acidification in the phagosomes, was also
significantly higher in phagosomes from Txnip KOmacrophages
than in phagosomes from WT macrophages (Figure 2D). V-
ATPases are known to play essential roles in the acidification
of phagosomes (27). As shown in Figure 1C, we assessed
whether V-ATPase activity inhibition could reduce the number
of engulfed bacteria in WT macrophages compared to that
in Txnip KO macrophages. When WT macrophages were
pretreated with bafilomycin A (Supplementary Figure 3C), an
inhibitor of V-ATPase (28, 29), they showed dysfunction
in bacteria clearance with a definite defect in destroying,
but not reducing the number of engulfed GFP-expressing
E. coli (Figure 2E; Supplementary Figures 4A,B). Similar to
that in WT macrophages, V-ATPase inhibition also totally
prevents the bacteria clearance upon phagocytosis in Txnip KO
macrophages (Figure 2E; Supplementary Figures 4A,B). Our
observation suggests that V-ATPase inhibition halts the clearance
of engulfed bacteria and not only reduced it. So, the data suggest
that pathways regulating the acidification of phagosomes other
than V-ATPase might be impaired in these cells. Nevertheless,
an immunofluorescence analysis for the staining of Lamp1,
known as a late phagosomal marker, showed that the bacteria
are more fluorescent in the Txnip KO macrophages. In contrast,
it is difficult to distinguish their shape in the WT macrophage

(Figure 2F). These data suggest that TXNIP can regulate E. coli
survival in the phagosomes by lowering the phagosomal pH.

TXNIP Regulates the Level of Superoxide
in Macrophages After the Engulfment of
Bacteria
ROS produced by NADPH oxidase causes active and stable
alkalization of the phagosomal lumen (10, 12), counteracting
the activity of V-ATPase (8). Because the total amount of
ROS produced during phagocytosis immediately increased upon
bacterial infection, we assessed the kinetics of ROS production
in WT and Txnip KO macrophages upon phagocytosis of
bacteria during 1 h 30min. After 30min of treatment with ROS-
detection dye, peritoneal macrophages were incubated with E.
coli, and then the ROS level was measured at the indicated
times. The results of kinetics showed a similar increase in
ROS production between WT and Txnip KO macrophages
(Supplementary Figures 5A,B). Thus, we conclude that TXNIP
is not relevant for ROS production in the initial stage of
phagocytosis. Next, we conducted a FACS analysis to determine
whether the level of superoxides was affected by TXNIP and
analyzed the levels of superoxides in WT and Txnip KO
macrophages after the internalization of E. coli. After 1 h of
treatment with GFP-expressing E. coli, wemeasured ROS levels in
WT and Txnip KOmacrophages. As in earlier experiments, there
was no difference in the proportion of GFP-positive cells in WT
and Txnip KO cells (Supplementary Figure 5C). Upon infection
with bacteria, ROS levels increased in both WT and Txnip
KO macrophages in terms of the mean fluorescence intensities
(MFIs) of dihydroethidium (DHE) and total H2DCFDA dyes
(Supplementary Figures 5D–F). It is noteworthy that GFP-
negative cells showed similar intensities in DHE compared
to control cells. In contrast, the proportion of bacteria-laden
macrophages was higher in Txnip KO macrophages than in WT
macrophages 6 h after infection with bacteria (Figure 3A). Also,
we have measured the ROS production after 6 h of phagocytosis.
The production of ROS increased to higher levels in Txnip KO
macrophages than in WT macrophages at 6 h (Figures 3B–D).
Although we did not continuously measure the level of total ROS
from initiation of phagocytosis to late time points, our results
showed that the level of ROS production increasedmore in Txnip
KO macrophages at the late time. Thus, these results indicated
that TXNIP might regulate NADPH oxidase-induced superoxide
production following infection of macrophages by E. coli upon
phagocytosis at the late time.

To investigate the effects of NADPH oxidase on the removal
of bacteria, we treated macrophages with DPI to inhibit NADPH
oxidase (Supplementary Figure 6A). DPI treatment decreased
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FIGURE 2 | Thioredoxin-interacting protein (TXNIP) controls the acidification of phagosomes in macrophages after the engulfment of bacteria. (A) The expression of

proteins related to phagosome maturation in phagosomes isolated from wild-type (WT) and Txnip knockout (KO) mouse peritoneal macrophages after

treatment with E. coli for the indicated times. (B) The proportion of WT and Txnip KO peritoneal macrophages, treated with or without wortmannin (10µM), which retained

(Continued)
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FIGURE 2 | GFP-expressing E. coli after exposure to GFP-expressing E. coli at a multiplicity of infection (MOI) of 20 for the indicated times. (n = 3) (C) The proportion

of WT and Txnip KO mouse peritoneal macrophages showing PE-positive phagosomes after treatment with pHrodoTM Red E. coli Bioparticles for the indicated times.

Data are expressed as the mean ± SD (n = 3, **P < 0.01, ***P < 0.001 compared with WT). (D) Estimated phagosomal pH in WT and Txnip KO mouse peritoneal

macrophages after treatment with pHrodo
TM

Red E. coli Bioparticles for the indicated times. (E) The proportion of WT and Txnip KO mouse peritoneal macrophages,

treated with bafilomycin A (20 nM), which retained GFP-expressing E. coli after incubation with GFP-expressing E. coli at an MOI of 20 for the indicated times (n = 3).

(F) Representative images of bacteria-laden WT and Txnip KO mouse macrophages 6 h after a 1-h treatment with GFP-expressing E. coli and removal of extracellular

bacteria. Scale bar, 10µm.

the proportion of Txnip KO macrophages containing GFP-
expressing bacteria (Figure 3E). There were no differences in
the CFUs present in cell extracts from WT and Txnip KO
macrophages after 1 h of bacteria treatment (Figure 3F). On
the other hand, the CFUs present in cell extracts from Txnip
KO cells were higher than those in WT cells at 3 and 6 h
after infection with bacteria (Figure 3G). Interestingly, the
CFUs present in both the WT and Txnip KO cell extracts
were decreased by DPI treatment. In addition, there was a
change in bacterial shape in the phagosomes of DPI-treated
Txnip KO macrophages, indicative of bacterial degradation
(Supplementary Figure 6B). In line with these results, DPI
treatment after 2 h of phagocytosis reduced the level of
DHE dye in both WT and Txnip KO cells after bacterial
treatment (Figures 3H,I). These data indicate that decreasing
superoxide levels by inhibiting NADPH oxidase at late stages of
phagocytosis restores the clearance of engulfed bacteria in Txnip
KOmacrophages.

The TXNIP-NLRP3
Inflammasome-Caspase-1 Axis Regulates
the Clearance of Bacteria From
Macrophages
Having shown that TXNIP regulates ROS productions by
controlling NADPH oxidase, we next tried to determine the
mechanism bywhich TXNIP controls theNLPR3 inflammasome.
The interaction between TXNIP and NLRP3 causes caspase-
1 activation and IL-1β secretion, and the lack of TXNIP
inhibits the formation of the NLRP3-ASC-caspase-1 complex
by nitrosylation (15, 16, 18, 30). Therefore, TXNIP is crucial
to control the activity of the NLRP3-ASC-caspase-1 complex
both directly and indirectly. During bacterial infection, it has
been demonstrated that the activation of caspase-1 by NLRP3
inflammasome inhibits the action of NADPH oxidase (8). We
assessed whether TXNIP could regulate the activity of NLPR3
inflammasomes following bacterial infection. Treatment with E.
coli increased IL-1β secretion in both WT and Txnip KO cells,
but the magnitude was lesser in Txnip KO cells than in WT
cells (Figure 4A). Similarly, Txnip KO macrophages expressed
lower levels of the activated form of caspase-1 (Casp1 p10) than
WT macrophages (Figure 4B; Supplementary Figure 7). To
assess the contribution of caspase-1 in phagosome maturation,
we used the caspase-1 inhibitor, ZVAD. Following bacterial
infection, caspase-1 activity increased in WT macrophages but
not in Txnip KO macrophages. This increased caspase-1 activity
seen in WT macrophages was completely ablated by ZVAD

treatment (Figure 4C). Under the same conditions, ZVAD-
treated WT macrophages retained the same level of intact
GFP-expressing bacteria as Txnip KOmacrophages (Figure 4D).
Together, these data suggest that TXNIP improves phagosome
maturation by the activation of caspase-1 through regulation of
the inflammasome.

Bacterial Clearance Is Reduced in Txnip

KO Mice
To confirm that the delay in bacterial clearance caused by
TXNIP loss contributed to the death of mice, we performed
an intraperitoneal injection of E. coli (108 CFU) in WT and
Txnip KO mice. Txnip KO mice were more susceptible to
intraperitoneally administered E. coli thanWTmice (Figure 5A).
The CFUs present in the blood, liver, and spleen ofWT and Txnip
KOmice challenged with bacteria were markedly higher in Txnip
KOmice than in the same organs fromWTmice (Figure 5B). In
addition, in the Txnip KO mice, splenomegaly was more evident
(Figure 5C), and the level of apoptosis in the liver parenchyma
was higher (Figure 5D). We further assessed the role of TXNIP
on mouse survival in other models of bacterial challenge. The
cecum ligation and puncture (CLP) model is the most widely
utilized model of sepsis (24, 25). Similar to the intraperitoneal
injection model, Txnip KO mice were more susceptible to CLP
(Figure 5E), displaying a similar mortality pattern. In addition,
the CFUs present in the blood and extracts from liver and
spleen were also higher in Txnip KO mice (Figure 5F). These
data suggest that TXNIP has an essential role in the defense
mechanism used by animals to combat bacterial infection.

Based on these findings, we propose a schematic model to
describe the role of TXNIP in the phagosome maturation
of macrophages (Figure 6). In this model, the TXNIP-
inflammasome-caspase-1 axis regulates NADPH oxidase to
modulate the pH of the phagosome, deciding the clearance of
bacteria from macrophages.

DISCUSSION

In this study, we demonstrated that the TXNIP-NLRP3
inflammasome-caspase-1 pathway regulates NADPH oxidase
to affect the acidification of the phagosomes in macrophages
(Figure 6). Txnip KO macrophages showed less secretion of IL-
1β and activation of caspase-1 upon treatment with bacteria.
This might lead to disinhibition of NADPH oxidase by activated
caspase-1, resulting in increased ROS levels and pH. Accordingly,
Txnip KOmacrophages fail to clear bacteria adequately.

Txnip KOmacrophages showed a clear defect in the clearance
of engulfed E. coli, but not in engulfment itself. Accordingly,
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FIGURE 3 | Thioredoxin-interacting protein (TXNIP) regulates the level of superoxide in macrophages after the engulfment of E. coli. (A) FACS analyses showing the

proportion of wild-type (WT) and Txnip knockout (KO) mouse peritoneal macrophages that retained GFP-expressing E. coli 6 h after treatment with GFP-expressing E.

coli at a multiplicity of infection (MOI) of 20. (B) The distribution of WT and Txnip KO mouse peritoneal macrophages based on the intensity of the DHE dye after

(Continued)
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FIGURE 3 | treatment with GFP-expressing E. coli at an MOI of 20 at 6 h. (C) The mean fluorescence intensity (MFI) of the DHE dye in the total, GFP-positive, and

GFP-negative WT and Txnip KO mouse peritoneal macrophages after treatment with GFP-expressing E. coli at an MOI of 20 at 6 h. Data are expressed as the mean

± SD (n = 3, **P < 0.01, ***P < 0.001 compared with WT). (D) The MFI of the H2DCFDA dye in WT and Txnip KO mouse peritoneal macrophages after treatment

with E. coli at an MOI of 20 at 6 h. Data are expressed as the mean ± SD (n = 3, ***P < 0.001 compared with WT) (E) The MFI of the GFP in WT and Txnip KO mouse

macrophages at 1 and 6 h after treatment with GFP-expressing E. coli at an MOI of 20 with or without DPI treatment. Data are expressed as the mean ± SD (n = 3,

**P < 0.01, ***P < 0.001 compared with WT) (F) CFUs on LB agar plates after overnight incubation with cell extracts derived from WT and Txnip KO mouse peritoneal

macrophages treated with E. coli for 1 h at an MOI of 20 (n = 3). (G) Colony-forming units (CFUs) on LB agar plates after overnight incubation with cell extracts

derived from WT and Txnip KO mouse peritoneal macrophages treated with E. coli at an MOI of 20 for the indicated times, with or without DPI treatment. Data are

expressed as the mean ± SD (n = 3, **P < 0.01, ***P < 0.001 compared with WT). (H) The distribution of WT and Txnip KO mouse peritoneal macrophages based

on the intensity of the DHE dye at 6 h after the 1-h treatment with GFP-expressing E. coli at an MOI of 20, with or without DPI treatment, and removal of extracellular

bacteria. (I) The MFI of DHE for (H). Data are expressed as mean (n = 3, *P < 0.05, ***P < 0.001 compared with WT).

we investigated the effects of TXNIP depletion on several
aspects of phagosome maturation, including the recruitment
of phagosomal proteins, the phagosomal pH, and bacterial
degradation. Even though clearance during the late phase
was affected, there were no differences in the recruitment of
Rab7, LAMP-1, and V-ATPase to the phagosomes. Instead,
Txnip KO macrophages demonstrated clear changes in pH,
ROS production, the secretion of IL-1β, and the activation
of caspase-1.

It is known that ROS generated by NOX2 is important
for removing bacteria in the phagosome, forming LAP (LC3
associated phagosome), a type of phagosome created by LC3,
and presenting the antigen (31–34). Although NOX2 has
microbicidal activity, the formation of superoxide by NOX2 can
inhibit phagosomal acidification by V-ATPase, and the cellular
damage caused by sustained ROS can induce apoptosis (8,
35, 36). The removal of bacteria by NOX2 and the formation
of LAP are important mechanisms in the early stages of
macrophage contact with bacteria, but if the activity of this
enzyme is not continuously controlled in the phagosome at
later times, it will affect the viability of the bacteria in the
phagosome. In commensal bacteria, the low level of ROS
generated by NADPH oxidase modulates the redox-sensor
regulatory signaling pathway and supports symbiotic effects
of the bacteria (37). In this context, the NADPH oxidase-
dependent generation of ROS has a double-edged sword effect
in multicellular organisms and is connected to the adaptation or
survival of the microbiome.

Acidification is the key to the many facets of phagosome
maturation. It is a tightly regulated process that begins after
the phagocytic cup has closed and phagosome luminal pH
goes from 7 to 4. These changes precede the fusion with
acidic compartments, and this early acidification event requires
delivery of the V-ATPase (17). This proton-transporting enzyme
is recruited from endosomes and lysosomes and is assembled on
the membrane of the nascent vacuole (15). However, how the
pH is then regulated remains poorly defined for the phagosomal
state. In early phases following phagocytosis of gram-positive
bacteria, there is rapid acidification of the phagosomal lumen,
and the NLRP3-dependent inflammasome complex generates
activated caspase-1, which regulates the superoxide generated
by NOX2. In this early process, it has been shown that
gram-negative bacteria cannot trigger this mechanism (8).
However, our results suggest that TXNIP modulates the levels

of superoxide to regulate the activity of caspase-1, generated
by the NLRP3 inflammasome complex at later stages, and
induces bactericidal activity toward engulfed E. coli by acidifying
the phagosomal lumen in order to activate acidic enzymes
present in the phagosome. Although the bacteria clearance of
Txnip KO macrophages incubated with DPI did not completely
restore to the level of that in WT macrophages, the survival
of engulfed bacteria in Txnip KO macrophages was reduced
compared with that of KO macrophages incubated without DPI
at the late time (Figure 3). Our result of isolated phagosomes
showed that Rab5 is less recruited into the phagosomes of
Txnip KO macrophages, and the reduced level of Rab5 did
not influence the acidification of phagosomal lumen at the late
time. Commonly, Rab5 is known as a regulator of an early
endosome or phagosome formation, and this protein is needed
in phagosome maturation for acidification of the phagosomal
lumen and is essential to reduce bacterial evasion from the
host cells (1, 5). In this context, our results indicated the
possibility that TXNIP can regulate the formation of Rab5-
dependent phagosomes and the acidification against invading
bacteria in the early time. As a result, the difference of Rab5
level into the phagosome may be influenced by the bacterial
clearance in the Txnip KO macrophage incubated with DPI
(Figure 2A). To evade these processes, some pathogens have
evolved mechanisms such as buffering their local environment
in an attempt to maintain a beneficial neutral pH. For this
reason, strict regulation of phagosomal maturation is crucial
for bactericidal activity in macrophages and to regulate the
immune system.

Gram-negative bacteria are associated with pneumonia,
bloodstream infections, and urinary tract infections, and these
bacteria can easily acquire antibiotic drug resistance genes
(38). Macrophages are an important part of the inflammatory
response to these bacteria, modulating the activity of the
immune system via the production of cytokines and chemokines
and providing clearance through their phagocytic machinery
(2, 39, 40). In a sophisticated phagocytosis system to protect
against invading bacteria, the survival of E. coli in the
phagosome machinery is essential for it to adapt to the
host or else a mutation that results in the acquisition of
antibiotic resistance is required (37, 41–43). In order to
survive within macrophages, bacteria have developed strategies
to escape the phagocytic machinery using bacterial effector
protein, actin modulation, and alkalization of the phagosomal
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FIGURE 4 | The thioredoxin-interacting protein (TXNIP)-inflammasome-caspase-1 axis regulates the clearance of bacteria from macrophages. (A) The levels of

interleukin (IL)-1β in conditioned media from wild-type (WT) and Txnip knockout (KO) mouse peritoneal macrophages after treatment with E. coli for the indicated

times. Data are expressed as the mean ± SD (***P < 0.001 compared with WT). (B) The protein expression levels of caspase-1 P45 and caspase-1 P10 in mouse WT

and Txnip KO mouse peritoneal macrophages after treatment with E. coli for the indicated times. (C) Caspase-1 activity, with or without ZVAD treatment, in mouse WT

and Txnip KO mouse peritoneal macrophages 6 h after the treatment with E. coli. Data are expressed as the mean ± SD (***P < 0.001 compared with WT). (D)

Representative images of bacteria-laden WT and Txnip KO mouse macrophages 6 h after a 1-h treatment with GFP-expressing E. coli with or without ZVAD treatment

and removal of extracellular bacteria. Scale bar, 10µm.
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FIGURE 5 | Bacterial clearance is reduced in thioredoxin-interacting protein (Txnip) knockout (KO) mice. (A) Survival of wild-type (WT) and Txnip KO mice after

intraperitoneal injection with E. coli (108 CFU, mice n = 10). (B) Colony-forming units (CFUs) and representative images of LB agar plates after overnight incubation

with extracts of blood, liver, and spleen from WT and Txnip KO mice obtained 24 h after the intraperitoneal injection of E. coli. Data are expressed as the mean ± SD

(Continued)

Frontiers in Immunology | www.frontiersin.org 12 November 2019 | Volume 10 | Article 263644

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yoon et al. TXNIP in Phagosomal Acidification

FIGURE 5 | (n = 3, *P < 0.05, **P < 0.01 compared with WT). (C) Representative images of spleens from WT and Txnip KO mice at the indicated times after the

intraperitoneal injection of E. coli (108 CFU). (D) (Left) TUNEL-positive cells in liver sections from WT and Txnip KO mice 24 h after the intraperitoneal injection of E. coli

(108 CFU). (Right) The number of TUNEL-positive cells in five randomly selected fields in liver sections from WT and Txnip KO mice 24 h after the intraperitoneal

injection of E. coli (108 CFU). Data are expressed as the mean ± SD (*P < 0.05 compared with WT). (E) Survival of WT and Txnip KO mice after cecum ligation and

puncture (n = 7). (F) CFUs and representative images of LB agar plates after overnight incubation with extracts of blood, liver, and spleen from WT and Txnip KO mice

obtained 24 h after cecum ligation and puncture. Data are expressed as the mean ± SD (n = 3, *P < 0.05, **P < 0.01 compared with WT).

FIGURE 6 | Schematic diagram showing the roles of thioredoxin-interacting protein (TXNIP)-inflammasome-caspase-1 in the clearance of bacteria from

macrophages. Wild-type (WT) and Txnip knockout (KO) mouse macrophages demonstrate a similar engulfment of bacteria at the early stage of phagosome

maturation. There is no difference in the levels of superoxide and the pH in phagosomes from WT and Txnip KO mouse macrophages. On the other hand, at the late

stage of phagosome maturation, binding between TXNIP and NLRP3 induces the inflammasome complex to activate caspase-1, inhibiting the activity of NADPH

oxidase, leading to a decrease in the pH of the phagosomal lumen. At this stage, there are significant differences in the levels of superoxide, the pH of the

phagosomes, and the resultant clearance of bacteria in Txnip WT and KO macrophages.

lumen (1, 22, 44, 45). In this context, complete phagosomal
maturation is crucial to destroy bacteria and to regulate
the host immune system. Our results demonstrate that
the regulation of NADPH oxidase-derived superoxide via
the TXNIP-NLRP3 inflammasome-caspase-1 axis induces a
continuous acidification of the phagosomal lumen that inhibits
bacterial survival.

Recently, numerous studies have shown that the cytosolic
levels of TXNIP are important in regulating diversity cellular
signaling pathways, such as the redox system, inflammation,
glucose uptake, and apoptosis (17, 30, 46–48). In the same
manner, differential TXNIP expression levels are thought to be
important in regulating cellular or tissue homeostasis during
bacterial infection. Our results show that the TXNIP-NLRP3

inflammasome-caspase-1 axis is a modulator of the phagosomal
pH in macrophages exposed to bacteria. Without this effective
system, macrophages will fail to clear E. coli even in the
presence of increased ROS levels. We suggest that TXNIP
might play a role in the destruction of pathogenic E. coli
through the effects of inflammasome-mediated caspase-1 on
NADPH oxidase.
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Encountering opsonized particles by neutrophils results in phagocytosis of the particle

and generation of extracellular vesicles with antibacterial property (aEV). The aim of the

present study is to compare the involvement of different receptors and receptor-proximal

signaling pathways in these two parallel processes. Investigating human neutrophils from

peripheral blood, we show that complement receptors are decisive for both processes

whereas immunoglobulin binding Fc receptors (FcR) only participate moderately in

phagocytosis and pattern recognition receptors induce mild EV production but only

minimal phagocytosis. Studying bone marrow derived neutrophils of genetically modified

animals we verify that the involved complement receptor is CR3, also known as the β2

integrin Mac-1. We show that genetic deletion of the adaptor molecules FcRγ chain

or DAP12 does not influence either process, suggesting potential redundant function.

Combined absence of the Src family kinases Hck, Fgr, and Lyn drastically impairs

phagocytosis but does not influence aEV production. In contrast, deletion of PLCγ2

has no influence on phagocytosis, but reduces aEV formation. In accord with the

essential role of PLCγ2, aEV biogenesis both from murine and from human neutrophils is

dependent on presence of extracellular calcium. Absence of external calcium prevented

the generation of antibacterial EVs, whereas the spontaneous EV formation was not

influenced. We thus show that phagocytosis and biogenesis of antibacterial EVs are

independent processes and proceed on different signaling pathways although the same

receptor plays the critical role in both. Our data reveal the possibility in neutrophilic

granulocytes to modulate aEV production without disturbing the phagocytic process.

Keywords: extracellular vesicles, phagocytosis, neutrophils, signaling, antibacterial effect, calcium, Src family

kinase, complement receptor

INTRODUCTION

Phagocytosis by neutrophilic granulocytes is significantly promoted by opsonization. The most
effective opsonins are immunoglobulins reacting with different Fc receptors (FcR) and complement
fragments recognized by complement receptors (CR). The most abundant CR on the surface
of neutrophils is CR3, also known as macrophage antigen 1 (Mac-1), a β2 integrin (1). In
addition to phagocytosis, Mac-1 is involved in adhesion and spreading of the cells as well as in
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adhesion-dependent superoxide production and degranulation
(2–4). Recently we found that Mac-1 also plays a critical
role in production of extracellular vesicles with antibacterial
capacity (5).

Generation of extracellular vesicles (EVs) is a common
property of different cell types from the simplest prokaryotes up
to the most differentiated eukaryotic cells (6, 7). Investigation of
the physiological and pathological roles of EVs has skyrocketed
in the last decade and by now EVs are considered as important
elements of intercellular communication. Some of the established
functions of different EV types such as antigen presentation (8),
anti-inflammatory (9), or antimicrobial effects (10) represent
protective mechanisms for the host organism. Others, such
as transfer of oncogenic receptors (11) or dissemination of
antibiotic resistance (12) are more frightening. Hence, medical
therapy may require - depending on the exact condition -
enhancement or reduction of EV production. For the time being
such interventions are hampered by the lack of knowledge on the
molecular mechanisms of biogenesis.

Diversity of EVs has been widely documented (13, 14). There
are clear examples indicating that properties of EVs released
even from the same cell vary depending on environmental
factors (15–17). Investigating EV production from neutrophilic
granulocytes, we have previously characterized three different
types of medium-sized EVs (also called microvesicles or
ectosomes): those produced from freshly isolated cells
spontaneously (sEV), or upon activation with opsonized particles
(aEV) and EVs produced during apoptosis of the cells (apoEV).
We found differences in the number, protein content and protein
composition of these EV populations (18). The most striking
difference was in their functional property, as aEVs impaired the
growth of bacteria in a concentration-dependent way whereas
the other two types had absolutely no antibacterial effect (5).
However, the cellular processes governing the production of
these divergent EV populations are poorly explored.

Searching for the molecular mechanism of generation of
antibacterial EVs, we identified Mac-1 as the key cell surface
receptor triggering aEV production. The aim of the current
study was to investigate the relationship of the two Mac-1
dependent processes and to characterize the initial steps of the
signaling pathway leading from receptor activation eventually to
the release of aEVs or phagocytosis. Using neutrophils isolated
from human peripheral blood or from genetically modified mice,
we show that the two processes are independent and proceed on
clearly distinguishable signaling pathways.

MATERIALS AND METHODS

Materials
HBSS with or without calcium and magnesium and glucose
was from GE Healthcare Life Sciences (South Logan, UT,
USA), Zymosan A from Sigma Aldrich (St. Louis, MO, USA),
Ficoll-Paque and Percoll from GE Healthcare Bio-Sciences AB
(Uppsala, Sweden), HEPES (pH 7.4) from Sigma. All other
used reagents were of research grade. GFP-expressing and
chloramphenicol resistant S. aureus (USA300) was a kind gift of
Professor William Nauseef (University of Iowa).

Preparation of Human PMN and EV
Venous blood samples were drawn from healthy adult volunteers
according to procedures approved by the National Ethical
Committee (ETT-TUKEB No. BPR/021/01563-2/2015).
Neutrophils were obtained by dextran sedimentation followed
by a 62.5% (v/v) Ficoll gradient centrifugation (700g, 40min,
22◦C) as previously described (18). The preparations contained
more than 95% PMN and <0.5% eosinophils. PMNs (typically
107 cell in 1mL HBSS) were incubated with or without activating
agent for 30min at 37◦C in a linear shaker (80 rpm/min). After
activation, cells were sedimented (500g, Hermle Z216MK 45◦

fixed angle rotor, 5min, 4◦C). Upper 500 µL of the supernatant
was filtered through a 5µm pore sterile filter (Sterile Millex
Filter Unit, Millipore, Billerica, MA, USA). The filtered fraction
was sedimented (15700 g, Hermle Z216MK 45◦ fixed angle
rotor, 5min, 4◦C), and the pellet was carefully resuspended in
the original incubation volume. Protein concentration of EV
was determined by the Bradford protein assay using BSA as
standard (5).

Transgenic Mice
Triple Src-family kinase (SFK) knock-out mice in which all
three Src-family kinase isoforms identified in neutrophils (Hck,
Fgr, and Lyn) were missing (19) were obtained from Clifford
Lowell (University of California, San Francisco, CA). Complete
CD18-deficient (Itgb2tm2Bay/tm2Bay, referred to as CD18−/−)
mice (20) were obtained from A. Beaudet (Baylor College of
Medicine, Houston, TX). CD11b-deficient (Itgamtm1Myd/tm1Myd,
referred to as CD11b−/−) mice were purchased from The
Jackson Laboratory (21). CD11a-deficient (Itgaltm1Hogg/tm1Hogg,
referred to as CD11a−/−) mice were obtained from N.
Hogg (Cancer Research UK, London, UK) (19). FcRγ-chain
deficient (Fcer1gtm1Rav/tm1Rav, referred to as FcRγ−/−) mice
were purchased from Taconic (22). Dap12-deficient (referred
to as Dap12−/−) mice (22) were obtained from Lewis Lanier
(University of California, San Francisco, CA). Heterozygousmice
carrying a deleted allele of the PLCγ2-encoding gene (Plcg2tm1Jni,
referred to as PLCγ2−/+) were obtained from James N. Ihle
(St. Jude Children’s Research Hospital, Memphis, TN, USA) (23)
and have been backcrossed to the C57BL/6 genetic background
for more than 10 generations. Because of the limited fertility
of homozygous PLCγ2−/− mice, the mutation was maintained
in heterozygous form as described (24). Syk+/− mice (25) were
originally obtained from Victor Tybulewicz (National Institute of
Medical Research, London, UK). Syk−/− bone marrow chimeras
carrying a Syk-deficient hematopoietic system were generated
by transplanting Syk−/− fetal liver cells into lethally irradiated
wild-type recipients (26). All transgenic mice were backcrossed
to the C57BL/6 genetic background for at least 6 generations.
All transgenic mice were 11–20 weeks old. Age- and sex-
matched C57Bl/6 animals were used as controls. Genotyping
was performed by allele-specific PCR. WT control C57BL/6 mice
were purchased from Charles River or the Hungarian National
Institute of Oncology. Mice were kept in sterile, individually
ventilated cages (Tecniplast, Buguggiate, Italy) in a conventional
facility. All animal experiments were approved by the Animal
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Care Committee of the National Authority for Animal Health
(Budapest, Hungary).

Isolation of Murine PMN and EV
Murine neutrophils were isolated from the bone marrow of
the femurs, humeri, and tibias of intact mice by hypotonic
lysis followed by Percoll gradient centrifugation (62.5% v/v,
700g, 40min, 22◦C) using sterile and endotoxin-free reagents as
previously described (19). Cells were kept at room temperature
in Ca2+ and Mg2+-free medium until use (usually <30min) and
pre-warmed to 37◦C before activation. Neutrophil assays were
performed at 37◦C in HBSS supplemented with 20mM HEPES,
pH 7.4. PMNs (107 cell in 1mL HBSS) were incubated with or
without activating agent for 30min at 37◦C on a linear shaker
(80 rpm/min). After incubation, PMNs were sedimented (1,000
g, Hermle Z216MK 45◦ fixed angle rotor, 5min, 4◦C) and the
upper 800 µL of the supernatant was filtered through a 5µm
pore sterile filter. The filtered fraction was sedimented again
(30,000 g, Beckmann JA-17 fixed 25◦ angle rotor, 30min, 4◦C).
The sediment was resuspended in HBSS at the original volume
and used immediately for further analysis according to previous
observations (27).

Opsonization
Zymosan (5mg in 1mL HBSS) was opsonized with 500 µL
pooled human or murine serum for 30min at 37◦C. For
complement-free opsonization zymosan (5mg in 1mL PBS) was
opsonized with 500 µL human serum pretreated with 20mM
EDTA. After opsonization zymosan was centrifuged (5,000g,
5min, 4◦C, Hermle Z216MK 45◦ fixed angle rotor), and washed
once in HBSS.

Bacteria (OD600 = 1.0 in 800 µL HBSS) were opsonized with
200µL pooled human or murine serum or with EDTA pretreated
human serum for 30min at 37◦C. After opsonization, bacteria
were centrifuged (8,000 g, 5min, 4◦C, Hermle Z216MK 45◦ fixed
angle rotor), and washed once in HBSS.

EV Analysis and Quantification by Flow
Cytometry
Human EVs were labeled with RPE conjugated monoclonal
anti-CD11b (1µg/mL, Tonbo Biosciences, USA, clone
M1/70) (28), FITC conjugated anti-CD18 monoclonal
Ab (1µg/mL, Dako) or FITC conjugated annexinV (BD
Biosciences) for 20min at 37◦C and then washed in
HBSS. Murine EVs were labeled with RPE conjugated
monoclonal anti-CD11b (1µg/mL, Tonbo Biosciences,
USA, clone M1/70) (29) or RPE conjugated monoclonal
anti-CD18 (1µg/mL, BD Biosciences, clone C71/16) (30) or
PerCP-CY 5.5 conjugated monoclonal anti-Ly6g (1µg/mL,
BD Biosciences, clone 1A8) (31) or FITC conjugated
AnnexinV (BD Biosciences) for 20min at 37◦C and then
washed in HBSS. Isotype controls were from identical
manufacturer, annexinV labeling was controlled in 20mM
EDTA containing medium.

For flow cytometric detection of EVs a Becton Dickinson
FACSCalibur flow cytometer was used as described previously in
Lorincz et al. (27). Briefly pureHBSSmediumwas used for setting

the threshold to eliminate instrument noise then fluorescent
beads (3.8µm SPHERO Rainbow Alignment Particles from
Spherotech Inc., USA) were detected to set the upper size
limit of EV detection range. After the measurement of an
EV preparation the number of isotype control events and the
0.1%TritonX-100 detergent non-sensitive events were subtracted
to calculate the true EV number. To avoid swarm detection,
the flow rate was held below 1,000 events/s (3,750 events/µL)
during measurements. Samples were re-measured after a 2-
fold dilution to control linearity of measurements. Linearity
was controlled in a broader range previously (32). FC data
were analyzed with Flowing 2.5 Software (Turku Center for
Biotechnology, Finland).

Quantification of Phagocytosis
Neutrophils (106 in 1mL HBSS) were incubated with GFP
expressing S. aureus (USA300, 107 in 1mL HBSS) for 30min at
37◦C in a linear shaker (80 rpm/min). For kinetic measurements
samples were taken in every 10min, for endpoint measurements
phagocytosis was stopped after 20min. Samples were diluted
5-fold in ice-cold PBS and analyzed by flow cytometry. To
avoid coincidental co-detection of cells and bacteria and to
control linearity of the measurement every sample was measured
again after a 2-fold dilution. Percentage of phagocytosing
PMNs was calculated by detecting GFP positive and
negative cells.

To prove that cell associated bacteria are internalized (and
not only bound by the surface), we carried out confocal
microscopic imaging with X-Y projections (Figure 1B). For
microscopic control of phagocytosis, cells were 5-fold diluted in
ice-cold PBS and sedimented onto a coverslip for 30min. Later
cells were fixed with 4% (w/v) paraformaldehyde and analyzed
with a Zeiss LSM710 confocal laser scanning microscope
equipped with 40×/1.3 and 63×/1.3 oil immersion objective
(Plan-Neofluar, Zeiss). Images were analyzed with LSM Image
Browser software (Zeiss).

Activation of Adherent Neutrophils
Selective activation of Mac-1 complex of adherent human
neutrophils was performed in 6 well tissue culture plates (Biofil,
Hungary) coated overnight with 0.2 mg/mL BSA or 50µg/mL
C3bi (both from Merck, Darmstadt, Germany) as previously
described (33). To obtain immobilized immune complex–coated
surfaces, human lactoferrin (20µg/mL; Sigma-Aldrich, USA)
was covalently linked to poly-l-lysine (Sigma-Aldrich, USA)
coated 6 well plates and then treated with polyclonal anti-
lactoferrin (LTF) IgG (1:400 dilution; Sigma-Aldrich, USA)
or non-specific IgG (1:400 dilution; Sigma-Aldrich, USA) for
1 h as previously described (34). Unbound immunoglobulin
was removed by washing the plate by HBSS three times.
The isotype control serves to test the unspecific binding of
applied antibodies.

Bacterial Survival Assay
Opsonized bacteria (5 × 107/50 µL HBSS) were added to 500
µL EV (derived from 5 × 106 PMN) suspended in HBSS.
During a 40min co-incubation step at 37◦C the bacterial count
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FIGURE 1 | Participation of different receptors in phagocytosis of human (A,B) or murine (C–E) neutrophils. (A) Analysis of phagocytosis of non-opsonized, partially,

or completely opsonized GFP expressing S. aureus by human PMN. Kinetics of phagocytosis ± SEM, n = 4. Data were compared after 30min phagocytosis using

RM-ANOVA coupled with Tukey’s post hoc test. (B) Confocal microscopic images of human neutrophils after 20min phagocytosis of non-opsonized (UL), partially

(UR), and completely (LL) opsonized GFP expressing S. aureus; red color shows CD11b labeling. X-Y projections of engulfed bacteria with the respective side views

(LR). Representative images out of 4 independent experiments. (C–E) Quantification of phagocytosis of WT vs. CD18 KO (C), CD11b KO (D), CD11a KO (E) murine

PMN. Data were compared using Student’s t-test; n = 6, 6, 6 ± SEM. **P < 0.01; ***P < 0.001; ****P < 0.0001.

decreases or increases depending on the samples’ antibacterial
effect and the growth of bacteria. At the end of the incubation,
2mL ice-cold stopping solution (1 mg/mL saponin in HBSS)
was added to stop the incubation and lyse EVs. After a
freezing step at −80◦C for 20min, samples were thawed to
room temperature and inoculated into LB broth. Bacterial
growth was followed as changes in OD using a shaking
microplate reader (Labsystems iEMS Reader MF, Thermo
Scientific) for 8 h, at 37◦C, at 650 nm. After the end of growth
phase the initial bacterial counts were calculated indirectly
using an equation similar to PCR calculation, as described
previously (35).

Statistics
Comparisons between two groups were analyzed by two-tailed
Student’s t-tests or ANOVA. Exact statistical tests are indicated
in the figure legends. All bar graphs show mean and ± SEM.
Difference was taken significant if P value was < 0.05. ∗

represents P < 0.05; ∗∗ represents P < 0.01; ∗∗∗ represents P <

0.001. Statistical analysis was performed using GraphPad Prism 6
for Windows (La Jolla, CA, USA).

RESULTS

Comparison of Receptors Involved in
Phagocytosis and EV Generation Initiated
by Opsonized Particles
We first carried out a detailed analysis on the involvement
of different receptors in phagocytosis, using differently
opsonized particles (Figure 1). Following the process by
flow cytometry up to 30min, we could detect only minimal
phagocytosis of non-opsonized bacteria by human neutrophils
(Figure 1A). If bacteria were treated with complement-
depleted serum and so opsonized mainly by antibodies that
activate different Ig-binding FcR, we observed phagocytosis
in ∼30% of the cells (Figure 1A). In contrast, particles
opsonized in full serum, allowing thus the activation of both
Fc and complement receptors, induced significantly greater
phagocytosis, and bacteria were detectable in ∼80% of the
investigated neutrophils (Figure 1A). In Figure 1B we show
the results of similar experiments carried out by confocal
microscopy, verifying that bacteria were in fact engulfed,
not only associated to the surface of the cells. The kinetic
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experiments presented in Figure 1A indicated that under our
conditions phagocytosis was completed in 20min. Therefore, in
the following experiments only data obtained by flow cytometry
at 20min are shown.

In order to confirm the complement receptor playing
major role in phagocytosis under our conditions, we tested
neutrophils from genetically modified mice. Earlier studies
(1) suggested CR3-which is identical with the β2 integrin
Mac-1—as the most important complement receptor in
neutrophilic granulocytes. In accordance with previous
findings (3), deletion of either CD18, the common β chain
of all neutrophil β2 integrins, or CD11b, the specific α

chain of Mac-1 resulted in drastic decrease of phagocytosis
(Figures 1C,D). In contrast, depletion of CD11a, the α

chain of the integrin LFA-1, which does not serve as
complement receptor, had no influence on phagocytosis
(Figure 1E).

FIGURE 2 | Participation of different receptors in activated EV generation from

human neutrophils. (A) Comparison of phagocytosis and EV production after

20min activation by different opsonized particles. +SEM, n = 21 (EV) or 8

(phagocytosis). Data were compared using RM two-way ANOVA coupled with

Dunett’s post hoc test. (B) Generation of EV by neutrophils adherent to

non-specific BSA or specific C3bi surface. (C) Generation of EV by neutrophils

adherent to immune complex surface. Data were compared using paired

Student’s t-test; n = 4 and 7. *P < 0.05; ***P < 0.001; ****P < 0.0001.

Next we investigated EV production from human neutrophils
under similar conditions. As shown in Figure 2A, non-opsonized
particles induced moderate EV generation, which was not
further increased if particles were opsonized by antibodies. Fully
opsonized particles, which were able to stimulate both Fc and
CR receptors, initiated maximal EV release. To substantiate the
difference in the role of Fc and CR receptors in EV biogenesis,
in the following experiments we stimulated the two types of
receptors selectively on coated surfaces (Figures 2B,C). C3bi,
the specific ligand of CR3 receptor induced significant and
consistent increase of EV production from adherent neutrophils
(Figure 2B), whereas no significant change of EV release was
observed if the cells were seeded on an immune complex
surface (Figure 2C). Thus, under our experimental conditions
Mac-1/CR3 seems to play a decisive role both in phagocytosis and
in EV generation. In the following experiments we focused on the
signaling process downstream of Mac-1.

FIGURE 3 | Role of adaptor proteins in aEV generation and phagocytosis of

murine neutrophils. Comparison of sEV and aEV production of WT vs. FcRγ

chain KO (A) and DAP12 KO (C), murine PMN. Comparison of phagocytosis

of fully opsonized bacteria by WT vs. FcRγ chain KO (B) and DAP12 KO (D)

murine PMN. Data were compared using Student’s t-test; n = 24, 8,

7, 6 +SEM. *P < 0.05; ***P < 0.001.
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Role of the Adaptor Proteins FcRγ and
DAP12 in Mac-1 Initiated EV Generation
and Phagocytosis
Outside-in signaling of β2 integrins was shown to involve
tyrosine kinases, but the short intracellular segments of both
chains lack suitable signaling sequences. The adapter molecules
FcRγ chain and DAP12 which contain conserved immune
receptor tyrosine based activation motives (ITAMs) were shown
to play a critical role in downstream signaling of β2 integrins
(36). Therefore, we investigated first the involvement of these
two molecules in EV generation and phagocytosis in neutrophils
obtained from genetically deficient mice. EV production was
detected both under resting conditions (spontaneous, sEV) and
upon stimulation with full murine serum opsonized zymosan
particles (activated, aEV).

Deletion of FcR γ chain prevents signal transduction
via all FcR in murine neutrophils (34) and it was shown to

FIGURE 4 | Role of tyrosine kinases in aEV generation and phagocytosis of

murine neutrophils. Comparison of sEV and aEV production of WT vs. SFK KO

(A) and Syk KO (C) murine PMN. Comparison of phagocytosis of fully

opsonized bacteria by WT vs. SFK KO (B) and Syk KO (D) murine PMN. Data

were compared using Student’s t-test; n = 17, 8, 7, 5 +SEM. *P < 0.05; **P

< 0.01; ***P < 0.001.

transmit Mac-1 signaling as well (36). In FcRγ KO animals
we did not see any change in EV production as compared
to the wild type, and observed only a minor, statistically
non-significant decrease of phagocytosis (Figures 3A,B).
The latter finding is in accord with the moderate activity
of FcRs shown in Figure 1. Similar results were obtained in
neutrophils from DAP-12 deficient animals (Figures 3C,D)
indicating that neither adapter molecule plays an exclusive
role in Mac-1 signaling, and suggesting a potential
redundant function.

Src-Family Kinases and Syk Are
Dispensable for EV Generation but
Required for Phagocytosis
Phosphorylation of the ITAM sequences of the adapter
molecules is carried out by the Src family kinases (SFK),
of which Hck, Fgr, and Lyn are expressed in murine
neutrophils (37). We investigated aEV production and

FIGURE 5 | Role of PLCγ2 and availability of extracellular calcium in aEV

generation and phagocytosis of murine neutrophils. Comparison of sEV and

aEV production of (A) and phagocytosis of fully opsonized bacteria by (B) WT

vs. PLCγ2 KO murine PMN. Quantification of aEV production from (C) and

phagocytosis by (D) WT murine PMN in the presence and absence of

extracellular Ca2+. Data were compared using Student’s t-test; n = 5, 5,

5, 4 +SEM. *P < 0.05 and **P < 0.01.
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phagocytosis in neutrophils from triple KO mice, which lack all
three SFKs.

Phagocytosis of fully opsonized bacteria was significantly

impaired in the absence of all three SFKs. Surprisingly, EV

generation was not affected at all and reached similar values as
detected with wild-type cells (Figures 4A,B). Thus, at this point
we observed serious divergence in the signalization process of
phagocytosis and aEV generation.

Phosphorylation of the ITAM sequences of the adaptor
proteins by SFKs allows the binding and activation of Syk
tyrosine kinase that plays important role in the transmission

of several SFK mediated cell functions (4). Syk-deficient

animals are not viable but the function of the hematopoietic

compartment can be studied following transplantation with
wild-type or Syk-deficient bone marrow. The data shown in

Figures 4C,D were obtained using neutrophils of transplanted

animals. Generation of aEVs from Syk-deficient neutrophils

was not significantly different from the extent obtained
with neutrophils following transplantation of wild-type bone
marrow, although the increase compared to sEV generation
proved not to be statistically significant either (Figure 4C).
Phagocytosis by neutrophils from transplanted animals was
very low, nevertheless significant difference was obtained
between neutrophils produced after transplantation with wild-
type or Syk KO bone marrow (Figure 4D). Thus, neither SFKs
nor Syk seem to be essential for the production of aEVs
in neutrophilic granulocytes whereas they are required for
maximal phagocytosis.

Requirement for Calcium Signaling Is
Different in EV Generation and
Phagocytosis
The γ2 isoform of phospholipase C was shown to be essential
in organization of several neutrophil functions initiated by β2

FIGURE 6 | Role of extracellular calcium in aEV production and phagocytosis of human neutrophils. Quantification of aEV production from (A) and phagocytosis by

(B) human PMN in the presence and absence of extracellular Ca2+. Production of aEV was assessed on the basis of detectable EV number (left axis) and total protein

content (right axis); aEV production data were compared using RM two-way ANOVA coupled with Tukey’s post hoc test; n = 11. Level of significance is indicated by *

for EV numbers and by # for protein amount. Phagocytosis was analyzed using Student’s t-test; n = 5. (C) Effect of aEV produced in the presence or absence of

extracellular Ca2+ on bacterial growth. Data were compared using RM-ANOVA coupled with Tukey’s post hoc test; n = 6.
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FIGURE 7 | Model of Mac-1 signaling initiating phagocytosis or production of antibacterial EVs.

integrin stimulation (23). Hence we investigated aEV production
and phagocytosis in neutrophils of PLCγ2 deficient animals.
Phagocytosis was not influenced, but aEV production was
seriously impaired (Figures 5A,B). In fact, there was only
very little difference between spontaneous and activated EV
generation from PLCγ2 KO neutrophils (Figure 5A). Thus,
the key enzyme of inositol trisphosphate (IP3) generation and
consequent calcium signaling seems to be required for aEV
generation but it is dispensable for phagocytosis.

Next, we investigated whether presence of calcium in
the extracellular space is essential for aEV generation or
phagocytosis. As shown in Figures 5C,D for murine neutrophils,
aEV production was almost completely inhibited in the absence
of calcium, whereas phagocytosis was not affected at all.
Interestingly, neither the absence of calcium, nor the lack of PLC
γ2 decreased spontaneous EV release.

In the following experiments, we wanted to substantiate our
observations also in human neutrophils, where the antibacterial
function could be tested as well. EV generation was followed
on the basis of two parameters: number of vesicles detectable
by flow cytometry and total protein content of the sedimented
vesicles. Both parameters indicated defective aEV production in
the absence of extracellular calcium whereas sEV release was
not affected (Figure 6A). In contrast, there was no difference
in phagocytosis in the presence or absence of external calcium

(Figure 6B). Thus, human PMN behaved similar to their
murine counterparts.

Antibacterial effect of the separated vesicles was followed
under conditions where the effect of EVs of identical protein
content was tested upon bacterial survival. Intact human
neutrophils were applied as positive control. As indicated in
Figure 6C, only EVs produced upon stimulation with opsonized
particles in the presence of external calcium were able to
impair bacterial growth whereas EVs produced upon the
same stimulation but in the absence of calcium lacked the
antibacterial effect.

DISCUSSION

In this study we investigated two cellular processes initiated by
opsonized particles and show that both in generation of EVs with
antibacterial property and in phagocytosis the multifunctional
surface molecule Mac-1 plays the central role. However, our data
indicate that aEV production is independent of phagocytosis
in spite of being triggered by the same receptor. On one
hand aEV generation proceeds also on coated surface where
phagocytosis is not possible (Figure 2B) and on the other
hand we observed major differences in the implicated signaling
pathway (Figures 4–6). Our findings suggest that the cytoskeletal
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rearrangement related to phagocytosis is neither sufficient nor
required for EV generation in neutrophils.

Mac-1 is one of the two major β2 integrins which
plays an important role in slow rolling and adherence of
neutrophilic granulocytes (2, 3, 38). β2 integrin-dependent
adherent activation of neutrophils which consists of spreading,
superoxide production and degranulation was shown to involve
activation of SFKs, Syk tyrosine kinase and PLCγ2 enzymes (23,
25, 39–41). Specific Mac-1 dependent degranulation was shown
to depend on SFK and Syk kinase activity (42). Our current data
indicate that the two investigated Mac-1 dependent processes
are only partially dependent on this previously characterized
signaling pathway. Phagocytosis entails the SFK and Syk tyrosine
kinases, but it proceeds undisturbed in the absence of PLCγ2
and extracellular calcium (Figure 7). Much to our surprise,
enhanced EV production triggered by Mac-1 did not depend
on activity of SFK and was not affected by their absence. In
contrast, activated EV production was seriously compromised by
the lack of PLCγ2, the enzyme producing the calciummobilizing
messenger molecule IP3. Similarly, no significant increase of
EV production could be achieved by Mac-1 stimulation in
the absence of extracellular calcium either in murine or in
human neutrophils. Last, but not least EVs produced upon
encountering opsonized particles in the absence of extracellular
calcium, had no antibacterial effect. The fact that phagocytosis

was not affected by the absence of extracellular calcium indicates
that receptor binding was functioning properly. Apparently,

generation of antibacterial EVs requires concurrent calcium

entry and intracellular calcium signaling. In different cell types
Ca ionophores were shown to initiate EV generation (43, 44),
although the functional properties of those vesicles were not
investigated in details. In contrast, here we demonstrate - to our
knowledge the first time - the key role of calcium signaling in
biogenesis and function of EVs triggered by physiological stimuli
via an identified receptor.

Freshly isolated resting neutrophils produce a basal amount
of EVs spontaneously (sEV) which served as reference in all
our experiments. Interestingly, this constitutive EV production
did not depend on any signaling element investigated in our
study. This fact clearly indicates the existence of distinguishable
signaling pathways in production of EVs of different properties
and functions.

Mac-1 is a multifunctional molecule with over 40 identified
ligands (45). The ligands investigated in detail were shown
to bind to partially overlapping but distinct sites and some
were suggested to behave as biased agonist (46). Our studies

extend this picture with a Mac-1 dependent pathway that

proceeds without participation of SFK (and probably Syk)
kinases. Previous studies indicated that both SFK, Syk and PLCγ2
seem to be dispensable for β2 integrin dependent migration
(19, 23, 25, 47), although the involvement of Mac-1 remained
questionable. In another study (42) Mac-1 dependent elastase
release was only partially inhibited in the absence of all 3 SFK.
All these observations suggest the possibility of multiple parallel
signaling pathways in organization of different cellular responses
triggered by the same cell surface receptor. Thereby our findings
raise the potential of selective modulation of aEV production
without interference with the phagocytic process.
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Clearance of cellular debris is required to maintain the homeostasis of multicellular

organisms. It is intrinsic to processes such as tissue growth and remodeling, regeneration

and resolution of injury and inflammation. Most of the removal of effete and damaged

cells is performed by macrophages and neutrophils through phagocytosis, a complex

phenomenon involving ingestion and degradation of the disposable particles. The study

of the clearance of cellular debris has been strongly biased toward the removal of

apoptotic bodies; as a result, the mechanisms underlying the removal of necrotic cells

have remained relatively unexplored. Here, we will review the incipient but growing

knowledge of the phagocytosis of necrotic debris, from their recognition and engagement

to their internalization and disposal. Critical insights into these events were gained

recently through the development of new in vitro and in vivomodels, along with advances

in live-cell and intravital microscopy. This review addresses the classes of “find-me” and

“eat-me” signals presented by necrotic cells and their cognate receptors in phagocytes,

which in most cases differ from the extensively characterized counterparts in apoptotic

cell engulfment. The roles of damage-associated molecular patterns, chemokines, lipid

mediators, and complement components in recruiting and activating phagocytes are

reviewed. Lastly, the physiological importance of necrotic cell removal is emphasized,

highlighting the key role of impaired debris clearance in autoimmunity.

Keywords: cell death, necrosis, apoptosis, phagocytosis, inflammation, cell debris, “find-me,” “eat-me”

INTRODUCTION

Cell death is inherent to living multicellular organisms. It is a key regulator of homeostasis,
being required during development, growth and maintenance of tissues; it is also a turning point
in the immune response. Healthy humans lose billions of cells per day constitutively via the
process of apoptotic cell death. Apoptosis, the prototypical form of programmed cell death, was
described morphologically in the early seventies (1) as involving cell shrinkage and chromatin
condensation, followed by fragmentation of the entire cell into smaller, sealed apoptotic bodies.
These apoptotic bodies are promptly cleared by neighboring phagocytes and parenchymal cells
through phagocytosis, in this case termed efferocytosis (meaning “carrying to the grave”), without
initiating an inflammatory response or disturbing tissue homeostasis.

While apoptosis has been studied most extensively, there are many other ways for cells to
experience death. The intrinsic activity of organisms often puts them in contact with extreme
temperatures, strong mechanical forces and harmful chemical agents. These situations frequently
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culminate in a catastrophic form of cell death with loss of
plasma membrane integrity and pro-inflammatory properties
named necrosis (2). Necrotic cell death can either be accidental
or programmed (e.g., pyroptosis and necroptosis), leading
to the release of intracellular contents into the extracellular
environment. Necrosis differs qualitatively from apoptosis, which
is clearly demonstrated by the lack of conversion of necrotic cells
into apoptotic bodies, a process that requires enzymatic activity
and energy. Importantly, these differences also predict that the
means of clearance of the cell debris generated by necrosis vs.
apoptosis may be drastically different.

Efferocytosis has received a great deal of attention in the
past decades, and is by now a well-understood process involving
dozens of described receptors and molecular effectors (Figure 1).
Because of the profusion of studies, a casual reader may be
left with the mistaken impression that efferocytosis is the only
means of clearance of cell debris in the body. This is certainly
not the case, as is most graphically shown by the existence
of apoptosis-defective organisms, such as mice deficient in the
initiator caspases 2 (3) and 9 (4), and effector caspases 3 (5),
6 (6), and 7 (7), that nevertheless develop and survive rather
normally! Clearly, other mechanisms of cell death and debris
clearance must exist. The main purpose of this chapter is to
review the clearance of cell debris of necrotic origin. Parallels
will be drawn between apoptosis and necrosis, stressing how
each mode of cell death may produce different “find-me” and
“eat-me” signals that will ultimately lead to clearance of debris
by different cell types and phagocytic receptors. In addition,
the immunological consequences of defective clearance of cell
debris will be discussed: this can take the form of delayed tissue
regeneration upon injury or even severe autoimmunity in the
long-term. In collating the available information on necrotic cell
clearance, this review aims to shed new light on diseases in which
necrotic debris are central, such as in atherosclerosis, liver injury,
arthritis, severe trauma, lupus, and many others.

APOPTOSIS AND EFFEROCYTOSIS

Approximately 200 billion cells undergo turnover (ostensibly
by apoptosis) every day in the human body (8). Yet, few
apoptotic cells are found in the steady state in healthy humans,
suggesting that these cells are rapidly cleared. In order to
orchestrate efferocytosis, three main signaling programs are
required. First, chemotactic “find-me” signals are produced to
attract professional phagocytes toward the dying cell. Second,
“eat-me” signals appear on the surface of the apoptotic cell,
which will help phagocytes recognize and engulf it. Lastly, the
internalized apoptotic body is degraded in the phagolysosomal
compartment by proteases, DNAses and lipases.

During apoptosis, cellular components are modified by the
activity of caspases and packaged into sealed vesicles—the so-
called apoptotic bodies—that expose phosphatidylserine (PS) (9).
The activation of initiator caspases (2, 8–10) leads to the cleavage-
dependent activation of the effector caspases (3, 6, 7), which,
being promiscuous proteases, cause the widespread cleavage of
proteins in the cell (10). This, in turn, promotes the degradation

of nuclear and cytoskeletal proteins and the activation of
accessory enzymes, such as the caspase-activated DNAse (CAD),
that degrades chromosomal DNA (11). The concomitant cleavage
of nuclear scaffold proteins such as lamins leads to nuclear
fragmentation (12), while proteolysis of actin, fodrin, and gelsolin
(13) causes cell shrinkage and membrane blebbing. In addition,
caspase activation is central to drive PS exposure on the outer
leaflet of the plasma membrane, a key event in apoptotic cell
recognition and clearance (14). Thus, caspase activity is largely
accountable for the morphological and biochemical hallmarks of
apoptosis, including the auto-digestion of cellular components
and the generation of “find-me” and “eat-me” signals. Caspases
can be activated when proteases that are normally secreted
are released into the cytosol. For example, neutrophil elastase
induces the unfolded protein response in vascular endothelial
cells, promoting apoptosis via caspase-3/7 activation (15). The
best-characterized apoptotic “find-me” signals are the nucleotides
ATP and UTP (16), the chemokine CX3CL1 (17), ICAM3
(18), and the lipids lysophosphatidylcholine (LPC) (19) and
sphingosine 1-phosphate (S1P) (20). Interestingly, these signals
can be released as soluble mediators or become exposed on the
surface of apoptotic microparticles, which detach from the main
apoptotic body and are capable of diffusing in the extracellular
environment (21).

Apoptotic bodies are easily engulfed by leukocytes
(professional phagocytes) and are cleared from the tissue
without any inflammatory impact. This process depends largely
on the exposure of PS on the outer leaflet of the membrane,
an evolutionary conserved “eat-me” signal for apoptotic cells.
PS is recognized by a plethora of receptors, including TIM-1,
TIM-3, TIM-4, BAI1, MerTK, and the stabilins 1 and 2, which
will cause internalization of the apoptotic bodies by phagocytes
(2, 22–25). Also, scavenger receptors such as CD36, might be
able to interact directly with exofacial PS due to its negative
charge (26). In addition to direct receptor-binding to PS,
several soluble molecules were described to bridge phagocyte
receptors to the phospholipid. They may originate from the
phagocyte, the dying cell or the interstitial fluid. Examples of
phagocyte-derived bridging molecules include milk fat globule
EGF factor 8 (MFG-E8), developmental endothelial locus 1
(Del-1), growth arrest-specific 6 (Gas6), protein S and the
complement factor C1q. Bridging proteins interact with PS via
different PS-binding domains. For example, MFG-E8 secreted
by macrophages and immature dendritic cells binds to PS
on apoptotic cells via its Ca2+-independent discoidin-like C2
domain, while interacting with ανβ3/5 integrins on the phagocyte
membrane, resulting in cell engulfment (27, 28). In contrast,
Gas6 and protein S bind PS via their γ-carboxyglutamic acid
(Gla) domain. Unlike the discoidin-like C2 domain, binding
of the Gla domain to PS requires Ca2+, in this way promoting
apoptotic cell internalization (29, 30). C1q binds to apoptotic
cells via its cationic globular head, and interacts with calreticulin-
CD91 on phagocytes to promote efferocytosis (31, 32). Another
phagocyte-derived protein, Annexin A1, can be translocated
to the plasma membrane to interact with PS exposed on the
apoptotic cell target, and this may contribute significantly to the
anti-inflammatory effects of apoptotic cell clearance (33).
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FIGURE 1 | A comparison of apoptotic and necrotic “find-me” signals. (Left) Apoptosis is characterized by cell shrinkage, membrane blebbing, DNA fragmentation

and nuclear condensation. As cells undergo apoptosis, “find-me” signals such as lysophoshatidylcholine (LPC), CX3CL1, ICAM3, and sphingosine 1-phosphate (S1P)

are secreted, exposed on the outer leaflet of the plasma membrane, and/or released via apoptotic bodies or exosomes. Pannexin 1 (PANX1) is an important

membrane channel involved in formation of membrane protrusions and ATP/UTP release during apoptosis. LPC, lysophosphatidylcholine; S1P,

sphingosine-1-phosphate. (Right) Necrosis is considered to be an uncontrolled form of cell death characterized by nuclear and organellar swelling, plasma

membrane rupture and leakage of intracellular contents, which many fall into the category of damage-associated molecular patterns (DAMPs or danger signals).

“Find-me” signals released by necrotic cells include mitochondria-derived formylated peptides, as well as molecules released from the cytosol such as H2O2,

ATP/UTP, leukotriene B4 (LTB4), and CXC/CC chemokines. LTB4 can also be released via sealed extracellular vesicles. The chemotactic complement components

C3a and C5a are generated after complement activation on the surface of necrotic cells.

Complement C1q and additional bridging molecules such
as IgM and collectins were proven to bind to “defects”
in the plasma membrane of the apoptotic cell, including
the presence of phosphatidylcholine, phosphatidylethanolamine,
lyso-phospholipids, carbohydrates, and DNA (34). Collectins,
such as mannose-binding lectin (MBL) and complement
C1q, bind late apoptotic cells and also drive engulfment via
interaction with CD91 and calreticulin on the macrophage
in vitro. Calreticulin is an endoplasmic reticulum (ER)-
localized chaperone that normally facilitates folding and quality
control of N-glycosylated proteins. As cells undergo apoptosis,
calreticulin escapes and translocates to the plasma membrane,
where it acts as an “eat-me” signal that is recognized
by CD91 on phagocytes (35). In addition, a variety of
other receptors and adaptor molecules have been reported
to contribute to efferocytosis. These include Fcγ receptors,
β2-glycoprotein I receptor, lectins, CD14, ABC transporters,
scavenger receptors, and complement components [reviewed
in (31, 36–42)]. Together this indicates that there is marked
redundancy in receptors and ligands for the engulfment of
apoptotic cells.

Interestingly, although PS exposure is a hallmark of apoptosis,
forced PS exposure on viable cells does not trigger internalization
(43). This is due to the presence of “don’t eat-me” signals on
viable cells, including CD31, CD46, CD47, and CD61, which
disable target cell engulfment. The downregulation of “don’t
eat-me” signals, such as CD47 and its binding partner SIRPα,
contributes to internalization of apoptotic bodies, indicating that
a coordinated effort between the dying cell and the phagocyte
likely exists (44).

NON-APOPTOTIC CELL DEATH

Necrosis is generally considered to be a drastic and uncontrolled
form of cell death, characterized morphologically by nuclear
and organellar swelling (oncosis) and plasma membrane rupture
(Figure 1) (10). Due to the loss of membrane integrity, the
intracellular contents are spilled out by the dying cell. The
exposure of necrotic cell content (or debris) is abrupt and
lacking in processing, causing it to be released in a disorderly
fashion into the tissue, without the specific cues of its apoptotic
counterpart. This causes necrotic debris to be potent inducers
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of inflammation, through activation of pattern-recognition
receptors such as toll-like receptors (TLRs), NOD-like receptors
(NLRs), and C-type lectins (CLECs), among others. Generally,
necrotic cell death is problematic to tissues, prompting the need
for immediate removal of debris, delaying the regeneration
required after injury and sustaining collateral inflammatory
damage. Interestingly, the recent identification of signaling
pathways that are activated before and during necrosis have
prompted reconsideration of this type of cell death as multiple,
distinct types of events, at least some of which are tightly
regulated and not always accidental. Recent subclassifications
of necrosis include pyroptosis, necroptosis, parthanatos,
ferroptosis, oxytosis, ETosis, and secondary necrosis (45).

Pyroptosis is a type of necrotic cell death caused by
extensive inflammasome activation. It occurs in cell types
that express inflammasome components, such as macrophages,
upon infection (e.g., with the intracellular pathogen Salmonella
typhimurium) or LPS treatment (46). Pyroptosis is caused by
the formation of gasdermin D pores, which assemble at the
plasma membrane after proteolytic processing of their precursor
by inflammasomes containing activated caspase-1 or -11 (47, 48).
Gasdermin pores create a path for the release of IL-1β, but
secondarily cause cell lysis by excessive permeabilization of the
plasma membrane. Necroptosis differs from other modalities
of necrosis by the involvement of receptor-interacting protein
kinase 1 (RIPK1) and RIPK3, which recruit and phosphorylate
the mixed lineage kinase domain-like protein MLKL (45).
Subsequently, MLKL oligomerizes, translocates to the inner
leaflet of the plasma membrane and promotes membrane
permeabilization and cell death (49, 50). Curiously, necroptosis
requires the inhibition of caspase-8, which otherwise causes the
cells to die by apoptosis. This may restrict the relevance of this
death pathway in vivo, since caspase-8 inhibition may only occur
in some viral infections (51). Parthanatos is a necrotic mode of
cell death that depends on poly(ADP-ribose) polymerase proteins
(PARPs). PARPs are typically activated by DNA breaks from
ultraviolet light and by alkylating agents (52). By causing poly
(ADP-ribosyl)ation of target proteins, PARPs may deplete cells
of NAD+ and consequently of ATP, causing necrotic cell death.

Ferroptosis is the necrotic cell death induced by iron-
dependent oxidative stress (53). It was postulated that iron
catalyzes the lipid peroxidation triggered by the ferroptosis-
inducing molecules erastin and RSL3, or by inhibiting the
glutamate/cystine antiporter. It was later found that these
pathways converge on the reduction of intracellular glutathione
(GSH) levels and impaired GSH peroxidase 4 (GPX4) activity,
leading to the accumulation of lipid-based reactive oxygen
species and cell death (54). As expected, iron-chelators and
lipophilic antioxidants were found to be potent inhibitors of
ferroptosis (55). A related oxidative stress-dependent necrotic
cell death, oxytosis, involves GSH depletion, 12-lipoxygenase
activation and opening of cGMP-gated channels on the plasma
membrane (56). This leads to calcium influx and activation
of the calpain-cathepsin cascade, causing lysosome membrane
permeabilization and necrosis (57).

In contrast to the “passive” nature of classical necrosis,
one of the necrotic death pathways involves purposeful

intracellular content exposure. Since its description in 2004
by Zychlinsky and collaborators (58) (neutrophil) extracellular
traps (ETs), which consist primarily of extruded DNA, have
been studied extensively. Subsequent work determined that cells
may die during ET production, a process dubbed NETosis
(59, 60). NETosis was later shown to occur in several cell
types other than neutrophils, such as monocytes (61), mast
cells (62), and eosinophils (63), making the name ETosis
more appropriate. Generally, ETosis requires NADPH oxidase-
dependent reactive oxygen species production, leading to
chromatin decondensation, nuclear disruption and release of
chromatin complexed with granular/cytoplasmic proteins (59),
although the mechanisms underlying the process may vary
between cell types.

Necrosis may also take place even after apoptosis has
occurred. If apoptotic cells are not cleared in a timely fashion, the
apoptotic bodies may decay and lose plasmamembrane integrity,
leaking their contents in a similar manner as a primary necrotic
cell would (64). This event is named secondary necrosis and
it shares common features with both apoptotic and necrotic
cell death. The intracellular debris produced by secondary
necrosis undergo apoptotic caspase processing, causing it to be
qualitatively different from primary necrotic debris (65). For
instance, secondary necrotic debris are considerably smaller,
contain digested chromatin, prostaglandin E2 and high levels
of uric acid, but very low ATP levels (65). These change
drastically the manner by which the organism deals with the
debris, as exemplified by the higher efficiency of complement C1q
and DNAse I in degrading chromatin from secondary necrotic
cells (66) and the potent anti-inflammatory polarization of
macrophages elicited by C1q-covered late apoptotic debris (67).

NECROTIC “FIND-ME” SIGNALS AND
THEIR RECEPTORS

In contrast to apoptotic “find-me” signals, necrotic cells may
not have enough time or energy to process their own signals.
A myriad of molecules has been shown to be released by dying
cells, many of which fall into the category of damage-associated
molecular patterns (DAMPs): bona fide cellular components that
are normally concealed inside the cell, but that become exposed
to the extracellular environment upon cell damage or death.
Some well-established DAMPs include mitochondria-derived
N-formylated peptides, DNA and RNA, the nuclear protein
HMGB1, histones, actin, calcium-binding S100 proteins, heat-
shock proteins (HSPs), ATP and uric acid, among many others
(68, 69). Necrotic cells may also release pre-stored inflammatory
mediators, such as IL-1α, IL-33, and chemokines, which may
directly or indirectly recruit phagocytes to the vicinity. In
addition, the occurrence of necrosis and the consequent exposure
of “unusual” molecules promptly activates the proteolytic
cascades of complement and coagulation. The activation of
complement on necrotic debris can itself generate several “find-
me” signals, including the powerful chemoattractant C5a. Below,
we discuss established necrotic “find-me” signals. After reading
this section the reader may agree that neutrophils and monocytes
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respond to a “complex pool of exogenous signals, of which no
single cue is absolutely required for migration” (70).

Formyl-Peptides
Formyl-peptides (or N-formylated peptides) are classically
generated in the course of bacterial protein synthesis, which
is initiated by N-formyl-methionine residues. Mitochondria,
sharing the bacterial ancestry, initiate protein synthesis similarly,
thus creating a formylated protein reservoir inside the eukaryotic
cell. Upon necrosis, the release and cleavage of mitochondrial
proteins produces formyl-peptides, causing massive leukocyte
activation and recruitment in a variety of necrotic states (71, 72).

Formyl-peptides are powerful chemoattractants. The most
used analog, fMLP, activates neutrophils in the picomolar
range (73, 74). It is considered an end-target chemoattractant,
which bypasses the signaling of intermediate chemotactic
molecules such as CXCL8 (IL-8) and LTB4 (75). Formyl-peptides
bind FPR1, FPR2, and FPR3 receptors, although the classical
chemotactic effects are mainly mediated by FPR1 activation.
Whereas, FPR1 and FPR2 are expressed in several cell types,
especially neutrophils and macrophages, FPR3 is much less
understood (76). Upon ligand binding, FPR1, induces multiple
intracellular signaling pathways: Gα activation signals via the
MAPK pathway and the small GTPases CDC42 and RAC to
stimulate migration and phagocytosis; Gβγ transduce signals
via PI3Kγ and PLCβ to stimulate superoxide production and
transcriptional regulation in phagocytes (77).

The role of formyl-peptides as a necrotic “find-me” signal is
firmly established in the literature. In a seminal paper where
McDonald et al. (71) used focal thermal injury of the liver, FPR1
activation of neutrophils was the key step required for migration
into the necrotic area. The neutrophils initially traveled to the
liver stimulated by an intravascular gradient of CXC chemokines.
Upon reaching the edge of the necrotic site, the neutrophils
switched to a FPR1-dependent migration mode, presumably
chasing formyl-peptides emanating from the mitochondria of
necrotic cells. Furthermore, the dependence of neutrophils
on formyl-peptide gradients for recruitment to necrotic sites
was confirmed in clinically-relevant disease models of drug-
induced liver injury (78) and liver ischemia-reperfusion (79).
Interestingly, when the necrotic injury is extensive enough, as in
severe trauma (crushes, fractures, burns) or acute liver failure, the
formyl peptides can be released in such a significant amount that
they cause systemic inflammation, affecting lung function inmice
and humans (72, 78).

Though most studies have focused on neutrophil chemotaxis
and activation by formyl-peptides, macrophages also express
FPR1 and are sensitive to formyl-peptide stimulation. Human
PBMCs produce significant amounts of CXCL8 in the presence
of mitochondrial extracts containing formyl-peptides (80).
Interestingly, the response is stronger when formyl-peptides are
applied in conjunction with other stimulatory DAMPs such
as HMGB1. This suggests that formyl-peptides may indirectly
recruit phagocytes to necrotic sites by inducing the production of
additional chemoattractants (CXCL8) by resident macrophages.
Formyl-peptides induce monocyte recruitment in vitro (81,

82), however, the relevance of FRP1 signaling in monocyte
recruitment to necrotic sites in vivo remains elusive.

Importantly, questions about formyl-peptides as necrotic
“find-me” signals remain. For example, the mechanism by
which peptides are retained in necrotic areas in order to
signal to leukocytes is unclear. Chemokines interact with
glycosaminoglycans in order to form a gradient in the vasculature
(83), but no mechanism has been proposed for the gradient
formation of formyl-peptides. One should also consider that
necrotic formyl-peptides may be very heterogeneous, varying
in peptide length from a few to several amino acids. This may
also impact the localization and agonistic activity of the formyl-
peptides in vivo.

Chemokines
Chemokines are chemotactic cytokines that dictate the
localization and mobilization of leukocyte populations in
the organism (84). Chemokines are produced in a constitutive
fashion and/or in response to stimuli such as those that activate
pattern-recognition receptor (85). In the context of necrosis,
chemokines play the roles of primary and secondary “find-me”
signals, meaning that they can originate from both the dying
cells and from healthy bystander cells. However, the multitude
and promiscuity of chemokines and chemokine receptors adds a
significant layer of complexity to the study of these mediators in
vivo (84). CC and CXC chemokines can be released essentially
by any cell type, including resident leukocytes (85). For instance,
the chemokine CXCL1 can be produced by endothelial cells,
pericytes, hepatocytes, macrophages, and fibroblasts (86–89). In
addition, leukocytes can produce chemokines in an autocrine
fashion, such as when neutrophils secrete CXCL2 during
transendothelial migration (87) and Kupffer cells that release
CCL2 during necrotic injury (90). Thus, there is an abundance of
chemokine sources that can direct the migration of phagocytes
to necrotic sites, reflecting the importance of chemokines as
necrotic “find-me” signals.

The chemokines CXCL1 and CXCL2 (in mice) or CXCL8
(in humans), among others, have been known as powerful
chemoattractants for neutrophils for decades (91). They activate
CXCR1 and CXCR2 receptors to induce neutrophil polarization
and migration, an effect strongly dependent on PI3Kγ signaling
(92). CXC chemokines were shown to be the first signal guiding
neutrophils to sites of focal necrosis in the liver (71) and suffice to
induce neutrophil accumulation in zebrafish in vivo (93, 94). In
contrast to formyl-peptides, the CXC chemokines were actually
shown to form an intravascular gradient in the vicinity of necrotic
areas, which is required for proper neutrophil recruitment to
the injury site. These chemokine gradients are built on heparan
sulfate proteoglycans expressed by the endothelium; they are
long lasting and extend hundreds of microns from the site of
injury (71, 94). This promotes the recruitment of patrolling
neutrophils from the vasculature far from the original insult
area. Moreover, CXCL1/CXCL2 signaling via CXCR1/CXCR2
receptors act in conjunction with formyl-peptides in the case
of widespread hepatic necrosis (e.g., drug-induced liver injury),
in which both pathways are required for maximal neutrophil
recruitment to the interior of necrotic areas (95). Despite being
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considered redundant, evidence shows that CXCL1 and CXCL2
act on neutrophils sequentially to promote successful diapedesis
and recruitment to inflamed muscle (87). Conversely, there is
mounting evidence that neutrophils expressing lower levels of
CXCR1 may transmigrate in reverse into the bloodstream (96).
This has been corroborated by observations of neutrophil reverse
migration (e.g., away from the site of necrosis and back into the
bloodstream) in both zebrafish (97) and mice (98). This suggests
that the role of CXC chemokines as “find-me” signals may be
much more complex than anticipated, regulating initially the
recruitment of neutrophils to necrotic areas and subsequently
directing their egress back to the vasculature.

CC chemokines such as CCL2, CCL3, and CCL5 are notably
active in cells of the monocytic lineage. Even though they
are present in a variety of parenchymal and non-parenchymal
cells, the CC chemokine receptors, especially CCR2, are highly
expressed in monocytes and macrophages (85). Using transgenic
mice, Dal-Secco et al. identified two different monocyte subsets
that are recruited to necrotic sites: a classical pro-inflammatory
CCR2hi-CX3CR1low population and an alternative patrolling
CCR2low-CX3CR1hi population (99). They showed that CCR2hi
monocytes migrate to the edge of the necrotic area after the
initial wave of neutrophil recruitment, and this was dependent
on CCR2 expression. The monocytes persisted in the necrotic
area for days, where they transitioned in situ into a CX3CR1hi
population. The reprogramming of the monocyte population was
dependent at least partially on the cytokines IL-4 and IL-10, and
was required for the timely resolution of the necrotic injury.
Interestingly, CCL2 and CCL3 were found to be significantly
increased in the necrotic liver of humans, correlating to a
CCR2-dependent recruitment of CD68-positive monocytes to
the necrotic areas (100).

Of note, chemokine receptors other than the ones mentioned
above may control different leukocyte populations, playing
roles that are still unclear in the context of necrotic debris.
CXCR3 and its ligands CXCL9 and CXCL10 seem to control
the population of NK and NKT cells, such that deficiency of
CXCR3 causes a significant reduction of both cell populations in
necrotic liver (101). Similarly, the chemokine CXCL12, known
to control neutrophil egress from the bone marrow via CXCR4
(102) may control later events in tissue necrosis, such as re-
vascularization (103).

Leukotriene B4 (LTB4)
LTB4 is a mediator derived from membrane phospholipids. The
activation of cytosolic phospholipase 2 (cPLA2) initiates the
cleavage of phospholipids to generate arachidonic acid. This
fatty acid is used as substrate by the lipoxygenase 5-LOX to
produce LTB4, among other intermediate eicosanoids. LTB4 is
a powerful chemoattractant to neutrophils. It activates the BLT1/
LTB4R1 receptor, which, coupled to Gαi, stimulates neutrophil
migration via Src-family kinases and Rho GTPases (104). Since
LTB4 synthesis demands several enzymatic steps, it is unlikely
to be released by necrotic cells as a DAMP. Instead, it can
be produced in a matter of minutes by leukocytes such as
neutrophils, macrophages, and mast cells upon demand (104).
However, it has been recently demonstrated that the enzymatic

machinery for LTB4 synthesis can be localized to multivesicular
bodies and secreted as exosomes in vitro (105). In this way, LTB4
may also be produced independently of the cell and travel in
the aqueous environment concealed in exosomes, increasing its
diffusion range and persistence in the tissue.

LTB4 is considered an “intermediate target” chemoattractant.
Nevertheless, it is required for the rapid migration and
concentration of neutrophils in focal necrotic sites, a
phenomenon dubbed “neutrophil swarming” (106). LTB4
is produced by neutrophils recruited to necrotic foci in order
to further amplify neutrophil recruitment to the area, forming
the typical densely-populated clusters that are associated to
neutrophil swarming. Neutrophil-derived LTB4 can act as
a signal relay molecule (107) that is necessary for cell-cell
communication to produce optimal aggregation of neutrophils
at the injury site (106). Moreover, LTB4 was shown to act
in conjunction with other necrotic “find-me” signals such as
formyl-peptides and chemokines (106, 107), supporting the idea
that there is no absolute necrotic “find-me” signal, but instead, a
synergistic pool of signals that vary in chemotactic potency and
range to mediate an integrated response.

The importance of LTB4 as a necrotic “find-me” signal has
been confirmed in several models other than laser-induced focal
skin injury. In spinal cord injury, LTB4-BLT1 signaling was
required for the recruitment of neutrophils to the injury site
(108). Interestingly, BLT1 knockout or pharmacological blockage
of the receptor reduced neutrophil recruitment significantly, but
did not alter monocyte recruitment to the injured spinal cord
area. In the K/BxN model of inflammatory arthritis, inhibition
of 5-LO led to a significant reduction of neutrophil migration
to arthritic joints and amelioration of the disease (109). There,
LTB4 was also produced locally by infiltrating neutrophils.
In drug-induced liver injury, deficiency of 5-LO prevented
mortality associated with acetaminophen overdose, which was
correlated with reduced recruitment of phagocytes to the necrotic
liver (110).

