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Editorial on the Research Topic

Potential of Extracellular Matrix Molecules in Pharmaceutical Development

The extracellular matrix (ECM) is a complex cell-secreted network composed of a diverse array of fibrous
proteins, proteoglycans, and proteolytic enzymes. Comprising approximately one-third of the human
body, the ECM was initially considered an inactive, space-filling scaffold that solely provides structural
support for cell growth. However, dysfunctions in the ECM have been associated with various human
diseases. In this special issue of Frontiers in Pharmacology, Ahmad et al. contributed a minireview that
manifests the current understanding of the major ECM components in muscle-associated conditions and
their therapeutic potentials.

Meanwhile, the influence of some therapeutics on ECM is also broadly observed. For example,
Tang et al. revealed that Anisodamine (ANI; also known as 7β-hydroxyhyoscyamine), a naturally
occurring atropine derivative, not only effectively inhibited the apoptosis, senescence, and ECM
degradation in the nucleus pulposus of intervertebral disc degeneration (IVDD) rats but also
significantly promoted the synthesis of aggrecan and type II collagen. Considering the loss of ECM,
particularly aggrecan and type II collagen, is a typical feature of IVDD, this study may provide
intuitiveness for ANI’s protective effects on cartilage, in addition to its known anti-inflammatory,
analgesic, antipyretic, and platelet-inhibitory actions. In this special issue, Yang et al. also reported
that long noncoding RNA (lncRNA) growth arrest specific transcript 5 (GAS5) bolsters the
expression of growth arrest differentiation factor 5 (GDF5)—which plays an essential role in
articular cartilage maintenance by inducing ECM and α5 integrin expression. Interestingly, they
also found that GAS5 serves as an osteogenic regulator of periodontal ligament stem cells via GDF5
and p38/JNK signaling pathway, suggesting the critical function of GAS5 and GDF5 on ECM
homeostasis in both bone and cartilage tissues.

Moreover, accumulating evidence currently demonstrates that ECM is a dynamic structure
that directly interacts with the living cells. For instance, during the force-induced orthodontic
tooth movement (OTM), a process of bone and periodontal ligament (PDL) remodeling,
disorganized and compressed ECM architecture promotes osteoclastic bone resorption on the
pressure side. At the same time, the stretching ECM structure stimulates osteoblastic bone
formation. In this special issue, Li et al. accurately analyzed the ECM fiber remodeling and
osteoclast recruitment corresponding to stress distribution. Hence, ECM has the capacity to
modulate cell function and behavior. Undoubtedly, a comprehensive understanding of the
mechanisms underlying these ECM-related disease pathologies and therapeutical benefits would
help develop novel treatment strategies.
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Echo to these observations, some regenerative medicines
targeting ECM components have been being developed,
specifically since the new century. One exciting application
of ECM-based-therapeutics is the use of decellularized ECM.
By removing the cellular components, a decellularized ECM
acts as a water-insoluble matrix and retains the physiological
ECM properties that mimic the native microenvironment and
support tissue regeneration. The intact biocompatibility,
biodegradability, and bioinductivity of decellularized ECMs
make them broadly applicable to various kinds of tissue
regeneration. This strategy is particularly successful in bone
repair applications. Thus, Lin et al. provided an overview of the
function of multiple types of bone ECM and the applications of
both ECM-modified and decellularized ECM scaffolds in bone
repair and regeneration.

Furthermore, matricellular molecules that do not simply
function as structural blocks are also critical components of
the ECM. Compared with fiber-forming ECM elements, such
as collagen, matricellular molecules may be more applicable in
pharmaceutical development. Indeed, significant efforts have
been devoted to developing matricellular protein-based
pharmaceuticals, especially cancer therapeutics and fibrotic
and inflammatory diseases. Particularly, proteoglycans have
emerged as biomacromolecules with critical ECM remodeling,
homeostasis, and signaling roles in the past 2 decades. Here,
Walimbe and Panitch contributed a review on the recent
preclinical efforts that open new avenues for developing
new and exciting treatments with proteoglycan cores and
mimetics in a broad range of regenerative medicine. Pang
et al. conducted a review with a particular interest in the diverse
functions of small leucine-rich proteoglycans (SLRPs), a group of
ECM that exist in a wide range of connecting tissues, in skin wound
healing. In this review, the most recent knowledge of SLRPs’ anti-
inflammatory, pro-angiogenic, pro-migratory, and pro-
contractility, and signal transduction orchestrating effects,
as well as their spatial-temporal expression in the skin, has
been comprehensively summarized to pave the path for a new

generation of pharmaceuticals discovery for patients suffering
from skin wounds and their sequelae. In addition, by
delineating the spatial-temporal distribution of
fibromodulin (FMOD), an SLRP member, during cartilage
and development, and FMOD’s structural alteration in
aging and arthritis progression, Li et al. suggest that FMOD
holds the high potential as a new target of osteoarthritis
management, pointing a novel direction of arthritis
pharmaceutical development.

In summary, this special issue aims to give an overview of
the most exciting progress in ECM-based strategies for
pharmaceutic development, although it is inevitably
incomplete in covering all aspects of ECM studies. Many
promising projects are in advanced experimental stages and/
or preliminary clinical trials. Given the exciting
developments in the field, we believe that this special
issue will provide specific insights into the establishment
of novel ECM-based strategies that can pave the path for
these emerging ECM-relevant therapies to improve human
health.
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Stress Distribution and Collagen 
Remodeling of Periodontal Ligament 
During Orthodontic Tooth Movement
Zixin Li 1†, Min Yu 1†, Shanshan Jin 1, Yu Wang 1, Rui Luo 2, Bo Huo 2, Dawei Liu 1, 
Danqing He 1*, Yanheng Zhou 1* and Yan Liu 1*

1 Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of 
Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory 
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Periodontal ligament (PDL), as a mechanical connection between the alveolar bone and 
tooth, plays a pivotal role in force-induced orthodontic tooth movement (OTM). However, 
how mechanical force controls remodeling of PDL collagenous extracellular matrix (ECM) 
is largely unknown. Here, we aimed to evaluate the stress distribution and ECM fiber 
remodeling of PDL during the process of OTM. An experimental tooth movement model 
was built by ligating a coil spring between the left maxillary first molar and the central 
incisors. After activating the coil spring for 7 days, the distance of tooth movement was 
0.324 ± 0.021 mm. The 3D finite element modeling showed that the PDL stress obviously 
concentrated at cervical margin of five roots and apical area of the mesial root, and the 
compression region was distributed at whole apical root and cervical margin of the medial 
side (normal stress < −0.05 MPa). After force induction, the ECM fibers were disordered 
and immature collagen III fibers significantly increased, especially in the apical region, 
which corresponds to the stress concentration and compression area. Furthermore, 
the osteoclasts and interleukin-1β expression were dramatically increased in the apical 
region of the force group. Taken together, orthodontic loading could change the stress 
distribution of PDL and induce a disordered arrangement and remodeling of ECM fibers. 
These findings provide orthodontists both mechanical and biological evidences that root 
resorption is prone to occur in the apical area during the process of OTM.

Keywords: extracellular matrix, collagen remodeling, stress distribution, finite element, periodontal ligament, 
orthodontic tooth movement (OTM)

INTRODUCTION

The process of orthodontic tooth movement (OTM) is characterized by collagenous extracellular 
matrix (ECM) remodeling of bone and periodontal ligament (PDL) mediated by an external 
mechanical force (Rangiani et al., 2016). After force induction, pressure and tension regions are 
generated in PDL (Yamaguchi et al., 2010). On the pressure side, disorganized and compressed 
ECM fibers induce osteoclastic bone resorption, whereas, on the tension side, stretching fibers 
stimulate osteoblastic bone formation (Oshiro et al., 2010; Ren et al., 2010). It has been shown that 
the biological response of PDL dependent on mechanical state regulates OTM efficiency (Odagaki 

Edited by: 
Zhong Zheng,  

UCLA School of Dentistry,  
United States

Reviewed by: 
Jiayu Shi,  

UCLA School of Dentistry,  
United States 

Tingxi Wu,  
The Forsyth Institute,  

United States

*Correspondence: 
Danqing He 

angelho0306@163.com 
Yanheng Zho 

yanhengzhou@vip.163.com 
Yan Liu 

orthoyan@bjmu.edu.cn

†These authors have contributed 
equally to this work

Specialty section: 
This article was submitted to 
Translational Pharmacology,  

a section of the journal  
Frontiers in Pharmacology

Received: 31 July 2019
Accepted: 30 September 2019

Published: 24 October 2019

Citation: 
Li Z, Yu M, Jin S, Wang Y, Luo R, 
Huo B, Liu D, He D, Zhou Y and 

Liu Y (2019) Stress Distribution and 
Collagen Remodeling of Periodontal 

Ligament During Orthodontic  
Tooth Movement.  

Front. Pharmacol. 10:1263.  
doi: 10.3389/fphar.2019.01263

6

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2019.01263
https://www.frontiersin.org/journals/pharmacology#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.01263&domain=pdf&date_stamp=2019-10-24
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/article/10.3389/fphar.2019.01263/full
https://www.frontiersin.org/article/10.3389/fphar.2019.01263/full
https://www.frontiersin.org/article/10.3389/fphar.2019.01263/full
https://loop.frontiersin.org/people/782675
https://creativecommons.org/licenses/by/4.0/
mailto:angelho0306@163.com
mailto:yanhengzhou@vip.163.com
mailto:orthoyan@bjmu.edu.cn
https://doi.org/10.3389/fphar.2019.01263


Force-Induced Collagen Fiber RemodelingLi et al.

2 October 2019 | Volume 10 | Article 1263Frontiers in Pharmacology | www.frontiersin.org

et al., 2018). Therefore, it is important to clarify the stress 
distribution and corresponding biological responses of PDL 
under an orthodontic force.

During the OTM process, PDL could respond to a mechanical 
force loading and present two main biological reactions: dynamic 
changes in collagen content and osteoclastogenesis (Feng et al., 
2016). The ECM of PDL is the fibrous connective tissue joining 
the tooth to its surrounding bone. The collagen fibers with 
ordered arrangement are the main components. The collagenous 
ECM is mainly composed of type I (Col-I) and type III (Col-III) 
collagens, among which Col-I is dominant and mature (Xu et al., 
2014). Functionally, Col-I fibers are response for strength and 
maintain stability of tooth position, whereas Col-III can relieve a 
tension force on the PDL during OTM (Li et al., 2010). It has been 
shown that the content of Col-III relative to Col-I increases in the 
early stage of collagen remodeling (de et al., 2009; Oryan et  al., 
2010). Another important reaction is osteoclast recruitment 
in PDL (Xie et al., 2010). It has been shown that PDL cells 
play crucial roles in osteoclastogenesis by expressing receptor 
activator of nuclear factor kappa. The recruited osteoclasts resorb 
and remodel the alveolar bone during OTM (Ha et al., 2003; 
Hasegawa, 2010).

Unlike bone tissue, the complex and tiny structure of PDL 
makes it difficult to directly measure the stress distribution in 
PDL. Lin et al. have predicted that the narrow region of PDL 
possesses a high strain by using CT images of tooth-PDL-bone 
specimen under compression (Lin et al., 2014). Recently, a more 
effective method of numerical simulation by 3D finite element 
(FE) is applied to directly reveal the stress condition of root (Yan 
et al., 2013). Here, we firstly used the FE method to evaluate the 
stress distribution of PDL based on micro-CT images of maxillary 
first molars under an orthodontic force, and then the biological 
response of PDL to different stress was analyzed histologically 
and immunohistochemically.

MATERIALS AND METHODS

Ethics Statement
The animal protocol was approved by the Peking University 
Ethical Committee (LA2013-92). All efforts were made to 
minimize animal number and suffering.

Animal Model of OTM
Five 6–8-week-old Sprague-Dawley rats were used for 
building an animal model of experimental tooth movement as 
previously described (He et al., 2015). Briefly, nickel-titanium 
coiled springs with 0.2-mm thickness, 1-mm diameter, 
and 5-mm length (Smart Technology, China) were ligated 
between the left maxillary first molar and the central incisors 
of rats and fixed to teeth with 0.2-mm stainless steel wires 
in the force group. A spring dynamometer device was used 
to standardize the orthodontic force, and the orthodontic 
force of the coil spring after activation was approximately 60 
g in each rat (Dunn et al., 2007; He et al., 2015). The right 
side of the same rat was set as a control (Figure 1A). After 7 

days, all the rats were sacrificed by overanesthesia, and the 
maxillae were obtained and fixed in 4% paraformaldehyde. 
A stereo microscope (SWZ1000, Nikon, Japan) was applied 
to record the occlusal view of each maxilla. The distance of 
tooth movement was measured between the midpoint of the 
distal-marginal ridge of the first molar and the midpoint of 
the mesial-marginal ridge of the second molar (Cao et al., 
2014). Every measurement was repeated three times to get the 
mean value as the final measurement.

Finite Element Modeling
An accurate model of the maxillary first molar was constructed 
from the micro-CT images, which were acquired by a Skyscan 
1174 micro-CT system (Bruker, Belgium) at resolution of 6.28 
μm. The CT images were imported into Mimics software to 
segment the maxilla by Hounsfield values and manual mask 
segmentation. Three-dimensional geometry files of maxillae, 
teeth, and PDL were created for each mask and saved as 
stereolithographic (STL) files. A Computer Assisted Design 
software (Geomagic 12.0, Research Triangle Park, NC, USA) 
was applied to extract surfaces and solids from STL files. 
Triangle and intersection fixing techniques were performed 
and then Standard for the Exchange of Product model data 
files were created and exported separately into ANSYS 18.0 
(Canonsburg, PA, USA). To simulate the experimental OTM, 
line pressure, which was in the position similar to the coil 
spring, was loaded on the distal surface of the maxillary first 
molar in the FE model.

Histological and Collagen Fiber Staining
After micro-CT scanning, the maxillae were demineralized in 
10% ethylenediaminetetraacetic acid, dehydrated in ethanol, and 
embedded in paraffin. Serial longitudinal sections were obtained 
by vertical cutting of the first molars. Hematoxylin and eosin 
(HE) staining, Masson’s trichrome staining, and picrocsirius 
red staining were applied to examine the histochemistry of the 
samples. HE, Masson’s trichrome, and immunofluorescence 
staining were used to identify the collagen fiber arrangement. 
To assess collagen remodeling during OTM, the sections stained 
with picrosirius red were analyzed via a polarizing microscopy, 
in which collagen type I (Col-I) fibers were red, and collagen 
type III (Col-III) appeared green. For statistically analysis, we 
randomly selected three images from each cervical area and 
central area in the mesial or distal side. As for the apical area, 
we randomly selected three images from each mesial side and 
distal side. The proportion of Col-III in the PDL was calculated 
by an Image-Pro Plus 4.1 software (Media Cybernetics Inc. Silver 
Springs, MD).

Immunohistochemical Assay
Immunohistochemistry was performed with a two-step 
detection kit (Zhongshan Golden Bridge Biotechnology, 
Beijing, China) as before (Jin et al., 2019). Tissue sections in 
each group were subjected to antigen retrieval solution, blocked 
with 5% bovine serum albumin, and incubated overnight with 
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antibodies against the Col-I (1:200; ab34710, Abcam), Col-
III (1:200; ab7778, Abcam), and interleukin-1β (IL-1 β, 1:200; 
ab2105, Abcam). Samples were subsequently incubated with 
horseradish peroxidase-conjugated secondary antibodies using 
diaminobenzidine (Zhongshan Golden Bridge Biotechnology, 
Beijing, China) as chromogen. Three different regions of each 
side were randomly chosen to count the number of positive cells 
for statistical analysis.

Tartrate-Resistant Acid Phosphatase 
Staining
The sections were deparaffinized to perform tartrate-resistant 
acid phosphatase (TRAP) test using a leukocyte acid phosphatase 
kit (387A, Sigma) according to the manufacturer’s protocol. 
TRAP-positive multinucleated (> 3 nuclei) cells that are attached 
to the alveolar bone surface mesial to the distal buccal roots  
were counted.

Statistical Analysis
All the data were expressed as mean ± SD. All statistical 
analyses were performed with a GraphPad Prism 6 software 
(GraphPad Software, San Diego, CA, United States) and P < 
0.05 was considered to be statistically significant. Furthermore, 
t-test was used to evaluate the difference between groups in  
different regions.

RESULTS

Stress Distribution in PDL Under an 
Orthodontic Force
Tooth movement through bone is induced by an appropriate 
mechanical force. Activation of coil springs could generate 
a light orthodontic force about 60 g, which made the left first 
molar move to the mesial about 0.324 ± 0.021 mm after 7 days. 
This distance is consistent with that reported in the literatures 
(Dunn et al., 2007; He et al., 2015). In contrast, the right first 
molar, which served as the control, did not move. The micro-CT 
images further confirmed the tooth movement without obvious 
root resorption under the light force (Figure 1A).

Based on the micro-CT images, a 3D FE model of five roots 
of the first molar during OTM was developed. This model could 
accurately reproduce the tooth-PDL-bone structure, which 
is generally assumed to be a simple geometry in previous FE 
analyses (Kamble et al., 2012; Zhang et al., 2017). In the FE 
analysis, we mainly focused on horizontal force by the line 
pressure, mimicking orthodontic tipping tooth movement. The 
PDL stress (> 0.07 MPa) obviously concentrated at cervical 
margin of the mesial side of five roots from the top and apical 
area of the mesial root from the bottom. In contrast, low stress 
(< 0.07 MPa) is distributed in the middle of five roots and the 
apical regions of the other four roots, except for the mesial  
root (Figure 1B).

FIGURE 1 | (A) Micro-CT images of orthodontic tooth movement (OTM) after 7 days of force application. (B) Stress distribution in periodontal ligament (PDL) 
of maxillary first molars. Blue color represents low stress area (< 0.07 MPa), whereas Von Mises value above 0.07 MPa is set as stress concentration. Stress 
concentration was in PDL at apical area of the mesial root. (C) Tension-compression distribution in PDL of the mesial root. Blue color represents compression area 
with normal stress < -0.05 MPa while red color shows tension region with normal stress > 0.05 MPa.
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Normal stress field was further applied to assess the tension-
compression area. From the tension-compression analysis of the 
mesial root, the compression region was distributed at whole 
apical root and cervical margin of the medial side (normal 
stress < -0.05 MPa), whereas the tension zone was present at 
two thirds of crown of the distal side (normal stress > 0.05 
MPa) (Figure 1C). This finding is different from the classical 
OTM theory that symmetric compression (mesial), and tension 
(distal) areas are present in PDL. However, a previous FE 
analysis also demonstrates that no distinct pressure and tension 
regions are detected for complex mechanical properties of PDL 
(Cattaneo et al., 2010). The stress concentration on the apical 
region might be closely correlated to high incidence of root 
resorption during OTM.

The Orthodontic Force Increased Col-III 
Expression in PDL
Collagen fibers in an ordered arrangement are the main 
components of ECM in PDL. Most fibers at the angle of 45° to 
the root are parallel with each other. Based on the FE results, we 
focused on the collagen remodeling of the mesial root. From HE 
and Masson stainings, the PDL fibers in the mesial area were 
irregular in shape and the cementum was discontinuous in the 
force group. Especially, the apical PDL was disoriented and even 
broken in the force group. In contrast, the periodontal space was 

well maintained between the root and alveolar bone, and the 
contour of the cementum was continuous in the control group 
(Figure 2). This finding was further confirmed by picrosirius red 
and immunofluorescence stainings (Figure 3).

Figure 3 illustrated that red-stained Col-I bundles were 
dominant in the control group. Compared to the apical area, 
there were much more green-stained Col-III fibers in the mesial 
and distal areas without loading. After force induction, the Col-
III expression was significantly enhanced compared with the 
control group. This trend was more obvious in the apical region  
(p < 0.001) (Figure 3B). The immunofluorescence staining 
further revealed the disordered arrangement of collagen fibers in 
PDL in the force group. From immunohistochemistry, more Col-I 
positive staining cells were found in the control group compared 
with the force group. On the contrary, the opposite trend was 
observed in the Col-III positive staining cells. The ratio of Col-III 
positive cells was significantly increased in the force group (p < 
0.05), especially in the apical region (p < 0.001) (Figure 4). Taken 
together, these results indicate that the immature collagen fibers 
increase during OTM.

Osteoclast Recruitment in PDL Under an 
Orthodontic Force
The sustained force could change the chemical environment 
by releasing inflammatory cytokines and, therefore, influence 

FIGURE 2 | HE and Masson stainings of PDL of the mesial root. The PDL fibers in the mesial area were irregular and the apical PDL was broken in the force group 
(arrows). AB, alveolar bone; R, root; PDL, periodontal ligament; C, cementum.
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FIGURE 3 | (A) Picrocsirius red staining of periodontal ligament (PDL). Col-I fibers stain red, whereas Col-III fibers are green stained. (B) Semiquantification of Col-I 
and Col-III fiber area in (A). There were more Col-III fibers in the distal and apical regions and less Col-I fibers in the apical regions in the force group (n = 18, mean ± 
SD). *: P < 0.05, ***: P < 0.001, NS, not significant. (C) Immunofluorescence staining of PDL showing disoriented fibers in the force group.

FIGURE 4 | (A) Immunohistochemical staining of Col-I and Col-III. (B) Semiquantification of Col-I+ and Col-III+ cells in (A). There were more Col-III+ and less Col-I+ 
cells in the mesial and apical regions in the force group (n = 18, mean ± SD). *: P < 0.05, ***: P < 0.001, NS, not significant.
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bone and root resorption. Immunohistochemical analysis 
demonstrated that an orthodontic force could dramatically 
enhance the IL-1β expression level especially in the apical region. 
The release of IL-1β could induce osteoclast differentiation and 
further promote root resorption (Kim et al., 2009; Baba et al., 
2011) (Figure 5A). We next examined whether the force-induced 
osteoclastogenesis was influenced in different areas of the mesial 
root during the process of OTM. The TRAP staining showed 
that the number of osteoclasts was significantly increased in the 
apical region in the force group compared with the control group. 
No positive staining was found in the mesial and distal regions in 
both the control and the force groups (Figure 5B).

DISCUSSION

Orthodontic tooth movement is a synergistic result of physical 
phenomenon and biological responses of the tooth-alveolus 
complex to an externally applied force (Kalajzic et al., 2014). 
During the OTM process, PDL responds to mechanical force 
stimulation and provides a microenvironment for cellular 
reactions and tissue remodeling. The remodeling of collagenous 
ECM fiber in PDL corresponding to mechanical loading is 
largely unknown, although the bone remodeling process during 
OTM is well investigated (Rangiani et al., 2016). In the present 
study, we first accurately demonstrated PDL stress concentration 
regions by a 3D FE modeling and then particularly analyzed 
biological responses of PDL including collagen fiber remodeling 
and osteoclast recruitment corresponding to stress distribution. 

We found that a light orthodontic force temporarily broke 
collagen orderly arrangement and increased immature Col-III 
fiber number and inflammation of PDL, especially in the apical 
region, which corresponds to stress concentration area. Although 
orthodontic root resorption is a common and well-known 
phenomenon, the direct mechanical evidence is lacking. Here, 
a 3D FE modeling combined with histological analyses provides 
orthodontists both mechanical and biological evidences that root 
resorption is prone to occur in the apical area during the process 
of OTM.

Orthodontic treatment is highly related to collagen fiber 
remodeling in the ECM of PDL, which mainly consists of mature 
Col-III and immature Col-I fibers (Becker et al., 1991; Xu et al., 
2017). Therefore, investigations on dynamic changes of collagen 
content would help us to clarify the biological response of 
PDL to mechanical loading. In our study, enhanced expression 
of Col-III in the tension areas of PDL, especially in the apical 
region, indicated active remodeling of PDL under orthodontic 
loading. In contrast, Col-I expression decreased significantly in 
the force group. This finding is consistent to a previous report 
that the Col-III/Col-I ratio is increased in the early phase of 
collagen remodeling, especially under a tension force. The 
accumulation of Col-III might contribute to relieving the tension 
force placed on PDL during OTM. During the late phase of 
PDL ECM remodeling, Col-III could be gradually replaced by 
Col-I until a normal Col-III/Col-I ratio is obtained. Stress from 
orthodontic loading is transmitted from PDL ECM via integrins, 
which induce a change in ECM synthesis, PDL remodeling, and 
ultimately tooth movement (Krishnan and Davidovitch, 2006; 

FIGURE 5 | (A) Immunohistochemistry and semiquantification of IL-1β positive cells (n = 18, mean ± SD). ***: P < 0.001, NS: not significant. (B) Tartrate-resistant 
acid phosphatase (TRAP) staining of the mesial root. Semiquantification of TRAP+ cells indicated that the force group had much more TRAP+ cells than the control 
group (n = 18, mean ± SD). ***: P < 0.001. R, root; PDL, periodontal ligament; AB, alveolar bone. Arrows, osteoclasts.
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Ma et al., 2017). It has been shown that diabetes enhance the Col-
III/Col-I ratio and prolong the PDL remodeling process under 
an orthodontic force (Li et al., 2010). Mechanistically, diabetes 
could elevate matrix metalloproteinase levels, which rapidly 
degrade collagen in PDL ECM, disturb fibroblast function, and 
finally complicate OTM (Chang et al., 2008).

Osteoclastogenesis in PDL is another key process during 
OTM, in which the recruited osteoclasts resorb and remodel the 
alveolar bone (Li et al., 2010; Hou et al., 2014). Osteoclasts are 
characterized by high expression levels of TRAP, osteoprotegerin, 
and Cathepsin K (Gerogianni et al., 2005; Rangiani et al., 2016). 
Here, we showed that a light orthodontic force enhanced the 
number of TRAP+ osteoclasts in the apical region corresponding 
to stress concentration area. This suggests that bone or root 
resorption is prone to occur at the apical region, which is highly 
consistent with clinical phenomena (Ling et al., 2010). At the 
early stage of remodeling, no obvious bone or tooth resorption 
occurred under a continuous light force for 7 days in the study. 
According to the report of Wellington et al, osteoclasts induced by 
an orthodontic force originate by the fusion of recently recruited 
preosteoclasts from the marrow instead of from local PDL 
cells, although there are osteoclasts residing in the PDL space  
(Rody et al., 2001).

Mechanical forces cause capillary vasodilatation, followed 
by migration of leukocytes and the release of cytokines (Sasano 
et al., 2010). Several studies have provided experimental evidence 
to support a statement that cytokines regulate the bone and 
PDL remodeling processes during OTM (Norevall et al., 2010; 
Rangiani et al., 2016; Tsuge et al., 2016). Among the cytokines, 
IL-1β is thought to play a prominent role during OTM. Blocking 
IL-1β by a soluble receptor inhibits tooth movement (Lages 
et  al., 2009; Baba et al., 2011). Various studies have shown that 
IL-1β stimulates bone resorption and inhibits bone formation 
in vivo (Nguyen et al., 1991; Baba et al., 2011; Diercke et al., 
2012). The observation that transient IL-1β elevation in alveolar 
bone precedes the increase in osteoclasts population in several 
days suggests that recruitment of new preosteoclasts may be 
important in OTM.

As the highlight of our study, we investigated from the 
perspective of mechanics with modified 3D FE modeling and 
had directly proven that the stress distribution of apical region 
was more special compared with mesial and distal regions, which 

also provided orthodontists direct evidence that root resorption 
was prone to occur in the apical area.

CONCLUSION

Orthodontic loading could change the stress distribution of 
PDL and induce a disordered organization and remodeling of 
collagen fibers in the ECM of PDL. Immature collagen III fibers 
and inflammation increased during OTM, especially in the 
apical region, which corresponds to stress concentration area. 
Further research is needed to translate biological concepts into 
clinical practice.
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INTRODUCTION
As a leading cause of disability among adults, osteoarthritis (OA) leads to serious public health and 
economic burdens. Currently, treatment options for OA are generally based on symptom severity 
and duration, with the goals of symptom alleviation and improvement in functional status (Taruc-Uy 
and Lynch, 2013). Nonpharmacologic and pharmacologic strategies are used initially, while a 
surgical approach to OA is reserved for chronic cases when these treatments failed. Unfortunately, 
the currently available clinical pharmacologic treatments for OA, such as analgesia, glucocorticoids, 
non-steroidal anti-inflammatory drugs, and disease-modifying antirheumatic drugs, are not 
adequately effective (Chevalier et al., 2009; Scott, 2010; Verbruggen et al., 2012; Chevalier et al., 
2015; Appleton, 2018; Li and Zheng, 2018; Li et al., 2018), and generally associated with a diversity of 
adverse side-effects (Habib et al., 2010; Cooper et al., 2016; Compston, 2018). For instance, analgesia 
does not reduce inflammation and cartilage damage (Appleton, 2018), glucocorticoids have been 
reported to induce severe damages in the musculoskeletal, cardiovascular, and gastrointestinal 
systems (Cooper et al., 2016; Compston, 2018), and non-steroidal anti-inflammatory drugs do 
not actively control arthritis progression (Appleton, 2018). Accumulating evidence demonstrates 
that an ideal OA-combating agent should be able to reduce inflammation and promote cartilage 
regeneration safely, which has long been desired. In responding to this demand, the current strategy 
for disease-modifying osteoarthritis drug seeking has shifted to biologoical molecules that promote 
chondorgenic development and regenration.

