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Editorial on the Research Topic

Immunotherapeutic and Immunoprophylactic Strategies for Infectious Diseases

The necessity of a rapid development of effective therapeutic and prophylactic strategies for
infectious diseases has recently gained further attention and importance due to the very recent
SARS-CoV-2 pandemic (1). In fact, these countermeasures are of pivotal importance not only and
principally for reducing the associated diseases, deaths, and overload of hospitalized patients during
the pandemic outbreak, but also in limiting the tremendous impact on the economy and the society.

It is also important to highlight the fact that while COVID-19 is nowadays a central health issue
attracting the attention of a significant portion of the scientific community as well as enormous
financial aids, other infectious diseases still represent a global burden for the world population. As
an example, influenza cases are still characterized by high morbidity (30–50 million cases yearly)
and mortality rates. Approximately 3 to 5 million of these cases are characterized by a severe illness
and about 290,000 to 650,000 respiratory deaths are reported annually, according to the World
Health Organization (WHO). Additionally, the possibility of new influenza pandemic outbreaks
aggravating these case numbers still represents a considerable risk.

In this regard, implementing current vaccination strategies, such as in the case of the current
Yellow Fever vaccine as described in a paper of this article collection by Campi-Azevedo et al, and
designing and developing next-generation vaccines, especially for high-risk populations, like in
the case of influenza (Mathew and Angeletti), represent an important goal for the investigators
working in this field not only to limit the related diseases but also to alleviate the associated
economic burdens.

Importantly, novel immunotherapeutic strategies are also pivotal to reduce the severity and
improve the current drug arsenal to combat influenza infections (De Vlieger et al.), which is
currently limited to only two main approved antiviral drug categories: the neuraminidase and the
M2 ion channel inhibitors.

In addition to influenza, other respiratory pathogens, such as bacteria and viruses, are
responsible for a considerable number of infection cases, especially in more vulnerable subjects,
such as children, the elderly, and immunocompromised individuals. Among these pathogens,
pneumoviruses represent the leading cause of viral bronchiolitis and viral pneumonia in infants
and children that can also result in a fatal outcome. It is thus important to improve our knowledge
of the molecular mechanisms leading to a successful immune response, such as the studies aimed
at dissecting the antibody response to the main pneumovirus surface fusion proteins (Huang
et al.). Furthermore, a comprehensive understanding of the immunomodulatory properties exerted
by bacterial pathogens, such as Mycobacterium tuberculosis (MTB) and Bordetella spp., could
help in designing and developing more effective therapeutic and prophylactic strategies aimed at

5
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eliciting an effective immune response (Gestal et al.). In
particular, these studies are also crucial for developing alternative
immunotherapeutic strategies as well as for the design of effective
vaccines not only for infectious diseases but also for other
disorders, such as autoimmune diseases (Takaya et al.).

As far as bacterial respiratory infections, MTB is certainly
one of the most diffused respiratory pathogens worldwide,
representing one of the top 10 causes of death and the
leading cause from a single infectious agent, according to
WHO. Developing new therapeutic strategies to overcome
the occurrence of multidrug-resistant strains as well as
effective vaccines able to prevent and limit the progression
of the lung pathology in infected patients, represents a top
health priority worldwide, especially for developing countries.
As an example, monoclonal antibodies (mAbs) represent
a valid immunotherapeutic approach to target multidrug
resistant pathogens (2). Importantly, in recent years, the mAb
discovery field has encountered an outstanding renovation and
innovative development, mainly thanks to the advancement and
improvement of next-generation sequencing (NGS) approaches
at the single-cell level. In this regard, the “omics” technologies,
employing large genomic, transcriptomic, structural, and
proteomic datasets and the interpretation of them under a
systems biology paradigm (Martín-Galiano and McConnell),
allow for the rational identification of rare mAbs along with
the deconvolution of their functional profile (3). Importantly,
besides the direct use of mAbs as therapeutics, or as recently
proposed, as prophylactic molecules to prevent infection in a
determined period time, such as during influenza seasons, they
can also be utilized as a tool or engineered for the development
of prophylactic or cell-mediated anti-infective strategies,
respectively (4). In this regard, the success of chimeric antigen
receptor (CAR) T cell therapy for the treatment of difficult to
eradicate cancers has inspired researchers to develop CARs for
the treatment of infectious diseases as a potential therapeutic
option for patients who are unresponsive to standard treatments
(Seif et al.).

Different prophylactic strategies are currently under
development and targeting different antigens expressed at

different stages of bacterial (e.g., MTB) (Kwon et al.) as well
as parasitic pathogens (e.g., Plasmodium and Trichinella
spp.) (Stachyra et al.). In this regard, a lot of currently under
development prophylactic strategies are also designed not
only for prevention purposes but have also been proposed
as therapeutic vaccines aimed at boosting or eliciting a de
novo immune response to eradicate or mitigate infections. In
this context, vaccines for human papillomavirus (HPV) have
been described to be possibly effective also in the treatment of
HPV-related lesions and relapse (Garbuglia et al.).

Additionally, developing novel immunotherapeutic and
immunoprophylactic approaches that can be possibly delivered
at the site of inflammation (Qin et al.; Zhang et al.) or infection,
such as through inhalation or oral administration, improving
their bioavailability and efficacy characteristics, represent a valid
and desirable strategy for respiratory infections, including MTB
(Sécher et al.).

As shown in the review and research articles of this
collection, as well as in the recent literature, thanks to the
new technologies and rapid scientific advancements it is now
possible to expedite the research of innovative prophylactic and
therapeutic countermeasures, possibly reducing the time of their
approval in the clinical practice. This is certainly true in an
emergency setting, like in the course of a pandemic event, but it
could be applicable in the near future, where personalized, more
effective, specific and rapid interventions will be employed in the
clinical routine.
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Intestinal inflammatory disorders, such as inflammatory bowel disease (IBD), are

associated with increased pro-inflammatory cytokine secretion in the intestines.

Furthermore, intestinal inflammation increases the risk of enteric cancer, which is

a common malignancy globally. Native anti-inflammatory peptides are a class of

anti-inflammatory agents that could be used in the treatment of several intestinal

inflammation conditions. However, potential cytotoxicity, and poor anti-inflammatory

activity have prevented their development as anti-inflammatory agents. Therefore, in this

study, we designed and developed a novel hybrid peptide for the treatment of intestinal

inflammation. Eight hybrid peptides were designed by combining the active centers

of antimicrobial peptides, including LL-37 (13-36), YW12D, innate defense regulator

1, and cathelicidin 2 (1-13) with thymopentin or the active center of thymosin alpha

1 (Tα1) (17-24). The hybrid peptide, LL-37-Tα1 (LTA), had improved anti-inflammatory

activity with minimal cytotoxicity. LTA was screened by molecule docking and in vitro

experiments. Likewise, its anti-inflammatory effects andmechanismswere also evaluated

using a lipopolysaccharide (LPS)-induced intestinal inflammation murine model. The

results showed that LTA prevented LPS-induced impairment in the jejunum epithelium

tissues and infiltration of leukocytes, which are both histological markers of inflammation.

Additionally, LTA decreased the levels of tumor necrosis factor-alpha, interferon-gamma,

interleukin-6, and interleukin-1β. LTA increased the expression of zonula occludens-1

and occludin, and reduced permeability and apoptosis in the jejunum of LPS-treated

mice. Additionally, its anti-inflammatory effect is associated with neutralizing LPS, binding

to the Toll-like receptor 4-myeloid differentiation factor 2 (TLR4/MD-2) complex, and

modulating the nuclear factor-kappa B signal transduction pathway. The findings of

this study suggest that LTA may be an effective therapeutic agent in the treatment of

intestinal inflammation.

Keywords: anti-inflammatory activity, toll-like receptor, molecular dynamics simulation, lipopolysaccharide
neutralization, intestinal barrier, NF-κB
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INTRODUCTION

Intestinal inflammation is a defensive response against infections
and damage caused by microbiological toxins or noxious
substances (1). Clinical symptoms of intestinal inflammation
include abdominal pain, diarrhea, rectal bleeding, weight loss,
malnutrition, and fever (2). Furthermore, intestinal patients,
such as those with inflammatory bowel disease (IBD), have
an increased risk of developing colorectal and small intestinal
cancers (3–5). The mechanisms of intestinal inflammation as
well as its progression to intestinal cancer have been extensively
studied, focusing on dysregulation within the immune response
and breakdown of the mucosal barrier (6).

Intestinal inflammation is treated with corticosteroids,
specifically glucocorticoids (7, 8). This treatment can successfully
decrease the production of pro-inflammatory cytokines and
chemokines, cell adhesion molecules, and other key mediators
of inflammation (9); however, prolonged use of corticosteroids is
related to side effects, including impaired wound healing, mild
hirsutism, linear growth inhibition, myopathy, osteoporosis,
osteonecrosis, peptic ulcers, pancreatitis, and candidiasis (10, 11).
Therefore, there is a need to identify and develop new drugs that
have both the desired efficiency and improved safety.

In recent years, antimicrobial peptides (AMPs) have been
reported to have anti-inflammatory effects (12–14). AMPs can
not only directly interact with lipopolysaccharide (LPS) to
inhibit the release of inflammatory cytokines (15, 16), but can
also inhibit the translocation of nuclear factor-kappa B (NF-
κB) to dampen the inflammatory response (13). As a result,
AMPs are especially appealing candidates for the treatment of
inflammatory disorders. LL-37 and YW12D effectively neutralize
LPS; consequently, they have considerable potential for the
treatment of LPS-induced inflammation (15, 17, 18). Cathelicidin
2 (CATH-2), a highly cationic (11+) chicken heterophil-derived
peptide, inhibits IL-1β, and nitric oxide production in LPS-
induced HD11 cells (19). Innate defense regulator (IDR)-1, one
type of synthetic innate defense regulators, has protective activity
against LPS-induced inflammation mediated by modulating NF-
κB and mitogen-activated protein kinase (MAPK) signaling

Abbreviations: AMPs, antimicrobial peptides; IDR, innate defense regulator;

CATH2, cathelicidin 2; TP5, Thymopentin; Tα1, Thymosin alpha 1; LPS,

lipopolysaccharide; LTA, LL-37-Tα1; TNF-α, tumor necrosis factor-alpha; IFN-γ,

interferon-gamma; IL-6, interleukin-6; TLR4/MD-2, Toll-like receptor 4/myeloid

differentiation factor 2; NF-κB, nuclear factor-kappa B; IBD, inflammatory bowel

diseases; UJ, ulcerative jejunitis; TLRs, Toll-like receptors; MAPK, mitogen-

activated protein kinase; MyD88, myeloid differentiation primary response 88;

LTP, LL-37-TP5; YTP, YW12D-TP5; YTA, YW12D-Tα1; ITP, IDR-1-TP5; ITA,

IDR-1-Tα1; CTP, CATH2-TP5; CTA, CATH2-Tα1; DMEM, Dulbecco’s modified

Eagle’s medium; FBS, fetal bovine serum; CCK-8, Cell Counting Kit-8; SPF, specific

pathogen free; PMB, Polymyxin B; H&E, hematoxylin-eosin; HRP, horse-radish

peroxidase; DAB, 3, 3′diaminobenzidine; DAPI, 4,6-diamidino-2-phenylindole;

TUNEL, deoxynucleotidyl transferase mediated dUTP nick end labeling; PPs,

Peyer’s patches; TEM, Transmission electron microscopy; TJ, tight junctions;

TEER, transepithelial electrical resistance; PD, potential difference; Isc, short-

circuit current; RT, total electrical resistance;MPO,myeloperoxidase; ZO-1, zonula

occluden-1; CE TAL, Chromogenic End-point Tachypleus Amebocyte Lysate; MD,

Molecular Dynamics; NPT, number, pressure, and temperature; NVT, number,

volume, and temperature; MM-PBSA, Poisson-Boltzmann accessible surface area;

IBD, inflammatory bowel diseases.

pathways (13, 20). Based on their previous anti-inflammatory
activity observed, LL-37, IDR-1, CATH2, and YW12D were
selected for further study.

Thymopentin (TP5) is a synthetic peptide consisting of five
amino acid residues (21), and thymosin alpha 1 (Tα1) is a 28-
amino acid peptide produced by thymic stromal cells (22, 23).
Both TP5 and Tα1 exhibit similar immunoregulatory activity.
They play an important role in regulating immunity, tolerance,
and inflammation (24–26). TP5 and Tα1 exert their immune-
modulating effect by interacting with Toll-like receptors (TLRs)
and intracellular signaling pathways, such as NF-κB, MAPK, and
myeloid differentiation primary response 88 (MyD88) pathways
(27–29) Additionally, TP5 and Tα1 can counteract a pro-
inflammatory cytokine storm and autoimmunity (24, 30, 31).
Overall, TP5 and Tα1 exhibit immunoregulatory activity and low
cytotoxicity (30, 32). Thus, they are commonly used in the clinic
to treat various types of inflammatory diseases, such as cancer
and infectious disease (21, 24, 33, 34).

The development of AMPs as potential anti-inflammatory
drugs has faced several obstacles that are mainly attributed to
their significant cytotoxicity toward eukaryotic cells, hampering
their clinical development (19, 35, 36). In contrast, TP5 and Tα1
exhibit low cytotoxicity but relatively weak anti-inflammatory
activity (30, 32). To improve the anti-inflammatory activity
and reduce undesirable cytotoxic effects of native peptides,
hybridization has been put forward. Hybridization is a simple
and effective strategy for developing novel therapeutic peptides
that combines the advantages of different native peptides (37). It
has been reported that LL-37 (13-36) and CATH2 (1-13), which
are the short peptides derived from native AMP, can effectively
attenuate antigen- and pathogen-induced inflammation (19, 38,
39). Tα1 (17-24) also exhibited good immunoregulatory activity
(40, 41). Thus, in the present study, we designed eight hybrid
peptides by combining AMPs, including YW12D and IDR-1, or
the active center of AMPs, including LL-37 (13-36) and CATH2
(1-13) with TP5 or the active center of Tα1 (17-24). The hybrid
peptides were evaluated based on their anti-inflammatory activity
and cytotoxicity. The best hybrid, based on these criteria, was
screened bymolecule docking and in vitro experiments. Likewise,
its anti-inflammatory effect and mechanism were also evaluated
using an LPS-induced murine model of intestinal inflammation.

MATERIALS AND METHODS

Hybrid Peptide Design
The hybrid peptides were constructed by combining the active
center of LL-37, YW12D, IDR-1, and CATH2 with the TP5 or the
active center of Tα1.The amino acid sequences of the parental
and hybrid peptides are listed in the Table 1.

Sequence Analysis of Hybrid Peptides
The mean hydrophobicity was calculated online using ProParam
(ExPASy Proteomics Server: http://www.expasy.org/tools/
protparam.html). The 3D structures of hybrid peptides LL-37-
TP5 (LTP), LL-37-Tα1 (LTA), YW12D-TP5 (YTP), YW12D-Tα1
(YTA), IDR-1-TP5 (ITP), IDR-1-Tα1 (ITA), CATH2-TP5 (CTP),
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TABLE 1 | Key physicochemical parameters of parental and hybrid peptides.

Peptides Sequence Ha

LL-37 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES −0.559

YW12D YVKLWRMIKFLR 0.167

IDR-1 KSRIVPAIPVSLL 1.046

CATH2 RWGRFLRKIRRFRPKVTITIQGSARF −0.638

TP5 RKDVT −1.608

Tα1 SDAAVDTSSEITTKDLKEKKEVVEEAEN −1.029

LTP IGKEFKRIVQRIKDFLRNLVPRTERKDVT −0.8

LTA IGKEFKRIVQRIKDFLRNLVPRTEKEKKEVVE −0.894

YTP YVKLWRMIKFLRRKDVT −0.376

YTA YVKLWRMIKFLRKEKKEVVE −0.59

ITP KSRIVPAIPVSLLRKDVT 0.289

ITA KSRIVPAIPVSLLKEKKEVVE −0.09

CTP RWGRFLRKIRRFRRKDVT −1.61

CTA RWGRFLRKIRRFRKEKKEVVE −1.635

aThemean hydrophobicity (H) is the total hydrophobicity (sum of all residue hydrophobicity

indices) divided by the number of residues.

and CATH2-Tα1 (CTA) were built using I-TASSER (http://
zhanglab.ccmb.med.umich.edu/I-TASSER/).

Hybrid Peptides Scan by Molecule Docking
The constructed 3D structures of the hybrid peptides were
then subjected to molecular docking. The initial structure for
myeloid differentiation factor 2 (MD-2) was extracted from
the crystal structure of the TLR4/MD-2 complex (PDB code:
2Z64). The initial MD-2/hybrid peptide complex was generated
by ZDOCK3.0.2. For each hybrid peptide, a total of 3600
decoy structures were predicted through the rigid-binding option
in ZDOCK; among these, the decoy with the lowest energy
was chosen for the following flexible docking study. For each
molecule, 100 docking runs were performed by flexpepdock
(http://flexpepdock.furmanlab.cs.huji.ac.il/). The most plausible
docking confirmation with the lowest score, which is calculated
by the total Rosetta energy, was selected for scanning of the
hybrid peptide.

Peptides Synthesis
The hybrid peptides, LTP, LTA, CTP, and YTP, which were
selected via molecule docking, and their parental peptides,
LL-37, CATH2, YW12D, TP5, and Tα1, were synthesized
and purified by KangLong Biochemistry (Jiangsu, China). The
purity of all peptides was higher than 95%, as determined by
high performance liquid chromatography (HPLC) and mass
spectrometry. The peptides were dissolved in endotoxin-free
water and stored at−80◦C.

Cell Culture
Mouse macrophage cell line (RAW264.7) was purchased
from the Shanghai Cell Bank, the Institute of Cell Biology,
China Academy of Sciences (Shanghai, China). The cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM;
Hyclone) supplemented with 10% (v/v) fetal bovine serum (FBS;

Bioscience) and 1% (v/v) penicillin/streptomycin (Hyclone) at
37◦C in a moist atmosphere (5% CO2, 95% air).

Cell Viability Assay
The viability of peptide-treated RAW264.7 cells was determined
using the Cell Counting Kit-8 (CCK-8) Assay Kit (Dojindo) (42).
RAW264.7 cells were pre-seeded on a 96-well plate at a density
of 3 × 104 cells/mL in 100 µL DMEM medium overnight. The
cells were either treated with various concentrations of peptides
or without peptides at 37◦C and 5% CO2 for 24 h. Each well was
incubated with 10 µL CCK-8 solution for 4 h in the darkness.
Then, the absorbance at 450 nmwasmeasured using amicroplate
reader. Cell viability was calculated as:

Cell viability (%) = (OD450 (sample)/OD450(control))×100%

where OD450(sample) is the absorbance at 450 nm of the cells with
peptides treated and OD450(control) is the absorbance at 450 nm of
the cells without peptides treated.

Animal Model
Seventy-two C57/BL6 male mice (6–8 weeks of age) were
purchased from Charles River (Beijing, China). Mice were
maintained in a specific pathogen free (SPF) environment at 22
± 1◦C with relative 55 ± 10% humidity, and the assays were
performed in conformity with the laws and regulations for live
animal treatment at China Agricultural University.

The mice were randomly distributed into six groups (n = 12
each): control, LPS (E. coli, O111:B4, Sigma-Aldrich, USA)
treatment, LL-37 pretreatment followed by LPS treatment (LL-
37 + LPS), Tα1 pretreatment followed by LPS treatment (Tα1
+ LPS), LTA pretreatment followed by LPS treatment (LTA +

LPS). Different peptides (10 mg/kg mouse weight) were injected
intraperitoneally once daily for 7 days, whereas an equal volume
of sterile saline was injected intraperitoneally to the control and
LPS-treated groups. On day 7, mice in LPS, LL-37 + LPS, Tα1
+ LPS, and LTA + LPS groups were intraperitoneally injected
with LPS (10 mg/kg mouse weight) 1h after saline or the peptides
treatment, and the control group was intraperitoneally injected
with an equal volume of saline. The mice were then euthanized
by cervical dislocation 6 h after intraperitoneal injection of LPS
or saline, and samples of the intestines were collected for analysis.
The body weights of the mice were recorded before and after
the experiment.

Histopathology and Immunohistochemistry
Intestinal tissues samples from the jejunum were fixed in 4%
paraformaldehyde immediately after the mice were euthanized.
After embedding, the tissues were sectioned (5µm) using an
RM2235 microtome (Leica) and stained with hematoxylin-eosin
(H&E). Images were acquired using a DM3000 microscope. LPS-
induced intestinal injury was evaluated using Chiu’s score (43)
according to changes of the villus and glands of the jejunal
mucosa. Villus height and crypt depth were measured using
CaseViewer software.

For immunohistochemical analysis of CD177+, nonspecific
binding sites were blocked with PBS containing 1% w/v BSA
for 1 h. Anti-CD177+ antibodies (Santa, USA) were added at
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a dilution of 1:100 and incubated overnight at 4◦C. Samples
were washed five times in PBS and treated with horse-radish
peroxidase (HRP)-conjugated rabbit anti-goat IgG (JIR, USA)
at ratio of 1:100; samples were left to incubate at 4◦C for 1 h.
After washing with PBS, 3,3′-diaminobenzidine (DAB; DAKO,
USA) was added, and the slides were counterstained with Harris
hematoxylin. Finally, the samples were dehydrated in an alcohol
gradient (70–100%), and cleared in xylene. All slides were
mounted in neutral balsam.

The apoptotic cells in the jejunal sections were detected via a
commercial the terminal deoxynucleotidyl transferase mediated
dUTP nick end labeling (TUNEL) staining kit according to the
manufacturer’s instruction (Roche, Indianapolis, IN, USA). The
sections were co-stained with the DAPI (Servicebio, Wuhan,
China). The number of apoptotic cells was counted in four to six
randomly selected fields at 200×magnification.

Transmission Electron Microscopy (TEM)
The tight junctions (TJs) between gut epithelial cells were
observed by TEM. A jejunum specimen was excised with a scalpel
and fixed in 2.5% glutaraldehyde for 4 h at 4◦C. Afterwards, the
specimens were treated with osmic acid and embedded in epon.
Ultrathin sections were acquired using a diamond knife, and
stained with uranyl acetate and lead citrate before visualization
by TEM (Model H-7650, HITACHI, Japan).

Measurement of Transepithelial Electrical
Resistance (TEER)
The TEER values of intestinal membranes were assessed by
an in vitro diffusion chamber method using stripped mouse
jejunal membranes. The underlying muscularis of the jejunal
membranes were removed, and the jejunal segments were
mounted in a diffusion chamber with an exposed surface area
of 1.78 cm2. Ussing chambers were equipped with two pairs
of electrodes connected to the chambers by 3M KCl/3.5% agar
bridges. Each side of the chamber was bubbled with a mixture
of 5% CO2 and 95% O2 to maintain the viability of the jejunal
membranes. The temperature was maintained at 37◦C during the
experiment by a circulating water bath. The potential difference
(PD) and the short-circuit current (Isc) were measured, and then,
total electrical resistance (RT) was calculated by Ohm’s law, that
is RT= PD/Isc (44).

ELISA
RAW264.7 cells were treated with or without 10µg/mL peptides
for 1h before the addition of 100 ng/mL LPS and further
incubation for 12 h at 37◦C. Levels of tumor necrosis factor-alpha
(TNF-α), interleukin-6 (IL-6), and IL-1β were detected in culture
supernatant and jejunum, respectively. In addition, the level of
interferon-gamma (IFN-γ) was detected in the jejunum. ELISA
was performed using a commercial ELISA kit (eBioscience, San
Diego, USA).

The activities of myeloperoxidase (MPO) in the jejunum were
detected using ELISA kits (Boster Wuhan, China) according to
the manufacturer’s instructions.

Western Blotting
Whole protein of intestinal tissues was obtained with the
whole protein extraction kit (KeyGEN Biotech, Nanjing, China)
according to the manufacturer’s instructions. The protein
concentration was measured via the BCA kit (KeyGEN Biotech,
Nanjing, China). Protein samples (40 µg protein/lane) were
separated by 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred to polyvinylidene
difluoride (PVDF) membranes (Bio-Rad). The membranes
were blocked with 5% nonfat dried milk in 0.05% TBST
and immunoblotted with primary specific antibodies against
inhibitor of κB (IκB)-α, p-IκB-α, IκB kinase (IKK)-β, p-IKK-β,
NF-κB (p65), p-NF-κB (p-p65), zonula occluden-1 (ZO-1),
occludin, and β-actin (Santa Cruz, CA, USA). After washing with
TBST, membranes were incubated with anti-mouse/rabbit HRP-
conjugated secondary antibodies (HuaAn, Hangzhou China).
The proteins were detected with SuperSignal West Femto
maximum sensitivity substrate (Pierce Biotechnology) and

FIGURE 1 | The overall structure of hybrid peptide-MD-2 Complex. (A) Shows
the views of the hybrid peptides (red) binding to MD-2 (blue or green). (B) An
energy plot with 10 out of 100 decoy structures from an MD-2 docking study

by Flexpepdock. Data are given as mean values ± standard.
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visualized using a ChemiDoc MP Imaging System (Bio-Rad,
Hercules, CA, USA).

Neutralization of LPS
The neutralization of LPS by the peptides was assessed using
a quantitative Chromogenic End-point Tachypleus Amebocyte

FIGURE 2 | Cell proliferation rates of RAW264.7 cells in the absence or

presence of parental peptides and hybrid peptides. RAW264.7 cells were

pre-seeded in DMEM medium overnight. The cells were treated with various

concentrations of peptides or without peptides at 37◦C and 5% CO2 for 24 h.

They were incubated with CCK-8 solution for 4 h, and then, they were

measured at 450 nm. Data are given as mean values ± standard deviation

from 8 biological replicates.

Lysate (CE TAL) assay via the QCL-1000 kit (Xiamen, China). A
constant concentration of LPS (1.0 EU/mL final concentration;
E. coli, O111:B4, Sigma-Aldrich, USA) was incubated with
various concentrations of the peptides or polymyxin B (PMB)
(0–64µg/mL final concentration; Sigma-Aldrich, USA) at 37◦C
for 15min in the wells of pyrogenic sterile microliters plates. The
100 µL aliquots concentrate of limulus amebocyte lysate reagent
was added and incubated at 37◦C for 6min. On the addition
of chromogenic substrate, yellow color appeared. The reactions
were stopped by adding 25% HCl, and then the absorbances
measured at 540 nm (45).

The level of LPS in the plasma were detected using QCL-1000
kit (Xiamen, China) according to themanufacturer’s instructions.

Molecular Dynamics Simulation
The crystallographic structure of the TLR4/MD-2 complex
was taken from PDB bank (PDB code: 2Z64), and the initial
structure for MD-2 was extracted from the crystal structure of
the TLR4/MD-2 complex. The missing hydrogen atoms were
added under pH 7.0 by Maestro (46). The docking pose was
determined by RosettaDock (version 3.5), and the pose with the
lowest score (total Rosetta energy for this model) was selected for
further analysis.

The best binding pose of LTA with MD-2 was refined using a
molecular dynamics (MD) simulation with AMBER14 (47, 48).
The force fields used for the simulation were GAFF and FF14SB,
and the system was solvated with TIP3P water molecules in a
cubic box with a minimum distance of 10 Å between the protein

FIGURE 3 | Hybrid peptides suppress the LPS-induced cytokine secretion. 12 h after treatment with 100 ng/mL LPS in the presence or absence of peptides, protein

levels of TNF-α (A), IL-6 (B), and IL-1β (C) in RAW264.7 cells were quantified by ELISA. Data are given as mean values ± standard deviation from 3

biological replicates. NS: P > 0.05, *P ≤ 0.05, ***P ≤ 0.001, and ****P ≤ 0.0001.
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and the edge of the box. Na+ and Cl− atoms were added to
mimic the physiological conditions and neutralize the system.
The system was first minimized with 5000 steps by the conjugate
gradient algorithm, following by heating gradually over 100 ps.
Subsequently, the volume of the system was adjusted under a
constant number, pressure, and temperature (NPT) ensemble.
Afterwards, a 60 ns MD simulation was performed under
constant number, volume, and temperature (NVT) ensemble.

Based on the 300 snapshots extracted from the last 40 ns
of the equilibrated MD simulation, the long-range electrostatic
interactions were calculated by the Particle-mesh Ewald (PME)
method (49), and the binding energy was calculated by the
molecular mechanics Poisson-Boltzmann accessible surface area
(MM-PBSA) method (50).

Flow Cytometry
RAW264.7 cells were treated with PBS, anti-mouse
mAbTLR4/MD-2 complex (MTS510 Ab) (eBioscience, San
Diego, USA) or isotype control (IgG) (eBioscience, San Diego,
USA) for 1 h at 4◦C before staining with 10µg/mL N-terminus
fluorescein isothiocyanate (FITC)-labeled LTA. The cells were
then harvested by trypsin and washed five times with PBS.
The average FITC intensity of the cells was measured via
flow cytometry.

Analysis of Confocal Laser-Scanning
Microscopy
To verify TLR4/MD-2 as the pattern recognition receptor,
RAW264.7 cells were treated with PBS, MTS510 Ab or isotype
control (IgG) (eBioscience, San Diego, USA) for 1 h at 4◦C.
Afterwards, RAW264.7 cells were incubated with N-terminus
FITC-LTA at 10µg/mL for 1 h at 4◦C in the dark. Then, the
cells were washed with PBS, fixed with paraformaldehyde, and
rinsed twice with PBS. The cell nuclei were stained with DAPI
(diluted 1:500 in PBS) (Sigma, USA) for 5min, and the cells
were rinsed six times with PBS. The above cells were spread on
a glass slide, fixed, and observed via a Leica TCA sp5 confocal
microscope (Germany).

Statistics
All data are expressed as mean values± standard deviation from
at least 3 independent experiments. Statistical comparisons were
carried out by Student’s t test and ANOVA test with GraphPad
Prism v6 software (La Jolla, California). Significance was claimed
with P values≤ 0.05. NS: P > 0.05, ∗P ≤ 0.05, ∗∗P ≤ 0.01, ∗∗∗P ≤

0.001, and ∗∗∗∗P ≤ 0.0001.

RESULTS

Selection of Anti-inflammatory Peptides by
Molecular Docking
As an initial screen of the anti-inflammatory peptides, the
binding modes of the eight hybrid peptides to MD-2 were
analyzed by molecular docking. As shown in Figures 1A,B, of
the eight hybrid peptides, LTP, LTA, YTP, and CTP had more
favorable docking scores to MD-2, and the total social of them
was lower than−100.

Cytotoxicity on RAW264.7 Macrophage
Cells
The cytotoxic activity of the peptides on RAW264.7 macrophage
cells was evaluated by CCK-8 assay, and the results are shown
in Figure 2. Among the initial selected hybrid peptides and
their parental peptides, LTP, and LTA exhibited the lowest
cytotoxic activity, and the cell viability of the lower doses LTP-
and LTA-treated cells was greater than 100%. Meanwhile, all
the selected hybrid peptides showed lower cytotoxicity than
their parental peptides. The cell viability of the peptide-treated
RAW264.7 cells was greater than 80%. These data indicated
that at a concentration of 10µg/mL, all of the peptides were
minimally cytotoxic to RAW264.7 cells and suitable for the
following experiments.

Inhibition of Cytokine Release From
LPS-Stimulated RAW264.7 Cells
To evaluate the anti-inflammatory effect of the hybrid peptides,
the mouse macrophage cell line, RAW264.7, was used as a
model. ELISA results show that all parental peptides and hybrid
peptides were potent inhibitors of pro-inflammatory cytokine
release (Figure 3). LPS caused a significant elevation in TNF-α,
IL-6, and IL-1β levels compared to untreated RAW264.7 cells.
Compared to the other tested peptides, 10µg/mL of LTA in the
presence of LPS caused a remarkable decrease in the release of
TNF-α (Figure 3A), IL-6 (Figure 3B), and IL-1β (Figure 3C).
Collectively, these data suggest that LTA is suitable for further
anti-inflammatory experiments.

FIGURE 4 | Protective effects of LTA on body weight. Different peptides (10

mg/kg) were injected into the mice once daily for 6 days, whereas the control

and LPS-treated groups were injected with an equal volume of sterile saline.

On day 6, mice in the LPS and peptide-pretreated groups were injected with

LPS (10 mg/kg) 1 h after the peptide or saline treatment. The control group

was injected with an equal volume of saline. The body weights of the mice

were recorded before and after the experiment. Data are given as mean values

± standard deviation from 12 biological replicates. NS: P > 0.05, *P ≤ 0.05,

and ****P ≤ 0.0001.
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FIGURE 5 | The protective effects of LTA against LPS-induced clinical symptoms in mouse jejunum. Representative H&E-stained sections from (A,a) control, (A,b)
LPS, (A,c) LL-37 + LPS, (A,d) Tα1 + LPS, (A,e) LTA + LPS. Original magnification 200 ×. (B) The effect of LTA on Chiu’s scores. Chiu’s score is comprised of

changes of the villus and glands of the jejunal mucosa (C) The effect of LTA on the ratio of villus height to crypt depth (V/C) of the jejunum. (D) TUNEL staining of

jejunal tissues. Original magnification 200 ×. (D,a) Control, (D,b) LPS, (D,c) LL-37 + LPS, (D,d) Tα1 + LPS, (D,e) LTA + LPS. (E) The number of apoptotic cells in 4–6

randomly selected fields was counted according to the number of positive green cells and the average calculated. Data are given as mean values ± standard

deviation from 12 biological replicates. NS: P > 0.05, *P ≤ 0.05, ***P ≤ 0.001, and ****P ≤ 0.0001.
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FIGURE 6 | The protective effects of LTA on the inflammatory response. ELISA for TNF-α (A), IFN-γ (B), IL-6 (C), and IL-1β (D) in jejunal tissues. (E) Representative
images of CD177+. Original magnification 400 ×. Formalin-fixed, paraffin-embedded 5-mm cross-sections were stained with a primary Ab to CD177+. (E,a) control,
(E,b) LPS, (E,c) LL-37+LPS, (E,d) Tα1+LPS, (E,e) LTA+LPS. Enzymatic activities of MPO were measured (F). Data are given as mean values ± standard deviation

from 12 biological replicates. NS: P > 0.05, *P ≤ 0.05, ***P ≤ 0.001, and ****P ≤ 0.0001.
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FIGURE 7 | The protective effects of LTA on the intestinal barrier. (A) TEER of mouse jejunal epithelium was measured ex vivo in Ussing chambers. (B) Expression of

TJ proteins was determined by western-blot. Data are given as mean values ± standard deviation from at least 3 biological replicates. NS: P > 0.05, *P ≤ 0.05, and

**P ≤ 0.01.

Effect of Hybrid Peptides on Body Weight
As expected, LPS treatment resulted in weight loss. Mice in the
LPS-treated group showed significant weight loss compared to
the control group. Mice in the LTA-pretreated group recovered
their weight loss rapidly (Figure 4). Based on the weight-loss
recovery, the hybrid peptide, LTA, appears to bemore potent than
the parental peptides (Figure 4).

The Protective Effects of LTA Against
LPS-Induced Damage in Jejunum Tissue
Mice in the LPS group had significantly more macroscopic
inflammation than those in the control and LTA-pretreated
groups. Compared to the control, histological examination of
the jejunum tissue in the LPS group showed considerable tissue
injury (Figure 5A) and a decreased villus height to crypt depth
(V/C) ratio (Figure 5C). Overall, the LPS-induced intestinal
damage was significantly attenuated by LTA pretreatment; Chiu’s
score was restored from 3.33 ± 0.58 to 0.67 ± 0.58, and the V/C
value was restored from 2.35 ± 0.389 to 4.19 ± 0.364 (p ≤ 0.05)
(Figure 5B). Based on the Chiu’s score, the newly designed hybrid
peptide appears to be more potent than the parental peptides

(Figure 5B). In addition, the V/C value in the LTA-pretreated
group was markedly increased compared to that in the Tα1-
pretreated group. No statistical significance was found among
the LTA-pretreated group compared to the LL-37-pretreated
group (Figure 5C).

As shown by TUNEL staining, apoptosis of the LPS-treated
group was significantly higher than that of the control group,
as quantified by the apoptosis index (Figures 5D,E). Compared

to the LPS-treated group, pretreatment with LTA in LPS-
administered mice significantly reduced the apoptosis index
(Figures 5D,E). In addition, the apoptosis index in the LTA-
pretreated group was markedly decreased compared to the
parental peptides.

To characterize the protective effect of LTA against
inflammation in LPS-induced mice, the secretion of the
inflammatory markers, TNF-α, IFN-γ, IL-6, and IL-1β were
evaluated by ELISA. Administration of LPS caused a significant
elevation of these pro-inflammatory cytokines in the jejunum
compared to the control group (Figures 6A–D). Figures 6A–D
shows that all peptides attenuated TNF-α, IFN-γ, IL-6, and IL-1β
secretion. Meanwhile, mice in the LTA-pretreated group had
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FIGURE 8 | The protective effects of LTA on intestinal TJs structure. TJs structure in the jejunal epithelium was confirmed by transmission electron microscope (TEM).

Original magnification 20000 × (A) control, (B) LPS, (C) LTA+LPS. The wider intervals (black arrowheads) between the intestinal epithelial cells are indicated.

significantly lower TNF-α, IFN-γ, IL-6, and IL-1β concentrations
than those in the Tα1- or LL-37-pretreated groups.

The infiltration of CD177+ cells into jejunal tissue was
detected via immunohistochemistry. In contrast to minimal
infiltration of neutrophils into the jejunum of control mice, LPS
triggered increased infiltration of CD177+ neutrophils into the
jejunal lesion area (Figure 6E). Pretreatment with the peptides
reduced the infiltration of neutrophils compared to the group
treated with LPS alone (Figure 6E). LTA, the most active peptide,
reduced this effect to the basal level.

MPO (an indicator of jejunal infiltration by leukocytes)
activity in the jejunum tissue from LPS treated mice was
significantly increased compared to control mice. LTA
pretreatment showed markedly decreased MPO activity
compared to the LPS-treated group (Figure 6F). Moreover,
MPO activity in the LTA-pretreated group was markedly
decreased compared to Tα1 and LL-37 pretreatment (Figure 6F).
Collectively, all of these results support the assertion that LTA
is the most active peptide against LPS-induced impairment of
mice, and it is suitable for further experiments.

LTA Prevented the LPS-Stimulated
Disruption of Intestinal TJ Structure and
Function
To assess the functional integrity of mouse intestinal epithelium
under ex vivo conditions, TEER measurements were performed

for 60min. Compared to the control group, the TEER values
in the LPS-treated group declined remarkably (Figure 7A),
indicating an increase in permeability. However, pretreatment
with LTA resulted in a significant protective effect; the
TEER values in the LTA-pretreated group were similar
to those in the control group (Figure 7A). These results
suggest that LTA minimizes LPS-induced intestinal epithelial
hyper permeability.

To investigate the protective effects of LTA on the LPS-
stimulated disruption of TJs, TJ marker (ZO-1 and Occludin)
levels were determined by western blotting. Compared to control
group, the expression of ZO-1 and Occludin was down-regulated
in mice treated with LPS alone (Figure 7B). However, the
expression of these TJ markers in the LTA-pretreated group
was significantly higher than that in the LPS-group (Figure 7B).
These data suggest that LTA maintains the integrity of the
junction complex. In addition, TEM, which was used to
determine the TJs between gut epithelial cells, supported the
protective effect of LTA against LPS-induced damage in jejunum
tissues (Figure 8).

LTA Effects on the NF-κB Signaling
Pathway in LPS-Induced Mice
Next, we investigated the NF-κB signaling pathway in LPS-
induced mice pretreated with or without LTA to determine
the mechanism by which LTA induces its anti-inflammatory
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FIGURE 9 | Inhibitory effect of LTA on the NF-κB signaling pathways in mice. Phosphorylated and total protein levels of IKK-β and IκB-α (A), NF-κB (B), and β-actin

from jejunal tissues were measured by western blot analyses. Data are given as mean values ± standard deviation from 3 biological replicates. NS: P > 0.05,

*P ≤ 0.05, and **P ≤ 0.01.

FIGURE 10 | LPS neutralization activity of LTA in vitro and in vivo. (A) The LPS concentration in the mice plasma. (B) In vitro LPS neutralization by LTA. Binding of LTA

(shown as triangles) or PMB (shown as a circle) binding to LPS was determined using the chromogenic in vitro TAL assay. Data are given as mean values ± standard

deviation from 3 biological replicates. NS: P > 0.05, ****P ≤ 0.0001.

activity. The phosphorylation of IKK-β, IκB-α, and NF-κB
increased significantly after stimulation with LPS, but the

phosphorylation decreased in the group pretreated with LTA

(Figure 9). These results suggest that one mechanism by
which LTA modulates the immune system in mice is via the

NF-κB pathway.

LPS Neutralization Activity of LTA in vitro

and in vivo
The plasma LPS concentration in the mice was evaluated by the
CE TAL test. In the LPS-treated group, the plasma LPS level
sharply increased, but LTA significantly reduced the plasma LPS
level (Figure 10A).
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FIGURE 11 | TLR4/MD-2-dependent staining of RAW264.7 cells with FITC-LTA. (A) RAW264.7 cells were treated with PBS, anti-mouse mAbTLR4/MD-2 complex

(MTS510 Ab) or isotype control (IgG) for 1 h at 4◦C before staining with 10µg/mL. The cells were then harvested by trypsin and washed five times with PBS. The

above cells were analyzed by the flow cytometry. (B) Cells were treated with PBS, MTS510 Ab, or IgG before FITC-LTA staining for confocal laser scanning

microscopy analysis. Bar, 10µm. Data are given as mean values ± standard deviation from 3 biological replicates. NS: P > 0.05, ****P ≤ 0.0001.

To test whether LTA neutralized LPS, an LPS neutralization
activity was performed in vitro. As shown in Figure 10B, LTA
inhibited the activation of tachypleus amebocyte lysate in a
dose-dependent manner. The LPS neutralization activity LTA is
similar to PMB, a cyclic hydrophobic peptide known to bind
LPS (51), and LTA could completely neutralize LPS at 8 ug/mL
or more.

The Specific Binding of LTA to TLR4/MD-2
To determine the recognition receptor, a binding assay of
LTA to a receptor on the plasma membrane was performed
via flow cytometry (Figure 11A) and confocal laser-
scanning microscopy (Figure 12B). FITC-LTA caused a
significant increase in the fluorescence intensity of RAW264.7
cells compared to the intensity of cells blocked with an

Frontiers in Immunology | www.frontiersin.org 12 August 2019 | Volume 10 | Article 184118

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. A Novel Peptide for Treating Intestinal Inflammation

FIGURE 12 | The docking results of LTA to the TLR4/MD-2 complex. (A) Time evolution of RMSD during molecular dynamics simulation. (B) LTA is bound to the

hydrophobic pocket of MD2. The yellow ribbons represented TLR4, gray ribbons represented MD2, and green ribbons represented LTA. (C) A close-up view of LTA

binding to the MD-2. Residues involved in the interaction between LTA and MD-2 are displayed.

anti-mouse TLR4/MD-2 mAb. Meanwhile, this increased
fluorescence intensity was not attenuated by IgG (Figure 12A).
Similar results were also seen via confocal laser-scanning
microscopy (Figure 11B).

To further predict binding of LTA to the TLR4/MD-
2 complex, MD simulations were performed. Based on the
root-mean square deviation (RMSD) values of TLR4/MD-2
(Figure 12A), the MD simulation was fully equilibrated during
the full 60 ns. A total of 300 snapshots was taken from the last
stable 40 ns of the MD simulation. The calculated binding free
energy, which was well correlated with the determined binding
affinities, is shown in Table 2. The binding energy of LTA to

MD-2 calculated by MM-PBSA method was −996.2 kJ/mol.
The interface of MD-2 that is bound to LPS was compared
to that of LTA. There was a common hydrophobic pocket
on MD-2 where both LPS (52) and LTA interacted with the
protein (Figures 12B,C). The interaction between LTA and MD-
2 was principally mediated by salt-bridges and hydrogen bonds
between Asp14 (LTA) - Arg 90 (MD-2), Lys 6 and Gln 10
(LTA) - Glu 92 (MD-2), and Lys 13 (LTA) – Glu 122 (MD-
2) (Table 3). This is consistent with the flow cytometry and
confocal laser-scanning microscopy results that suggest that LTA
blocks LPS binding to TLR4/MD2 complex, resulting in the
LPS-antagonizing effects.

Frontiers in Immunology | www.frontiersin.org 13 August 2019 | Volume 10 | Article 184119

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. A Novel Peptide for Treating Intestinal Inflammation

TABLE 2 | Key parameters of interactions between LTA and MD-2.

Interaction
pair

Number of
salt-bridges

Number of
hydrogen bonds

Interaction
surface (Å2)

Binding free
energy
(kj/mol)

MD2…LTA 4 5 343 −996.2

TABLE 3 | Distances and salt-bridges between the binding residues of LTA and

MD-2.

Interaction pair
MD2…LTA

Distance (Å) Salt-bridges

R90-NH2…D14-OD1 3.30 +

E122-OE2…K13-NZ 3.00 +

E122-OE1…K13-NZ 2.94 +

E92-OE1…Q10-NE2 3.00 –

E92-OE1…K6-NZ 3.03 +

E92-OE2…K6-NZ 3.19 +

The distance and salt-bridges of interaction pairs are extrapolated from the LTA/MD-2

molecular dynamics simulation. “+” means existence, and “–” means not determined.

DISCUSSION

LPS, a major component of the cell wall of Gram-negative
bacteria, is released by antibiotic intake and can lead to intestinal
inflammation. Intestinal inflammation is a chronic inflammatory
disease associated with engagement of the immune response by
increased pro-inflammatory cytokine secretion in the intestines
(53, 54). Historically, intestinal inflammation is more common
in western countries than Asia; the increasing incidence in Asia
is likely due to the influence of a high-fat diet (55). Notably,
intestinal inflammation increases the risk of enteric cancer, which
is a commonly malignancy globally (56).

Native anti-inflammatory peptides are a class of anti-
inflammatory agents that may be useful in the treatment
of a range of inflammatory diseases (13, 18, 25). However,
several concerns, such as potential cytotoxicity (35), poor anti-
inflammatory activity based on peptide concentration, and weak
physiological stability (57), have weakened their development
as anti-inflammatory therapeutics. Hybridizing different anti-
inflammatory peptides is one of the most successful approaches
to obtain a novel anti-inflammatory peptide with increased
activity but minimized cytotoxicity (58, 59). Based on previous
findings, we designed several hybrid peptides comprising the
active center of AMPs, including LL-37 (13-36), YW12D (1-12),
IDR-1 (1-13), and CATH2 (1-13), with TP5 or the active center
of Tα1 (17-24).

It has been well established that LPS mediates its immune
response in macrophages via TLR4 (60). MD-2, an accessory
protein of TLR4, is responsible for recognizing LPS; in turn, LPS
interacts with the Toll/Interleukin-1 receptor (TIR) domain on
TLR4 and induces the inflammatory effects (61, 62). Therefore,
targeting MD-2 is an important therapeutic strategy for the
attenuation of the inflammatory response (62–64). Initially,
molecular docking was used to simply and effectively scan the

binding mode of the anti-inflammatory peptides. LTP, LTA,
YTP, and CTP were the hybrid peptides selected for further
study, and the anti-inflammatory activities of these four hybrid
peptides were assessed in RAW264.7 cells. The four hybrid
peptides showed higher anti-inflammatory activity than their
parental peptides. LTA, the most active peptide, was selected for
a comprehensive analysis.

The hybrid peptides designed in our study were aimed to
fight inflammatory disorders with reduced cytotoxicity. Because
cytotoxicity is often thought to be a bottleneck for the therapeutic
use of these peptides, it was important to evaluate toxicity.
In this study, the proliferation assays showed that the hybrid
peptides had lower cytotoxic than their parental peptides.
Presumably, this decreased cytotoxic activity was due to the
rational hydrophobicity of these hybrid peptides, which is similar
to that described in other studies (59). The low cytotoxic activity
at relatively high peptide concentrations combined withmodified
anti-inflammatory activity is an excellent combination from the
parental peptides.

The present study showed that murine models of intestinal
inflammation induced by LPS have characteristics similar to
human IBD (14, 65), such as weight loss, neutrophil infiltration,
histological features of multiple erosions, and inflammatory
intestinal mucosal changes, including crypt abscess. However,
LTA treatment significantly reverses weight loss and reduce
histological damage such as ulceration of the epithelial and
decreased villus height to crypt depth ratio, in the LPS-induced
intestinal inflammation experimental model. The infiltration
of activated neutrophils is one of the most representative
histological features observed in intestinal inflammation, because
neutrophils generate superoxide anions and other reactive
species (66). The infiltration of activated was significantly
increased in LPS-treated mice; however, mice pre-treated with
LTA did not show the same effect. The activity of MPO is
directly proportional to the neutrophil concentration in the
inflamed tissue. Therefore,MPO activity is an index of neutrophil
infiltration and inflammation (67). Consistent with this, jejunal
MPO activity was markedly increased in LPS-treated mice,
but pretreatment with LTA significantly reduced this effect.
In addition, MPO activity in the LTA-pretreated group was
markedly decreased compared to the Tα1 and LL-37 pretreated
groups. Apoptosis is one of the ulcerogenic processes associated
with intestinal inflammation (68). In this study, TUNEL staining
showed that LPS markedly increased the number of apoptotic
cells in the jejunal mucosa, while administration of LTA
decreased the extent of apoptosis.

Excessive production of inflammatory cytokines, such as
TNF-α, which can amplify the inflammatory cascade by
triggering the accumulation and activation of leukocytes, is often
seen in intestinal inflammation (69). In the present study, we
found that pretreatment with LTA reduced the levels of TNF-
α, IFN-γ, IL-6, and IL-1β in the jejunum. Moreover, the levels
of TNF-α, IFN-γ, IL-6, and IL-1β in LTA-pretreated group
were markedly decreased compared to the Tα1- and LL-37-
pretreated groups.

Collectively, these results support the deduction that LTA is
the most active peptide that prevents LPS-induced impairment
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FIGURE 13 | Schematic illustration of design and development of the novel hybrid peptide, LTA for the treatment of intestinal inflammation.

in mice. To identify the mechanisms of the observed anti-
inflammatory effects in LPS-treated mice, a comprehensive and
detailed analysis was conducted.

LPS can upregulate ∼100 different genes, including pro-
inflammatory cytokines, signaling molecules, and transcriptional
regulators; thus, it can induce several functional responses
that contribute to immunity (70). LPS has high biological
activity and plays an important role in the pathogenesis of
intestinal inflammation (14). In this study, we found that
LTA-pretreated mice had significantly reduced plasma LPS
levels compared to the LPS-only treated. In vitro experiments
showed that LTA can almost completely neutralize LPS at a
concentration of 8µg/mL. By neutralizing LPS, LTA could
significantly attenuate the intestinal inflammatory effects by
reducing the binding of LPS to the TLR4 receptor in the immune
cells in vivo.

The intestinal mucosa forms a physical and metabolic barrier
against toxins and pathogens from the lumen into the circulatory
system (71). Deterioration of the intestinal epithelial barrier
increases host susceptibility to luminal pathogens and antigens,

leading to the chronic intestinal immune response (72). This
deterioration is also a key contributing factor in the pathogenesis
of intestinal inflammation (73). First, we evaluated the effect of
LTA on gut epithelial barrier function via the TEER tests and
the results showed that LTA alleviated LPS-induced permeability.
The intestinal epithelial barrier is formed by an interplay between
different types of barrier components, such as intercellular TJ
proteins (74). TJs are responsible for limiting the paracellular
movement of compounds across the intestinal mucosa (75).
Regions of increased permeability in the TJs are major sites for
both infections and the initiation of inflammation in the gut
(76). Our data indicated that the expression of two major TJ
proteins, Occludin and ZO-1, was regulated by LTA. In addition,
TEM was used to determine the TJs between gut epithelial
cells, and its results support the protective effect of LTA against
LPS-induced damage in jejunum tissues. The effect of LTA on
the epithelial barrier suggests that LTA could protect the host
by preventing toxins and luminal antigens from impairing the
body’s defense mechanism, thereby reducing the severity of
intestine inflammation.
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The hybrid peptides proposed in this study antagonize the
effects of LPS in RAW264.7 cells and in the mouse by binding to
the TLR4-MD2 complex. To identify the binding ability of LTA to
the TLR4/MD-2 complex, binding assays were performed by flow
cytometry and confocal laser-scanning microscopy. The results
demonstrated that that LTA competitively blocks LPS binding
to the TLR4/MD-2 complex. Consistently, the MD simulation
showed that LTA binds to the hydrophobic pocket of MD-2,
which partially overlaps with the LPS binding sites onMD-2 (52).
This binding mode could be the cause of the LPS-antagonizing
effect. Therefore, the present study indicated that LTA confers
its anti-inflammatory activity by blocking LPS binding to the
TLR4/MD-2 complex.

NF-κB signaling regulates cytokines and cells involved in the
inflammatory process (77), and LPS is a strong activator of NF-
κB, through its interactions with TLR4. NF-κB is considered
to be a crucial initiative factor regulating inflammatory gene
expression (78). Thus, we tested the expression of the major
proteins involved in the NF-κB pathway to clarify the anti-
inflammatory mechanism of LTA in intestinal inflammation.
LTA effectively inhibited the activation of NF-κB signaling by
suppressing of phosphorylation of IKK-β, IκB-α, and NF-κB.

CONCLUSION

In this study, a feasible approach for the design of anti-
inflammatory peptides by the hybridization of different native
anti-inflammatory peptides was proposed (Figure 13). The anti-
inflammatory potency of the peptides was enhanced while
cytotoxicity was reduced. Moreover, the different hybrid peptide
combinations may provide a range of opportunities for obtaining
a more active anti-inflammatory peptide.

One novel hybrid peptide, LTA, was most effective at reducing
the LPS-induced inflammatory response. This peptide, which
was identified by molecule docking and in vitro experiments,
had low cytotoxicity. Our study also confirmed that the
anti-inflammatory effects of LTA on the LPS-induced murine
intestinal inflammation model may be associated with the

neutralization of LPS, the maintenance of the TJ network, the
binding activity on the TLR4/MD-2 complex, and the inhibition
of the NF-κB signal pathway. Thus, LTA is able to modulate TJ
proteins, such as Occludin and ZO-1, and inhibit the production
of inflammation mediators, such as TNF-α, IFN-γ, IL-6, and
IL-1β. As a result of its broad effects against inflammation, LTA
exhibits great potential as a useful tool to study or potentially treat
inflammatory disorders.
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The Yellow Fever (YF) vaccination is recommended for people living in endemic

areas and represents the most effective strategy to reduce the risk of infection.

Previous studies have warned that booster regimens should be considered to

guarantee the long-term persistence of 17DD-YF-specific memory components in

adults living in areas with YF-virus circulation. Considering the lower seroconversion

rates observed in children (9–12 months of age) as compared to adults, this

study was designed in order to access the duration of immunity in single-dose

vaccinated children in a 10-years cross-sectional time-span. The levels of neutralizing

antibodies (PRNT) and the phenotypic/functional memory status of T and B-cells were

measured at a baseline, 30–45 days, 1, 2, 4, 7, and 10 years following primary

vaccination. The results revealed that a single dose induced 85% of seropositivity

at 30–45 days and a progressive time-dependent decrease was observed as early

as 2 years and declines toward critical values (below 60%) at time-spans of

≥4-years. Moreover, short-lived YF-specific cellular immunity, mediated by memory

T and B-cells was also observed after 4-years. Predicted probability and resultant

memory analysis emphasize that correlates of protection (PRNT; effector memory

CD8+ T-cells; non-classical memory B-cells) wane to critical values within ≥4-years

after primary vaccination. Together, these results clearly demonstrate the decline
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of 17DD-YF-specific memory response along time in children primarily vaccinated at

9–12 months of age and support the need of booster regimen to guarantee the long-

term persistence of memory components for children living in areas with high risk of

YF transmission.

Keywords: yellow fever, 17DD vaccine, children, neutralizing antibodies, cellular memory

INTRODUCTION

The Yellow fever (YF) is an acute viral hemorrhagic
disease caused by a single-stranded RNA Flavivirus that is
endemic in Africa, South America and Central America (1, 2).
YF is considered to be a re-emerging public health problem due
to increasing number of outbreaks reported in the recent years
worldwide (3).

The live attenuated YF vaccine has been an effective and safe
control measure available to prevent YF since the 1930s (4). The
YF vaccination is recommended for travelers and residents of
endemic areas as the most effective strategy to reduce the risk of
infection (5). The maintenance of high levels of immunity to YF
is necessary to prevent the spread of the disease and large scale
access to YF vaccines is critical to establish and maintain high
levels of immunity amongst adult and children (3).

According to the World Health Organization, a single dose
of YF vaccine is sufficient to provide lifelong protection in the
general population (5, 6). However, previous studies have warned
that the levels of neutralizing antibodies and the cellular immune
responses elicited by YF vaccination decline considerably after
primary vaccination (7–14).

Considering that the seroconversion rates observed in
children following primary vaccination at 9–12 month of age are
already lower than those observed in adults (15), it is expected
that the duration of immunity in children would be even shorter
as compared to adults. The present study was designed to assess
the duration of humoral and cellular immunity following a single
dose of 17DD-YF vaccine in children in a 10-year cross-sectional
time-span. The quantification of neutralizing antibodies titers
(PRNT) and the assessment of phenotypic/functional status of
cellular memory were measured at baseline, 30–45 days, 1, 2, 4,
7, and 10 years following primary vaccination. These parameters
have been considered relevant proxies of protection and can
allow the monitoring of YF-specific immunological memory
induced by the 17DD-YF vaccine (16–18).

This study aims to cover the gap in information about the
duration of neutralizing antibodies and 17DD-specific T and B-
cell memory overtime following the primary vaccination regimen
in children. The data presented here bring original insights
to support the importance of 17DD-YF booster vaccination in
children to restore the YF-specific immune response elicited by
primary vaccination.

METHODS

Study Oversight
This study was sponsored by the Programa Nacional de
Imunizações-PNI, Ministry of Health, Brazil. The protocol was
approved by the research ethics committee at the Escola Nacional

de Saúde Pública (CAAE 0014.0.031.000-10, February 20th 2010)
as well as at Instituto René Rachou (CAAE 0023.0.245.000-
10, February 11th 2011 and CAAE 25315213.6.0000.5091,
May 23rd 2015) and registered at the Clinicaltrials.gov
(NCT 02990182, January 9th 2015). Written informed
consent was obtained from the parents of the participants in
this study.