It is clear that LTB4 is an essential necrotic “find-me” signal to
neutrophils. Yet, many questions pertaining its production and
release still remain. For example, the transport of lipid mediators
across membranes is still poorly defined, as is its mode of release
from the nanoscopic exosomes. It would be interesting to assess
whether exosomes are able to bind to the vasculature, perhaps
stimulating leukocyte recruitment at long range. In addition,
based on the role of LTB4 in the skin, one could wonder if it is
especially relevant in tissues with abundant extracellular matrix,
where it would be better retained and less prone to degradation.

Hydrogen Peroxide (H2O2)
H2O2 is a reactive oxygen species commonly generated in
organelles such as mitochondria and phagosomes (111). The
signaling capabilities of H2O2 are not limited to mammalian
cells: it also serves as a major chemotactic signal in other species,
such as zebrafish (Danio rerio) andDrosophila. Niethammer et al.
showed formation of a H2O2 gradient minutes after wounding
zebrafish, which extended up to 200µm from the site of injury
(112). The H2O2 was created by the activity of the enzyme
Duox, a NADPH oxidase expressed in epithelial cells, and was
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necessary for rapid leukocyte recruitment to the injury site. In
Drosophila, hemocytes also respond to H2O2 emanating from the
wound (113). In this species, H2O2 was also derived from Duox
and inhibition of the enzyme by siRNA knockdown or using
diphenylene iodonium blocked the recruitment of hemocytes to
the wound. Interestingly, it was later shown that wounding of
tissues in zebrafish and flies causes a calcium wave across the
tissue, which precedes and is responsible for the activation of
Duox via its EF-handmotif, initiating the production of theH2O2

gradient (114).
Leukocytes must have a mechanism to sense this transient

H2O2 gradient emanating from the injured cells. The redox
sensor is seemingly the Src family kinase Lyn, which is
activated by wound-derived H2O2 and mediates recruitment
of neutrophils to injury sites in zebrafish (115). Oxidation of
cysteine C466 by H2O2 activates Lyn, which in turn contributes
to neutrophil migration toward the wound. Of interest, H2O2

is also chemotactic in murine (116) and human neutrophils
(115), and Lyn is expressed in all mammalian leukocytes, with
the exception of T cells (which nevertheless express related Src-
family kinases). Thus, the role of H2O2 as a necrotic “find-me”
signal spans several species and leukocyte types. Beyond the
direct effects that H2O2 has on phagocyte recruitment to injury
sites, it can also regulate the chemotactic responses to other “find-
me” signals, such as fMLP, LTB4, and CXCL8 (117). Indeed,
generation of reactive oxygen species by the NADPH oxidase at
the leading edge of neutrophils is important to oxidize and inhibit
the phosphoinositide phosphatase PTEN,maintaining high levels
of PI(3,4,5)P3 at the leading edge and supporting the directional
migration of neutrophils (118).

Purines
Nucleotides are among the earliest molecules released by
damaged and dying cells (119). Nucleotide sensing occurs via
P2Y and P2X receptor families, which are G protein-coupled
receptors and nucleotide-gated ion channels, respectively. These
receptors are numerous and vary in sensitivity to different
nucleotides (e.g., ATP, ADP, UTP), but the majority of the studies
have focused on the role of ATP and its degradation products.
ATP is very abundant in the cytoplasm, ranging from 3 to
10mM (120). When released actively or passively by cells, ATP
is rapidly hydrolyzed by ectonucleotidases into ADP, AMP, and
adenosine (119). Yet, despite its very short half-life outside the
cell, ATP nevertheless has pivotal effects in leukocyte activation
and migration.

Chen and collaborators demonstrated that neutrophils
exposed to a gradient of fMLP release ATP at the leading
edge of the cell, amplifying the chemotactic response to the
formyl-peptide. This effect was mediated by ATP signaling
via P2Y2 receptors and subsequently by activation of A3
receptors by adenosine derived from ATP hydrolysis (121). P2Y2
activation by ATP was also required for chemotaxis of human
neutrophils toward CXCL8 (122), but in this case adenosine
signaling did not play a role. Moreover, it was demonstrated
that macrophages utilize the same autocrine ATP amplification
loop to migrate toward C5a. Blockage of P2Y2 also impaired
macrophage chemotaxis in vitro and in vivo (123). Clearly,

purinergic signaling is involved in phagocyte migration to
several stimuli, but this is not sufficient to characterize it as a
chemotactic agent. Indeed, it was demonstrated that ATP itself
is not directly chemotactic to macrophages. Instead, it induces
lamellipodial extensions and chemokinesis (increased random
displacement) (124), without directing the migration. These
studies suggest an indirect effect of ATP, that though not acting
as a chemoattractant, acts in an autocrine capacity in phagocytes
to maximize the response to other chemoattractants, including
fMLP and chemokines.

ATP was initially implicated as a “find-me” signal of apoptotic
cells (16). The authors showed that ATP and UTP released
during apoptosis were required for monocyte migration toward
supernatant of apoptotic cells, in a P2Y2-dependent manner.
Also, the migration of monocytes toward apoptotic cells in vivo
was impaired in the absence of P2Y2. In necrotic injuries, the
role of purinergic signaling is even more interesting. Applying
focal necrotic injury to the liver, it was shown that ATP is
required for invasion of peritoneal macrophages into the necrotic
area (125). Curiously, the peritoneal macrophages, which can
be found floating in the peritoneal fluid, took this avascular
route to the necrotic site by recognizing ATP released from
the dead cells, which prompted the macrophages to arrest
at that site. The use of apyrase (to degrade ATP and ADP)
and P2X7 blockage reduced significantly the infiltration of
macrophages from the peritoneum to the injury site. In the
case of focal injury of the brain, the extension of microglial
processes to the area of injury was also found to be mediated
by ATP (126). The rapid convergence of microglial extensions
to the necrotic site took place without displacement of the
main cell body and was dependent on ATP and P2Y receptors.
Uderhardt and collaborators found a similar response of
peritoneal macrophages to a focal necrotic injury. Sessile resident
macrophages extended membrane processes toward dead cells
in order to cloak the debris from patrolling neutrophils,
thereby minimizing inflammation (127). The extension of the
macrophage processes could be blocked by apyrase or joint
inhibition of P2X and P2Y receptors, indicating an elevated
redundancy in purinergic signaling. In zebrafish, wounding
causes ATP release and P2Y receptor activation, which in
turn activates Duox to produce H2O2, recruiting phagocytes
to the injury site (128). In this species, the effects of the
nucleotide are not limited to phagocytes, as ATP is also
involved in rapid wound closure by stimulating epithelial cell
motility (129).

It is important to highlight the differences in the function of
P2Y and P2X receptors. As mentioned, P2Y receptors, especially
P2Y2, have been implicated in regulating the migration of
phagocytes to diverse necrotic “find-me” stimuli. P2Y receptors
are metabotropic, transducing signals via RhoA, Rac and PLCβ,
leading to cytoskeletal rearrangement and increased intracellular
calcium (130). P2X receptors, on the other hand, being ion
channels activated by nucleotides, signal in a fundamentally
different way. A classic example is the role of P2X7 in
inflammasome activation in macrophages. In this instance, P2X7
mediates K+ efflux from cells stimulated by ATP, a major step in
the activation of the inflammasome complex and caspase-1 that
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eventually culminates in the release of interleukin-1β (IL-1β). IL-
1β is able to prime the production of several other chemotactic
agents such as chemokines and lipid mediators, but like P2X7,
lacks intrinsic chemotactic activity.

Complement
The complement system comprises an evolutionary ancient set
of fluid-phase proteins and receptors, present in vertebrates and
invertebrates. It is at the core of the immune system andmediates
a cross-talk between innate and adaptive responses (131–134).
The complement cascade is activated by a myriad of self and
non-self molecules, which initiate the proteolytic cleavage of
complement proteins into fragments that deposit onto the target
or are released into the extracellular fluid to signal to neighboring
cells and leukocytes.

Necrotic debris can initiate complement activation through
all 3 pathways: classical, alternative and lectin (133). Exposure
of intracellular components such as DNA or mitochondria
activate complement directly (135, 136), and natural IgM and IgG
autoantibodies can bind necrotic debris to initiate complement
by the classical pathway (137). In addition, there are numerous
adaptors and pattern-recognition receptors that detect necrotic
debris and initiate the complement cascade by themselves,
including mannose-binding lectin (MBL), pentraxins, ficolins,
and histidine-rich glycoprotein (34). In the specific context of this
section, the production of complement C3a and C5a fragments
(anaphylatoxins) is central, since these stimulate chemotaxis of
leukocytes (138). Their respective receptors, C3aR and C5aR, that
are expressed primarily in myeloid cells, are G protein-coupled
receptors signaling via PI3K activation, MAPK activation and
intracellular calcium mobilization (139).

The activation of complement on dying or necrotic cells,
measured by the deposition of C3b/iC3b, has been demonstrated
in several tissues, including the liver (140–142), muscle (143,
144), brain (145, 146), joint (147, 148), and intestines (149,
150). The presence of complement deposited on damaged
tissues was already strong indication that C3a and C5a were
being generated, but subsequent studies focused on the exact
role of each fragment in disease. In muscle injury induced
by cardiotoxin, it was shown that complement is activated
via the alternative pathway (spontaneously), and that C3a-
C3aR signaling was required for monocyte migration to the
tissue (143). Deficiency in C3aR reduced the recruitment
of monocytes to the injured muscle significantly, although
neutrophil migration was unaffected. Moreover, C5aR was not
required for the migration of either monocytes or neutrophils
to the muscle, indicating specificity of C3a activity in this
setting. In liver injury by ischemia/reperfusion, neutrophil
migration requires complement activity. C5a is produced early
during injury and formation of the complement membrane
attack complex (MAC) plays an additional role in amplifying
neutrophil recruitment, likely via release of IL-1β and additional
DAMPs (140).

Complement inhibition in intestinal ischemia/reperfusion
injury, a severe model of intestinal damage, also minimizes
neutrophil recruitment and disease severity (149, 150).
Interestingly, whilst complement inhibition presumably

inhibited the generation of C3a and C5a in the injured intestine,
it also inhibited the production of another chemoattractant,
LTB4. This shows again a synergistic relationship between
different classes of “find-me” signals, acting simultaneously or
sequentially to guide leukocyte recruitment to necrotic debris.
In the joints, the synovium is a site of both synthesis and
deposition of complement (131). The alternative complement
pathway plays a major role in the pathogenesis of arthritis
from the initiation phase (when synoviocytes can be damaged
directly by complement) to the chronic inflammatory stage
(147, 148). Importantly, both C3aR and C5aR are required
for the recruitment of neutrophils and macrophages to the
damaged joint (148), showing yet again a degree of redundancy
in the role of anaphylatoxins in phagocyte recruitment to the
joint. Altogether, there is abundant evidence that complement
by-products are released during necrosis and that they play a role
in attracting phagocytes to injury sites.

NECROTIC “EAT-ME” SIGNALS AND THEIR
RECEPTORS

Apoptotic cells have to be cleared quickly and efficiently to
prevent secondary necrosis, which would lead to the release
of intracellular components and inflammation. Similarly, cells
dying from primary necrosis need to be removed efficiently,
as they could be a detrimental source of autoantigens and
may trigger excessive inflammation (Figure 2). In the case of
necrotic debris, the mechanism of recognition by professional
phagocytes is not fully understood. As the necrotic cell can
be disintegrated into small debris, it has been suggested that
engulfment of necrotic cells resembles macropinocytosis, in
which macrophages develop membrane ruffles which protrude
around the target material (151–153). As reviewed briefly above,
multiple receptors implicated in the clearance of apoptotic debris
have been described. By contrast, much less is known about the
receptors and ligands involved in the uptake of necrotic debris.
Remarkably, as the evidence emerges, it is becoming apparent
that some necrotic “eat-me” ligands overlap with the equivalent
apoptotic signals. For example, necrotic cells also expose PS,
although the mechanism underlying such exposure differs
drastically. In line with this, many of the molecules that bridge
PS for efferocytosis (complement, collectins and pentraxins) have
also been shown to bind necrotic cells. Nevertheless, there are
“eat-me” signals that apply uniquely to necrotic debris. For
instance, complement C1q deposition represents a hallmark
of necrotic debris, but it is absent on apoptotic debris (154).
Another distinguishing “eat-me” signal is annexin A1, which is
translocated to the plasmamembrane of necrotic cells to promote
phagocytic uptake (155). Below, we will summarize and discuss
necrotic “eat-me” signals, comparing and contrasting them to
apoptotic “eat-me” signals.

Complement
Opsonization of targets by complement components C1q, C3b,
and C4 alerts phagocytes bearing complement receptors such
as CR1, CR3, and CR4. Moreover, it is clear that a functioning
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FIGURE 2 | Apoptotic and necrotic “eat-me” signals, and their respective phagocytic receptors. (Left) As cells undergo apoptosis, they expose “eat-me” signals on

their surface. The best studied eat-me signals for apoptotic cells is phosphatidylserine (PS). PS can either be bound directly by macrophage receptors such as BAI1,

TIM 1/2/4, Stabilin-2, CD300, and TREM2. Alternatively, bridging molecules such as ProS, Gas6, MFG-E8, TSP1, and ICAM function to connect macrophage

receptors (MerTK/TAM, integrin avβ3/5, CD36, and CD14) to the apoptotic surface. (Right) Necrotic cells also expose “eat-me” signals on their surface to engage

professional phagocytes. Necrotic cells share some exposed “eat-me” signals, such as PS, with apoptotic cells, although the means of exposure likely differ. Other

“eat-me” signals are unique to necrotic cells, such as deposition of C1q, MBL (Mannose-binding lectin), C3b, and C4 as well as IgG/IgM opsonization, and the

subsequent involvement of integrin CD11b/CD18 and Fcγ receptors.

complement system is required for efficient handling of dying
and dead cells. Recent evidence points to a role of complement
deposition in the clearance of late apoptotic/necrotic cells, rather
than early apoptotic cells (154). In fact, most apoptotic cells
are cleared while at an early apoptosis stage, when complement
plays a minor role. It is only when apoptotic cells persist
into late apoptotic/secondary necrotic stages that complement
opsonization enhances recognition by phagocytes (156).

Phagocytosis of late apoptotic/necrotic Jurkat cells is impaired
in individuals with deficiencies in C1q, C2, C3, or C4. In
contrast, the MBL and alternative pathway did not participate
in phagocytosis of debris, suggesting that opsonization by C3
fragments and the involvement of the classical pathway are
mostly responsible for the clearance of necrotic cells (157).
Similarly, complement components C3 and C4 bind immediately
to necrotic peripheral blood lymphocytes. In contrast, irradiated
lymphocytes undergoing apoptosis only displayed a weak
binding of complement components for up to 2 days. At day 3,
when secondary necrosis had ensued, C1q, C3b, and C4 all bound
with higher affinity (154). Also, the clearance of necrotic cells is
increased in presence of serum, and adding C1q to C1q-depleted
serummarkedly increased uptake of primary necrotic cells (158).
Another study investigated complement deposition on viable,
early apoptotic and late apoptotic (secondary necrotic) Jurkat

cells (159). In this study, binding of C3 and C4 to early apoptotic
cells was similar to that of viable cells, while secondary necrotic
cells had a substantial binding of C3, C4, and at some extent
C1q. The necrotic cells also bound IgM, and depletion of plasma
IgM abolished most of the complement binding, supporting a
role for the classical pathway of complement activation on late
apoptotic/necrotic cell clearance (159).

Macrophages were shown to engulf apoptotic cells after C1q
and MBL opsonization. Calreticulin released from dying cells
bound macrophages via CD91/LDL receptor related protein 1,
and was shown to recognize the collagen tails of C1q and MBL
attached to the surface of the dying cell (31). Besides IgM,
C1q binding to necrotic cells can be initiated via molecules of
the acute-phase protein pentraxin family. The classical (short)
pentraxins—including serum amyloid protein (SAP) and C-
reactive protein (CRP)—are produced in the liver in response to
IL-6 and play a role as opsonins by binding to cellular debris
and late apoptotic cells (160, 161). The long pentraxin PTX3
is produced by hematopoietic and stromal cells as a response
to a primary pro-inflammatory signal such as LPS, IL-1β, and
TNF-α. PTX3 has multiple functions including complement
activation on necrotic cells that results in cell clearance and
reduced tissue damage (162). However, PTX3 can also limit
excessive complement activation by promoting deposition of
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complement Factor H, a major inhibitor of the alternative
pathway of the complement system. Under normal conditions,
Factor H binds to self-surfaces, where it inactivates accidental
C3b deposition on healthy cells. By directing Factor H to the
surface of dying cells, PTX3 limits tissue damage while still
increasing phagocytic clearance (163). Moreover, both human
and mouse pentraxins recognize FcγRI and FcγRII, and binding
of pentraxins to cellular surfaces results in phagocyte activation
(164). In line with data suggesting complement deposition on
late apoptotic/necrotic cells, the collectin MBL was found to bind
to both late apoptotic and necrotic cells, but not early apoptotic
cells. MBL binding initiated C4 deposition onto the necrotic
cells and addition of C1q inhibited MBL opsonization of cells
(165). Taken together, these observations imply that complement
deposition and recognition function as a mechanism for the
clearance of necrotic cells and as a backup for clearance of late
apoptotic material undergoing secondary necrosis.

Phosphatidylserine
Although PS was long thought to be an exclusive marker of
apoptosis, evidence is gathering that exposure of PS is also
a hallmark of necrosis. In a study comparing internalization
of apoptotic and necrotic cells, macrophages were shown to
selectively engulf apoptotic and necrotic cells, while leaving
living cells untouched. The engulfment of both apoptotic and
necrotic cells was PS-dependent, suggesting that externalization
of PS is a common trigger for the clearance of both types of
cell debris (152). Annexin A5 (or Annexin V), commonly used
as a marker of apoptosis due to its PS binding capacity, also
binds to necrotic cells, supporting the occurrence of PS exposure
during necrosis. Moreover, treatment with recombinant Annexin
V inhibited phagocytosis of both apoptotic and necrotic cells by
mouse macrophages, suggesting that PS exposure is required in
both instances (152).

The difference in morphology between apoptotic and
necrotic cells suggests that the mechanisms of PS exposure
differ. PS exposure was observed in necrotic neurons of the
nematode Caenorhabditis elegans, where it was facilitated by
the homolog of the calcium-dependent scramblase TMEM16F
and by CED-7, a member of the ATP-binding cassette (ABC)
transporter family. However, rupture of the necrotic cells into
particles can also readily account for exposure of PS without
invoking specific externalization mechanisms. Zargarian et al.
demonstrated that necroptotic cells also expose PS as an “eat-
me” signal as phosphorylated MLKL translocates to the plasma
membrane. The externalization of PS by necroptotic cells
induced recognition and phagocytosis; they stained positive for
Annexin A5 and exposed PS prior to overt permeabilization.
The dying cells also released PS-exposing extracellular vesicles,
thereby alerting neighboring cells of the impending cell
death (166).

Although both apoptotic and necrotic cells expose PS, the
efficiency of their clearance differs drastically: the engulfment of
necrotic cells is considerably less effective, both quantitatively
and kinetically. The mechanisms underlying this difference
remain obscure, but down-regulation of “don’t eat-me” signals
in apoptotic, but not necrotic cells is a distinct possibility.

Importantly, clearance of necrotic cells is carried out not only
by phagocytes like macrophages, but also by non-professional
phagocytes. In comparison to macrophages, engulfment by non-
professional cells is slow and engulfment events were only
detectable after 2.5 h. But, by taking up neighboring necrotic cells,
non-professional cells remove a portion of the billions of cells
that die daily during normal turnover (167).

Annexin A1
Annexin A1 was first believed to translocate to the surface
of apoptotic cells, where it was proposed to function as a
bridging protein that facilitates their phagocytic uptake (168,
169). However, this interpretation was recently revised, as
it was demonstrated that annexin A1 rarely translocates in
apoptotic cells; instead, its translocation to the cell surface is
rather a hallmark of secondary necrosis (155). As proposed
earlier for apoptosis, in necrotic cells annexin A1 is believed to
function by bridging PS to the phagocyte surface to promote
uptake. This interaction also dampens the secretion of pro-
inflammatory cytokines by the macrophages that ingested the
necrotic cell. This implies that clearance of necrotic debris
can have anti-inflammatory effects. After translocation, annexin
A1 is proteolytically cleaved at the cell surface by ADAM10,
which generates a small peptide with chemotactic activity toward
monocytes, thus generating a monocytic “find-me” signal for the
necrotic debris (170).

Histidine-Rich Glycoprotein (HRG)
HRG is an abundant 75 kDa plasma glycoprotein that has a
multi-domain structure known to interact with many ligands
including Zn2+, heparin, heparan sulfate and plasminogen. HRG
has been shown to function as an adaptor molecule that tethers
plasminogen to glycosaminoglycan-bearing surfaces to regulate
plasminogen activation (171). HRG was also demonstrated to
distinguish between apoptotic cells and necrotic cells by binding
to cytoplasmic ligands exposed by necrotic cells. This interaction,
mediated by the amino-terminal domain of HRG, results in an
opsonic function, encouraging the phagocytosis of the necrotic
cell. In contrast, HRG does not opsonize apoptotic cells and
thus, may play an important physiological role in the selective
clearance of necrotic debris (34).

CD14
Initially, it was thought that the macrophage plasmalemmal
glycoprotein CD14 was specific for recognition and clearance of
apoptotic cells, as treatment with an anti-CD14 antibody reduced
the phagocyte interaction with apoptotic but not necrotic cells
(172). CD14 also recognizes LPS and it was initially thought its
interaction with apoptotic cells occurs also via its LPS-binding
domain, but this view was subsequently revised (173). Indeed,
unlike LPS, binding of macrophages to apoptotic cells does
not generate pro-inflammatory signaling. Later studies found a
significant role for CD14 also in the clearance of necrotic cells.
(158). ICAM-3 on the surface of dying cells may serve as the
ligand recognized by CD14 (174).
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Scavenger Receptors
Scavenger receptors were originally discovered by their capacity
to recognize and remove modified lipoproteins. They are
structurally diverse and recognize a variety of ligands, including
DAMPs, oxidized PS and phosphatidylcholine (175). As PS
is exposed on necrotic cells, this raises the possibility that
PS-binding scavenger receptors may function as receptors for
necrotic cells. SR-B1 and CD36 are class B scavenger receptors,
and were the first cell surface receptors appreciated to recognize
anionic phospholipids such as PS (26). CD36 for instance,
which is highly expressed in macrophages, is involved in the
phagocytosis of necrotic lymphocytes in vitro (158). Antibody
blockage of CD36 caused a significant, yet partial, reduction
in the macrophages ability to bind and internalize necrotic
cells. Macrophages, dendritic cells and endothelial cells also
express the scavenger receptor class F (SCARF1), that can
recognize and engulf apoptotic cells via C1q (176). Given the
earlier findings that C1q binds to late apoptotic/secondary
necrotic cells, SCARF1 can potentially operate as a receptor
for necrotic cells. In fact, loss of SCARF1 impaired uptake of
dying cells, and SCARF1-deficient mice had accumulation of
dying cells in tissues, leading to generation of autoantibodies
to DNA-containing antigens and development of lupus-like
disease (176).

PHAGOCYTE-INDEPENDENT CLEARANCE
OF NECROTIC DEBRIS

During pregnancy, a large number of multinucleated fragments
of dying syncytiothrophoblasts are shed daily into the maternal
circulation. These trophoblasts, shed by the placenta, are
rapidly cleared from the circulation by endothelial cells during
normal pregnancy in order to prevent clogging of the maternal
pulmonary circulation. Indeed, failure to clear such fragments
often results in pre-eclampsia. Endothelial cells can internalize
dying trophoblasts regardless of whether they are apoptotic or
necrotic. However, while engulfment of apoptotic trophoblasts
does not induce endothelial cell activation, phagocytosis of
necrotic trophoblasts causes endothelial activation and ICAM-I
expression (177).

The organism also counts with acellular routes for degradation
of necrotic debris. It has been shown that serum components
such as the nuclease DNAse I, the complement protein
C1q and the protease plasmin act in synergy to degrade
chromatin even in the absence of leukocytes. For instance,
the binding of C1q to necrotic chromatin strongly enhances
the activity of DNAse I, even though C1q lacks nuclease
activity (178). It was postulated that C1q was able to enhance
the access of DNAse I to necrotic DNA, improving the
degradation of debris. Moreover, plasminogen was shown
to penetrate necrotic cells, where it was activated into
plasmin (179). The proteolytic activity of plasmin caused
the cleavage of histone H1, which in turn facilitated the
cleavage of DNA by DNAse I. The synergy between these
enzymes is required for the fast and effective breakdown of
necrotic chromatin.

“DON’T EAT-ME” SIGNALS

Effective engulfment of dead cells entails not only the exposure of
“eat-me” determinants, but requires a reduction of surface “don’t
eat-me” signals. Eukaryotic cells display CD47, a surface protein
that is recognized by SIRPα, expressed by myeloid cells (44).
CD47 functions by directly binding SIRPα on macrophages and
monocytes, signaling inhibition of phagocytosis that is partly due
to impaired myosin assembly at the phagocytic synapse (180).

Aging and the subsequent elimination of erythrocytes
by efferocytosis correlates with a decrease in their surface
CD47 (181). The importance of CD47 as a “don’t eat-me”
signal was demonstrated by Kojima and colleagues, who
showed that dysregulation of CD47 signaling contributes to
the development or atherosclerotic plaques. In this setting,
instead of downregulating CD47, dying cells upregulated it,
making apoptotic cells resistant to phagocytic clearance and
thereby driving plaque formation. Interestingly, administration
of a blocking CD47 antibody reversed this effect, stimulating
efferocytosis and reducing atherosclerosis, making CD47 a
potential drug target for the clinic (182).

CD47 can alter also the phagocytosis of necrotic debris. One
explanation why necrotic debris are engulfed at a slower rate
than apoptotic cells is that they have, comparatively, an increased
surface expression of CD47. Moreover, CD47 was found to be
clustered on necrotic cells, and these clusters stimulated RhoA-
pMLC signaling in macrophages that promoted “nibbling” of
the necrotic cells, rather than whole-cell internalization (183).
This process—commonly known as trogocytosis—is shared
by amoeba, lymphocytes, neutrophils and macrophages, and
polarization of CD47might explain the preferential nibbling over
whole-cell engulfment.

CD46 is a widely expressed complement regulatory protein.
It inhibits complement by binding C3b and C4b and acting as
a cofactor for their proteolytic cleavage (184). CD46 is a “don’t
eat-me” signal that is lost during apoptosis and necrosis. In both
types of dying cells, CD46 is clustered and shed in microparticles
alongside nucleic acids and PS (185). The loss of CD46 correlates
with an increase in deposition of C1q and C3b on the dying cells.
However, only necrotic cells proceed to form membrane attack
complexes, because they also undergo significant reduction in
the expression of the complement regulators CD55 and CD59.
This study indicated that the dying cells specifically lose “don’t
eat-me” signals that block complement activation in healthy
cells, allowing them to be opsonized by complement and
engulfed (185).

Several “don’t eat-me” signals that have been implicated
in apoptosis have not yet been investigated in the context
of necrosis yet. CD31 (also known as platelet-endothelial cell
adhesion molecule 1, PECAM-1) is an important “don’t eat-me”
signal, acting as a repulsive signal through homotypic CD31-
CD31 interactions between cells. The ligation of CD31 on viable
leukocytes promotes cell detachment. Apoptotic cells that lack
CD31 bind tightly to leukocytes and are subsequently engulfed
(186). Plasminogen activator inhibitor (PAI)-1, is a member of
the serpin family of serine protease inhibitors. It appears to
co-localize with calreticulin on viable neutrophils, where it is
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thought to impair signaling to macrophages. This impairment is
lost during neutrophil apoptosis, suggesting that PAI-1 is a “don’t
eat-me” signal (187). Also, the urokinase receptor (uPAR), which
normally plays a role in fibrinolysis, cell migration and adhesion,
was shown to modulate efferocytosis (188). Macrophages from
uPAR-deficient mice demonstrated enhanced ability to engulf
viable neutrophils in vitro and in vivo. In line with this, expression
of uPAR was reduced in apoptotic neutrophils compared to
viable neutrophils, suggesting that uPAR is also a bona fide
“don’t eat-me” signal that is downregulated in apoptotic cells
(189). Proteinase 3 (PR3) is a neutrophil granular protein
that is co-externalized with PS during neutrophil apoptosis
(190). PR3 impairs phagocytosis of apoptotic neutrophils by
macrophages via inhibition of calreticulin function, a powerful
“eat-me” signal. Another regulator is CD24, a heavily glycosylated
GPI-anchored surface protein. It interacts with Siglec-10 in
leukocytes to dampen inflammation in a variety of diseases (191).
Recently, CD24 was described as a major “don’t eat-me” signal
exploited by tumor cells to evade the immune response (192).
CD24 is overexpressed by a variety of tumor cells, inhibiting
phagocytosis by neighboring tumor-associated macrophages,
which express high levels of Siglec-10. Blockage of CD24 by a
monoclonal antibody reduced tumor growth in vivo, suggesting
that inhibition of this “don’t eat-me” signal suffices to enable
phagocytosis of live cancer cells.

IMMUNE CONSEQUENCES OF DEFECTIVE
DEBRIS CLEARANCE

The generation of necrotic debris is a severe occurrence; yet, it is
immediately met by a barrage of fluid-phase proteins, mediators
and cells, which cause it to be essentially uneventful. Tissue
inflammation resolves in a timely manner and immune responses
against self-develop very rarely. However, if the organism
fails to contain or clear the necrotic debris appropriately,
tissue inflammation is prolonged and autoimmunity can
ensue. Mutations that impair the ability of leukocytes to
recognize or eliminate debris have been connected to defects
in tissue regeneration and to diseases such as systemic lupus
erythematosus (SLE). Below, we highlight a series of studies
describing the catastrophic consequences of tampering with the
response to necrotic cell death.

Inhibition of phagocyte recruitment or function at necrotic
sites results in a clear defect in recovery from injury. Depletion of
neutrophils prevents the clearance of debris from necrotic sites,
leading to an impairment of regeneration and revascularization
of the focal injury (98). Moreover, inhibition of monocyte
recruitment to necrotic foci, whether due to CCR2 deficiency or
to interference with their transition into CX3CR1+ cells delays
the regeneration of the necrotic injury (99). Similar observations
were made in complement-deficient models, reinforcing the
notion that the removal of necrotic debris by phagocytes is
paramount to tissue repair.

As described above, complement contributes “find-me” and
“eat-me” signals to necrotic cells, and several studies have shown
its major role in tissue regeneration (132, 140, 193–195). In

the long term, defects in the complement cascade have been
strongly associated to the development of SLE. Although a
multi-factorial disease, SLE and related lupus-like syndromes are
clearly connected to mutations or deficiency in C1q, C2, C3,
and C4 complement factors (196). In addition, the disease has
been associated to decreased expression of complement receptors
CR1 and CR2 (133). Defects in complement activation, such
as in the classical pathway, also yield organisms susceptible
to autoimmunity, as is the case of IgM-deficient mice (197).
Interestingly, a mutation of CD11b (ITGAM) has been correlated
to the development of SLE as well (198). Phagocytes express
high levels of CD11b, which is used as both complement
receptor (CR3) and as adhesion molecule (Mac-1). Whether
the polymorphism affects the phagocytic or adhesive functions
of CD11b is still unclear, but the findings nevertheless provide
further indication that impairment of the ability of phagocytes
to clear debris causes immediate and long-term disadvantages to
the host.

The exposure of extracellular DNA is a key factor in
SLE development. The accumulation of DNA in tissues and
bloodstream has to be rapidly counteracted by the activity
of DNAses to minimize inflammation and autoimmunity.
An abundant source of DNAse activity in the organism
is serum, which contains two major nucleases, DNAse I
and DNAse IL3 (199, 200). The two enzymes have non-
redundant roles in DNA/chromatin degradation; DNAse I
acts preferentially against internucleosomal “naked” DNA,
whereas DNAse IL3 cleaves chromatin (protein-bound DNA)
with high activity (201). DNAse I deficiency causes mice
to develop anti-nuclear antibodies and SLE (200). DNAse
IL3 deficiency is also sufficient to cause autoimmunity and
SLE in mice (202, 203). In humans, mutations of DNAse I
(204), DNAse IL3 (205) and DNAse III (TREX1) (206) have
already been implicated in the incidence of SLE or lupus-like
disease. Global deficiency in DNAse II, an isoform found in
lysosomes, is embryonically lethal due to the accumulation of
undigested DNA from red cell nuclei inside macrophages, which
mount a type I interferon response that leads to embryonic
demise (207). Interestingly, the lethality can be abrogated by
simultaneously knocking out STING, a central adaptor of
cytoplasmic DNA immunity (208), suggesting that leakage of
undegraded debris from the phagosome to the cytosol fuels the
deleterious response. The deficiency in DNAse II also correlates
with worsening of heart failure (209) and development of
polyarthritis in mice (210). It is clear that removal of necrotic
debris is a multi-layered response: the phagocytes must be
able not only to reach and ingest the debris, but also to
effectively degrade it in order to avoid overt inflammation
and autoimmunity.

Like DNA, actin is a very abundant component of cells and
a DAMP conserved across species (211, 212). Necrotic cells
expose actin after the plasma membrane integrity is breached,
and the released actin is recognized by Clec9A (DNGR-1), a
C-type lectin receptor expressed primarily in dendritic cells
(211, 213). Clec9A specifically recognizes filamentous (F)-actin,
which—remarkably—persists in necrotic cells even after their
death. F-actin is able to bind Clec9A even when forming
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complexes with actin-binding proteins such as spectrin, α-
actinin, and myosin II (213, 214). Importantly, the recognition
of actin-rich necrotic debris by dendritic cell Clec9A prompted
the cross presentation of self-antigens to CD8T cells, a
mechanism that explains how autoimmunity is initiated by
the exposure of necrotic debris. Exposure of F-actin can be
further regulated, as it is depolymerized by circulating DNase
I. Full F-actin depolymerization requires ATP, which could
be present as necrotic cells release ATP (described in section
Purines) (215).

CONCLUDING REMARKS

Consideration of necrotic cells as an important, ongoing
contributor to overall cell death provides a different vantage point
of how debris are sensed and cleared and their contribution
to inflammation and autoimmunity. Clearly, inhibiting the
host’s ability to eliminate and process necrotic debris has
harmful effects. Strikingly, therapies for acute inflammation are
largely confined to the use of anti-inflammatory drugs. In the
short term, this approach reduces tissue inflammation and the
associated symptoms (swelling, pain), but it comes at the cost
of delayed resolution of injury. Prevention of inflammation

retards debris clearance, re-growth of parenchymal cells and
tissue regeneration. Thus, an alternative approach would be
to stimulate debris clearance in addition to minimizing the
uncomfortable symptoms. This can be accomplished by the
application of pro-resolvingmediators such as resolvins, lipoxins,
hydrogen sulfide, IL-10, and annexin A1, which can stimulate
clearance mechanisms without the damaging effects of excessive
inflammation (216, 217).
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Heat shock proteins (HSP) are a highly abundant class of molecular chaperones that can

be released into the extracellular milieu and influence the immune response. HSP release

can occur when cells undergo necrosis and exude their contents. However, HSPs are

also secreted from intact cells, either in free form or in lipid vesicles including exosomes

to react with receptors on adjacent cells. Target cells are able recognize extracellular

HSPs through cell surface receptors. These include scavenger receptors (SR) such as

class E member oxidized low-density lipoprotein receptor-1 (LOX-1, aka OLR1, Clec8A,

and SR-E1) and scavenger receptor class F member 1 (SCARF1, aka SREC1). Both

receptors are expressed by dendritic cells (DC) and macrophages. These receptors can

bind HSPs coupled to client binding proteins and deliver the chaperone substrate to

the pathways of antigen processing in cells. SR are able to facilitate the delivery of

client proteins to the proteasome, leading to antigen processing and presentation, and

stimulation of adaptive immunity. HSPs may also may be involved in innate immunity

through activation of inflammatory signaling pathways in a mechanism dependent on SR

and toll-like receptor 4 (TLR4) on DC and macrophages. We will discuss the pathways

by which HSPs can facilitate uptake of protein antigens and the receptors that regulate

the ensuing immune response.

Keywords: heat shock proteins, scavenger receptor, immunity, macrophage, dendritic

INTRODUCTION

Heat shock proteins (HSPs) are the major components of a primordial cellular responses to
proteotoxic stress, and the resultant production of many HSP species is collectively described
as the heat shock response (HSR) (1) (Table 1). Classic activators of the HSR such as heat
shock, lead to rapid denaturation of intracellular proteins resulting in dysfunctional intermediate
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TABLE 1 | Mammalian heat shock proteins.

HSP

type

Intracellular role Extracellular role Receptor References

Hsp27 Prevents protein Inflammatory TLRs (2)

Aggregation

Hsp60 Chaperonin inflammatory? TLR4? (3)

Hsp70 Initial stages of Inflammatory? SR, CD91 (4–7)

Protein folding immune TLR4? (8–10)

Hsp90 Folding to the Antigen chaperone SR, CD91 (11–13)

Functional state Cell motility (14, 15)

Hsp110 Chaperone Antigen chaperone SR (16, 17)

conformational states that are prone to aggregation. Cell survival
necessitates an almost immediate and abundant induction
of the HSPs that halt the aggregation cascade and permit
refolding of cellular proteins and restoration of normal protein
function (18). Beyond protein refolding, HSPs also function to
facilitate trafficking of their client substrates between subcellular
compartments and mediate protein-protein interactions. They
are hence referred to as molecular chaperones (18, 19). The HSP
family contains a number of members that belong to different
protein families, but each has in common a role in stepwise
protein folding (Table 1) (2, 4, 5). However, in addition to their
various intracellular functions, HSPs have also been detected in
the extracellular spaces and circulation. This phenomenon may
be the result of the death of stressed cells and release of the
highly amplified HSP cohort (6). Although HSPs lack the leader
sequences required for the classical secretion pathways (20) they
may be released from viable cells by non-canonical secretion
pathways (21). Alternative mechanisms of HSP secretion have
been described. These pathways include the secretion of free
Hsp70 by a pathway similar to that utilized for non-canonical
secretion of interleukin-1 beta, involving secretory lysosomes,
or alternatively HSPs may be packaged in lipid vesicles known
as exosomes and released to the extracellular milieu of tumors
and normal tissues (7, 21–23). The extracellular HSPs may
exert a number of effects on adjacent cells after their secretion,
such as activation of antigen-presenting cells (APCs), including
monocytes, dendritic cells (DC) and macrophages, as well as
causing increased mobility and metastasis in target cells as
has been observed in wound healing and cancer scenarios
(3, 24–26). Hsp70 and Hsp110 have been utilized effectively
in anticancer vaccines, in which they function as carriers of
antigenic peptides that can be efficiently taken up and processed
by APCs and presented to T lymphocytes (8, 9, 16, 17, 27–
29). Understanding how HSPs are bound by acceptor cells and
taken up is therefore important in determining the properties and
function of extracellular HSPs.

AN OVERVIEW OF HSP RECEPTORS

Most of the biological effects of extracellular HSPs identified
to date have involved their binding to surface receptors on
target cells prior to their internalization (10, 30). However, the
entire spectrum of dedicated high affinity receptors for the HSPs
have not been identified in studies carried out so far. The first

protein to be identified as an HSP receptor was CD91/alpha2
macroglobulin receptor, which is a low density lipoprotein (LDL)
binding protein currently known to be a highly versatile receptor
for over 30 other ligands (31). This multi-subunit protein appears
to be a common receptor for most of the HSPs involved
in immune responses. There was some controversy originally
regarding the significance of this finding, as CD91 was suggested
to be the receptor involved in antigen cross-presentation by DC
in response to HSP vaccines, although most types of DC do not
appear to express endogenous CD91 (11, 30). However, CD91
has since been shown to be a receptor for Hsp90α in wound
healing and cancer metastasis scenarios and signaling pathways
downstream from the receptor appear to mediate effects of the
chaperone on cell motility, a key property in wound healing and
metastasis (32). The class E and F scavenger receptors LOX-1
and SCARF1 are the major receptors for HSP-peptide complexes,
mediating antigen uptake and processing (10–12, 33) (Figure 1).
The scavenger receptors, although not structurally related, share
common functions including the binding, endocytosis and thus
detoxification of oxidized LDL by vascular endothelial cells (33,
34). They are key players in the removal of oxidized LDL from
the circulation and protection from themorbidity associated with
atherosclerosis (35). Both LOX-1 and SREC1 are also expressed
on DC and macrophages and play key roles in antigen cross-
presentation mediated by HSP- peptide complexes (HSP-PC)
(11, 36). In this review, we will describe the roles of these SR
members in mediating extracellular HSPs-triggered responses,
focusing mainly in their interaction with the Hsp90α. A really
puzzling feature of this system is that most SR members are not
structurally related but bind to a common ligand, while HSPs of
different chaperone families often bind to the same scavenger
receptor species, although also lacking structural relationship
(12, 33) (Figure 1, Table 1).

It is not clear which property of HSPs prompts their binding to
scavenger receptors. However, in addition to binding to oxidized
LDL, members of the scavenger receptor family can bind to
proteins with other modifications (acetylated LDL) as well as to
polyanionic ligands such as poly-IC, findings which may cast
some light on interactions with HSPs (11, 33). HSPs have been
shown to be phosphorylated and acetylated, modifications that
would increase their net negative charge (37, 38). Future studies
would be required to clarify this issue. When LDL particles are
oxidized, they assume a net negative charge and additionally
phospholipid moieties are added to the LDL particle protein
apolipoprotein B100 (39–41). These phospholipid residues fit
into a hydrophobic tunnel formed by surface LOX-1 dimers
(42). HSP binding to scavenger receptors may therefore involve
the ability of the chaperones to recognize hydrophobic patches
on client proteins as well as the charge interactions mentioned
above (5).

HSP RECEPTORS AND DETOXIFICATION

OF HSP-PEPTIDE COMPLEXES AND DEAD

CELLS

The primary role of the scavenger receptor family seems to
be removal of oxidized LDL from the circulation (35). It is
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FIGURE 1 | The domain structures of HSP binding and related cell surface receptors.

also possible that this role may be recapitulated in interactions
with HSP-PC, a complex which may flood the local circulation
after tissue trauma, a result of the large scale cell death by
necrosis that may ensue. Such complexes may be able to prime
immune and inflammatory responses in damaged tissues and it
may be incumbent on mononuclear phagocytes to rapidly bind
and endocytose such structures using the scavenger receptors
(43, 44). It is known that LOX-1 and SCARF1 can also bind cell
corpses and remove them from the extracellular spaces (45, 46).
Uptake of HSP-PC may thus be part of a general detoxification
process exerted by scavenger receptors, operating in damaged
tissues. The scavenger receptors could also be involved in uptake
and removal of HSP-containing exosomes given their abilities
to bind lipid structures such as oxidized LDL and cell corpses
(46). SCARF1 is a paralog of the cell corpse receptor CED-
1 expressed in C. elegans (35, 47). In addition, more closely
related paralogs of CED-1 have been unearthed and could be
putative HSP receptors. These include Drosophila gene draper
and the mammalian MEGF10, MEGF11, and MEGF12 (48–
51). Each of these proteins contains multiple EGF-like motifs
in the extracellular domain that may be recognition sequences
for apoptotic bodies and play roles in dead cell clearance
(Figure 1). Another protein with multiple EGF-like motifs in
its extracellular domain that can bind to HSPs and apoptotic
cell corpses is the Class H scavenger receptor FEEL-1/stabilin-1
(30, 33, 52) (Figure 1). Its role in responses to extracellular HSPs
is currently unclear.

PATHWAYS OF SCAVENGER

RECEPTOR-MEDIATED ENDOCYTOSIS

The properties of the SR as endocytic receptors with a wide range
of selectivity makes them effective intermediaries in sampling
the local extracellular milieu of APC for potentially antigenic
molecules. Thus, both LOX-1 and SCARF1 are expressed in
DC and other mononuclear phagocytes (11, 36). There are a
number of pathways by which extracellular molecules can enter
cells. These include endocytosis, a process which involves the
association of molecules with cell surface invaginations, uptake
in an actin-dependent manner, and then fusion of the engulfed
vesicles with intracellular endosomes. The major canonical
pathway is clathrin-mediated endocytosis, a process that involves
pit-like structures inserted into the plasma membrane which are
lined with clathrin, a trimeric protein that stabilizes the pits
(53). Molecules, sometimes associated with receptors, are then
engulfed in clathrin coated vesicles that are found in the majority
of cells. There is a second, less prevalent pathway, involving the
protein caveolin found in structures known as caveolae, 50 nm
invaginations that can also mediate endocytosis of extracellular
molecules (54). However, both LOX-1 and SCARF1 have been
shown to take up their ligands in a clathrin and dynamin-
independent manner, utilizing a more unconventional endocytic
pathway (36, 55). The mechanisms involved in endocytosis
mediated through LOX-1 seem to be currently unclear although
more information has accumulated regarding SCARF1. Upon
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ligand binding SCARF1 is internalized by DC via the GPI-AP
(glycophosphatidylinositol-anchored proteins) enriched early
endosome (GEEC) pathway (Figure 2) (56, 57). This pathway
is mediated by uncoated tubular vesicular structures called
clathrin independent carriers (CLICs) that mature into the
early endocytic compartment (GEECs) (58, 59). The pathway
is specialized for uptake of GPI-AP such as the folate receptor.
Thus, uptake of Hsp90α- peptide complexes was not inhibited
by antagonists of clathrin- and caveolin-dependent endocytosis,
characteristic of the GEEC pathway (36). Endocytosis of Hsp90α-
peptide complexes was however inhibited by blocking the activity
of Rho GTPase CDC42, a protein shown to be involved in
actin polymerization and uptake of GPI-AP through the GEEC
pathway. SCARF1 became co-localized, after binding to Hsp90α-
peptide complexes, with CD59, a marker GPI-AP protein that
utilizes the GEEC pathway (36, 60). Proteins internalized through
the GEEC pathway, such as GPI-AP are frequently associated
within plasma membrane microdomains such as lipid rafts (61).
These are regions of the membrane enriched in cholesterol and
glycosphingolipids that are immiscible with the bulk membrane
and appear to diffuse freely through this membrane (62, 63).
SCARF1 is not a GPI-AP protein even though it has been
shown to enter the GEEC pathway. However, another protein
modification that may target transmembrane proteins such as
SCARF1 to lipid rafts is S-acylation of cysteine residues close
to the transmembrane domain with saturated palmitate residues
capable of dissolving in the cholesterol and glycosphingolipid
milieu that comprises the partitioned microdomains. SCARF1
contains five cysteine residues (Cys - 440, 441, 443, 444, 445)
adjacent to the transmembrane domain (amino acids 422-
442) (35, 62, 63). Thus, cysteine palmitoylation, and perhaps
interaction with other proteins in the lipid rafts, may potentially
recruit SCARF1 to this region. The nature and extent of partner
proteins associated with SCARF1 in the rafts is not clear, although
the receptor was shown to interact with the non-receptor tyrosine
kinase c-Src (36). Although c-Src is likewise not a member of the
GPI-AP family, it also associates with the rafts after S-acylation
(63). Inhibition of c-Src activity prevented the cross-presentation
of antigens associated with Hsp90α suggesting a key role for
signaling through this tyrosine kinase in the antigen presentation
pathways (36). Phosphorylation of key tyrosine residues within
internalization motifs in the intracellular domain regulates the
endocytosis of many receptors, although consensus sequences
for internalization such as the NPXY motif found in CED-1
are not observed in the SCARF1 sequence (Figure 1) (35). The
mechanism of regulation of SCARF1 endocytosis by c-Src thus
remains to be defined. LOX-1 function has also been linked to
its entry into lipid rafts and cholesterol lowering drugs inhibit its
function (64).

SCAVENGER RECEPTOR-MEDIATED

ACCESS TO ANTIGEN PROCESSING

PATHWAYS

Binding of antigenic polypeptides to HSPs in DC allows them to
enter the pathway of antigen cross presentation and be processed

FIGURE 2 | Extracellular Hsp90 -triggered sorting of SCARFI into lipid rafts

and the GEEC internalization pathway.

in the cytoplasm and presented onmajor histocompatibility Class
I (MHC I) proteins (13). Most of the antigens presented on
MHC Class I proteins are derived from proteolytic processing
of intracellular proteins via the classical Class I pathway (65).
However, DC are specialized to take up extracellular antigens
using receptors such as Fc, CLEC9A, DC-SIGN, DEC205 and
mannose receptor, and thus funnel them into the Class I pathway,
permitting surveillance of the extracellular spaces (66–70). HSPs
can also bind external antigens and funnel them into the Class
I pathway through LOX-1 and SCARF1 (36). For instance,
following transit through the GEEC compartment, Hsp90α-
peptide-SCARF1 complexes are translocated to early endosomes
(36). In the case of full-length chaperoned proteins such as intact
ovalbumin, antigen processing is carried out after its digestion
in the proteasome in the cytoplasm and then antigenic peptides
are taken up into MHC class I molecules by TAP (transporter
associated with antigen processing) in the ER (36). This latter
process clearly requires the chaperoned protein to escape the
confines of the early endosome and enter the cytoplasm in
order to be taken up by the proteasome. Hsp90α is known to
facilitate this step as well as to maintain the client protein intact
until it reaches the proteasome (71). Hsp90α-peptide complexes
internalized in association with SCARF1 can also be processed
within the endosome and antigens loaded onto MHC class II
molecules prior to recycling to the plasma membrane (14). This
is an essential step in efficient activation of T cell immunity and
the activation of CD4+ T helper cells. Normally uptake of soluble
antigens into the Class I and Class II pathways involves separate
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FIGURE 3 | HSP-induced cell signaling and inflammation.

receptors (13). This scavenger receptor can therefore facilitate
antigen processing by APC through the two major antigen
presentation pathways and appears to play an integral role in the
functioning of HSP based immunity (13). LOX-1 also participates
in processing of HSP bound tumor antigens and approximately
50% of ovalbumin (sample antigen) cross-presentation appeared
to be mediated through this receptor (36). Although HSP-PC
binding to SCARF1 can facilitate antigen presentation through
the MHC class I and class I pathways it is not clear whether this
interaction can induce co-receptor induction in APC- a crucial
step in adaptive immunity. For instance, creation of efficient
anticancer vaccines employing large HSP family members has
employed fusion of the HSPs to prokaryotic danger signals to
boost inflammatory signaling and co-receptor induction (9).
Interestingly, SCARF1 expression and Hsp70 vaccine anti-tumor
activity is dependent on TLR2 and TLR4 function suggesting
upregulation in inflammatory conditions (28).

LIPID RAFTS AND CELL SIGNALING

AFTER HSP BINDING TO CELL SURFACE

RECEPTORS

In addition to the import of tumor antigens by DC, HSPs
may carry out key cell signaling roles within the lipid rafts
of mononuclear phagocytes. The association of proteins with

lipid rafts may permit them to concentrate at foci within the
plasma membrane. This property depends on the ability of the
rafts to diffuse within the bulk membrane and thus potentially
bring together cooperating signaling molecules (62, 63, 72). As
mentioned above, an example of this process is the association
of SCARF1 with c-Src after Hsp90α binding, an interaction that
may promote endocytosis and phagocytosis through activation
of the kinase, recruitment of Cdc42 and association with the actin
cytoskeleton (36) (Figure 3). SCARF1 entry into c-Src containing
lipid rafts was also required for inflammatory cytokine release
in mouse macrophages (73). This process involved association
of SCARF1 with the pro-inflammatory Toll Like Receptor 4
(TLR4) after exposure to bacterial lipopolysaccharides (15).
The association with SCARF1 in lipid rafts led to downstream
signaling through TLR4, activation of the c-jun kinase, p38
MAP kinase and NF-kB signaling pathways and upregulation
of interleukin 6 synthesis (73) (Figure 3). These inflammatory
signaling processes required cholesterol, actin polymerization
and CDC42 activity. SCARF1 and LOX-1 may also be able
to recruit other signaling molecules and exposure to outer
membrane protein A (OmpA) from Klebsiella pneumoniae led
to recruitment of TLR2 and cytokine synthesis by the scavenger
receptors (74). SCARF1 also cooperates with TLR2 in recognition
of hepatitis virus non-structural protein by DC (75). In a similar
vein, SCARF1 was shown to associate with TLR3 after exposure
of macrophages to double stranded RNA and stimulate signaling
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through the NF-kB, MAP kinase and the IRF3 pathways (76).
SCARF1 and LOX-1 may therefore play key roles in associating
with cell signaling molecules and creating activating foci through
the concentration of lipid rafts after binding eukaryotic or
prokaryotic ligands (73, 76–78).

SCARF1, LOX-1, AND INFLAMMATION

While it is clear that SCARF1 and LOX-1 can mediate immunity
by binding HSP-associated antigens and promoting antigen
cross-presentation, the effects of HSPs on inflammation are less
clear (79). Discrepancies in the field were originally ascribed
to the use by some investigators of purified HSPs associated
with bacterial PAMPs: indeed, HSP and endotoxins undergo
complex interactions that mediate inflammatory responses
(80). However, Hsp70—TLR4 association and subsequent
inflammatory signaling is regularly observed in vivo and under
conditions in which endotoxin contamination of the chaperones
seems unlikely [reviewed in (81)]. Nonetheless, in the case of
purified Hsp90α, it was shown that while both this chaperone
and LPS could bind to SCARF1 and lead the receptor to enter a
lipid raft compartment, only exposure to LPS led to significant
levels of pro-inflammatory signaling through this mechanism;
Hsp90α alone, although entering the lipid raft compartment did
not trigger inflammatory signaling (73). In addition, it has been
shown that some prokaryotic HSP paralogs tend to be anti-
inflammatory in contrast to the mammalian isoforms (82). The
answer to this conundrum appears to be at least partially that
another key class of HSP receptors is expressed on mononuclear
phagocytes—the sialic acid-binding immunoglobulin-type lectins
(Siglecs) (83, 84). The Siglec family of receptors bind to self-
sialic acid residues either in cis or in trans and this interaction
leads to suppression of inflammatory responses in mononuclear
phagocytes (83). Upon binding to the antigen, the intracellular
regions of the Siglecs become activated by phosphorylation
of immunosuppressive ITIM (immunoreceptor tyrosine-based
inhibition motif) domains that associate with phosphatases Shp-
1 and Shp-2, leading to immune suppression (85). Hsp70 has
been shown to bind to Siglecs after tissue damage suggesting a
mechanisms for the immunosuppressive roles of the chaperone
(86). A further complication to this scenario is that human cells
can express a receptor pair SIGLEC-5 and SIGLEC-14 that can
contain similar ligand binding domains and either ITIM or ITAM
(immunoreceptor tyrosine-based activation motif) sequences
and thus, dependent on context, are either immunosuppressive
(SIGLEC-5) or immunostimulatory (SIGLEC-14) (87). Clearly
further studies are essential to clarify the nature of the signaling
complexes on mononuclear phagocytes that determine response
to HSPs in terms of both endocytosis and inflammatory
cell signaling.

CONCLUSIONS

(a) The scavenger receptors LOX-1 and SCARF1 mediate
binding and endocytosis of HSPs such as Hsp70, Hsp90, and
Hsp110. The HSPs are taken up by a clathrin-independent
mechanism involving the GEEC pathway. At least in the

case of SCARF1, endocytosis requires the activity of the
c-Src kinase which can bind to the receptor in lipid
raft microdomains.

(b) Uptake by scavenger receptors may be a component of
the detoxification pathways, with the effect of removing
inflammatory and immune-stimulatory HSP-peptide
complexes, particularly in the context of tissue injury. This
process may also be beneficial in the activities of molecular
chaperone-based vaccines in which the HSPs enhance
antigen uptake, integrity and cross-presentation to CD8+
T lymphocytes.

(c) The scavenger receptors localize to lipid raft microdomains
on the mononuclear phagocyte cell surface after HSP
binding. This process may facilitate endocytosis through the
GEEC pathway by bringing the SR in close proximity to
c-Src and CDC42. In addition, concentration of scavenger
receptors in lipid rafts with TLR4 and other regulatory
proteins may trigger inflammatory signaling and cytokine
synthesis after HSP binding.

Three HSP binding receptors SCARF1/SREC-I, FEEL-1, and
LOX-1 are shown as well as related proteins. Locations of atypical
EGF-like domains are indicated in—CED-1, hSCARF1, hFEEL-
I/Stabilin-1 andMEGF10. Each share EGF-like consensus repeats
in the extracellular domains. Tyrosine-based sorting signals are
known to interact with the phospho-tyrosine domain of clathrin
adaptors (NPXY for CED-1, FXNPXY and YXXØ for hMEGF10)
are shown in the figure. SCARF1 does not contain these motifs
and is not internalized through clathrin-mediated endocytosis.
FEEL-1 is expressed mainly in intracellular compartments. A
dileucine based (DXXLL for hFEEL-1) sorting signal is present
in the cytosolic tails of hFEEL-1 and can also be found in
mannose 6-phosphate receptors that mediate sorting between
trans-Golgi network (TGN) and endosomes. LOX-1, although
sharing many properties with SCARF1, including HSP binding
and internalization, does not contain EGF-like motifs in its
extracellular domain extracellular domain and belongs to the
C-type lectin family.

Under resting conditions, SCARF1 is shown in the bulk
membrane domain containing a range of surface proteins which
are either transmembrane proteins such as SCARF1, GPI-AP
proteins or proteins anchored to the inside of the membrane
such as c-Src. Upon Hsp90α binding, SCARF1 becomes localized
into lipid raft domains and co-localized with c-Src. Within 5min
of ligand binding, Hsp90α–SCARF1 complexes enter the GEEC
compartment and are internalized (36). We also show proteins
that remain in the bulk membrane and are not internalized
through the GEEC pathway.

We show ligand (HSP) binding by SCARF1 leading to its
recruitment to lipid raft microdomains in the plasma membrane.
SCARF1 then coordinates interaction of c-Src, CDC42 and TLR4
and signaling through the NF-kB and MAP kinase pathways
upstream of inflammatory cytokine expression.
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Macrophages are professional phagocytes that are uniquely situated between the

innate and adaptive arms of immunity with a high capacity for phagocytosis and

proinflammatory cytokine production as well as antigen presentation. Phagocytosis

is a critical process to eliminate microbes, apoptotic cells and other foreign

particles and is accelerated by host-generated opsonins, such as antibodies and

complement. Early phagocytosis studies established the paradigm that FcγR-mediated

phagocytosis was more proinflammatory than Complement Receptor (CR)-mediated

uptake in macrophages. Using qPCR, cytokine antibody arrays and ELISA, we

revisited this research question in primary macrophages. Using qPCR we determined

that CR-mediated phagocytosis increases levels of TNF-α, IL-1β, IL-6, and MMP-9,

compared to FcγR-mediated phagocytosis and control unstimulated cells. We confirmed

these findings at the protein level using cytokine antibody arrays and ELISAs. We

next investigated the mechanism behind upregulated cytokine production during

CR-mediated phagocytosis. IκBα protein levels were reduced after phagocytosis of

both IgG- and C3bi-sRBCs indicating proteolytic degradation and implicating NF-κB

activation. Inhibition of NF-κB activation impacted IL-6 production during phagocytosis

in macrophages. Due to the roles of calpain in IκBα and integrin degradation, we

hypothesized that CR-mediated phagocytosis may utilize calpain for proinflammatory

mediator enhancement. Using qPCR and cytokine antibody array analysis, we saw

significant reduction of cytokine expression during CR-mediated phagocytosis following

the addition of the calpain inhibitor, PD150606, compared to untreated cells. These

results suggest that the upregulation of proinflammatory mediators during CR-mediated

phagocytosis is potentially dependent upon calpain-mediated activation of NF-κB.

Keywords: macrophage, phagocytosis, cytokine, inflammation, complement, Fc receptor

INTRODUCTION

Macrophages, meaning large phagocytes, are a heterogeneous population of cells that are important
for maintaining homeostasis, surveillance and killing of pathogens through phagocytosis (1).
Phagocytosis is an evolutionarily conserved defensemechanism bywhichmacrophages capture and
kill pathogens and remove apoptotic cells into specialized intracellular compartments. Phagocytosis
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is mediated by scavenger receptors, Fcγ Receptors (FcγRs),
and Complement Receptors (CRs) (2). FcγRs recognize
immunoglobin G (IgG) that flags target pathogens and mediates
their recognition by immune cells (3, 4). In mice, the classes
of Fcγ receptors includes the activating receptors FcγRI,
FcγRIII, and FcγIV and the inhibitory FcγRIIB receptor
(5). The intracellular domains of Fcγ receptors contain the
immunoreceptor tyrosine-based activation motif (ITAM) that
activates downstream signaling cascades (6, 7). The ligation of
IgG-opsonized particles to FcγRs leads to receptor crosslinking
which activates Src tyrosine kinase resulting in tyrosine
phosphorylation of the ITAM motif (8). ITAM phosphorylation
is important for the recruitment and activation of Syk (9).
Activation of Src and Syk facilitates the activation of downstream
Cdc42, RhoA, and Rac1 that control F-actin dynamics and
contribute to the formation of pseudopods around the particle
(2, 10, 11). Alternatively, the inhibitory FcγRIIB activates
signaling cascades by recruiting inositol polyphosphate-5-
phosphatase SHIP1 to counteract signaling from activating
FcγRs (7).

The other major opsonin is the complement fragment, C3bi,
which binds to targets directly or through IgM, and is recognized
by CRs on phagocytes (2). The complement system contains 30
soluble and membrane bound proteins and the opsonin, C3bi,
is generated from a series of biochemical reactions (12). The
complement system is activated by pattern recognition receptors
that have evolved to recognize antibodies, mannan-binding
lectin, ficolins, C-reactive protein, C1q, and IgM (13). There
are three pathways by which target molecules are opsonized by
C3bi; the classical pathway, the lectin pathway and the alternative
pathway. Each pathway leads to the formation of C3b/C3bi
despite the differences in the initiation of the biochemical
cascade. The classical pathway is activated upon the binding
of C1q directly to pathogen surface or to immune complexes
(12). The lectin pathway is activated by the recognition of
pathogen molecular patterns by lectin receptors. Lastly, the
alternative pathway is activated by the direct reaction of the
C3 molecule with carbohydrate, lipid, and/or protein motifs
found on the pathogen surface (14). Ultimately, each pathway
generates the C3 convertase, C4bC2a for the lectin pathway, or
C3bBb, for the alternative pathway. The C3 convertase leads to
the production of C3bi, an opsonin (15). Receptors for the C3b
protein fragments include CR1 and CRIg. While receptors for
C3bi include CR2, CR3 (also known as Mac-1, CD11b/CD18, or
αmβ2), and CR4 which belong to the β2 integrin family (14). CR3
requires an inside-out activation signal to effectively bind and
internalize C3bi-coated particles (16). CR-mediated phagocytosis
does not rely on Syk like FcγR-mediated phagocytosis but does
require RhoA (17, 18). Unlike FcγR-mediated phagocytosis that
involves pseudopods, CR-mediated phagocytosis leads to the
formation of membrane ruffles that capture C3bi-opsonized
target particles (19).

At the macroscopic level, inflammation is characterized
by the presence of redness, swelling, heat, pain, and loss
of tissue function (20). At the cellular level, inflammation
is orchestrated with the help of histamines, cytokines,
chemokines, and prostaglandins that are secreted by immune

cells. A long-standing belief in the scientific community
is that phagocytosis mediated by FcγRs is more potent at
inducing inflammation than CR-mediated phagocytosis in
macrophages. This is based on early studies in primary
murine macrophages, a FcγR knockout mouse model
and human monocyte-derived macrophages. The original
murine macrophage study investigated whether phagocytosis
induced production of arachidonic acid, a potent inflammatory
mediator of vascular permeability (21). They concluded that
phagocytosis via Fc receptors, but not the CR receptors, induces
arachidonic acid production in murine resident peritoneal
macrophages (21). Examination of human monocyte-derived
macrophages revealed significant upregulation of arachidonic
acid and H2O2 after uptake of IgG-opsonized, but not C3bi-
opsonized particles (22). Together these studies established
the paradigm that phagocytosis of IgG-opsonized targets
was proinflammatory, while C3bi-opsonized targets were
non-stimulatory to macrophages.

Our lab was interested in understanding how and why
phagocytosis, an effector response, would enhance inflammation.
We assessed levels of inflammatory cytokines produced by
murine macrophages challenged with either IgG-opsonized or
C3bi-opsonized particles. Interestingly, we observed significantly
more proinflammatory cytokine production, at the mRNA
and protein level, after CR-mediated phagocytosis vs. FcγR-
mediated phagocytosis. To examine the mechanism behind
proinflammatory cytokine production during phagocytosis,
we examined signaling within the AP-1 and NF-κB gene
expression pathways after particle engulfment. We show that
CR-mediated phagocytosis activates NF-κB and provide evidence
for a role for calpain in mediating proinflammatory cytokine
production in macrophages. Together these studies address the
current paradigm in the field and provide mechanistic insight
into proinflammatory cytokine production in macrophages
during phagocytosis.

MATERIALS AND METHODS

Reagents and Antibodies
Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine
serum (FBS) and fetal calf serum (FCS) were obtained from
Wisent Inc. (Saint-Jean-Baptiste, QC). Phosphate buffered
saline (PBS) was purchased from ThermoFisher Scientific Inc.
(Waltham, MA). Murine macrophage-colony stimulating factor
(M-CSF) and granulocyte macrophage-colony simulating factor
(GM-CSF) were purchased from PeproTech Inc. (Rocky Hill,
NJ). Piceatannol was from Calbiochem Novabiochem Corp. (San
Diego, CA).

Sheep red blood cells (sRBCs) (10% suspension) were
purchased from MP Biomedicals LLC (Irvine, CA). 3.87µm
polystyrene divinylbenzene beads (LBs) were purchased from
Bangs Laboratories Inc. (Fishers, IN). Rabbit polyclonal anti-
IκBα, rabbit polyclonal anti-NF-κB, rabbit polyclonal anti-
p44/42 MAPK, rabbit polyclonal anti-phospho-p44/p42 MAPK
antibodies, and protease/phosphatase cocktail inhibitor were
all purchased from Cell Signaling Technology (Danvers, MA).
Horseradish peroxidase (HRP)-conjugated secondary mouse and
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rabbit antibodies, AffiniPure donkey polyclonal anti-rabbit and
donkey anti-human cyanine CyTM 5 and AffiniPure donkey
polyclonal anti-rabbit cyanine CyTM 3 secondary antibodies
were purchased from Jackson Immunoresearch Laboratories Inc.
(West Grove, PA). Alexa Fluor R© rhodamine phalloidin was
purchased from Thermo Fisher Scientific. Complement 5 (C5)-
deficient human serum, Phorbol 12-Myristate 13-Acetate (PMA),
Lipopolysaccharide (LPS) from Salmonella enterica serovar
typhimurium, interferon-γ (IFN-γ), IgG and IgM opsonins, JSH-
23, and Bortezomib were all purchased from Sigma Aldrich
Canada Co. (Oakville, ON).

Primary Macrophage Isolation and Cell
Culture
Primary bone marrow-derived macrophages (BMDMs) were
obtained and differentiated from the femur and tibia of 4–8-
weeks old C57BL/6 female mice (Charles River Laboratories,
Saint Constant, QC). Isolated cells were washed with PBS
and resuspended in DMEM containing 10% heat-inactivated
FBS, supplemented with 100 IU/mL of penicillin, 100µg/mL
streptomycin, and 20 ng/mL of M-CSF. The cells were then
transferred to a 37◦C incubator at 5% CO2 for 24 h. After the
incubation, the floating cells were collected by centrifugation and
the adherent cells were discarded. The cells were resuspended in
DMEM containing 10% heat inactivated FBS, supplemented with
100 IU/mL of penicillin, 100µg/mL streptomycin and 100 ng/mL
of M-CSF, plated onto T75 flasks and incubated at 37◦C with
5% CO2. The progenitor cells were then allowed to differentiate
into BMDMs for 5 days. Adherent cells were removed from
tissue culture flasks through gentle scraping. For experiments,
7.5 × 105 cells/well were plated into 6-well dishes or 2.5 × 105

cells/well were plated into 24-wells after which the BMDMs were
grown to 70–90% confluency for 1 day prior to phagocytosis
assays. Peritoneal macrophages were attained by lavage of the
peritoneal cavity with 5ml of ice cold 3% FCS in PBS. For each
experiment, peritoneal macrophages were extracted and pooled
from 2 mice. Cells were resuspended in DMEM containing 10%
heat inactivated FBS and 1.5 × 106 cells were plated into a 6-
well and allowed to adhere for 2 h. Cells were washed twice with
warmed PBS to remove non-adherent cells and serum starved for
1 h prior to PMA activation and phagocytosis. Animal studies
were conducted under protocols approved by the University of
Toronto Local Animal Care Committee.

Opsonization and Phagocytosis Assays
Sheep RBCs or 3.87µm LBs were used as target particles for
macrophages in phagocytosis assays. BMDMs were incubated
in serum-free DMEM at 37◦C at 5% CO2 for 1.5 h before the
phagocytosis assays. Prior to opsonization, 100 µL of sRBCs
(10% suspension) were washed with 500 µL of PBS and then
opsonized with 2 mg/mL of anti-sheep rabbit IgG or 0.06 mg/mL
of anti-sheep rabbit IgM for 1 h on a rotator at RT. The LBs
were opsonized with 2 mg/mL of human IgG or human IgM.
After opsonization, IgM-opsonized sRBCs/LBs were washed with
500 µL of PBS supplemented with 0.5mM CaCl2 and 0.5mM
MgCl2. C5-deficient human serum (50µL) was then added to the
sRBCs/LBs and incubated in a water bath at 37◦C for 30min. The

C3bi/IgM-opsonized sRBCs/LBs were then washed twice with
500 µL of supplemented PBS before being used in phagocytosis
assays. Forty to Sixtymicroliter of opsonized particles were added
to macrophages to induce an average uptake of 1–2 particles
per macrophages. CR was activated in macrophages with either
100 nM PMA (19) in serum-free DMEM for 7min or 300 U/ml
GM-CSF for 1 h (23, 24) prior to the addition of C3bi-sRBCs/LBs.

mRNA Isolation and qPCR
For qPCR assays, macrophages were challenged with either C3bi-
or IgG-opsonized sRBCs or LBs for 3 h. Unbound sRBCs or
LBs were removed by washing with cold PBS 3 times. mRNA
was extracted using the Invitrogen PureLink RNA Mini Kit
(Thermo Fisher Scientific). A total of 1 µg of RNA was used
for cDNA synthesis (Invitrogen SuperScript III First-Strand
Synthesis SuperMix) after DNase treatment (Invitrogen DNase
I amplification Grade kit). The expression levels of TNF-α, IL-6,
IL-1β, and MMP-9 were measured using qPCR with the primers
listed in Table 1 below. The PCR reaction was carried out with
an initial denaturing step at a temperature of 95◦C for 3min,
followed by 40 cycles of 30 s at 95◦C (denature), 30 s at 55–
62◦C (annealing) and 30 s at 72◦C (extension). A melt curve
analysis was also conducted with each qPCR run to detect any
non-specific primer binding. The housekeeping genesActB or 18s
(Realtimeprimers.com; Elkins Park, PA) were used to normalize
the data. iQTM SYBRGreen (Bio-Rad;Mississauga, ON) was used
as the detection method and the qPCR reaction was carried out
with a DNA Engine Opticon System (Bio-Rad Laboratories Inc.,
Hercules, CA). The data was analyzed using themethod of double
delta Ct analysis (2−11Ct).

Cytokine Antibody Array and ELISAs
A mouse cytokine antibody array (Mouse Cytokine Array
C1) was purchased from Ray Biotech Inc. (Peachtree Corners,
GA). BMDMs were plated onto 6-well tissue culture plates
and incubated at 37◦C and 5% CO2 for 24 h. BMDMs were
challenged with IgG-sRBCs or C3bi-sRBCs for 16 h. Conditioned
medium was collected and the array performed according to
manufacturer’s instructions. The blots were imaged using a
Chemidoc system from Bio-Rad. Densitometric analysis was
performed with ImageJ software. The negative control spots

TABLE 1 | Murine specific qPCR primer sequences (5′-3′).

Primer Forward sequence Reverse sequence Annealing

temperature

(◦C)

TNF-α 5′-CCACATCTCCCT

CCAGAAAA-3′
5′-AGGGTCTGGGCCATA

GAACT-3′
58

IL-6 5′- GACAAAGCCAGA

GTCCTTCAGAGAG-3′
5′-CTAGGTTTGCCGAGT

GATCTC-3′
55

MMP-9 5′-CTTCTGGCGTGT

GAGTTTC

CA-3′

5′-ACTGCACGGTTGAA

GCAAAGA-3′
62

IL-1β 5′-AGTTGACGGACC

CCAAAAG-3′
5′-AGCTGGATGCTCTCA

TCAGG-3′
56
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on the array were selected as background and the positive
control spot containing only biotinylated antibody was used to
normalize the spot intensity (similar to a housekeeping protein).
Relative changes in cytokine expression levels were determined
by normalizing conditions to the control condition (BMDMs
treated with PMA only).

ELISA Duosets (R&D Systems, Inc., Minneapolis, MN)
were performed with the conditioned medium obtained
from BMDMs 24 h after the addition of opsonized particles.
For some experiments, unbound sRBCs were removed after
1 h of incubation with macrophages. For NF-κB inhibition
experiments, 100 nM of JSH-23 or 10 ng/ml Bortezomib
was added at the time of opsonized-particle addition. To
inhibit Syk kinase, 50µM of Piceatannol was added 30min
before phagocytosis. ELISAs were performed according to the
Manufacturer’s instructions to measure the protein expression of
TNF-α, IL-6, and IL-1β, along with the use of the DuoSet ELISA
ancillary reagent kit. Color intensity was measured utilizing
the Synergy Neo2 Multi-Mode Microplate Reader (BioTek
Instruments Inc., Winooski, VT). Data was analyzed through
a Dunnett’s multiple comparisons test to the control condition
without PMA.

Immunoblotting and Densitometry Analysis
BMDMs were challenged with either IgG- or C3bi-opsonized
sRBCs for 1.5 h. Total cell lysates were extracted by scraping cells
in RIPA buffer. The RIPA buffer was made by diluting 5X RIPA
buffer [containing Tris-HCl (250 nM pH 7.4), NaCl (750mM),
Triton X-100 (5%), Sodium Deoxycholate (2.5% w/v), SDS
(0.5%)] (Bio Basic Canada Inc., Markham, ON) with ddH2O,
and 1X protease/phosphatase inhibitors [containing aprotinin
(80µM), bestatin (4mM), E-64 (1.4mM), leupeptin (2mM),
pepstatin A (1.5mM) (Sigma)]. Protein concentrations were
determined at 750 nm using the DCTM Protein Assay kit (Bio-
Rad) according to Manufacturer’s instructions. Equal amounts of
protein were loaded and separated using 10% SDS-PAGE. After
transfer, membranes were blocked for 1 h with either 5% skim
milk or 5% BSA in Tris Buffered Saline containing Tween20.
Primary antibodies were diluted in blocking solutions at the
following dilutions: IκBα (1/1,000), p-ERK (1/1,000), or ERK1/2
(1/1,000) and incubated with membranes overnight at 4◦C. The
loading control was β-actin (1/5,000). Membranes were then
incubated with either rabbit or mouse HRP-coupled secondary
antibodies (1/1,000) for 1 h at RT. Blots were washed 3 times
for 5min and then visualized using SuperSignal West Pico
Chemiluminescent Substrate Kit (Thermo Fisher Scientific Inc.).
Densitometric analysis was conducted from three independent
experiments using ImageJ software. The blots used for analysis
were not saturated or over-exposed.

Immunostaining and Fluorescent Imaging
After 3 h of phagocytosis, macrophages were fixed with
4% paraformaldehyde in PBS for 20min. Any external LBs
were detected using a donkey anti-human AffiniPure CyTM5
secondary antibody against human IgG. The cells were
permeabilized using 0.1% Triton X-100 in PBS supplemented
with 100mM glycine for 20min. Cells were then blocked using

PBS containing 5% FBS for 1 h. Cells were incubated with NF-κB
(1:200) diluted in PBS with 1% FBS for 1 h followed by labeling
with a donkey anti-rabbit CyTM3 secondary antibody (1:1,000)
in PBS with 1% FBS for 1 h. For nuclear staining, cells were
washed twice with ddH2O and incubated for 10min with DAPI
(1:10,000). Cells were then mounted using Dako Fluorescent
Mounting Medium (Agilent Technologies Inc., Santa Clara,
CA). Cells were visualized using a 63x oil-immersion objective
using an inverted Zeiss epifluorescent microscope equipped with
AxioVision software (Carl Zeiss Canada Ltd., North York, ON).
Linear adjustments (contrast and brightness) to images acquired
by epifluorescence microscopy were conducted using Axiovision
software. Non-linear adjustments were not made. Figures were
prepared using Adobe Illustrator CS6 (San Jose, CA).

Calpain Inhibitor Assay
BMDMs were challenged with opsonized sRBCs as described
above for 1 h. Then 100µM of calpain inhibitor diluted in
DMSO (PD150606, Sigma Aldrich) was added to each condition
for 1 h. mRNA was isolated followed by qPCR for cytokine
expression analysis, as described above. For the cytokine
antibody array, phagocytosis was performed for 8 h, with 100µM
of PD150606 added 1 h after phagocytosis. After 8 h, the
conditioned supernatant was collected, and the cytokine array
assay performed as described earlier.

Data Analysis and Statistics
The statistical analysis was conducted on Prism from GraphPad
Software Inc. (La Jolla, CA). A two-way ANOVA was
used followed by Tukey’s or Dunnett’s test for multiple
comparisons. Differences with a confidence interval of 95%
between the specified conditions and the control (generally the
PMA-stimulated macrophages unless otherwise indicated) was
considered significant during analysis of the data. The data is
represented as the mean ± standard error of the mean (S.E.M.)
from three biological replicates.

RESULTS

CR-Mediated Phagocytosis Is
Proinflammatory
It is widely believed that FcγR- but not CR-mediated
phagocytosis is proinflammatory in macrophages (21, 22, 25).
However, the mechanism by which FcγR signals to transcription
factors (e.g., NF-κB) has not been elucidated. We revisited
the early biochemical studies of phagocytosis in murine
macrophages and used qPCR and sensitive, quantitative protein
assays to examine the levels of proinflammatory mediators.
To begin, we investigated mRNA levels of TNF-α, IL-1β, IL-6,
and MMP-9 in bone marrow-derived murine macrophages
(BMDMs) after phagocytosis of IgG- or C3bi-opsonized targets.
These inflammatory proteins play an important role in the
initiation, progression and resolution of inflammation and thus
were chosen as markers of inflammation (26). PMA was used to
activate the macrophage complement receptors, αMβ2, to enable
uptake of C3bi-opsonized sRBCs (27). However, PMA can signal
downstream to activate NF-κB (28) so we used BMDMs only
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stimulated with PMA as the negative control, to which the other
conditions were normalized to. Phagocytosis assays were carried
out in serum-free DMEM to avoid non-specific activation of
receptors by serum components (29). The qPCR data presented
in Figure 1A shows the transcript levels of TNF-α, IL-1β, IL-6,
and MMP-9 in control cells and BMDMs after ingesting either
IgG-sRBCs or C3bi-sRBCs for 3 h. PMA-stimulated BMDMs
challenged with C3bi-sRBCs produced significantly higher
levels of TNF-α, IL-1β, IL-6, and MMP-9 compared to control
BMDMs. Significant upregulation of these proinflammatory
genes was not observed in BMDMs that had internalized
IgG-sRBCs. Unexpectedly, resting BMDMs challenged with
C3bi-sRBCs produced similar levels of IL-6 compared to PMA-
stimulated BMDMs challenged with C3bi-sRBCs (Figure 1A).
Immunofluorescence inspection of these cells revealed a basal
level of phagocytosis of C3bi-sRBCs even in the absence of
PMA (data not shown). To ensure that the proinflammatory
effects we observed were not due to components on the sRBC
membranes, we repeated these experiments using opsonized
latex beads (LBs) (Figure 1B). Very similar results were observed
with opsonized LBs, compared to opsonized sRBCs (Figure 1A),
with ingestion of complement opsonized LBs invoking higher
expression of proinflammatory mediators vs. IgG-oponized latex
beads (Figure 1B). Classically activated BMDMs stimulated with
LPS/IFN-γ were used as a positive control (30) (Figure 1C).