To date, a diversity of well-known pro-chondrogenic growth factors, such as bone morphogenetic 
proteins (BMPs) and transforming growth factors (TGFs), have been examined for OA treatment. 
However, the results are not optimistic since intra-articular injection of these growth factors 
could even enhance the inflammatory infiltration in damaged joints (Allen et al., 1990; Fava et al., 
1991; Hong et al., 2009). Meanwhile, multiple transcriptional factors that potentially suppress 
inflammation, such as nuclear factor of activated T cells 1 (NFATc1), NFATc2, and runt-related 
transcription factor 1 (RUNX1), have also be introduced in this arena against OA, while they 
do not hold much promise presently. For example, the function of NFATc proteins in arthritis is 
controversial (Yaykasli et al., 2009; Miclea et al., 2011; Greenblatt et al., 2013).

Another possibility for fighting OA is utilizing the extracellular matrix (ECM) molecules that 
naturally distribute in the articular cartilage. For example, fibromodulin (FMOD) is an ECM protein 
with multiple keratin sulfate side-chains that belongs to the small leucine-rich proteoglycan family 
(Plaas et al., 1990). It was first identified as a collagen-binding molecule broadly distributed in connective 
tissues, with particularly high expression in cartilage (Hedbom and Heinegard, 1989). In the past three 
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decades, in addition to the broad attention of its effects on collagen 
fibrillogenesis (Chen et al., 2010), muscle development (Lee 
et al., 2018a; Lee et al., 2018b), cell reprogramming (Zheng et al., 
2012; Li et al., 2016; Zheng et al., 2019), angiogenesis (Jian et al., 
2013; Zheng et al., 2014; Ao et al., 2017), wound healing (Zheng 
et al., 2017), and tumorigenesis (Pourhanifeh et al., 2019), the 
involvement of FMOD in cartilage development and maintenance 
as well as arthritis progression, especially in temporomandibular 
joint (TMJ) OA, has been investigated through world-wide 
collaboration. Here, we review the current research investigating 
FMOD and arthritis, and aim to provide novel insight into the 
potential use of FMOD for OA management.

SpATIOTEMpORAL DISTRIBUTION OF 
FMOD DURING CARTILAGE GROWTH 
AND DEVELOpMENT
An investigation that focused on mouse glenohumeral joints 
demonstrated that, at 12–13 days post-coitus when the limb 
buds are just condensing mesenchymal cells, FMOD was not 
detectable at the protein level (Murphy et al., 1999). Intense 
FMOD staining was first noticed at the surface of the scapular and 
humeral anlage intracellularly and pericellularly in the interzone 
at 14–15 days post-coitus (Murphy et al., 1999). Starting from 
17 days post-coitus, a strong FMOD signal was found in the 
ECM surrounding the chondrocytes at the surface of the joints 
and proliferating chondrocytes in the epiphyses of the humerus 
and scapula (Murphy et al., 1999). Meanwhile, during postnatal 
maturation until adulthood, FMOD was detected throughout the 
ECM of the developing articular surface and the growth plate but 
was more abundant in articular cartilage (Murphy et al., 1999). 
Since FMOD was associated with prechondrocytic mesenchymal 
cells in the interzone before joint cavitation and with developing 
articular chondrocytes in the maturing and young adult limbs, it 
has been proposed that FMOD may function in the early genesis 
of articular cartilage (Murphy et al., 1999).

It is worth noting that FMOD shared a similar temporospatial 
transcriptional pattern with type II collagen in mouse knee joints 
during postnatal development, while FMOD gene expression 
reached the maximum level at 1 month old (Saamanen et al., 
2001). FMOD transcription was restricted to chondrocytes 
and peaked in the proliferating zone and the early articular 
cartilage (Saamanen et al., 2001), which had been confirmed 
at the protein level by immunostaining (Murphy et al., 1999). 
In mature animals, in situ hybridization revealed that both 
pericellular and interterritorial cartilage at knee joints had high 
FMOD expression with the highest intensity in the middle and 
deep zones of the uncalcified cartilage (Saamanen et al., 2001). 
At 6 months old, FMOD staining decreased in the uncalcified 
cartilage but increased in the calcified cartilage (Saamanen et al., 
2001). FMOD was also detected in the hypertrophic chondrocytes 
of the secondary ossification centers and growth plate of mice 
at 10 days old, and transcription of FMOD was diminished and 
finally disappeared with maturation and aging of the trabecular 
epiphyses (Saamanen et al., 2001).

STRUCTURAL ALTERATION OF FMOD IN 
AGING AND ARTHRITIS pROGRESSION
In addition to its spatiotemporal distribution, FMOD’s 
structural heterogeneity was also noticed during articular 
cartilage growth and development. For instance, FMOD 
isolated from young articular cartilage carries neither α(2-6)-
linked N-acetylneuraminic acid nor α(1-3)-linked fucose in the 
N-linked keratan sulfate chains (Lauder et al., 1996). Meanwhile, 
an age-related increase has been observed in the abundance of 
both α(2-6)-linked N-acetylneuraminic acid and α(1-3)-linked 
fucose, but not the levels of galactose sulfation (Lauder et al., 
1998). Western blot showed FMOD-derived from fetal and 
neonatal articular cartilage (f/n-FMOD) as a diffused region 
with a relative molecular weight of 70–110 kDa (Cs-Szabo et al., 
1995; Roughley et al., 1996), while FMOD-derived from mature 
adult (a-FMOD) was a more discrete component with a relative 
molecular weight of 67 kDa (Cs-Szabo et al., 1995; Roughley 
et al., 1996)—larger than the FMOD core protein without post-
translational modifications (46 kDa). Interestingly, digesting 
f/n-FMOD with keratanase II or endo β-galactosidase reduces 
its molecular weight to a similar level of a-FMOD (Cs-Szabo 
et al., 1995). Thus, Roughley et al. argued that FMOD might 
predominantly exist in the proteoglycan form in juvenile 
cartilage tissues but is mainly in a glycoprotein form in the adult 
counterparts (Roughley et al., 1996).

Interestingly, FMOD is one of the small leucine-rich 
proteoglycans with the most significantly increased protein 
fragmentation in arthritis compared with macroscopically 
healthy articular cartilage from the age-matched donors (Melrose 
et al., 2008). In addition to the 59 kDa band, multiple small 
bands can be detected by Western blot when FMOD is isolated 
from articular cartilage of OA and rheumatoid arthritis patients 
(Cs-Szabo et al., 1995; Roughley et al., 1996; Melrose et  al., 
2008; Shu et al., 2019). Moreover, when using N-glycosidase to 
remove the sulfate chains from FMOD isolated from arthritic 
articular cartilage, several protein bands with the size of 43, 40, 
and 27 kDa were detected (Cs-Szabo et al., 1995). Therefore, 
arthritis progression may not only alter the degree and type of 
its carbohydrate substation but also lead to the breakage of the 
FMOD core protein.

Meanwhile, degradation of FMOD core protein was also 
observed in interleukin (IL)-1-challenged cartilage (Sztrolovics 
et al., 1999; Shu et al., 2019)—a representative model that elucidates 
the genetic and molecular pathogenesis of inflammation-related 
secondary OA (Kuyinu et al., 2016). The degradation of FMOD core 
protein was predominantly catalyzed by matrix metalloproteinases 
(MMPs) and ADAM metallopeptidases with thrombospondin 
type 1 motifs (ADAMTSs) (Kashiwagi et al., 2004; Shu et al., 2019). 
In vitro digestion of healthy human knee cartilage with MMP-13, 
ADAMTS-4, and ADAMTS-5 generated FMOD fragments of 
similar sizes as FMOD derived from OA cartilage without digestion 
(Shu et al., 2019). Notably, the fragmented FMOD is always detected 
by the antibody recognizing the N-terminal fragment of FMOD 
but not the one recognizing the C-terminal (Melrose et al., 2008; 
Shu et al., 2019). One possible explanation is that the C-terminus 
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is vulnerable to the fragmentation and not stably retained in the 
tissue, and substantially lost into the synovial fluid (Melrose et al., 
2008). Importantly, MMP-13 degradation of FMOD resulted in a 
fragment of 30 kDa, which was also detected in moderately and 
severely fibrillated cartilage, instead of healthy or slightly fibrillated 
cartilage (Monfort et al., 2006). These phenomena may support the 
hypothesis that the sensitivity of FMOD protein fragmentation is 
increased along with the severity of cartilage degradation.

LESSONS FROM FMOD DEFICIENT MICE 
FOR OA INVESTIGATION
FMOD-null (Fmod−/−) mice have distinct knee joints in comparison 
with their wildtype (WT) littermates at 36 weeks old (Gill 
et  al., 2002), accompanied by a significantly higher histological 
arthritis score (Ameye et al., 2002). In addition, serial sections 
through FMOD-null mice knees showed degeneration and joint 
remodeling histologically. More severe incidences of degeneration 
occurred in the area of the tibial condyles that are uncovered by 
the menisci, as these sites experience the highest loading stress, 
resulting in considerable loss of cartilage and bone thickness (Gill 
et al., 2002). Moreover, the menisci of FMOD-null mice had a 
markedly less sharp profile with more rounded edges, similar to 
FMOD-null ligaments, which were also more likely to be damaged 
compared to WT ligaments. The area of tibial articular cartilage 
was even more exposed due to degenerated menisci compared to 
that of the WT littermates (Gill et al., 2002). Furthermore, knee 
joints of Fmod−/− mice at 80 weeks old displayed full-depth lesions 
of articular cartilage and clusters of cells that were not seen in the 
knee joints of WT littermates (Gill et al., 2002).

As biglycan (BGN) and FMOD have overlapping and possible 
compensatory functions in the joints (Shirakura et al., 2017), 
BGN and FMOD double-knockout (Bgn−/0/Fmod−/−) mice exhibit 
an earlier onset of OA than Fmod−/− mice. Bgn−/0/Fmod−/− mice 
presented with an abnormal gait characterized by the decreased 
flexibility of knee and ankle joints (dragging leg), which was 
observed as early as 3 weeks old. Additionally, at 3 months old, the 
histological arthritis score of the Bgn−/0/Fmod−/− knee joints was 
significantly higher than that of the WT knee joints. However, 
the abnormal gait phenomena were observed in neither BGN nor 
FMOD single knockout mice (Ameye et al., 2002).

Moreover, BGN and FMOD are also highly expressed in the 
disc and articular cartilage of the TMJ (Wadhwa et al., 2005a). 
Bgn−/0/Fmod−/− mice developed accelerated OA accompanied by 
small vertical clefts in the condylar cartilage and partial disruption 
of the disc as compared to WT animals at 6 months old (Wadhwa 
et al., 2005b). At 18 months old, extensive cartilage erosion was 
visible in the Bgn−/0/Fmod−/− mice TMJ (Wadhwa et al., 2005b).

pOTENTIAL ROLES OF FMOD  
IN ARTHRITIS
There are several hypotheses about the possible roles of FMOD 
in arthritis. FMOD binds to collagens (Melching and Roughley, 
1999), and fragmentation of FMOD during arthritis progression 

may destabilize collagen fibrils, rendering them more susceptible 
to tissue collagenases (Kashiwagi et al., 2004). However, such 
a difference between WT and FMOD-null mice may not 
necessarily have immediately visible effects at the ultrastructural 
level in adults (Ameye et al., 2002).

Alternatively, FMOD may sequester TGF-β/BMP superfamily 
members in the ECM and thereby prevent their binding to the 
cellular receptors (Wadhwa et al., 2005a). For example, when 
treating the TMJ with BMP2, both catabolic and anabolic 
markers were more profoundly upregulated in the Bgn−/0/
Fmod−/− mice than WT animals (Shirakura et al., 2017). This 
observation suggests that BGN and FMOD could protect the 
condyle from BMP2-induced matric turnover (Shirakura et al., 
2017). Additionally, the sequestration of TGF-β1 in mandibular 
condylar chondrocyte ECM decreased in Bgn−/0/Fmod−/− mice. 
The overactive TGF-β1 signal transduction in Bgn−/0/Fmod−/− 
mice accelerated both production and degradation of type 
II collagen and aggrecan, and subsequently led to an overall 
imbalance in ECM turnover that favors cartilage degradation 
and the onset of OA (Embree et al., 2010).

FMOD may also function as a barrier preventing cell 
adhesion and subsequent cartilage damage. For example, 
FMOD administration dramatically prevents the adhesion of 
polymorphonuclear neutrophils and fibroblasts on articular 
cartilage surfaces (Noyori and Jasin, 1994; Mitani et al., 2001). 
This inhibition of cellular attachment may be attributed to the 
capability of FMOD to mask epitopes of cartilage collagen that 
face the joint cavity (Noyori and Jasin, 1994).

Furthermore, FMOD may participate in arthritis progression 
by directly manipulating inflammatory reactions. For instance, 
C1q and complement inhibitor factor H can directly bind to 
FMOD but in different regions (Akimoto et al., 2006). However, 
the deposition of the membrane attack complex and C5a release 
were lower in the presence of FMOD, presumably due to the 
formation of the FMOD-factor H complex (Akimoto et al., 
2006). Interestingly, IL-1 only stimulates the binding of C1q, but 
not factor H, to the N-terminal fragment of FMOD in cartilage 
(Akimoto et al., 2006). Thus, FMOD may balance the activation 
of the classical complement pathway: when maintained in 
its intact form, FMOD silences the complement cascade by 
binding factor H; on the other hand, when FMOD is degraded 
or fragmented, as seen in OA (Melrose et al., 2008; Shu et al., 
2019), the N-terminal FMOD segment binds to C1q and in turn 
activates the complement system to eliminate pathogens and 
damaged cells for tissue recovery and reconstruction.

FMOD has been used as an early marker of chondrogenesis 
(Barry et al., 2001). The expression level of FMOD is inversely 
correlated with the passage number of human chondrocytes in 
monolayer cultivation (Lin et al., 2008). In the TMJ cartilage 
of 3-month-old Bgn−/0/Fmod−/− mice, fewer proliferative 
chondrocytes were noticed in comparison to that of their 
WT counterparts (Wadhwa et al., 2005b). Moreover, Bgn−/0/
Fmod−/− mice presented with more chondrocyte apoptosis in 
the articular cartilage than WT mice at the same developmental 
stage (Wadhwa et al., 2005a). A recent study even showed 
that microRNA-340-5p negatively regulated OA chondrocyte 
proliferation while stimulating apoptosis by reducing FMOD 
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expression (Zhang et al., 2018). Nevertheless, the exact function 
of FMOD in chondrogenesis has yet to be fully uncovered.

FURTHER DIRECTION
As aforementioned, FMOD is a critical ECM component 
involved in articular cartilage development, growth, aging, 
and arthritis; however, the exact functions of FMOD during 
arthritis are still unclear. Take advantage of the development 
of the Cre/Lox as well as CRISPR-Cas9 recombination system, 
the specific functions of FMOD during arthritis progression 
could be deciphered in detail with tissue-specific knockout 
animal models. Recently, it has been reported that FMOD 
can be successfully produced and purified from the cell 
culture supernatant of stable recombinant CHO-K1 cells 
transfected with a plasmid harboring the human FMOD 
gene (Zheng et al., 2012; Li et al., 2016; Pourhanifeh et  al., 

2019). Since FMOD whole protein is now easy to produce, 
further in-depth investigations are warranted to reveal 
the underlying mechanism of action of FMOD as a new 
generation disease-modifying osteoarthritis drug candidate. 
Last but not least, the plasmid- or virus-mediated expression, 
as well as directly synthesis, could be utilized to identify the 
functional sequence(s) of FMOD that regulate(s) cartilage 
development and pathology, which would further advance the 
pharmacology application of FMOD.
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Healing of cutaneous wounds is a complex and well-coordinated process requiring
cooperation among multiple cells from different lineages and delicately orchestrated
signaling transduction of a diversity of growth factors, cytokines, and extracellular
matrix (ECM) at the wound site. Most skin wound healing in adults is imperfect,
characterized by scar formation which results in significant functional and psychological
sequelae. Thus, the reconstruction of the damaged skin to its original state is of concern to
doctors and scientists. Beyond the traditional treatments such as corticosteroid injection
and radiation therapy, several growth factors or cytokines-based anti-scarring products
are being or have been tested in clinical trials to optimize skin wound healing.
Unfortunately, all have been unsatisfactory to date. Currently, accumulating evidence
suggests that the ECM not only functions as the structural component of the tissue but
also actively modulates signal transduction and regulates cellular behaviors, and thus,
ECM should be considered as an alternative target for wound management
pharmacotherapy. Of particular interest are small leucine-rich proteoglycans (SLRPs), a
group of the ECM, which exist in a wide range of connecting tissues, including the skin.
This manuscript summarizes the most current knowledge of SLRPs regarding their
spatial-temporal expression in the skin, as well as lessons learned from the genetically
modified animal models simulating human skin pathologies. In this review, particular focus
is given on the diverse roles of SLRP in skin wound healing, such as anti-inflammation,
pro-angiogenesis, pro-migration, pro-contraction, and orchestrate transforming growth
factor (TGF)b signal transduction, since cumulative investigations have indicated their
therapeutic potential on reducing scar formation in cutaneous wounds. By conducting this
review, we intend to gain insight into the potential application of SLRPs in cutaneous
wound healing management which may pave the way for the development of a new
generation of pharmaceuticals to benefit the patients suffering from skin wounds and
their sequelae.

Keywords: skin, skin wound healing, small leucine rich proteoglycans, extracelluar matrix, fibromodulin, decorin,
biglycan, lumican
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INTRODUCTION

The skin, comprised of the epidermis, dermis, and deeper
subcutaneous tissue, is the largest organ of the body, and
functions as the first line of defense from external assaults
(Proksch et al., 2008). Surgery and trauma in adults often
result in wounds, which can cause the formation of refractory
scars [i.e., hypertrophic scars and keloids, which are specific to
humans (Baker et al., 2009)] with significant functional and
psychological consequences (Bayat et al., 2003) that reduce the
quality of life of individuals (Brown et al., 2008). Compared to
the normal scars that can be much smaller than the original
wound, keloids are defined as pathologic scars that extend
beyond the area of the original wound, while hypertrophic
scars are restricted to the wound borders (Figure 1) (Atiyeh
et al., 2005; Baker et al., 2009; Naylor and Brissett, 2012).
Consequently, annual spending on managing unwanted
scarring exceeds $20 billion in the United States (Block et al.,
2015). Local corticosteroid injection and radiation therapy are
the current standards of care for patients who suffer from scar
formation (Tziotzios et al., 2012); however, neither method
shows consistent efficacy and often results in undesirable,
sometimes severe, side effects (Gauglitz et al., 2011). For
instance, local corticosteroids injection is known to cause
reduced wound strength with increased risks of dehiscence,
pigmentation changes, granulomas, and skin atrophy (Chang
and Ries, 2001; Bayat et al., 2003); while radiation therapy is
associated with growth inhibition, decreased wound strength,
and increased long-term cancer risks (Haubner et al., 2012).

To date, several anti-scarring products targeting growth
factors involved in the cutaneous wound healing process are
being, or have been, tested in clinical trials for wound healing
management. These include Juvista™ [recombinant
transforming growth factor (TGF)b3, traditionally considered
as an “antifibrotic TGFb isoform” ; clinicaltrials.gov:
NCT00742443], interleukin (IL)10 (clinicaltrials.gov:
NCT00984646) (Kieran et al., 2013; Kieran et al., 2014),
Frontiers in Pharmacology | www.frontiersin.org 220
DSC127 (NorLeu3-ang io tens in ; c l in i ca l t r i a l s . gov :
NCT01830348), s iRNA (RXI-109; cl inicaltr ials .gov:
NCT02030275) and antisense oligonucleotides (EXC 001;
clinicaltrials.gov: NCT01038297) that downregulate the
expression of connective tissue growth factor (CTGF).
However, most of these products failed to demonstrate efficacy
in human trials. For instance, Juvista™ failed in phase III clinical
trial in 2011 (McKee, 2011); Derma Sciences reported to stop all
development work with DSC127 in scar reduction in 2015
(Levin, 2015); IL10 showed no efficacy of scar reduction in
humans of African continental ancestral origin (Kieran et al.,
2014); and clinical trials appear to have been halted for EXC001
(Pfizer, 2011) as there have been no public updates since 2012;
Relatively, RXI-109 seems to have some benefits on the visual
appearance of scar tissue in phase II clinical trials, but it requires
multiple post-surgery injections, which bring higher therapeutic
costs and increase the patient’s suffering (Galiano, 2015). As a
consequence, no drugs have been officially approved for the
prevention and reduction of cutaneous scarring.

The extracellular matrix (ECM), composed of numerous
macromolecules, not only functions as the critical structural
components but also plays essential roles in modulating vital
cellular processes, such as adhesion (Jian et al., 2013; Desseaux
and Klok, 2015; Shih et al., 2016), migration (Estrach et al., 2011;
Daley and Yamada, 2013; Jian et al., 2013; Scarpa and Mayor,
2016; Zheng et al., 2017), proliferation (Wight et al., 1992; Leiton
et al., 2015; Cheng et al., 2016), differentiation (Jian et al., 2013;
Hoshiba et al., 2016; Zheng et al., 2017), apoptosis (Ii et al., 2006;
Oskarsson et al., 2015; Zhang et al., 2015), and cell fate
determination (Bi et al., 2007; Zheng et al., 2012; Li et al.,
2016; Zheng et al., 2019). Consequently, the ECM-based
pharmacotherapeutics have been considered for treating
fibrotic diseases (Ye et al., 2007), osteoarthritis (Clegg et al.,
2006), osteoporosis (Stoch and Wagner, 2008), and malignancies
(McKenzie, 2007). The most abundant ECM protein in
connective tissues, collagen, forms the highly organized, three-
dimensional macrostructure of the healthy skin (Ruszczak, 2003;
Davison-Kotler et al., 2019). The initial formation and
maintenance of normal, healthy collagenous matrix alignment
require proteoglycans (PGs) (Chen and Birk, 2013), which are
another broadly distributed component of the ECM in
connective tissues to provide resilience, viscoelasticity, and a
suitable environment for cellular function and development
(Iozzo and Schaefer, 2015). Consisting of a core protein
covalently attached with one or more glycosaminoglycan
(GAG) chains, PGs play a pivotal role in the proper alignment
of fibrous and elastic components in the skin and control the
bioavailability of several growth factors in the ECM surrounding
cells to stimulate the skin turnover and repair (Mary and James,
2015). Based on their structure, location, and properties, PGs can
be divided into 4 classes: intracellular PGs, basement membrane
PGs, cell-surface PGs, and extracellular PGs (Vynios, 2014; Iozzo
and Schaefer, 2015). In this review we are primarily concerned
with the extracellular PGs, which are known to play a role in skin
wound healing. For instance, a large, aggregating and water-
retaining extracellular PG, versican, is widely detected in the skin
FIGURE 1 | A diagram of typical appearances of normal scar, hypertrophic
scar, and keloid. Unlike that the normal scar is often smaller than the original
wound, keloids extend beyond the edge of the original wound, while
hypertrophic scars are restricted to the wound borders. The black dotted line
demarcates the area of the original wound.
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(Carrino et al., 2011). Versican accumulation in the pericellular
matrix leads to the fibroblast-myofibroblast transition in the
dermis by knocking out a versican-degrading protease [ADAM
metallopeptidase with thrombospondin type 1 motif (ADAMTS)
5] (Hattori et al., 2011). This indicates that versican
accumulation may be beneficial for skin wound healing since
the fibroblast-myofibroblast transition is pivotal for wound
contraction. Aggrecan is another extracellular PG that was
initially found in the cartilage and is absent in normal skin but
accumulates in scar tissue (Velasco et al., 2011; Vynios, 2014;
Mary and James, 2015). Aggrecan accumulation may hinder cell
migration to the wound and prevent the transition of fibroblast
progenitor cells to mature fibroblasts (Velasco et al., 2011). These
studies suggest that aggrecan may be a potential target for
reducing scar formation.

Besides versican and aggrecan, small leucine-rich
proteoglycans (SLRPs), constitute another large family of
extracellular PGs (Pietraszek-Gremplewicz et al., 2019) that
play a pivotal role in collagen fibril growth, fibril organization,
and ECM assembly in healthy skin (Merline et al., 2009; Chen
and Birk, 2013). A typical SLRP has a core protein of 40–60 kDa
with 10–12 leucine-rich repeat (LRR) motifs (Iozzo, 1999). Each
LRR motif contains 20–29 amino acids, in which an 11-amino
acid hallmark, LXXLXLXXNXL (X being any amino acid) can be
identified (Iozzo, 1998; McEwan et al., 2006; Bella et al., 2008).
Each LRR motif generally forms a curved conchoid structure in
which LXXLXLXXNXL builds a b-strand, while b-strands from
the LRRs assemble into a b-sheet that constitutes the concave
surfaceof the entire SLRPcoreprotein (Figure2) (Scott et al., 2004).
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The core proteins of SLRPs are thought to carry a two-fold
biological function in the skin: (1) Regulating collagen
fibrillogenesis, fibril organization, and ECM assembly to
control tissue strength and biomechanics (Rada et al., 1993),
which is prerequisite for skin development (Smith and Melrose,
2015); (2) modulating the bioactivities of a myriad of cytokines,
chemokines, ligands, and receptors (Tillgren et al., 2009; Chen
and Birk, 2013; Hultgardh-Nilsson et al., 2015) that orchestrate
the wound healing process (Barrientos et al., 2008). Besides,
members of the SLRP family generally obtain GAG modifications
post-translationally. The multitude of substitution sites on the
SLRP core protein, along with variable glycosylation states, result
in a variety of SLRPs which can further facilitate their
interactions with various cell surface receptors, chemokines,
cytokines, and growth factors (Kram et al. , 2017).
Abnormalities in SLPR expression or structure often alter
matrix integrity and lead to dysfunctional matrix assembly in
the skin, like those found in human pathological situations and
SLRP-deficient animal models (Chen and Birk, 2013). For
example, expression and structural changes of some SLRPs
were noticed during skin development (Carrino et al., 2011),
which was summarized below. Taken together, SLRPs are not
only important for structural establishment of the ECM but also
crucial in a variety of biological and pathological processes, such
as the remodeling of the ECM during cutaneous injury and
repair (Kalamajski and Oldberg, 2010; Karsdal et al., 2013; Tracy
et al., 2016; Karamanou et al., 2018).

This review aims at summarizing all relevant available
information about the spatial-temporal expression pattern of
FIGURE 2 | The crystal structure of the DCN. DCN is the archetypal SLRP [the structure was retrieved from Protein Data Bank (PDB), ID: 1XKU] (Scott et al., 2004).
DCN is a single-domain structure with a righthanded, curved solenoid fold characteristic of LRR proteins. The long b-sheet that forms the inner, concave face is
comprised of 14 b-strands. The penultimate LRR that extends laterally from the main body of the molecule is referred to as the ‘ear’ (yellow) repeat, which is thought
to be a distinctive feature of the SLRP family.
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SLRPs in the skin, their relationship with human skin
pathologies, and current understandings of their roles in skin
wound healing to gain insights into their potentials as wound
healing management pharmaceuticals.
THE SLRPS IN NORMAL AND DISEASED
SKIN

Since decorin (DCN) was identified as the first SLRP (Krusius
and Ruoslahti, 1986), many SLRP family members have been
recognized in the last 30 years. Currently, 18 SLRPs have been
divided into 5 classes based on the homologies at the genomic
and protein level, the feature of the N-terminal cysteine residues
with defined spacing, and chromosomal organization (Fisher
et al., 1989; Henry et al., 2001; McEwan et al., 2006; Schaefer
and Iozzo, 2008). For instance, SLRPs detected in the skin are
predominantly Class I-III, which share a distinctive characteristic
at the C-terminal, called an “ear” repeat (Figure 2). The “ear”
repeat is the penultimate LRR that forms the most extended loop
laterally from the convex face of the entire molecule (McEwan
et al., 2006; Chen and Birk, 2011). The “ear” spreads from the first
conserved C-terminal cysteine residue to the cysteine residue of
the last LRR. Importantly, residues in the “ear” are not highly
conserved among different SLRPs, which indicates a possible
relationship to their specific functions. Consequently, the “ear”
repeat is thought to maintain the configuration of the core
protein and affect its ligand-binding ability (Chen and Birk,
2011; Chen and Birk, 2013). In comparison, Class IV and V
SLRPs lack the “ear” repeat and are categorized as non-canonical
classes of SLRPs (Schaefer and Iozzo, 2008).

Class I SLRPs
Five SLRP members are identified in this class, including DCN
(Danielson et al., 1997), biglycan (BGN) (Corsi et al., 2002),
asporin (ASPN) (Henry et al., 2001), extracellular matrix protein
2 (ECM2) (Nishiu et al., 1998), and extracellular matrix protein
X (ECMX) (Iozzo and Schaefer, 2015). DCN, BGN, and ASPN all
present in the skin with different transcriptional patterns, and
ECM2 mRNA expression can also be detected in the skin
(Maquart et al., 2010).