Study Participants and Design
The study population consisted of 673 healthy children, from
both genders, with ages ranging from 9 months to 12 years.
Participants resided in two municipalities: Contagem and
Ribeirão das Neves at Minas Gerais State, Brazil, and these
two municipalities had no reports of YF cases for several
decades prior the study onset. Moreover, the surveillance for
epizootic events had not detected the circulation of YF virus
amongst non-human primates in the State of Minas Gerais
at the time of the study development. All participants have
received, at 9–12 months of age, a single dose of the 17DD-
YF substrain vaccine, produced by Instituto de Tecnologia em
Imunobiológicos Bio-Manguinhos (FIOCRUZ, Brazil), from the
seed lot 993FB013Z. The study was designed and supervised
by the authors and structured into “two non-concurrent
arms”: (i) the first arm was a paired longitudinal analysis
to identify early correlates of protection and included two
groups, referred as “NV(day 0)”—non-vaccinated children at
baseline, n = 47 and “PV(day 30–45)”—vaccinees at 30–
45 days after primary vaccination, n = 47; (ii) the second
arm was a cross-sectional analysis comprising of five groups,
categorized according to the time after 17DD-YF primary
vaccination: “PV(year 1)”—vaccinees at 1 year (8–18 months)
after primary vaccination, n = 141; “PV(year 2)”—vaccinees at
2 years (19–30 months) after primary vaccination, n = 114;
“PV(year 4)”—vaccinees at 4 years (31–69 months) after primary
vaccination, n = 128; “PV(year 7)”—vaccinees at 7 years (75–
99 months) after primary vaccination, n = 116 and “PV(year
10)”—vaccinees at 10 years (101–142 months) after primary
vaccination, n= 127.

Heparinized blood samples (7mL) were collected at health
units at Contagem and Ribeirão das Neves (MG, Brazil) and
transported to Grupo Integrado de Pesquisas em Biomarcadores
at Instituto René Rachou-FIOCRUZ-Minas in Belo Horizonte
(MG, Brazil). Blood samples were centrifuged to obtain the
plasma that was aliquoted into cryovials and stored at −80◦C
for further analysis of neutralizing antibodies against yellow
fever virus by plaque-reduction neutralization test (PRNT).
Mononuclear cells were also isolated to quantify the levels
of 17DD-YF specific cellular memory response by in vitro
phenotypic and functional analyses. In addition to blood
collection, a questionnaire was applied to obtain demographic
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data. The vaccination status and the date of YF immunization
was verified in the vaccination card. Current health status,
the use of prescribed medicine, pathological conditions, and
any travel history after 17DD-YF vaccination was registered.
Eligibility criteria included children of both genders with
primary 17DD-YF vaccination at 9–12 months of age, with
post-vaccination time ranging from 30–45 days to 10 years.
Exclusion criteria encompassed the presence of autoimmune
diseases, hemoglobinopathies and transient/permanent
immunomodulatory condition. Children with previous history
of blood transfusion and therapy based on hyperimmune
serum up to 90 days before peripheral blood collection were not
recruited to this study. All tests were carried out in a blind fashion
without knowing whether the samples were from the first or
second arm.

Testing Procedures
YF-Specific Neutralizing Antibodies
Heparin plasma samples were obtained from each volunteer
and submitted to Ecteola-cellulose pre-treatment to remove
heparin, as previously described by Campi-Azevedo et al. (19),
for subsequent use in the PRNT assay. Ecteola-cellulose treated
samples were assayed by the micro-PRNT50 test according to
Simões et al. (20). For the present study, the performances
(sensitivity, specificity, and global accuracy) of micro-PRNT50

and micro-PRNT90 were defined for children samples and the
cut-off 1:10 in reciprocal of serum dilution and the micro-
PRNT50 were selected as the most accurate condition. The
micro-PRNT50 was performed at the Laboratório de Tecnologia
Virológica, Bio-Manguinhos (LATEV, FIOCRUZ-RJ, Brazil).
The results were expressed as reverse of sample dilution,
considering seropositivity as PRNT titers higher than 1:10
sample dilution.

YF-Specific Phenotypic and Functional Memory
The analysis of 17DD-YF specific cellular memory response
was carried out as previously described by Campi-Azevedo
et al. (8). Briefly, in vitro 17DD-YF-specific peripheral
blood lymphoproliferative assay were conducted in two
separate batches, referred as: non-stimulated Control Culture
and 17DD-YF Culture. After the long-term incubation
(144 h), cultured cells were harvested and stained with
Live/Dead Dye (Life Technologies, Carlsbad, CA, USA)
and a mix of monoclonal antibodies (mAbs) to identify
memory T-cell subpopulations (anti-CD4/RPA-T4/FITC;
anti-CD8/SK1/PerCP-Cy5.5; anti-CD27/M-T271/PE, and
anti-CD45RO/UCHL1/PE-Cy7) and memory B-cell subsets
(anti-IgD/IA6-2/FITC, anti-CD27/M-T271/PE, and anti-
CD19/HIB19/PerCP). In a parallel, an aliquot of cultured
cells were incubated with Live/Dead Dye, labeled with anti-
CD8/SK1/PerCP and after pre-fix/permeabilization procedure
re-incubated with a cocktail of anti-cytokine mAbs (anti-
TNF-α/MAb11/PE-Cy7; anti-IFN-γ/B27/Alexa-Fluor488,
and anti-IL-5/JES1-39D10/PE). All monoclonal antibodies
were purchased from BD Biosciences (San Jose, CA, USA).
Stained cells were washed, fixed and the data was acquired
(100,000 lymphocytes/test) on a BD LSRFortessa Flow

Cytometer (BD Biosciences, San Diego, CA, USA). FlowJo
software (version 9.3.2, TreeStar, San Diego, CA, USA)
was used to establish distinct gating strategies to quantify
the memory T and B-cells subpopulations as previously
described (8), including: “T-cell memory subsets:” Naïve T-
cells/(NCD4;NCD8)/CD27+CD45RO−; early Effector Memory
T-cells/(eEfCD4;eEfCD8)/CD27−CD45RO−; Central Memory
T-cells/(CMCD4;CMCD8)/CD27+CD45RO+ and Effector
Memory T-cells/(EMCD4;EMCD8)/CD27−CD45RO+ and
“B-cell memory subsets:” Naïve B-cells/(NCD19)/CD27−IgD+;
Non-classical Memory B-cells/(nCMCD19)/CD27+IgD+

and Classical Memory B-cells/(CMCD19)/CD27+IgD−.
The percentage of cytokine+ CD8+ T-cells was also
quantified. The results were reported as 17DD-YF-
stimulated Culture/non-stimulated Control Culture Index,
calculated as the ratio of results observed in the 17DD-YF-
stimulated Cultures divided by the respective non-stimulated
Control Culture.

Data Analysis
The GraphPad Prism software, Version 5.0 (San Diego,
CA, USA) was employed to perform all statistical analyses.
Kolmogorov-Smirnov, D’Agostino and Pearson omnibus
and Shapiro-Wilk normality tests were used to check data
distribution. Multiple strategies were employed for data
analysis. Kruskal-Wallis test followed by Dunn’s post-test were
employed for intergroup comparative analysis. The Chi-square
test was used to compare seropositivity rates, biomarker
signatures, descriptive analysis of selected biomarkers and
analysis of resultant memory. Spearman’s correlation test
was carried out to determine the PRNT wane along time
continuum. In all cases, significant differences were considered
at p < 0.05.

Biomarker signature analysis was carried out using the 75th
percentile (3rd quartile) values for each biomarker (17DD-
YF-stimulated Culture/non-stimulated Control Culture Index)
as the cut-off edge to identify subjects with high biomarker
levels. Those biomarkers with more than 25% of subjects above
the cut-off were considered for comparative analysis amongst
groups. Venn diagram analysis (http://bioinformatics.psb.ugent.
be/webtools/Venn/) was employed to identify biomarkers
observed selectively in PV (days 30–45), referred as correlates
of protection. Overlay of ascendant biomarker signatures were
employed for comparative analysis of time-depended changes in
immunological profile after primary vaccination.

Logistic and multinomial regression models were constructed
to evaluate the association between time after vaccination and
changes in the biomarker levels. Following this, the fitted
regression model was employed to calculate the predicted
probabilities for each biomarker (isolated or combined) along
time continuum. The Receiver Operating-Characteristic curves
(ROC) were was constructed to estimate the capacity of time
as a predictor of changes in biomarkers levels to monitor the
17DD-YF memory after primary vaccination in children. The
Area Under the ROC Curve (AUC) was used for comparative
analysis of predictive capacity amongst biomarkers (isolated
or combined).
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FIGURE 1 | Neutralizing antibody titers after 17DD-YF primary vaccination in children. PRNT titers were measured in Ecteola-treated plasma samples (19) from

non-vaccinated children at baseline NV(day 0)/(©, n = 47) and at different times after primary vaccination: PV(day 30–45)/( , n = 47), PV(year 1)/( , n = 141), PV(year

2)/( , n = 114), PV(year 4)/( , n = 128), PV(year 7)/( , n = 116), and PV(year 10)/(◦, n = 127), as described previously by Simões et al. (20). (A) The PRNT levels were

expressed in reverse of serum dilution. (B) Proportion of PRNT seropositivity (PRNT>1:10) were calculated for each group and the results expressed as seropositivity

rates at baseline NV(day 0) [ ] and at different times after primary vaccination: PV(day 30–45) [ ], PV(year 1) [ ], PV(year 2) [ ], PV(year 4) [ ], PV(year 7) [ ], and

PV(year 10) [ ], considering the serum dilution >1:10 as the cut-off (dashed line). (C) Correlation and logistic regression were employed to determine the wane of

PRNT levels along time continuum and the results expressed as reverse of serum dilution and predicated probability, respectively. Statistical analysis was carried out

as described in Methods. In all cases, significant differences at p < 0.05 were underscored by using letters “a,” “b,” “c,” and “d” for comparisons with NV(day 0),

PV(day 30–45), PV(year 1), and PV(year 2), respectively and the p-values provide in the figure. Spearman correlation indices as well as Likelihood and Odds ratio are

provided in the figure. Gray rectangle highlights the critical decrease of PRNT seropositivity rates ≥4 years after primary vaccination.

RESULTS

Progressive Time-Dependent Decrease in
Neutralizing Antibody Titers Is Observed
After 17DD-YF Primary Vaccination in
Children
The levels of neutralizing antibodies, the proportion of PRNT
seropositivity along with the correlation between PRNT levels
and the logistic regression analysis of PRNT levels along time
continuum are presented in the Figure 1. Data analysis revealed
that primary vaccination induced a significant increase in the

PRNT levels (Figure 1A) reaching a seropositivity rate of 85%

in PV(day 30–45) as compared to NV(day 0) (Figure 1B). A

progressive decrease in the PRNT levels was observed along
time as early as 2 years after primary vaccination as compared

to PV(days 30–45) (Figure 1A). Critical seropositivity rates

(below 60%) were observed amongst vaccinees, particularly
≥4 years after primary vaccination (Figure 1B, gray dashed

rectangle). Correlation analysis further supports the waning
phenomenon observed in the PRNT levels along time after
primary vaccination in children (Figure 1C). Furthermore,
the outstanding likelihood ratio (LR+ = 44.29) and odds
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ratio (OR = 0.9861, 95% CI = 0.9819–0.9903) reinforce
the abrupt and progressive decline month to month in
PRNT levels along time continuum, which reached values
of 0.8454, 0.6025, and 0.1865 at 12, 36, and 120 months,
respectively (Figure 1C).

Primary 17DD-YF Vaccination in Children
Elicits Short-Lived YF-Specific Cellular
Memory Mediated by Effector CD4+ and
CD8+ T-Cells and Non-classical B-Cells
The analysis of YF-specific phenotypic and functional biomarkers
was evaluated upon in vitro 17DD-YF antigen recall and the
results are presented in Figure 2. An increase of memory T-cells
(eEfCD4, eEfCD8, EMCD4, and EMCD8) as well as nCMCD19
cells along with an up-regulation of TNF-α and IFN-γ produced
by CD8+ T-cells is observed in PV(day 30–45) as compared to
NV(day 0) (Figures 2A,B). Moreover, a significant decrease in
these biomarkers occurs along the time, particularly ≥4 years
after primary vaccination when almost all these attributes decline
as compared to PV(days 30–45) (Figure 2).

Biomarker Signatures Emphasize the
Short-Term Persistence of Phenotypic
Effector Memory and Functional Activity of
CD8+ T-Cells
In order to accomplish the characterizing of the duration of
phenotypic and functional memory induced by the 17DD-
YF primary vaccination in children, the biomarker signatures
were built for comparative analyses along time. To accomplish
this goal, initially overlaid biomarkers signatures of NV(day
0) vs. PV(days 30–45) were assembled to identify attributes
selectively observed in PV(day 30–45), further referred as
correlates of protection in children (Figure 3A). Venn diagram
analysis indicated that besides three common attributes (eEfCD4,
eEfCD8, and CMCD19), five biomarkers (EMCD4, EMCD8,
nCMCD19, TNFCD8, and IFNCD8) were tagged to be employed
as selective correlates of protection for follow-up analysis
overtime after primary 17DD-YF vaccination (Figure 3B).

Once the correlates of protection for follow-up analysis were
selected, overlaid biomarker signatures were constructed
to verify changes along time upon 17DD-YF primary
vaccination (Figure 3C). Data analysis pointed out that all
five biomarkers were persistently observed in PV(day 30–45)
and PV(year 1). Although some attributes were not observed
in PV(year 2), the lack of EMCD8, considered one of the
top biomarkers to monitor the immunological memory to
17DD-YF vaccine (9) was noticed in PV(year 4), PV(year 7), and
PV(year 10) (Figure 3C).

Descriptive Analysis Confirms the
Time-Dependent Decrease of Proxies of
Protection Upon 17DD-YF Primary
Vaccination in Children
The biomarkers tagged as correlates of protection (EMCD4,
EMCD8, nCMCD19, TNFCD8, and IFNCD8) were employed

together with the neutralizing antibody levels to carry out a
descriptive analysis to monitor the YF-specific memory along
time after 17DD-YF primary vaccination. For this purpose,
the proportion of subjects displaying biomarkers levels above
the 75th percentile cut-off and PRNT levels >1:10 were
calculated and data reported for each group (Figure 4A). Data
demonstrated that in NV(day 0) there is a predominance
of subjects displaying 0–1 biomarkers above that cut-off.
Conversely, in the PV(day 30–45) there is a significantly higher
prevalence of subjects displaying 3 biomarkers above that cut-
off. In PV(year 1) and PV(year 2) there was a balanced
proportion of subjects displaying 1–2 biomarkers above that
cut-off. Notably, in PV(year 4), PV(year 7), and PV(year 10)
there was a higher prevalence confined in only one biomarker
above that cut-off (Figure 4A). Complementary analysis further
revealed that the median number of biomarkers above that
cut-off found in PV(day 30–45), PV(year 1), and PV(year 2)
was higher as compared to NV(day 0). Although in PV(year
4), the median value still differed from that observed in
NV(day 0), it was lower as compared to PV(days 30–45).
Additionally, a critical median number of biomarkers above
that cut-off was observed in PV(year 7) and PV(year 10) as
compared to PV(days 30–45) that did not differ from those
found in NV(day 0) (Figure 4B). Based on these findings,
the vaccinees were distributed into two major groups referred
as PV(≤year 2) and PV(≥year 4). The results showed that
both groups presented higher median number of biomarkers
above the cut-off as compared to NV(day 0), although the
PV(≥year 4) group exhibited lower values as compared to
PV(≤year 2) (Figure 4B).

Predicted Probability Analysis Emphasizes
That Neutralizing Antibody Levels (PRNT),
EMCD8, and nCMCD19 Are the Top
Biomarkers to Monitor the 17DD-YF
Memory After Primary Vaccination in
Children
Logistic and multinomial regression models were constructed
and the fitted regression model employed to calculate the
predicted probabilities for each biomarker previously tagged
as correlates of protection (EMCD4, EMCD8, nCMCD19,
TNFCD8, and IFNCD8) to monitor the 17DD-YF memory
after primary vaccination along time continuum. The ROC
curves were constructed for comparative analysis of predicted
capacity amongst biomarkers (isolated or combined). Based on
the global accuracy (Area Under the ROC Curve—AUC), the
neutralizing antibody levels (PRNT), EMCD8, and nCMCD19
presented moderate performance when employed isolated as a
single parameter to monitor the 17DD-YFmemory after primary
vaccination in children (AUC = 0.6777; 0.5601, and 0.5770,
respectively) (Figure 5A). The combined analysis of neutralizing
antibody levels (PRNT), and EMCD8 and nCMCD19 further
improved the predictive capacity of using these biomarkers to
monitor the 17DD-YF memory after primary vaccination in
children (AUC= 0.9201) (Figure 5B).
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FIGURE 2 | Phenotypic and functional memory biomarkers after 17DD-YF primary vaccination in children. The analysis of 17DD-YF-specific memory was measured

upon in vitro 17DD-YF antigen recall as described previously by Campi-Azevedo et al. (8) for non-vaccinated children at baseline NV(day 0)/( , n = 47) and at different

times after primary vaccination: PV(day 30–45)/( , n = 47), PV(year 1)/( , n = 141), PV(year 2)/( , n = 114), PV(year 4)/( , n = 128), PV(year 7)/( , n = 116), and

PV(year 10)/( , n = 127). (A) Flow cytometric staining were used to quantify phenotypic features of T-cell memory subsets: Naïve

T-cells/(NCD4;NCD8)/CD27+CD45RO−; early Effector Memory T-cells/(eEfCD4;eEfCD8)/CD27−CD45RO− Central Memory

T-cells/(CMCD4;CMCD8)/CD27+CD45RO+ Effector Memory T-cells/(EMCD4;EMCD8)/CD27−CD45RO+ and B-cell memory subsets: Naïve

B-cells/(NCD19)/CD27− IgD+; Non-classical Memory B-cells/(nCMCD19)/CD27+ IgD+ and Classical Memory B-cells/(CMCD19)/CD27+ IgD−. (B) Flow cytometric

staining were also performed to quantity functional CD8+ T-cells producing TNF-α, IFN-γ and IL-5. The data were reported as median values ± inter-quartile range for

17DD-YF-stimulated Culture/non-stimulated Control Culture Index as described in Methods, highlighting the equivalence ratio by dashed line (Index = 1.0). Significant

differences at p < 0.05 were underscored by using asterisk (*) to identify differences between NV(day 0) vs. PV(day 30–45) and intergroup differences identified by

connecting lines.

The Resultant Memory (PRNT, EMCD8, or
NCMCD19) Wanes Overtime Reaching
Critical Values at 4 or More Years After
17DD-YF Primary Vaccination in Children
The results of neutralizing antibody levels (PRNT), EMCD8,
and nCMCD19 profiles were combined at individual level
to build a memory matrix and calculate the resultant YF-
specific memory, comprising of humoral (PRNT) and cell-
mediated (EMCD8 or nCMCD19) immunity. Then, each
volunteer was classified as they present “None,” “PRNT,”
“EMCD8 and/or nCMCD19,” or “Both” attributes above the cut-
off threshold, i.e., PRNT positivity at serum dilution >1:10,
EMCD8 (17DD-YF-stimulated Culture/non-stimulated Control
Culture >2.19) or nCMCD19 (17DD-YF Culture/Control
Culture >1.66). The results demonstrated that 17DD-YF

primary vaccination was able to guarantee persistent resultant
memory in 79% of children included into PV(≤year 2).
Conversely, a clear decline in the resultant memory down
to 55% was observed into PV(≥year 4). Specifically, the
resultant memory initially observed in 96% of children in
PV(day 30–45) decrease to 77% in PV(year 1) and 73%
in PV(year 2) followed by a marked shift down to 53,
55, and 58% in PV(year 4), PV(year 7) and PV(year 10),
respectively (Figure 6).

DISCUSSION

The YF vaccination is currently recommended as a single
dose for residents of disease risk areas and people traveling
from or to those areas, who aged 9 months or older (5, 6,
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FIGURE 3 | Phenotypic and functional biomarker signatures after 17DD-YF primary vaccination in children. (A) Biomarker signatures of reference groups NV(day 0)

[ ] and PV(day 30–45) [ ] were assembled to select biomarkers above the 75th percentile with proportions higher than the 25% in each group (white/black

background rectangles). The selected biomarkers were underscored by asterisk (*) to identify differences between NV(day 0) vs. PV(day 30–45). (B) Venn diagram

report was employed to identify the set of biomarkers selectively increased in [PV(day 30–45) vs. NV(day 0)]. The attributes EMCD4, EMCD8, nCMCD19, TNFCD8,

and IFNCD8 were underscored as PV (day 30–45)-selective biomarkers. These attributes were tagged in bold underline format and employed for follow-up analysis

overtime after 17DD-YF primary vaccination. Biomarkers with proportion higher than the 25% were underscored by asterisk (*) to identify differences between NV(day

0) vs. PV(day 30–45). (C) Overlaid signatures of selected biomarkers were assembled to identify changes in the 17DD-YF specific phenotypic and functional features

at different times after primary vaccination: PV(day 30–45) [ ], PV(year 1) [ ], PV(year 2) [ ], PV(year 4) [ ], PV(year 7) [ ], and PV(year 10) [ ]. Dashed rectangles

underscore the critical decline of selected biomarkers overtime after primary vaccination with absence of EMCD8 ≥ 4 years after primary vaccination.

21–23). According to the WHO, very few primary vaccine
failures following YF vaccination have been reported. It has
been proposed that, in addition to neutralizing antibodies,
both innate and cell-mediated immunity also contribute to

the initial immune response. Defining the parameters that
modulate vaccine responses is relevant to increase vaccine
effectiveness. It has been proposed that several factors may affect
the YF vaccine response including: genetic background, gender,
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FIGURE 4 | Descriptive analysis of selected biomarkers after 17DD-YF primary vaccination in children. (A) Prevalence of Biomarkers (PRNT>1:10, EMCD4, EMCD8,

nCMCD19, TNFCD8, and IFNCD8) above the 75th percentile cut-off. Data are presented as proportion of subjects with biomarkers above the cut-off at baseline

NV(day 0) [ ] and at different times after primary vaccination: PV(day 30–45) [ ], PV(year 1) [ ], PV(year 2) [ ], PV(year 4) [ ], PV(year 7) [ ], and PV(year 10) [ ]. (B)
Number of Biomarkers (PRNT>1:10, EMCD4, EMCD8, nCMCD19, TNFCD8, and IFNCD8) above the 75th Quartile cut-off. Data are presented as mean (min to max)

number of biomarkers above the cut-off at baseline NV(day 0) [ ] and at different times after primary vaccination: PV(day 30–45) [ ], PV(year 1) [ ], PV(year 2) [ ],

PV(year 4) [ ], PV(year 7) [ ], and PV(year 10) [ ] as well as PV(≤year 2) [ ], PV(≥year 4) [ ]. Significant differences at p < 0.05 are underscored by using letters “a,”

“b,” “c,” and “d” for comparisons with NV(day 0), PV(day 30–45), PV(year 1), and PV(year 2), respectively. Intergroup differences are identified by connecting lines.

The p-values are provided in the figure.

age, and environmental differences. Muyanja et al. (24) have
proposed that host-specific immune response microenvironment
may contribute to the effectiveness of the 17D-YF vaccine.
These authors have suggested that an activated immune
microenvironment prior to vaccination impedes the efficacy
of the 17D-YF vaccine in an African cohort and suggest
that booster regimens should be proposed to improve efficient
immunity after YF vaccination. Other studies have suggested
that the ability of YF-17D vaccine to infect dendritic cells
and activate multiple Toll-like receptors seems to be essential
for generating a potent immune response after vaccination
(17, 25). A distinct hypothesis have been tested to explain the
lower seropositivity rates after YF vaccination in children. An
observational multicenter study, carried out by the Collaborative
Group for Studies on Yellow Fever Vaccines has reported that
the 17DD-YF vaccine reached distinct seroconversion rates in
children according to the age at vaccination (26). Moreover,

it has been demonstrated that simultaneous administration of
other viral vaccines reduces significantly the response to YF
vaccine in children (15). Conversely, no association between
seroconversion rates and the maternal immunity status to YF
has been observed (27). Our group have previously observed that
children non-responsive to primary 17DD-YF vaccine presented
a striking lack of innate immunity pro-inflammatory response,
specially low levels of IL-12+ and TNF-α+ neutrophils and
monocytes, along with an increased regulatory profile in the
adaptive response, including higher levels of IL-4+CD4+ T cells
as well as IL-10+ and IL-5+CD8+ T cells (28). Interestingly,
the revaccination of children with primary vaccination failure
was able to restore the innate and adaptive immunity toward a
balanced pro-inflammatory/regulatory profile.

Some studies that investigated the impact of booster doses on
the status of YF-specific immune response in adults postulated
that booster vaccination did not increase the titers of YF-specific
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FIGURE 5 | Predictive capacity of biomarkers to monitor the 17DD-YF memory after primary vaccination in children. The Receiver Operating Characteristic (ROC)

curves were used to estimate the capacity of time as a predictor of changes in biomarker levels to monitor the 17DD-YF memory after primary vaccination in children.

Logistic and multinomial regression models were constructed to evaluate the association between time after vaccination and changes in the biomarker levels.

Following, the fitted regression model was employed to calculate the predicted probabilities for each biomarker (A) isolated or (B) combined along time continuum.

The Area Under the ROC Curves (AUC) were employed for comparative analysis of predictive capacity amongst biomarkers and the values provided in the figure. The

gray background highlights the top three isolated biomarkers and the best combination of predictor biomarkers to monitor the 17DD-YF memory after primary

vaccination in children.

antibodies nor induced or altered the phenotypes of CD8+ T-
cells and the immune responses observed following revaccination
were reduced compared to primary responses (23, 29, 30).
However, other studies have demonstrated that booster doses
are relevant to guarantee the long-term persistence of 17DD-
YF-specific memory components in travelers (31) and in
residents of areas with YF-virus circulation (32, 33). Therefore,
the single dose recommendations for YF vaccines have been
considered controversial.

The decision to no longer recommend booster vaccination
may especially have a direct impact on children, given that
besides higher primary vaccination failures (15), there is no
evidence for the long-term persistence of protective immunity in
primary vaccinated children. Our group has already described the
occurrence of time-dependent loss of YF-immunity in primary
vaccinated adults (7–9). If this scenario also occurs in children
it would contribute to worsening the setting in which a large
proportion of individuals would become exposed to potential
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FIGURE 6 | Resultant memory (PRNT, EMCD8, or nCMCD19) after 17DD-YF Primary vaccination in children. The resultant memory status (PRNT, EMCD8, or

nCMCD19) were assessed at individual level to define the overall proportion of subjects presenting None ( ), PRNT ( ), cellular memory “EMCD8 and/or nCMCD19”

( ) or both attributes “PRNT and cellular memory” ( ) at distinct time-points before/after primary 17DD-YF vaccination, including: NV(day 0), PV(≤year 2), PV(≥year 4)

as well as PV(day 30–45), PV(year 1), PV(year 2), PV(year 4), PV(year 7), and PV(year 10). Significant differences (p < 0.05) of resultant memory status amongst study

groups were assessed by Chi-square test and represented by letter “a” as compared to NV(day 0).

risk of YF infection, especially in endemic areas of high virus
circulation. As indicated by the results of the present study, a
substantial proportion of children could be susceptible to YF-
virus infection, especially in endemic areas.

The studies that evaluated the timeline kinetics of correlates
of protection after 17D-YF and 17DD-YF vaccination in adults
have demonstrated that both humoral and cellular-mediated
YF-specific immunity display a relevant decline overtime in
single dose recipients of YF vaccines and that the booster doses
efficiently improve the immunological status in re-vaccinated
recipients (29–33). Recent studies from our group have shown
that secondary or multiple vaccination regimens in adults are
able to further improve the immunity parameters triggered
by primary 17DD-YF vaccination and restore the resultant
YF-specific memory in 100% of the volunteers. Moreover, it
was observed that all vaccinees had at least one or both
proxy of protection detectable at ≥10 years post-secondary
vaccination (33).

Previous studies from our group have compared the
cytokine-mediated immune response triggered by 17D-213/77-
YF or 17DD-YF vaccines in children submitted to primary
vaccination at 9–12 month of age with those non-responders
to primary vaccination and also with those that received
(28, 34). The results demonstrated that all children that
received a booster dose 1 year after primary vaccination
failure seroconverted and shifted the overall cytokine signatures
toward a balanced pro-inflammatory/regulatory response of
innate and adaptive immunity, overcoming the striking lack of
innate immunity pro-inflammatory response observed in non-
responder children (28, 34). These studies clearly indicated
that booster regimens are relevant to guarantee the persistence
of long-term immunity in areas with high risk of yellow
fever transmission.

Data about the duration of YF-specific immunity in children
following primary vaccination is still scarce and can provide
supporting evidence to support the public health programs for
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YF control worldwide. In this sense, the present investigation
was designed to explore the duration of humoral and cellular
immunity in primary vaccinated children in a 10-years cross-
sectional timeline.

Our findings indicate that a substantial proportion of
children lose their antiviral humoral immunity at 4 or more
years after 17DD-YF primary vaccination. The PRNT has
been considered the classical gold standard to measure post-
vaccination immunity to YF for decades and generally regarded
as the most appropriate parameter for monitoring protection by
YF vaccine (6, 16). Reports from Niedrig et al. (16) regarding
the timeline kinetics of YF-neutralizing antibody after 17D-
YF vaccination in adults demonstrated that seropositivity rates
(>1:10) significantly decrease from 94.0 to 74.5% from 1 to
10 years, respectively. In fact, upon closer inspection, the
data clearly showed that antibody titers declined more rapidly
during the first 1–4 years after 17D-YF vaccination and that
seropositivity rates (>1:10) reached 69% when vaccinees are
grouped together from 5 to 35 years post vaccination (13,
16). This rapid decline in neutralizing antibodies early after
YF vaccination was also in a study by Hepburn et al. (29),
which demonstrated that antibody levels decayed within 3–4
years in approximately half of the adult vaccines, even after
booster vaccination.

Short-lived persistence of cell-mediated immunity has
also been observed in memory T and B-cells (EMCD4;
EMCD8; TNFCD8; IFNCD8; nCMCD19) after 4-years
after a 17DD-YF single dose. Complementary predicted
probability analysis together with resultant memory assessment
highlighted that besides neutralizing antibody levels (PRNT),
the levels of EMCD8 and nCMCD19 also decline to critical
values at ≥4-years after primary vaccination. Several studies
strongly suggested that CD8+T cells are relevant for immune
protection upon YF after primary or secondary vaccination
(8, 9, 17, 35). The role of nCMCD19 cells has not been
completely elucidated in YF-vaccinated recipients. It is
known that the maintenance of long-lived plasma cells that
secrete antigen-specific antibodies, as well as memory B-
cells, is essential for protection against pathogens, and is
the basis of successful vaccinations (36). The nCMCD19
cells (IgD+CD27+CD19+) are known as unclass-switched
cells with similar functions compared to classical switched
memory B-cells (IgD−CD27+CD19+) and are not in
the process of transition from naive to memory B cells.
These nCMCD19 cells are believed to play an important
role in secondary immune response in early phases of
infection (37).

The current study further indicates that booster vaccination
regimen may be required to guarantee protective immunity
in children. The rapid and expressive loss of humoral and
cellular immunity in a subpopulation of primary vaccinated
children suggests that the first booster dose of vaccine should
be administered within 4–5 years after primary vaccination
instead of 10 years after vaccination as proposed previously for
adults (32, 33).

The study’s limitations include the cross-sectional
representation of the average immune status of several

birth cohorts, which assumed they differ only in time after
vaccination, although this seems a legitimate assumption
given that the vaccine and immunization practices have
remained unchanged in the time period of those cohorts.
Another limitation could be the possibility of booster by
natural infections, as those children lived in an area where
YF vaccine is recommended. However, it is important to
mention that the study participants lived in a metropolitan
region where there had been no cases in humans and non
human primates.

The inclusion of the YF vaccine into worldwide immunization
program for children living in endemic areas represents an
important measure to ensure the YF-immunization in infancy
and guarantee the effective control of YF expansion. The
knowledge about duration of correlates of protection following
YF vaccination in children is relevant to support further
decisions to be made regarding the need of revaccination
and to define the precise time for booster regimens. The
results presented here add scientific knowledge about the
immune response induced by 17DD-YF vaccine and bring
new insights and increase awareness for healthcare workers
about the importance of YF vaccination/revaccination in
childhood. Moreover, our results may support the revision
of the recommendation for a single dose YF-vaccine and will
certainly guarantee that a large contingent of children will
be revaccinated, improving the prevention of YF. Altogether,
these data would be helpful to define targets and indicators
for protection and susceptibility, especially in endemic
countries with high historical rates of YF virus circulation
in continuous expansion.
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LRV, Costa-Pereira C, Speziali E, et al. 17DD-Yellow Fever re-vaccination

regimens are required for long-term persistence of neutralizing antibodies

and memory CD8+ T-cells in populations of endemic areas with high

risk of yellow fever transmission. Emerg Infec Dis. (2019) 25:1511–21.

doi: 10.3201/eid2508.181432

34. Campi-Azevedo AC, de Araújo-Porto LP, Luiza-Silva M, Batista MA, Martins

MA, Sathler-Avelar R, et al. 17DD and 17D-213/77 yellow fever substrains

trigger a balanced cytokine profile in primary vaccinated children. PLoS ONE.

(2012) 7:e49828. doi: 10.1371/journal.pone.0049828

35. Reinhardt B, Jaspert R, Niedrig M, Kostner C, L’age-Stehr J.

Development of viremia and humoral and cellular parameters of

immune activation after vaccination with yellow fever virus strain 17D:

a model of human flavivirus infection. J Med Virol. (1998) 56:159–67.

doi: 10.1002/(SICI)1096-9071(199810)56:2<159::AID-JMV10>3.0.CO;2-B

36. Sarkander J, Hojyo S, Tokoyoda K. Vaccination to gain humoral immune

memory. Clin Transl Immunol. (2016) 5:e120. doi: 10.1038/cti.2016.81

37. Shi Y, Agematsu K, Ochs HD, Sugane K. Functional analysis of human

memory B-cell subpopulations: IgD+CD27+ B cells are crucial in secondary

immune response by producing high affinity IgM. Clin Immunol. (2003)

108:128–37. doi: 10.1016/S1521-6616(03)00092-5

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Campi-Azevedo, Reis, Peruhype-Magalhães, Coelho-dos-Reis,

Antonelli, Fonseca, Costa-Pereira, Souza-Fagundes, Costa-Rocha, Mambrini,

Lemos, Ribeiro, Caldas, Camacho, Maia, de Noronha, de Lima, Simões, Freire,

Martins, Homma, Tauil, Vasconcelos, Romano, Domingues, Teixeira-Carvalho

and Martins-Filho. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org 13 September 2019 | Volume 10 | Article 219237

https://doi.org/10.1093/infdis/jir439
https://doi.org/10.1016/j.vaccine.2005.12.055
https://doi.org/10.1038/s41598-017-00798-1
https://doi.org/10.1093/jtm/tay108
https://doi.org/10.1016/j.vaccine.2019.05.048
https://doi.org/10.3201/eid2508.181432
https://doi.org/10.1371/journal.pone.0049828
https://doi.org/10.1002/(SICI)1096-9071(199810)56:2<159::AID-JMV10>3.0.CO;2-B
https://doi.org/10.1038/cti.2016.81
https://doi.org/10.1016/S1521-6616(03)00092-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


ORIGINAL RESEARCH
published: 11 October 2019

doi: 10.3389/fimmu.2019.02420

Frontiers in Immunology | www.frontiersin.org 1 October 2019 | Volume 10 | Article 2420

Edited by:

Giuseppe Andrea Sautto,

University of Georgia, United States

Reviewed by:

Byung-Kwon Choi,

Entrada Therapeutics, Inc.,

United States

Chang Li,

Academy of Military Medical Sciences

(AMMS), China

*Correspondence:

Anna Stachyra

astachyra@twarda.pan.pl

Justyna Bień-Kalinowska
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Trichinellosis is a globally-distributed zoonotic parasitic disease caused by nematode

worms of the genus Trichinella. One of the most common species of Trichinella known to

affect human health is T. britovi; however, it is relatively poorly investigated. A thorough

knowledge of the proteins expressed by Trichinella is important when developing

immunological detection methods and vaccines and studying its interactions with the

host. The present study uses the Pichia pastoris expression system to produce a soluble

TbCLP antigen which induces strong antibody responses in the host during natural

infection. Our results demonstrate the feasibility of TbCLP antigen production in yeasts,

which are able to carry out post-translational modifications such as glycosylation and

disulfide bond formation; they also indicate that the glycosylated TbCLP antigen had

immunogenic effects in the tested mice and induced a mixed Th1/Th2 response, and

was associated with a reduced larval burden after challenge with T. britovi. Subsequent

in vitro stimulation of mice splenocytes revealed that TbCLP most likely possesses

immunomodulatory properties and may play a significant role in the early phase of

infection, affecting host immunological responses.

Keywords: Trichinella britovi, cystatin-like protein, Pichia pastoris, immunization, immunomodulation

INTRODUCTION

Trichinellosis is a common food-borne parasitic zoonosis worldwide. Infection occurs through the
consumption of raw or inadequately-cooked meat containing Trichinella larvae: one of the most
widespread intracellular parasitic nematodes affecting vertebrates (1, 2). The entire life cycle of the
Trichinella parasite takes place in a single host after ingestion of infected muscle tissue. Parasitic
infection can be divided into three separate antigenic stages: adult worms (Ad), newborn larvae
(NBL), and muscle larvae (ML).

Within the Trichinella genus, the most widespread and most widely-investigated species has
historically been T. spiralis. The parasite mainly occurs in domestic animals, and its circulation
is traditionally associated with consumption of pig meat by humans. However, a range of other
Trichinella species, such as T. nativa, T. britovi, T. nelsoni, T. murelli, and T. pseudospiralis,
also circulate in sylvatic cycles and could also represent an accidental threat for human and
domestic animals.
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Of these species, T. britovi is the most widely distributed (1, 3).
It can infect a wide range of mammalian hosts, mostly carnivores
such as raccoon dogs, red foxes, and wolves, but is also known to
invade various omnivores including wild boars, martens, badgers,
and rodents (3–6). Trichinellosis is a widely-known public health
hazard, especially in developing countries, but also represents
an economic problem in the production of pork products and
food safety. In contrast, developed countries tend to have a
lower risk of trichinellosis associated with the consumption of
pig-based products due to their high biosecurity standards and
strict veterinary control in the pig farming and food processing
industries. Currently, the most common source of trichinellosis
in developed countries is through the consumption of game
hunted for recreation: as it is not intended for sale, but only
for private consumption, the meat is often not subject to
veterinary inspection. Interestingly, while T. spiralis was found
to predominate in samples of wild boar, a commonly consumed
type of meat, T. britoviML were also present in smaller numbers
(7, 8). Hence, it is reasonable to assume that some cases of
human trichinellosis may be caused by T. britovi, and numerous
cases have already been confirmed (9–12). Therefore, to better
understand the biology of the nematode and the host-parasite
relationship, proteomical and immunological studies of T. britovi
aimed at the identification of active proteins and potent antigens
are needed.

Proteomical analysis (13, 14) and immunoscreening of cDNA
expression libraries (15, 16) indicate that the multi-cystatin-like
domain protein (named MCD or CLP) of T. spiralis is a highly
antigenic protein. Its expression has been confirmed by RT-PCR
in all developmental stages, with the highest level occurring in
Ad. The protein was localized in the stichosome of Ad and ML
and was also detected as a component of the excretory-secretory
antigen (ES) of both Ad and ML (16–18). Hypothetical CLP
was also recently detected by immunoblotting of somatic protein
extract of T. britovi ML (19). Referred studies revealed, that this
protein is produced in various stages of the parasite life cycle,
after which it accumulates in the stichosome and is later released
at specific stages of development as a component of the ES
antigen, with its greatest release probably being at the intestinal
stage (16).

Cystatins, inhibitors of cysteine proteinases, are a major
class of parasitic nematode molecules with immunomodulatory
properties that enhance production of the anti-inflammatory
IL-10 cytokine and inhibit legumains, thus preventing MHC-II
generation (20). Nematode proteinase inhibitors are generally
known to play important functions at the host-parasite interface
and are targeted by the immunological system. They control
their own proteinase activity and that of the host, and weaken
the immunological response by influencing antigen processing
and presentation, cytokine production, and T-cell proliferation
(21, 22).

Interestingly, the Trichinella CLP protein most likely has no
cysteine protease inhibitory activity, and its function is unknown.
The protein is classified within the cystatin superfamily, and
demonstrates a similarity to family 3 kininogens: glycosylated
and secreted proteins that are of relatively high mass and contain
three family 2 cystatin-like domains (23). Robinson et al. (18)

report that recombinant TsCLP produced in E. coli was not able
to inhibit papain in vitro; the authors attribute this to the absence
of two conserved motifs (QXVXG and PW in each cystatin
domain), which are normally present in family 2 cystatins, and
which form a structure that blocks the active site of the protease
(24, 25). Instead of inhibitory activity, they propose that the
protein can undergo self-processing and release single cystatin-
like peptides to perform specific functions. Even so, the function
of these peptides remains unknown. These low molecular weight
isoforms of native CLP were observed in two-dimensional (2-
D) analysis of ES antigen; the isoforms were also observed
following expression of TsCLP in HeLa cells but not in E. coli
(14, 16, 18), suggesting that CLP activity requires eukaryotic post-
translational modification, such as the formation of disulfide
bonds or glycosylation.

Pichia pastoris is a methylotrophic yeast used for expression
of recombinant proteins; it is a particularly attractive host
for this process due to its potential for methanol-dependent
induction, triggered by the tightly-regulated AOX1 promoter
(26). The system is useful for both large-scale and laboratory-
level production of recombinant proteins, and can produce
large amounts of the protein of interest. As a eukaryotic
organism, P. pastoris ensures that the proteins undergo post-
translational modification, and offers very economical handling
and propagation. It is therefore an interesting alternative to
other expression systems (27). Following eukaryote-specific post-
translational modification, the produced recombinant proteins
are generally highly similar to native proteins. Their disulfide
bonds are correctly formed and preserved (28). The N-
glycosylation profile is usually high mannose with no tendency
to hyper-glycosylation and the oligosaccharides are often
attached at the same positions as in natural glycoproteins
(29, 30). A number of pharmacologically-active proteins are
commercially produced in this expression system, e.g., hepatitis
B vaccine antigen, human serum albumin, human IFNα, anti-
RSV antibody and human insulin (source: https://pichia.com/).
However, few studies have been published concerning the
production of parasitic nematode proteins in this way (31–34),
particularly Trichinella proteins.

CLP protein was identified as one of the reactive spots in our
previous proteomic analysis of T. britovi antigens, based on a
combination of 2-D immunoblotting of sera from infected pigs
followed by LC-MS/MS analysis (19). It was therefore selected as
a promising immunoreactive protein for further study, especially
that the T. britovi homolog of CLP was yet not known. The aim of
the present study was to achieve expression of the TbCLP antigen
in a eukaryotic system, and to evaluate its potential diagnostic
applications and protective efficacy against T. britovi infection in
a mouse model.

MATERIALS AND METHODS

T. britovi Parasite and Mouse Model
The reference strain of T. britovi (ISS002) had been maintained
by several passages in male C3H mice at the Institute of
Parasitology, PAS. Muscle larvae were used for challenge
infection of C3H mice and as a source of genetic material
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for cloning. The larvae were recovered from the infected mice
by HCl-pepsin digestion (35). The animals were housed in a
temperature-controlled environment at 24◦C with 12-h day-
night cycles, and received food and water ad libitum.

Sequence Analysis
The amino acid (aa) sequences were aligned using CLUSTALW.
The N-glycosylation sites were predicted using NetNGlyc
server (http://www.cbs.dtu.dk/services/NetNGlyc/).

Cloning of Recombinant CLP Gene
T. britovi ML were obtained for total RNA isolation using Total
RNA mini Plus kit (A&A Biotechnology). The RNA template
was then used for cDNA synthesis with the Maxima First Strand
cDNA Synthesis Kit for RT-qPCR (Thermo Scientific) according
to the manufacturer’s protocol. The cDNA coding the TbCLP
gene without its signal peptide was amplified by PCR with CLP-
specific primers (Forward: 5′-AGGCATCGATACAGATACTTG
GTGAAAC-3′, Reverse: 5′-GCTCTAGAGCACATTCAACAG
TTGACTTG-3′). Since the nucleotide sequence of T. britovi
CLP was not known, primers were designed according to the
nucleotide sequence of T. spiralis CLP (GenBank no. FR694976),
whose amino acid sequence is thought to be very similar to the
hypothetical sequence of TbCLP (GenBank no. KRY50178). The
cDNA coding for TbCLP was sequenced and subcloned into the
yeast expression vector pPICZαC with the His-tag sequence at
the C-terminus (Invitrogen/Thermo). The correct reading frame
of the recombinant plasmid was confirmed by DNA sequencing
using vector flanking primers, 5′AOX1 and 3′AOX1.

Expression and Purification of
Recombinant CLP in P. pastoris
Pichia pastoris cells (X33 strain) were transformed with
recombinant plasmids by electroporation. X33 transformant
selection was performed using a medium containing Zeocin,
and successful integration of the CLP gene into the P. pastoris
genome was confirmed by PCR. The recombinant TbCLP
with C-terminus His-tag was expressed by induction with
0.5% methanol for 24–72 h in 200ml of Buffered Methanol-
complex Medium (BMMY), and then purified by immobilized
metal ion affinity chromatography using Protino Ni-NTA
agarose (Macherey-Nagel). The protein samples were analyzed
qualitatively by SDS PAGE and Western blotting, and their
concentration was measured using Pierce BCA Protein Assay Kit
(Thermo Scientific).

Enzymatic Deglycosylation
Samples of recombinant protein purified from medium after
24, 48, and 72 h of induction were digested with Endo H
(New England Biolabs) in denaturing conditions, according to
the manufacturer’s instructions. Deglycosylated rTbCLP were
analyzed by SDS-PAGE.

SDS-PAGE and Western Blot Analysis
SDS-PAGE was performed in 10% BisTris polyacrylamide
gels. After electrophoresis, the gels were either stained with
Coomassie brilliant blue or the proteins were transferred to

a nitrocellulose membrane (Bio-Rad) for Western blotting.
The recombinant protein was detected using monoclonal Anti-
polyHistidine–Peroxidase antibody (diluted 1:4,000; Sigma).
The proteins were viewed with Super Signal Western Pico
Chemiluminescent Substrate (Thermo Scientific). Alternatively,
rTbCLP was detected using sera from immunized or infected
mice (1:200) and a secondary anti-mouse IgG antibody
conjugated with HRP (1:8,000, Abcam).

Determination of Recombinant Antigen
Immunoreactivity by ELISA
A panel of T. britovi serum samples stored in our collection were
used for testing rTbCLP as an antigen in ELISA; the samples
had been obtained from pigs experimentally infected with 5000
T. britovi ML. Testing was performed on samples were taken at
multiple time points post-infection (−4, 3, 6, 9, 13, 15, 17, 20,
24, 29, 36, 41, 45, 51, 55, 59, 62 days post-infection, dpi). ELISA
plates were coated with 2µg/ml of rTbCLP protein and incubated
at 4◦C overnight.

The pig serum samples were added at 1:100 dilution and
the plates were incubated at 37◦C for 1 h. Goat anti-pig IgG
conjugated with peroxidase (Sigma) at 1:20,000 dilution was
used for detection of CLP-specific antibodies. The enzymatic
color reaction was generated using TMB substrate (3,3′,5,5′-
Tetramethylbenzidine; Sigma), and the absorbance value was
measured at 450 nm using a Synergy HT microplate reader
(BioTek). The cut-off value of ELISA was evaluated on the
basis of the average OD plus three standard deviations (SD) of
Trichinella-free serum samples of pigs (36).

Immunization and Challenge Infection
Eight-week old male C3H mice were divided into three
groups of 12 animals each. The vaccine group was immunized
subcutaneously with 25 µg of rTbCLP emulsified with the
adjuvant Alhydrogel (InvivoGen) in a total volume of 100 µl
(antigen/Alhydrogel = 75/25 v/v). The mice were boosted with
the same dose after 1 week. The control groups were injected with
PBS or PBS+Alhydrogel using the same regimen. 1 week after the
final vaccination, six mice from each group were sacrificed, and
their blood and spleens were harvested for immunological tests.
The remaining six mice from each group were challenged orally
with 500 T. britoviML. 7 weeks (48 days) after infection, all mice
were sacrificed, the blood and spleens were harvested, and the
T. britovimuscle larvae were recovered by HCl-pepsin digestion.
Protective immunity was calculated according to the number of
ML recovered from the vaccinated group compared with those
from the PBS group. Sera from all mouse blood samples were
isolated and frozen at−20◦C for further analysis.

Determination of Serum-Specific
Antibodies
TbCLP-specific antibodies (IgG as well as subclasses IgG1 and
IgG2a) in serum samples of vaccinated mice were measured
by indirect ELISA, with rTbCLP as coating antigen, at 1 week
after final immunization and 7 weeks after challenge infection.
ELISA plates were coated with 2µg/ml of rTbCLP protein and
incubated at 4◦Covernight. Following this, mouse serum samples
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at 1:200 dilution were added and incubated at 37◦C for 1 h. Then,
the plates were incubated with HRP-conjugated antibody goat
anti-mouse IgG, IgG1, or IgG2a (1:80,000 or 1:60,000, Abcam)
for detection of CLP-specific antibodies. The enzymatic color
reaction was generated and the cut-off value of ELISA was
evaluated as described in the present study.

Cytokine Analysis
To measure the specific cellular response, the spleens
were harvested from vaccinated animals 1 week after final
immunization and 7 weeks after challenge infection.

The spleens were pooled into pairs taken from two randomly-
selected mice within the same group; following this, the
splenocytes were disassociated using a 70µm cell strainer and
then suspended in complete RMPI medium (Biowest). In order
to lyse the erythrocytes, the splenocytes were incubated in
5ml RBC lysis buffer (Thermo Scientific) for 10min. The cell
suspension was centrifuged at 250 × g at room temperature for
7min. The cell pellets were washed in RPMI medium and then
resuspended in complete RPMImedium containing 10% FBS and
penicillin/streptomycin (Biowest); following this, the cells were
then counted.

For the cytokine stimulation assay, the splenocytes were
seeded in a 24-well culture plate (Corning) at 5 × 106 cells
per well in 1,000 µl medium. The cells were stimulated
with 15µg/ml rTbCLP and incubated for 72 h at 37◦C in a
humidified atmosphere of 5% CO2. Cells stimulated with 5
ug/mL Concavalin A were included as positive controls. Non-
stimulated cells were included as negative controls. After 72 h, the

cells were pelleted by centrifugation at 1,000 × g for 10min and
the supernatants were collected to measure cytokine production.
Samples containing the supernatant were tested for levels of IL-2,
IL-4, IL-10, IFN-γ using a Mouse Th1/Th2 uncoated ELISA kit
(Invitrogen/Thermo Scientific).

Statistical Analysis
Statistical analysis was performed using Statistica 6 software
(StatSoft). Data were expressed as means ± standard deviation
(SD). Differences among groups were analyzed by one-way
analysis of variance (ANOVA). A value of p < 0.05 was
considered significant.

RESULTS

Cloning, Expression, and Characterization
of Recombinant TbCLP Protein
Since the nucleotide sequence of T. britovi CLP was not known,
PCR primers were designed according to nucleotide sequence of
T. spiralis CLP. TsCLP (GenBank no. CBX25716) shares 91.5%
identity with the hypothetical sequence of TbCLP (Genbank
no. KRY50178) derived from conceptual translation of genomic
data (37). As the amino acids in regions including the primers
sequences was found to be identical in TbCLP and TsCLP,
the DNA sequence for TbCLP without its signal peptide was
successfully amplified and subcloned into the expression vector
(Figure 1). Sequencing revealed full compatibility between the
hypothetical and cloned TbCLP, with regard to the amino acid
sequence, and the nucleotide sequence was 96.2% identical with

FIGURE 1 | Cloning of TbCLP coding sequence. (A) Cloned cDNA sequence and predicted amino acid sequence of TbCLP. Three cystatin-like domains are

highlighted in gray [according to Robinson et al. (18)]. Conserved cysteines, that form disulfide bonds are highlighted in red. Conserved glycines are highlighted in

green. Predicted N-glycosylation sites are underlined and highlighted in yellow. (B) PCR product after amplification of TbCLP cDNA. (C) Restriction digestion of

recombinant plasmid containing target insert. (D) PCR product after screening of P. pastoris transformants. Correct DNA fragments are marked with arrows and the

molecular mass is indicated.
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FIGURE 2 | Analysis of purified rTbCLP. (A) Anti-His Western blot of protein purified from medium after 24, 48 and 72 h of induction. High molecular weight

glycoisoforms (55–70 kDa) and low molecular weight glycoisoforms (35–45 kDa) are marked with arrows. (B) SDS PAGE and (C) Anti-His Western blot after

deglycosylation of rTbCLP with Endo H. Protein samples were incubated with Endo H enzyme (+) or without Endo H (–) in denaturing conditions. Deglycosylated full

form rTbCLP (48 kDa) and the shorter isoforms (35–38 kDa) are marked with arrows.

that of the TsCLP gene. The sequence of the cloned TbCLP
without the signal peptide is given in Figure 1A.

The theoretical molecular weight of the His-tagged TbCLP
was predicted as 47.3 kDa, and the molecular weight of a single
cystatin-like domain was 12 kDa. NetNGlyc server analysis of the
amino acid sequence identified three potential N-glycosylation
sites in the protein chain: one in the first cystatin-like domain
and another two in the third cystatin-like domain.

CLP gene expression was induced in the X33 P. pastoris
strain with methanol. In preliminary experiments, 0.5%
methanol was added every 24 h until the final time of
induction was reached. Further analyses indicated that
a single induction with methanol and 24-h cultivation
yielded the best rTbCLP level. The recombinant His-tagged
protein was purified using affinity chromatography under
native conditions.

After purification, the rTbCLP protein appeared to be present
as various different glycoisoforms, manifesting as blurred, smear
bands with molecular weights of ∼55–70 and 35–45 kDa
on Western blot (Figure 2A). Interestingly, different protein
forms were observed after 24, 48, and 72 h of induction: high
molecular weight glycoisoforms were visible after 24 and 48 h
of induction, and only low molecular weight glycoisoforms
were visible after 72 h of induction. In order to examine
the N-glycosylation of recombinant CLP protein, an Endo
H digestion procedure was used. Deglycosylation with Endo
H reduced the molecular mass of rTbCLP (Figures 2B,C)
and confirmed that the observed variation in protein masses
was caused by changes in glycan content. After the release
of N-linked carbohydrates from the protein, the upper band
corresponded well with the predicted mass of full length
TbCLP (48 kDa), and the lower bands corresponded with the
shorter isoforms (35–38 kDa), which may be created by post-
translational cleavage events. After 24 and 48 h of induction,
the full form of the protein was visible, as well as several
shorter forms (Figures 2B,C). After 72 h of induction, the full
form of protein was no longer visible, and the total amount
of protein seemed very low, indicating that the whole pool

of rTbCLP expressed in P. pastoris had been processed. The
protein was taken after 24 h of induction, purified and used in
subsequent experiments.

rTbCLP Recognition by Sera From
T. britovi Infected Pigs
The results in Figure 3 represent the antibody kinetics in
eight pigs that were experimentally infected with 5000ML
T. britovi using rTbCLP. The ELISA results demonstrate
that seroconversion was detected at 24 days post-infection.
The moment of detection was earlier than when using a
commercial PrioCHECK R© Trichinella Antibody ELISA Kit
(Thermo Scientific) containing ES Trichinella antigen (data not
shown). The results confirm the antigenic properties of rTbCLP
protein and indicate that rTbCLP is a potential antigen to be
used in future experiments for detection of Trichinella infection
in animals.

Humoral Antibody Response Induced by
Immunization of Mice With rTbCLP
Formulated With Alhydrogel
Purified rTbCLP was tested for immunogenicity in a mouse
model. The total IgG level in serum was first evaluated in
immunized and control groups; following this, the humoral
antibody responses in the immunized mice were assayed by
ELISA, with rTbCLP as a coating antigen (Figure 4A).

The results indicate that anti-TbCLP IgG antibodies were
elicited by the immunization of mice with rTbCLP+adjuvant.
Specific anti-TbCLP IgG were detected in all serum samples
from the immunized group; however no anti-TbCLP antibody
response was detected in the mice injected with adjuvant or
PBS alone. Although anti-TbCLP antibodies were present in
sera of all experimental groups after the challenge infection, a
significantly higher level of specific anti-TbCLP was observed in
the group of mice immunized with rTbCLP+adjuvant than the
two control groups.
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FIGURE 3 | Anti-Trichinella IgG levels in pigs infected with T. britovi by ELISA with rTbCLP. Pigs (n = 8) were experimentally infected with 5,000ML of T. britovi and

sera were collected prior to infection (−4 dpi) and 3, 6, 9, 13, 15, 17, 20, 24, 29, 36, 41, 45, 51, 55, 59, 62 dpi. The cut-off value was evaluated on the basis of the

average OD plus three SD of Trichinella-free serum samples and is marked as a dashed line. All individuals were found positive after 24 days post-infection.

FIGURE 4 | Mouse immune responses to the immunization of rTbCLP. (A) Anti-TbCLP total IgG level and (B) anti-TbCLP subclasses IgG1 and IgG2a level in sera of

immunized mice, measured by ELISA after final immunization and challenge infection, respectively. (C) Anti-TbCLP total IgG in sera of experimental mice, detected by

Western blot. Two randomly selected sera from each group were used for immunodetection of rTbCLP (3 µg/lane). Specific signal for 55–70 kDa form is marked with

arrow. (D) Muscle larvae burden reduction rate (%) in three experimental mice groups after challenge infection. Experimental groups: CLP—group injected with

rTbCLP+adjuvant, ADJ—group injected with adjuvant, PBS—group injected with PBS. Significant differences are marked with asterisks. Bars represent mean values

from six individuals (n = 6) ± SD.