CR-Mediated Phagocytosis Induces More
Cytokine Secretion Than FcγR-Mediated
Phagocytosis
We next extended and validated our mRNA data with
protein analysis of proinflammatory mediators. We first
employed a cytokine antibody array to analyze the levels
of secreted cytokines (Figure 2A). BMDMs were stimulated
with PMA prior to phagocytosis which was allowed to
proceed for 16 h to accumulate detectable cytokines within
the media. The conditioned media was collected and analyzed
using the cytokine array kit (Figure 2B). As a positive
control, PMA-stimulated BMDMs were also treated with
LPS/IFN-γ for 16 h (Figure 2B). Densitometric analysis of
three replicate experiments showed enhanced proinflammatory
mediator secretion following phagocytosis of C3bi-sRBCs with
significantly higher IL-6 secretion compared to control cells and
BMDMs that had ingested IgG-sRBCs (Figure 2C).

We extended the time period of phagocytosis to 24 h
and utilized ELISAs to examine select proinflammatory
cytokines. Significantly more TNF-α and IL-6 was secreted
from BMDMs after ingestion of C3bi-sRBCs, compared to
cells undergoing phagocytosis of IgG-sRBCs (Figure 3A). This
trend was consistent when the cytokine levels detected by
ELISA were normalized to the phagocytic index (number of
ingested particle/100 macrophages) for each opsonized target
(Figure 3B). To see if this was limited to bone marrow-derived
macrophages, we also investigated proinflammatory cytokine
production during phagocytosis in mouse peritoneal primary
macrophages. Conditioned media after 24 h of phagocytosis
in mouse peritoneal macrophages was subjected to ELISA

and both IL-6 and TNF-α levels were significantly increased
after ingestion of C3bi-sRBCs, compared to IgG-sRBCs, or
conditioned media from control peritoneal macrophages
(Figure 3C). Typically for our assays, we expose macrophages to
an excess of opsonized targets over the experimental time period.
To ensure that unbound sRBCs were not dying/ degrading
and inducing an inflammatory reaction in macrophages, we
washed off unbound sRBCs after 1 h of phagocytosis and
compared cytokine levels to macrophages exposed to a constant
supply of sRBCs. Levels of IL-6 and TNF-α in conditioned
media was not significantly different in the sRBC “wash-
out” experiments compared to cytokine levels in BMDMs
continuously exposed to opsonized targets (Figure 3D). We
were next interested in whether particle internalization itself
induced proinflammatory cytokine production or whether
particle internalization induced the inflammatory cascade.
We pretreated macrophages with 50µM Piceatannol for
30min to inhibit Syk kinase (31, 32) prior to phagocytosis
assays. We monitored phagocytosis and while there were less
ingested IgG-sRBCs and C3bi-sRBCs compared to untreated
controls, the results were not significant (Figure 3E). At 24 h
cytokine levels were measured and a significant reduction
in IL-6 was observed in Piceatannol-treated macrophages
ingesting C3bi-sRBCs, compared to untreated control cells
(Figure 3F). TNF-α levels were also reduced after CR-mediated
phagocytosis compared to untreated BMDMs ingesting C3bi-
sRBCs but these results were not significant (Figure 3G).
Based on the continued uptake of sRBCs in the presence of
Piceatannol (Figure 3E) the effects of particle uptake inhibition
on proinflammatory cytokine production remain inconclusive.
Finally, we wanted to assess whether PMA was amplifying
the proinflammatory cytokine expression in macrophages.
To address this we activated integrins in BMDMs using 300
U/ml GM-CSF (23, 24). We first confirmed that treatment of
macrophages with GM-CSF enhanced phagocytosis (Figure 3H).
We next performed phagocytosis for 24 h in GM-CSF-stimulated
macrophages and collected conditioned media to analyze by
ELISA. Both IL-6 (Figure 3I) and TNF-α (Figure 3J) were
significantly upregulated in BMDMs ingesting C3bi-sRBCs
after GM-CSF stimulation compared to macrophages not
undergoing phagocytosis.

p-ERK Levels Remain Constant, but IκBα

Protein Levels Are Reduced After Ingestion
of C3bi- or IgG-sRBCs in BMDMs
Gene upregulation of many proinflammatory mediators is
mediated by NF-κB or AP-1 (33). Previous work on CR3 has
shown that co-activation with dectin receptors induces TNF-
α and IL-6 secretion via the Syk-JNK-AP-1 signaling pathway
(34). Since ERK is an upstream element of AP-1 activation (35),
we first investigated the phosphorylation status of ERK1/2 using
immunoblotting. Since we observed gene expression changes
after 3 h of phagocytosis, we investigated earlier time points
for ERK activity. Phagocytosis was performed in BMDMs for
1.5 h and lysates collected for immunoblotting (Figure 4A).
Densitometry analysis of immunoblots from three biological
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FIGURE 1 | CR-mediated phagocytosis promotes higher expression of proinflammatory molecules compared to FcγR-mediated phagocytosis. (A) Expression levels

of mRNA of TNF-α, IL-1β, IL-6, and MMP-9 in control BMDMs or BMDMs after 3 h of ingestion of IgG-sRBCs or C3bi-sRBCs. (B) Fold change gene expression of

TNF-α, IL-1β, IL-6, and MMP-9 after 3 h of phagocytosis of opsonized latex beads (LBs) in BMDMs. (C) Gene expression changes in BMDMs stimulated with LPS

(Continued)
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FIGURE 1 | (50 ng/mL) and IFN-γ (100 ng/mL) for 3 h, compared to resting cells. Expression levels were normalized using β-actin and the fold change was calculated

relative to the control condition with PMA. A two-way ANOVA followed by Tukey’s multiple comparison was performed and significance of each condition was

evaluated relative to PMA-stimulated control cells (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). Data are plotted as the mean ± S.E.M. from three

independent experiments.

FIGURE 2 | CR-mediated phagocytosis leads to higher secreted proinflammatory proteins than FcγR-mediated phagocytosis. (A) Schematic of cytokines and

chemokine antibodies present on the cytokine antibody array from Ray BioTech. (B) Representative images of the cytokine array membrane after exposing

conditioned supernatants from the following experimental conditions; no phagocytosis + PMA, IgG-sRBCs + PMA, C3bi-sRBCs + PMA, and LPS/IFN-γ treatment

for 16 h. (C) Densitometry analysis for IL-6, IL-12, TNF-α, CCL2, MCP-5, and CCL5 of replicate array blots. Expression level was normalized to positive biotinylated

antibody signal spots and then to the no phagocytosis + PMA condition for each cytokine. A two-way ANOVA followed by Dunnett’s multiple comparison was

performed. The significance of each condition was evaluated relative to PMA-stimulated control cells (****p < 0.0001). Data are plotted as the mean ± S.E.M. from

three independent experiments.

replicates indicated that there was no significant difference in
the level of p-ERK in either C3bi-sRBC-challenged BMDMs
or BMDMS ingesting IgG-sRBCs (Figure 4B). Stimulation
of BMDMs with LPS/IFN-γ did cause enhanced levels of
phosphorylated ERK1/2 (Figure 4B), as expected (36).

We next turned our investigation toward the NF-κB signaling
pathway and examined the protein levels of IκBα using
immunoblotting. Proteosome degradation of IκBα is a critical
signaling event to release of cytosol-sequestered NF-κB, allowing
it to move into the nucleus for gene activation (37). The

phagocytosis experiments were repeated for 1.5 h and lysates
collected and probed for IκBα (Figure 5A). TLR-activation is
known to induce NF-κB nuclear translocation (38) and we
saw an expected reduction in IκBα levels after treatment of
BMDMs with LPS/IFN-γ (Figure 5B). BMDMs ingesting both
C3bi- and IgG-sRBCs showed significantly lower levels of IκBα

compared to control cells. These results encouraged us to look
further into the involvement of the NF-κB signaling pathway
in proinflammatory cytokine expression during phagocytosis
in macrophages.

Frontiers in Immunology | www.frontiersin.org 7 January 2020 | Volume 10 | Article 304992

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Acharya et al. Cytokine Induction During Opsonic Phagocytosis

FIGURE 3 | Conditions of proinflammatory cytokine production during CR-mediated phagocytosis in macrophages. (A) Quantification of ELISA results for TNF-α,

IL-6, and IL-1β from conditioned media of BMDMs after 24 h of phagocytosis. Control cells were cells treated with PMA alone. A two-way ANOVA followed by

Dunnett’s multiple comparison was performed. The significance of each condition was evaluated relative to PMA-stimulated control cells (*p < 0.05, **p < 0.01). Data

are plotted as the mean ± S.E.M. from three independent experiments. (B) Normalization of ELISA results for TNF-α, IL-6, and IL-1β from conditioned media of

BMDMs after phagocytosis to the phagocytic index of each opsonized target. A two-way ANOVA followed by Dunnett’s multiple comparison was performed. The

significance of each condition was evaluated relative to PMA-stimulated control cells (**p < 0.005, *p < 0.05). Data shows mean ± S.E.M. from three independent

experiments. (C) Peritoneal macrophages challenged with C3bi-opsonized sRBCs produce more pro-inflammatory cytokines than IgG-opsonized sRBCs. ELISA data

representing secreted IL-6 and TNF-α by peritoneal macrophages primed with PMA followed by phagocytosis of C3bi- or IgG-sRBCs. Data shows mean ± S.E.M.

from three independent experiments (***p < 0.001, *p < 0.05 relative to control cells). A one-way ANOVA followed by Tukey’s multiple comparison was performed. (D)

Quantification of secreted IL-6 and TNF-α through ELISA with or without washout of opsonized-sRBCs after 1 h. Supernatant was removed after 1 h containing

sRBCs and replaced with new serum free DMEM and supernatant was collected after 23 h. sRBC treatments without wash out refers to sRBCs persisting in media for

the full 24 h until collection. Data are plotted as the mean ± S.E.M. from 3 independent experiments (
†††

p < 0.001,
††††

p < 0.0001 relative to IgG-sRBC wash out),

(‡‡‡‡p < 0.0001 relative to IgG-sRBC). A one-way ANOVA followed by Tukey’s multiple comparison was performed. (E) The effects of Piceatannol treatment on the

(Continued)
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FIGURE 3 | phagocytic index in BMDMs (number of ingested particles/ 100 macrophages). Immunofluorescence images were taken, and the phagocytic index was

calculated as number of sRBCs per 100 macrophages. Data are plotted as the mean ± S.E.M. from three independent experiments. (F) The effects of Piceatannol

treatment on secreted IL-6 levels and (G) TNF-α levels after phagocytosis for 24 h, detected using ELISA. Data is plotted as the mean ± S.E.M. from three replicate

trials (***p < 0.001 relative to control) (
††††

p < 0.0001 relative to C3bi without Piceatannol). A one-way ANOVA followed by Tukey’s multiple comparison was

performed. (H) Stimulation of BMDMs with GM-CSF (300 U/ml) for 1 h increases phagocytosis of C3bi-sRBCs. Phagocytosis was allowed to proceed for 1 h and then

cells were fixed and imaged. The phagocytic index was calculated as number of sRBCs per 100 macrophages. Data plotted as the mean ± S.E.M. from three

independent experiments (I) ELISA data representing secreted cytokine levels of IL-6 and (J) TNF-α from BMDMs challenged with IgG- or C3bi-sRBCs after either: no

treatment, 7min PMA pretreatment, or 1 h pretreatment with GM-CSF. Data plotted as the mean ± S.E.M. from three independent experiments (**p < 0.01 relative to

no sRBC with GM-CSF) (****p < 0.0001 relative to no sRBC with or without GM-CSF). A one-way ANOVA followed by Tukey’s multiple comparison was performed.

FIGURE 4 | ERK is not activated during phagocytosis of C3bi- or

IgG-opsonized particles in BMDMs. (A) Representative immunoblots showing

phosphorylated ERK and total ERK in BMDMs challenged with C3bi- or

IgG-opsonized sRBCs for 1.5 h. BMDMs treated with LPS/IFN-γ for 1.5 h was

used as a positive control. β-actin was used as a loading control. (B)

Densitometric analysis of p-ERK (p44/p42) levels normalized to β-actin. Data

are plotted as the mean ± S.E.M. from three independent experiments.

Significance relative to the control cells with PMA was determined using

two-way ANOVA followed by Tukey’s multiple comparison (**p < 0.01).

BMDMs That Ingest C3bi-LBs Have Less
Cytosolic NF-κB Than BMDMs That
Internalize IgG-LBs
Using immunofluorescence, we next directly examined the
subcellular distribution of NF-κB, as a proxy to its gene
expression activity (37). Phagocytosis was performed for
3 h with opsonized LBs for compatibility with the NF-κB
antibody. Control cells were stimulated with LPS/IFN-γ for
an equivalent time-period. Immunostaining revealed 3 distinct
phenotypes of NF-κB subcellular distribution (Figure 6A).
NF-κB immunostaining was either distinctly nuclear (with
empty cytosol), or cytosolic (with empty nucleus) or “both,”
for cells with NF-κB strongly labeling throughout the cell
(Figure 6A). For each condition, we quantified the subcellular
distribution of NF-κB from at least 100 BMDMs (Figure 6C).
As expected, the positive control cells activated with LPS/IFN-
γ showed predominantly nuclear NF-κB, which interestingly,
was reduced with PMA treatment (Figures 6B,C). While

FIGURE 5 | Activation of phagocytic receptors initiates IκBα degradation. (A)

Representative immunoblot showing total IκBα protein levels in BMDMs

challenged with either C3bi-opsonized sRBCs or IgG-sRBCs for 1.5 h.

BMDMs were also treated with LPS/IFN-γ alone for 1.5 h as a positive control.

β-actin was used as a loading control. (B) Densitometry analysis of 3

independent experiments. Expression levels were normalized to β-actin and

then to the PMA-stimulated negative control cells. Data are plotted as the

mean ± S.E.M. Significance relative to the control cells with PMA was

determined using two-way ANOVA followed by Tukey’s multiple comparison

(*p < 0.05, **p < 0.01).

there was no significant difference in the number of cells
containing nuclear NF-κB localization after phagocytosis of
either opsonized particles, compared to control cells, there was
a difference in the number of cells exhibiting purely cytosolic
NF-κB. After internalization of C3bi-LBs, significantly fewer
BMDMs treated with PMA had cytosolic distributions of NF-
κB compared to PMA-treated control cells or those ingesting
IgG-LBs (Figure 6C). To more directly test the involvement
of NF-κB in phagocytosis-induced proinflammatory cytokine
production, we employed NF-κB activation inhibitors. We
utilized a 4-Methyl-N1-(3-phenyl-propyl)-benzene-1,2-diamine
(JSH-23) and Bortezomib (Bzb) to inhibit NF-kB activity (39,
40). JSH-23 is a novel aromatic compound that inhibits NF-
kB activity in RAW 264.7 macrophages by preventing nuclear
translocation of NF-kB without affecting IkBa degradation (39).
Bzb is a reversible 26S proteasome inhibitor (40). During CR-
mediated phagocytosis, we inhibited NF-kB using either 100 nM
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FIGURE 6 | BMDMs challenged with C3bi-LBs have less cytosolic NF-κB than BMDMs challenged with IgG-LBs and NF-κB activity is required for CR-induced

proinflammatory cytokine production. (A) Representative immunofluorescent images of untreated or (B) PMA-treated BMDMs after ingestion of IgG-LBs, C3bi-LBs, or

exposed to LPS/IFN-γ for 3 h. Arrowheads indicate BMDMs with nuclear NF-κB. Scale bars = 20µm. (C) Quantification of NF-κB subcellular distribution in BMDMs

(Continued)
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FIGURE 6 | after phagocytosis or treatment with LPS/IFN-γ, with and without PMA stimulation. Cells were characterized as either having solely nuclear or cytosolic

NF-κB immunostaining, or both in which strong signal for NF-κB was observed in the cytosol and the nucleus. n > 100 BMDMs. A two-way ANOVA followed by

Tukey’s multiple comparison was performed. The cytosolic localization of PMA-stimulated BMDMs challenged with C3bi-LBs was compared with PMA-stimulated

BMDMs and BMDMs ingesting IgG-LBs (*p < 0.05). Significantly more LPS/IFN-γ-stimulated BMDMs showed nuclear NF-κB and less cytosolic staining, which is not

indicated on graph. Data are plotted as the mean ± S.E.M. from three independent experiments. (D) Quantification of ELISA detection of secreted IL-6 and (E) TNF-α

after treatment of BMDMS with the NF-kB inhibitors JSH-23 and Bortezomib during CR-mediated phagocytosis. Data is plotted as the mean ± S.E.M. from three

independent experiments (**p < 0.01 relative to control condition) (
††
p < 0.01,

†
p < 0.01 relative to C3bi-sRBC). A one-way ANOVA followed by Tukey’s multiple

comparison was performed.

of JSH-23 or 10 ng/ml BzB and measured IL-6 and TNF-α levels
after 24 h using ELISA. BMDMs challenged with C3bi-sRBCs in
the presence of Bzb or JSH-23 produced significantly less IL-6
than untreated BMDMs (Figure 6D). The TNF-α levels secreted
by BMDMs in the presence of the NF-kB inhibitors also showed
lower levels compared to untreated macrophages ingesting C3bi-
sRBCs but these results were not significant (Figure 6E).

Calpain Inhibition Reduces
Phagocytosis-Induced Upregulation of
Inflammatory Cytokines
To gain insight into the mechanism by which phagocytosis
promotes proinflammatory cytokine and chemokine production,
we turned our attention to calpain. We became interested in
this cysteine protease since CR3 is an integrin and calpain
is involved in integrin signaling through degradation of talin
(41). Importantly, IκBα is another substrate of calpain (42),
implicating a potential involvement in phagocytosis-induced
cytokine production. Calpain has been shown to indirectly
play a role in FcγR-mediated phagocytosis as the cleavage
of ASAP2 by calpain reduced particle uptake during FcγR-
mediated phagocytosis (43). We employed the calpain inhibitor,
the PD150606 peptide, which inhibits the protease core domains
of both calpain-1 and calpain-2 (44) and examined gene
expression and cytokine and chemokine protein expression
during phagocytosis in BMDMs. To avoid particle internalization
issues in the presence of the calpain inhibitor, we allowed
phagocytosis to occur for 1 h prior to addition of 100µM
PD150606. For qPCR studies, we continued phagocytosis for
an additional hour in the presence of the peptide prior to
cell extraction. We investigated TNF-α and IL-1β as they
had the most robust expression after 3 h of phagocytosis
of C3bi-sRBCs (Figure 1A). In untreated cells, after 2 h of
phagocytosis of C3bi-sRBCs, we again saw upregulation of
TNF-α and IL-1β as well as upregulation of IL-1β following
IgG-sRBC ingestion (Figure 7A). Cells treated with 100µM
PD150606 had significant less IL-1β levels for both phagocytic
targets, compared to untreated cells (Figure 7A). The CR-
mediated upregulation of TNF-α was also significantly blunted
by PD150606 treatment (Figure 7A).

We next investigated how calpain inhibition would affect
the expression of cytokines at a secreted protein level during
phagocytosis. Due to the instability of the peptide, the assays
were only carried out for 8 h after which conditioned media
was exposed to a cytokine antibody array. In control cells,
significant levels of IL-6 and CCL5, a chemokine which recruit
monocytes, NK and T cells to sites of inflammation (26),
were detected following uptake of C3bi-sRBCs which was not

observed in control cells or after ingestion of IgG-sRBCs
(Figures 7B,C). However, the secreted protein levels of IL-6
and CCL5, were significantly lower from BMDMs treated with
PD150606 to inhibit calpain, compared to untreated BMDMs
ingesting C3bi-sRBCs (Figures 7B,C). Together, these results
implicate calpain involvement in proinflammatory cytokine and
chemokine secretion induced by CR-mediated phagocytosis.

DISCUSSION

A long-standing belief in the scientific community is that
phagocytosis mediated by FcγRs is potent at inducing
inflammation whereas CR-mediated phagocytosis in
macrophages is non-inflammatory. Recent efforts have
concentrated on understanding CR-mediated phagocytosis
given the prompt, pivotal role of complement in clearing
infections. Low levels of bacteria can be quickly resolved by
circulating complement, while rapidly proliferating pathogens
necessitate time consuming antibody-mediated solutions of the
adaptive immunity (45). Studies so far have revealed striking
differences between the modes of phagocytosis induced by
the opsonic receptors in macrophages, including a strong
requirement for the RhoA GTPase, and not rac1 and cdc42, for
CR-mediated phagocytosis (46).

We revisited the inflammatory capacity of opsonic receptor
signaling using quantitative mRNA and protein approaches.
Surprisingly, we observed enhanced proinflammatory gene
and secreted protein levels during CR-mediated phagocytosis.
This deviates from previous work in mouse macrophages
(21) which may be explained in part from experimental
discrepancies including differences in macrophage subtype and
proinflammatory readout. The original study by Aderem et al.
(21) examined murine resident peritoneal macrophages and
detected levels of arachidonic acid, which is a signaling fatty acid
that can become inflammatory if generated by phospholipase A2
(47). Arachidonic acid is metabolized to make prostaglandins
and leukotriene B4, that cause arterial dilation to enhance
immune cell infiltration into the sites of inflammation (47).
While arachidonic acid levels were not increased following CR
activation in the original study, it is possible the downstream
bioactive inflammatory mediators were enriched. We decided
to examine proinflammatory cytokines and chemokines during
phagocytosis, which serve as important chemical messengers
to trigger the inflammation cascade including neutrophil
recruitment, edema and hemorrhaging. Both mRNA and protein
levels were examined during CR-mediated phagocytosis and
compared to FcγR-mediated phagocytosis and control BMDMs.
CR-mediated phagocytosis provoked significant increases in
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FIGURE 7 | Calpain inhibition blocks proinflammatory mediator upregulation during phagocytosis in BMDMs. (A) qPCR data representing mRNA expression levels of

TNF-α and IL-1β in BMDMs after 2 h of phagocytosis with 100µM of PD150606 added in the last hour. Expression levels were normalized to 18S and the fold change

was calculated relative to the control condition with PMA. A two-way ANOVA followed by Tukey’s multiple comparison was performed (*p < 0.05, **p < 0.01, ***p <

0.001). Data are plotted as the mean ± S.E.M. from three independent experiments. (B) Cytokine antibody array probed with conditioned media from PMA-stimulated

BMDMs after 8 h of phagocytosis, with 100µM of PD150606 included during CR-mediated phagocytosis. (C) Densitometry analysis of IL-6, IL-12, TNF-α, CCL2,

MCP-5, and CCL5 from replicate array blots. Expression level was normalized to positive biotinylated antibody signal spots and then to the control cells + PMA

condition for each cytokine. A two-way ANOVA followed by Tukey’s multiple comparison was performed (***p < 0.001, ****p < 0.0001 relative to control condition),

(
††
p < 0.01,

††††
p < 0.0001 relative to untreated C3bi-sRBC). Data are plotted as the mean ± S.E.M. from four biological replicates.

cytokine transcript and secretion of the potent pyrogen TNF-α
(26) in murine macrophages. Similar results were observed
for IL-6, which along with TNF-α, is secreted rapidly upon
macrophage stimulation to induce fever and stimulate the acute

phase of the immune response (26). Additionally, the cytokine
array revealed a CR-specific upregulation of the chemokine
MCP-5/CCL12, which recruits eosinophils, monocytes and
lymphocytes to sites of inflammation (26).
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A priority for our work was resolving the mechanism
behind CR-mediated proinflammatory cytokine expression. Our
preliminary observations indicated that phagocytic receptors
signal downstream to NF-κB, but not to AP-1. Upregulation
of cytokines can be induced by stimuli that lead to the
phosphorylation and ubiquitination and degradation of IκBα,
which results in the nuclear translocation of active NF-κB
(38). While we did not observe significantly more NF-κB
in the nucleus during phagocytosis, we did see significantly
reduced cytosolic sequestration of NF-κB during CR-mediated
phagocytosis. Importantly, inhibition of NF-κB activation
blunted proinflammatory cytokine production during CR-
mediated phagocytosis. Our immunoblotting data of IκBα,
indicated that both CR- and FcγR-mediated phagocytosis reduce
IκBα levels in macrophages, supporting NF-κB activation during
phagocytosis. Although the potential activation of NF-κB was
not exclusive to CR-mediated phagocytosis, it may explain the
slight increase in proinflammatory cytokines observed during
FcγR-mediated phagocytosis in BMDMs. Calpain was implicated
in cytokine gene induction during CR-mediated phagocytosis as
inhibition of calpain significantly reduced cytokine transcripts
and secreted protein levels in BMDMs ingesting C3bi-sRBCs.
Future studies should directly examine whether IκBα is a
substrate for calpain in macrophages and how it coordinates
with the 26S proteasome in mediating IκBα degradation. Calpain
inhibitors are being developed as effective anti-inflammatory
drugs (48) and our results may provide mechanistic insight into
their effectiveness.

During an immunological challenge, the goal of immune cells
is ultimately to remove the invader with minimal self-tissue
damage. The production of cytokines during an immunological
challenge is likely temporally-regulated by the potency of the
stimulus. LPS is a known potent stimulus of the inflammatory
cascade but the potency of opsonins has remained unclear.
Enhanced proinflammatory cytokine expression by macrophages
ingesting complement-coated targets may help explain the
early role for complement in infections to mobilize the
adaptive immunity. We only observed slight, but not significant,
induction of proinflammatory cytokines during FcγR-mediated
phagocytosis in murine macrophages. These results could be
due to the absence of FcγRIIa in mice (49). Future studies
should directly compare the macrophage species to resolve
these discrepancies, but in light of Fc signaling, our data
may be relevant to human thrombosis patients who frequently
have FcγRIIa mutations (50). The bulk of FcγR signaling
and cytokine induction research has been in the context of
opsonized pathogens, where co-receptor signaling is involved,
and amplified, by FcγR activation (49, 51). Additionally, it is

very difficult to try to fit FcγR and CR signaling into defined
inflammatory categories because negative feedback mechanisms
induced via inhibitory receptors can dampen the response by
inducing anti-inflammatory molecules (5, 52).

While we observed significant upregulation of
proinflammatory mediators during CR-mediated phagocytosis,
the fold-change increases were often an order of magnitude
lower than LPS stimulation. Thus, while detectable, the “danger
signal” induced by opsonic receptor ligation is modest compared

to signals induced by microbe-associated molecular patterns.
This is to be expected as normal clearance of sRBCs is not a
state of infection. We employed sRBCs and latex beads as target
particles to tease out individual opsonic receptor signaling effects
on cytokine induction. Additionally, these “inert” particles are
relevant to phagocytosis events in vivo. RBC opsonization and
phagocytosis are observed during senescence and in patients
with beta thalassemia (53). Latex beads are composed of
polystyrene, an emerging FDA-approved biomaterial (54) and
serve as a model for foreign bodies known to be opsonized and
inflammatory in nature (55). Thus, these studies add insight into
opsonic receptor signaling and importantly reveal novel aspects
regarding the under-studied CR mode of phagocytosis. Together
our work indicates that opsonic receptors signal differently to
the nucleus and additional differences will become apparent as
other molecular players are investigated in detail.
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Legionella pneumophila is the causative agent of a severe pneumonia called

Legionnaires’ disease. The environmental bacterium replicates in free-living amoebae

as well as in lung macrophages in a distinct compartment, the Legionella-containing

vacuole (LCV). The LCV communicates with a number of cellular vesicle trafficking

pathways and is formed by a plethora of secreted bacterial effector proteins, which

target host cell proteins and lipids. Phosphoinositide (PI) lipids are pivotal determinants

of organelle identity, membrane dynamics and vesicle trafficking. Accordingly, eukaryotic

cells tightly regulate the production, turnover, interconversion, and localization of PI

lipids. L. pneumophila modulates the PI pattern in infected cells for its own benefit

by (i) recruiting PI-decorated vesicles, (ii) producing effectors acting as PI interactors,

phosphatases, kinases or phospholipases, and (iii) subverting host PI metabolizing

enzymes. The PI conversion from PtdIns(3)P to PtdIns(4)P represents a decisive step

during LCV maturation. In this review, we summarize recent progress on elucidating the

strategies, by which L. pneumophila subverts host PI lipids to promote LCV formation

and intracellular replication.

Keywords: Dictyostelium discoideum, effector protein, endoplasmic reticulum, host-pathogen interaction,

macrophage, pathogen vacuole, type IV secretion, vesicle trafficking

LEGIONELLA PNEUMOPHILA—AN AMOEBAE-RESISTANT
ENVIRONMENTAL BACTERIUM

Legionella spp. are obligate aerobic, Gram-negative bacteria, which are ubiquitously found in
technical and natural water systems, where they colonize different niches (1, 2). The facultative
intracellular bacteria replicate in planktonic form as well as in biofilms (3–5), and they infect
environmental predators such as nematodes (6–9) and protozoa (10–12). Complex, ecologically
relevant interactions take place in the aquatic niches inhabited by Legionella spp.; e.g., nematode
larvae rupture Legionella-infected amoebae and thus are exposed to a highly virulent form of the
bacterial pathogen (9).

Upon inhalation of contaminated water droplets, Legionella bacteria reach the lung, where
they replicate in and destroy alveolar macrophages, thus causing a potentially fatal pneumonia
termed Legionnaires’ disease (2). The clinically most relevant and best studied species is Legionella
pneumophila; yet, Legionella longbeachae is prevalent in some parts of the world, too (13).
The spread of Legionella spp. predominantly occurs through environmental sources; however, a
probable person-to-person transmission of L. pneumophila, resulting in the death of the two people
involved, was recently reported (14).
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Legionella pneumophila replicates intracellularly in amoebae
and macrophages by exploiting evolutionarily conserved
pathways (15, 16). The pathogen forms a unique, degradation-
resistant compartment, the Legionella-containing vacuole
(LCV), wherein which bacterial replication takes place.
The LCV does neither acidify nor fuse with lysosomes,
but communicates with several vesicle trafficking pathways
including the endosomal, secretory, and retrograde routes
(17–21). At later steps of pathogen vacuole maturation, the
LCV tightly and continuously associates with the endoplasmic
reticulum (ER). Small GTPases of the Arf (22, 23), Rab (24, 25),
Ran (26), and Rap (27) families regulate LCV formation and
intracellular replication of L. pneumophila. Moreover, large
GTPases implicated in eukaryotic membrane fusion and fission
play a role in L. pneumophila infection. Atlastin3 (Atl3/Sey1),
an ER tubule-resident large GTPase that catalyzes homotypic
ER fusions, promotes ER remodeling around LCVs, pathogen
vacuole expansion and intracellular bacterial replication (28).
Dynamin1-like GTPase (Dnm1l), a mitochondrial large GTPase,
mediates L. pneumophila-induced mitochondrial fragmentation
and inhibition of host cell respiration (29).

LCV formation requires the Icm/Dot (intracellular
multiplication/defective organelle trafficking) type IVB secretion
system (T4SS), which is conserved among Legionella spp.,
and in the case of L. pneumophila translocates more than 300
different “effector” proteins into host cells (30, 31). In eukaryotic
cells, the effector proteins subvert essential process such as
signal transduction, cytoskeleton dynamics and membrane
trafficking (17, 32–37). Distinct effector proteins have been
shown to target the small GTPases Arf1 (22), Rab1 (38–41)
or Ran (26, 42), the retromer coat complex (43–46), the
vacuolar H+-ATPase (47), the autophagy machinery (48–50),
or phosphoinositide (PI) lipids (35, 51, 52). Here, we focus on
how L. pneumophila subverts host PI lipids to promote LCV
formation and intracellular replication.

PHOSPHOINOSITIDE
LIPIDS—REGULATORS OF ORGANELLE
IDENTITY AND MEMBRANE DYNAMICS

Phosphoinositides are minor constituents of eukaryotic
membranes (<10% of all phospholipids), but this low abundance
class of lipids exert pivotal functions for cellular organelle
identity, membrane dynamics and vesicle trafficking (53–56).
Accordingly, the production, turnover, interconversion, and
subcellular localization of PI lipids are tightly regulated
by eukaryotic cells. The core compound of PI lipids is
phosphatidylinositol (PtdIns), comprising a diacylglycerol
(DAG) moiety and a D-myo-inositol 1-phosphate head group
facing the cytoplasmic side of membranes (Figure 1). PtdIns

Abbreviations: AMPylase, adenylyltransferase; DAG, diacylglycerol; Icm/Dot,

intracellular multiplication/defective organelle trafficking; GAP, GTPase activating

protein; GDI, guanine nucleotide dissociation inhibitor; GEF, guanine nucleotide

exchange factor; LCV, Legionella-containing vacuole; OCRL, oculocerebrorenal

syndrome of Lowe; PI, phosphoinositide; PI3/4/5K, PI 3-/4-/5-kinase; PtdIns,

phosphatidylinositol; T4SS, type IV secretion system.

FIGURE 1 | Chemical structure of phosphoinositide lipids. The core moiety of

phosphoinositide (PI) lipids is phosphatidylinositol (PtdIns), comprising

diacylglycerol (DAG), and D-myo-inositol 1-phosphate. The inositol head group

is reversibly phosphorylated by organelle-specific PI kinases and PI

phosphatases at the positions 3, 4, and/or 5, giving rise to seven different

mono- or poly-phosphorylated derivatives.

can be reversibly phosphorylated at the positions 3, 4, and/or
5 of the inositol ring, giving rise to seven different mono- or
poly-phosphorylated derivatives (53–56). These reactions are
catalyzed by organelle-specific PI metabolizing enzymes (PI
kinases and PI phosphatases), the activity of which controls
compartmentalization and vesicle trafficking within the
cell (57, 58).

PI lipids, jointly with small GTPases in their active GTP-
bound form, recruit peripheral membrane proteins harboring
distinct PI-binding motifs, such as the PH, PX, FYVE,
ENTH/ANTH, or FERM domains (59). Hence, lipid-protein
co-incidence detection, along with specific adaptor proteins,
determines organelle identity and vesicle trafficking routes in
eukaryotic cells (54, 60). PI-metabolizing enzymes are usually
recruited to the cytoplasmic side of cellular membranes by
small GTPases; e.g., the endosomal small GTPase Rab5 recruits
and activates the class III phosphatidylinositol 3-kinase (PI3K)
to produce PtdIns(3)P from PtdIns (61). The small GTPases
themselves are localized and activated by specific guanine
nucleotide exchange factors (GEFs), which concomitantly
displace the guanine nucleotide dissociation inhibitor (GDI)
protein from the small GTPase, thus allowing the membrane
association of the GTPase. To switch off the signal, the
inactivation of small GTPases is catalyzed by specific GTPase
activating proteins (GAPs) (61).

The different PIs preferentially localize to distinct subcellular
compartments and pathways [(53, 54, 62); Figure 2].
Accordingly, PtdIns(4)P and in particular PtdIns(4,5)P2 are
enriched at the plasma membrane, where PtdIns(3,4,5)P3 and
PtdIns(3,4)P2 transiently accumulate upon signal transduction
events and during phagocytosis. PtdIns(3)P is the “signpost” PI
lipid of the endocytic pathway, and is enriched on phagosomes
and early endosomes, as well as on autophagosomes and
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FIGURE 2 | Subcellular distribution of phosphoinositides. The subcellular distribution of phosphoinositide lipids is primarily arranged around the cellular dichotomy of

the secretory and endocytic vesicle trafficking pathways. In the secretory pathway, PtdIns(4)P is synthesized in the endoplasmic reticulum (ER) and Golgi apparatus,

localizes to secretory vesicles, and finally accumulates at the plasma membrane, where it is converted to PtdIns(4,5)P2 and, transiently, to PtdIns(3,4,5)P3. In the

endocytic pathway, PtdIns(3)P decorates early endosomes and the tubular endosomal network (TEN), and is converted to PtdIns(3,5)P2 on multivesicular bodies

(MVB), late endosomes and lysosomes (LYS).

multivesicular bodies, which like late endosomes and lysosomes
are also decorated with PtdIns(3,5)P2. PtdIns(4)P is the
hallmark PI lipid of the secretory pathway and predominantly
localizes to the Golgi apparatus and secretory vesicles
(53, 54, 56, 62). This PI lipid is formed from PtdIns on the ER and
together with PtdIns(3)P also regulates phagosome-lysosome
fusion (63).

On certain compartments and along some vesicle trafficking
pathways, distinct PIs are functionally coupled, i.e., the
product of a given PI-metabolizing enzyme is the substrate
of a subsequent modification. This occurs, e.g., in the
endocytic pathway, where PtdIns(3)P is phosphorylated to
yield PtdIns(3,5)P2, as well as in the secretory pathway, where
PtdIns(4)P serves as the precursor of PtdIns(4,5)P2 at the plasma
membrane. In turn, PtdIns(4,5)P2 is phosphorylated by class I
PI3K to transiently yield PtdIns(3,4,5)P3 during phagocytosis.

EUKARYOTIC PI KINASES IMPLICATED IN
UPTAKE AND ENDOCYTOSIS OF
L. PNEUMOPHILA

PtdIns(3,4,5)P3 and PtdIns(3)P are produced by class I or class
III PI3Ks and are major regulators of phagocytosis or the
endocytic pathway, respectively. Using the haploid social soil
amoeba Dictyostelium discoideum, genetic and pharmacological
disruption of class I PI3Ks indicated that these kinases are largely
dispensable for uptake of wild-type L. pneumophila, but required
for uptake of an icm/dot mutant strain (51, 64). Moreover, using

D. discoideum producing a fluorescent probe for PtdIns(3,4,5)P3,
live-cell microscopy revealed that this PI lipid accumulated at
bacterial entry sites and was cleared within approximately 40 s
after uptake, regardless of whether the amoebae were infected
with wild-type or icm/dot mutant L. pneumophila. In parallel,
plasma membrane PtdIns(4,5)P2 disappeared from the uptake
sites (65).

Similar to amoebae, the uptake of L. pneumophila wild-type,
but not the icm/dot mutant strain by replication-permissive
human U937 macrophage-like cells was not affected by the class
I PI3K inhibitor wortmannin (66, 67). In contrast, wortmannin
or LY294002 inhibited the uptake of wild-type as well as icm/dot
mutant L. pneumophila by non-permissive murine J774A.1
macrophages (64, 66, 67). The Icm/Dot T4SS controls the
uptake of L. pneumophila by phagocytes (68, 69); however,
no effectors implicated in the process have been identified.
These results suggest that during uptake of L. pneumophila
class I PI3Ks are activated and the pathogen evades/inhibits
downstream processes in an Icm/Dot-dependent manner to form
the replication-permissive compartment.

Dictyostelium discoideum mutant strains were also used to
examine the role of endosomal PI kinases, PI phosphatases and
phospholipases for intracellular growth of L. pneumophila. Wild-
type L. pneumophila replicated more efficiently in D. discoideum
lacking two or five class I PI3Ks (51, 64) or in amoebae lacking
PIKfyve (70), a PI 5-kinase, which is recruited through its
FYVE domain to early endosomes, where it phosphorylates
PtdIns(3)P to yield PtdIns(3,5)P2. While it is not clear how lower
levels of PtdIns(3,4,5)P3 promote the intracellular replication
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of L. pneumophila, the reduction of PtdIns(3,5)P2 impairs
the bactericidal endocytic pathway, which restricts bacterial
killing and thus benefits the pathogen (70). The disruption
of D. discoideum PTEN (phosphatase and tensin homolog),
a PI phosphatase antagonizing PI3Ks, reduces the uptake of
L. pneumophila but does not affect intracellular growth (64).
Finally, the inhibition of D. discoideum PLC (Phospholipase C),
a hydrolase cleaving PI(4,5)P2 to yield DAG and inositol 1,4,5-
phosphate (IP3), also abolishes the uptake of L. pneumophila, but
again has no effect on bacterial replication (64).

PHOSPHOINOSITIDE CONVERSION ON
THE LEGIONELLA-CONTAINING VACUOLE

PtdIns(3)P accumulates on LCVs within 1min after uptake,
regardless of whether the vacuole contains wild-type or icm/dot
mutant L. pneumophila (71). However, while phagosomes
containing icm/dot mutant bacteria remain decorated with
PtdIns(3)P, more than 80% of wild-type LCVs gradually lose this
PI within 2 h. Concomitantly, major membrane rearrangements
take place with PtdIns(3)P-positive membranes being segregated
from the LCV and compacted at the cell center. PtdIns(4)P,
on the other hand, transiently localizes to early phagosomes
harboring wild-type or icm/dot mutant L. pneumophila, but is
cleared within minutes after uptake. During the following 2 h,
PtdIns(4)P steadily accumulates only on wild-type LCVs, which
for at least 8 h maintain a discrete PtdIns(4)P identity spatially
separated from the calnexin-positive ER. PtdIns(4)P decorates
the LCV for a prolonged time (18 h p. i. and beyond) up to when
the bacteria exit from the pathogen vacuole and the infected
cell (71). Taken together, within 2 h post-infection, the LCV
undergoes a PI conversion, replacing the endosomal PtdIns(3)P
with the secretory PtdIns(4)P (Figure 3). Importantly, the LCV
PI conversion occurs prior to and independently from ER
recruitment, and the two compartments appear to remain
separate throughout the intracellular life of L. pneumophila.

Mechanistically, the PI conversion on the LCV possibly
proceeds along several, mutually non-exclusive pathways: (i) the
LCV might communicate and selectively retain PI-decorated
vesicles, (ii) L. pneumophila might produce (Icm/Dot-secreted)
effectors acting directly as PI interactors, phosphatases or kinases,
and/or (iii) the pathogen might subvert host PI metabolizing
enzymes (Figure 3). Indeed, using D. discoideum producing
fluorescent PtdIns(3)P and PtdIns(4)P probes in tandem, we
recently showed by high-resolution real-time confocal laser
scanning microscopy that nascent LCVs continuously capture
and accumulate PtdIns(4)P-positive vesicles derived from the
trans-Golgi network (72). The sustained association of the
PtdIns(4)P-positive vesicles, but not the LCV-vesicle interactions
per se, require a functional T4SS. Thus, L. pneumophila exploits
the cellular dynamics of vesicle-bound PtdIns(4)P for LCV
formation. At different stages of infection L. pneumophila
effectors might modulate the host PI pattern in different
ways (73).

As outlined below in detail, L. pneumophila Icm/Dot-
translocated effector proteins subvert PI lipids (i) by directly

binding PIs (SidC, SidM, RidL, LtpM), (ii) by acting as
bacterial PI phosphatases (SidF, SidP), PI kinases (LepB, LegA5),
or phospholipases (VipD, PlcC, LpdA), or (iii) by recruiting
eukaryotic PI phosphatases or kinases (RalF, SidM). Currently, no
effector has been described, which directly modulates the activity
of host PI-metabolizing enzyme. In general, L. pneumophila
effectors determining the LCV PI pattern might act either in cis
(on the LCVmembrane) or in trans (in a distance from the LCV).
In fact, a number of these effectors have been shown to act in
cis, in agreement with their exceptional affinity for specific PI
receptors (40, 74–76).

PHOSPHOINOSITIDE ANCHORS FOR
L. PNEUMOPHILA EFFECTORS

Legionella pneumophila Icm/Dot substrates translocated to the
cytoplasmic face of the LCV can bind to the pathogen vacuole
as peripheral membrane protein [e.g., RalF; (77, 78)], as intrinsic
membrane protein [e.g., MavN; (79, 80)], through host cell
prenylation of a C-terminal CAAX motif [e.g., LegG1, AnkB,
LpdA; (81–83)], or through PI lipids [e.g., SidC, SidM, RidL,
LtpM; (44, 84, 85); Figure 4]. PI lipids bind a plethora of
eukaryotic proteins through distinct domains (59), none of which
was identified in L. pneumophila effector proteins. However,
L. pneumophila produces a battery of effector proteins, which
bind through novel domains to PtdIns(4)P (SidC, SdcA, SidM,
Lpg1101, Lpg2603, AnkX, LidA) and/or PtdIns(3)P (LepB, RidL,
SetA, LtpD, LtpM, RavD, RavZ, AnkX, LidA) (Table 1).

The L. pneumophila Icm/Dot substrate SidC and its paralogue
SdcA localize to the LCVmembrane (115) and almost exclusively
bind to PtdIns(4)P [(51); Figure 4 and Table 1]. The 105 kDa
effector proteins harbor a unique 20 kDa C-terminal domain
termed P4C [PtdIns(4)P-binding domain of SidC], which does
not show similarity to any eukaryotic PI-binding motif and was
used as a PtdIns(4)P probe in eukaryotic cells (116, 136). SidC
and the P4C domain are conserved in Legionella longbeachae,
where the 111 kDa effector represents the major PtdIns(4)P
binding protein (75). The SidC orthologs of L. pneumophila and
L. longbeachae bind PtdIns(4)P with a low dissociation constant
(Kd) of ca. 240 or 70 nM, respectively. The crystal structure of
SidC revealed a unique PtdIns(4)P-binding domain essential for
targeting the effector to the pathogen vacuole (137).

LCVs harboring an L. pneumophila 1sidC-sdcA mutant
strain recruit the ER slower and to a smaller extent; yet, the
formation of the spatially separated PtdIns(4)P-positive limiting
LCV membrane is not affected (28, 51, 65, 116). The interaction
with the ER is catalyzed by a 70 kDa N-terminal fragment of SidC
(116). The crystal structure of the N-terminal fragment revealed
a novel fold (117, 121), comprising a catalytic Cys-His-Asp triad,
which is essential for SidC to promote the polyubiquitination
of protein substrates on the LCV (118). Indeed, SidC and SdcA
act as E3 ubiquitin ligases, which show a broad and non-
overlapping specificity for ubiquitin-conjugating E2 enzymes
(118, 119). Hence, the L. pneumophila effector SidC links and
subverts two different eukaryotic pathways, phosphoinositide
and ubiquitination signaling.
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FIGURE 3 | LCV formation and phosphoinositide conversion. The Legionella-containing vacuole (LCV) is a replication-permissive compartment disconnected from the

bactericidal endocytic pathway and tightly associated with the ER. LCV formation is governed by a PI conversion from endosomal PtdIns(3)P to secretory PtdIns(4)P.

L. pneumophila subverts the LCV PI pattern (i) by recruiting and selectively retaining PI-decorated vesicles, (ii) by producing effectors acting as PI interactors (SidC),

kinases (LepB), phosphatases (SidP), or phospholipases (VipD), and (iii) by subverting host PI kinases (PI4KIIIβ) and phosphatases (OCRL).

In L. pneumophila-infected phagocytes, SidC decorates the
LCV selectively, uniformly and in copious amounts (51, 116).
We exploited this feature to isolate LCVs from homogenates
of infected host cells by establishing a two-step procedure
comprising immuno-affinity enrichment with an anti-SidC
antibody, followed by Histodenz density gradient centrifugation
(138, 139). Using this protocol, intact LCVs were isolated
from D. discoideum amoeba (28, 140), murine RAW 264.7
macrophage-like cells (24, 27) and bonemarrow-derived primary
macrophages (141). The isolated LCVs were utilized for
biochemical fusion experiments (28) and proteomics analysis
(24, 27, 140, 141), which identified small GTPases and their
effectors (Rab family, Rap1, Ran, RanBP1), large GTPases,
components of the endosomal and late secretory trafficking
pathways, as well as protein or lipid kinases and phosphatases.
LCV localization of some of these proteins was confirmed by
fluorescence microscopy using D. discoideum strains producing
the corresponding GFP-fusion proteins (24, 26–28, 140, 142).

The Icm/Dot substrate SidM (alias DrrA) localizes to the
LCV membrane early during L. pneumophila infection (92) and
is the major PtdIns(4)P-binding protein, as it was exclusively
identified as such in a non-biased pulldown approach [(84);
Figure 4 and Table 1]. In lysates of L. pneumophila 1sidM, no
other PI-binding protein (not even SidC) was identified. The
73 kDa effector protein harbors the 12 kDa C-terminal domain
P4M [PtdIns(4)P-binding domain of SidM], which does not show
similarity to any eukaryotic PI-binding motif or the P4C domain
of SidC, but is shared with two other effectors, Lpg1101 (alias
Lem4) and Lpg2603 (alias Lem28) [(102); Table 1]. The P4M

domain has been ectopically produced and used as a PtdIns(4)P
probe in eukaryotic cells (143) and Drosophila photoreceptor
cells (144). The crystal structure of SidM and biochemical
analysis revealed a unique PtdIns(4)P-binding domain and a very
high binding affinity (Kd = 4–18 nM) (40, 74).

SidM, i.e., its central domain, exerts GEF activity toward
Rab1-GDI complexes, thus leading to GTP loading and
Rab1 activation on LCV membranes (38, 39, 92, 124–127).
Moreover, the N-terminal domain of SidM catalyzes the covalent
attachment of AMP to Rab1, a reaction termed AMPylation
(128), which renders Rab1(GTP) inaccessible to GAPs and
causes the constitutive activation of the small GTPase on
LCVs (93). The AMPylation reaction is reversible, and the
L. pneumophila effector protein SidD can remove the AMP
residue from Rab1 by a deAMPylation reaction (145–147). The
removal of the covalent modification allows the GAP LepB to
inactivate Rab1 (92, 94). Through activation of Rab1, SidM
catalyzes the non-canonical pairing of plasma membrane t-
SNARE syntaxin proteins (present on the LCV membrane) with
the ER-localized v-SNARE protein Sec22b (148, 149). Thus,
the SidM-catalyzed activation of Rab1 seems to promote the
tethering and fusion of the LCV with ER-derived vesicles,
which has been described many years ago (150, 151). In
summary, the L. pneumophila effector SidM links and subverts
two different eukaryotic pathways, phosphoinositide and small
GTPase signaling.

The Icm/Dot substrate LidA supports SidM-dependent
recruitment of Rab1 to LCVs (39) and preferentially binds
to PtdIns(3)P or with lower affinity to PtdIns(4)P [(84, 103);
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FIGURE 4 | Subversion of host PI lipids by L. pneumophila effector proteins. L. pneumophila effector proteins translocated by the Icm/Dot T4SS subvert PI lipids on

the Legionella-containing vacuole (LCV) (i) by directly binding PIs (SidC, SidM, AnkX, LidA, RidL, SetA, LtpM), (ii) by acting as bacterial PI phosphatases (SidF, SidP), PI

kinases (LepB, LegA5), or phospholipases (VipD, PlcC, LpdA), or (iii) by recruiting eukaryotic PI phosphatases or kinases (RalF, SidM). PtdIns(4)P is bound by SidC

(ubiquitin ligase) and SidM (Rab1 GEF/AMPylase). LidA and the Rab1 phosphocholinase AnkX bind PtdIns(3)P as well as PtdIns(4)P. PtdIns(3)P is bound by RidL

(retromer inhibitor) and RavZ (Atg8/LC3 protease), as well as by SetA and LtpM (glycosyltransferases) and LepB (Rab1 GAP, PI 4-kinase). SidF and SidP are PI

3-phosphatases. VipD and PlcC function as a Rab5-activated phospholipase A1 or a Zn2+ metallophospholipase C, respectively. LpnE is secreted by an unknown

mechanism and binds PtdIns(3)P as well as the host PI 5-phosphatase OCRL. The GEF RalF activates the small GTPase Arf1, which in turn recruits the host PI

4-kinase IIIβ (PI4KIIIβ). OCRL and PI4KIIIβ produce PtdIns(4)P from PtdIns(4,5)P2 or PtdIns, respectively.

Figure 4 and Table 1]. The 83 kDa effector targets Rab1 and
several other host Rab GTPases (152, 153) and binds with high
affinity to the GDP- and GTP-bound as well as the AMPylated
form of Rab1, thus stabilizing the active conformation of the
GTPase and preventing inactivation by GAPs (39, 104, 105).

The Icm/Dot substrate AnkX localizes to LCVs and binds
with apparently similar affinity to PtdIns(3)P and PtdIns(4)P
[(154); Figure 4 and Table 1]. AnkX covalently attaches a
phosphocholine moiety to GDP-bound Rab1 and Rab35
in a process termed phosphocholination, which stabilizes
inactive Rab1 at the LCV membrane (86, 87, 155). The
CDP-choline-dependent activity of AnkX is reversed by the
Icm/Dot-secreted effector Lem3, which dephosphocholinates
Rab1 (88, 155).

The Icm/Dot substrate RidL specifically binds PtdIns(3)P and
localizes to the LCV, juxtaposed to where the polar Icm/Dot T4SS
connects to the pathogen vacuole membrane [(44); Figure 4 and
Table 1]. RidL binds the Vps29 subunit of the retromer coat
complex, inhibits retrograde trafficking and thereby promotes
intracellular bacterial replication (19, 20). Structural studies
revealed that a hydrophobic β-hairpin in the N-terminal domain
of RidL interacts with Vps29, thus displacing the Rab7 GAP
TBC1D5 [a regulator of retrograde trafficking; (43, 45, 46)].

The Icm/Dot substrate RavZ targets autophagosomes
and binds PtdIns(3)P on high-curvature membranes
trough a C-terminal domain [(49); Figure 4 and Table 1].
RavZ inhibits autophagy by deconjugating Atg8/LC3 from
phosphatidylethanolamine (PE) (48). In contrast to the
eukaryotic deconjugating factor Atg4, the cysteine protease RavZ
irreversible decouples Atg8 from PE by hydrolyzing the amide
bond between the C-terminal glycine and an adjacent aromatic
amino acid in Atg8.

The Icm/Dot substrates SetA (110, 120) and LtpM (85) localize
to LCVs and endosomes through C-terminal PtdIns(3)P-binding
domains (Figure 4 and Table 1). The N-terminal domains
of these effectors show similarities with glycosyl transferases,
and indeed, the purified enzymes were found to exhibit
glycohydrolase and glycosyltransferase activity in vitro, using
UDP-glucose as a sugar donor. Intriguingly, PtdIns(3)P activates
the glycosyltransferase activity of LtpM (85).

The Icm/Dot substrates LtpD (109) and RavD (114)
also localize to the LCV through C-terminal PtdIns(3)P-
binding domains (Table 1). LtpD might bind to the inositol
monophosphatase IMPA1, which has indeed been detected
on isolated LCVs (140). LpnE is a 41 kDa L. pneumophila
virulence factor that binds to PtdIns(3)P and the eukaryotic PI
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TABLE 1 | L. pneumophila T4SS-translocated effectors targeting host PI lipids.

Effector (alias) Cellular target(s) and activity References

AnkX

(LegA8/Lpg0695)

Rab1/Rab35 phosphocholinase,

modulation of Rab1/Rab35 activity

(86–91)

LepB (Lpg2490) Binding to PtdIns(3)P, Rab1 GAP, PI

4-kinase

(92–98)

LecE (Lpg2552) Subversion of host phospholipid

biosynthesis (DAG)

(99, 100)

LegA5 (Lpg2322) Class III PI 3-kinase (101)

Lem4 (Lpg1101) Binding to PtdIns(4)P (102)

Lem28 (Lpg2603) Binding to PtdIns(4)P (102)

LidA (Lpg0940) Binding to PI lipids, protection of

Rab1/Rab8 from GAPs

(103–107)

LpdA (Lpg1888) Phospholipase D, hydrolysis of PG,

PtdIns and PtdIns(3)P

(83, 99)

LppA (Lpg2819) Inositol-P6 phosphatase (phytase), PI

phosphatase activity in vitro

(108)

LtpD (Lpw3701) Binding to PtdIns(3)P and

(myo)-1-mono-phosphatase 1

(IMPA1)

(109)

LtpM (Lpp0356) PtdIns(3)P-actived glycosyltranferase (85)

PlcC (CegC1,

Lpg0012)

Zn2+ metallophospholipase C,

hydrolysis of PC, PG and PI

(110, 111)

RalF (Lpg1950) Arf1/Arf6 GEF (22, 77, 78,

112, 113)

RavD (Lpg0160) Binding to PtdIns(3)P (114)

RavZ Binding to PtdIns(3)P, cysteine

protease inhibiting autophagy

(48–50)

RidL

(Ceg28/Lpg2311)

Binding to PtdIns(3)P and Vps29,

inhibition of retrograde trafficking

(43–46)

SdcA (Lpg2510) Binding to PtdIns(4)P, E3 ubiquitin

ligase (mono-ubiquitination of Rab1),

recruitment of ER to LCV

(51, 115–119)

SetA (Lpg1978) Binding to PtdIns(3)P,

UDP-glucosyltransferase,

modification of histone H3.1 and H4

in vitro

(110, 120)

SidC (Lpg2511;

Llo3098)

Binding to PtdIns(4)P, E3 ubiquitin

ligase (mono-ubiquitination of Rab1),

recruitment of ER to LCV

(51, 71, 75,

115–119, 121)

SidF (Lpg2584) PI 3-phosphatase, hydrolysis of

PI(3,4)P2 and PI(3,4,5)P3 in vitro

(122, 123)

SidM

(DrrA/Lpg2464)

Binding to PtdIns(4)P, Rab1

GEF/AMPylase, modulation of

Rab1/Rab35 activity

(38–40, 74, 84,

90, 92, 93, 102,

124–128)

SidP (Lpg0130) PI 3-phosphatase, hydrolysis of

PtdIns(3)P and PtdIns(3,5)P2 in vitro

(129)

VipD (Lpg2831) Rab5-activated phospholipase A1,

hydrolysis of PE, PC and PtdIns(3)P

(130–135)

AMP, adenosine monophosphate; DAG, diacylglycerol; ER, endoplasmic reticulum;

GAP, GTPase-activating protein; GEF, guanine nucleotide exchange factor; LCV,

Legionella-containing vacuole; PC, phosphatidylcholine; PE, phosphatidylethanolamine;

PG, phosphatidylglycerol; PI, phosphoinositide.

5-phosphatase OCRL (see below) [(156); Figure 4 and Table 1].
The Sel1 repeat-containing LpnE is secreted independently of
the Icm/Dot T4SS or the Lsp T2SS and promotes uptake of L.
pneumophila by phagocytes and intracellular replication (157,
158). Finally, a recent bioinformatics-based screen identified

three novel PtdIns(3)P-binding domains, which are present in
at least 14 known Icm/Dot substrates, including LepB and
RavZ (95).

L. PNEUMOPHILA PHOSPHOINOSITIDE
PHOSPHATASES, KINASES, AND
PHOSPHOLIPASES

Legionella pneumophila produces Icm/Dot-translocated effector
proteins, which directly modify PI lipids by acting as PI
phosphatases, PI kinases or phospholipases (Figure 4). The
Icm/Dot substrate SidF localizes to the LCV at early time
points of infection (2 h) [(122, 123); Figure 4 and Table 1].
The crystal structure of the N-terminal catalytic domain in
complex with its substrate PtdIns(3,4)P2 revealed a positively
charged groove in the catalytic center, similar to other
PI phosphatases harboring the “CX5R” motif (123). The
102 kDa effector SidF harbors two predicted C-terminal
transmembrane motifs, which anchor the protein to the LCV
membrane. SidF specifically hydrolyses in vitro PtdIns(3,4)P2
and PtdIns(3,4,5)P3 typically occurring on early phagosomes,
and it likely contributes to the production of PtdIns(4)P
on LCVs, since vacuoles harboring L. pneumophila 1sidF
accumulate lower amounts of the PtdIns(4)P-binding effector
SidC. Yet, the 1sidF mutant strain is not impaired for
intracellular growth.

The Icm/Dot substrate SidP acts as a PI 3-phosphatase
in vitro and converts PtdIns(3,5)P2 to PtdIns(5)P as well as
PtdIns(3)P to PtdIns (Figure 4 and Table 1). However, its
PI-phosphatase activity was not assessed in L. pneumophila-
infected cells, and a 1sidP mutant strain is not impaired
for intracellular growth (129). The crystal structure of SidP
from L. longbeachae revealed three distinct domains: a large
N-terminal catalytic domain, an appendage domain inserted
into the catalytic domain, and a C-terminal α-helical domain.
Based largely on biochemical studies, SidF and SidP were
postulated to produce PtdIns(4)P and hydrolyze PtdIns(3)P
on LCVs, thus contributing to the PI conversion on the
pathogen vacuole.

The Icm/Dot substrate LepB is a Rab1 GAP (see
above), but also shows PI 4-kinase activity specific for
PtdIns(3)P [(96); Figure 4 and Table 1]. The effector
might contribute to the production of PtdIns(4)P on
LCVs, since pathogen vacuoles harboring L. pneumophila
1lepB accumulate lower amounts of the PtdIns(4)P-
binding effector SidC. LepB was proposed to convert
PtdIns(3)P on LCVs into PtdIns(3,4)P, which could be
hydrolyzed by SidF to yield PtdIns(4)P (96). Interestingly,
the Icm/Dot substrate LegA5 (159), a membrane-associated
effector toxic for yeast (110, 160), was recently found to
be a wortmannin-insensitive, class III-like PI 3-kinase
[(101); Table 1]. In fact, LegA5 might be a PI 3-kinase
producing PtdIns(3)P on LCVs as a substrate for the PI
4-kinase LepB.

The Icm/Dot substrate LppA is another example of a
CX5R motif PI phosphatase hydrolyzing in vitro PtdIns(3,4)P2,
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PtdIns(4,5)P2, and PtdIns(3,4,5)P3 to yield PtdIns(4)P [(108);
Table 1]. While LppA appeared like an ideal candidate to
produce PtdIns(4)P on LCVs, live-cell microscopy using
GFP-P4C as a PtdIns(4)P probe indicated that LppA does
not affect the LCV PI pattern. Instead, LppA is a T4SS-
translocated hexakisphosphate inositol phosphatase (phytase),
which degrades the micronutrient chelator phytate (indeed
produced by amoebae), and thereby promotes the intracellular
growth of L. pneumophila. Given that the L. pneumophila genome
encodes more than 400 proteins with the CX5R (PI) phosphatase

signature (123), other (PI) phosphatases are likely produced by
the pathogen.

The Icm/Dot substrates VipD, PlcC, and LpdA are lipases,
which possess broad range activity against phospholipids
including mono-phosphorylated PIs (Figure 4 and Table 1).
VipD was identified as an Icm/Dot substrate that impairs
membrane trafficking in yeast (130, 131). The effector

hydrolyzes PE as well as phosphatidylcholine (PC) (132)
and, intriguingly, binds Rab5 as well as Rab22 and acts as
a Rab5-activated phospholipase A1 (133–135). Accordingly,
VipD removes PtdIns(3)P from endosomal membranes
and thus might promote the evasion of the endocytic

pathway by LCVs (133, 134). Analogously, the Icm/Dot
substrate PlcC (alias CegC1) is a metallophospholipase C,
which hydrolyzes a broad spectrum of lipids including PC,
phosphatidylglycerol (PG), and PtdIns (111). The effector can
degrade PtdIns(3)P and likely destabilizes target membranes.
Finally, the Icm/Dot substrate LpdA is a phospholipase D
that binds to membranes through C-terminal prenylation and
hydrolyzes PG, PtdIns and PtdIns(3)P as well as PtdIns(4)P
yielding phosphatidic acid (PA) (83). While LpdA does not
seem to affect the cellular PI pattern, the phospholipase triggers
Golgi fragmentation.

SUBVERSION OF HOST
PHOSPHOINOSITIDE KINASES AND
PHOSPHATASES BY L. PNEUMOPHILA

In addition to directly modulating PI lipids, L. pneumophila
effectors also subvert the host cell PI pattern indirectly by
targeting eukaryotic PI phosphatases and kinases (Figure 4). The
PtdIns(3)P-binding virulence factor LpnE binds mammalian
OCRL (Oculocerebrorenal syndrome of Lowe) and its
Dictyostelium homolog Dd5P4 (D. discoideum 5-phosphatase
4) via their N-terminal domains (156). The interaction of
LpnE with OCRL was recently confirmed by size exclusion
chromatography and supported by the crystal structure of the
bacterial protein (161). OCRL and Dd5P4 are PI 5-phosphatases,
which hydrolyse PtdIns(4,5)P2 and PtdIns(3,4,5)P3 to yield
PtdIns(4)P and PtdIns(3,4)P2, respectively (162, 163). Dd5P4 is
likely catalytically active on LCVs and increases the PtdIns(4)P
available for binding by effectors such as SidC or SidM
(156). Consequently, LpnE might increase the concentration
of PtdIns(4)P on LCVs by recruiting OCRL/Dd5P4, and
thereby promote PI conversion. L. pneumophila grows more
efficiently in D. discoideum lacking Dd5P4, and thus, the

pleiotropic PI 5-phosphatase restricts intracellular bacterial
growth. Mechanistic details of this process are not known,
but Dd5P4 modulates the recruitment of calnexin, Rab1 and
retromer components to LCVs, which might account for growth
restriction (156, 164).

The Icm/Dot substrates RalF and SidM possibly contribute
indirectly to the modulation of the LCV PI pattern through
the recruitment and activation of small host GTPases. RalF
is an Arf1 GEF and activates the small GTPase on the LCV
[(22, 112); Figure 4 and Table 1]. RalF harbors a C-terminal
globular “capping” domain, which regulates GEF activity by
auto-inhibition (77). Activated Arf1 recruits PI 4-kinase IIIβ
(PI4KIIIβ) to the trans Golgi network (165), and hence, RalF
might indirectly increase the PtdIns(4)P concentration on
LCVs. Indeed, the depletion by RNA interference of PI4KIIIβ,
but not PI4KIIIα or PI4KIIα decreases the amount of the
PtdIns(4)P-binding effector SidC on LCVs, suggesting that in
absence of PI4KIIIβ the level of PtdIns(4)P is reduced (84).
Analogously, SidM recruits and activates Rab1 on LCVs (see
above). Activated Rab1 (166) as well as Arf1 (167) recruit OCRL
to endosomal membranes. Accordingly, SidM might not only
bind to PtdIns(4)P, but also indirectly contribute to an increase
of this PI on LCV membranes.

The Icm/Dot substrates LpdA and LecE localize to LCVs and
might also indirectly modulate the LCV PI pattern by promoting
DAG biosynthesis [(99); Table 1]. LpdA is a phospholipase D,
which hydrolyzes PC to yield PA (see above). LecE enhances
the activity of the eukaryotic PA phosphatase Pah1, which
dephosphorylates PA yielding DAG. The second messenger DAG
recruits protein kinase D (PKD) and its activator protein kinase
C (PKC) to membranes. Activated PKD then interacts with
PI4KIIIβ, thereby possibly also contributing to an increase in
PtdIns(4)P on LCVs (99).

CONCLUSIONS AND OUTLOOK

Legionella pneumophila replicates intracellularly in phagocytes
within an LCV, a complex compartment tightly associated with
the ER. The nascent LCV undergoes a PI conversion from
PtdIns(3)P to PtdIns(4)P, and thereby is rerouted from the
bactericidal endocytic to the replication-permissive secretory
pathway. To modulate the PI pattern in infected cells,
L. pneumophila (i) recruits PI-decorated vesicles, (ii) produces
effectors acting as PI interactors, phosphatases, kinases or
phospholipases, or (iii) subverts host PI-metabolizing enzymes.
To this end, at least 21 T4SS-translocated effector proteins
have been shown to target the host PI metabolism (Table 1).
Intriguingly, a number of these effectors harbor 2–3 different
functional domains and link PI signaling to other pivotal
cellular pathways, e.g., SidC (PI interactor, ubiquitin ligase),
SidM (PI interactor, Rab1 GEF, Rab1 AMPylase), LepB (PI
interactor, PI 4-kinase, Rab1 GAP), SetA and LtpM (PI interactor,
glycosyltransferase), and VipD (Rab5 interactor, phospholipase).
LCV formation and the contribution of PI lipids to this
process are incompletely understood. Among the more than
300 T4SS-translocated effector proteins of L. pneumophila only
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about 50 have been thoroughly investigated. Future studies will
focus on the structural, molecular and cellular characterization
of novel effectors implicated in host cell PI pattern subversion, as
well as on the spatiotemporal regulation of effector translocation
and function.
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Mutual interactions between cancer cells and the tumor microenvironment importantly

contribute to the development of tyrosine kinase inhibitor (TKI) resistance in patients

affected by EGFR-mutant NSCLC. In particular, immune recognition-associated proteins

with impact on tumor cell clearance through phagocytosis, such as CD47 and calreticulin,

could contribute to adaptive resistance and immune escape. Preclinical studies targeting

the anti-phagocytic CD47 molecule showed promising results in different cancer types

including lung cancer, but no data are available on its role in patients acquiring resistance

to EGFR TKI treatment. We analyzed the functional contribution of CD47 and calreticulin

to immune surveillance and evasion in a panel of NSCLC cell lines carrying sensitizing

or resistant mutations in the EGFR gene, following treatment with the TKI gefitinib and

after in vitro development of gefitinib resistance. While CD47 and calreticulin protein

levels were markedly variable in both EGFR-mutant and wild-type cell lines, analysis of

NSCLC transcriptomic dataset revealed selective overexpression of CD47 in patients

carrying EGFR mutations. EGFR inhibition significantly reduced CD47 expression on

the surface of pre-apoptotic cells, favoring more efficient engulfment of cancer cells by

monocyte-derived dendritic cells. This was not necessarily associated with augmented

surface exposure of calreticulin or other molecular markers of immunogenic cell death.

Moreover, CD47 expression became up-regulated following in vitro drug resistance

development, and blocking of this protein by a specific monoclonal antibody increased

the clearance of EGFR-TKI resistant cells by phagocytes. Our study supports CD47

neutralization by specific monoclonal antibody as a promising immunotherapeutic option

for naïve and resistant EGFR-mutant NSCLCs.

Keywords: CD47, non-small cell lung cancer, tyrosine kinase inhibitor resistance, phagocytosis checkpoint, innate

immunity, cancer immune surveillance
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INTRODUCTION

Non-small-cell lung cancer (NSCLC) accounts for 85% of all
diagnosed cases of lung cancers, with the diagnosis taking
place often when the disease is at locally advanced or
metastatic stage (1, 2). The discovery of oncogenic driver
mutations in almost two-thirds of NSCLCs and the introduction
of targeted therapies undeniably improved the outcome in
patients with oncogene-addicted adenocarcinoma. However,
clinical response to treatment is generally temporary and
incomplete (3). Recent studies on the molecular determinants
of resistance to tyrosine kinase inhibitors (TKIs) identified
two major mechanisms either affecting targeted oncogenes
(“on-target” resistance) or molecules residing downstream or
belonging to parallel and other pathways (“off-target” resistance)
(4). In addition, dynamic interactions between tumor cells
and the surrounding microenvironment critically contribute
to modifying the response to TKI therapy and influence
the development of resistant phenotypes (5–7). It has been
demonstrated that in epidermal growth factor receptor (EGFR)-
driven lung tumors, anti-tumor immunity is inhibited by
activation of the Programmed death 1 (PD-1)/Programmed
death ligand 1 (PD-L1) pathway, leading to suppression of
effector T cell function and increased levels of pro-inflammatory
cytokines (8). As recently shown, PD-L1 expression in tumor
cells adversely affects EGFR-TKI efficacy, especially in NSCLC
patients with de novo resistance (9). Furthermore, the secretion
from stromal cells of paracrine factors such as interleukin-6
(IL-6), transforming growth factor-β (TGF-β), and hepatocyte
growth factor (HGF) promotes MAP-kinase activation and
further supports EGFR TKI resistance development by eluding
EGFR pathway inhibition (10).

Immune checkpoint inhibitors (ICIs) targeting the PD-
L1/PD-1 axis have been recently approved for the treatment of
EGFR- and Anaplastic lymphoma kinase (ALK)-positive NSCL
tumors after failure of appropriate targeted therapy (11, 12).
While the association of EGFR mutations with high PD-L1
expression suggests the potential efficacy for PD-L1 inhibitors
in this setting, treatment with ICIs showed limited efficacy in
different cohorts of patients previously treated with an EGFR
TKI (13–16) and the outcome did not show correlation with the
EGFR mutation subtype. The poor response to ICIs in EGFR-
mutated, TKI-resistant patients suggests that other immune-
escape mechanisms are at stake in this clinical phenotype.

No studies to date have examined the effects of EGFR TKIs
on immune recognition-associated molecules, such as CD47
and calreticulin (CRT), recently found to affect innate immune
surveillance. CD47, originally identified as integrin-associated
protein (IAP), is a cell-surface immunoglobulin-like molecule
that serves as a “don’t eat me” signal via its interaction with signal
regulatory protein alpha (SIRPα) on phagocytes (17, 18). Loss
of CD47 is permissive to homeostatic phagocytosis of aged or
damaged cells (19, 20). While CD47 is ubiquitously expressed at
low levels on normal cells, multiple hematologic and solid tumors
have been found to express higher levels of CD47 compared
to their non-transformed counterparts (21–24). Enhanced
expression of CD47 has also been reported in primary NSCLC

tumors and cell lines (25). Up-regulation of CD47 expression
in human cancers negatively regulates anti-tumor immunity
through suppression of phagocytosis, and it has been associated
with tumor growth and dissemination (18, 25–28). Conversely,
CRT is a highly conserved endoplasmic reticulum chaperone
protein, which, upon translocation from the endoplasmic
reticulum to the cell surface, provides an “eat-me” signal and
facilitates capture by macrophages and dendritic cell precursors
of cancer cells undergoing immunogenic cell death (ICD) or
other stress conditions (29, 30). Fucikova et al. demonstrated
that the expression of CRT in NSCLC correlates with increased
accumulation of antitumor immune cells and favorable prognosis
(31). Given the emerging critical roles of CD47 and CRT in
NSCLC adenocarcinomas, in the present study, we assessed
whether the EGFR TKI gefitinib modulates their expression
in different EGFR-mutated NSCLCs. Furthermore, we analyzed
in these cells the functional contribution of these proteins to
immune surveillance, while their potential role in surveillance
evasion was tested in subsets of NSCLC cell lines rendered TKI
resistant in vitro.

MATERIALS AND METHODS

Cell Lines
Human NSCLC cell lines NCI-H1975, NCI-H1299, NCI-H1437,
and NCI-H1573 were purchased from ATCC (American Type
Culture Collection, Manassas, Virginia). PC9 and HCC827 cell
lines were obtained from Cell Biology and Biotherapy Unit,
Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale.” The
EGFR TKI-resistant cell lines, PC9GR and HCC827GR, were
generated by culturing the respective parental cell lines in the
presence of increasing concentrations of TKI Gefitinib (from
0.05 to 0.5µM and from 0.1 to 1µM, respectively) for 8
weeks, to reach a concentration 10 times higher than the
initial IC50. Cell lines were cultured in RPMI-1640 medium
(Gibco) supplemented with 10% fetal bovine serum (Gibco),
1% L-glutamine (2mM, Lonza), 1% streptomycin-penicillin
(EuroClone) at 37◦C in a 5% CO2 humidified atmosphere.
Short tandem repeat (STR) loci for cell lines authentication
were evaluated for all cell lines, by using the GenePrint10-
System (Promega).

Antibodies and Reagents
Anti-CD47-APC, anti-CD47-FITC, anti-CD11c-APC-Vio770,
anti-CD11-PE, anti-CD14-FITC, anti-CD80-PE, anti CD83-PE,
anti-CD86-PE, anti-HLA-DR-FITC, anti-HLA-ABC-FITC, anti-
Hsp70-FITC, and 7-Amino-Actinomycin D (7-AAD) fluorescent
DNA dye were purchased from Miltenyi. All monoclonal
antibodies (mAbs) used in flow cytometry experiments were
used at 1:200 titer unless otherwise specified. Anti-calreticulin-
FITCmAb (EPR3924; 1:50) and anti-GAPDHwere from Abcam.
Anti-mouse/human/rat CD47 mAb or mouse IgG isotype
control were purchased from Bio X Cell. Anti-phospho-EGFR
(Y1608), anti-EGFR, and anti-phospho-Akt (S473) were from
Cell Signaling Technology. Secondary antibodies anti-rabbit IgG-
HRP or anti-mouse IgG+IgM+IgA-HRP were from Bethyl
Laboratories. Gefitinib was purchased from Selleckchem, and
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its IC50 was determined for each cell line using Cell-Counting
Kt-8 (Dojindo Laboratories) according to the manufacturer’s
instructions. Gefitinib IC50 for each cell line, reported in
Table 1, was used for all the experiments. Recombinant human
granulocyte-macrophage colony-stimulating factor (GM-CSF)
was purchased from Miltenyi, and interferon (IFN)-α (IntronA)
from SP Europe.

Protein Extraction and Western Blot
For total protein extraction, cells were directly lysed in a buffer
containing 50mM Tris/HCl at pH 7.5, 150mM NaCl, 2mM
EDTA, 2mM EGTA, 25mM NaF, 25mM β-glycerolphosphate,
0.1mM Na3VO4, 0.1mM PMSF, 0.2% Triton X-100, 0.3%
Nonidet P40, and a cocktail of protease inhibitors (100 X,
EuroClone). After incubation on ice for 30min, the lysate was
centrifuged at 13,000 rpm for 15min at 4◦C. A total of 15 µg
of protein per well was separated by 4–15% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and transferred to
nitrocellulose membranes. Membranes were then blocked with
5% milk-TBST buffer (TBS plus 0.1% Tween-20) for 1 h at room
temperature and incubated with primary antibodies overnight
at 4◦C, washed with TBST buffer three times, and incubated
with corresponding secondary antibodies at room temperature
for 45min. Signals were detected by the “Pierce ECL Western
Blotting Substrate” method (Thermo Fisher Scientific) and
analyzed by the ImageLab software, using the Chemidoc image
acquisition and analysis tool (BioRad).

Flow Cytometry Analysis
To measure the cell surface expression of CD47 and CRT, 2.5 ×

105 cells were seeded in 6-well plates and treated with gefitinib
at their specific IC50 (see Table 1) or corresponding proportions
of DMSO solvent for 48 h. Cells were stained with primary
antibodies for 20min at room temperature (RT). Seven-AAD
was added to exclude non-viable cells from the analyses. For
intracellular labeling with anti-CD47-FITC mAb, cells were fixed

with 4% paraformaldehyde (PFA) and permeabilized with 100%
coldmethanol. Cells were acquired using a BD FACSVerseTM flow
cytometer (BD Biosciences) and the data were analyzed using the
BD FACSuiteTM software.

Differentiation of Dendritic Cells From
CD14+ Monocytes Isolated From
Peripheral Blood
Human peripheral blood mononuclear cells (PBMCs) were
isolated from whole blood donated by healthy volunteers using
Ficoll HyPaque (GE Healthcare). Monocytes were isolated
from PBMCs by positive selection onto MACS LS columns
using CD14 MicroBeads (Miltenyi) following the manufacturer’s
protocol. The resulting cell suspensions, containing at least 85%
monocytes, were seeded in 6-well plates at a concentration of
2.0 × 106 cells/ml and cultured for 3 days at 37◦C in a 5%
CO2 humidified atmosphere in CellGenixTM GMP DC medium
(CellGenix GmbH) supplemented with 1% streptomycin-
penicillin (EuroClone), and in the presence of 500 ng/ml GM-
CSF and 10,000 U/ml IFN-α (32). Differentiation of dendritic
cells was confirmed by immune phenotype analysis for the
established dendritic cell markers: CD80, CD83, CD86, CD11c,
and HLA-DR.

In vitro Phagocytosis Assay
Dendritic cells were plated in 24-well plates (105 cells/well).
After 48 h, lung tumor cells treated with gefitinib at their
specific IC50 (see Table 1) or DMSO carrier were labeled
with DiO cell-labeling solution (Vybrant Cell-Labeling Solution,
Molecular Probes) and added to dendritic cells at a 1:1
ratio. Where indicated, tumor cells were incubated with anti-
mouse/human/rat CD47 mAb (10µg/ml, Bio X Cell) or mouse
IgG isotype control (10µg/ml, Bio X Cell) prior to culture
with dendritic cells. Following 2.5 h co-culture at 37◦C, cells
were washed twice with PBS and then labeled with anti-CD11c

TABLE 1 | Histological and mutational characteristics of the six NSCLC cell lines included in the study.