Decorin (DCN)
Containing a 36 kDa core protein with single chondroitin sulfate
(CS) or dermatan sulfate (DS) chain (Roughley, 2006), DCN has
been considered as the predominant interstitial PG in human
skin (Carrino et al., 2011; Li et al., 2013). In the skin, DCN has
been detected mostly in the reticular dermis, but absent from the
papillary dermis. Minor DCN expression was also found in the
epidermis (Fleischmajer et al., 1991; Lochner et al., 2007). Since
DCN comprises most of the type I collagen-binding PGs in
human skin (Li et al., 2013), it is thought to play a critical role in
the regulation of fibril structure in the skin.

In fetal rat skin, transcription of DCN increases between
embryonic days 16.5 (E16.5) and E18.5 (term, 21.5 days) which is
correlated to the transition from fetal-type scarless healing to
adult-type scarring period in the skin (Soo et al., 2000;
Frontiers in Pharmacology | www.frontiersin.org 422
Zheng et al., 2016). In human skin, the level of DCN
accelerates with aging (Carrino et al., 2000; Carrino et al.,
2003). For example, a clinical study showed that the
transcriptional level of DCN in skin biopsies from older adult
donors (61–68 years) was twofold greater than that of their
younger counterparts (25–35 years) (Lochner et al., 2007). In
addition to its elevated expression, the molecular weight of DCN
in older human skin was found to be significantly smaller due to
the shortened GAG chains (Li et al., 2013). Similar results have
been replicated in rats (Ito et al., 2001; Nomura et al., 2003).
Importantly, the cutaneous wound healing process of the elderly
is much slower, while all healing phases differ from their younger
counterparts, including delayed inflammatory response, delayed
proliferative response, and much weaker remodeling phase
(Gerstein et al., 1993; Gould et al., 2015). Therefore, the
elevated expression and reduced weight of DCN in the skin of
the aged population may be associated with their functional
alterations, although the underlying mechanism is not fully
elucidated and warrants further investigations. Moreover,
altered expression of DCN has been detected in a number of
human diseases with skin phenotypes, including decreased DCN
in fibroblasts in patients with neonatal Marfan syndrome
(Raghunath et al., 1993), increased DCN in fibroblasts from
patients with localized scleroderma (Izumi et al., 1995), and
increased DCN in fibroblasts from patients with systemic
sclerosis (Westergren-Thorsson et al., 1996). Targeted
disruption of DCN in mice results in abnormal collagen fibril
morphology and skin fragility with markedly reduced tensile
strength (Danielson et al., 1997). Another study showed that
DCN and BGN double-knockout (KO) mice directly resemble
the rare progeroid variant of human Ehlers-Danlos syndrome
(EDS), in which skin fragility and progeroid changes in the skin
(reduced hypodermis) are dramatically displayed (Corsi et al.,
2002). Furthermore, in a progeroid patient carrying two point
mutations in beta-1,4-galactosyltransferase 7 (B4GALT7), only
50% of the DCN exhibit GAG side-chain substitution on their
core protein, which is thought to be a major mechanistic cause
for the skin and wound healing defects observed in this patient
with the progeroid form of EDS (Gotte and Kresse, 2005). These
investigations indicate that DCN is crucial to the normal
function of the skin and maybe a potential candidate for
pharmacological development in the treatment of some
skin diseases.

Biglycan (BGN)
Anotherwell-studiedClass I SLRP isBGN.BGNusually contains a
38 kDa core protein attached with two CS/DS chains; however,
nonglycanated forms of BGN have also been detected in human
intervertebral discs (Johnstone et al., 1993). While both BGN and
DCN belong to Class I SLRPs and are able to bind with type I
collagen fibrils directly, their spatial expression in skin is very
different. For instance, DCN is mainly synthesized by interstitial
fibroblasts,whereasBGNis secretedbybothdermal andepidermal
cells (Li et al., 2013). Besides, BGN is present in the connective
tissue sheath of the hair follicle (Malgouries et al., 2008).

Similar to DCN, decreased BGN expression was also found in
fibroblasts isolated from the skin of systemic sclerosis patients
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(Westergren-Thorsson et al., 1996). Although BGN deficiency in
mice also induces changes in collagen fibril morphology in the
skin and leads to the mild cutaneous abnormalities with thinning
of the dermis, skin fragility of BGN-deficient mice is not
noticeably altered (Corsi et al., 2002). Corsi et al. claimed that
the skin abnormalities in BGN-deficient mice were more subtle
in comparison with DCN-deficient mice (Corsi et al., 2002),
which in turn resulted in that research was not focused on BGN
and its role in skin and wound healing.

Asporin (ASPN)
Unlike general SLPRs, ASPN contains a 43 kDa core protein, but
lacks a GAG side chain (Lorenzo et al., 2001) and carries a
polymorphic calcium-binding polyaspartate sequence
(Kalamajski et al., 2009). ASPN has been found in dermis,
perichondrium and periosteum, tendon, and eye sclera (Kou
et al., 2007). ASPN-null mice exhibit an increased skin
mechanical toughness due to the altered GAG composition
and structure in the ECM (Maccarana et al., 2017). However,
ASPN has not been studied in depth for its involvement in skin
development and cutaneous wound healing.

Class II SLRPs
To date, this class contains 5 members that can be divided into 3
subgroups based on their protein homology. Subgroup A
consists of fibromodulin (FMOD) (Velez-Delvalle et al., 2008)
and lumican (LUM) (Yeh et al., 2010), subgroup B includes
keratocan (KERA) (Corpuz et al., 1996) and proline and arginine
rich end leucine rich repeat protein (PRELP) (Grover and
Roughley, 2001), and subgroup C is comprised of
osteomodulin (OMD) (Tasheva et al., 2002).

Fibromodulin (FMOD)
FMOD has a 42 kDa core protein with up to 4 N-linked keratan
sulfate (KS) attached, which shares significant sequence
homology with DCN and BGN (Antonsson et al., 1993). In the
skin, FMOD is predominately secreted by dermal fibroblast and
is also expressed by human epidermal keratinocytes in vitro and
detected in the human epidermis in vivo (Velez-Delvalle
et al., 2008).

Unlike other SLRPs, expression of FMOD significantly
decreases during the transition from fetal-type scarless repair
to adult-type repair with scaring in a fetal rat skin model (Soo
et al., 2000; Zheng et al., 2016). Moreover, our recent study
demonstrated that FMOD is essential for fetal-type scarless
cutaneous wound healing by loss- and gain-of-function studies
in mouse and rat models (Soo et al., 2000; Zheng et al., 2016).

Although FMOD-null mice showed no apparent defects in
the unwounded skin (Chakravarti, 2002), a wider distribution of
collagen fibril diameters accompanied with enlarged interfibrillar
spaces between collagen fibrils was observed (Khorasani et al.,
2011). Meanwhile, thinner collagen fibrils and abnormal fibers
with increased deposition of LUM were also found in the
tendons of FMOD-null mice (Svensson et al., 1999). As
expected, FMOD and LUM double-deficient mice showed
more obvious abnormalities, such as reduced body size,
increased skin hyperextensibility, escalated gait abnormality,
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intensified joint laxity, and accelerated age-dependent
osteoarthritis resembling EDS (Jepsen et al., 2002). These
abnormal phenotypes may indicate a functional overlap
between FMOD and LUM in modulating the ECM and cellular
behavior in a broad range of tissues (Chakravarti, 2002; Jepsen
et al., 2002). It is known that the re-organization of ECM is
necessary during the healing process since pathological scarring
occurs when the ECM is not appropriately reformed. Thus, the
fact that FMOD is essential for regular collagen fibril
organization in connective tissues suggests that FMOD may
play a pivotal role in skin wound healing.

Lumican (LUM)
LUM was first isolated from the chicken cornea (Blochberger
et al., 1992). LUM has a 38 kDa core protein with 4 N-linked sites
within the LRR domain of the core protein that can be
substituted by KS (Scott, 1996). It is expressed in the
subepithelial dermis by dermal fibroblasts (Ying et al., 1997;
Chakravarti et al., 1998). Interestingly, LUM is also secreted by
melanoma cells but not normal melanocytes (Sifaki et al., 2006).

Unlike FMOD whose expression is reduced from early/mid-
gestation when skin wounds heal scarlessly to late-gestation
when skin wounds end up with adult-type scarring, LUM
expression in fetal skin is upregulated during the same
transition period, much like DCN (Zheng et al., 2016). On the
contrary, a significant negative correlation between LUM
transcriptional levels in human skin fibroblasts and donors’ age
was observed in a study involving 1-month- to 83-year-old
participants (Vuillermoz et al., 2005). The steady decline in
LUM expression accompanied by the upregulation of DCN
expression with aging indicates that these changes may be
contributing to the functional impairment of fibroblasts during
aging, such as decreased fibroblast growth and survival (Campisi,
1998; Brown, 2004; Vuillermoz et al., 2005). Interestingly, similar
to DCN-deficient mice, LUM-null mice display skin laxity and
fragility resembling EDS (Chakravarti et al., 1998). It is worth
noting that wounds in FMOD-null mice have delayed dermal
fibroblast migration but accelerated epidermal migration
accompanied by elevated LUM expression (Zheng et al.,
2014b), indicating FMOD and LUM may predominately
function on fibroblast and keratinocytes, respectively. Thus, in
comparison with FMOD whose biopotency is mainly assessed on
dermal functions (Zheng et al., 2014a; Zheng et al., 2014b; Zheng
et al., 2016), the investigation of LUM is more focused on the
cornea in which epidermal migration plays more essential roles
during wound healing (Saika et al., 2000; Seomun and Joo, 2008;
Frikeche et al., 2016).

Keratocan (KERA)
KERA is a 60–70 kDa KS substituted member of the SLRP family
(Mary and James, 2015). It is mainly abundant in the cornea and
detected in much lesser amount in the skin as a non-sulfated
glycoprotein (Corpuz et al., 1996). The variety of the abundance
and GAG structure of KERA found in different tissues suggests
that its function be tissue-dependent. For example, in the cornea,
KERA with long, highly sulfated KS chains has been thought to
be essential for corneal transparency (Kao and Liu, 2002). Thus,
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similar to LUM (Yamanaka et al., 2013), KERA is also a potential
target for cornea healing therapies (Kao and Liu, 2002; Carlson
et al., 2003; Liu et al., 2003; Chen et al., 2011). However, its role in
the skin is still ambiguous for delineating.

Proline and Arginine Rich End Leucine Rich Repeat
Protein (PRELP)
PRELP contains a 55-kDa core protein with no GAG and an N-
terminal region which is highly unique, conserved, and rich in
arginine and proline (Bengtsson et al., 2000). It functions as a
molecule by anchoring basal membranes to the underlying
connective tissue (Grover and Roughley, 1998; Grover and
Roughley, 2001). For example, PRELP is expressed in the
basement membrane between the epidermis and the dermis in
the skin (Bengtsson et al., 2002). Overexpression of PRELP inmice
leads toreducedcollagenfiberbundlecontentandsize in thedermis
and decreases the thickness of the hypodermal fat layer in the skin
(Grover et al., 2007), which somewhat resembles the symptoms of
Hutchinson–Gilford progeria (Mounkes et al., 2003). In addition,
PRELP can bind to perlecan (Bengtsson et al., 2002), which is
thought to be essential for epidermal formation by regulating the
survival of keratinocytes (Sher et al., 2006). This indicates that
PRELPmay participate in regulating the function of keratinocytes,
but further studies are needed to elucidate it. However, a clear
application of PRELP for wound healing is still lacking.

Interestingly, in comparison with Class I SLRPs, most Class II
SLRPs seem to have a more executive function on epidermal
keratinocytes. The one exception is FMOD, which has proven to
be critical for maintaining the normal function of dermal
fibroblasts (Zheng et al., 2016), as well as endothelial cells
(Adini et al., 2014; Zheng et al., 2014a), like DCN and BGN.
The response to different cell types may pave the fundamental for
developing combination therapies of SLRPs to target both
dermal and epidermal cells simultaneously to maximize their
complementary biopotency and thus to optimize the skin wound
healing outcome.

Class III SLRPs
To date, osteoglycin (OGN, also known as mimecan) (Tasheva
et al., 2002), epiphycan (EPYC) (Johnson et al., 1997) and opticin
(OPTC) (Reardon et al., 2000) constitute this class, which is
characterized by a relatively low number of LRRs (7 LRRs)
compared to the classic 10-12 LRRs of other classes.

OGN was first identified as a 25 kDa KS SLRP in the cornea,
and a 36 kDa OGN protein without KS chains was also detected
in other connective tissues including aorta, sclera, skin, cartilage,
the vagus nerve, and in lesser amounts in the cerebellum, kidney,
intestines, myocardium, and skeletal muscle (Funderburgh et al.,
1997). As for its role in the skin, OGN-deficient mice display skin
with moderately reduced tensile strength, which is correlated to
the presence of thicker collagen fibrils that possess marked
increases in collagen fibril diameter. OGN also plays a pivotal
role in collagen fibrillogenesis in the skin (Tasheva et al., 2002).
Although transcription of EPYC and OPTC have been detected
in the skin (Reardon et al., 2000; Takanosu et al., 2001; Maquart
et al., 2010), their biological function in the skin is unclear.
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Class IV and Class V SLRPs
Class IV and V SLRPs are considered to be non-canonical classes
of SLRPs. These include chondroadherin (CHAD) (Haglund
et al., 2011), nyctalopin (NYX) (Bech-Hansen et al., 2000),
tsukushi (TSKU) (Ohta et al., 2004), podocan (PODN) (Ross
et al., 2003), and recently identified podocan like 1 (PODNL1)
(Mochida et al., 2011). The function and spatial-temporal
expression patterns of these SLRPs in the skin are rarely
studied. A previous study detected CHAD mRNA in
keratinocytes, and NYX mRNA in keratinocytes and skin
fibroblasts (Maquart et al., 2010). Future studies, not
necessarily limited to the skin, are required to reveal their
biological functions.

The expression and distribution of known SLRPs in the skin,
as well as the abnormalities observed in SLRP-deficient mice, are
summarized in Table 1.
THE SLRPS IN SKIN WOUNDS AND
WOUND HEALING

As a protective barrier shielding the human body from the
environment, the skin plays a pivotal role in maintaining
physiological homeostasis of the human body. Any lesion
breaking the skin barrier will make the organism vulnerable to
infections, thermal disorders, and fluid loss (Sorg et al., 2017).
Skin wound healing is a dynamic, complex and tightly regulated
process comprised of hemostasis, inflammation, proliferation,
remodeling, and maturation phases, in which various cell types
and mediators are recruited at the wound site, and complex
interactions exist between different cells and the ECM (Martin,
1997; Diegelmann and Evans, 2004; Gibran et al., 2007; Artlett,
2013). During the process of wound healing, the ECM not only
provides structural support for the tissues, but also serves as a
platform for cells and mediators that regulates inter/intracellular
signaling (Ghatak et al., 2015). As essential components of the
ECMs, many SLRPs participate in a diversity of signaling
pathways to regulate cellular activities during the wound
healing process.

Inflammation
Following an injury, skin cells are exposed to acute inflammatory
signals such as pathogen-associated molecular patterns (PAMPs)
or damage-associated molecular patterns (DAMPs) (Takeuchi
and Akira, 2010; Strbo et al., 2014). These patterns can be
recognized by toll-l ike receptors (TLRs) to initiate
inflammation. Leukocytes are attracted to the site of injury,
accompanied by elevated levels of pro-inflammatory cytokines,
and thus amplify the inflammatory response (Eming et al., 2014;
Vestweber, 2015). Gradually, macrophages will display a
transition from the M1 subset (phagocytic activity and
production of pro-inflammatory cytokines) (Galli et al., 2011;
Sindrilaru and Scharffetter-Kochanek, 2013) to the M2 subset
(reparative activity with the synthesis of anti-inflammatory
mediators and the production of the ECM) (Brancato and
Albina, 2011; Sindrilaru and Scharffetter-Kochanek, 2013).
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This switch corresponds to the transition from the inflammation
stage to the proliferation stage in the wound healing process.

Although there have been studies investigating the effects of
SLRPs on the inflammatory response, most do not specifically
focus on skin wound healing. Several studies have shown that
DCN, BGN, and LUM can interact with TLR2 and/or TLR4
signaling pathways in innate immune responses to combat
microbial pathogens. For instance, in mouse peritoneal
macrophages, DCN induces tissue necrosis factor (TNF) and
programmed cell death 4 (PDCD4) production through TLR2
and TLR4, which enhances the proinflammatory effects of
lipopolysaccharides (LPS), a vital constituent of Gram-negative
bacteria, which can trigger a robust immune response (Merline
et al., 2011). BGN has also been proven to be a proinflammatory
factor in mouse peritoneal macrophages by regulating the same
Frontiers in Pharmacology | www.frontiersin.org 725
signal pathways as DCN (Schaefer et al., 2005). Like DCN and
BGN, LUM enhances host immune responses to LPS via TLR4 in
mouse peritoneal macrophages (Wu et al., 2007). Unsurprisingly,
LUM-null mice are hypo-responsive to LPS-induced septic shock
with reduced pro-inflammatory cytokines production (Wu et al.,
2007). Also, LUM has been shown to regulate inflammation in
the development of colitis in mice (Lohr et al., 2012), and
accelerate LPS-induced renal injury in mice via TLR4-nuclear
factor kB (NFkB) pathway (Lu et al., 2015). Moreover, in LPS-
induced wounds of the cornea, no induction of TNF or IL1b, and
reduced infiltration of neutrophils and macrophages were found
in LUM-null mice (Vij et al., 2005).

In contrast to their pro-inflammatory functions in the
aforementioned infection scenario, SLRPs may act as anti-
inflammatory factors to inhibit excessive inflammation during
wound healing in the skin. For example, FMOD-null mice
exhibit elevated and prolonged inflammatory infiltration in the
skin wound area, accompanied by delayed reepithelialization
(Zheng et al., 2014b). Similarly, LUM-deficient mice display an
increased inflammatory macrophage density with delayed
cutaneous wound healing (Yeh et al., 2010). Furthermore,
TSKU has been detected in fibroblasts, myofibroblasts, and
macrophages during skin wound healing in mice. Likewise,
loss of TSKU causes increased TGFb1 expression and excess
inflammation (Niimori et al., 2014). Collectively, these studies
suggest that SLRPs may play a diverse role in inflammatory
response regulat ion, which may highly depend on
the microenvironment.

Angiogenesis
The process of angiogenesis occurs accompanied by fibroblast
proliferation when endothelial cells migrate to the wound site
and provide the nutritive perfusion for fibroblasts and epithelial
cells during the healing process (Martin, 1997; Demidova-Rice
et al., 2012; Sorg et al., 2017). The involvement of SLRPs has been
identified in the angiogenesis of wound healing, tumorigenesis,
and other inflammatory processes. For instance, DCN exhibits
antiangiogenic activities during cutaneous wound healing, while
higher DCN expression was detected in human benign tumors
vs. malignant vascular tumors (Jarvelainen et al., 2006; Salomaki
et al., 2008). Meanwhile, impaired angiogenesis was found in the
injured cornea of DCN-null mice (Schonherr et al., 2004), and
repressed angiogenesis was also present in some tumors
associated with reduced DCN expression (Nayak et al., 2013;
Chui et al., 2014). These studies suggest that DCN can be either
stimulatory or suppressive for angiogenesis, which may be
related to the physiologic and pathologic conditions of tissues
(Järveläinen et al., 2015).

BGN has been shown to have a proangiogenic effect in
fracture healing (Berendsen et al., 2014; Myren et al., 2016),
colon cancer (Xing et al., 2015), and tumor endothelial cells
(Yamamoto et al., 2012), though its role in angiogenesis during
skin wound healing is not clear.

FMOD was found to promote angiogenesis during cutaneous
wound healing (Zheng et al., 2011; Zheng et al., 2014a).
Particularly, FMOD was found to accelerate human umbilical
vein endothelial cell adhesion and spreading, actin stress fiber
TABLE 1 | The expression and distribution of SLRPs and abnormalities of knock
out and overexpression mice in the skin.

SLRP Expression and
distribution in the

skin

Mice model Abnormalities in the
skin

Decorin Most expression in
the dermis and
minor expression in
the epidermis

Targeted
disruption of
decorin in exon2

Skin fragility with
markedly reduced
tensile strength

Biglycan Expression in the
dermis, the
epidermis and the
sheath of hair follicle

Targeted
disruption of
biglycan in
exon2

Mild skin abnormalities
with thinning of the
dermis but without
distinct skin fragility

Decorin and
Biglycan

Not applicable Decorin and
biglycan double-
knockout mice

Skin fragility and
progeroid changes in
the skin (reduced
hypodermis)

Asporin Expression in the
dermis

Targeted
disruption of
asporin in exons
2–3

Increased skin
mechanical toughness

Fibromodulin Expression in the
dermal fibroblast
and human
epidermal
keratinocytes in
vitro and the
epidermis in vivo

Targeted
disruption of
fibromodulin in
exon2

No overt defects in skin,
but larger collagen fibrils
and less orderly packed
collagen fibrils with
increased interfibrillar
space

Lumican Expression in the
dermis

Targeted
disruption of
lumican in
exon2

Skin laxity and fragility

Fibromodulin
and Lumican

Not applicable Fibromodulin
and lumican
double-
knockout mice

Additional gross skin
phenotypes including
skin hyperextensibility

PRELP Expression in the
basement
membrane between
the epidermis and
the dermis

Overexpression
of PRELP
transgenic mice

Decreased collagen fiber
bundle content and size
in the dermis, and the
thinner hypodermal fat
layer

Osteoglycin Expression in the
skin

Targeted
disruption of
osteoglycin in
exon2

Reduction in the tensile
strength of the skin,
thicker collagen fibrils
and a significant
increase in collagen fibril
diameter in the skin
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formation, and eventually tube-like structure network
establishment in vitro (Jian et al., 2013). Furthermore, it has
been confirmed that FMOD stimulates angiogenesis in various in
vivo systems, such as neovascularization, wound healing and
Matrigel™ plug assays. FMOD was also found to enhance
vascular sprouting during normal retinal development (Adini
et al., 2014). FMOD also promotes tumor angiogenesis of small
cell lung cancer by upregulating angiogenic factor expression
(Ao et al., 2017). Overall, these studies constitute evidence that
FMOD displays angiogenic biopotency in numerous
biological processes.

On the other hand, LUM was found to inhibit angiogenesis
by interfering with integrin a2b1 activity and repressing matrix
metalloproteinase (MMP)14 expression in vivo (Niewiarowska
et al., 2011). LUM has also been identified as an inhibitor for
tumor angiogenesis (Albig et al., 2007; Brezillon et al.,
2009; Williams et al., 2011). Interestingly, angiogenesis was
not altered in LUM-deficient mice in aortic ring assays,
Matrigel™ plugs, or healing wound biopsies (Sharma et al.,
2013). Thus, LUM is thought to exhibit an antiangiogenic
effect in restricted circumstances, possibly only in some specific
tumor microenvironments.

In summary, these studies paint the picture of SLRPs playing
a wide range of roles in the angiogenesis of various biological
processes. Specifically, FMOD is the only SLRP confirmed to
enhance angiogenesis during skin wound healing, suggesting that
it may have therapeutic potential in cutaneous healing of poorly
vascularized wounds, such as in the scenarios of diabetic wounds.

Fibroblast Activities
Dermal fibroblasts are the predominant cellular component in
the wound healing process. During the proliferation stage,
fibroblasts migrate into the wound site, and gradually grow to
produce a new provisional ECM through the production of
collagen and fibronectin (Midwood et al., 2004). Wound
contraction will occur when fibroblasts differentiate into
myofibroblasts after reepithelialization. This process decreases
the size of the wound and is followed by the removal of unneeded
cells through apoptosis (Hinz, 2006). SLRPs are known to impact
several of the critical functions of fibroblasts during wound
healing, including migration, proliferation, differentiation, and
collagen synthesis. As a result, abnormal expression of SLRPs can
disrupt the wound healing process and possibly result in
pathological scarring, as seen in keloids and hypertrophic scars.

TGFb signaling has been thought to play a central role in both
skin wound healing and scar formation (Faler et al., 2006; Penn
et al., 2012; Pakyari et al., 2013), and DCN is known to bind to all
three mammal TGFb isoforms and represses their activity by
sequestering the isoforms to the ECM and thus inhibiting their
signal transduction (Figure 3A) (Droguett et al., 2006; Penn
et al., 2012). DCN was also found to interact with CTGF-a
downstream mediator of TGFb1 signaling (Figure 3B) (Daniels
et al., 2003; Shi-Wen et al., 2008; Vial et al., 2011). Moreover,
DCN is able to activate epidermal growth factor receptor
(EGFR)‐mediated receptor auto-phosphorylation and
downstream signaling pathways, such as the mitogen-activated
Frontiers in Pharmacology | www.frontiersin.org 826
protein kinase (MARK)1/3 pathway, to mobilize intracellular
calcium, and activate other EGFR‐dependent pathways in tumor
cells to suppress cell growth (Moscatello et al., 1998; Patel et al.,
1998). DCN displays similar cell growth suppression ability in
dermal fibroblasts (Laine et al., 2000; Tran et al., 2004).
Furthermore, a recent study revealed that DCN repressed
corneal stromal fibroblasts migration via inducing EGFR
degradation (Figure 3C) (Mohan et al., 2019), which has not
been well investigated in the context of skin wounds, although
low levels of DCN and increased activation of the MARK1/3
signaling have been observed in keloid tissues (Meenakshi et al.,
2009). In addition to regulating growth factor signaling
transduction, DCN serves as a stabilizer of the ECM tissue
structure through binding of type I collagen and thus
downregulates cellular proliferation and migration, as well as
protein synthesis in a number of biological and pathologic
processes (Iozzo, 1999; Tran et al., 2004). Keloid fibroblasts
have less DCN expression than normal fibroblasts
(Mukhopadhyay et al., 2010) while forcing DCN expression by
adenovirus in keloid fibroblasts remarkably reduced their
collagen synthesis and upregulated the transcriptional level of
MMP1 and MMP3 (Lee et al., 2015). The expression of DCN in
the fibroblasts isolated from the deep dermis was also lower than
those derived from the superficial dermis (Honardoust et al.,
2012b). This phenomenon indicates a possible relationship
between lower DCN expression and hypertrophic scarring as
deep dermal injuries often lead to hypertrophic scarring while
superficial cutaneous wounds usually heal with minimal scarring
(Wang et al., 2008; Marshall et al., 2018). In comparison to
unwounded skin, post-burn hypertrophic scar tissue also has a
lower level of DCN (Scott et al., 1995; Sayani et al., 2000). While
DCN-deficient mice exhibit significantly postponed cutaneous
wound healing (Jarvelainen et al., 2006). The lower DCN levels in
keloids and hypertrophic scars may contribute to the unordered
collagen arrangement and excess ECM production. Meanwhile,
recombinant human DCN inhibits fibroblast proliferation and
downregulates TGFb1 production, and collagen synthesis in
hypertrophic scar fibroblasts (Zhang et al., 2007). Moreover,
DCN can inhibit the contraction of collagen gel encapsulation in
normal or hypertrophic scar fibroblasts, which gives further
indication that it may pose therapeutic potential in
hypertrophic scarring (Zhang et al., 2009). Recent studies show
that activation of Tuberoinfundibular peptide of 39 residues
(TIP39)—Parathyroid Hormone 2 Receptor (PTH2R) signaling
or blocking of microRNA 181b can induce DCN expression and
promote wound repair (Figure 3D) (Kwan et al., 2015; Sato et al.,
2017). Additionally, a collagen-binding peptidoglycan derived
from DCN has been shown to inhibit MMP-mediated collagen
degradation in vitro and reduce scar formation in mice (Stuart
et al., 2011). Collectively, these results indicate that DCN may be
a potential therapeutic agent for keloids and hypertrophic scars.

As a structurally homologous protein of DCN, BGN can also
bind to TGFb isoforms to attenuate its signal transduction
(Hildebrand et al., 1994; Droguett et al., 2006; Penn et al.,
2012). Expression of BGN was not altered in excisional skin
wounds and hypercontracted/hyperpigmented scarring pig
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models (Olson et al., 2000; Gallant et al., 2004). However, the
upregulation of BGN was observed in adult rat wound healing
models (Soo et al., 2000). Elevated BGN expression was also
observed in hypertrophic scars compared with that in normal
Frontiers in Pharmacology | www.frontiersin.org 927
scars (Armour et al., 2007; Honardoust et al., 2011). Deep dermal
fibroblasts also have a higher BGN level than that of the
superficial dermal fibroblasts (Honardoust et al., 2011;
Honardoust et al., 2012a). Unfortunately, whether higher BGN
FIGURE 3 | A schematic diagram of the functions of DCN in skin wound healing. (A) DCN is known to bind to mammal TGFb isoforms to sequester their signal
transduction. (B) DCN can also bind to CTGF, which is a downstream mediator of TGFb1 signaling, to reduce hypertrophic scarring. (C) In addition, DCN can
repress fibroblasts migration by inducing EGFR degradation. (D) On the other hand, activation of TIP39-PTH2R signaling or blocking of microRNA 181b can induce
DCN production, and thus benefit skin wound repair.
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expression in deep dermal fibroblasts is relevant to the
profibrotic or inflammatory response in deep dermal
cutaneous injuries remains elusive. Although BGN has been
shown to regulate proinflammatory cytokine expression and
inflammatory response by TLR2 and TLR4 in the kidney, lung,
and circulation (Babelova et al., 2009). Moreover, BGN
transcription was up-regulated in keloid tissues (Hunzelmann
et al., 1996). Interestingly, basic fibroblast growth factor (bFGF)
can up-regulate BGN while suppressing DCN expression in
keloid fibroblasts (Tan et al., 1993). Taken together, these
results imply that BGN may be related to keloid and
hypertrophic scarring. Further investigations are needed to
confirm the involvement of BGN in cutaneous wound healing
and elucidate the specific roles of BGN and DCN during the
scar formation.