A relatively high level of IgG1 and a moderate level of
IgG2a were observed following induction by rTbCLP. After
the challenge infection with T. britovi, all groups demonstrated
a high level of IgG1; however, the mice injected with
rTbCLP+adjuvant displayed a significantly higher level than
the PBS control group. In contrast, moderate levels of anti-
TbCLP subclass IgG2a were detected in all tested groups,

but no significant differences were detected between groups
due to the high level of individual variation (Figure 4B). The
presence of anti-TbCLP antibodies was also confirmed by
Western blot, using sera from the rTbCLP+adjuvant and the
PBS control groups after immunization and after challenge
infection. Induced IgG were able to give specific signal as showed
at Figure 4C.
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FIGURE 5 | Cytokines detection in supernatants of stimulated splenocytes of the immunized mice. Supernatants harvested after 72 h of incubation were analyzed for

detection of secreted cytokines IFNγ, IL-2, IL-4, and IL-10 using Mouse Th1/Th2 uncoated ELISA kit. Experimental groups are indicated as previously described.

Immunized groups significantly different from corresponding control groups are marked with empty brackets, while corresponding immunized groups significantly

different from each other are marked with asterisks. Bars represent means ± SD from three splenocytes cultures (n = 3) each prepared from two pooled spleens from

mice from the same group.

Cytokine Profiles of Stimulated
Splenocytes From Mice Immunized With
rTbCLP
To further confirm that a Th1/Th2 mixed response was
induced following rTbCLP vaccination, the levels of selected
cytokines (IFNγ, IL-2, IL-4, and IL-10) were measured in the
supernatants of stimulated splenocyte cultures. In the case of
Th1, higher levels of IFNγ were identified in splenocytes from
mice immunized with rTbCLP+adjuvant than controls treated
with adjuvant or PBS alone, with significantly lower levels
observed in the adjuvant controls. However, after challenge
infection with T. britovi, significantly higher levels of IFNγ

were found in the rTbCLP+adjuvant group than the others
(Figure 5). In contrast, IL-2 levels were significantly lower in
the rTbCLP+adjuvant cultures than the PBS control group.
After infection, these levels was still lower in the cultures from
immunized mice than controls; however, these differences were
not statistically significant.

Clearer differences were visible in case of the Th2 cytokines:
the levels of IL-4 and IL-10 were significantly higher in the
supernatants of the immunized mice than in the two control
groups, in which the cytokine levels were at the limit of detection
(Figure 5). After infection, the level of IL-4 in the immunized
group was at a similar value than before infection, but the
level of IL-10 was clearly lower than before infection. These
results confirm that immunization with TbCLP triggered amixed
Th1/Th2 response.

Protective Immunity Induced by rTbCLP
The protective response induced by rTbCLP against T. britovi
infection was investigated in experimental C3H mice. Seven
weeks (48 days) after infection, all mice (six per group) were
sacrificed and T. britovi muscle larvae were recovered from
individual mice. The results revealed a significantly different
reduction rate (46.9%) between the immunized group and the
PBS control group (Figure 4D).

DISCUSSION

Multi cystatin-like domain protein (CLP) is promising
immunoreactive protein used in studies to control trichinellosis.
Although T. spiralis CLP has previously been cloned and used
for immunization (16, 18, 38), the properties of T. britovi CLP
are generally unknown, and only genomic data were available of
its hypothetical sequence. Our findings indicate a great degree of
similarity between the CLP of T. britovi and that of T. spiralis.
Fortunately, the target gene could be successfully amplified
by PCR (Figure 1B) as the annealing regions in the coding
sequences of T. britovi and T. spiralis were found to share a
high degree of similarity. The two nematodes are closely related,
and TsCLP and TbCLP share 91.5% identity in their amino acid
sequences and 96.2% identity for their nucleotide sequences.

To evaluate the potential of P. pastoris as an expression
host for production of a recombinant T. britovi CLP, the
pPICZαC/CLP vector was constructed (Figures 1C,D) and
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expressed in X33 strain cells. The expressed rTbCLP displayed
fuzzy, smear bands on Western blot (Figure 2A); it was difficult
to precisely determine the mass of the detected protein bands
and their mass appeared to vary depending on the duration
of induction, i.e., 24, 48, or 72 h. It is known that in some
cases protein expression in P. pastoris demonstrates heterogenic
glycosylation, resulting in its protein population displaying
diverse structural heterogeneity (30).Within a cell, twomolecules
of the same protein may present different oligosaccharide
profiles, even when they have been exposed to the same
glycosylation machinery. Such variation is typically derived from
differences in the type, length and identity of the oligosaccharide
at a given glycosylation site. The glycoprotein may also vary with
regard to site occupancy.

In case of rTbCLP, great variation can be seen in protein
subpopulations. Similar results were previously described by Teh
et al. (39), where human erythropoietin (EPO) expressed in the P.
pastoris system also demonstrated broad smear band in Western
blot. EPO is a native glycoprotein (40), as is TbCLP and family 3
cystatins. Fractionation of rEPO followed by PNGase F and Endo
H treatment found that the observed variations in molecular
mass, manifested as the broad smear observed on the membrane,
were caused by variations in glycan content: the deglycosylated
protein demonstrated a sharp band with the predicted molecular
mass. It is important to emphasize that the recombinant EPO
was fully functionally active, despite the observed variation in
glycosylation. In our study, deglycosylation with Endo H also
resulted in the rTbCLP displaying sharp bands, and revealed the
presence of high molecular weight and low molecular weight
isoforms (Figures 2B,C).

A previous study has found recombinant TsCLP to possess
different isoforms (18). Two such isoforms were found to be
expressed in Hela cells, one of 49 kDa and another of 38 kDa;
these were described respectively, as the full-length protein and
the shorter isoform. Subsequent incubation at different pH values
revealed that a further two low molecular weight isoforms (35
and 38 kDa) were visible in the pH range 4–8, and these bands
were most prominent at pH 5. The authors suggest that the
CLP undergoes pH-dependent auto-processing, resulting in the
release of individual cystatin-like peptides (18).

This conclusion supports our observation that the amount
of full length TbCLP decreases during induction in P. pastoris,
with only low molecular-weight isoforms being observed after
72 h. It is known that in Pichia fermentation, the pH decreases
while feeding from a carbon source, as the catabolic activity leads
to acid production, potentially resulting in greater processing of
the secreted rTbCLP into individual peptides. For this reason,
only the protein isolated after 24 h of induction was used in
the following experiments. In the future, to scale-up protein
expression, it will be necessary to optimize the induction
conditions, particularly the control of medium pH, to prevent
early processing. Nonetheless, it is important to emphasize that in
contrast to the rCLP previously produced in bacteria (16, 18), the
P. pastoris system yielded an active, functional form of rTbCLP:
native CLP is most probably secreted as a glycosylated protein
containing disulfide bonds, and the initial full length form is
further transformed into the shorter forms, these being the single

cystatin-like peptides with specific biological functions, due to
post-translational modification.

Our previous 2-D immunoblotting and LS-MS/MS analyses
revealed some spots that reacted with the sera of T. britovi
infected pigs; these were identified as a hypothetical protein
highly similar to a multi-cystatin-like domain protein precursor
from Trichinella spiralis. The molecular mass of the spots ranged
from 45 to 50 kDa, which corresponded with the expected mass
of CLP (19). To confirm this immunological reactivity, ELISA
tests were performed to determine the level of anti-rTbCLP IgG
in infected pig sera and seroconversion was detected at 24 dpi
(Figure 3). However, high background values were observed and
further optimization of test procedures is needed before the
rTbCLP antigen can be used in diagnostics of anti-Trichinnella
antibodies in serum samples.

Infection with Trichinella is initially characterized by the
induction of a Th1 response at the beginning of the intestinal
phase; however, the extensive dissemination of newborn larvae
results in a shift to a Th2 response. The Th2 state is protective
and results in parasite expulsion. Trichinella worms rapidly
develop to maturity and reproduce before the Th2-mediated
expulsion eliminates all adult forms from the gut. Thus, during
the intestinal phase, the immune response is mixed, i.e., Th1/Th2,
with an initial predominance of the Th1 response shifting to that
of the Th2 response (41). In the present study an analysis of
mouse humoral immune responses revealed high total IgG levels
in serum; in addition, while IgG1 levels were clearly higher than
those of IgG2a after vaccination with rTbCLP, IgG2a was also
elicited, suggesting that the mixed Th1/Th2 immune response
was triggered by immunization with rTbCLP (Figures 4A,B).
The mixed immune response was further verified by the levels
of Th1 (IFN-γ, IL-2) and Th2 cytokines (IL-4, IL-10) observed in
the spleen cell cultures of immunized mice following stimulation
by rTbCLP protein. Although all tested groups of mice displayed
unique cytokine profiles, all cytokines in the immunized cultures
were significantly elevated compared to controls, while IL-2 was
significantly suppressed (Figure 5).

IFNγ is a signature cytokine of the adaptive immune
response, and the main cytokine associated with Th1. High
levels of IFNγ were detected in samples taken from groups after
immunization and after challenge infection; however, the level
of IFNγ was almost twice as high in the challenged group. This
finding suggests that rTbCLP effectively induced the Th1/cellular
response, which was then boosted after infection.

IL-2 plays a dual role in immunological system: it is a potent T
cell growth factor associated with protective immune responses,
but also influences immune tolerance and the downregulation of
inflammation. The function of IL-2 in vivo is complex, and its
influence on the immune response is not only dependent on its
presence or absence, but also the level of IL-2 receptor (IL-2R)
signaling that takes place (42, 43). The effect of immunization
and splenocyte stimulation on IL-2 production in vitro is hard
to interpret, but it may be related with CLP possessing certain
immunomodulatory properties, which are currently unknown;
these could affect IL-2R signaling pathways and the cytokine
network in immune cells, resulting in inhibited IL-2 secretion
and/or possibly augmented IL-2 consumption. Interestingly, our
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results correspond with those of an immune response analysis
of Trichinella infection described by Yu et al. (44), where IL-
2 level was found to be significantly downregulated in mouse
sera during the intestinal and larvae migration phases compared
to uninfected controls. Other tested cytokines were elevated or
unchanged compared to controls during the respective infection
phases, and only IL-2 exhibited downregulation during the early
phase of infection. Suppression of IL-2 production may also
be partially explained by the release of high amounts of IL-10,
since IL-10 can inhibit production of IL-2 (45). Interestingly
no other cytokine secretion was inhibited in our experiment,
indicating that this phenomenon may be somehow related with
the dichotomous role played by IL-2 and IL-2R in self-tolerance
and immunity.

IL-4 is closely associated with the humoral (Th2) and anti-
helminthic responses (46); as it regulates B-cell immunoglobulin
secretion, it was not surprising that it was observed at high
levels in cultures following immunization compared to naïve
controls. In a similar way to IFNγ, the highest level of IL-4 was
observed in the immunized and infected group, demonstrating
that vaccination very effectively primed Th2 responses against
the T. britovi parasite; this response was boosted further after
infection, and the findings are in agreement with our IgG level
analysis. However, the fact that the amounts of IL-4 found in
all experimental supernatants were relatively small might be
explained by the fact that IL-4 has a short half-life, and the cells
were cultured for 72 h (47).

IL-10 is a well-known anti-inflammatory cytokine, and that
during parasite infection, it plays a major role in parasite
immunomodulation by suppressing immune responses. More
interestingly, the main factor inducing the production of IL-
10 by APCs, particularly macrophages, during infection are
thought to be nematode cystatins (20, 48). Although the exact
mechanism by which these cystatins activate IL-10 production in
host cells is unknown, it is most probably independent of protease
inhibitory activity, and is likely related to their structural features
and receptors engagement. TbCLP was previously assumed to
lack protease inhibitory activity; therefore, due to its conserved
structure, it may modulate the host immune system by inducing
the production of anti-inflammatory IL-10. Indeed, our findings
indicate the presence of very high amounts of IL-10 in the
supernatants of stimulated splenocytes. The level of IL-10 was
the highest in the immunized group; however, these levels
were significantly lower in the immunized and infected group,
suggesting that impact of recombinant protein alone was very
strong, but this influence was balanced by the broad immune
response to infection. Interestingly, production of IL-4 and IL-
10 by splenocytes was much weaker after T. britovi infection than
after rTbCLP immunization. This could be possibly explained by
the fact that the infection was in its late phase: the splenocytes
were harvested 48 dpi, when the parasite is at the convalescent
phase of the life cycle.

rTbCLP vaccination resulted in a 46.9% larvae reduction
(Figure 4D); this was a similar benefit to one reported in a
previous study of recombinant CLP in T. spiralis (16), where
mice vaccinated with rTsCLP exhibited a significant reduction
in muscle larvae burden. However, the previous experiment

was conducted using Freund’s Complete Adjuvant (CFA) and
the antigen was administered intraperitoneally. These are very
harsh immunization conditions, and CFA is known to cause
some concerns in animal usage, due to its toxicity and painful
reaction; even so, it is often used in mice (49, 50). In contrast,
our present study used an alum adjuvant, which is non-toxic
and approved for use in humans (51). It obtained good results,
suggesting that yeast-derived antigen is superior to bacteria-
derived antigens, as the milder immunization conditions yielded
a similar immunoprotective effect. It is important to mention
that, as far as we are aware, all recombinant Trichinella antigens
tested so far have been produced in a bacterial expression system
andmay not have been fully active (52–56). To better characterize
the functions of the proteins of interest, a eukaryotic expression
system, such as the yeast expression chosen in this study, should
be used.

CONCLUSIONS

Immunization with the active full form of rTbCLP resulted in
high immunogenicity in tested mice and a significant reduction
of larvae burden after experimental infection. The recombinant
protein was produced in Pichia cells; this approach ensures
that the protein is further processed into individual cystatin-like
peptides via post-translational modification. Furthermore, it can
be assumed that cytokine profiles of the presented splenocytes
are both resultants of the immune response against recombinant
TbCLP antigen administered as an experimental vaccine, as well
as the product of the immunomodulation of immune cells by
this antigen, resulting from its biological function. The molecular
events triggered by rTbCLP as an antigen, or as a modulator,
could be opposing or synergistic. This dichotomy is manifested
in the observed imbalance of IL-2 and IL-10, two cytokines
involved in immunosuppression (57). However, it should be
remembered that our findings illustrate just a small part of the
host response to immunization and infection. Future research
on the immunomodulatory properties of TbCLP may allow for
a better understanding of its function, and further studies on
the usage of TbCLP for the purposes of diagnosis and vaccine
development would be also desirable.
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Bień-Kalinowska. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org 11 October 2019 | Volume 10 | Article 242048

https://doi.org/10.1371/journal.pntd.0007345
https://doi.org/10.1371/journal.pntd.0005769
https://doi.org/10.1016/S0020-7519(99)00202-7
https://doi.org/10.1016/S0304-4017(02)00185-1
https://doi.org/10.1038/ncomms10513
https://doi.org/10.1017/S0022149X11000654
https://doi.org/10.1590/S1415-47572011005000022
https://doi.org/10.1111/j.1600-0609.2007.00818.x
https://doi.org/10.1007/s12026-012-8287-5
https://doi.org/10.4049/jimmunol.172.7.3983
https://doi.org/10.1016/j.immuni.2010.08.004
https://doi.org/10.1016/j.exppara.2013.02.014
https://doi.org/10.4049/jimmunol.180.9.5771
https://doi.org/10.1016/S0952-7915(00)00234-X
https://doi.org/10.1007/978-1-4419-8414-2_13
https://doi.org/10.1016/j.biopha.2018.06.026
https://doi.org/10.1155/2019/3974127
https://doi.org/10.1155/2016/1459394
https://doi.org/10.1371/journal.pone.0136189
https://doi.org/10.1007/s00436-013-3500-6
https://doi.org/10.1016/j.vaccine.2017.11.048
https://doi.org/10.1371/journal.pntd.0006485
https://doi.org/10.3389/fmicb.2017.01834
https://doi.org/10.3389/fimmu.2012.00268
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


ORIGINAL RESEARCH
published: 29 October 2019

doi: 10.3389/fimmu.2019.02542

Frontiers in Immunology | www.frontiersin.org 1 October 2019 | Volume 10 | Article 2542

Edited by:

Giuseppe Andrea Sautto,

University of Georgia, United States

Reviewed by:

Rodrigo Bessa Abreu,

University of Georgia, United States

Mahavir Singh,

LIONEX GmbH, Germany

*Correspondence:

Hyun-Jeong Ko

hjko@kangwon.ac.kr

Specialty section:

This article was submitted to

Vaccines and Molecular Therapeutics,

a section of the journal

Frontiers in Immunology

Received: 03 July 2019

Accepted: 14 October 2019

Published: 29 October 2019

Citation:

Kwon B-E, Ahn J-H, Park E-K,

Jeong H, Lee H-J, Jung Y-J, Shin SJ,

Jeong H-S, Yoo JS, Shin E, Yeo S-G,

Chang S-Y and Ko H-J (2019) B

Cell-Based Vaccine Transduced With

ESAT6-Expressing Vaccinia Virus and

Presenting α-Galactosylceramide Is a

Novel Vaccine Candidate Against

ESAT6-Expressing Mycobacterial

Diseases. Front. Immunol. 10:2542.

doi: 10.3389/fimmu.2019.02542

B Cell-Based Vaccine Transduced
With ESAT6-Expressing Vaccinia
Virus and Presenting
α-Galactosylceramide Is a Novel
Vaccine Candidate Against
ESAT6-Expressing Mycobacterial
Diseases
Bo-Eun Kwon 1, Jae-Hee Ahn 1, Eun-Kyoung Park 1, Hyunjin Jeong 1, Hyo-Ji Lee 2,

Yu-Jin Jung 2, Sung Jae Shin 3, Hye-Sook Jeong 4, Jung Sik Yoo 4, EunKyoung Shin 4,

Sang-Gu Yeo 5, Sun-Young Chang 6 and Hyun-Jeong Ko 1*

1 Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea,
2Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea, 3Department of Microbiology,

Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University

College of Medicine, Seoul, South Korea, 4Division of Vaccine Research, Center for Infectious Disease Research, Korea
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5 Sejong Institute of Health and Environment, Sejong, South Korea, 6 Laboratory of Microbiology, College of Pharmacy and

Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, South Korea

Early secretory antigenic target-6 (ESAT6) is a potent immunogenic antigen expressed

inMycobacterium tuberculosis as well as in some non-tuberculous mycobacteria (NTM),

such as M. kansasii. M. kansasii is one of the most clinically relevant species of

NTM that causes mycobacterial lung disease, which is clinically indistinguishable from

tuberculosis. In the current study, we designed a novel cell-based vaccine using B cells

that were transduced with vaccinia virus expressing ESAT6 (vacESAT6), and presenting

α-galactosylceramide (αGC), a ligand of invariant NKT cells. We found that B cells loaded

with αGC had increased levels of CD80 and CD86 after in vitro stimulation with NKT

cells. Immunization of mice with B/αGC/vacESAT6 induced CD4+ T cells producing

TNF-α and IFN-γ in response to heat-killed M. tuberculosis. Immunization of mice with

B/αGC/vacESAT6 ameliorated severe lung inflammation caused byM. kansasii infection.

We also confirmed that immunization with B/αGC/vacESAT6 reduced M. kansasii

bacterial burden in the lungs. In addition, therapeutic administration of B/αGC/vacESAT6

increased IFN-γ+ CD4+ T cells and inhibited the progression of lung pathology caused

by M. kansasii infection. Thus, B/αGC/vacESAT6 could be a potent vaccine candidate

for the prevention and treatment of ESAT6-expressing mycobacterial infection caused

by M. kansasii.

Keywords: Mycobacterium kansasii, Mycobacterium tuberculosis, non-tuberculous mycobacteria, ESAT6,
vaccine, α-galactosylceramide
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INTRODUCTION

Non-tuberculous mycobacteria (NTM) are one of the
mycobacteria species which cause pulmonary disease as a
common manifestation (1). Mycobacterium kansasii belongs to
NTM species and is one of the major causative agent of NTM
lung disease (2). Symptoms of M. kansasii are mild under single
infection, but it is known that more severe symptoms occur
when contracted along with other illnesses such as inflammatory
pseudotumor (3), sarcoidosis (4), and HIV (5). Especially, it has
been reported that in Brazil, most patients who acquire lung
disease caused by NTM had previously received tuberculosis
treatment (6). These reports implied that NTM was closely
associated with other diseases, and therefore is one of the
important factors in pulmonary infection.

Bacillus Calmette-Guerin (BCG) is the only approved live
attenuated vaccine strain induced from M. bovis through
multiple sub-culturing for a long period of time (7). The
protective efficacy of BCG against tuberculous meningitis and
tuberculosis (TB) is well-known in children, however, protection
for primary infection or latent infection in adults seems poor (8).
Also, BCG vaccination did not provide protection against NTM
infection (9). Due to this limitation of BCG, more persistent
research is needed to identify novel vaccine candidates.

Early secretory antigenic target-6 (ESAT6) is a protein
encoded by a gene located in the region of difference 1, which
is expressed in M. tuberculosis but not in BCG (10). ESAT6
has sufficient immunogenicity in both humans and mice post
M. tuberculosis infection (11). Interestingly, some NTM species,
including M. kansasii also contain genes for ESAT6 homolog. In
the present study, we expressed ESAT6 in B cells using ESAT6-
expressing vaccinia virus to deliver ESAT6 antigen to B cells, and
presented α-galactosylceramide (αGC), an invariant natural killer
cell (iNKT) ligand, on CD1d molecule of B cells. Previous studies
have suggested that a B cell vaccine which expressed tumor
antigen showed potent anti-tumor effect facilitated by activated
NKT cells (12, 13).

In the current study, we developed an ESAT6-
expressing B cell-based vaccine which was loaded with αGC
(B/αGC/vacESAT6) and assessed its preventive and therapeutic
effect in a murine model ofM. kansasii infection.

MATERIALS AND METHODS

Construction of Vaccinia Virus Vector
Expressing ESAT6
ESAT6 gene of M. tuberculosis strain H37Rv with human
optimized codon was synthesized and cloned into vaccinia virus
delivery vector PVVT1-C7L (PVVT1-C7L-Tpa-esat6) which
contains tPA gene for secretion of intracellular signal peptide. Sfi1
restriction enzyme was used for cloning. PVVT1-C7L-Tpa-esat6
was transformed to E. coliDH5 competent cells for amplification.
The expression of ESAT6 gene was confirmed by PCR using
the following primers; 5′-TTT GAA GCA TTG GAA GCA
ACT-3′ (VVTK-F) and 5′-ACGTTGAAATGTCCCATCGACT-
3′ (VVTK-R).

Preparation of Recombinant Vaccinia Virus
Expressing ESAT6
Vero cells in 12-well plates were infected with vaccinia
virus (KCCM11574P) at a multiplicity of infection (MOI) of
0.02 for 2 h, and the infected Vero cells were transfected
with PVVT1-C7L-Tpa-esat6 plasmid using Lipofectamine 2000
(Thermo Fisher Scientific, Waltham, MA, USA) transfection
reagent for 4 h. Vero cells were incubated for 3–4 days to
observe the cytopathic effects, and recombinant viruses were
obtained by plaque isolation. For high efficacy and purity,
recombinant vaccinia virus expressing ESAT6 (vacESAT6) was
concentrated by ultracentrifugation. The expression of ESAT6
protein by Vero cells and isolated B cells after transduction with
vacESAT6 was confirmed by confocal microscopy (Figures 1A,B,
Supplementary Figure 1).

Preparation of B Cell-Based Vaccine and
Immunization of BCG
B220+ cells were magnetically purified from splenocytes of
naïve C57BL/6 mice using CD45R/B220 biotin (BD biosciences,
California, USA) and anti-biotin microbeads (Miltenyi Biotec,
Bergisch Gladbach, Germany) according to the manufacturer’s
instructions. Labeled cells were purified through LS column
(Miltenyi Biotec, Bergisch Gladbach, Germany). Isolated B220+

cells (2× 107 cells seeded) were transduced with vacESAT6 (MOI
of 1) for 2 h and then loaded with αGC (Enzo life sciences, New
York, USA) (1µg/ml) for 22 h and incubated in a CO2 incubator.
After washing three times with PBS, mice were immunized with
cultured cells (B cell-based vaccine) by tail vein injection. As for
the comparison group, mice were intramuscularly immunized
with BCG (105 CFU/mouse).

To confirm preventive effect of Bvac, mice were either
immunized with BCG by intramuscular injection at a 105

CFU/mouse or administered with Bvac by tail vein injection at
day 0 for the priming and day 7 for the boost. At day 14, mice
were challenged with 107 CFU/mouse ofM. kansasii. To confirm
the therapeutic effect of Bvac, mice were infected with 107 CFU
of M. kansasii per mouse at Day 0, and were administrated with
BCG or Bvac at 3 days post-infection. The mice were boosted
with Bvac at 7 days post-infection.We analyzed histology, protein
levels and bacterial loads from lung and liver after 14 days
followingM. kansasii infection.

Murine Infection Model of M. kansasii
C57BL/6 mice were purchased at 6–7 weeks of age from
Charles River Laboratories (Orient Bio Inc., Seongnam, Korea).
All animal experiments, including the M. kansasii challenge
experiment, were approved by the Institutional Animal Care
and Use Committee of Kangwon National University (Permit
Number: KW-160201-4). A hypervirulent M. kansasii SM#1
clinical isolate was used for challenge in vivo (14). To induce
infection, mice were intravenously injected withM. kansasii (107

CFU/mouse). We checked the bodyweight and survival rate of
mice every day followingM. kansasii infection.

The lungs and liver of infected mice were isolated for
determining the bacterial count in these organs at 2 weeks
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FIGURE 1 | B/αGC/vacESAT6 up-regulates co-stimulatory molecules on B

cells. (A,B) Vero cells were transduced with vaccinia-ESAT6 (vacESAT6) at a

multiplicity of infection (MOI) of 1. Transduced cells were fluorescently stained

for ESAT6 (green) and counterstained with DAPI (blue) for nuclei which were

analyzed by confocal microscopy to detect the expression of ESAT6 (scale bar

= 20µm). (A) Representative confocal images and (B) Representation of the

evaluation of green fluorescent area. (C,D) B220+ cells were isolated from

splenocytes of naïve C57BL/6 mice. Isolated B220+ cells were transduced

with vacESAT6 at a MOI of 1 and/or loaded with 1µg/ml of αGC and then

co-cultured with naïve splenocytes for 24 h. Incubated cells were stained to

examine the expression of B220, CD40, and CD86. Expression levels of CD40

and CD86 in B220+ cells were analyzed by flow cytometry. (C) Representative
flow cytometry histogram and (D) summary of mean fluorescence intensity of

CD40 and CD86 expression in B cells. ANOVA. *p < 0.05, ***p < 0.001.

post M. kansasii infection. Lungs were homogenized in 1X
PBS containing 0.04% tween 80 and liver was homogenized
in 1X PBS containing 1mM EDTA (125mg of tissues/ml).
The homogenized supernatants were 10-fold serial diluted in
DifcoTM Middlebrook 7H9 Broth (BD biosciences, California,
USA) containing ADC [Sodium Chloride (Duchefa, BH
Haarlem, The Nederlands), Dextrose (SHOWA, Gyoda, Japan),
Bovine Albumin Fraction V (MPBio, Santa Ana, USA),
Catalase (Sigma-Aldrich, St. Louis, USA)] and each diluent

was drop cultured in DifcoTM Middlebrook 7H10 Agar (BD
biosciences, California, USA) containing OADC [Sodium
Chloride, Dextrose, Bovine Albumin Fraction V, Catalase,
Oleic acid (Sigma-Aldrich, St. Louis, USA)]. Smear plates
were cultured in a 37◦C incubator and colonies were counted
after 2–3 weeks.

Isolation of Cells and Measurement of
Co-stimulatory Molecules in B Cells
For the isolation of T cells, splenocytes were labeled with CD8α-
PE and anti-PE microbeads (Miltenyi Biotec, Bergisch Gladbach,
Germany) according to the manufacturer’s instructions. The
labeled cells were then purified through LS column (Miltenyi
Biotec, Bergisch Gladbach, Germany). CD4+ T cells were
isolated by using the mouse CD4+ T cell isolation kit
(Miltenyi Biotec, Bergisch Gladbach, Germany). CD11c+ DCs
were purified by using CD11c+ microbeads (Miltenyi Biotec,
Bergisch Gladbach, Germany). B220+ cells were purified by
using CD45R/B220 biotin (BD biosciences, California, USA)
and anti-Biotin microbeads (Miltenyi Biotec, Bergisch Gladbach,
Germany) from splenocytes of naïve C57BL/6 mice. Purified
B cells were transduced with vacESAT6 at a MOI of 1 and/or
loaded with 1µg/ml of αGC and then co-cultured with naïve
splenocytes for 24 h. Incubated cells were stained to examine
the expression of B220, CD40, and CD86 using antibodies
such as APC-conjugated anti-B220 (BD biosciences, California,
USA), PE-conjugated isotype control (eBioscience, San Diego,
USA), anti-CD40 (Biolegend, San Diego, USA), and anti-CD86
Ab (BD biosciences, California, USA). Cells were analyzed by
flow cytometry.

Measurement of Intracellular Cytokines in
CD4+ T Cells
For measurement of intracellular cytokines, dendritic cells
and CD4+ T cells were co-cultured and stimulated for 3
days with heat-killed H37Rv at 0.1 MOI or overnight with
anti-CD3 and anti-CD28 antibody in culture media. H37Rv
strain was generously provided by Sang-Nae Cho (Yonsei
University). Brefeldin A Solution (1000 x) Thermo Fisher
Scientific, Waltham, MA, USA) was added for 4 h before harvest
and then harvested cells were stained with PerCP-CyTM5.5 rat
anti-mouse CD4 (BD biosciences, California, USA) or PE rat
anti-mouse CD8α (BD biosciences, California, USA). Stained
cells were permeabilized with IC Fixation Buffer (Thermo Fisher
Scientific, Waltham, MA, USA) according to the manufacturer’s
recommendations. Next, permeabilized cells were stained with
TNF-α mAb, APC (Thermo Fisher Scientific, Waltham, MA,
USA) and IFN-γ mAb (XMG1.2) PE (Thermo Fisher Scientific,
Waltham, MA, USA).

The supernatants of homogenized tissues were analyzed for
cytokine production using BDTM Cytometric Bead Array (CBA)
Mouse Inflammation kit (BD biosciences, California, USA)
according to the manufacturer’s instructions.

Western Blotting
Total protein lysates of M. kansasii were sonicated
with PRO-PREPTM protein extraction solution (iNtRON
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Biotechnology, Daejeon, Korea). Lysates were boiled at
100◦C and proteins were separated by performing SDS-
PAGE. Proteins were transferred onto PVDF membranes
(Millipore, Burlington, USA) and then blocked with 5%
skim milk in TBS with tween 20. Next, the membranes
were incubated with anti-ESAT6 primary antibody
[11G4] (Abcam, Cambridge, USA) and proteins were
detected using HRP conjugated goat anti-mouse polyclonal
antibody (Enzo life sciences, New York, USA). Membranes
were developed using femtoLUCENTTM PLUS-HRP
chemiluminescence detection system (G-Biosciences,
St. Louis, USA).

Flow Cytometry
Cells were collected from spleen and stained with markers such
as APC-conjugated anti-B220 (BD biosciences, California, USA)
and anti-Ly6C (BD biosciences, California, USA) Ab, FITC-
conjugated anti-CD11b Ab (BD biosciences, California, USA),
PE-conjugated isotype control (eBioscience, San Diego, USA),
anti-CD40 Ab (Biolegend, San Diego, USA), and anti-CD86 (BD
biosciences, California, USA) Ab. Flow cytometry was performed
on a FACSVerse instrument (BD biosciences, California, USA)
and data were analyzed using FlowJo software (Flowjo, San
Carlos, USA).

Histology
Mice were sacrificed and lungs were isolated from each group.
They were fixed with 4% formalin overnight. Lung tissues were
processed using a tissue processor (Leica, Wetzlar, Germany)
and then embedded in paraffin. Paraffin-embedded tissue blocks
were cut into 5µm thick sections and stained with hematoxylin
and eosin.

Confocal Microscopy
Uninfected or vaccinia virus-infected Vero cells and B
cells were cultured in a 37◦C incubator for 24 h. Cells
were fixed with 4% paraformaldehyde and stained with
anti-ESAT6 Ab (Abcam, Cambridge, USA), and further
stained with anti-mouse IgG (H+L), F(ab’)2 Fragment
(Alexa Fluor R© 488-conjugated) (Cell signaling, Danvers,
USA) or DyLightTM 405 affinipure donkey anti-mouse IgG
(H+L) (DyLightTM 405-conjugated). Cells were visualized
by confocal microscopy (Carl Zeiss, LSM880 with Airyscan,
Zena, Germany).

Statistics
Statistical analysis was conducted with GraphPad Prism
5.0 (GraphPad Software, La Jolla, USA). Differences
between groups were assessed by the Student’s t-test.
Comparisons between multiple-groups were carried out
by one-way ANOVA analysis of variance followed by the
Bonferroni’s multiple comparison test. P values < 0.05 were
considered as significant at a 95% confidence interval for
all analyses.

RESULTS

B/αGC/vacESAT6 Upregulated the
Expression of Co-stimulatory Molecules on
B Cells
It has been previously reported that αGC-loaded B cell-
based vaccines expressing tumor antigens showed significant
antitumor effects in vivo (15, 16). Thus, we decided to adopt
this vaccine strategy for the development of preventive and
therapeutic anti-mycobacterial vaccine. B cells were transduced
with recombinant vaccinia virus expressing ESAT6 (vacESAT6),
and the transduced B cells were loaded with αGC. We found
that B cells loaded with αGC/vacESAT6 (B/αGC/vacESAT6)
(Bvac) increased the expression of co-stimulatory molecules
including CD40 and CD86 when they were co-cultured with
splenocytes from naïve C57BL/6 mice for 24 h (Figures 1C,D).
B cells loaded with αGC or B cells transduced with vacESAT6
increased the expression of CD86, which further increased
in B/αGC/vacESAT6 (Figures 1C,D). B cells transduced with
vacGFP control virus also increased the expression of CD86
(Supplementary Figure 2) suggesting that infection of vaccinia
virus alone could be stimulatory for B cells. These results
suggested that activated NKT cells by αGC on B cells as well
as vaccinia virus infection activated the B cells to increase the
expression of co-stimulatory molecules including CD40 and
CD86, which help B cells to function as professional antigen
presenting cells to induce effective T cells.

B/αGC/vacESAT6 Induced CD4+ T Cell
Responses Against H37Rv
We next determined whether B/αGC/vacESAT6 induced CD4+

T cell response in vivo. Groups of mice were immunized
with either saline, BCG or B/αGC/vacESAT6, and mice
were sacrificed to obtain splenocytes. We analyzed TNF-
α- and IFN-γ-producing CD4+ T cells after 3 days of
co-culturing the splenocytes with dendritic cells pulsed
with heat-killed H37Rv. As a result, we found that the
percentage of CD4+ T cells producing TNF-α+ and IFN-
γ+ was higher in mice vaccinated with B/αGC/vacESAT6
as compared to control and BCG-immunized mice
(Figures 2A,B). In addition, IFN-γ production was also
increased in the culture supernatant of splenocytes from
B/αGC/vacESAT6 group compared to control and BCG
group (Figure 2C). These results show that B/αGC/vacESAT6
induced the H37Rv-specific CD4+ T cell-mediated cellular
immunity which might be critical for the regulation of
mycobacterial infection.

Mice Infected With M. kansasii Showed
Severe Lung Inflammation
M. kansasii is one of the NTM which expresses ESAT6 homolog
as a major antigen. We confirmed the expression of ESAT6
in M. kansasii by western blotting analysis (Figure 3A). We
found that the bodyweight of mice significantly decreased with
intravenous (i.v) injection of M. kansasii (107 CFU/mouse).
For humane reasons, mice were monitored two times every
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FIGURE 2 | B/αGC/vacESAT6 induced M. tuberculosis specific CD4+ T cell response. Splenic CD4+ T cells were isolated from mice which were immunized with

BCG (105 CFU/mouse) or with B/αGC/vacESAT6 (Bvac), and they were co-cultured with CD11c+ dendritic cells which were stimulated with heat-killed

M. tuberculosis H37Rv at 0.1 MOI. After 72 h co-culture, CD4+ T cells were analyzed by flow cytometry to detect intracellular TNF-α and IFN-γ production.

(A) Representative intracellular staining of TNF-α and IFN-γ. (B) Summary of TNF-α and IFN-γ secreting CD4+ T cells. (C) Secreted IFN-γ levels were measured in

culture supernatant by ELISA. ANOVA. *p < 0.05, ***p < 0.001, +++p < 0.001 compared to unstimulated counterpart.

day and sacrificed when they weighed <80% of their initial
bodyweight. In addition, there was significant lung injury
including infiltration of immune cells around bronchial tubes
as well as formation of granuloma-like lesions. We also
confirmed the presence of bacteria in lungs of M. kansasii-
infected mice at 2 weeks after infection. On the contrary,
immunization of mice with Bvac ameliorated loss of bodyweight
and increased survival rate following M. kansasii infection
(Figures 3B,C). In addition, lungs of mice immunized with
Bvac had moderate injury with reduced cell infiltration
as compared with non-vaccinated mice after M. kansasii
infection (Figures 3D,E). Bvac also decreased the bacterial
burden in the lungs of M. kansasii-infected mice (Figure 3F).
We also analyzed the proportion of NK cells and NKT
cells in splenocytes by flow cytometry. We confirmed that
Bvac immunization increased the percentage of NKT cells
as compared with that of non-vaccinated mice as assessed
after M. kansasii infection (Supplementary Figure 3). We also
compared the therapeutic effects of Bvac and BCG vaccine
in M. kansasii-infected mice. As a result, mice therapeutically
treated with BCG and Bvac showed moderate levels of
inflammation with reduced cell infiltration and decreased
the bacterial burden in the lungs of M. kansasii-infected
mice (Supplementary Figures 4A,B). Intriguingly, however,
immunization of mice with Bvac significantly decreased the
bacterial burden in the liver than BCG immunization after M.
kansasii infection (Supplementary Figures 4C,D). Collectively,
we established a murine model of infection of M. kansasii and
showed that Bvac had preventive effect against M. kansasii
expressing ESAT6.

B/αGC/vacESAT6 Had Therapeutic Effects
Against M. kansasii Infection
We speculated whether B/αGC/vacESAT6 (Bvac) had therapeutic
effects against mice infected with M. kansasii. To evaluate
therapeutic efficacy of Bvac, mice were i.v. challenged with
107 CFU/mouse of M. kansasii, and 14 days later, they were
injected with Bvac at day 3 and 7 post-infection. When
we checked the bodyweight, mice administered with Bvac
showed alleviation in loss of body weight as compared to mice
infected with M. kansasii (Figure 4A). Further, survival rate
increased in mice treated with Bvac (Figure 4B). Histological
analysis of lungs of infected mice confirmed the therapeutic
effects of Bvac against M. kansasii infection (Figures 4C,D).
Bacterial load in the lungs was significantly reduced in mice
administered with Bvac as compared to M. kansasii infected
mice (Figure 4E). Also, administered with BCG did not show the
therapeutic effect, while Bvac administration reduced bacterial
loads in lungs of the infected mice (Supplementary Figure 5).
Furthermore, production of TNF and IL-6, which were increased
in lungs of infected mice following M. kansasii infection,
were significantly decreased when administered with Bvac
(Figure 5A). Collectively these results suggested that Bvac had a
therapeutic effect in mice infected withM. kansasii.

Bvac Increased the Production of IFN-γ in
CD4+ T Cells in a Therapeutic Mouse
Model
Finally, we assessed the production of intracellular cytokines
in CD4+ T cells after therapeutic treatment with Bvac in M.
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FIGURE 3 | Immunization of mice with Bvac prevented M. kansasii infection. (A) Expression of 11 kDa ESAT6 obtained from lysates of various CFU of M. kansasii by

western blotting. (B–F) Mice were intravenously immunized with Bvac via tail vein. After 14 days of immunization mice were challenged with M. kansasii (107

CFU/mouse) (n = 5 for uninfected, n = 6 for saline and Bvac group). After 14 days following M. kansasii infection, histology and bacterial CFU were determined from

lungs. (B) Bodyweight. ANOVA. *p < 0.05, M. kansasii vs. Bvac+ M. kansasii. (C) Survival rate. Log-rank test. (D) Representative hematoxylin and eosin staining of

lung sections from each group of mice (scale bar = 100µm). Bv (Blood vessel), Br (Bronchus), circle indicates interstitial necrotizing inflammatory foci, and arrow is

perivascular inflammatory cell infiltration. (E) Histological scores of the lung sections. (F) CFU of M. kansasii from lung homogenates. ANOVA. *p < 0.05, ***p < 0.001.

kansasii infected mice. IFN-γ-producing T cells are known to
play a key role in resistance against various pathogens including
M. tuberculosis (17). Mice were infected with M. kansasii (107

CFU/mouse), and i.v. injected with Bvac at day 3 and 7 post
infection. After 14 days following M. kansasii infection, lung
homogenates were analyzed for the production of TNF, IFN-γ,

and IL-6. Interestingly, although the levels of TNF, IFN-γ and
IL-6, were highly increased in mice infected with M. kansasii,
the levels of TNF and IL-6 were significantly reduced. When
CD4+ T cells obtained from the spleen of the treated mice were
analyzed for IFN-γ production, we found that splenocytes of
mice administered with Bvac showed increased production of
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FIGURE 4 | Bvac has therapeutic effect on mice infected with M. kansasii. To evaluate therapeutic efficacy of Bvac, mice were infected with 107 CFU of M. kansasii

per mouse, and Bvac was administered via tail vein injection at day 3 and 7 post infection (n = 5 for uninfected, n = 6 for saline and Bvac group). After 14 days

following M. kansasii infection, histology and bacterial CFU were determined from lung. (A) Body weights of mice are shown, ANOVA. *p < 0.05, **p < 0.01, M.

kansasii vs. Bvac + M. kansasii. (B) Survival rate. Log-rank test. (C) Representative hematoxylin and eosin staining of lung sections from each group of mice (scale

bar = 100µm). Bv (Blood vessel), Br (Bronchus), circle indicates interstitial necrotizing inflammatory foci, and arrow is perivascular inflammatory cell infiltration.

(D) Histological scores of the lung sections. (E) CFU of M. kansasii from lung homogenates. ANOVA. *p < 0.05, ***p < 0.001.

IFN-γ in CD4+ T cells compared to M. kansasii-infected mice
(Figure 5B). Consequently, these results suggest that Bvac could
induce IFN-γ-producing CD4+ T cell response, resulting in
preventive and therapeutic effects against M. kansasii expressing
ESAT6 (Supplementary Figure 6).

DISCUSSION

Tuberculosis is the most dangerous and incurable disease in
the world (18–20). Although most patients with M. tuberculosis
infection can be cured with appropriate treatment with anti-
tuberculosis drugs such as isoniazid, rifampin, pyrazinamide, and
ethambutol, it is difficult to treat multidrug resistant tuberculosis
(MDR-TB) and extensively drug-resistant tuberculosis (XDR-
TB) (21). Novel drugs including bedaquiline and delamanid

have been introduced to deal with MDR-TB (22). In addition,
drug repositioning approaches have provided linezolid, imatinib,
and metformin for the treatment of TB patients (23–27).
However, since treatment of MDR-TB requires at least 4 months,
studies on the development of new anti-tuberculosis drugs are
still needed. In this study, we suggest a novel approach to
treat mycobacterial infection including M. tuberculosis using a
therapeutic vaccine.

Currently, the only licensed vaccine for TB is BCG.
BCG is made by attenuating M. bovis. However, there
are several limitations of BCG as TB vaccine since it
cannot prevent the development of primary infection and
reactivation of latent pulmonary infection. Besides, the efficacy
of BCG vaccine has a broad range and limited efficacy
in adults. Due to the limitation of BCG vaccine, there is
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FIGURE 5 | Therapeutic administration of Bvac increased the production of IFN-γ in CD4+ T cells in M. kansasii-infected mice. Mice were infected with 107

CFU/mouse of M. kansasii, and then they were intravenously injected with Bvac at day 3 and 7 post infection. After 14 days following M. kansasii infection, lung and

spleen were isolated to analyze cytokine production. (A) The levels of TNF, IFN-γ, and IL-6 from lung homogenates. (B) Splenic CD4+ T cells were analyzed for IFN-γ

production after in vitro stimulation with plate-coated anti-CD3 and anti-CD28 antibodies. Representative histogram (left) and summary (right) for the percentages of

IFN-γ producing CD4+ T cells. ANOVA. **p < 0.01, ***p < 0.001.

an immediate need for further research to develop a novel
mycobacterial vaccine.

NTM is another contagious disease-causing pathogen in
humans (17). It has been reported that the incidence of multiple
NTM infections and NTM-associated mortality rates have
dramatically increased in recent times (28, 29). Non-tuberculous
mycobacterial pulmonary disease (NTM-PD) is one of the
main conditions caused by NTM (30, 31) and the radiological
manifestation of NTM-PD is classified as fibrocavitary form
(similar to pulmonary tuberculosis) and nodular bronchiectatic
form (similar to MAC pulmonary disease) (32, 33). It has
been reported that NTM-PD infection increases with age
(34), co-infection with chronic obstructive pulmonary disease
(COPD) and asthma, in patients (35).

M. kansasii is known as one of the main pathogens causing
NTM-PD (36). It has been reported that M. kansasii-infected
patients are mostly infected with other disorders such as
tuberculosis, other types of NTM, and HIV, which are resulting
in exacerbated symptoms and weakened immune system (2).
Treatment of M. kansasii infection is typically by administering
rifampin, but sometimes fails due to resistance to rifampin.
Ethambutol and isoniazid are also used, but drug resistance
against these drugs have also been reported (37, 38). Since NTM-
PD is accompanied by other diseases, we presumed that a novel

approach using an immunotherapeutic agent or vaccine could
be used to treat NTM infection as well as M. tuberculosis, which
essentially increases host immunity.

To control M. tuberculosis or NTM infection, it has been
recognized that Th1 response is important. IFN-γ, which is
mainly expressed by Th1, supports to activate macrophages
and empowers it to successfully degrade invaded bacteria.
Additionally, activation of Th1 cells helps B cells to produce
antibodies which suppress free bacteria by inducing the
formation of immune complexes. However, a recent study
reported anomalies of CD4+ T cell physiology in NTM-infected
host. NTM infected patients, especially when infected with
M. intracellulare or M. avium, showed reduced CD4+ T
cells in PBMC (39). In addition, the importance of IFN-γ
production seems controversial in a mouse infection model.
A systemic infection model induced by intravenous injection
of M. kansasii showed CD4+ T cell-dependent reduction of
mycobacterial burden in multiple organs. However, intranasal
infection revealed no significant alteration of severity between
WT and IL-12p40-, CD4-, or IFN-γ- deficient mice, triggered
by M. kansasii infection (40, 41). These data suggested
the restricted contribution of CD4+ T cell function in
suppressing M. kansasii in intranasally-induced lung infection
model. Collectively, these reports imply that the generation
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of IFN-γ producing CD4+ T cell response is crucial to
control systemic M. kansasii infection similar to other species
of mycobacterium.

Recently, vaccines using antigen-presenting cells including
dendritic cells and B cells have been suggested to induce strong
T cell-mediated immunity (11, 15). B cell vaccine is one of
the cell-based vaccine approaches developed by using pathogen-
specific antigens to induce diverse immune responses including
Th1, cytotoxic T cell, and pathogenic antigen-specific antibody
response. To augment CD4+ T cell response, αGC, a ligand of
NKT cell receptor, was used to load into the CD1d molecules on
B cell surface (11).

In the current study, we designed a B cell-based vaccine
(B/αGC/vacESAT6), which was transduced by vaccinia virus
expressing ESAT6 and loaded with αGC. ESAT6 is a 6
kDa secretory protein and is one of the critical antigens,
widely used as a candidate antigen for the development of
new TB vaccine. ESAT6 has been shown to have sufficient
immunogenicity such as CD4+ T cell and CTL responses in
both rodents and humans (42). Although ESAT6 is one of the
promising antigen candidates, it might inhibit innate immunity
by TLR2 binding, and can also inhibit the function of MHC
molecules by the phagosomal rupture. However, we could
not find any significant adverse effect after the administration
of B/αGC/vacESAT6.

The ESAT6 of M. bovis and M. tuberculosis is identical
(43, 44) and the amino acid sequence of ESAT6 homolog
of M. kansasii is highly similar to that of M. bovis. Thus,
we presumed that ESAT6 of M. tuberculosis could protect
M. kansasii infection. In the current study, we confirmed
that immunization with B/αGC/vacESAT6 ameliorated
pulmonary inflammation caused by M. kansasii infection.
Especially, therapeutic treatment of B/αGC/vacESAT6 decreased
bodyweight loss and bacterial load in the lungs following M.
kansasii infection, as well as increased the survival rate of
M. kansasii-infected mice. The therapeutic administration of
B/αGC/vacESAT6 increased IFN-γ production by CD4+ T
cells. In addition, B/αGC/vacESAT6 altered the composition
of other immune cells in lungs such as CD8T cells and
myeloid cells.

Collectively, we developed a αGC-loaded, ESAT6 expressing
B-cell based vaccine (B/αGC/vacESAT6) and confirmed the
preventive and therapeutic effect of B/αGC/vacESAT6 vaccine in
a murine model ofM. kansasii infection.
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Infectious diseases are still a significant cause of morbidity and mortality worldwide.

Despite the progress in drug development, the occurrence of microbial resistance is still

a significant concern. Alternative therapeutic strategies are required for non-responding

or relapsing patients. Chimeric antigen receptor (CAR) T cells has revolutionized

cancer immunotherapy, providing a potential therapeutic option for patients who are

unresponsive to standard treatments. Recently two CAR T cell therapies, Yescarta® (Kite

Pharma/Gilead) and Kymriah® (Novartis) were approved by the FDA for the treatments

of certain types of non-Hodgkin lymphoma and B-cell precursor acute lymphoblastic

leukemia, respectively. The success of adoptive CAR T cell therapy for cancer has

inspired researchers to develop CARs for the treatment of infectious diseases. Here,

we review the main achievements in CAR T cell therapy targeting viral infections,

including Human Immunodeficiency Virus, Hepatitis C Virus, Hepatitis B Virus, Human

Cytomegalovirus, and opportunistic fungal infections such as invasive aspergillosis.

Keywords: infectious diseases, mAb engineering, CAR T cells, HIV, HCV, CMV, invasive aspergillosis, HBV

INTRODUCTION

Viral and opportunistic fungal infections represent a major threat to chronically infected
individuals and immunocompromised patients. Despite the availability of antifungal and antiviral
drugs, the mortality rate is still significant in high-risk patients (1–3). Current anti-viral treatments
fail to cure chronic viral infections (caused by, e.g., HIV, HBV, and HCV) due to the viral-reservoir
composed of infected cells that can stay latent for several years and would restart producing
infectious virus at any time (4, 5) and the occurrence of resistance (6, 7). Therapies providing long
term control or able to eradicate the viral-reservoir are required.

Pathogen-specific effector T cells play a crucial role in the control of acute viral and fungal
infections in immunocompetent individuals (8–12), making adoptive T cell therapy an attractive
alternative to currently used anti-infectious therapies. Pathogen-specific T cells occur in low
frequencies in the patient’s blood, making them difficult to isolate and expand. Moreover, they
have exhausted phenotypes andmight be rendered inefficient by viral escape mutationmechanisms
lowering the major histocompatibility complex (MHC) or mutating the targeted epitope (10, 13–
15). Thus, Chimeric antigen receptors (CARs) T cells present an attractive alternative.

CAR T cells are considered as a major scientific breakthrough and an important turning point
in cancer immunotherapy (16), especially in the treatment of B cell malignancies. Recently, the US
Food and Drug Administration (FDA) then the European Commission have approved two CAR
T-cell products, Kymriah R© (Novartis) and Yescarta R© (Kite Pharma/ Gilead) for the treatment
of B-cell precursor acute lymphoblastic leukemia and aggressive B-cell lymphoma, respectively.
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CAR T cells are described as having the targeting specificity of
a monoclonal antibody combined with the effector functions
of a cytotoxic T cell (17). They offer potential advantages
over pathogen-specific T cells, the CAR allows antigen
recognition independent of the MHC and can be designed
to specifically target the conserved and essential epitopes
of the antigen, which allows them to overcome pathogen
escape mechanisms.

Few anti-infectious CARs were described in the literature so
far, most of them targeting HIV. Here we review the progress and
discuss the remaining challenges of making CAR T cell therapy
a reality for individuals suffering from infectious diseases.
The main anti-infectious CAR constructs are summarized
in Table 1.

CAR T CELLS

CARs are synthetic receptors composed of a targeting element
linked by a spacer to a transmembrane domain followed
by an intracellular signaling domain. The targeting element
is usually, but not exclusively composed by a single-chain
variable fragment (scFv) (17). The spacer constitutes mainly
of a full-length Fc receptor of an IgG (Hinge-CH2-CH3)
or shorter parts like the Hinge region only or Hinge-CH2

(37–40). Furthermore, parts of the extracellular domains of
CD28 and CD8α were used as spacers (41, 42). Several
transmembrane domains were used to anchor the receptor
on the surface of a T cell, mainly derived from CD28,
CD8α, or CD4 (42–44). The signaling domain consists of
the intracellular part of CD3ζ from the TCR complex (45).
Over the years, in order to improve the CAR functionality
and persistence, several generations of CARs have been
established differing in their intracellular signaling (17). First-
generation CARs mediated T-cell activation only through the
CD3ζ complex (45, 46). Second-generation CARs include an
intracellular costimulatory domain, mainly CD28 or 4-1BB,
leading to an enhanced expansion, and functionality (43, 47–
52). These second-generation receptors are the origin of the
recently approved CAR T-cell therapies (53). Third-generation
CARs combine two costimulatory domains, mainly CD28,
and 4-1BB (54). Finally, fourth-generation CARs, also called
TRUCKs (T-cells redirected for universal cytokine-mediated
killing), emerged, including an additional transgene for inducible
cytokine secretion upon CAR activation [mainly IL-12 (55)].
Several other strategies for minimizing toxicity and enhancing
versatility and control of CAR T cells were reviewed by
others (17, 56).

CAR T CELLS SPECIFIC FOR HUMAN
IMMUNODEFICIENCY VIRUS (HIV)

Studies on developing CAR T cell therapy to cure HIV infections
are ongoing since the early 90th. The first findings were
already reviewed by others (57–60). Here we shortly summarize
the anti-HIV CAR T cell history and focus on the most
recent achievements.

CD4 Based CARs
The concept of CAR T cells was initially described in the 90th
when the cytotoxic T cells specificity was redirected toward
HIV infected cells. The first CAR was specific for HIV envelope
protein (Env) using the CD4 receptor as a targeting element
fused to the CD3ζ chain for intracellular signaling (CD4ζCAR)
(61, 62). Clinical trials with the CD4ζCAR showed that the
concept is feasible and safe, but failed to reduce HIV viral burden
permanently (63–66).

To improve the CART cell activity and persistence, CD4ζCAR
was re-engineered into second-generation and third-generation
CARs. While CAR T cells containing CD28 costimulatory
domain promoted higher cytokine production and better control
over HIV replication in vitro, the 4-1BB containing CARs
were more potent in controlling HIV infection in vivo. When
compared to first-generation CAR T cells, second-generation
CAR T cells were more potent at suppressing HIV replication
in vitro. Furthermore, in a humanized mouse model of HIV
infection, they preserved the CD4+ T cell count, reduced HIV
burden, and expanded to a greater extent than first-generation
CAR T cells (20).

However, it was shown that CD4-based CARs render the
CAR T cells susceptible to HIV infection (18, 25). To overcome
this limitation, CD4ζCAR was equipped with either a viral
fusion inhibitor (C46 peptide) (18) or small hairpin RNAs
to knock down HIV-1 co-receptor CC-chemokine receptor 5
(CCR5) and degrade viral RNA (19). Both methods successfully
rendered CD4ζCAR T resistant to HIV infection and conferred
them a long persistence and proper control of HIV infection
in vivo (18, 19).

Moreover, several genome editing techniques were used to
knock out CCR5 in T cells to confer them permanent resistance
to HIV infection (67). These include the use of ZFNs (Zinc-
finger nucleases) (68), which showed promising results in clinical
trials (NCT00842634, NCT01044654, NCT01252641), TALEN
(Transcription activator-like nucleases) (69, 70), and CRISPR-
CAS 9 (71) in preclinical studies. These endonucleases were
already used to produce universal CAR T cells by knocking down
the TCR (72–77). It would be useful to test them to knock down
CCR5 in HIV-CAR T cells.

scFvs Based CARs
To avoid using the CD4 as targeting element, novel CARs of
several generations were designed using single-chain variable
fragments (scFv) derived from broadly neutralizing antibodies
(bNAbs) targeting Env.

Targets included the CD4-binding site, several antigens of
glycoprotein 120 (gp120), the membrane-proximal region
of gp41, the mannose-rich region, and variable glycan
regions (20, 21, 24, 78).

Second-generation CARs for the different targets enabled
the CAR T cells to kill HIV-1-infected cells. However, their
antiviral activity was variable according to the virus strain (78).
Second-generation anti-glycan CARs, in combination with CCR5
ablation, provided better control of viral replication than the
CAR alone (24).

First-generation anti-gp120 CARs induced efficient activation
and cytokine secretion by the gene-modified T cells andmediated
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TABLE 1 | CAR design of the most promising anti-infectious CAR T-cells.

Pathogen Targeted antigen Targeting
element

Spacer Transmembrane
domain

Costimulatory
domain

Extra modification References

HIV CD4 binding site on gp-120 CD4 n.a. CD4 n.a. C46 peptide (18)

CD4 binding site on gp-120 CD4 n.a. CD4 n.a. CCR5 sh 1005; sh 516 (19)

CD4 binding site on gp-120 CD4 n.a. CD8α CD28 or 4-1BB (20)

CD4 binding site on gp-120 VRC01-scFv (GGGGS)3 CD8α or CD28 CD28-4-1BB (21)

CD4 binding site on gp-120 105-scFv CD8 hinge CD3ζ n.a. (22)

Env/gp120 glycans CD4/ CRD CD28 CD28 CD28 (23)

V1/V2 glycan loop PGT145-scFv CD8α Hinge CD8α 4-1BB AAV6-CCR5 (24)

CD4-induced epitope on

gp120/CD4 binding site

17b-scFv/CD4 Tripeptide AAA CD28 CD28 (25)

CD4-induced epitope on

gp120/CD4 binding site

mD1.22-G4S-

m36.4

CD8 CD8 4-1BB C46 peptide (26)

HBV S HBV surface protein C8-scFv IgG1 Fc CD28 CD28 (27–29)

HBV surface antigen 19.79.6-scFv IgG4 Fc mutated CD28 CD28 (30)

HCV HCV E2 glycoprotein e137-scFv IgG Fc CD28 CD28 (31)

CMV Glycoprotein B 27-287-scFv Ig Hinge CD28 CD28 (32–34)

Virally encoded FcRs IgG1 or IgG4 Fc

mutated

n.a. CD28 CD28 (35)

Aspergillus

fumigatus

β-glucan Dectin 1 IgG4 Fc mutated CD28 CD28 (36)

lysis of envelope-expressing cells and HIV-1-infected CD4+ T-
lymphocytes in vitro (22). Third generation anti-gp120 CAR-
T cells were more efficient than CD4 based CARs in lysing
gp120 expressing cells in vitro. Furthermore, their interaction
with cell-free HIV did not result in their infection. More
importantly, they efficiently induced cytolysis of the reactivated
HIV reservoir isolated from infected individuals. Thus, anti-
gp120 third-generation CAR T cells might be a suitable
candidate for therapeutic approaches aiming to eradicate theHIV
reservoir (21).