Cell line Histology Tumor

source

Mutant gene EGFR mutation Mutation effect on EGFR function Gefitinib

sensitivity

PC9 NSCLC

adenocarcinoma

Primary EGFR E746-A750 deletion Activating, biomarker for TKI therapy IC50 = 0.05 µM

HCC827 NSCLC

adenocarcinoma

Primary EGFR E746-A750 deletion Activating, biomarker for TKI therapy IC50 = 0.1 µM

H1975 NSCLC

adenocarcinoma

Primary EGFR

TP53

PIK3CA

L858R

T790M

Activating, biomarker for TKI therapy

Secondary mutation associated with

TKI acquired resistance

IC50 = 15 µM

H1299 NSCLC

large-cell carcinoma

Metastasis,

lymph node

NRAS

TP53

WT IC50 > 15 µM

H1437 NSCLC

adenocarcinoma

Metastasis,

pleural

effusion

CDKN2A

TP53

WT IC50 > 15 µM

H1573 NSCLC

adenocarcinoma

Metastasis,

soft tissue

KRAS

TP53

PIK3CA

WT IC50 > 15 µM

The indicated gefitinib IC50 values were measured experimentally.
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mAbs (1:200, Miltenyi). Phagocytosis was determined by flow
cytometry detection of dendritic cells double positive for CD11c
and DiO cell-labeling solution.

Annexin V/PI Apoptosis Assay
Tumor cells were seeded into 6-well plates (2.5 × 105 cells
per well) and cultured (72 h) in the absence or presence of
gefitinib at their specific IC50 (see Table 1). Apoptosis was
assessed by cytofluorimetric analysis using FITC-Annexin V
Apoptosis Detection Kit (Dojindo Laboratories) according to the
manufacturer’s instructions.

Analysis of CD47 and CRT mRNA in
Transcriptomic Databases of NSCL
Adenocarcinomas
CD47 and CRT mRNA expression was determined in a publicly
available microarray database collecting frozen primary NSCLC
specimens with different oncogenic driver mutations (GEO
accession number GSE31210) (33, 34). Only the Jetset best probe
sets were considered (35), 226016_at for CD47 and 214315_x_at
for CRT.

Statistical Analysis
Protein expression levels of CD47 and CRT in the different cell
lines were compared using ANOVA test with Fisher’s post hoc
multiple comparison analysis, whereas mRNA expression levels
in different groups of patients were compared using the non-
parametric Kruskal-Wallis test. The effect of gefitinib on CD47
and CRT surface expression and on phagocytosis was determined
by two-tail paired Student’s t-test, based on a minimum of three
experiments/different donors. The effect of a CD47-neutralizing
antibody on phagocytosis was determined using ANOVA test
with Fisher’s post hoc multiple comparison analysis. Statistical
analysis was performed using GraphPad Prism 5 (GraphPad
Software, Inc. La Jolla, CA, USA).

RESULTS

Treatment With Gefitinib Modulates CD47
and CRT Surface Expression in NSCLC Cell
Lines
The basal expression levels of CD47 and surface-exposed CRT
(ecto-CRT) were investigated in a panel of six NSCLC cell lines
harboring different mutations on EGFR as well as on other genes
connected or not to the EGFR pathway (Table 1). Flow cytometry
analysis showed that expression levels of surface CD47 and ecto-
CRT are markedly variable among the different cell lines and
independent of the type of EGFR mutations (Figures 1A,B).
Retrospective analysis of a published dataset of microarray
expression data from frozen primary lung adenocarcinoma
specimens allowed us to investigate CD47 and CRTmRNA levels
in patients (N = 226) with different oncogenic driver mutations
(GEO accession number GSE31210) (33, 34). As shown in
Figure 1C, patients with EGFRmutations expressed higher levels
of CD47 mRNA compared to patients with KRAS mutations,
ALK-fusion, or no mutations in these three driver oncogenes

(Figure 1C, p≤ 0.03 Kruskal-Wallis test). In contrast, in the same
dataset, CRTmRNA expression showed no significant differences
among the four groups of patients (Figure 1D).

Next, we assessed the ability of gefitinib tomodulate CD47 and
CRT surface expression in the cell lines tested. Cells were cultured
for 48 h with gefitinib concentrations corresponding to IC50

identified for each cell line (listed in Table 1) or an equivalent
DMSO amount. Immunoblotting analysis of phospho-EGFR
confirmed the inhibition of EGFR activating phosphorylation
by gefitinib (Figure S1). Flow cytometry analysis of viable cells
showed that gefitinib significantly down-regulated CD47 surface
expression in all cell lines, except for HCC827, one of the two
cell lines harboring the EGFR exon 19 deletion (del19 mutation)
(Figures 2A,C). Concomitantly, gefitinib treatment promoted
a significant increase of ecto-CRT expression in all cell lines
carrying wild-type EGFR and in H1975, whereas no significant
difference was induced in HCC827 and a slow, but consistent
ecto-CRT reduction was detected in PC9 cells (Figures 2B,D).

Gefitinib-Induced Modulation of CD47 and
CRT Is Independent on Immunogenic Cell
Death Promotion
Previous work has shown that the anti-EGFR mAb cetuximab
induces immunogenic cell death (ICD) in colon cancer cells
by triggering endoplasmic reticulum stress response and CRT
translocation, depending on the mutational status of the EGFR
signaling pathway (36). Therefore, we next investigated if the
effects of gefitinib on CD47 and ecto-CRT expression were
associated to the induction of ICD in NSCLC cells. The markers
of ICD evaluated together with the ecto-CRT expression were
the induction of apoptosis, the surface exposure of CRT heat-
shock protein 70 (HSP70), and the release of HSP70 and of
high mobility group box-1 (HMGB1) (37). Consistently with
the spatiotemporal sequence of ICD markers, surface exposure
of proteins was measured in pre-apoptotic cells after 48 h of
treatment, whereas the release of HSP70 and HMGB1 was
measured 72 h after treatment. As shown in Figures 3A,B,
treatment with gefitinib significantly increased the frequency
of cells undergoing apoptosis relative to DMSO-treated cells.
Moreover, gefitinib increased the surface expression of HSP70 by
≥50% in all cell lines except in cell lines carrying EGFR exon
19 deletion, PC9, and HCC827 (Figures 3C,D), in agreement
with findings on ecto-CRT expression in these two cell lines
(Figures 2B,D). In contrast, as shown in Figure 3E, gefitinib
increased HSP70 release over control-treated cells only in
the PC9 cell line. Lastly, gefitinib-induced apoptosis was not
associated with HMGB1 release, which was not detected in
supernatants (data not shown).

Taken together, these results, summarized in Figure 3F,
indicate that while gefitinib-promoted apoptosis is associated
with several ICD traits, these are not all detectable in each cell
line. Therefore, according to recently published findings (38),
the results indicate that EGFR inhibition by gefitinib does not
induce ICD in the NSCLC cell lines tested. Moreover, even
the concomitant activation of the type I interferon pathway, a
well-known important mediator of ICD (39), was insufficient

Frontiers in Immunology | www.frontiersin.org 4 January 2020 | Volume 10 | Article 3135117

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Nigro et al. CD47 and Gefitinib Resistance in NSCLC

FIGURE 1 | Surface CD47 and CRT expression in EGFR wild-type and mutant NSCLC cells. Surface CD47 (A) and ecto-CRT protein expression (B) shown as

geometric MFI in a panel of six different NSCLC cell lines. Each histogram represents the mean (± SD) of three to five independent experiments. Comparisons made

by ANOVA with Fisher’s post hoc multiple comparison analysis. ###p < 0.03, ##p < 0.01, #p < 0.0005. Below each histogram, a matrix table where all p values

resulting from post hoc analysis are reported. Expression levels of CD47 (C) and CRT mRNA (D) in 226 untreated primary NSCL adenocarcinomas (GEO accession

number GSE31210). Middle lines in box plots represent the medians and whiskers represent 5–95% CI (###p < 0.03, Kruskal-Wallis test).

to induce ICD in these experiments. In fact, the addition of
IFN-α in these cultures, while further increasing the frequencies
of apoptotic cells, did not augment the effects of gefitinib on
CD47 and ecto-CRT expression (Figures S2A–C) and was also
insufficient to induce HMGB1 release (data not shown).

Gefitinib-Induced CD47 Down-Regulation
Promotes Phagocytosis of Tumor Cells by
IFN-Conditioned Dendritic Cells
Since the balance between CD47 and ecto-CRT expression
determines the susceptibility of cancer cells to engulfment
by phagocytes, based on our results (Figures 2C,D), we
hypothesized that gefitinib treatment could promote
phagocytosis of NSCLC cells by CD47 down-regulation. To

test our hypothesis, we performed phagocytosis assay using
monocyte-derived dendritic cells from healthy donors and, as
target cells, we selected PC9, HCC827, and H1975 cell lines

cultured in the presence of gefitinib or DMSO for 48 h. These

cell lines were included because of their differential mutational

status (EGFR del19 mutation and gefitinib resistant T790M
mutation, respectively) and of their differential CD47/ecto-CRT

balance following treatment with gefitinib. Cell incubation time
was kept at 48 h, since at this time point CD47 down-regulation
and ecto-CRT increase were detectable without high levels of
apoptosis. Gefitinib-treated and untreated cells were then labeled
with the fluorescent tracer DiO (see Methods) and then co-
cultured for 2 h with monocyte-derived dendritic cells (29, 40).
As shown in Figures 4A,B, PC9 cells treated with gefitinib were
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FIGURE 2 | Modulation by gefitinib of surface CD47 and CRT expression in EGFR wild-type and mutant NSCLC cells. Flow cytometric profiles of surface CD47 (A)

and ecto-CRT expression (B) on DMSO-treated (CTRL, gray lines) and gefitinib-treated (GEF, red lines) NSCLC cells. Histograms show the mean (± SD) of fold

changes of CD47 (C) and ecto-CRT (D) geometric MFI, relative to DMSO-treated controls (N = 3–5, *p < 0.05, **p < 0.01 paired two-tailed Student’s t-test).

engulfed more efficiently than untreated controls, in line with
the significant down-regulation of CD47 induced by gefitinib
in these cells (Figures 2A,C). Conversely, gefitinib treatment
did not significantly affect HCC827 and H1975 cell uptake by
dendritic cells (Figures 4C–F). These findings indicate that the
marked ecto-CRT up-regulation observed in gefitinib-treated
H1975 cells (Figures 2B,D) is not sufficient to increase cell
susceptibility to phagocytosis in the absence of a substantial
decrease of CD47 (Figures 2A,C).

Indeed, the addition of a CD47-specific blocking mAb
to gefitinib-treated or untreated HCC827 and H1975 cells
significantly increased the percentage of DiO-positive
dendritic cells, while addition of an isotype control did
not affect tumor cell engulfment (Figures 5A,B). This
indicates that down-regulation of CD47 in gefitinib-treated
NSCLC cells is per se sufficient to enhance antitumor

immunity by improving cell recognition and engulfment by
immune phagocytes.

CD47 Expression Increases in NSCLC Cells
Acquiring Gefitinib Resistance in vitro
The development of TKI resistance is the main limiting
factor of this otherwise effective target therapy in patients
affected by EGFR-mutant lung cancer. Given the increasing
evidence of the involvement of tumor microenvironment in
remodeling cancer cell responsiveness to TKI therapy, we
investigated the expression of CD47 and ecto-CRT in PC9 and
HCC827 cell lines after the acquisition of gefitinib resistance
in vitro. Gefitinib-resistant PC9GR and HCC827GR cells were
generated upon exposure to gradually increasing concentrations
of the drug. Flow cytometry analyses showed a significant
increase of surface CD47 expression in both PC9GR and
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FIGURE 3 | Gefitinib-induced apoptosis in NSCLC cell lines is not immunogenic. (A) Representative counter plot of Annexin V/PI assay for gefitinib-treated (72 h)

NSCLC cell lines and (B) mean (± SD, N = 3–6). (C) Flow cytometric profiles of surface HSP70 expression on NSCLC cell lines treated for 48 h with DMSO (CTRL,

gray lines) or gefitinib (GEF, red lines). (D) Mean (± SD, N = 3–5) of fold changes (over DMSO-treated controls) of cell surface HSP70 geometric MFIs in

gefitinib-treated NSCLC cell lines. (E) Mean (± SD, N = 3–5) HSP70 concentrations in NSCLC supernatants after gefitinib or DMSO (CTRL) treatment (*p < 0.05, **p

< 0.01, paired two-tailed Student’s t-test). (F) The heatmap summarizes the response to gefitinib of established markers of ICD in the tested NSCLC cell lines, with

red and blue reporting increased and decreased values over DMSO-treated cells, respectively.

HCC827GR relative to the parental cell lines (Figure 6A).
Conversely, the development of gefitinib resistance was not
associated with higher expression of CRT on the plasma
membrane (Figure 6B). As expected, treatment of PC9GR and
HCC827GR cells with gefitinib for 48 h did not affect the
expression levels of CD47 (Figure 6C) and failed to promote
tumor cell phagocytosis by dendritic cells (Figure 6D). In
contrast, blockade of the CD47/SIRPα axis by the addition of a
CD47-specific mAb significantly increased PC9GR phagocytosis
by dendritic cells in the presence or absence of gefitinib
(Figure 6E).

DISCUSSION

Our study presents compelling evidence supporting the
modulation of CD47 as a novel and important determinant

of antitumor immunity in the response to EGFR TKI target
therapy. In particular, our findings of overexpressed CD47
in transcriptomic analysis of patients with EGFR-mutated
NSCLC, as well as in tumor cell lines acquiring EGFR TKI
resistance, identify CD47 as target to be further explored
for the immunotherapy treatment of naïve and resistant
EGFR-mutant NSCLCs.

The development of resistance occurs consistently in patients
affected by EGFR-mutant NSCLCs following first-line treatment
with gefitinib and other TKIs. Secondary mutations in the
EGFR gene, including T790M, account for more than 50% of
resistant cases, followed by the MET gene amplification and
the activation of other parallel pathways (41–43). In addition,
histological transformation to SCLC may occur in 3–10% of
cases (11). Recently, the European Medicines Agency extended
the approval of immunotherapy with ICIs to EGFR- and ALK-
positive tumors after failure of appropriate targeted therapy.
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FIGURE 4 | Gefitinib-induced CD47 down-regulation promotes tumor cell phagocytosis by dendritic cells. Representative flow cytometric analyses and mean ± SD

(N = 4 independent healthy donors) of phagocytic activity of monocyte-derived dendritic cells (see Methods) against PC9 (A,B), HCC827 (C,D), and H1975 cells

(E,F) treated with DMSO (CTRL) or gefitinib (GEF) as indicated. Cancer cells exposed to the drug for 48 h were labeled with DiO tracer and then co-cultured with

dendritic cells for 2 h at a 1:1 ratio. Phagocytosis assays were also run at 4◦C as controls. Histograms represent the percentages of positive cells for both CD11c and

DiO tracer relative to total dendritic cells (*p < 0.05, n.s., not significant, paired two-tailed Student’s t-test).

However, the response of these patients to ICI therapy remains
poor (13–15), indicating that blocking the PD1/PD-L1 axis is not
sufficient to obtain an adequate antitumor immune response.

Several studies documented that first-generation EGFR TKIs
improve the interaction between natural killer (NK) and
tumor cells favoring immune-mediated cytotoxicity, indicating

Frontiers in Immunology | www.frontiersin.org 8 January 2020 | Volume 10 | Article 3135121

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Nigro et al. CD47 and Gefitinib Resistance in NSCLC

FIGURE 5 | Blocking of CD47 on tumor cells induces phagocytosis by

dendritic cells. Dendritic cells were co-cultured with DiO tracer-labeled

HCC827 (A) and H1975 (B) cancer cells in the presence of IgG isotype control

or anti-CD47 mAb as indicated. Shown is the mean (± SD, N = 3

independent healthy donors) percentage increase of CD11c/DiO tracer double

positive cells, relative to dendritic cells co-cultured with DMSO-treated tumor

cells (#p < 0.05, ##p < 0.01, ANOVA with Fisher’s post hoc analysis).

that EGFR inhibitors can enhance innate tumor immune
surveillance (44–46). Despite that, the potential impact of
this therapy on immune recognition and elimination of
cancer cells by phagocytes remains underexplored. Disruption
of the CD47/SIRPα axis with specific mAbs may promote
cancer cell elimination by macrophages, and it is a potential
immunotherapeutic strategy recently described for different
cancers, including SCLC and NSCLC (24, 26, 47–49). Our
analysis of large transcriptomic dataset identified higher
expression levels of CD47 mRNA, but not of CRT mRNA,
in primary lung adenocarcinomas with EGFR mutations
as compared to those with different oncogenic mutations.
Functional relevance of CD47 overexpression is indicated by
our data; although gefitinib down-regulates CD47 and increases

ecto-CRT in almost all cell lines tested, it is the decrement of
CD47 that results in enhanced phagocytosis of cancer cells by
dendritic cells. These results suggest that gefitinib could enhance
antitumor immunity by improving lung cancer cell recognition
and engulfment by immune phagocytes chiefly through CD47
down-regulation, thereby inhibiting tumor cell viability not
only through TK-dependent mechanisms but also by enhancing
innate anticancer immune responses.

At variance with previous works using anti-EGFR mAbs

7A7 F(ab
′

)2 in mice (50) and cetuximab in humans (36),
in our experimental system, gefitinib does not induce ICD,
as it fails to induce established ICD markers (e.g. HMGB1
secretion) in the cells where it promotes widespread apoptosis.
Moreover, our results show that the activation of type I IFN
pathway is not sufficient to improve the immunogenic features
of gefitinib-induced apoptosis. On the other hand, the induction
of HSP70 surface exposure and its release by gefitinib-treated
tumor cells point to additional immune-modulatory effects of the
EGFR TKI.

Our findings that gefitinib-induced down-regulation of CD47
promotes cancer cell phagocytosis in responsive cells and
that establishment of gefitinib resistance reverts this response
indicate a novel immune mechanism for EGFR TKI therapy,
warranting further validation in preclinical and clinical studies.
The relevance of CD47 as target in this setting is also
underscored by the data obtained in PC9GR cells and in H1975
cells, which harbor a T790M mutation, showing that blocking
the CD47/SIRP1α axis promotes cancer cell elimination by
dendritic cells also in NSCLC cell lines in which gefitinib has
minimal or no effect on CD47 expression. On these bases,
evaluation of CD47 expression in patients with EGFR-mutant
NSCLCs becoming resistant to target therapy may justify the
subsequent adoption of CD47-targeting immunotherapeutic
options. In support of this strategy, the administration of
CD47-specific mAb inhibited in vivo the growth of xenografted
tumors developed from patient-derived lung cancer cells
or cancer stem cells by recruiting macrophages into the
tumor microenvironment (49). Moreover, the administration
of CD47-blocking antibodies or targeted inactivation of the
Cd47 gene in humanized mouse models markedly inhibited
SCLC tumor growth (24). These evidences could support
immunotherapy with CD47-blocking agents as a viable option
also in patients undergoing histopathological transformation
after EGFR-TKI therapy.

CONCLUSIONS

Several studies conducted over the last few years support
an important role of the tumor microenvironment in
mutant NSCL adenocarcinoma, especially in TKI resistance
development and its dynamic remodeling by target therapy.
Increasing awareness of an essential contribution by innate
immunity in tumor immune surveillance and in metastasis
control is advocated whereby new immunotherapeutic
options are becoming available for management of relapsed
EGFR mutant patients. In particular, promotion of tumor
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FIGURE 6 | Expression levels of surface CD47 increase in cancer cells acquiring resistance to gefitinib and inhibit tumor cell phagocytosis by dendritic cells. Surface

CD47 (A) and ecto-CRT expression (B) in gefitinib-sensitive PC9 and HCC827 (gray lines) and resistant PC9GR and HCC827GR (green lines) cell lines. Representative

flow cytometric histograms (left) and mean (± SD, N = 3–5) fold changes of treatment-resistant over sensitive cells (right). (C) Representative flow cytometric

histogram plots (left) and mean (± SD) fold changes (right) of surface CD47 levels in resistant cell lines treated with DMSO (CTRL) or gefitinib (GEF) as indicated.

(Continued)
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FIGURE 6 | Acquisition of resistance to gefitinib abolished drug-induced CD47 down-regulation in PC9GR (*p < 0.05, **p < 0.01, n.s., not significant, paired

two-tailed Student’s t-test). (D) Mean ± SD (N = 3 independent healthy donors) of phagocytic activity of monocyte-derived dendritic cells against PC9GR cells in the

absence or presence of gefitinib treatment, performed at 4◦C as control and at 37◦C. Histograms represent the percentages of positive cells for both CD11c and DiO

tracer relative to total dendritic cells (paired two-tailed Student’s t-test. n.s., not significant). (E) Dendritic cells were co-cultured with gefitinib-treated, DiO tracer-labeled

PC9GR cells in the presence of IgG isotype control or anti-CD47 mAb. Shown is the mean ± SD (N = 3 independent healthy donors) percent change of CD11c+/DiO+

tracer double positive dendritic cells, relative to dendritic cells co-cultured with DMSO-treated tumor cells (##p < 0.01, ANOVA with Fisher’s post hoc analysis).

cells elimination by phagocytosis could be successfully
achieved through the administration of anti-CD47 mAbs.
The effectiveness of CD47 blockade also following gefitinib
treatment, as shown in our experiments in vitro, supports the
development of therapeutic strategies in which anti-CD47
immunotherapy and target therapy may be combined to
minimize the development of resistant clones responsible for
tumor relapse.
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Phagocytosis is one of the key innate defense mechanisms executed by specialized

cells in multicellular animals. Recent evidence suggests that a particular phagocytic

receptor expressed by human polymorphonuclear granulocytes, the carcinoembryonic

antigen-related cell adhesion molecule 3 (CEACAM3), is one of the fastest-evolving

human proteins. In this focused review, we will try to resolve the conundrum why

a conserved process such as phagocytosis is conducted by a rapidly changing

receptor. Therefore, we will first summarize the biochemical and structural details of this

immunoglobulin-related glycoprotein in the context of the human CEACAM family. The

function of CEACAM3 for the efficient, opsonin-independent detection and phagocytosis

of highly specialized, host-restricted bacteria will be further elaborated. Taking into

account the decisive role of CEACAM3 in the interaction with pathogenic bacteria, we

will discuss the evolutionary trajectory of the CEACAM3 gene within the primate lineage

and highlight the consequences of CEACAM3 polymorphisms in human populations.

From a synopsis of these studies, CEACAM3 emerges as an important component

of human innate immunity and a prominent example of a dedicated receptor for

professional phagocytosis.

Keywords: phagocytosis, CEACAM3, pathogenic bacteria, granulocyte, human innate immunity, ITAM,

immunoreceptor tyrosine-based activation motif, signal transduction

INTRODUCTION

The ability to detect and phagocytose microbes is vital to protect multicellular organisms
against dangerous infections. In mammals, this important function is accomplished by dedicated
immune cells, the so-called professional phagocytes, encompassing macrophages, dendritic cells,
and polymorphonuclear granulocytes (PMNs). They carry out phagocytosis via two distinct
mechanisms: On the one hand, they perform opsonin-independent phagocytosis by utilizing
receptors such as mannose receptor, scavenger receptor, Siglecs, DC-SIGN, or Dectin-1, which
directly recognize and bind microbial surfaces that expose characteristic molecular patterns, such
as glycan structures with terminal mannose or sialic acid residues, or fungal β-glucans (1–3). As
such types of glycans are found on various microorganisms, including bacteria, fungi, as well
as protozoa, and can also occur on endogenous structures, opsonin-independent receptors often
detect a broad and diverse range of particles. On the other hand, professional phagocytes are
capable of performing opsonin-dependent phagocytosis. Prominent opsonin-dependent receptors
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are complement or Fc receptors, which require prior coating of
particles with host-derived complement components or specific
antibodies before they are able to initiate phagocytosis (4–
6). Therefore, opsonin-dependent receptors can be targeted
toward specific microbes, but they cannot support phagocytosis
in situations where opsonins are either not present or where they
fail to mark the microbial surface, for example, in the case of
antigenically variable or encapsulated microorganisms.

Recent work has indicated that, at least in primates, a
third group of specialized phagocytic receptors operates, which
combines pathogen-specific detection with the immediate action
of opsonin-independent receptors. The paradigm for this type
of phagocytic receptors is the carcinoembryonic antigen-related
cell adhesion molecule 3 (CEACAM3). CEACAM3 is a receptor
of the immunoglobulin (Ig) superfamily and a member of the
CEA subfamily of Ig domain containing cell adhesion molecules
(IgCAMs) (Figure 1). In humans, CEACAM3 is selectively
expressed by PMNs and plays a prominent role in the opsonin-
independent detection and elimination of a small set of human-
restricted bacteria. In this review, we will place CEACAM3 in
the context of a growing list of bacterial pathogens expressing
CEACAM-binding adhesins and discuss the biochemical and
functional evidence that this receptor is an effective phagocytosis-
initiating protein and granulocyte activator. Further, we will
elaborate the evolutionary trajectory of the CEACAM3 gene
within the primate lineage and discuss the significance of human
CEACAM3 polymorphisms, which appear to accommodate the
recognition of variable bacterial surface antigens.

CEACAM FAMILY MEMBERS AND THEIR

ROLE AS MICROBIAL TARGETS

Upon the identification of carcinoembryonic antigen (CEA)
as a prominent surface protein expressed by human colon
carcinomas, it was soon realized that antibodies directed
against CEA react with numerous other proteins, especially
on granulocytes (8, 9). According to their apparent molecular
weights, these proteins were initially termed non-specific cross-
reacting antigen (NCA) -26, -50, -90, -95, and -160 (10).
Screening of a human leukocyte cDNA library with a probe
derived from NCA-50 uncovered several transcripts including
clone W264 containing a 1259-base pair insert (11). The
insert encoded a 252-amino acid protein, which was designated
Carcinoembryonic Gene family Member 1a (CGM1a) and later
grouped, due to its reactivity with monoclonal antibodies, into
the CD66 cluster of differentiation. Besides CGM1a (CD66d),
the CD66 antigens comprise biliary glycoprotein (BGP; CD66a),
CGM6 (CD66b), NCA-50 (CD66c), and CEA (CD66e), which
share 69–92% amino acid sequence identity in their amino-
terminal immunoglobulin-variable (IgV)-like domains with
CGM1a (11–14). Superposition of known crystal structures of
CEA, CD66a, and CD66c reveals that these sequence similarities

Abbreviations: CEA, carcinoembryonic antigen; CEACAM, CEA-related cell

adhesion molecule; Ig, immunoglobulin; ITAM, immunoreceptor tyrosine-based

activation motif.

FIGURE 1 | Schematic drawing of selected members of the human CEACAM

family. Schematic outline of several members of the human carcinoembryonic

antigen (CEA)-related cell adhesion molecule (CEACAM) receptor family. All

CEA-related proteins belong to the immunoglobulin (Ig) superfamily and are

characterized by the possession of a homologous amino-terminal Ig variable

(IgV )-like domain, which is depicted in the case of CEACAM3 as a rendered

protein surface according to Bonsor et al. (7). The blue circles indicate the

IgV-like domains of CEACAMs other than CEACAM3, while the blue octagons

indicate additional Ig constant 2 (IgC2)-like domains occurring in different

numbers in particular family members. The transmembrane helices of

CEACAM1, CEACAM3, and CEACAM4 connect the extracellular Ig-domains

with functional ITIM (CEACAM1), ITAM-like (CEACAM3), or consensus ITAM

sequences (CEACAM4). GPI-anchors of CEACAM5/CEA and CEACAM6 are

depicted in gray.

also translate into high structural conservation between these
proteins (7, 15).

The growing awareness of the complexity of the CEA
family necessitated a major revision of the nomenclature,
which led to CGM1a (CD66d) being renamed CEACAM3 (16)
(for current and former nomenclature of CEACAM family
members discussed in this review, please consult Figure 1).
While CEACAM3 transcripts and protein have only been
detected in human granulocytes and myeloid leukemia cells, the
other closely related CD66 antigens are either widely expressed
on epithelial and hematopoietic cells (CD66a/BGP/CEACAM1
as well as CD66c/NCA-50/CEACAM6) or exclusively expressed
by mucosal epithelial cells (CD66e/CEA/CEACAM5) (17–19).
Furthermore, CEACAM3 is distinct from other CD66 antigens
in that its extracellular part does only comprise a single IgV-
like domain and lacks additional Ig constant (IgC)-like domains,
which are present in varying numbers (2-6 IgC-like domains) in
CEACAM1, CEACAM5, and CEACAM6 (Figure 1) (20). This
short stature of CEACAM3 might also be the reason why this
receptor does not participate in binding interactions with other
CEACAM family members, as the IgC-like domains can stabilize
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cis- and trans-interactions between CEACAM extracellular
domains and thereby contribute to cell–cell adhesion (21, 22).
Indeed, CEACAM1, CEA, CEACAM6, and CEACAM8 engage
in CEACAM–CEACAM interactions with each other to support
cell–cell binding (12, 21–24).

As CEACAM3 does not participate in these binding
interactions, what could then be the function of this particular
CEA-related protein on professional phagocytes? Clearly, the
physiological role of CEACAM3 can only be reconciled in light of
the fact that several pathogenic bacteria and fungi take advantage
of epithelial CEACAMs as preferred docking sites on the mucosa
[for review, see (25)]. Indeed, a growing list of pathogens has
been found to express dedicated adhesins to specifically connect
to human CEACAM family members, such as CEACAM1,
CEA, and CEACAM6, which are exposed on the apical surface
of human epithelial cells. CEACAM-binding microorganisms
comprise Neisseria gonorrhoeae (causative agent of the venereal
disease gonorrhea), Neisseria meningitidis (bacterial meningitis),
Haemophilus influenzae (pneumonia, bacterial meningitis),
Haemophilus aegyptius (purulent conjunctivitis), Helicobacter
pylori (chronic gastritis, stomach cancer), Moraxella catarrhalis
(otitis media, sinusitis), Fusobacterium nucleatum (periodontal
disease), pathogenic Escherichia coli strains (Adherent-invasive
E. coli, Diffusely adherent E. coli; involved in Crohn’s disease),
and the yeast Candida albicans (candidiasis, systemic infections)
(26–35). It is important to mention that almost each of these
pathogens employs a structurally distinct adhesive protein to
bind human CEACAMs, implying that these adhesins have
evolved independently multiple times in a striking form of
convergent evolution (7, 15, 32, 36–39). Evidently, there must be
strong, but not necessarily a uniform selection pressure on these
microorganisms to develop CEACAM-binding adhesins. Several
non-mutually exclusive explanations have been put forward
to explain this exceptional preference of distinct pathogenic
microbes to engage human CEACAMs. One finding relates to
the fact that CEACAM1, the target of a large fraction of these
adhesins, is also expressed by T cells and that major CEACAM1
isoforms have a negative regulatory role in T cell stimulation
and proliferation [reviewed in (40)]. A second hypothesis is
based on the fact that a unifying theme for all CEACAM-
binding microbes is their outstanding ability to colonize, often
throughout the lifespan of an individual, the mucosal surface of
either the naso-pharynx, the gastrointestinal, or the urogenital
tract. The role of CEACAM engagement in mucosal colonization
has been best worked out in the case of N. gonorrhoeae and
N. meningitidis and demonstrated that both microbes greatly
profit from tight association with CEACAMs, which facilitates
successful host colonization (41–43). Aside from their role as a
handle by which to anchor to the mucosal epithelia, CEACAM
engagement allows bacteria to suppress the exfoliation and
delamination of superficial epithelial cells, thereby creating a
stable foothold on the mucosa (41, 44, 45). It becomes obvious
that pathogens can immensely profit, potentially in multiple
ways, from engaging CEACAMs on epithelial cells and this nicely
explains the prevalence and independent evolution of CEACAM-
binding adhesins among human pathogens. However, why is
it then that humans rarely succumb to gonococcal infection

or develop severe forms of disease after being colonized by N.
meningitidis or H. pylori, which are present in a large fraction
of the healthy population? Indeed, CEACAM-binding pathogens
such as F. nucleatum,M. catarrhalis,N. gonorrhoeae, orH. pylori,
despite being able to efficiently colonize the human mucosa,
rarely or only in a minority of the cases lead to a fatal outcome.
It is exactly in the context of this scenario that we can now
appreciate the role of CEACAM3, a CEACAM family member
that does not participate in cell–cell interactions, but is present on
the surface of professional phagocytes. In particular, the capacity
of CEACAM3 to trigger rapid phagocytosis of attached particles
and to activate bactericidal mechanisms of granulocytes will be
discussed in the next sections, as these features provide major
clues to understand the specialized function of this protein.

CEACAM3-INITIATED SIGNAL

TRANSDUCTION LEADING TO

PHAGOCYTOSIS

CEACAM3’s notable status within the CEACAM family is not
only due to its small extracellular domain and its cell-type-
specific expression pattern, but is also based on a particular
sequence motif within its cytoplasmic domain. Similar to
the prototypic opsonin-dependent phagocytic receptors of
the Fc receptor family, the carboxy-terminus of CEACAM3
encompasses an immunoreceptor tyrosine-based activation
motif (ITAM) [for review, see (46)]. To bemore precise, themotif
found in CEACAM3 does not conform perfectly to the consensus
ITAM (D/Ex(7)D/ExxYxxI/Lx(6−8)YxxI/L), but resembles an
ITAM-like motif, where the carboxy-terminal leucine/isoleucine
residue is substituted by methionine (47–49). The presence of
this motif and the expression in professional phagocytes already
indicate that CEACAM3 might be involved in phagocytosis
of CEACAM-binding bacteria. For several CEACAM-binding
pathogens, granulocytes play a major role during symptomatic
disease. For example, the purulent exudate containing numerous
granulocytes with intracellular, gram-negative diplococci is a
diagnostic hallmark of gonorrhea (Figures 2A,B). It has long
been known that gonococci, which express a CEACAM3-
binding adhesin, are recognized and phagocytosed by human
granulocytes in an opsonin-independent manner (Figure 2C),
while isogenic strains lacking a CEACAM-binding adhesin
are hardly recognized under these conditions (26, 27, 50–52).
Despite the presence of other CEACAM family members such
as CEACAM1 and CEACAM6 on the granulocyte surface and
despite the fact that CEACAM3 is expressed at lower levels
compared to CEACAM1 and CEACAM6, CEACAM3 is the
main driving force behind this rapid and efficient opsonin-
independent phagocytosis (53). Evidence for the prominent
role of CEACAM3 comes from pharmacological, biochemical,
genetic, and microbiological approaches: inhibitors that affect
CEACAM1 and CEACAM6-mediated uptake in transfected cell
lines (such as cholesterol-depleting agents) do not interfere with
the opsonin-independent phagocytosis of CEACAM-binding
bacteria by granulocytes (54), while inhibitors or blocking
antibodies selectively affecting CEACAM3-mediated uptake in

Frontiers in Immunology | www.frontiersin.org 3 February 2020 | Volume 10 | Article 3160129

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Bonsignore et al. Review of CEACAM3

FIGURE 2 | Granulocytes respond to Neisseria gonorrhoeae. (A,B) Gram

stain of cervical smears from N. gonorrhoeae-infected women. Even at low

magnification (A) the presence of granulocytes (arrowheads) and detached

epithelial cells (asterisk) can be readily detected. (B) At higher magnification,

granulocytes with phagocytosed diplococci (arrow) as well as extracellular

bacteria are visible. (C) Scanning electron microscopy highlights the massive

lamellipodia (arrowheads) induced on isolated primary human granulocytes

upon exposure to CEACAM3-binding N. gonorrhoeae (asterisk).

transfected cell lines also disrupt this process in granulocytes
(50). Interference with CEACAM3-specific binding partners
or signaling processes by transduction of primary human
granulocytes with dominant-negative variants also severely
compromises the opsonin-independent uptake of CEACAM-
binding bacteria. Selective expression of CEACAM3, but not
CEACAM1 or CEACAM6, in murine promyelocytic cells
can recapitulate major features of neutrophil activation in
response to CEACAM-binding bacteria such as oxidative burst
and degranulation (55). Furthermore, microbes expressing
particular adhesins, which bind CEACAM1, but not CEACAM3,
are hardly phagocytosed by primary human granulocytes
in the absence of opsonins (56). Therefore, the immediate
and dramatic phagocytic response of human granulocytes
exposed to CEACAM-binding bacteria can be mainly attributed
to CEACAM3.

A number of studies have addressed the molecular basis
of CEACAM3’s capability to vigorously trigger opsonin-
independent phagocytosis. Most of these investigations,
conducted with either transfected human cell lines or primary
human granulocytes, have pointed toward a major role of the
ITAM-like motif for CEACAM3 functionality in phagocytosis.
For example, phosphorylation of the tyrosine residues within
this motif (Y230/Y241) is critical for CEACAM3-initiated
phagocytosis, as mutation of either tyrosine to a phenylalanine
significantly decreases internalization and mutation of both
residues results in an additive effect (47, 48, 53, 57). Interestingly,
a single tyrosine-to-phenylalanine mutation completely blocked
phosphorylation of CEACAM3 (48). Whether this points to
a cooperative phosphorylation mechanism requiring both
tyrosine residues or is due to inadequate sensitivity of the assay
is unclear. Besides the ITAM-like motif, additional structural

elements within the cytoplasmic domain possibly contribute to
phagocytic signaling as the CEACAM3 Y230F/Y241F double
mutant exhibits residual phagocytic activity compared to
variants, which lack the complete cytosolic domain (48, 57).
In contrast to CEACAM1 and CEACAM6, cholesterol-rich
membrane domains (lipid rafts) do not seem to contribute
to CEACAM3-mediated phagocytosis, as the CEACAM3-
dependent internalization of bacteria is insensitive to severe
cholesterol depletion, e.g., by methyl-β-cyclodextrin (54, 58, 59).
It has been proposed that a Y-to-F mutation in the ITAM
motif generates a binding site for AP-2, which could support
an endocytic mode of internalization (48). However, regular
endocytosis via AP-2 initiated, clathrin-coated vesicles has an
upper size limit of 200 nm (60), implying alternative endocytic
processes upon deletion or mutation of the CEACAM3 ITAM-
like sequence. Though it is currently unknown which specific
cellular processes guide the residual, ITAM-independent
internalization of bacteria, the ITAM-dependent events upon
CEACAM3 stimulation have been extensively analyzed.

Genetic, biochemical, and pharmacological evidence supports
a major role for kinases of the Src family in CEACAM3
phosphorylation (Figure 3A). Indeed, the local clustering of
CEACAM3 by the multivalent bacteria triggers recruitment
and activation of several members of the Src family tyrosine
kinases, including Hck and Fgr in granulocytes, while in
transfected cell lines, Src, Yes, and Fyn might take over the
respective role (48, 52, 61, 62). Due to acyl modification,
Src family kinases are constitutively associated with the
cytoplasmic leaflet of membranes and are therefore in a
prime position to initially phosphorylate the ITAM tyrosine
residues. Although the tyrosine kinase Syk is also recruited
to nascent gonococci-containing phagosomes in an ITAM-
dependent fashion, pharmacological inhibition of Syk did not
reduce bacterial internalization (63). Only when polystyrol
beads larger than 5µm (a typical gonococcal diplococcus
is about 1–2µm in size) were coated with anti-CEACAM
IgG and used as bacterial surrogate did Syk augment
internalization. The fact that Syk facilitates phagocytosis
depending on particle size is not unique to CEACAM3
as the same phenomenon has been observed for FcγR-
mediated phagocytosis (64). Therefore, Syk is dispensable
for internalization of gonococci, but it clearly does promote
downstream bactericidal activity by enhancing the oxidative
burst, degranulation, and the NF-κB-mediated inflammatory
response (63).

Upon phosphorylation, the ITAM-like motif in CEACAM3
creates a platform for effectors that drive cytoskeletal remodeling
required for phagocytic cup formation (Figure 3B). The adaptor
molecule Nck binds CEACAM3 in a phosphorylation-dependent
manner via its SH2 domain and recruits the WAVE2 complex
to sites of bacterial attachment (65). WAVE2 is part of a
multiprotein complex that activates Arp2/3-mediated actin
nucleation, which drives lamellipodia extension [reviewed
in (66)]. Indeed, ablation of Nck or inhibition of WAVE2
impedes lamellipodia formation and bacterial uptake (65).
The WAVE2 complex is a coincidence detector, which is
activated by the local and temporal co-occurrence of protein
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FIGURE 3 | CEACAM3 signaling connections. (A) Phosphorylation of CEACAM3 upon bacterial engagement. Localized clustering of CEACAM3 receptors by

multivalent, CEACAM-binding bacteria trigger recruitment and activation of several Src family tyrosine kinases, which in turn phosphorylate the ITAM-like sequence in

the cytoplasmic domain of the receptor at two tyrosine residues (Y230 and Y241). This phosphorylation event is critical for downstream signaling processes. (B)

CEACAM3 signaling to the cytoskeleton. The adaptor protein Nck binds via its SH2 domain to the membrane proximal CEACAM3 phosphotyrosine residue pY230

and recruits the WAVE2 complex to sites of bacterial attachment. Activation of this complex requires a localized increase in GTP-loaded Rac, which is orchestrated by

recruitment of the Rac guanine nucleotide exchange factor Vav. Similar to Nck, Vav binds via its SH2 domain to CEACAM3 pY230. Activation of the WAVE2 complex

leads to localized activation of Arp2/3 at the site of infection resulting in particle engulfment by actin cytoskeleton-based lamellipodial protrusions. (C) CEACAM3

signaling to the NADPH oxidase. Residue pY230 serves as an interaction platform for the regulatory subunit of phosphatidylinositol 3′ kinase (PI3K). PI3Ks are

responsible for the generation of phosphoinositides (PIPs), which regulate the oxidative burst by recruitment of NADPH oxidase subunits p40phox and p47phox. In

addition, PIP hydrolysis by CEACAM3-recruited phospholipase C γ (PLCγ) releases the second messengers inositol-(1,4,5)-trisphosphate (IP3) and diacyl glycerol

(DAG). Together, they activate the protein kinase C (PKC), which further stimulates the NADPH oxidase complex. (D) CEACAM3 stimulation of neutrophil

transcriptional response. CEACAM3 can trigger the NF-κB-mediated transcriptional regulation of IL-8 and other neutrophil chemotactic factors. CEACAM3-initiated

NF-κB activation occurs via two distinct routes: the PKCδ/TAK1 pathway and the CARD9/BCL10 pathway depend on Syk localization to phosphorylated CEACAM3.
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tyrosine phosphorylation, acidic phospholipids, and activation
of the small GTPase Rac (67). Importantly, all of these events
are concomitantly initiated by CEACAM3 engagement.
Acidic phospholipids such as phosphatidylinositol-(3,4,5)-
trisphosphate (PIP3) and phosphatidylinositol-(3)-phosphate
(PI3P) sequentially accumulate at the phagocytic cup during
engulfment (59, 68, 69). WAVE2 activation strictly depends
on the recruitment of the small Rho GTPase, Rac, which is
crucial for remodeling of the cytoskeleton (70). Rac1 is also
essential for CEACAM3-mediated phagocytosis and is locally
and transiently activated at the phagocytic cup (52, 53, 57).
Activation of Rac is catalyzed by specific guanine nucleotide
exchange factors (GEFs) that exchange Rac1-bound GDP for
GTP and CEACAM3 aggregation triggers Rac GTP loading by
the GEF Vav (61). Interestingly, Vav itself is activated by Src
family kinases (71, 72) and the Vav SH2 domain can interact
directly with the phosphorylated Y230 within the ITAM-like
motif of CEACAM3 (61). As most other GEFs bind via their
pleckstrin homology domain (PH domain) to phosphoinositides,
their recruitment is intrinsically dependent on PI3K activity.
In contrast, Vav’s direct interaction with phosphorylated
CEACAM3 could render this process PI3K-independent. Indeed,
phosphoinositide 3′ kinase (PI3K) activity is dispensable for
CEACAM3-mediated internalization of gonococci (68, 73).
The direct interaction between phosphorylated CEACAM3
and a Rac GEF as well as the direct linkage to the WAVE
complex via Nck could explain why CEACAM3-mediated
phagocytosis is particularly efficient and rapid (69). In vitro,
∼90% of primary human granulocytes have internalized
multiple CEACAM-binding gonococci within 20min of
infection, while CEACAM-non-binding gonococci remain
almost untouched (48, 69). These studies of CEACAM3-initiated
signal transduction have also indicated that the ability of this
receptor to trigger phagocytosis relies on cellular constituents,
such as Src family kinases, Vav, Rac, and Nck-WAVE, which
can be found in almost any mammalian cell type. Maybe this
universality of CEACAM3 downstream connections explains
why transfection of CEACAM3 cDNA in diverse cell types,
from cervical epithelial cells to mouse fibroblasts, is sufficient
to convert such non-professional phagocytes into cells avidly
and efficiently internalizing CEACAM-binding bacteria. The
generic nature of these processes also indicates that studies
of CEACAM3-initiated phagocytosis are helpful to delineate
the core elements necessary for productive internalization
of particles.

CEACAM3-INITIATED SIGNAL

TRANSDUCTION BEYOND

PHAGOCYTOSIS

In professional phagocytes, phagocytosis is tightly coupled to
downstream bactericidal processes. One central regulatory switch
in this regard is the GTPase Rac, which not only regulates
cytoskeletal remodeling, but is also an essential subunit of
the NADPH oxidase, the enzyme complex generating the
microbiocidal oxidative burst (Figure 3C). In contrast to the

PI3K-independent Rac activation during engulfment described
above, the CEACAM3-induced oxidative burst strictly depends
on PI3K activity (73). Since there is only a partial temporal
overlap between particle engulfment and the oxidative burst,
it is possible that Vav-mediated GTP-loading of Rac during
engulfment is disconnected from a putative phosphoinositide-
dependent GEF, which might activate Rac later during the
induction of an oxidative burst. However, PI3K-generated
phosphoinositides are required at additional regulatory steps
during NADPH oxidase assembly, such as the recruitment of
NADPH oxidase subunits p40phox and p47phox through their
PI3P-binding PX domains (74). Phosphoinositides also serve
as substrate for various lipid phosphatases and phospholipases.
Interestingly, the SH2 domain of phospholipase C γ (PLCγ)
can bind CEACAM3 in vitro and the isolated SH2 domain
is enriched around gonococci-containing phagosomes (48,
75). PLCγ-mediated hydrolysis of phosphatidylinositol-(4,5)-
bisphosphate (PIP2) produces the second messengers diacyl
glycerol (DAG) and inositol-(1,4,5)-trisphosphate (IP3), which
in turn trigger increases in cytosolic Ca2+ and PKC activation.
Indeed, intracellular Ca2+ levels in PMNs rapidly rise upon
CEACAM3 engagement and this process does not occur in
cells lacking PLCγ (47). Accordingly, upstream PLCγ activity
might be required to allow PKC-mediated phosphorylation
of multiple NADPH oxidase subunits, which represents an
important regulatory step in activation of the oxidative burst
[reviewed in (76)].

Though both tyrosine residues within the ITAM-like sequence
of CEACAM3 seem to be functionally relevant, the biochemical
assays conducted so far have pointed toward the Y230 residue
as the central hub for interactions with SH2 domain-containing
proteins. This conclusion is based on binding studies with
synthetic phospho-peptides and pull-down experiments with
recombinant proteins, which demonstrate that the SH2 domains
of Src family kinases, PI3K, Nck, or Vav selectively bind to
phospho-Y230. Therefore, the CEACAM3 ITAM-like sequence
has been likened to a so-called HemITAM sequence found,
for example, in the macrophage receptor Dectin-1, where
also a single tyrosine residue conveys the phagocytic function
(77, 78). Interestingly, the only known negative regulator of
CEACAM3-mediated signaling, the adaptor protein Grb14,
also targets phospho-Y230 (79). One can easily envision
that Grb14 restricts access for other SH2 domain-containing
effector proteins and thereby interferes with CEACAM3-
mediated phagocytosis. However, the idea that multiple proteins
compete for phospho-Y230 of CEACAM3 immediately begs
the question how these binding events can be coordinated
to allow a productive and orchestrated cellular response. In
the future, time-resolved analysis of the various SH2 domain-
mediated binding events upon bacterial CEACAM3 engagement
might help to answer this question. Nevertheless, the emerging
overall picture of CEACAM3 phosphorylation-initiated events
depicts Y230 within the ITAM-like motif as the minimal
structural feature, which directly links CEACAM3 engagement
with cytoskeletal remodeling as well as with the initiation of
bactericidal responses.

It is interesting to mention that there is a further
member of the CEACAM family, CEACAM4, which has a
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domain architecture similar to CEACAM3, which is selectively
expressed in granulocytes, and which harbors a consensus ITAM
(D/ExxYxxLx(6−8)YxxI) (Figure 1). CEACAM4 is an orphan
receptor, as neither an endogenous nor a microbial ligand
for this membrane protein has been detected. However, the
cytoplasmic domain of CEACAM4 can trigger particle uptake,
with both ITAM-embedded tyrosine residues engaging in SH2
domain interactions (80). Therefore, the human CEACAM
family appears to harbor additional phagocytic receptors that
might function to eliminate microorganisms in an opsonin-
independent manner.

Although the main task of PMNs is to clear pathogens
through their bactericidal capabilities, there is mounting
evidence that they can also shape the inflammatory response
[reviewed in (81, 82)]. Indeed, CEACAM3 activation can trigger
an inflammatory program in PMNs (Figure 3D). CEACAM3
binding by Moxarella catarrhalis activates the CARD9/BCL10
pathway resulting in NF-κB-mediated expression of the potent
neutrophil chemotactic factor, interleukin-8 (IL-8) (83). As
CEACAM3 expression is restricted to human neutrophils,
its contribution to inflammatory responses in an organismal
context are difficult to study. Sintsova et al. made use of a
transgenic mouse model that harbors a 187-kb human bacterial
artificial chromosome encoding CEACAM3, CEACAM5,
CEACAM6, and CEACAM7 (CEABAC mice) (84) to study the
CEACAM-mediated response to infection with N. gonorrhoeae
(85). Global expression profiles were generated from both WT
and transgenic neutrophils infected with CEACAM-binding
gonococci to discern CEACAM-dependent signatures. A
pronounced upregulation of pro-inflammatory cytokines was
observed in neutrophils from CEABAC mice, which depends
on p38 MAPK activity and the PKCδ/TAK1/NF-κB axis (85).
Though the used transgenic neutrophils and primary human
granulocytes express other CEACAMs, which could be engaged
by CEACAM-binding bacteria (such as CEACAM6 in the
case of transgenic murine neutrophils or CEACAM1 and
CEACAM6 in the case of primary human neutrophils), inhibitor
studies point to CEACAM3-ITAM signaling as the main
contributor to neutrophil-initiated inflammatory responses. In
vivo, infection of CEACAM-transgenic, but not wild-type mice
with N. gonorrhoeae led to increased neutrophil infiltration
and increased levels of neutrophil-derived IL-1β and MIP-1α.
Accordingly, CEACAM3 signaling on the one hand helps to
limit gonococcal survival, but also initiates a vicious cycle,
where the bacteria-triggered release of chemotactic cytokines
leads to increased neutrophil influx and potentiates the risk of
severe damage to the infected tissue (86). In this light, it will
be important to understand how CEACAM3 signaling is kept
in check to prevent unrestrained inflammatory signaling. In
contrast to the initiation of CEACAM3 signaling, surprisingly
little is known about its termination. The negative regulatory
role of the adaptor protein Grb14 (79) has already been
discussed above. Furthermore, phosphorylation of CEACAM3
appears to be counteracted by the cytoplasmic protein tyrosine
phosphatase SHP-1, which most likely constrains CEACAM3
effector functions by compromising ITAM functionality (87).
Interestingly, neutrophils also express CEACAM1, which

contains an immunoreceptor tyrosine-based inhibitory motif
(ITIM). However, co-recruitment of CEACAM1 does not seem
to have an inhibitory effect on CEACAM3 phagocytic activity
(55). Further research is required to address mechanisms that
could regulate CEACAM3 activity, including intracellular
trafficking of CEACAM3 and cooperation with other phagocytic
receptors (e.g., Fc-γ and complement receptors). Considering the
potential detrimental effects of excessive CEACAM3 activation,
it is highly likely that in human PMNs, additional negative
modulators of CEACAM3 signaling operate.

CEACAM3 EVOLUTION—A RED QUEEN

SCENARIO AT WORK

Based on the functional studies summarized in the previous
sections, it is safe to conclude that CEACAM3 represents
an effective detector and eliminator of CEACAM-binding
bacteria. In its capacity as a phagocytosis-promoting receptor,
CEACAM3 can take care of pathogens expressing CEACAM-
binding adhesins designed to exploit the human receptors
for mucosal colonization. Thereby, CEACAM3 might help to
establish a truce between host and pathogen, which could
be one of the reasons why CEACAM-binding pathogens are
contained in most instances. Looking at this reality from the
viewpoint of a microbe, wouldn’t it then be smart to avoid
expressing a CEACAM3-binding adhesin in the first place?
Obviously, bacteria unanimously answered this question with
“Yes,” as they appear to optimize their adhesins to allow
binding to epithelial CEACAMs such as CEACAM1 and CEA,
while evading CEACAM3 recognition. Indeed, most CEACAM-
binding bacterial adhesins analyzed in this regard show selective
binding to either CEACAM1 or CEA. This is true for the
CEACAM-binding Opa protein adhesins of N. gonorrhoeae and
N. meningitidis as well as for their functional homolog, the OMP
P1 adhesin of H. influenzae, which have been studied most
thoroughly in this context. For example, a single gonococcal
strain encodes 11 distinct Opa adhesins and the complete
compendium of Opa proteins has been functionally tested
for binding to CEACAM family members in the case of N.
gonorrhoeae strains MS11 and VP1. In MS11, 10 out of 11 Opa
adhesins bind CEA, while only three of these are also able to
be recognized by CEACAM3 (50, 51, 88). For strain VP1, 8
out of 10 tested Opa adhesins bound to CEA or CEACAM1,
while only a single Opa protein associated with CEACAM3 (56).
In a complementary approach, Sintsova et al. screened a large
collection of primary isolates from gonorrhea patients for their
CEACAM-binding capacity. Instead of trying to analyze the
complete Opa repertoire of each of these strains, the authors used
low passage isolates, which are thought to continue to express in
vitro the Opa variant previously selected for and expressed in vivo
(89). Also in this study, the overwhelming majority with 74% or
80% of the strains bound CEA or CEACAM1, respectively, and
only 27% were found to also recognize CEACAM3 (89). While
most strains bound CEA and/or CEACAM1, but not CEACAM3,
not a single strain could be observed, which showed a reverse
binding pattern: recognizing CEACAM3, but not recognizing
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an epithelial CEA family member (89). An even more skewed
situation is found in N. meningitidis, where 11 of 13 Opa
proteins of serogroup A, B, and C strains, which have been
tested in binding assays with different CEACAMs, associated
with either CEA or CEACAM1, but none of those Opa proteins
associated with CEACAM3 (90, 91). Similarly, all of the OMP
P1 adhesins derived from 13 different strains of H. influenzae
bound to CEACAM1, but none of those adhesins was recognized
by CEACAM3 (32). Accordingly, bacteria seem to optimize their
adhesins to discriminate between these closely related CEACAMs
and to avoid recognition by CEACAM3.

If there is such a directed evolution on the side of bacterial
CEACAM-binding adhesins, is there a discernable adaptation on
the host side? The increasing availability of human and other
primate genomic information has now allowed an unraveling of
the evolutionary context of CEACAM3. It has been recognized
before that homologs of several human CEACAMs are absent
from rodents. More specifically, a CEACAM3 ortholog could
not be identified even in Old World primates, such as baboon
or African green monkey, by homology searches based on
the extracellular IgV-like domain (92). Large-scale genome
comparisons between closely related primate species have
revealed a high degree of non-synonymous vs. synonymous
nucleotide changes in ortholog genes of CEACAM family
members (93, 94). Interestingly, the bacterial receptors within
the CEACAM family (CEACAM1, CEACAM3, CEA, and
CEACAM6) show an exceptionally strong signature of positive
selection, suggesting that they belong to the fastest-evolving
human genes. In particular, the CEACAM3 gene appears to
be a recent evolutionary invention. Though ITAM-sequence
containing CEACAM-related genes have been described for
various mammals (95–97), a CEACAM3 gene with its specific
exon/intron structure and the characteristic ITAM-like sequence
seems to occur only after the emergence of Old World monkeys
(around 35 million years ago) (98). Indeed, a CEACAM3
ortholog has only been detected at the syntenic locus in the
genomes of baboon, macaque, orangutan, gorilla, chimpanzee,
and humans (94). Due to uncertainties in the assembly of some
genomes such as tarsier, lemurs, and lories, gene synteny is
not a valid criterion to rule out the existence of CEACAM3
orthologs in lower primates. However, CEACAM3 orthologs
share several discriminative features such as protein length or
the presence of the characteristic HemITAM, which does not
seem to occur in any lower primate genome supporting the
idea that CEACAM3 emerged late in primate evolution. Despite
the absence of a CEACAM3 gene, ITAM-containing CEACAM
transcripts are present in lower primates, such as transcript
XR_001153184.2 in the mouse lemur. The ITAM encoded
by XR_001153184.2 perfectly matches the ITAM consensus
(YxxL−7AS–YxxI) as well as the sequence found in human
CEACAM4 (80). Therefore, this transcript could originate from
an ancestral primate CEACAM4 ortholog. It is plausible that
CEACAM3 is the result of gene duplication and recombination
between an ancestral CEACAM1 gene (providing the IgV domain
encoding exon) and an ancestral lower primate CEACAM4 gene
(providing the transmembrane and the intracellular domain
encoding exons) (99). Indeed, the 3′ end of the large intron

2 of the CEACAM3 gene bears similarities to intron 2 of the
CEACAM4 gene, supporting the idea that such a recombination
event occurred at the advent of higher primates (99). Together,
the genomic evidence suggests that CEACAM3, the specialized
phagocytic receptor for CEACAM-binding bacteria, emerged
relatively late during primate evolution, expanding the human
innate immunity arsenal.

An interesting corollary of this continuing bacteria–host
co-evolution can be seen by the occurrence of CEACAM3
polymorphisms in the human population. In fact, while people
outside of Africa mainly express the common CEACAM3
allele, particular ethnic groups harbor CEACAM3 variants.
For example, in several groups with African ancestry, a
third of the population expresses a distinct CEACAM3 allele
(minor CEACAM3 allele) (94). This minor allele carries four
non-synonymous single-nucleotide changes, which convert the
CEACAM3-IgV domain amino acid sequence into a near replica
of the CEACAM1 IgV domain. Modeling of the polymorphic
CEACAM3 IgV domain according to the known CEACAM3
crystal structure (7) reveals that these residues are surface
exposed and three of the modified amino acids contribute to the
CEACAM3 binding interface for various bacterial adhesins (94).
It comes as no surprise that this minor CEACAM3 allele, which
nowmimics CEACAM1, shows a striking gain of function in that
it recognizes additional bacterial adhesins, such as the OMP P1
protein of H. influenzae, which escape detection by the common
CEACAM3 allele (94).

These recent studies have shed light on an ongoing arms race
between several host-restricted CEACAM-binding pathogens
and the human immune system. In a type of Red-Queen
scenario, the diverse CEACAM-binding pathogens need to
optimize their adhesins to escape CEACAM3 detection, while
still retaining their ability to bind mucosal CEACAMs. As
a consequence, human CEACAM3 rapidly evolves to keep
up its function. Viewed from the angle of bacterial adhesin
binding to distinct CEACAMs as well as from the perspective of
human genomic variation, the phagocytic receptor CEACAM3
appears as a central element in the innate defense against
this group of extremely specialized bacteria. However, one
has to acknowledge that CEACAM binding preferences of
bacterial adhesins as well as analyses of CEACAM3 evolution
only provide circumstantial evidence for the importance of
this innate immune receptor. Accordingly, a more direct test
of CEACAM3 function in the context of innate immune
responses within the intact organism would be desirable.
Unfortunately, the standard genetic approach of employing
knock-out animals, such as a “CEACAM3-knock-out” mouse,
is not an option in this case. Moreover, CEACAM3-transgenic
mice with granulocyte-selective expression of CEACAM3, in
the absence of other CEACAM family members, do not
exist currently.

In view of the increasing availability of human genomic
information and corresponding medical records, it does not
appear unrealistic to foresee a future, where novel insight
into CEACAM3 function might come directly from combined
genomic–phenotypic studies in humans (100). Indeed, the
occurrence of an unexpected high proportion of loss-of-function
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alleles in particular human populations (101) could help to
reveal plausible connections between CEACAM3 deficiency
and susceptibility for particular infectious diseases. Despite the
inherent limitations of research on a primate-only protein,
the study of the phagocytic receptor CEACAM3 will surely
continue to unearth fascinating aspects of human biology
and of our constant and challenging interplay with the
microbial world.
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Macrophages are a heterogeneous and plastic population of cells whose phenotype

changes in response to their environment. Macrophage biologists utilize peritoneal

(pMAC) and bone marrow-derived macrophages (BMDM) for in vitro studies. Given

that pMACs mature in vivo while BMDM are ex vivo differentiated from stem cells, it

is likely that their responses differ under experimental conditions. Surprisingly little is

known about how BMDM and pMACs responses compare under the same experimental

conditionals. While morphologically similar with respect to forward and side scatter by

flow cytometry, reports in the literature suggest that pMACs are more mature than their

BMDM counterparts. Given the dearth of information comparing BMDM and pMACs, this

work was undertaken to test the hypothesis that elicited pMACs are more responsive to

defined conditions, including phagocytosis, respiratory burst, polarization, and cytokine

and chemokine release. In all cases, our hypothesis was disproved. At steady state,

BMDM are more phagocytic (both rate and extent) than elicited pMACs. In response

to polarization, they upregulate chemokine and cytokine gene expression and release

more cytokines. The results demonstrate that BMDM are generally more responsive

and poised to respond to their environment, while pMAC responses are, in comparison,

less pronounced. BMDM responses are a function of intrinsic differences, while pMAC

responses reflect their differentiation in the context of the whole animal. This distinction

may be important in knockout animals, where the pMAC phenotype may be influenced

by the absence of the gene of interest.

Keywords: peritoneal macrophages, bone marrow-derived macrophages, polarization, cytokines, phagocytosis,

flow cytometry, gene expression

INTRODUCTION

Macrophages are innate immune cells that provide a first line defense against infection. While
many studies historically utilized macrophage-like cell lines, the availability of knockout animals
as well as development of molecular techniques for these notoriously difficult-to-transfect cells
has resulted in the increased use of primary macrophages. The most commonly used primary
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macrophages are elicited peritoneal and bone marrow-
derived. Sterile thioglycolate, injected into the peritoneum,
recruits circulating monocytes that differentiate into small
peritoneal macrophages. The small peritoneal macrophages
are phenotypically indistinguishable from resident peritoneal
macrophages (pMACs) (1). Myeloid progenitor cells, harvested
from the bone marrow, are differentiated with macrophage
colony-stimulating factor (M-CSF) or conditioned L929 media,
to produce adherent bone marrow-derived macrophages
(BMDM) (2). Neither pMACs nor BMDM preparations are
homogeneous (1, 3, 4). pMACs have more lysosomal protease
activity and don’t significantly proliferate, indicative of a more
mature phenotype (3, 5); BMDMs gravitate toward the M2
end of the polarization spectrum (6). Despite their intrinsic
heterogeneity, thioglycolate-elicited pMACs and BMDMs are
similar with respect to forward and side scatter as determined
by flow cytometry. However, their differentiation environment
may influence their phenotype, particularly if differentiation
occurs in the context of a genetically manipulated (knockout
or transgenic) animal. Given that pMACs and BMDMs are
differentiated in vivo and ex vivo, respectively, and there are
reported differences between the two (3, 6, 7), it is somewhat
surprising that the two have not been compared with respect
to the properties that define macrophages: phagocytosis,
respiratory burst, polarization, and gene regulation. Despite

FIGURE 1 | Bone marrow-derived macrophages exist as two distinct populations. Bone marrow was extracted and differentiated in L cell media as described in

Methods. Adherent cells were collected 7 days post-harvesting and analyzed by flow cytometry (representative of BMDMs from 10 animals). (A) Virtually all (98 ± 2%)

of the live singlets were CD11b+F4/80+. (B) After gating out dead cells/debris and selecting for singlets, two populations were identified: a minor (15.8 ± 3.4%)

population of high forward and side scatter (large) cells and a major population that is smaller with lower side scatter. The large population had significantly higher

expression of both F4/80 and CD11b (p < 0.01, n = 10, paired t-test).

reports that pMACs are more mature (and thus respond more
robustly to stimulation), we found that BMDMs are more
phagocytic (rate and amount of material ingested) and respond
more robustly to polarization (surface molecule expression,
gene induction/repression, and cytokine/chemokine release).
These findings are consistent with the differential plasticity
of pMACs and BMDMs. That is, pMACs, being differentiated
in vivo, respond modestly when stimulated ex vivo while
BMDMs are poised to respond rapidly and robustly to either
pro-inflammatory or pro-resolving stimuli in vitro.

RESULTS

BMDMs and pMACs Are Similar With
Respect to Size and Granularity
Bone marrow-derived macrophages were differentiated using
L-cell conditioned media as the source of macrophage
colony stimulating factor (M-CSF). The resultant live,
singlet population is predominantly (98 ± 2%, n = 8)
CD11b+F4/80+ (Figure 1A); there is no detectable SiglecF
or Ly6G. Based on forward and side scatter, BMDM have a minor
population (15.8 ± 3.4%, n = 10) of large cells. As reported
previously for pMACs (1), CD11b and F4/80 expression is
significantly higher on large vs. small BMDM (p < 0.01, n =

10) (Figure 1B).
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FIGURE 2 | The size and granularity of bone marrow-derived and peritoneal macrophages are similar, but not identical. (A) Harvested peritoneal cells contain a

population of small, moderately granular cells (purple arrow) that are reduced upon adhesion and not found in preparations of BMDMs. (B,C) Harvested peritoneal

cells have a minor (11 ± 4.4%) population of Siglec F+ cells that is substantively removed upon adhesion (2.1 ± 1.1% post-adhesion) that co-localizes with the small,

granular population. (D) BMDMs and adherent pMACs are similar with respect to size (FSC) and granularity (SSC). Representative of 10 preparations each of bone

marrow and peritoneal macrophages.

Elicited peritoneal cells are predominantly macrophages
although significant percentages of non-macrophage cells have
been reported (8). Three days after injection of 3% sterile
thioglycolate, peritoneal cells were harvested by lavage and the
red cells lysed. One aliquot of cells was kept on ice while the
other was plated in petri dishes; plates were washed after 4 h and
the adherent cells recovered. An average of 5.0 × 107 cells were
collected (range 2.0–6.2 × 107). Following adhesion, an average
of 1.7 × 107 cells were recovered (range 0.6–2.9 × 107), an
average recovery of 37 ± 10% (n = 15). Flow cytometry revealed
a low forward scatter, moderate side scatter population in the
harvested pMACs (11 ± 4.4%, n = 10) that was significantly
diminished upon adhesion (2.1 ± 1.1%, n = 10, p < 0.01,
paired t-test) and not present in macrophages differentiated
from bone marrow (purple arrow, Figure 2A). This population
was CD11b−SiglecF+, consistent with a minor contamination
with eosinophils (8), a population that was substantively
removed by selective adhesion (Figure 2B). Under our elicitation
conditions, the (Ly6G+) neutrophil contamination is minimal,
with an average of 1.2 ± 2% of the harvested cells before
adhesion being CD11b+Ly6G+Ly6Clo/neg (n= 10). The majority
of recovered peritoneal cells (82.7 ± 6.2 %, n = 10) are
CD11b+; this percentage rose significantly (91.5 ± 2.5 %, p
< 0.005, n = 10) following adhesion (Figures 2B,C). Like
BMDMs, selected pMACs contain large (∼20%) and small
macrophages (Figures 2A,D) (1); adhesion does not affect the

relative percentages of these populations. When compared,
adherent pMACs and BMDMs are similar with respect to size and
granularity (Figure 2D, overlay).

The CD11b+ peritoneal population is Ly6Clo, lacks Ly6G,
and is relatively homogeneous with respect to F4/80 expression
(see below). Thus, selective adhesion removes the majority of
eosinophils and leaves a relatively homogeneous cell population
that is >90% CD11b+F4/80+Ly6C−/lo. Note that, from this
point forward, all experiments were done with post-adherent
peritoneal macrophages. For simplicity, pMACs data is presented
in red and BMDM in black.

BMDMs, but Not pMACs, Are M1 Skewed
M1 and M2 macrophages, produced in vitro by IFN ±

LPS and IL13/IL4, respectively, are acknowledged to be the
extremes of the pro-inflammatory-to-pro-resolving spectrum
(9). Physiologically, macrophages likely assume a hybrid
phenotype of cell markers and cytokine/chemokine release, with
their in vivo impact dependent on the balance between M1 and
M2 outputs. At baseline, BMDMs and post-adherent pMACs
have similar expression levels of CD11b, F4/80, CD16/CD32,
CD16.2, MHCII, and CD119 (Figure 3A and p value list).

M1 Markers
Compared to pMACs, BMDMs express significantly higher
levels of Ly6C and CD64, molecules elevated on inflammatory
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FIGURE 3 | Expression of surface molecules by steady state BMDMs and pMACs. BMDMs and adherent pMACs were stained for the indicated molecules and their

expression quantified by flow cytometry. Results of one BMDM and one pMAC preparation, stained on the same day, are presented. Data is presented as histograms

with compensated fluorescence of the indicated antigen on the x-axis. Representative of BMDM and pMACs from 7 mice. (A) Antigens whose expression was not

significantly different between BMDMs (black) and pMACs (red). (B) Antigens significantly upregulated in BMDM compared with pMACs. Table: unpaired t-test (n = 7

BMDM and 7 pMACs preparations) p-values for differences in antigen expression; green shading highlights significant differences, with expression in BMDMs

significantly higher than pMACs. N.D. Not determined.

macrophages (10–12). The TLR2 and TLR4 pattern recognition
marker receptors are more highly expressed on BMDMs
(Figure 3B and p value list). Elevated TLR2 and TLR4 may
prime macrophages for a rapid response to pathogens. While
BMDMs have high Ly6C and elevated TLR2 and 4, suggestive
of an M1 phenotype, their levels of MHCII expression is low
and similar to pMACs. As elevated MHCII is a marker of M1
activation, its modest expression at steady state is consistent with
M1 skewing but not bone fide activation. Thus, compared to in
vivo differentiated pMACs, BMDM lie further toward theM1 end
of the M1–M2 polarization spectrum.

M2 Markers
Of the three M2 markers tested, only CD124 is substantively
expressed. CD119 is low, and similar, for both cell types; CD206
was variable (neg to low) (Figure 3A). As CD124 is the α chain
of the IL-4 receptor, its expression could make macrophages
more responsive to environmental (or in vitro) IL-4, an M2
polarizing cytokine.

In summary, BMDMs and (post-adherent) pMACs are similar
with respect to size and granularity, expression of macrophage
markers CD11b and F4/80, and three of the four Fcγ receptors
(CD16/32, CD16.2) (Figure 3A). Compared to pMACs, BMDMs
are Ly6Chi and have elevatedM1markers TLR2, TLR4, and CD64
as well as significantly higher CD124 (Figure 3B). The expression
of both M1 and M2 markers on BMDMs may prime them to
polarize in response to either inflammatory or pro-resolving
mediators. In contrast, pMACs express modest levels of CD64
and low levels of TLR2 and CD124, suggesting they may be more
refractive to polarization. Functional assays were performed to

compare BMDMs and pMACs with respect to phagocytosis,
respiratory burst, and their response to polarizing conditions.

BMDMs Are Significantly More Phagocytic
Than Their pMAC Counterparts
E. coli and E. coli-IgG (Figure 4A)
While both BMDMs and pMACs are used for phagocytosis
studies, their relative phagocytic capacities have not been
rigorously compared. Using pHrodo R©-labeled E. coli, alone
or IgG-opsonized (E. coli-IgG), we compared the phagocytic
capacity of BMDMs and pMACs. pHrodo R© particles are non-
fluorescent when extracellular but become brightly fluorescent
in the acidic environment of the phagosome. The rate of E. coli
phagocytosis (MFI/min, slope of the time curves, Figure 4A) by
BMDMwas 5-fold> pMACs (41/8) and 3-fold greater for E. coli-
IgG (69/21) (n = 3 BMDMs and 3 pMACs) (Figure 4D). Using
an unpaired t-test, we determined that the rate of phagocytosis
was significantly higher for BMDMs compared to pMACs (p <

0.001, Figure 4D).

Zymosan and Zymosan-IgG (Figure 4B)
A similar strategy was used to quantify internalization of
zymosan and IgG-opsonized zymosan (Figure 4B). Alexa 488-
conjugated zymosan ± IgG were incubated with BMDMs
or pMACs. At varying timepoints (5–60min), cell associated
zymosan was detached by vortexing, trypan blue was added to
quench the fluorescence of external particles, and fluorescence
quantified by flow cytometry. Zymosan is considerably larger
than E. coli and is taken up through TLR2. As zymosan
phagocytosis began to plateau between 15 and 30min, we
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TABLE 1 | List of Antigens, genes, and released proteins used in these studies.

Flow antibodies qPCR primers Multiplex

Molecule Alternate name Antibody Clone Company Sense Antisense

CD16 FcγRIII CD16/32-PECy7 2.4G2 BD Pharmingen ACTGTCCAAGACCCAGCA

ACTAC

GCACATCACTAGGGAGAA

AGCA

CD32 FcγRIIb GCCAAAACTGAGGCTGAG

AATAC

CAGGGCTTCGGGATGCT

CD64 FcγRI CD64-PE 290322 R&D Systems AGATGCTGGATTCTACTG

GTGTGA

TGTGAAACCAGACAGGAG

CTGAT

CD16.2 FcγRIV CD16.2-BV421 9E9 Biolegend ACAAATCTTCAGCATCCT

TTCGTAT

CGGTGGAAACATGGATGGA

CD119 IFN-γ Receptor CD119-PE 2.00E+02 eBiosciences — —

CD206 Mannose

Receptor

CD206-FITC MR5D3 AbD Serotec — —

CD124 IL-4R (α subunit) CD124-PECy7 I015F8 Biolegend — —

MHCII MHC Class II MHCII

(I-A/I-E)-APC

M5/114.15.2 eBiosciences — —

Ly6C Ly6C-PECy7 HK1.4 Biolegend — —

Ly6G Ly6G-APC 1A8 Biolegend — —

SiglecF CD170 SiglecF-PE E50-2440 BD Pharmingen — —

F4/80 Adgre1 F4/80-FITC A3-1 AbD Serotec — —

CD11b β2 Integrin (α

chain)

CD11b-eFluor

450

M1/70 eBiosciences — —

TLR2 CD282 TLR2-FITC 6C2 eBiosciences — —

TLR4 CD284 TLR4-APC SA15-21 Biolegend — —

CCL2 MCP-1 — — — — — +

CCL5 RANTES — — — — — +

CCL11 Eotaxin — — +

CXCL1 KC — — — — — +

Arginase I Arg-1 — — — GGAAAGCCAATGAAGAGC

TG

GCTTCCAACTGCCAGACT

GT

Inducible nitric oxide

synthase

iNOS — — — TCTATCAGGAAGAAATGC

AGG

CACCAGCTTCTTCAATGT

GG

Interluekin-1β IL-1β — — — AATGAAAGACGGCACACCC GCTTGTGCTCTGCTTGTGA +

Interleukin-6 IL6 — — — AAGACAAAGCCAGAGTCC CCTTCTGTGACTCCAGCTT +

Interleukin-10 IL10 — — — TGTGAAAATAAGAGCAAG

GCAGTG

GCCTTGTAGACACCTTGGT +

Interleukin-12 p40 IL12 (p40) — — — AGCACTCCCCATTCCTACTT CACGCAGACATTCCCGCC

Interleukin-12 p70 IL-12 (p70) — — — — — +

Tumor Necrosis Factor α TNF-α — — — — — +

β-actin — — — TTCCAGCCTTCCTTCTTGG AGTAATCTCCTTCTGCATCC

calculated the initial rate of uptake using the 5–15min
datapoints. Like E. coli, internalization of zymosan by BMDM
was significantly higher than for pMACs: 2.7-fold for zymosan
and 2.3-fold for Zymosan-IgG (p < 0.001, Figure 4D). Notably,
IgG opsonization increased the rate of, E. coli, but not and
zymosan, internalization (Figure 4B). Noting that the rate of
zymosan phagocytosis is much higher than E. coli, it may be that
the zymosan system may be “max’d out” such that addition of
IgG cannot increase the rate.

IgG Beads (Figure 4C)
To determine whether uptake mediated by FcγR, but
independent of TLR, is different between BMDMs and
pMACs, we coated 2µm beads with (rabbit) IgG (BIgG) and
calculated the rate of target internalization using synchronized

phagocytosis, calculating the phagocytic index microscopically
(13). The phagocytic index (number of beads/number of cells ×
100) at every timepoint was significantly different, with BMDM
internalizing more targets and having a phagocytic rate (slope of
the line)∼2-fold higher than pMACs (Figures 4C,D).

As CD64 is the only FcγR differentially expressed on
BMDMs and pMACs (Figure 3), we hypothesized that BIgG
uptake requires CD64. To visualize internalization, BMDMs
were transduced with PKC-ε-GFP, a molecule that concentrates
at the phagosome during IgG-mediated phagocytosis (14). By
using macrophages from FcγRIIb knockout (CD32−/−) mice,
we removed the contribution of this receptor, a modification
that did not substantively affect BIgG internalization (Figure 5B).
Likewise, adding 2.4G2 (CD16/32 blocking antibody) to
CD32−/− cells did not affect phagocytosis (Figure 5C) nor
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FIGURE 4 | BMDMs are more phagocytic than pMACs. BMDMs and pMACs were subjected to synchronized phagocytosis using pHrodo E. coli ± IgG (50:1 MOI)

(A), Zymosan 488 ± IgG (5:1 MOI) (B), or BIgG (20:1 target to cell ratio) (C). (A) Phagocytosis was stopped at the indicated times by dislodging bound targets,

diluting the sample in cold buffer, and analyzing by flow cytometry. (B) The fluorescence of extracellular zymosan was quenched with trypan blue immediately before

analysis (n = 3 animals, 1 × 105 cells collected/sample). (C) For BIgG, cells were fixed and incomplete phagosomes were detected by the addition of Alexa

488-conjugated goat anti-rabbit IgG (Invitrogen) to label the IgG on the exposed targets. The number of fully internalized targets was quantified microscopically and

the phagocytic index (PI) calculated. PI = (# internal beads/# cells counted) × 100. (n = 3 animals, 30–40 cells per animal). (A–C) *p < 0.05; **p < 0.01; ***p < 0.001,

unpaired t-test. (D) Composite data from 3 each pMAC and BMDM preparations reporting the rate of phagocytosis (slope of the line) and determining statistical

significance using an unpaired t-test. Because internalization of zymosan plateaus by 30min, an initial rate of phagocytosis was calculated using the 5–15min

timepoints (dashed line). BMDM are more phagocytic for all targets, regardless of the receptor used or the method used to quantify phagocytosis.

did the inclusion of the 16.2 blocking antibody 9E9 (15)
(Figure 5D). In contrast, the addition of α-CD64 dramatically
reduced internalization (Figure 5E) with no apparent effect on
binding (Figure 5E, inset). These data suggest that CD64 is the
major receptor for IgG-mediated phagocytosis. To determine if
CD64 is necessary and sufficient for phagocytosis, we determined
the rate of BIgG internalization in BMDMs from C57BL/6
and FcγR knockout mice expressing only CD64 (FcγRI only,
Figures 5G,H) (16). The fact that BMDMs from FcγRI only mice
take up BIgG at the same rate as their wildtype counterparts
(Figure 5H) identifies FcγRI as the major receptor mediating
IgG-dependent phagocytosis. The lower expression of CD64 on
pMACs provides a potential explanation for the rate differences
between BMDMs and pMACs.

In summary, using three targets (E. coli, zymosan, and BIgG),
multiple approaches (pHrodo R©, Alexa 488-zymosan, and BIgG)
and two readouts (fluorescence and live imaging), we have
demonstrated that BMDMs are more phagocytic than pMACs.
The higher rates of BMDM phagocytosis parallels the surface
expression of target receptors (TLR2, TLR4, CD64, Figure 3) and
is consistent with the conclusion that BMDMs are M1 skewed.