FMOD was down-regulated during adult rat wound healing
with scar formation (Soo et al., 2000). Importantly, loss of
FMOD can eliminate the ability of early-gestation fetal rodents
to heal without scarring. Meanwhile, the administration of
FMOD alone was capable of restoring scarless healing in late-
gestation rat fetal wounds, which would naturally heal with scar
(Zheng et al., 2016). In addition to restoring scarless wound
healing in late-gestation fetal wounds, forcing FMOD elevation
by adenovirus can also promote skin wound healing in adult
rabbit full-thickness incisions (Stoff et al., 2007). Additionally,
FMOD-deficient mice exhibit delayed wound closure and
increased scar formation (Zheng et al., 2011; Zheng et al., 2014b).

Many review articles have already focused on the essential
role of TGFb signaling in wound healing (Faler et al., 2006; Penn
et al., 2012; Pakyari et al., 2013; Lichtman et al., 2016). However,
among SLRPs, only FMOD has been studied in detail about its
interaction with TGFb signaling to orchestrate the function of
fibroblasts to enhance skin wound healing (Zheng et al., 2017).
For example, the delayed cutaneous wound closure in FMOD-
deficient mice may be attributed to the elevated local TGFb3
levels (Zheng et al., 2011), since TGFb3 selectively postpones
dermal fibroblast proliferation and migration into the wound
area (Bandyopadhyay et al., 2006; Han et al., 2012). Moreover,
adult FMOD-null mouse wounds have higher expression of
TGFb receptors in comparison with their wild-type
counterparts during the proliferative stage, but reduced
expression of TGFb ligands and receptors during the
remodeling stage (Zheng et al., 2014b). Similar to DCN,
FMOD is downregulated in postburn hypertrophic scars
(Honardoust et al., 2011). Reduced fibromodulin in the deep
dermis of the skin is thought to contribute to the development of
hypertrophic scars after injuries (Honardoust et al., 2012a;
Honardoust et al., 2012b). Interestingly, FMOD transcription
was not altered following wound creation in an adult Yorkshire
pig model, but exhibited a biphasic pattern of mRNA expression
(initial increased at day 14, followed by decreased levels at days
28–42 and then a second peak by days 56–70) in an adult red
Duroc pig model (Olson et al., 2000; Gallant et al., 2004). These
observations are aligned with the previous hypothesis that the
healing profile of the red Duroc pig wound model (which
simulates hypertrophic healing in humans) (Harunari et al.,
Frontiers in Pharmacology | www.frontiersin.org 1028
2006; Xie et al., 2007; Zhu et al., 2007) is inherently different
from that of the Yorkshire pig wound model (which simulates
normal scarring) (De Hemptinne et al., 2008; Seaton et al., 2015).
Mechanically, like DCN and BGN, FMOD shows similar
properties in its ability to bind to mammal TGFb isoforms;
however, it is a more effective competitor for TGFb binding than
DCN or BGN (Hildebrand et al., 1994). Traditionally, FMOD
was considered an extracellular TGFb reservoir (Figure 4A). Our
recent studies have deeply explored the mechanisms by which
FMOD orchestrates TGFb1 signaling and subsequently reduces
scar formation in adult skin wounds (Zheng et al., 2017): “(1) like
fetal wounds (Larson et al., 2010), FMOD treatment to adult
wounds causes reduced and more transient TGFb1 expression;
(2) like fetal wounds (Walraven et al., 2015), FMOD treatment
induces high level of SMAD2 and SMAD3 phosphorylation, and
low levels of several fibrosis-associated targets; (3) like fetal
fibroblasts (Sandulache et al., 2007), FMOD treatment results
in a more migratory and contractile phenotype; (4) like fetal
fibroblasts (Colwell et al., 2006), FMOD treatment exhibits
higher TGFb1-stimulated CTGF expression levels for increased
myofibroblast differentiation and contraction; and (5) much like
fetal wounds (Cass et al., 1997), FMOD treatment results in more
rapid myofibroblast clearance from the wound” (Figure 4B).
Taken together, FMOD administration in adult wound models
elicits a similar phenotype to fetal wounds at the molecular,
cellular, and gross morphological levels (Zheng et al., 2017).
Moreover, recent studies demonstrate that FMOD can directly
reprogram human dermal fibroblasts into a multipotent stage,
indicating its ability to regulate the intracellular signaling cascade
and determine the cell fate (Zheng et al., 2012; Li et al., 2016;
Zheng et al., 2019). Furthermore, from a translational aspect,
recent studies have confirmed the biopotency of FMOD in
reducing scar formation, accelerating wound tensile strength
reestablishment, and improving dermal collagen architecture
organization as well as gross wound appearance in multiple
small and large preclinical animal models, and even within an
excessive-mechanical-loading model (Zheng et al., 2017; Jiang
et al., 2018), highlighting the enormous potentials of FMOD as a
regenerative medicine for wound and scar therapies.
Encouragingly, we have developed an FMOD-derived peptide
(SLI-F06) which is being tested in a clinical trial for optimizing
cutaneous wound healing (clinicaltrials.gov: NCT03880058).

LUM is the only known SLRP expressed by the epithelia
during wound healing (Frikeche et al., 2016; Karamanou et al.,
2018). During cornea wound healing, LUM is known to regulate
collagen fibrillogenesis, keratinocyte phenotypes, corneal
transparency modulation, angiogenesis, and extravasation of
inflammatory cells (Park and Tseng, 2000; Vij et al., 2005;
Hayashi et al., 2010; Chen et al., 2011; Karamanou et al.,
2018). However, the role of LUM in skin wound healing has
not been adequately assessed. Liu et al. reported that
recombinant LUM protein promoted skin wound healing in
adult mice by facilitating dermal fibroblast activation and
contraction without promoting keratinocyte proliferation and
migration (Liu et al., 2013). The increased fibroblast
contractibility induced by LUM is regulated by integrin
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subunit alpha (ITGA)-2 (Liu et al., 2013). Meanwhile, Zhao et al.
reported that adenovirus-mediated LUM-overexpression
suppressed excessive fibroblast proliferation and ECM
production in vitro via inhibiting collagen - ITGA2 - protein
tyrosine kinase (PTK)2 signaling through binding to the collagen
receptor ITGA2 (Figure 5), which in turn to reduce scar
formation by significantly inhibiting ECM deposition in vivo
(Zhao et al., 2016). More interestingly, in comparison with
normal skin-derived fibroblasts, hypertrophic scar-derived
fibroblasts displayed reduced LUM expression (Zhao et al.,
2016), while keloid-derived fibroblasts exhibited elevated LUM
expression (Naitoh et al., 2005). Although LUM may be a
potential pharmaceutical candidate for skin wound healing, its
mechanism of action is far from clear.

ASPN is upregulated in keloid margin biopsy specimens
compared with that from adjacent healthy skin, indicating it
may serve as a potential biomarker for keloid disease (Shih et al.,
2010). Likewise, comparative mass spectrometry-based
proteomic analysis of keloids and healthy skin has shown that
ASPN expression was significantly increased in keloid scars. This
suggests that ASPN may be potentially used as a specific target
for therapeutic intervention (Ong et al., 2010). In addition,
upregulated OGN expression was also found in keloids by
cDNA microarray analysis (Naitoh et al., 2005). However,
except for DCN, BGN, FMOD, and LUM, investigations into
other SLRPs for their potential benefits in skin wound healing are
still very much in their infancy.
FIGURE 4 | Schematic depiction of the functions of FMOD in skin wound healing. (A) FMOD is able to bind to all three mammal TGFb isoforms as an extracellular
TGFb reservoir. (B) Importantly, FMOD can selectively enhance SMAD3-mediated TGFb1-responsive pro-migration and pro-contraction signaling, while reducing AP-
1-mediated TGFb1 auto-induction and fibrotic ECM accumulation during adult cutaneous wound healing.
Frontiers in Pharmacology | www.frontiersin.org 1129
FIGURE 5 | A schematic description of the functions of LUM in skin wound
healing. LUM can suppress excessive fibroblast proliferation and ECM
production via inhibiting ITGA-PTK2 signaling through binding to ITGA2.
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CONCLUSION AND PERSPECTIVES

SLRPs are important components of the ECM that play crucial
roles in collagen fibril growth, fibril organization, and ECM
assembly. They are also capable of modulating the function of a
significant number of growth factors and cytokines and have
even been thought to prevent fibrosis and organ dysfunction
(Mecham, 2011; Schaefer, 2011; Klingberg et al., 2013). Thanks
to worldwide collaboration over the last 30 years, much has been
discovered in regard to the pivotal roles that SLRPs play in the
different phases of the skin wound healing process, as well as the
therapeutic potentials of SLRPs for reducing scar formation.
However, the precise details concerning how each individual
SLRP functions in the different phases of the healing process are
still unclear. It is crucial to gain a specific understanding of the
nature of the SLRP functional components, particularly in regard
to their interactions with cell surface receptors, growth factors,
and the ligands associated with molecular patterns of the skin
wound healing process.

In conclusion, although there are still many obstacles that
need to be surmounted before SLRPs can be applied in clinics for
cutaneous wound healing management, a variety of SLRPs, such
as DCN, BGN, FMOD, and LUM, exhibit great potential for
future use in skin wound healing. For example, given the pro-
angiogenic, pro-migratory, and pro-contraction potential of
FMOD (Zheng et al., 2014a; Zheng et al., 2014b; Zheng et al.,
2017), besides reducing scar formation, it may be used to
accelerate the healing of wound with retarded closure such as
seen in the diabetic patients (Falanga, 2005; Ekmektzoglou and
Frontiers in Pharmacology | www.frontiersin.org 1230
Zografos, 2006). Considering LUM enhances the epithelial cell
migration (Seomun and Joo, 2008), it could also be a candidate to
address the major problem of delayed wound healing. In
addition to the skin, LUM and KERA may also be beneficial
for corneal wound healing (Saika et al., 2000; Carlson et al.,
2005), such as in the scene of corneal wounds caused by
refractive surgeries (Ljubimov and Saghizadeh, 2015).
Nevertheless, the delivery system and administration regimen
of these SLRPs are insurmountable issues to be optimized in the
pursuit of the most promising outcomes.
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Proteoglycans have emerged as biomacromolecules with important roles in matrix
remodeling, homeostasis, and signaling in the past two decades. Due to their
negatively charged glycosaminoglycan chains as well as distinct core protein
structures, they interact with a variety of molecules, including matrix proteins, growth
factors, cytokines and chemokines, pathogens, and enzymes. This led to the dawn of
glycan therapies in the 20th century, but this research was quickly overshadowed by
readily available DNA and protein-based therapies. The recent development of
recombinant technology and advances in our understanding of proteoglycan function
have led to a resurgence of these molecules as potential therapeutics. This review focuses
on the recent preclinical efforts that are bringing proteoglycan research and therapies back
to the forefront. Examples of studies using proteoglycan cores and mimetics have also
been included to give the readers a perspective on the wide-ranging and extensive
applications of these versatile molecules. Collectively, these advances are opening new
avenues for targeting diseases at a molecular level, and providing avenues for the
development of new and exciting treatments in regenerative medicine.

Keywords: proteoglycans, small leucine rich proteoglycans, decorin, fibromodulin, chondroitin sulphate, dermatan
sulphate, heparan sulphate, extracellular matrix
INTRODUCTION

As researchers try to harness the therapeutic potential of biopolymers for new treatments,
proteoglycans (PGs) and their glycosaminoglycan (GAG) side chains remain underexploited due
to their complex nature and involvement in multiple biological processes. Glycosaminoglycans are
linear long chains of anionic glycan molecules that comprise one of the three major biopolymers
found in the body, other than nucleic acids and proteins. GAGs are primarily made up of monomers
of either glucuronic or iduronic acid and N-acetylglucosamine. These glycan monomers are not
directly encoded by the genome and have a high degree of heterogeneity in terms of their monomer
sequences, chain lengths, and sulfation patterns due to posttranslational modifications regulated in
the golgi apparatus, leading to a large structural diversity with no defined glycan code (Hudak and
Bertozzi, 2014). Six major types of GAGs are currently identified in mammals—chondroitin sulfate
(CS), dermatan sulfate (DS), keratan sulfate (KS), heparan sulfate (HS), heparin (Hep), and
hyaluronic acid (HA) (Köwitsch et al., 2018). Except for HA, all other GAGs are sulfated and
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exist as anionic molecules conjugated to core proteins, making
them a component of proteoglycans (PGs). In addition to direct
conjugation to core proteins, GAGs interact with other proteins
through electrostatic or hydrophobic interactions, as well as
hydrogen bonds, further adding to their broad repertoire
and complexity.

PGs are a heterogenous family of macromolecules with 43
members, differing in their core protein as well as the nature and
number of GAG chains bound to the core (Iozzo and Schaefer,
2015), reaching an unprecedented level of sophistication. These
intriguing molecules have been conserved through millions of
years of evolution to reach new heights of functional
significances. Iozzo and Schaefer (2015) proposed a
comprehensive classification and nomenclature for PGs based
on their location, genetic homology, and use of protein modules.
They classified PGs into four major classes with distinct forms
and functions: Class 1 consists of intracellular secretory granules,
class 2 consists of cell surface PGs that are classified as either
transmembrane or GPI-anchored, class 3 consists of pericellular
basement membrane zone PGs, and class 4 consists of
extracellular PGs classified as hyalectan-lectincan (HA binding
and lectin binding), spock, and small leucine rich PGs (SLRPs).

Early studies conducted on PGs focused on one of the PGs of
the vertebrate cartilage extracellular matrix, now known as
Aggrecan. Cartilage extracellular matrix is uniquely made with
the majority of the non fibrillar ECM composition consisting of
PGs and HA (Sophia Fox et al., 2009). PGs as structural
components are known to hydrate, protect, and lubricate
cartilage tissue (Lohmander, 1988); leading to a vast majority
of therapeutics targeted to treating osteoarthritis harnessing
these properties. Further PG research revealed that all cells in
the body are covered by a gel like glycocalyx (Luft, 1966), which
consists of PGs and GAGs involved in a myriad of signaling and
growth factor sequestering activities (Weinbaum et al., 2007).
Healthy endothelial glycocalyx is the only known blood
contacting surface that prevents blood clotting continuously,
due to the PGs in it creating a barrier for protein adsorption
and fibrin formation. Altering of the glycocalyx has been
implicated in various disease conditions (Tarbell and Cancel,
2016; Liew et al., 2017), making it a key target for development of
therapeutics. Multifaceted functions of PGs are now known to
include growth factor sequestering (Gubbiotti et al., 2016),
providing adhesive properties, inducing or inhibiting
angiogenesis (Järveläinen et al., 2015; Poluzzi et al., 2016),
modulating cell adhesion, proliferation, and regulation
(Christensen et al., 2019), as well as interacting with other
ECM molecules and controlling collagen fibrillogenesis (Weber
et al., 1996; Chen et al., 2010; Kalamajski and Oldberg, 2010).
Researchers began recognizing the ubiquitous nature and
essential functions of PGs, discovering their role as essential
bioactive components of the ECM with sophisticated functions
in maintaining homeostasis. However, PGs remained largely
untapped as a class of potential therapeutics in comparison to
recombinant antibodies and DNA technologies until the last
decade. This lag in harnessing the potential of PGs is partially
due to the complexity inherent to the synthesis, regulation, and
Frontiers in Pharmacology | www.frontiersin.org 238
assembly of these molecules. However, advances in carbohydrate
biopolymer synthesis, recombinant technology, and the
recognition of the enormous potential of PGs as treatments
have led to an exciting reemergence of PG engineered
therapeutics . PGs represent the most complex and
multifunctional class of molecules, making them one of the
most versatile and exciting classes of therapeutic candidates.

The focus of this review is limited to recent advances and
preclinical studies on naturally occurring proteoglycan molecules
and proteoglycan mimetics as ECM based therapeutics. Built on
decades of information about the complex signaling pathways
and their downstream effectors, scientists are using PG core
proteins, glycanated PGs, neo-PGs and PG mimetics to tackle
human health and disease. To stay within the scope of the review,
developments on GAGs alone as therapeutics, or detailed
descriptions of the complex functions of all proteoglycans were
not included. In order to provide context for harnessing the
therapeutic value of PGs, structures of common proteoglycans
are depicted in Figure 1. Readers are directed to read about the
current developments in the use of GAGs alone as glycan
therapeutics in Paderi and coworkers’ recent review, which
discusses the clinical relevance, applications and clinical stage
pharmaceutical developments of these entities (Paderi et al.,
2018). For in-depth information about the biological functions
of PGs, readers are encouraged to read Izzo and Schaefer’s recent
review (Iozzo and Schaefer, 2015).
CELL SURFACE PGS

Glypicans
Glypicans are heparan sulfate proteoglycans (HSPGs) that are
bound to the cell surface by glycophosphatidylinositol (GPI)
anchors (see Figure 1). Glypican 1 nanoliposomes have been
used to potentiate therapeutic angiogenesis for ischemic wound
healing by the Baker group (Monteforte et al., 2016). Co-delivery
of glypican-1 with FGF-2 markedly increased the recovery of
perfusion and vessel formation in ischemic hind limbs of wild
type and diabetic mice in comparison to mice treated with FGF-2
alone, proving that the proteoglycan played an important role in
potentiating the activity of FGF-2. Han et al. (2016) showed that
lower levels of glypican-3 were detected in patients with gastric
cancer than in healthy gastric tissue, showing an inverse
correlation between GP-3 levels and metastasis. Targeting
glypican-3 or its downstream signaling pathways, or
supplementation with adenoviral overexpression of glypican-3
in such cases might therefore, have the potential to suppress
metastasis related to gastric cancer.

Syndecans
Syndecans are also HSPGs that act as transmembrane receptors
capable of signaling independently or in combination with other
receptors and integrins (Morgan et al., 2007; Elfenbein and
Simons, 2013). Das and coworkers from the Baker research
group have researched the use of syndecan 4 for the treatment
January 2020 | Volume 10 | Article 1661
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of diabetic wound healing because of FGF2 coreceptor activity of
syndecans (Elfenbein and Simons, 2013). Syndecan 4
encapsulated in proteoliposomes as a delivery system showed
promise in the treatment of diabetic ischemia in mice (Das et al.,
2016a). Co-therapy of Syndecan with FGF-2 successfully
enhanced therapeut ic ang iogenes i s and sus ta ined
revascularization in the ischemic hind limb of diabetic, obese
mice in comparison to the use of FGF2 alone (Das et al., 2016b).
They also went on to test the effects of these proteoliposomes on
PDGF-BB activity (Das et al., 2016b). Wounds treated with both
syndecan-4 proteoliposomes and PDGF-BB had increased re-
epithelization and angiogenesis in comparison to wounds treated
with PDGF-BB alone. Moreover, the wounds treated with
syndecan-4 proteoliposomes and PDGF-BB also had increased
M2 macrophages and reduced M1 macrophages, suggesting
syndecan-4 delivery induces immunomodulation within the
healing wounds. These results demonstrate the promise of
proteoglycans, in particular syndican-4, as a co-therapy for
tissue regeneration and the treatment of nonhealing wounds.

Many glycan–protein interactions take place at the cellular
interface, and cell surface PGs, especially syndicans, are heavily
involved in growth factor interactions and cellular response to
wound healing (Gallo et al., 1996; Brooks et al., 2012; Elfenbein
and Simons, 2013). Given importance of membrane bound
glycans including the syndicans and glypicans, future work to
address key mechanistic queries such as whether the liposomes
containing cell surface PGs fuse with cells, or is the mere
Frontiers in Pharmacology | www.frontiersin.org 339
presence of HS near the membrane surface a key factor in
driving therapeutic potential at the cellular interface, could
drive key developments in this burgeoning field.
LECTICANS

Aggrecan
Aggrecan is of great interest to many researchers due to its load
bearing and water retaining ability to protect and hydrate
cartilage tissue. Aggrecan exhibits a bottlebrush like structure
in which chondroitin sulfate and keratan sulfate GAG chains are
attached to a core protein consisting of 3 globular structural
domains (see Figure 1) (Kiani et al., 2002). The Marcolongo
group has done extensive characterization of bottle brush
polymers using chondroitin sulfate and other synthetic
polymers (instead of a core protein) as core-bristle aggrecan
mimetics. By establishing a method to functionalize chondroitin-
4-sulfate at the reducing end and incorporating it into either poly
(acrylic acid) (PAA) or poly(acryloyl chloride), they were able to
achieve large 1.6 MDa polymers with enhanced water uptake as
compared to aggrecan alone. By modulating the size of the PAA
and number of CS chains bound to it, they were able to
successfully form polymers with tunable osmotic pressures for
the treatment of osteoarthritis. These mimetics were also shown
to diffuse through the cartilage matrix into the pericellular area,
FIGURE 1 | Proteoglycan structures. The horseshoe shaped SLRPs (decorin, biglycan, lumican, and fibromodulin) and bottlebrush structured hyaluronan (HA)
binding proteoglycans (aggrecan, versican, and brevican) are located in the extracellular matrix, whereas glypicans and syndecans are cell surface proteoglycans.
G1, G2, and G3 are globular structural domains located at the N- and C-terminus of HA binding proteoglycan cores. Glypicans are bound to the cell surface by
glycophosphatidylinositol (GPI) anchors. All proteoglycans differ in the GAG side chains attached to the core protein, as well as the lengths and sulfation patterns of
the GAGs, thus adding to their complexity.
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https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Walimbe and Panitch Proteoglycans in Biomedicine
and integrate into rabbit tissue before and after static loading,
demonstrating the ability to engineer ECM on a molecular level
(Sarkar et al., 2012; Prudnikova et al., 2017; Prudnikova et al.,
2018; Phillips et al., 2019).

The Kipper research group designed graft copolymer
nanoparticles of cationic polysaccharides such as chitosan with
anionic GAGs like CS and Hep to form polyelectrolyte complex
nanoparticles mimicking the size and chemistry of aggrecan.
These nanoparticles were shown to maintain FGF-2 activity after
21 days of encapsulation and are superior to aggrecan alone as a
delivery vehicle for growth factors (Place et al., 2014b). In a
separate study to mimic PGs, they also generated copolymers
using a heterobifunctional crosslinker to combine HA to the
reducing ends of Hep/CS. They also reported successful grafting
of these polymers to chitosan for the delivery of FGF2 (Place
et al., 2014a).

Our lab has taken a different approach by mimicking the
function of aggrecan, but not its structure. We have designed an
aggrecan mimetic that is composed of chondroitin sulfate
decorated with HA-binding peptides in an effort to mimic key
aggrecan function for the treatment of osteoarthritis. These
aggrecan mimetics have been shown to penetrate aggrecan-
depleted cartilage, contribute to its overall compressive
strength, and reduce catabolic activity in in vivo and ex vivo
models of osteoarthritis (Bernhard and Panitch, 2012; Sharma
et al., 2013; Sharma et al., 2016). Unlike hyaluronan and
chondroitin sulfate, these mimetics were able to promote type
II collagen synthesis and aggrecan expression when encapsulated
with bovine chondrocytes in collagen hydrogels. The mimetic
was also shown to be resistant to the enhanced proteolytic
activity found in OA cartilage, since it lacks the known
aggrecan cleavage sites.

From the above studies, two major approaches stand out in
efforts to harness the biological activity of aggrecan—mimicking
its structure, vs targeting GAGs to tissue locations; for example,
by targeting HA binding to augment surrounding ECM. Both
approaches have extensive potential to achieve improved tissue
function and healing. Clinical applications for osteoarthritis
treatment using these PG mimicking polymers appear on the
near horizon as advanced synthesis and scale up techniques for
protein conjugation and polymer synthesis become more
readily available.
SMALL LEUCINE RICH PGS

By far the most widely researched class of PGs, SLRPs share
structural similarities in their core protein of leucine rich tandem
repeats flanked by cysteine rich repeats. The biological functions
of SLRPs are too vast to be summarized in a single review, hence,
we refer readers to recent comprehensive reviews focusing
specifically on SLRPs (Iozzo, 1997; Iozzo, 1999; Schaefer and
Iozzo, 2008; Chen and Birk, 2013; Hultgårdh-Nilsson et al.,
2015; Nastase et al., 2018; Appunni et al., 2019). It is widely
accepted that the horseshoe-shaped core protein of SLRPs is
responsible for its binding to collagen, modulating collagen
Frontiers in Pharmacology | www.frontiersin.org 440
fibrillogenesis and protecting collagen from enzymatic cleavage
(Karamanos et al., 2018). As new information comes to the
forefront of SLRP research, researchers have discovered that the
functionality of SLRPs changes based on whether the core protein
is attached to its GAG chains, or as unmodified core protein (Yu
et al., 2018). Multiple forms of these PGs are thus used as
therapeutic candidates.

Decorin
Decorin is the archetypal, most extensively studied SLRP, and
has been vastly characterized for its influence on collagen
fibrillogenesis (Danielson et al., 1997) and involvement in
scarless wound healing. Decorin is not just a structural entity,
it plays a pivotal biological role in angiogenesis (Järveläinen et al.,
2015), inflammation (Nastase et al., 2018), fibrosis (Ahmed et al.,
2014), wound healing (Grisanti et al., 2005), oncosuppression
(Sainio and Järveläinen, 2019), and endothelial cell health and
autophagy (Neill et al., 2017) to name some. Due to this
involvement in an enormous range of biological functions,
decorin has aptly been termed as a “guardian from the matrix”
(Neill et al., 2012). Decorin consists of a core protein with small
leucine rich tandem repeats, with a dermatan sulfate or
chondroitin sulfate GAG chain attached to it through the N
terminus of the protein. Through its GAG side chain and core
protein, it can bind to various growth factors such as TGFb, as
well as collagen and other ECM molecules, whereby it likely
serves as a reservoir for TGFb and stabilizes inter fibrillar
organization of the collagen (Orgel et al., 2009).

Since the invention of human recombinant decorin core
protein expressed in CHO cells , this PG has been
manufactured using cGMP conditions and is being tested as a
therapeutic for multiple disease indications, arguably bringing it
closest to clinical implementation. Galacorin, the trademark
name for the decorin drug produced through Catalent pharma,
is being tested for the treatment of macular degeneration,
diabetic retinopathy, and diabetic macular edema (Devore
et al., 2010).

From a therapeutic research perspective, decorin has been
investigated for its use in corneal wound healing. Grisanti et al.
used decorin in an experimental glaucoma filtration surgery pilot
study on rabbits (Grisanti et al., 2005). Postoperative results
showed that rabbits treated with decorin had significantly less
ECM deposition 14 days after surgery, as well as suppressed
conjunctivital scarification. Hill et al. (2018) designed gellan
based fluid gels for sustained delivery of human recombinant
decorin through eye drops for corneal regeneration and found
improved ocular function. Due to its ability to delay collagen
fibrillogenesis, decorin is an attractive therapeutic candidate for
anti-scarring treatments. It also acts as a TGF- b1/2 antagonist,
and has been used as a treatment against spinal scarring. Ahmed
et al. (2014) showed that treatment of acute and chronic dorsal
funicular spinal cord lesions (DFL) in adult rats with decorin
resulted in a reduction in wound cavity area, suppression of
inflammatory fibrosis, and dissolution of mature scars due to
decorin’s fibrolytic activity and neutralization of TGF- b1/2. In
an independent study, decorin treatment reduced hypertrophic
January 2020 | Volume 10 | Article 1661
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scarring through inhibition of the TGF-b1/Smad signaling
pathway in a rat osteomyelitis model (Wang et al., 2016).

Decorin is also considered a potent oncosuppresor due to its
ability to function as an endogenous pan‐receptor tyrosine
kinase inhibitor, a regulator of both autophagy and mitophagy,
as well as a modulator of the immune system (Ahmed et al.,
2014). Oncolytic adenovirus expressing decorin significantly
inhibited the progression of bone metastases in MDA-MB-231
metastasis model of breast cancer (Yang et al., 2015). Adenovirus
overexpression of IL-12 and decorin have demonstrated potent
antitumor effects in a weakly immunogenic murine model of
breast cancer (Oh et al., 2017a). Along similar lines, adenoviral
overexpression of decorin and Granulocyte Macrophage Colony
Stimulating Factor has shown anti-tumor potential in a model of
murine colorectal cancer (Liu et al., 2017) (Wang et al., 2016).
Shen and coworkers engineered a recombinant decorin fusion
protein with an extended C-terminus comprised of a vascular
homing peptide that recognizes inflamed blood vessels and
penetrates deep into the vessel wall, known as CAR. In a study
to evaluate its efficacy as a treatment for abdominal aortic
aneurysm (AAA), they delivered the CAR-DCN molecule to
mice with angiotensin-II induced AAAs, and found increased 28
day survival and reduced severity of AAA post treatment (Shen
et al., 2017).