However, one major drawback to developing scFvs-based
CAR T cell therapy is the HIV viral escape mutation mechanism
that can abrogate the antibody-binding site and render the CAR
T cell therapy inefficient.

Bi- and Tri-specific CARs
In order to overcome the HIV mutation escape mechanism,
bi-and tri-specific CAR-expressing T cells targeting up to
three HIV antigens were designed to increase the specificity
and affinity.

The CD4 segment was fused with an scFv specific for a CD4-
induced epitope on gp120 (25) or the carbohydrate recognition
domain (CRD) of a human C- type lectin binding to conserved
glycans on Env (23). The CD4-anti gp120 scFv bispecific CAR
had better suppressive activity against HIV than the CD4 alone.
CD4-mannose binding lectin (MBL) CARs showed the best
potency when compared to both CD4 alone and CD4-anti gp120
(23). However, since C- type lectins can bind glycans which are
not specific for HIV infected cells and can be associated with
healthy cells, off-targets cannot be excluded.

More recently, T cells were engineered with up to three
functionally distinct HIV envelope-binding domains to form
bispecific and tri-specific targeting anti-HIV CAR-T cells. These
cells carry two distinct CARs expressed on one T cell or one
CAR having tow targeting elements linked together. Targets
included CD4-binding site on HIV gp120 and CD4-induced
(CD4i) epitope on gp120 near the co-receptor binding site. Tri-
specific CARs expressed the C46 peptide, which inhibits HIV
viral fusion and thus can prevent the infection of CAR T cells.
Bi-and tri-specific CAR T cells showed potent in vitro and in
vivo anti-HIV effects, they efficiently killed HIV-infected cells in a
humanized mouse model while protecting the CAR- T cells from
infection (26).

Despite all the challenges faced, anti-HIV CAR T cell
therapy made much progress toward enhancing the CAR
T cell antiviral activity, protecting CAR T cells from HIV
infection, and overcoming HIV escape mechanisms. Currently,
at least two clinical trials are ongoing for latent reservoir
eradication, one using a modified bNAb-based CAR-T cell
therapy (NCT03240328) and one using CD4-based CAR-T cell
therapy with CCR5 ablation (NCT03617198).

CAR T CELLS SPECIFIC FOR HEPATITIS B
VIRUS (HBV)

Some preclinical studies are focusing on engineering second-
generation CAR T cells to cure chronic hepatitis B and
prevent the development of hepatocellular carcinoma (HCC).
Cytotoxic T cells were redirected toward HBV surface and
secreted antigens.
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Second generation CAR T cells were designed to target HBV-
surface proteins S and L, which are expressed continuously on the
surface of HBV replicating cells. S and L specific CAR T cells were
able to recognize soluble HBsAg andHBsAg-positive hepatocytes
in vitro and subsequently secret IFNγ and IL-2. S-CAR T cells
were activated faster and secreted higher cytokine levels than
L-CAR T cells. This might be due to the higher expression of
the S-protein on the surface of viral and subviral particles when
compared with the L-protein (27).

Furthermore, both CAR T cells were able to lyse HBV
transfected cells as well as selectively eliminated HBV-infected
primary hepatocytes. However, even after the elimination of
HBV-infected hepatocytes, HBV core protein and HBV rcDNA
remained detectable. It is most probably because HBV rcDNA
is localized in viral capsids and thus protected from caspase-
activated DNAses (27). The S-CAR construct was tested in
vivo in an immune-competent HBV transgenic mouse model.
CD8+ mouse T cells expressing the human S-CAR localized to
the liver and effectively reduced HBV replication, causing only
transient liver damage. Furthermore, contact of CAR T cells
with circulating viral antigen did not lead to their functional
exhaustion or excessive liver damage. However, the survival
of the CAR T cells was limited due to the immune response
triggered by the human CAR (28). In an immunocompetent
mouse model tolerized with a signaling-deficient S-CAR, S-
CAR T cells persisted and showed long-lasting antiviral effector
function (29). However, the use of a transgene instead of cccDNA
to transcribe HBVmakes these mousemodels unsuitable to judge
whether S-CAR T cells can cure HBV infection (28, 29).

More recently, other novel second-generation CARs targeting
HBsAg were designed with different spacer length. Only HBs
-CAR T-cells equipped with a long spacer (HBs-G4m-CAR)
recognized HBV-positive cell lines and HBsAg particles in vitro
and subsequently produced significant amounts of IFN-γ, IL-2,
and TNF-α. However, HBs-G4m-CAR T cells were not capable
of killing HBV-positive cell lines in vitro. This might be due
to HBsAg particles produced by HBV-positive cells that can
bind to HBs-G4m-CAR T-cells and potentially inhibit CAR-
T targeting or killing of infected cells. In a humanized HBV-
infected mouse model, adoptive transfer of HBsAg-CAR T-
cells led to the accumulation of the cells in the liver and
an important reduction in plasma HBsAg and HBV-DNA
levels. Furthermore, the absence of HBV core expression in a
portion of human hepatocytes and the unchanged plasma human
albumin levels indicated HBV clearance without destruction
of the infected hepatocytes. However, no complete elimination
of HBV was observed. Despite this limitation, HBs-G4m-
CAR T cells had superior anti-HBV activity than HBV entry
inhibitors (30).

These studies showed promising results; a direct comparison
of S-CAR T cell and HBsAg-CAR T-cell would be interesting
to test. Furthermore, a better mouse model more representative
of the actual infection should be used to evaluate the CAR
activity in vivo. Finally, combination therapy using CAR
T-cells with reverse transcriptase inhibitors or hepatitis B
immunoglobulin might be required to have better control of the
HBV infection.

CAR T CELLS SPECIFIC FOR HEPATITIS C
VIRUS (HCV)

Very recently, the first two CARs targeting HCV were
designed based on a broadly cross-reactive and cross-
neutralizing human monoclonal antibody specific for a
conserved epitope of the HCV E2 glycoprotein (HCV/E2).
Anti-HCV CAR T cells showed good anti-viral activity and
lyzed HCV/E2-transfected as well as HCV-infected target
cells (31).

This study showed that the concept of CAR T cells might also
be suitable for the treatment of HCV. The described CAR should
be evaluated in vivo in a suitable animal model. Furthermore,
since HCV/E2 is the main target of the host immune
response and is consequently very susceptible to mutations (32),
targeting other conserved, and essential antigens might also be
of interest.

CAR T CELLS SPECIFIC FOR HUMAN
CYTOMEGALOVIRUS (CMV)

The first CAR targeting CMV was described in 2010 based
on the anti-gB antibody. Second generation gB CAR T cells
were activated when co-cultured with CMV-infected cells and
secreted TNF α and IFN γ and subsequently inhibited CMV
replication in infected cells (33–35). Moreover, they eliminated
gB transfected cells (33) but were not always able to lyse
infected cells, especially at later stages of the replication cycle.
This might be due to HCMV-encoded anti-apoptotic proteins
that are known to prevent the suicide of infected host cells
(34, 35). This CAR T cell therapy was not tested in vivo due
to the few sequence similarities between the murine CMV gB
protein and the human one. An appropriate mouse model
using a recombinant MCMV expressing HCMV-gB should be
developed (33).

In a later study, it was shown that the long spacer (CH2–CH3
Fc domain from IgG1) usually used in CAR preparation could
bind to virally encoded Fc binding receptors on the surface of
infected cells and act as a receptor for CMV. The mutated form
of the spacer is only recognized by viral FcRs and not the human
ones. In this way, the long spacer can act as a receptor for CMV
infected cells (35).

The gB-CAR with long and short spacer should be further
tested in vivo in an appropriate animal model. More targeting
elements should be tested. Finally, the combination of new
targeting elements with a long spacer might confer a bispecific
targeting of CMV infected cells.

CAR T CELLS SPECIFIC FOR
EPSTEIN-BARR VIRUS (EBV)

To target Epstein-Barr virus (EBV) associated malignancies,
a second-generation CAR specific for the EBV latent
membrane protein 1 (LMP1) was described. EBV-
CAR T cells were activated in vitro in co-culture with
nasopharyngeal carcinoma cells overexpressing LMP1
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FIGURE 1 | CAR T cells targeting infectious diseases. (A) T cells are redirected against HIV by the expression of Env-specific CARs on their surface. Additionally, they

are rendered resistant to HIV infection by expression of an anti-fusion peptide. Anti-HIV CAR T cells can successfully kill HIV infected cells and control HIV infection.

(B–D) CAR T cells specific for HBV S protein, HCV/E2, or gB can recognize cells infected by HBV, HCV, and CMV, respectively. They can selectively kill the infected

cells within the epithelium. (E) Dectin 1-CAR T cells can directly bind to Aspergillus fumigatus germlings and induce hyphal damage. Env, HIV envelope protein; Gp,

Glycoprotein; TM, transmembrane; VH, variable heavy chain; gB, Glycoprotein B. Some illustrations were obtained and modified from Servier Medical Art by Servier,

licensed under Creative Commons Attribution 3.0 Unported License.

and subsequently produced IFNÈ and IL-2. Intra-tumoral
injection of EBV-CAR T cells in a xenograft mouse
model having tumors overexpressing LMP1 reduced tumor
growth (79).

CAR-T cell therapy for solid tumors is still facing many
challenges, like the inability to reach the tumor and survive in the
tumor microenvironment. These challenges and the developed
strategies to overcome them were reviewed by others (80).
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CAR T CELLS SPECIFIC FOR Aspergillus

fumigatus

A second-generation CAR using the extracellular domain of
Dectin-1 as targeting element called D-CAR was designed to
target Aspergillus fumigatus. Dectin 1 is a C-type lectin receptor
specific for ß-glucan, a motif expressed on the surface of many
fungi (81). D-CAR T cells were activated by ß-glucan and
subsequently secreted IFNγ and induced hyphal damage in vitro.
In an immunocompromised invasive aspergillosis mouse model,
D-CAR T cells reduced the fungal burden (36).

This study suggested that the application of CAR T cells might
extend beyond cancer and chronic viral infections to acute fungal
infections. Although promising results were shown for D-CAR
T cells, Dectin 1 might not be the best targeting element to
redirect the T cell specificity toward Aspergillus fumigatus. Since
ß-glucans are not specific for Aspergillus fumigatus but rather a
broad range of commensal and pathogenic microorganisms, off-
target activity of the CAR T cells cannot be excluded (82). Using
scFvs derived from fungal specific antibodies might provide
better specificity and activity of the CAR. Moreover, strategies to
significantly shorten the CAR T cell preparation time [currently
time from leukapheresis to infusion of the CART product can
take up to 3–4 weeks (83)] will be essential to allow their clinical
use for acute infections.

CONCLUSION AND PERSPECTIVES

CAR T-cell therapy has gained much interest since its clinical
application was approved for cancer immunotherapy. Relying
on the knowledge accumulated on CAR T cell engineering in
cancer research, many efforts are being made toward developing
similar therapies for patients affected by chronical viral and

acute invasive fungal infections. While targets are more precise
and unique to the pathogen, making it easier to avoid off-
targets, pathogen escape mechanisms, and reservoirs are still
major obstacles.

Several CARs targeting infectious diseases have been
described; the most relevant ones are summarized in Figure 1

and Table 1. Tremendous progress was made in anti-HIV
CAR T cell therapy, which reached now clinical trials. CAR
T cells targeting other viruses such as HBV, HCV, CMV, and
opportunistic fungus are still in their early pre-clinical testing.
So far, promising data were observed, providing a proof of
concept of CAR T cell application. Nevertheless, considerable
optimization work is still required regarding the safety and
efficacy of the constructs. More targets should be evaluated in
vitro and in vivo in relevant animal models.
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The pneumoviruses respiratory syncytial virus (RSV) and human metapneumovirus

(hMPV) are two widespread human pathogens that can cause severe disease in the

young, the elderly, and the immunocompromised. Despite the discovery of RSV over

60 years ago, and hMPV nearly 20 years ago, there are no approved vaccines for either

virus. Antibody-mediated immunity is critical for protection fromRSV and hMPV, and, until

recently, knowledge of the antibody epitopes on the surface glycoproteins of RSV and

hMPV was very limited. However, recent breakthroughs in the recombinant expression

and stabilization of pneumovirus fusion proteins have facilitated in-depth characterization

of antibody responses and structural epitopes, and have provided an enormous diversity

of new monoclonal antibody candidates for therapeutic development. These new data

have primarily focused on the RSV F protein, and have led to a wealth of new vaccine

candidates in preclinical and clinical trials. In contrast, the major structural antibody

epitopes remain unclear for the hMPV F protein. Overall, this review will cover recent

advances in characterizing the antigenic sites on the RSV and hMPV F proteins.

Keywords: RSV, respiratory syncytial virus, human metapneumovirus, hMPV, antibody—antigen complex, X-ray

crystallography, pneumovirus infections

INTRODUCTION

The recently reclassified Pneumoviridae virus family includes the human pathogens respiratory
syncytial virus (RSV) and human metapneumovirus (hMPV) (1). These viruses are among the
most common causes of childhood respiratory tract infection (2). Severe disease primarily occurs in
young children, the elderly, and the immunocompromised, and reinfection can occur throughout
childhood and adulthood, as sterilizing immunity is not acquired after infection. Both viruses
exhibit genetic stability, with relatively few changes in viral sequences among circulating strains.
Despite decades of research, there are no approved vaccines to prevent pneumovirus infection.
Fortunately, a wave of new progress in recent years has led to the development of new vaccine
candidates and therapeutics, largely due to breakthroughs in structural biology and immunological
techniques. This review will cover recent findings on antigenic epitopes of RSV and hMPV
fusion glycoproteins.

GLOBAL BURDEN OF PNEUMOVIRUSES

Respiratory Syncytial Virus
RSV is an enveloped, negative-sense, single stranded RNA virus, first isolated in 1955 from
chimpanzees with respiratory illness (3), and subsequently isolated from infants with lower
respiratory tract infection (4, 5). RSV is the leading cause of viral bronchiolitis and viral pneumonia
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in infants and children (6, 7), and nearly all children have been
exposed to RSV before the age of 2 (8). RSV infection causes
flu-like symptoms, bronchiolitis, and pneumonia that can be
fatal to children. In addition, RSV infection poses a substantial
threat to elderly populations and immunocompromised adults
(9). RSV is highly contagious, and can be transmitted through
direct contact or aerosol (10). Although numerous vaccines have
undergone clinical trials (11), the monoclonal antibody (mAb)
palivizumab remains the only approved therapeutic for RSV
infection. Palivizumab has shownmoderate efficacy at preventing
RSV hospitalizations and intensive care unit admissions (12),
however, the drug is only approved for prophylactic use, and in
limited cases.

Human Metapneumovirus
hMPV was identified in 2001 in the Netherlands from samples
collected from 28 children with respiratory tract infection (13).
The clinical features of hMPV infection are virtually identical
to RSV, and display as mid-to-upper respiratory tract infection,
and can be severe enough to cause life-threatening bronchiolitis
and pneumonia. Infants and the elderly are the major groups for
which hMPV infection may require hospitalization (14–18). In
addition, hMPV infection can be severe in immunocompromised
patients such as lung transplant (19) and hematopoietic stem-cell
transplant recipients (20–23), and can cause febrile respiratory
illness in HIV-infected patients (24) as well as exacerbate chronic
obstructive pulmonary disease (25). Nearly 100% of children are
seropositive by 5 years of age. There are currently no vaccines
to prevent hMPV infection, and unlike the related pathogen
respiratory syncytial virus (RSV), for which the prophylactic
treatment palivizumab (26) is available for high-risk infants, no
treatment or prophylaxis is available for hMPV.

THE PNEUMOVIRUS FUSION PROTEIN

Pneumoviruses have three surface glycoproteins: the (F) fusion,
(G) attachment, and small hydrophobic (SH) proteins, and the
pneumovirus F protein is absolutely critical for viral infectivity.
Antibodies are highly important for pneumovirus immunity
(27, 28), and both RSV F and RSVG elicit neutralizing antibodies
(29), while only antibodies to hMPV F are neutralizing (30).
The pneumovirus F proteins belong to the family of class I
viral fusion proteins that mediate the fusion of viral envelope
and cell membrane during infection (31). The RSV F protein
is first expressed as a F0 precursor, which is then cleaved at
two furin cleavage sites in the trans-Golgi network to become
fusion competent, generating the N-terminal F2 subunit and
the C-terminal F1 subunit, while the p27 fragment in between
F1 and F2 is removed. In contrast, hMPV F is cleaved at
one site by different intracellular enzymes than RSV (32).
Cleaved pneumovirus F proteins are anchored on the viral
envelope by the trans-membrane domain of F1. The F1 and F2
fragments are covalently linked via two disulfide bonds, and
the proteins form a trimeric structure consisting of three of
the disulfide-linked fragments. The Pneumovirus F proteins fold
into a pre-fusion conformation that contains a buried fusion
peptide. Upon activation, the F protein undergoes a series of
conformational changes leading to the post-fusion conformation

in concert with cell-virus membrane fusion (31). The pre-fusion
conformation of the pneumovirus F protein is unstable, and
refolding can occur spontaneously or under certain stimuli
that irreversibly transform the globular pre-fusion F into the
elongated post-fusion formation. During the process of the pre-
to-post-fusion conformational change, the highly hydrophobic
fusion peptide located at the N terminus of F2 will insert into
host cell membrane, forming a hairpin structure that bridges
the two membranes together before a refolding event causes
membrane fusion.

Until recently, knowledge on the structural aspects of
pneumovirus fusion proteins was severely lacking, primarily due
to instability of the pre-fusion conformation when recombinantly
expressed. An X-ray crystal structure of the post-fusion
conformation of RSV Fwas determined in 2011 by removal of the
fusion peptide in the construct used for crystallization (33, 34). A
breakthrough in 2013 facilitated structural-determination of the
RSV F protein in the pre-fusion conformation by co-expression
of RSV F with the mAb Fab fragment D25 to trap the protein in
the pre-fusion state (35). This subsequently led to stabilization
of the RSV F protein in the pre-fusion conformation by
locking the protein in the pre-fusion state via artificial disulfide-
bond insertion in addition to cavity-filling mutations (the Ds-
Cav1 construct) (36). Following this, an additional pre-fusion-
stabilized protein was generated in an alternative approach using
the substitution of proline residues in the refolding regions
and expression of the protein as a single-chain through the
introduction of a glycine-serine linker (the SC-TM construct)
(37). For hMPV, a partial X-ray crystal structure of hMPV F in
the pre-fusion conformation in complex with the neutralizing
Fab DS7 was determined in 2012 (38). Following the success with
stabilization of pre-fusion RSV F, crystal structures of trimeric
hMPV pre-fusion and post-fusion hMPV F were determined (39,
40). Pre-fusion hMPV F was stabilized with proline-substitutions
to prevent refolding to the post-fusion conformation, while post-
fusion hMPV F required the addition of a trimerization domain.
Both hMPV F constructs required cleavage-site modification and
co-expression with furin in CV-1 cells to generate fully-cleaved
trimeric proteins. In addition to the structures described above,
similar strategies were utilized to stabilize the parainfluenza virus
fusion proteins, and bovine RSV F in the pre-fusion state (41, 42).

ANTIGENIC DIFFERENCES BETWEEN RSV

AND HMPV F

The RSV and hMPV F proteins share ∼30% sequence identify,
and among the antigenic sites on RSV F, at least two are
shared with hMPV F (antigenic sites III and IV) as a result of
this conservation (Figures 1A,B). Despite the shared sequence
conservation, several distinct features influence the differing
antibody response to these viruses. The majority of RSV
neutralizing activity in human sera is mediated by pre-fusion-
specific RSV F antibodies (43), while the majority of hMPV
neutralizing activity is mediated by antibodies recognizing both
pre-fusion and post-fusion conformations (40). In addition,
vaccination with pre-fusion RSV F induces higher levels of
neutralizing IgG than vaccination with post-fusion RSV F (36),

Frontiers in Immunology | www.frontiersin.org 2 November 2019 | Volume 10 | Article 277868

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Huang et al. Pneumovirus mAbs

FIGURE 1 | X-ray crystal structures of pneumovirus F proteins alone and in complex monoclonal antibody fragments. (A) The main antigenic sites on the RSV F

protein are depicted on a monomer of the F protein (PDB ID: 5C6B). (B) The same structure as in (A) is colored according to sequence conservation with hMPV F.

Conserved residues are shown in maroon, and primarily reside within antigenic sites III, IV, and V. Sequences of RSV and hMPV F were derived from PDB IDs: 5C6B

and 5WB0. (C) The pre-fusion specific antibody D25 binds at the apex of pre-fusion RSV F (PDB ID: 4JHW). (D) hRSV90 binds antigenic site V and is

pre-fusion-specific (PDB ID: 5TPN). (E) MPE8 is pre-fusion-specific and cross-reactive with hMPV F (PDB ID: 5U68). (F) 14N4 is a human antibody that targets

antigenic site II and binds both pre-fusion and post-fusion RSV F (PDB ID: 5J3D). (G) The humanized mouse mAb, 101F, binds at antigenic site IV. For this structure,

the crystal structure of 101F binding the site IV peptide (PDB ID: 3O41) was aligned with antigenic site IV of the post-fusion RSV F protein (3RRR). (H) The

non-neutralizing site I mAb ADI14359 was isolated from an RSV-infected infant, and is preferential for post-fusion RSV F (PDB ID: 6APB). (I) DS7 is a hMPV F-specific

mAb that was co-crystallized with a fragment of pre-fusion hMPV F. The structure of the DS7-F complex (PDB ID: 4DAG) is overlaid onto the trimeric pre-fusion hMPV

F structure (PDB ID: 5WB0). All antibodies are colored in accordance with the text label, the RSV F protein is shown in cyan, and the hMPV F protein is shown in

wheat. All figures and alignments were prepared in PyMol and Chimera.

while vaccination with pre-fusion-stabilized hMPV F elicited
similar neutralizing IgG titers as vaccination with post-fusion
hMPV F (40). These data suggest that pre-fusion-specific RSV F
antibodies are more prevalent in infected or vaccinated humans
and mice, and pre-fusion-specific hMPV F antibodies are present
at low levels as compared to antibodies that recognize both pre-
fusion and post-fusion hMPV F. The low level of pre-fusion-
specific hMPV F antibodies is likely due to a glycan shield near
the corresponding RSV site Ø and site V regions on the head of
hMPV F.

ANTIGENIC EPITOPES ON THE RSV F

PROTEIN

mAbs binding to the RSV F protein could prevent F protein
binding to host cell or hinder the conformational change
from pre-fusion to post-fusion, and thus block viral entry into
the cell. Due to its sequence conservation, and elicitation of
potently neutralizing mAbs, the F protein has become the most
popular target for vaccine development. As such, there has
been a rapid increase in structural characterization of mAbs

in complex with the RSV F protein. Currently available solved
structures of mAbs in complex with pneumovirus F proteins
are summarized in Table 1. To date, multiple antigenic sites
targeted by antibodies have been identified on the RSV F protein
(Figure 1). Based on the secondary structure of the protein, six
general regions have been designated as antigenic sites: Ø, I, II,
III, IV, and V. Among them, antigenic sites I, II, and IV are
quite similar between pre-fusion and post-fusion conformations
due to their structural conservation upon transition from pre-
fusion to post-fusion F. Antigenic sites Ø and V are only
present in the pre-fusion conformation (58), while antigenic
site III elicits mAbs that are pre-fusion-specific, such as MPE8,
while also eliciting mAbs that bind both conformations, such
as 25P13 (50). In addition, more than 60% of the most potent
neutralizing mAbs bind to sites Ø and V (59), indicating these
areas are crucial for immune system recognition and subsequent
virus neutralization.

Antigenic Site Ø
Antigenic site Ø was the first pre-fusion-specific antigenic site
identified on the RSV F protein. The methodology for isolating
the first site Ø antibodies was crucial as the mAbs were isolated
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TABLE 1 | List of structurally-characterized antibodies in complex with pneumovirus F proteins or fragments thereof.

mAb PDB ID Origin Antigenic site References

RSV F

motavizumab 3IXT, 3QWO, 4JLR,

6OE5, 4ZYP

Mouse II (44)

101F 3O41, 3O45 Mouse IV (45)

hRSV90 5TPN Human V (46)

D25 4JHW Human Ø (36)

MEDI8897 5UDC, 5UDD Human Ø (47)

AM22 6DC5, 6APD Human Ø (48)

5C4 5W23 Mouse Ø (49)

MPE8 5U68 Human III (50)

ADI19425 6APD Human III (51)

CR9501 6OE4/6OE5 Human V (52)

AM14 4ZYP Human IV, V (53)

RSD5 6DC3 Human Ø (48)

14N4 5J3D Human II (54)

ADI14359 6APD Human I (51)

R4.C6 6CXC Mouse II, IV (55)

RB1 6OUS Human IV (56)

F-VHH-4 5TOJ Llama II, III, IV, V (57)

F-VHH-L66 5TOK Llama II, III, IV, V (57)

hMPV F

DS7 4DAG Human DS7-site (38)

on the basis of RSV neutralization rather than RSV F protein
binding (60). This facilitated the isolation of pre-fusion-specific
mAbs without the existence of a pre-fusion RSV F construct.
Subsequently, onemAb, D25 (Figure 1C), was utilized to lock the
RSV F protein in the pre-fusion conformation (35), which then
facilitated stabilization of RSV F in the pre-fusion conformation
(36). It is now clear that mAbs that target antigenic site Ø are
a large portion of the human B cell repertoire (43, 46, 59).
5C4 is a mAb derived from mice immunized with gene-based
vectors encoding the F protein, and is 50 times more potent than
palivizumab. Human mAbs D25 and AM22, as well as the mouse
mAb 5C4 bind to the apex of the pre-fusion F trimer (site Ø)
(36). Importantly, a human mAb based on D25, MEDI-8897, is
in clinical trials for prevention of RSV disease in infants (61).

Antigenic Site V
Antigenic site V was described recently, based on mAb isolation
to new pre-fusion-stabilized constructs (46, 59). hRSV90
(Figure 1D) is a site V-targeting human mAb that was found to
compete for binding with mAbs that target site II and site Ø.
hRSV90 was co-crystallized with the RSV F protein and found
to bind just below antigenic site Ø (46). In addition, several site
V mAbs were isolated from both adults and infants (51, 59),
suggesting these mAbs are prevalent in the human anti-RSV
repertoire. CR9501 is a neutralizing mAb isolated from humans,
and this mAb was used to demonstrate the dynamic motions
of trimeric pre-fusion RSV F protein (52). An antibody that
competes for site V of the RSV F protein, MC17, was also shown
to cross-react with the hMPV F protein (56).

Antigenic Site III
The prototypical site III mAb MPE8 (Figure 1E) is unique as it
cross-neutralizes multiple viruses in the Pneumoviridae family
(62). This broad coverage is related to similar V gene usage
and somatic mutations in the variable region based on the
isolation of a highly similar human antibody 25P13 (50), as
well as several other mAbs from a large panel of anti-RSV F
human mAbs (59). In addition, site III-specific mAbs are elicited
upon initial RSV infection in infants (51). One mAb, ADI19425,
which was isolated from an RSV-infected infant, and is potently
neutralizing despite lacking substantial somatic hypermutation,
was co-crystallized with pre-fusion RSV F (51).

Antigenic Site II
Palivizumab and motavizumab are the prototypical mAbs to
identify antigenic site II on the RSV F protein (26, 44, 63, 64).
Targeting antigenic site II of RSV F protein (26), palivizumab is
able to neutralize a broad panel of 57 RSV isolates from both
subtypes A and B (65). This antigenic site primarily consists
of the helix-loop-helix motif of residues 255-275 on the RSV
F protein. Several human antibodies have been isolated that
bind at antigenic site II (51, 54, 59). The human antibody 14N4
(Figure 1F) was co-crystallized in complex with post-fusion RSV
F, and primarily focuses on the 255–275 motif. In the same
study, a panel of non-neutralizing mAbs was identified that
compete with antigenic site II mAbs on post-fusion RSV F, and
suggest some limitations of the palivizumab competition assay
used in some vaccine efficacy studies (54). The characterization of
mAbs to this antigenic site has led to vaccine candidates focused
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on antigenic site II (66, 67). Furthermore, serum competition
assays with palivizumab have been utilized to characterize vaccine
candidates (68). In addition to the mAbs above, nanobodies
targeting antigenic site II have been isolated (69, 70), and one
nanobody, ALX-0171, has been evaluated as an antiviral therapy
to treat RSV infection (71).

Antigenic Site IV
The site IV epitope is epitomized by the humanized mouse mAb
101F (Figure 1G) (72), and this epitope is structurally conserved
between pre-fusion and post-fusion RSV F. The site IV epitope
primarily consists of a linear region based on epitope mapping
and structural data (45, 73). In addition, it was recently found
that 101F cross-reacts with the hMPV F protein (39), presumably
by binding to a conserved region at site IV that is similar between
RSV and hMPV F (73). Several human mAbs targeting antigenic
site IV have also been isolated (51, 59, 73), and human antibody
cross-reactivity with hMPV F was correlated to a specific binding
pose (73). In addition to the traditional site IV epitope, a mouse
mAb, R4.C6, has been isolated that incorporates site IV as well
as site II into its epitope (55). The structure of the R4.C6 Fab-
post-fusion RSV F complex obtained by cryo-EM showed that the
antibody binds to a cross-protomer area in between site II and IV.
Recently, a site IV human antibody, RB1, was co-crystallized in
complex with pre-fusion RSV F, and a half-life extended variant
of this antibody is in clinical development (74).

Antigenic Site I
The site I epitope on the RSV F protein was identified by the
prototypical mouse monoclonal antibody 131-2a (75). Recently,
it was determined that human mAbs identified that bind at
antigenic site I are weakly or non-neutralizing (51, 54), likely
due to insufficient binding to pre-fusion RSV F, as many of these
mAbs are post-fusion-specific. The crystal structure of an infant-
derived non-neutralizing human mAb, ADI-14359 (Figure 1H),
in complex with post-fusion RSV F was determined and defined
the antigenic surface for site I (51).

Other Epitopes and Antibodies
In addition to the epitopes described above, there are several
other antibodies isolated that bind unique regions on the RSV
F protein. AM14 is a human mAb that recognizes a quaternary
epitope spanning two protomers, suggesting the trimeric F
protein has specific antigenic epitopes that are not found on the
monomeric F protein (53). Single-domain antibody (VHH) or
nanobodies from llama immunization were identified and co-
crystallized with the RSV F protein (57). Both F-VHH-4 and
F-VHH-L66 bind to a cavity in the intermediate area between
antigenic site II of one protomer and antigenic site IV of the
neighboring protomer. Intranasal administration of these VHHs
significantly reduced viral replication in mice, which provides
new therapeutic options for antiviral development.

MABS TARGETING THE HMPV F PROTEIN

The first hMPV F-specific neutralizing mAbs generated were
derived from immunization of mice and hamsters with various

strains of hMPV (76). Of the 12 mAbs in the study, murine
mAbs 234 and 338 were effective as passive prophylaxis,
protecting mice from hMPV challenge; mAb 338 was successful
in reducing lung viral titers when given both prophylactically
or therapeutically (77). By generating monoclonal antibody-
resistant mutants of antibodies that neutralize hMPV, six
antigenic sites of the hMPV F protein were identified (78).
Since then, the terminology regarding pneumovirus antigenic
sites for hMPV has followed that for RSV. Antigenic sites
IV and III from the RSV F protein have been found to be
conserved on hMPV F due to the isolation of cross-reactive
mAbs discussed in the RSV section. hMPV F-specific mAbs
have shown success in neutralizing hMPV both in vitro and
in vivo.

The DS7-Antigenic Site
A human mAb isolated from a phage display library, termed
DS7 (Figure 1I), was shown to reduce hMPV lung viral titers
when administered therapeutically in cotton rats (79). mAb DS7
was co-crystallized in complex with a fragment of pre-fusion
hMPV F (38), and has a unique molecular footprint in the
bottom half of the hMPV F protein. Three additional human
mAbs, which are naturally-occurring, termedMPV196,MPV201,
and MPV314 were recently isolated and compete for binding
with DS7, suggesting these mAbs target the same antigenic
site (80).

Antigenic Site III
The first mAb identified to bind antigenic site III of hMPV F
was the cross-reactive human mAb MPE8 (62). As discussed
in the RSV section, MPE8 was co-crystallized with the RSV
F protein, and the conserved regions at antigenic site III that
facilitate cross-reactivity were also hypothesized (50). A similar
mAb, 25P13, also discussed above, neutralized hMPV and RSV
and competed for binding at antigenic site III (50). Recently, a
human mAb, MPV364, was isolated and this mAb competes for
binding at antigenic site III, yet does not cross-react with RSV
F (80). MPV364 was shown to effectively limit viral replication
in BALB/c mice (80). These data suggest antigenic site III can
elicit both virus-specific and cross-reactive mAbs. However, the
mechanism behind such mAb induction will require additional
structural analysis.

Antigenic Site IV
As discussed earlier, the humanized mouse mAb 101F was
identified to cross-react with hMPV F (39). Four human mAbs
targeting antigenic site IV of the RSV F protein were isolated,
and one mAb, termed 17E10, was identified to also cross-react
with hMPV F. This mAb was subjected to peptide mapping
and negative-stain microscopy. mAb 17E10 was found to bind
a conserved GIIK motif on RSV and hMPV F (39). Furthermore,
the binding angle of 17E10 and 101F were shown to be different
than non-cross-reactive mAbs, suggesting an altered binding
pose is required for cross-reactivity between RSV and hMPV F
at antigenic site IV (73).

Frontiers in Immunology | www.frontiersin.org 5 November 2019 | Volume 10 | Article 277871

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Huang et al. Pneumovirus mAbs

SUMMARY AND DISCUSSION

In recent years, several breakthroughs have facilitated new
knowledge of pneumovirus antibody epitopes. Pre-fusion-
stabilized constructs have allowed for isolation of mAbs with
optimal neutralization potency, including those binding at
antigenic site Ø and V on the RSV F protein. In addition,
the use of mAbs to initially lock RSV in the pre-fusion
conformation allowed for structure-based design of pre-
fusion constructs. While hundreds of mAbs have now been
isolated to the RSV F protein, the antigenic epitopes on the
hMPV F protein, and related parainfluenza viruses remain
unclear. Further studies into antigenic epitopes on these
proteins will provide for new insights into pneumovirus

immunity and vaccine design. In addition, pre-fusion-
stabilized F constructs have now flooded the RSV vaccine

field, and there is renewed excitement for the development
of an effective RSV vaccine. The field is hopeful that future
characterization of mAbs to other pneumovirus surface
glycoproteins, as well as assessment of antibody responses to
new vaccine candidates will lead to the first safe and effective
pneumovirus vaccine.
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INTRODUCTION

Respiratory tract infections (RTIs) are the third leading cause of morbidity and mortality
worldwide, accounting for ∼4.25 million deaths in 2010, in either children, adults or the elderlies.
RTIs encompass acute infections of the upper (rhinosinusitis, . . . ) and lower airways (pneumonia,
bronchiolitis, . . . ) and are also inherently associated with chronic diseases such as chronic
obstructive pulmonary disease (COPD) and cystic fibrosis (CF). In addition to prematuremortality,
RTIs result in a huge burden on the society considering quality-adjusted life year loss and additional
pressure on the overwhelmed healthcare systems, thereby representing a major public health issue.

Antimicrobial chemotherapies (e.g., antibiotics, antivirals) are the standard interventions to
prevent and to treat respiratory infections. However, their effectiveness is declining due to
increased pathogen resistance, urging alternative or complementary strategies to reinforce the
anti-infectious arsenal to fight RTIs. Among those under evaluation, immunomodulatory agents
(immunopharmaceutics) like therapeutic antibodies (Ab) or other therapeutic proteins and
vaccines may offer novel opportunities for the prevention and treatment of RTIs, by targeting
pathogens and boosting the host immune system. When used in a preventive way in patients
at risk, or therapeutically to stop or to limit the spread of infection, both immunopropylactics
and immunotherapeutics are administered through parenteral routes (including intravenous,
subcutaneous, and intramuscular) (Table 1). As demonstrated in preclinical studies, parenteral
delivery may not be optimal for large molecular weight entities to treat respiratory diseases (1, 2)
since they poorly reach the lung compartment. In contrast, inhalation, comprising the intranasal
and oral respiratory routes, targets drugs into the respiratory tract. Currently, inhalation is used
both for locally- and systemically-acting drugs as it allows a straight delivery to the diseased
organ and a portal to the blood circulation, considering the extensive alveolus-capillary interface.
By providing a better therapeutic index, inhalation is the gold standard for small molecules,
delivered topically as an aerosol, like corticosteroids/steroids, decongestants or bronchodilators
for the treatment of asthma, rhinosinusitis or COPD. Besides, it is also indicated for antibiotics
(nasal and oral inhalation), a local-acting protein therapeutic—Dornase alpha (Pulmozyme R©,
oral inhalation), a mucolytic agent for patients with CF and an influenza live vaccine (FluMist R©

Quadrivalent, nasal inhalation).

LOCAL-ACTING IMMUNOPHARMACEUTICS DELIVERED BY

INHALATION

There are accumulating evidences that administration of anti-infectious Abs, protein therapeutics
(e.g., cytokines) and vaccines, to the upper and/or lower respiratory tract by inhalation,
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with the purpose of inducing a local action, is effective
(3). Several preclinical studies showed the superiority
of immunopharmaceutics administered topically to the
respiratory tract in RTI models, in both therapeutic and
prophylactic regimens. For instance, inhalation of anti-
infectious Abs in models of pneumonia using Pseudomonas
aeruginosa or influenza virus conferred higher protection
and greater therapeutic response, respectively, compared
to parenteral route administration (4, 5). Besides, other
immunoprophylactics delivered through the respiratory route
such as immunocytokines (e.g., IL-7 Fc) (6) and live-attenuated
vaccines (7) showed superior performances over conventional
routes against airborne viruses, in mice and non-human
primates, respectively. Conversely, restricting the response to the
site of action for pleiotropic molecules (e.g., IL-7 Fc), envisioned
as adjuvant molecule, may reduce systemic side-effects. As
reported for anti-infectious Abs, the inhaled route may also
enable a higher efficacy with a lower dose (4). This means
that the inhaled route may allow, in the future, to alleviate
the financial burden of immunopharmaceutics (in particular
Abs), which may exceed the ability of both individual patients
and the healthcare systems to sustain them. Additional benefit
of the inhaled route includes its non-invasiveness, offering a
better comfort for patients, in particular those with chronic
respiratory infections, and thus preventing additional healthcare
costs. Besides, needle-free vaccination may prevent the risk of
cross-contamination and facilitate mass vaccination efforts.

However, beyond clear preclinical proofs of concept and
obvious theoretical advantages of the inhalation route for
immunotherapeutics and -prophylactics, few of these benefits
have materialized in the clinic (Table 1). Except for Flumist R©

Quadrivalent (Astrazeneca), an intranasal live attenuated
influenza vaccine, other marketed immunoprophylactics
vaccines (including those against Streptococcus pneumoniae,
Haemophilus influenza, Mycobacterium tuberculosis, Bordetella
pertussis or measles and Ab (anti-RSV Pavilizumab)—are
administered systemically. Similarly, none of the protein
therapeutics is given by inhalation. Recently, Ablynx developed
an inhaled anti-RSV trimeric nanobody R© (ALX-0171) for
therapeutic purposes. Despite promising results in several
animal models, the development has been interrupted due to
insufficient evidences of efficacy during Phase 2 trial in children
(in Japan). In 2019, only one phase 2 trial with an inhaled anti-
infectious protein therapeutics is still ongoing (NCT03570359)
assessing the efficacy of topical lung delivery of IFN-β1a
(SNG001, Synairgen/Astrazeneca), as an immunostimulant
to treat COPD exacerbations. Overall, this highlights the
complexity of developing inhaled biopharmaceuticals and points
out the persisting hurdles (Figure 1).

CHALLENGES FOR THE DEVELOPMENT

OF INHALED IMMUNE-

THERAPEUTICS/PROPHYLACTICS

The instability of immunopharmaceutics and vaccines often
emerges as a challenge for inhalation delivery. Therapeutic

proteins and vaccines are sensitive to various conditions
which may alter their structure, thereby decrease their activity.
Delivering a drug through the inhalation route implies either
spraying, drying or aerosolizing, which is associated with
multiple stresses (shearing, temperature, air/liquid interface, . . . )
potentially deleterious as widely discussed elsewhere (8, 9). To
deal with this, both the device used for the generation of the
aerosol and the formulation must be adapted, as successfully
reported for Ab-based therapeutics (3, 10). However, the
excipients must be adapted for respiratory delivery. The choice of
mucosal-licensed adjuvants, which should be exempt of intrinsic
immune-toxicity, and the instability of the associated carrier
[e.g., nanoparticles, liposomes, immune stimulating complexes
(ISCOMs)] is particularly challenging for the inhalation delivery
of vaccines, especially those of the latest generation (e.g., T,
B-epitope-based vaccines). The drug and device combination
yields proper aerodynamical properties (particle size, flow rate,
. . . ) to achieve the anticipated deposition in the appropriate
area of the respiratory tract. Indeed, appropriate deposition to
the anatomical site is mandatory to ensure an optimal efficacy.
On one hand, this depends on the drug formulation (e.g.,
surface tension and viscosity for liquid formulation) (11) and
device performances to allow the therapeutic agent to reach
the site of infection (Figure 1), by this means the microbe.
For lung infections, most pneumonia consists of an aggregate
of trachea-bronchitis and alveolar infections. Theoretically, this
clinical condition may benefit from a uniform distribution all
over the lungs, with a polydisperse aerosol (ranging 1–5µm).
However, several pathogens are associated with specific anatomic
localization, like S. pneumoniae, which is mainly found in the
alveolar spaces, thereby requiring low-size aerosols (<2–3µm)
to be targeted. On the other hand, delivery to the mucosal-
associated lymphoid tissue (MALT), located in the tonsils, would
be more adapted for vaccines to induce an adaptive immune
response, since MALT plays a central role in the primary
respiratory immune defense (Figure 1).

Biological barriers are additional hurdles to overcome
and apply to all inhaled anti-infectious agents (12). First, a
pathogen can “hide” itself inside host cells like M. tuberculosis
in alveolar macrophages, thus being more difficult to be
targeted by immunopharmaceutics. Other pathogens may
produce extracellular barriers like the biofilm matrix produced
by P. aeruginosa in the context of chronic lung infections.
This biofilm acts as a diffusion barrier, preventing inhaled
immunopharmaceutics from reaching their molecular target.
Antibody-based fragments, such as fragment antigen-binding
(Fab) and single-chain variable fragments (scFv) might be
more efficient in crossing over the biofilm, like they penetrate
better solid tumors (13), and eradicate P. aeruginosa. Secondly,
the host physical defenses, which prevent foreign particles
from penetrating into the respiratory tract, may limit the
accessibility of inhaled immunopharmaceutics to their target.
Among them, the mucus and the mucociliary escalator are
highly efficient clearance mechanisms (14, 15). The development
of mucoadhesive formulations may be helpful to enhance
the bioavailability of inhaled drugs (16). In contrast, anti-
adhesive molecules, such as polyethylene glycol may facilitate
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TABLE 1 | Marketed immunotherapeutics and immunoprophylactics for infectious diseases.

Target Product Category Sponsors Administration route Date of approval Indication

RSV Synagis Monoclonal antibody MedImmune IM 1998 Prophylaxis

Influenza Afluria Inactivated vaccine

Quadrivalent

Seqirus IM 2007 Prophylaxis

Fluad Inactivated vaccine

Trivalent

Seqirus IM 2015 Prophylaxis

Fluarix Inactivated vaccine

Quadrivalent

GSK IM 2012 Prophylaxis

Flublok Recombinant vaccine

Quadrivalent

Protein Sciences

Corporation

IM 2013 Prophylaxis

Flucelvax Inactivated vaccine

Quadrivalent

Seqirus IM 2012 Prophylaxis

Pandemic influenza

vaccine H5N1

Recombinant vaccine Medimmune IN 2016 Prophylaxis

FluLaval Inactivated vaccine

Quadrivalent

ID Biomedical

Corporation of Quebec

IM 2013 Prophylaxis

FluMist Live-attenuated vaccine

Quadrivalent

MedImmune IN 2003 Prophylaxis

Fluzone High Dose Inactivated vaccine

Quadrivalent

Sanofi Pasteur IM 2014 Prophylaxis

Fluzone Inactivated vaccine

Quadrivalent

Sanofi Pasteur IM 2009 Prophylaxis

Fluvirin Inactivated vaccine

Trivalent

Seqirus IM 1988 Prophylaxis

Measle Proquad Subunit vaccine Merck SC 2005 Prophylaxis

M-M-R II Subunit vaccine Merck SC 2014 Prophylaxis

Smallpox ACAM2000 Live vaccina virus Emergent Product

Development

Percutaneous 2007 Prophylaxis

Mycobacterium

tuberculosis

BCG Vaccine Live-attenuated vaccine Organon Percutaneous 2011 Prophylaxis

Streptococcus

pneumoniae

Pneumovax 23 Subunit vaccine Merck&Co IM 1983 Prophylaxis

Prevenar 13 Subunit vaccine Wyeth Pharmaceuticals IM 2010 Prophylaxis

Bordetella pertussis Daptacel Subunit vaccine Sanofi Pasteur IM 2008 Prophylaxis

Pediarix Subunit vaccine GSK IM 2002 Prophylaxis

Kinrix Subunit vaccine GSK IM 2008 Prophylaxis

Quadracel Subunit vaccine Sanofi Pasteur IM 2015 Prophylaxis

Pentacel Subunit vaccine Sanofi Pasteur IM 2008 Prophylaxis

Haemophilus influenzae Hiberix Subunit vaccine GSK IM 2009 Prophylaxis

ActHIB Subunit vaccine Sanofi Pasteur IM 1993 Prophylaxis

PedvaxHIB Subunit vaccine Merck IM 1989 Prophylaxis

Bordetella pertussis

Haemophilus influenzae

Infanrix Subunit vaccine GSK IM 1997 Prophylaxis

Vaxelis Subunit vaccine MCM Vaccine IM 2018 Prophylaxis

Bacillus anthracis Anthim Monoclonal antibody Elusys Therapeutics IV 2016 Prophylaxis/Therapy

Abthrax Monoclonal antibody GSK IV 2012 Prophylaxis/Therapy

Biothrax Subunit vaccine Emergent BioSolutions IM 2016 Prophylaxis

IM, intramuscular; IN, inhalation (nasal); SC, subcutaneous.

immunopharmaceutics translocation through themucus blanket,
as shown in vitro (17) and in vivo (18) for other applications.
It is noteworthy that, in some pathological conditions (e.g.,
chronic sinusitis, CF and COPD), the mucus gets thicker.
In CF, the mucus exhibited an increased density of disulfide
cross-links, further tightening the mucus mesh space, thereby

reinforcing its steric barrier potency to immunopharmaceutics
(19). To date, overcoming this physical barrier has not been
addressed in the design of inhaled immunopharmaceutics.
Other biological barriers include alveolar macrophages and
the pulmonary surfactant layer in the alveolar region. While
the molecular interactions between inhaled particles and
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FIGURE 1 | The multifaceted features from the development of inhaled immunopharmaceutics.

the surfactant are largely unknown, some evidences indicate
that surfactant proteins may facilitate the uptake of inhaled
particles by alveolar macrophages (20). Alveolar macrophages
patrol the airways and phagocytose inhaled organic (including
pathogens) and inorganic particles ranging between 0.5 and
5µm (21). Interestingly, the size-discriminating property of their
phagocytosis potency has led to the development of innovative
approaches for inhaled drugs, in which carrier entrapped-
particles of smaller or larger size are inhaled to escape the alveolar
macrophage phagocytosis and to provide a better controlled
drug release [(22, 23); Figure 1]. This strategy is investigated for
mucosal vaccines to prevent the degradation or denaturation of
the peptide/antigen, to sustain its release and favor delivery and
adjuvancy (24).

The lung mucosa is a metabolic active environment (25).
The presence of proteases [which is more prevalent in the
nasal mucosa (26)] may degrade therapeutic proteins before
they reach their targets. In addition to host enzymes, bacterial
pathogens, like P. aeruginosa, release additional proteases, which
may metabolize respiratory-delivered drugs (27). In this context,
the presence of protease inhibitors in the formulation of inhaled
protein therapeutics may improve their pharmacokinetics and
efficacy, as previously demonstrated for inhaled peptides such
as insulin and calcitonin (28). Furthermore, the encapsulation
of protein therapeutics into liposomes may also improve
stability and reduce the frequency of dosing (29). This
strategy has already been clinically validated for the pulmonary

delivery of antibiotics (30). Of note, respiratory diseases are
often associated with an impairment of the protease/anti-
protease balance. In CF, high levels of proteases are a result
of the chronic infection and inflammation induced by P.
aeruginosa (31). This proteolytic environment self-perpetuates
the intensity of inflammation, induces mucus hypersecretion and
respiratory tissue damage, which may ultimately affect inhaled
immunotherapeutics (Figure 1).

CONCLUSION

Compared to the expansion of biopharmaceutics
(excluding non-recombinant vaccines) in all medical areas,
the field of inhaled protein therapeutics/vaccines has
stagnated, with only few drugs approved so far. Despite
promising preclinical data and significant advances on
macromolecule inhalation, a definitive demonstration
that effective and intact inhaled immunopharmaceuticals
could be delivered (topically) to humans is
still lacking.

Although, we cannot rule out that the recent failures of
inhaled biopharmaceutics (Exubera and ALX-0171) make it
challenging, to our opinion, it may be time for thinking
carefully where inhalation may have the edge over other routes:
“finding the right use for this modality!” They may be many
possibilities considering the unmet clinical needs for respiratory
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diseases and the growing market of immunopharmaceutics. But
the inhalation route must be envisioned and integrated early
taking into account the disease/population, the target, the drug
and the device (Figure 1), rather than adapting an approved
molecule for the inhalation route. RTIs are undoubtedly an
appropriate clinical situation for inhalation, if we consider the
importance of matching the delivery of immunoprophylatics
or immunotherapeutics to their site of action. Anti-infectious
macromolecules may certainly benefit from the success of
inhaled antibiotics, but it is critical to remember their precise
molecular nature associated with a unique pharmacokinetics
profile when considering their development for inhalation.
Besides, the recent report of a universal flu vaccine, comprised
of Ab-based therapeutics (VHH) produced by an adeno-
associated virus delivered intranasally pushed further the
boundaries of the potential of the inhalation route for
immunoprophylactics (32).
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Over the past few decades, antimicrobial resistance has emerged as an important

threat to public health due to the global dissemination of multidrug-resistant strains

from several bacterial species. This worrisome trend, in addition to the paucity of new

antibiotics with novel mechanisms of action in the development pipeline, warrants the

development of non-antimicrobial approaches to combating infection caused by these

isolates. Monoclonal antibodies (mAbs) have emerged as highly effective molecules for

the treatment of multiple diseases. However, in spite of the fact that antibodies play

an important role in protective immunity against bacteria, only three mAb therapies

have been approved for clinical use in the treatment of bacterial infections. In the

present review, we briefly outline the therapeutic potential of mAbs in the treatment of

bacterial diseases and discuss how their development can be facilitated when assisted

by “omics” technologies and interpreted under a systems biology paradigm. Specifically,

methods employing large genomic, transcriptomic, structural, and proteomic datasets

allow for the rational identification of epitopes. Ideally, these include those that are

present in the majority of circulating isolates, highly conserved at the amino acid level,

surface-exposed, located on antigens essential for virulence, and expressed during

critical stages of infection. Therefore, these knowledge-based approaches can contribute

to the identification of high-value epitopes for the development of effective mAbs against

challenging bacterial clones.

Keywords: monoclonal antibodies, antibiotic resistance, multidrug resistance, systems biology, big data,

immunoinformatics, bound rationality

DO WE NEED MONOCLONAL ANTIBODIES AGAINST
ANTIBIOTIC-RESISTANT BACTERIA?

In recent years, there has been an explosive increase in the emergence and dissemination of
antimicrobial resistance. Multiple factors have likely contributed to this phenomenon, including
the overuse of existing antibiotics in the clinical setting, non-human use of antibiotics, and
increased international travel. A report commissioned by the United Kingdom in 2014 estimated
that deaths directly attributable to antimicrobial resistance will increase to 10 million annually
by 2050, as compared to the 700,000 deaths currently produced by these infections per year (1).
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The predicted economic expense caused by antimicrobial
resistance is also significant, as the same study projected that
the cumulative worldwide loss of Gross Domestic Product
(GDP) between 2014 and 2050 would be higher than the
current yearly GDP of all countries combined. Although these
extreme scenarios represent projections based on current trends,
there is little doubt that antimicrobial resistance will be a
major public health threat in the near future. Importantly,
the clinical management of multidrug-resistant (MDR)
infections is complicated by the lack of currently approved
antimicrobials that retain sufficient activity against MDR
strains, particularly the so-called ESKAPE microorganisms,
which include Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter spp. (2). Recent sporadic reports
from different geographic regions describing pan-drug resistant
isolates, with resistance to all clinically-available antibiotics, are
cause for particular concern (3–5). In this context, the need
to develop new antibiotics, ideally with novel mechanisms of
action not affected by cross-resistance to existing mechanisms, is
apparent. Unfortunately, while there have been recent approvals
of new antibiotics for clinical use, very few antimicrobials with
completely novel mechanisms of action have been developed
over the last 40 years.

While new antibiotics will be key players in combating
resistance, it is likely that treatment and prevention approaches
fighting on alternative fronts will need to be explored. In
this regard, a recent report summarizing the portfolio of
alternatives to antibiotics that are currently under development
identified antibody-based therapies, probiotics, phage therapy,
immune stimulation, and vaccines as “Tier 1,” based on their
stage of development and probability of success (6). Among
these approaches, therapies based on monoclonal antibodies
(mAbs) have a number of characteristics that may make them
ideally suited for the treatment and prevention of infections
caused by MDR bacteria, including (a) absence of susceptibility
to existing resistance mechanisms and lack of selection for
resistance to existing antibiotics, (b) facilitating immune-
mediated clearance of bacterial pathogens, (c) high specificity and
therefore minimal effects on non-target bacteria present in the
human microbiota, (d) safety and efficiency in humans, and (e)
passive immunization, which, in contrast to active immunization
with vaccines, has potential to provide immediate protective
immunity against infection, which may be particularly important
in critically-ill patients with decreased immune function. In
this review, we assess the potential of omics technologies and
systems biology approaches to enhance the rational identification
of epitopes for the development of mAbs against MDR bacteria.

CHALLENGES TO DEVELOPING MABS
FOR RESISTANT BACTERIA

MAbs are highly directed therapeutics that embody the magic
bullet ideal of specifically targeting a particular pathogen.
However, despite the fact that a large number of therapeutic
mAbs have been successfully developed for multiple different

human pathologies, most notably for rheumatologic and
oncologic diseases, only three mAb therapies have been approved
for bacterial infections. Raxibacumab and obiltoxaximab
have been developed for inhalational anthrax (7, 8), while
bezlotoxumab was recently approved for the prevention of
Clostridium difficile infection (9). The relative paucity of mAbs
for bacterial infections is especially noteworthy given the
key role played by antibodies in bacterial clearance during
natural infection and vaccine-induced immunity. However,
the difference in the rate of increase in approved antibodies
for different disease types may be partially due to the fact
that the features of the underlying biology being targeted by
mAbs for non-infectious diseases are very different from those in
pathogenic bacteria. In the former cases, highly conserved human
proteins, either cancer antigens or immune effector molecules
(e.g., cytokines), are targeted. In stark contrast, antibacterial
mAbs target rapidly dividing microorganisms with high genetic
plasticity. Bacteria have the ability to downregulate or even
completely abolish the expression of molecules containing
targeted epitopes, in a process generally known as epitope
masking (10). Moreover, these microorganisms can exert epitope
switching since they are able to modify and tolerate severe amino
acid changes in epitopes that reduce antibody affinity through
recombination with externally-acquired DNA or via mutations
that do not produce significant changes in virulence and fitness
(11, 12). This is a consequence of confronting double Darwinian
pressure in search of an equilibrium between keeping important
functions for (patho)biology and the evasion of host immunity.
By doing so, bacterial pathogens have evolved to avoid detection
and neutralization by antibodies.

In the three aforementioned antibacterial mAbs, disease is
prevented due to the neutralization of toxins via binding to highly
conserved epitopes on toxin subunits. This approach is effective
for anthrax and C. difficile infection due to the fact that these
pathologies are mediated by the action of potent toxins. However,
this is not the case for most bacterial pathogens, particularly
for MDR-associated species. MAbs for these infections will most
likely need to target epitopes present on the bacterial cell and
facilitate clearance by the immune system to be effective. In this
regard, bacterial epitopes that would be ideal targets for mAbs
may need tomeetmost, if not all, of the following criteria: (a) high
conservation between circulating strains, (b) expression during
bacterial infection and/or colonization, (c) surface exposure in
order to permit antibody binding, and (d) antigenically distinct
compared to epitopes on human proteins and the normal human
microbiota to prevent cross-reactivity.