BMDMs and pMACs Mount a Similar
Respiratory Burst
As M1 polarized macrophages mount a larger respiratory burst
than non-polarized or M2-polarized cells (17), and BMDMs
are M1 skewed, we predicted that BMDMs would have a

larger respiratory burst than pMACs. To test this, macrophages
were incubated with immune complexes (IC) in the presence
of Amplex Red R©, a membrane impermeant indicator that
fluoresces when oxidized. Fluorescence measurements were
taken every 5min for 4 h. Surprisingly, there was no difference in
between the curves over the first 60min with a slight divergence
at later times (Figure 6A). This was not a function of “maxing
out” the system as three concentrations of IC were tested
(the lowest shown) and, while there was a dose dependent
increase in fluorescence with increasing IC, the rate of the
burst (the slope of the line) in BMDMs and pMACs were
not different (Figures 6A,C). As M1 polarization increases the
respiratory burst in BMDM (Supplemental Figure 1), we asked
if polarization would reveal a difference between pMACs and
BMDM. Cells were polarized with IFN-γ (M1) or IL4/IL13 (M2)
and the respiratory burst followed with time. As with unpolarized
macrophages, there were no differences in the rate of the burst
under either polarization condition (Figures 6B,C).

BMDMs and pMACs Respond Differently to
Polarization
The plasticity of BMDMs is well-documented (18, 19) but how
pMACs respond to polarizing cytokines is less well-studied. Thus,
pMACs and BMDMs were treated with M1 (IFN-γ) and M2
(IL4/IL13) polarizing cytokines and surface molecule expression,
mRNA levels, and secreted cytokines were quantified; untreated
BMDMs and post-adherent pMACs served as the control
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FIGURE 5 | FcγRI is necessary and sufficient for IgG-mediated phagocytosis. BMDM from wild type (CD57BL/6), FcγRIIb knockout mice (CD32−/−) or mice

expressing only FcγRI (FcγRI only) were transduced with virus encoding PKC-ε-GFP (to visualize internalization) and phagocytosis followed by live imaging as detailed

in Methods. Compared to CD57BL/6 (A); phagocytosis was unaffected by removal of CD32 (B). Adding α-CD16/32 (C) or α-CD16.2 (D) to CD32−/− cells did not

affect internalization. Blocking FcγRI with α-CD64 reduced internalization (E) but not target binding (inset), supporting a role for FcγRI in IgG-mediated phagocytosis.

(F–H) Internalization by C57BL/6 and FcγRI only macrophages is similar. Quantitation of phagocytic rate from movies reveal that uptake by FcγRI only cells is

equivalent to controls, arguing that FcγRI is necessary and sufficient for IgG-mediated phagocytosis. (H) Each dot represents data from one cell, statistical

significance was tested using an unpaired t-test.

FIGURE 6 | The respiratory burst is equivalent in BMDMs and pMACs. BMDMs and pMACs, untreated (A) or polarized overnight with IFN-γ or IL4/IL13 (B), were

stimulated with an empirically determined amount of immune complexes (IC) in the presence of Amplex Red®, a H2O2 reporter. Fluorescence intensities were

acquired every 5min for 4 h and the relative rate of the burst determined from the slope of the line (C). Data is presented as mean ± SEM for pMACs and BMDM from

3 animals at the lowest dose of three doses of IC tested; two higher doses increased fluorescence but did not produce any difference in the burst. NSD = not

significantly different.
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FIGURE 7 | BMDM and pMACs respond differently to polarizing cytokines: surface molecule expression. BMDM and pMACs were treated with IFN-γ or IL4/IL13 for

24 h, stained for the indicated antigens, and analyzed by flow cytometry. Each line represents a single animal’s cells under the three conditions. Results are reported

as the within animal deviation of the measurement from the means of that animal’s cells under the three conditions. This essentially removes the animal-to-animal

variance and considers the within animal response. Interactions are apparent when the pattern of the responses differs between the BMDM (black) and pMAC (red)

lines. Genes are loosely grouped: (A) genes validating polarization, (B) polarization dependent gene expression, and (C) genes whose expression is independent of

cell type and polarization state. Insets: Message levels for the α chains of the Fc receptors were quantified by qPCR following cytokine treatment. The data were

normalized to β-actin and the fold increase over untreated cells was calculated using the 11Ct method. Statistical significance was determined by ANOVA. Data for α

chain PCR are presented as mean ± SEM (n = 3 BMDM and 3 pMACs). Daggers indicate significance based on cell type: ‡p < 0.05. Asterisks indicate differences

based on polarization conditions: *p < 0.05, **p < 0.005. In general, BMDM responses are more robust than those of pMACs. pMACs and BMDM from n = 7 animals

were analyzed.

(M0) macrophages. To ensure reproducibility, experiments were
repeated 2–3 times, with each trial containing both BMDMs
and pMACs.

Surface Molecule Expression (Figure 7)
Flow cytometry was used to quantify expression of surface
molecules. After gating out debris and aggregates, fluorescence
presented as Gaussian curves (Figure 3) allowing the comparison
of mean fluorescent intensities (MFI) for the populations. To
visualize how BMDM and pMACs respond to polarization, and
to remove differences due to animal-to-animal variability, we
analyzed the cells from each animal independently. That is, for
each set of cells, we averaged the MFIs for each protein over
the three conditions (no polarization, IFN-γ, and IL4/IL13) and
plotted the difference from that mean (Figure 7); no change
from the average would be plotted as “0” (i.e., MFI for each
condition is the same). Thus, each line in Figure 7 is essentially
a repeated measures ANOVA, the responses of the cells from
a single animal over the three conditions. M1 polarization by
IFN-γ is validated by the elevated expression of M1 marker
genes MHCII, CD64, and CD16.2 (Figure 7A and Table 2

PolarizationMain Effect) (15, 20). Similarly, IL4/IL13-dependent

upregulation of CD16/32 (Figure 7A) and downregulation of
TLR2 (Figure 7B and Table 2 Polarization Main Effect) and
Arg-1 mRNA (see below) confirms M2 polarization (21). Other
surface markers tested include CD11b, F4/80, and Ly6C as well
as TLR4 and receptors for polarization cytokines IFN-γ (CD119)
and IL4 (CD124) (Figures 7B,C). IFN-γ- and IL4/IL13- treated
macrophages and their non-treated controls were analyzed for
differences due to cell type (BMDMs vs. pMACs, irrespective of
treatment, Cell Type Main Effect in Tables 2–4), treatment (IFN-
γ, IL4/IL13, and control, irrespective of cell type, Polarization
Main Effect Tables 2–4), and both (that is, do BMDMs and
pMACs respond differently to polarization?, Interaction Effect
Tables 2–4). By these criteria, the expression of Ly6C, TLR2,
TLR4, CD16.2, and CD124 is significantly different between
BMDMs and pMACs, evident from the separation of BMDM
(black) and pMAC (red) lines (Figure 7) and the statistical
significance (bold entries) of the cell type main effect (Table 2).
CD64 expression approaches, but does not reach, statistical
significance (p= 0.077, Figure 7A, Table 2).

FcγRIIb (CD32) and FcγRIII (CD16) are detected by a single
antibody, 2.4G2 (designated CD16/32 in Figure 7A). Thus, the
increase in 2.4G2 staining with M2 polarization (Figure 7A)
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TABLE 2 | Comparison of surface expression in BMDM and pMACs in response

to polarization.

Protein Cell type main

effect

Polarization

main effect

Interaction

effect

CD11b 0.213 0.343 0.698

F4/80 0.910 0.438 0.189

Ly6G 0.393 0.229 0.914

Ly6C 0.009 0.005 0.008

MHCII 0.813 <0.001 0.867

TLR2 0.002 <0.001 0.040

TLR4 <0.001 <0.001 <0.001

CD64 0.077 0.001 0.112

CD16/32 0.802 <0.001 0.819

CD16.2 <0.001 <0.001 <0.001

CD119 0.836 <0.001 0.080

CD124 0.001 0.008 0.005

BMDM and pMACs were polarized as described in Methods. Cell surface expression

was quantified as Mean Fluorescent Intensity by flow cytometry as in Figure 3 and

the statistical significance based on cell type (irrespective of polarization), polarization

(irrespective of cell type), or cell type and polarization (interaction effect) determined.

Specifically, the deviation from the mean, induced by IFN-γ , IL4/IL13, or left untreated

(NT) was calculated for each animal (and graphed in Figure 7). Statistical significance

was determined by 2-way ANOVA, thus removing the animal-to-animal variability and

considering only the within-animal responses. p-values are presented. Statistically

significant differences are indicated in bold text. n = BMDM and pMACs from 7 animals.

could be due to elevated expression of one or both receptors.
To identify the receptor(s) that are upregulated upon M2
polarization, BMDMs and pMACs from 6 animals (3 BMDMs, 3
pMACs) were polarized with IFN-γ or IL4/IL13 and the α chains
of CD64, 32, 16, and 16.2 were quantified by qPCR; control cells
were left untreated. Consistent with the flow data, mRNA for
CD64 increased in response to IFN-γ with no difference between
BMDMs and pMACs (CD64 Figure 7A, inset). Similarly, CD16.2
was significantly higher in M1 compared to M2 cells (CD16.2
Figure 7A, inset). CD32, but not CD16, message was higher in
IL4/IL13-treated cells with BMDMs having a significantly higher
expression compared to pMACs (CD16/32, Figure 7A, inset). As
CD16 message was not altered by polarization, we conclude that
the increase in 2.42G signal in IL4/IL13 treated cells is due to
upregulation of CD32. This is not surprising as FcγRIIb is an
inhibitory receptor and M2 polarization reduces inflammation
and promotes resolution.

The regulation of five genes (Ly6C, TLR2, TLR4, CD16.2, and
CD124) is a function of both cell type and polarization conditions
(Interaction Effect, Table 2). While these genes are known to be
regulated by polarization (Table 2, PolarizationMain Effect), this
data demonstrates that pMACs and BMDM respond differently
to polarization. Comparing the BMDM (black) with pMAC (red)
lines (Figure 7), we find that the expression of many genes,
(e.g., Ly6C, CD64, TLR 2, TLR4, CD16.2, CD124) are relatively
unaffected by polarization for pMACs (i.e., red lines are relatively
horizontal compared to black lines), leading us to conclude that
pMACs are less responsive to their environment than BMDMs.
Of the 11 genes tested, CD11b, F4/80, and CD119 are unaffected

by polarization or cell type (Figure 7C,Table 2); Ly6G expression
was low/neg.

Relative Gene Expression (Figure 8)
M1 and M2 polarized macrophages release pro-inflammatory
and pro-resolving cytokines, respectively, to sustain or dampen
immune responses. Given the responsiveness of BMDMs to IFNγ

and IL4/IL13 (Figure 7, Table 2), we predicted that polarization
would elicit a greater change in gene expression in BMDMs
compared to pMACs. To test this, BMDMs and pMACs were
treated as above and their mRNA subjected to qPCR for
IL12/iNOS and IL10/Arg-1 (the canonical proteins/cytokines
expressed by M1 and M2 cells, respectively) as well as IL6 and
IL-1β (associated with inflammation) and TGF-β and CD206,
selectively expressed by M2 cells.

Due to biological variability, mRNA expression in polarized
samples was normalized to their respective (untreated) controls
and significance determined using linear regression. As with
surface expression (Table 2), the results were analyzed to
assess differences due to cell type, polarization, and interaction
effect (Table 3).

M1 Markers (Figure 8A, Table 3)
Not surprisingly, IL12 p40 message increased significantly (3–
5-fold) in response to IFN-γ, while IL4/IL13 had little effect
(Polarization Main Effect Table 3); there was no significant
difference between BMDM and pMAC levels of IL12 p40
mRNA (cell type effect, Table 3). While there was no difference
in iNOS message between BMDMs and pMACs under either
condition, iNOS expression trended lower in IL4/IL13 treated
cells, approaching but not reaching, statistical significance
(Table 3). This is consistent with the reported decrease in
macrophage iNOS upon alternative activation (10). For IL6,
there was no difference in response between the two cell
types under either M1 or M2 polarizing conditions. For IL-
1β, the overall change in expression was modest (<2-fold)
but significantly different between BMDMs and pMACs (Cell
Type Main Effect, Table 3) with the fold change in pMACs
lower than BMDMs (Table 3). The low IL-1β message, coupled
with no detectable protein release (by multiplex, see below)
suggests that the differences in message may not be not
physiologically relevant.

M2 Markers (Figure 8B, Table 3)
Message levels for IL10 were significantly different between
BMDMs and pMACs with pMACs, but not BMDMs, showing
the predicted pattern (i.e., low with IFN-γ, high in response
to IL4/IL13). Statistical analysis confirmed a Polarization Main
Effect (Table 3). Not surprisingly, Arg-1 expression was relatively
low (and similar) in IFN-γ treated cells; the levels increased
with IL4/IL13 (Polarization Main Effect) and the expression
in BMDMs was significantly higher than in pMACs upon M2
polarization (Cell TypeMain Effect). Thus, the polarization effect
is significant as is the Interaction Effect (that is, BMDMs and
pMACs respond differently to polarization, Table 3). Consistent
with its designation as an M2 marker, CD206 was significantly
elevated in IL4/IL13 treated cells, responding similarly in pMACs
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FIGURE 8 | BMDM and pMACs respond differently to polarization; relative gene expression. BMDM (white bars) and pMACs (red bars) were polarized with IFN-γ or

IL-4/IL-13 as in Figure 7. RNA was extracted and subjected to qRT-PCR for the indicated genes. Expression for each gene was normalized to β-actin (1Ct) and the

RNA fold change determined using the 11Ct method (1Ct gene after polarization-1Ct M0 control). Genes are loosely grouped into M1 (A) and M2 (B) markers. After

logarithmic transformation, the data were analyzed and statistical significance determined by linear regression. Daggers indicate significance based on cell type (‡p <

0.05, ‡‡p < 0.005). Asterisks denote differences based on polarization conditions: *p < 0.05, **p < 0.005).

TABLE 3 | Comparison of mRNA expression from BMDM and pMACs in

response to polarization.

Gene Cell type main

effect

Polarization

main effect

Interaction

effect

IL-12 p40 0.382 0.035 0.358

IL-10 0.099 0.019 0.001

Arg-1 0.757 <0.001 <0.001

iNOS 0.868 0.088 0.752

IL-6 0.185 0.395 0.644

IL-1β 0.017 0.088 0.178

TGF-β 0.444 0.405 0.990

CD206 0.283 <0.001 0.233

BMDM and pMACs were polarized as described in Methods and expression of the

indicated genes quantified by qPCR and reported as fold change (Figure 7). After

logarithmic transformation, those data were fit with a linear model and statistical

significance determined by ANOVA (α = 0.05) based on cell type alone (irrespective

of polarization), polarization only (irrespective of cell type), or a differential response

dependent on both cell type and polarization conditions (interaction effect). p-values are

presented. Statistically significant differences are indicated in bold text. n = BMDM and

pMACs from 4–6 animals.

and BMDMs. Finally, there were no significant differences in
message levels for TGF-β between BMDMs and pMACs or as a
function of polarization conditions, although expression trended
higher in response to IL4/IL13.

Table 3 presents a summary of the qPCR results (n = 4–
6 each, BMDM and pMAC). Comparing relative mRNA levels
for BMDMs and pMACs independent of polarization revealed
that, of the eight genes tested, the expression of only IL-
1β varied as a function of cell type (Cell Type Main Effect,

bold text); IL10 approached, but did not reach, statistical
significance. Expression of Arginase-1 (Arg-1), inducible nitric
oxide synthase (iNOS), IL12 p40, IL6, TGF-β, and CD206 were
not significantly different between cell types. When assessing

the effects of polarization independent of cell type, Arg-1 and

CD206 were higher upon M2 polarization while IL10 and IL12
p40 were significantly lower (Polarization Main Effect, bold
text, Table 3). While not surprising for the pro-inflammatory
IL12, decreased IL10 in BMDMs is inconsistent with its
role as an M2 cytokine. However, this pattern tracks with
the protein (Figure 9, see below) and, while the explanation
isn’t clear, it should be noted that other M2 markers (e.g.,
Arg-1 and CD206) are elevated, validating polarization. One
possible explanation is that IL10 upregulation may require an
additional stimulus or more time for full expression. Finally,
the expression of Arg-1 and IL10 was significantly different
when both cell type and polarization are considered (Interaction
Effect, bold text, Table 3); that is, BMDMs and pMACs respond
differently to polarization. Given that these experiments tested
the response of BMDMs and pMACs under identical conditions,
the data support the conclusion that BMDMs are generally
more responsive than pMACs to polarizing environments.
This is based on the fact that, for the most part, message
levels in BMDMs are generally greater than their pMAC
counterparts (the white bars in Figure 8 are often higher than the
red bars).

As mRNA levels provide a snapshot in time, with
the results being a function of message half-life and
the time post-treatment, we collected the media after
polarization and quantified the release of a cadre of cytokines
and chemokines.
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FIGURE 9 | BMDM and pMACs respond differently to polarization: release of cytokines and chemokines. BMDM and pMACs were treated with IFN-γ or IL4/IL13 as in

Figure 7. At 24 h, the media was collected, cells and debris removed by centrifugation, and cytokine (A) and chemokine (B) concentrations in the supernatant

quantified by Multiplex®. IL-1β, IL-12p70, and TNF-α were below the limits of detection. After logarithmic transformation, data were analyzed using a linear regression

model and ANOVA. Data are presented as mean ± SEM (n = 4–7 animals). Statistical significance between cell types is indicated by daggers (‡p < 0.05, ‡‡p <

0.005); differences due to polarization conditions by asterisks; *p < 0.05, **p < 0.005.

TABLE 4 | Comparison of cytokine/chemokine release in BMDM and pMACs in response to polarization.

Protein Absolute concentration Normalized protein release

Cell type

main effect

Polarization

main effect

Interaction

effect

Cell type

main effect

Polarization

main effect

Interaction

effect

IL-10 <0.001 0.001 0.001 <0.001 <0.001 <0.001

IL-12 p40 0.02 0.001 0.664 0.574 <0.001 0.545

IL-6 (NSD from 1) 0.362 0.247 0.692 0.281 0.092 0.959

CXCL1/KC 0.386 <0.001 0.026 <0.001 <0.002 <0.003

CCL5/RANTES 0.019 0.082 0.635 0.077 0.016 0.528

CCL2/MCP-1 0.002 <0.001 <0.001 0.105 <0.001 <0.001

BMDM and pMACs were polarized as described in Methods, the media was collected and secretion of the indicated genes quantified by Multiplex®. The released protein (Figure 9)

was either fit with a linear model (Left columns) or normalized to their respective controls, logarithmically-transformed, and fit with a linear model (Right columns) and analyzed by ANOVA

(α = 0.05). Significance was based on cell type (irrespective of polarization), polarization (irrespective of cell type), or a differential response dependent on both cell type and polarization

(interaction effect). Statistically significant differences based on cell type, polarization, or both are indicated in bold text. n = BMDM and pMACs from 4–7 animals. The interaction

significance indicates that BMDM and pMACs respond differently to polarization. Of the genes tested, the interaction effect for IL-10, CXCL1, and CCL2 is significant (bold text).

Cytokine/Chemokine Release (Figure 9, Table 4)
The cocktail of cytokines/chemokines released by macrophages
creates the environment to which other cells (and the
macrophages themselves) respond. To compare the release
of chemokines/cytokines by polarized BMDMs and pMACs,
cells were stimulated with IFN-γ or IL4/IL13 overnight, the
media was collected, and protein release was quantified by
Multiplex R©. Nine chemokines/cytokines were analyzed, three
of which (IL-1β, IL12 p70, and TNF-α) were below the
level of detection. Under all conditions, release of IL-12p40

and IL10 was significantly higher in BMDM compared with
pMACs (Figure 9A, Table 4, left, Cell Type Main Effect). Not
surprisingly, IFN-γ significantly increased IL12 p40 secretion
and IL4/IL13 had little effect, with the concentration of released
IL12 p40 in unstimulated and IL4/IL13-treated cells being similar
(Figure 9A). Interestingly, IFN-γ decreased IL10 release in
pMACs but increased it in BMDMs (Figure 9A). IL10 secretion
from IL4/IL13 exposed cells was similar to their respective no
treatment controls. IL6 was not significantly different between
the cell types nor as a function of polarization, although
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FIGURE 10 | BMDM and pMACs respond differently to polarization: variations in protein release with polarization. BMDM and pMACs were treated with IFN-γ or

IL4/IL13 for 24 h, the media collected, and protein release quantified by Multiplex®. The data are plotted as the deviation from the average for each treatment. Each

line represents a single animal’s cells under the three conditions. Results are reported as the within animal deviation of the measurement from the means of that

animal’s cells under the three conditions. This is essentially a repeated measures ANOVA, removing the animal-to-animal variance and considering the within animal

response. Interactions are apparent when the pattern of the responses differs between the BMDM (black) and pMAC (red) curves (e.g., IL10, CXCL1, and CCL2).

(A) cytokines and (B) chemokines. In general, BMDM responses are more robust than those of pMACs. n = 4–7 for each cell type.

levels trended higher in BMDMs (Figure 9A). CXCL1/KC, a
neutrophil chemoattractant, was similar in resting BMDMs
and pMACs but was significantly lower in IFN-γ treated
cells, decreasing more in BMDMs than pMACs (Figure 9B,
Table 4, left, Polarization Main Effect, bold text). Release of
CXCL1 upon IL4/IL13 treatment was less than untreated cells
but did not reach statistical significance (Figure 9B). While
the reason for the lower CXCL1 concentration under pro-
inflammatory conditions (when recruitment of neutrophils
would be advantageous) is not apparent, it is possible that
IFN-γ upregulates CXCR1, leading to depletion of its ligand
(CXCL1) from the media. Indeed, CXCR1 is upregulated on
macrophages exposed to Staph aureus (22). CCL5/RANTES,
an eosinophil, basophil, and T cell chemokine, is higher for
BMDMs vs. pMACs under all conditions (Figure 9B, Table 4,
left, Cell Type Main Effect, bold text). CCL5 concentrations
are significantly higher in response to IFN-γ compared to
no treatment, with BMDM levels higher than corresponding
pMACs. CCL5 release in response to IL4/IL13 is similar
to control, perhaps not surprising as it is released under
inflammatory conditions. Secretion of CCL2/MCP-1, a monocyte
chemoattractant, can be induced under both M1 and M2
polarizing conditions (Figure 9B). Interestingly, pMAC levels
are higher than BMDM levels for untreated and IFN-γ exposed
cells but BMDMs produce significantly more CCL2 than

pMACs in response to IL4/IL13 (note that release is on a
log scale).

These data suggest that, as with phagocytosis, surface
molecular expression, and RNA levels (but not respiratory burst),
BMDMs are more responsive than pMACs. To visualize the
responses of the individual BMDM and pMAC preparations,
we determined the mean for each animal under the three
conditions (no treatment, IFN-γ, IL4/IL13) and, for each
condition, calculated the deviation of that measurement from
the mean (analysis similar to that in Figure 7). Comparing the
responses of BMDMs and pMACs (Figure 10, black vs. red lines)
it is clear that, for the cytokines/chemokines tested, pMACs
are overall less responsive than their BMDM counterparts.
Table 4, left, summarizes the statistical analyses with regards
cytokine/chemokine release. There is a significant difference in
the release of IL10, IL12 p40, CCL5, and CCL2 by pMACs
and BMDM (Table 4, left, Cell Type Main Effect, bold text),
with BMDM having a more robust response (red lines are
relatively horizontal while black lines show dramatic variations,
Figure 10). If polarization is considered irrespective of cell type,
IL10, IL12p40, CXCL1, and CCL2 are differentially released
(Table 4, left, Polarization Main Effect, bold text). Of interest
physiologically is the interaction effect. For IL10, CXCL1, and
CCL2, BMDM and pMACs respond differently, again with
greater variations in release by BMDM (Table 4, left, Interaction

Frontiers in Immunology | www.frontiersin.org 12 February 2020 | Volume 11 | Article 269149

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zajd et al. Phenotypic Differences Between Macrophage Populations

FIGURE 11 | BMDM and pMACs respond differently to polarization: normalized protein secretion. Protein data from Figure 9, normalized to untreated control and

reported as fold change. (A) cytokines and (B) chemokines. Data are presented as mean ± SEM (n = 4–7 animals per condition). After logarithmic transformation,

data were analyzed using a linear regression model and ANOVA. Statistical significance between cell types is indicated by daggers (‡‡p < 0.005); differences due to

polarization indicated by asterisks; **p < 0.005.

Effect, bold text). These findings would suggest that BMDM can
alter their environment to a greater extent than pMACs.

The fact that cytokine/chemokine release is basally higher
in BMDMs for five of the six released cytokine/chemokines
(Figure 9) makes a comparison of responses difficult. Thus,
to determine the relative change in release as a function of
polarization, we normalized the Multiplex R© results for each
animal to its respective non-polarized control (e.g., untreated for
the same animal). From these data, we calculated a “fold change”
to determine if the changes in protein release were a function
of differential response to polarization or a similar magnitude
of response with different baselines. Even when compensating
for the lower basal levels of release by pMACs, the normalized
data revealed that BMDM responses are significantly greater
for IL10, CXCL1, and CCL2, trend higher for CCL5, and are
not significantly different for IL12 p40 and IL6 (Figure 11).
The interaction statistics for the normalized data (Table 4,
right, Interaction Effect) reveal that only IL10 and CXCL1 are
significantly different with BMDMs having the greater response
(i.e., fold change, bold text). With respect to polarization effect,
the concentrations of IL10, IL12 p40, CXCL1, CCL5, and CCL2
released are significantly different regardless of cell type. Both cell
type and polarization conditions affect secretion of IL10, CXCL1,
and CCL2 (Table 4, right, Interaction Effect, bold text).

Taken together, these results suggest that BMDMs
(differentiated in vitro) are more responsive to polarizing
cytokines than pMACs, making them the preferred cell type for
studyingmacrophage plasticity. Conversely, thioglycolate elicited
pMACs are differentiated in vivo with their phenotype being a
function of their intrinsic properties as well as those accrued
during circulation and diapedesis. The fact that expression

of CD64 and TLR4 (two major signaling receptors) does not
change substantively in pMACs in response to either IFN-γ and
IL4/IL-13 (Figure 7) suggests that pMACs may survey their
environment, having a relatively high threshold for stimulation.
Quantitation of cytokine/chemokine release produced a
similar response pattern (Figure 9). That is BMDM were more
responsive than pMACs to polarization (red lines in Figure 10

show less deviation than the black lines representing BMDM).
In summary: Compared to pMACs, BMDM (1) are more

phagocytic (Figure 4), (2) significantly upregulate surface
markers in upon polarization (Table 2, Cell Type Main Effect,
red vs. black lines, Figure 7) and (3) release more cytokines and
chemokines (Figure 9, Interaction Effect, Table 4). The relative
responsiveness of BMDM compared to pMACs suggest that they
are poised to respond to infection. In contrast, pMACs have a
higher threshold for response, and may serve as a “second line of
defense,” acting when the threat is elevated and/or sustained.

DISCUSSION

Despite decades of study, much of how macrophages orchestrate
innate immune responses along the pro-inflammatory to pro-
resolving axis remains to be elucidated. The seminal studies
on phagocytosis and respiratory burst in macrophages were
done with elicited peritoneal macrophages (23–28). With
the advent of cloning, macrophage biologists moved to cell
lines to circumvent the difficulties in transfecting primary
cells. More recently, with advances in transfection/transduction
techniques as well as the realization that the changing in
vivo environment can alter macrophage phenotype (that may
not be recapitulated in cell lines), the pendulum has swung
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back to primary cells. Thioglycolate-elicited and bone marrow-
derived are the most commonly used primary macrophages.
Elicited peritoneal macrophages can be harvested 3 days after
thioglycolate injection, providing a rapid and economical source
of differentiated primary cells. The main disadvantage is the
relatively low number of cells recovered and the fact that the
macrophages are not a pure population, with the most common
contaminants being neutrophils and eosinophils (Figure 2). In
contrast, bonemarrow-derivedmacrophages, differentiated from
progenitor cells, are a relatively pure population that can be
produced in high numbers but must be differentiated ∼7 days
prior to use. While both cells types are used, the rationale
for using one vs. the other is often not stated. The main
difference between BMDMs and pMACs is that the pMACs
are differentiated in the context of the background of the
mouse. Knowing that macrophage phenotype is a function
of environment, we asked if there were differences between
pMACs and BMDMs under controlled conditions. Searching
the literature, we found few studies that compared these two
commonly used cell types. To define the similarities and
differences between differentiation in vivo vs. ex vivo, we directly
compared elicited pMACs to BMDMs with respect to the
most common metrics of macrophage function: phagocytosis,
respiratory burst, and gene regulation.

Despite their similar size and granularity (Figure 2), BMDMs
have higher basal expression of CD64 (the high affinity IgG
receptor), TLR2, and TLR4 (Figure 3). This is notable as CD64
mediates the uptake of IgG-opsonized particles (Figure 5), and
TLR2 and TLR4 are receptors for zymosan (29) and E. coli,
respectively. Additionally, BMDMs are Ly6Chi, characteristic
of inflammatory macrophages that are more phagocytic than
their pro-resolving counterparts (30, 31). Higher expression
of CD64, TLR2, and TLR4 would poise BMDMs to respond
early in infections when pathogen numbers are low. Indeed,
BMDMs are more phagocytic than pMACs when presented
with E. coli, zymosan, their IgG-opsonized counterparts, or
IgG-opsonized beads (Figure 4). While the higher phagocytosis
and receptor expression by BMDMs is consistent with an M1
phenotype, MHCII expression is similar in BMDMs and pMACs,
suggesting that BMDMs are M1 skewed but not M1 activated.
The M1 skewing may result from our use of conditioned L
cell media as the source of M-CSF for BMDM differentiation.
While M-CSF is essential for progenitor differentiation, L cell
media (LCM) contains other (undefined) factors that produce a
phenotype slightly different from that produced in the presence
of purified M-CSF. In our experience, BMDM differentiated
in LCM produce a more homogenous cell population with
more reproducible results. This agrees with anecdotal comments
from online forums and macrophage colleagues that suggest
that BMDMs “look better” and “proliferate better” when
differentiated in LCM. Also, as BMDM were historically
differentiated with LCM, using this media will allow comparisons
between published data and new results. To our knowledge, a
direct comparison of the phenotype of BMDMs differentiated in
LCM vs. M-CSF has not been reported.

Many of the studies on IgG-dependent phagocytosis and
intracellular signaling have used targets opsonized with rabbit

IgG (including the targets used here, Figure 4). To our
knowledge, the Fc receptor(s) utilized have not been identified
[although some groups have reported that FcRIV is the major
activating FcR in mice (32)]. Given that CD64 is the only FcR
whose expression correlates with the increased IgG-mediated
phagocytosis in BMDM (Figures 3, 4), we asked if it was the
major receptor for rabbit IgG. Blocking CD64 dramatically
reduced phagocytosis but not target binding (Figure 5). More
definitive was the use of live imaging to quantify of the rate of
phagocytosis in macrophages expressing all the Fcγ receptors
(wild type) and those expressing only FcγRI. The fact that the rate
of phagocytosis was equivalent argues that FcγRI is necessary and
sufficient for IgG-mediated phagocytosis (Figure 5). Whether
other metrics of macrophages (i.e., polarization, gene expression,
respiratory burst) are CD64 dependent remains to be determined.

Given the M1 skewing of the BMDMs compared to pMACs,
we expected the respiratory burst to be greater in BMDMs.
We utilized Amplex Red R©, a readout of H2O2 release that was
stable over hours. Although immune complexes stimulated the
respiratory burst, there was no difference between pMACs and
BMDMs (Figure 6A). Thinking that polarization may reveal
differences between the two cell types, we polarized with IFN-γ
or IL4/IL13 and followed the burst with time; polarization did
not produce a difference in burst between pMACs and BMDM
(Figure 6B). The targets in these experiments were insoluble
BSA-anti-BSA immune complexes that are small and difficult to
count. Thus, we tested 1X, 2X, and 3X amounts of complex to
ensure that there was a high enough “multiplicity of infection” to
see a difference between the cell types. The 1X data is presented in
Figure 6; the higher concentrations produced more fluorescence
but no difference in the rates between BMDM and pMACs. Thus,
we conclude that the higher phagocytic rates and M1 skewing of
BMDMs does not correlate with increased respiratory burst, even
upon IFN-γ activation (Figure 6B). Notably, pilot experiments
did show a significant difference between pMACs and BMDMs,
with pMACs having a significantly greater burst than BMDMs.
However, the earlier experiments used pMACs that had not
undergone selective adhesion. Selective adhesion eliminated the
difference, indicating that the higher burst is likely a function of
contaminating neutrophils. It is not clear why the burst would
be similar if phagocytosis is greater. However, we reported that
the burst is independent of phagocytosis (33), so it is likely that
the extent of FcR ligation is not the rate determining step for
respiratory burst.

While the first response of macrophages to pathogens
is internalization and the generation of a respiratory burst,
the upregulation of gene expression propagates the response,
providing cytokines to which they (and bystander cells) respond.
With time, the adaptive immune response is engaged, exposing
macrophages to polarizing cytokines, including IFN-γ, IL4,
and IL13. The question we asked was “Do BMDMs and
pMACs respond similarly to polarizing conditions?” BMDMs
and pMACs were tested for their response to M1 and M2
polarizing conditions (IFN-γ and IL4/IL13, respectively). Surface
molecule expression (Figure 7), message levels (Figure 8), and
cytokine/chemokine release (Figures 9–11) were quantified. LPS
and IFN-γ are the common M1 polarization agents. We tested
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the effects of LPS, IFN-γ, and both on BMDM to determine
our M1 polarizing conditions. BMDMs were treated overnight
with LPS (100 ng/ml), IFN-γ (100 ng/ml) or both. The media
was collected after 24 h and the concentration of released IL-
10 and IL-12 determined by ELISA. While both LPS and IFN-γ
significantly increased cytokine secretion, the combination was
neither additive nor synergistic (Supplemental Figure 1A). To
assess the effect of IFN-γ ± LPS on the respiratory burst,
polarized cells were incubated with zymosan or zymosan IgG
and Amplex Red R© (as in Figure 6) and the rate of the burst
calculated. Although IFN-γ significantly increased the burst LPS
had no additional effect (Supplemental Figure 1B). Thus, IFN-γ
alone was used for M1 polarization.

Due to the tremendous amount of data produced as well as the
biological variability, the statistical analyses were complicated:
differences due to cell type, polarization conditions, and the
two combined had to be determined. Figures 7–11 provide a
visualization of the relative response of BMDMs (black) and
pMACs (red) under each condition. Based on the observation
that BMDM (black lines) have greater deviations from the mean
than pMACs (red lines) (Figures 7, 10) we conclude that, overall,
BMDM are more responsive to their environment. This extends
to phagocytosis (Figure 4). Tables 2, 4 provide the summary
of statistical significance for surface molecule expression and
protein secretion, respectively. Statistical significance in the “Cell
Type Main Effect” column (bold text) identify molecules whose
expression is different between pMACs and BMDM regardless of
polarization conditions. Statistical significance in the Interaction
Effect (bold text) identifies molecules whose expression is a
function of both polarization and cell type. The conclusion from
the polarization data (bold text, Tables 1–4) is that, for every
measure of polarization, there are molecules whose expression
is a function of cell type. Where there is statistical significance,
BMDMs respond more robustly than pMACs.

Which brings us back to the fundamental question: Are
BMDMs and pMACs interchangeable? We would argue the
answer is no, and that the cell type chosen depends on the
questions to be asked. If cell biological questions are asked,
BMDMs would provide a greater range of response under
most conditions (phagocytosis, gene regulation, secretion) and
lend themselves to molecular manipulation. pMACs provide a
readout of the responsiveness of the innate immune system in
the background of the animal from which they are isolated,
particularly informative for knockout or genetically modified
animals. These findings raise a cautionary note that, while
in vitro studies are informative, they do not necessarily reflect
in vivo phenotype.

MATERIALS AND METHODS

Buffers
Dulbecco’s Modified Eagle Medium (DMEM, Gibco), ACK lysis
buffer (150mM NH4Cl, 10mM KHCO3, 0.1mM Na2EDTA,
pH 7.2–7.4), Bone marrow macrophage differentiation media:
DMEM supplemented with 20% L-cell conditioned media, 10%
FBS, 0.2% sodium bicarbonate, and gentamycin (50µg/ml);
Macrophage media: DMEM containing 10% fetal bovine serum

and gentamycin (50µg/ml). HBSS++: Hanks’ balanced salt
solution containing 4mM sodium bicarbonate, 10mM HEPES,
and 1.5mM each CaCl2 and MgCl2.

Reagents
Highly purified BSA (Cat # A0281) was purchased from Sigma.
Interferon-γ (Cat # 315–05; Lot # 061398), IL4 (Cat # 214–14; Lot
# 111249), and IL13 (Cat # 210–13; Lot # 111207) were purchased
from Peprotech. anti-BSA IgG (Cat #B1520) was purchased from
Sigma. Alexa 488-conjugated α-rabbit IgG (Cat # A11070) was
from Invitrogen Life Technologies.

Flow Antibodies (See Table 1)
Targets. pHrodoTM Green E. coli BioParticlesTM (Cat #
P35366), Zymosan A (S. cerevisiae) BioParticlesTM, Alexa
FluorTM 488 conjugated (Cat # Z23373), E. coli BioParticlesTM

Opsonizing Reagent (Cat # E2870), Zymosan A BioParticlesTM

Opsonizing Reagent (Cat # Z2850), and AmplexTM Red
Hydrogen Peroxide/Peroxidase Assay Kit (Cat # A22188) were
purchased from Life Technologies. E. coli and Zymosan were
IgG-opsonized per manufacturer’s instructions.

Immune Complexes (IC)
IgG immune complexes were formed by incubating 1mol
of highly purified BSA with 3mol (rabbit) anti-BSA IgG
(60min, 37◦C, with rotation). Complexes were washed with PBS
before use.

IgG-Coated Beads (BIgG)
Were prepared as described previously (14). Briefly, 2µm
borosilicate microspheres (Duke Standards, Thermo Scientific
USA) were coated sequentially with poly L-lysine, activated
with dimethylpimelimidate · 2 HCl, washed, and incubated with
highly purified BSA (overnight, 4◦C with rotation). BSA beads
were blocked (1M Tris, pH 8.0), washed, and opsonized with
rabbit anti-BSA IgG.

Cells
Male and female C57BL/6 mice, 12–16 weeks of age, were the cell
source. FcγRI-only mice (VG1505) (16) for collection of bone
marrows, were provided by Regeneron Pharmaceuticals, Inc.
Requests for FcγRI only mice should be sent to Regeneron, they
cannot be fulfilled by the corresponding author. Animals were
bred in the Albany Medical College Animal Resource Facility. All
procedures were done in under NPHS guidelines using protocols
approved by the Albany Medical College Institutional Animal
Care and Use Committee. The sex of the animal providing the
cells was recorded, we found no differences in the responses from
male and female mice.

Bone Marrow-Derived Macrophages (BMDMs)
Bone marrow was extruded from the femurs and pelvises of
euthanized mice and differentiated in bone marrow macrophage
differentiation media according to published procedures (34,
35) Albanesi, 2012 #16787}. Cells were used 7–10 days
after harvesting.
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Elicited Peritoneal Macrophages (pMACs)
Elicited peritoneal macrophages were recruited and harvested
according to published methods (36). Briefly, mice were injected
i.p. with aged thioglycolate. After 4 days, peritoneal exudates
were collected using sterile phosphate buffered saline (PBS).
Red blood cells were lysed using ACK lysis buffer. For selective
adhesion, cells were plated in untreated petri dishes; after
4 h, non-adherent cells removed by washing in PBS and the
adherent population removed using 5mM EDTA/PBS (15min
with agitation). Recovered cells were resuspended in HBSS++

and used within 4 h. Note: Due to the fact that BMDMs are
differentiated in vitro, and pMACs are used the day of harvest
harvest, the BMDMs and pMACs used in each experiment were
never from the same animal.

Phagocytosis
E. coli and Zymosan
For flow-based assays, 2× 105 post-adherent pMACs or BMDMs
were added to flow tubes and the tubes placed on ice. Cold
pHrodoTM Green E. coli ± IgG (50:1 MOI) or Alexa 488-
conjugated zymosan ± IgG (5:1 MOI) were added; total volume
of the assay was 35 µL. Tubes were kept on ice to allow
target binding, then transferred to 37◦ waterbath to initiate a
synchronized wave of phagocytosis. At varying times (2.5–15min
for E. coli, 5–60min for the larger zymosan), the tubes were
removed from the waterbath, vortexed to dislodge bound targets,
and 100µl of ice cold HBSS++ added to stop phagocytosis. Tubes
were placed on ice and read as soon as possible. To quench the
fluorescence from external zymosan, 4% trypan blue was added
immediately before reading. Data was collected on 60–100 ×

106 cells/tube.

IgG-Coated Beads (BIgG)
Sychronized BIgG phagocytosis was done as previously described
(36). Briefly, macrophages (5 × 104) were plated onto coverslips
in 24 well plates and cooled in an icebath. Targets (20:1) were
added and allowed to bind on ice. Plates were transferred to
37◦C waterbath and fixed at the indicated times. Incomplete
phagosomes were detected by the addition of Alexa 488 α-rabbit
IgG which labeled the IgG on the exposed targets. Cell number
was determined by DAPI staining.

Real Time Imaging
Live imaging for determination of phagocytic rates was done
as previously detailed (34). BMDM were virally transduced to
overexpress PKC-ε-GFP, brought into focus on the stage of
the spinning disk confocal microscope, BIgG were added, and
images taken every 5 s for 10min. The rate of phagocytosis was
determined to be the number of frames from the first indentation
of the plasma membrane through the first frame showing
completely enclosed particles× 5 (seconds between frames).

Respiratory Burst
pMACs and BMDMs (3 × 104) were seeded in 96 well plates
and allowed to adhere. The AmplexTM solutions were prepared
as per manufacturer’s instructions. Cells were stimulated with
an empirically determined amount of immune complexes in the

presence of 50µM AmplexTM Red and 0.1 U/mL horseradish
peroxidase in HBSS++. Plate was maintained at 37◦C in a
BioTekTM SynergyTM 2 Multi-Mode Microplate Reader. Data was
collected every 5min over the 4 h time period, the baseline (no
treatment) was subtracted from each value and the net relative
fluorescence units presented.

Macrophage Polarization
Polarization was done on adherent macrophages (1 × 106)
with 100 ng/mL IFN-γ or IL4 + IL13 (25 ng/ml each) for
24 h. Cells thus polarized (and with a non-treated control)
were used for flow cytometry, respiratory burst, quantitative
polymerase chain reaction (qPCR), and cytometric bead arrays.
While LPS + IFN-γ is often used together for M1 polarization
(10), and synergize in cytotoxicity assays (37, 38), we found
that a 24 h incubation with IFN-γ was sufficient to M1
polarize (Tables 2–4), with the addition of LPS not significantly
enhancing the IFN-γ responses for either cytokine release
nor phagocytic rate (Supplemental Figure 1). As cytotoxicity
assays are done on the order of days, it may be that
feedback and/or gene regulation that occurs in that timeframe
contributes to synergy. Alternatively, the fact that C57BL/6
mice are more M1 skewed at steady state, perhaps IFN-γ is
sufficient to upregulate M1 markers. Finally, as summarized by
Jackson Labs (https://www.jax.org/news-and-insights/jax-blog/
2016/june/there-is-no-such-thing-as-a-b6-mouse), all C57BL/6
sub-strains are not the same. Our mice, originally ordered from
Jackson but bred in our facility over many years, apparently do
not require inputs from both IFN-γ and TLR agonists for the
readouts we are studying.

Flow Cytometry
1 × 106 cells were used for flow analysis on polarized cells.
For all analyses except CD16/CD32 staining, cells were blocked
with CD16/CD32 (Mouse Fc Block, Clone 2.4G2) for 15min on
ice, then incubated with antibodies to the proteins of interest
(45min, on ice). Unstained cells were used to establish flow
cytometer settings. Fluorescenceminus one (FMO) controls were
used for compensation. Flow cytometric data were acquired on a
FacsCalibur (Becton and Dickenson, Franklin Lakes, NJ) using
FlowJo and the data analyzed using FlowJo Software

(Tree Star, Ashland, OR). Antibodies used are listed inTable 1.

Quantitative Polymerase Chain Reaction
(qPCR)
Quantitative polymerase chain reaction was conducted per
previous lab protocols (39). The primers used are listed in
Table 1. Expression for each gene was normalized to β-actin
(1Ct) and the RNA fold change determined using the 11Ct
method (1Ct gene after polarization—1Ct M0 control).

Cytokine Bead Array Polarization Assay
Following polarization, cell supernatants were collected, clarified
by centrifugation, and stored at −80◦C until analyzed. Secreted
cytokine/chemokines were quantified using a Bio-Plex ProTM

Mouse Cytokine, Chemokine, and Growth Factor custom 9-plex
assay (Control#64145335). The assay was run per manufacturer’s
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instructions, using 50 µl of the supernatant. Concentrations
were calculated from standard curves. The kit contained M1
markers: IL12 p40, IL-1β, IL6, IL12 p70, and TNF-α, the M2
marker IL10, and the three chemokines: CCL1/KC (neutrophil
chemoattractant), CCL2/MCP-1 (monocyte chemoattractant
protein), and CCL5/RANTES (T cell homing factor). The
absolute protein release as well as the release normalized to
non-polarized controls was determined.

Statistical Analysis
The number of subjects required for each of the assays were
estimated using power analysis (set at 80% and α = 0.05)
using GPower 3.1 (Dusseldorf, Germany). Statistical significance
was determined by a repeated measures analysis of variance
(ANOVA). The repeated measures ANOVA was conducted with
the within effect of polarization state nested within macrophage
type and macrophage type as a between animal effect. For
Figure 6, each antigen was quantified by flow cytometry, MFIs
for each animal under each condition (no treatment, IFN-
γ, and IL4/IL13) were averaged and the deviation from that
mean was calculated thus effectively removing the animal-
to-animal variability and considering only the within-animal
response, analogous to a repeated measures design. Protein
release (Figure 9) was treated similarly. Statistical significance
was accepted at p < 0.05. Data are reported as p-values, with
statistical significance accepted a p < 0.05. For qPCR and protein
release (Figures 7–10), the data are reported as mean ± SEM.
As the qPCR data were not normally distributed, a Generalized
Linear Transform was used to fit the data to estimate parameters
subsequently used in the ANOVA. For polarization (Tables 2–
4), statistically significant difference based on cell type alone are
shaded green, those based on polarization alone are shaded blue,
and interaction differences (i.e., BMDM and pMACs respond
differently to polarization) are shaded orange. Animal numbers
ranged from 4 to 7, with n referring to the number of BMDM and
pMACs tested. Statistical analysis was performed using Minitab
(State College, PA).

It is recognized that the presentation of the data in Figures 7–
11 is unfamiliar. This is due to the complexity of the data. The
data assessing how BMDMs and pMACs respond to polarization
are quite complex as there are two factors: cell type and
polarization state. Each factor has a minimum of two levels
(cell type: BMDM and pMAC and polarization state: none, IFN-
gamma, and IL4/IL13). To properly assess the effect of each
of these factors and their levels, both the main effect of each
factor and the interaction between the two factors is assessed, as
the response to polarization stimuli may vary depending on the
cell type.

The statistics in Tables 2–4 correspond to Figures 8–11. They
include the main effects of cell type and polarization state and
the interaction effects which were computed using a Generalized
Linear Transform (as opposed to a linear transformation, e.g.,
classical multiple regression) since the relationships between cell
type and polarization state was hypothesized to be non-linear.
Additionally, each biological replicate was considered to be cells
from one animal, and due to animal-to-animal variability, the
magnitude of responses sometimes differed between animals.

To assess the effect of polarization stimuli while removing the
animal-to-animal variance, changes in the polarization state of
cells from each animal were analyzed using a repeated measures
ANOVA where each line represents the response of cells from a
single animal/biological replicate (Figures 6, 9).
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Supplemental Figure 1 | LPS does not synergize with IFN-γ with respect to the

respiratory burst or cytokine secretion. BMDM were treated with LPS (100 ng/ml),

IFN-γ (100 ng/ml) or both for 24 h; controls received neither. The media was

collected for quantitation of IL-10 and IL-12 by ELISA (A) and the respiratory burst

quantified using the Amplex Red® fluorescence assay in response to zymosan or

IgG-opsonized zymosan (B). When treated with IFN-γ, BMDM and pMACs

released equivalent concentrations to IL-10/IL-12 and produced the same amount

of oxidized Amplex Red regardless of the presence of LPS. Thus, IFN-γ

(100 ng/ml) was used for M1 polarization in these studies. Each symbol represents

cells from one mouse. ∗p < 0.05, ∗∗p < 0.005 compared to no treatment.

p-values were determined using one-way ANOVA and

Tukey’s test.
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From development to aging and disease, the brain parenchyma is under the constant

threat of debris accumulation, in the form of dead cells and protein aggregates. To prevent

garbage buildup, the brain is equipped with efficient phagocytes: the microglia. Microglia

are similar, but not identical to other tissue macrophages, and in this review, we will first

summarize the differences in the origin, lineage and population maintenance of microglia

and macrophages. Then, we will discuss several principles that govern macrophage

phagocytosis of apoptotic cells (efferocytosis), including the existence of redundant

recognition mechanisms (“find-me” and “eat-me”) that lead to a tight coupling between

apoptosis and phagocytosis. We will then describe that resulting from engulfment and

degradation of apoptotic cargo, phagocytes undergo an epigenetic, transcriptional and

metabolic rewiring that leads to trained immunity, and discuss its relevance for microglia

and brain function. In summary, we will show that neuroimmunologists can learn many

lessons from the well-developed field of macrophage phagocytosis biology.

Keywords: microglia, macrophages, phagocytosis, apoptosis, efferocytosis, epigenetic, metabolism, trained

immunity

INTRODUCTION

Microglial phagocytosis of apoptotic cells (efferocytosis) is at the core of the brain regenerative
response. Its relevance in maintaining brain tissue homeostasis from development to aging and
neurodegenerative diseases is undisputed but, nonetheless, many fundamental questions about the
biology of the process remain open: How is phagocytosis efficiency regulated at the cellular and
molecular levels? How can it be manipulated? Is it a dead-end road or does it trigger changes in the
phagocyte? Is phagocytosis simply a process of garbage removal or does it actively participate in the
well-being of the surrounding tissue? We here try to address these questions by collecting answers
frommicroglia’s cousins, the macrophages that reside in other tissues. In the first part of this review,
we will discuss similarities and differences in the identity of microglia and other macrophages,
taking into account their developmental origin and the maintenance of the adult populations. In
the second part, we will compare the mechanisms that mediate recognition and engulfment and
their epigenetic, transcriptional, metabolic, and immunological consequences. We will conclude
that phagocytosis has a tremendous potential to impact on brain physiology and pathology.

LINEAGE AND ORIGINS OF MICROGLIA AND OTHER
MACROPHAGES

Microglia are brain-resident macrophages. They interact with the brain parenchyma and
carry out essential maintenance functions. They are often studied independently from other
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tissue-residentmacrophages, probably because they are unique in
some aspects, most notably in their isolation from the rest of the
body through the blood brain barrier (BBB). But how different
are microglia really from other tissue resident macrophages in
terms of origin, lineage, and identity? A close review of the
literature shows that microglia are not as coarsely distinct to
other macrophages as one may think, yet there are some fine
differences in how they behave in their local environment. In the
next sections, we will review evidence about the origin, lineage,
identity, and population dynamics of microglia compared to
other tissue-resident macrophages and highlight commonalities
and differences.

Lesson 1. The Monocytic Origin of
Macrophages Is More the Exception Than
the Rule
Macrophages are widespread and reside inmany different organs,
where they fulfill different functions. Because it is such a
diverse population of cells, a fundamental question is whether
they have a common precursor or whether each macrophage
population develops from a different precursor. Based on the
observation that some macrophages are short-lived and that they
are often renewed by circulating monocytes, already in 1972
van Furth et al. proposed the “mononuclear phagocyte system”
theory, by which tissue-resident macrophages were assumed to
derive from blood-circulating monocytes and to differentiate
within the host tissue (1). However, at that time there was
evidence that some macrophage populations can proliferate
locally and self-renew (2, 3), which clashed with the idea that
macrophages are of monocytic origin. Why would they need
to divide and self-renew locally if the main source is in fact
a pool of circulating monocytes? Over the last decade, tracing
and parabiosis experiments, where the origin and location of
specific macrophage populations can be followed over time,
have demonstrated that in fact most macrophage populations
originate in the embryo prenatally. And it is only some
macrophage populations, such as gut (4), dermis (5), pancreas
(6), and heart (7) macrophages that are replaced from circulating
monocytes. In contrast, other macrophage populations, most
notably microglia and skin macrophages (Langerhans cells), but
also others, originate early during development, are long-lived
and capable of local self-renewal with no significant involvement
of circulating monocytes (8–12).

The notion that macrophages have a prenatal and not a
monocytic origin caused a paradigm shift in the field and
prompted questions about their precise site of origin and about
the routes by which they reach target organs. The precise spatial
origin of each macrophage pool is still under debate, but there
are essentially two accepted sources: the yolk sac and the aorta-
gonad mesonephros. From there, macrophages take one of two
routes: they migrate directly to their target organ or they go
through fetal liver and then on to their target tissue (Figure 1).
What percentage of the mature tissue-resident macrophages in
fact originate via each of these routes is still being investigated
for most macrophage populations. In this respect, the origin of
microglia is probably the most undisputable: they originate in the

yolk sac and migrate directly to the brain as early as embryonic
day E10.5 in the mouse. Other macrophages, such as Langerhans
cells seem to have a mixed origin: some derive directly from the
yolk sac, whereas others travel through the fetal liver before they
reach their destination (9). The latter route through fetal liver
seems to be the standard and more prevalent for most other
macrophage populations (13, 14).

In summary, the original theory that tissue-resident
macrophages universally derive from circulating monocytes
has now been replaced with a more refined picture, where
macrophages in fact originate from an early embryonic
precursor, seed their target tissue, and self-renew locally (12).
In this new picture, macrophages that derive from circulating
monocytes are more the exception than the rule and microglia
probably constitute the paradigmatic example of macrophages of
prenatal origin with self-renewal capacity and no exchange with
circulating monocytes under physiological conditions.

But if monocytes are not the precursor cells for most
macrophages, what is in fact the molecular identity of their
precursors and how different is it for different macrophage
populations? In the next section, we will summarize what is
known about the identity of the embryonic precursors that give
rise to different tissue-resident macrophages.

Lesson 2. Microglia Do Not Require the
Transcription Factor c-Myb to Develop, but
Other Macrophages Do
After it was demonstrated that most macrophages originate
prenatally either from the yolk sac or from the aorta-gonad
mesonephros, investigators turned their attention to the precise
molecular identity of the precursors. The goal was to identify
markers and transcription factors that would allow us to identify
and classify them.

There is a certain correlation between the physical and
temporal origin of macrophages and the markers they express.
The most polarizing marker, the one that probably allows the
most straightforward classification, is the transcription factor
c-Myb. Early (E7.5-8.5 in mice) progenitors from the yolk
sac (erythromyeloid precursors or EMPs) do not express or
require the transcription factor c-Myb for development and
maturation. Accordingly, macrophages that stem from EMPs,
such as microglia, Langerhans cells and Kupffer cells (liver
macrophages), develop normally in c-Myb−/− animals (10).
In contrast, late (E10.5 in mice) progenitors that originate in
the fetal liver (hematopoietic stem cells, HSCs) do express and
require c-Myb for proper development (15, 16). This is the case
for most tissue-resident macrophages, which fail to develop in
the absence of c-Myb (10). c-Myb dependence is therefore a
classifying criterion for macrophage lineage, but it is not the
only transcription factor involved in maturation. The overall
topic of macrophage lineage markers is beyond the scope of
this review and has been covered extensively before (13). For
microglia in particular, key players in their development include
the growth factor receptor CSF1R (Colony Stimulating Factor 1
Receptor), the chemokine receptor CX3CR1 (CX3C chemokine
receptor 1), the calcium binding protein Iba-1 (ionized calcium
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FIGURE 1 | Summary of the origin, lineage, and population dynamics of main macrophage populations. Some macrophages, such as microglia, originate exclusively

from an early, c-Myb-negative erythromyeloid precursor (EMP) in the yolk sac, while others, such as Langerhans and Kupffer cells, have a mixed yolk sac-fetal liver

origin. Many macrophage populations originate from c-Myb-positive hematopoietic stem cells (HSC) after traveling through the main prenatal hematopoietic location,

the fetal liver. Note that for the sake of simplicity, arrows indicate the main site of origin of macrophages, although for some HSC-derived macrophage populations,

some contribution from the yolk sac has also been reported. Weighted arrows next to each tissue-specific macrophage population indicate the relative contribution of

self-renewal (circular arrows) vs. exchange with circulating monocytes (double-sided arrows) to that particular population. Microglia and Langerhans cells for instance

are mainly self-renewing, whereas cardiac and colonic macrophages do exchange significantly with circulating monocytes. Some vector graphics were obtained from

Vecteezy.com with permission.

binding adaptor molecule 1), the G-protein-coupled receptor
F4/80 (also known as EMR1 - EGF-like module-containing
mucin-like hormone receptor-like 1) and the integrin CD11b
(cluster of differentiation molecule 11B, also known as Integrin
Alpha M - ITGAM) (17, 18) .

The lesson that derives from these studies is that ontogeny
and molecular identity of different macrophage populations go
hand in hand. There is an additional component, longevity,
which also shows some level of correlation with macrophage
ontogeny. Early, c-Myb-negative progenitors in the yolk sac
give rise to populations that tend to be long-lasting (microglia,
Langerhans and Kupffer cells), and later, c-Myb-positive cells
in the mesonephros and fetal liver give rise to a mix of long-
and shorter-lived populations. Microglia are particularly long-
lived and have the ability to self-renew several times over a
lifetime (19). A question that derives from this notion is how

the population behaves with respect to individual cells. What
is the natural “life cycle” of a single microglia and how does it
contribute to the overall stability of the population? The next
section will examine evidence of how microglia are replenished
under homeostatic conditions.

Lesson 3. As Long as the Blood-Brain
Barrier Is Intact, Microglia Can Self-Renew
Throughout a Lifetime Without a
Significant Monocyte Contribution
As reviewed in the previous section, under physiological
conditions, microglia have a prenatal yolk sac origin. The
BBB protects and isolates the brain from exchange with
blood circulation, effectively turning it into a very isolated
microenvironment. Here, microglia stay stable and self-renew
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with virtually no contribution from circulating monocytes in
physiological conditions (8). But what is the exact population
dynamics of microglia and how do they behave individually? And
what happens if microglia are depleted in a healthy brain, how do
they replenish under these conditions?

One critical factor in microglial development and survival
is CSFR1. Mice devoid of this receptor do not have microglia
(8, 20), and mutations that affect the function of the kinase
domain of the receptor cause severe neurological syndromes in
mice and humans (21–24). In line with this, in 2014, Elmore et al.
showed that a chemical inhibitor of CSF1R virtually ablated the
microglial population in the healthy brain. Strikingly, they also
showed that microglia could be repopulated upon withdrawal
of the inhibitor (25). It was then critical to identify which cells
microglia repopulated from. The original report suggested the
existence of a “hidden” microglial progenitor expressing the
intermediate filament nestin (25). However, more detailed studies
have in fact demonstrated that the most likely scenario is one
where microglia replenish from the few remaining cells that are
not removed during CSF1R inhibition (19, 26). A few questions
are left unanswered regarding how this repopulation happens,
including why some cells remain resistant to CSF1R inhibition
and what signaling mechanisms tell microglia that they need to
stop proliferating once the repopulation is completed. In this
regard, it is interesting to note that microglia seem to have a very
active population dynamics at steady-state, with a balanced ratio
of proliferation and apoptosis and several self-renewal cycles
during a lifetime (19).

A similar scenario is observed in Langerhans cells, which
also have a predominant yolk sac origin, are long-lived (9),
renew during a lifetime (27) and most likely proliferate
from fully differentiated cells (28). Indeed, proliferating, self-
renewing macrophages can be found in almost all tissues
under physiological conditions (11, 29), and often even
more so under pathological conditions, although in the latter
case the contribution from circulating monocytes is most
likely instrumental (30, 31). Only when the BBB integrity is
compromised, most commonly after head irradiation, circulating
monocytes can give rise to functional microglia [for a review
see (31)]. Nonetheless, the fact that a population of cells exists
that has the potential to differentiate into microglia under
certain pathological conditions is highly relevant for therapeutic
intervention and merits further research.

Overall, macrophages seem to be in charge of their own
local population dynamics and reach a steady state of functional
self-renewal with balanced division/death rates that match the
functions they carry out in their host tissues.

Lesson 4. Microglia Have Specialized in
Homeostatic and Stimulus-Triggered
Remodeling of Brain Circuits and Structure
The original notion that macrophages are a uniform pool of
phagocytes that reside in all organs and perform immune
functions has long been discarded. Instead, the current view
is that macrophages are essentially as dissimilar as their target
tissues and have specialized in performing tissue homeostasis

functions that make sense in their local microenvironment. For
instance, whereas lung macrophages are specialized in surfactant
clearance (32) and adipose macrophages participate in lipid and
insulin metabolism (33), spleen macrophages are critical for
iron homeostasis (34, 35). In the particular case of microglia,
their specialized functions include interactions with neurons,
potentially participating in synaptic remodeling (36), modulating
experience-triggered events, such as neurogenesis (37), and
participating in memory acquisition (38, 39). Microglia are also
very active in surveilling the brain parenchyma with their highly
motile processes (40, 41) and this is believed to be essential for
brain maintenance and protection and to be in close connection
with neuronal activity (42, 43). However, microglial motility
may not be so unique, as late evidence suggests that other
macrophages might also perform this type of surveillance in the
intersticial space (44).

It is not surprising that macrophages have specialized
roles within their host tissues to aid their homeostasis and
maintenance. In this context, microglia need to be in close
contact with neurons and be highly sensitive to changes in the
microenvironment. In the next section, we will focus on this
sensitivity to environmental factors and how that may impact the
epigenetic and transcriptional identity of microglia.

Lesson 5. Microglia Have Developed a
Unique Transcriptional and Epigenetic
Landscape
Given the wide diversity of macrophage tissue-specific
phenotypes, a very relevant question to ask is how different
macrophages are at the molecular level. How different are
their transcription and epigenetic profiles under physiological
conditions and how do they respond to changes in their
environment? With the advent of “omics” methods and, in
particular, with the application of single-cell studies the field
has experimented a boom. It is now clear that macrophages
are as different at the transcription and epigenetic level as they
are at the phenotypic level. Macrophages share a common core
transcriptional identity, but each tissue-specific population
expresses a unique set of transcripts that is organ-specific
(45, 46). In line with this, microglia are transcriptionally distinct
to other macrophage populations but, in addition, single-cell
studies have shown that there are several subpopulations of
microglia that could perform functionally different tasks under
basal and inflammatory conditions (47, 48). Similar observations
are being made in other macrophage populations, with single-
cell omics techniques revealing their underlying richness and
diversity (49, 50).

In the particular case of microglia, these studies have
revealed that microglia are transcriptionally homogeneous
across brain regions but diverge in their transcriptional profiles
across their cell division state (48). Another distinct microglia
subpopulation that has earned a fair bit of attention is the
so-called Disease-Associated Microglia (DAM), a subgroup
of microglia revealed by single-cell sequencing specifically
in the brain of an Alzheimer’s disease mouse model (47).
However, despite the power of these approaches in revealing
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the heterogeneity of distinct microglia subpopulations, there
is debate as to the relevance of these populations in human
brain, which seem to have subpopulations of their own (see
comment in https://www.alzforum.org/news/research-news/
when-it-comes-alzheimers-disease-do-human-microglia-even-
give-dam). Ultimately, and under the premise that to study
human disease one should focus on human microglia as much
as possible, these studies reveal that microglia are in fact more
diverse than anticipated and encourage further investigation
aiming at dissecting their identity.

An ever-expanding source of cell diversity lies in the
epigenetic landscape, which is most commonly read in the
form of histone modifications (acetylations, methylations), DNA
modifications (DNA methylation) and small non-coding RNAs
(miRNAs, lncRNAs), and which has also been probed in different
macrophage populations. The combinatorial patterns of histone
3 acetylation (at lysine 27) and methylation (at lysine 4) have
been profiled in detail, revealing a core epigenetic macrophage
signature, as well as a set of specific enhancer marks that are
unique to each organ (46). This study also served to validate
the idea that local macrophage identity is shaped by the local
microenvironment. Previous experiments had shown that some
macrophages populations are highly plastic and can adopt
a tissue-specific identity even after ex vivo culture (51, 52).
Recent evidence suggests that this phenotypic identity reshaping
is accompanied by rewiring of the epigenetic landscape (46).
In this context, microglia proved to be transcriptionally and
epigenetically distinct to all other tissue-resident macrophages
and clustered systematically separated from other populations for
different epigenetic marks (46).

A follow-up question that emerges from these observations
is to which extent epigenetic reprogramming is relevant for
macrophage biology, and how it may affect microglia in
particular. Microglia depletion studies in diseased brains have
shown that after replenishment with “fresh” microglia, animals
have improved cognitive scores (53–55). These studies have
played with the idea that microglia in a diseased brain may
have an altered epigenetic signature that is erased at the
time of depletion and that the replenishing microglia are
reprogrammed and therefore functionally fitter. How much of
the original epigenetic identity is retained by the few remaining
microglia and what role exactly cellular reprogramming plays
in microglia phenotype is still unclear. Nonetheless, microglia
and other tissue-resident macrophages appear to have a unique
transcriptional and epigenetic signature that is highly plastic
and may play a fundamental role in how they interact with
their environment.

Since the molecular and phenotypic identities of any cell are
in constant interplay, it is expected that different macrophages
with different tissue-specific functions and phenotypes would
have different transcriptional and epigenetic signatures. A more
thorough characterization of the effect of environmental factors
on cellular reprogramming and function will shed light on
how dynamic these changes are and, most importantly, how
relevant under physiological and disease situations. However, in
spite of their phenotypic diversity, macrophages do share some
core functions, such as phagocytic clearance of dead cells and

immune signaling. Yet even those have tissue-specific nuances.
The next section will address the similarities and disparities
in mechanisms and dynamics of phagocytosis in microglia vs.
other macrophages.

PHAGOCYTOSIS BY MACROPHAGES AND
MICROGLIA

The efficient phagocytic removal of apoptotic debris
(efferocytosis), mostly carried out by resident macrophages,
vastly influences our daily physiology. It is estimated that
billions of cells are removed everyday (56): aged erythrocytes
and neutrophils in the spleen, liver and bone marrow (57, 58),
epithelial cells in the mammary gland after the lactation period
(59), spermatogenic cells in the testis (60), and the outer segment
of light-exposed photoreceptors in the retina (61), among others.
In the brain, microglia remove the excess newborn cells produced
during embryonic and postnatal development in the cortex,
cerebellum and amygdala (62–64) and in adult neurogenic niches
in the hippocampus and subventricular zone (SVZ) (37, 65),
as well as deceased cells during aging and neurodegenerative
diseases (66). Other cell types, such as astrocytes, neuroblasts or
cells of the neural crest may also act as phagocytes but generally
with less efficiency and thus microglia are considered the brain
“professional” phagocytes (67).

In this section, we will compare available data on the
process of phagocytosis by macrophages and microglia. We will
then describe that phagocytes express overlapping recognition
mechanisms of apoptotic cells, and that this redundancy ensures
that phagocytosis is fast and efficient. We will then describe
the functional consequences of ingestion in the phagocyte,
focusing on inflammatory responses, and metabolic adaptations.
Ultimately, we will conclude that phagocytosis is a powerful
mechanism that needs to be firmly controlled to ensure the
efficient removal of target cells while preventing the demise of
live cells.

Lesson 6. Phagocytosis Is Tightly Coupled
to Apoptosis Due to Redundant
Recognition Mechanisms
Phagocytosis and apoptosis are evolutionarily linked together as
a mechanism that allows the elimination of excess, dysfunctional,
or aged cells without imposing alterations or damage in the
surrounding cells (67). Homeostatic phagocytosis is ensured by
the immediate recognition of the apoptotic cell by phagocytes
through a redundant plethora of released “find-me” and
membrane-bound “eat-me” signals that are recognized by
the phagocytes (Table 1). Herein we summarize some of the
most relevant signals and receptors involved in apoptotic cell
recognition, and we prompt the reader to comprehensive reviews
on the topic for more details (67, 72).

Among “find-me” signals stand out purines (ATP, UTP,
and their dephosphorylated derivatives) and the chemokine
fractalkine, and the corresponding metabotropic purinergic
P2Y receptors and CX3CR1 expressed in phagocytes. Another
important “find-me” signal is the lipid lysophosphatidylcholine
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TABLE 1 | Expression of phagocytosis-related receptors by microglia.

Phagocyte

receptor

Gene Function Brain database (68) Immunological database

(skyline)

Human database

(69)

DAM microglia

(47)

Aging

human

signature

(70)

Aging

human

database

(70) vs. (68)

Cerebellum

vs. Striatum

(71)

PAM

microglia (48)

G2A GPR132 G protein-coupled receptor

(GPCR), recognizes

lysophosphatidylcholine

Microglia T lymphocytes, DCs.

Neurotrophils

Mo > Mi =Ma - HuMi_Aged Up - -

CX3CR1 CX3CR1 Fractalkine receptor Microglia Microglia (Monocytes low) Mi >> Mo >> Ma Down HuMi_Aged Down Striatal Down

P2Y6 P2RY6 Purinergic receptor type Y6 Microglia Microglia (Macrophages low) Mi = Ma > Mo Down HuMi_Aged Up Striatal=Cerebellar =

P2Y12 P2RY12 Purinergic receptor type

Y12

Microglia (OPCs low) Microglia Mi >> Mo >> Ma Down HuMi_Aged Down Striatal Down

BAI1 BAI1

(ADGRB)

adhesion G protein-coupled

receptor B1

Astrocytes, neurons, OPCs,

oligodendrocytes

Epithelial cells, neutrophils, NKs Mi = Ma = Mo - - - - -

TIM4 TIMD4 T cell immunoglobulin and

mucin domain containing 4

Microglia Macrophages - - - - Cerebellar -

Stabilin 1 STAB1 - Microglia (endothelium low) Microglia, endothelium Mi = Ma > Mo Down HuMi_Aged Up - Up

Stabilin 2 STAB2 - Endothelium Endothelium, macrophages - - - - - -

SIRPa SIRPA Signal regulatory protein

alpha

Microglia Microglia, macrophages,

neutrophils

Mi = Ma = Mo Down - Down Striatal -

CD300b CD300LB CD300 molecule like family

member B

Microglia Neurotrophils, macrophages Mo = Ma >> Mi - - - - -

TREM2 TREM2 Triggering receptor

expressed on myeloid cells

2

Microglia Microglia Mi > Ma > Mo Up HuMi_Aged Up - Up

MerTK MERTK MER proto-oncogene,

tyrosine kinase

Astrocytes, microglia Microglia, macrophages Mi >Ma > Mo Down - Down Striatal -

Axl AXL AXL receptor tyrosine kinase Astrocytes, OPCs Macrophages Mi > Mo > Ma Up HuMi_Aged No change Cerebellar -

Tyro3 TYRO3 TYRO3 protein tyrosine

kinase

Oligodendrocytes NKs, T lymphocytes Mi = Ma = Mo - - - - -

CD36 CD36 Fatty acid translocase Astrocytes, OPCs, microglia macrophages, endothelium Ma = Mo >> Mi - - - - -

CD11b ITGAM Integrin subunit alpha M Microglia Neurotrophils, macrophages,

microglia

Mi = Ma = Mo Down HuMi_Aged No change Striatal -

CD206 MRC1 Mannose receptor C-Type 1 Microglia Macrophages Ma > Mi > Mo - HuMi_Aged Down Cerebellar -

Clec7a CLEC7A C-type lectin domain

containing 7A

Microglia Macrophages, neutrophils,

monocytes

Mo > Ma > Mi Up HuMi_Aged Down - Up

CD22 CD22 Sialic acid-binding Ig-like

lectin 2

Microglia Macrophages Ma > Mo > Mi Up - No change Striatal -

The table indicates the name of the receptor, the gene ID, its function and the expression in different cell types found in RNAseq public databases: a brain-specific database of microglia compared to other brain cells (68); an immunological

database of microglia and other immune cells (http://rstats.immgen.org/Skyline/skyline.html); a human database of microglia (Mi), macrophages (Ma), and monocytes (Mo) (69); a database of genes upregulated (Up) and downregulated

(Down) in disease-associated microglia (DAM) (47); a database of genes specific of a human aging signature (HuMi-aged) (70); a database of genes enriched in cerebellar (non-phagocytic) and striatal (phagocytic) microglia (71); and a

database of genes upregulated (Up) or downregulated (Down) proliferative-region associated microglia (PAM)(48).
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(LPC), which binds to GPR132 (G2A) receptors in phagocytes.
The best known “eat-me” signal is the lipid phosphatidylserine
(PS), with its many phagocyte receptors, such as BAI1, TIM4
and stabilins. PS is also indirectly recognized by several bridge-
molecules, including MFG-E8 (Milk-fat globule E8), as well
as Protein S and Gas6, which bind to members of the TAM
(Tyro3, Axl, Mer) family in phagocytes. In addition, other well-
known receptors classically involved in immune responses are
the inflammation triggering receptors expressed on myeloid
cells TREM2 and CD300B; and integrins and complement
receptors such as CD11b, which recognize opsonized apoptotic
cells both directly and some of them indirectly via MFG-
E8. More recently, three sugar-related receptors have been
involved in phagocytosis: the mannose receptor CD206 (MRC1),
which is upregulated in bone marrow and intestinal phagocytes
compared to non-phagocytic macrophages and predicts their
phagocytic performance (73). The sialic acid binding protein
CD22, a negative regulator of phagocytosis identified in an
in vitro screen that is upregulated in microglia in the aging
brain (74). And the beta glucan receptor Clec7a, associated to
the phagocytosis of oligodendrocytes by microglia during early
postnatal development (48). Each type of phagocyte expresses
their own set of receptors (67) and microglia is no exception.

The most conspicuous phagocytosis receptors expressed in
both mouse and human microglia are CX3CR1, P2Y6, P2Y12,
stabilin 1, SIRPα, TREM2, MerTK, and CD11b, based on brain
RNASeq databases (68, 69) and the immunological RNASeq
database Skyline (http://rstats.immgen.org/Skyline/skyline.html)
(Table 1). However, it is important to note that each of these
receptors is dynamically expressed during aging, disease and in
different brain areas (47, 48, 70, 71) (Table 1), and each may
serve different functions. For instance, in macrophages, MerTK
and Axl show opposite regulation of their expression during
inflammatory conditions, and specialize in different types of
phagocytosis: MerTK in homeostasis, Axl during inflammation
(75). Similarly, CD206, MerTK, and TIM4 (but not other
receptors) are upregulated in peripheral macrophages early upon
phagocytosis (73). In microglia, the expression of these receptors
is not a proxy of their phagocytic performance either, as some
including CX3CR1, P2Y12, and MerTK, have higher expression
in striatal than in cerebellar microglia, whereas phagocytosis
seems more prominent in the cerebellum than in the striatum
(71). Similarly, their expression is also not correlated with
PAM (proliferative-region- associated microglia), which has been
involved in phagocytosis of developing oligodendrocytes during
early postnatal development (48). Moreover, the efficiency of
phagocytosis does not rely on their expression alone, but also on
the motility of the microglial processes, the relative distribution
of microglia compared to apoptotic cells, or the lysosomal
efficiency, to name a few other factors. Their expression, however,
has been linked to functional changes in microglia. For instance,
some of these receptors, such as CX3CR1 and P2Y12, are
part of the so-called “homeostatic microglia signature,” and are
downregulated in DAM (47) but upregulated in aging microglia
(70). Therefore, the expression of phagocytosis receptors is
not invariably linked to microglial phagocytosis efficiency. A
careful analysis of the subsets of receptors expressed by microglia

in different regions across the lifespan and during specific
disease will shed light into their functional implication in
microglial phagocytosis.

Finally, as microglia is specialized in surveilling the brain
parenchyma, several receptor systems involved in the recognition
of apoptotic cells have also been “hitchhiked” by other brain-
specific cargos. For instance, TREM2 has been deeply involved
in the recognition of beta amyloid extracellular deposits in
the context of Alzheimer’s disease (AD) (76), and is one of
the main genetic risk factors for its development (77). The
complement receptor CD11b (78, 79) and the fractalkine receptor
CX3CR1 (36) are used to recognize dendritic spines and are
related to synaptic prunning. SIRPα recognizes the “don’t-eat-
me” signal CD47 on myelin debris and on active synapses,
inhibiting their phagocytosis (80, 81). CD22 binding to sialic
acid inhibits the phagocytosis of extracellular deposits of beta
amyloid, myelin and α-synuclein during aging (74). However,
to which extent the phagocytosis of beta amyloid, α-synuclein,
spines, and synapses, or myelin debris phenocopies the complete
process of efferocytosis, including attraction, engulfment, and
degradation, remains to be determined.

Lesson 7. Phagocytosis Is Fast and
Apoptosis Is Silent
A consequence of the tight coupling between apoptosis and
phagocytosis is that phagocytes are not easily caught red-handed
and, consequently, apoptosis is largely underestimated. Original
experiments in the thymus, where T lymphocytes undergo
chromosomic rearrangement in their antigen receptor genes,
suggested that the negatively selected cells were removed but few
apoptotic cells were found. It was only when phagocytosis was
analyzed that it became evident that apoptotic T lymphocytes
were quickly removed by resident macrophages (82), leading to
the suggestion that phagocytosis lasts minutes (72). Similarly,
taking into account the number of erythrocytes removed daily in
the spleen and liver, and the number of resident macrophages in
these tissues (pulp macrophages and Kupffer cells, respectively),
phagocytosis has been estimated to last under 30min (67).
Microglia are comparably fast. Using as a model the adult
neurogenic cascade of the hippocampus, where newborn cells
naturally undergo apoptosis and are phagocytosed by microglia,
the estimated average clearance time of an apoptotic cell is 90
min (37).

A corollary of this data is that phagocytosis efficiency
determines the amount of apoptosis visualized. At a given
time, the number of apoptotic cells found can be conceived
as a black box with doors on each side: an incoming door
that represents the cells that enter apoptosis de novo; and an
outgoing door that represents the cells that are removed via
phagocytosis. Using this analogy is easy to understand that
the size of the pool of apoptotic cells depends on the relative
velocities of the two processes, apoptosis and phagocytosis
(Figure 2). Therefore, in physiological conditions apoptotic cells
are difficult to observe because microglial phagocytosis is very
efficient (37). In contrast, in pathologies like epilepsy, the
increased number of apoptotic cells in early stages is not due
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FIGURE 2 | The amount of apoptosis visualized depends on phagocytosis

efficiency. The net apoptotic cell number observed (net apoptosis) at a given

time point depends on the rate of live neurons undergoing apoptosis (input)

and the rate of clearance of the apoptotic cells by microglia (output). (A) In a

perfect scenario, the rate of phagocytosis would be comparable to the rate of

apoptosis induction, and no apoptotic cells should be observed. (B) In most

cases, apoptosis induction is faster than engulfment and degradation, and

only some apoptotic cells would be observed, whereas others are already

cleared by microglia. (C) In a dysfunctional scenario with deficient

phagocytosis, all cells undergoing apoptosis would be visible.

to apoptosis induction, but to phagocytosis impairment and
accumulation of non-removed apoptotic cells (42). In conclusion,
phagocytosis efficiency determines the dynamics of apoptosis
during development and disease.