In addition to using the native decorin core protein and
GAG-decorated molecules, synthetic mimetics of decorin have
been developed. In an effort to mimic the collagen modulating
function of decorin, our lab has designed a decorin mimetic
made of collagen-binding peptides conjugated to a dermatan
sulfate backbone (Paderi and Panitch, 2008). Similar to decorin,
this molecule influences the fibril diameter of type I collagen on a
nanoscale. Stuart et al. showed that these mimetics reduce
dermal scarring in a rat linear incision model, due to their
ability to mask existing collagen from matrix metalloprotease
(MMP-1 and MMP-3) mediated proteolytic degradation while
modulating collagen organization (Stuart et al., 2011). In
addition, it was reported that similar to the anticoagulant, anti-
thrombotic function of the glycocalyx, this mimetic was able to
bind to exposed collagen in denuded arteries within minutes to
suppress platelet binding and activation, and thus prevent
resulting vascular intimal hyperplasia that would normally
occur after percutaneous coronary intervention (PCI) sans
mimetic (Scott and Panitch, 2014; Scott et al., 2017). The
mimetic, termed DS-SILY, was able to reduce smooth muscle
cell proliferation and migration, as well as reduce intimal
hyperplasia in vivo in Ossabaw pigs by 60% as compared to
controls (Paderi et al., 2011; Scott et al., 2013). After extensive in
vitro and in vivo validation, DS-SILY is licensed through Symic
bio, and is being tested in clinical trails for the treatment of
peripheral vascular disease.

Lumican
Lumican has been extensively studied as a keratan sulfate
proteoglycan responsible for corneal transparency and wound
healing. Like other SLRPs, it is involved in modulating collagen
fibrillogenesis and interacts with growth factors through its core
protein (Rada et al., 1993). Lum(–/–) knockout mice have given
Frontiers in Pharmacology | www.frontiersin.org 541
way to an enormous amount of research diving into the unique
functions of lumican in tendon and skin health, and corneal
transparency (Chakravarti, 2002). The Chakravarti group has
used these knockout mice to bring forth the importance of
lumican in various indications such as bacterial phagocytosis,
innate immunity, and corneal clearing. In a mouse corneal Lum
(–/–) model infected with Pseudomonas aeruginosa, lumican was
shown to be responsible for bacterial clearing and facilitation of
an innate immune response. In P. aeruginosa lung infections,
lumican-deficient Lum(–/–) mice failed to clear the bacterium
from lung tissues, and showed poor survival rates (Shao et al.,
2013a). Lumican modulates wound healing and innate immunity
by interacting with receptors and immune cells such as
macrophages (Shao et al., 2013b).

Soluble lumican core protein isolated from human amniotic
membranes has been shown to effectively promote epithelial
proliferation and migration in a study by Yeh et al. (2005).
Lumican modulates fibroblast contact through the a2b1 integrin,
a finding that has been exploited for therapeutic development.
Recombinant lumican application on mice skin wounds showed
enhanced wound healing in a study by Liu et al. (2013), possibly
due to lumican promoting the contractility offibroblasts through
the a2b1 integrin. In an independent study, adenoviral
overexpression of lumican in hypertrophic scarring rabbit
models and fibroblasts effectively thinned the scar area and
inhibited fibroblast proliferation, as well as successfully
reduced focal adhesion kinase (FAK) phosphorylation as a
result of binding to a2b1 integrin (Zhao et al., 2016).

Gesteira et al. (2017) designed a peptide mimicking the
activity of lumican based on 13 C-terminal amino acids of
lumican (LumC13). They showed that the peptide effectively
forms a complex with type I receptor for TGFb1 (ALK5) and
promoted corneal wound healing in mice (Yamanaka et al.,
2013). Lumican derived peptides–lumcorin, have been tested
against melanoma and show therapeutic potential by inhibiting
cell chemotaxis and melanoma growth through MMP-14
inhibition (Zeltz et al., 2009; Pietraszek et al., 2013). The vast
array of studies showing the biological activity of lumican
underscore the importance of proteogycans in homeostasis and
disease and highlight the potential of targeting these ECM
molecules to treat disease.

Biglycan
Biglycan shares structural similarities with decorin and comprises
12 leucine-rich repeats flanked by cysteine-rich domains. It is a
major component of bone, cartilage, tendon andmuscle. Biglycan
has been studied as a potential therapeutic for musculoskeletal
disorders, due to its involvement in modulating collagen
fibrillogenesis as well as its role in modulating and maintaining
musculoskeletal organization (Young and Fallon, 2012). Biglycan
is predominantly expressed as a proteoglycan, but a mature form
lackingGAG side chains, known as “nonglycanated” biglycan, has
recently been shown to have specific functions inmuscle andWnt
signaling (Amenta et al., 2011).

Duchenne muscular dystrophy (DMD) is caused by the loss
of dystrophin in muscles, leading to membrane fragility and
impaired signaling. Non-glycanated recombinant biglycan
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delivered to dystrophic mice has been shown to recruit utrophin,
an autosomal paralog of dystrophin, and a NOS-containing
signaling complex to the muscle cell membrane to improve
muscle health and function (Amenta et al., 2011). In an
independent follow up study, Ito et al. hypothesized that
biglycan expressed in a small number of muscle fibers was
likely to have been secreted and anchored to the cell surface
throughout the whole muscular fibers to improve motor function
(Ito et al., 2017). An optimized version of the nonglycanated
biglycan, “TVN-102”, is under development as a candidate
therapeutic for DMD (Fallon and McNally, 2018).

Fibromodulin
Fibromodulin (Fmod) has been widely investigated for its role in
fetal-like scarless wound healing and angiogenesis. The Soo
research group demonstrated that Fmod stimulated capillary
infiltration into Matrigel plugs, enhanced angiogenesis in chick
chorioallantoic membrane (CAM) assays, and restored the
vascularity of fmod−/− mouse wounds (Jian et al., 2013; Zheng
et al., 2014). These results suggest enhanced angiogenesis during
cutaneous wound healing, proving that Fmod is an attractive
therapeutic candidate for wound management especially in cases
where angiogenesis is impaired, such as diabetic wounds. They
also went on to use Fmod to reprogram fibroblasts into a
multipotent cell type as a means to bypass mutation and
malignancy risks associated with genetically modified iPS cells
(Zheng et al., 2012; Li et al., 2016). Testing these reprogrammed
cells in vitro and in a clinically relevant critical-sized calvarial
defect model, they demonstrated strong osteogenic capacity of
these cells without tumorigenesis, showing that Fmod
reprogrammed cells present potential for bone regeneration.

Adenoviral transfection of fibromodulin (ad-Fmod) has
gained popularity in the past decade, and multiple studies have
utilized ad-Fmod to target wound healing and cancer. Jazi et al.
(2016) probed the therapeutic effects of recombinant adenoviral
vectors expressing Fmod for the treatment of diabetic
nephropathy in streptozotocin induced diabetic rats. They
found reduced expression of TGFb1 in rats transfected with
Fmod gene transfer, suggesting a mechanism of action for
fibromodulin therapy. Given its potent role in promoting
angiogenesis and wound healing, a study by Ranjzad et al.
(2009) demonstrated significant reduction in neointimal
thickness and area in an ex vivo human saphenous vein organ
culture model following adenovirus mediated fibromodulin gene
transfer. Delalande et al. (2015) used non-viral histidylated
vectors for Fmod gene transfer and local Fmod expression to
enhance achilles tendon healing; they demonstrated promising
improvements in biomechanical and histological parameters in a
rat achilles tendon injury model. Fmod has been shown to
successfully inhibit the nuclear factor-kB (NF-kB) signaling and
induce fibroblast apoptosis (Lee and Schiemann, 2011). Dawoody
Nejad et al., 2017 demonstrated that recombinant Fmod was able to
suppress TGFb1 and NF- kB activity in vitro in a highly metastatic
breast cancer cell line (Dawoody Nejad et al., 2017).

In summary, it is evident from the wide body of research
reviewed above, that SLRP core proteins and their GAG
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components have important, and sometimes distinct, activities.
The numerous approaches to use recombinant core proteins and
functional mimetics highlight the diversity of strategies that can
be employed in the use of SLRPs to enhance tissue regeneration
and wound healing. To learn more about the recombinant
production of PGs and their different domains, readers are
encouraged to read Lord and Whitelock (2013) concise review.
Further work in this field is warranted to better delineate the
biological function of the core proteins, GAGs and synergies of
the two to design therapies that focus on cell-ECM interactions,
and are effective on a molecular level.
OTHER PGS

Proteoglycan 4/Lubricin
Proteoglycan 4 (PRG4) or lubricin is a mucin like proteoglycan/
glycoprotein found in the synovial fluid of cartilage. It is
responsible for lubricating the surface boundary of cartilage in
synergy with HA. Interestingly, inflammation and osteoarthritis
progression show an inverse relationship to lubricin expression,
suggesting that it is directly involved in reducing inflammation
and boundary friction levels (Iqbal et al., 2016).

Exploiting this information, the Schmidt and Tannin groups
have extensively shown that PRG4 supplementation can restore
normal cartilage boundary lubrication function to osteoarthritic
SF (Schmidt et al., 2007; Ludwig et al., 2012). They have since,
established a method for recombinant lubricin production, and
are testing the functional effects of lubricin in other therapeutic
areas such as intraabdominal lesions and contact lenses for
ocular applications (Oh et al., 2017b; Samsom et al., 2018b).
Lubris biopharma is a clinical stage start up company that is
testing human recombinant lubricin for the treatment of dry eye
(Lambiase et al., 2017) and osteoarthritis due to its role as a
boundary lubricant. In an independent study by Larson et al.
(2016), recombinant lubricin effectively reduced the coefficient of
friction of bovine cartilage explants inflamed using IL1b. This
further adds to the body of literature displaying the potential of
lubricin in the treatment of osteoarthritis.

We and others have taken an approach that mimics the
lubricating function of lubricin, but not its structural properties.
We have designed a lubricin mimetic (mLub) by attaching type
II collagen and HA binding peptides to a chondroitin sulfate
backbone. Work done by Lawrence et al. (2015) demonstrated
the ability of the mimetic to bind to articular cartilage and
reduce the coefficient of friction on a macroscale. The Grinstaff
lab designed anionic hydrophilic bottle-brush polymer
lubricants using poly(7-oxanorbornene-2-carboxylate) as
biolubricants for the treatment of osteoarthritis (Wathier
et al., 2010). Synthesized via ring-opening metathesis
polymerization, the polymer biolubricant showed promise in
reducing friction and offering chondroprotection in ex vivo
plug-on-plug and rat models of osteoarthritis (Wathier et al.,
2013; Wathier et al., 2018). Further efforts to improve the
polymer to make it better match the osmolarity of synovial
fluid are being conducted by making it less anionic and
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covalently conjugating pendent triethylene glycol (TEG) chains
to it (Lakin et al., 2019). A note about lubricin—it is debated
whether this molecule is a glycoprotein or a proteoglycan, since
it is a glycosylated protein that does not have traditional glycans
such as CS, DS, or heparin attached to a protein core, and the
protein itself is glycosylated.

Perlecan (Heparan Sulfate Proteoglycan 2)
Perlecan is a large HSPG with a protein core composed of five
distinct domains, which impart it with a wide range of
functionalities to interact with other biological molecules
(Douglass et al., 2015). The GAG-bearing domain I of Perlecan
has been shown to promote chondrogenesis (French et al., 2002).
Using this information, researchers have synthesized hydrogels
containing the perlecan domain I along with HA (Jha et al., 2009)
or type II collagen (Yang et al., 2006) to demonstrate enhanced
binding and activity of bone morphogenic protein 2 (BMP2).
BMP2 is considered a primary stimulant of chondrogenesis, and
both studies showed robust stimulation of a cartilage specific
ECM in comparison to controls not containing perlecan.
Additionally, injectable microgels made up of HA and perlecan
domain I showed enhanced activity of BMP2 in promoting
cartilage matrix synthesis in a mouse early osteoarthritis model
(Srinivasan et al., 2012). These results demonstrate that
combining specific PG domains with hydrogels to drive growth
factor activity may provide a higher level of control over cell fate
and disease modulation.

Primarily considered a proangiogenic molecule, perlecan
interacts with FGF2 and VEGF to regulate angiogenesis
(Aviezer et al., 1994; Zoeller et al., 2009), making it an
attractive potential therapy for wound healing where
angiogenesis is impaired. Domain V (DV) of perlecan has been
heavily investigated for its role in angiogenesis. The Bix group
has investigated the potential of DV of perlecan to counteract the
effects of amyloid-b (Ab), which causes neurovascular
dysfunction (Parham et al., 2014). Results from their studies
showed improved endothelial proliferation, migration, and
tubule formation despite treatment with Ab by directly
interfering with the a2 and a5 integrins (Clarke et al., 2012;
Parham et al., 2016), thus promoting angiogenesis and
supporting DV’s potential as an anti-amyloid therapeutic.
Among other neurovascular applications, DV has been
suggested as a potential treatment for stroke and vascular
dementia (Marcelo and Bix, 2015). A study by Lee et al. (2011)
demonstrated enhanced post-stroke angiogenesis in rat and
mouse models of stroke after DV treatment, suggesting it as a
neuroprotective approach for stroke treatment. As a strategy to
develop bioactive vascular grafts, Rnjak-Kovacina et al. (2016)
functionalized silk with perlecan DV decorated with heparan
sulfate and chondroitin sulfate chains to enhance endothelial cell
adhesion and proliferation while inhibiting platelet binding
effectively. These studies highlight the complicated balance
between proteoglycan activity with and without their attached
sidechains and emphasize the implications of these variations in
therapeutic developments.
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NeoPGs
The Godula research group synthesized HSPG neoPGs that
completely circumvented the limitations of HSPG synthesis
such as heterogeneity and batch to batch variability by
incorporating disaccharides (diGAGs) generated by
depolymerization of HS by bacterial heparinases into a poly
(acry lamide) sca ffo ld decorated wi th pendant N -
methylaminooxy groups, which are reactive toward the
hemiacetal functionality of the reducing glycans (Huang et al.,
2014). By synthesizing a library of neoPGs and designing a
microarray for testing binding to FGF-2, they were able to
shortlist neoPGs with affinity to FGF2, which showed
enhanced promotion of neural specification in embryonic stem
cells deficient in HS biosynthesis.

The Hsieh-Wilson lab specializes in synthesis of
glycomimetics to research the influence of GAG position and
density on their avidity and specificity to interact with other
proteins. Using end-functionalized ring-opening metathesis
polymerization (ROMP) based polymers that mimic the
native-like, multivalent architecture found on chondroitin
sulfate (CS) proteoglycans, Lee et al. (2010) used norborene
based backbones with biotin functionalized pendant sugars to
create glycomimetics of various molecular weights and sulfation
motifs. By controlling the sulfation patterns and display of these
pendant sugars, novel mimetics for CS proteoglycans can be
designed for targeted regeneration (Sotogaku et al., 2007; Miller
and Hsieh-Wilson, 2015; Stopschinski et al., 2018).

The Pashkuleva group has designed mimimalistic PG
mimetics by coassembly of aromatic peptides and carbohydrate
amphiphiles. The amphiphiles Fmoc-glucosamine-6-sulfate
(GlcN6S) and Fmoc-glucosamine-6-phosphate (Fmoc-GlcN6P)
provided the functional element through the sulfate and
phosphate groups, while fluorenylmethoxycarbonyl-
diphenylalanine (Fmoc-FF) acted as a structural component,
forming self-sustained macroscopic gels that are biocompatible
and mimic the PG growth factor sequestering action, making
these gels attractive for tissue engineering applications (Brito
et al., 2019). In a separate study, Novoa-Carballal et al. (2018)
synthesized star-like PG mimetics by grafting high molecular
weight GAGs such as heparin and CS to hyperbranched
synthetic cores like polyglycerol using oxime condensation.
These mimetics showed enhanced binding to proteins by
forming microfiber complexes instead of spherical
nanocomplexes that form with linear GAGs, thus showing a
larger degree of potential for modulating protein activity
and presentation.

The Hudalla group is focused on creating self-assembling
beta sheet nanofibers using synthetic glyco-peptides as
supramolecular mimetics of glycoproteins. Hydrogels formed
by these glycopeptides contain decorated n-acetylglucosamine
and n-acetyllactosamine residues, which impart the gels with
avidity to various proteins, especially galectins, a carbohydrate
binding class of proteins involved in modulating cell
proliferation, adhesion and apoptosis (Restuccia et al., 2015;
Restuccia and Hudalla, 2018). By optimizing the content of
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n-acetyllactosamine residues, they aim to inhibit protein-glycan
interactions implicated in autoimmune and cancer
disease progressions.

Overall, these synthetic approaches summarized in Figure 2
bring new knowledge on structure function relationships as well
as a powerful approach to design cell-ECM interactions to
improve tissue function and healing.
CONCLUSIONS AND PERSPECTIVES

While pioneering researchers have been focused on the roles of
GAGs and proteoglycans for years, it has only been within the
last two decades that the staggering potential of PGs to modulate
tissue environments has been more broadly appreciated. Their
multifunctional biological processes, in particular, their ability to
bind and sequester growth factors and interact with various
ECM molecules and influence cellular signaling events, makes
them extremely attractive drug conjugates for multiple disease
indications. Table 1 summarizes common proteoglycans and
their therapeutic applications.. Clinical translation of these
molecules, however, remains a challenge. Due to the advent of
recombinant technology, adenoviral and non-viral gene
transfers are attractive alternatives to purifying native PGs, a
task that is considered extremely difficult and time intensive.
However, while recombinant technology can synthesize core
proteins of PGs fairly consistently, their post-translational GAG
chain modifications remain a challenge. Some GAG chain
Frontiers in Pharmacology | www.frontiersin.org 844
structures require enzymes in the Golgi apparatus only found
in mammals, and absent in single celled organisms used to
synthesize recombinant PGs. Effectively conveying the
mechanism of action of these drugs also remains a significant
challenge, due to the diverse processes with which these
molecules interact.

PG mimetics that convey similar bioactivity as their native
counterparts are gaining popularity due to larger level of control
over synthesis and optimization as well as cost effectiveness.
Synthetic methodology, however, has its own challenging
barriers toward manufacturing commercially relevant
quantities. Rapid progress in synthetic GAG synthesis and
sequencing, and current understanding of kinetics of PG
binding interactions with growth factors are helping scientists
create the next generation of PG therapies to control and target a
variety of diseases. Key features of GAG length and sulfation
alongside core protein interactions are being modulated to
enhance binding interactions.

Focus on targeted and controlled release of these PGs is also
gaining interest. Engineering PGs to sequester and control
growth factor release are being explored for enhanced
therapies. Approaches to target specific tissues, such as
exploiting the binding ability of core proteins to collagen, or to
HA, are being explored to create localized and functional
treatments. Synthetic approaches to circumvent the
heterogeneity of native PGs are being employed to control and
tune specific sulfation patterns, binding potential, and specificity
of mimetics to establish novel ways of modulating disease state.
FIGURE 2 | Structures of recombinant PG cores and PG mimetics. Recombinant production of PG cores and variants in many cell lines has accelerated discovery
of the therapeutic potential of PGs. Peptide-GAG conjugates and nano-GAG complexes are being used to mimic PG functions and binding ability. PG – Scaffold
complexes are being explored as tissue engineering constructs for regenerative medicine, and bottle brush mimetics of PGs such as aggrecan are being explored to
circumvent increased degradation of PGs to provide enhanced healing potential.
January 2020 | Volume 10 | Article 1661

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Walimbe and Panitch Proteoglycans in Biomedicine
Furthermore, chemists and cell biologists are establishing novel
mimetics that don’t just necessarily mimic the structure of PGs,
but also their function. There is still much to learn about the
structure function relationships of PGs. Nevertheless, nascent
preclinical developments have shown the promise of PG
therapeutics to pioneer future treatments and breakthroughs in
multiple disease indications such as wound healing, cancer,
angiogenesis and hypertrophic scarring. Overall, advances in
PG and GAG-based therapeutic development are putting a
renewed focus on the importance of the ECM for tissue health
and cell function, and opening the door for new classes of
bioinspired and targeted drugs.
Frontiers in Pharmacology | www.frontiersin.org 945
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Skeletal muscle (SM) comprises around 40% of total body weight and is among the most
important plastic tissues, as it supports skeletal development, controls body temperature,
and manages glucose levels. Extracellular matrix (ECM) maintains the integrity of SM,
enables biochemical signaling, provides structural support, and plays a vital role during
myogenesis. Several human diseases are coupled with dysfunctions of the ECM, and
several ECM components are involved in disease pathologies that affect almost all organ
systems. Thus, mutations in ECM genes that encode proteins and their transmembrane
receptors can result in diverse SM diseases, a large proportion of which are types of
fibrosis and muscular dystrophy. In this review, we present major ECM components of
SMs related to muscle-associated diseases, and discuss two major ECM myopathies,
namely, collagen myopathy and laminin myopathies, and their therapeutic managements.
A comprehensive understanding of the mechanisms underlying these ECM-related
myopathies would undoubtedly aid the discovery of novel treatments for these
devastating diseases.

Keywords: collagen, extracellular matrix, laminin, myopathy, skeletal muscle
INTRODUCTION

Skeletal muscle (SM) is a contractile tissue primarily comprised of multinucleated myofibers. SM is
one of the most important plastic tissues in the human body and accounts for around 40% of total
body weight (Campbell and Stull, 2003; Frontera and Ochala, 2015; Kim et al., 2019). SMs contain
multipotent precursor cells called muscle satellite cells (MSCs), which are localized below the basal
lamina (BL) in myofibers, play vital roles in maintaining the integrity of SM, and participate in
muscles regeneration via an organized myogenic program (Asakura et al., 2001). After injury, MSCs
activate, proliferate, and fuse to form myofibers, which constitute the functional contractile parts of
mature SM (Carlson and Faulkner, 1983; Bonilla et al., 1988; Stuelsatz et al., 2017).
Abbreviations: SM, Skeletal muscle; ECM, Extracellular matrix; MSCs, Muscle satellite cells; BL, Basal lamina; FN,
Fibronectin; DGC, Dystrophin glycoprotein complex; UGC, Utrophin glycoprotein complex; DMD, Duchenne muscular
dystrophy; BM, Basement membrane; UCMD, Ullrich congenital muscular dystrophy.

in.org February 2020 | Volume 11 | Article 142150

https://www.frontiersin.org/article/10.3389/fphar.2020.00142/full
https://www.frontiersin.org/article/10.3389/fphar.2020.00142/full
https://www.frontiersin.org/article/10.3389/fphar.2020.00142/full
https://loop.frontiersin.org/people/387261
https://loop.frontiersin.org/people/435121
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:inhochoi@ynu.ac.kr
https://doi.org/10.3389/fphar.2020.00142
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2020.00142
https://www.frontiersin.org/journals/pharmacology
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2020.00142&domain=pdf&date_stamp=2020-02-28


Ahmad et al. Extracellular Matrix-Associated Myopathies
The developmental process of multinucleated myofibers with
contractile capability from MSCs is termed myogenesis, and
involves cell cycle arrest, cell fusion, increases in nuclear sizes,
and the peripheral localization of nuclei (Charge and Rudnicki,
2004). Myogenesis is a decidedly regulated mechanism that is
determined by the co-expressions of Pax3, Pax7, and myogenic-
regulatory factors such as Myf5, Mrf4, MyoD, and myogenin in
MSCs (Zammit and Beauchamp, 2001; Relaix et al., 2005; Baig
et al., 2019; Kim et al., 2019; Lee et al., 2019).

SM supports skeletal development, aids skeletal movement,
controls body temperature, and manages glucose uptake (Ahmad
et al., 2018) and is composed of large numbers of long,
multinucleated filaments, which are organized by extracellular
matrix (ECM) (Davis et al., 2013). ECM plays important roles
during wound healing, embryogenesis, and tissue repair and
provides integrity and biochemical signals to cells (Govindan
and Iovine, 2015; Ahmad et al., 2018) and is composed of
glycoproteins like collagens, fibronectin (FN), and laminins
(Frantz et al., 2010) (Figure 1). Furthermore, two major SM
ECM proteins, that is, collagen and laminin, are known to be
associated with myopathies. In previous studies, we explored the
roles of a small number of ECM proteins like fibromodulin,
matrix gla proteins, and dermatopontin during different stages of
myogenesis (Lee et al., 2016; Ahmad et al., 2017; Lee et al., 2018;
Kim et al., 2019) and found fibromodulin, as well as
dermatopontin, is involved in the vigorous recruitment of
MSCs at sites of injury, and thus, aids SM regeneration (Lee
et al., 2018; Kim et al., 2019).

Secreted elements, such as diverse kinds of growth factors, are
released during SM repair and are used to monitor muscle
Frontiers in Pharmacology | www.frontiersin.org 251
regeneration, but their roles and impacts on SM remodeling
remain obscure (Karalaki et al., 2009). The transmembrane
receptors send signals into cells from the ECM, and thus,
initiate several cell functions, for instance survival,
development, movement, and differentiation, which are
important for sustaining the homeostasis (Theocharis et al.,
2016). Notably, SM fibrosis arises in diabetes and muscular
dystrophies and during immobilization and aging (Alnaqeeb
et al., 1984; Williams and Goldspink, 1984; Berria et al., 2006;
Gillies and Lieber, 2011).

In this review, we briefly describe SM and its major ECM
components with emphasis on their roles in muscle-related
diseases, which are generally fibrotic diseases or types of
muscular dystrophy. We believe an in-depth understanding of
the underlying mechanisms of ECM-related myopathies will aid
the discovery of novel therapeutic options for the management of
these devastating diseases.
ECM Role in the Development and
Function of SM
ECM is a well-organized non-cellular environment that
undergoes regular cycles of alterations, degradation, as well as
reassembly. Cell-matrix communication contribute a vital role in
cell adhesion and migration, and therefore, is critically important
during embryonic and adult myogenesis (Goody et al., 2015).
Various ECM proteins (e.g., dermatopontin, nidogen/entactin,
periostin, and osteopontin) contribute to the regulations of cell-
matrix communications and matrix assembly (Funanage et al.,
1992; Norris et al., 2007; Kato et al., 2011; Kim et al., 2019).
FIGURE 1 | ECM components and their major receptors.
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Myoblasts fuse to form SM fibers during the fetal stage, and
myofiber numbers remain constant throughout the postnatal
period. However, during this period, myofiber sizes are increased
by MSC fusion. SM is among the most adaptive of body tissues,
and its regenerative ability after SM injury depends on MSCs,
which though generally quiescent, turn on and start to
proliferate, differentiate to myoblasts, and then fused with
myofibers to reestablish the contractile nature of SM after SM
or MSC injury (Griffin et al., 2010).

Cross-talk between MSCs and their microenvironments
determines SM regeneration. According to the MSC niche
concept, the fates of stem cells are determined by stimuli
arising from surrounding environments. Furthermore, MSCs
exist in specific niches, consisting of muscle myofibers, muscle
residence cells, vascular systems and ECM (Wilschut et al., 2010),
and their funct ions are profoundly influenced by
different microenvironments.

MSCs are enclosed in laminin and are found between muscle
fibers and BL, the latter of which is composed of collagen IV and
laminin networks. MSCs bind to these components using
integrin receptors (Sanes, 2003), which are heterodimeric
transmembrane receptors that critically transform extracellular
signals into intracellular responses and interact with ECM as
directed by intracellular changes (Askari et al., 2009). BL also
functions as a mechanical barrier that prevents MSC migratory
loss from normal SM and it might also be involved in the
inhibition of MSC differentiation in the absence of damage
(Sanes, 2003).

Almost all myofibers in SM develop from somites, that is,
from mesodermal structures that evolve in the early embryonic
segmentation (Christ and Ordahl, 1995; Pourquie, 2001). FN and
its communication with integrin play vital roles during somatic
cell polarization and guidance (Ostrovsky et al., 1983; Lash et al.,
1985). Furthermore, decorin has been found to participate in SM
development by inhibiting myostatin activity, and thus,
enhancing myogenic cell proliferation and differentiation
(Kishioka et al., 2008).

Major Components of Muscle ECM
The ECM is comprised of various proteoglycans and fibrous
proteins (e.g., collagens, elastins, FN, and laminins). Collagen is
the main structural protein in SM ECM and holds 1 to 10% of
SM dry weight (Dransfield, 1977; Gillies and Lieber, 2011). The
two main ECM types are: 1) interstitial matrices—connective
tissue matrices comprised of mixtures of collagens, elastins, FN,
proteoglycans, and glycosaminoglycans (Florin et al., 2004), and
2) pericellular matrices—which interact with cells and have more
diverse molecular compositions than surrounding interstitial
matrix (Thorsteinsdottir et al., 2011).

ECM represents up to 10% of muscle weight and can be
classified as endomysium, perimysium, or epimysium. The
endomysium contains individual myofibril, whereas the
perimysium partitions SMs into fascicles, and outer support to
whole SM is provided by the epimysium (Kjaer, 2004). Type I
collagen has been reported to be the predominant perimysial
collagen, while type III collagen is dispersed between endomysium
and epimysium (Light and Champion, 1984). BMs are
Frontiers in Pharmacology | www.frontiersin.org 352
predominantly comprised of laminins, collagen type IV, nidogen
(entactin), and perlecan (Lebleu et al., 2007), whereas collagen
types VI, XV, and XVIII are also present in the BMs of SM
(Halfter et al., 1998). Reticular lamina, present beneath BM, is
mostly comprised of collagen fibrils (types I, III and VI) and FN in
a proteoglycan rich gel (Garg and Boppart, 2016).