The biological function of the molecule containing the
targeted epitope may be of particular importance. MAbs that
target epitopes on molecules that participate in essential bacterial
processes for viability or virulence may be less susceptible
to the generation of escape mutants, given that reduced
expression or sequence variation in these molecules may
be detrimental to bacterial survival. It is worth noting that
MDR organisms consist of a series of interacting molecular
elements, a functional network, with emergent properties only
approachable as a whole by systems biology and high-throughput
“omics” techniques (13). One of the emergent properties of
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scale-free networks is the tolerance to failures that, in this
case, means that many essential bacterial processes are subject
to total or partial functional redundancy (14). Bacteria can
increase fitness mainly by gathering genes that exert functions
efficiently but that can be, at least partially, covered by other
means. For example, 30 alternative sugar transporters (15)
and seven plasminogen-binding proteins have been identified
in Streptococcus pneumoniae (16) that ensure that these
important tasks required for infection are performed undermany
conditions. Likewise, antigenic proteins rarely act in isolation but
rather as part of functional sub-networks that exert simultaneous
or sequential activities leading to colonization and/or disease
(13). In this respect, epitope switching by mutation or down-
regulation of a single participant targeted by mAbs in one
of these pathways may not greatly affect the ability of the
bacteria to replicate and produce infection if this change can be
adequately compensated for elsewhere in the interactome. Thus,
non-overlapping irreplaceable elements of the pathofunctional
sub-networks, i.e., virulence hubs, should be prioritized. This
may present particular challenges in identifying a single epitope
for mAb development that is less susceptible to the generation of
escape mutants.

USING OMICS TECHNOLOGY AND
SYSTEMS BIOLOGY FOR MAB
DEVELOPMENT

Omics Data and Systems Biology Basics
Although there are significant challenges to developing broadly
effective mAb-based therapies for bacterial infections, it is
conceivable that the availability of multiple large data sets
involving genomic sequences and global profiling experiments
(e.g., transcriptomics, proteomics, and interactomics; the latter
defined as the global pool of physical and/or functional
connections between molecules in a cell) may serve as raw
material for elucidating high-value epitopes. Table 1 lists the
different omics approaches that are discussed in the sections
below and how they can be employed for mAb development.
Omics technologies can be considered as those that characterize
molecules and their states at a holistic level through the collective
characterization of molecular profiles, e.g., transcriptomics, the
whole set of transcripts under defined conditions. Omics cover
virtually all kinds of biological molecules, and their accumulated
outcome volumes approximate to the range of big data, i.e.,
so massive that they are unable to be stored and managed by
ordinary computer users. For instance, central repositories such
as the European Bioinformatics Institute store over 160 petabytes
of data (17).

While processing large biological data sets could be considered
mere brute force, it is important to underscore that the data
needed for translational medicine are those that contribute to
achieving precise clinical goals, so-called “smart data” (18).
Systems biology approaches move in that direction by permitting
a more comprehensive and contextual interpretation of the
information, given that they can identify not only epitopes
meeting certain criteria but also the interplay between different

TABLE 1 | Use of omics technologies and systems biology in antibacterial mAb

development.

Technology Use in identifying epitopes/antigens

Comparative genomics - Identification of epitopes with highly conserved

sequences

- Identification of epitopes present in the majority of

strains within a species

- Clonal distribution of epitopes

- Avoidance of cross-reaction with microbiota and

human proteins

Transcriptomics - Identification of antigens preferentially expressed

during infection

Proteomics - Identification of antigens highly expressed during

infection

- Identification of epitopes on the bacterial cell surface

Molecular modeling

and dynamics

- Identification of surface-exposed epitopes

- Assessment of the stability of surface exposure of

the epitope and its binding to the antigen

Interactomics/systems

biology

- Identification of optimal synergistic mixtures of

epitopes (for use in developing mAb cocktails)

- Identification of epitopes/antigens that participate in

essential bacterial processes that involve

molecular connections

essential criteria (19). The integration of multivariate data
for rational vaccine purposes is far from trivial (20); clearly
the challenge here is converting large quantities of data into
information with biological value that can be used for the
development of mAb therapeutics. As data volumes become
larger and more varied due to the availability of multi-omics
experiments, it is here that systems biology can be of great
value in responding to biological problems of great complexity.
Systems biology then becomes a natural analysis option that
captures emergent properties of bacteria as a whole that cannot be
studied by isolated reductionist protocols. The complexity of the
immune response to vaccines has been monitored and analyzed
through an analogous approach called systems vaccinology, a
branch of systems immunology concentrated on the intrinsic
responses of the host to vaccines (21). Parallels can be drawn
to reverse vaccinology (RV), which employs both genomics
and structural biology to reveal the fraction of the molecular
space of a pathogen appropriate for vaccine development (22).
It is noteworthy that RV has already yielded successes, most
notably in the development of a vaccine forNeisseria meningitidis
(23). In contrast to RV for vaccines, which can operate at the
antigen level, omics and computational approaches for mAb
development must be performed at the epitope level, potentially
adding increased stringency and complexity to the identification
process. Thus, RV is confronted with a significant challenge in the
design of mAbs, and the question arises of whether such obstacles
hamper knowledge-based solutions. This situation evokes the
“bounded rationality” idea (24, 25), in which rational approaches
are inefficient due to limited understanding of the inherent
complexity of the task.

In the following sections, we assess how the availability of huge
and variable data sets can be harnessed, together with systems
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biology, to enhance RV when oriented to epitope selection for
mAb development.

Comparative Genomics: Whole Species
and Clone-Specific Epitope Conservation
A common challenge in developing immunoprotective
approaches for bacterial infections is that these microorganisms
exhibit a high rate of escape from vaccine formulations at the
whole species level. Thus, the ideal of identifying immutable
antigenic proteins as part of the core proteome of target species
and absent from other species is difficult to achieve and may
be confined to the aforementioned exotoxins that have already
been exploited for mAb development (7–9). Nevertheless, the
availability of up to thousands of draft genome sequences for the
most important MDR pathogens may enable the assessment of

epitope conservation at intra-clonal resolution with sufficient
depth (Figure 1A). A plausible strategy may be to focus on
the development of mAbs tailored to circulating hypervirulent
and/or hyperresistant clones for which the recognized epitope
is conserved. This is, for instance, the case for mAbs directed
against K. pneumoniae O-antigen from the ST258 clone, since
it is a recurrent infective lineage and a strong producer of this
endotoxin (26). In addition, such clonal specificity preserves the
microbiota, highlighting one of the advantages of immunological
interventions with respect to antibiotics (27).

Identifying Epitopes Highly Expressed
During Infection and/or Colonization
Epitopes of interest for mAb development must be expressed
during the course of colonization or infection. Rather than

FIGURE 1 | Coverage of ESKAPE organisms by omics databases utilized in rational mAb development. (A) Number of available complete and draft/scaffold

genomes; (B) number of expression experiments, either transcriptomic (GEO database) or proteomic (PRIDE database); (C) number of identified molecular

interactions between pathogen and host (total and those involving only mammal hosts).
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constitutive, the expression of many immunogenic proteins is
tightly repressed in order to reduce metabolic expense and
overexposure to the host immune system, unless the bacterium
senses the right environmental signals for its production
(28). To include this important issue in the mAb production
pipeline, results from a number of transcriptomic and proteomic
experiments stored in databases such as GEO and PRIDE (29),
respectively, should be taken into account. MDRmicroorganisms
are well-covered in this respect (Figure 1B), including the
upregulation of potentially antigenic proteins for mAbs in vivo
or under in vitro conditions that mimic infection, such as
bacteremia (30), biofilm (sessile)-to-planktonic transition (31),
and iron limitation (32).

Exposure of the Epitope
MAbs must not only fulfill the basic RV principle of being
directed against surface or secreted proteins but must also be
directed toward epitopes that are exposed on these proteins.
This poses a problem on two levels. First, accessible—either
secreted or surface—proteins can be detected by the presence of
motifs and domains linked to secretion and surface anchoring,
in most cases readily detectable by sensitive hidden-Markov
models thanks to optimized heuristics adapted to huge protein
datasets (33). However, these computational strategies cannot
cope with accessible proteins lacking identifiable labels, and must
therefore be complemented with experimental high-throughput
protein detection on fractionated samples, including cell-free
medium for the exoproteome (34) or the outer membrane (35)
and cell wall (36) for the surface proteome. On the other hand,
the prediction of non-linear epitopes and their location on the
solvent-oriented zone of the protein is facilitated by structural
information (37). Resolving a structure is labor-intensive, but the
combined effort of small scientific groups and large structural
genomics consortia (38) has promoted the inclusion of structural
biology to the biological pool of large data volumes. The
central structural repository, the Protein Data Bank (PDB),
currently contains 142,433 proteins (44,971 non-redundant, last
accessed: 05/Jul/2019). Likewise, the SwissModel archive reached
1.6 million pre-built structural models (39) covering 62% of
S. aureus and 72% of P. aeruginosa proteins. Once reliable
structural information is available for the candidate antigen,
epitopes that are highly solvent-accessible can be identified.
Dynamic simulations by simulator packages such as GROMACS
additionally permit assessment of the dynamic stability of
epitope exposure and even of mAb-protein binding when co-
crystalized (40).

Design of Anti-virulence mAbs Using
Functional Information
As a rational approach, functional information regarding
the essentiality of a protein carrying the candidate mAb
epitope or its involvement in virulence is invaluable. If these
essential/virulence-associated epitopes are not targeted, there is
high risk of epitope masking or switching, leading to rapid
circumvention of the monoclonal therapy. Specialized resources
such as PATRIC, VFDB, and Victors (41–43) compile virulence
factors at the species level from dedicated research reports.

Laboratory and animal-model screenings, such as signature-
taggedmutagenesis (44), permit the explicit detection of potential
genes essential for pathogenesis in a high-throughput manner.
Such relevant information would be a promising starting point
for antigen selection and prioritization to block virulence traits
with mAbs in a precise knowledge-based way. Considering that
most virulence factors are not essential for fundamental viability,
neutralization by mAbs is akin to blocking virulence rather than
the viability of the pathogen and follows the anti-virulence drug
paradigm, in contrast to lethal antibiotics (45). Currently licensed
mAbs that block the activity of exotoxins can be considered
virulence-blocking therapies.

Interactomics
According to systems biology principles, the pathogen and host
exhibit a dense network of inter-species molecular interactions
throughout their relationship (46). The identification of these
interactions has permitted the design of protective strategies in
viruses (47). This information may be used to design mAbs
that impede connections between pathogen and host molecules
that are central to infection progression. A proficient resource
for this information is the PHI-base database (48), but of the
12,466 interactions included (Last accessed, 5 Sep 2019), only
467 pertain to connections between the six ESKAPE bacteria
and mammals, suggesting that the volume of useful information
could still be increased to facilitate the prediction of network
tolerance in a global manner (Figure 1C). A possible exception is
those pathogens whose virulence is almost fully dependent upon
the activity of potent exotoxins, which indicates that successful
mAb strategies at present are those that circumvent the pitfall of
pathogenic network tolerance.

OMICS-SYSTEMS BIOLOGY VS. OTHER
STRATEGIES

A fundamental controversy may arise when systemic
computational approaches in the RV framework are compared
to empirical screenings (49) or the low-throughput selection
of antigen/epitope targets (50) by microbiology experts. Each
of these strategies has advantages and pitfalls based on their
underlying assumptions (Table 2), but it is worth noting that the
only mAb products that have been approved or are in the clinical
phases of testing were developed using the latter two approaches.
This may call into question the use of rational approaches based
on RV strategies for identifying epitopes for mAb development.
More empirical approaches may have achieved their previous
successes because experimental screenings are better equipped
to accommodate the degenerate and flexible nature of the
immune system. Nevertheless, massive data and systemic
approaches have likely not yet been successful, not because of
their lack of potential, but because of the interpretation of results
(51, 52). In addition, there is room for improvement for rational
approaches through the collection of new data, algorithms, and
paradigms, and this is a continuous process, whereas screening
and expert selection are probably closer to their respective
plateaus. Moreover, different methods of omics data integration
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TABLE 2 | Pros and cons of systems biology/big data/reverse vaccinology

approaches vs. empirical screening vs. expert selection for mAb development.

Aspects related to mAb

development

Omics/systems

biology

Empirical

screening

Expert

selection

Use for mAb cocktail development ++ – –

Reduced cost + – ++

Time required + – ++

Focus on clinical clones ++ + +

Requires bioinformatics expertise – ++ ++

Requires computational

infrastructure

– ++ ++

Requires experimental infrastructure ++ – +

Intrinsic experimental validation – ++ ++

Rational selection ++ – ++

Resistance to “bound rationality” – ++ +

Room for improvement ++ + +

Scalability to many targets ++ + –

Species completeness ++ + +

Systemic view ++ – –

Transferability to other species ++ – –

++ Highly efficient.

+ Moderately efficient.

– Low efficiency.

can be developed in order to identify targets for biomedical
applications (13). Conceivably, hybrid approaches that combine
the strengths of all of these methods may achieve the highest
performances. For instance, a list of the candidate mAb
epitopes that have a complex list of features could be revealed
from large data sets, verified by experts, and then refined by
screenings methods.

An option that may also ease the “bound rationality” of RV
is the design of mAb cocktails. The advantages of increasing
valence by using mAb combinations are multiple: (1) a net
increment in the success rate of neutralization of a process
by reducing the network tolerance of the pathogen; (2) lower
chances of future immune evasion since several concerted
epitope switches are exponentially more difficult to achieve
than individual ones; (3) the possibility of designing complex

blocking strategies concentrated on the same (pathogen siege)
or sequential (pathogen exhaustion) stages of infection, thus
applying a more comprehensive molecular view of the virulent
process. Knowing this, the bottleneck in mAb development
against bacteria may not lie in the experimental efficiency of mAb
identification but in scaling processes required for the production
of a mature pharmaceutical product.

CONCLUSIONS AND FUTURE
DIRECTIONS

In contrast to cancer, rheumatologic diseases, and viral
infections, the limited use of mAbs for MDR bacterial
pathogens may be due to several technical and biological
constraints. In this context, rational approaches based
on large-scale data/systems biology methodologies may
facilitate the identification of high-value epitopes for mAb
development, perhaps in concert with traditionally used
empirical strategies. The extreme challenge associated with
finding ideal, immutable epitopes may support the development
of mAb cocktails. This could require improvement in the
efficiency (development and scaling) of mAb production, i.e.,
within a reasonable timeframe and at a reasonable cost, at
the service of holistic paradigms that consider the molecular
pathobiology of the targeted species. We envisage that the large
data/systems biology combination will find its utility in RV
approaches applied to mAb development as more information
is collected.
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Lower respiratory tract infections, such as infections caused by influenza A viruses, are

a constant threat for public health. Antivirals are indispensable to control disease caused

by epidemic as well as pandemic influenza A. We developed a novel anti-influenza A

virus approach based on an engineered single-domain antibody (VHH) construct that

can selectively recruit innate immune cells to the sites of virus replication. This protective

construct comprises two VHHs. One VHH binds with nanomolar affinity to the conserved

influenza Amatrix protein 2 (M2) ectodomain (M2e). Co-crystal structure analysis revealed

that the complementarity determining regions 2 and 3 of this VHH embrace M2e. The

second selected VHH specifically binds to the mouse Fcγ Receptor IV (FcγRIV) and

was genetically fused to the M2e-specific VHH, which resulted in a bi-specific VHH-

based construct that could be efficiently expressed in Pichia pastoris. In the presence

of M2 expressing or influenza A virus-infected target cells, this single domain antibody

construct selectively activated the mouse FcγRIV. Moreover, intranasal delivery of this

bispecific FcγRIV-engaging VHH construct protected wild type but not FcγRIV−/− mice

against challenge with an H3N2 influenza virus. These results provide proof of concept

that VHHs directed against a surface exposed viral antigen can be readily armed with

effector functions that trigger protective antiviral activity beyond direct virus neutralization.

Keywords: influenza, matrix protein 2 ectodomain, single domain antibody, Fcγ receptor, effector functions

INTRODUCTION

Influenza A virus infections are a major recurrent cause of seasonal respiratory tract infections.
The best way to prevent influenza disease is considered to be vaccination. However due to the
accumulation of point mutations in the viral hemagglutinin (HA) and neuraminidase (NA) genes,
human influenza vaccines need to be reformulated and administered regularly based on the
prediction of the circulating strains (1). The variable effectiveness and the long manufacturing
timeline encourage the development of more broadly protective vaccines. Antivirals, such as
oseltamivir and baloxavir marboxil, have been licensed for the prophylaxis and treatment of
uncomplicated influenza, but the risk of selecting drug resistant viruses limits their widespread
use (2, 3).
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The 23 amino acid residues long M2 ectodomain (M2e) is
highly conserved among the different influenza A virus subtypes
and thus represents an attractive target for broadly protective
prophylactic vaccine strategies as well as for antibody-based
antiviral biologicals [reviewed in Saelens (4)] (4, 5). Various
studies using different vaccine formats have demonstrated that
M2e-based vaccination can provide broad protection in animal
models of influenza A and that this protection is antibody
mediated (6–9). Next to vaccines, a therapeutic intervention
with an intravenously administered recombinant human IgG1
monoclonal antibody directed against the M2 N-terminus was
found to reduce the symptoms in human volunteers that had
been infected with an H3N2 virus (10). Furthermore, this phase
2a trial showed that the antibody treatment was associated
with a trend toward reduced viral shedding from the nasal
mucosa, and no anti-M2e escape mutants could be detected.
Finally, intravenous administration of engineered, so called bi-
specific T cell engagers that comprise a M2e-specific single chain
variable fragment that is linked to a CD3ε-specific single chain
variable fragment, could protect mice against an otherwise lethal
influenza A virus challenge (11).

Fc gamma receptor (FcγR) interactions are essential for the
protective activity of M2e-specific antibodies (12–14). FcγRs are
type I membrane proteins that are expressed on different innate
immune cells, including macrophages, neutrophils, natural killer
cells and dendritic cells (15, 16). In mice, FcγRs are characterized
by the presence of an immunoreceptor tyrosine-based activation
motif (ITAM) in the cytoplasmic portion of the common γ chain
that is associated with the activating FcγRI, FcγRIII and FcγRIV,
or by an immunoreceptor tyrosine-based inhibitionmotif (ITIM)
in the cytoplasmic portion of the inhibitory FcγRIIb (17–19).
These receptors differ in their affinities for the different IgG
isotypes (16, 20). Previously, we have shown that protection by
M2e-specific mouse IgG1 requires FcγRIII while IgG2a isotypes
can protect by any of the three activating FcγRs (13).

Since the reported discovery of heavy chain-only antibodies
in camelids in 1993, recombinant single domain proteins
comprising the variable domain of these antibodies (VHHs
also known as Nanobodies R©) have been used in numerous
therapeutic applications (21). In the context of viral infections,
various virus-neutralizing VHHs have been described that can
interfere with different steps in the viral life cycle (22). Due to
their outstanding stability and solubility, as well as their small
size (∼15 kDa), ease of production and formatting flexibility, they
are highly versatile building blocks for the development of new
antivirals. Next to a direct antiviral effect, VHHs can also easily be
formatted (e.g., by generating Fc fusions) to recruit host effector
functions (23). These features, combined with the possibility
to deliver therapeutic VHHs into the lung environment, and
maintained stability after prolonged storage, make VHH-based
anti-influenza biologicals especially attractive for epidemic as
well as pandemic preparedness plans (24–27).

In this study we explored a new strategy to engage host cell
effector functions to combat influenza A. This strategy is based
on a tail-to-head genetic fusion of two VHHs, one that selectively
binds to FcγRIV and a second one that is specific for M2e.
The resulting bi-specific construct can be efficiently expressed in

Pichia pastoris cells and protects mice against an otherwise lethal
influenza A virus infection by simple intranasal delivery.

MATERIALS AND METHODS

Cell Lines and Culture Conditions
HEK293T cells (a gift from Dr M. Hall, University of
Birmingham, Birmingham, UK) and HEK293T cells stably
transfected with influenza M2 (28) were cultured in Dulbecco’s
modified Eagle’s medium supplemented with 10% of fetal calf
serum, 2mM of L-glutamine, 0.4mM of Na-pyruvate, non-
essential amino acids, 100 U/ml of penicillin and 10µM
amantadine for the M2 expressing HEK cells. Madin-Darby
canine kidney (MDCK) cells were cultured in Dulbecco’s
modified Eagle’s medium supplemented with 10% of fetal calf
serum, 2mM of L-glutamine, non-essential amino acids and 100
U/ml of penicillin. Mf4/4 cells (an immortalized cell line of spleen
macrophages derived from C57BL/6 mice) were grown in RPMI
1640 medium, supplemented with 10% of fetal calf serum, 2mM
of L-glutamine, 0.4mM of Na-pyruvate, non-essential amino
acids, 50mM 2-mercaptoethanol, 25mM Hepes and 100 U/ml
of penicillin (29). Cloning of FcγR-ζ constructs, the generation
of FcγR-ζ BW5147 reporter cells and the culture conditions were
similar as reported previously (30, 31).

Production of Recombinant Mouse FcγRIV
Protein
Recombinant FcγRIV protein was produced by transient
transfection of subconfluently grown FreesStyleTM293-F cells
(ThermoFisher scientific) with pCAGGs expression vectors
encoding the ectodomain of FcγRIV (amino acids 1-201) coupled
to a C-terminal 6XHis tag. Recombinant FcγRIV protein was
purified from the supernatant 6 days after transfection, using a
1ml HisTrap HP column (GE Healthcare). Fractions containing
FcγRIV protein were pooled and concentrated with a Vivaspin
column (5 kDa cutoff, GE Healthcare) and then further purified
by gel filtration on a Superdex 75 column. Fractions containing
FcγRIV protein were pooled and concentrated. Purity was
evaluated by SDS-PAGE followed by Coomassie blue staining.

Isolation of M2e-Binding, VHH-Displaying
Phages
A llama was immunized 6 times at weekly intervals
subcutaneously with 150 µg M2e-tGCN4 (28) in the presence
of Gerbu LQ#3000 adjuvant. Immunizations and handling of
the llama were performed according to directive 2010/63/EU
of the European parliament for the protection of animals used
for scientific purposes and approved by the Ethical Committee
for Animal Experiments of the Vrije Universiteit Brussel
(permit No. 13-601-1). Five days after the last immunization,
blood was collected and lymphocytes were prepared. Total
RNA was extracted and used as template for the first strand
cDNA synthesis with oligodT primer. The VHH encoding
sequences were amplified from the cDNA and cloned into
the PstI and NotI sites of the phagemid vector pMECS. In
this vector, the VHH coding sequence is followed by a linker,
an HA- and 6xHis tag (AAAYPYDVPDYGSHHHHHH).
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Electro-competent E.coli TG1 cells were transformed with the
recombinant pMECS vector resulting in a VHH library of about
108 independent transformants. A library of VHH-presenting
phages was obtained after infection with VCS M13 helper
phages. Two different panning strategies were used. In the
first strategy, phages were added to 20 µg of immobilized
M2e-tGCN4 in panning round 1 and 20 µg of human H3N2
peptide (SLLTEVETPIRNEWGCRCNDSSD) in panning round
2. In the second strategy, phages were first added to 25 × 106

HEK293T cells to deplete potential binders to determinants
on these cells. The unbound phages were next added to 25 ×

106 HEK293T cells stably transfected with influenza M2, to
enrich for M2-specific phages. To avoid internalization of the
target antigen, all steps were performed at 4◦C. After washing,
retained phages were eluted by pH elution with TEA-solution
(14% triethylamine (Sigma) pH 10) for 10min. A solution of 1M
Tris-HCl pH 8 was used to lower the pH of the eluted phage
solution. The enrichment relative to panning on the negative
control antigen, was determined by infecting TG1 cells with
10-fold serial dilutions of the phages after which the bacteria
were plated on LB agar plates with 100µg/ml ampicillin and
1% glucose.

Isolation of FcγRIV-Binding,
VHH-Displaying Phages
The FcγRIV specific VHHs were isolated form a library that was
part of a study described elsewhere by Deschacht et al. (32).
In brief, a llama was immunized six times at weekly intervals
with 108 immature murine bone marrow-derived dendritic cells.
A library of VHH-presenting phages was obtained as described
above. FcγRIV specific VHHs were enriched after three panning
rounds on 20 µg of immobilized FcγRIV protein.

Periplasmic ELISA Screen to Identify M2e-
and FcγRIV-Specific VHHs
After panning, individual pMEC colonies were randomly selected
for further analysis by ELISA for the presence of M2e-
and FcγRIV-specific VHHs in their periplasm. To prepare
periplasmic extract, individual colonies were inoculated in 2ml
of terrific broth (TB) medium with 100µg/ml ampicillin in
24-well deep well plates. After 5 h incubation isopropyl β-D-1-
thiogalactopyranoside (IPTG) (1mM) was added to induce VHH
expression. After overnight incubation at 37◦C, bacterial cells
were pelleted and resuspended in 200 µl TES buffer (0.2M Tris-
HCl pH 8, 0.5mM EDTA, 0.5M sucrose) and incubated at 4◦C
for 30min. An osmotic shock was induced by adding 300 µl of
water. After 1 h incubation at 4◦C followed by centrifugation, the
periplasmic extract was collected. VHH-containing periplasmic
extracts were then tested for binding to either M2e-tGCN4 (28),
human H3N2 M2e peptide (SLLTEVETPIRNEWGCRCNDSSD)
or recombinant mouse FcγRIV protein. Briefly, wells of
microtiter plates were coated overnight with either 100 ng
M2e-tGCN4, 100 ng mouse FcγRIV protein, bovine serum
albumin (BSA, Sigma-Aldrich) at 4◦C or 100 ng human H3N2
M2e peptide at 37◦C. The coated plates were blocked with
5% milk powder in phosphate buffered saline (PBS) and

100 µl of the periplasmic extract was added to the wells.
Bound VHHs were detected with anti-HA mAb (1/2000, MMS-
101P Biolegend) followed by horseradish peroxidase (HRP)-
linked anti-mouse IgG (1/2000, NXA931, GE Healthcare). All
periplasmic fractions, which resulted in OD450 values of the
antigen coated wells that were at least two times higher than
the OD450 values obtained in BSA coated wells, were selected.
DNA of the selected colonies was isolated using the QIAprep
Spin Miniprep kit (Qiagen) and sequenced using the primer

MP057(5
′

-TTATGCTTCCGGCTCGTATG-3
′

).

VHH Expression in Pichia pastoris
The VHH encoding sequence was amplified by PCR using the

following forward and reverse primer (5
′

-GGC GGG TAT CTC
TCG AGA AAA GGC AGG TGC AGC TGC AGG AGT CTG
GG-3

′

) and (5
′

- CTA ACT AGT CTA GTG ATG GTG ATG
GTG GTG GCT GGA GAC GGT GAC CT GG-3

′

). The PCR
fragments were then cloned between the XhoI and SpeI sites in
the pKai61 expression vector [described by Schoonooghe et al.
(33)]. In the vector, the VHHs sequences containing a C-terminal
6XHis tag sequence are under control of the methanol inducible
AOX1 promotor and in frame with a modified version of the
S. cerevisiae α-mating factor prepro signal sequence. The vector
contains a Zeocine resistance marker for selection in bacteria as
well as in yeast cells. The vectors were linearized by PmeI and
transformed in the P. pastoris strain GS115 using the condensed
transformation protocol described by Lin-Cereghino et al. (34)
After transformation, the yeast cells were plated on YPD plates
(1% (w/v) yeast extract, 2% (w/v) peptone, 2% (w/v) dextrose,
and 2% (w/v) agar) supplemented with zeocin (100µg/ml)
for selection.

VHH Production and Purification
The transformed P. pastoris clones were first analyzed for
VHH expression in 2ml cultures. On day one, 2–5 clones of
each construct were inoculated in 2ml of YPNG medium (2%
pepton, 1% Bacto yeast extract, 1.34% YNB, 0.1M potassium
phosphate pH 6, 1% glycerol) with 100µg/ml Zeocin (Life
Technologies) and incubated at 28◦C for 24 h. The next day,
the cells were pelleted by centrifugation and the medium was
replaced by YPNM medium (2% pepton, 1% Bacto yeast extract,
1.34% YNB, 0.1M potassium phosphate pH 6.0, 1% methanol).
Cultures were incubated at 28◦C and 50 µl of 50% methanol
was added at 16, 24, and 40 h. After 48 h, the supernatant was
collected and the presence of soluble VHHs in the supernatant
was verified using SDS-PAGE and subsequent Coomassie Blue
staining. Production was scaled up (300ml) for the transformants
with the highest levels of VHH in the medium. Growth and
methanol induction conditions and harvesting of medium were
similar as mentioned above for the 2ml cultures. The secreted
VHHs in the medium were precipitated by ammonium sulfate
(NH4)2SO4 precipitation (80% saturation) for 4 h at 4◦C. The
insoluble fraction was pelleted by centrifugation at 20,000 g and
resuspended in 10ml binding buffer (20mM NaH2PO4 pH 7.5,
0.5M NaCl and 20mM imidazole pH 7.4). The VHHs were
purified from the solution using a 1ml HisTrap HP column (GE
Healthcare). Bound VHHs were eluted with a linear imidazole

Frontiers in Immunology | www.frontiersin.org 3 December 2019 | Volume 10 | Article 292091

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


De Vlieger et al. Influenza A Targeting Bispecific Nanobodies

gradient starting from 20mM and ending at 500mM imidazole
in binding buffer over a total volume of 20ml. VHH containing
fractions were pooled and concentrated with a Vivaspin column
(5 kDa cutoff, GE Healthcare) and then further purified by gel
filtration (Superdex 75) in PBS buffer. Fractions containing VHH
were again pooled and concentrated. Purity was evaluated by
SDS-PAGE followed by Coomassie blue staining.

Enzyme-Linked Immunosorbent Assay
Wells of microtiter plates were coated overnight with either 100
ng M2e-tGCN4, 100 ng BM2e-tGCN4, 100 ng M2e peptide or
100 ng mouse FcγRIV protein. The coated plates were blocked
with 5% milk powder in phosphate buffered saline (PBS) and
dilution series of the VHHs were added to the wells. In the M2e
ELISA, bound VHHs were detected with mouse anti-Histidine
Tag antibody (MCA1396, Abd Serotec) followed by horseradish
peroxidase (HRP)-linked anti-mouse IgG (1/2000, NXA931, GE
Healthcare). In the ELISA with coated recombinant FcγRIV
protein, binding was detected with a HRP conjugated rabbit anti-
camelid VHH antibody (A01861-200, GenScript). After washing
50 µl of TMB substrate (Tetramethylbenzidine, BD OptETA)
was added to every well. The reaction was stopped by addition
of 50 µl of 1M H2SO4, after which the absorbance at 450 nM
was measured with an iMark Microplate Absorbance Reader
(Bio Rad).

Crystallization of M2e-VHH-23m in
Complex With M2e Peptide
For crystallization, the purified M2e-VHH-23m was
concentrated to 20 mg/ml. The M2e peptide was added in
a 1.2 times excess. Crystallization screens were set up in sitting
drop vapor diffusion at 20◦C. Crystals grown in the Jenna Classic
screen, in 30% ethanol, 10% PEG6000, 100mM Na acetate
were cryoprotected using fluorosilicone and flash frozen in
liquid nitrogen. X-ray data were collected at the i03 beamline of
the Diamond Light Source synchrotron facility and processed
using XDS.47

The structure of the M2e-VHH-23m-M2e peptide complex
was solved using the structure of another nanobody (PDB code
5HGG) as search model for molecular replacement, using the
Phaser program from the CCP4 crystallographic software suite
(35, 36). The M2e-VHH-23m model was built automatically
using Autobuild from the Phenix crystallographic software suite
(37). The initial model was further built manually in Coot and
refined using phenix.refine and Refmac (38–40). Data collection
parameters, as well as processing and refinement statistics are
shown in Table 1. The crystal structure has been deposited in
the Protein Data Bank (PDB) and is available with accession
code 6S0Y.

Docking
All water molecules, the ligand, and chain B of the nanobody
crystal structure were manually deleted from the pdb-text file.
The emptied structure was subjected to a local minimization
with the GROMOS96 (43B1 parameter set) implementation
within Swiss-PdbViewer 4.1.0 (41), and polar hydrogens were
added. The peptide-ligand VETPIRNEWG was 3D-drawn with

TABLE 1 | Data collection statistics and refinement parameters.

Data collection

Synchrotron Diamond Light Source

Beamline i03

Wavelength, Å 0.97965

Data processing

Space group P 21 21 2

Cell parameters, Å (α=β=γ=90◦ ) 57.47 94.76 53.06

Resolution, Å (outer shell) (c) 53.06–1.80 (1.83–1.80)

Total reflections 35827 (17918)

No. of unique reflections 27557 (1359)

Completeness 99.97 (100)

Multiplicity 13.0 (13.2)

Rpim, % 4.4 (66.6)

CC1/2, % 99.8 (57.1)

<I/σ (I)> 11.0 (1.1)

Mosaicity, ◦ 0.063◦

Refinement

Resolution range, Å 47.38–1.81

No. of reflections 25859

Percentage observed 99.96

Rcryst,
(a) % 18.69

Rfree,
(b) % 22.53

RMS

Bonds, Å 0.01

Angles, ◦ 1.66

Ramachandran Plot

Most favored, % 95.28

Additionally allowed, % 4.72

Disallowed, % 0

PDB code 6S0Y

(a) Rcryst = Σ (|Fobs |–|Fcalc |)/Σ |Fobs |, Fobs and Fcalc are observed and calculated structure

factor amplitudes.
(b) Rfree as for Rcryst using a random subset of the data excluded from the refinement.
(c) Data in brackets are for the highest resolution shell.

Avogadro 1.2.0 (42) and minimized with the built-in united force
field. The AutoDockTools 1.5.6 suite (43) was used for pdbqt-
format conversions and grid-box determination. The grid-box
size was x = 22, y = 30 and z = 20 centered at x = 1.9, y =

9.7 and z = 8.3. Docking was performed with Smina (44, 45)
with exhaustiveness set at 128. Visualization was with PyMOL
2.3.0 (46).

Isothermal Titration Calorimetry
M2e-VHH-23m was dialyzed overnight against PBS buffer and
concentrated using Amicon Ultra 3 kDa cut off centrifugal filter
devices. The M2e peptide was resuspended in PBS at a stock
concentration of 3mM, and diluted in PBS to 300µM. Titrations
comprised 26 × 1.5 µL injections of peptide (300µM) into the
protein (30µM), with 90 s intervals. An initial injection of ligand
(0.5 µL) was made and discarded during data analysis. The data
were fitted to a single binding site model using the Microcal LLC
ITC200 Origin software provided by the manufacturer.
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Ala Scan Mutagenesis
HEK293T cells were transiently transfected with Flag-tagged
M2 wild type (WT) and M2e Ala scan mutants. 24 h after
infection the cells were detached, washed and blocked. Cells
were stained with 20µg/ml M2e VHH-23m or 20µg/ml F-
VHH-4 and subsequently fixed with 2% paraformaldehyde. After
permeabilization (10× permeabilization buffer diluted in double-
distilled water; eBioscience), cells were stained with mouse anti-
Histidine tag antibody (MCA1396, Abd Serotec) and rabbit
anti-Flag tag antibody (F7425, Sigma-Aldrich). Binding of the
primary antibodies was revealed with donkey anti-mouse IgG
coupled to Alexa Fluor 647 (1/600; Invitrogen) and donkey
anti-rabbit IgG coupled to Alexa Fluor 488 (1/600; Invitrogen).
The median fluorescence intensity (MFI) of the cells was
determined with an LSRII HTS flow cytometer (BD) and was
calculated by subtracting the median fluorescence of binding
of M2e-VHH-23m or F-VHH-4 to transfected cells from the
median fluorescence of untransfected cells bound by M2e-VHH-
23m or F-VHH-4.

VHH Binding to Influenza A Virus Infected
Cells
HEK293T cells were mock-infected or infected with A/Puerto
Rico/8/1934 (H1N1), A/X47 (H3N2), A/Udorn/307/1972
(H3N2) or A/Swine/Ontario (H3N3) at a MOI of 1. Twenty-four
hours after infection the cells were detached, washed and
blocked. Cells were stained with 20µg/ml M2e VHH-23m,
20µg/ml F-VHH-4 or 10µg/ml MAb148. To determine the
affinity of M2e-VHH-23m on infected cells, 1/3 dilution series
of M2e-VHH-23m or F-VHH4 were applied to A/Puerto
Rico/8/1934 (H1N1) infected cells. Subsequently, the cells
were fixed with 2% paraformaldehyde and stained with mouse
anti-Histidine Tag antibody (MCA1396, Abd Serotec) and goat
anti-A/Puerto Rico/8/1934 serum (Biodefense and Emerging
Infections Resources Repository, NIAID, NIH, V314-511-157)
followed by anti-mouse IgG Alexa 488 (Invitrogen) and anti-goat
IgG Alexa 647 (Invitrogen). The median fluorescence intensity
(MFI) was measured on the LSRII-tubes flow cytometer (BD)
and was calculated by subtracting the median fluorescence
of binding of M2e-VHH-23m or F-VHH-4 to infected cells
from the median fluorescence of uninfected cells bound by
M2e-VHH-23m or F-VHH-4.

Plaque Reduction Assay
Different amounts of M2e-VHH-23m (2.5µM, 1.25µM or
0.625µM), 0.333µM MAb37 or sera of mice infected with
A/Puerto Rico/8/1934 (H1N1) virus were incubated for 1 h at
4◦C with 10–20 plaque forming units/well of A/Udorn/307/1972
(H3N2) or A/Puerto Rico/8/1934 (H1N1) virus. After incubation,
the mixture was added to MDCK cells, seeded in a flat
bottom 24-well plate. After 1 h, the cells were overlaid with
an equal volume of 1.2% Avicel RC-591 (FMC Biopolymer)
supplemented with 2µg/ml of TPCK-treated trypsin (Sigma).
Infection was allowed for 2 days at 37◦C in 5% CO2. The overlay
was subsequently removed and the cells were fixed with 4%
paraformaldehyde. Viral plaques were stained with convalescent
mouse anti- A/Puerto Rico/8/34 or A/Udorn/307/72 serum

followed by horseradish peroxidase (HRP)-linked anti-mouse
IgG (NXA931, GE Healthcare). Finally, after washing, the
plaques were visualized with TrueBlue peroxidase substrate
(KPL, Gaithersburg).

VHH Binding to FcγRs Expressing Cells
Human Embryonic Kidney (HEK) 293T cells were transiently
transfected with full length mouse FcγRI (MG50086-CF),
FcγRIIb (MG50030-CY, SinoBiological Inc.), FcγRIII (MG50326,
SinoBiological Inc.) or FcγRIV (MG50036-CF, SinoBiological
Inc.) expression constructs along with the common γ-chain for
the activating FcγRs (MG50935-CF) by polyethylenimine (PEI)-
based transfection. A GFP-reporter plasmid was co-transfected.
FcγRIV-VHH-7m and M2e-VHH-23m were directly labeled
with the Alexa FluorTM 647 antibody labeling kit (A20186,
ThermoFisher scientific). Of the labeled VHHs, 0.2µM or
¼ serial dilution series of the VHHs starting from 0.2µM
were added to the transfected cells or Mf4/4 cells (29).
Fluorescence was measured on an LSRII flow cytometer (BD).
The median fluorescence intensity (MFI) was calculated by
subtracting the median fluorescence of binding of M2e-VHH-
23m or FcγRIV-VHH-7m to transfected cells from the median
fluorescence of untransfected cells bound by M2e-VHH-23m
orFcγRIV-VHH-7m.

Construction of Bispecific VHHs
To construct FcγRIV VHH-M2e VHH, FcγRIV VHH-F VHH,
and FcγRIIIa VHH-M2e VHH bispecific VHHs, we made
use of a GoldenBraid-based cloning strategy (47). The coding
information of FcγRIV-VHH-7m or FcγRIIIa VHH [C28 sdAb,
described by Behar et al. (48)] was amplified with the following

forward (5
′

- GCG ATG CAG GGT CTC ACT TCA AGG CAG
GTG CAG CTG CAG GAG TC-3

′

) and reverse primer (5
′

GGC
GAT GGT GGG TCT CAC TTC ATG AGG AGA CGG TGA
CCT GGG-3

′

) that add specific overhangs for their identity
as N-terminal VHH together with a BsaI and SapI restriction
site. The C-terminal VHHs, M2e-VHH-23m and F-VHH-4 were
amplified with a forward (5

′

-GCG CGA TGC AGG GTC TCA
CTT CAC AGG TGC AGC TGC AGG AG TC-3

′

) and reverse
primer (5

′

-GGG CGA TGG TGG GTC TCA CTT CAA GTC
TAG TGA TGG TGA TGG TGG TGG CTG GAG ACG GTG
ACC TG GG-3

′

) that add specific overhangs for their identity as
C-terminal VHH together with a BsaI and SapI restriction site.
The 15 amino acid long (Gly4Ser)3 linker was generated with the

following forward (5
′

- GCG ATG CAG GGT CTC ACT TCA
TCA GGC GGA GGC GGT AGT GGC GGA GGT GGA TCT
GGA GGC GGC GGT AGT CA GT-3

′

) and reverse primer (5
′

-
GGC GAT GGT GGG TCT CAC TTC ACT GAC TAC CGC
CGCCTCCAGATCCACCTCCGCCACTACCGCCTCCGC
CTG AT-3

′

) that also add a specific overhang together with a
BsaI and SapI restriction site. The PCR amplified fragments were
each assembled in a pUPD2 entry vector by a BsaI restriction and
ligation reaction. Once stored in the pUPD2 vector, the different
parts were assembled together in the pKai61 expression vector
using a T4 DNA ligase and a SapI restriction enzyme which
recognizes the SapI restriction site which was introduced after
ligation into the pUPD2 vector.
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In vitro FcγR Activation Assay
FcγR activation by MAbs 37 and 65 as well as by different
M2e-specific nanobodies was determined using an in vitro FcγR
activation assay (13, 30, 31). Cloning of FcγR-ζ constructs and
the generation of FcγR-ζ BW5147 reporter cells were performed
as reported previously (30, 31). Activation of stably transduced
FcγR-ζ BW5147 reporter cells by immune complexes results
in the production of mouse interleukin-2 (mIL-2), which was
quantified by ELISA (30, 31).

HEK293T cells that were stably transfected with an M2
expression vector (28) were cultured in the presence of 10µM
amantadine. The cells were seeded 1 day before the co-
culture experiment in 96-well flat-bottom plates, pre-coated with
fibronectin purified from human plasma (4µg/ml diluted in
PBS). The next day, serial dilutions of the respective MAbs
or VHH fusion constructs (concentrations as indicated ranging
from 4 to 0.0625µg/ml) were added to the HEK293T-M2 and
incubated for 30min at 37◦C, followed by the addition of 1.5 ×

105 FcγR-ζ BW5147 reporter cells in a total volume of 200 µl
RPMI1640 medium with 10% fetal calf serum per well. Target
cells and reporter cells were incubated overnight at 37◦C in a 5%
CO2 atmosphere to allow mIL-2 production. Supernatants were
analyzed by an anti-mIL-2 sandwich ELISA as described using
the capture MAb JES6-1A12 and the biotinylated detection MAb
JES6-5H4 (BD PharmingenTM, Belgium) (30, 31).

For infection with influenza A/Puerto Rico/8/1934 virus,
Madin-Darby canine kidney (MDCK) cells were seeded in 96-
well flat-bottom plates and infected with influenza PR8 virus
(multiplicity of infection [MOI], 5). After 1 h of incubation at
37◦C, unbound virus particles were removed by washing, and
serial dilutions of the respective MAbs or VHHs (concentrations
ranging from 4 to 0.0625µg/ml) were added and incubated
for 30min at 37◦C, followed by the addition of 1.5 × 105

FcγR-ζ BW5147 reporter cells in a total volume of 200 µl
RPMI1640 medium with 10% fetal calf serum per well. Target
cells and reporter cells were incubated overnight at 37◦C in a
5% CO2 atmosphere to allow mIL-2 production. Supernatants
were analyzed by an anti-IL-2 sandwich ELISA as described
(30, 31). If not indicated otherwise, experiments were performed
in triplicates.

Challenge Experiments in Mice
All experiments were approved by and performed according
to the guidelines of the animal ethical committee of Ghent
University (Ethical applications EC2017-66 and EC2018-12).
Female BALB/c mice and male and female C57BL/6 mice were
purchased fromCharles River (France) and FcγRIV−/− C57BL/6
mice (49) were bred in-house under specified-pathogen-free
conditions. Mice were used at age 6–12 weeks and were SPF-
housed with food and water ad libitum. Mice were anesthetized
with isoflurane for treatment and infection. The mice were
treated 4 h before and 24 h after influenza A virus challenge by
intranasal administration of 50 µg of the bispecific VHHs in
a volume of 50 µl PBS. Mice were challenged with 2xLD50 of
A/X47 (H3N2) influenza virus. Body weight loss was monitored
for 14 days. To determine the lung viral titer, complete lungs
were harvested on day 6 after infection and homogenized in

1ml of PBS with a sterile metal bead on the Mixer Mill MM
200 (Retsch). After clearance by centrifugation at 4◦C, the lung
homogenates were used for virus titration by plaque assay. The
plaque assay was performed as described before, plaques were
stained using convalescent mouse anti-X47 serum followed by
horseradish peroxidase (HRP)-linked anti-mouse IgG (NXA931,
GE Healthcare).

Statistical Analysis
Statistical comparison of the differences in body weight loss
was analyzed as repeated measurements data using the residual
maximum likelihood (REML) as implemented in Genstat v19.
Briefly, a linear mixed model (random terms underlined) of the
form y = µ + experiment + treatment + time +treatment.time
+ mouse.time was fitted to the longitudinal data. The term
mouse.time represents the residual error term with dependent
errors because the repeated measurements are taken in the same
individual, causing correlations among observations. Times of
measurement were set as equally spaced, and the autoregressive
model of order 1 was selected as the best correlation model
based on the Aikake Information Coefficient. Significances
of treatment effects across time (i.e., treatment.time) and of
pairwise differences between treatment effects across time were
assessed by an approximate F-test, of which the denominator
degrees of freedom were calculated using algebraic derivatives as
implemented in Genstat v19.

Survival analysis was performed on the right-censored
survival data obtained for the five treatment groups. Groups were
compared using the nonparametric log-rank test as implemented
in Genstat v19. The two independent experiments were set as
different groupings for a stratified test.

For the statistical analysis of the differences in lung viral titers
a Hierarchical Generalized Linear Mixed Model (HGLMM; fixed
model: poisson distribution, log link; random model: gamma
distribution, log link) as implemented in Genstat v19 (see ref
below), was fitted to the titer data. Treatment, having five levels,
was set as fixed term, while replicate was set as random term.
T statistics were used to assess the significance of treatment
differences compared with the FcγRIV VHH-F VHH set as
reference level (on the log-transformed scale). Estimated mean
values and standard errors were obtained as predictions from the
HGLMM, formed on the original scale of the response variable.

Conservation of the M2 Ectodomain
Sequences in Human H3N2 Influenza A
Viruses
All complete M2 protein sequences of human H2N2 viruses,
human H3N2 viruses and human H1N1 influenza A viruses
circulating between 1933 and 2008 were extracted from the
Influenza Research Database (http://www.fludb.org/) on 3th
May 2019.

RESULTS

Isolation of M2e-Specific VHHs
To generate M2e-specific VHHs a llama was immunized
repeatedly with M2e-tGCN4 protein, a soluble recombinant
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immunogen that mimics the natural tetrameric M2e
conformation, that was previously shown to induce protective
M2e-specific IgG antibodies in mice (28, 50). Five days after
the last immunization, peripheral blood lymphocytes were
isolated from the llama and an immune VHH phagemid
library of about 108 clones was generated. M2e-specific
VHHs were enriched from this library by sequential panning
on immobilized M2e-tGCN4 (round 1) and M2e peptide
(SLLTEVETPIRNEWGCRCNDSSD, corresponding to M2e
of human H3N2 viruses) (round 2). As a second strategy,
M2e-specific VHHs were enriched by panning on HEK293T cells
that stably express M2. Individual phagemid clones enriched
after both panning strategies were randomly selected and
tested for binding to M2e-tGCN4 and M2e peptide in ELISA.
Sequence analysis of the VHH encoding clones which tested
positive for binding to either M2e-tGCN4 or M2e peptide
revealed a low sequence diversity. Two clones (M2e-VHH-23m
and M2e-VHH-66m) isolated with the first, and one clone
(M2e-VHH-10m) isolated with the second panning strategy,
were selected for further characterization. These VHHs had a
cysteine residue at position 50 in the CDR2 and position 100b
in the CDR3 (Kabat numbering), allowing the formation of
an additional stabilizing disulfide bound, and were devoid of
N-glycosylation sequons (Figure 1A) (51). The M2e-specific
VHHs and an irrelevant control F-VHH-4 directed against the F
protein of human respiratory syncytial virus, were subsequently
expressed in Pichia pastoris in a secreted format (52). After
purification from the yeast medium, the epitope specificity
was assessed by ELISA. M2e-VHH-23m and M2e-VHH-66m
bound to M2e-tGCN4 with a relatively high affinity, whereas
M2e-VHH-10m displayed weaker binding (Figure 1B). None
of the VHHs bound to purified recombinant influenza B M2
ectodomain fused to tGCN4, suggesting that the VHHs bind
to M2e. The three selected VHHs bound to immobilized M2e-
peptide in ELISA. Amino-acid residues 10 to 23 of M2(e) display
some sequence diversity (50). We therefore tested binding of the
VHHs to peptide variants that correspond to M2e from A/Brevig
Mission/1918 (H1N1), A/Hong Kong/485/1997 (H5N1) and
A/swine/Belgium/1/1998 (H1N1) (Figure 1B). None of the
purified VHHs bound to these M2e peptides, whereas a control
mouse monoclonal antibody (MAb148) that is specific for
the extremely conserved amino-terminus of M2 (SLLTEVET)
did bind (Figure 1B). This indicates that the isolated VHHs
can bind to M2 expressed by human H2N2, the majority of
human H3N2 strains and the majority of human H1N1 viruses
circulating between 1933 and 2008 but are unlikely to recognize
M2 of currently circulating human H1N1 viruses or most avian
and swine influenza viruses. Remarkably, the isolated VHHs
also failed to bind the H1N1 A/Brevig Mission/1/1918 M2e,
which suggests that Ile11 in M2e contributes substantially to
binding. We selected M2e-VHH-23m to target M2e in the
subsequent experiments.

M2e-Specific VHH Clamps M2e Peptide
Between Its CDR2 and CDR3
We performed isothermal titration calorimetry (ITC)
experiments to determine the binding affinity of M2e-VHH-23m
to the human H3N2 M2e peptide. The data revealed a 1:1

biomolecular association between the VHH and the M2e peptide
with a Kd value of 730 nM (Figure 2). The affinity of the single
domain M2e-VHH-23m is thus over a 1,000-fold lower than
the previously reported affinities for the M2e-specific mouse
monoclonal antibodies MAb65 and MAb37 (13).

To precisely resolve the epitope of M2e-VHH-23m, we
determined the crystal structure of this VHH in complex with
human H3N2 M2e peptide to 1.81 Å resolution (Table 1, PDB
code 6S0Y). M2e-VHH-23m binds the M2e N-terminus as a
linear epitope (Figure 3A, left panel). In the crystal structure,
one M2e peptide interacts with three adjacent M2e-VHH-23m
molecules at three respective interfaces (Figure S1). M2e residues
E6 to N13 bind in a shallow groove formed by CDR3, CDR2
and the main body of the VHH formed by β-strands C, C’,
C”, and F (Interface 1; Figure 3A). As expected, based on the
VHH sequence data, a stabilizing disulfide bridge is observed
between the CDR3 and CDR2 (Figure 3A). Interface 1 includes
hydrogen bonds between the M2e-VHH-23m residues Arg45-
Gln46-Gly47 and M2e residues Glu8 and Thr9, M2e-VHH-23m
residue Cys100b and M2e residue Ile11, and M2e-VHH-23m
residue Glu100 and M2e residues Arg12 and Asn13. In addition,
three hydrophobic contacts are formed: (1) M2e residue Val7
binds a shallow pocket lined by residue Phe37, Val100f and
Trp103, (2) Pro10 stacks against Tyr100d, and (3) the side chain
of M2e residue IIe11 is inserted in a pocket formed by the side
chain of IIe58 of the VHH CDR2, and the backbones of Tyr59
(CDR2), Gly47, Val48 and Ser49 (CDR3). De bottom of the
latter pocket is formed by the stabilizing disulfide bridge between
Cys50 in CDR2 and Cys100b in CDR3 (Figure 3A). In interface
2, M2e residues 14 to 19 lie on a surface formed by CDR2 and
CDR3. The highly conserved M2e Trp15 side chain is inserted
in a deep pocket formed by residues from the 3 CDRs: the side
chains of Ile58 and Tyr97, and backbones of Ile51, Gly56, Thr57,
Asn98, Val99, and Gly100a. In addition, the imidazole NH of
Trp15 is hydrogen bonded to the backbone of Asn98 (Interface
2, Figure 3B).

In the crystals, the M2e peptide contacts three adjacent

molecules in an interaction reminiscent of domain swapping
(53). Closer inspection indeed suggests that ligand swapping
occurs between the M2e peptides bound to symmetry related
molecules in the crystal (Figure S2). Docking experiments using
the VETPIRNEWG M2e peptide show that the Interface 1
and 2 regions of the M2e peptide (residues 6–12 and 14–
19, respectively) can bind a single M2e-VHH-23m molecule
(Figure 3C). This is also supported by ITC experiments
indicating that in solution M2e-VHH-23m and M2e interact
in a 1:1 stoichiometry (Figure 2). To validate the relative
importance of the two binding interfaces in this interaction, we
additionally tested the binding of M2e-VHH-23m to HEK293T
cells expressing M2 protein or M2e Ala-mutants by flow
cytometry (Figure 3D). M2e-VHH-23m did not bind to cell that
were transfected with an M2Ile11Ala or M2Trp15Ala expression
construct, confirming the involvement of interface 1 and 2 in
the interaction with M2e. These findings are also in line with
the observation that M2e-VHH-23m fails to bind the H1N1
A/Brevig Mission/1/1918 M2e peptide, which carries a serine
instead of an isoleucine residue at position 11 (Figure 1B).
Reduced binding to cells expressing M2Val7Ala also concurs
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FIGURE 1 | M2e-specific VHHs and their binding specificities. (A) Predicted amino acid residue sequences of M2e-VHH-23m and M2e-VHH-66m (isolated after

panning on M2e-tGCN4 and human H3N2 M2e peptide) and M2e-VHH-10m (isolated after panning on HEK cells stably expressing M2). Above the sequences the

(Continued)
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FIGURE 1 | Kabat numbering is indicated. The complementarity determining regions (CDR) are boxed. (B) M2e peptide ELISAs. Wells of microtiter plates were

coated with 100 ng M2e-tGCN4, BM2e-tGCN4, or high-performance liquid chromatography (HPLC)-purified M2e peptide. The amino acid residue sequences of the

coated proteins or peptides are depicted above the graphs. Amino acid residues that deviate from the consensus human H3N2 M2e sequence are highlighted in red.

Dilution series of the indicated VHHs and MAb148 (a mouse monoclonal IgG1 that recognizes the M2e N-terminus) were added to the coated plates. Binding was

detected with a mouse anti-His tag MAb, followed by a secondary sheep anti-mouse IgG Ab conjugated to horseradish peroxidase (HRP). Data points represent

averages of triplicates and error bars represent standard deviations.

with the co-crystal structure data which show an interaction of
M2eVal7 with a shallow hydrophobic pocket on the surface of
M1e- VHH-23m (Figure 3A).

M2e-VHH-23m Binds to Infected Cells and
Does Not Neutralize Influenza A Virus
Next we used flow cytometry to determine if M2e-VHH-
m23 could bind to M2e in its natural context, on the
surface of influenza A virus infected cells. HEK293T cells
were infected with A/Puerto Rico/8/1934 (H1N1) (M2e:
SLLTEVETPIRNEWGCRCNGSSD), A/X47 (H3N2) (M2e:
SLLTEVETPIRNEWGCRCNDSSD) or A/Udorn/307/1972
(H3N2) (M2e: SLLTEVETPIRNEWGCRCNDSSD) and were
subsequently immuno-stained with MAb148, M2e-VHH-23m
or F-VHH-4. M2e-VHH-23m could bind to the surface of cells
infected with either of the three viruses with a Kd of 13.63 nM
for influenza A/Puerto Rico/8/1934 (H1N1) infected cells
(Figure 4A). In contrast, and as expected, M2e-VHH-23m failed
to bind to cells infected with A/Swine/Ontario/42729A/2001
(H3N3) (M2e: SLLTEVETPTRNGWECRCSDSSD) virus.
These data confirm that M2e-VHH-23m can bind to M2e
sequences that are similar to the H3N2 M2e consensus sequence,
recognizes the central part of such M2e sequences and that at
least the aspartic acid to glycine substitution at position 21 in
A/Puerto Rico/8/1934 M2 is not essential for binding.

It is known that some anti-M2e antibodies can restrict the
in vitro replication of certain influenza A virus strains such
as A/Udorn/307/1972 and A/Hong Kong/8/1968 but not other
viruses such as A/Puerto Rico/8/1934 and A/WSN/1933 in vitro
(54, 55). To address this issue,M2e-VHH-23m orMAb37, aM2e-
specific IgG1 antibody with in vitro neutralizing activity against
A/Udorn/307/1972, were mixed with 10–20 plaque forming units
(pfu) of A/Puerto Rico/8/1934 or A/Udorn/307/1972 before
infection of MDCK cells (56). As expected, both the plaque
size and number of A/Udorn/307/1972, but not of A/Puerto
Rico/8/1934 were reduced in the presence ofMAb37 (Figure 4B).
However, unlike MAb37, and even at a concentration of 2.5µM
(30µg/ml), M2e-VHH-23m did not affect the number and size
of A/Udorn/307/1972 plaques (Figure 4B).

Isolation of FcγRIV-Specific VHHs
Our next aim was to arm M2e-VHH-23m with a second
VHH that targets one of the activating FcγRs such as
FcγRIV. We focused on this activating FcγR because of its
restricted expression on macrophages, monocytes, neutrophils
and dendritic cells but no other myeloid cell population, and
because of its very high affinity for IgG2a monoclonal antibodies,
which contribute the most protection by non-neutralizing
influenza antibodies in the mouse model (13, 20).