Lesson 8. Phagocytosis Is
Immunomodulatory at the Epigenetic,
Transcriptional and Posttranslational
Levels
The tight coupling between apoptosis and phagocytosis has
functional relevance, as it prevents the release of intracellular
contents in physiological conditions. In contrast, during trauma,

uncontrolled and unexpected cell death is usually followed
by infection by microorganisms, and the dead cells release
damage-associated molecular patterns (DAMPs), such as DNA,
RNA, nucleotides, or chromatin proteins such as HMGB1
(high mobility group box 1 protein). These signals are initially
recognized by the fluidic branch of the innate immune response
(i.e., the complement and the coagulation systems), followed by
recognition of specific pattern recognition receptors (PRRs) in
several types of leukocytes. This cascade of events initiates a
complex immune response that includes chemokine and cytokine
release, release of reactive oxygen species and other responses
to heal the damaged tissue and kill invading microorganisms
(83). Unlike cell death caused by trauma, programmed cell death
during physiological events ensures that DAMPs are contained
within membranous blebs (the apoptotic bodies) and do not
trigger activation of PRRs (84). The efficient coupling between
apoptosis and phagocytosis avoids the development of secondary
necrosis and release of DAMPs as apoptosis progresses, as well
as the initiation of an inflammatory response from the immune
system (84). As a result, apoptotic cell removal via phagocytosis
is largely anti-inflammatory or at least immunomodulatory (67,
85), although the inflammatory responses of different types of
macrophages are indeed heterogeneous (73).

In microglia, the evidences showing that phagocytosis of
apoptotic cells is immunomodulatory are more tenuous than
in other macrophage populations. Classic in vitro experiments
showed that cultured microglia exposed to apoptotic cells express
dampened responses to inflammatory stimuli such as bacterial
lipopolysaccharides (LPS) (86, 87). In vivo, phagocytosis blockade
induced by seizures in a mouse model of epilepsy correlated
with a pro-inflammatory profile in microglia (42). Similarly,
restoring phagocytosis in the aging brain using an anti-CD22
therapy reduced the microglial expression of inflammatory
and disease-associated genes (74). However, the molecular
mechanisms linking efferocytosis and inflammation are still
unclear: is inflammation triggered by recognition of surface
receptors or by downstream mechanisms related to the cargo
degradation? Is it regulated at the epigenetic, transcriptional or
the translational levels?

In both macrophages and microglia, these effects are at
least partially mediated by apoptotic cell recognition via the
complement protein C1q, whose presence turns efferocytosis
anti-inflammatory (88, 89). Indeed, some of the transcriptional
changes associated to efferocytosis occur while macrophages
are still early in the process of phagocytosis, as shown by
experiments comparing macrophages containing labeled dead
cells and macrophages without apparent cargo (phagocytic and
not phagocytic, respectively) (73). Similarly, posttranslational
modifications related to the reduced release of the major pro-
inflammatory mediator interleukin 1 beta (IL-1β) are related
to the inhibition of the NLRP3 (NLR family pyrin domain
containing 3) inflammasome triggered by mere contact with
apoptotic cells in the absence of effective engulfment (90).

In addition to these early changes, it is also likely that the
metabolic rewiring associated with apoptotic cell degradation
(91)may trigger a “metabolite storm” in the phagocyte that would
further contribute to regulate its function at later time points. For
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instance, internalization of the apoptotic cell, but not surface-
to-surface interaction, triggers in macrophages another set of
transcriptional anti-inflammatory changes through a chloride
channel, Slc12a2, and chloride-sensing kinases (92). Time-
dependent transcriptional changes have in fact been observed
in cultured microglia upon phagocytosis of apoptotic cells
(93). While some genes are transiently regulated at 3 h after
engulfment, most are regulated in the post-degradation phase
at 24 h after engulfment. This second wave of transcriptional
changes is likely related to epigenetic mechanisms, as in fact
chromatin remodeling related genes are upregulated in the late
phagocytic microglia (93). In agreement, microglial phagocytosis
is related to altered epigenetic and transcriptional profiles in vivo,
as shown by comparing cerebellar and striatal microglia (i.e.,
phagocytic and non-phagocytic, respectively) (71). While this
study analyzed epigenetic changes at the whole population level,
it is likely that in brain areas with high basal apoptotic cell
clearance, such as the cerebellum (71), the amygdala (64) or the
hippocampus (37) microglia coexist in different stages related to
phagocytosis. Even in these areas, it would be expected that at any
given time point there would be non-phagocytic cells as well as
cells engaged in different stages of engulfment, early degradation
and late post-phagocytic events. This continuum of phagocytosis
states is likely reflected on the epigenomic and transcriptional
profiles of microglia.

Lesson 9. Phagocytosis Alters the
Phagocyte Metabolism and Function
Along with its epigenetic, transcriptional and
immunomodulatory effects, phagocytosis also promotes
metabolic adaptations that influence the phagocyte cellular
function. In immune cells, the main metabolic pathways are
catabolic (related to degradation and energy production)
and anabolic (related to synthesis). Catabolic degradation of
glucose starts with cytoplasmic glycolisis, which is responsible
for glucose oxidation and produces pyruvate and lactate; and
continues with the tricarboxylic acid cycle (TCA or Krebs
cycle), which oxidizes pyruvate to produce reduced molecules
(NADH, reduced nicotinamide adenine dinucleotide). NADH
is also produced from the catabolism of fatty acids in the
mitochondria through the beta-oxidation pathway. Next,
NADH is completely degraded through the mitochondrial
electron transport chain (ECT) during mitochondrial oxidative
phosphorylation, to finally produce energy as ATP. Major
anabolic pathways include the pentose phosphate pathway
(PPP), which generates precursors of nucleotides; and the
fatty acid and cholesterol synthesis pathway. The connection
between metabolism and immune responses in the field of
immunometabolism is very complex (94) and here we will
focus on phagocyte’s metabolic changes after inflammatory and
phagocytic challenges.

Inflammatory stimuli trigger different types of metabolic
adaptations. In pro-inflammatory conditions, macrophages need
to act against infection and microorganisms and they undergo
metabolic adaptations that meet the increased energetic demands
while assuring cell survival. The most important change is a

metabolic shift that potentiates glycolisis and downregulates
oxidative phosphorylation, allowing faster, albeit less efficient,
ATP production (95). In addition, several metabolic changes
lead to the production of antibactericidal agents (96), such
as reactive oxygen species (ROS) through increased PPP
(97) and fatty acid synthesis (98); and mitochondrial ROS
(mROS), through a disrupted ETC (99). Moreover, several
metabolic pathways, as TCA cycle and fatty-acid synthesis are
necessary for pro-inflammatory cytokine production, via HIF1α
stabilization and through the fatty-acid synthesis regulator
Laccase Domain-Containing Protein 1 (FAMIN), respectively
(98, 100). In addition, fatty acid and cholesterol synthesis
pathways also contribute to producing inflammatory mediators
such as leukotriene B4 (LTB4) and isopropenoids, which
bind the nuclear receptors peroxisome proliferator-activated
receptors (PPARs) and the liver X receptor LXR (PLXR),
respectively (101, 102). On the other hand, metabolic changes
after anti-inflammatory stimuli help macrophages to resolve
inflammation. In this case, upregulation of glycolisis and a
proper TCA cycle contribute to the expression of an anti-
inflammatory phenotype (103, 104). In addition, increased
oxidative phosphorylation, together with the promotion of fatty-
acid oxidation reduces the expression of pro-inflammatory
cytokines (105). Thus, pro- and anti-inflammatory stimulation
triggers different metabolic adaptations that contribute to
modulate macrophage function.

Phagocytosis-induced metabolic adaptations are less known.
In macrophages, phagocytosis of apoptotic cells drives a
downregulation of fatty acid oxidation and de novo cholesterol,
while promoting a metabolic shift that upregulates glycolisis and
reduces oxidative phosphorylation (91, 106). In fact, phagocytosis
triggers mitochondrial adaptations, such as mitochondrial fission
(106) and decreased mitochondrial membrane potential via
mitochondrial uncoupling protein 2 (UCP2) (107), which
together with increased glycolisis (91) ensure the continued
uptake of corpses. In addition, increased lactate release promotes
the establishment of an anti-inflammatory environment (91).
However, phagocytosis-induced metabolic adaptations not only
have an effect during phagocytosis, but also trigger long-
lasting effects. There are several examples of how phagocytosis
reprograms the function of macrophages. For instance, during
Drosophila early development, naïvemacrophages are insensitive
to tissue damage or infection. However, upon corpse uptake
macrophages become capable of migrating into damaged
regions, and phagocytose bacterial pathogens, through the
activation of the Jun kinase-signaling pathway and increased
the expression of the damage receptor Draper (108). Similarly,
phagocytosis of fungal β-glucan in mammalian macrophages
drives a metabolic shift that contributes to an enhanced and
nonspecific protection against infections known as trained
immunity (109). In this response, macrophages upregulate
glycolisis, glutaminolysis, PPP, and cholesterol synthesis, and
decrease oxidative phosphorylation through the activation of
the dectin-1–Akt–mTOR–HIF-1α signaling pathway. Metabolic
adaptations lead to the increased production of metabolites
such as fumarate and mevalonate, key for driving changes in
histone acetylation and long-term epigenetic changes, which
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FIGURE 3 | Metabolic adaptations after phagocytosis and inflammatory stimulation in macrophages and microglia. (A) In macrophages, phagocytosis of β-glucan

activates the dectin1-Akt-mTOR-HIF1α pathway triggering metabolic adaptations required for changes in histone acetylation, which contribute to trained immunity.

Phagocytosis of apoptotic cells, also triggers metabolic adaptations and increases calcium levels, which through JNK enhance the expression of the damage receptor

Draper. Draper overexpression contributes to the migration and phagocytosis of bacteria by macrophages. (B) Microglial cells stimulated with pro- and anti,

inflammatory stimuli modulate metabolism in different ways. Moreover, microglial phagocytosis increases the transcription of genes related to metabolism and

chromatin remodeling, although the effect of phagocytosis in microglial metabolism and function are still unknown. In italics, key metabolites in trained immunity after

β-glucan phagocytosis.
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lead to increased levels of pro-inflammatory cytokines after
subsequent exposure to inflammatory challenges (110–112).
Thus, phagocytosis of apoptotic corpses in macrophages
triggers metabolic adaptations that immediately modulate cell

function and also drives a long-term reprogramming of the
phagocyte (Figure 3).

In microglia, the metabolic adaptations to inflammatory
stimuli are well known and similar those of macrophages,

FIGURE 4 | Spectrum of possibilities between physiological phagocytosis and pathological phagoptosis. Healthy neurons (green) increase their expression of released

“find-me” and surface “eat-me” molecules and decrease “don’t eat-me” signals under stressful situations. Stressed neurons (red) may revert to the healthy situation or

follow up with the completion of the apoptotic program. In non-pathological conditions, apoptotic debris removal rapidly occurs after phagocytosis is executed by

professional phagocytes, such as microglia. Under certain circumstances, stressed neurons (red) may be recognized and executed by nearby phagocytes, including

microglia, before the apoptotic program has been fully engaged. In contrast to these two cases of canonical efferocytosis, in a third scenario, dysregulation of the

“eat-me” and “don’t-eat-me” signalization may lead microglia or other phagocytes to directly target for execution healthy, viable neurons in a process termed

phagoptosis.

Frontiers in Immunology | www.frontiersin.org 11 March 2020 | Volume 11 | Article 506167

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Márquez-Ropero et al. Microglia and Macrophage Phagocytosis

although their functional impact is less explored. Pro-
inflammatory stimuli cause upregulation of glycolisis, leading
to a speedy ATP generation that is crucial for the expression
of pro-inflammatory cytokines (113). Other adaptations
include impaired oxidative phosphorylation accompanied by
mitochondrial fission (114, 115), increased glutamine entrance
to the TCA cycle, suppressed fatty-acid oxidation and synthesis,
and contradictory effects on the PPP (116). On the other hand,
metabolic changes induced by anti-inflammatory factors in
microglia are less known and show some differences compared
to macrophages. Microglia exposed to anti-inflammatory stimuli
maintain active both oxidative phosphorylation and PPP, and
increase fatty-acid oxidation and synthesis while reducing
glycolisis (116, 117). In contrast, little is known about the
microglial metabolic adaptations to phagocytosis. Cultured
phagocytic microglia upregulate genes related to metabolism
and chromatin remodeling (93), suggesting long-term metabolic
and phenotypic changes in microglia upon phagocytosis.
Therefore, phagocytosis triggers a complex remodeling of the
cell’s metabolism and a “metabolite storm” that is likely to affect
the function of microglia.

Lesson 10. Does Phagocytosis Execute
Cell Death?
Since apoptosis and phagocytosis are so closely related, the last
question that arises is: when is cell death precisely executed?
in vitro experiments with apoptosis inducers clearly show
that the apoptotic pathways effectively progresses to kill the
target cell via proteolytic degradation of intracellular contents
by caspases (118). In this conventional scenario, called-upon
macrophages would simply serve to dispose of the garbage.
However, the tight coupling between apoptosis and phagocytosis
also presumes a second scenario, in which expeditious nearby
macrophages detect the first signs of cell distress and execute
the latest stages of cell death. In these two cases, canonical
efferocytosis/phagocytosis is used as a homeostatic mechanism
and blocking engulfment would be expected to have detrimental
consequences. In a third scenario, macrophages actually select
which cells die and phagocytosis causes neuronal demise,
through a process named phagoptosis (119) (Figure 4).

Discerning between the three scenarios is complicated by the
phagocytosis-related downstream transcriptional and metabolic
changes, which in turn feedback into the surrounding cells,
affecting their survival and proliferation. For instance, liver
phagocytic macrophages release VEGF (vascular endothelial
growth factor) to support the proliferation of neighboring cells
(120). Similarly, the secretome of phagocytic microglia acutely
inhibits proliferation of neural progenitors, allowing their long-
term maintenance and the preservation of neurogenesis. These
feedback mechanisms are likely related to the compensatory
proliferation induced by killer caspases during apoptosis
(“apoptosis-induced proliferation,” AiP), observed in some cell
types and organisms (121). Because of these loops between death
and life processes, the identification of phagoptosis must not be
procedural, i.e., phagocytosis blockade increases survival, ergo,
phagocytosis must kill cells. Instead, the discrimination between

canonical phagocytosis and phagoptosis should be mechanistic
and based on direct observation.

In macrophage biology, evidences of phagoptosis are in
fact scarce and controversial. For instance, most literature
claims that neutrophils die spontaneously by apoptosis after
24 h in circulation and are subsequently phagocytosed by bone
marrow macrophages (67, 122). Others in contrast claim that
neutrophils die by phagoptosis because phagocytosis blockade
leads to more “alive” neutrophils (119), although in fact they
are senescent and have impaired capabilities/migration (123).
In spite of this controversy, macrophages are doubtless capable
of activating the apoptosis program by direct contact through
the so-called “death receptors,” such as Fas and TNFR (tumor
necrosis factor alpha receptors) (124). Similarly, deletion of
engulfment genes in C.elegans increases the survival of cells
treated with weak apoptotic stimuli, supporting that phagocytes
execute death of stressed cells (125). Microglia execute bona
fide canonical phagocytosis of apoptotic newborn cells in the
adult hippocampus (37). They also engage in phagoptosis
during inflammatory conditions that lead to dysregulation of the
“eat-me” signalization. Dysfunctional and transient expression
of PS by stressed neurons leads to their recognition and
execution by microglia, and their survival when microglia
is not present (126). Microglia have also been reported to
kill neuroprogenitor cells during cortical development, an
effect that was exacerbated in mice treated with LPS (62);
and Purkinje cells in the developing cerebellum, through the
production of radical oxygen species (127). However, it is
not clear whether in these cases cell death was executed
by phagocytosis. In the end, it is likely that canonical
phagocytosis and phagoptosis are two sides of a spectrum
of ways to die that depends on the fine balance between
the different “find-me” and “eat-me” signals in each pair of
apoptotic cell/phagocyte.

In summary, phagocytosis is a powerful double-edged sword
that must be kept under a tight rein, as is exemplified by
two recent papers in zebrafish and Drosophila. Phagocytosis
of apoptotic cells is beneficial during brain trauma, as it
prevents secondary damage spread in zebrafish larvae (128).
In control larvae, the initial necrotic and apoptotic cells
resulting from traumatic brain injury in the optic tectum are
cleared by microglia within the first 24 h. When phagocytosis
is pharmacologically and genetically disturbed by targeting
PS and the zebrafish ortholog of PS receptor BAI1, a larger
wave of secondary cell death spread over the brain (128).
In contrast, overexpression of phagocytosis receptors Six-
Microns-Under (SIMU) and Draper (Drpr), homologs of
Stabilin2 and MEGF10 (Multiple EGF Like Domains 10, a
complement receptor), respectively, in adult Drosophila leads
to phagocytosis of live neurons, motor dysfunction and a
shortened lifespan (129). These recent papers highlight the
profound physiological impact of microglial phagocytosis on
the survival of their surrounding neurons both in health and
in disease.

Given the powerful influence of phagocytosis on tissue
homeostasis, it may seem striking that few pathologies have been
related to its dysfunction. One may in fact speculate that the
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redundant apoptotic cell recognition mechanisms are in place
to ensure that efferocytosis is effectively executed. Macrophage
phagocytosis impairment has been reportedmostly in the context
of inflammatory and autoimmune diseases (72). For instance,
macrophage efferocytosis is defective in atherosclerotic plaques,
in chronic inflammatory lung diseases, and in lymph nodes
of systemic lupus erythematosus patients. The involvement of
phagocytosis in central nervous system diseases is, however,
less explored. Mutations in MERTK lead to retinal diseases
possibly linked to deficient phagocytosis of photoreceptors
(130). Similarly, mutations in TREM2 or its bridge protein
DAP12 are well known to cause defects in phagocytosis by
osteoclasts, causing bone cysts and early dementia (Nasu-
Hakola disease) (131). These mutations have been more recently
associated to increased risk of AD (132) and result in deficient
beta amyloid clearance in mouse models of AD (76) and

reduced efferocytosis in cultured human microglia (133). In
addition, mouse models and human biopsy samples have also
shown impaired microglial efferocytosis during epilepsy caused
by hyperactivity of the neuronal network (42). Phagocytosis
therefore has a strong potential for impinging on the course of
neurodegenerative diseases, as has been evidenced by blocking
of the phagocytosis inhibitor CD22 in aging mouse brains to
restore a microglial homeostatic profile and improve cognitive
function (74).

In closing, we hope to provided enough evidence to support
the idea that microglia are to some extent similar to other
tissue macrophages and that important lessons can be learnt
from them (Figure 5). There are remarkable similarities between
microglia and macrophages in many aspects related to their
origin, the establishment and maintenance of their identity,
and in their dynamic epigenetic and transcriptional landscapes.

FIGURE 5 | Lessons from macrophages in microglial ontogeny, identity and phagocytosis. The cartoon summarizes the main lessons that can be learnt from

macrophages regarding the ontogeny and identity of microglia (1-5) and the regulation and impact of microglial phagocytosis in brain homeostasis (6-9). Lesson 10 is

depicted in Figure 4. Some vector graphics were obtained from Vecteezy.com with permission.
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They are also comparable and at the same time unique in the
regulation of their phagocytosis efficiency, the cargos they engulf,
and the functional consequences of phagocytosis, including
metabolic adaptations, immunomodulation and its impact on
the surrounding tissue. Our aspiration is that pointing out the
(dys)similarities between microglia and macrophages will help
to develop novel tools to harness microglial phagocytosis in the
healthy and diseased brain.
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Efficient inflammation resolution is important not only for the termination of the
inflammatory response but also for the restoration of tissue integrity. An integral process
to resolution of inflammation is the phagocytosis of dying cells by macrophages,
known as efferocytosis. This function is mediated by a complex and well-orchestrated
network of interactions amongst specialized phagocytic receptors, bridging molecules,
as well as “find-me” and “eat-me” signals. Efferocytosis serves not only as a waste
disposal mechanism (clearance of the apoptotic cells) but also promotes a pro-resolving
phenotype in efferocytic macrophages and thereby termination of inflammation.
Alterations in cellular metabolism are critical for shaping the phenotype and function of
efferocytic macrophages, thus, representing an important determinant of macrophage
plasticity. Impaired efferocytosis can result in inflammation-associated pathologies or
autoimmunity. The present mini review summarizes current knowledge regarding the
mechanisms regulating macrophage efferocytosis during clearance of inflammation.

Keywords: phagocytosis, efferocytosis, DEL-1, immunometabolism, inflammation resolution, integrins

INTRODUCTION

Specific recognition and engulfment of “foreign” material or pathogens by host cells, designated
as phagocytosis, is an essential process modulating the immune response and tissue homeostasis
(1, 2). Besides phagocytosis of opsonized pathogens by phagocytes during an infection, host cells
undergoing apoptosis are also cleared by macrophages; the specific phagocytosis of dying cells by
macrophages is designated efferocytosis (3). The specific pathways for phagocytosis of different
types of cargo point to the versatility of the phagocytic machinery (1, 2).

A central player in sterile inflammation or inflammation associated with infection are
neutrophils recruited to the inflamed site (4, 5). Recruited neutrophils phagocytose and kill
pathogens, produce reactive oxygen species (ROS) and pro-inflammatory factors, such as
cytokines, and can either release neutrophil extracellular traps (NETs) or undergo apoptosis (4–
6). Efferocytosis is therefore of great importance in the regulation of neutrophilic inflammation (3,
7–10). Effective removal of dying neutrophils promotes not only inflammation resolution but also
contributes to restoration of tissue and organ homeostasis (3). A complex network of interactions
between receptors mediating phagocytosis, bridging molecules, “find-me” and “eat-me” signals,
such as phosphatidylserine (PS), which is presented on the outer part of the membrane of cells
undergoing apoptosis, contributes to the formation of phagocytic synapse (Figure 1) and the
operation of the efferocytic machinery (7, 8, 11). As resolution of inflammation occurs, efferocytic
macrophages acquire a resolving phenotype producing factors that dampen inflammation and
promote restoration of tissue integrity, such as IL-10 or transforming growth factor β (TGFβ) (3),

as
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FIGURE 1 | The structure of engulfment synapse. During efferocytosis, the clearance of apoptotic cells by macrophages is orchestrated by the recognition of the
major “eat-me” signal PS, either directly by PS receptors or via bridging molecules that mediate binding of PS to phagocytic receptors. Depicted are a few examples
of phagocytic receptors and bridging molecules that are described in the text (see text for primary references).

as well as specialized pro-resolving lipid mediators (SPM), such
as resolvins, lipoxins, and maresins (9, 12). SPM synthesis can
further promote efferocytosis, thereby further potentiating
inflammation resolution (9, 12). Defective removal of apoptotic
cells resulting from impaired efferocytosis can lead to chronicity
of inflammation and development of inflammatory disorders,
such as atherosclerosis and autoimmune diseases (9, 13–15).

Emerging evidence suggests that macrophage function
is regulated by alterations in their cellular metabolism in
response to environmental cues within the inflammatory
milieu (16). For instance, specific metabolic components
may promote or suppress inflammatory responses in
macrophages (16). Importantly, efferocytosis also promotes
immunometabolic reprograming in macrophages (17)
(Figure 2). For example, digestion of the engulfed apoptotic
cargo through phagolysosomal activity results in a load of lipid
components derived from the apoptotic cell membranes that is
linked to enhanced fatty acid oxidation and regulates macrophage
function (17–19). The mechanisms underlying apoptotic cell
removal by macrophages as well as the immunometabolic
alterations in efferocytic macrophages during inflammation
resolution is the focus of the present review.

MOLECULAR CROSS-TALK BETWEEN
APOPTOTIC CELLS AND
MACROPHAGES DURING
EFFEROCYTOSIS

The engulfment of dying cells by efferocytic macrophages
requires the recognition of the former by the latter and the
formation of the engulfment synapse, which is regulated by
a network of “find-me,” “eat-me” and bridging molecules,

“don’t eat-me” signals and specialized phagocytic receptors
(11) (Figure 1). Neutrophils undergoing apoptosis during an
inflammatory response, secrete molecules serving as “find-
me” signals that can attract phagocytes to eliminate apoptotic
cell corpses (20, 21). These include the nucleotides adenosine
triphosphate (ATP) and uridine triphosphate (UTP), which are
recognized by the macrophage purinergic receptor P2Y2 (22), or
the lipids lysophosphatidylcholine (LPC) (23) and sphingosine-
1-phosphate (24), which bind to macrophage G-protein-
coupled receptors G2A and S1P1-5, respectively. Furthermore,
recognition of dying cells by macrophages may be facilitated
by the interaction of intercellular adhesion molecule 3 (ICAM3
or CD50) on the former with CD14 on macrophages (25) as
well as by the thrombospondin (TSP1)–CD36 interaction (26).
Moreover, the specific recognition of apoptotic cells is ensured by
the presence of “eat-me” signals. PS is the most well characterized
“eat-me” signal (Figure 1). During apoptosis, this phospholipid
is found on the outer part of the membrane and binds directly
or indirectly, via bridging molecules (opsonins), to phagocytic
receptors (27, 28). Calreticulin (Crt) is a membrane-associated
protein that functions as an “eat-me” signal’ on the surface of
dying cells and is recognized by the LDL-receptor-related protein
1 (LRP1 or CD91) on phagocytes (29). The long pentraxin PTX3
may also act as an “eat-me” signal to facilitate the capture of dying
neutrophils by macrophages (30).

As alluded to above, bridging molecules are often key
to efficient interactions between apoptotic neutrophils and
macrophages (11). Milk fat globule-EGF factor 8 protein (MFG-
E8 or lactadherin) promotes efferocytosis by binding to PS
on apoptotic cells and to macrophage phagocytic integrin
receptors αvβ3 and αvβ5 (31, 32). MFG-E8 shares homology
with developmental endothelial locus-1 (DEL-1). Besides the
established anti-inflammatory role of DEL-1 as inhibitor of β2
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FIGURE 2 | Metabolic cues implicated in macrophage efferocytosis. Upon efferocytosis, increased glucose uptake via upregulated SLC2A1 and enhanced glycolysis
are linked with enhanced lactate release via SLC16A (102). The metabolism of arginine and ornithine to putrescine is involved in promoting continual efferocytosis
(105). In addition, enhanced lipid metabolism upon efferocytosis is associated with fatty acid oxidation and Sirtuin 1 (Sirt1)-dependent upregulation of IL-10 (18).
Moreover, activation of lipid transcription factors (e.g., the LXR/RXR or PPAR/RXR heterodimers) promotes the upregulation of bridging molecules and phagocytic
receptors and the resolving macrophage phenotype (107).

integrin-dependent leukocyte recruitment and IL-17-mediated
inflammation (8, 33–38) and its role as a regulator of
bone marrow myelopoiesis (39, 40), secreted DEL-1 promotes
engulfment of apoptotic cells and inflammation resolution
(41). In particular, DEL-1 functions as a molecular bridge
that binds concomitantly to PS on the apoptotic neutrophil
surface via its C-terminal discoidin I-like domains and to
αvβ3 integrin [also known as vitronectin receptor (42)] on
macrophages via its N-terminal RGD motif within the second
EGF-like domain (41, 43). Importantly, the compartmentalized
localization of DEL-1 differentially regulates the inflammatory
response. Specifically, the endothelial cell-derived molecule
promotes anti-inflammatory activity by blocking β2 integrin-
dependent leukocyte recruitment, whereas DEL-1 derived from
macrophages promotes efferocytosis-dependent resolution of
inflammation (33, 41) (Figure 1). Other molecules that act as
a molecular bridge to facilitate interactions between apoptotic
cargo and phagocytes include annexin A1 or lipocortin-1 (44),
β2-glycoprotein-I (β2-GPI) (45), and galectin-3 (Gal-3) (46).
Moreover, the bridging molecules Growth arrest-specific factor
6 (Gas6) and protein S have been implicated in PS-mediated
apoptotic cell clearance (47, 48) via interacting with the receptor
tyrosine kinases Tyro-3, Axl and Mer (TAM) (49–52) (Figure 1).

Phagocytic receptors on macrophages involved in the
regulation of efferocytosis include also the PS receptors of the
T-cell membrane protein (Tim) family, such as TIM-1 and
TIM-4 (53, 54). The brain angiogenesis inhibitor 1 (BAI1)
(55) and stabilin-2 (56) also serve as PS receptors (Figure 1).
Additionally, CD14, the scavenger receptor CD36, and the
integrin CD11b/CD18 (αMβ2) (besides the integrins αvβ5 and
αvβ3 that were mentioned above) are implicated as efferocytosis
receptors (8, 11, 26, 42, 57, 58).

The presence of “don’t eat-me” signals further adds
to the complexity of the regulation of apoptotic cell

clearance. Specifically, surface expression of CD47 (also
named integrin-associated protein) prevents phagocytosis by
macrophages (59, 60). Binding of CD47 to the macrophage signal
regulatory protein alpha (SIRPα) modulates rearrangement of
actin cytoskeleton, thereby downregulating phagocytosis (59,
60). However, apoptotic cells have decreased levels of CD47
that allows their clearance by macrophages (59–61). Platelet and
endothelial cell adhesion molecule 1 (PECAM-1, CD31) also
exerts a “don’t eat-me” function. In this regard, homotypic CD31
interaction between non-apoptotic neutrophils and macrophages
may prevent phagocytic clearance (62). Furthermore, CD24 (63)
and the complement receptor CD46 (64) have been described
as repulsive signals that interfere with efferocytosis. Decreased
presence or alterations in the distribution of “don’t eat-me”
signals have been associated with enhanced efferocytic activity
(65, 66).

Efficient efferocytosis is critical for shaping the pro-resolving
phenotype in macrophages that includes production of
immunomodulators, which in turn further enhance resolution
of inflammation (67–71). For instance, production of TGFβ

by efferocytic macrophages is a major orchestrator of
inflammation resolution. Indeed, upregulation of TGFβ

owing to efferocytosis promotes downregulation of the pro-
inflammatory mediators TNF, IL-1β and IL-8. Consistently,
antibody-mediated inhibition of TGFβ restored expression of
inflammatory mediators. Along the same line, administration
of apoptotic cells in vivo models of inflammation triggers
resolution of inflammation in a manner dependent on TGFβ

upregulation (72, 73). Additionally, interleukin 13 derived
from regulatory T cells acts on macrophages and promotes
production of IL-10, which in turn enhances efferocytosis
via activation of Rac1 GTPase and thereby inflammation
resolution in atherosclerosis (74). Besides the upregulation
of immune-modulating factors, such as TGFβ or IL-10,
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the direct inhibition of pro-inflammatory cytokines further
contributes to inflammation resolution. As an exemplar,
formation of NETs that aggregate at the inflamed site leads to
protease–dependent degradation of inflammatory cytokines and
chemokines, thereby promoting resolution of acute neutrophilic
inflammation (75).

The phenotype of efferocytic macrophages is additionally
controlled by the enzyme 12/15 lipoxygenase (12/15-LO) that
oxidizes polyunsaturated fatty acids and generates bioactive
lipid metabolites leading to the biosynthesis of pro-resolving
lipid mediators (9, 76). Specifically, apoptotic cell engulfment
can be performed by resident or monocyte-derived resolution
phase macrophages expressing 12/15-LO (77–80). Apoptotic cell
engulfment further promotes the expression of this enzyme
(81). Moreover, 12/15-LO has been implicated to function in
preventing induction of autoimmunity (77).

Plasminogen and its cleavage product plasmin not only
regulate the initiation but also the resolution phase of
inflammation. Treatment of mice with plasminogen/plasmin
resulted in recruitment of pro-resolving macrophages and in
upregulation of TGFβ. Administration of plasminogen/plasmin
at the peak of inflammation was associated with increased
neutrophil apoptosis and efferocytosis; the pro-resolving effect of
plasminogen was mediated by annexin A1 (82). In accordance,
impaired efferocytosis accompanied by decreased levels of
annexin A1 was observed in mice deficient in plasminogen
or its receptor (83). Besides being involved in pro-resolving
actions of plasminogen, annexin A1 plays a broader role in
inflammation resolution (84, 85). Annexin A1 levels are increased
in the resolution phase of monosodium urate crystal–induced
arthritis, a model of gout. Pharmacologic or genetic inactivation
of annexin A1 resulted in insufficient resolution of gout-related
inflammation in mice (86). In addition, treatment of mice with
annexin A1 resulted in upregulation of IL-10 and downregulation
of proinflammatory mediators, while, consistently, inhibition
of annexin A1 abrogated inflammation resolution induced by
glucocorticoids (87, 88).

Moreover, IFN-β from macrophages was recently identified
as a factor promoting resolution of inflammation. IFN-β
levels were higher in the resolution phase of pneumonia and
peritoneal inflammation. Activation of IFN-β signaling via
STAT3 enhances apoptosis of neutrophils and their subsequent
efferocytic clearance, resulting in a pro-resolving reprograming
of macrophages (79).

METABOLIC MODULATION OF
MACROPHAGE FUNCTION IN THE
CONTEXT OF EFFEROCYTOSIS

The impact of cellular metabolism on macrophage function
and plasticity has gained much attention recently (16, 89–91).
Metabolic pathways, such as glycolysis, tricarboxylic acid (TCA)
cycle, pentose phosphate pathway and fatty acid oxidation,
regulate macrophage phenotype in the context of inflammatory
responses (91). For instance, increased glycolytic flux has been
linked to pro-inflammatory M1-like activation of macrophages,

whereas oxidative phosphorylation is associated with anti-
inflammatory macrophage polarization (92).

Moreover, macrophage tissue specificity may be associated
with differential metabolic activity. For example, resident
peritoneal macrophage survival depends on the transcription
factor GATA6 that is regulated by the vitamin A metabolite
retinoic acid (93, 94), while the nuclear receptor liver × receptor
(LXR) alpha that is activated by lipids regulates differentiation of
marginal zone splenic macrophages (95). It is now established
that tissue-specific resident macrophages have distinct
transcriptomic profiles and phenotypes depending on the
particular microenvironment (96, 97). Importantly, in this
regard, the manner by which efferocytosis is regulated in resident
macrophages may be dictated by the tissue microenvironment.
Indeed, parabiosis-based experiments have revealed substantial
heterogeneity in the utilization of bridging molecules, efferocytic
receptors and transcription factors by macrophages from
different tissues. For instance, the mannose receptor CD206
is upregulated in phagocytic macrophages in bone marrow
and intestine but not in the spleen (98). Moreover, the profile
of upregulated anti-inflammatory mediators by efferocytic
macrophages is tissue-specific (98).

Regulation of macrophage metabolic activity in the context
of efferocytosis (Figure 2) is of major importance for the
outcome of inflammation resolution and tissue repair (99).
Following engulfment, macrophages degrade the apoptotic
material through phagolysosomal activity (100, 101), resulting
in substantial metabolic load and influence on macrophage
metabolism (17).

Aerobic glycolysis was recently implicated in regulation of
efferocytosis and shaping an anti-inflammatory environment
by efferocytic macrophages (102). Specifically, transcriptomic
analysis of macrophages engaging in active phagocytosis of
apoptotic cells revealed an upregulation of several members
of the solute carrier (SLC) membrane transport protein
family, including the glucose transporter protein type 1
(GLUT1; encoded by the gene Slc2a1) and monocarboxylate
transporter 1 (encoded by Slc16a1) promoting lactate release.
Enhanced glycolysis in efferocytic macrophages promoted actin
polymerization and continued uptake of apoptotic cells. On the
other hand, lactate from efferocytic macrophages contributed
to establishment of an anti-inflammatory phenotype of the
surrounding tissue (102) (Figure 2). Consistently, knockdown
of Slc16a1 in the setting of efferocytosis resulted in reduced
mRNA expression of factors linked to the resolving macrophage
phenotype and resolution of inflammation, such as Tgfb1
and Il10 (102). Furthermore, specific deletion of GLUT1 in
myeloid cells was associated with defective phagocytic ability
of macrophages and with development of unstable lesions
in a model of atherosclerosis (103). Moreover, deficiency of
the glycolytic enzyme 6-phosphofructose-2-kinase and fructose-
2,6-bisphosphatase (PFKFB3) in macrophages led to reduced
efferocytosis capacity, thus further supporting a role for glycolysis
in apoptotic cell clearance (104).

Metabolites derived from engulfed apoptotic cells serve
to fine-tune the process of efferocytosis and resolution of
inflammation. Apoptotic cells are a source of the amino acids
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arginine and ornithine that are metabolized in macrophages
to putrescine. This metabolic process enables continual
rounds of efferocytosis (Figure 2). Putrescine enhances,
via the RNA-binding protein HuR, the mRNA stabilization
of the GTP-exchange factor Dbl. Dbl in turn activates the
GTPase Rac1, resulting in changes in the actin cytoskeleton
that facilitate further apoptotic cell engulfment. Exogenous
administration of putrescine increases inflammation resolution
in the context of atherosclerosis. Consistently, deficiency in
myeloid cells of either the enzyme arginase 1 (Arg1), which
converts arginine to ornithine, or the enzyme ornithine
decarboxylase (ODC), which mediates the decarboxylation
of ornithine to putrescine (Figure 2), is associated with
efferocytic dysfunction and defective atherosclerosis
resolution (105).

Several lines of evidence support also an important role of
mitochondrial metabolism on the modulation of efferocytosis
and efferocytosis-dependent resolution of inflammation.
Metabolomic analysis of macrophages that have engulfed
apoptotic material revealed metabolic reprograming of
efferocytic macrophages toward fatty acid oxidation. Specifically,
upregulation of pro-resolving IL-10 in efferocytic macrophages
was mediated by mitochondrial beta-oxidation and induction
of sirtuin1 signaling (18) (Figure 2). The interplay between
mitochondrial activity and effective efferocytosis was also
illustrated by analyzing the function of mitochondrial uncoupling
protein 2 (Ucp2). Besides its function in uncoupling oxidative
phosphorylation from synthesis of ATP, Ucp2 can promote
efferocytosis by reducing the mitochondrial membrane potential
of macrophages. In the same vein, deficiency of Ucp2 resulted
in defective apoptotic cell removal and was associated with
development of atherosclerosis, whereas overexpression of Ucp2
enhanced efferocytosis (19). Additionally, dynamic alterations
in mitochondrial physiology may dictate the outcome of
efferocytosis. In particular, a major component of mitochondrial
homeostasis, mitochondrial fission, mediated by the function
of the GTPase dynamin-related protein 1 (Drp1), positively
regulates continuous apoptotic cell removal by macrophages.
Accordingly, the absence of Drp1 was associated with higher
atherosclerosis development in low-density lipoprotein receptor
1 (Ldlr1) deficient mice (106).

Lipids deriving from the apoptotic cargo are abundant post-
engulfment digestion products (17); lipid metabolism induces
activation of the nuclear receptors peroxisome proliferator-
activated receptor (PPAR) gamma and delta, LXR alpha and
beta and retinoid × receptor (RXR) alpha and beta (107)
in macrophages (Figure 2). Activation of these transcription
factors promotes upregulation of phagocytic receptors and
bridging molecules and the resolving macrophage phenotype. For
instance, TGFβ and IL-10, which both promote inflammation
resolution, are upregulated in efferocytic macrophages in an LXR-
and PPAR delta–dependent manner (108, 109). Importantly,
deficiency of these nuclear receptors has been linked to
defective efferocytosis and development of chronic inflammation
or autoimmune manifestations (108, 109). Moreover, LXR
activation is involved in DEL-1–dependent efferocytosis and
macrophage reprograming to a proresolving phenotype (41).

LXR signaling also regulates expression of transglutaminase 2
(Tgm2) (110), which acts as a co-receptor to αvβ3-integrin and
promotes formation of engulfing portals (111).

Cholesterol metabolism has been also implicated in the
modulation of efferocytosis. Treatment of macrophages with
the cholesterol-lowering drug lovastatin, which inhibits the
rate-limiting enzyme of cholesterol synthesis 3-hydroxyl-3-
methylglutaryl coenzyme A (HMG-CoA) reductase, leads to
increased apoptotic cell clearance (112). Administration of
another HMG-CoA reductase inhibitor, simvastatin, enhances
the efferocytosis-dependent amelioration of inflammation
in the context of lung fibrosis (113). Along the same line,
the ATP-binding cassette transporter (ABCA1), a protein
that modulates cholesterol efflux, is upregulated during
efferocytosis in a manner dependent on LXR signaling (114).
Furthermore, decreased hydrolysis of cholesterol esters and
impaired oxysterol production, due to blockade of the enzyme
lysosomal acid lipase, negatively affect LXR pathway activation
and apoptotic cell removal, resulting in chronic inflammation
(115). These studies point to the intimate crosstalk between
cholesterol metabolism and nuclear receptor signaling involved
in efferocytosis.

CONCLUDING REMARKS

Macrophage efferocytosis is a major player in resolution of
inflammation. Efferocytosis not only paves the way toward
the timely termination of the inflammatory response, but
also promotes restoration of tissue homeostasis. In this
context, alterations in macrophage cellular metabolism
are important regulators of efferocytosis. At the same
time, metabolic reprograming in efferocytic macrophages
induced by digested apoptotic material substantially regulates
the function and plasticity of efferocytic macrophages.
Given the relevance of efferocytosis as a mechanism
against chronic inflammatory disease, a better mechanistic
understanding of the pathways that orchestrate the mutual
interaction between clearance of dying cells and metabolic
alterations in macrophages is required. This knowledge will
provide a scaffold for designing therapeutic approaches to
improve macrophage function in inflammation resolution
and harness macrophage efferocytosis for the treatment
of pathologies associated with chronic inflammation
or autoimmunity.
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Phagocytic integrins are endowed with the ability to engulf and dispose of particles of

different natures. Evolutionarily conserved from worms to humans, they are involved in

pathogen elimination and apoptotic and tumoral cell clearance. Research in the field

of integrin-mediated phagocytosis has shed light on the molecular events controlling

integrin activation and their effector functions. However, there are still some aspects of the

regulation of the phagocytic process that need to be clarified. Here, we have revised the

molecular events controlling phagocytic integrin activation and the downstream signaling

driving particle engulfment, and we have focused particularly on αMβ2/CR3, αXβ2/CR4,

and a brief mention of αVβ5/αVβ3integrins.

Keywords: phagocytosis, integrins, signaling, CR3, Mac-1, complement

INTRODUCTION

Phagocytosis entails the engulfment and disposal of particles in sequential steps, including
particle recognition, cytoskeletal remodeling, membrane protrusion, particle engulfment, and
phagolysosomal digestion (1, 2). The role of integrins in phagocytosis is evolutionarily conserved
and can be observed in Caenorhabditis elegans INA-1/PAT-3, which is involved in clearance of
apoptotic cells (3), andDrosophila αPS3/βν, which has roles in microbial defense and apoptotic cell
removal (4, 5) (Table 1). Inmammals, the orthologues αVβ3/αVβ5 are expressed in professional and
non-professional phagocytes (endothelial, epithelial, fibroblast, and neuronal and mesenchymal
cells) with a role in phosphatidylserine-rich apoptotic/necrotic body clearance. Professional
phagocytes in mammals express complement receptors αMβ2/CR3 and αXβ2/CR4, which are
involved in host defense and tissue homeostasis (45). Other integrins with reduced phagocytic
capacity (α5β1, α2β1, α3β1, and α6β1) are involved in phagocytosis of fibrillar or denatured
extracellular matrix components (Table 1).

Integrins are characterized by requiring activation to be functional. This review has focused
on the main events determining β2 integrin activation and downstream signaling in relation to
cytoskeletal remodeling and particle engulfment, and it makes a special mention of the main
differences between other phagocytic integrins, especially those involved in apoptotic cell clearance.

INTEGRIN STRUCTURE AND ACTIVATION

Phagocytic integrins are heterodimeric (α and β subunit) receptors. Subunits are divided into
ectodomains, a transmembrane helix, and short cytoplasmic tails. The α-subunit ectodomains
contain Mg2+-binding metal-ion-dependent adhesive sites (MIDAS) and Adjacent to MIDAS
(AdMIDAS), which binds inhibitory Ca2+ or activating Mn2+ (46, 47). Ligand binding can occur
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TABLE 1 | Major mammalian phagocytic integrins and their invertebrate orthologues.

Integrin αI domain Co-receptors Phagocytic targets Expression

αMβ2 + - SR-A1/2 (6)

- Dectin1 (7)

- RAGE (8)

- iC3b-opsonized particles (9)

- iC3b-opsonized particles (9)

- C3d-opsonized particles (10)

- Denatured proteins (11, 12)

- Bacteria (LPS, LBP) (13, 14)

- Zymosan (15, 16)

- Myelin sheaths (17)

- Platelet factor 4 (PF4) (18)

- LL-37 (19)

Professional phagocytes

αXβ2 + – - iC3b-opsonized particles (9)

- Osteopontin (20)

- Fibrillar α-synuclein (αSN) (21)

Professional phagocytes

α2β1 + – - Collagen fibrils (22–24) Non-professional phagocytes

α3β1 – - CD36/SCARB3 (25) - Laminin (26) Non-professional phagocytes

α5β1 – – - Fibronectin aggregates (27)

- Fibronectin-opsonized apoptotic bodies (28)

- Vitronectin (29)

Non-professional phagocytes

α6β1 – - CD36/SCARB3 (25) - Fibrillar β-amyloid (30, 31) Professional phagocytes

αVβ3 – - TIM4 (32)

- CD36/SCARB3 (33)

- MerTK (34, 35)

- MFG-E8 opsonized (36, 37)

- Gas6 through co-receptor (38)

- ProS1 through co-receptor (39, 40)

- TSP-1 (41)

Professional and non-professional

phagocytes

αVβ5 – - Apoptotic or necrotic bodies (42, 43) Professional and non-professional

phagocytes

αPS3/βν – – - Peptidoglycan (4, 44)

- Apoptotic cells (4, 5)

Drosophila phagocytes.

INA-1/PAT-3 ? – - Apoptotic cells (3) C. elegans phagocytes

either at the αI-domain (α-subunit) in αX, αM, and α2 or at
the α/β-chain interface in integrins without the αI domain
(Figure 1A, Table 1).

Integrins are tightly regulated by conformational changes,
a hallmark of which is cytoplasmic tail separation (48).
Integrin conformations are described according to the state
of the headpiece (open/closed; H+/H−) and leg ectodomains
(extended/bent; E+/E−) (49). Resting integrins remain in an
inactive/“bent” (E−H−) conformation with the lowest free energy
(−4.0 kcal/mol for α5β1) with respect to fully activated integrins
(50). E−H−is characterized by a closed ligand-binding site and
clasped membrane proximal regions (51). In activated integrins
(E+H+), the hybrid domain (β-subunit) swings away from the
α-chain, and the membrane proximal regions unclasp. This
correlates with the rearrangement of the MIDAS and opening of
the ligand binding site (51).

Structural and mutational studies have investigated models
of integrin activation to explore whether integrin extension or
leg separation occurs first. Mutations and deletions of the CD-
loop (β-subunit terminal domain) have been proposed to keep
integrins from extending and have shown no impact on αVβ3 and
αIIbβ3 activation (52); there is little proof that mutations in this
region affects β2 integrins (53), strongly indicating that releasing
these constraints is not enough to induce activation.

Structural studies (54) have demonstrated that αXβ2 follows
the “switch-blade” model of activation, where leg separation
occurs first, releasing constraints of the bent conformation

and opening of the ligand-binding site resulting in an
intermediate/low affinity conformation E+H− (55). The E+H−

conformation has a free energy between 1.6 and 0.5 kcal/mol,
meaning the high affinity conformation is thermodynamically
favored (50, 56). Mutations in the EGF3 repeat of the β2-subunit
have also been shown to induce a high affinity conformation
through destabilizing the thermodynamically favorable bent
conformation and facilitating leg separation (57). It is noteworthy
that an E−H+ conformation has been described for αLβ2 and
αMβ2, allowing integrins to bind ICAM in cis, whichmay regulate
neutrophil function (58); however, the specifics of how this
activation takes place remain unknown.

Integrin activity is regulated by changes in affinity and
aggregation, with the latter affecting receptor avidity.
Cytoplasmic proteins bind to α- or β-subunits causing tail
separation, stabilizing their high affinity conformation (48, 59).
This can be triggered either through signaling from other
receptors (“inside-out” signaling, Figure 1B), direct ligand-
binding, or experimentally, using Mn2+ (“outside-in” signaling,
Figure 1C), which triggers downstream signaling pathways (60).

INSIDE-OUT SIGNALING

Rap1 as a Signaling Node
Early studies in complement-dependent phagocytosis using
mutants of small GTPases pointed to Rap1 as the main regulator
of αMβ2 activity (61) and to it being required for β1-mediated
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FIGURE 1 | Phagocytic integrin αMβ2 structure and activation pathways. (A) 3D structure model generated through homology modeling using Modeller 9.23. The

following PBD entries served as templates: 1m8o, 2k9j, 2knc, and 3k6s (low-affinity/bent conformation), 1dpq, 2lkj, 2m3e, 2rn0, 2vdo, 3g9w, 3fcu, 5e6s, 6ckb, and

6avu (high affinity conformation), and the sequences for αM (NP_001139280.1) and β2 (NP_000202.3). PSI: Plexin-Semaphorin-Integrin domain. (B) Inside-out

pathway of integrin αMβ2 activation. Signals stemming from multiple receptors induce Rap1-GTP loading and RIAM-mediated recruitment of Talin1 to integrin tails,

with possible contributions by other pathways. Protein-binding motifs in the integrin tails are shown in red (NPXY) and in purple (GFFKR). FERM domains are

highlighted for Kindlin-3 and Talin1 (F0–F3). Highlighted RIAM domains are as follows; TB, Talin1 Binding domain; RA, Rap Association domain; PH, Pleckstrin

Homology domain; PRR, Prolin Rich Region. (C) Outside-In pathway in the context of phagocytosis through αMβ2. Src Family Kinases remain inhibited by

membrane-bound tyrosine phosphatases. Kindlin-3 mediated clustering facilitates Src Family Kinase activation, contact maturation and contractility necessary for

phagocytic engulfment. PPases, Phosphatases; SFK, Src Family Kinases; MT, Microtubules. For simplicity, some proteins are shown as monomers. Question marks

denote unsolved or hypothetical signaling steps.

phagocytosis (62). Rap1 acted as a node, connecting different
signaling pathways (chemokines, fMLP, PAF, and TNFα) for
integrin activation (63). Rap1-GTP loading is induced by

specific Guanine–Nucleotide Exchange Factors (GEFs), being
Epac1 (dependent on cyclic AMP; cAMP) and CalDAG-GEFs
(dependent on Ca2+/Diacylglycerol; DAG), amongst the
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best characterized (Figure 1B). Epac1 expression was found
to increase during monocyte-macrophage differentiation,
correlating with the acquisition of immunoregulatory functions
(64), and in neutrophilic HL-60 cells, pharmacological activation
of Epac1 increased Rap1-GTP and complement-dependent
phagocytosis (65). RasGRP3/CalDAG-GEFIII exhibited similar
effects, promoting Rap1 activation and phagocytosis (66).
Mutations in CalDAG-GEF1 produced leukocyte adhesion
deficiency syndrome (LADIII) with defective neutrophil-
endothelial adhesion (67), and mouse CalDAG-GEF1−/−

macrophages showed reduced integrin activation (68). Rap1
activation can be induced by Toll-like receptors (TLRs) (69);
however, the signaling pathways remain poorly defined. In
neutrophils, secreted myeloid-related proteins (MRPs) 8 and
14 bind to TLR4 causing Rap1 activation and β2-dependent
adhesion (70). In macrophages, low concentrations of TLR3/4/9
agonists induced RasGRP3-dependent Rap1 activation (71).
Activation of αMβ2 by TLR2/TLR4 required Rac1-GTP loading,
PI3K activity, and cytohesin-1 binding to the β2 subunit (72).The
role of cytohesin-1 is controversial, as the use of cytohesin-1
siRNAs and inhibitors results in an increase in the αMβ2 affinity
conformation (73).

Talin1 and Kindlin-3
Talin1 and Kindlin-3 are the best-characterized integrin
activators. Both belong to the FERM family but interact with
distinct NPXY motifs in the cytoplasmic tails of β1, β2, and β3,
and they thus contribute differently to activation (74). Although
Talin-binding is required for efficient β5 activation during
adhesion, it is dispensable for phagocytosis (75). αVβ5 requires
an unknown mediator that recognizes a YEMAS motif proximal
to the NPXY. A candidate could be the FERM family FRMD5,
as it promotes β5-Kindlin-2 interaction and induces ROCK
activation during adhesion (76), yet there is no information of its
relevance in phagocytosis.

Talin1 contains an N-terminal globular head with a linear
FERM domain and a C-terminal rod domain organized in
13 subdomains (R1-R13), which contains a dimerization
domain, an integrin binding site, three F-actin binding
sites, and several Vinculin and RIAM binding sites (77, 78).
The FERM domain has four subdomains (F0-F1-F2-F3),
where F3 contains the primary integrin-binding site (IBS)
that interacts with the membrane-proximal NPXY motif
conserved in β-integrin tails (59, 79, 80). In resting leukocytes,
Talin1 remains auto-inhibited due to an interaction between
F2F3 and R9 subdomains, which mask the primary IBS
(81). Several Talin1 activation mechanisms have been
proposed. By binding to PIP5Kγ, Talin1 is recruited to
the plasma membrane where the F2F3 domain binds to
phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), disrupting
the head–tail interaction and exposing the IBS (82, 83).
Additionally, RIAM–Talin1 interaction was described as
necessary for Talin1 activation and recruitment to integrin tails
(Figure 1B) (84).

Hematopoietic cell-specific Kindlin-3 is mutated in LADIII,
causing β1/β2/β3 activation defects (85, 86) and preventing
neutrophils adhesion to iC3b and ICAM-1 (87). Kindlin-3 binds

to the membrane-distal NPKF sequence in the β2 subunit tail
without excluding Talin1 binding (Figure 1B) (87). Studies of
their individual contributions to activation revealed that Kindlin-
3 is not sufficient to induce the high-affinity state of αLβ2,
whereas Talin1 promotes full activation (88). Whether binding
of Talin1 and Kindlin-3 is sequential or simultaneous and
their exact contribution to integrin activation remains to be
explored. The signaling events directing Kindlin-3 to integrins
also remain elusive, as in T cells, Kindlin-3 localization at
immune synapses depends on Rap1 and Mst-1/RapL signaling
(89), whereas no such interaction has been described for
phagocytic cells.

RIAM–Talin1 Interaction
RIAM (Rap1-Interacting Adaptor Molecule or APBB1IP) was
identified as a Rap1 effector that promoted a β2 and β1 high
affinity state, increasing T-cell adhesion and spreading (90).
RIAM binds to Rap1-GTP through a central Ras-association
domain (RA), to PI(4,5)P2 through a Pleckstrin-Homology (PH)
domain and to VASP, Profilin, and PLCγ1 via proline-rich
regions (90–94). RIAM also interacts with Talin1 through its
N-terminus and Talin1 has several RIAM-binding sites located
at F3, R2, R3, R8, and R11 subdomains (77). Binding of RIAM to
Talin1 releases Talin1 from its autoinhibition (Figure 1B) (95).

The Rap1-RIAM-Talin1-Integrin pathway also operates in
complement-dependent phagocytosis. Studies in Talin1-silenced
THP-1 cells revealed that Rap1 and Talin1 regulated each other’s
localization at phagocytic cups (96). Reduced RIAM expression
in human monocyte-derived macrophages (MDM), neutrophilic
HL-60 cells, and THP-1 cells diminished levels of high affinity
αMβ2 and reduced complement-dependent phagocytosis and
Talin1 recruitment to phagocytic cups (65). Complement-
dependent phagocytosis, cell adhesion to ICAM, and ROS
production were also impaired in mouse RIAM−/− macrophages
and neutrophils (97). Additionally, RIAM deficiency in vivo had
a profound effect on β2 activity but a moderate effect on β1- or
β3-dependent functions (98).

Besides RIAM, Rap1 effectors RapL and RGS14 (Regulator of
G-Protein Signalling-14) have been proposed to regulate αMβ2
activation by inside-out signaling (Figure 1B). The former is
proposed to interact with αM-subunit inducing integrin tail
separation and integrin activation (99); however, RapL has only
been shown to interact with a GFFKR motif in αL cytoplasmic
tail, and there is no direct evidence that it plays a role in αMβ2
activation (100). For RGS14, the integrin activation mechanism
is unknown but seems to be dependent on Talin1-binding to
β2 (101).

Recently, a direct interaction between Rap1-GTP and Talin1
was described at Talin1 F0 and F1 subdomains (102–105).
Synergistic interaction between this region and an F1 lipid-
interacting helix facilitates relocation of Talin1 and its integrin-
activating function (Figure 1B) (105, 106). This pathway could
be relevant for fast cell responses, as disruption in mice impaired
platelet aggregation, neutrophil adhesion, extravasation, and
phagocytosis but had no effect on macrophage adhesion and
migration (104).
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OUTSIDE-IN SIGNALING

Outside-in signaling during phagocytosis initiates upon ligand
interaction, stabilizing the active conformation, separating
integrin tails, allowing for the binding of actin cytoskeletal
linkers (Talin1 and/or Kindlin-3), and reorganizing cytoskeletal
constraints, as described in the picket-fence model (2). This
generates the force needed to drive membrane extension and
particle engulfment/internalization (Figure 1C). Regulators have
been described in focal complex-like formations at the phagocytic
cup (107).

CLUSTERING AND TYROSINE KINASES

One of the earliest events in outside-in signaling could
be ligand-induced clustering, a process requiring Talin1
and/or Kindlin-3 (74, 108). Kindlin-3-induced clustering
is reported to activate Src family kinases (SFKs) (109, 110)
by the exclusion of tyrosine phosphatases such as CD45
(68). Size exclusion of these membrane-bound phosphatases
with large extracellular domains seems to be a common
feature of integrin-mediated close-contact immune processes,
such as Dectin-1 and FcγRIII phagocytosis and immune
synapse formation (68, 111, 112). This process does not
exclude SFKs but favors their activation due to removing the
inhibitory effect of these phosphatases (109, 110). However,
there are as of yet only indirect evidences (109, 110)
that phosphatases such as CD45 are excluded during
integrin-mediated phagocytosis.

SFKs appear to be exclusively involved in “outside-in”
signaling, as SFK-deficient cells produced reduced ROS after
integrin clustering (113), whereas ICAM-1 adhesion and
complement-dependent phagocytosis were normal in pre-
activated SFK-deficient cells (114, 115).

A requirement for SFK activation has been described for β1,
β2, and β3 integrins (109, 114, 116). Hck, Fgr, and Lyn are
the representative SFKs in myeloid cells. Hck co-localized with
αMβ2 at phagocytic cups of complement-opsonized zymosan
(117, 118), and the Hck knockout phenocopied the αM knockout
(119). However, in U937 macrophage-like cells, Hck and Fgr
siRNA, unlike Lyn, had no effect on particle internalization (120),
and genetic restitution of Fgr-deficient cells inhibited adhesion,
spreading, and Syk activation (121). In contrast, the Hck−/−

Fgr−/− Lyn−/− triple knockout showed no inhibition in CR3-
mediated phagocytosis (122), which may point to compensatory
roles of other ubiquitously expressed SFKs. Despite the research
into outside-in activation of SFKs, the exact mechanism and
individual contribution of each SFK have yet to be dissected.

SFK activity precedes activation of tyrosine kinases Syk and
FAK family member Pyk2. Syk is necessary for phagocytosis
of iC3b-opsonized beads/zymosan and localizes at phagocytic
cups (107, 123), whereas Pyk2 contributes to clearance of
complement-opsonized bacteria (124). Clustering of β2 integrins
results in Syk activation (125), which in turn triggers Pyk2
signaling (126). Pharmacological inhibition of Syk and FAK
kinases points to non-redundant functions during phagocytosis
and to a possible sequential activation (107).

PHOSPHOINOSITIDES COORDINATE

GTPASES AND CYTOSKELETAL

REARRANGEMENTS

Phagocytosis requires sequential enrichment of
phosphoinositides (PIPs) in the inner leaflet of the plasma
membrane (127). PIP enrichment recruits GEFs for small
GTPases, which are sequentially activated (128), and other
components of integrin adhesion complexes.

PI(4,5)P2 enrichment can be induced by lipid redistribution
due to particle-induced plasma membrane deformation
(129) and/or by SFK or Talin1-induced PIP5Kγ activity
(83, 130, 131). PI(4,5)P2 enrichment strengthens Talin1
anchoring (81) and recruits different factors involved in
F-actin dynamics, like the actin-depolymerizing-factor
ADF/Cofilin, whose activity is inhibited by PI(4,5)P2
(132), or the formin mDia (133, 134). Additionally, RIAM
binds PI(4,5)P2 and may recruit VASP and Profilin, which
could also contribute to actin polymerization (90, 93)
(Figure 1C).

PI(3,4)P2 recruits and induces Vinculin activation through
disrupting an auto-inhibitory interaction (135). This is
dependent on Syk activity and, to a lesser extent, on FAK/Pyk2
and is upstream from ROCK activation (107). In focal complexes,
RIAM contributes to Vinculin binding to Talin1, as RIAM-Talin1
interaction unmasks a Vinculin binding site in Talin1 (77).
Afterwards, Vinculin binding to F-actin and α-actinin favors
filament bundling and force generation (136, 137).

Increased PI(3,4,5)P3 at CR3-phagocytic cups (138) depends
on PI3K (139) and Syk (126), and both are activated downstream
of Kindlin-induced clustering (140). PI(3,4,5)P3 enrichment
recruits Vav1/3, which are GEFs for the RhoA family GTPases
(128). Complement-dependent phagocytosis requires Vav1 to
activate RhoA (61, 141) but also RhoGwith no participation from
Cdc42 and Rac1 (142). However, expression of constitutively
active Rac1 rescues the defective engulfment of Vav1-3 knockouts
(143). This discrepancy could be explained by the overlapping
roles of RhoG and Rac1 (144, 145) (Figure 1C).

In the final steps leading to engulfment, RhoA-GTP initiates
the ROCK-MLCK-myosin signaling pathway and actomyosin
contractility (146). RhoA is enriched at phagocytic cups, and
its localization is modulated by motifs in β2-integrin tails
(141). Premature activation of RhoA is inhibited by Rap-
GTP through ARAP3, a dual GAP for Rho and Arf GTPases,
which is recruited by PI(3,4,5)P3 and PI(3,5)P2 (147). Finally,
mDia contributes to phagosome closure (107, 133) and particle
engulfment by connecting the actin cytoskeleton to microtubules
(148) (Figure 1C).

SIGNALING DURING PHAGOCYTOSIS OF

APOPTOTIC CELLS

During apoptotic cell phagocytosis by mammalian αVβ5/αVβ3, a
p130Cas-CrkII-Dock180-Elmo module induces Rac1 activation,
which is responsible for cytoskeletal remodeling and phagosome
formation (149, 150). Other known signals include the
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activation of SFKs, as signals from the Mer-TK receptor recruit
phosphorylated FAK to mammalian β5 in a Src-dependent
manner (151), and Syk and Pyk2 activation has been shown to
occur for αVβ3 (152, 153). There is also evidence that Rac-1
activation is dependent on RhoG and its GEF Trio (154, 155),
whereas RhoA inhibits engulfment (156), and the role of Cdc42
remains unclear (157–159).

An orthologous pathway using the CED-2-CED-5-CED10
module has been described for C. elegans INA-1, which activates
the Rac ortholog and requires activation of SRC-1(Src-ortholog)
(3). Similarly in Drosophila, severed axon clearance requires
Src42A and Shark—the Src and Syk orthologs, respectively
(160, 161)—pointing to an evolutionarily conserved pathway
operating in apoptotic cell removal.

DISCUSSION AND FUTURE

PERSPECTIVES

There are still critical gaps in the knowledge of phagocytic
integrin signaling, specifically concerning proximal events
and their hierarchy. There are several proposed alternative
Talin1-recruitment mechanisms, but their contributions and
significance are yet to be established. Rap1-Talin1 interaction
is evolutionarily conserved and might constitute a mechanism
for short-term adhesions (105), whereas Rap1-RIAM-Talin1
contacts would have a faster recruitment of effector proteins. In
this line, it is yet to be established if RIAM is required for outside-
in signaling, formation, and recycling of the focal adhesion-like
complexes distributed in phagocytic cups (107).

Different F-actin nucleators/elongators are described to
participate in CR3-mediated phagocytosis; however, their
localization, recruitment, and relative contributions are
unknown. The regulation of small GTPases, which control
actin dynamics, remains obscure; there is scarce evidence of

GEF and GAP spatiotemporal localization in phagocytic cups,
and it is well established that GTPases negatively regulate each
other, which also raises questions on signal termination and
negative-feedback loops.

Many structural and signaling proteins required for
phagocytic integrin function have potential post-translational
modification-dependent functions, and, although there are
several candidates, little work has been undertaken to establish
Ser/Thr kinase and phosphatase recruitment and localization
within the phagocytic cup.

Fine-grain elucidation of the molecular mechanisms
involved in integrin-mediated phagocytosis will yield
invaluable information on possible control points for
phagocyte functions (antigenic capture, pathogen, tumor
or apoptotic body elimination, etc.). Indeed, complement-
opsonized immune complexes and particles may be presented
directly by subcapsular sinus macrophages to naïve B cells
or conveyed to dendritic cells for B-cell presentation. This
process requires cooperation between antigen-presenting cell
αMβ2/αXβ2 and B-cell CR1, CR2, and/or Fc receptors (162–
165). Manipulation of this pathway may inform new vaccine
strategies (166).
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The liver is our largest internal organ and it plays major roles in drug detoxification
and immunity, where the ingestion of extracellular material through phagocytosis is a
critical pathway. Phagocytosis is the deliberate endocytosis of large particles, microbes,
dead cells or cell debris and can lead to cell-in-cell structures. Various types of cell
endocytosis have been recently described for hepatic epithelia (hepatocytes), which are
non-professional phagocytes. Given that up to 80% of the liver comprises hepatocytes,
the biological impact of cell-in-cell structures in the liver can have profound effects in liver
regeneration, inflammation and cancer. This review brings together the latest reports on
four types of endocytosis in the liver -efferocytosis, entosis, emperipolesis and enclysis,
with a focus on hepatocyte biology.

Keywords: cell-in-cell, liver, efferocytosis, entosis, emperipolesis, enclysis, cancer, regeneration

INTRODUCTION

Cell-in-cell (CIC) structures are formed when a whole cell resides inside the cytoplasm of
another, and they have been observed for decades in various contexts. The best characterized
CIC mechanism is known as efferocytosis, the clearance of dead or dying cells by professional
and non-professional phagocytes (1–9). Yet, CIC structures, in which the internalized cell remains
viable, have been observed for over a century (10). Recent work has provided evidence for the
role of hepatocytes, the principal parenchymal cell within the liver, in several of these processes:
efferocytosis (1), live cell internalization events including suicidal emperipolesis (11), entosis (12)
and enclysis (13) (Table 1). Although the immediate consequences of dead and live cell capture
have been investigated, the biological implications and impact on clinical outcomes remain
to be elucidated.

The liver receives 75% of its blood supply from the gastrointestinal tract via the hepatic portal
vein (14). As such, it is persistently challenged by toxic substances and microbial- or food-derived
antigens. Not only must the liver function to detoxify and neutralize harmful products it is exposed
to, it must also maintain an immunotolerising environment so as not to initiate inappropriate
immune responses to commensal microbes and food antigens. Nonetheless, the liver must retain
the ability to mount a rapid immune response in the case of infection. The role of the liver in
immunity is well-established (15), and the cells residing within it are finely tuned to maintain the
balance between immunotolerance and immunogenicity. If this balance is perturbed and tolerance
is breached, liver disease can develop due to hepatocyte damage during inflammation.

Chronic liver diseases follow a common pathway of progression independently of etiology.
Repeated liver injury results in fibrosis, cirrhosis and ultimately, end-stage disease leading to
liver failure, the only viable treatment option for these patients is liver transplantation, which is
associated with significant pitfalls including organ shortage and graft rejection. Since liver disease
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TABLE 1 | The mechanism of cell-in-cell structures.

Enclysis Emperipolesis Efferocytosis Entosis Macropinocytosis

Host cells Hepatocytes (13) Thymic Nurse
Cells (92)

Megakaryocytes
(93)

Hepatocytes
(suicidal
emperipolesis) (11)

Professional and
non-professional
phagocytes (5, 94,
95)

Trophoblast
cells (96)

Cancer cells (12, 65) All cell types (97)

Cargo CD4+ T cells. Treg Thymocytes Neutrophils (98) CD8+ T cells Cell corpses Luminal
Epithelium

Cancer cells Natural
Killer (NK)
cells (65)

Large amounts of
solutes

Invasion Yes Yes Yes Yes No ? Yes Yes N/A

Fate Deletion (Treg),
Escape (non-Treg)

MHC
restriction:
Selection or
deletion (99)

Egress Deletion Digestion Non-apoptotic cell death Apoptosis Digestion

Host
plasma
membrane

Lamellipodia, Blebs
(localized)

Ruffles
(localized) (99)

Protrusions No ruffling Ruffles (localized) ? Blebs ? Ruffles, blebs,
lamellipodia (69)

Known
adhesion
molecules

ICAM-1,
beta-catenin

? ICAM-1, LFA-1,
Ezrin

? Cell-type
dependent

E-cadherin, beta-catenin E-cadherin,
ICAM-2,
Ezrin

None

Inhibitor
sensitivity

Cyt D, Lat A, (actin
polymerization),
Anti-ICAM-1

Colchicine,
Jasplakinolide
(cytoskeleton)
(100)

Cyt D, Lat A,
Anti-ICAM-1,
anti-LFA-1

Wortmannin (PI3K)
(11)

Wortmannin
(cell-specific)

H-1152, Y-27632(Rho Kinases) Ezrin
siRNA,
E-cadherin
siRNA,
EGTA
(Ca2+

chelation)

EIPA (NHE-1) (101),
Blebbistatin
(Myosin II) Cyt D

The best-characterized process is efferocytosis, where multiple receptors have been identified, however, only one receptor is known for hepatocytes (ASGR1). Receptors unique to entosis, emperipolesis or enclysis
have not been identified.
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continues to increase worldwide (16) there is an unmet clinical
need to develop novel therapies that will alleviate chronic
inflammation, prevent fibrosis or boost liver immunity in the
context of viral infection and primary or metastatic liver cancer.
Hepatocytes constitute an attractive target for therapy in these
patients, because (i) they are uniquely found in the liver, (ii)
they drive regeneration in injury, (iii) they are the focus of
infection or malignancy in hepatocellular carcinoma, (iv) they are
a natural destination for drug absorption, and (v) unlike targeting
immune cells, hepatocyte-directed therapies are unlikely to cause
systemic immunosuppression or autoimmunity. We propose that
targeting CIC structures has the potential to lead to clinical
benefit for patients with liver diseases.

EFFEROCYTOSIS

The capture and deletion of dying cells by efferocytosis (from
effere, Latin for “to take to the grave,” “to bury”), a specialized
form of phagocytosis, is a crucial process for the liver with
important biological impact (1). The liver is inundated with
infiltrating immune cells that are destined to die by apoptosis
and be digested by liver cells (17). The frequent turnover of
hepatocytes, associated with the detoxification of waste products,
further contributes to the dead cell burden faced by the liver.
Failure to clear these cell corpses can spell disastrous immune
consequences, including premature inflammatory responses and
an increased risk of autoimmune disease (8).

To prevent the build-up of cellular debris, the cellular
composition of the liver is uniquely prepared, it is frequented
by monocyte-derived macrophages and possesses a specialized
resident macrophage population known as Kupffer cells, which
arise following signals from liver-resident cells (9, 18). Aside
from these “professional phagocytes,” liver- parenchymal and
non-parenchymal cells can also capture and delete dying cells.
These “non-professional” populations include hepatic sinusoidal
endothelial cells (HSECs), biliary epithelial cells (BECs), stellate
cells and hepatocytes (Figure 1) (3, 4, 6, 7). As such, the
liver is universally prepared to rapidly clear cell corpses, thus
maintaining its immune tolerance.

An astute adaptation of the liver to manage the persisting need
to clear dying cells is for its principal cell type, the hepatocyte,
to be adept at efferocytosis (1). Hepatocytes are epithelia tasked
with drug detoxification and can undergo necrotic cell death
in the process, thus neighboring hepatocytes are most likely to
make first contact with a dying cell. Hepatocyte efferocytosis
was first described in 1952, when Rosin and colleagues observed
the presence of erythrocytes within the cytoplasm of hepatocytes
(2). This was later ratified by Dini et al., who showed that
hepatocytes could also engulf apoptotic cells (3). The same
investigation suggested a role for asialoglycoprotein receptor 1
(ASGR1) in the recognition of these cells. Experiments conducted
in our group has further confirmed hepatocyte ability to engulf
necrotic cells in health and in cancer (1, 13). Other cells
which have this capability generally require alternative, more
improvisational molecular mechanisms to capture necrotic cells,
compared to those known for apoptotic cell capture (5, 20).

FIGURE 1 | Hepatocytes are important efferocytes. Comprising up to 80% of
the liver mass, hepatocytes engulf apoptotic and necrotic cells via the
asialoglycoprotein receptor (ASGR1) (3), and rapidly degrade them. This
process may supply the liver with nutrients while maintaining homeostasis by
eliminating pro-inflammatory cell debris. CIC structures can also lead to failure
of cytokinesis (19) and this can impact hepatocyte ploidy.

Hepatocytes can both remove and replenish areas of necrotic
sheets associated with disease-related hepatotoxicity, and drive
regeneration during injury (21–23).

In contrast to the liver’s professional phagocyte populations,
the mechanisms by which hepatocytes clear dead cells are poorly
understood. There are few candidate receptors, in addition
to ASGR1, by which hepatocytes may recognize and capture
dying cells. The consequences of efferocytosis for the hepatocyte
have also not been widely explored. The hepatocyte would be
granted nutrients from the lysosomal digestion of captured cells.
Hepatocytes may also acquire increased genetic diversity at the
cellular level through efferocytosis. Efferosomes may physically
impede cytokinesis, causing the engulfing hepatocyte to become
multinucleate, as seen in breast cancer cells with CIC structures
(12). Increased genetic diversity amongst hepatocytes has been
shown to increase the ability of the liver to adapt and regenerate
in response to a wider variety of insults (24, 25). Efferocytosis may
be a mechanism which accelerates this phenomenon, although
this may also increase the risk of contracting mutations associated
with the onset of hepatocellular carcinoma (HCC). Although
hepatocyte multinucleation is both frequent and tolerated in
the liver, particularly in older individuals (26, 27), chronic
efferocytosis resulting from disease-associated necrosis may
promote the acquisition of oncogenic mutations. As the onset
of HCC is rarely spontaneous and frequently associated with
chronic liver disease, increased hepatocyte efferocytosis may
represent a risk factor for its onset.

Dysregulation of efferocytosis in the liver can lead to
disease development. This has been exemplified in the case
of macrophage clearance, knockout mice lacking hepatic
macrophages that express the dead cell scavenger receptor,
MerTK, showed exasperated damage when treated with
acetaminophen (APAP) (28). More recently it was demonstrated
that carbon tetrachloride-treated glycoprotein NMB (gpnmb)
KO mice, whose macrophages lack the ability to process
internalized cells, showed greater activation of pro-fibrotic
myofibroblasts (29). It is also likely that the dysregulation of
hepatocyte efferocytosis may contribute to the pathogenesis of
other chronic liver diseases. Autoantibodies against ASGR1 have
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been detected in patients with autoimmune hepatitis (30, 31).
Additionally, ethanol-treated rat hepatocytes were shown to be
defective in ASGR1-mediated efferocytosis (32).

The effects of aging and the accompanying immune paresis
must be considered in liver homeostasis, specifically regarding
the clearance of apoptotic and necrotic cells. In both aging
and chronic liver disease, there is an accumulation of senescent
cells, which produce senescence-associated secretory phenotype
(SASP) factors. SASP factors include pro-inflammatory cytokines
and growth factors, that have been noted to alter the local
microenvironment and induce paracrine senescence and in turn,
immuno senescence (33–35). One characteristic of immune
senescence is the reduced capacity of a cell to phagocytose, which
may contribute to persistent inflammation in older individuals,
termed “inflammageing” and lead to defective clearance and
resolution of inflammation (36, 37).

Whilst little is understood about hepatocyte efferocytosis
in terms of aging, several in vivo studies have shown an
age-associated decline in macrophage efferocytosis in other
tissue types. For example, one study observed that peritoneal
macrophages from aged (24-month old) mice had an impaired
ability to efferocytose apoptotic Jurkat cells, compared to 2-
month old, young mice (38). This result was similarly observed
by Linehan et al., whom proceeded to transplant young (8 to
12-week-old mice) peritoneal macrophages into aged (15 to 20-
month-old mice) peritoneal space (39). The transplanted, young
macrophages in fact exhibited a diminished ability to efferocytose
post-transplantation, suggesting that the microenvironment lead
to alterations in the efferocytic ability. Additionally, there was
a decline in the ability of alveolar macrophages to efferocytose
neutrophils in aged mice, which may contribute to lung damage
(40). Based on links drawn between diminished efferocytic
capacity and old age, it is logical to infer that hepatocytes could
be subjected to similar pressures from aging and this warrants
further investigation.

Further understanding into the mechanisms of hepatocyte
efferocytosis will likely provide opportunities for promoting
dead cell clearance and thus preventing immature inflammatory
responses in the liver.

ENTOSIS

For over a century, CIC structures in which viable cells
are internalized into other cells have been reported (10,
41, 42). Live cells have been shown to invade or be
engulfed by host cells of non-phagocytic origin. Unlike
with efferocytosis, which consistently targets cell corpses
for lysosomal degradation, these cells can remain viable
within vacuole-like structures for long periods and succumb
to variable outcomes depending on the context. Although
the molecular mechanisms for most examples of live CIC
formation generally remain poorly understood, several
processes are well-described in the literature. One of
these is known as entosis (εντóς , inside, into, within)
(Figure 2) (41, 43).

In 2007, Overholtzer and colleagues reported that extracellular
matrix detachment of cancer cells could promote CIC formation
via contractile forces associated with adherens junction
formation. This process involved junctional proteins, E-cadherin
and β-catenin, and was dependent on actomyosin contractility
mediated by Rho-associated coiled-coil-containing protein
kinase (ROCK) activity in the target cell specifically (12).
This finding, coupled with time-lapse microscopy of CIC
formation, was strongly suggestive of target cell invasion as
opposed to engulfment and has since been confirmed in several
studies (44, 45).

The plasma membrane is the primary site for initiating
CIC formation. Plasma membrane blebbing and polarized actin
dynamics have been suggested as drivers of entotic invasion
(45), with a recent study demonstrating the requirement
for the myocardin-related transcription factor-serum response
factor (MRTF-SRF) pathway and subsequent sustained ezrin-
dependent plasma membrane blebbing (44). Furthermore, in
addition to the requirement for adherens junctions (12, 46,
47), studies have shown that the composition of the plasma
membrane play a role in entosis. Both liposomes and cholesterol
were shown to inhibit CIC formation, presumably by hindering
myosin light chain phosphorylation and thus actomyosin
contractility (48).

FIGURE 2 | Entosis in neoplastic hepatocytes. We recently showed that hepatocellular carcinoma cells were able to engulf their live neighbors by entosis (13).
Entosis is an important disease pathway in cancer epithelia involving E-cadherin and β-catenin (12). Tumor cells that detach from matrix are prone to entosis, and
further research is necessary to measure its implications in patients with hepatocellular carcinoma.

Frontiers in Immunology | www.frontiersin.org 4 May 2020 | Volume 11 | Article 650195

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-00650 May 11, 2020 Time: 19:24 # 5

Davies et al. Cell-in-Cell Structures in the Liver

The fate of the internalized cell is variable, most succumb to
non-apoptotic cell death and lysosomal degradation, although
some target cells occasionally undergo division or release (12,
43, 49–51). Thus, the biological consequences of entosis and
the impact on tumor biology remain controversial (52). Since
degradation of target cells by neighboring cancer cells has the
potential to limit tumor growth, then perhaps entosis represents
an intrinsic tumor suppressor mechanism, by which metastatic
cancer cells that become detached from matrix are eliminated.
Yet, adherent epithelial cells can also undergo entosis, a process
driven by mitosis and negatively regulated by cell cycle protein
Cdc42 (46). Furthermore, tumor cell cannibalism could promote
host cell survival by providing nutrients to those which lack
vascular access (53). In support of this, Overholtzer’s group later
demonstrated that entosis is induced in adherent cells by glucose
starvation, in a manner requiring activity of target cell AMP-
activated protein kinase (AMPK) (54). The ability of cancer
cells to adapt to starvation by performing entosis and enabling
nutrient recovery would confer metabolic advantage of malignant
cells, thereby promoting progression of more aggressive tumors.
Indeed, it has been proposed that there is direct competition
between cancer cells, dictated by mechanical deformability and
subsequent entosis, thus ensuring the survival of the most
adapted tumor cells (55). These findings highlight the importance
of the tumor microenvironment in regulating intracellular
signaling pathways that mediate entosis and tumor survival.