Laminin, collagen IV, nidogen/entactin, agrin, biglycan, and
perlecan form the BL that surrounds SM fibers (Gullberg et al.,
1999; Tunggal et al., 2000; Jimenez-Mallebrera et al., 2005), and it
has been proposed laminin in ECM stimulates myoblast
proliferation and differentiation (Rooney et al., 2009). Laminin-
211 is the predominent laminin isoform in BMs of adult SM
(Ehrig et al., 1990; Sasaki et al., 2002), and integrins and non-
integrins are two potential groups of laminin-211 receptors.
Integrins are ab heterodimeric transmembrane proteins with a
huge number of functions that include adhesion, migration, and
differentiation (Hynes, 2002). a7b1 is the major integrin of adult
SM (Song et al., 1992; Burkin and Kaufman, 1999), and a-
dystroglycan is the primary non-integrin cell surface receptor
(Ahmad et al., 2018). The integrins a1b1, a2b2, a3b1, a6b1,
a6b4, a7b1, a9b1, avb3, and aMb2 are reported to bind laminin,
and most recognize the globular domain of its long arm
(Wondimu et al., 2004; Tzu and Marinkovich, 2008; Durbeej,
2010). However, only a3b1, a6b1, a6b4 and a7b1 integrin are
considered highly selective laminin receptors (Humphries et al.,
2006; Nishiuchi et al., 2006; Barczyk et al., 2010).

Proteoglycans in SM ECM predominantly belong to the small
leucine-rich proteoglycan family, and the commonly found
proteoglycans in SM ECM are chondroitin sulfate and dermatan
sulfate glycosaminoglycans (Brandan and Inestrosa, 1987).
Furthermore, interactions between proteoglycans and collagen
sustain ECM structure and organization. Proteoglycans bind to
collagen at particular positions (Pringle and Dodd, 1990), and
thus, proteoglycan to collagen ratios vary in ECM. In addition, the
leucine-rich repeats of decorin bind with collagen type I to
determine the role of decorin as a regulator of collagen
fibrillogenesis in SM (Gillies and Lieber, 2011).

Myopathies and ECM
Myopathy refers to muscle diseases in which muscle weakness
due to muscle fiber dysfunction is the primary symptom.
Other symptoms inc lude musc le cramps , s t i ffness
(myotonia), and spasm. Myopathies are broadly categorized
as inherited and/or acquired (Stenzel and Schoser, 2017).
Inherited myopathies predominantly affect SM tissues and
are generally caused by mutations in the genes responsible for
SM development, as exemplified by different types of non-
dystrophic and dystrophic SM disorders, which manifest an
extensive range of genetic and biochemical features. Muscular
dystrophies, congenital metabolic myopathies, and myotonia
are the most prevalent inherited myopathies (Cardamone
et al., 2008; González-Jamett et al., 2018). Common muscle
cramps are categorized as an acquired myopathy, for example;
hypothyroid and hyperthyroid myopathies are caused by
thyroid gland abnormalities (Ruff and Weissmann, 1988;
Sindoni et al. , 2016). Other systemic diseases (e.g. ,
endocrine disorders, pituitary or adrenal dysfunction,
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Cushing's disease, sarcoidosis, diabetes mellitus, mixed
connective disease, and electrolyte imbalance) and toxic
myopathies caused by medications are also examples of
acquired myopathies (Chawla, 2011). Furthermore, SM
myopathies have major effects on pathogenesis and clinical
outcomes may result in cardiac arrest (Chapleau, 2014).

Several human diseases are associated with ECM
abnormalities, and ECM components are implicated in the
pathologies of disorders that affect almost every organ system.
These ECM-linked diseases are generally attributable to factors
ranging from abnormal signaling functions to inadequacies of
the structural components of vital organs (Iozzo and Gubbiotti,
2018). Several SM-associated genetic disorders are typically
caused by mutations in ECM elements and cell surface
receptors. Interestingly, more than 150 ECM proteins have
been reported to interact with integrin receptors (Zaidel-Bar
et al., 2007; Ahmad et al., 2018).

The main ECM transmembrane receptor of SM is
composed of dystrophin-glycoprotein complex (DGC),
utrophin glycoprotein complex (UGC), and a7b1 integrin
complex. These laminin-binding protein complexes can
transform the progression of disease, and thus, are viewed as
curative targets for disease intervention (Van Ry et al., 2017).
a7b1 integrin is a laminin receptor found on the exterior
surfaces of skeletal myoblasts and myofibers. In Duchenne
muscular dystrophy (DMD), articulation of a7b1-mediated
ECM binding may compensate for the absence of the
dystrophin-mediated linkage. Collagen and laminin related
Frontiers in Pharmacology | www.frontiersin.org 453
dystrophies are typical of the diseases associated with these
SM receptors (Figure 2).

In addition, the downregulation of integrin articulation
may add to the progression of congenital laminin deficiencies
(Burkin and Kaufman, 1999). Dystrophin is related to a
muscle membrane (sarcolemmal) glycoprotein complex,
which provides linkage with laminin. Interestingly, in the
absence of dystrophin-related proteins (43DAG, 50DAG,
59DAP, 35DAG, and 156DAG) were markedly down-
regulated in the sarcolemma of DMD patients and MDX
mice (Matsumura et al., 1992).

Collagen Myopathy
Collagens are the most common and major component of
ECM and are reported in almost all connective tissues. They
fulfill a number of critical functions in SM including the
transmission of forces to bones, tensile strength, and
elasticity, and are also involved in the regulations of cell
attachment and differentiation. Collagens also play critical
roles in cell-to-ECM interactions via several transmembrane
receptors. Collagen type VI (COL VI) is a component of SM
ECM in terms of these interactions (Jobsis et al., 1996).

Collagen VI is consist of a1, a2, and a3 chains, which are
encoded by COL6A1 and COL6A2 on chromosome 21q22 and by
COL6A3 on 2q37, respectively (Allamand et al., 2011). Mutations
in all three of these genes result in two main muscle disorders
types, namely; 1) Ullrich congenital muscular dystrophy (UCMD)
(severe phenotype) and 2) Bethlemmyopathy (minor to moderate
FIGURE 2 | ECM-associated myopathies.
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phenotype). Recently, two additional phenotypes were found to be
associated with mutations in the COL6A2 gene, that is, limb-
girdle muscular dystrophy and myosclerosis (an autosomal
recessive phenotype) (Bushby et al., 2014). In ECM, collagen VI
interacts with various molecules (collagen II, IV, XIV, and
decorin) and cell surface receptors (fibulin 2, hyaluronan,
membrane-associated chondroitin sulfate proteoglycan 4, and
biglycan) (Bonnemann, 2011).

Ullrich Congenital Muscular Dystrophy (UCMD)
UCMD is usually defined as an autosomal recessive condition
that results in muscle weakness, contractures of proximal joints,
and prominent hyperelasticity of distal joints (Lampe and
Bushby, 2005). The UCMD phenotype is caused by loss-of-
function mutations or dominant missense mutations involving
glycine substitutions in the triple helical (Gly-Xaa-Yaa) motif or
dominant exon-skipping mutations (Lampe and Bushby, 2005;
Lampe et al., 2008). Mutations in the COL6A2 gene and more
recently in the COL6A3 gene have been shown to cause UCMD
(Demir et al., 2002). Usually, walking is delayed in affected
children and they are unable to jump or run properly
(Camacho Vanegas et al., 2001).

Bethlem Myopathy
Bethlem myopathy is a dominantly congenital, comparatively
mild disease caused by mutations in the COL6A1, COL6A2, or
COL6A3 genes characterized by progressive proximal muscle
weakness and contractures (joint stiffness) of fingers, wrists,
elbows, and ankles. Symptoms may be observed before birth
due to reduced fetal movement, in early childhood due to late
motor skill development, and in adults due to contractures of
Achilles tendons or fingers (Lampe and Bushby, 2005; Baker
et al., 2007).

The benchmark for the diagnosis of collagen myopathies is
the identification of mutations in the COL6A1, COL6A2, or
COL6A3 genes. Diagnoses of UCMD and Bethlem myopathy
generally depend on distinctive clinical topographies in
combination with mildly increased or normal levels of
serum creatine kinase. Muscle biopsy is used to differentiate
Bethlem myopathy and UCMD, for example, in Bethlem
myopathy col lagen VI immunolabel ing of BL and
endomysium are typically normal but in UCMD they are
absent to obviously reduced (Lampe and Bushby, 2005).
Treatments of Bethlem myopathy and UCMD involve
supportive care following identical philosophies based on
considerations of age at onset and observed symptom
severity (Allamand et al., 2011).

Obstructive lung disease is common in patients with Bethlem
myopathy and carries the risk of subsequent respiratory
inadequacy (Bonnemann, 2011).

Laminin Myopathy
The laminin-a2 subunit is encoded by the LAMA2 gene and is
primarily expressed in SM, and laminin-211 is the most
abundant isoform found in BMs. Mutations in LAMA2 result
Frontiers in Pharmacology | www.frontiersin.org 554
in the most common types of congenital muscular dystrophies,
that is, LAMA2 MD or MDC1A (Congenital type 1A), which are
characterized by disruption of laminin-211 and account for 10–
30% of reported cases (Sframeli et al., 2017; Mohassel et al.,
2018). In general, the common symptoms of laminin myopathy
are hypotonia, muscle weakness, and feeding difficulties, though
joint contractures, including contractures of fingers and ankles,
typically develop in later stage disease. The therapeutic strategies
for LAMA 2MD include replacement of lost laminins using gene
therapeutic approaches or the administration of recombinant
laminin-111 (Yurchenco et al., 2018). In addition to binding with
typical receptors (integrins and dystroglycans), laminins bind
with other ECM macromolecules such as nidogens and perlecan
(Carmignac and Durbeej, 2012).
CONCLUDING REMARKS

SM is greatly influenced by ECM composition, and collagen
is one of the main structural proteins in ECM. ECM
myopathy is a group of genetic disorders caused by
mutations in genes encoding proteins that provide critical
associations between the ECM and muscle cells, and UCMD
and Bethlem myopathy are the main SM diseases caused by
mutation of collagen VI. Laminin largely composes the BL
that surrounds muscle fibers, and laminin-211 plays a crucial
role in SM function. LAMA2 MD and MDC1A are
destructive muscular dystrophies caused by laminin a2
chain loss and have no cure. The discovery of additional
information related to collagen VI and laminin 211 in human
SM may prove to be decisive in terms of the developments of
future therapies. The objective of this article was to improve
understanding by exploring relations between ECM
components and related diseases so as to aid the
development of effective treatments. We recommend
further research work be conducted to characterize ECM-
related myopathies more precisely.
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of Human Periodontal Ligament Stem
Cells by Regulating GDF5 and
p38/JNK Signaling Pathway
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Yunfei Zheng1* and Weiran Li1*

1 Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China, 2 Department of
Periodontology, Peking University School and Hospital of Stomatology, Beijing, China, 3 Central Laboratory, Peking University
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Both extracellular matrix (ECM) and stem cells contribute to the formation of bones.
Accumulating evidence proved that the growth differentiation factor 5 (GDF5) plays a vital
role in ECM osteogenesis regulation; the use of human periodontal ligament stem cells
(hPDLSCs) may contribute to alveolar bone regeneration. Moreover, long noncoding
RNAs (lncRNA) serves as a regulator in the growing process of cellular organisms
including bone formation. Previous efforts has led us to the discovery that the
expression of growth arrest specific transcript 5 (GAS5) changed in the osteogenic
differentiation of hPDLSCs. Moreover, the expression of GAS5, as it turns out, is
correlated to GDF5. This study attempts to investigate the inner workings of GAS5 in
its regulation of osteoblastic differentiation of hPDLSCs. Cell transfection, Alkaline
phosphatase (ALP) sta in ing, A l izar in red S (ARS) sta in ing, qRT-PCR,
immunofluorescence staining analysis and western blotting were employed in this
study. It came to our notice that GAS5 and GDF5 expression increased during
osteogenesis induction of hPDLSCs. Knocking down of GAS5 inhibited the osteogenic
differentiation of hPDLSCs, whereas overexpressing GAS5 promoted these effects.
Molecular mechanism study further demonstrated that overexpressing GAS5 bolsters
GDF5 expression and boosts the phosphorylation of JNK and p38 in hPDLSCs, with
opposite effects in GAS5 knockdown group. To sum up, long noncoding RNA GAS5
serves to regulate the osteogenic differentiation of PDLSCs via GDF5 and p38/JNK
signaling pathway. Our findings expand the theoretical understanding of the osteogenesis
mechanism in hPDLSCs, providing new insights into the treatment of bone defects.

Keywords: human periodontal ligament stem cells, osteogenic differentiation, long noncoding RNA, growth arrest
specific transcript 5, growth differentiation factor 5
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INTRODUCTION

Alveolar bone loss has been posing perplexing challenges in the
field of oral disease for decades. Scholars are committed in the
search for more effective methods for bone regeneration. Bone is
composed of calcified matrix—derived from extracellular matrix
(ECM) and osteocytes (differentiated from osteoblasts).
Extracellular matrix, a complicated complex of collagen,
proteoglycans and glycoproteins, provides a specialized
microenvironment for the proliferation, differentiation, aging
and apoptosis of cells (Watt and Huck, 2013). Moreover,
ECM, essential in the bone formation process, forms a
microenvironment to regulate bioactivities of osteoblasts,
providing signals for osteoblasts via diversified passages like
Wnt and MAPK signaling pathways (Khatiwala et al., 2009;
Lisignoli et al., 2017). MSCs are an important group of
multipotent cells that can differentiate into a broad range of
cell types including osteoblasts(Pittenger et al., 1999). Equipped
with self-renewal and multi-differentiation capacity, MSCs are
regarded as essential seeding cells in bone tissue engineering
(Quarto et al., 2001; Rastegar et al., 2010).

Growth differentiation factor 5 (GDF5), as part of the bone
morphogenic protein (BMP) family, is reported to serve an
significant function in the tissue differentiation as well as
repair of cartilage and bone (Mikic et al., 2004; Miyamoto
et al. , 2007). Previous study has demonstrated that
implantation of GDF5 into ectopic sites in animal models
induces the formation of neotendon/ligament-like tissue
(Wolfman et al., 1997). GDF-5 is fundamental for articular
cartilage maintenance by inducing ECM in articular cartilage
and a5 integrin expression (Garciadiego-Cazares et al., 2015).
Human cartilage ECM modulating proteins increased in
response to GDF-5 protein treatment via Wnt signaling
pathway (Enochson et al., 2014). Studies have fully investigated
and proved the important function of GDF5 in the ECM
osteogenic process.

Long noncoding RNAs (lncRNAs) refer to those RNAs with a
length of more than 200 nucleotides (Esteller, 2011). In recent
years, reports have suggested that lncRNAs serve a critical role in
the regulation of the cell growth,differentiation and apoptosis
(Guttman et al., 2011). Our research team conducted RNA-seq
analysis on mRNA and lncRNA transcriptomes of osteogenically
differentiated human periodontal ligament stem cells (hPDLSCs),
one type of the mesenchymal stem cells derived from periodontal
ligament tissue. And we found more than 200 lncRNAs were
expressed differentially in the process of osteogenic induction
(Zheng et al., 2018). Among them, lncRNA growth arrest
specific transcript 5 (GAS5) showed significant change in
expression between the undifferentiated and osteogenically
differentiated hPDLSCs. Besides, we analyzed the expression
pattern of lncRNAs during osteogenic differentiation of
hPDLSCs, and formed the global co-expression networks to
detect the genes that may participate in the osteoblast
differentiation of hPDLSCs. In the network, we found that long
noncoding RNA GAS5 showed strong correlation with GDF5
Frontiers in Pharmacology | www.frontiersin.org 259
which is vital in osteoblast differentiation. It is interesting to
explore whether GAS5 plays an important role in the process of
osteogenic differentiation as GDF5 does. Located in chromosome
1q25.1, GAS5 is comprised of 12 exons with a short open reading
frame that lack the ability to encode proteins (Schneider et al.,
1988). Although GAS5 does not encode proteins, it is highly
expressed in many tissues. The expression of GAS5 turns out to be
even higher than many genes that encode proteins, which
indicates that it may serve a functional role during the lifetime
of the cell (Coccia et al., 1992). Besides, GAS5 is reported to
participate in multiple stages of biological processes, like cell
proliferation, apoptosis or migration (Pickard and Williams,
2016; Ding et al., 2018; Wang and Kong, 2018). Many studies
treat GAS5 as a potent tumor suppressor as its deregulated
expression has been linked with a legion of cancers (Ma et al.,
2016; Xue et al., 2017)

However, researches on the role of GAS5 in osteogenesis of
hPDLSCs are scarce. We attempt, therefore, to determine how
GAS5 influences osteogenic induction process of hPDLSCs and
explore the possible mechanism.
MATERIALS AND METHODS

Cell Cultivation and Induction
Healthy premolars were collected from three patients (16–20
years of age) in oral maxilla-facial surgery department. The
periodontal ligament from the middle third of premolars was
gently scraped and digested in trypsin (Gibco) for 5 min. The
small pieces of tissue were then seeded onto a culture bottle and
incubated in a growth medium (GM), which is composed of
alpha minimum essential medium enriched with 10% fetal
bovine serum (Gibco) and 1% penicillin and streptomycin in
the presence of 5% CO2 and a temperature of 37°C. The passages
3–6 of PDLSCs were utilized for subsequent experiments. These
cells were identified and positive for mesenchymal stem cell
markers CD73, CD105, and CD90 (Zheng et al., 2017). For the
induction of differentiation in osteocytes, the hPDLSCs was
cultured in osteogenic medium (OM), which is composed of
GM supplemented with b-glycerophosphate (10 mM),
dexamethasone (100 nM) and vitamin C (200 mM). The
culture medium was changed every two days. The researchers
obtained their ethical approval from the Ethics Committee
(PKUSSIRB-201837096).

Cell Transfection
The siRNA control (si-NC) together with the small interfering
RNAs (si-RNAs) against GAS5 (si-GAS5) and GDF5 (si-GDF5)
were designed by Gene Pharma company (Shanghai, China). The
si-RNA sequences were presented as following: si-GAS5, 5'-CUU
GCCUGGACCAGCUUAATT-3'; si-GDF5, 5'-CCCAAGAAGG
AUGAACCCATT-3'; si-NC, 5'-UUCUUCGAACGUGUCACG
UTT-3'. When the cells have reached 70–80% of confluence,
hPDLSCs were transfected by si-NC, si-GAS5 and si-GDF5
separately using Lipofectamine 3000 (Invitrogen) at 100 nM
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and Opti-MEM every four days following the manufacturer's
instructions. Recombinant lentivirus containing full-length
GAS5 (GAS5) and the control (NC) was designed by Gene
Pharma company (Shanghai, China). The cells were cultivated
with medium containing specific lentivirus for 24 h and then
exposed to medium containing puromycin (10 ng/ml) for
cell selection.

Alkaline Phosphatase (ALP) Staining
Following the seven-day induction of osteogenesis, fixing was
conducted to the cells using 4% paraformaldehyde for 10 min.
Distilled water was then used for washing. Then an NBT/BCIP
kit for staining (Co Win Biotech, Beijing, China) was used to
conduct the ALP staining according to the protocol.

Alizarin Red S (ARS) Staining
On the fourteenth day following induction of osteogenesis, fixing
of the cells was done in 4% paraformaldehyde for a duration of
10 min. Washing was done thrice using distilled water. After
that, 1% Alizarin red S (Sigma-Aldrich St. Louis, MO) staining
solution performed staining of the cells for 20 min to assess
calcium deposition.

Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR)
TRIzol reagent (Invitrogen) was used to extract the total RNA
from the PDLSCs as directed by the manufacturer's guidelines.
The cDNA was then reverse transcribed by utilizing
PrimeScriptTM RT Reagent Kit (Takara). The qRT-PCR was
then done with the primers listed as follows: GAS5 forward
primer: GTGTGGCTCTGGATAGCAC and reverse primer: AC
CCAAGCAAGTCATCCATG; RUNX2 forward primer: ACT
ACCAGCCACCGAGACCA and reverse primer: ACTGCTT
GCAGCCTTAAATGACTCT; ALP forward primer: GAACG
TGGTCACCTCCATCCT and reverse primer: TCTCGTGG
TCACAATGC; OCN forward primer: CACTCCTCGCCCT
ATTGGCGTG and reverse primer: CCCTCCTGCTTGGAC
ACAAAGA; GDF forward primer: GCTGGGAGGTGTTCG
ACATC and reverse primer: CACGGTCTTATCGTCCTGGC.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used
as normalization and the 2–DDCT method was used
for calculations.

Western Blot Analysis
Collection and lysis of PDLSCs was conducted using RIPA Lysis
Buffer which contains 1% protease inhibitor cocktail (Solarbio).
Protein concentration was determined by a BCA kit (Thermo)
and a total of 30 mg of protein was used for western blot analysis.
The primary antibodies against RUNX2 (CST, #12556), GDF5
(Abcam, RRID: ab93855), p38 MAPK(Affinity, Cat#AF6456),
phosphorylated p38 MAPK (Affinity, Cat#AF4001), JNK
(Affinity, Cat#AF6318), phosphorylated JNK(Affinity,
Cat#AF3318), ERK(Affinity, Cat#AF0155), phosphorylated
ERK(Affinity, Cat#AF1015), and b-ACTIN (Abcam, RRID:
ab8226) diluted at 1:1,000 overnight at 4°C. Three washes were
done using TBST. Afterwards, incubation of the membranes was
done with the anti-rabbit and anti-mouse secondary antibodies
Frontiers in Pharmacology | www.frontiersin.org 360
(ZB-2301 and ZB-2305, Zhongshan Golden Bridge
Biotechnology, Beijing, China) which is diluted at 1:10,000 at
room temperature for 1 h. Visualization of the bands was done
by enhanced chemiluminescence using the Bio-Rad system for
detection (ChemiDocTM MP Imaging System, USA). Intensity
of the bands was measured using ImageJ. b-ACTIN internal
control was used to ensure equal protein loading.

Immunofluorescence Staining
Cell plating was done onto sterile glass coverslips and cultured in
GM or OM for seven days. Four percent paraformaldehyde was
utilized to fix the cells for 20 min at room temperature. The cells
were washed (0.01 M PBS) and permeabilized (1% Triton X-100),
and then they were blocked with 5% goat serum (ZLI-9022,
Zhongshan Golden Bridge Biotechnology, Beijing, China) for 1 h.
Primary antibody OCN (Abcam, RRID: ab13418) and anti-rabbit
secondary antibody (ZF-0511, Zhongshan Golden Bridge
Biotechnology, Beijing, China) were used. DAPI staining was
performed to stain nuclei and then the cells were observed and
photographed using a confocal system for imaging (LSM 5
EXCITER, Carl Zeiss, Jena, Germany).

RNA Sequencing
The total RNA was extracted from GAS5 overexpressing and
control group using TRIzol reagent (Invitrogen). cDNA libraries
were constructed and samples were paired-end sequenced with
an Illumina HiSeq 2000 platform. Whole transcriptome
sequencing data were mapped to the human genome (hg38)
using TopHat2. We used HTseq to count the genes and calculate
the reads per kilobase transcriptome per million mapped reads
(RPKM) to evaluate the gene expression level. Differentially
expressed genes (DEGs) were defined based on fold changes
greater than or equal to 2.0 and a false discovery rate of less
than 0.05.

Statistical Analysis
All of the statistical analyses in this study were performed using
SPSS 20.0 software (SPSS, Inc., Chicago, IL). Three repeated
experiments were done. Results were presented as mean ± SD
and analyzed employing Student's t test and one-way analysis of
the variance.
RESULTS

The Expression of LncRNA GAS5 and
GDF5 Is Upregulated During Osteoblast
Differentiation of hPDLSCs
We cultured PDLSCs in OM for 0, 3, 7, and 14 days respectively
to prove the effect of osteogenic induction. Quantitative RT-PCR
results demonstrated that during the osteogenic differentiation of
hPDLSCs the mRNA expression of RUNX2, ALP and OCN
(osteogenic markers) significantly increased (Figure 1A). The
intensity of ALP staining was gradually enhanced at days 0, 3,
and 7 of osteogenic differentiation of hPDLSCs (Figure 1B). The
ARS staining was also deepened progressively at days 0, 7, and 14
of osteogenic differentiation of hPDLSCs (Figure 1C). The
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results indicated that the osteogenic induction was successful. To
determine how GAS5 and GDF5 influences the osteogenic
differentiation of PDLSCs, we conducted examination of its
expression pattern, and found that the expression of GAS5 and
GDF5 exhibited a gradual upregulation during the osteogenic
differentiation for 14 days (Figure 2).

GAS5 Enhances Osteoblast Differentiation
of hPDLSCs
To investigate the function of GAS5, we used si-GAS5 to knock
down and lentivirus to overexpress GAS5 in hPDLSCs. The qRT-
PCR results indicated that the expression of GAS5 declined
nearly 80% using si-GAS5, and the efficiency of lentivirus
transfection showed a more than 4-fold increase in comparison
with the control group. Knocking down GAS5 caused a
reduction in the mRNA levels of RUNX2, ALP and OCN
Frontiers in Pharmacology | www.frontiersin.org 461
compared to si-NC group, whereas overexpression of GAS5
upregulated those osteogenic related genes (Figure 3A).
Western blot analysis further indicated that silencing GAS5
inhibited the expression of osteogenic related proteins RUNX2
and overexpressing GAS5 caused an increase in RUNX2 protein
expression (Figure 3B). The staining of ALP decreased after
seven-day osteogenic induction of GAS5 knockdown PDLSCs,
whereas significantly enhanced in the GAS5 overexpression
group in comparison with NC group (Figure 3C) .
Consistently, after the 14-day OM induction, matrix
mineralization was inhibited in the GAS5 knockdown group
and was promoted in the GAS5 overexpression group as revealed
by ARS staining (Figure 3D) . Besides, analysis by
immunofluorescence revealed downregulated protein level of
OCN in PDLSCs with si-GAS5 compared to that with si-NC at
day 7 of osteogenic differentiation (Figure 4D).
A

B

C

FIGURE 1 | The osteogenic induction of hPDLSCs. (A): The relative expression of osteogenic makers namely RUNX2, ALP and OCN was determined by qRT-PCR
during the osteogenesis of hPDLSCs for 0, 7 and 14 days. RNA expression at the above-mentioned time period was normalized to day 0. GAPDH was used as an
internal control. (B): The images of ALP staining in hPDLSCs cultivated in GM or OM for 3 and 7 days. (C): The images of ARS staining in hPDLSCs cultivated in GM
or OM for 7 and 14 days. **p < 0.01. hPDLSCs, human periodontal ligament stem cells; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; RUNX2, runt-related
transcription factor 2; ALP, alkaline phosphatase; OCN, osteocalcin; qRT-PCR, quantitative reverse-transcription polymerase chain reaction; ARS, Alizarin red S; GM,
growth medium; OM, osteogenic medium.
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Downregulation of GDF5 Inhibits
Osteoblast Differentiation of hPDLSCs
To help elucidate the role of GDF5 in osteogenic differentiation
of hPDLSCs, similarly, we used si-GDF5 to realize the
knockdown of GDF5 and the expression of GDF5 was reduced
by 70–80%. Several osteogenic markers (RUNX2, ALP, OCN)
was downregulated after knocking down GDF5 as tested by qRT-
PCR (Figure 4A). The intensity of ALP staining decreased in the
GDF5 knockdown group after the 7-day osteogenic
differentiation (Figure 4B), and the ARS staining weakened
consistently after the 14-day osteogenic differentiation (Figure
4C), indicating that downregulation of GDF5 inhibits osteoblast
differentiation of hPDLSCs. In addition, immunofluorescence
staining analysis further demonstrated that the negative effect of
knocking down GDF5 on osteogenic differentiation of hPDLSCs
(Figure 4D).

GAS5 Presents a Co-Expression
Relationship With GDF5
In previous research, we analyzed the expression pattern of
lncRNA during osteogenic differentiation of hPDLSCs, and
visualized the global co-expression networks to find out the
genes that may participate in the osteoblast differentiation of
hPDLSCs. In the network, we found that GAS5 showed strong
correlation with GDF5 that were found to play a vital role in
osteoblast differentiation (Figure 5A). To confirm whether
GDF5 is influenced by GAS5, we used RNA sequencing (RNA-
seq) to identify differentially expressed genes in GAS5-
overexpression PDLSCs compared to the control group (NC).
And we investigated the potential regulatory roles played by
differentially expressed genes via Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses. Finally, we found 509 genes downregulated and 156
genes upregulated in the GAS5 overexpression group. Among
these, the expression of GDF5 was increased to nearly 4-fold. The
qRT-PCR results were consistent with the RNA-seq data. The
mRNA expression of GDF5 was decreased after knocking down
GAS5 and upregulated by overexpressing GAS5 (Figure 5B).
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Furthermore, western blot analysis demonstrated that GDF5 was
decreased in si-GAS5 group and upregulated in the GAS5
overexpressing group (Figure 5C).