To isolate FcγRIV-specific VHHs a phage library obtained
from a llama that had been immunized with immature
mouse dendritic cells (described by Deschacht et al.) was
enriched for candidate FcγRIV-specific phagemid clones by
three panning rounds using immobilized recombinant mouse
FcγRIV extracellular domain protein produced in HEK293T cells
(32). Of these candidates, FcγRIV-VHH-7m was selected after a
subsequent ELISA screen using the FcγRIV antigen (Figure 5A).
The binding specificity of purified FcγRIV-VHH-7m was
analyzed by flow cytometry using HEK-293 cells that were
transiently transfected with GFP and expression vectors coding
for mouse FcγRI, FcγRIII or FcγRIV together with a plasmid
coding for the common γ-chain, or with an expression vector
coding for the inhibitory FcγRIIb. Concentration-dependent
binding to cells transfected with the mouse FcγRIV plus the
common γ chain was clearly detected (Figure 5B). Only at the
highest concentration tested, FcγRIV-VHH-7m weakly bound
to HEK293T cells that expressed mouse FcγRI, FcγRIIb or
FcγRIII (Figure 5B). Expression of the FcγRs on the surface of
the HEK293T cells was verified by staining with an antibody
directed against the tag attached to the FcγRs (Figure S4).
Clear expression of the mouse FcγRI, FcγRIII and FcγRIV was
detected. Expression of the mouse FcγRIIb was less evident,
therefore no firm conclusions about the binding of FcγRIV-
VHH-7m to the mouse FcγRIIb could be deduced. To evaluate
that FcγRIV-VHH-7m was able to bind to cells that express
endogenous levels of the mouse FcγRIV, we tested its binding to
Mf4/4 cells, a mouse macrophage like cell line (29). Unlike M2e-
VHH-M2e, FcγRIV-VHH-7m bound Mf4/4 cells with a deduced
Kd value comparable to the Kd value for binding to FcγRIV
transfected cells (Figure 5B).

Tail-to-Head Fused FcγRIV- and
M2e-Specific VHHs Selectively and
M2-Dependently Activate FcγRIV
To evaluate the possibility to arm the M2e-specifc VHH with
FcγRIV-dependent effector functions, we genetically fused M2e-
VHH-23m carboxy-terminal of FcγRIV-VHH-7m by means of
a flexible 15 amino acid long (Gly4Ser)3 linker. As controls
M2e-VHH-23m was also fused to a VHH directed against
human FcγRIIIa [described by Behar et al. (48)] and FcγRIV-
VHH-7m was linked to F-VHH4. The resulting constructs were
named FcγRIV VHH-M2e VHH, FcγRIIIa VHH-M2e VHH,
and FcγRIV VHH-F VHH, respectively, and were produced
in transformed Pichia pastoris shake flask cultures (Figure 6A).
FcγRIV VHH-M2e VHH could bind to M2e peptide and coated
soluble FcγRIV protein in ELISA (Figure 6A). Next, we evaluated
the potency of the bispecific constructs to activate individual
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FIGURE 2 | Thermodynamic characterization of the M2e:M2e-VHH-23m interaction. Isothermal titration calorimetry of the Me peptide into M2e-VHH-23m.

FcγRs in vitro, by making use of a co-culture of M2-expressing
cells and a set of reporter cell transfectants, which produce
interleukin 2 upon the activation of a specific FcγR (Figure 6B)
(30). As controls for FcγR activation, we used mouse M2e-
specific MAb 37 (IgG1) and MAb 65 (IgG2a). In the presence
of M2-expressing HEK293T cells, MAb 65 dose-dependently

activated all mouse FcγRs. This is expected as mouse IgG2a
antibodies can bind and activate all mouse FcγRs (16). Only
mouse FcγRIIb and -RIII were activated by MAb37, again in line
with the known binding specificity of mouse IgG1 antibodies
for mouse FcγRs (15). In the presence of M2-expressing cells
FcγRIV VHH-M2eVHH potently activated mouse FcγRIV but
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FIGURE 3 | Molecular details of the M2e-VHH-23m: M2e interaction. (A) Crystal structure of M2e-VHH-23m in complex with the M2e peptide, showing the linear

binding epitope of M2e residues 6–13 binding to a shallow groove on the surface of M2e-VHH-23m (Interface 1). Left: The M2e peptide is shown in cyan stick

representation, the M2e-VHH-23m in green cartoon representation. CDR2 and CDR3 are colored pale and lime green, respectively. Right: Details of the interactions

between M2e residues 6–13 and the residues making up interface 1 on M2e-VHH-23m. (B) Details of the interactions between M2e residues 14–19 and the residues

making up interface 2 on M2e-VHH-23m. Coloring of M2e-VHH-23m as in A, M2e shown in gray stick representation. (C) Docking of the M2e peptide on the crystal

structure of M2e-VHH-23m confirms the ligand swapping hypothesis, showing that M2e binds an extended grove on M2e-VHH-23m comprising both Interface 1 and

Interface 2. Coloring of M2e-VHH-23m as in A, M2e shown in yellow stick representation. (D) Binding of M2e-VHH-23m to M2e Ala scan mutants. HEK293T cells

were transfected with Flag-tagged M2 wild type (WT) and M2e Ala scan mutant expression constructs and subsequently incubated with 20µg/ml of M2e-VHH-23m

or F-VHH-4. After fixation with 2% paraformaldehyde and permeabilization, binding was detected with a mouse anti-Histidine tag antibody and rabbit anti-Fag tag

antibody followed by an anti-mouse IgG Alexa 647 and anti-rabbit IgG Alexa 488, respectively. The median fluorescence intensity (MFI) was calculated by subtracting

the median fluorescence of binding of M2e-VHH-23m or F-VHH-4 to transfected cells from the median fluorescence of non-transfected cells bound by

M2e-VHH-23m or F-VHH-4.
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FIGURE 4 | M2e-VHH-23m bind infected cells and lacks in vitro antiviral activity. (A) HEK293T cells were infected with A/Puerto Rico/8/1934 (H1N1), A/X47 (H3N2),

A/Udorn/307/1972 (H3N2) or A/Swine/Ontario (H3N3) virus. The M2e sequences of the different viruses are shown above each graph, residues that differ from the

(Continued)
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FIGURE 4 | consensus human H3N2 M2e sequence are colored red. Twenty-four hours after infection, the cells were stained with 20µg/ml M2e VHH-23m, 20µg/ml

F-VHH-4 or 10µg/ml MAb148. The A/Puerto Rico/8/1934 (H1N1) infected cells were stained with 1/3 dilution series of M2e-VHH-23m or F-VHH-4. After fixation with

2% paraformaldehyde, infected cells were stained with goat anti-A/Puerto Rico/8/1934 serum followed by anti-goat IgG Alexa 647 and bound VHHs were detected

with a mouse anti-Histidine tag antibody followed by anti-mouse IgG Alexa 488. The mean fluorescence intensity (MFI) was calculated by subtracting the median

fluorescence of binding of M2e-VHH-23m or F-VHH-4 to infected cells from the median fluorescence of uninfected cells bound by M2e-VHH-23m or F-VHH-4. Data

points represent averages of triplicates and error bars represent standard deviations. Results of a representative of 3 repeat experiments is depicted for the binding to

the A/Puerto Rico/8/1934 (H1N1) infected cells, the dissociation constant (Kd), is the average of three independent experiments together with the standard deviation.

The green shading in the histograms corresponds to the binding of M2e-VHH-23m to mock-infected HEK cells. (B) M2e-VHH-23m (2.5, 1.25, or 0.625µM),

0.333µM MAb37 or sera of mice infected with A/Puerto Rico/8/1934 (H1N1) virus were incubated with 10 to 20 plaque forming units/well of A/Udorn/307/1972

(H3N2) or A/Puerto Rico/8/1934 (H1N1) virus and then added to MDCK cells. After 1 h, the cells were overlaid with Avicel supplemented with TPCK-treated trypsin.

The overlay was removed after 2 days, cells were fixed with paraformaldehyde and viral plaques were stained with convalescent mouse anti- A/Puerto Rico/8/1934 or

A/Udorn/307/1972 serum followed by HRP-linked anti-mouse IgG (NXA931, GE Healthcare) and TrueBleu substrate.

not FcγRI, -III, and -IIb. None of the control VHH fusion
constructs activated any of the FcγRs, indicating that specificity
for both M2e and FcγRIV of the VHH fusion constructs was
required. Moreover, activation of the mouse FcγRIV reporter
cells by FcγRIV VHH-M2eVHH was only observed in the
presence of M2 expressing target cells (Figure S5). Potent and
dose-dependent activation of mouse FcγRIV by the FcγRIV
VHH-M2e VHH fusion was also observed when A/Puerto
Rico/8/1934 infected MDCK cells were used as target cells
(Figure 6C). Finally, FcγRIIIa VHH-M2e VHH, but not FcγRIV
VHH-M2eVHH, activated the human FcγRIIIa, the ortholog
of mouse FcγRIV, in the presence of A/Puerto Rico/8/1934
infected targeted cells (Figure 6D). We conclude that the tail-to-
head fusion of the FcγRIV- with the M2e-specific VHHs allows
selective, M2-dependent in vitro activation of the mouse FcγRIV.

Intranasal Administration of Bispecific
FcγRIV VHH-M2e VHH Protects Mice From
a Potentially Lethal Influenza A Virus
Challenge
In a final set of experiments, we explored the protective potential
of FcγRIV VHH-M2e VHH in vivo. SPF-housed female BALB/c
mice were treated intranasally with 50 µg FcγRIV VHH-M2e
VHH 4h before and 24 h after challenge with 2xLD50 of A/X47
(H3N2) influenza virus. As controls, mice were treated with
PBS, 50 µg of FcγRIIIa VHH-M2e VHH or FcγRIV VHH-F
VHH. The mice that had been treated with FcγRIV VHH-M2e
VHH were significantly better protected from body weight loss
and lethality caused by the influenza virus infection compared,
to mice that had been treated with the negative control VHH
fusion constructs, which combine targeting of FcγRIIIa with
M2e-specificity or targeting of RSV-F with FcγRIII-specificity
(Figure 7A). In addition, the protection mediated by FcγRIV
VHH-M2e VHH was associated with a modest but statistically
significant reduction in lung viral titer (Figure 7B). To verify
if the protection by FcγRIV VHH-M2e VHH was mediated by
FcγRIV engagement, wild-type and FcγRIV−/− C57BL/6 mice
were intranasally treated with 50 µg FcγRIV VHH-M2e VHH
or FcγRIIIa VHH-M2e VHH, as negative control, 4 h before and
24 h after challenge with 2xLD50 of A/X47 (H3N2) influenza
virus. While treatment with FcγRIV VHH-M2e VHH could
protect wild-type mice, FcγRIV−/− mice and control-treated
wild-type mice did not survive the virus challenge (Figure 7C).

Moreover, body weight loss after challenge was statistically
significantly reduced in FcγRIV VHH-M2e VHH treated wild-
type mice, compared to FcγRIV−/− mice (p < 0.001). Thus,
selective targeting of mouse FcγRIV with the recombinant two-
domain construct FcγRIV VHH-M2e VHH, can protect mice
against a potentially lethal influenza A virus challenge.

DISCUSSION

Formatting of VHH fragments to develop biologicals to prevent
or treat infectious diseases is a powerful and attractive approach
to develop biologicals with enhanced specificity, activity, half-
life and breadth of protection. Here, VHH formatting was
used to test if arming of a virus surface antigen-specific VHH
with an artificial and selective FcγR activation function can
potentiate its activity to combat viral infections in the absence
of direct virus neutralization. To explore this possibility, we
focused on influenza A M2e as a viral target. This antigen
is conserved among influenza A viruses and is therefore an
attractive target to achieve broad protection. M2e-specific VHHs
were obtained after immunization of a llama with M2e fused
to a heterologous tetramerizing domain, to mimic the natural
quaternary structure of M2, followed by panning onM2e peptide
or cells that stably express M2. We isolated and characterized
in more detail three M2e-specific VHHs. Although several M2e-
specific conventional MAbs have been described in recent years,
to our knowledge, these are the first reported single domain
antibodies that specifically bind to M2e. Recently, a M2-specific
VHH was isolated from a synthetic VHH library by Wei et al.
(57), however their VHH failed to bind to M2e peptide.

We determined the crystal structure of M2e-VHH-23m in
complex with a M2e peptide, that corresponds to the consensus
sequence of human H1N1 viruses that circulated between 1933
and 2008, human H2N2 and H3N2 viruses. This structure
revealed that the M2e antigen is bound by the VHH in an
extended conformation that wraps around two main interfaces
on the VHH. A first interface is a shallow groove formed
by the CDR2 and CDR3 loops and the C, C’, C”, and F
β-strands (Figure 3A). This interface binds the M2e region
spanning residues 6–12, where Val7, Pro10 and Ile 11 bind
hydrophobic patches on the VHH. In addition to three main
chain interactions, the side chains of M2eGlu8 and -Thr9 each
go into an H-bond interaction with the VHH. A second binding
interface is found on the “back” side of the VHH, interacting with
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FIGURE 5 | Characterization of the isolated FcγRIV-specific VHH. (A) The predicted amino acid residue sequence of FcγRIV-VHH-7m, isolated after panning on

recombinant mouse FcγRIV protein of a VHH library derived from a llama immunized with immature mouse dendritic cells. Above the sequences the Kabat numbering

is indicated. CDR1, −2, and −3 are boxed. (B) Flow cytometric analysis showing binding of FcgRIV-VHH-7m and M2e-VHH-23m to HEK 293T cells transiently

transfected with expression vectors coding for mouse FcγRI, FγRIIb, FcγRIII, and FcγRIV along with the common γ-chain for the activating FcγRs and a GFP

expression plasmid. The lower graph depicts binding to Mf4/4 cells. The cells were incubated with fourfold serial dilution of Alexa FluorTM 647 labeled FcγRIV-VHH-7m

or M2e-VHH-23m, starting at a concentration of 0.2µM, binding of the VHHs to the GFP positive cells was analyzed. Data points represent averages of triplicates and

error bars standard deviations.
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FIGURE 6 | Bispecific fusion construct of anti-mouse FcγRIV VHH with M2e-VHH-23m selectively activates FcγRIV in vitro. (A) Schematic representation

of the bispecific VHHs and ELISA on human H3N2M2e peptide and recombinant FcγRIV protein is shown on the right. Wells of microtiter plates were coated with 100 ng

(Continued)
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FIGURE 6 | peptide or protein. Dilution series of the bispecific VHH fusion constructs were added to the coated plates. Binding was detected with a mouse anti-His

tag MAb, followed by a secondary sheep anti-mouse IgG Ab conjugated to HRP for the peptide ELISA. In the ELISA with coated recombinant FcγRIV protein, binding

was detected with a HRP-conjugated rabbit anti-camelid VHH antibody. (B) Serial dilutions of the bispecific VHH fusion construct or monoclonal antibodies were

added to HEK293T cells stably transfected with an influenza M2 expression plasmid. Thirty minutes later, FcγR-ζ BW5147 reporter cells were added to the HEK293T

cells. After overnight incubation produced mIL-2 was measured in a sandwich-ELISA, which served as an indicator for the magnitude of FcγR activation. (C) MDCK

cells were infected with A/Puerto Rico/8/1934 (H1N1) virus for 1 h. Unbound virus particles were washed away and serial dilutions of the bispecific VHHs or

monoclonal antibodies were added and incubated for 30min, followed by the addition of the FcγRIV-ζ BW5147 reporter cells (C) or human FcγRIIIa-ζ BW5147

reporter cells (D). After overnight incubation supernatants were analyzed by an anti mIL-2 sandwich ELISA. Data points represent averages of triplicates and error

bars represent standard deviations. The graphs are a representative of one out of three repeat experiments.

residues 14–19 of M2e. This interface contains a well-defined
hydrophobic pocket that captures the side chain of the highly
conserved Trp15. Most avian and swine influenza A viruses, and,
since the 2009 pandemic, also most circulating human H1N1
viruses, have a threonine instead of an isoleucine at position 11 of
M2(e). Threonine is not hydrophobic and would be incompatible
to the VHH’s hydrophobic pocket. This likely explains why M2e-
VHH-23m fails to bind to the tested avian and swineM2e peptide
variants. In contrast to Ile11, M2e-Trp15, which occupies the
second hydrophobic pocket of the VHH, is strictly conserved in
all known influenza A viruses. M2e Ala-scan analysis revealed
that next to Ile11 and Trp15 also substitution of Val7 or Glu14
considerably impairs binding of M2e-VHH-23m. M2eVal7 is
strictly conserved in all influenza A viruses and M2eGlu14 is
highly conserved in human influenza A viruses. Since M2eVal7,
-Ile11, -Glu14, and -Trp15 are highly conserved in all H3N2
influenza A strains, M2e-VHH-23m might have the potential
to recognize the vast majority of these strains. The M2e N-
terminus (SLLTEVET) is highly conserved among all influenza
A viruses and is recognized by some conventional monoclonal
antibodies such as MAb 148 and TCN-032. Despite employing
various panning strategies using avian and swine M2e variants,
we could not yet isolate a VHH that specifically binds the strictly
conserved region in the M2e N-terminus.

Earlier we reported the crystal structures of M2e in complex
with the Fab fragment of two different mouse monoclonal
antibodies (MAb 65 and MAb 148) that recognize partially
overlapping epitopes of M2e (50, 58). In these two crystal
structures, M2e adopted two different conformations. The
epitopes of the MAb 65 and M2e-VHH-23m are highly similar:
they both span the TEVETPIRNEW fragment and in both
M2eIle11 and -Trp15 are important for binding. Nevertheless,
the conformation of the TEVETPIRNEWpart ofM2e in complex
with M2e-VHH-23m is very different from that in complex with
the MAb 65 (Figure S3). This indicates that M2e indeed has
little intrinsic structure and can adopt multiple conformations
dependent on the bound antibody. This flexible nature of theM2e
peptide could explain why it appears to be difficult to isolate a
VHH that recognizes the N-terminal part of M2e. Moreover, due
to the absence of the light chain, VHHs typically bind to concave
epitopes rather than to convex or protruding peptide termini (59,
60). Nevertheless a few VHHs directed against linear peptides
have been described (61, 62). De Genst et al. reported on a VHH
that binds to the C-terminus of the intrinsically disordered a-
synuclein protein with nanomolar range affinity (61). The crystal
structure revealed that this VHH binds the four C-terminal

amino acids of α-synuclein by a narrow pocket formed by its
CDR2 and CDR3. This suggests that it may be possible to isolate
VHHs that specifically bind the highly conserved N-terminus
of M2.

In this study, we also report the isolation of a FcγRIV-specific
VHH from a llama that had been immunized with immature
mouse dendritic cells. This VHH bound to mouse FcγRIV
and showed no cross reactivity with the other FcγRs. To our
knowledge, this is the first report of an FcγRIV-specific VHH.
A fibronectin scaffold protein that could specifically bind to
FcγRIV with high affinity has been reported (63). In addition,
this scaffold protein was able to delay tumor growth in a mouse
model when linked to an anti-tumor antigen-specific single-chain
antibody andmouse serum albumin (to extend the half-life of the
fusion construct).

The bivalent VHH comprising the FcγRIV-specific VHH and
the M2e-specific VHH, could activate the mouse FcγRIV in the
presence of influenza A virus infected cells. Specifically targeting
only FcγRIVmight be an advantage over conventional antibodies
since the activation of the inhibitory FcγRIIb receptor, which
dampens the immune cell activation, is circumvented this way.
In this context, other strategies such as site-directed mutagenesis,
bispecific antibody formats and glycan engineering have been
explored to try to increase Fc binding to activating receptors
and decrease the interaction with the inhibitory receptor FcγRIIb
(64–67). For example, afucosylated antibodies against RSV, Ebola
virus and HIV with enhanced FcγR binding showed enhanced
efficacy in rodent models (67–69).

When administered 4 h before and 24 h after infection, the
bispecific FcγRIV VHH-M2e VHH construct protected wild-
type but not FcγRIV−/− mice against an otherwise lethal
influenza A virus challenge. It is well documented that protection
by M2e-specifc antibodies is FcγR mediated (6–9). We recently
reported that wild type mice treated with an M2e-specific
IgG2a showed significantly less body weight loss after infection
compared with FcγRIV-/- mice, suggesting that FcγRIV could
contribute to protection by M2e-specific IgG2a (13). Here we
show that the selective activation of the mouse FcγRIV with
a bispecific VHH fusion that also binds to M2e is sufficient
to protect mice against a potentially lethal influenza A virus
challenge. Antitumor activity has been reported for bispecific
VHH fusion constructs that consist of a VHH directed against
the human FcγRIIIa (the ortholog of themouse FcγRIV), fused to
either a VHH directed against carcinoembryonic antigen (CEA)
or HER2 (70, 71). In the context of viral infections, it has been
reported that selective engagement of human FcγRIIIa could
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FIGURE 7 | Bispecific fusion construct of a FcγRIV- and M2e-specific VHH protects mice against a potentially lethal influenza A virus infection. (A) Groups of 16

(bispecific VHHs) or 14 (PBS) BALB/c mice were intranasally treated with 50 µg of the bispecific VHHs or PBS 4h before and 24 h after challenge with 2xLD50 of

A/X47 (H3N2) influenza virus. Body weight change (left) and survival (right) were monitored for 14 days. The mean relative changes in body weight together with their

standard errors, are represented. The difference in body weight loss between FcγRIV VHH-M2e VHH and the negative-control groups was statistically significant (***P

< 0.001, REML variance components analysis). The survival rate of the group receiving FcγRIV VHH-M2e VHH was significantly different from FcγRIV VHH-F VHH

control treatment group (***p < 0.001, Log-rank test). (B) To determine the effect on the viral load in the lungs, groups of 13 (bispecific VHHs) or 11 (PBS) BALB/c

mice received 50 µg of the bispecific VHHs or PBS 4h before and 24 h after viral challenge with 2xLD50 of A/X47 (H3N2) influenza virus. On day 6 after infection, the

lungs were harvested and the viral titer was determined by plaque assay. The viral titer of mice FcγRIV VHH-M2e VHH was significantly different compared to mice

that received the FcγRIV VHH-F VHH control treatment (***P < 0.001, unpaired t-test). (C) Groups of 5 wild-type and FcγRIV−/− C57BL/6 mice (male and female

mice) were treated with 50 µg of the bispecific VHHs 4 h before and 24 h after viral challenge with 2xLD50 of A/X47 (H3N2) influenza virus and body weight (left) and

survival (right) were monitored. In the left-hand graph, data points represent means and error bars represent the standard errors of the means. Body weight changes

between FcγRIV VHH-M2e VHH treated wild-type and FcγRIV−/− mice were significantly different (***P < 0.001, REML variance components analysis). The survival

rate of wild-type mice that received FcγRIV VHH-M2e VHH was significantly different from wild-type mice treated with FcγRIIIa VHH-M2e VHH (**P < 0.01, REML

variance components analysis) and FcγRIV−/− mice treated with FcγRIV VHH-M2e VHH and FcγRIIIa VHH-M2e VHH (*P < 0.05, REML variance components

analysis). Data in (A,B) are pooled from 2 independent experiments.
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mediate killing of HIV infected target cells by NK cells (72, 73).
It remains to be investigated whether exchanging the mouse
FcγRIV specific VHH by a human FcγRIIIa specific VHH in
the bispecific fusion construct described here, would be able to
protect against influenza A virus infection in the context of a
human FcγR repertoire. Moreover, the M2e-specific VHH could
be exchanged by a VHH direct against another (conserved) viral
target antigen such as the hemagglutinin stalk domain, since
FcγRs also seem to play an important role in the protection
mediated by anti-stalk antibodies (74, 75).

In summary, we have demonstrated that an intranasally
administered, bi-specific VHH fusion construct that selectively
binds to and activates FcγRIV with one moiety and M2e as
present on infected target cells can protect against influenza
A virus challenge. However, the treated mice still showed
substantial bodyweight loss following challenge whereas
intranasal administration of a M2e-specific IgG2a monoclonal
antibody largely controlled the morbidity following challenge
of the mice (unpublished result). In future studies one could
try to optimize the Fcγ Receptor engaging VHH-fusions by
extending their lung retention, and further increasing the affinity
for both the viral target and the specific FcγR. Finally, when
humanized, formatted M2e-specific VHHs might provide a
new treatment option in the battle against influenza A virus
infections. This approach could also be of interest for other viral
infections. Such VHHs might be especially well suited to prevent
or treat respiratory infections because VHHs can be delivered
directly to the site of infection as inhaled biotherapeutics by
nebulization (27).
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Well-adapted pathogens have evolved to survive the many challenges of a robust

immune response. Defending against all host antimicrobials simultaneously would

be exceedingly difficult, if not impossible, so many co-evolved organisms utilize

immunomodulatory tools to subvert, distract, and/or evade the host immune response.

Bordetella spp. present many examples of the diversity of immunomodulators and

an exceptional experimental system in which to study them. Recent advances in this

experimental system suggest strategies for interventions that tweak immunity to disrupt

bacterial immunomodulation, engaging more effective host immunity to better prevent

and treat infections. Here we review advances in the understanding of respiratory

pathogens, with special focus on Bordetella spp., and prospects for the use of

immune-stimulatory interventions in the prevention and treatment of infection.

Keywords: immunomodulation, Bordetella, Toll-receptors, adjuvants, pertussis

INTRODUCTION TO THE STRATEGY OF IMMUNOMODULATION
FOR HEALTH

We are exposed to vast numbers of pathogens during our lifespan, but only a small number
manage to cause disease. Invading bacteria face a hostile environment in hosts with arrays of
antimicrobial compounds and components of immunity. To persist in such an environment,
bacteria must find a way to survive this onslaught of antibacterials. The strategy of resisting them
all may be exceedingly challenging or impossible; instead, most of the best-studied pathogens have
mechanisms that allow them to evade the full effects of host defenses (1–12). In this review, we will
consider examples of novel approaches in vaccine and therapeutic development that have been
guided by the better understanding of bacterial immunomodulatory abilities. We will focus on
findings with Bordetella spp., considering novel adjuvants that enhance host immune response
and new immunostimulatory therapies that can augment the most effective aspects of the host
immune response. The results highlighted in this review demonstrate that the manipulation and/or
disruption of bacterial immunomodulatory properties are providing a highly promising approach
that could replace antibiotics in a near future. Understanding the mechanisms that bacteria utilize
to manipulate host immune response, as well as the immune signaling pathways that lead to greater
protective immunity, can guide the development of targeted interventions that can enhance the
host immune response to more effectively kill the bacterial hazard.
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GRAPHICAL ABSTRACT | Areas of investigation focused on the use of immunomodulation in prevention and therapy of infectious diseases. Created with BioRender.

THE BORDETELLAE; BIOLOGY; AND
EXPERIMENTAL SYSTEM

Pertussis disease is caused by B. pertussis, a highly transmissible
human pathogen that causes a respiratory illness also known
as the 100-day cough (13). Among the proposed reasons for
its resurgence are waning immunity (13), the end of the
“honeymoon period” (14), the past vaccination calendar (15), and
the failure of the current acellular vaccine to confer sterilizing
immunity and long-lasting herd immunity. The increase in the
number of cases is associated with more advanced diagnostic
tools than ever before, allowing for an increase in the number
of identified cases (16–31), but also with increased morbidity and
mortality that creates an unambiguous imperative for improved
prevention methods.

Vaccination has greatly increased life expectancy by
preventing several historically notorious infectious diseases
(32–36). However, we are witnessing a rise in several preventable
diseases previously thought to be controlled (37), such as
pertussis (38). Around 1945, a whole-cell vaccine against B.
pertussis was introduced, causing an unprecedented decrease
in the number of reported pertussis cases. However, due to
undesirable adverse effects such as fever, erythema, swelling,
drowsiness and others, this was replaced in several industrialized

countries by an acellular vaccine that contains between 3 to 5
bacterial proteins (39–44). Despite the fact that both types of
vaccines generate antibodies that impede bacterial adhesion and
have bactericidal action, these have not been sufficient to halt
the increase in the number of cases. In response to this increase
a boost was introduced to extend immunological memory, and
new vaccination strategies targeted to pregnant women and close
family have also been introduced as an attempt to protect highly
susceptible newborns (45–48).

As the number of cases continues to increase, the scientific

community is working to understand the causes that drive
this reemergence (13, 49). Amongst the proposed causes of

this increase are, limitation to the protection conferred by the

current acellular vaccine. Not only does the acquired anamnestic

response wane rapidly (50), but the acellular vaccine still allows

for bacterial colonization of the nasal cavity and shedding.

Combined, these factors illuminate the fact that the current
vaccines used in most industrialized countries still permit
transmission of pertussis from host to host (51–54), which has
even more significant impacts when considered in tandem with
the rise of anti-vaccination movements. Yet another cause for
the increase is the differences detected in the immune response
triggered by the whole cell vaccine (Th17) vs. the acellular vaccine
(Th2) (51, 55–57). It is important to highlight that while neither
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whole-cell nor acellular vaccines confer long-lasting immunity,
and the merits of both responses have been debated in recent
years, the general consensus agrees on advantages to skewing T
cell response toward Th1/Th17 immunity (58–61).

The “gold standard” of immunity to pertussis is considered to
be the classical Th1/Th17T cell response induced by convalescent
immunity (62); however, there is significant cumulative evidence
that infection-induced immunity is imperfect and shorter-lived
than it could be (50). Current discoveries contribute to better
understanding of the immune response to Bordetellae, and
the important role that CD4 resident T cells play in a local
memory response has been recently demonstrated (63). Another
hypothesis is that Bordetellae are evolving, and due to the genome
plasticity and adaptability of this pathogen, current isolates of B.
pertussis have lost some of the antigens included in the acellular
vaccine. This phenomenon is referred to as “vaccine driven
evolution,” which helps justify why immunity is not as robust as
it has previously been (64–67).

These are only some of the potential causes that are currently
being considered, and it is most likely an uneven combination
of all of them that is truly driving this pertussis resurgence.
Although the whole-cell vaccine is still used, the trend is shifting
toward a safer acellular vaccine, and efforts on improving their
performance and the length of protective memory these generate
will be discussed in this manuscript.

The current strategy for the development of vaccines is driven
by the hypothesis that antibodies provide strong protection.
As a consequence, most of the current acellular vaccines are
highly safe and generate a rapid antibody response that is
protective, albeit limited (68, 69). Importantly, infection triggers
a complex and well-orchestrated sequence of responses involving
many interacting components of innate and adaptive immunity,
directed by several signaling pathways that present numerable
known, and probably many more unknown, opportunities to
interfere in the succession of events that can skew the resulting
immune response.

Bordetellae harbor multiple mechanisms that allow them to
modulate the host immune response (1, 70, 71). Some of the
proteins that these organisms utilize to manipulate immune
cells include adenylate cyclase toxin (ACT), a pore forming
protein that leads to the deregulation of cAMP levels within
target cells (72, 73); type 3 secretion system (T3SS), a needle-
like structure that injects toxins within mammalian cells (74–76);
a type 6 secretion system that uses a phage-like mechanism to
inject molecules (77); pertussis toxin (PTX), which prevents G
proteins from interacting with G protein-coupled receptors on
the cell membrane and therefore interfering with intracellular
communication (78–80); and filamentous hemagglutinin (FHA),
which binds signaling receptors, enables adhesion to epithelial
cells and interferes with cytokine production (81, 82). Based
on these studies of various immunomodulators we can now
begin to adjust the way we design preventative and responsive
medications to fight bacterial infections in more effective ways.

A good understanding of the sequential reactions of the
immune response (and bacterial manipulation of them) is key to
improving the induction and maintenance of robust long-lasting
protective immunity. Some of the Bordetella spp. virulence

factors are already being investigated for treatments, such as
PTX for human immunodeficiency virus (HIV) treatment (83–
89). Understanding how we can alter bacterial ability to sense
and respond to the host to modulate its response can lead to
treatments and therapies that focus on the enhancement of more
appropriate and effective host immune responses.

IMMUNOTHERAPY IN PREVENTION

Adjuvants
The Bordetella pertussis acellular vaccine has not completely
blocked the spread of pertussis because it allows for colonization
of the nasal cavity (48) and provides only temporary protection
(13). Adjuvants are well-documented for their potential to
increase vaccine performance, and some adjuvants such as
CpG oligodeoxynuceotides or alum are commonly found in
vaccine formulations (90, 91). There are a plethora of adjuvants
that can potentiate the performance of a vaccine and can be
classified into two main groups: Toll-like receptors agonists
(92–94) and mucosal adjuvants (58, 95–97). These two distinct
classes have been closely considered for their contributions to
pertussis vaccines as well as therapeutics (98–103), yielding
highly promising enhancing properties.

Toll-Like Receptors Agonists
Toll-Like Receptors (TLRs) are highly sophisticated sentinels
that recognize specific pathogen-associated molecular patterns
(PAMPs). The differential activation of TLRs is one of the
main determinants for an efficient immune response against
pathogens. Under this premise, researchers have been working
on the addition of TLR agonists to vaccines with the expectation
that activating different TLRs will command the type of T
cell response produced (104) and will ultimately enhance host
protective immunity (105).

One of the best studied Toll-Like Receptors is TLR2, which
recognizes a broad spectrum of bacterial cell wall components,
including lipopolypeptides, peptidoglycan, and lipochoic acids,
that trigger different signals that shape the immune response
against the bacterial threat (106). It has been demonstrated that
the use of TLR2 agonists as adjuvants to already developed
vaccines increases immunity, especially in neonates (93). This
feature is highly relevant to the design of vaccines against diseases
that primarily affect newborns and young infants (93). Moreover,
TLR2 agonists in combination with the BCG vaccine can enhance
protection against Mycobacterium tuberculosis (107), skewing
the cellular response toward Th1 (100), and resulting in a
more robust protective memory response, further promoting
its use in vaccinology. TLR2 has been also correlated with an
efficient response to B. pertussis infections (108), and some
preliminary data has revealed that the use of these agonists
enhances protection against infection by pertussis (58, 100).
Altogether, these data suggest that TLR2 agonists may be
promising candidates to combine with current or new vaccines
to enhance the protective response.

Similarly, TLR4 appears a good candidate for vaccine
enhancement because it recognizes lipopolysaccharide (LPS)
molecules, which are commonly present on the surface of
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most bacteria. Agonists of TLR4 enhance the performance of
several vaccines including viral, bacterial, and evenmycobacterial
(109–113). One important aspect is its promotion of mucosal
immunity (114–116), which is critical for the generation
of protection against certain infections including gut and
respiratory diseases like pertussis (117–119), although this
increase is achieved via mucosal delivery of the vaccine rather
than systemic (120). Molecular evidence has revealed that the
addition of a TLR4 ligand to the acellular pertussis vaccine
resulted in a shift from a Th2-dominant response to additional
induction of Th17 (121, 122). The abundant immunological
evidence that highlights the role of TLR4 in the immune response
to B. pertussis (102, 123–130) indicates that TLR4 agonists
are promising candidate for the generation of more robust
protective immunity.

TLR5 (131) is also a highly plausible candidate to augment
vaccine performance since it recognizes flagella, which are
present in a multitude of bacterial species. Previous literature
has indicated that ectopic expression of flagella in Bordetella spp.
leads to faster clearance of the infection (132), and it was later
revealed that TLR5 activates antigen-presenting cells, increasing
T cell response (133) (manuscript in preparation), and may
ultimately contribute to the more rapid clearance previously
reported. In several other microorganisms, the addition of TLR5
agonists have resulted in an increased performance of the vaccine
(134–141). Altogether these data suggest that TLR5 agonists
could significantly increase the performance of the current
acellular pertussis vaccine.

TLR7 recognizes single-stranded RNA (142–153) and has
been demonstrated to be a promising vaccine adjuvant for
protection against several microorganisms (154, 155). Similar
to TLR2, the TLR7 agonist augments immunity in newborns,
the most susceptible population (93, 102, 143, 156, 157). The
addition of a TLR7 agonist to an alum-adjuvant of pertussis
vaccine skewed the immune response toward Th1/Th17 and
significantly decreased colonization (98), providing preliminary
data to further pursue this agonist in other animal models.

Lastly, TLR9 recognizes unmethylated CpG
oligodeoxynucleotides and promotes IL-6 secretion and
consequent B cell activation (158–168). It has been demonstrated
that enhancement of TLR9 receptors augment activity of
antigen-presenting cells in neonates (93, 102, 169). Addition
of a TLR9 agonist to the acellular pertussis vaccine resulted
in greater stimulation of B and T cells and a shift to Th1, as
well as higher antibody titers (81, 170–174), suggesting that an
agonist of TLR9 is also a candidate to add to the current pertussis
vaccines. These have the potential to be widely used agonists, as
most of the current vaccine’s efficacy is measured as an increase
in antibody titers.

Altogether, these results demonstrate that TLR agonists are
great candidates to be used as vaccine adjuvants to increase
protective immunity. Interestingly, some of the TLR agonists
substantially augment vaccine performance in newborns and
infants, which represent the most susceptible population (93,
169) although there are substantial hurdles to applying this
knowledge. Moreover, preliminary data obtained with TLR2, and
TLR7 agonists demonstrate the improved performance of the

current B. pertussis vaccine and indicates that the use of adjuvants
can feasibly potentiate and augment the generation of protective
immunity (58, 98, 100).

Mucosal Adjuvants
Adjuvants have been used to potentiate, enhance, or accelerate
vaccine effects since the 1920s (105) and the field has greatly
evolved since. Mucosal adjuvants include cholera toxin, heat-
labile enterotoxin, and other compounds have been studied for
their particular ability to increase protection on mucosal surfaces
(175). These are of extreme importance, not only because of
the aforementioned increase in vaccine performance, but also
because the delivery method involving intranasal vaccination
has a lot of potential for improving the delivery of the vaccine
and increasing acceptance among needle-phobic population.
In the following paragraphs we will detail the mechanisms of
action and the data compiled for some of the most promising
mucosal adjuvants.

Cholera toxin (CT) and heat-labile enterotoxin of Escherichia
coli (LT) are highly antigenic; however, due to their toxicity,
they are not ideal candidates for human therapies. Recently, safe
forms of these toxins created via genetic manipulation have been
utilized as adjuvants to enhance the function of mucosal vaccines
(103, 176–181). The mechanism behind this augmented immune
response induced by CT is an increase in the permeability
of the mucosal epithelium, enhanced antigen presentation, the
consequent promotion of dendritic cell maturation, increased
IgA response, and finally, the generation of complex stimulatory
and inhibitory effects on T cell proliferation and cytokine
production such as IL-4, IL-5, IL-6, and IL-10 that skew the
response toward a Th2-type (177, 182). CTA1 is the subunit
responsible for the immunomodulatory activity in conjunction
with ERdj5 in the endoplasmic reticulum, which is the target
for CT. In the absence of ERdj5, mice failed to produce
inflammatory cytokines, indicating that CT action requires ERdj5
(183). Similarly, the calcium-binding protein S100A4 is required
for efficient antigen presentation and enhanced activity of CT, as
it is necessary for the humoral and cellular response (184). CT has
been tested as an adjuvant for pertussis vaccine and preliminary
data suggests that it substantially improvesmucosal protection by
augmenting IgA levels (183, 185), and it has even been suggested
that this adjuvant may be safe for use in humans (186, 187). Some
studies have revealed that conjugation of CTwith pertussis toxoid
added to the current acellular vaccine (188) or Fimbriae (Fim2)
(189) are highly promising candidates to improve the generation
of protective immunity from these vaccines.

Similar to CT, the heat-labile enterotoxin from E. coli (LT)
promotes an antigen-specific response inducing IgA antibodies,
Th17 response, and the enhancement of long-lasting protective
immunity (190) while also being safe for use in humans (191).
LT promotes maturation of dendritic cells, antigen-specific IL-
17 positive cells, and production of IL-1α, IL-1β, and IL-23
by dendritic cells. Trials in animals have revealed the efficacy
of this adjuvant at enhancing mucosal response (192). LT
promotes dendritic cell maturation enhancing IL-1β production
through activation of caspase-1 and the NLRP3 inflammasome
complex. Simultaneously, LT enhances LPS-induced IL-1α
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and IL-23 expression through activation of ERK MAPK in
dendritic cells inducing the development of Th17 T cells (193).
Interestingly, LT derivatives LTK63 (non-toxic mutant of LT)
and LTR72 (which retains partial enzymatic activity) revealed
two distinct phenotypes characterized by stimulation of IL-12
and TNF-α production by macrophages, resulting in enhanced
Th1 responses with the LTK63 adjuvants. In contrast, LTR72
suppresses LPS-induced IL-12 production, increases type 2
responses, inhibits Th1 response, and facilitates clearance of
bacterial burden (194), demonstrating that both subunits of the
toxin have particular activities that can be beneficial for the
improvement of the current acellular pertussis vaccine.

Another mucosal adjuvant that is widely investigated is
retinoic acid, a powerful immunomodulator that interferes with
growth, differentiation, and other aspects of the cell life cycle.
Importantly, retinoic acid is also essential in the generation of
mucosal immunity, the promotion of tolerogenic effects, the
generation of a robust innate and adaptive immune response, and
moreover, it also acts as a negative regulator of IgE production
(195–197). It has been hypothesized that retinoic acid plays a
fundamental role in sustaining mucosal homeostasis by down-
regulating IgE levels (197). Its performance as an adjuvant
has been studied in several organisms and the plethora of
results obtained have revealed that retinoic acid is a promising
candidate to use as an adjuvant of mucosal vaccines by itself
or encapsulated in nanoparticles (198–203). Unfortunately, its
activity in conjunction with the pertussis vaccine has not yet
been assessed.

The use of biopolymers in mucosally-administered vaccines
has substantially improved the current vaccine formulations and
has great potential for the future (204). Some of the presently
investigated biopolymers include alginate (205–212) and gellan
(213, 214). Although these are still in early stages of study, other
biopolymers, such as chitosan (95–97, 215–232), starch (233),
and β-glucan (234–241), have already been tested in animal trials
with encouraging success. While the use of biopolymers is still
rising, this area of investigation is highly promising, especially for
enhancement of mucosal protection. Mucosal delivery has been
explored for pertussis immunization from different approaches
that have resulted in hopeful results in which Th17 response was
enhanced and the animals were more robustly protected against
challenge (58, 170, 242, 243).

To summarize, several mucosal adjuvants are being
investigated, some of which are derived from toxins while
still others are derived from biopolymers. Both act to enhance
the performance of vaccines, particularly those that can be orally
or intranasally delivered, usually in cases in which mucosal
protection is a key component of immunity. However, these
further demonstrate that different strategies and approaches can
be used to improve the performance of the current vaccines to
produce and enhance individual and herd immunity.

Novel Vaccination Strategies
The combination of BCG and acellular pertussis vaccination has
been shown to reduce the mortality rate of pertussis (244–247).
Immunological studies unraveling the underlying mechanism by
which protection against pertussis is enhanced are necessary.

Some groups have focused on the addition of antigens to
the current vaccine in order to improve performance. After
demonstrating via in vitro experiments that the autotransporter
BrkA would be a good candidate to generate antibodies that
kill Bordetella spp., BrkA has been tested as an adjuvant of
the current acellular pertussis vaccine, the results of which
revealed robust lung protection against infection with B. pertussis
(248, 249). Two other autotransporters, Vag8 (250, 251) and
SphB1, when added to the current pertussis vaccine resulted
in improved protection against B. pertussis infection (252).
Adenylate cyclase toxin (ACT), when added to a current
vaccine formulation significantly decreased inflammation and
increased the generation of protective immunity (253, 254). BcfA
(colonization factor A) has been used as adjuvant in the current
vaccine, and the preliminary data obtained with the murine
model reveals that the addition of this adjuvant shifts the T cell
response toward Th1/Th17 (255).

Live vaccines have the potential to induce strong mucosal
protection, but suffer from concern about their risk. An exciting
new vaccine candidate against B. pertussis is the live attenuated
vaccine, BPZE1, which has been shown to induce a robust local
B and T cell response (256–282) despite genetically engineered
mutations that render it relatively safe (283, 284). Excitingly,
phase I trials demonstrate that the intranasal formulation of
the vaccine transiently colonizes the nasal cavity, leading to the
generation of stronger immunity (264, 268).

Several groups are currently working on the development
of outer membrane vesicles and outer membrane proteins in
protection against B. pertussis as well as cross-protection against
several Bordetella spp. and characterizing the immune response
as well as protective immunity (285–295). In animal studies,
immunization with outer membrane vesicles led to not only
better humoral and cellular (Th17) memory, but also to a
significant increase in IgA titers, which is one of the major
hurdles of current vaccination strategies against this pathogen
(296–298). It is important to highlight that the increase in IgA
responses upon immunization with outer membrane vesicles is
only obtained when these are administrated mucosally (299).
The classic delivery for OMV’s, which is subcutaneous or
intraperitoneal immunization, does not induce IgA responses
and this novel delivery method provides a great advance, as it
can be administered with more ease and induces an even better
immunological response. The increase in mucosal protection has
led to efforts toward improved nasal delivery approaches and
a thermostable spray containing outer membrane vesicles has
been developed. This spray significantly improves delivery and
decreases the discomfort other intranasal formulations might
cause. Importantly, this delivery method still maintains all the
outstanding qualities of the classical delivery of these purified
outer membrane vesicles (300).

Finally, another highly promising strategy is focused on the
disruption of bacterial ability to manipulate the host immune
response. Under the premise that bacteria harbor mechanisms
that allow them to sense and respond to host immunity,
disrupting these pathways would allow for the generation ofmore
robust protective immunity. A live attenuated vaccine in which
immunomodulatory mechanisms are disrupted might confer
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cross-protection against classical Bordetellae, which are known
to share many antigens. Although this is only the first study for
this method of vaccine design (manuscript in revision), this novel
approach has great potential for the generation of new vaccine
candidates and possibly therapeutics.

IMMUNOTHERAPY IN TREATMENT

LOS-Derived Oligosaccharide
Glycoconjugates
Pertussis toxin (PTX) in an inactivated form (PTd) functions
as a major protective antigen, stimulating production of toxin-
neutralizing antibodies which can protect against damage caused
by the toxin, but do not target the bacteria itself (301, 302);
however, it also demonstrates possible partial reversion back
to its toxic active form (303, 304), which may be responsible
for the reactogenicity seen in a small percentage of vaccine
recipients. It is also a secretory protein, which is only loosely
associated with the cell and is therefore not an ideal target for
bactericidal antibodies. A more effective target is an abundant
surface component such as the endotoxin lipooligosaccharide
(LOS), an LPS analog with a complete absence of the O-specific
polysaccharide chain that is produced by several varieties of
Gram-negative bacteria (305). LOS provides significant adjuvant
properties via induction of IL-12 and 1L-1β that promote Th1
and Th17 responses, respectively (306, 307). It also displays
pyrogenic, mitogenic, and endotoxic activity that necessitate its
conjugation or conversion to a less destructive form prior to its
use in a vaccine.

LOS conjugated to protein carriers filamentous
hemagglutinin, bovine serum albumin, and tetanus toxoid
(TTd) successfully induce a strong bactericidal response specific
to LOS presented on the surface of B. pertussis, leading to
complement-mediated destruction of the cell (90, 308, 309).
These protein carriers are also surface components, like LOS,
and the resulting surface-associated conjugate acts as a strong
target for antibody action directed against B. pertussis.

Somewhat surprisingly, another conjugate iteration in
which an LOS-derived oligosaccharide is covalently linked
with the secretory protein PTX yields a uniquely non-toxic
and immunogenic glycoconjugate that retains the antigenic
properties of PTX while also inducing the production of
bactericidal antibodies. The presumed linkage at the fetuin- and
glycoprotein-binding sites of PTX inactivates the enzymatic
activity of the protomer A and binding properties of oligomer
B, demonstrated using in vitro assays (310). Although the use
of LOS appears to be highly promising, in vivo studies still
need to be done to assess pharmacological parameters of safety
and biodistribution.

Cyclophilin Inhibitors
PTX is internalized in cells via endocytosis and then follows a
retrograde transport system to the endoplasmic reticulum. The
enzymatically active (A) subunit of PTX, PTS1, detaches from
the rest of the toxin in the ER and unfolds due to its thermal
instability. It is then transported into the cytosol with the help of
cyclophilin (Cyps), an important protein folding helper enzyme

that also is required to facilitate membrane translocation from
early endosomes into the cytosol of various ADP-ribosylating
toxins (311–313). Inhibiting Cyps activity has been shown to
in turn inhibit membrane translocation and protect cells from
intoxication with PTX and others (311).

Inhibition can be achieved via the approved
immunosuppressive drug cyclosporine A (CsA), which
specifically inhibits Cyps activity in mammalian cells by
binding directly to Cyps and forming a ternary complex. It has
been used as the primary agent in immunosuppressive regimens
such as grafts and transplants since the 1980s. It is now suggested
that CsA might interfere with the translocation of PTS1 from the
ER into the cytosol; it may also play a role in reassembling the
unfolded PTS1 subunit (311).

In vitro intoxication assays performed on CHO-K1 cells
demonstrated that CsA-treated cells were protected from PTX
intoxication. Interestingly, up to 50% of CsA is retained
intracellularly, even in the absence of extracellular inhibitor, after
18 h (314). Thus, presumably, intracellular Cyps stay inhibited
over a longer period of time, explaining the toxin-resistant
phenotype. This is also concomitant with the long retention of
CsA in different tissues observed after CsA administration in
human patients (315, 316). This inhibitor was delivered orally
during trials, but its use in a mucosal spray or as a directly
injectable vaccine component has yet to be investigated.

FUTURE DIRECTIONS AND CONCLUSION

Since the years of our notoriously premature celebration
of victory over infectious disease, there has been seemingly
inexorable retaliation. There is now justifiable concern,
shifting toward fear, about the combined threats of increasing
antibiotic resistance and the failures of current vaccines due
to factors including incomplete vaccine uptake, vaccine-
driven evolution and other threats. However, recent
advances in our understanding of immunology and the
tools to manipulate it present hope for more rational
targeted interventions that are focused on enhancing the
natural host response. Similarly, improved understanding of
strategies and mechanisms by which bacteria modulate the
immune response provides new targets for treatment and
prevention. In the coming years, we will likely witness an
expansion in the field of immunotherapy promoted by a better
understanding of the finely tuned interactions of bacteria
and host.
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It has been almost a decade since the 2009 influenza A virus pandemic hit the globe

causing significant morbidity and mortality. Nonetheless, annual influenza vaccination,

which elicits antibodies mainly against the head region of influenza hemagglutinin (HA),

remains as themainstay to combat and reduce symptoms of influenza infection. Influenza

HA is highly antigenically variable, thus limiting vaccine efficacy. In addition, the variable

HA head occupies the upper strata of the immunodominance hierarchy, thereby clouding

the antibody response toward subdominant epitopes, which are usually conserved

across different influenza strains. Isolation of monoclonal antibodies from individuals

recognizing such epitopes has facilitated the development of recombinant vaccines that

focus the adaptive immune response toward conserved, protective targets. Here, we

review some significant leaps in recombinant vaccine development, which could possibly

help to overcome B cell and antibody immunodominance and provide heterosubtypic

immunity to influenza A virus.

Keywords: influenza A virus, immunodominance, vaccines, B cells, antibodies

INTRODUCTION

Influenza viruses belong to the family of Orthomyxoviridae and consists of A, B, C, and D
types. Types A and B are currently circulating among humans (1–4). Influenza causes significant
morbidity (30–50 million cases yearly) and mortality, with infection-associated respiratory deaths
in the range of 4–8.8 per 100,000 individuals, posing heavy socioeconomic burden to society
(5). Annual vaccination remains as the mainstay to prevent influenza infection, but, according
to Centers for Disease Control and Prevention, it is effective only in 20–70% of the population,
depending on season (6). Based on antigenic and phylogenetic properties of influenza surface
glycoproteins, hemagglutinin (HA), and neuraminidase (NA), there are 18 HA (H1–H18), and 11
NA (N1–N11) Influenza A virus (IAV) serotypes and two influenza B of B/Victoria and B/Yamagata
lineages (7, 8). HA is further divided into two phylogenetic groups. The current seasonal flu
vaccines are either trivalent or quadrivalent containing HA from circulating H1N1, H3N2, and
B/Victoria lineage or both influenza B lineages (9). IAV possess an error prone RNA polymerase,
which results in mutations in surface antigens, leading to antigenic drift and antibodies being
no longer effective. Therefore, it is necessary to update and administer vaccines every year by
forecasting the drifted strains. In addition, the annual vaccination becomes ineffective during
pandemic outbreaks, in which a new viral strain of zoonotic origin acquires the ability to replicate
in humans (10, 11).
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HA is the most abundant glycoprotein on the influenza
virion surface and is crucial for host viral entry by binding
to the terminal sialic acid residues on epithelial cells, resulting
in fusion of viral and host cell membranes. HA is a trimer
consisting of a globular head, harboring the receptor binding
site, and an elongated stem region (12). Even though stem-
specific B cells and antibodies are generated during infection
and vaccination, the HA head is the main target of neutralizing
antibodies. However, possibly due to its immunodominance (13),
the head is subjected to higher rate of evolution (2.2–4.4 times)
than the stem (14, 15). Intriguingly, while in animals, at least
12 mutations are necessary to drive full escape from immune
sera (16), in humans, it appears that the polyclonal response
can be extremely focused on one antigenic site (17–19). For
example, in a circulating span of 35 years in humans, a single
amino acid substitution at only seven sites in HA head beside
the receptor binding site (RBS) was enough to drive major
antigenic change in H3N2 (17, 20). HA stem, as a target for
universal influenza vaccine, has gained enormous traction in
recent years. One could argue that the stem region is inaccessible
to B cells and antibodies (21). However, a study using a broad
neutralizing antibody showed that nearly 75% of the HA on
pandemic H1N1 is bound by a stem-specific mAb (22). There
is an urgent need to introduce universal vaccines, targeting
conserved regions and providing lifelong protection. This review
focuses on possible strategies for developing universal influenza
vaccines, mainly based on HA. Such strategies are summarized
in Figure 1.

HEMAGGLUTININ STEM—A PROMISING
UNIVERSAL VACCINE TARGET

HA stem has been an important candidate for development of
universal vaccines because the stalk region is relatively conserved
and evolves much slower and accommodate less amino acid
substitutions as compared to the head domain. This could be due
to minimal antibody pressure from low amount of circulating
anti-stem antibodies (23, 24) and low tolerance to mutations
in the stalk domain, which can lead to loss of viral fitness
(25, 26), even though partial escape mutations in the stem can
be generated (27). However, amino acid substitutions in the
stalk have been reported to minimally affect the neutralization
capacity of human cross-reactive, anti-stalk monoclonal
antibodies (14, 28).

HA stem antibodies protect by (i) preventing viral entry by
blocking the fusion of host cell membrane and viral membrane
(29), (ii) reducing viral egress by blocking neuraminidase
activity through steric hindrance (30–32), and (iii) FcR-mediated
induction of antibody-dependent cellular cytotoxicity (ADCC),
antibody-dependent cellular phagocytosis and reactive oxygen
species production (33–35). Several human-derived broadly
neutralizing anti-stem antibodies have been identified against
either influenza group 1 (36–39) or group 2 (38, 40–42) or
both groups (40, 43–50) or even against both influenza A and
B subtypes (51). The identification of these antibodies was an
incentive to develop vaccines, which are discussed below.

HEMAGGLUTININ STEM—HUMAN
IMMUNE RESPONSES

In humans, memory B cells (Bmem), and antibodies against HA
stem are subdominant and present in low levels. Analysis of
serum samples from 202 healthy individuals collected between
2004 and 2010 revealed that anti-stem antibodies of group 1
specificity is found in 84% of the population (52); however,
their level, as measured in human Intravenous Immunoglobulin
preparations, is very low (23).

Ellebedy and colleagues (53) found that immunization
with H5N1, which is not currently circulating in humans,
boosted cross-reactive antibody response toward HA stem,
when compared to seasonal vaccines. Because of the existence
of lower levels of H5 head-specific Bmem as compared to
stem-specific Bmem, H5N1 vaccination led to recruitment of
stem-specific Bmem, their expansion, and antibody production.
On the contrary, boosting with the same HA favors anti-
head responses (53). Another study found that nearly 6 out
of 10 individuals have Bmem specific between group 1 and
2 HA (50). Indeed, it appears that baseline levels of H5–
H1 cross-reactive Bmem and H1-specific Bmem are no more
than 2-fold different (54). However, after priming with an H5
DNA plasmid vaccine and boosting with A/Indonesia/05/2005
monovalent-inactivated virus, both head and stem Bmem were
expanded but only head-specific Bmem persisted, while stem-
specific Bmem expanded and contracted rapidly (50, 54).
Finally, Andrews et al. observed that immunization with
group 1 virus (H5N1) elicited anti-stem memory responses
exclusively against group 1, while group 2 (H7N9) induced
high levels of cross-protective anti-stem memory B cell
responses with diverse repertoire despite a lower overall
response. This study in humans suggests the potential of
group 2 based vaccines to provide a broader protection
as compared to group 1 (55). While all these studies
highlight the ability of individuals to generate stem-specific
Bmem and plasmablasts, they all note a rapid contraction
of stem-specific cells. This disconnect between cell numbers,
longevity, and serum antibodies highlight the complexity of B-
cell fate decision. Understanding how antigen specificity can
influence cell differentiation is a crucial challenge for next
generation vaccines.

SITES OF VULNERABILITY IN
HEMAGGLUTININ HEAD

Although HA stem is an excellent candidate for the development
of universal vaccines, anti-HA stem titers in human correlates
only with reduced viral shedding but do not predict the severity of
influenza infection (56, 57). A recent study in humans indicated
that a 2-fold increase in hemagglutination inhibition titer gave
a 23.4% reduction in H1N1 infection risk, while the same
increase in HA-stem-specific antibodies conferred only 14.2%
reduction (58).

The globular head of the HA is target for most of the
neutralizing antibodies, which prevents the viral entry by
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FIGURE 1 | Summary of some promising strategies currently used to elicit broadly cross-reactive anti-HA B-cell responses.

blocking the binding of RBS to sialic acid residues on host cell
membrane (59). RBS is a shallow depression on HA head and
consists of 130 loop, 150 loop, 190 helix, which are relatively
conserved, and 220 loop, which is diverse among IAV subtypes
(60, 61). Amino acid substitutions in the RBS determine host
tropism, and specific substitutions are connected to altered
receptor binding within subtype (62). Some RBS binding, broadly
neutralizing antibodies have been identified, such as C05, S139/1,
and F045-092, which neutralize within groups; CH65, 5J8, 2G1,
and H5.3, which neutralize within subtype (63–71); and C12G6
and CR8033, which neutralize both influenza B lineages (51, 72).