The clinical impact of entosis in hepatocellular carcinoma has
not been investigated. Similarly to observations made in other
epithelial cells, we reported recently that hepatomas cultured
in 2D were also capable of engulfing their neighbors (13).
The vesicle that housed the internalized cell was enriched in
E-cadherin, suggesting that this was another example of entosis
(Figure 2). It is not yet clear if non-neoplastic hepatocytes
perform entosis. Regardless, liver cancers may benefit from
entosis as a source of adaptation and nutrition. Given that
there is no effective therapy and the incidence of hepatocellular
carcinoma is increasing in the West (56), targeting entosis may
prove to be of clinical value.

EMPERIPOLESIS

Emperipolesis is a term coined by Humble et al. (57) and used
to describe the movement of live cells following internalization
(“inside-round-about wandering”) (Figure 3) (57). It has been
proposed that whilst CIC and emperipolesis should be used
generically to describe the process of cell movement associated
with CIC structures, cannibalism and entosis should be used
to refer to mechanisms of CIC formation specifically (10, 41).
Cell-in-cell structures, or emperipolesis, have long been observed
by histopathologists in several types of chronic liver disease.
Emperipolesis is increased in autoimmune hepatitis (58, 59)
and chronic viral infection (60, 61), suggesting a potential
role in liver injury or T cell clearance (62, 63). The precise
physiological and pathophysiological role of emperipolesis,
however, remains elusive.

The first demonstration of a physiological role for
emperipolesis in the liver was reported by Bertolino and

FIGURE 3 | Suicidal Emperipolesis. The seminal work by Benseler et al.
provided the first evidence for a biological role of the cell-in-cell structures
described as emperipolesis, where immune cells were engulfed alive by
hepatocytes (11). In this study, autoreactive CD8+ T cells were deleted by
suicidal emperipolesis in the liver. The mechanism of capture is not
understood, however, perturbation of this process led to breach of liver
tolerance in mice.

colleagues in 2011. They defined a mechanistically distinct
type of emperipolesis known as suicidal emperipolesis, in which
autoreactive CD8+ T lymphocytes actively invade hepatocytes
and undergo lysosomal degradation (11, 64). Inhibition of this
process by wortmannin led to intrahepatic accumulation of
autoreactive cells and a breach of tolerance. Wortmannin-treated
mice developed immune-mediated hepatitis 3 days post-infusion
with autoreactive CD8+ T cells, as determined by raised alanine
aminotransferase levels and histological liver damage. The
authors therefore proposed this as a mechanism of extrathymic
regulation for maintaining immune tolerance within the liver.

There is also evidence for a pathophysiological role of CIC
structures. Emperitosis, another form of emperipolesis, was the
name initially given to natural killer (NK) cell invasion of
tumor cells and subsequent programmed cell death. Like entosis,
emperitosis also requires cadherins, Rho/ROCK proteins and
ezrin (65, 66). In contrast to entosis, NK cells succumb to
caspase-3-mediated apoptosis, which was attributed to granzyme
B accumulation within the vacuole (65). This process has
also been extended to human cytotoxic regulatory T cell line,
HOZOT, which actively penetrate cancer cell lines but not
cells of non-neoplastic origin (67). It is therefore conceivable
that emperitosis of cytotoxic immune cells serves as one of
the many mechanisms employed by cancer cells to evade
immune surveillance. Furthermore, a recent study showing
that internalization of anti-fibrotic NK cells in HBV cirrhotic
patients is transforming growth factor-β-dependent and may
represent a novel mechanism of fibrogenesis (68). Further work is
required to fully elucidate the molecular mechanisms of suicidal
emperipolesis, which may allow therapeutic targeting in the
context of liver transplantation, autoimmune disease and viral
hepatitis. Nevertheless, the evidence that this process is distinct
from other CIC mechanisms is compelling, and is one example of
the complex pathways which can underlie CIC formation.

ENCLYSIS

We have recently reported a distinct cell capture process within
the liver termed enclysis (Eγκλε ωέγ- (έv-) + κλε ω, to enclose,
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to confine, to keep in captivity), in which live CD4+ T cells are
captured by hepatocytes (Figure 4) (13). This process occurred
in vitro, in primary human hepatocytes and in hepatoma cells
(Huh-7 and HepG2 cells), and ex vivo within patient liver
samples. T cells were also found to reside within hepatocytes
in vivo as shown in 30 µm-thick sections from cirrhotic patients.

Whilst intercellular adhesion molecule-1 (ICAM-1) facilitated
early T cell adhesion to hepatocytes, the ligands for ICAM-1
are not distinct to CD4+ T cells and therefore this adhesion
molecule does not explain enclysis specificity. Interestingly,
adhesion molecule and junctional protein, β-catenin, selectively
associated with the enclytic vesicle, in contrast to the efferosome
(phagosome containing dead cell) which showed no β-catenin
localization. Despite both entosis and enclysis involving
formation of membrane blebs (13, 44, 45), enclysis was
distinguished from entosis by the lack of E-cadherin association
with the enclytic vesicle. Notably, instances of entosis were
observed between Huh-7 hepatoma cells, where a clear
localization of E-cadherin was apparent. The lack of requirement
for the RhoA/ROCK pathway, similar to suicidal emperipolesis,
provides a further distinction of enclysis and entosis. Enclysis
resembles macropinocytosis, in that there are significant
membrane alterations during cell capture events including
ruffling, blebs and lamellipodia formation (13, 69), which is in
contrast to emperipolesis where these membrane protrusions
are absent (63). Furthermore, the wortmannin-insensitivity of
enclysis further defines this process as mechanistically distinct,
compared with emperipolesis which is abrogated by wortmannin
treatment (11).

Whilst CD4+ T cells were specifically targeted over CD8+

T cells and CD20+ B cells, Tregs were three times more
likely to be engulfed than non-Treg cells. Vesicles containing
Tregs readily acidified with cells undergoing degradation via the
lysosomal pathway, unlike non-Tregs, which survived for long
periods and remained connected to the extracellular space via
the endocytic pathway. Moreover, FOXP3+ Tregs were more
frequently found within hepatocytes than Tbet+ effector cells,
in both donor livers surplus to clinical requirement and liver

explants from end-stage disease patients (13). Thus, we propose
enclysis as a novel immunomodulatory pathway within the liver
that could offer therapeutic opportunities to toggle inflammation.
But why would hepatocytes possess the ability to target Tregs for
degradation when an integral function of the liver is to maintain
immunotolerance? Although this seems counter-intuitive, given
the previous studies which have evidenced a role for the liver in
maintaining peripheral immune tolerance (70), it is conceivable
that enclysis could act as a biological switch, preventing the liver
from becoming “immunoblind”. The ability of hepatocytes to
control local T cell populations and modulate ratios of regulatory
and effector cells may represent an intrinsic mechanism by
which the liver can rapidly respond to its local inflammatory
environment. The stimuli and endogenous regulators of enclysis,
however, are yet to be defined.

Identification of selective modulators of enclysis may offer
opportunities for therapeutic intervention. On one hand,
inhibition of Treg cell capture and/or degradation may be
successful in situations where it is desirable to enrich local
Treg populations and dampen inflammation. Indeed, research
surrounding Treg cell-based therapy is ongoing (71–75),
and combination with pharmacological inhibitors of enclysis
may show promise for several indications, including chronic
inflammation and to promote immunotolerance following organ
transplantation. Alternatively, in the context of cancer, boosting
Treg sequestration or modulating release of effector T cell subsets
may be beneficial to enhance tumor immunogenicity (76).

IMPLICATIONS AND FUTURE
PERSPECTIVES

The impact of cell-in-cell structures on the host cell biology has
only recently been investigated. Phagocytosed cells that enter the
phagocyte as apoptotic cells or cellular debris, and also engulfed
live cells that may subsequently die inside endosomes, can present
an added source of nutrients. However, CIC may have longer-
lasting implications on the host cell.

FIGURE 4 | Enclysis in health and in hepatocellular carcinoma. Enclysis is the enclosure and lysis of regulatory T cells (Treg) by hepatocytes and hepatocyte cancer
cells (13). We showed that Treg cells were captured preferentially compared to non-regulatory CD4+ T cells, and also suffered a different fate, as non-regulatory T
cells often survived hepatocyte entry.
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FIGURE 5 | Cell-in-cell structures in healthy and neoplastic hepatocytes. Efferocytosis (apoptotic or necrotic cells), suicidal emperipolesis (autoreactive CD8+ T cells)
and enclysis (CD4+ T cells, Treg) have been reported for non-neoplastic hepatocytes. Neoplastic hepatocytes can also perform efferocytosis and enclysis, and
engulf fellow cancer cells that detached from matrix by entosis.

Consequences of viable cell internalization include eventual
death of host or target cells, target cell division or release, or
prevention of host cell division which can cause multinucleation,
polyploidy and aneuploidy (19, 77). This has implications for
cancer metastatic potential (78), and links between aneuploidy
and genomic instability (loss of tumor suppressor genes) have
been established (19, 77). A recent study has shown that p53
mutations in lung adenocarcinoma patients are associated with
increased incidence of cell-in-cell structures, and that mutant
p53 expression promotes entotic engulfment, tumorigenesis
and disease recurrence (51). Whilst host cells lacking p53
had perturbed cell division and subsequent death, mutant p53
cells underwent aberrant cell division, multinucleation, and
tripolar mitosis. Thus, p53 expression facilitated pro-tumorigenic
entotic engulfment and abnormal mitosis, which consequently
contributed to genomic instability.

Cell-in-cell structures in patients are indicative of worse
clinical grade and poor prognosis (51, 58, 79). In the context of
the liver, ploidy changes and multinucleation in hepatocytes are
important considerations for liver regeneration (25–27, 80–82)
and associate with various pathological processes (83). In a study
where oxidative stress was shown to promote polyploidy in non-
alcoholic fatty liver disease, the authors suggested that hepatocyte
multinucleation preceded the onset of hepatocellular carcinoma
(84). In the absence of cancer, it is now understood that the
polyploid state in mice may restrict hepatocyte proliferation and
liver regeneration (81).

It is important to consider the biological impact of cell-
in-cell structures in liver diseases. Hepatocytes have evolved
to eliminate apoptotic and necrotic cells efficiently to prevent
inflammation, and this is also true for other CIC processes,
the mechanisms of cell death in the liver have been described
previously (85, 86). Failure to eliminate necrotic or autoreactive
cells would exacerbate liver injury and increase the incidence of
fibrosis. Fibrosis (liver scarring) is the consequence of various
chronic liver diseases caused by viral, autoimmune, metabolic or
cholestatic liver injury, and can lead to cirrhosis and end-stage
disease requiring a transplant. The precise mechanism of bile acid
hepatotoxicity has not been fully elucidated.

Non-alcoholic fatty liver disease (NAFLD) is of increasing
concern at a global scale, and up to 25% of patients can progress
to non-alcoholic steatohepatitis (NASH). Increased liver enzymes
denote hepatocellular damage [ALT, AST, and others, reviewed
in (86)]. The molecular mechanisms controlling hepatocellular
injury have begun to emerge in recent studies that revealed a
role for the transcription regulator TAZ in preventing hepatocyte
death, inflammation and fibrosis (87, 88). Further, hepatocyte
Notch activation was linked directly to NASH-related fibrosis
(89). The role of efferocytosis in the clearance of apoptotic cells
and the prevention of necrotic cell injury and fibrosis in NASH
has been reviewed recently (90).

The pro- or anti-inflammatory impact of enclysis in NASH
remains to be established, however, NASH liver explants show
measurable CD4+ T cells inside hepatocytes, including FOXP3+
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and Tbet+ T cells (13). Of note, Ma et al. showed that in
NAFLD, dysregulation of lipid metabolism causes a selective
loss of intrahepatic CD4+ but not CD8+ T cells, leading to
impaired tumor surveillance and accelerated carcinogenesis (91).
The mechanism of CD4+ T cell elimination in this context
has not been described, however, it was shown that T cells
died by apoptosis following linoleic acid exposure from lipid-
laden hepatocytes.

CONCLUSION

The engulfment of live, apoptotic and necrotic cells by
hepatocytes has important implications for their biology in
health, inflammation and cancer. These range from nutrient
acquisition that can promote cancer cell survival in poorly
vascularized tumors, to changes in ploidy that can affect liver
regeneration and cancer aggressiveness. It is therefore important
to understand the molecular mechanisms that govern these
processes so that they can be targeted specifically for patient
benefit. Figure 5 summarizes our current knowledge of cell-in-
cell structures linked to hepatocyte biology.

Increasing the clearance or necrotic cells is an important
goal to prevent inflammation and liver failure, including in
catastrophic drug-induced liver injury such as paracetamol
(acetaminophen) toxicity. Modulation of T cell capture by
suicidal emperipolesis (CD8+ T cells) or enclysis (Treg cells) has
the potential to influence liver tolerance and toggle inflammation

in conditions such as autoimmune hepatitis, viral infection
or liver cancer, where the unmet clinical needs are profound.
We propose that understanding CIC structure mechanisms will
enable specific therapeutic targeting and has the potential to
provide new therapeutic targets for liver diseases and liver cancer.
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Phagocytosis is a cellular process for ingesting and eliminating particles larger than

0.5µm in diameter, including microorganisms, foreign substances, and apoptotic cells.

Phagocytosis is found in many types of cells and it is, in consequence an essential

process for tissue homeostasis. However, only specialized cells termed professional

phagocytes accomplish phagocytosis with high efficiency. Macrophages, neutrophils,

monocytes, dendritic cells, and osteoclasts are among these dedicated cells. These

professional phagocytes express several phagocytic receptors that activate signaling

pathways resulting in phagocytosis. The process of phagocytosis involves several

phases: i) detection of the particle to be ingested, ii) activation of the internalization

process, iii) formation of a specialized vacuole called phagosome, and iv) maturation

of the phagosome to transform it into a phagolysosome. In this review, we present a

general view of our current understanding on cells, phagocytic receptors and phases

involved in phagocytosis.

Keywords: immunoglobulin, antibody, phagocytosis, neutrophil, ERK, complement, integrin

INTRODUCTION

Phagocytosis is a basic process for nutrition in unicellular organisms, and it is also found
in almost all cell types of multicellular organisms. However, only a specialized group
of cells called professional phagocytes (1) accomplish phagocytosis with high efficiency.
Macrophages, neutrophils, monocytes, dendritic cells, and osteoclasts are among these
dedicated cells. Professional phagocytes are responsible of removing microorganisms and
of presenting antigens to lymphocytes in order to activate an adaptive immune response.
Fibroblasts, epithelial cells, and endothelial cells can also accomplish phagocytosis with
low-efficiency and are thus described as non-professional phagocytes. These cells cannot ingest
microorganisms, but are important in eliminating dead cells and maintaining homeostasis
(2). Phagocytosis is the process of sensing and taking in particles larger than 0.5µm.
The particle is internalized into a distinctive organelle, the phagosome. This phagosome
subsequently changes the structure of its membrane and the composition of its contents
in a process known as phagosome maturation (3). The phagosome next fuses with
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lysosomes to become a phagolysosome. This new organelle
contains enzymes that can degrade the ingested particle (4).

Phagocytes can identify several diverse particles that could
potentially be ingested, including apoptotic cells and microbial
pathogens. Discrete receptorsmediate this recognition by sensing
the particle as a target and then initiating signaling pathways that
favor phagocytosis. Plasma membrane receptors of phagocytes
are divided into non-opsonic or opsonic receptors. Non-opsonic
receptors directly identify distinct molecular patterns on the
particle to be ingested. These receptors include C-type lectins,
such as Dectin-1 (5), Dectin-2, Mincle, or DC-SIGN (6);
lectin-like recognition molecules, such as CD33; and scavenger
receptors (7). Although, the toll-like receptors (TLRs) (8) can
also detect molecular patterns on pathogens, they are not
phagocytic receptors. Nevertheless, TLRs can cooperate with
phagocytic receptors to make phagocytosis more efficient (9).
Opsonic receptors detect host-derived proteins bound to target
particles. These proteins known as opsonins include antibodies,
fibronectin, complement, milk fat globulin (lactadherin), and
mannose-binding lectin (10). Opsonins label particles as targets
of phagocytosis. Fc receptors (FcR) and the complement
receptors (CR) are the best characterized opsonic receptors.
FcRs bind to the Fc portion of IgG (11, 12) or IgA antibodies
(13). Complement receptors bind to activated complement
components, such as iC3b, deposited on the particle (14).

Upon binding to the particle, phagocytic receptors initiate
signaling pathways leading to remodeling of the actin
cytoskeleton and lipids in the membrane, that result in the
membrane extending to cover the particle (15). Then, the
membrane closes at the distal end creating the phagosome. Thus,
the particle gets internalized inside the phagosome. During
membrane extension, the phagocytic receptors bind to the target
in a sequential order and help completing the formation of
the phagosome (16, 17). Next, this early phagosome undergoes
sequential fusion and fission events with endocytic vesicles to
create a late phagosome (18). This late phagosome then fuses
with lysosomes and becomes a phagolysosome. The process to
change a phagosome into a potent anti-microbial phagolysosome
is known as phagosome maturation (3).

The process of phagocytosis involves several phases: (i)
detection of the particle to be ingested, (ii) activation of the
internalization process, (iii) formation of a specialized vacuole
called phagosome, and (iv) phagosome maturation. In this
review, we present the main phagocytic receptors and a general
view of our current understanding on phagocytosis.

DETECTION OF THE TARGET PARTICLE

The first phase in phagocytosis is the detection of the target
particle. Detection is mediated by dedicated receptors on
phagocytic cells. Receptors directly recognizing pathogen-
associated molecular patterns (PAMPs) are the pattern-
recognition receptors (PRRs). Some of these PRRs can initiate
phagocytosis and thus constitute the non-opsonic receptors
for phagocytosis. Other PRRs, for example TLRs, can bind to
PAMPs but not induce phagocytosis. These receptors however,

can prepare (prime) the cell for phagocytosis. Foreign particles
can also be detected indirectly by opsonic receptors. The
receptors for antibody and complement are the best described
opsonic receptors.

Non-opsonic Receptors
Receptors for Microorganisms
Some receptors that directly bind PAMPs and can induce
phagocytosis include Dectin-1, Mincle, MCL, and DC-SIGN
(Table 1). All these molecules are members of the family of
C-type lectin receptors (6). Dectin-1 (dendritic cell-associated
C-type lectin-1) recognizes yeast polysaccharides (19), and
it has been shown to be a bona fide phagocytic receptor.
When expressed on non-phagocytic heterologous cells, Dectin-
1 allowed the cells to perform phagocytosis (19–21). In vivo, it
is also possible that Dectin-1 cooperates with other phagocytic
receptors in particular cells. For example, in neutrophils, Dectin-
1 has been reported to connect to the phagocytic receptor
Mac-1 (CD11b/CD18, CR3) (33). Mincle (macrophage-inducible
C-type lectin) is a receptor for trehalose dimycolate (TDM),
which is present on the cell wall of some mycobacterium (22).
MCL (macrophage C-type lectin, Dectin-3) is another receptor
for TDM that also binds α-mannans. Both, Mincle and MCL
are considered bona fide phagocytic receptors, because when
individually expressed in 293T cells, they induce internalization
of beads covered with antibodies against each receptor (23). In
myeloid cells, Mincle and MCL seem to cooperate for enhanced
phagocytosis by forming heterodimers on the cell membrane
(23). DC-SIGN (dendritic cell-specific ICAM-3-grabbing non-
integrin) is another receptor that can bind multiple microbial
pathogens, including viruses, fungi, and bacteria (6), through
recognition of fucosylated glycans and mannose-rich glycans
(24). DC-SIGN was shown to be a phagocytic receptor by
expressing it in non-phagocytic human myeloid K562 cells
or in epithelial HeLa cells. K562 cells were then capable
of internalizing Mycobacterium tuberculosis mannose-capped
lipoarabinomannan (ManLAM)-coated beads (25), while HeLa
cells could bind and internalize Escherichia coli bacteria (26). DC-
SIGNR is another C-type lectin receptor with high homology
to DC-SIGN, and capable of binding mannose-rich ligands
(34). Therefore, DC-SIGNR is also very likely a phagocytic
receptor. Other C-type lectin domain-containing proteins have
been implicated in phagocytosis long before Dectin-1 and other
C-type lectin receptors (6). The macrophage mannose receptor
(CD206) presents several C-type lectin carbohydrate recognition
domains, which detect α-mannan on many microorganisms
(Table 1). The mannose receptor was also shown to be a bona
fide phagocytic receptor when expressed in non-phagocytic COS-
1 cells. Transfected COS-1 cells were then able to mediate
internalization of zymosan (27).

Other PAMP receptors are also involved in phagocytosis,
but it is still not clear whether they can induce phagocytosis
on their own, or they do it indirectly by just bringing the
particle close to the phagocyte (35). It is also possible that these
receptors just prime the phagocyte, while other receptors mediate
phagocytosis (35). CD14, scavenger receptor A (SR-A), CD36,
and MARCO are among these receptors (Table 1). CD14 is a

Frontiers in Immunology | www.frontiersin.org 2 June 2020 | Volume 11 | Article 1066203

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Uribe-Querol and Rosales Phagocytosis

TABLE 1 | Human non-opsonic phagocytic receptors and their ligands.

Receptor Ligands Reference(s)

Non-opsonic receptors

Dectin-1 Fungal beta-glucan

Polysaccharides of some yeast cells

(19–21)

Mincle Trehalose dimycolate of

Mycobacteria

(22, 23)

MCL Trehalose dimycolate

α-Mannan

(23)

DC-SIGN Fucosylated glycans

Mannose-rich glycans

(24–26)

Mannose

receptor

Mannan (27)

CD14 Lipopolysaccharide-binding protein (28)

Scavenger

receptor A

Lipopolysaccharide, lipoteichoic acid (29, 30)

CD36 Plasmodium falciparum-infected

erythrocytes

(31)

MARCO Bacteria (32)

receptor for lipopolysaccharide (LPS)-binding protein (28). SR-A
recognizes LPS on Gram-negative bacteria (29), and on Neisseria
meningitidis (30). CD36 detects Plasmodium falciparum-infected
erythrocytes (31), and MARCO (macrophage receptor with
collagenous structure) is involved in recognition of several
bacteria (32).

Receptors for Apoptotic Cells
In multicellular organisms many cells die constantly by apoptosis
for maintaining homeostasis. These apoptotic cells are eliminated
by phagocytosis. Detection of apoptotic cells requires particular
receptors for molecules that only appear on the membrane of
dying cells. These molecules include lysophosphatidylcholine,
and phosphatidyl serine (PS) (36). These molecules deliver
to phagocytes an “eat me” signal (37). Receptors directly
recognizing PS include TIM-1, TIM-4 (38), stabilin-2 (39), and
BAI-1 (brain-specific angiogenesis inhibitor 1) (40) (Table 2).
The integrin αvβ3 can also bind PS after other receptors, for
example lactadherin, connect PS to the integrin (41). The integrin
αVβ5 (42), CD36 (45), and CD14 (44, 46) are also receptors
for apoptotic cells (Table 2). Some normal cells, for example
activated B and T lymphocytes, may express significant levels of
PS on their surface. These cells avoid phagocytosis by expressing
at the same time molecules that serve as “don’t eat me” signals
(2). One such molecule is CD47, a ligand to the receptor SIRPα

(signal regulatory protein α), which is expressed on phagocytes
(47). Upon engagement, SIRPα delivers an inhibitory signal for
actin assembly (47). The signaling events from these receptors to
activate phagocytosis are just beginning to be elucidated. Since
phagocytosis of apoptotic cells is central to homeostasis (48),
determining the phagocytosis mechanisms of all these receptors
for apoptotic cells will be an active area of future research.

Opsonic Receptors
Foreign particles can also be labeled for phagocytosis by
opsonins, which are host-derived proteins that bind specific

TABLE 2 | Receptors for apoptotic cells.

Receptor Ligands Reference(s)

TIM-1* Phosphatidylserine (38)

TIM-4* Phosphatidylserine (38)

Stabilin-2 Phosphatidylserine (39)

BAI-1* Phosphatidylserine (40)

Lactadherin and αVβ3 MFG-E8* (41)

αVβ5 Apoptotic cells (42)

CD36 Oxidized lipids (43)

CD14 Phosphatidylserine (?) (44)

*TIM, T cell immunoglobulin mucin; BAI-1, brain-specific angiogenesis inhibitor 1; MFG,

milk fat globule.

TABLE 3 | Human opsonic phagocytic receptors and their ligands.

Receptor Ligands Reference(s)

FcγRI (CD64) IgG1 = IgG3 > IgG4 (49)

FcγRIIa (CD32a) IgG3 ≥ IgG1 = IgG2 (49)

FcγRIIIa (CD16a) IgG (49)

FcαRI (CD89) IgA1, IgA2 (13, 50)

CR1 (CD35) Mannan-binding lectin, C1q,

C4b, C3b

(51)

CR3 (αMβ2,

CD11b/CD18, Mac-1)

iC3b (52)

CR4 (αVβ2,

CD11c/CD18,

gp190/95)

iC3b (52)

α5β1 (CD49e/CD29) Fibronectin, vitronectin (53)

receptors on phagocytic cells. Important opsonins promoting
efficient phagocytosis include antibody (IgG) molecules and
complement components. These opsonins and their receptors are
the best studied so far (Table 3).

Fcγ Receptors
Fcγ receptors (FcγR) are glycoproteins that specifically bind
the Fc part of IgG molecules (12, 54). When FcγR engage
IgG molecules in multivalent antigen-antibody complexes, they
get clustered on the membrane of the cell, and then trigger
phagocytosis as well as other cellular responses (11, 55)
(Figure 1).

Three types of FcγR are expressed on human cells, FcγRI
(CD64), FcγRII (CD32), and FcγRIII (CD16) (56) (Figure 1).
FcγRI has three Ig-like domains, and displays high affinity for
IgG molecules. In contrast, FcγRII and FcγRIII have two Ig-
like domains, and display low-affinity for IgG molecules. Thus,
they can only bind multimeric immune complexes (57). FcγRI
is expressed together with a dimer of the common Fc receptor
gamma (FcRγ) chain. Each FcRγ chain contains tyrosine residues
within an immunoreceptor tyrosine-based activation motif
(ITAM; consensus sequence: YxxI/Lx(6−12)YxxI/L) (58, 59). The
clustering of activating FcγRs results in the phosphorylation
of tyrosine residues in the ITAM sequence present within
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FIGURE 1 | Human Fcγ receptors. The human receptors for the Fc portion of immunoglobulin G (IgG) molecules are classified in three groups FcγRI, FcγRII, and

FcγRIII. The IgG binding α-subunit in the high affinity FcγRI, possesses three immunoglobulin (Ig)-like extracellular domains. The α-subunit in the other low-affinity

receptors presents only two Ig-like domains. Activating receptors contain an ITAM (immunoreceptor tyrosine-based activation motif) sequence within the α subunit (for

FcγRIIa) or within the accessory γ and ζ chains (for FcγRI and FcγRIIIa). FcγRIIIa has a homodimer of γ chains in macrophages, natural killer (NK) cells, and dendritic

cells, whereas it has a heterodimer of γ/ζ chains and an extra β chain in basophils and mast cells. FcγRIIIb is also an activating receptor, which is bound to the cell

membrane via a glycosylphosphatidylinositol (GPI) anchor. In contrast, FcγRIIb is an inhibitory receptor containing an ITIM (immunoreceptor tyrosine-based inhibition

motif) sequence.

the cytoplasmic domain of the receptor (as is the case with
FcγRIIa and FcγRIIc), or in an associated FcR common γ-
chain (as with FcγRI and FcγRIIIa) (11, 12, 57). These tyrosine
residues are phosphorylated upon activation and are essential
for receptor signaling. FcγRII presents two isoforms: FcγRIIa
expressed mainly in phagocytic cells and FcγRIIb expressed
mainly in B lymphocytes (56). FcγRIIa does not associate with
FcRγ chains, but has an ITAM motif in its cytoplasmic tail.
FcγRIIb also does not associate with FcRγ chains, but in contrast,
has an immunoreceptor tyrosine-based inhibition motif (ITIM;
consensus sequence: S/I/V/LxYxxI/V/L) in its cytoplasmic tail
involved in negative signaling (60). Phosphorylated tyrosine
residues within the ITIM recruit phosphatases that down-
modulate signals coming from ITAM-containing activated
receptors (60, 61). FcγRIIb functions as a negative regulator of
cell functions, such as phagocytosis (62, 63). FcγRIII presents
two isoforms: FcγRIIIa expressed in macrophages, natural killer
(NK) cells, basophils, mast cells and dendritic cells, and FcγRIIIb
expressed exclusively on neutrophils (57) (Figure 1). FcγRIIIa
is a receptor with a transmembrane portion and a cytoplasmic
tail, associated with a dimer of FcRγ chains, while FcγRIIIb
is a glycosylphosphatidylinositol (GPI)-linked receptor, lacking
a cytoplasmic tail and no known associated subunits (64)
(Figure 1).

Complement Receptors
Complement receptors (CRs) bind activated complement
molecules deposited on microorganisms or cells (65, 66).
Complement receptors belong to three groups of molecules: (i)
CR1 and CR2, which are formed by short consensus repeat
(SCR) elements, (ii) CR3 and CR4, which belong to the β2
integrin family (66), and (iii) CRIg, which belongs to the
immunoglobulin Ig-superfamily (14) (Figure 2). The integrin
αMβ2 (also known as CD11b/CD18, CR3, or Mac-1) binds
the complement component iC3b, and is the most efficient
phagocytic receptor among complement receptors (66–68).

FIGURE 2 | Complement receptors. There are three groups of complement

receptors: (i) the short consensus repeat (SCR) modules that code for CR1

and CR2, (ii) the β2 integrin family members CR3 and CR4 (66), and (iii) the

immunoglobulin Ig-superfamily member CRIg.

Phagocytic Receptors Cooperation
For efficient recognition of the target particle and initiation of
phagocytosis, numerous receptors on the phagocyte membrane
must interact with several IgG molecules on the opsonized
particle. For this, receptors must have good mobility of the
membrane (69) so that they can aggregate and get activated.
However, free diffusion is not easy for most phagocytic receptors,
because they are among other (usually bigger) transmembrane
glycoproteins that cover the cell surface. Phagocytic receptors
are very short molecules compared to these longer glycoproteins;
hence short receptors are obscured among a layer of large
glycoproteins (the glycocalyx), such as mucins, hyaluronan, and
the membrane phosphatases CD45 and CD148 (70). In addition,
many large glycoproteins are tied to the cytoskeleton, and can
interfere with the lateral diffusion of receptors on the cell
membrane (15, 17).

Interactions of Fcγ receptors with possible targets can be
enhanced by cooperation with other receptors that can remove
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FIGURE 3 | Cooperation among phagocytic receptors. Most phagocytic

receptors, such as receptors for antibody (FcγRIIa) and receptors for

complement (Integrin CR3) cooperate to bind the particle to be ingested. FcγR

aggregation triggers an inside-out signal that activates integrins via the

GTPase Rap. Activated Rap (Rap GTP) is responsible for integrin activation.

Then, activated integrins also bind to the particle (via complement fragment

C3b), and form a diffusion barrier that excludes larger molecules, such as the

transmembrane phosphatase CD45. This allows other Fc receptors to be

engaged and increase the signaling for phagocytosis. SFK, Src family kinases.

Syk, spleen tyrosine kinase.

larger glycoproteins from the area of the membrane in contact
with the target particle. The result is that Fcγ receptors can
then diffuse more freely on the membrane and engage more IgG
molecules (16) (Figure 3). Removal of large glycoproteins from
the membrane area of contact with the target particle is achieved
by activated integrins. Integrins, for example CR3, increase their
affinity for their ligand after they receive an inside-out signal
(71, 72) from other receptors such as Fc receptors (73), TLRs (74),
or CD44 (75). Inside-out signaling leads to activation of integrins
(66, 76) via the small GTPase Rap1 (77). Activated integrins
extend their conformation and create a diffusion barrier that
keeps larger glycoproteins, for example the phosphatase CD45,
away from phagocytic receptors (16) (Figure 3). Also, extended
integrins can engage more distant ligands on the particle (78) and
create a progressive wave of large molecules migrating in front
of the bound Fcγ receptors, which aggregate in microclusters
to mediate a strong adhesion between the phagocyte membrane
and the particle to be ingested (17). Thus, during phagocytosis
integrins cooperate with Fcγ receptors by promoting adhesion to
the opsonized particle (79). Interestingly, this type of cooperation
was implied by earlier studies showing that in neutrophils
FcγRIIIb associates with Mac-1 integrins (80, 81).

ACTIVATION OF THE INTERNALIZATION

PROCESS

When a particle is recognized by phagocytic receptors, various
signaling pathways are activated to initiate phagocytosis.

Reorganization of the actin cytoskeleton and changes in the
membrane take place resulting in a depression of the membrane
area touching the particle, the phagocytic cup. Then, pseudopods
are formed around the particle until the membrane completely
covers the particle to form a new phagosome inside the cell. The
signaling mechanisms to activate phagocytosis are best-known
for Fc receptors and for complement receptors (10, 67, 82–
84). For other phagocytic receptors, signaling pathways are just
beginning to be investigated.

Fcγ Receptor Signaling
Fcγ receptors get activated when they bind to antibody
molecules covering the target particle and get clustered on
the phagocyte membrane. Upon clustering of Fcγ receptors,
they co-localize with Src-family kinases (such as Lyn, Lck, and
Hck). These kinases phosphorylate tyrosines within the ITAM.
Then, Syk (spleen tyrosine kinase) binds to the phosphorylated
ITAMs and gets activated (67, 85). Activated Syk, in turn,
can phosphorylate multiple substrates and initiate different
pathways that connect to distinct cellular responses such as
phagocytosis (67, 85, 86) and transcriptional activation (86)
(Figure 4). Important Syk substrates involved in phagocytosis
are the adaptor molecule LAT (linker for activation of T cells),
phosphatidylinositol 3-kinase (PI 3-K), and phospholipase Cγ

(PLCγ) (87, 88) (Figure 4). Phosphorylation of LAT induces
docking of additional adaptor molecules such as Grb2 and
Gab2 (Grb2-associated binder 2) (89). Phosphorylated (active) PI
3-K generates the lipid phosphatidylinositol-3,4,5-trisphosphate
(PIP3) at the phagocytic cup (90, 91). This lipid also regulates
activation of the GTPase Rac, and contractile proteins such
as myosin. Active Rac is important in actin remodeling and
activation of other signaling molecules such as JNK and the
nuclear factor NF-κB (Figure 4). Activated PLCγ produces
inositoltrisphosphate (IP3), and diacylglycerol (DAG). These
second messengers cause calcium release and activation of
protein kinase C (PKC), respectively (92). PKC leads to activation
of extracellular signal-regulated kinases (ERK and p38) (93). The
Guanine nucleotide exchange factor (GEF) Vav activates GTPases
of the Rho and Rac family (94), which are involved in regulation
of the actin polymerization that drives pseudopod extension
(Figure 4).

Complement Receptor Signaling
Among complement receptors, CR3 (integrin Mac-1) is the
most efficient phagocytic receptor (66, 67). From very early
studies, it has been realized that CR3 on macrophages initiates a
different type of phagocytosis from the one mediated by antibody
Fcγ receptors. CR3-mediated phagocytosis is characterized by
“sinking” of the target particle into the cell membrane without
generation of pseudopods around the particle (95). Also, the
usage of cytoskeleton components for particle internalization
is different between FcγR- and CR-mediated phagocytosis.
During FcγR-mediated phagocytosis the actin cytoskeleton is
used, whereas during CR-mediated phagocytosis the actin and
microtubule cytoskeletons are involved (96, 97). In complement
phagocytosis F actin remodeling depends on activation of the
GTPase Rho, but not on the GTPases Rac or Cdc42 (98, 99).
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FIGURE 4 | FcγR signaling for phagocytosis. FcγRIIa crosslinking by

immunoglobulin (IgG) bound to a particle, induces activation of Src family

kinases (SFK), which phosphorylate tyrosine residues in the ITAM sequence

within the cytoplasmic tail of the receptor. Then, spleen tyrosine kinase (Syk)

associates with phosphorylated ITAMs and leads to phosphorylation and

activation of a signaling complex formed by the scaffold protein LAT (linker for

activation of T cells) interacting with various proteins. One of these proteins is

phospholipase C gamma (PLCγ), which produces inositoltrisphosphate (IP3),

and diacylglycerol (DAG). These second messengers cause calcium release

and activation of protein kinase C (PKC), respectively. PKC leads to activation

of extracellular signal-regulated kinases (ERK and p38). The guanine

nucleotide exchange factor Vav activates the GTPase Rac, which is involved in

regulation of the actin cytoskeleton. Rac is also involved in activation of

transcription factors such as NF-κB and JNK. The enzyme

phosphatidylinositol 3-kinase (PI3K), which is recruited and activated by Syk,

generates the lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3 ) at the

phagocytic cup. This lipid also regulates Rac activation, and contractile

proteins such as myosin. P represents a phosphate group. ER, endoplasmic

reticulum. IP3R, receptor (calcium channel) for inositoltrisphosphate.

Active Rho in turn, promotes actin polymerization via two
mechanisms (Figure 5). First, Rho stimulates Rho kinase, which
phosphorylates and activates myosin II (100). Myosin then
leads to activation of the Arp2/3 complex, which promotes
actin assembly at the phagocytic cup (100). Second, Rho
can induce accumulation of mDia1 (mammalian diaphanous-
related formin 1) and polymerized actin in the phagocytic cup
(101). Also, mDia1 binds directly to the microtubule-associated
protein CLIP-170 at the phagocytic cup (102) and provides a
link to the microtubule cytoskeleton required for CR-mediated
phagocytosis (96, 97) (Figure 5).

PHAGOSOME FORMATION

Phagocytosis initiates when phagocytic receptors engage ligands
on the particle to be ingested. Then, receptors activate signaling
pathways that change the membrane composition and control
the actin cytoskeleton, resulting in the formation of membrane
protrusions for covering the particle. Finally, these membrane
protrusions fuse at the distal creating a new vesicle that pinches
out from the plasma membrane. This new vesicle containing the
ingested particle is the phagosome.

FIGURE 5 | Complement receptor signaling for phagocytosis. The

complement receptor 3 (CR3 integrin) binds the complement molecules (iC3b)

deposited on the target particle, and activates a signaling pathway that leads

to activation of the GTPase Rho. Then, active Rho induces actin

polymerization via two mechanisms. Rho activates Rho kinase (ROCK), which

phosphorylates and activates myosin II, inducing accumulation of Arp2/3 and

actin assembly at the phagocytic cup. Rho also promotes accumulation of

mDia1 (mammalian diaphanous-related formin 1), which stimulates linear actin

polymerization. In addition, mDia1 binds directly to the microtubule-associated

protein CLIP-170 providing a link to the microtubule cytoskeleton.

During phagosome formation the membrane changes its
lipid composition. These changes have been revealed by elegant
fluorescence imaging techniques (3, 103), and involve the
formation and degradation of different lipid molecules on
the phagosome membrane in an orderly fashion. During
Fcγ receptor-mediated phagocytosis, phosphatidylinositol-4,5-
bisphosphate [PI(4,5)P2] initially accumulates at the phagocytic
cup but then it declines rapidly (91). The decline in PI(4,5)P2
is important for particle internalization, probably by facilitating
actin disassembly (104). The decline in PI(4,5)P2 is caused
by the action of PI 3-K, which phosphorylates it to produce
PI(3,4,5)P3 at the phagocytic cup (105). Reduction of PI(4,5)P2
in the membrane is also mediated by the action of PLCγ,
which produces diacylglycerol (DAG) (91). DAG in turn, induces
activation of PKCε for enhanced phagocytosis (92).

Together with the changes in lipid composition, the plasma
membrane also changes by remodeling the actin cytoskeleton
in order to generate the membrane protrusions that will
cover the target particle. Important steps for pseudopodia
formation are recognized. First, the cortical cytoskeleton
gets disrupted. Second, pseudopodia are formed by F-actin
polymerization. Third, at the base of the phagocytic cup, actin
gets depolymerized while the membrane phagosome is sealed at
the distal end to form the phagosome (15). When phagocytosis
is initiated, the membrane-associated cortical cytoskeleton is
altered by the action of coronins (F-actin debranching proteins)
(106), and cofilin (107) and gelsolin (108) (F-actin-severing
proteins). Coronin 1 concentrates at the nascent phagosome and
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debranches F-actin leaving linear fibers that can be severed by
cofilin and gelsolin. The activity of these enzymes is controlled by
their binding to phosphoinositides, such as PI(4,5)P2, resulting
in their association with or separation from actin filaments (108,
109). Next, nucleation of new actin filaments, mediated by the
actin-nucleating activity of the Arp2/3 protein complex, leads
to pseudopodia formation. During FcγR-mediated phagocytosis,
the GTPase Cdc42 and the lipid PI(4,5)P2 activate the proteins
WASP (Wiskott-Aldrich syndrome protein) and N-WASP (110),
which induce activation of Arp2/3 complex at the nascent
phagocytic cup (111, 112). Different from this, during CR-
mediated phagocytosis, actin polymerization is regulated by
the GTPase Rho (113). Rho leads to activation of the Arp2/3
complex, via Rho kinase and myosin II (100). The Arp2/3
complex then produces branched actin-filament assembly at the
phagocytic cup (100, 114). Rho also promotes accumulation
of mDia1, which produces long straight actin filaments at the
phagocytic cup (101, 114) (Figure 5). Together, these changes
help extend membrane protrusions that completely cover the
target particle.

The final step for phagosome formation involves fusion
of the membrane protrusions at the distal end to close the
phagosome. Just before the phagosome is completed, F-actin
disappears from the phagocytic cup. It is thought that removal
of actin filaments from the phagocytic cup may facilitate
curving of the membrane around the particle (115). The
mechanism for removing F-actin involves termination of actin
polymerization and depolymerization of existing filaments. Both
steps seem to be controlled by PI 3-K. Inhibition of this enzyme
blocks actin depolymerization at the phagocytic cup and stops
pseudopod extension (90). Activation of GTPases is necessary for
stimulating the Arp2/3 complex during phagocytosis for actin
polymerization (116). But, PI(3,4,5)P3, the product of PI 3-K can
stimulate Rho-family GAPs (GTPase activating proteins), which
cause deactivation of GTPases and in consequence prevents actin
polymerization. In support of this model, it was found that
inhibition of PI 3-K led to an increase of activated GTPases at
the phagocytic cup (94, 116). In addition, the activity of PI-
3K decreases the levels of PI(4,5)P2. This phospholipid activates
the Arp2/3 complex, via WASP and N-WASP (110). Thus,
its disappearance at the phagocytic cup (111, 112) promotes
pseudopod extension (90).

It seems that myosins, actin-binding proteins (117, 118) use
their contractile activity to facilitate phagosome formation. In
macrophages, it was shown that class II, and IXb myosins were
concentrated at the base of phagocytic cups, while myosin Ic
increased at the site of phagocytic cup closure, and myosin
V appeared after phagosome closure (119). During pseudopod
extension, a tight ring of actin filaments moves from the bottom
toward the top of the phagocytic cup squeezing the particle
to be ingested (120). This contractile activity is dependent of
myosin light-chain kinase (MLCK). Thus, myosin II activated
by MLCK is required for the contractile activity of phagocytic
cups (121). It seems that the squeezing action of the phagocytic
cups pushes extra-particle fluid out of the phagosomes. Myosin
X is also recruited to phagocytic cups in a PI 3-K-dependent
manner, and seems to be important for pseudopod spreading

during phagocytosis (122). At the same time, myosin Ic, a
subclass of myosin I, concentrates at the tip of the phagocytic cup,
implicating it in generating the contraction force that closes the
opening of phagocytic cups in a purse-string-like manner (123).
Myosin IX also appears in phagocytic cups similarly to myosin
II (119, 123). Thus, it is believed that myosin IX is involved in
the contractile activity of phagocytic cups. However, it is also
possible that myosin IX functions as a signaling molecule for the
reorganization of the actin cytoskeleton. This idea is based on the
fact that class IX myosins contain a GTPase-activation-protein
(GAP) domain that activates the GTPase Rho (124) involved in
actin remodeling. Finally, myosin V appears on fully internalized
phagosomes. Because class V myosins are involved in vesicular
transport in other cell types (125), it is possible that myosin V is
responsible for phagosome movement rather than formation of
phagosomes (120). Video microscopy experiments have shown
that newly formed phagosomes remain within the periphery of
the cells for a while, hence it is likely that myosin V mediates the
short-range slow movement of newly formed phagosomes (126).
Consequently, the described roles of myosins during phagosome
formation are: myosin II is involved in phagocytic cup squeezing,
myosin X andmyosin Ic are responsible for pseudopod extension
and phagocytic-cup closing, respectively, myosin IX may activate
Rho to direct actin remodeling, and myosin V controls the
short-range movement of new phagosomes.

PHAGOSOME MATURATION

Once internalized the new phagosome transforms its membrane
composition and its contents, to become a new vesicle, the
phagolysosome, that can degrade the particle ingested. This
transformation is known as phagosome maturation, and consists
of successive fusion and fission interactions between the new
phagosome and early endosomes, late endosomes, and finally
lysosomes (4, 127).

Early Phagosome
The new phagosome combines with early endosomes (3) in
a process that involves membrane fusion events regulated by
the small GTPase Rab5 (128, 129). Rab5 recruits the molecule
EEA1 (early endosome antigen 1), promoting the fusion of the
new phagosome with early endosomes (130). EEA1 functions
as a bridge between early endosomes and endocytic vesicles
(131), and promotes recruitment of other proteins, such as Rab7
(132, 133). Although, the new phagosome combines with several
endosomes it does not increase in size because at the same
time vesicles, named recycling endosomes, are removed from the
phagosome (Figure 6).

Late Phagosome
As phagosome maturation proceeds, Rab5 is lost, and Rab7
appears on the membrane (133). Then, Rab7 mediates the
fusion of the phagosome with late endosomes (134). At the
same time, there is an accumulation of V-ATPase molecules
on the phagosome membrane. This V-ATPase is responsible
for the acidification (pH 5.5–6.0) of the phagosome interior by
translocating protons (H+) into the lumen of the phagosome
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FIGURE 6 | Phagosome maturation. The nascent phagosome gets

transformed into a microbicidal vacuole, the phagolysosome, by sequential

interactions with vesicles from the endocytic pathway. The process can be

described in three stages of maturation: early (A), late (B), and

phagolysosome (C). In this process, composition of the membrane changes

to include molecules that control membrane fusion, such as the GTPases

Rab5 and Rab7. The phagolysosome becomes increasingly acidic by the

action of a proton-pumping V-ATPase and acquires various degradative

enzymes, such as cathepsins, proteases, lysozymes, and lipases (scissors).

EEA1, early endosome antigen 1; LAMP, lysosomal-associated membrane

protein; NADPH, nicotinamide adenine dinucleotide phosphate oxidase.

(135, 136) (Figure 6). Also, lysosomal-associated membrane
proteins (LAMPs) and luminal proteases (cathepsins and
hydrolases) are incorporated from fusion with late endosomes
(4, 127) (Figure 6).

Phagolysosome
At the last stage of phagosomematuration, phagosomes fuse with
lysosomes to become phagolysosomes (3). The phagolysosome
is the fundamental microbicidal organelle, equipped with
sophisticated mechanisms for degrading microorganisms. First,
phagolysosomes are very acidic (pH as low as 4.5) due to the
accumulation of many V-ATPase molecules on their membrane
(136). The phagolysosome membrane also presents the NADPH
oxidase complex, that is responsible for producing reactive

oxygen species (ROS), such as superoxide (O2−) (137, 138).
Superoxide dismutates to H2O2, which can in turn react with
Cl− ions to form hypochlorous acid, a very potent microbicidal
substance. This last reaction is catalyzed by the enzyme
myeloperoxidase (139). In addition, the phagolysosome contains
several hydrolytic enzymes, such as cathepsins, proteases,
lysozymes, and lipases, which contribute to degrade ingested
microorganisms (135) (Figure 6).

PHAGOCYTOSIS-ASSOCIATED

RESPONSES

Phagocytosis is not an isolated cell response. It usually occurs
together with other cell responses, including formation of
reactive oxygen species (ROS) (140, 141), secretion of pro-
inflammatory mediators (142), degranulation of anti-microbial
molecules (143, 144), and production of cytokines (142). Cell
responses associated to phagocytosis can be controlled by parallel
signaling pathways triggered by the same phagocytic receptors.
For instance, antibody-dependent phagocytosis in monocytes is
controlled by PKC, independently of PI 3-K and ERK (145).
However, in the same monocytes, antibody stimulation induces
cytokine production via PI 3-K and ERK (145). Phagocytosis
and associated cell responses can also be controlled by
partially overlapping signaling pathways. For instance, antibody-
dependent phagocytosis, in macrophages involves the signaling
molecules Syk, PI 3-K, PKC, and ERK, but it is independent
of an increase in cytosolic calcium concentration (146, 147).
In contrast, in neutrophils production of ROS also involves
Syk, PI 3-K, PKC, and ERK, but it is dependent on cytosolic
calcium (148). Also, in macrophages different PKC isoforms
seem to be required either for phagocytosis, or for production of
ROS. The isoforms PKCδ and PKCε are involved in regulation
of phagocytosis, while PKCα is involved in regulation of ROS
production (92). These observations suggest that particular Fcγ
receptors can trigger diverse signaling pathways for specific
cell responses (55). In support of this idea, in neutrophils in
was found that FcγRIIa and FcγRIIIb signal differently for
phagocytosis (149), and also for neutrophil extracellular trap
(NET) formation (150).

PHAGOCYTOSIS EFFICIENCY

Most phagocytes have relatively low levels of phagocytosis at
resting conditions. However, during inflammation, phagocytes
are exposed to a variety of activating stimuli, which increase
phagocytosis efficiency. These stimuli include bacterial products,
cytokines, and inflammatory mediators. The signaling induced
by these stimuli leads to increased stimulation of molecules
involved in phagocytosis. For example, leukotriene B4 increases
Syk activation and in consequence antibody-dependent
phagocytosis (151). Similarly, the activity of PI 3-K and/or
ERK, which are essential enzymes for efficient phagocytosis
(83), can be enhanced by the bacterial peptide fMLF (152),
granulocyte colony-stimulating factor (153), leukotrienes (154),
and cytokines such as interleukin 8 (IL-8) (155).
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Phagocytosis efficiency can also be regulated by cell
differentiation. For example, monocytes have a lower phagocytic
capacity than neutrophils and macrophages, but can enhance
their phagocytic capacity upon cell differentiation (1, 156).
The capacity of monocytes to phagocytize diverse targets
changes with their state of differentiation. IgG-opsonized
particles are phagocytized better by mature macrophages than
by undifferentiated monocytes (83). Similarly, the efficiency
of complement-mediated phagocytosis depends on monocyte
differentiation (157, 158). How the process of monocyte-to-
macrophage differentiation enhances phagocytic capacity is
still unknown. It is possible that during cell differentiation
the molecular machinery for phagocytosis gets rearranged. In
support of this idea, it was found that in monocytes phagocytosis
signaling requires PKC, but it does not use PI 3-K and ERK
(145). However, during monocyte-to-macrophage differentiation
the enzymes PI 3-K and ERK are recruited in an orderly
fashion for efficient phagocytosis (159). Similarly, PLA2 is also
implicated in regulation of phagocytosis. During phagocytosis,
various PLA2 isoforms participate in releasing arachidonic
acid from membrane triglyceride lipids. In monocytes, a
calcium-independent PLA2, under PKC control is involved
in phagocytosis (160, 161), while in macrophages, a calcium-
dependent PLA2, under ERK and p38MAPK control is involved
(162). Thus, during monocyte-to-macrophage differentiation
important signaling enzymes are reorganized in order to achieve
enhanced phagocytosis.

CONCLUSION

Phagocytosis is a fundamental process for the ingestion and
elimination of microbial pathogens and apoptotic cells. All

types of cells can perform phagocytosis, but specialized cells

called professional phagocytes do it much more efficiently.
Phagocytosis is vital, not only for eliminating microbial
pathogens, but also for tissue homeostasis. Because there are
different types of phagocytic cells and they can ingest a vast
number of different targets, it is evident that phagocytosis
involves diverse mechanisms. We have presented the main steps
of phagocytosis as performed by professional phagocytes and in
response mainly to Fcγ receptors. For other phagocytic receptors,
we are just beginning to describe the signaling pathways they use
to activate phagocytosis. Today, we have a better understanding
on the process of phagosome maturation, but there are still many
gaps in our knowledge of the signaling pathways regulating this
process. Similarly, the resolution of the phagolysosome, after
degradation of the ingested particle, is a topic that requires
further research. Many important questions remain unsolved.
For example, how different phagocytic receptors on the same cell
work together? and what is the role different phagocytes in tissue
homeostasis? An improved understanding of phagocytosis
is essential for future therapeutics related to infections
and inflammation.
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Phagocytosis is a specialized process that enables cellular ingestion and clearance

of microbes, dead cells and tissue debris that are too large for other endocytic

routes. As such, it is an essential component of tissue homeostasis and the innate

immune response, and also provides a link to the adaptive immune response. However,

ingestion of large particulate materials represents a monumental task for phagocytic

cells. It requires profound reorganization of the cell morphology around the target in

a controlled manner, which is limited by biophysical constraints. Experimental and

theoretical studies have identified critical aspects associated with the interconnected

biophysical properties of the receptors, the membrane, and the actin cytoskeleton that

can determine the success of large particle internalization. In this review, we will discuss

the major physical constraints involved in the formation of a phagosome. Focusing

on two of the most-studied types of phagocytic receptors, the Fcγ receptors and

the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular

mechanisms employed by phagocytes to overcome these physical constraints.

Keywords: phagocytosis, cell mechanics, actin dynamics, membrane, Fc receptors, integrins, receptor diffusion

INTRODUCTION

Internalization of large particulate material by phagocytosis is a fundamental and well-conserved
cellularmechanism of eukaryotic organisms. It enablesmultiple essential functions from unicellular
organisms to arthropods to mammals: uptake of microbes as nutrients by single cell organisms
like amoebae, removal of dead cells during tissue development or cell turnover, and clearance
of microbes as a first line of defense against infection (1). Seminal work by Korn and Weisman
showed that amoeba ingested multiple small particles together within the same vacuole through
macropinocytosis, whereas larger particles ≥0.5µm were phagocytosed individually and appeared
tightly surrounded by a membrane derived from the plasma membrane (2). In addition, like
macropinocytosis, phagocytosis is characterized by its reliance on the actin cytoskeleton, as
inhibition of actin polymerization drastically reduces internalization of large particles (3–5).

While most cells can endocytose small molecules or molecular complexes, the capacity to
phagocytose larger particles is not equally shared. In mammals, phagocytosis of micron-sized
microbes is the prerogative of specialized innate immune cells, namely neutrophils, macrophages,
monocytes and dendritic cells, also often referred as “professional phagocytes.” Physical
characteristics of the particulate material, such as its shape, size and mechanical properties vary for
each target and affect the success of internalization (6–9). However, the versatility and engulfment
capacity of professional phagocytes is remarkable. For instance, a professional phagocyte
can engulf particles substantially larger than themselves, such as IgG-coated microspheres
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up to 20µm in diameter for bone-marrow derived macrophages
that measure about 14µm in suspension, or 11µm IgG-coated
microspheres for 4µm human neutrophils (10, 11). How can
they achieve such a feat?

GENERAL PRINCIPLES OF
INTERNALIZATION BY PHAGOCYTOSIS

Internalization of Large Particles Through
Zipper and Trigger Mechanisms
Two fundamentally distinct mechanisms have been proposed
for the internalization of large particulate material: the trigger
mechanism where discreet signaling elicits formation of actin-
based plasma membrane protrusions that non-specifically
surround nearby material, and the zipper mechanism where
sequential engagement of cell surface receptors to ligands on the
target particle leads to a complete wrapping of the particle by the
plasma membrane (Figure 1). The trigger mechanism is typified
by intracellular pathogens like Shigella and Salmonella, which
induce their uptake into phagocytes and non-phagocytic cells by
injecting effectors via a syringe-like type III secretion system,
without relying on adhesion to a specific receptor (12). Those
effectors hijack the host cell signaling and actin polymerization
machinery to trigger the formation of large ruffles that lead to
the internalization of the bacteria in a mechanism that resembles
macropinocytosis (13, 14). This was demonstrated by Galán et al.,
who showed that internalization of a non-invasive strain into
epithelial cells could be triggered by the addition of wild type
Salmonella (15). In contrast, other pathogens like Yersinia and
Listeria employ a zipper mechanism to invade non-phagocytic
cells, which requires binding of each invasive bacterium to the
host cell receptors β1 integrins and E-cadherin, respectively
(12, 16, 17). This illustrates that micron-sized particles like
bacteria can be internalized by mechanistically distinct processes
defined as trigger and zipper mechanisms. Because the trigger
mechanism is limited to a very small number of specific examples,
this review will focus on the zipper mechanism which has been
demonstrated to mediate phagocytosis across multiple cell and
receptor types and for a wide range of target particles.

Evidence Supporting the Zipper
Mechanism for Phagocytosis
A series of foundational studies from Samuel Silverstein’s
lab demonstrated that phagocytosis occurs through a zipper
mechanism (18–20). In a first study, macrophages were exposed
to red blood cells (RBC) coated with F(ab’)2 fragments, which
do not bind FcγRs and were not internalized. When IgG-
opsonized bacteria were added, those were internalized, while the
F(ab’)2-coated RBCs remained on the surface, demonstrating that
internalization of RBCs could not be induced by another uptake
event, ruling out the triggermodel. In contrast, addition of an IgG
that bound the F(ab’)2 fragments, providing a ligand for FcγRs,
led to the internalization of the RBCs, demonstrating that particle
internalization required direct surface receptor engagement, in
agreement with the zipper model (18). Next, IgG or complement-
opsonized RBCs were added to macrophages in conditions

allowing binding but preventing internalization. Upon switching
to permissive conditions, phagocytosis was prevented if receptors
were blocked or if the opsonins were removed on the unengaged
surface of the particle (19). This suggested a requirement for
circumferential engagement of receptors, which was further
demonstrated using lymphocytes coated with IgGs, either
uniformly or on only one arc of their circumference. Remarkably,
the latter were not internalized unless another IgG that
bound their entire surface was added (20). These experiments
demonstrated that the initial engagement of phagocytic receptors
was not sufficient for particle internalization, but further
recruitment of receptors was required to sequentially engage the
entire surface of the particle, like a zipper, to drive engulfment.
These results were confirmed more recently with asymmetrically
IgG-coated “Janus” particles, which were internalized with a
lower efficiency than particles evenly coated with the same
amount of IgG (21). Contrary to a trigger mechanism, where
particles can be captured by ruffles without direct surface-to-
surface binding, the zipper model implies a very close interaction
between the particle and the phagocyte surface. Experiments
using a frustrated phagocytosis model demonstrated that the
surface of contact with the macrophage was so tight it
excluded molecules as small as 50 kDa (22). Together, these
studies demonstrated that phagocytosis occurs through a zipper
mechanism, which requires receptor recruitment to tightly
engage the entire surface of the target particle.

Given the evidence supporting the zipper model, we will focus
on the essential physical constraints associated with the uptake of
large particulate material through a zipper mechanism, and the
molecular mechanisms employed by professional phagocytes to
overcome these constraints. Detailed discussions of themolecular
mechanisms underpinning the trigger model can be found
in recent reviews (23, 24). In addition, recognition of the
surface molecules of phagocytic targets involves a plethora of
receptors, which elicit distinct signaling pathways, which have
been reviewed elsewhere (25–27). Here we will focus on the
mechanisms described for two of the best-studied pathways in
mammalian professional phagocytes: Fc-mediated phagocytosis,
which involves binding of Immunoglobulin g (IgG) to Fc
γ receptors (FcγR), and complement-mediated phagocytosis,
which involves binding of the complement molecule iC3b to
αMβ2 or αXβ2 integrins, also named complement receptors (CR)
3 and 4, respectively.

OVERVIEW: PHYSICAL ORCHESTRATION
OF PHAGOCYTOSIS

Uptake of large particles represents a physical challenge for
the cell. However, while numerous physical constraints could
be proposed intuitively, mathematical modeling combined with
biophysical measurements and quantitative imaging has helped
decipher which physical constraints are likely to be the most
critical for phagocytosis. In the following part of this review,
we will focus on five physical constraints that appear to be
decisive for phagocytosis: (1) cell-surface receptors binding to
ligands on the target particle, (2) generation of a protrusive
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FIGURE 1 | Actin-based internalization mechanisms of large particulate materials. The trigger mechanism (Left) enables internalization in an adhesion-independent

manner. Macropinocytosis is a trigger mechanism typically induced by growth factors, such as MCSF or EGF. Bacterial pathogens like Shigella and Salmonella induce

their internalization via a trigger mechanism using a type III secretion system to inject effectors inside the host cell, which induce actin polymerization to induce local

ruffle formation which surround and engulf the bacteria. Numerous viruses also enter their host cell through macropinocytosis. The zipper mechanism (Right) requires

adhesion to host cell receptors along the entire surface of the particle. Converging evidence demonstrates that phagocytosis occurs through a zipper mechanism.

force to overcome cortical tension to initiate phagocytic cup
formation, (3) tangential coupling of the protrusion along the
particle surface to advance the phagocytic cup, (4) membrane
surface area availability, and (5) membrane fission to close the
phagosome and internalize the target particle (Figure 2).

RECEPTOR BINDING: ROLE OF
RECEPTOR AFFINITY, DIFFUSION, AND
ACCESSIBILITY

Receptor binding is the first essential aspect of the zipper model.
However, it is determined by several parameters: the affinity
of the receptors for the ligands, the lateral diffusion of the
receptors in the plasma membrane, and the accessibility of the
ligands. These parameters are not necessarily fixed and can be
dynamically regulated by complex molecular mechanisms.

Receptor Properties Are Essential
Determinants of the Zipper Mechanism
Binding to receptors is imperative for internalization by a
zipper mechanism. The dependence of receptor binding on
receptor affinity, diffusion and ligand density has been formalized
in mathematical modeling (28, 29). In addition, one model
suggests that in the absence of actin polymerization to drive
protrusion of the phagocytic cup, a passive zipper based on
receptor diffusion and random membrane fluctuations could be
sufficient tomediate internalization of small particles (30). In that
model, internalization is slow, with highly variable phagocytic
cups, and requires a low surface tension. Consistent with this
model, inhibition of actin polymerization by cytochalasin D does

not prevent internalization in 60min of small IgG-opsonized
beads by FcγR-transfected fibroblasts or bone-marrow derived
macrophages (BMDM) (30, 31). This suggests that receptor
affinity and diffusion are critical for phagocytosis, and in certain
circumstances are sufficient to drive internalization.

Conformational Changes Can Regulate
Receptor Affinity
The capacity of a receptor to bind a ligand at equilibrium is
defined as its affinity. The FcγR and integrin-based phagocytic
receptors have very different properties in terms of regulation
by receptor-ligand affinity. The different isoforms of FcγRs have
different affinities for the various IgG isotypes (32). However,
structural studies showed that binding to FcγRs is not associated
with conformational changes, suggesting that their affinity is
constant (33). In contrast, α/β integrin heterodimers can switch
between three major conformations, which have vastly different
affinities for their ligand [Figure 3; (34)]. In the absence of
stimulus, β2 integrins largely adopt a bent conformation that
is associated with a low affinity for their ligand. Engagement
of selectins, TLRs, cytokine receptors or immunoreceptors
induces inside-out signaling, which involves activation of the
GTPase Rap1. This leads to a kindlin- and talin-mediated
unfolding of the heterodimer extracellular domains into an
extended-closed conformation. Binding of the αI domain to
an immobilized ligand enables the actin cytoskeleton to exert
a pulling force on the integrin β2 chain through talin, which
separates the α and β chains, and rearranges the ligand binding
site and the adoption of the extended-open conformation
(35, 36). For αLβ2-ICAM-1 interactions, the extended-closed
conformation shows an increase of affinity of only 10-fold over
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FIGURE 2 | Sequence of events involved in particle uptake by phagocytosis. (1) Phagocytic receptors (dark blue) diffuse along the plane of the plasma membrane and

bind ligands (yellow) at the surface of the particulate target (purple). (2) Ligand binding and clustering of the receptors elicits signaling that activates actin

polymerization, which generate a protrusive force against the plasma membrane. (3) Anchorage of the actin cytoskeleton to ligand-bound receptors on the particle

surface by coupling or tethering proteins, tangentially to the direction of actin polymerization, enables membrane protrusions to extend over the particle surface. (4)

For large particulate targets, mobilization of membrane reservoirs from surface folds of the plasma membrane and intracellular vesicles provides the required

membrane surface area to envelop the particle. (5) Once the particle is fully enveloped and the protrusions reach a meeting point, membrane fission enables the

separation of the phagosome from the plasma membrane.

the bent conformation, and the force-mediated opening of αLβ2
increases the affinity of the extended-open conformation for
its ligand by over 5,000-fold (37). However, the affinity of iC3b
for the various αMβ2 conformations has not been determined
as precisely. Nevertheless, the application of a pulling force
on the iC3b-αMβ2 bond has been shown to increase the bond
lifetime, a phenomenon called catch-bond (38, 39). These
observations support the model of a force-based change of the
αMβ2 conformation, which drastically increases its affinity for
iC3b, and thus likely has important implications for increasing
phagocytic efficiency.

Receptor Diffusion Is Dynamically
Regulated by the Actin Cytoskeleton
In addition to affinity, the ability of receptors to find and
bind to their ligand is dependent on their lateral diffusion
within the plasma membrane (28, 29). However, super resolution
microscopy suggested that FcγRs are not evenly distributed at
the nanometer scale (40), implying that constraints on their
distribution must exist. Indeed, single molecule tracking studies
showed that the diffusion of FcγRs along the plane of the plasma
membrane is not free, but is heterogeneous and restricted by the
membrane-associated actin cytoskeleton (41).

Numerous studies have now shown that the cortical actin
cytoskeleton locally constrains the diffusion of both proteins
and lipids of the plasma membrane. Together these studies lead
to the model of a diffusion constrained by a “fence” formed
by the network of actin filaments in the cortex, which form
“corrals” that are connected to “pickets” comprised of trans-
membrane proteins linked, directly or not, to actin filaments
(42). Ultra-fast single molecule tracking shows that diffusion
within actin corrals is free, but movement between corrals is

limited (43). According to the fence and picket model, friction
against the pickets would impede the diffusion of molecules
within the membrane, including lipids and proteins associated
with the outer leaflet of the plasma membrane. It should be
noted that while the cortical actin cytoskeleton is dynamic
and constantly reorganizes, this occurs slowly compared to the
diffusion of mobile membrane proteins and lipids (42, 44). CD44
is an abundant transmembrane protein, that associates with actin
filaments through ezrin, and appears to play a major role as
a picket in macrophages by restricting the diffusion of FcγRs
(45). Interestingly, CD44 also binds hyaluronan, which forms a
pericellular coat that curtails FcγR diffusion. This implies that
CD44 is a major picket protein in macrophages that restricts
FcγR diffusion, and is constrained by two fences, the intracellular
actin cytoskeleton and the extracellular hyaluronan network.

The fence that restricts FcγR diffusion is dynamically
regulated. Prior to their engagement, FcγR diffusion and
clustering can be modulated by tyrosine kinase-mediated
reorganization of the actin cytoskeleton, in response to
environmental cues sensed through integrins, toll-like
receptors (TLR) or cytokine receptors (41, 46–49). Monte
Carlo simulations and experimental evidence suggest that a
decrease of receptor confinement and receptor clustering affect
receptor engagement, implying that environmental cues can
prime phagocyte responsiveness via the organization of the
cortical actin cytoskeleton (41, 45–47). This effect is rather
complex however, as receptor engagement also depends on
the density of the ligand at the surface of the target, which can
vary greatly in physiological conditions, and the affinity of the
receptors for the ligand, which depends on the IgG isotype. On
the other hand, diffusion at the surface of bacteria is very limited
(50, 51). During phagocytosis, as polymerization increases actin
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FIGURE 3 | Schematic of the structures of the integrin αMβ2, the Fcγ Receptor IIA and the phosphatase CD45. The integrin αMβ2 (left) exists in at least three distinct

conformations: a bent-closed conformation associated with a low affinity for its ligands, an extended-closed conformation associated with an intermediate affinity, and

an extended-open conformation associated with a high affinity for its ligands. The current model suggests that integrins are maintained in an autoinhibited bent

conformation by the interaction of the cytosolic domains of the α and the β chains. The switch from a bent to an extended conformation requires binding of Talin to the

cytosolic domain of the β chain. The pulling force generated by the actin cytoskeleton through Talin induces the open conformation, when the integrin is attached to

an immobile ligand. The ligand iC3b binds through its TED domain to the αI domain of αM. Some evidence suggest that the C345C domain could associate with the

βI domain of β2, in addition to the TED-αI association. Contrary to integrins, the structure of FcγRIIA shows no conformational change upon binding to an

immunoglobulin G. Average heights estimated from the membrane surface for these receptors in each conformation and for the RO isoform of CD45 are shown. For

the extended conformations of αMβ2, the indicated height corresponds to the height of the β-propeller. Talin was not schematized to scale, but its estimated length at

a focal adhesion is indicated.

density around the cup, the diffusion of un-engaged FcγRs and
even lipids become more restricted within the cup (41, 52). Thus,
dynamic regulation of receptor diffusion could favor directional
actin polymerization by allowing formation of new signaling
clusters at the edge of the phagocytic cup where the FcγRs
remain mobile, rather than within the cup where un-engaged
receptors are restricted.

In contrast to FcγRs, diffusion properties of αMβ2 integrins
are not firmly established. However, by analogy with studies
done on αLβ2, they are expected to depend on the integrin
conformation. Super resolution microscopy suggests that αLβ2
forms nanoclusters in the absence of stimulation, implying
complex diffusional properties (53). Also, whereas the majority
αMβ2 or αLβ2 appear to be immobile in resting cells, inside-
out activation leads to a marked increase of the mobile
fraction (54, 55). This is somewhat surprising since, as for
other integrins, β2 inside-out activation requires binding of
its cytosolic domain to talin (56–58). However, the lower
mobility observed at rest could be due to binding of bent β2
integrins to ICAM-1 on the phagocyte’s own membrane (59). In
addition, consistent with cytoskeleton association through talin,
extended-open αLβ2 integrins are relatively immobile (55). The
respective contributions of the regulation of integrin affinity by
conformational change or avidity by clustering has been a matter

of debate. However, it is now apparent that the increase of affinity
upon integrin conformational change is so large that, in the case
of surface-associated ligands such as iC3b, the force-mediated
switch to an extended-open conformation is predominant over
diffusion and clustering for αMβ2 engagement.

Access to the Receptors Limits Target
Binding
In addition to diffusion driving a searching behavior, in order for
receptors to reach their ligands on the target surface they must be
accessible. However, at the surface of phagocytes, the glycocalyx
forms a thick layer composed of large highly glycosylated
membrane proteins, which can interfere with receptor binding.
For instance, because the ectodomain of CD45RO, the main
CD45 isoform expressed by macrophages and neutrophils,
extends about 22 nm above the membrane, it could sterically
block binding of IgG to FcγRs, which form a 11.5 nm complex
[Figure 3; (60, 61)]. This size difference led to the idea that
engagement of immunoreceptors would bring the two surfaces
so close it would locally prevent CD45 diffusion into this site
because of its larger size, excluding CD45 by “kinetic segregation”
(62, 63). Consistent with this, CD45 appears to be excluded
from FcγR engagement sites, depending on the length of CD45
ectodomain and the size of the antigen associated with the IgG
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(64, 65). The segregation of CD45 has important implications
because its cytosolic domain is a phosphatase that regulates FcγR
signaling. The observation that short antigens induce higher
tyrosine phosphorylation of FcγRs and particle internalization
than longer antigens, independent of receptor density, confirms
the notion that steric constraints can regulate receptor signaling
(64). These findings also suggest that the mechanism of CD45
exclusion induced by liquid-liquid phase separation of signaling
clusters, as shown for the T cell receptor in a reconstituted
system, might not be sufficient to segregate CD45 and FcγRs
in macrophages (66). In addition, the close apposition of the
two surfaces could facilitate engagement of nearby receptors
by kinetic segregation, facilitating the formation of clusters,
as proposed for the T cell receptors (62). Thus, CD45 and
FcγRs engagement are mutually exclusive by steric constraints.
Therefore, while the presence of large surface protein like CD45
can sterically preclude FcγR binding to IgG, CD45 local exclusion
can promote FcγR signaling. In addition, a recent report showed
in neutrophils that αMβ2 in its bent conformation can bind
FcγRs in cis, impeding IgG access to FcγRs (67). This inhibition
can be lifted by αMβ2 inside-out activation through cytokines
or perhaps the engagement of FcγRs that remain available,
facilitating further FcγR binding (54, 67). Thus, the occlusion
of FcγRs appears to be a general mechanism that can be tuned
dynamically to regulate FcγR binding.

In contrast to FcγRs, whether binding to αMβ2 enables
glycocalyx exclusion on phagocytes remains to be explored.
Analysis of αLβ2 height in T cells by iPALM showed that
the β-propeller domain stands ≈23 nm above the membrane
when β2 integrins are activated, to which the length of the αI
domain and the ligand should be added (36, 68). This height
of αLβ2 measured on cells is in agreement with the heights
of αMβ2 and αXβ2 seen in structures obtained by electron
microscopy. Although the actin cytoskeleton pulling on ligand-
bound αLβ2 generates a tilt of the β chain that reduces its height
by 4 nm, it still remains close to the height of CD45 (68, 69).
This is in stark contrast with the much larger tilt observed for
fibronectin-bound αVβ3 integrins on the surface of fibroblasts,
which brings the integrin headpiece within a few nanometers
from the plasma membrane (70). Consistent with this, binding
of integrins to the extracellular matrix (ECM) appears to exclude
the glycocalyx in breast cancer cells (71). Similarly, activation of
integrins by FcγR signaling promotes the segregation of CD45
and facilitates further engagement of FcγRs (54, 65). Together,
these observations suggest that the height of αVβ3 and possibly
other integrins can be reduced enough to exclude CD45, while β2
integrins might remain too tall, suggesting that size-dependent
kinetic segregation may not operate in the case of β2 integrin-
mediated processes on leucocytes.

GENERATION OF PROTRUSIONS BY THE
ACTIN CYTOSKELETON

While internalization is possible through receptor binding solely
driven by passive diffusion and random membrane fluctuations,
this remains slow and highly inefficient for large particles, unless

work is produced to promote cell surface deformation (30).
Consistent with this notion, multiple models suggest that a
protrusive force is required to deform the cell around the target
particle to initiate formation of the phagocytic cup (11, 29,
72). Compelling evidence indicate that this protrusive force is
generated by the actin cytoskeleton. However, to date, structural
information regarding the actin organization within the cup
remains limited. Thus, we will look at how the general principles
involved in actin-based protrusions, largely learned from studies
of cell migration, apply to phagocytosis.

Actin-Based Protrusion Is a General
Feature of Phagocytosis
Actin polymerization facilitates phagocytosis (3–5). Particle
binding to FcγRs or many other receptors is associated with
the formation of thin actin-filled membrane protrusions, usually
called pseudopods, which extend around the targets (25, 73,
74). In contrast, early studies by electron microscopy suggested
that αMβ2-mediated phagocytosis occurred by sinking of the
particle into the cell body (73, 74), however, thin protrusions
surrounding iC3b-opsonized particles have since been observed
by electronmicroscopy (31, 75, 76).Moreover, three-dimensional
live cell microscopy revealed the formation of actin-based
membrane protrusions in all the observed phagocytic events of
iC3b-opsonized particles (77). Thus, formation of actin-based
protrusions that extend along the target appears to be a defining
feature of phagocytosis, independent of the receptor.

Phagosome Formation Is Driven by an
Actin-Based Protrusive Force
Formation of protrusions around large particles implies
substantial morphological rearrangements. Modeling predicts
that as the phagocytic cup grows around larger particles,
deforming the cell costs more and more energy (30, 78).
Internalization can be reached with a model that combines a
repulsive force that pushes the leading edge forward, such as
by actin polymerization, and an attractive force that anchors
the cytoskeleton tangentially to the membrane engaged by
the particle, which guides the protrusion around the particle
[Figure 4; (11, 72)]. In contrast, a cytoskeletal expansion (gel
swelling) model required unlikely parameters and failed to
replicate the cup morphology observed experimentally (11).

The cortical actin cytoskeleton not only restricts receptor
diffusion but the tension within the network, termed cortical
tension, acts as a barrier to cell deformation.Measurements of the
cortical tension during FcγR-mediated phagocytosis show that it
rises when the surface area increases (from ≈ 33 to 500 pN/µm
for a neutrophil engulfing a large particle) and counterbalances
the protrusion of the phagocytic cup in a manner that effectively
pulls the target particle inward, without requiring direct pulling
of the particle by molecular motors (11, 72). Moreover, modeling
predicts that the growth rate of the cup size is determined by
the balance between the actin-generated protrusive force and
the restoring force provided by the cortical tension, creating a
bottleneck at the widest point of the particle (29). Consequently,
phagocytosis can stall before the protrusion reaches the widest
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FIGURE 4 | Proposed model of the cellular forces involved during internalization by phagocytosis. Phagosome formation is driven by a protrusive force (red arrows),

generated by the polymerization of actin filaments, directed along the particle by an attractive force (purple arrows), and coupling proteins that anchor the actin

cytoskeleton to the cell-particle interface. The protrusive force works against the surface tension, composed of the cortical tension (pink arrows) and the membrane

tension (blue arrows). The rate of deformation of the cell is determined by the ratio of the surface tension and the cytoplasm viscosity, while the surface tension

effectively propels the particle inward. The in-line tension of the plasma membrane is compensated by the flattening of surface folds of the membrane and the

exocytosis of intracellular vesicles.

point of a spherical particle, but always succeeds once it passes
the widest point, implying that there is no requirement for a
purse-string mechanism to complete particle envelopment. In
addition, the disassembly of the actin cytoskeleton observed
at the base of the phagocytic cup after a few minutes of
cup formation could locally reduce the cortical tension and
therefore facilitate internalization (79). Finally, the energy cost
for bending the membrane (≈10−18 J) is negligible compared
to the work exerted against the cortical tension (≈10−14 J),
consistent with the observations that cell surface tension is
predominantly due to the actin-based cortical tension (78, 80,
81). These observations imply that the deformation of the cell
around the target is driven by actin-generated protrusive forces,
while a specific mechanism to bend the lipid bilayer such as
BAR-domain containing proteins is not required. Taken together,
these observations and models suggest that the major role of
actin polymerization is to overcome cortical tension in order to
form a protrusion around the particle, rather than pulling the
particle inward.