GAS5 Promotes and Knocking Down
GDF5 Inhibits Osteogenic Differentiation of
hPDLSCs Partly via Alleviating p38/JNK
Phosphorylation
The relevant studies showed that p38 MAPK signaling pathway
serve a significant role in the bone formation and inflammation,
and it was activated by the TGF-b superfamily of proteins,
including BMPs (Li et al., 2014). Furthermore, our group have
confirmed that GDF5 can regulate osteogenic differentiation
partially via phosphorylation of p38 and SMAD1/5/8 (Li X.
et al., 2018). Thus, we investigated whether GAS5 and GDF5 can
regulate the proteins in MAPK signaling pathway. To evaluate
the levels of p38, phosphorylated p38 (p-p38), extracellular
signal-regulated kinase 1/2 (ERK), phosphorylated ERK (p-
ERK), c-Jun N-terminal kinase (JNK) and phosphorylated JNK
(p-JNK) in MAPK pathway in the si-GAS5, si-GDF5, si-NC,
GAS5 and NC treated hPDLSCs, western blot analysis was
conducted. The results showed that the phosphorylation of p38
and JNK decreased in si-GAS5 group and there was no
significant difference in the phosphorylation of ERK (Figure
6). The phosphorylation of p38 and JNK increased in GAS5
overexpressing group and there was no significant difference in
the phosphorylation of ERK (Figure 7). The phosphorylation of
p38, JNK and ERK all declined in si-GDF group (Figure 8).
DISCUSSION

GAS5 was overexpressed in growth arrest cells and was thus
named growth arrest-specific 5 (Schneider et al., 1988). Ever
since the discovery, researches related to GAS5 has been
increasing dramatically. Its expression has been meticulously
recorded in a large scope of tissues and its function has been
thoroughly studied over different stages of development (Pickard
FIGURE 2 | Expression pattern of GAS5 and GDF5 during the osteoblast differentiation of hPDLSCs. The relative expression of GAS5 and GDF5 was determined by
qRT-PCR during the osteogenesis of hPDLSCs for 0, 7 and 14 days. RNA expression at the above-mentioned time period was normalized to day 0. GAPDH was used
as an internal control. **p <0.01. GAS5, lncRNA growth arrest specific transcript 5; GDF5, growth differentiation factor 5; hPDLSCs, human periodontal ligament stem
cells; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; qRT-PCR, quantitative reverse-transcription polymerase chain reaction.
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FIGURE 3 | GAS5 enhanced the osteoblast differentiation of hPDLSCs. (A): The efficiency of transient transduction of si-GAS5 and lentivirus infection is measured
by qRT-PCR. The mRNA expression of RUNX2, ALP, OCN was measured in si-NC, si-GAS5, NC and GAS5 group on the second day of osteogenic induction.
GAPDH mRNA levels were employed for the process of normalization. (B): Western blot analysis of the protein expression of RUNX2 and the internal control b-
ACTIN on the third day of osteogenic induction. b-ACTIN was utilized for the normalization relative to si-NC groups. (C): The images of ALP staining in si-NC, si-
GAS5, NC and GAS5 group. Cells were cultured in GM or OM for 7 days. (D): Images of ARS staining that stains for mineralized matrix in the si-NC, si-GAS5, NC
and GAS5 group were also cultured in GM or OM for 14 days. *p < 0.05, **p < 0.01. hPDLSCs, human periodontal ligament stem cells; GDF5, growth differentiation
factor 5; si-NC, small interfering RNA negative control; si-GAS5, the small interfering RNAs that target GAS5; NC, negative control; GAPDH, glyceraldehyde 3-
phosphate dehydrogenase; RUNX2, runt-related transcription factor 2; ALP, alkaline phosphatase; OCN, osteocalcin; GM, growth medium; OM, osteogenic medium;
qRT-PCR, quantitative reverse-transcription polymerase chain reaction; ARS, Alizarin red S.
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and Williams, 2015). Its role as a tumor suppressor lncRNA
attracted much attention when its low-expression was detected
in cancers such as non-small cell lung cancer and colorectal
carcinoma (Yang et al., 2017; Ding et al., 2018). Studies showed
that GAS5 is essential in modulating the pluripotency and self-
renew ability of mouse embryonic stem cells. Besides, it represses
endodermal lineage differentiation and promotes induced
pluripotent stem cells reprogramming (Tu et al., 2018). Also,
its involvement in inflammation was studied with inconsistent
results (Sun et al., 2017; Li F. et al., 2018). The function of GAS5
in osteogenesis, however, seems to be neglected by academia. To
explore the uncharted waters, i.e. its role in osteogenic
differentiation, we detected the expression pattern of GAS5 in
osteogenic induction of hPDLSCs, and used si-GAS5 and GAS5
to confirm its regulatory function in mRNAs and proteins related
to bone formation. We used RNA-seq to explore the co-
expression network connections and found the relationship
between GAS5 and GDF5, following that we found that GAS5
can promote osteogenesis of hPDLSCs by upregulating GDF5 via
a p38/JNK signaling pathway.

Through complicated regular mechanisms, lncRNAs play an
essential part throughout regulatory processes of genes. lncRNAs
can mediate epigenetic regulation via binding to proteins, such as
chromatin regulatory complexes before the transcription processes
Frontiers in Pharmacology | www.frontiersin.org 764
(Wutz and Gribnau, 2007). During the transcription process,
lncRNAs can interact with transcriptional factors and affect its
activity (Feng et al., 2006). Besides, the post-transcriptional
processes is also influenced by lncRNAs, mostly through
competing endogenous RNA (ceRNA) mechanism (Poliseno
et al., 2010). As for GAS5, the specific regulatory mechanism
remains unclear. It is reported that GAS5 can specifically unite
with DNA segments in the glucocorticoid receptor (GR),
inhibiting the bonding between the GR and glucocorticoid
response elements in target genes (Kino et al., 2010). Besides,
GAS5 can integrate with eukaryotic translation initiation factor-4E
or act as competing endogenous RNA (ceRNA), such as miR-21
(Hu et al., 2014; Song et al., 2014). The relationship between GAS5
and GDF5 is uncovered by the network analysis in our previous
work. Then we found that GAS5 can regulate the expression of
GDF5 in the osteogenic differentiation of PDLSCs. It is reported
that miR-21 promoted the chondrogenesis of osteoarthritis by
directly targeting GDF5 (Zhang et al., 2014). We propose that
there might be a lncRNA-miRNA regulatory loop between GAS5
and GDF5; miR-21 might potentially serve as one of the links. The
specific path in which GAS5 interacts with GDF5, however,
remains to be investigated.

Mitogen-activated protein kinases (MAPKs) are a family of
evolutionarily conserved serine/threonine kinases that can help
May 2020 | Volume 11 | Article 701
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FIGURE 4 | Knockdown of GDF5 inhibits osteoblast differentiation of hPDLSCs. (A): The efficiency of transient transduction of si-GDF5 is measured by qRT-PCR.
The mRNA expression of RUNX2, ALP, OCN was measured in si-NC and si-GDF5 group on the second day of osteogenic induction. GAPDH was used for the
normalization process relative to si-NC groups. (B): Images of ALP in the si-GDF5 and si-NC groups. Cells were cultured in OM for 7 days. (C): Images of ARS
which stains for mineralized matrix in the si-GDF5 and si-NC groups. Cells were cultured in OM for 14 days. (D): Immunofluorescence staining analysis of OCN
protein expression at si-NC, si-GAS5 and si-GDF5 groups. Cells were cultured in GM or OM for 7 days. *p < 0.05, **p < 0.01. hPDLSCs, human periodontal
ligament stem cells; si-NC, small interfering RNA negative control; si-GDF5, the small interfering RNAs that target GDF5; GAPDH, glyceraldehyde 3-phosphate
dehydrogenase; RUNX2, runt-related transcription factor 2; ALP, alkaline phosphatase; OCN, osteocalcin; GM, growth medium; OM, osteogenic medium; qRT-PCR,
quantitative reverse-transcription polymerase chain reaction; ARS, Alizarin red S.
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to transduce extracellular stimuli into cells and nuclei,
participating in multiple biological processes such as cellular
proliferation, differentiation, and apoptosis (Bluthgen and
Legewie, 2008; Kim and Choi, 2015). MAPKs have three main
subfamilies, namely, extracellular signal-regulated kinase (ERK),
c jun N-terminal kinase (JNK), and p38. Previous studies have
demonstrated that MAPK serves a vital role in the regulation of
bone mass via control of osteoblast differentiation (Higuchi et al.,
2002; Greenblatt et al., 2010). To further investigate the
Frontiers in Pharmacology | www.frontiersin.org 966
mechanism by which GAS5 promoted the osteogenic
differentiation of PDLSCs, we detected the protein levels of
JNK, p38, ERK, and their phosphorylated forms. The results
indicated that GAS5 promoted the phosphorylated levels of JNK,
and p38, whereas not significantly changed the expression levels
of ERK.

Studies have indicated that the JNK and p38 phosphorylation
is involved in the osteogenesis of PDLSCs. It is demonstrated that
cannabinoid receptor 1 enhanced the osteo/dentinogenic
A

B

C

FIGURE 5 | GAS5 regulated the expression of GDF5. (A): The mRNA expression of GDF5 as is detected by qRT-PCR in si-NC, si-GAS5, NC and GAS5 group.
GAPDH was employed for the normalization. (B): Western blot analysis of the protein expression of GDF5 and the internal control b-ACTIN in si-NC, si-GAS5, NC
and GAS5 group. The histogram demonstrates the quantification of the band intensities. (C): The co-expression network connections of the module, containing
GAS5 and NEAT1. *p < 0.05, **p < 0.01. GAS5, lncRNA growth arrest specific transcript 5; GDF5, growth differentiation factor 5; si-NC, small interfering RNA
negative control; si-GAS5, the small interfering RNAs that target GAS5; NC, negative control; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; qRT-PCR,
quantitative reverse-transcription polymerase chain reaction.
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differentiation ability of periodontal ligament stem cells via p38
MAPK and JNK in an inflammatory environment (Yan et al.,
2019). Bone morphogenetic protein-9 induces PDLSCs
osteogenic differentiation through the ERK and p38 signal
pathways (Ye et al., 2014). In the present study, GAS5
Frontiers in Pharmacology | www.frontiersin.org 1067
increased the phosphorylated levels of JNK and p38, which
indicated GAS5 enhanced osteogenic differentiation of PDLSCs
possibly through activation of p38 MAPK and JNK signaling
pathway. In addition to the MAPK pathway, other pathway like
Wnt/b-catenin, BMP/TGF-b pathways have also been reported
A

B

C

FIGURE 6 | Knockdown of GAS5 weakened the phosphorylation of JNK and p38 in hPDLSCs. (A): Western blot analysis of phosphorylated JNK (p-JNK), JNK and
b-ACTIN in hPDLSCs transfected with si-NC or si-GAS5. Histogram showed the quantification of the band intensities. (B): Western blot analysis of phosphorylated
p38 (p-p38), p38 mitogen-activated protein kinase (p38), and b-ACTIN in hPDLSCs transfected with si-NC or si-GAS5. Histogram showed the quantification of the
band intensities. (C): Western blot analysis of phosphorylated ERK (p-ERK), ERK and b-ACTIN in hPDLSCs transfected with si-NC or si-GAS5. Histogram showed
the quantification of the band intensities. *p < 0.05, **p < 0.01. hPDLSCs, human periodontal ligament stem cells; GAS5, lncRNA growth arrest specific transcript 5;
si-NC: small interfering RNA negative control; si-GAS5: the small interfering RNAs that target GAS5; NC, negative control; JNK, c-Jun N-terminal kinase; ERK,
intracellular signal-regulated kinase 1/2.
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to be involved in the osteogenesis of PDLSCs (Cao et al., 2017;
Kim et al., 2018). There are intricate cross-talks between the
pathways, forming a complex regulatory network; all pathways
have not been exhaustively studied. More experiments are
expected for a better understanding of the perplexing picture
of regulatory network.
Frontiers in Pharmacology | www.frontiersin.org 1168
Loss of homeostasis in ECM can contribute to cartilage defect
and bone disorders, such as osteoarthritis and osteoporosis (Paiva
and Granjeiro, 2017; Rahmati et al., 2017). Our findings attempt to
offer new perspectives into the ability of GAS5 to promote
hPDLSCs osteogenic differentiation partially via regulating
GDF5 and participating in p38/JNK pathway. Our results shed
A

B

C

FIGURE 7 | Overexpressing GAS5 enhanced the phosphorylation of JNK and p38 in hPDLSCs. (A): Western blot analysis of phosphorylated JNK (p-JNK), JNK and
b-ACTIN in hPDLSCs transfected with NC or GAS5. Histogram showed the quantification of the band intensities. (B): Western blot analysis of phosphorylated p38
(p-p38), p38 mitogen-activated protein kinase (p38), and b-ACTIN in hPDLSCs transfected with NC or GAS5. Histogram showed the quantification of the band
intensities. (C): Western blot analysis of phosphorylated ERK (p-ERK), ERK and b-ACTIN in hPDLSCs transfected with NC or GAS5. Histogram showed the
quantification of the band intensities. *p < 0.05, **p < 0.01. hPDLSCs, human periodontal ligament stem cells; GAS5, lncRNA growth arrest specific transcript 5; NC,
negative control; JNK, c-Jun N-terminal kinase; ERK, intracellular signal-regulated kinase 1/2.
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lights on the application of hPDLSCs combined with GAS5, which
could be a potentially useful approach in stimulating osteogenesis
in bone tissue engineering. And its regulatory network may cast
some light to the mechanism of bone disorders.
Frontiers in Pharmacology | www.frontiersin.org 1269
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Bone regeneration repairs bone tissue lost due to trauma, fractures, and tumors, or
absent due to congenital disorders. The extracellular matrix (ECM) is an intricate dynamic
bio-environment with precisely regulated mechanical and biochemical properties. In bone,
ECMs are involved in regulating cell adhesion, proliferation, and responses to growth
factors, differentiation, and ultimately, the functional characteristics of the mature bone.
Bone ECM can induce the production of new bone by osteoblast-lineage cells, such as
MSCs, osteoblasts, and osteocytes and the absorption of bone by osteoclasts. With the
rapid development of bone regenerative medicine, the osteoinductive, osteoconductive,
and osteogenic potential of ECM-based scaffolds has attracted increasing attention.
ECM-based scaffolds for bone tissue engineering can be divided into two types, that is,
ECM-modified biomaterial scaffold and decellularized ECM scaffold. Tissue engineering
strategies that utilize the functional ECM are superior at guiding the formation of specific
tissues at the implantation site. In this review, we provide an overview of the function of
various types of bone ECMs in bone tissue and their regulation roles in the behaviors of
osteoblast-lineage cells and osteoclasts. We also summarize the application of bone ECM
in bone repair and regeneration. A better understanding of the role of bone ECM in guiding
cellular behavior and tissue function is essential for its future applications in bone repair
and regenerative medicine.

Keywords: ECM, bone formation, bone tissue engineering, bone repair, bone cells
INTRODUCTION

Trauma, fractures, congenital disease, or tumors can cause bone defects that are challenging to heal.
This is especially true for large bones, where the missing tissue is larger than the spontaneous
healing ability of osteoblasts (El-Rashidy et al., 2017; Fabris et al., 2018). For small defects,
autologous bone grafts remain the gold standard. This approach relies on bone tissue harvested
from a patient's own donor site, which is transplanted into the same patient's damaged area. Because
the grafts contain the native bone matrix, osteoblasts, and growth factors, they intrinsically possess
osteoinductivity and osteoconductivity (Garcia-Gareta et al., 2015). However, this approach is
limited by the available sources of grafts and secondary damage at the donor site. By contrast, while
having similar biological characteristics and mechanical properties as autogenous bone, allogeneic
in.org May 2020 | Volume 11 | Article 757172
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bone carries the risk of transmission of infectious diseases and
the possibility of immune rejection (Hinsenkamp et al., 2012).

In recent years, tissue engineering technology has enabled the
production of artificial bone in large quantities. The resulting
materials have the potential advantages of excellent biocompatibility,
osteoinductivity, and osteoconductivity, providing a promising new
method for bone repair. The manufacture of superior tissue-
engineering constructs depends on three basic elements:
appropriate scaffolds to support tissue-cell regeneration, cytokines,
and appropriate seed cells. As the physical basis of artificial grafts,
scaffold materials play a key role in the construction of artificial bone
(Noori et al., 2017). Ideally, the scaffold material should mimic the
characteristics of natural bone, providing a suitable biochemical
environment and biomechanical support for the adhesion,
migration, proliferation, osteogenic differentiation, and angiogenesis
of seed cells on the scaffold. Finally, it must allow the gradual
integration into the host tissue during the healing process, allowing
it to bear normal loads (Mishra et al., 2016; Roseti et al., 2017). During
bone regeneration, the homing of mesenchymal stem cells (MSCs),
the formation of osteoblasts, extracellular matrix (ECM) and osteoid
mineralization, and the formation of terminally differentiated
osteocytes play an important role in bone formation (Wang
et al., 2013).

The ECM is a non-cellular three-dimensional structure
secreted by cells into the extracellular space. It is composed of
specific proteins and polysaccharides. The ECM of each tissue type
has a unique composition and topology during development
(Frantz et al., 2010). The ECM provides the tissue with integrity
and elasticity, and it is constantly being reformed due to changes
in the abundance of receptors, growth factors, and the pH of the
local environment to control the development, function, and
homeostasis of tissues and organ (Bonnans et al., 2014; Mouw
et al., 2014). The ECM is considered to represent the fourth
element in the development of bone tissue engineering (Ravindran
et al., 2012). The bone matrix comprises organic (40%) and
inorganic compounds (60%). Moreover, its exact composition
differs based on sex, age, and health conditions. The main
inorganic components of the ECM are calcium-deficient apatite
and trace elements. By contrast, the organic ECM is significantly
more complex consists mainly of collagen type I (90%), and
noncollagenous proteins (10%). It is mainly synthesized by
osteoblasts before the mineralization process (Mansour et al.,
2017). The non-collagenous proteins can be classified into four
groups: g-carboxyglutamate-containing proteins, proteoglycans,
glycoproteins, and small integrin-binding ligands N-linked
glycoproteins (SIBLINs) (Paiva and Granjeiro, 2017). Bone ECM
dynamically interacts with osteoblast-lineage cells and osteoclasts
to regulate the formation of new bone during regeneration.

In this review, we briefly introduce the inorganic and organic
ECM of bone tissue (Table 1), including collagenous and non-
collagenous proteins, and summarize the effects of the ECM on
osteoblast-lineage cells, including MSCs, osteoblasts, and
osteocytes, and osteoclasts. Finally, the application of ECM-
based scaffold for bone regeneration in bone tissue engineering
is reviewed.
Frontiers in Pharmacology | www.frontiersin.org 273
MAJOR COMPONENTS OF BONE ECM

Organic ECM
Collagenous Proteins
The collagen type I, III, and V are the most abundant
constituents of the organic ECM in bones. The main function
of collagens is mechanical support and to act as a scaffold for
bone cells (Saito and Marumo, 2015). Type I collagen accounts
for 90% of the total collagen in bone tissue and forms triple
helices of polypeptides which form the collagen fibrils. These
fibrils interact with other collagenous and noncollagenous
proteins to assemble the higher-order fibril bundles and fibers
(Varma et al., 2016). Collagen types III and V regulate the fiber
diameter and fibrillogenesis of type I collagen and are present in
smaller amounts (Garnero, 2015). The inter- and intra-chain
crosslinks of collagen are key to its mechanical properties, which
maintain the polypeptide chains in a tightly organized fibril
structure. Collagen plays an important role in determining bone
strength. The lack of type I collagen or mutation of collagen
structure results in changes in the ECM, and thus significantly
increases fracture risk (Fonseca et al., 2014).

Noncollagenous Proteins
Proteoglycans
Proteoglycans are characterized by the presence of glycosaminoglycan
(GAG) residues covalently bound to the protein core. The six
types of GAG residues found in proteoglycans include keratan
sulfate, chondroitin sulfate, heparan sulfate, hyaluronic acid, and
dermatan sulfate (Kjellen and Lindahl, 1991). Small leucine-rich
proteoglycans (SLRPs), such as biglycan, decorin, keratocan, and
asporin, are important proteoglycans family in the bone. SLRPs
are secreted extracellular proteins that interact with cell surface
receptors and cytokines to regulate both normal and pathological
cellular behaviors. During bone formation, SLRPs participate in
all stages including cell proliferation, osteogenesis, mineral
deposition, and bone remodeling (Kirby and Young, 2018). In
addition, SLRPs regulate the process of collagen fibrillogenesis,
the dysregulation of which leads to defects in the organization
and production of collagen, culminating in fibrosis due to either
orthopedic injuries or genetic deficiencies (Moorehead et al.,
2019). Biglycan and decorin are class I SLRPs that contain either
dermatan or chondroitin sulfate GAG chains. Biglycan is
expressed during the process of cell proliferation and
mineralization, while Decorin is continuously expressed
starting from bone matrix deposition. Keratocan is mainly
expressed in osteoblasts and involved in regulating bone
formation and mineral deposition rates (Coulson-Thomas
et al., 2015). Asporin, another member of SLRP, has been
shown to bind with type I collagen to promote collagen
mineralization (Kalamajski et al., 2009). Therefore, SLRPs play
an essential role to maintain bone homeostasis.

g-Carboxyglutamic Acid-Containing Proteins
One important group of bone ECM proteins contains g-
carboxyglutamic acid (Gla), a specific modified glutamic acid
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produced by a vitamin K-dependent post-translational
modification. These proteins are mainly present in the serum,
bone matrix, dentin, and other calcified tissues (Finkelman and
Butler, 1985). The main Gla-containing proteins in the bone are
osteocalcin (OCN), matrix Gla protein (MGP), and periostin
(Wen et al., 2018). OCN is specifically expressed by bone-
forming osteoblasts and contains three Gla residues, which
give OCN the ability to bind calcium to modulate calcium
metabolism by mediating its association with hydroxyapatite.
The bone resorption process reduces OCN's affinity for
hydroxyapatite, thereby enhance the release of OCN into
circulation. Circulating OCN not only acts as a hormone that
regulates glucose and energy metabolism, but its concentration
in serum can be used as a biochemical indicator of bone
formation (Mizokami et al., 2017). MGP is a 14-kDa
extracellular protein that synthesized by osteoblasts, osteocytes,
and chondrocytes in the bone. MGP-deficient mice have
Frontiers in Pharmacology | www.frontiersin.org 374
reportedly exhibited premature bone mineralization, while
mice with MGP overexpression in osteoblasts showed reduced
mineralization of intramembranous bone and hypomineralized
tooth dentin and cementum (Luo et al., 1997; Kaipatur et al.,
2008). Obviously, MGP is responsible for disrupting bone
formation and inhibiting mineralization.

Except for OCN and MGP, periostin is another abundantly
expressed Gla-containing protein in bone. Periostin is mainly
secreted by osteoblasts and their precursor cells in long bones
and is also found in other organs, such as the heart (Wen et al.,
2018). Structurally, periostin comprises four domains, a signal
sequence, a cysteine-rich emilin-like (EMI) domain, four
repetitive and conserved FAS-1 domains, and a variable
hydrophilic C-terminal domain, each of which provides
different functions, such as FAS-1 providing cell adhesion
ability (Merle and Garnero, 2012). As an adhesion molecule,
periostin promotes aggregation, adhesion, proliferation, and
TABLE 1 | The list of bone ECM components and their role in bone formation.

Bone ECM Expressed from Function in bone tissue Reference

Organic ECM
Collagenous protein
Type I collagen Osteoblast –Scaffold for bone cells

–Maintain bone strength
(Saito and Marumo, 2015)

–Promote bone formation (Fonseca et al., 2014)
–Regulate collagen fibrillogenesis

Types III and V collagen Bone –Promote bone (Garnero, 2015)
Noncollagenous protein
Proteoglycans
Biglycan Osteoblast –Promote collagen fibrillogenesis

–Promote bone formation
(Moorehead et al., 2019)

Decorin Osteoblast –Promote collagen fibrillogenesis
–Promote bone formation

(Coulson-Thomas et al., 2015)

Keratocan Osteoblast –Promote mineral deposition rates
Asporin Articular cartilage or periodontal tissue –Promote collagen mineralization (Kalamajski et al., 2009)
g-carboxyglutamic acid-
containing proteins
Osteocalcin Osteoblast –Regulate calcium metabolism

–Indicate bone formation
(Mizokami et al., 2017)

Matrix Gla Protein (MGP) Osteoblast, osteocyte, and chondrocyte –Inhibit bone formation and mineralization (Kaipatur et al., 2008)
Periostin Osteoblast and precursor cells –Regulate collagen fibrillogenesis

-Maintain bone strength
(Wen et al., 2018)

Glycoproteins
Osteonectin Osteoblast -Promote bone formation and mineralization

-Regulate collagen fibrillogenesis
(Rosset and Bradshaw, 2016)

-Maintain biomechanical properties (Delany et al., 2000)
Thrombospondins Osteoblast -Promote bone formation

-Regulate collagen fibrillogenesis
(Delany and Hankenson, 2009)

R-spondins Bone -Promoter Wnt/b-catenin signaling
-Regulate bone development

(Shi et al., 2017)

Small integrin-binding
ligand N-linked
glycoproteins/SIBLINGs
BSP Mineralized tissues –Promote bone formation and mineralization (Marinovich et al., 2016)
OPN Osteoblast, odontoblast and osteocyte –Promote bone formation and mineralization

–Regulate bone remodeling
(Singh et al., 2018)

DMP1 Osteocyte and dentin –Regulate phosphate metabolism
–Promote bone mineralization

(Jani et al., 2016)

MEPE Osteocyte and dentin –Regulate phosphate metabolism (Zelenchuk et al., 2015)
–Promote bone mineralization

Inorganic ECM
Hydroxyapatite Bone –Biomineralization (Tavafoghi and Cerruti, 2016)
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differentiation of osteoblasts by binding to cell surface receptors.
Moreover, periostin participates in collagen folding and
fibrillogenesis, which is essential for matrix assembly and
further maintains bone strength (Wen et al., 2018).

Glycoproteins
Glycoproteins contain covalently attached carbohydrate
molecules on the protein chain in various combinations and
positions. Of glycoprotein in the bone matrix, osteonectin, also
known as secreted protein acidic and rich in cysteine (SPARC), is
a common representative. It is present in mineralized tissues and
highly expressed in osteoblasts of bone. Osteonectin is a vital
regulator of the calcium release by binding collagen and HA
crystals, thereby influencing the mineralization of collagen
during bone formation (Rosset and Bradshaw, 2016). With
experiments in vivo, Delany et al. (2000) demonstrates that
osteonectin-null mice had lower total collagen I content, bone
mineral density and numbers of osteoblasts and osteoclasts in
bone, and exhibited reduced biomechanical properties. Thus,
osteonectin takes part in regulating bone remodeling and
maintaining bone mass. Thrombospondins (TSPs), which are
classified as TSP1 through TSP5, are present in developing
skeleton and bone and is expressed by osteoblasts. In mice,
global knockout of TSP-1, -3, and -5 can cause severe
abnormalities in skeletal development (Delany and Hankenson,
2009). Moreover, TSP1-null mice show the increased bone mass
and cortical bone size, and the differentiation of osteoblast is
promoted, which is partly by activating latent TGF-b (Amend
et al., 2015). TSP2-null mice have enhanced cortical bone density
and osteoprogenitor numbers, combined with the abnormality of
collagen fibrillogenesis (Hankenson et al., 2000). These indicate
that TSPs play a critical role in bone cell differentiation and
maintaining bone mass. R-spondins (roof plate-specific spondin)
are a group of four secreted homologous glycoproteins (Rspo1-4)
that belong to thrombospondin repeat containing matricellular
protein family. They are widely expressed at different stages of
skeletal tissue and act as a reinforcer of the Wnt/b-catenin
signaling pathway through leucine-rich repeat-containing G-
protein-coupled receptors 4, 5, and 6 (Lgr4/5/6). In bone
tissue, R-spondins are identified as regulators of the skeleton
that control embryonic bone development and adult bone
remodeling (Shi et al., 2017).

Small Integrin-Binding Ligand N-Linked Glycoproteins/
SIBLINGs
SIBLINGs are a family of glycophosphoproteins that includes
bone sialoprotein (BSP), osteopontin (OPN), dentin matrix
protein-1 (DMP1), dentin sialophosphoprotein (DSPP), and
matrix extracellular phosphoglycoprotein (MEPE). These
proteins are predominantly found in mature, mineralized
tissues, such as dentin and bone (Bellahcene et al., 2008).

BSP is a highly glycosylated noncollagenous phosphoprotein,
that is expressed at the beginning of hard connective tissue
mineralization. As a result of the deletion of BSP in mice,
cementum deposition is significantly reduced, and long bone
length and cortical thickness, the rate of bone formation are also
reduced. Thus, BSP is vital in the regulation of osteoblast
Frontiers in Pharmacology | www.frontiersin.org 475
differentiation and initiation of matrix mineralization in bone
tissue (Marinovich et al., 2016). Like BSP, OPN is a major
regulator of bone formation, mineralization, especially in bone
turnover. It is highly expressed by osteoblasts, odontoblasts, and
osteocytes. OPN is abundant in serine-, acidic, and aspartate-rich
motif, which are potential phosphorylation sites involved in
inhibiting mineralization. In bone remodeling, OPN regulates
osteoclastogenesis and osteoclast activity, which contributes to
bone formation and resorption (Singh et al., 2018).