Apart from RBS, broadly neutralizing antibodies have been
identified against other conserved sites on HA head (73). An
antibody (F005-126) which neutralizes 12 H3N2 subtypes by
occupying the cleft formed by twoHAheadmonomers and cross-
linking them is known to prevent viral entry by blocking pH-
induced HA conformational change (74). Bajic et al. found that
subdominant antibodies can target an occluded epitope located
on the lateral surface on HA head between two monomers using
an H3 immunogen, hyperglycosylated on dominant epitopes.
These antibodies protected against H3N2 challenge in an Fc-
dependent manner (75). Similarly, two independent studies
identified broadly neutralizing antibody, which bind hidden
epitopes at HA trimer interface. These antibodies do not

neutralize the virus but are suspected to disrupt the HA trimer
integrity. Passive transfer experiments revealed that they protect
mice from groups 1 and 2 viruses by preventing cell-to-cell viral
spread or by FcγR or complement mediated effector mechanism
(76, 77). HA exhibits “breathing” phenomenon at neutral or low
pH where reversible separation of HAmonomers exposes hidden
epitopes to these specific antibodies (78–80). Vestigeal esterase
domain is another possible HA target; it is located at the base of
the HA head and can be target of broadly protective antibodies,
which protect within subtypes (81, 82) and both lineages of
influenza B virus (83). Like stem-directed antibodies, they protect
through variousmechanisms such as blocking viral egress, fusion,
or by ADCC.

For most of the epitopes described above, we are just at the
first step of the reverse vaccinology pipeline. However, there is
hope that using some advanced de novo protein design tools, we
will be able to create effective immune-focusing antigens (84, 85).

BIOENGINEERING ANTIGENS TO
REFOCUS IMMUNE RESPONSES

Headless Hemagglutinins
One of the obvious ways to increase the anti-stem
antibody response is to remove HA head to circumvent
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its immunodominance (13, 86). Even though this sounds
simple, removing the head and the transmembrane domain
may cause conformational changes in the stem leading to
loss of recognition by anti-stem antibodies (87). One of
many successful attempts was achieved by creating stable
trimeric mini-HA from H1N1, which retained similar binding
affinity to two broadly neutralizing antibodies, CR9114 and
CR6261, as that of full-length HA. When used to immunize
non-human primates, the elicited antibodies competed with
CR9114, induced ADCC, and neutralized H5N1 virus (88).
Another study used H1HA10-Foldon and H3HA10-Foldon
mini-HA, which generated neutralizing antibodies cross-
reactive to both groups 1 and 2 IAV in vitro but with
limited cross-group protection in vivo (89, 90). In contrast
to these mini-HAs, an H5-based mini-HA produced and
purified from Escherichia coli elicited anti-stem antibody
responses and protection against both IAV subtypes (91).
Pre-existing immunity plays a role in subsequent immune
response to viral infection and vaccination (92). When
tested in non-human primates who have been exposed to
flu infection, mini-HA were shown to induce higher cross-
protective antibody response as compared to seasonal trivalent
inactivated vaccine, indicating their potential as a universal
vaccine (93).

Ferritin is an iron storage protein which self-assembles
into a nanoparticle consisting of 24 repetitive polypeptides,
which can induce strong immune response and antigen
presentation (94). Based on this, Yassine et al. engineered
a nanoparticle containing intact HA stem from H1 (H1-ss-
np), which generated anti-stem response almost 2-fold higher
than that of trivalent inactivated vaccine. When immunized
with H1-ss-np, mice and ferrets elicited broad antibody
response against group 1 IAV as well as group 2 IAV,
demonstrating heterosubtypic protection (95). Based on this,
influenza H1 stabilized stem ferritin vaccine (H1ssF_3928)
has entered a phase I ongoing clinical trial to evaluate its
tolerability and immunogenicity in healthy adults. However, a
thermostable and immunogenic nanoparticle vaccine containing
group 2 H3 and H7 stem conferred only protection against
homosubtypic viral challenge. Given the fact that these stem
immunogens activates IgM BCR of unmutated common ancestor
of the cross-reactive human anti-stem antibodies, the authors
speculate that the lack of cross-group protection in vivo
might be due to difference in BCR repertoire in mice and
human (96).

Chimeric Hemagglutinin
Chimeric HAs (cHA) are full-length HA with stem derived from
human viruses and globular head from distinct, exotic HAs.
Based on this concept, repeated immunization with cHA with
head from different flu subtype and same H1 HA stem induced
high titers of stem-reactive antibodies against homologous and
heterologous viruses (97). Several such cHA constructs, which
confer protection by eliciting stem Abs, have been developed for
group 1, group 2, and Influenza B viruses, with some inducing
long-lasting antibodies (98–105). An interim report on a clinical
trial using a cHA prime boost strategy was recently released

(106). In this study, healthy volunteers, with measurable baseline
H1-stalk antibody levels, were boosted with cHAs. The sharpest
stem-antibody level increase was obtained when challenging
with cH8/1N1 in AS03 adjuvant intramuscularly. However,
further immunization with other cHA did not additionally
boost stem responses. To build upon these promising
findings, more studies are needed to assess the longevity of
these responses and their stability upon natural infection or
seasonal immunization.

Immune-Focusing Strategies
N-linked glycosylation on HA has been known to stabilize HA
and shield virus from host immune response (107). Creating
monoglycosylated HA or unmasking HA-stem of N-glycans
could induce cross-strain neutralizing anti-stem antibodies (108,
109). Conversely, hyperglycosylating the HA head can also
refocus response on stem (110). A recent study used “protect,
modify, and deprotect” method to focus antibody response
toward a stem epitope. In this strategy, after masking target
epitope on stem with a monoclonal antibody, the surrounding
undesired epitopes are chemically modified to reduce their
antigenicity (111). On the other hand, other residues, outside
stem, can also influence the neutralizing sensitivity to anti-stem
antibodies by affecting HA-stalk stability and antibody access to
stem epitopes (112).

Vaccine Engineering for Cross-Protection
Kanekiyo et al. used a ferritin nanoparticle displaying a
repetitive array of HA hyper variable receptor binding domains
(RBD from different H1N1 strains). Using this, they could
subvert B cell response from strain-specific immunodominant
epitopes to conserved, shared epitopes. Since cross-reactive B
cells can recognize conserved epitope from an heterogenous
array of RBD, these cells get preferentially activated due to
avidity advantage and could selectively activate pre-existing
cross-reactive Bmem. One of the antibodies generated after
immunization, 441D6, binds to a conserved epitope, which lies
opposite to RBS and protects against H1N1 strains spanning
from 1977 to 2009 (113, 114). Anderson et al. generated
cross-reactive antibody responses by injecting a mix of DNA
vaccines containing HA genes from six members of group
1 IAV, which was further enhanced by inclusion of an
antigen presenting cell targeting unit specific for MHCII, thus
favoring BCR cross-linking (115). Another strategy to elicit
broadly reactive antibodies within IAV subtypes is to use
computationally optimized broadly reactive antigens (COBRA),
which are displayed on virus like particles or expressed in
live attenuated influenza vaccine. This approach uses multiple
rounds of consensus generation to aggregate HA epitopes of
IAV from different time periods. Such vaccines elicit polyclonal
B cell responses and was shown to protect within subtypes
(116–123). Combining several COBRA vaccines could confer
heterosubtypic protection.

M2e-Based Vaccines
M2 is an ion channel with its ectodomain (M2e) exposed
on virion and infected cell surfaces (124). M2e is quite
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TABLE 1 | Characteristics of antibody responses to current universal vaccine targets and ability of seasonal vaccination to recall memory B cells and specific antibodies.

Antibodies Seasonal vaccination

Broadly cross reactive Neutralizing Act via effector functions Recall memory B cells Elicit antibodies

HA head – + – (33) + +

HA head conserved targets + +/–a +/–b ?c (73, 143) ?d (143)

HA stem + + + (33) –/+e (21, 144) –/+e (21)

NA + +/–f (141) + (145) –g (136) +/–g (146, 147)

M2e + – (148) + (149) – –

aHA head conserved targets comprise lot of different targets. Neutralization ability depends on the target.
bSee in the body of this review for references, depending on the target.
cNot many studies address this question. It appears that vaccination with newly introduced viruses might recall these B cells.
dNot many studies are addressing this issue, which is probably dependent on the target.
eStem-specific memory B cells are mainly recalled and antibodies induced when new viruses are introduced (for example with H1N1/pdm2009).
fNA antibodies usually have NA-inhibition activity, which correlates well with plaque reduction but are not neutralizing, by definition.
gNA-B cells and antibodies are most likely not properly boosted, after seasonal vaccination, due to poor vaccine formulation, with variable/low NA amount.

conserved across IAV; therefore, it has historically been
considered as an ideal universal vaccine candidate (125).
The mechanism of M2e-mediated protection is debated with
both antibodies and T cells being important players (126–
128). Several approaches have been undertaken to increase
M2e immunogenicity, using VLP or different adjuvants (129–
131). Of note, it appears that M2e antibodies act via
effector functions and thus are infection permissive, making
M2e vaccines more suitable when used in combination
with others.

NEURAMINIDASE—THE EMERGING
PLAYER

IAV NA as vaccine target has been neglected for decades,
despite early discovery of potent anti-viral activity of NA
antibodies (132). Even more surprisingly, NA amount in
licensed vaccines varies enormously and is not checked by
manufactures or regulatory authorities (133). Exciting new
studies strongly point to a major role for anti-NA antibodies
in protecting from disease and as the best correlates of
protection (56, 134, 135). Critically, Chen et al. identified a
number of human NA antibodies that cross-protected mice
in therapeutic and prophylactic setting (136). Even more
promising, several broadly neutralizing anti-NA mAbs have
been isolated from an infected patient. These mAbs, directed
to NA active site, demonstrated an unusual breadth in binding
several IAV and IBV NA and mediating cross-neutralization
and cross-protection in vivo (137). Still, despite some early
studies, we do not know enough about NA antigenicity and
the immunodominance of its antigenic sites (138–141). By
applying some of the methods that allowed us to study
in detail anti-HA responses, we should be able to break
down anti-NA responses and identify promising universal
vaccine candidates.

CONCLUSIONS—KNOW WHAT WE DO
NOT KNOW

Bioengineering and design of epitope-focused immunogens is
proceeding at an incredible speed in influenza and other fields.
Several promising immunogens are now in clinical trials and,
hopefully, will be available to the public soon, as long-lasting
universal vaccines. It is, however, crucial to understand more
about the basics of B cell responses to interpret results and inform
on vaccination policies.

Introduction of pandemic H1N1 2009 virus showed that most
individuals, with low serological anti-stem antibodies, were able
to mount a stem-directed response, but repeated vaccinations
skewed the immune response back to the immunodominant
head (21). It will be critical to understand when, in which
order and how often give universal vaccines to appropriately
boost stem response. Andrews et al. demonstrated that novel
B cells specific for variable epitopes have a different phenotype
compared to reactivated Bmem specific for stem (142). To
maximize success, efforts will need to be put in understanding
how B-cell specificity can influence their programming and
differentiation. Furthermore, it is still unclear howmuch of stem-
specific antibodies are required for optimal protection from a
drifted or heterologous virus. Table 1 summarizes what we know
about antibody responses to the major targets on IAV and how
seasonal vaccination is able to boost those responses.

Finally, but not less important, new vaccines platforms are
constantly being tested. RNA-based vaccines have shown exciting
results when expressing influenza proteins, at least in animals
[reviewed in (150)]. Some of the engineered vaccines discussed
in this review could be delivered as RNA vaccines, alone or
in combination, possibly avoiding clearance from pre-existing
antibodies. Other novel, slow-release, vaccine formulations
could help refocusing immune responses to subdominant
targets (151–153).

We are just entering an exciting season of clinical trials, and
while expectations are really high, we should not be discouraged
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if some of the early attempts fail but rather persevere in the quest
for a universal and long-lasting vaccine.
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In primary infection with Salmonella, it has been reported—without consideration of

Salmonella’s functions—that humoral immunity plays no role in the clearance of bacteria.

In fact, Salmonella targets and suppresses several aspects of humoral immunity,

including B cell lymphopoiesis, B cell activation, and IgG production. In particular,

the suppression of IgG-secreting plasma cell maintenance allows the persistence of

Salmonella in tissues. Therefore, the critical role(s) of humoral immunity in the response

to Salmonella infection, especially at the late phase, should be re-investigated. The

suppression of IgG plasma cell memory strongly hinders vaccine development against

non-typhoidal Salmonella (NTS) because Salmonella can also reduce humoral immune

memory against other bacteria and viruses, obtained from previous vaccination or

infection. We propose a new vaccine against Salmonella that would not impair humoral

immunity, and which could also be used as a treatment for antibody-dependent

autoimmune diseases to deplete pathogenic long-lived plasma cells, by utilizing the

Salmonella’s own suppression mechanism of humoral immunity.

Keywords: humoral immunity, antibody, plasma cells, IgG, Salmonella

INTRODUCTION

The immune system, i.e., innate and adaptive immunity, can overcome many types of bacterial
infections. The frontline against infection with bacteria such as Salmonella is innate immunity.
Salmonella infection leads to enteric fever or diarrhea, often resulting in death of humans and
animals. The pathogenesis of infection should be separately considered as two dynamics of the
immune system vs. Salmonella: firstly, bacterial growth within 1 week after infection and, secondly,
if protected from death, bacterial clearance after 1 week after infection. Early bacterial growth
in mice is controlled by the Nramp gene, expressed in macrophages (1), and is suppressed by a
T-cell-independent host response which requires granuloma formation and production of nitric
oxide and cytokines such as tumor necrosis factor α (TNFα), interleukin 12 (IL-12) and interferon
γ (IFNγ) (2–6). For clearance of the bacteria, innate immunity, namely the complement system
and phagocytosis by macrophages, neutrophils and dendritic cells, are the most critical responses
against the bacterial pathogens, while IFNγ and antibodies resulting from adaptive immunity also
dramatically enhance the innate immune response. It has been thought that adaptive immunity
itself dominantly works for secondary infection except for IFNγ from T cells. However, it remains
enigmatic how adaptive immunity contributes to the clearance of Salmonella in the primary
infection. We herein discuss the roles of humoral immunity against Salmonella for the clearance
of the bacteria.
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DEVELOPING A VACCINE AGAINST
SALMONELLA

Salmonella enterica is a Gram-negative intracellular bacterium
with over 2,500 different serovars identified until now.
Salmonella Typhi (S. Typhi) and S. Paratyphi cause typhoid
fever, a systemic febrile illness only affecting humans. The
other numerous NTS serovars such as S. Typhimurium and S.
Enteritidis infect many different hosts and results in diarrheal
disease. NTS also causes severe, extra-intestinal, invasive
bacteremia, referred to as invasive NTS (iNTS) disease (7).
Immunocompromised individuals, including those infected
with human immunodeficiency virus (HIV) or malaria, and
infants are particularly at risk of acquiring iNTS disease (8–12).
iNTS disease is estimated to cause 3.4 million cases of illness
and 681,316 deaths annually, with 63.7% of all cases occurring
in children under the age of five (8). Thus, infection with NTS
is still a serious health concern. Moreover, the emergence of
multidrug-resistant strains of Salmonella calls into question the
future use of antibiotics to treat infection and further emphasizes
the need for the development of the safer and more effective
vaccines. While a vaccine against NTS is not currently available,
it has been reported that naturally acquired antibodies against
NTS reduce the risk of iNTS disease (13, 14). In contrast,
infection with S. Typhi can be prevented by vaccination with
attenuated strains, e.g., Ty21a. However, effective vaccines
preventing iNTS disease are likely to differ from those protecting
against S. Typhi infections. Furthermore, it is known that
Salmonella generates chronic carriers; a chronic carrier state has
been identified in 2.2% of patients with reported NTS, lasting
from 30 days to 8.3 years (15). Although Salmonella invades
myeloid cells and escapes phagocytosis, it is unclear why humoral
immunity does not contribute to the clearance of Salmonella
which continuously transfers among short-lived myeloid cells.
Overall, the lack of a vaccine and the presence of chronic carriers
suggests that NTS suppresses long-lasting humoral immunity,
i.e., humoral memory.

THE IMMUNE SYSTEM VS. SALMONELLA

Infection of susceptible Nramp− mice with S. Typhimurium
provides a murine model for typhoid fever which bears many
similarities to human S. Typhi infection. This S. Typhi model
is ultimately fatal due to the inability of such mice to restrict
bacterial growth in vivo. Administration of attenuated strains
of S. Typhimurium as a model of vaccination resulted in
the generation of immune memory against Salmonella and
protection against death from challenge with a virulent strain of
the bacteria (16, 17). The murine model infected with virulent
S. Typhimurium showed similar pathogenesis on the early
growth of bacteria. However, it seems unclear whether the model
with attenuated S. Typhimurium really mimics the clearance
of Salmonella, i.e., whether S. Typhi and S. Typhimurium are
excluded from their hosts in a similar way. Many studies have
discussed typhoidal disease using NTS strains based on the
assumption that S. Typhi and S. Typhimurium utilize the same

invasion system in the hosts. However, it is impossible to
compare the mechanism on the clearance of Salmonella in vivo,
because S. Typhi is not infectious in mice. If S. Typhi and S.
Typhimurium are excluded by distinct bacterial clearances, the
difference may affect the ability to generate vaccines against S.
Typhi and S. Typhimurium.

Innate cells can have several roles to play during the early
stage of an infection, including controlling bacterial replication
and producing cytokines and chemokines that activate and
recruit inflammatory cells to the site of infection. Macrophages,
neutrophils and dendritic cells increase in number early after
Salmonella infection and produce cytokines that are important
for host survival, such as TNFα. All three phagocytic cell types
also harbor bacteria during infection. IFNγ from natural killer
cells at the very early infection phase and from T cells at
the late infection phase can activate macrophages and promote
phagocytosis (18). In addition to innate cells, the clearance of
bacteria from the tissues also requires functional CD4T cells
(19), resulting in long-lasting specific immunity to re-challenge
infection (20). Susceptible mice can resolve a primary infection
with attenuated Salmonella strains which requires a functioning
immune system that can develop a T-bet-dependent Th1 cell
response and IFNγ production to activate infected macrophages
(19, 21). Similarly, mice lacking IL-12, IFNγ, reactive oxygen
species, or inducible nitric oxide, all have deficiencies in primary
clearance of Salmonella (22, 23). In contrast, mice lacking B
cells resolve primary infection with attenuated bacterial strains
with similar kinetics to wildtype mice (24, 25), indicating that
B-cell responses do not participate in the primary clearance of
the bacteria. CD8T cells are generally not thought to contribute
to the primary clearance of attenuated Salmonella, based on
studies using β2-microglobulin-deficient mice that lack class
I-restricted CD8T cells (19, 26). However, recent experiments
in mice lacking classical MHC class Ia genes, perforin, or
granzyme, show that CD8T cells make a modest contribution
to Salmonella clearance during the later stages of the primary
response (27). Overall, these data suggest a primary role for
CD4 Th1 cells, a modest role for CD8T cells and no role for
B cells in primary immunity to Salmonella. However, the roles
of adaptive immunity were considered from the viewpoint of
how the lymphocytes respond to the infection, without any
consideration of how Salmonella may purposefully subvert the
immune response for its own advantage.

HUMORAL IMMUNITY VS. SALMONELLA

Immunization and infection with Salmonella greatly affects
hematopoiesis in a TNFα- and CXCL12-dependent manner
(28, 29). Salmonella is known to activate myelopoiesis and
suppress B lymphopoiesis (30). Interestingly, the disruption of B
lymphopoiesis has been also reported on Plasmodium infection
in mice (31), suggesting the similar mechanism to Salmonella.
This dramatic change in cellular commitment/differentiation is
very reasonable, because in the early phase of infection, the
immune system requires as many innate cells as possible to fight
against the infection. Expanded myeloid cells are able to kill a
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lot of Salmonella, but some become the host cells for Salmonella
without phagocytosis. Furthermore, the provision of B cells to the
periphery is impaired due to death of B cell precursors in the bone
marrow (BM), resulting in an indirect advantage to Salmonella
for their long-term persistence.

In general, antibodies can protect against bacteria mainly by
facilitating the uptake of the pathogen by phagocytic cells, which
then destroy the ingested bacteria. Antibodies do this in two
ways: one is to coat the pathogen to be recognized by Fc receptors
on phagocytic cells, which is called opsonization. Alternatively,
antibodies binding to the surface of a pathogen can activate
the proteins of the complement system. Complement activation
results in opsonization of the pathogen by binding complement
receptors on phagocytes. Other complement components recruit
phagocytic cells to the site of infection, and the terminal
components of complement can lyse certain microorganisms
directly by forming pores in their membranes. Most intracellular
pathogens spread by moving from cell to cell through the
extracellular fluids. The extracellular spaces are protected by
humoral immunity. Antibodies produced by plasma cells cause
the destruction of extracellular microorganisms and therefore
prevent the spread of intracellular infections. Phagocytes,
Salmonella’s hosts, are short-lived and survive for 0.75 days
(neutrophils, lifespan) (32), 18–20 h (phagocytic monocytes,
half-life) (33), 1.5–2.9 days (dendritic cells, half-life) (34), and
<7 days (peripheral macrophages, lifespan) (35). Therefore, in
order to survive, Salmonella has to transfer into new host cells
every 1–7 days passing through extracellular fluids containing
antibodies. It is unknown how and why Salmonella can escape
from antibodies in extracellular spaces when transferring into
new host cells. In secondary immune responses, anti-Salmonella
IgG are critical for the enhancement of phagocytosis. However,
anti-Salmonella IgG in the late phase of the primary immune
response does not contribute to the clearance of the bacteria (23).
This raises the following questions: what is the difference of anti-
Salmonella antibodies in the primary and secondary immune
responses? Is the affinity and/or amount of antibodies important?
What other functions of Salmonella have to be also considered in
the subversion of the immune response?

The activation of B cells and their differentiation into
long-lived plasma cells is triggered by antigen and usually
requires CD4T cell help, presenting antigen on MHC class
II. Bayer-Santos and his colleagues showed that a Salmonella
protein, SteD depletes surface MHC class II and inhibits T cell
activation (36). SteD localized in the Golgi network and vesicles
containing the E3 ubiquitin ligase MARCH8 and MHC class
II causing MARCH8-dependent ubiquitination and depletion
of surface MHC class II and B7-2. A subset of effector CD4T
cells, known as T follicular helper cells, also control isotype
switching and have a role in initiating somatic hypermutation
of antibody variable V-region genes for affinity maturation
mainly in germinal centers (GCs) of the spleen. Cunningham
et al. indicated that GC formation is delayed when infected
with Salmonella (37). However, GC-lacking CD40L (CD154)-
deficient mice can normally induce the clearance of Salmonella
in tissues. The formation of GCs and the affinity of antibodies
do not affect the clearance of the bacteria. Di Niro et al. showed

that Salmonella induces random activation, generating only a
small fraction (0.5–2%) of Salmonella-specific plasma cells, and
somatic hypermutation occurred efficiently at extrafollicular sites
(38). Although it should be investigated how the abnormal
induction consequently affects the immune responses, it is very
intriguing why Salmonella does not allow immune cells to utilize
the standard immune activation/maturation pathways. Following
GC formation, B cells can differentiate into either short-lived
plasma cells, memory B cells, or long-lived plasma cells. Memory
B cells persist and are important for secondary immune responses
against the same pathogen. Short-lived plasma cells temporally
provide IgG, but do not survive for long periods of time. In
contrast, long-lived plasma cells, or their precursors, migrate
into the BM and persist in CXCL12-expressing stromal cells
(39, 40). In general, IgG is the most critical antibody isotype for
the clearance of bacteria and greatly contributes to the clearance
of bacteria at least in the late phase of infection. In contrast,
in the clearance of Salmonella, no role of B cells which has
a potential to differentiate into IgG-secreting plasma cells has
been reported. The distinction led to a possibility of Salmonella-
specific suppression of humoral immunity, in particular IgG
production as described below.

SALMONELLA ATTACKS THE MAIN
SOURCE OF IGG

McSorley and Jenkins showed (i) that Salmonella can similarly
survive in the tissues of naive wild-type and B cell-deficient
mice until day 35 after infection, suggesting that antibodies and
B cells are not necessary for the clearance of Salmonella, and
(ii) that injection of heat-killed Salmonella induces a provision
of anti-Salmonella IgG from day 20, although data of anti-
Salmonella IgG titers in mice infected with live Salmonella
are lacking (24). However, if Salmonella actively suppresses
B cell functions, the necessity of B cells for fighting the
infection therefore fails to be evaluated by these studies.
Very recently, we have shown that Salmonella inhibits the
persistence of IgG-secreting plasma cells in the BM of mice,
which are the main source of serum IgG, by secreting
a Salmonella protein known as SiiE (41) (Figure 1). Mice
infected with a SiiE-deficient strain markedly enhanced the
provision of anti-Salmonella IgG and promoted the clearance of
Salmonella, even in the primary infection. Given these results,
the roles of antibodies and B/plasma cells therefore have to
be re-evaluated.

SiiE is known as an adhesin, binding to carbohydrates in a
lectin-like manner, thereby promoting attachment of Salmonella
to polarized epithelial cells and enabling colonization (42, 43).
SiiE is secreted by Salmonella and remains surface-associated
during bacterial invasion (44). SiiE mediates the first direct
contact to the host cell through binding to glycostructures
containing N-acetyl-glucosamine and/or α2, 3-linked sialic acid
(45). Recently, Li et al. suggested that MUC1, the transmembrane
mucin that is highly expressed at mucosal surfaces including the
stomach and the intestinal tract, is a receptor for SiiE that enables
apical invasion into enterocytes (46).
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FIGURE 1 | Salmonella SiiE suppresses the retention of IgG-secreting plasma

cells in BM survival niches by competing with laminin β1. SiiE secreted by

Salmonella competes with laminin β1 to interact with integrin β1. The

competition induces the detachment and then deletion of IgG-secreting

plasma cells from laminin β1+CXCL12+ survival niches of the BM.

SiiE is a large protein with a molecular weight of 595 kDa.
It has 53 highly similar repeats of bacterial immunoglobulin
(BIg) domains that determine the length and only short protein
moieties of distinct structure at the very N- and C-terminal parts
(43). The amino acid sequence from 129 to 168 in the short
N-terminal moiety has high homology to murine laminin β1.
The 236 amino acid residues in the short N-terminal moiety
consist of eight heptad repeats with a coiled-coil structure that
are flanked by regions with a predominantly β-sheet structure
(43). The integrity of the coiled-coil structure is required for the
proper retention of SiiE and thereby affects invasion of polarized
cells, while the β-sheet domains appear to be essential for the
control of release of SiiE. The central part of the coiled-coil
structure, including amino acids 129–168, plays an especially
essential role in the retention of SiiE (43). The homologous
region in the C-terminal region of laminin β1 also has a coiled-
coil structure, which is involved in the assembly of a laminin
molecule (47). The C-terminal region also modulates the integrin
binding affinities of laminins (48). We showed that SiiE can bind
to integrin β1, a laminin receptor, on BM IgG-secreting plasma
cells and competes with their adhesion to laminin (41). Only
the SiiE-derived peptide which has high homology to murine
laminin β1 was able to reduce the number of BM IgG-secreting
plasma cells. Moreover, the attenuated SiiE-deficient Salmonella
enhanced both the production of high titers of protective IgG
against Salmonella and the memory response, suggesting that
it may be a novel and efficient vaccine against Salmonella.
Histological analyses of the BM revealed that IgG- but not
IgM-secreting plasma cells bind to laminin β1. Thus, laminin
β1+CXCL12+ stromal cells are an integral part of the survival
niche for IgG-secreting plasma cells in the BM, a lesson learnt
from Salmonella.

ROLES OF HUMORAL IMMUNITY
AGAINST SALMONELLA AND NEW
GENERATION OF VACCINES

Salmonella SiiE reduces the number of BM IgG-secreting plasma
cells (41). This reduction may have led to the underestimation

of the roles of B cells, especially antibodies, in the late phase
of the primary infection with Salmonella. If IgG production
is not suppressed by Salmonella SiiE, humoral immunity, in
particular IgG, is required for the clearance of Salmonella in
the late phase of the primary infection (41). Infection with SiiE-
deficient strain into B cell-deficient and wildtype mice should
be examined in order to determine the precise role of humoral
immunity in the late phase of primary infection with Salmonella.
Since vaccines against NTS are not yet available, SiiE-deficient
Salmonella may be the first efficient vaccine against NTS. It still
remains unclear why vaccines against S. Typhi, but not NTS
are available. Intriguingly, the siiE gene in S. Typhi has been
reported as two distinct ORFs, suggesting that it is a pseudogene
(49). The presence of a functional SiiE gene may be a reason for
the differences in availability of vaccines against the two strains
of Salmonella. Furthermore, SiiE impairs the persistence of all
IgG-secreting plasma cells in an antigen-specific independent
manner. This non-specific depletion of IgG-secreting plasma
cells may result in the loss of long-lived plasma cells secreting
IgG against many kinds of bacteria and viruses generated by
previous vaccination or infection. Therefore, generating vaccines
against NTS may be essential to avoid such a loss of vital of
humoral memory. Other pathogens may also have an ability
to suppress humoral immunity. Recent studies indicated that
respiratory syncytial virus (RSV) infection fails to induce in IgA+

memory B cells (50) and that measles causes elimination of
11–73% of the antibody repertoire and depletion of previously
expanded B memory clones after infection (51, 52). However,
cellular and molecular mechanisms on their suppression are still
unknown and should be investigated, then comparing with the
case of Salmonella.

TREATMENT OF ANTIBODY-MEDIATED
DISEASES USING A
SALMONELLA-DERIVED PEPTIDE

The SiiE peptide homologous to laminin β1 significantly
reduced the number of anti-DNA IgG-secreting plasma cells
in the BM in the NZB/W murine model of lupus nephritis
(41). This property could therefore be further exploited
for the treatment of autoimmune diseases. Autoimmune
diseases with a substantial contribution of pathogenic IgG
autoantibodies, like systemic lupus erythematosus, can be
refractory to conventional treatment e.g., immunosuppressive
drugs and anti-CD20 antibodies, because BM plasma cells
secreting these autoantibodies are protected in their BM
niches (53–55). Multiple myeloma is caused by redundant
titers of antibodies generated from plasma cell myeloma
in the BM. It has already been reported that myeloma
cell lines preferentially contact laminin in vitro (56, 57),
suggesting that targeting of adhesion molecules including
laminin should be considered as novel therapy (58). The
depletion of BM plasma cell myeloma by SiiE may directly
ameliorate disease. SiiE peptide and the related products may
contribute to a recovery for these antibody-mediated diseases
without relapse.
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FIGURE 2 | Multilayer suppression of humoral immunity by Salmonella

infection. Salmonella impairs humoral immunity at multiple stages; B cell

lymphopoiesis, the expression of MHC class II in myeloid cells, germinal center

(GC) formation, the persistence of BM IgG-secreting plasma cells (PC) and IgG

titers in serum.

CONCLUSIONS AND PERSPECTIVES

Humoral immunity in the late phase of primary infection with
Salmonella had been thought not to participate in the clearance
of the bacteria. However, when taking into consideration
Salmonella’s functions, it is clear that several aspects of humoral

immunity, in particular the suppression of IgG production, does
indeed contribute to the clearance of bacteria in the late phase of
the primary infection (Figure 2). Using SiiE-deficient Salmonella,
the collaboration between humoral immunity and other immune
systems should be also re-evaluated. The function of other
immune cells may be overestimated or underestimated due to the
suppression of humoral immunity. Furthermore, the previous
candidates of vaccines against NTS should be re-investigated
by adding a mutation of SiiE. The combined mutations of
Salmonella factors which interfere with immune systems may
result in the development of the best vaccines against NTS. As
infection with NTSmay delete all IgG plasma cell memory gained
by vaccination obtained from infancy, we therefore also alert to
this danger and propose an obligatory use of vaccination against
NTS in infancy.
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Tumor metastasis into the central nervous system (CNS) and lymph nodes (LNs) is

a major obstacle for effective therapies. Therapeutic monoclonal antibodies (mAb)

have revolutionized tumor treatment; however, their efficacy for treating metastatic

tumors-particularly, CNS and LN metastases-is poor due to inefficient penetration into

the CNS and LNs following intravenous injection. We recently reported an effective

delivery of mAb to the CNS by encapsulating the anti-CD20 mAb rituximab (RTX)

within a thin shell of polymer that contains the analogs of choline and acetylcholine

receptors. This encapsulated RTX, denoted as n-RTX, eliminated lymphoma cells

systemically in a xenografted humanized mouse model using an immunodeficient mouse

as a recipient of human hematopoietic stem/progenitor cells and fetal thymus more

effectively than native RTX; importantly, n-RTX showed notable anti-tumor effect on

CNS metastases which is unable to show by native RTX. As an important step toward

future clinical translation of this technology, we further analyzed the properties of n-

RTX in immunocompetent animals, rats, and non-human primates (NHPs). Our results

show that a single intravenous injection of n-RTX resulted in 10-fold greater levels in

the CNS and 2-3-fold greater levels in the LNs of RTX, respectively, than the injection

of native RTX in both rats and NHPs. In addition, we demonstrate the enhanced

delivery and efficient B-cell depletion in lymphoid organs of NHPs with n-RTX. Moreover,

detailed hematological analysis and liver enzyme activity tests indicate n-RTX treatment

is safe in NHPs. As this nanocapsule platform can be universally applied to other

therapeutic mAbs, it holds great promise for extending mAb therapy to poorly accessible

body compartments.

Keywords:monoclonal antibody, central nervous systemdelivery, LNs delivery, non-human primate, nanocapsules
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INTRODUCTION

Therapeutic monoclonal antibodies (mAbs) such as rituximab
(RTX, anti-CD20 for B-cell lymphomas) and trastuzumab (anti-
HER2 for breast cancer) have revolutionized treatment for
various types of cancers. However, their benefit in treating
metastasized tumors of the central nervous system (CNS) or
through lymphatic vessels into lymph nodes (LNs) (1, 2),
is transient and limited, increasing life expectancy by only
a few months. A major mechanism that renders metastasis
more resistant to mAb treatment than primary tumors is
limited antibody delivery into the CNS and lymphatic vessels
(3, 4). Intraventricular or intrathecal administration of mAbs
allows for bypass of the blood-brain barrier (BBB), resulting
in relative effectiveness of antibody therapy in treating brain
tumor metastases (5, 6); however, neurotoxicity and rapid
efflux are known to hinder mAb application for brain tumor
treatment (7). Subcutaneous administration of mAb targeting
metastatic tumors shows the advantages of entering lymphatic
vessels and binding to metastases in lymph nodes (LNs) (8).
However, the restriction to regional nodes, toxicity at injection
sites, and limited reach to organs without lymphatic vessels
are major obstacles to using subcutaneous administration of
mAb in treating systemic metastases (9). Therefore, a systemic
intravenous injection route is the ideal means for administration
of mAb treatment against metastatic tumors.

To improve BBB penetration for mAb delivery to the brain,
modifications with various chemicals or biological components,
such as lipidation or molecular targeting ligands, have been
attempted (10, 11). Another strategy uses colloidal carriers
such as liposomes, micelles, and nanoparticles, which transport
cargos across the BBB by endocytosis and/or transcytosis (12–
14). Improved therapeutic efficacy of these approaches has been
demonstrated in rodents with brain tumors, Alzheimer’s disease,
acute ischemic stroke, and Parkinson’s disease (15–17); however,
non-specific tissue accumulation—including in liver, spleen, and
kidney—is known to mediate acute toxicity and further decrease
the effective amount of mAbs in the CNS (18). Moreover, none
of those approaches achieved improvement of both LN and brain
delivery at the same time.

Our nanotechnology platform utilizes “nanocapsules”
which form a thin polymer shell that encapsulates individual
macromolecules, protein, RNA, or DNA inside and protects
them from the physiological environment (19–27). The
shell is formed by in situ polymerization of monomers
and stabilized by environmentally-responsive crosslinkers;
cargoes can be released only through cleavage of these

crosslinkers. We tailored these nanocapsules for CNS
delivery with zwitterionic properties imbued by polymer

shells composed of 2-methacryloyloxyethyl phosphorylcholine
(MPC), which is clinically approved for use in coatings on
implanted medical devices. MPC renders the polymer shells
of nanocapsules highly biocompatible and efficacious due
to low protein adsorption, improved circulation times, and
minimal immunogenicity (28, 29). Moreover, such nanocapsules
can effectively penetrate the BBB and deliver encapsulated
macromolecules to the CNS via nicotinic acetylcholine receptors

and choline transporters (30). This technology has demonstrated
efficacy for neural regeneration in mice with spinal cord injuries
(31) and antibody therapies for primary brain tumors (32)
in mice.

Rituximab (RTX), a chimeric anti-CD20 monoclonal
antibody, is used for treatment of B-cell malignancies such
as non-Hodgkin’s lymphomas (NHL) as well as chronic
lymphocytic leukemia (CLL) (33). RTX administration
contributes significant advancements toward systemic
CD20+NHL control, but treatment of primary and relapsed
CNS lymphomas is inefficient due to poor penetration through
the BBB (4). We recently demonstrated clearance of human
B-cell tumors with brain metastases in xenograft humanized
NOD-SCID-IL2receptor γnull (NSG) mouse models by RTX
nanocapsules (n-RTX) (34). Though these results are promising,
further studies are limited by the challenge in collecting
successive samples of cerebrospinal fluid (CSF) from the same
mouse for analysis; moreover, the delivery into LNs, which are
highly atrophic, cannot be confirmed in NSG mice. To address
these limitations, we designed studies of n-RTX in both rats
and non-human primates (NHPs) to further investigate delivery
and biodistribution in both lymphatic tissues and CNS, and
B-cell ablation in NHPs. Following a single IV dose of n-RTX,
encapsulated RTX is released and maintained in blood for weeks
resulting in effective B-cell ablation in blood and lymphatic
tissues of NHPs. Importantly, we show significantly improved
RTX delivery to the CNS and lymph nodes with no notable
adverse effects.

RESULTS

Formulation of Nanocapsules With

Hydrolysable Crosslinkers to Release

mAbs
A formulation of nanocapsules with timed-release capabilities
in vivo was synthesized based on previously published
nanocapsules (19). We screened and selected two crosslinkers to
sustain release at physiological conditions in vivo: hydrolysable
crosslinker—poly (lactide-co-glycolide)-b-poly(ethylene
glycol)-b-poly(lactide-co-glycolide) (PLA-PEG-PLA) and non-
hydrolysable crosslinker—glycerol dimethacrylate (GDMA),
which degrade rapidly and slowly, respectively, at physiological
pH conditions. The ratios between and GDMA impact the release
kinetics. With a higher PLA-PEG-PLA ratio, the crosslinkers
will degrade in a shorter time. As the crosslinkers degrade,
the shells of nanocapsules will loosen, swell, and dissociate
resulting in the release of encapsulated mAbs. As shown in
Figure 1A, nanocapsules encapsulating mAbs are synthesized
through the following processes: first, the zwitterionic monomer
(MPC) and two crosslinkers, PLA-PEG-PLA and GDMA, are
enriched around the surface of the mAb (in this case, RTX)
through hydrogen bonding (Step 1). Subsequent polymerization
in an aqueous solution at 4◦C wraps each molecule with a thin
shell of polymer through in situ free-radical polymerization
(Step 2). Finally, crosslinkers stabilize the polymer structure
and release mAbs upon hydrolysis (Step 3). Transmission
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FIGURE 1 | Developing timed-release nanocapsules of RTX. (A) Scheme of the synthesis of and release by timed-release RTX nanocapsules (n-RTX) by (1) enriching

zwitterionic monomer (MPC), hydrolysable crosslinker 1 (PLA-PEG-PLA) and non-hydrolysable crosslinker 2 (GDMA) around a RTX molecule, (2) in-situ polymerization

of the monomer and crosslinkers forming a thin shell of polymer around an RTX molecule, and (3) releasing RTX when polymer shells are degraded under

physiological condition. (B) Transmission Electron Microscopy image of n-RTX. (C) Size distribution of n-RTX measured by dynamic light scattering measurement.

(D) Nanocapsules with mixed hydrolysable crosslinkers achieve timed release of RTX in rhesus macaque plasma. The nanocapsules synthesized with mixed

PLA-PEG-PLA and GDMA crosslinkers at different ratios. Release kinetics of n-RTX with 100, 50, 30, 10, and 0% of PLA-PEG-PLA were tested. Thirty micrograms of

nanocapsules were incubated in 1mL of rhesus macaque plasma at 37◦C. The concentration of released RTX was determined by ELISA.

electron microscopy (TEM) and dynamic light scattering
(DLS) measurements show that these nanocapsules form a
spherical morphology of 20–30 nm encasing mAb molecules
inside (Figures 1B,C). Dependent on the ratios between
PLA-PEG-PLA and GDMA, nanocapsules release RTX at
different rates when incubated in rhesus macaque plasma in
vitro (Figure 1D). The RTX concentration was detected by
enzyme-linked immunosorbent assay (ELISA) using anti-RTX
(anti-idiotype) antibody, which can only detect the free RTX
released from nanocapsules since nanocapsules shields the
epitopes of encapsulated antibodies by the polymer shells.
The n-RTX with 50 and 30% PLA-PEG-PLA crosslinkers
showed an intermediate level of release over 6 days. We already
demonstrated improved CNS delivery of n-RTX with 50% PLA
nanocapsules in mice in our published work (35), so the same
formulation for following in vivo studies in rats and NHPs
was used. We also demonstrated that improvement of CNS
delivery with this nanocapsules formulation is applicable to
other therapeutic mAbs. To prove this point, we tested Herceptin
(anti-Her2) for breast cancer; similarly to n-RTX, Herceptin
nanocapsules (n-Hercepin) show increased delivery to the
CNS (Figure S1).

Improved Delivery to CNS and LNs of Rats

by RTX Nanocapsules
We demonstrated the improved delivery to CNS and LNs
by n-RTX using rats where greater amounts of CSF facilitate
serial sampling within the same animals and mature LN

formation enables clear visualization and detection in the
lymphatic system. Native RTX and n-RTX, normalized with
of the same amount of RTX for a single IV dose, showed
comparable RTX level in plasma (Figure 2A). Whereas, native
RTX in CSF was <0.1% of plasma levels, RTX released
from n-RTX was 1%, and was maintained this level to
days 14 and 21 when native antibody was barely detectable
at day 4 (Figure 2B). At the endpoint, RTX levels in
brain tissue were consistent with the CSF results; higher
levels of RTX were observed in the n-RTX treated animals
(Figure 2C). These results provide proof of concept for improved
antibody delivery in the CNS compared to the native form.
Improved levels of RTX from n-RTX are also observed
in lymphatic-tissues, which include organs such as spleen,
LNs in different locations, and three sections of the small
intestine (Figure 2C). Tissue imaging shows clear biodistribution
of fluorescently labeled native RTX and n-RTX on day 1
post-injection (Figure 2D). Compared to native RTX, n-RTX
shows an improved distribution in lymphatic-tissues containing
organs including LNs and spleen and, importantly, reduced
accumulation in lung, liver, and kidney—major organs involved
with clearance of recombinant antibodies. The decreased
accumulation in lung, liver, and kidney is due to the superior
anti-fouling property of n-RTX, which decrease the uptake by
immune surveillance cells. The difference in biodistribution
between RTX and n-RTX is further confirmed by quantifying
the relative fluorescence units of the fluorescence label from each
organ (Figure 2E).
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FIGURE 2 | Nanocapsulation of RTX improves levels of its tissue penetration, including CNS, in rats. A single dose (5 mg/kg) of native RTX or n-RTX was

administered in rats through IV (intravenous) injection (n = 3). (A–C) The concentrations of free RTX in plasma (A) on Days 1, 2, 3, 4, 5, 6, 7, 14, and 21 and CSF

(B) on Days 1, 4, 7, 14, and 21 were determined by ELISA. (C) Tissues, including LNs at three different locations, jejunum, ileum, colon, spleen, liver, and brain, were

harvest at necropsy after perfusion on Day 22. Tissues were homogenized in PBS (1mg tissue in 100 µl PBS), and tested by ELISA for RTX concentrations. A higher

single dose (15 mg/kg) of fluorescent labeled native RTX or n-RTX was administered in rats through IV injection (n = 1) and monitored on IVIS in vivo imaging (D,E).

Organs were isolated and monitored by IVIS imaging on Day7 after injection. (E) Signal intensity from free RTX in each organ was quantified by software Living Image.

Data were generated from n = 3 rats. Data are shown as means ± s.d. of biological triplicate. Statistical significance between native and nanocapsules was

determined by one-tailed Mann–Whitney–Wilcoxon test. *Significant, p < 0.1; ns, not significant.

Enhanced Delivery of RTX Nanocapsules

to the Brain of Rhesus Macaques
As an essential step toward future clinical translation of
nanocapsules, we further analyzed the properties of n-RTX in
non-human primates (NHPs). The study design is summarized
in Figure 3. Four rhesus macaques were intravenously infused
with a single dose (5 mg/kg, normalized for the RTX amount)
of native RTX or n-RTX and processed for necropsy on Day
21 (Group I, #12025 and #13029) or Day 63 (Group II, #12069
and 12019). Blood samples were collected on Days 1, 3, 5,
and 7 in the first week, and every 7 days after that (Figure 3,
Stars). CSF sample collection started before infusion as a baseline
(Figure 3, Day-12), on Day 3 post-infusion, and continued every
7 days until Day 21 for Group I; for Group II, CSF collection

was initiated on Day 1 post-infusion and continued every week
until Day 63. Lymph node (LN) biopsies were performed on
Days 3 and 14 in Group I and on Days 3, 17, 28, and 42 in
Group II (Figure 3, Double triangles). Eight tissues, including
brain, thymus, lung, liver, spleen, kidney, intestine, and LNs, were
harvested at necropsy following perfusion. LNs from different

locations (inguinal LN, axillary LN, and mesenteric LN), and

three pieces (3 × 3 cm) from each of other tissues were collected
and used for ELISA assays. Brain and LN samples were also used
for immunohistochemical (IHC) analysis.

We successfully demonstrated the enhanced CNS delivery of

n-RTX in rhesus macaques (Figure 4). The levels of RTX released

from n-RTX in rhesus macaque plasma was slightly lower on Day
1 compared to that of native RTX, probably due to the controlled
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FIGURE 3 | Experimental schedule of RTX brain delivery in non-human primates. Four rhesus macaques were administered with a single 5 mg/kg dose of native RTX

(Monkey ID #12025 and #12069) and n-RTX (Monkey ID #13029 and 12019) via IV infusion. Peripheral blood, CSF, and Inguinal lymph nodes were collected as

scheduled. Other tissues were harvested at necropsy on Days 21 or 63 after perfusion.

RTX release from n-RTX in plasma (Figure 4A). The plasma
level remained stable for 1 week, followed by a gradual decreased
over time. Two animals treated with n-RTX (#13029 and 12019)
showed 5- and 2.5-fold greater levels of free RTX in the CSF
compared to those in native RTX-treated animals (#12025 and
12069), respectively, within the first week (Figure 4B). Native
RTX fell below detection limits by Day 14, whereas free RTX
released from n-RTX persisted until Day 21 in both groups. RTX
concentration in the tissue homogenates was also assessed by
ELISA (Figure 4C). In Group I, the animal treated with n-RTX
(#13029) showed significantly higher levels of RTX in all tissues
than that treated with native RTX (#12025) in all tissues. A similar
trend was confirmed with animals in Group II, but the difference
between those two treatments was less significant. Five regions
of the brain, including the frontal, parietal, temporal occipital
lobes, as well as cerebellum, were homogenized separately for
ELISA. RTX was only detectable in Group I. RTX released from
n-RTX was observed at approximately 4-fold levels in all brain
regions than that in the brain tissues from the RTX-treated
animal (Figure 4D).

Liver toxicity is a major concern for use of nanomedicines

in vivo (35). Thus, liver damage is the one of the indexes of

nanomedicine safety. In order to show that this nanocapsule
platform improves brain delivery efficiency of therapeutic
antibodies through systemic injection without inducing liver
toxicity, three liver enzymes indicating acute liver toxicity
were closely measured over the course of experiments: alanine
aminotransferase (ALT), aspartate aminotransferase (AST), and
alkaline phosphatase (ALP) (Figure 5A). As we confirmed in
mice previously (34), no notable differences exist in levels
between animals treated with RTX or n-RTX. Neither a

complete liver function assay including serum globulin (GLB),
indirect bilirubin (IBIL), gamma-glutamyl transferase (γ-GT),
total protein (TP), and albumin (ALB), nor a blood chemistry test
for white blood cell (WBC) count, lymphocyte count, monocyte
count, neutrophil count, hemoglobin (HGB), hematocrit (HCT),
and platelet counts (PLT), showed major differences between
those animals (Figure S2). We have hereby concluded that n-
RTX increases antibody delivery into the CNS by 4–10-fold with
no detectable level of acute systemic toxicity.

We further showed no potential neurotoxicity caused by n-
RTX treatment. Two well-known neurotoxicity markers were
used in this test: glial fibrillary acidic protein (GFAP), of which
levels increase with reactive gliosis (36), and ionized calcium-
binding adapter molecule (IBA-1), of which levels increase upon
mediating neuroinflammation (37). Compared to native RTX-
treated animals, brain tissues of n-RTX treated animals showed
normal morphology and no elevated expressions of those two
markers (Figures 5B,C).

Comparison of Effector Activity Mediated

by Native RTX and n-RTX
Lastly, we observed comparable B cell depletion by RTX and n-
RTX in peripheral blood of NHPs. CD20 can be internalized by
the binding of RTX (38, 39), so single staining for cell surface
CD20 may underestimate total B cell levels. To more accurately
measure B cell levels, we stained cells with both CD19 and CD20
antibodies. To minimize CD20 epitope masking by RTX, we
used the CD20 antibody clone L26, which recognizes different
epitope on rhesus CD20 molecules not blocked by RTX (40).
Analysis by single staining for CD19+ showed similar results
to double staining for CD19+/CD20+ cells (data not shown).
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FIGURE 4 | Nanocapsulation of RTX improves levels of its tissue penetration in non-human primates. A single dose (5 mg/kg) of native RTX or n-RTX was

administered in rhesus macaques through IV infusion (A,B). The concentrations of free RTX in plasma (A) and CSF (B) were determined by ELISA. (C) At the endpoint

of Group I (Day 21) and Group II (Day 63), LNs at three different locations, jejunum, ileum, colon, thymus, lung, spleen, liver, kidney, and brain were harvest after

perfusion. Whole LNs and three pieces (3 × 3 cm) of other tissues were homogenized in PBS (1mg tissue in 100 µl PBS) for ELISA test. (D) Five different regions of

the brain (frontal, parietal, temporal occipital lobes, and cerebellum) were homogenized in PBS (1mg tissue in 100 µl PBS) for ELISA test. Data are shown as means ±

s.d. of biological triplicate. Statistical significance between native and nanocapsules was determined by one-tailed Mann–Whitney–Wilcoxon test. *Significant, p < 0.1,

ns, not significant.

CD19+/CD20+ B cell levels dropped ∼80–90% within the first
7 days after treatment by both RTX and n-RTX (Figure 6A).
Aside from the expected drop in B cells, the numbers of total
WBCs, neutrophils, lymphocytes, and monocytes were relatively
stable (Figure S3), indicating B-cell specific depletion by RTX in
both forms. Levels of total CD3+ cells, CD3+/CD4+ T cells, and
CD3+/CD8+T cells were also stable over the course of treatment
(Figures 6B–D).

To assess the specificity of depletion and accessibility to B
cells in lymphoid tissues, we analyzed levels of B-cell depletion

in LNs at three different localities: axillary, mesenteric and
inguinal, by IHC analysis. Antibodies for CD20+, CD3+, and
Bcl-6 were included to distinguish three different types of cells,
B cells, T cells, and T follicular helper cells (Figure 7A). By
further quantitative analysis of IHC staining results, CD20+
B cells showed a lower density in all three LNs of animals
treated with n-RTX compared to that of native RTX on Day 21
(Figure 7B). Ratios of B cell against T cell (B/T ratio) detected
by flow cytometry in inguinal LN indicated that n-RTXmediated
prolonged B cell depletion over the course of treatment compared
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FIGURE 5 | RTX nanocapsules do not mediate notable levels of acute toxicity in the liver and brain. (A) Rhesus macaques were administrated with a single dose (5

mg/kg) of native RTX or n-RTX. Plasma samples were collected as scheduled and served for measuring levels of aspartate transaminase (AST), alanine transaminase

(ALT), and alkaline phosphatase (ALP) by ELISA. (B) Brain tissues obtained from five different parts were fixed by 4% paraformaldehyde and processed for IHC

analysis. Representative images of immunohistochemical staining for GFAP (astrocyte marker) and IBA-1 (microglial marker) were shown. Scale bar = 100µm. (C) A

positive pixel count in images (4 mm2 ) from five different brain parts was quantified using Aperio ScanScope slide scanner. Positive pixel calculation for GFAP used the

following variables: hue width = 0.371 and color saturation threshold = 9.7e-002. Positive pixel calculation for IBA-1 used the following variables: hue width = 0.5 and

color saturation threshold = 4.0e-007. % positivity was calculated by total number of positive pixels divided by the total number of pixels. Data are shown as means ±

s.d. of biological triplicate. Statistical significance, compared with the native RTX group, was determined by one-tailed t-test with Welch’s correction. ns, not significant.

to native RTX (Figure S4). In contrast, no significant difference
in levels of CD3+ T cells was confirmed between LNs treated
with native RTX or n-RTX. The level of Bcl-6 expression in LNs,
a marker of germinal center B cells and T follicular helper cells,
showed no difference between two animals.

DISCUSSION

We utilized a platform wherein single mAbs are encapsulated
within a thin polymer shell, called a “nanocapsule,” to improve
delivery of anti-tumor antibodies to the brain. Formulations were
modified to utilize neutral polymers with zwitterionic properties
(MPC polymers) and crosslinkers that hold the shell together
which are later gradually hydrolyzed for timed release of mAb
in a suitable microenvironment. This successful nanocapsule
design sustains RTX in circulation, allows penetration into the
brain, reaches deep tissues including LNs, and releases RTX
in a controlled fashion. Our results detail the first test of
a zwitterionic nanocarrier—nanocapsule—for therapeutic mAb
delivery in NHPs. Importantly, the data clearly show efficient and
prolonged delivery of RTX into both the CNS and LNs by a single
dose of intravenous injection with no notable acute liver toxicity
nor neurotoxicities.

Therapeutic mAbs are effective for treating several tumors;
however, their performance is limited in the treatment of
metastases in CNS and LNs, where the physical barriers are
considered as one of themajor obstacles to achieve effectivemAbs
delivery. Although subcutaneous administration is considered
as an effective route for LN delivery through the absorption by
lymphatic capillaries, the delivery into the lymphatic system is
delayed due to the limitation of the absorption rate (41, 42).
Moreover, the brain delivery of mAbs through subcutaneous
administration is challenging due to the low concentration
of mAbs in plasma. Therefore, intravenous injection is still
a commonly used administration route for mAb therapy.
However, achieving a high plasma concentration is insufficient
for treatment of brain cancers due to poor delivery through
the BBB. While multiple strategies have been attempted to
facilitate greater antibody penetration through the BBB, the
potential risks outweigh most benefits. One approach is to
disrupt the tight junctions, allowing for passage, however, this
approach raises safety concerns for the brain environment
(43). Other approaches are the modification and engineering
of mAbs to improve brain delivery; attaching charged or
lipophilic moieties to mAbs to enhance absorptive-mediated
transport, but those modifications are known to result in
unexpected biodistribution, low sustainability, and insufficient
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FIGURE 6 | Both native and nanocapsulated RTXs mediate similar levels of peripheral blood B cell depletion in rhesus macaques. Whole blood was collected as

scheduled and processed for monitoring immunophenotyping by flow cytometry. (A) CD19+CD20+ B cells, (B) CD3+ total T cells, (C) CD4+T cells, and (D) CD8+T

cells. (A,B) CD19+CD20 B cells and CD3+ T cells were showed by absolute numbers per 1mL of blood. (C,D) The percentages of CD4+ T cells and CD8+ T cells

in CD3+ T cells were normalized over baseline.

efficacy (44, 45). mAbs have also been encapsulated or conjugated
with nanoparticles or liposomes to induce receptor-mediated
transcytosis on the BBB (46, 47), but the efficacy, safety, and
stability in NHPs are still unknown. Thus, despite decades of
effort, effective delivery of mAbs to the both LNs and the CNS
remains challenging.

We used the nanocapsule platform to achieve systemic
delivery of RTX into both the CNS and LNs in both rodents
and NHPs with single intravenous injection. The choline and
acetylcholine analogous structures on the MPC polymer chains
of nanocapsules, which can induce transcytosis through the BBB
via nicotinic acetylcholine receptors and choline transporters,
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FIGURE 7 | Nanocapsulated RTX mediates superior B-cell depletion in LNs of rhesus macaques. LNs from three different locations (inguinal, axillary, and mesenteric)

were collected at necropsy on Day 21 from Group I rhesus macaques with a single dose (5 mg/kg) of native RTX or n-RTX via IV and processed for

immunohistochemical (IHC) analyses. (A) H&E (top) and IHC staining of CD20 (B cell, second), CD3 (T cell, third), and Bcl-6 (Germinal center, bottom) were performed

on serial sections. Panels from left to right show the expression level in axillary, mesentery, and inguinal LNs, respectively. Scale bar = 50µm. (B) 6.8 × 5 cm of each

CD20 and CD3 positive staining (n = 7), and 3.4 × 4.2 cm of Bcl-6 (n = 4) were randomly selected and gray pixel values were measured by Image J software. Each

bar indicates the mean inverse gray value ± standard deviation (mean ± SD). One-tailed t-test with Welch’s correction was used for the statistical analysis. **p < 0.01.

H&E, hematoxylin and eosin stain.

play an important role to accomplish CNS penetration (30).
In NHPs treated with nanoencapsulated RTX, levels of RTX in
the CSF were 100 to 300 ng/mL over 14 days, which are 4–10-
fold greater than that observed for native RTX in the CSF. It
indicates that our nanocapsule platform achieved higher brain
delivery compared to animals treated with native RTX.Moreover,
similar to animals treated with native RTX, those treated with
nanocapsules exhibited no notable blood, liver, or neuronal
toxicities. These studies were conducted in immune competent
rats and outbred NHP more closely modeling human therapy
than in our previous studies utilizing immunodeficient mice.
While these levels of RTX in the CNS were sufficient to clear
xenografted B cell lymphomas in the immunodeficient mice, it is
unclear whether these levels are high enough to have therapeutic
efficacy in humans. Our results on biodistribution and safety
profiles provide a rationale for further assessing efficacy and
safety in human clinical studies.