Comparison of the Actin Organization in
Migrating Cells and at the Phagocytic Cup
The broad thin protrusions that advance over the surface of the
particle during phagocytosis share many common features with
the broad thin protrusions that advance over the extracellular
matrix (ECM) at the leading edge of a migrating cell, which is
known as the lamellipodium. The lamellipodium is composed
of a branched actin network nucleated by the Arp2/3 complex
and stabilized by adhesions to the ECM substrate (82–84).
The lamellipodium is followed by a less dynamic and thicker
region called the lamella, where actin cross-linking proteins
and non-muscle myosin II motors organize the actin network
into contractile bundles (85–87). Similar to lamellipodia, the
Arp2/3 complex is implicated in both FcγR and αMβ2-mediated
phagocytosis (31, 77, 88). Live cell SIM-TIRF microscopy
of filamentous actin (F-actin) during the formation of a
frustrated phagocytic cup upon engagement of αMβ2 suggests
the formation of a branched actin network, with Arp2/3 localized
at the leading edge, similar to a lamellipodium (77). The branched
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actin network of the lamellipodium generates high protrusive
forces, ranging from 2 to 10 kPa in migrating cells, which would
be well-suited to overcome the increasing surface tension during
phagosome formation and advancement (89). Moreover, the
structure of a branched network self-adapts to the load generated
by membrane tension, which increases the F-actin density and
resistance under higher loads (90, 91). These observation suggest
that the actin-based protrusions formed during phagocytosis are
similar to a lamellipodium, except that the cup shape is imposed
by the geometry of the engaged particle (Figure 5).

Regulating Factors of Actin Dynamics at
the Lamellipodium and the Phagocytic Cup
How is Arp2/3 activated during phagocytosis? In lamellipodia,
directed actin polymerization involves the recruitment and
activation of Arp2/3 at the leading edge, which requires its
interaction with the VCA (verprolin, connecting, acidic) domain
of a nucleation promoting factor (NPF). In macrophages and
neutrophils, the Wiskott-Aldrich syndrome protein (WASP)
is an abundantly expressed NPF and is involved in FcγR-
mediated phagocytosis (92–95). WASP activation requires
binding to the GTP-bound Rho-family GTPase Cdc42 and
to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] (95, 96),
which are both localized at the tip of protrusions during FcγR-
mediated phagocytosis (97, 98). Cdc42 is required for FcγR-
mediated phagocytosis and its recruitment is favored by the
adaptor Nck (92, 99–101). The GTPases Rac1 and Rac2 are
also activated during FcγR-mediated phagocytosis, though more
at the base of the cup, and can activate Arp2/3 through the
NPF WAVE2 (98, 102). Rac dominant negative and Rac2
silencing suggested that Rac family proteins are required for
FcγR but not for αMβ2-mediated phagocytosis (100, 101).
However, rac1 rac2 double-knockout macrophages are defective
in both FcγR and αMβ2-mediated phagocytosis (75) and RhoG,
a Rac-related GTPase, has been implicated in both pathways
(100). Thus, Arp2/3 could be activated at the edge of the
phagocytic cup by various Rho family GTPases depending on the
engaged receptors.

Actin assembly and motion exhibit a stereotypical
organization in protrusive cellular structures. Fluorescent speckle
microscopy shows that the lamellipodium is characterized by
assembly at the leading edge followed by disassembly a few
microns back in a process known as treadmilling (86). In
addition to Arp2/3, which localizes in the first micrometer of
the leading edge and has a shorter lifetime than actin, actin
dynamics are strongly affected by capping proteins, which block
incorporation of new monomers at the filament barbed end
within ≈ 0.5µm of the edge (103). In contrast, Ena/VASP
proteins prevent capping of actin filaments and can affect
polymerization by recruiting G-actin-profilin complexes and by
reducing branching (104). In macrophages, knockout of the gene
coding for the capping protein CapG reduces FcγR and αMβ2-
mediated phagocytosis (105). Furthermore, VASP is strongly
recruited at the FcγR phagocytic cup, independently of the classic
Rho GTPases, and inhibition of Ena/VASP proteins impairs
uptake (106). Thus, actin polymerization is regulated by the

combined activities of Arp2/3, capping proteins and elongation
factors that may mediate treadmilling at the phagocytic cup.

Mechanism of Actin Depolymerization at
the Phagocytic Cup
As micron-size particles are too large to pass through
the mesh of a branched actin network in the cortical
cytoskeleton, F-actin disassembly and clearance at the base of the
phagocytic cup appears to be essential for particle internalization
(79). Remarkably, actin disassembly occurs even upon forced
activation of Rac at the phagosome, but coincides with and
requires PI(4,5)P2 hydrolysis by phospholipase C, downstream
of PI3K (79). This suggests that actin clearance does not
simply require inhibition of Rho GTPase signaling, but active
regulation of actin network disassembly. The proteins ADF (actin
depolymerization factor), cofilin and gelsolin can sever actin
filaments into shorter polymers and accelerate disassembly of
the slow growing ends of the filaments. Yet, as severing also
creates a new fast growing end, it increases the rate of filament
turnover but does not necessarily lead to a reduction in F-actin
concentration (107). Aip1/Wdr1 binds to cofilin and causes net
depolymerization (108). In addition, the Arp2/3 complex can
be inhibited directly by several proteins, including coronins and
arpin (109, 110), and coronins can synergize with cofilin to
sever ADP F-actin (111). Several studies have reported a role for
cofilin in FcγR and αMβ2-mediated phagocytosis (112–114). As
cofilin is inhibited by PI(4,5)P2 (115), it is likely to be inactive
at the tip of the protrusions, but become activated and induce
actin depolymerization as soon as PI(4,5)P2 is hydrolyzed at the
base of the cup. On the other hand, gelsolin, which is activated
by Ca2+, enhances FcγR but not αMβ2-mediated phagocytosis
in neutrophils, and is dispensable in macrophages (105, 116).
The role of coronin-1 in phagocytosis has been a matter of
debate (117–120). However, arpin is recruited to the forming
phagosome, reduces F-actin density and enhances uptake by
FcγRs, consistent with its activity as an Arp2/3 regulator (121).
Thus, actin depolymerization at the base of the cup could be
promoted by cofilin, activated upon PI(4,5)P2 hydrolysis, in
conjunction with Arp2/3 inhibition by arpin.

Does Myosin II Play a Role in Phagosome
Formation?
While non-muscle myosin II has been localized at the
phagosome, its contribution to internalization remains unclear
(122). Myosin IIA, the predominant isoform expressed in
leukocytes, assembles into 320 nm long bipolar filaments with
an average of 14 myosin heads at each end of the filament to
form a contractile unit (123, 124). These bipolar filaments pull
actin filaments into antiparallel bundles, such as dorsal arcs in
migrating cells, or concentric arcs at the immunological synapse
(125, 126). The polarity of actin at the leading edge and the
directionality of myosin motors result in myosin pulling actin
in the opposite direction of the leading edge protrusion to drive
actin retrograde flow (86, 127, 128).

Despite this putative negative effect on protrusion formation,
several studies have suggested a role of myosin II in particle
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FIGURE 5 | Models of the actin cytoskeleton organization at the front of a migrating cell and at the phagocytic cup. The formation of a branched network of actin

filaments (red) is mediated by the Arp2/3 complex (green ellipse), which is activated at the plasma membrane by an NPF recruited by an active Rho GTPase (pink

double-circle). Actin dynamics are regulated by capping proteins (orange ellipse), elongation factors, debranching, severing, and monomer binding proteins (not

represented for clarity). Formation of linear actin structures, such as the stress fibers and transverse arcs at the lamella involve the bundling proteins α-Actinin (light

blue rod) and Fascin (dark blue rod), actin nucleation by formins (red circle) and Myosin II mini-filaments (black dumbbell). These actin structures are stabilized on the

substratum by adhesions (purple). At the phagocytic cup, adhesions are mediated by Fcγ receptors, β2 integrins or other phagocytic receptors.

uptake during FcγR and αMβ2-mediated phagocytosis (129–
131), whereas in other studies, inhibition of myosin II motor
activity had no effect on particle internalization (31, 77).
Furthermore, while myosin II-driven actin arcs are clearly
apparent by SIM-TIRF microscopy at the immunological
synapse, no such actin structures are visible in αMβ2-mediated
phagocytic cups (77, 126). In addition, traction stresses at αMβ2
phagocytic cups are similar to those measured upon myosin
II inhibition in migrating cells (77, 132). Likewise, myosin II-
dependent contractility is only observed at the FcγR phagocytic
cup after the cell surface increases by over 225% (133). Thus, it
seems unlikely that myosin II plays a role in the advancement
of the phagocytic cup, but it could participate in other aspects
of phagocytosis. Indeed, the conflicting effects of myosin II in
phagocytosis might be explained by experiments that combined
tracking the displacement of IgG-opsonized beads with real-
time measurements of cortical tension, which suggested that
particles were not directly pulled by molecular motors, but that
the increase of cortical tension effectively propelled particles
inward (11). As myosin II activity increases cortical tension (80),
it would impede protrusion around the particle, but facilitate
particle inwardmovement (29). The effect of myosin II inhibition
might thus be variable for different phagocytes since they exhibit
distinct cortical tensions (134). Interestingly, myosin II also
promotes actin disassembly at the rear of migrating cells (135)
and in the cytokinetic furrow of dividing cells (136, 137).
Therefore, a contribution of myosin II in actin clearance at the
base of the cup is worth considering.

COUPLING THE PROTRUDING CUP TO
THE PARTICLE SURFACE

The actin cytoskeleton is capable of generating appropriate
forces to deform the phagocytic cell around the particulate
target. However, quantitative imaging combined with modeling
suggests that the actin-based pushing forces must be directed
tangential to the particle surface to guide the protrusion around
the particle instead of pushing it (11, 72). This implies that
actin polymerization should not emanate from the phagocytic
receptors, but the growing network should be anchored to
the target surface tangential to the direction of the actin
polymerization by molecular linkages to the phagocytic receptors
or plasmamembrane molecules localized at the particle interface.
This concept has been previously established for mesenchymal
cell migration, where experiments show that coupling of directed
actin polymerization oriented tangential to the ECM surface
to engaged integrins near the cell leading edge determines
cell displacement along the ECM (138, 139). Furthermore, this
model is consistent with the case of enteropathogenic Escherichia
coli (EPEC), which employs a type III secretion system to
inject its own receptor, Tir (140). Tir activates host cell actin
polymerization perpendicular to the bacterium-cell interface,
which does not result in phagocytosis, but instead leads to the
formation of a broad protrusion called a pedestal that elevates
the bacterium and makes it surf along the host cell surface (141).
This illustrates that the directionality of actin polymerization
relative to the target is critical to achieve internalization. Here we
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will discuss the molecular mechanism that could mediate actin
cytoskeleton coupling to the particle surface during phagocytosis.

The Molecular Clutch Model in Cell
Migration
Because protrusion of the phagocytic cup is analogous to the
lamellipodium and utilizes a similar machinery, we can extend
the analogy with cell migration to learn about the mechanism
of coupling the protruding phagocytic cup to the particle
surface. In mesenchymal cell migration, coupling of the actin
cytoskeleton to the ECM substrate is mediated by an integrin-
and talin-based “molecular clutch.” At the leading edge of the
lamellipodium, directional incorporation of actinmonomers into
the actin network generates a pushing force against the plasma
membrane. The plasma membrane provides a resistive force
that is large enough that unconstrained actin assembly cannot
deform it, and instead the force of actin assembly results in
pushing the entire actin network back from the membrane in
a process termed retrograde actin flow (138, 142). To instead
utilize the pushing force of actin polymerization to drive forward
protrusion of the plasma membrane, a resistance force must
anchor the actin network to the substrate to prevent it from
sliding back. Thus, actin assembly could either drive retrograde
flow or forward protrusion, depending on whether the actin is
anchored to the substrate or not. Consistent with this notion, the
forward movement of the leading edge is inversely proportional
to the F-actin retrograde flow rate in lamellipodia of migrating
cells (138, 143). Based on these observations, Mitchison and
Kirschner proposed that a “molecular clutch” connects the
retrograde moving actin cytoskeleton to ECM-bound trans-
membrane receptors in order to propel the cell forward [Figure 6;
(144)]. This molecular clutch is composed of focal adhesion
(FA) proteins, which transmit actin-generated forces to integrin
cytoplasmic tails, creating traction stresses onto the to ECM-
bound integrin in the same direction as the retrograde flow
(132, 139). While several proteins can bind both integrin tails
and actin filaments directly, talin is required for cell spreading
and lamellipodium stabilization (145). Thus, talin is a molecular
clutch protein that couple integrins to the actin cytoskeleton in
the lamellipodium of migrating cells.

Vinculin is an important talin binding partner that is thought
to regulate the strength of the molecular clutch. Although
talin is sufficient to link ligand-bound integrins to the actin
cytoskeleton, it is a weak and labile bond (146), and vinculin is
thought to reinforce the talin-actin linkage. Indeed, the linkage of
ligand-bound integrins to actin retrograde flow generates tension
across talin that stretches the molecule, revealing binding sites
for the recruitment of vinculin in a force-dependent manner
(147–149). As vinculin binds to talin and actin filaments, it
reduces slippage of the molecular clutch, slowing down the F-
actin retrograde flow and increasing traction onto the ECM
(150, 151). Vinculin recruitment can also occur in a force-
independent manner when vinculin has an open conformation,
which can be promoted by its phosphorylation, or when the
adaptor protein paxillin is tyrosine phosphorylated by Focal
Adhesion Kinase (FAK) (152–154). Mechanical loading also

induces the maturation of small nascent adhesions into larger
and stronger vinculin-, zyxin-, and tyrosine phosphorylation-rich
FAs, in a RhoA and mDia1 dependent manner, while ROCK and
myosin II motor activity are dispensable (155, 156). However,
myosin II can also stimulate FA maturation by promoting actin
filament bundling (155). Thus, vinculin can be recruited to
reinforce the talin molecular clutch in myosin II dependent and
independent manners.

A Molecular Clutch Is Involved in
αMβ2-Mediated Phagocytosis
Although the notion of a talin-mediated molecular clutch
driving cell migration is well-accepted, what is the evidence
that coupling of the actin cytoskeleton to ligand-bound
receptors by a molecular clutch promotes phagosome formation?
Similar to integrin-mediated migration, talin is required for
αMβ2-mediated phagocytosis (56, 57). Moreover, whereas
the rod domain of talin, which binds actin filaments, is
dispensable for target particle binding, it is required for
efficient internalization (57, 77). Vinculin and paxillin are
also recruited to the phagosome, and vinculin recruitment
is promoted by the Syk, FAK/Pyk2, and Src family tyrosine
kinases (74, 77). Since αMβ2-mediated phagocytosis involves
RhoA and mDia1, they might also contribute to adhesion
maturation (100, 101, 157). Furthermore, traction force
microscopy shows that αMβ2 integrins are mechanically
coupled to the actin cytoskeleton within the phagocytic
cup through talin and vinculin, generating a pulling force
tangential to the target surface that drives protrusion of the
phagocytic cup (77). Thus, a talin/vinculin-based molecular
clutch promotes phagosome formation by coupling actin-
generated forces to αMβ2 integrins engaged to iC3b on the
particle surface.

Mechanical Coupling of the Actin
Cytoskeleton Enables Mechanosensing
The talin/vinculin-based molecular cutch is known to be
sensitive to the mechanical loading that occurs in response
to the stiffness of the integrin-engaged substrate, enabling the
regulation of cellular functions, such as cell adhesion, migration
and transcriptional regulation (158). During phagocytosis, a
major consequence of themechanical coupling of αMβ2 integrins
to actin-generated forces is an increased protrusion speed of the
phagocytic cup edge in a manner dependent on the stiffness
of the target particle. Consequently, actin-αMβ2 coupling is
associated with more efficient uptake of stiff IC3b-opsonized
targets, whereas soft targets are poorly internalized. Interestingly,
the elastic modulus of Gram-negative andGram-positive bacteria
is in the range of 20–200 MPa (159–162), which is much
higher than mammalian cells, which range from 0.2 to 20 kPa
(163). Moreover, cells become stiffer during apoptosis, which
promotes their internalization independent of the “don’t eat
me” signal mediated by CD47 (164–166). This implies that
the talin/vinculin molecular clutch could contribute to target
discrimination for integrin-mediated phagocytosis based on their
mechanical properties.
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FIGURE 6 | The molecular clutch model in αMβ2-mediated phagocytosis. The Arp2/3 complex (light green) nucleates actin (red) polymerization at the leading edge of

the phagocytic cup. The addition of new monomers to the filaments at the membrane generates forces that push against the plasma membrane, leading to an

equilibrium between membrane protrusion and the retrograde flow of actin filaments. Coupling of iC3b (yellow) -bound αMβ2 integrins (purple and pink) to actin

filaments by Talin (dark green), transmits mechanical tension that switches the integrins into an extended-open conformation and provides traction on the particle.

Stretching of Talin reveal Vinculin (blue) binding sites and the phosphorylation of Paxillin (orange) by tyrosine kinases (purples). This leads to the recruitment of Vinculin,

which reinforces the molecular clutch to prevent its slippage, reducing the retrograde flow of actin and increasing traction and forward protrusion. In addition,

contractility mediated by Myosin II (black) could increase tension across Talin and increase the actin retrograde flow and traction onto the particle, while reducing the

protrusion of the phagocytic cup edge.

Interestingly, internalization of IgG-opsonized particles is
also stiffness sensitive, implying mechano-sensitivity mediated
by FcγRs (6, 166). Mechanosensing requires that a force is
applied to the target, however no protein is known to couple
FcγRs to the actin cytoskeleton. How does mechanosensing
occur during FcγR-mediated phagocytosis? One possibility is
that FcγRs are not directly connected to the actin cytoskeleton,
but the friction generated by cytoskeleton-membrane contacts
such as WASP-Arp2/3 interactions, while the actin network
flow relative to the membrane could effectively pull on
IgG-bound FcγRs (167). Such a “loose clutch” has been
proposed for the sweeping of T cell receptors along with
actin flow at the immunological synapse, and is consistent
with the centripetal motion of FcγR clusters when IgGs
are associated with a fluid surface (168, 169). Alternatively,
integrins could be responsible for mechanosensing during
FcγR-mediated phagocytosis. Engagement of FcγRs activates
integrins, and FA proteins such as talin, vinculin, paxillin,
and α-Actinin are recruited to the FcγR phagosome (74, 170).

High resolution microscopy showed that upon binding to
IgG, podosomes are formed several micrometers back from
the edge of the phagocytic cup (171, 172). Formation of
podosomes instead of FA is typically promoted by Src family
kinases, which are activated by FcγRs, combined with low
contractility (173–175). The role of integrins in FcγR-mediated
phagocytosis had been initially discounted since silencing of
talin impaired internalization of iC3b-opsonized, but not IgI-
opsonized RBCs (57). However, the combination of β1 and β2
integrin blocking antibodies, or the over-expression of talin head
domain, which uncouples integrins from the actin cytoskeleton,
reduces FcγR-mediated uptake (65). Importantly, contrary to
other integrin adhesions, podosomes exert a pushing force
normal to the surface, which could cause the indentations
observed during phagocytosis of soft IgG-opsonized particles
(176, 177). Therefore, by generating a normal pushing force,
podosomes might not contribute directly to the leading edge
protrusion, but could enable stiffness sensing of IgG-opsonized
particle stiffness.
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Receptor-Independent Anchorage of the
Actin Cytoskeleton
The postulated need for anchorage of the cytoskeleton to drive
FcγR-mediated phagocytosis could also be supported by proteins
that link actin to the membrane instead of to the receptors
themselves (11, 72). In particular, myosin I is a class of small
monomeric motors that bind actin filaments through their head
domain and membranes through the TH1 domain of their tail
(178). Myosin Ig localizes within the protrusions formed along
IgG-opsonized particles, whereas myosin Ie and If precede F-
actin at the edge of the protrusions (179, 180). The membrane
binding tail of myosin Ig is involved in facilitating internalization,
consistent with a role in anchoring the cytoskeleton to the
membrane (180). Myosin Ie and If however appear to stimulate
F-actin turnover within the FcγR-mediated phagocytic cup
(179). Finally, the actin cytoskeleton could also be anchored
to the plasma membrane through ezrin-radixin-moesin (ERM)-
family proteins, which can bind to plasma membrane-associated
molecules including PI(4,5)P2, EBP50, ICAM, or CD44, as
suggested by the localization of ezrin to the forming phagosome
(181). Thus, in addition to a molecular clutch, membrane-actin
tethering proteins could participate in cytoskeleton anchorage
during phagocytosis.

PROVIDING ENOUGH MEMBRANE TO
ENVELOP THE TARGET

In addition to the mechanical constraints involved in deforming
the cell, biophysical properties of the membrane are also critical
for phagocytosis. The zipper mechanism implies that the target
particle becomes entirely enveloped by a membrane. However,
as the plasma membrane is essentially inextensible (182), models
suggest that the membrane surface area available represents
an absolute limit on the internalization of large particles (78).
Consistent with this, experiments comparing uptake of beads
of various sizes or the extent of spreading during frustrated
phagocytosis showed that macrophages reach their limit at a fixed
surface area, well before all FcγRs are occupied (10). Indeed,
enveloping large particles or multiple smaller particles requires
substantial membrane surface, yet neutrophils and macrophages
can engulf particles larger than their initial diameter (10, 11).
The forming phagosome, at least initially, is derived from
invaginations in the plasma membrane (2, 183). However, the
plasma membrane is poorly elastic and does not expand more
than 2–4% before rupturing (182). This implies that phagocytes
need to mobilize extra membrane to their surfaces in order to
engulf large or numerous targets.

The Different Sources of Membrane
Two types of “membrane reservoirs” appear to act as sources
for phagosome formation: folds in the plasma membrane or
intracellular vesicles, which upon mobilization and fusion with
the plasma membrane increase its surface area. In support of
the first model, macrophages, and neutrophils present a very
rough surface as they constantly form ruffles, filopodia, and other
membrane protrusions or invaginations. Early observations

by scanning electron microscopy revealed that the surface of
macrophages becomes smoother after phagocytosis, suggesting
that membrane folds have been flattened out to provide more
membrane surface to the phagosome (184). In support of
the second model, Hirsch and Cohn showed that neutrophils
degranulate during phagocytosis and suggested that granules
might fuse with the phagosome, which was later observed directly
by video microscopy (185, 186). Macrophage phagocytic capacity
is reduced upon artificial expansion of the surface area of
lysosomes or the depolymerization of microtubules, which are
required for intracellular organelle movement, suggesting that
mobilization of intracellular compartments contributes to the
membrane reservoir (10). Different intracellular compartments
appear to contribute to the formation of the phagosome,
including recycling endosomes and late endosomes, which fuse
with the plasma membrane at the forming phagosome in a
SNARE protein-dependent manner (187–189). On the other
hand, whereas the association of ER proteins with the phagosome
suggested that the ER could contribute as a membrane reservoir,
multiple experiments suggest that the ER membrane does not
fuse with the plasma membrane but is recruited through the
interaction of STIM-1 with ORAI, leading to peri-phagosomal
Ca2+ signaling (183, 190). Thus, membrane appears to be
provided by endocytic vesicles and granules, but not by the ER
during phagosome formation.

The Role of Membrane Tension
The regulation of membrane reservoir mobilization during
phagocytosis remains poorly understood but is likely to involve
membrane tension. In cells, membrane tension is defined as the
membrane capacity to resist deformation and results from the
combination of membrane in-plane tension, membrane bending
stiffness and membrane attachment to the actin cortex (191).
Experiments using the frustrated phagocytosismodel suggest that
the mobilization of each membrane reservoir occurs sequentially
(192). First the flattening of membrane folds can provide 20
to 40 % of surface area, then exocytosis at the phagocytic cup
occurs once the membrane tension reaches its maximum (192).
Similarly, during internalization of large particles, the membrane
tension measured outside of the phagocytic cup rises from ≈30
to 45 pN. More generally, an increase of plasma membrane
tension by a hypotonic shock in macrophages and other cells
results in exocytosis (192–194). This suggest that the increase
of membrane tension observed during phagocytosis could be
the signal that induces exocytosis of membrane reservoirs.
Importantly, because the membrane is an inelastic fluid, it is
generally assumed that stresses (in-plane tension) equilibrate
very rapidly across the entire plasma membrane (193). So, how
does focal exocytosis occur at the forming phagosome? Since the
membrane tension is affected by the membrane attachment to
the actin cytoskeleton, the dramatic actin reorganization at the
forming phagosome may in fact locally increase the membrane
tension, as has been observed at the leading edge of fast migrating
cells (195). The increased membrane tension, along with the
aforementioned clearance of F-actin from the base of the cup,
may govern the mobilization and local fusion of intracellular
membrane reservoirs during phagocytosis. While the signaling
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pathway(s) orchestrating these events are incompletely
understood, it is known to involve the phosphoinositide 3
kinase (PI3K), which is required for internalization of particle
larger than 3µm (8, 192, 196). Thus, membrane tension can
govern the mobilization of intracellular membrane reservoirs
during phagocytosis, through a signaling pathway that is
incompletely understood.

MEMBRANE FISSION DURING
PHAGOSOME CLOSURE

Phagosome closure is the final essential step of particle
internalization but arguably the least understood. Phagosome
formation occurs when the edges of the advancing phagocytic
cup reach a point of contact and merge, leading to the fission
of the membrane that releases the phagosome from the plasma
membrane. This process is one of the most difficult aspects
of phagocytosis to study because it is challenging to identify
fully wrapped but unclosed phagosomes (197). Membrane fission
requires bringing sites of a continuousmembrane to<3 nm apart
to induce merging of the outer leaflet to form an hemifission
neck, followed by merging of the inner leaflet to allow separation
(198). Interestingly, the observation that when two macrophages
try to engulf the same target they do not fuse together at
the contact site, suggests that phagosome closure involves
a molecular mechanism distinct from previously described
cell fusion mechanisms (122). When physical constraints are
minimal, several mechanisms can elicit membrane fission
without energy consumption in vitro. However, given the
membrane tension measured during phagocytosis and the
physical barrier created by the extracellular domains of surface
proteins, which can impede contact between lipid bilayers,
phagosome closure is likely to involve an active mechanism to
drive membrane fission (199). Current evidence suggests the role
of two possibly synergistic mechanisms: membrane constriction
by mechanochemical proteins and membrane pushing by the
actin cytoskeleton.

Mechanochemical Proteins Involved in
Membrane Constriction
Dynamin is the first and best characterized protein known to
induce membrane fission and is involved in various endocytosis
and organelle division pathways (200, 201). While it is not a
molecular motor in the classical sense, dynamin assembles into
a ring-shaped polymer that has contractile properties through
its enzymatically driven hydrolysis of GTP. Constriction of
the ring from a 20 nm inner diameter to 3.7 nm is achieved
by a GTP-dependent conformational change by twisting,
while the fission event is promoted by membrane tension
(202, 203). Dynamin-2 is ubiquitously expressed and is recruited
to FcγR and αMβ2-mediated phagosomes concomitantly
with F-actin (204, 205). More importantly, dynamin-2 has
been visualized at the phagosome closure site in a TIRF-
based assay, and inhibition of dynamin activity reduces
internalization. Interestingly, dynamin inhibition inhibits
protrusion formation, suggesting that dynamin cross-talks

with actin dynamics (205). Thus, dynamin-2 might interact
with actin filaments at the edges of the phagocytic cup and
induce membrane fission when the edges converge into a
closure site.

In addition to dynamin-2, myosin Ic is a molecular motor
recruited to the phagosome at the late stage of FcγR-mediated
phagocytosis (122). Interestingly, when one IgG-opsonized RBC
is phagocytosed simultaneously by two macrophages, myosin
Ic localizes to the meeting point of the opposing phagocytic
cups, suggesting a role in phagosome closure (122). There is
no clear evidence so far that myosin I family proteins could
mediate constriction. However, as a membrane-actin tether,
myosin I can increase membrane tension, which could facilitate
dynamin-mediated membrane fission (206). Unlike myosin Ic,
myosin II has not been localized to the meeting point (122).
Because myosin II plays an important role in the formation of
the constriction ring during cytokinesis, it has been proposed
that myosin II could assist phagosome closure by a purse-
string mechanism. However, it should be noted that myosin
II is required to maintain cortical tension during cytokinesis
through actin bundling, whereas its motor activity is dispensable
for cell division in culture and in vivo (207). Furthermore,
the 320 nm length of myosin II contractile units makes a role
in membrane fission, which occurs at a much smaller scale,
highly unlikely (123). Thus, myosin I proteins are the myosins
that are the most likely to contribute to membrane fission
during phagocytosis.

Does Actin-Mediated Pushing Force
Participate in Membrane Fission?
Actin-based protrusive forces could also facilitate membrane
fission during phagosome closure. In yeast, a major role of
Arp2/3-mediated actin polymerization is to support clathrin-

mediated endocytosis (208). The current model suggests that

actin polymerization pushes against the plasma membrane in the
area of membrane bending, where WASP is localized. Myosin I

and the dynamin protein Vps1 form a ring around the clathrin-
coated pit, which can tether the F-actin network to the forming
endosome (209, 210). This tethering could enable F-actin

retrograde flow to overcome the membrane tension and turgor
pressure to pull the forming endosome away from the surface,
consistent with evidence that myosin I primarily contributes to
endosome inward movement (211). Furthermore, pushing force
generated by actin polymerization could also facilitate membrane
fission during phagocytosis by bringing the lipid bilayers closer

at the closure site. Interestingly, a burst of actin polymerization

is often visible at the point of closure and appears to push
the phagosome away from the surface during αMβ2-mediated
phagocytosis (77). Furthermore, a normal stress of about 150 Pa
is observed on fully wrapped, IgG-opsonized soft particles,
indicating that a pushing force, presumably generated by actin
polymerization, propels the particle inward (177). Taken together
these observations support the idea that actin polymerization,
tethered to the membrane by dynamin-2, myosin I, and/or a
talin-based molecular clutch, can promote membrane fission
during phagosome closure.
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CONCLUDING REMARKS

Since phagocytosis is a cellular process broadly employed
across eukaryotes, it seems likely that phagocytes employ
fundamentally shared molecular mechanisms to overcome the
physical constraints imposed by the internalization of large
particulate material by cells. The comparison of phagocytosis
with other general cellular processes, such as cell migration,
shape change, cell division, or endocytosis, is very helpful to
understand the molecular mechanisms that are at play. However,
it also highlights the fact that we still only have pieces of the
puzzle, which are largely consistent with the general framework,
yet it will take major effort to complete the details of the
molecular mechanisms involved and to understand how they
are coordinated to enable uptake. It should be noted that while
we have learned a lot from studies on the canonical receptors
FcγR and αMβ2 with model particles like microspheres and red
blood cells, we can speculate that the general concepts exposed
here will apply broadly to phagocytosis in physiological
conditions, with a number of nuances and additional
physical constraints.

For instance, microbes not only vary in size but can exhibit
an array of diverse shapes, which present distinct physical
constraints. It has long been observed that elongated bacteria
like Legionella pneumophila and Borrelia burgdorferi, hyphal
fungi like Candida albicans, and parasites like Leishmania
and Trypanosoma cruzi are engulfed by so-called “coiling
phagocytosis,” in which phagocyte membrane protrusions wrap
around the complex morphology of these microbes (212–214). In
many cases the molecular mechanisms have only been partially
explored. Yet, commonalities with the concepts described in
this review are evident from the role of receptor binding and
the formation of actin-based protrusions, which involve Arp2/3
and formin activation and signaling similar to those described
for lamellipodia and filopodia formation (215). However, uptake
of elongated or spiral shaped microbes or synthetic particles
is generally less effective than that of spherical particles, and
several biophysical models have suggested increased mechanical
constraints linked to the uptake of complex shapes (7, 9, 28).
For instance, prolate spheres or rod particles, a very common
shape for microbes, can bind to phagocytes efficiently, but
their internalization is markedly reduced compared to that
of spherical particles (216). Remarkably, elongated particles
are internalized more efficiently when their initial contact
with the phagocyte occurs at the pole rather than the side
(7). This phenomenon can be recapitulated in a two-stage
model that combine passive diffusion-based receptor binding
followed by a stage that actively promotes further receptor
engagement (28). Thus, even for complex shapes, the same
scheme of receptor binding, actin-based protrusion and coupling
between the actin and particle-engaged receptors seems to
apply. However, the mechanical burden associated with the
formation of more geometrically complex phagocytic cups
can become unsurmountable for the phagocyte. Consequently,
elongated microbes can at least partially escape killing by
phagocytosis thanks to their morphology, as observed for
Candida albicans (217).

The diversity of phagocytic targets is managed by the
expression by phagocytes of a plethora of different phagocytic
receptors, which are able to recognize various opsonins,
pathogen-associated molecular patterns and “eat me signals”
(27, 218). While the engagement of these receptors likely involves
similar concepts to those described here for FcγR and αMβ2,
such as receptor lateral diffusion, formation of signaling clusters
and activation of actin polymerization, specific properties of
these receptors could vary greatly, and in most cases, remain
largely under-characterized. For instance, the lateral diffusion
of the scavenger receptor CD36 appears to be restricted by the
cortical actin cytoskeleton, but displays anisotropic trajectories
very distinct from those observed for FcγR or β2 integrins
(41, 55, 219). Also, CD45 can inhibit signaling by the C-
type lectin receptor Dectin-1, and appears to be excluded from
the Dectin-1-mediated phagocytic cup (220). This is consistent
with the presumed small size of Dectin-1 and the kinetic
segregation model established for immunoreceptors. However,
it is clear that the dimensions of phagocytic receptors vary
dramatically, suggesting that some phagocytic events are likely
to occur independent of a size-based segregation mechanism
to regulate signaling (221). Thus, it is likely that the physical
constraints and concepts presented here are broadly shared
across the different phagocytic pathways, yet the details of their
implications could vary and should be examined specifically for
each individual case.

Finally, while this review is focused on the mechanics of
internalization mechanisms, killing, processing and disposing
of internalized material can represent tremendous constraints
and limit phagocytosis capacity. In particular, cell turnover, and
tissue homeostasis probably represent the largest burden on
phagocytes, as it has been estimated that in humans, 200–300
billion cells are replaced every day (222). Given the scale of
this task, it is not surprising that phagocytosis of dead cells,
also called efferocytosis, must be shared between many cells,
including professional and non-professional phagocytes, such
as Sertoli cells and retinal pigmented epithelial cells. Moreover,
in addition to the membrane surface area initially available on
the phagocyte, the phagocytic capacity over time can be limited
by the rate of degradation of the internalized material, which
involves activation of appropriate enzymatic and metabolic
pathways (223). It is therefore conceivable that phagocytes gather
information regarding the physical properties of the ingested
material, including their size and stiffness, in order to regulate
their processing programs (25). How sensing of physical and
molecular cues is integrated to regulate the broad range of
phagocyte functions remains largely unknown and will be an
exciting problem for the coming years.
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Retinitis Pigmentosa (RP) is a group of inherited retinal diseases characterized by

progressive loss of rod followed by cone photoreceptors. An especially early onset form

of RPwith blindness in teenage years is caused bymutations inmertk, the gene encoding

the clearance phagocytosis receptor Mer tyrosine kinase (MerTK). The cause for

blindness in mutant MerTK-associated RP (mutMerTK-RP) is the failure of retinal pigment

epithelial cells in diurnal phagocytosis of spent photoreceptor outer segment debris.

However, the early onset and very fast progression of degeneration in mutMerTK-RP

remains unexplained. Here, we explored the role of microglia in the Royal College of

Surgeons (RCS) rat model of mutMerTK-RP. We found elevated levels of inflammatory

cytokines and CD68 microglia activation marker, and more ionized calcium-binding

adapter molecule 1 (Iba-1) positive microglia in RCS retina when compared to wild-type

retina as early as postnatal day 14 (P14). Strikingly, renewal of photoreceptor outer

segments in P14 wild-type rat retina is still immature with low levels of RPE phagocytosis

implying that at this early age lack of this process in RCS rats is unlikely to distress

photoreceptors. Although the total number of Iba-1 positive retinal microglia remains

constant from P14 to P30, we observed increasing numbers of microglia in the outer

retina from P20 implying migration to the outer retina before onset of photoreceptor cell

death at ∼P25. Iba-1 and CD68 levels also increase in the retina during this time period

suggesting microglia activation. To determine whether microglia affect the degenerative

process, we suppressed retinal microglia in vivo using tamoxifen or a combination of

tamoxifen and liposomal clodronate. Treatments partly prevented elevation of Iba-1 and

CD68 and relocalization of microglia. Moreover, treatments led to partial but significant

retention of photoreceptor viability and photoreceptor function. We conclude that loss

of the phagocytosis receptor MerTK causes microglia activation and relocalization in

the retina before lack of RPE phagocytosis causes overt retinal degeneration, and that

microglia activities accelerate loss of photoreceptors in mutMerTK-RP. These results

suggest that therapies targeting microglia may delay onset and slow the progression

of this blinding disease.

Keywords: retinitis pigmentosa, MerTK, phagocytosis, microglia, retinal degeneration
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INTRODUCTION

Retinitis Pigmentosa (RP) is a heterogeneous group of inherited
retinal degenerations that show rod photoreceptor defects and
loss before secondary loss of cone photoreceptors resulting in
blindness (1). To date, mutations in over a hundred genes
mostly expressed in rod photoreceptors or the adjacent retinal
pigment epithelium (RPE) are known to lead to RP (2, 3).
Although RP may progress at different rates even among patients
with mutations in the same gene, usually rod dysfunction
leads to night blindness in late teenage age followed by rod
death by apoptosis and loss of peripheral vision (tunnel vision).
Eventually, secondary “bystander” death of cone photoreceptors
will lead to blindness usually in middle age (1). Mutations of the
mertk gene encoding the Mer receptor tyrosine kinase (MerTK)
cause an exceptionally severe form of RP in human patients
with childhood onset and blindness in teenage years (4–10).
No therapy is available to date for mutant MerTK-associated
RP (mutMerTK-RP) that will prevent or even delay progression
to blindness.

Disease manifestation in mutMerTK-RP has been elucidated
exploring animal models that mimic well the human disease.
The Royal College of Surgeons (RCS) rat strain was recognized
as model retinal degeneration in the 1960’s and has since been
studied extensively (11). The RCS rat genome carries a deletion
in the coding sequence of the mertk gene resulting in an
aberrant transcript encoding only 20 of 999 amino acids (12,
13). No MerTK protein is expressed and thus RCS rats are a
natural null strain for MerTK. Acute re-expression of MerTK
significantly but not completely decreases the severity of RCS rat
retinal degeneration (14–16). Mice engineered to lackmertk gene
activity (mertk−/− mice) fully phenocopy the RCS rat further
confirming that loss of functional MerTK causes the RCS rat RP
phenotype (17).

Mechanistically, MerTK functions as engulfment receptor
in non-inflammatory apoptotic cell clearance phagocytosis, a
specialized form of phagocytosis also known as efferocytosis.
As essential aspect of the life-long and continuous process of
photoreceptor outer segment renewal, clearance phagocytosis by
the RPE removes spent photoreceptor outer segment tips from
the outer retina in a strict diurnal rhythm (18, 19). MerTK-
deficient RPE cells fail to engulf spent outer segment tips (20, 21)
causing outer segment debris to build up in the outer retina where
it is thought to distress photoreceptors such that they die by
apoptotic cell death (22). Outer segment renewal including daily
clearance phagocytosis in rodents commences after postnatal
formation of photoreceptor outer segments and has been
assumed to be associated with retinal maturation around eye
opening, which in our RCS rats occurs at postnatal day 15 (P15)
plus or minus one day. No significant debris buildup is observed
before P22, yet rod photoreceptor apoptosis is substantial only
shortly thereafter, at∼P25 (22, 23). Retinal function as measured
by electroretinography shows normal photoreceptor response at
eye opening, and modestly and severely reduced photoreceptor
responses at P22 and P34, respectively (11). Altogether, it
has long been assumed that photoreceptor degeneration in
mutMerTK-RP occurs only after eye opening, subsequent to

postnatal retinal maturation and as consequence of defective
RPE phagocytosis. Here, we investigate whether inflammatory
mechanisms contribute to its remarkably early onset and rapid
speed of progression.

Recent studies investigating the role of microglia in several
forms of retinal degeneration suggest a dual role for these
highly mobile cells. Upon acute damage, as following retinal
detachment, microglia may prevent photoreceptor death acting
in a protective role (24). Conversely, in chronic damage, such
as seen in hereditary retinal dystrophies in mouse models,
microglia may contribute to retinal cell death and accelerate
retinal degeneration (25–28). In late stage human and rodent RP
increased levels of activated microglia have been reported (29,
30). Likewise, in both mouse and rat mutMerTK-RP, microglia
activation have been reported at P35 and P50, the late stage
of the disease (31, 32). Strikingly, mice constitutively lacking
the pro-inflammatory cytokine CCL3 in addition to MerTK
(mertk−/− ccl3−/− double knockout mice), exhibit decreased
retinal microglia activation and retain more photoreceptor cells
than mertk−/− mice by P56 but only this advanced stage of
the disease was tested (33). Moreover, RCS rats show activated
microglia in the photoreceptor layer of the retina at P21, an early
stage of disease (34). Altogether, these intriguing data suggest that
microglia may play a role in mutMerTK-RP. Here, we asked if
microglia activation has a primary role in the early onset of retinal
degeneration due to MerTK deficiency. We found that molecular
markers indicating microglia activation are already elevated at
P14, an age just before eye opening when RPE phagocytosis of
photoreceptor outer segment fragments has not yet reached its
mature level, and that microglia relocalize to the photoreceptor
layer of the retina starting at P20. We then used three different
experimental paradigms to suppress early microglia activation in
RCS rats. Assessment of photoreceptor retention and function
showed that inactivating microglia at an early age prolonged
photoreceptor survival and retinal function.

MATERIALS AND METHODS

Reagents
All reagents were from Millipore-Sigma (St. Louis, MO) or
Thermofisher (Carlsbad, CA) unless indicated.

Animals and Tissue Processing
Animals were housed in a 12-h light/12-h dark light cycle
with food and water ad libitum. Animals of both sexes
were used. Wild-type (WT) and mertk−/− mice in the same
129T2/SvEmsJ genetic background (23), pink-eyed dystrophic
RCS rats (rdy/rdy-p) and Sprague Dawley (SD) WT rats were
raised to yield litters at defined age for experiments. For tissue
harvest, animals were euthanized by CO2 asphyxiation before
immediate eye enucleation and processing. Unless indicated
otherwise, all tissue harvest was done at 3–4 h after light
onset to avoid variability due to circadian effects. Eyeballs
were chilled, dissected and tissue fractions flash-frozen for
immunoblotting. For tissue sectioning, cornea and lens were
dissected before fixation of tissue in 4% paraformaldehyde in PBS
for 30min followed by sequential dehydration and embedding
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TABLE 1 | RT-PCR primers used.

Gene rats Primers Forward (F) and Reverse (R)

CCL5 (Chemokine C-C motif

Ligand 5)

F: 5′-CATCTTCCACAGTCTCTGCTTC R:

5′-GAGCAAGCAATGACAGGAAAG

GAPDH (Glyceraldehyde

3-phosphate dehydrogenase)

F: 5′-CTTCTCTTGTGACAAAGTGG R:

5′-GTAGACTCCACGACATACTC

Gene mice Primers Forward (F) and Reverse (R)

CCL2 (Chemokine C-C motif

Ligand 2)

F: 5′-AACTCTCACTGAAGCCAGCTC R:

5′-TTAAGGCATCACAGTCCGAGTC

CCL3 (Chemokine C-C motif

Ligand 3)

F: 5′-CAGACACCAGAAGGATACAAGC R:

5′-GGCAGCAAACAGCTTATAGG

CCL4 (Chemokine C-C motif

Ligand 4)

F: 5′-ATGAAGCTCTGCGTGTCTGC R:

5′-CAGAGAAACAGCAATGGTGGAC

CCL5 (Chemokine C-C motif

Ligand 5)

F: 5′-TGCCCTCACCATCATCCTCAC R:

5′-AGGACTAGAGCAAGCAATGACAGG

Rplp0 (Ribosomal Protein Lateral

Stalk Subunit P0)

F: 5′- AGAAACTGCTGCCTCACATC R:

5′-CCCACCTTGTCTCCAGTCTTTATC

in paraffin. To generate whole mount preparations of posterior
eyecups, cornea, lens and retina were dissected from eyes
harvested from WT rats sacrificed 1 h after light onset. Eyecups
were fixed in 4% paraformaldehyde in 0.1M phosphate buffer
followed by radial cuts to flatten the eyecup in preparation for
immunofluorescence labeling.

Drug Treatments
To start localized drug treatment before onset of microglia
activation we administered tamoxifen (tmx) as eye drops starting
at P10. Schlecht et al. previously demonstrated that tmx eye
drops applied to closed eyelids of mice from P8 through P12
are sufficient to yield efficient Cre induction in the posterior
retina implying that tmx reaches the posterior eye if applied to
closed eyelids (35). Here, RCS rats received eye drops of 10 µl
of 5 mg/ml tmx in corn oil into both eyes 3 times a day. To
administer tmx systemically, rats were fed tmx-supplemented
chow (500 mg/kg, Envigo, South Easton, MA, #130858) ad
libitum starting at weaning (P19). Liposomal clodronate (LC,
Liposoma, Amsterdam, The Netherlands) was administered at 10
µl LC/g body weight by intraperitoneal injections every 7 days
starting at P13 and at 4 µl /eye by intravitreal injection once the
day after eye opening (at P16 or P17). For combined tmx and LC
administration, rats received tmx eye drops and the LC treatment
as described above. Control siblings were manipulated identically
but received corn oil-only eye drops and PBS injections. For all
treatments, ERGs were recorded at P33 followed by continued
treatment until sacrifice and tissue harvest at P40.

Electroretinogram (ERG) Recordings
The entire procedure was carried out under dim red light.
RCS rats were dark-adapted overnight before intraperitoneal
injection of 100mg/kg ketamine and 10mg/kg xylazine to induce
anesthesia. Scotopic responses were recorded exactly as described
previously using a UTAS-E2000 visual electrodiagnostic system
(LKC Technologies, Gaithersburg, MD) (23). Stimuli were

presented in order of increasing intensity as a series of white
flashes of 1.5 cd-s/m2 attenuated with neutral density filters.
For each flash intensity, three to six recordings were averaged.
For all recordings, a-wave amplitudes were measured from the
baseline to the trough of the a-wave, and b-wave amplitudes
were measured from the trough of the a-wave to the peak of
the b-wave.

RNA Extraction and RT-PCR
Two dissected neural retinas from a single animal were pooled
and processed following the manufacturer’s direction using
the Qiagen RNeasy Plus Mini kit (Qiagen, Waltham, MA).
Purity and concentration of each sample were analyzed by
spectrophotometry, and 5 ng/µl RNA stocks were stored
at −20◦C. RT-PCRs on 10 ng RNA were performed using
the Qiagen One-Step RT-PCR kit. Primer sequences are
listed in Table 1. Quantification of bands following product
electrophoresis was performed using ImageJ.

Immunofluorescence Staining and Tissue
Analysis
Posterior eyecup whole mount preparations were stained with
rhodopsin antibody B6-30 and AlexaFluor488-conjugated
secondary antibody to label phagosomes containing
photoreceptor outer segment particles, and counterstained
with AlexaFluor594-labeled phalloidin and DAPI nuclear dye
(36). Phagosome counts were obtained using fixed value of
threshold settings in ImageJ including only rhodopsin positive
particles with 0.5µm diameter and above.

Seven micrometer thick microtome sections cut within
200µm from the optic nerve were deparaffinized. Epitope
unmasking was performed by boiling for 10min in 10mM citric
acid, 0.05% Tween-20, pH 6. Sections were then blocked
with PBS, 1% BSA, 0.01% Triton-X100 and incubated
sequentially with primary and appropriate AlexaFluor-
conjugated secondary antibodies. Primary antibodies used
were to ionized calcium-binding adapter molecule 1 (Iba-1)
(1:400, Fujifilm Wako Chemicals, Richmond, VA, #019-19741)
and to CD68 (1:500, Biorad, Hercules, CA, #MCA341R). DAPI
was used to counterstain nuclei.

Vectashield mounted samples were imaged using a Leica
TSP5 laser scanning confocal microscopy system. X-Y stacks
were collapsed to yield representative maximal projections for
image quantification.

Quantification of images was performed manually aided by
ImageJ software. To quantify numbers of CD68 or Iba-1 positive
microglia in tissue sections, counts from 3 sections for each tissue
were averaged to obtain the number of microglia per 350µm of
retina, and a minimum of 3 tissues from 3 animals per sample
type were analyzed. To quantify the number of photoreceptor
nuclei rows in tissue sections, in each section the number of
photoreceptor rows was counted in 3 regions of the image (left,
central, and right) and averaged.

SDS PAGE and Immunoblotting
Dissected single tissues were lysed in HNTG buffer (50mM
HEPES, 150mM NaCl, 1% Triton-X100, 10% glycerol, pH 7.5)
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FIGURE 1 | CCL5 mRNA overexpression begins before eye opening in RCS rat retina. Representative RT-PCR products for the cytokine CCL5 and the housekeeping

gene GAPDH are shown in duplicate at P14 (A), P20 (C), and P35 (E) for WT and RCS retina tissues harvested, respectively. Lanes represent contamination controls

with water as template. Ages are shown in figure panels with quantifications shown in (B,D,F) as mean ± s.e.m., n = 4 biological samples from 3 individual rats.

Levels are shown relative to WT. Data were analyzed by Student t-test; ** indicates p < 0.01, * indicates p < 0.05.

freshly supplemented with protease inhibitor cocktail. Proteins
from cleared lysates were separated by standard SDS-PAGE
and transferred to nitrocellulose membranes, Blots were blocked
in 10% non-fat milk powder in TBS before incubation
with primary and appropriate HRP-conjugated secondary
antibodies, and enhanced chemiluminescence digital detection
by a KwikQuant Imager (Kindle Biosciences, Greenwich, CT).
Band densities were quantified using the KwikQuant imaging
software. Primary antibodies used were to CD68 (1:1,000,
Biorad #MCA341R), Iba-1 (1:2,000, Fujifilm Wako Chemicals,
#016-20001), PSD95 (1:3,000, Cell Signaling, Danvers, MA,
#3450), and α-tubulin (1:3,000, Cell Signaling, #9099). For all
immunoblotting experiments, tissues from 2 different rats of
each sample group were directly compared in 3 independent
experiments. Tubulin reprobing of membranes was used to
control for sample load.

Statistical Analysis
All data were collected from at least three independent
experiments. The means and standard deviations were calculated
for each comparison group. Comparisons between two
groups were performed using the Student’s two-tailed t-test.
Comparisons between three or more groups were performed
using one-way or two-way ANOVA as appropriate, with Tukey’s
post-hoc test for comparison of two groups within multiple
groups. P values below 0.05 were considered statistically
significant for all experiments.

RESULTS

The Pro-inflammatory Cytokine CCL5 and
Microglia Activation Marker Iba-1 Are
Elevated Even Prior to Eye Opening in RCS
Rat Retina
Cytokine secretion is one of the first indications of tissue
inflammation. Once secreted these small molecules serve to
attract inflammatory cells expressing specific cytokine receptors,
causing migration to inflammatory sites. As reported earlier by
others, inflammatory cytokines in mertk−/− mouse retina are
present at P35, a late disease stage (Supplementary Figure 1A).
Strikingly, we found levels of mRNA for CCL5 (Chemokine
C-C motif ligand 5) already elevated at P14, the day of or after
eye opening of our mouse strains (Supplementary Figure 1B).
CCL5 is a pro-inflammatory cytokine whose elevation has been
linked to retinal stress associated with glaucoma and age-
related macular degeneration (37, 38). To determine whether
this observation was characteristic for MerTK deficient retina,
we next tested CCL5 levels in RCS rat retina. Indeed, we found
that CCL5 is also significantly elevated in RCS retina at P14,
one day prior to eye opening in our rats (Figure 1). Compared
to WT retina, RCS retina contained 3.4-fold higher levels of
CCL5 transcripts at P14 (Figures 1A,B) as compared to ∼2-
fold higher levels at P20 (Figures 1C,D), and P35 (Figures 1E,F),
the previously recognized early and late stage of RCS retina
degeneration, respectively. This was somewhat unexpected
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FIGURE 2 | Microglia activation marker proteins increase in RCS retina by P14, before eye opening. Tissues dissected at ages indicated were analyzed by

SDS-PAGE/immunoblotting. (A,C,E) Representative immunoblots of duplicate samples from different retina (A,C,E) or whole eye tissue following removal of the lens

(E) of ages as indicated tested for Iba-1, CD68, PSD95, and tubulin as loading control. (B,D,F,G) Quantification of PSD95 (PSD), Iba-1, and CD68 levels from

immunoblots as in (A,C,E). Bars show mean ± SD, n = 3 biological samples from 3 individual rats. Protein levels are shown relative to tubulin content of the same

sample and relative to level of WT PSD95, which was set as 1. Data were analyzed by Student t-test; *** indicates p < 0.001, ** indicates p < 0.01, * indicates

p < 0.05.

because diurnal photoreceptor outer segment renewal is thought
to commence in rodent retina only after eye opening, and thus
any process occurring prior is unlikely to be a consequence
of its deficiency due to the RPE phagocytosis defect. Unlike
CCL5 transcripts, levels of GAPDH transcripts were the same in
WT and age-matched RCS retina indicating that the change in
CCL5 was not due to global change in transcription (Figure 1).
Motivated by prior reports on microglia activation in RCS rat
retina, we next compared levels of the microglia markers Iba-
1 and CD68 between RCS and WT rat dissected neural retina.
Resident tissue microglia upregulate basal levels of Iba-1 upon

activation and this change correlates with their migration to sites
of tissue injury (39, 40). CD68 is expressed only in activated
retinal microglia (41). Figure 2 shows that already at P14, Iba-

1 and CD68 protein levels in RCS retina are 2.2-fold and 4.9-fold
higher than levels in WT rat retina, respectively (Figures 2A,B).

By P20, Iba-1 levels had increased to 2.6-fold of WT levels, while

CD68 levels were 1.9-fold elevated over WT (Figures 2C,D).

We noted that CD68 levels relative to tubulin loading control
increased little in RCS retina from P14 to P20, while CD68

in WT retina rose 2.9-fold. By P35, Iba-1 and CD68 levels in
RCS retina were 12-fold and 23-fold of WT levels, respectively
(Figures 2E,F). Differences in microglia marker content between
RCS and WT tissues were more pronounced in dissected retina
samples than in whole eye samples indicating a primary role

for retinal rather than choroidal microglia (Figure 2, compare
F and G). As control for global neural tissue changes, we also
measured levels of the synaptic marker PSD95 at all ages. We
found no differences between RCS and WT PSD95 at P14 and
P20 and only modest decline at P35, which did not reach
statistical significance (Figure 2, panels and bars as indicated).
Up to P35, tubulin levels were identical in age-matched RCS
and WT rat retina confirming that overall retina cell loss is
negligible by this age. All protein levels were thus quantified
relative to tubulin levels in the same sample and development
to account for differences in tissue yield during dissections.
Altogether, these results suggested that inflammatory signaling
and responses by microglia cells in RCS rat retina commence
before eye opening.

RPE Phagocytosis in P14 Wild-Type Rat
Retina Just Prior to Eye Opening Is Only
Partially Active
It has long been assumed that outer segment renewal in
rodents starts after eye opening. The WT rats tested in
our study fully open eyes at P15. Here, we measured outer
segment phagosome load of the RPE in situ as quantitative
assessment of outer segment renewal. Figure 3 shows rhodopsin-
positive phagosomes in WT rat RPE and their quantification
1 h after light onset, when phagosome load is at its peak.
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FIGURE 3 | RPE phagocytosis is fully active in WT rat retina only at P16, after eye opening. WT rats of defined age as indicated were sacrificed 1 h after light onset

followed by immunofluorescence labeling of posterior eyecup whole mounts (A–D) and protein extraction and immunoblotting (E,F) of contralateral eyes of same

animal. (A–C) Representative fields show whole mount samples at ages indicated co-stained for rhodopsin positive phagosomes (green), F-actin (red) and nuclei

(blue). Scale bar, 25µm. (D) Quantification of phagosomes from images as in (A). Box graphs show line corresponding to the mean ± min and max values, n = 3

biological samples from 3 rats. Data were analyzed by 1-way ANOVA, ** indicates p < 0.01; * indicates p < 0.05. (E) Representative immunoblots of duplicate

samples from different WT rat whole eyes of ages as indicated tested for rhodopsin, PSD95, and tubulin as indicated. One membrane sequentially probed for the

different proteins is shown. (F) Quantification of rhodopsin (opsin) and PSD95 levels from immunoblots as in (C). Bars show mean ± SD, n = 3 biological samples

from 3 individual rats. Protein levels are shown relative to tubulin content of the same sample and relative to level of PSD95 and rhodopsin at P11, which was set as 1.

Data were analyzed by ANOVA, ** indicates p < 0.01; * indicates p < 0.05.

Compared to P11, RPE phagocytosis at P14 one day prior
to eye opening is about 2-fold more active (Figures 3A,B).
However, RPE phagosome load is still 44% lower at P14
compared to P16, one day after eye opening (Figures 3A,B).
Notably, we found no difference in total levels of retinal or
RPE marker proteins including the rod outer segment marker
rhodopsin between P14 and P16 but less rhodopsin at P11
in WT rat eyes (Figures 3C,D). These results suggest that
outer segment formation is complete by P14, 1 day before
eye opening, but outer segment renewal is not yet fully active.
Eye opening of our RCS rats between P15 and P16 implies
that at P14 there is little to no debris accumulation that could
distress photoreceptors, and that therefore cytokine elevation
in P14 RCS retina is highly unlikely a consequence of lack of
RPE phagocytosis.

Microglia Migrate to Reach the
Photoreceptor Layer of RCS Rat Retina as
Early as P20
We next determined the localization of Iba-1 positive retinal
microglia in RCS rat retina with increasing age. As expected,
WT retina harbored microglia only in the inner retina regardless

of age (Figure 4A, WT panels as indicated). In contrast, all
RCS retina samples tested showed microglia in the inner as
well as the outer retina starting at P20 (Figure 4A, RCS panels
as indicated). Quantification of Iba-1 positive cells over the
entire retina showed that the total number of Iba-1 positive
cells in RCS rat retina did not change from P14 to P30,
although it was 1.8-fold higher than cell numbers in WT
retina as expected from prior studies on rats aged P21 and
up (34) (Figure 4B). Additionally, the fraction of Iba-1 positive
cells in the outer retina starting at P20 increased dramatically
with age (Figure 4C). These results suggest that microglia
numbers are already elevated in RCS rat retina before onset
of retinal degeneration and prior to eye opening. Moreover,
increase in outer retina microglia in RCS rats likely arises from
migration of resident microglia rather than cell proliferation
or infiltration.

Suppression of Microglia by Tamoxifen Eye
Drops Mitigates Photoreceptor Death
Given these unexpectedly early changes of microglia in
RCS retina, we decided to continue our studies by using
tamoxifen (tmx) to inactivate microglia starting in rat pups
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FIGURE 4 | Iba-1 positive microglia migrate from the inner retina to the photoreceptor layer of RCS retina leading to significantly increased in outer retina microglia by

P20. Microglia in WT and RCS rat retina cross sections were labeled with Iba-1 antibody (shown in green) and examined by immunofluorescence microscopy. Nuclei

counterstain is shown in blue. (A) Representative microscopy fields show retina of WT or RCS rats at ages as indicated in the panels. Select inner retina microglia are

indicated by white arrows, while outer retina microglia are indicated by orange arrows. In WT retina, microglia were only observed in the inner retina regardless of age.

Outer nuclear layer (ONL), photoreceptor outer segment layer (POS). Scale bar, 40µm. (B) Quantification of the total number of Iba-1 positive microglia in the retina

shows increased numbers of microglia in RCS retina by P14 and no further change with age (mean ± SD, n = 3 biological replicates, ***p < 0.001, ANOVA). (C)

Quantification of fraction of Iba-1 positive microglia in the outer retina separated by ONL and POS layer as indicated shows increasing migration to the ONL and POS

layers of the retina with age.

at P10. Tmx is an estrogen receptor agonist long used to
treat breast cancer in human patients (42). In experimental
animals, tmx is commonly used to control gene expression via
engineered tmx-inducible promoters (43). Systemic application,
via intraperitoneal injection or oral supplementation, and
topical administration via creams and eye drops have been
successfully used in published studies (35, 43, 44). Schlecht
and colleagues showed that tmx administration as eye drops
from P8 through P12 yields effects on outer retinal cells
indicating that topical tmx penetrates eye tissues reaching
effective concentration even in the posterior retina (35). Notably,
such topical administration of tmx to the eye (45) does not
affect retinal morphology even though tmx can be toxic to
the retina (46). Even more recently, Wang and colleagues
showed that tmx provided as dietary supplement reduced the
extent of photoreceptor degeneration caused by light damage by
reducing the number of activated microglia (47). The mechanism
used by tmx to deplete activated microglia is still unknown,
but it appears to be independent of its effects on estrogen
receptors (47). To suppress microglia activity starting at pre-
weaning age we applied tmx as eye drops in RCS rats three
times a day from P10. At P33 we recorded scotopic ERGs

to assess photoreceptor functions, and at P40 we collected
retina tissues to quantify levels of Iba-1 and CD68 proteins
by immunoblotting. These experiments yielded a modest but
significant reduction by about one third in both of these
microglia markers in tmx-treated RCS rat eyes compared to
control littermates that received eye drops with corn oil solvent
only (Figures 5A–C). Moreover, tmx-treated rats at P33 showed
significantly better light responses than control RCS rats at
lower flash intensities eliciting rod activation only (−20dB to
−8dB). At high flash intensities that excite both rods and
cones there was no difference in retinal responses based on
treatment (−4dB and 0dB) (Figure 5D). The b-wave indicative
of activities of second order retinal neurons was also improved
by tmx eye drop treatment (Figure 5E). RCS rats with ongoing
retinal degeneration do not show normal retinal activity in ERG
recordings with consistent increases in a- and b-wave amplitudes
in response to light flashes of increasing intensity (23). Recording
at P33 specifically in our study we observed flat or even
moderately declining a- and b-wave amplitudes at highest flash
intensities applied indicative of dysfunction of photoreceptors
at this age. Nonetheless, tmx treatment modestly improved
retinal function.
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FIGURE 5 | Tamoxifen eye drops yield modest but significant decrease in retinal Iba-1 levels and preservation of retinal function of RCS rat retina. RCS rats received

tmx eye drops three times daily from P10 to P40 with examination by scotopic ERG at P33 and tissue harvest for immunoblotting analysis at P40. (A) A representative

immunoblot is shown with two biological replicates each of retina extracts from control and treated RCS rats. The same membrane was probed for Iba-1, CD68, and

for tubulin, as loading control. (B,C) Bar graphs show quantification of experiments as in (A) with levels of Iba-1 (B) and CD68 (C) in each sample set relative to levels

of tubulin before comparing control and treated samples. Normalized Iba-1 and CD68 levels in control samples were set as 1 (mean ± SD, n = 4 biological replicates;

*p ≤ 0.05, **p ≤ 0.01; Student’s t-test). (D,E) Graphs show average a-wave and b-wave amplitudes in response to light flashes of increasing intensity as indicated

(mean ± s.e.m., n = 5 biological replicates, (*p ≤ 0.05; ***p < 0.001, ANOVA). Open circles: RCS rats treated with oil eye drops (control); X: littermate RCS rats

treated with tmx eye drops (treated).

Adding Tamoxifen Diet to Tamoxifen Eye
Drops Treatment Further Suppresses
Microglia but Is Toxic
To improve the retinal degeneration delay effects observed
from tmx eye drops alone, we modified the treatment by
adding tmx-supplemented diet starting at weaning at P19.
This combined tmx eye drop/diet strategy reduced both Iba-1
and CD68 in treated RCS rat retina by ∼50 and 40%,
respectively, compared to control siblings receiving neither
topical nor systemic tmx (Figures 6A–C). As complement, we
performed immunofluorescence microscopy analysis of retina
tissue sections. We observed fewer Iba-1 positive microglia
specifically in the outer nuclear layer of the retina of tmx
treated RCS rats compared to control littermates (Figures 6D–F).
Moreover, the retina of tmx-treated RCS rats showed one
additional row of photoreceptor nuclei suggesting modestly
improved retention of photoreceptor cells (Figures 6D,E,G).
We also found fewer CD68 positive, activated microglia, in
treated rats compared to control rats (Figures 6H–J). Scotopic
ERGs at P33 showed an improvement of the photoreceptor
response at all light flash intensities (Figure 6K). However, b-
wave amplitudes did not differ between tmx-treated and control

animals (Figure 6L). Moreover, animals treated with tmx diet
were smaller, more sensitive to the anesthetic, and overall less
healthful than control siblings (data not shown). Taken together,
we conclude from these observations that combining topical and
systemic tmx treatments is more effective in inactivating retinal
microglia than topical treatment alone. However, considerable
systemic tmx toxicity renders such dual application unsuitable for
further research let alone translation.

Tamoxifen Eye Drops Combined With
Intravitreal and Systemic Injection of
Liposomal Clodronate Reduces
Photoreceptor Death by Suppressing
Microglia Activation
As an alternate strategy to increase efficiency of microglia
inhibition, we tested the addition of local and systemic
administration of liposomal clodronate (LC) to our previous
tmx eye drop treatment. LC is selectively taken up by phagocytic
cells triggering their apoptotic pathway (48, 49). Intravitreal
LC injection has been shown to successfully deplete retinal
microglia in several species including rats (50–52). In a pilot
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FIGURE 6 | Tamoxifen provided both as eye drops and as dietary supplement yields significant preservation of retinal function and decrease in retinal Iba-1 levels in

RCS rats. RCS rats received tmx eye drops three times daily from P10 to P40 and standard chow enriched with tmx starting at P19 with examination by scotopic

ERG at P33 and tissue harvest for immunoblotting analysis at P40. (A) A representative immunoblot is shown comparing retina extracts from control and treated RCS

rats. The same membrane was probed for Iba-1, CD68, and for tubulin as loading control. (B,C) Bar graphs show quantification of experiments as in (A) with levels of

Iba-1 (B) and CD68 (C) in each sample set relative to levels of tubulin before comparing control and treated samples. Normalized Iba-1 and CD68 levels in control

samples were set as 1 (mean ± SD, n = 4 biological replicates; *p ≤ 0.05, **p ≤ 0.01, Student’s t-test). (D,E) Representative micrographs of retina cross sections

labeled with Iba-1 antibody to indicate microglia (green) and nuclei counterstain (red). The same regions of the retina were imaged to directly compare retina of control

and treated RCS rats. Scale bars, 40µm. (F) Bar graph shows quantification of total retinal or photoreceptor layer microglia as indicated (mean ± s.e.m., n = 5

biological replicates; *p ≤ 0.05, Student’s t-test). (G) Bar graph shows number of rows of photoreceptor nuclei in the outer nuclear layer (mean ± s.e.m., n = 5–7

biological replicates; *p ≤ 0.05, Student’s t-test). (H,I) Representative micrographs of retina cross sections labeled with CD68 antibody to indicate activated microglia

(green) and nuclei counterstain (red). The same regions of the retina were imaged to directly compare retina of control and treated RCS rats. Scale bars, 40µm. (J)

Bar graph shows quantification of activated retinal microglia as indicated (mean ± s.e.m., n = 4 biological replicates; **p ≤ 0.005; Student’s t-test). (K,L) Graphs

(Continued)
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FIGURE 6 | show average a-wave and b-wave amplitudes in response to light flashes of increasing intensity as indicated (mean ± s.e.m., n = 4–9 biological

replicates, *p ≤ 0.05; **p < 0.005, ANOVA). Open circles: RCS rats treated with oil eye drops and fed standard chow (control); X: littermate RCS rats treated with tmx

eye drops and fed tmx chow (treated).

experiment, we confirmed that a one-time intravitreal injection
one day after eye opening reduces the number of Iba-1 positive
retinal microglia in RCS rats (Supplementary Figure 2). To
increase the efficacy of our anti microglia treatment, we then
combined inactivation with depletion of microglia by applying
tmx eye drops starting at P10 as in our previous experiments
and adding a one-time intravitreal LC injection the day after
eye opening. To suppress replenishment of retinal microglia we
additionally applied LC intraperitoneally every 7 days starting at
P13. Indeed, Figure 7 shows that this combination treatment was
more effective than tmx eye drops alone or even tmx eye drops
with the toxic tmx food. Immunoblotting showed reduction of
retinal Iba-1 levels in treated animals by about 60% and of CD68
by about 50% compared to protein levels in sibling controls,
indicating a greater reduction of microglia and their activation
in RCS rats treated with the combined treatment as compared
to rats treated with tmx alone (Figures 7A–C). Moreover, ∼
30% fewer microglia localized to the photoreceptor layer of the
retina (the outer nuclear layer) suggesting impaired microglia
migration in response to tmx/LC treatment and the number
of total Iba-1 positive retinal microglia was similarly reduced
(Figures 7D–F). The combination treatment directly benefitted
photoreceptor viability preserving more than two additional
rows of photoreceptor nuclei in LC/tmx treated retina by P40
compared to control sibling retina (Figures 7D,E,G). Matching
the immunoblotting results, immunofluorescence microscopy
of CD68 showed a significant reduction of about 40% in
activated microglia in retina from treated rats (Figures 7H–J).
Finally, scotopic ERGs revealed significantly higher a-wave
and b-wave amplitudes in treated RCS rats confirming
improved retinal functionality (Figures 7K,L). Importantly,
the combination treatment did not show obvious systemic
toxicity. Altogether, these results suggest that a combination
treatment of tmx eye drops and LC injections is more efficient
in suppressing microglia than tmx eye drops alone. Our results
imply that reducing microglia activity delays degeneration of
photoreceptors in mutMerTK-RP.

DISCUSSION

In this study, we investigated the age of onset and effects
of early treatment of inflammatory changes in animal models
lacking the phagocytosis receptor MerTK. The MerTK-deficient
mice and rats we studied exhibit early onset fast progressing
retinal degeneration like human patients with mutMerTK-
RP. We found pro-inflammatory cytokines, elevated levels of
retinal microglia and microglia activation markers prior to eye
opening. It has long been assumed (but never directly tested
as far as we are aware) that eye opening marks the beginning
of life-long diurnal outer segment renewal including MerTK-
dependent RPE phagocytosis. Indeed, our results confirm that

there is only limited RPE phagocytosis of spent outer segment
fragments before eye opening in WT rat retina whose RPE cells
requireMerTK for daily engulfment of spent photoreceptor outer
segment tips. These results suggest that inflammatory activation
prior to eye opening in MerTK-deficient retina is highly unlikely
a mere consequence of the accumulation of outer segment debris
in the subretinal space due to phagocytosis-defective RPE.

In both mouse and rat models of MerTK deficiency, we
found expression of the chemoattractant cytokine CCL5 (and
others) significantly and robustly elevated at P14 prior to eye
opening and before photoreceptor debris buildup due to lack
of MerTK-mediated RPE phagocytosis. The cells producing the
cytokines remain to be specified. RPE in vivo may produce
CCL5 and other cytokines in culture for instance in response
to viral infection (53). Given that we studied dissected retina
samples from which the RPE and posterior eyecup was removed,
it is however likely that retinal cells not RPE or choroidal cells
generate these transcripts. The robust and consistent level of
CCL5 mRNA in our retina extracts renders contaminating RPE
unlikely as major source.

Likely as response to elevated cytokines, we observed
microglia relocalization to the outer retina as early as P20. In
elegant experiments, Kohno et al. recently discriminated between
retinal microglia and invading macrophages in mertk−/− mice
by Cx3cr1 and Ccr2 promotor labeling, respectively. They found
invading macrophages in mertk−/− retina only at ages of 6
weeks and above (32). This suggests that retinal microglia are
the Iba1-positive cells population we observed in our MerTK-
deficient RCS rats at ages up to P40. In agreement with previous
studies that mostly focused on RCS rat retina in mid to late
stage retinal degeneration at P33 and older (31, 34), we saw
increased numbers of microglia in RCS rat retina as compared
to WT retina at all ages tested including before eye opening.
The total number of microglia did not increase, suggesting that
the increased number of microglia observed in the outer retina
from P21 was solely due to migration and not proliferation. In
agreement, Di Pierdomenico et al. showed proliferation of retinal
microglia in RCS retina at P45 but not at P33 (34).

Inflammation has been reported mostly at advanced stages

of RP in retina that has already partly degenerated and in
which retinal cells continue to die (31, 33, 54–56). However,

precedent exists that microglia activation may occur early,

preceding any retinal cell death, and contribute to degenerative
processes (57). Microglia may have protective roles (24, 58)
or promote photoreceptor cell death increasing the severity of
retinal degeneration (29, 40, 59). To investigate the relevance of
the early microglia activation for RCS rat retinal degeneration, we
inhibited microglia using two experimental approaches, which
we begun 4 days before eye opening. First, we inhibited microglia
with tmx shown previously to inactivate retinal microglia in
adult mice (47). Application of tmx as eye drops alone yielded
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FIGURE 7 | A combination treatment of tamoxifen eye drops and intraperitoneal liposomal clodronate yields robust preservation of retinal function, decreases retinal

Iba-1 levels and microglia redistribution to the outer retina and preserves photoreceptors. RCS rats received tmx eye drops three times daily from P10 to P40,

intravitreal injection with LC at eye opening (P16-P17) and intraperitoneal injection at P13 and every 7 days thereafter with examination by scotopic ERG at P33 and

tissue harvest for immunoblotting and histology analyses at P40. (A) A representative immunoblot is shown comparing retina extracts from control and treated RCS

rats. The same membrane was probed for Iba-1, CD68, and for tubulin as loading control. (B,C) Bar graphs show quantification of experiments as in (A) with levels of

Iba-1 (B) and CD68 (C) in each sample set relative to levels of tubulin before comparing control and treated samples. Normalized Iba-1 and CD68 levels in control

samples were set as 1 (mean ± SD, n = 4 biological replicates; **p ≤ 0.01, Student’s t-test). (D,E) Representative micrographs of retina cross sections labeled with

Iba-1 antibody to indicate microglia (green) and nuclei counterstain (red). The same regions of the retina were imaged to directly compare retina of control and treated

RCS rats. Scale bars, 40µm. (F) Bar graph shows quantification of total retinal or photoreceptor layer microglia as indicated (mean ± s.e.m., n = 5 biological

replicates; *p ≤ 0.05; ***p ≤ 0.001, Student’s t-test). (G) Bar graph shows number of rows of photoreceptor nuclei in the outer nuclear layer (mean ± s.e.m., n = 5–7

biological replicates; ***p ≤ 0.001, Student’s t-test). (H,I) Representative micrographs of retina cross sections labeled with CD68 antibody to indicate activated

microglia (green) and nuclei counterstain (red). The same regions of the retina were imaged to directly compare retina of control and treated RCS rats. Scale bars,

40µm. (J) Bar graph shows quantification of activated retinal microglia as indicated (mean ± s.e.m., n = 4 biological replicates; **p ≤ 0.005; Student’s t-test).

(Continued)
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FIGURE 7 | (K,L) Graphs show average a-wave and b-wave amplitudes in response to light flashes of increasing intensity as indicated (mean ± s.e.m., n = 4–9

biological replicates, ***p ≤ 0.001, ANOVA). Open circles, RCS rats treated with oil eye drops (control); X, littermate RCS rats treated with tmx eye drops and LC

(treated).

a small but significant reduction in microglia activation and
marginally better photoreceptor light responses at P33. To
enhance efficacy and to prevent possible systemic replenishment
of microglia to tmx eye drop-treated retina, we next added
feeding animals tmx-supplemented diet to the tmx eye drop
treatment. While this dual treatment showed improved efficacy
in the retina we observed significant toxicity of the tmx diet
resulting in reduced body weight and viability. Therefore, we
instead complemented the tmx eye drop administration with a
well-established alternative approach depleting microglia with
liposomal clodronate, which poisons microglia. Combined local
treatment of tmx eye drops and one-time intravitreal injection
of LC with weekly systemic LC injections further increased
microglia depletion compared to eye drops alone with no
apparent toxicity. Taken together, these experiments demonstrate
that early microglia inhibition is effective in delaying retinal
degeneration due to MerTK deficiency. Moreover, the extent of
microglia inhibition directly correlates with improved survival
of photoreceptors and preservation of photoreceptors function.
Finally, our results indicate that microglia driven processes
aggravate retinal degeneration due to MerTK deficiency rather
than playing a protective role.

More experiments are needed to unravel how microglia
aggravate retinal degeneration due to deficiency in the
engulfment receptor MerTK. In brain, MerTK deficiency
impairs efferocytosis activity of microglia and macrophages
(60, 61). In the retina of the rd10 mouse model of RP, microglia
phagocytose living photoreceptors increasing the rate of
photoreceptor loss (59). It will be important to test microglia
phagocytosis in RCS retina in the future. It is important to
note however that the genetic defect in the rd10 RP model is in
pde6b, which encodes a photoreceptor-specific protein involved
in phototransduction. In contrast, MerTK is a phagocytosis
receptor expressed not by photoreceptors but by the adjacent
RPE, which relies on it for daily clearance of spent outer segment
tips as part of outer segment renewal and possibly by other
phagocytic cells in the retina. We did not find reports showing
MerTK protein expression in mouse or rat retinal microglia in
situ. With MerTK antibodies recognizing rat MerTK in tissue
sections unavailable, we tested MerTK localization in WT mouse
retina. Supplementary Figure 3 shows abundant labeling by
a well-established anti-mouse MerTK antibody of WT mouse
RPE but little labeling in neural retina and no obvious overlap
with Iba-1 microglia marker. Thus, MerTK protein is unlikely
to be abundant in resting retinal microglia, and its expression
may be upregulated in retinal disease such as rd10 RP to
enhance microglia phagocytosis of distressed photoreceptors.
If the aggravating role of retinal microglia in MerTK-deficient
RP also involves photoreceptor phagocytosis it will indicate
that retinal microglia perform clearance phagocytosis using a
MerTK-independent pathway with an alternative engulfment

receptor. Indeed, numerous engulfment receptors relevant to
efferocytosis are known (62). Moreover, increased staining of
complement factor C1q has been reported in RCS retina in the
OPL where microglia may phagocytose synaptic components
(63). The same study found that elimination of retinal microglia
by systemic treatment with a CSF1 receptor inhibitor had no
effect on photoreceptor light responses (and worsened inner
retinal responses), although drug administration via dietary
supplementation only started at P15 and may not have been
effective immediately in pre-weaning rats. As dead cells do
not permanently accumulate in advanced stages of retinal
degeneration in RCS retina clearance phagocytosis is likely to
take place, although the specific phagocytic cells responsible and
whether and when they enter the retina is unknown. Finally,
microglia in MerTK-deficient retina may impair photoreceptor
function and viability through activities that do not require
them to be phagocytic. Distinguishing between these intriguing
possibilities will be the subject of further investigation.

As of now, there is no cure for any form of RP.
However, translational approaches including clinical trials are
in development or underway (64, 65). Yet, treatments in
development such as gene therapy or RPE replacement will be
successful only if there is significant retention of retinal cells and
architecture whose functionality and longevity can be rescued
by treatment. Delaying the exceptionally early onset and rapid
progression to irreversible retinal cell death that is characteristic
for mutMerTK-RP will increase the window of opportunity
during which advanced treatments such as gene therapy will be
effective. As our results show a role for early inflammation before
the phagocytic defect of the RPE harms photoreceptors, it is
tempting to speculate that other forms of RP may benefit from
microglia inactivation at very early stages of disease prior to overt
retinal dysfunction and degeneration.

Altogether, our results show that lack of MerTK activates
inflammatory mechanisms causing retinal microglia to harm
photoreceptors prior to onset of fully active daily outer segment
renewal. These processes are thus independent of accumulation
of subretinal outer segment debris that results from engulfment
failure of MerTK-deficient RPE. In addition to orchestrating
debris engulfment, MerTK signaling is complex and has been
shown to contribute to cell differentiation and homeostasis (66).
Our results let us hypothesize that cells lacking MerTK in
the mutMerTK retina elicit pro-inflammatory signaling which
in turn activates microglia. Additional studies will be needed
to determine whether the triggering cell type is the RPE,
which may utilize MerTK signaling during normal development
and differentiation. Distressed MerTK-deficient RPE cells may
communicate with cells in the retina via additional cytokines
or other signaling mediators causing these secondary cells to
upregulate the cytokines we found elevated. Identifying the
primary and secondary cell types and stimulus mechanism for
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such inflammatory pathways will be a subject of future studies
and may identify cellular molecular targets for therapies aiming
to delay onset of the aggressive forms of retinitis pigmentosa
associated with defective MerTK.
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