CONCLUSION

Our studies suggest a non-invasive facile solution suitable
for human application to address this critical issue of poor
anti-cancer mAb deliverance to both LNs and the CNS. To
date, similar results are obtained with one additional clinically
approved anti-cancer mAb, anti-Her2 (Herceptin), as well
as other non-therapeutic mAbs such as anti-CD4 (OKT4)

(unpublished data). The platform is highly versatile, with
biodistribution and pharmacokinetics being readily adjustable
by rational choice of chemical formulation of the polymer
shell. In addition to timed-release functionality via hydrolysis of
crosslinkers under physiological pH conditions, mAb release can
be further controlled by crosslinkers sensitive to environmental
factors such as endosomal low pH and proteases (21). Our study
supports the translation of therapy from animals to human
clinical studies. Further enhancements of the platform may
produce therapeutic delivery options for other diseases requiring
mAbs delivery into the CNS and/or LNs.

MATERIALS AND METHODS

Materials
All chemicals were purchased from Sigma-Aldrich (St. Louis,
MO, USA) unless otherwise noted. All cell culture reagents
were purchased from ThermoFisher Scientific (Waltham, MA)
unless otherwise noted. Hydrolysable crosslinker Poly(DL-
lactide)-b-Poly(ethylene glycol)-b-Poly(DL-lactide)-diacrylate
triblock (PLA-PEG-PLA) was purchased from PolySciTech
Akina, Inc. (West Lafeyette, IN). Capture antibody for ELISA
against rituximab was purchased from Bio-Rad Laboratories
(HCA0620, Hercules, CA). Anti-CD19, anti-CD20, anti-CD3,
anti-CD4, and anti-CD8 for flow cytometry were purchased
from BioLegend, Inc (San Diego, CA, USA). Antibodies for
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IHC staining were purchased from different vendors, identifying
separately in Immunohistochemistry section. Rituximab,
RITUXAN (Genentech, Inc.) was purchased from the UCLA
hospital pharmacy.

Synthesis of Nanocapsules
The mAbs (RTX and Herceptin) were encapsulated via in-situ
polymerization technology. The mAb solution (2.2 mg/mL in
PBS) was mixed with MPC as monomer (40%m/v in PBS) and
AI102 (PLA-PEG-PLA, 10%m/v in PBS) as well as glycerol
dimethacrylate (GDMA, 10%m/v in DMSO) as degradable
crosslinkers. Then the polymerization was initiated by adding
ammonium persulfate (APS, 10% m/v in PBS) and N, N, N′,
N′-tetramethylethylenediamine (TEMED) solution. Synthesized
nanocapsules were dialyzed against PBS and purified by passing
through a hydrophobic interaction column (Phenyl-Sepharose
4BCL). Since the nanocapsules possess a super-hydrophilic
surface, their binding affinity to the column is much weaker
than the native mAb. Thus, encapsulated protein will be eluted
out with a high salt concentration buffer (10xPBS), whereas the
native mAb binds on the column. Purification is confirmed by
DLS and ELISA to show no free mAbs. Detailed parameters of
the synthesis are provided in the Table S1.

Transmission Electron Microscopy (TEM)

and Dynamic Light Scattering (DLS)

Measurements of the Nanocapsules
The nanocapsule solution (0.2mg/mL) 10µLwas dropped onto a
carbon–coated copper grid. After 45 s incubation, excess amount
of the samples was removed. The samples are stained with 1%
phosphotungstic acid (PTA) at pH 7.0 after being rinsed with
distilled water for three times. To investigate the size and zeta
potential of the nanocapsules, DLS measurements were taken
under the concentration of 0.5 mg/mL.

Pharmacokinetics and Bio-Distribution

Studies
Four male rhesus macaques were single administered with
5mg/kg of RTX and n-RTX via intravenous infusion in 30mL
sterile saline through femoral vein. 2–3mL peripheral blood was
collected in EDTA anticoagulant tubes and centrifuged at 5000
rpm/min for 2min, the plasma was separated and freeze down in
−80◦C for further purposes. 300–500µL CSF with no apparent
blood contamination continually collected through 3–4th lumbar
spine by 1mL syringe and frozen in −80◦C for ELISA test.
All animals were anesthetized with an intraperitoneal injection
of FFM mix (2.5mg Fluanisone, 0.105mg Fentanylcitrate, and
1.25mg Midozalam HCl/kg in distilled water). On Days 21 and
64 post-injection, animals were euthanized; tissues were removed
following heart perfusion with ice-cold saline and fixed in 4%
paraformaldehyde for further analyses.

Flow Cytometry
Five hundred microliters peripheral blood was used for staining
following the plasma separation. Cells was rinsed by cold PBS
(pH7.4) once, counted, and then suspended in FACS buffer (2%

FBS/PBS), followed by blocking with 2µL Human Trustain FcX
(BioLegend, US) at room temperature for 10min. Following
the staining of dead cells with LIVE/DEAD Fixable Violet
Dead cell staining kit, cells were incubated with PerCP-CY5.5-
conjugated mouse anti-human CD3, FITC-conjugated mouse
anti-human CD8, BV605-conjugated mouse anti-human CD4,
PE-conjugated mouse anti-human CD19, APC-CY7-conjugated
mouse anti-human CD20 in dark at 4◦C for 30min. Cells
were then rinsed with PBS for two times and fixed by 2%
paraformaldehyde in PBS. Expression levels were assessed by BD
LSRFortessaTM (BD Biosciences, Inc.), and analyzed with FlowJo
(FlowJo, LLC).

Preparation of Fluorescence Labeled RTX
Rhodamine-B-labeled RTX was prepared by following the
protocol provided by the manufacturer of fluorescence dyes.
Fluorescent dyes, Rhodamine-B (RhB), were first dissolved in
anhydrous DMSO to get 10 mg/mL stock solution, respectively.
Then 50µL of dye solutions were added gradually into
2mL enzyme solutions (10mg protein/mL, pH= 8.2, sodium
carbonate, 100mM). The reactions were carried out overnight at
4◦C. Labeled RTX were then dialyzed against phosphate buffer
(20mM, pH= 7), condensed by centrifugal filtration (MWCO
= 10 kDa) and stored at 4◦C for further use. The concentration
and dye/mAb ratio (D/P) were determined by the extinction
coefficients of 2,101,000M−1 cm−1 at 280 nm (RTX) and 108,000
M−1 cm−1 at 555 nm (RhB).

Tissue Imaging
The bioluminescence imaging of organs was performed with
IVIS Spectrum imager (PerkinElmer, Waltham, MA). Rats were
injected through IV with 15mg/kg of fluorescent labeled native
RTX or n-RTX and scarified at Day 7 post-injection. The tissue
images present the total photon flux per second within each organ
with rainbow color scales. To further quantifiably compare the
fluorescent intensity, and the fluorescent intensity from tissue
homogenates was quantified as Relative Fluorescence Unit (RFU)
per g.

Immunohistochemistry
Axillary, mesenteric, and inguinal lymph nodes, frontal, parietal,
temporal, occipital lobes, and cerebellum, were collected
separately and fixed in formaldehyde. Four micrometers
thickness section were cut serially post paraffin embedding.
For staining, slides were first heated at 60◦C for 1 h, then
deparaffinized in xylene twice and rehydrated in an ethanol
gradient. For antigen retrieval, LNs and brain lobes were
treated with citrate buffer (Vector Laboratories and Biocare
Medical, respectively) for 25min at 100◦C and for 50min
in pressure cooker post ddH2O rinse, respectively. Sections
were incubated with BLOXALL endogenous peroxidase (Vector
Laboratories) and alkaline phosphatase blocking solution (Vector
Laboratories) for 10min at room temperature, followed with
PBST (0.1% Tween-20) wash and serum blocking at room
temperature for 1 h. Primary mouse anti-human CD20 (1:200,
clone L26, Santa Cruz Biotechnology), which recognizes different
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epitopes on rhesus CD20 molecules not covered by RTX to
minimize CD20 epitope masking by rituximab, rabbit anti-
human CD3 (1:100, cloneSP7, Invitrogen), and mouse anti-
human Bcl-6 (1:100, cloneD8, Santa Cruz Biotechnology), were
incubated overnight at 4◦C, separately. Rabbit anti-human glia
fibrillary acidic protein (GFAP) (1:200, Biocare Medical), mouse
anti-human ionized calcium-binding adapter molecule 1 (IBA-
1) (1:100, clone 20A12.1, Millipore) were separately used to
identify astrocyte and microglia, respectively in brain lobes.
After rinsed in PBST, the slides were incubated with ImmPRESS
HRP universal secondary antibody at room temperature for
30min. Followed with PBST wash, 3,3′-diaminobenzidine (DAB)
staining, nucleus counterstaining, graded ethanol dehydration,
xylene clear, the sections were covered with mounting medium
(Thermo Fisher). Images were captured by inverted microscope
(DMi1, Leica), brown staining was considered as positive signal,
otherwise was considered as negative. Slides of lymph nodes were
analyzed with Image J (NIH); slides of brain lobes were scanned
by Aperio ScanScope slide scanner by 4× 4 grid (20×).

For analysis of lymph nodes, 6.8 × 5 cm of each 40 magnified
CD20 and CD3 positive staining (n= 7) and 3.4 × 4.2 cm
of Bcl6 (n = 4), was randomly selected and their optical
density (OD) numbers were calculated with the following
formula: OD = log (max intensity/Mean intensity), where
max intensity = 255 for 8-bit images. Brain slides were
performed with the Aperio Positive Pixel Count v9 algorithm.
Positive pixel calculation for GFAP used the following variables:
hue width = 0.371 and color saturation threshold = 9.7e-
002. Positive pixel calculation for IBA-1 used the following
variables: hue width = 0.5 and color saturation threshold =

4.0e-007. Positivity was calculated by total number of positive
pixels divided by the total number of pixels. The value was
then multiplied by 100 to give a percentage for positive
pixels. Total area analyzed for both GFAP and IBA is 4
mm2. One-way ANOVA from SPSS software (IBM) was used
for the analysis of statistical significance (∗∗P < 0.01), the
inversed gray value of positive stained tissue was showed in
histogram (mean± SD).

MAb Detection by Enzyme-Linked

Immunosorbent Assays (ELISA)
The concentration of RTX in animal body fluids and tissue
homogenates was measured by ELISA against RTX. RTX
levels were measured by ELISA using a monoclonal antibody
(HCA062, clone#AbD02844, Bio-Rad, Hercules, CA), which
specifically recognizes the idiotypic determinants of RTX.
The 96-well plates were coated with 1µg/mL of anti-RTX
antibody (diluted in sodium carbonate–bicarbonate buffer),
followed by blocking with 1% BSA/PBS for 2 h at room
temperature. Diluted samples of RTX in PBST from 0 to
500 ng/mL were then added and incubated for 1 h at room
temperature to obtain calibration curves. Animal body
fluids and tissue homogenates containing encapsulated
RTX in non-degradable nanocapsules were treated with
100mM sodium acetate buffer (pH 5.4) at 4◦C overnight

and used for ELISA measurement. Released RTX from
hydrolysable nanocapsules was directly measured with
animal body fluids and tissue homogenates. All animal
samples were added and incubated for an additional hour at
room temperature. After washing with PBST for five times,
peroxidase-conjugated anti-human Fc antibody was added and
incubated for a further hour at room temperature. The substrate
3,3′,5,5′-Tetramethylbenzidine (TMB) solution was added and
incubated until the appropriate color developed. The reaction
was stopped and absorbance at 450 nm was measured with a
plate reader (FLUOstar OPTIMA).

Animal Care and Ethics Statements
All research involving animals was conducted according to
relevant national and international guidelines. Male SD rats
(weighting 180–220 g, 6–8 weeks old) were provided by the
Experimental Animal Center of Medical Department of Peking
University. All interventions and animal care procedures
were performed in accordance with the Guidelines and
Policies for Anima l Surgery provided by our collaborator
institute (Chinese Academy of Medical Sciences & Peking
Union Medical College, Beijing, China) and were approved
by the Institutional Animal Use and Care Committee. The
rats were maintained in a temperature-controlled facility
(temperature: 22 ± 1◦C, humidity: 60%) with a 14 h light/10 h
dark photoperiod and free access to food and water. Male
rhesus macaques (weighing 4.8–5.2 kg, 4–5 years old) were
purchased from the Medical Primate Research Center of the
Institute of Medical Biology, Chinese Academy of Medical
Sciences, and housed and bred according to the guidelines.
The experimental protocols were reviewed and approved
by the Yunnan Province Experimental Animal Management
Association (SYXK-YN 2010-0009) and the Experimental
Animal Ethic Committee of the Institute, which complied
with the humane regulations of replacement, refinement,
and reduction.
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Human papillomavirus (HPV) is the most common sexually transmitted virus. The

high-risk HPV types (i.e., HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59) are

considered to be the main etiological agents of genital tract cancers, such as cervical,

vulvar, vaginal, penile, and anal cancers, and of a subset of head and neck cancers. Three

prophylactic HPV vaccines are available that are bivalent (vs. HPV16, 18), tetravalent (vs.

HPV6, 11, 16, 18), and non-avalent (vs. HPV6, 11, 16, 18, 31, 33,45, 52, 58). All of

these vaccines are based on recombinant DNA technology, and they are prepared from

the purified L1 protein that self-assembles to form the HPV type-specific empty shells

(i.e., virus-like particles). These vaccines are highly immunogenic and induce specific

antibodies. Therapeutic vaccines differ from prophylactic vaccines, as they are designed

to generate cell-mediated immunity against transformed cells, rather than neutralizing

antibodies. Among the HPV proteins, the E6 and E7 oncoproteins are considered almost

ideal as targets for immunotherapy of cervical cancer, as they are essential for the onset

and evolution of malignancy and are constitutively expressed in both premalignant and

invasive lesions. Several strategies have been investigated for HPV therapeutic vaccines

designed to enhance CD4+ and CD8+ T-cell responses, including genetic vaccines (i.e.,

DNA/ RNA/virus/ bacterial), and protein-based, peptide-based or dendritic-cell-based

vaccines. However, no vaccine has yet been licensed for therapeutic use. Several

studies have suggested that administration of prophylactic vaccines immediately after

surgical treatment of CIN2 cervical lesions can be considered as an adjuvant to prevent

reactivation or reinfection, and other studies have described the relevance of prophylactic

vaccines in the management of genital warts. This review summarizes the leading

features of therapeutic vaccines, which mainly target the early oncoproteins E6 and

E7, and prophylactic vaccines, which are based on the L1 capsid protein. Through

an analysis of the specific immunogenic properties of these two types of vaccines,

we discuss why and how prophylactic vaccines can be effective in the treatment of

HPV-related lesions and relapse.

Keywords: human papillomavirus, immune response, cancer, prophylactic vaccine, therapeutic vaccine
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INTRODUCTION

Despite the introduction of prophylactic vaccines, the incidence
of human papillomavirus (HPV)-related tumors remains high
(1), particularly in developing countries of the sub-Saharan
region. The current HPV prophylactic vaccines have indications
for use in women up to the age of 45 years, but they are
predominantly administered to adolescent of 9–15 years. As
most cancers develop decades after an initial HPV infection, the
impact of this vaccination program will be seen in the long-
term. Therefore, setting-up a therapeutic vaccine that can provide
results similar to surgical treatment or chemotherapy represents a
challenge for the eradication of HPV-induced tumors. However,
therapeutic vaccines are not yet available for clinical practice.

Several studies have suggested that administration of HPV
prophylactic vaccines after surgical treatment of high-grade
cervical intraepithelial neoplasia (CIN2-3) can be considered as
an adjuvant to prevent HPV reactivation or reinfection. The
relevance of prophylactic vaccines has also been demonstrated in
the management of genital warts, although clinical studies have
not delivered univocal results to date.

In this review, the HPV-related tumors and the life cycle of
HPV are described, to better understand the characteristics of
the different viral proteins that are targeted by prophylactic and
therapeutic vaccines. Then, we summarize the leading features
of prophylactic and therapeutic vaccines that target the L1 and
E6, E7 oncoproteins, respectively. Finally, through an analysis
of the specific immunogenic properties of these two types of
vaccines, we discuss how prophylactic vaccines can be effective
for the treatment of HPV-related lesions, and for prevention of
HPV-related relapse.

HPV PREVALENCE

Human papillomavirus is the main agent of sexually transmitted
diseases, and it can cause cancer in different anatomical districts
with different prevalences (2). The highest proportion of HPV
attribution as responsible for a cancer is for the cervix, where
>99% of specimens are HPV-positive. In 2012, HPV-invasive
cervical cancers reached >500,000 cases, which resulted in
∼250,000 deaths around the world1. HPV-related cancers are
differently distributed across genders: among women, 8.6% of
cancers are linked to HPV infections, while in men, <1% of
cancers are attributable to HPV2,3. Differences are also observed
in the geographic distributions of invasive cervical cancers:
more than 85% occur in developing countries, where cervical
screening programs and HPV vaccination campaigns are rarely
available4 (3, 4). HPV infection in a cervical site is frequently
asymptomatic, and >90% of these resolve within 2 years without
medical intervention (5), apparently through rapid immune
clearance. However, the protective power of natural anti-HPV
antibodies and the duration of immunity after infection are not

1https://gco.iarc.fr/
2https://publications.iarc.fr/108
3https://monographs.iarc.fr/wp-content/uploads/2018/06/mono100B-11.pdf
4http://globocan.iarc.fr/old/FactSheets/cancers/cervix-new.asp

fully understood. Also, only 50–60% of women show detectable
anti-HPV antibodies after infection (6).

There are 15 high-risk (HR)-HPV genotypes that can lead to
cancers of the cervix, anus, penis, vagina, vulva, and oropharynx
(i.e., HPV16, 18, 3, 33, 35, 39, 45, 51, 52, 56, 58, 68, 73, 82)
(7). The relevance of HPV to each of these individual cancers is
now considered.

Cervical Cancer
Overall, 90% of cervical cancers are attributed to HR-HPV
types. HPV16 and HPV18 are the most prevalent in invasive
cervical cancer, where they account for 62.5 and 15.7% of
cases, respectively (8). HPV-associated cancers include cervical
squamous cell carcinoma (70%), cervical adenocarcinoma (25%),
and mixed histology tumors (7)5. An immunocompromised
status represents a risk factor for cervical dysplasia, as well as for
latent reactivation of HPV at genital sites. Patients with human
immunodeficiency virus (HIV) infection have a 5-fold greater
risk of acquiring HPV-associated cervical cancer than those
without HIV infection. Precancerous (squamous) intraepithelial
lesions are categorized as low-grade (LSIL) and high-grade
(HSIL) (9).

Anal Cancer
Anal intraepithelial neoplasia (AIN1-3) represents the precursor
of invasive anal cancers, where 65% are cervical squamous cell
carcinomas. For both sexes, 88–94% of these cancerous lesions
are positive for HPV DNA, with HPV16 as the most commonly
detected (∼87% of HPV-positive tumors), while only 9% of these
anal cancers harbors HR-HPV186.

Annually, about 18,000 women are diagnosed with anal cancer
worldwide, and this cancer is more frequent in women than
in men (10). Furthermore, anal cancer incidence is increasing,
which appears to be due to changes in sexual risk factors for HPV
transmission (11). Persistent anal HPV infection is the major
cause of anal cancer7 (12). Women with a history of cervical
cancer and cervical intraepithelial neoplasia grade 3 (HSIL)
are also at increased risk of anal cancer. Cervical HR-HPV–
positivity is associated with anal HR-HPV prevalence. In a study
carried out by Lin, anal HR-HPV prevalence was significantly
higher in cervical HR-HPV–positive women (43%) vs. cervical
HR-HPV–negative women (9%) (13). These associations were
even stronger for HPV16-positivity: in cervical HPV16-positive
women, anal HPV16 prevalence was 41%, while in the HPV16-
negative cervical group, anal HPV16 prevalence was 2%.

In men, the risk of anal cancer development is strictly related
to sexual behavior and HIV immune status (14).

Penile Cancer
Approximately 50% of penile cancers can be attributed to HPV
infections, although HPV also infects healthy subjects without
progressing to neoplasia. In a British study carried out among
43 couples, 69% of the men were HPV-positive in the uro-genital
tract (15). Another study in the USA showed similar high levels of

5https://seer.cancer.gov/archive/csr/1975_2004/
6https://monographs.iarc.fr/wp-content/uploads/2018/06/mono90.pdf
7https://monographs.iarc.fr/wp-content/uploads/2018/06/mono100B.pdf
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HPV prevalence, with 65.5% of the men HPV-positive: 51.2% of
them harbored at least one typed HPV, and 14.3% of them were
positive for an unclassified HPV infection (16). HPV clearance
is observed in 75% of cases within 1 year (17). HPV-positivity
is greater in penile intraepithelial neoplasia (PIN 1,2,3), which
is considered the precursor of penile cancer, and in basaloid
histological neoplasia (range, 75–80%) than in invasive cervical
squamous cell carcinoma (range, 30–60%). HPV16 and HPV18
are the HPV types that are most frequently associated with all
types of penile cancers2.

Vulvar Cancer
It is estimated that 40–50% of vulvar cancers are associated
with HPV. Overall, vulvar cancers represented 3% of gynecologic
cancers in 2002 (18), and 60% of were observed in developed
countries (18, 19)8. Vulvar intraepithelial neoplasia (VIN) is
considered a precursor of vulvar squamous cell carcinoma, which
represents >90% of vulvar cancers (20). The World Health
Organization recognizes a three-grade system of VIN (i.e., VIN1-
3), and VIN3 is considered as a precursor of invasive vulvar
cancer. However, until recently, VIN2-3 had been considered
as HSIL, and VIN1 (or LSIL) is no longer used, as there
is misclassification of these low-grade lesions: these are often
actually condilomata acuminata with transient HPV infection,
or an inflammatory status of the vulva (21). VIN can be caused
by two distinct etiological agents: HPV, which is linked to the
usual form of VIN (uVIN), and differentiated VIN (dVIN) is
associated with lichen sclerosus (22, 23). Generally, uVIN is
common among young women, while dVIN is frequently seen
for post-menopausal women. In VIN3/HSIL lesions, HPV16 had
been detected in >91% of cases (24).

Vaginal Cancer
Cancer of the vagina is rare, and it accounts for only 2% of
gynecological neoplasia. Nevertheless, from 2000 to 2015 there
was an increase in vaginal cancer, which corresponded to 0.4% of
vulvar carcinomas in the USA9. Vaginal intraepithelial neoplasia
(VAIN) is considered a pre-malignant lesion. Previously, a three-
tiered classified was used (VAIN1-3) according to epithelial
involvement. In 2014, the World Health Organization revised
this classification by substituting VAIN2-3 withHSIL, andVAIN1
with LSIL (25). About 82% of high-grade lesions (i.e., vaginal
intraepithelial lesions, VAIN3, HSIL) and 91% of invasive vaginal
carcinomas test positive for HPV DNA and/or HPV antibodies.
HPV16 is the most prevalent HPV type in HSIL and vaginal
cancers2 (26–29).

Head and Neck Cancer
The most common head and neck cancers are squamous cell
carcinomas (HNC) and they include neoplasia of the oral cavity,
tongue, tonsils, oropharynx, hypopharynx, and larynx. The HR-
HPV types most frequently detected in head and neck cancers are
HPV16, followed by HPV182 (30, 31). Head and neck cancers are
frequent in southern-central Asia (32); however, an increase in

8https://www.ncbi.nlm.nih.gov/books/NBK12354/
9http://www.seer.cancer.gov

head and neck cancer incidence has been seen over recent years
in developed countries (33) and among Caucasian men (34).
Tonsillectomies can increase the overall survival rates of patients
with diagnosis of tonsil carcinoma (35), but it does not influence
the overall risk of oropharyngeal cancer (36).

A reduction in HPV-positive oropharyngeal cancer is
observed in people with a specific genetic locus in the human
leukocyte antigen region (HLA-DRB1∗1301-HLA-DQA1∗0103-
HLA-DQB1∗0603) (37). This protective effect might involve
increased immune targeting of HPV-infected cells through the
major histocompatibility complex haplotype binding to HPV
peptides, resulting in a strong CD4+ T-cell response (38).

Respiratory Papillomatosis
Different annual incidences of respiratory papillomatosis have
been reported in different countries. For example, in Denmark,
similar incidence has been reported in children (juvenile onset)
(3.6/100,000 children) and in adults (3.9/100,000 adults) (38),
while in the USA the annual respiratory papillomatosis incidence
is 3-fold higher in children than in adults (4.6 vs. 3.9/100,000
children/adults) (39).

HPV6 and HPV11 are the main genotypes detected in
respiratory papillomatosis. As spontaneous regression is rarely
observed, surgical treatment is necessary to prevent progression
of the lesions. Moreover, recurrence of papillomatosis is often
observed, and retreatment is needed in most cases, which comes
at a high economic burden (40). Although no structured trials
have been carried out to date, HPV vaccine administration prior
to the onset of sexual behavior might have a positive impact on
prevention of respiratory papillomatosis in adulthood.

Genital Warts
Human papillomavirus infection can not only cause cancer,
but also benign genital warts. These are very diffuse in the
young and in adults, with prevalence from 4 to 11% (41–43).
Treatment of genital warts includes therapies with imiquimod
and podophyllotoxin, or surgical procedures, or cryotherapy and
tricloroacetic acid. These medical interventions represent high
costs for both private insurance (44) and health systems (45).

Condylomas were classically considered a benign lesion, with
the exception of Buscke-Lowenstein tumors. This large tumor
can undergo local invasion and can transform into anal cervical
squamous cell carcinoma (46).

VIRAL CHARACTERISTICS AND IMMUNE
RESPONSES

Life Cycle of HPV
Human papillomaviruses are non-enveloped icosahedral viruses
that consist of 72 capsomers and are 55 nm in diameter. The
viral genome is a circular double stranded DNA of ∼8,000 bp
in length.

According to the time-regulated expression of proteins
during the viral cycle, three functional genome regions can be
distinguished: (i) the early region that encodes the E1, E2, E4,
E5, E6, E7, E8 viral proteins that have regulatory functions in
infected epithelial cells; (ii) the late region that encodes the two
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viral capsid proteins L1 and L2; and (iii) the long control regions
(also known as upstream regulatory regions) that contain cis-
acting regulatory sequences that are involved in the control of
viral replication and post-transcriptional phases (Figure 1).

Different viral proteins are expressed in different layers of the
epithelium. The early proteins are expressed in basal epithelial
cells, while the late proteins are expressed in the granular layer
that includes more differentiated cells, and from where the virus
is assembled and released. E1 is an ATPase helicase that is
involved with E2 in viral replication and transcription regulation.
The E1 and E2 complex interacts with the long control region
ori site, which is considered to be the origin of HPV DNA
replication (47–53). In the initial phase of infection, the HPV
DNA genome is in the episomal form. It shows low amplification
activity and there are ∼100 copies/cell (54). E2 ensures episomal
maintenance of the HPV genome through interactions with
other cellular factors. For example, Bromo-domain protein 4
(BRD4) is a mitotic chromosome-associated protein that is a
critical binding partner for E2 for this activity (55). BRD4 and
E2 co-localize on condensed mitotic chromosomes, and mediate
episome segregation (55). E2 also regulates transcription of the
E6 and E7 oncoproteins, the expression of which depends on
an early promoter. E1 to E4 are encoded by a spliced RNA, and
along with E5, they are translated under early promoter control
in undifferentiated cells, and they appear to facilitate efficient
productive replication in differentiating cells (56, 57).

E6 and E7 are small proteins of about 150 and 100 amino
acids, respectively. The E6 oncoprotein acts through its PDZ-
binding motif, which promotes its interactions with PDZ
domains in multidomain proteins, to alter their functionality.
These PDZ domains are present in many multidomain proteins
that regulate key steps in the cellular processes of apoptosis,
adhesion, and polarity (37–43, 58). E6 also impairs the
activity of the p53 protein, which prevents DNA damage
accumulation through induction of DNA repair, cell-cycle arrest,
or apoptosis, which leads to transformation of HPV chronically
infected cells.

The main targets of E7 are the pRB, p107, and p130 proteins,
which are components of a complex that can repress the E2F
transcription factor (59, 60). When E7 interacts with pRB, p107,
and p130, it induces their degradation, and so E2F is free to
activate genes such as cyclins A and E, to promote transition
from G1 to S-phase of the cell cycle (61). The productive viral
cycle also includes the synthesis of the late proteins L1 and L2 in
the suprabasal epithelial cell layers, and this step is characterized
by a change in mRNA splicing (62, 63). Icosahedral virions are
composed of 360 L1 proteins that are organized in pentamers,
each of which is associated with one monomer of L2. The
productive life cycle is completed when the virions self-assemble,
after packaging of the amplified HPV DNA genome, with the
viral particles then shed from the epithelial cell layers (64).

Natural Immune Response
The immune response has an important role in clearing
most HPV infections, although sometime the virus cannot be
eliminated and can persist for several years, which represents
a risk factor for neoplasia development (65). HPV-associated

neoplastic progression is linked to dysregulated expression of
the early viral genes. Specifically, increased expression of the E6
and E7 proteins in the basal epithelium leads to increased cell-
cycle entry and loss of differentiation across the epithelium. The
main cause of dysregulated HPV gene expression is integration
of the viral genome into the host chromosomes (66). HPV
DNA integrates randomly into the host DNA. During this
process, the viral DNA can often be broken at any position
within the E1-E2 region, with the loss of E2 function, and the
consequent overexpression of E6 and E7 that promotes cellular
transformation (67–69). However, a proportion of cervical
cancers are associated with episomal DNA only. In such cases, the
E2 open reading frame integrity is maintained, and this protein is
expressed throughout the progression of the malignancy.

In natural infections, both humoral- and cell-mediated
immune responses are induced. Genital infection with oncogenic
HPV is common, but only a minority of infected patients
develop epithelial lesions or cancer (70). Spontaneous clearance
of an established infection is likely to be mediated by the
cellular immune responses. Indeed, strong Th1 CD4+ T-cell
responses that are specific for HPV16 E6, E7, and E2 have been
frequently detected in peripheral blood mononuclear cells of
healthy individuals (71). In contrast, responses against HPV16
E6, E7, and E2 have rarely been detected in patients with HPV16-
positive genital lesions or antigen-specific proliferative responses
that show a non-inflammatory cytokine profile (72, 73).

Similarly, effective HPV18-specific T-cell responses are only
seen in healthy controls, and not in HPV18-positive patients
(74). For the role of CD8+ T-cells in disease regression, a
comparison of CD8+ T-cell responses to E6 and E7 using
enzyme-linked immunospot assays in individuals with incident
or prevalent HPV 16 or 18 infections did not show any significant
difference in the frequency of positivity between these two patient
groups (33 vs. 40%) (75). At variance with this, in CIN2/3
lesions, more CD8+ T-cells were seen for the epidermis of
tissues that went on to regress (76). Also, large numbers of
intraepithelial CD8+ tumor-infiltrating lymphocytes have been
associated with an absence of lymph-node metastases in patients
with large early stage cervical cancer (76). Taken together,
these findings indicate that the development of high-risk HPV-
positive cervical cancer is associated with failure of HPV-specific
T-cell responses.

The humoral immune response to HPV infection is mainly
directed against conformational epitopes in the variable regions
of the major coat protein L1 (77). This develops slowly, and
is usually weak. Indeed, seroconversion appears to occur 6–18
months after infection, and type-specific antibodies to L1 are
detected in 60–70% of womenwho acquire HPV infection (6, 78).
HPV-seroprevalence is considerably lower in men than women,
and it has been suggested that HPV-seropositive women might
have higher antibody levels than HPV-seropositive men (79).

IgG and IgA are the most abundant isotypes in sera from
natural infections. Other HPV antigens (e.g., E1, E2, E6, L2) do
not commonly induce antibody responses in patients with acute
or persistent HPV infections.

Studies that have investigated whether naturally acquired
HPV antibodies can protect against subsequent HPV infections
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FIGURE 1 | Linear diagram of HPV16 genome showing the eight open reading frames (ORFs), the early (pAE), and the late (pAL) polyadenilation sites; p97, promoter

of E6 and E7 viral oncoproteins; p670, promoter of the late proteins.

have reported mixed results (80–82). More recently a systematic
review and meta-analysis that included >24,000 individuals
showed that natural HPV antibodies provide protection against
subsequent type-specific genital HPV infections in females.
However, given that the antibody titers in natural immunity
are considerably lower than those observed with vaccination,
and that antibody responses are preferentially induced in
women and are not induced in all infected individuals, it
is likely that protection through the development of natural
immunity is inferior to protection obtained from HPV
vaccination (83).

HPV VACCINES

Prophylactic Vaccines
Three prophylactic vaccines for prevention of HPV infection are
available at present: a bivalent vaccine against HPV16 andHPV18
(Cervarix) that was approved in 2007; a tetravalent vaccine
against HPV6, 11, 16, and 18 (Gardasil) that was approved in
2006; and a nonavalent vaccine against HPV6, 11, 18, 31, 33,
45, 52, 58 (Gardasil 9) that was approved in 2016. However, the
non-avalent vaccine is the only HPV vaccine that is currently
available in the USA, and it was approved for males and females
from 9 to 45 years by the US Food and Drug Administration in
late 2018.

Initially, the administration of the HPV vaccines was in three
doses, with the more recent change to a two-dose schedule driven
by evaluation of girls aged 9–13 years who had received either
two or three doses. The antibody responses of the young women
(aged 16–26 years) who had followed a two-dose schedule were
similar to those who received all three doses (84). Therefore,
in 2016, the Advisory Committee on Immunization Practice
declared that there was only the need for two doses of vaccine
for those under 15 years of age. However, for females who
start the vaccination between 15 and 45 years old, a three-dose
schedule is recommended (at 0, 1–2, and 6 months) (84, 85)10.
Also immunocompromised patients should follow the three-dose
schedule regardless of sex and age at vaccination (86).

10https://www.cdc.gov/hpv/dowloads/9vhpv-guidance.pdf

All three of these vaccines use recombinant DNA
technology and are prepared from the purified L1 protein,
which self-assembles to form HPV type-specific empty shells
(virus-like particles; VLPs). Only intact VLPs can generate
protective antibodies, which supports the evidence that
conformational epitopes of L1 are required to generate
neutralizing antibodies (87).

The evidence that HPV VLP vaccines protect against
high viral challenges through induction of neutralizing anti-
L1 antibodies was obtained in preclinical studies in animals,
which thus provided the strong rationale for development
of VLP-based vaccines. In particular, in a canine model of
experimentally induced oral papillomas, it was demonstrated that
dogs vaccinated with the major capsid protein, L1, of canine
oral papillomavirus developed antibodies against canine oral
papillomavirus and became completely resistant to the viral
challenge (88). Similarly, vaccination of rabbits with L1 VLPs
protected them against papillomas induced by cottontail rabbit
papillomavirus (89). In addition, in both of these animal models,
passive transfer of immune serum protected the dogs and rabbits
against the canine oral papillomavirus and cottontail rabbit
papillomavirus challenges, respectively.

In humans, analysis of vaccine-induced antibody responses
measured by several methods has demonstrated that almost 100%
of vaccinated individuals generate a strong type-restricted serum
antibody response to L1 VLP. These methods have included
conventional enzyme-linked immunosorbent assays, competitive
radioimmunoassays, competitive Luminex-based immunoassays,
and pseudovirion-based neutralization assays.

Initial and follow-up studies that assessed the immunogenicity
of the HPV 16/18 AS04-adjuvant vaccine in 15- to 25-year-old
women showed that after vaccination, anti-HPV16 and anti-
HPV18 total IgG antibodies peaked at month 7, reached a plateau
between months 18 and 24, and remained constant for up to 76
months (90). Measurement of the neutralizing antibodies using
pseudovirion-based neutralization assays confirmed high levels
of functional antibodies as well. Then evaluation of long-term
immunogenicity of the HPV16/18 vaccine in the serum of 15-
to 55-year-old females revealed that the seropositivity for anti-
HPV16 remained high in all of the age groups 10 years after the
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first vaccination. For anti-HPV18, there were more seropositive
females in the 15- to 25-year-old group (99.2%) than for the 26-
to 45-year-olds (93.7%) and 46- to 55-year-olds (83.8%) (90). In
these studies, the anti-HPV16 and anti-HPV18 titers remained
above natural infection levels in all of the age groups, and more
interestingly, they were predicted to persist for more than 30
years after vaccination (91).

Comparisons of the immunogenicities of the HPV16/18
and HPV6/11/16/18 vaccines in healthy women aged 18–45
years revealed that 7 months after vaccination, the serum
neutralizing antibody responses elicited by the bivalent vaccine
were significantly higher than those for the HPV6/11/16/18
vaccine. The differences in these responses for HPV16 and
HPV18 were maintained at month 24, and also up to month 60
in women aged 18–45 years.

Antibody titers induced by vaccination are higher than those
produced by natural infection11. Responses to HPV vaccination
is weakly influenced by gender, with higher seroconversion in
males than females (99 vs. 93%), and by age, with higher antibody
titers in women aged 9–15 years (92, 93). The FUTURE I trial
demonstrated that the efficacy of the tetravalent HPV vaccine
was 100% against condyloma in HPV-naïve women, and 70%
(vaginal condyloma) to 78% (vulvar condyloma) in the overall
population. The efficacy of the non-avalent vaccine is comparable
to that of the tetravalent vaccine against condyloma (94).
Prophylactic HPV vaccines show excellent protection against
high-grade CIN (i.e., CIN2, CIN3) and adenocarcinoma in
situ for HR-HPV–naïve women. In particular, the non-avalent
vaccine showed the highest efficacy for prevention of onset of
CIN1 (relative risk reduction, 98.9%), CIN2 (97.1%), and CIN3
(100%) neoplasia (95).

Data for vaccine prevention against AIN are more limited.
In the Guanacaste study, the tetravalent HPV vaccine prevented
HPV16/18 infection in anal anatomic sites in 84% of women
who were HPV-seronegative at baseline (96). Palefsky reported
77.5% prevention of AIN among HPV-naïve men aged 16–
26 years who had sex with men (MSM) (97). The tetravalent
vaccine also protects heterosexual naïve men from both
anogenital HPV infections and HPV lesions, with an efficacy
against infections and associated lesions of >90% (98). Also
a Finnish randomized trial reported significant reduction of
genital HPV infections in men following HPV16/18 vaccine
administration (99).

For oropharyngeal cancer prevention, a risk reduction of
93.3% for precursor lesions of HPV-induced oral cancer was
reported for the Guanacaste study (96). However, further studies
are needed to demonstrate the efficacy of these vaccines on
oropharyngeal cancer development.

Therapeutic Vaccines
The therapeutic vaccines differ from the prophylactic vaccines
as they are aimed at the generation of cell-mediated immunity,
rather than neutralizing antibodies. Although prophylactic
vaccines can prevent HPV infections in 100% of cases, and
precancerous cervical lesions (i.e., CIN) caused by the HPV

11http://www.rho.org/files/WHO_HPV_tech_info_nocover_2007.pdf

TABLE 1 | Conventional treatment of HPV-related cancers.

Cancer HPV related lesion Conventional treatment

High-grade CIN 1. Loop electrosurgical excision procedure.

2. Cold knife.

3. Cone biopsy.

4. Electrofulgaration.

5. Cold-coagulation.

6. Cryotherapy.

Cervical cancer 1. Conization.

2. Radical hysterectomy.

3. Chemotherapy.

Vulvar intraepithelial neoplasia

(VIN) and vulvar cancer

1. Surgical excision.

2. Topical agents (imiquimod).

3. Photodynamic therapy.

AIN and anal cancer 1. Ablative.

2. Chemotherapy (5-fluoracil,

imiquimod, cidofovir).

PeIN and penile cancer 1. Surgical treatment.

2. Cisplatinum-based regimen.

CIN, cervical intraepithelial neoplasia; AIN, anal intraepithelial neoplasia; PeIN, penile

intraepithelial neoplasia.

genotypes included in the vaccine, HPV-related lesions remain
a public problem worldwide for several reasons: (i) only 8%
of low and middle income countries have introduced HPV
vaccination programs12; (ii) HPV types that are not included
in vaccines might be responsible for cancers (100); (iii) the cost
of requirements for a cold chain and the absence of sanitary
infrastructure limits HPV vaccine deployment in developing
countries; and (iv) HPV vaccines are recommended for young
women (9–26 years old), and as women older than 26 years are
not vaccinated, they can develop cancers. It is also estimated that
the impact of HPV vaccination on cancer incidence might not be
appreciated for at least 20 years from any mass vaccination.

Currently, the treatment of high-grade disease (CIN2-3)
includes electrosurgical excision of the transformation zone, with
carbon dioxide lasers or knives used to perform conization, where
the entire transformation zone is removed (101, 102) (Table 1).
Incomplete excision, however, can occur, and HPV transformed
cells can remain, which will facilitate recurrent neoplasia. Hence,
there is the need for a therapeutic vaccine that can fully eliminate
malignant cells.

The aim of a therapeutic vaccine against HPV is to
induce in-vivo virus-specific T-cell responses against established
HPV infections and lesions. For therapeutic vaccination
to deliver unequivocal clinical benefits, improvements must
be achieved at two levels: by maximizing the induction
of T-cell responses with optimal amplitude, specificity and
effector profile; and by ensuring that vaccine-induced T-
cells can reach the tumor site and perform their functions
without restraint (103).

Among the HPV proteins, the E6 and E7 oncoproteins are
considered to be almost ideal targets for immunotherapy of
cervical cancer, as these proteins are essential for the onset and

12https://apps.who.int/iris/bitstream/handle/10665/251810/WER9148.pdf;

jsessionid=12D591BAA8A2E02CEB5223020DFC3526?sequence=1
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evolution of malignancy, and are constitutively expressed in
both premalignant and invasive lesions, while being absent in
healthy cells (104). E6 and E7 have therefore been included in
most therapeutic vaccines developed to date. Usually, a DNA
sequence that encodes a fusion protein of E6 and E7 is inserted
into a vector, and mutations are introduced into the regions
that are responsible for the E6 interactions with p53, and the E7
interactions with pRB, to reduce their oncogenic power. The E1
and E2 viral proteins are also attractive candidates for therapeutic
vaccines that target early viral infections, as they are highly
expressed before viral genome integration (105).

Several strategies have been investigated for HPV therapeutic
vaccines designed to enhance CD4+ and CD8+ T-cell responses,
including genetic vaccines (e.g., DNA/ RNA/ virus/ bacterial),
and protein-based, peptide-based or dendritic-cell-based
vaccines. Among the bacterial vectors, live attenuated Listeria
monocytogenes has been used to generate a promising HPV
therapeutic vaccine. L. monocytogenes is considered a potent
vaccine vector because it enters professional antigen-presenting
cells and induces antigen-presenting cell maturation, and
strong innate and adaptive immunity (106). In addition,
L. monocytogenes grows very efficiently in vitro and lacks
lipopolysaccharides, which are a major toxicity factor with
Gram-negative bacteria (104). The safety of a recombinant live
attenuated L. monocytogenes secreting E7 as a fusion protein
joined to non-hemolytic listeriolysin O (Lm-LLO-E7) was
demonstrated in a phase I clinical study that was conducted
with 15 patients with late-stage metastatic cervical cancer
(107). Evaluation of the efficacy of Lm-LLO-E7 (also known
as ADXS11-001) in a prospective phase II clinical trial as
second-line and third line for patients with recurrent metastatic
cervical cancer showed that 12-month overall survival was
38%, which exceeded the historical overall survival of such
patients, of 25%. A phase III clinical trial of Lm-LLO-E7 for
high-grade cervical cancer is being conducted at the time of
writing (see NCT02853604).

Encouraging data have also been obtained in clinical studies
that have tested DNA-based vaccines. DNA vaccination consists
of direct introduction into tissues of a plasmid that contains
the DNA sequence that encodes the antigen(s) against which an
immune response is sought. This relies on in-situ production of
the antigen(s) as a result of the transfection of antigen-presenting
cells and non-antigen-presenting cells, with the presentation
of the expressed antigen(s) by both MHC class I and class II
molecules. Furthermore, this results in activation of all three arms
of the adaptive immune response (i.e., helper T cells, cytotoxic T
cells, antibodies).

However, although DNA vaccines have been shown to
induce balanced CD4+ and CD8+ T cells as well as humoral
immune responses in small animal models, clinical data from
multiple studies have demonstrated that they induce poor T-cell
responses (108).

Many strategies to facilitate antigen processing and
presentation, and also antigen delivery, have been adopted
to ameliorate the immunogenicity of DNA vaccines against
HPV (109–111).

A phase I study was carried out using the DNA vaccine
VGX-3100 that consists of a mixture of two plasmids that
encode the optimized consensus of the E6 and E7 genes of HPV
genotypes 16 and 18. These were delivered via intramuscular
injection, followed by electroporation, with 18 patients who
had been previously treated for cervical intraepithelial neoplasia
(CIN2/3). This study showed that 78% of the patients developed
CD8+ T-cell responses, and 100% showed antibody positivity
to at least two vaccine antigens (112). Notably, the peripheral
blood T-cell responses elicited by VGX-3100 were an order of
magnitude greater than naturally occurring responses, and a log
unit greater than those previously reported for HPV therapeutic
vaccines (112).

In 2015, the efficacy, safety, and immunogenicity of VGX-
3100 was assessed in a phase II clinical trial in patients
with CIN2/3. In the per-protocol analysis, 30.6% of the
placebo recipients and 49.5% of the VGX-3100 recipients
showed histological regression. Concomitant histopathological
regression and viral clearance occurred in 14.3% of placebo
recipients compared with 40.2% of vaccinated recipients (113).
Post-hoc immunological analysis here demonstrated that VGX-
3100 elicited significantly increased frequency of T-cell responses
against HPV16/18 E6 and E7, and that the magnitude of the T-
cell response against E6 was associated with clinical outcome.
Humoral immune responses were also lower in placebo recipients
than in VGX-3100 recipients, and the antibody responses against
HPV16, HPV18, and E7 were significantly higher in the patients
who had concomitant histopathological regression and viral
clearance, compared to those who did not (113). A phase III
clinical trial of VGX-3100 for women with CIN was initiated in
2017, and it is expected to end in 2021 (see NCT03185013).

Viral vectors including adenoviruses, adeno-associated
viruses, alphaviruses, and vaccinia viruses (e.g., modified vaccinia
Ankara virus; MVA) can be used to express the E2, E6, and E7
oncoproteins, and they can stimulate CD4+ and CD8+ T-cell
responses. A MVA vector was used to produce the Tipapkinogen
Sovacivec vaccine, which includes three exogenous genes that
encode the human cytokine interleukin-2, and non-oncogenic E6
and E7. This vaccinia virus can induce interferon-α production
and express HPV16 E6 and E7, which are presented by dendritic
cells to activate naïve T cells in lymph nodes. At a follow-up
of 2.5 years, compared to the placebo cohort at 10% viral
clearance, the administration of Tipapkinogen Sovacivec vaccine
provided complete resolution for 24% of patients with CIN2/3,
irrespective of their HR-HPV baseline infection (i.e., HPV16, 18,
31, 33, 35, 39, 45, 52, 56, 58, 59, or 68). However, despite this
significantly improved HPV viral clearance with this vaccine, it
has still not been licensed for clinical use because of the modest
efficacy (104).

Finally, a vaccine designed on recombinant MVA that
contained the bovine papillomavirus E2 protein (MVA E2) was
used to treat HPV-induced ano-genital intraepithelial lesions.
A phase III study showed that 90% of female patients had
complete elimination of lesions after treatment with MVA E2,
with 100% seen for men. All of these patients treated with
MVA E2 developed antibodies against the MVA E2 vaccine and
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generated a specific cytotoxic response against the papilloma-
transformed cells (114).

Interestingly, novel vaccination strategies aimed to maximize
systemic as well as genital resident memory T cell responses to
treat sexually transmitted infections and human papilloma virus
neoplasia are being developed. In this context several studies have
investigated the effect of either the topical delivery of host and
pathogen derived immunomodulatory molecules or the delivery
route of immunization in the induction of cervicovaginal long
lived CD8+ T cell responses (115).

HPV PROPHYLACTIC VACCINES USED AS
THERAPEUTIC VACCINES

The treatment of premalignant lesions (CIN2,3) by LLEP
or conization sometimes fails to prevent lesion recurrence
(116–118). This is often linked to incomplete excision of
transformation zone consciously carried out by gynecologists.
In fact, evidence shows that large excision of the cervix can
compromise cervix integrity and can cause adverse neonatal
outcome with preterm risk (119, 120). Moreover, recurrence risk
is greater in presence of HR HPV infection (116, 121).

A systematic review of studies of the treatment of high-grade
lesions (HSIL/ CIN2-3) reported that a median of 28% of the
women remained positive for oncogenic HPV types 3 months
after treatment. A decrease in this HPV persistence was seen
during follow-up, as it fell to 21% after 6 months (102). Also,
higher risks for the development of cervical and vaginal neoplasia
have been reported for women who had previously been treated
for CIN3, in comparison to the general female population, with
this higher risk persisting for 20–25 years, and possibly longer
(122). The risk of cervical cancer after treatment also increases
with age. A large study with long-term follow-up for women
treated for CIN3 reported standard incidence and mortality
ratios (i.e., treated vs. placebo) for cervical and vaginal cancers
of 10.58 and 7.60, respectively, for women aged 60–69 years, and
2.03 and 1.52, respectively, for women aged 30–39 years (123).
Also, women who had previously reported CIN3 lesions showed
greater probability of developing other HPV-related neoplasia of
the genital tract (e.g., vaginal, vulvar, anal) or the oropharyngeal
district (124).

As no vaccine has yet been licensed for therapeutic
use, the prophylactic vaccines have been tested in several
trials to determine their effectiveness for prevention of HPV
disease recurrence or reinfection after CIN2-3 treatment. The
recurrence for MSM who undergo treatment for high-grade anal
intraepithelial neoplasia (HGAIN) is particularly high, as 50%
show recurrence within 1 year (123). This makes it essential
to find a treatment that can reduce the development of high-
grade lesions in treated patients. In 2011, the effectiveness of
the tetravalent HPV vaccine for the prevention of recurrent
HGAIN was evaluated in HIV-negative, self-identified MSM
with a history of biopsy-proven and treated HGAIN. In the
340.4 person-years of follow-up, 30.7% of the non-vaccinated
patients developed recurrent HGAIN, compared to 13.6% of the
vaccinated patients. Among these patients who were infected

with HR-HPV types, the tetravalent vaccine was associated with
significantly decreased risk of recurrent HGAIN at 2 years
from study entry (hazard ratio, 0.47). To explain the partial
effectiveness of the tetravalent vaccine in this study, it was
speculated that some of these patients might have developed
diseases that were related to the HPV genotypes not covered by
the tetravalent vaccine or to multiple HPV infections. Further,
some HGAIN might not have been identified and treated
before the vaccinations, or the viral integration into the host
genome had already occurred. Unfortunately, these aspects were
not investigated.

In 2013, Kang et al. investigated the effectiveness of the
tetravalent HPV vaccine to prevent recurrence of CIN2-3 in
patients with high-grade CIN treated by the loop electrosurgical
excision procedure (125). Recurrence was seen for 7.2% of
the non-vaccinated patients and by 2.5% of the vaccinated
patients. In patients infected with HPV16 and/or HPV18, 8.5%
of the non-vaccinated patients and 2.5% of the vaccinated
patients developed recurrent disease related to these HPV types.
Although encouraging, these data indicate that the prophylactic
HPV vaccine had weak activity against such HPV16/18-related
high-grade lesions. Recently, a prospective clinical project,
the SPERANZA study, was carried out to determine the
effectiveness of the tetravalent vaccine for reduction of the risk
of clinical relapse in women treated for CIN2 (126). Overall,
344 women were included in the study, and 6.4% of the non-
vaccinated women showed clinical disease recurrence, while
for the vaccinated women, there was only 1.2% recurrence.
Vaccination here was associated with significantly reduced
risk of subsequent HPV-related high-grade CIN after cervical
surgery, at 81.2%. For the non-vaccinated women, the recurrent
clinical disease was attributed to HPV11, 16, 18, 31, 33, 45,
53, 82, while for the vaccinated women, the two cases of
clinical disease recurrence were associated with HPV33 and
HPV82. In this study, about 40% of the patients enrolled were
>36 years old, although neither the age range nor the age
of women with recurrent clinical disease were reported, and
thus it cannot be determined if the efficacy of the tetravalent
HPV vaccine was influenced by the age of the patients at
the time of their vaccination. At variance with this, a study
by Hildesheim et al. included 1,711 women with carcinogenic
human HPV infection and 311 women who received loop
electrosurgical excision for cervical precancer. Here, there was
no evidence that HPV16/18 vaccination alters the fate of an
HPV infection present at the time of vaccination, or the rates
of cervical infections and lesions after loop electrosurgical
excision. For these HPV16/18 infections, in the cohort of
women with HPV infection but without precancer, the efficacy
of clearance was 5.4%, with progression to CIN1 seen for
15.5%, and to CIN2, for 0.3%. Moreover, after the loop
electrosurgical excision, the vaccination had no significant effects
onHPV16/18 infections and/orHPV16/18-associated cytological
and histological lesions (127).

The data obtained on the efficacy of the tetravalent HPV
vaccine for the prevention of anal condylomas are, however, more
encouraging (128). Three hundred and thirteen MSM (mean
age, 42 years) were enrolled for a median of 981 days. During
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the follow-up, condyloma developed in 18.8% of non-vaccinated
patients, and in 8.6% of vaccinated patients. Moreover, several
clinical studies have demonstrated activity for HPV vaccination
in the treatment of genital warts (129–131).

Altogether, these data suggest that there is possibility that
prophylactic vaccines reduce the risk of HSIL recurrence
in previously infected patients, although the exact protective
mechanisms in infected individuals is not understood. The
high risk of recurring infections is consistent with either
auto-inoculation across anatomic sites or new inoculation or
episodic reactivation of latent infection. AsHPV vaccines prevent
infection by induction of L1-specific antibodies that block viral
entry, and L1 is not generally expressed during the oncogenic
process, it is expected that these vaccines will be effective in the
prevention of auto-inoculation or new infections.

The greater effectiveness obtained with prophylactic vaccines
in the prevention and regression of genital warts might
be related to the integration state of the HPV genome. In
genital warts, the virus is not generally integrated into the
host genome, and therefore viral particles are produced. In
this case, the prophylactic vaccines that block viral entry
through induction of L1-specific antibodies can prevent
reinfections, which will favor the elimination of the virus.
Conversely, in high-grade lesions, the virus genome is often
integrated into the host genome, and infected cells do not
express L1 and do not produce viral particles. Thus, as
transformed cells are frequently in the basal layer of the
derma, they will not be recognized by vaccine-induced
antibodies, which are ineffective in the control of the
disease course.

Furthermore, there are some cases in the treatment of HPV-
related cancers where the use of prophylactic vaccines might not
be recommended:

(1) Anal and cervical cancers that are not attributable to the
HPV types that are included in the non-avalent HPV vaccine.
Several studies have demonstrated that half of the HPV infections
in MSM are caused by HPV types that are not included in
the non-avalent HPV vaccine (132, 133) (Table 2). Here, over 2
years of observation, only about 30% of HIV-positive MSM had
incidents of HR-HPV infections that were covered by the non-
avalent vaccine (134). This situation can be also observed for
women (Table 2).

(2) HPV DNA-negative cervical tumors. Over recent decades,
several studies have reported that some cervical cancers are
HPV-negative (135–139). Often, HPV DNA negativity is due
to the sensitivity of the methods used in the HPV DNA
detection, and so samples that have tested as HPV-negative
might show as HPV-positive when retested with more sensitive
assays (e.g., nested PCR) (136). The Cancer Genome and
Molecular Characterization of Cervical Cancer Study used
next-generation sequencing to characterize primary cervical
cancers, and it established that 5% of the specimens were
HPV-negative. This subset of HPV DNA-negative cancers
is mainly observed among adenocarcinoma cancers, and
predominantly in gastric-type adenocarcinomas. The pattern of
immunostaining of gastric-type adenocarcinomas shows strong
and diffuse positivity for MUC-6 and HIK1083 antibodies,

TABLE 2 | Detail of cervical and anal samples from HIV positive patients with

squamous intraepithelial lesions and HPV DNA negative or positive for HPV types

that are not included in nonavalent vaccine.

N. of cases (%) Pt

HPV- 9v Neg

N. of cases (%) Pt

HPV DNA Neg

Cervical samples LSIL (n = 231) 72 (31.2) 70 (30.3)

HSIL (n = 55) 17 (30.9) 6 (10.9)

Anal samples AIN 1 (n = 18) 9 (50) 3 (16.7)

AIN 2 (n = 7) 5 (71.4) 0

AIN 3 (n = 1) 1 0

Pt, patient; LSIL, Low Grade Squamous Intraepithelial Lesion; HSIL, High Grade

Squamous Intraepithelial Lesion; AIN, Anal intraepithelial neoplasia; 9v, nonavalent

vaccine. These data are partially presented in CME event “Novità nel campo dell’infezione

da HPV,” Rome, 20th June 2018 INMI L Spallanzani IRCCS.

which recognize epitopes of gastric pyloric glycoproteins,
although they are p16 negative, which is a cell-cycle regulatory
protein (140). Gastric-type adenocarcinomas have significantly
higher rates of recurrence and mortality than HPV-positive
cancers (141, 142). Furthermore, progression and regression
of gastric-type adenocarcinomas are independent of HPV
infection, and thus HPV vaccine administration here would
be inappropriate.

CONCLUSIONS

The data reported in this review highlight the significant
efforts that have been carried out to set-up therapeutic vaccines
against HPV-related malignancies. Although several approaches
to produce an effective vaccine have been attempted, including
the use of proteins, synthetic peptides, and viral proteins
expressed in different vectors, and although some of the data
appear encouraging, no therapeutic vaccines have been licensed
in clinical practice yet. Recently, prophylactic vaccines have
been used for treatment of recurrent forms or reinfections
in subjects who have previously undergone surgical resection.
However, the trials here have offered conflicting results, and
vaccination did not guarantee 100% effectiveness. This is
probably due to a residual burden of transformed cells that can
persist after the surgical treatment, and that are not targeted
by the humoral L1-specific immune response induced by the
prophylactic vaccines. Although it cannot be excluded that the
therapeutic potential of prophylactic vaccines could be improved
by using different adjuvants or route of immunization, an
additional limit in using prophylactic vaccines for therapeutic
purposes is seen by the evidence that the non-avalent vaccine
does not include all of the HR-HPV types. As the real
extent of protection given by the non-avalent vaccine against
other HPV types is not known, its use in the treatment of
tumors related to these other HR-HPV types is questionable.
Furthermore, for endometrial adenocarcinomas, such as gastric-
type adenocarcinomas, which are HPV DNA-negative, careful
virological and histological diagnosis must be made before
administration of HPV prophylactic vaccines to treat HPV
recurrence or reinfection.
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