DMP1 and MEPE are mainly produced by fully differentiated
osteoblasts in bone, and also expressed by pulp cells and
odontoblasts. DSPP is important for the mineralization of
tooth dentin, and is consequently abundant in dentin tissue
(Bouleftour et al., 2019). Mice lacking DMP1 show severe bone
defects, displaying increased serum fibroblast growth factor 23
(FGF23) and decreased serum phosphorus, as well as deformed
and low-mineralized bone (Jani et al., 2016). Knockout of MEPE
in mice increases bone mass and trabecular density and shows
abnormal cancellous bone. Moreover, MEPE interacts with
DMP1 and PHEX to affect FGF23 expression, thereby
regulating phosphate, mineralization, and bone turnover
(Zelenchuk et al., 2015). DMP1 and MEPE, thus, appear as key
regulators of matrix mineralization and phosphate metabolism.

Inorganic ECM
The main inorganic constituent of hard tissues, such as bone and
dentine, is hydroxyapatite (HA, Ca5(PO4)3OH) (Ramesh et al.,
2018). The deposition of HA occurs through the process called
biomineralization. Interactions between minerals and matrix in
teeth and bones, such as amino acids present in non-collagenous
proteins, control HA formation. Collagen is produced during the
mineralization of tissue and acts as a template for the deposition
of HA (Tavafoghi and Cerruti, 2016). Due to the significant
chemical and physical resemblance of HA to the mineral
constituents of human bones and teeth, i t is both
biocompatible and osteoconductive. Consequently, HA is
widely used for coatings on metallic implants, bone fillings,
and injectable bone substitutes (Ramesh et al., 2018).
FUNCTION OF THE BONE ECM IN
OSTEOBLAST-LINEAGE BIOLOGY

Osteoblast-lineage cells are bone-forming cells in bone
remodel ing. Osteoblasts develop from multipotent
mesenchymal stem cells (MSCs), which can be isolated from
the bone marrow or other tissues. The osteogenic differentiation
of MSCs can be divided into four steps: (i) the commitment step
produces lineage-specific progenitor cells; (ii) the proliferative
phase of osteoprogenitors, in which genes associated with the cell
cycle and histone signals are expressed; (iii) the phase of ECM
secretion and morphological changes of immature osteoblasts;
(iv) osteoid mineralization initiated by mature osteoblasts, which
become terminally differentiated osteocytes (Paiva and
Granjeiro, 2017). MSCs, osteoblasts, and osteocytes sense
mechanical and biochemical signals from the ECM and
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respond to these signals by regulating their fate (Assis-Ribas
et al., 2018).

Regulation of BMSCs by the ECM
BMSCs are capable of migration, proliferation, differentiation,
and cell-cell communication. Moreover, they can synthesize
copious amounts of extracellular matrix proteins such as
collagen type IIIa1 and Va1, a5 and b5 integrin chains,
fibronectin, connective tissue growth factor, and transforming
growth factor beta I (TGFbI) (Ren et al., 2011). These are
considered to be important for MSC homing and fate
determination, such as adhesion, expansion, and spreading,
through integrin receptors.

As an osteoblastic agent, TGFb is coupled to the bone ECMs
and moderately regulates the differentiation of early BMSCs into
matrix-producing osteoblasts and osteocyte. Biglycan is can
regulate the biological activity of TGF-b as well as matrix
organization by binding to collagen type I. It has been reported
that BMSCs isolated from biglycan-KO mice produced low
amounts of collagen type I and showed a reduced response to
TGF-b. Moreover, the deficiency of biglycan disrupts the ability
to produce BMSCs, and also attenuates it's normal metabolic
activity. In addition, biglycan-KO mice show the low activity of
alkaline phosphatase (ALP)-positive MSCs, possibly due to
apoptosis, which leads to a decrease of proliferation (Chen
et al., 2002). In mice lacking biglycan and decorin (another
member of the SLRP family), high concentrations of TGF-b
activate downstream signaling pathways that stop the
proliferation and induce the apoptosis of BMSCs. Therefore,
decorin and biglycan mediate the proper sequestration of TGF-b
and play a vital role in regulating the survival and growth of
BMSCs (Bi et al., 2005).

Besides proteoglycans, glycoprotein TSP1 is also a major
regulator of TGF-b activation and critical for regulation of the
behaviors of MSCs inside the adult bone marrow niche
microenvironment. In MSCs, TSP1 inhibits MSCs osteogenesis
with decreased expression of Runx2 and ALP expression. This
inhibition is due to latent TGF-b activation in MSCs, since anti-
TGF-b antibody increased ALP activity in the presence of TSP1
(Bailey Dubose et al., 2012). Furthermore, the TSP1 effect on
MSC proliferation has been reported to be mediated by
activation of endogenous TGFb in a dose-dependent manner.
By contrast, the proliferation of MSC is not affected by TSP2,
which can't activate TGFb (Belotti et al., 2016). Therefore, TGFb
acts as an intermediary of TSP1 activity on MSCs.

Type I collagen fibrils in bone ECM also modulate
osteogenesis by binding with integrins of osteoblast
progenitors, which leads to initiated osteoblast differentiation
cascade through Runx2 transcriptional activation (Elango et al.,
2019). Fibrillogenesis starts from the interaction between type I
and type V collagen, and then forms linear fibril. SLRP and
thrombospondins can regulate collagen assembly by interacting
with collagen fibrils. In mice, deletion of TSP2 results in
increased number and proliferation ability of MSC, and also
characterized by delayed osteogenesis and increased
adipogenesis (Hankenson et al., 2000). Deficiency of TSP2
inhibits the differentiation of primary MSCs into osteoblasts,
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accompanied by decreased matrix collagen content and
disrupted type I collagen assemble process (Alford et al., 2013).
These results suggest that, unlike TSP1, TSP2 may act as an
inhibitor of MSCs proliferation and a promoter of differentiation
by regulating the mechanism of collagen fibrillogenesis.

Other ECM molecules, such as OPN, OCN, and DMP1, can
regulate the proliferation of MSCs and osteogenesis. OPN
increases the proliferation capacity of MSCs in a dose-
dependent manner. On the other hand, OCN promotes the
differentiation of MSCs into osteoblasts, with the increase of
extracellular calcium levels, ALP activity, and the mRNA
expression of OPN and OCN (Carvalho et al., 2019a).
Numerous studies find that cytoskeleton and chromatin
organization can affect cell migration. Liu and colleagues
indicate that F-actin cytoskeleton and chromatin structure
organized by EZH2-mediated H3K27me3 involves OPN-
induced MSCs migration (Liu et al., 2018; Liu et al., 2019). In
addition to stimulating the maturation of osteoblasts and
osteocytes, DMP1 can also affect the pluripotency of MSCs.
When DMP1 is removed, MSCs increasingly differentiate into
osteogenic cells and bone mass, suggesting that it is a negative
regulator of MSC differentiation (Zhang S. F. et al., 2018). Taken
together, ECM that participates in bone formation and
mineralization also significantly contributes to the growth,
survival, and differentiation of MSCs (Table 2).

Regulation of Osteoblasts by the ECM
Immature and mature osteoblasts are the intermediate cells
during MSCs osteogenesis. It continues the process of
differentiation, along with the secretion of ECM and osteoid
mineralization. Osteoblasts require a surface to synthesize new
matrix, which is provided by collagen. If there is no substrate,
osteoblasts synthesize a matrix that is only organized in the short
range. Thus, this organized surface is used by osteoblasts to
deposit mechanically stable and correctly structured bone tissue
(Kerschnitzki et al., 2011). Different structures composed of type
I collagen have different effects on the behavior of osteoblasts. In
contrast to soluble and fibrillar forms, denatured forms of type I
collagen inhibit the proliferation of osteoblast-like cells and can
stimulate osteoblastic differentiation (Tsai et al., 2010). A small
amount of type III collagen is also found in collagen fibrils of
bone. Type III collagen null mice show affected osteoblast
differentiation, consistent with decreased ALP activity, reduced
osteogenic markers (OCN and BSP), and mineralization capacity
(Volk et al., 2014). Therefore, collagen acts as a tissue scaffold,
providing a matrix for anchoring cells and regulating the growth
and osteogenic properties of osteoblasts.

Part of ECM protein not only regulates collagen
fibrillogenesis but is required for osteoblast lineage progression,
which ultimately affects mineralization. The contributions of
osteonectin, keratocan, TSP1, and TSP2 to collagen
fibrillogenesis have been extensively reported. In terms of
influencing the maturation and function of osteoblasts,
osteonectin and keratocan-null mice show fewer osteoblasts
and decreased mineralized nodules in mutant cells (Igwe et al.,
2011; Rosset and Bradshaw, 2016). TSP1 inhibits the
mineralization of osteoblast in vitro and in vivo (Ueno et al.,
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2006). However, TSP2 promotes osteoblast mineralization by
promoting the organization of osteoblast-derived ECM (Alford
et al., 2010). Collectively, those proteins mediate the
mineralization of osteoblasts through regulating collagen
fibrillogenesis to some extent.

ECM molecules BSP and OPN are two SIBLINGs that
contribute to the regulation of osteoblasts. BSP is crucial for
the synthesis of the ECM and HA nucleation activity. It can
promote osteoblast differentiation and enhance early bone
mineralization to produce new bone in vivo. Especially the
RGD sequence of BSP, which mediates the osteoblast behaviors
by FAK and other extracellular kinases (Holm et al., 2015). By
contrast, OPN can inhibit the process of osteoblast osteogenesis
through inhibition of BMP-2, and act as a mineralization
inhibitor of osteoblast in a phosphate-dependent manner
(Huang et al., 2004; Singh et al., 2018). Consistent with that of
OPN, OCN, which is produced by osteoblast, is considered as an
inhibitor of bone mineralization. Osteocalcin null mice show
larger HA crystal size, suggesting that osteocalcin may regulate
the maturation rate of minerals (Zoch et al., 2016).

The Wnt pathway is an important regulatory for bone
formation. Three ECM molecules, MGP, R-spondin2, and
periostin, have been identified to modulate the mineralization
of osteoblast through Wnt signaling. Knockdown of MGP
inhibits the differentiation and mineralization of osteoblasts via
up-regulating Wnt/b-catenin signaling pathway. Consistent with
the results of in vivo experiment that overexpression of MGP
inhibits the decreased bone mineral density induced by
ovariectomy (Zhang J. et al., 2019). As a wnt agonist, R-
spondin2 is abundantly expressed in pre-osteoblasts stimulated
by Wnt. R-spondin2 promotes osteoblastogenesis in vitro and
bone mass in vivo, supporting its vital role in osteoblastogenesis
and bone development (Knight et al., 2018). Sclerostin is an
important inhibitor of WNT/b-catenin signaling and regulates
osteoblast matrix generation. It has been reported that periostin
may interact directly with sclerostin and promotes Wnt signaling
inhibited by sclerostin (Bonnet et al., 2016). Moreover, periostin
can also affect osteoblast differentiation and bone formation,
suggesting that periostin is involved in bone anabolism by
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regulating Wnt/b‐catenin signaling (Merle and Garnero, 2012)
(Table 3).

Regulation of Osteocytes by the ECM
Osteocytes are the terminally differentiated immobilized cells in
the bone matrix. Although embedded in the bone matrix,
osteocytes form contacts with each other and with bone lining
cells, which aid bone growth and repair.

The bone matrix present around the intricate lacuno-
canalicular network of osteocytes is continuously being
resorbed and deposited in a process called perilacunar/
canalicular remodeling (Dole et al., 2017). Changes in the
overall formation rate of the canalicular network increase
osteoblast activity and bone formation. Recently, it is
demonstrated that the process by which osteocytes push type I
collagen fibers outward from the center of the formed lacuna
mediates osteocytes lacunae formation, which is accompanied by
increased collagen deposition and collagen-fiber network
compaction surround the lacunae. Therefore, the dynamic
assembly of bone collagen contributes greatly to the
encapsulation and mineralization of osteocytes in bone matrix
(Shiflett et al., 2019).

Osteocytes can sense and respond to external mechanical
cues. The stiffness of the surrounding matrix is one of the most
important signals that regulate osteocyte behaviors, and changes
in the stiffness of the ECM induce alterations in the cytoskeleton
and cell morphology, as well as fibronectin, which leads to
changes in paxillin and in turn affects the elongation of
osteocyte gap junctions (Zhang D. M. et al., 2018). As
osteocytes begin to expand processes and start mineralizing the
neighboring matrix, the expression of DMP1 and MEPE is
upregulated. The stiffness of the ECM, and especially that of
the collagen-based substrates, affects DMP1 expression. The
levels of DMP1 and Sclerostin are greatly increased on
collagen-based substrates with low stiffness, indicating
enhanced osteocyte differentiation compared to ECM
substrates with high stiffness (Mullen et al., 2013). Changes of
DMP1 levels mediate the sensing of mechanical stimuli by
osteocytes, which may increase the attachment of osteocytes
TABLE 2 | Function of the bone ECM in MSCs.

Bone ECM Functions in MSCs Mechanism Cell/Mice model Reference

Biglycan BMSCs production and proliferation (+) Regulate amounts of collagen type I and
response to TGF-b

Biglycan−/− mice (Chen et al., 2002)

Biglycan and
Decorin

BMSCs survival and growth (+) Regulate response to TGF-b Biglycan Decorin
DKO mice

(Bi et al., 2005)

TSP1 MSC osteogenesis (−);
MSC proliferation (+)

Latent TGF-b activation MSCs (Bailey Dubose et al., 2012; Belotti
et al., 2016)

TSP2 MSC number and proliferation ability (−); MSC
osteogenesis (+)

Regulate collagen fibrillogenesis TSP2−/− mice (Hankenson et al., 2000; Alford
et al., 2013)

OPN MSC proliferation capacity (+); MSCs
migration (+)

Regulate F-actin cytoskeleton and
chromatin structure

MSCs (Carvalho et al., 2019a; Liu et al.,
2019)

OCN MSC osteogenesis (+) Increase extracellular calcium and ALP MSCs (Carvalho et al., 2019a)
DMP1 MSCs pluripotency (+); MSC osteogenesis (−) – Prx1-cre; DMP1fl/fl

mice
(Zhang S.F. et al., 2018)
M

DKO, double knockout.
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and remodeling of the matrix present inside the local
microenvironment (Gluhak-Heinrich et al., 2003). In addition,
DMP1 also inhibits the apoptosis of osteocytes, enhances bone
mineralization, and prevents the disintegration of the osteocyte
network (Dussold et al., 2019). MEPE is synchronized with
DMP1 and differentially regulates bone remodeling by
mechanical loading. MEPE knockout mice show increased
bone mass, accompanied by suppressed mineralization,
suggesting that both DMP1 and MEPE can regulate the
mineralization in osteocytes and lacunar wall (Gluhak-
Heinrich et al., 2007) (Table 4).
FUNCTION OF THE BONE ECM IN
OSTEOCLASTS

Osteoclasts, are multinucleated cells formed from the fusion and
differentiation of monocyte/macrophage precursors, involve in
bone resorption. The formation and activity of osteoclasts
activated by macrophage colony-stimulating factor (M-CSF)
and receptor for activation of nuclear factor kB (NF-kB) ligand
(RANKL), which are derived from osteoblasts (Lin et al., 2019).

Upon osteoclast formation, TSP1, TSP2, MGP, and biglycan
regulate osteoclast differentiation and resorption activity in different
regulatory mechanisms. Both TSP1 and TSP2 are key positive
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regulators in osteoclast differentiation. TSP1 functions in the early
stage of osteoclastogenesis, and TSP1 deficiency mice show
decreased differentiation and activity of osteoclast. This is caused
by increased inducible nitric oxide synthase (iNOS) (Amend et al.,
2015). However, TSP2 induces osteoclastogenesis through NFATc1,
which is a RANKL-dependent pathway, accompanied by an
increased RANKL/OPG ratio (Wang et al., 2019). In contrast,
MGP suppresses the nuclear translocation of NFATc1 and
intracellular Ca2+ flux in osteoclasts, which in turns attenuate the
differentiation and bone resorption. MGP also inhibits bone
formation and MGP-null mice exhibit an osteopenic phenotype,
suggesting that MGP plays a stronger role in bone absorption than
in bone formation (Zhang Y. et al., 2019). With the same regulation
mechanism as MGP, type I collagen can also act as an inhibitor of
bone development by osteoclasts. The formation of osteoclasts can
be suppressed by full length or 30–75 kDa fragments of type I
collagen, which binds with the collagen receptor LAIR-1 and
thereby maintaining bone strength (Boraschi-Diaz et al., 2018).
TNFa has been shown to regulate osteoclast differentiation and
survival in a RANKL-independent manner. In biglycan and
fibromodulin double knockout mice, osteoclasts possess higher
differentiation potential and surround with increased TNFa and
RANKL cytokine. Exogenous biglycan or fibromodulin weakens the
ability of osteoclast precursors to form TRAP-positive
multinucleated cells. Therefore, biglycan alone or coupled with
TABLE 4 | Function of the bone ECM in osteocytes.

Bone ECM Functions in
osteocytes

Mechanism Cell/Mice model Reference

Type I
collagen

Osteocyte mineralization
(+)

Collagen deposition and collagen-fiber network
compaction

GFP-col+/−/Dmp1-Cre+/
−/tdTomato+/− mice

(Shiflett et al., 2019)

DMP1 Osteocyte attachment (+);
Osteocyte apoptosis (−)

External mechanical force Col4a3−/− mice (Gluhak-Heinrich et al., 2003; Dussold
et al., 2019)

MEPE Osteocyte mineralization
(+)

External mechanical force MEPE−/− mice (Gluhak-Heinrich et al., 2007)
TABLE 3 | Function of the bone ECM in osteoblasts.

Bone ECM Functions in osteoblasts Mechanism Cell/Mice model Reference

Type I
collagen

Osteoblast proliferation (−)
Osteogenesis (+)

Denatured forms of collagen MG63 cells (Tsai et al., 2010)

Type III
collagen

Osteogenesis and mineralization (+) Regulate type I collagen, BSP, and
OCN

Col3−/− mice (Volk et al., 2014)

Osteonectin Osteoblast number and differentiation (+); bone
formation (+)

Regulate collagen fibrillogenesis Osteonectin−/− mice (Rosset and Bradshaw, 2016)

Keratocan Osteoblast number and differentiation (+); bone
formation (+)

Regulate collagen fibrillogenesis Keratocan−/− mice (Igwe et al., 2011)

TSP1 Osteoblast mineralization (−) Regulate collagen fibrillogenesis MC3T3-E1 cells (Ueno et al., 2006)
TSP2 Osteoblast mineralization (+) Organization of osteoblast-derived

ECM
MC3T3-E1 cells (Alford et al., 2010)

BSP Osteoblast differentiation and early bone
mineralization (+)

FAK and other extracellular kinases BSP−/− mice (Holm et al., 2015)

OPN Osteoblast osteogenesis and mineralization (−) BMP-2, phosphate-dependent
manner

MC3T3-E1 cells (Huang et al., 2004; Singh et al.,
2018)

OCN Osteoblast mineralization (−) – OCN−/− mice (Zoch et al., 2016)
MGP Osteoblast differentiation and mineralization (+) Wnt/b-catenin signaling pathway MG63 cells (Zhang J. et al., 2019)
R-spondin2 Osteoblast differentiation (+) Wnt/b-catenin signaling pathway Ocn-Cre; Rspo2fl/fl

mice
(Knight et al., 2018)

Periostin Osteoblast differentiation and bone formation (+) Wnt/b-catenin signaling pathway (Merle and Garnero, 2012)
M
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fibromodulin regulates osteclastogenesis through TNFa and/or
RANKL to control bone mass (Kram et al., 2017).

The RGD sequence of OPN and BSP interact with avb3
integrin initiate osteoclast adhesion to bone matrix and
formation of actin ring of polarized osteoclasts, which is
crucial for bone development. Integrin-matrix combination is
vital for podosome formation on osteoclasts. Thus, OPN plays a
major role in osteoclast activity and sealing zone formation of
osteoclasts (Singh et al., 2018). Moreover, OPN can be secreted
by human osteoclasts in addition to osteoblast during bone
resorption, which can be used as a chemokine for subsequent
bone formation and resorption (Luukkonen et al., 2019). In
addition, osteoclast surfaces and the number of osteoclasts are
decreased in BSP knockout mice. BSP can promote bone
resorption, and the migration of preosteoclast and mature
osteoclasts is impaired in the absence of BSP (Boudiffa et al.,
2010). OPN and BSP can act as a network to coordinate the
function of osteoclasts. Osteoclasts derived from OPN and BSP
double knockout mice exhibit higher number and resorption
activity. The interaction between OPN/BSP and aVb3 integrin
may participate in determining osteoclast adhesion to bone
matrix surface and subsequent resorption (Bouleftour et al.,
2019) (Table 5).
APPLICATION OF THE ECM FOR BONE
TISSUE ENGINEERING

Tissue engineering utilizes the basic principles and methods of
life sciences and engineering to create functional tissue
substitutes in vitro, which can be used to repair tissue defects
and replace the partial or total loss of organ function (Shafiee and
Atala, 2017). Tissue-engineering strategies rely on three basic
elements—seed cells, scaffolds, and cytokines—which interact to
produce engineered tissue constructs (Hu, 1992). Most tissue
engineering approaches rely on renewable seed cells, such as
stem cells, to restore damaged sites. The production of large
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amounts of growth factors and ECM components during the
proliferation of seed cells increases the flexibility of the scaffold
and promotes the proliferation and differentiation of autologous
progenitor cells, thereby further enhancing tissue repair.
Furthermore, cytokines bind to receptors on the cell surface,
which transmit extracellular signals to the cell interior to regulate
cell proliferation and differentiation, or enhance the formation of
the ECM (Zhang et al., 2016). The scaffold provides an
appropriate three-dimensional (3D) structure that guides the
growth of seed cells to achieve correct tissue remodeling. Ideal
scaffolds must have good biocompatibility, biodegradability,
biomechanical properties, permeability, surface characteristics,
and must not promote immune rejection (Yi et al., 2017).

In recent years, bone tissue engineering has developed
rapidly, providing a promising new approach for bone repair.
However, due to the complex anatomical structure of bone and
the high mechanical stress that the engineered tissue must
withstand in vivo, bone tissue regeneration remains one of the
major challenges of tissue engineering (Vieira et al., 2017). Bone
grafts can be used to stimulate or increase the formation of new
bone around fractures or surgical implants, as well as to
regenerate or replace the bone lost due to infection, trauma, or
disease (Polo-Corrales et al., 2014). The ideal scaffold should also
promote the attachment, increase the viability and proliferation,
as well as induce osteogenic differentiation and angiogenesis.
Finally, the material must be able to gradually integrate with the
host tissue and bear the same load (Roseti et al., 2017). Bone
scaffolds are usually made of biodegradable materials that are
porous and effectively integrate seed cells, growth factors, and
drugs, as well as provide mechanical support during the repair
and regeneration of the damaged bone (Bose et al., 2012).

With the rapid development of regenerative medicine, the
ECM has gained attention as the fourth element in the
development of bone tissue engineering (Ravindran et al.,
2012) (Figure 1). The ECM acts as a physical scaffold and
substrate for cell adhesion, delivering biochemical and
biomechanical signals for cells to initiate migration,
differentiation, morphogenesis, and homeostasis (Yi et al., 2017).
TABLE 5 | Function of the bone ECM in osteoclasts.

Bone ECM Functions in osteoclasts Mechanism Cell/Mice model Reference

TSP1 Osteoclast differentiation and activity (+) Decrease inducible nitric oxide synthase (iNOS) TSP1−/− mice (Amend et al., 2015)
TSP2 Osteoclastogenesis (+) Transactivation of NFATc1;

Increase RANKL/OPG ratio
RAW 264.7 cells (Wang et al., 2019)

MGP Osteoclast differentiation and bone
resorption (−)

Suppress the nuclear translocation of NFATc1 and
intracellular Ca2+ flux

MGP−/− mice (Zhang Y. et al.,
2019)

Type I collagen Osteoclast formation (−) Bind with the collagen receptor LAIR-1 Primary BMMs (Boraschi-Diaz
et al., 2018)

Biglycan Osteoclast precursors differentiation (−) Decrease TNFa and RANKL cytokine Biglycan Fibromodulin
DKO mice

(Kram et al., 2017)

OPN Osteoclast activity and sealing zone
formation (+)

RGD sequence interact with avb3 integrin Primary BMMs (Singh et al., 2018)

BSP Osteoclast surface, number, migration and
bone resorption (+)

RGD sequence interact with avb3 integrin BSP−/− mice
BSP−/− preosteoclast

(Boudiffa et al.,
2010)

OPN and BSP Osteoclast number and bone resorption (+) RGD sequence interact with avb3 integrin OPN BSP DKO mice (Bouleftour et al.,
2019)
May 2020 | Vol
DKO, double knockout.
ume 11 | Article 757

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Lin et al. The ECM in Bone Formation and Regeneration
ECM-Modified Biomaterial Scaffold
Extracellular matrix components such as collagen, HA, and
fibronectin are commonly used as natural biomaterials for the
preparation of scaffolds. ECM itself or modified with
biomaterial-based scaffold is used in biological scaffolds to
mimic the natural biomaterials. Because a single bone ECM
component cannot generally simulate the complex osteogenic
microenvironment, two or more materials are used to generate a
composite that can produce a synergistic effect.

ECM act as a surface coating material on absorbable polymers
and is increasingly being used to manufacture biodegradable
scaffolds for bone reconstruction materials. Rentsch et al.
constructed polycaprolactone-co-lactide (PCL) scaffolds coated
with 3D collagen I/chondroitin sulfate (Coll I/CS) to repair
rabbit calvarial bone defects. Compared with PCL scaffolds,
more new bone was formed in the central defect of the Coll/
CS coated PCL group, and it was more evenly distributed in the
scaffolds after 6 months following implantation (Rentsch et al.,
2014). In addition, titanium (Ti) was coated with Col1 and
implanted into the femoral condyles of osteopenic rats to
evaluate the osteointegration, the total bone ingrowth of the
TiColl material following ovariectomy increased significantly
from 4 to 12 weeks after implantation, compared with Ti alone
(Sartori et al., 2015). Interestingly, the osteogenic potential of
hydroxyapatite/b‐tricalcium phosphate (HA/b‐TCP) was
improved by surface immobilization of MEPE peptide. The
HA/b‐TCP with the MEPE peptide stimulated bone
regeneration in a mouse calvarial defect model compared to
unmodified HA/b‐TCP. Newly formed bones undergo
Frontiers in Pharmacology | www.frontiersin.org 980
physiological remodeling mediated by osteoclasts (Acharya
et al., 2012). Therefore, due to the special structure and
function of ECM, it might be beneficial for the biopolymer
scaffold to perform signal connection and conduction with
cells, improve the osteoconduction and osteointegration, and
guide cell growth and tissue remodeling.

As an important ECM component of natural bone tissue, HA
has also been used in materials for bone regeneration and bone
repairs, such as bone fillings and injectable bone substitutes. A
HA modified PCL/HA composite had better biocompatibility for
hMSCs cells with higher proliferation and osteogenic potential,
compared to neat PCL. Whereby the efficiency of attachment
between hMSCs and the PCL/HA scaffold was improved with a
higher HA content of 5% to 10% and in a HA concentration-
dependent manner (Kumar et al., 2017). This means that in
addition to the different components of modified ECM to affect
the cell behaviors in bone regeneration, different ECM contents
also play different roles.

In bone tissue engineering, biological scaffolds are required
not only to have components similar to natural bone, but also to
have similar structural properties. A collagen-apatite (Col-Ap)
nanocomposite that emulates bone-l ike subfibri l lar
nanostructures was constructed to mimic natural bone. The
Col-Ap nanocomposite scaffold was able to activate bone-
forming cells, promote inward vascularization, as well as
induce the synthesis of the ECM mediated by increased
TGFb1. (Liu et al., 2016). In addition, Haj et al. demonstrated
that nanofibrous HA/chitosan (nHAp/CTS) scaffolds seeded
with MSCs were superior to membranous HAp/CTS in a rat
FIGURE 1 | Schematic preparation of ECM-based scaffold in bone regeneration. (A) ECM-modified biomaterials scaffold. Different components and contents of
ECM modified with biomaterial-based scaffold, and further modified with stem cells and structure processing to mimic the natural biomaterials. (B) decellularized
ECM scaffold obtained either from tissue in vivo or cultured cells in vitro by decellularization, which is a promising strategy to induce bone regeneration and has good
clinical performance.
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model of cranial bone defect regeneration. The MSCs in the
nanofibrous scaffold activated the integrin-BMP/Smad signaling,
leading to higher proliferation and ALP activity (Liu et al., 2013).
Similar to nanofibrous HA scaffold, Shamaz et al. obtained
electrospun microfibrous sheets by combining layers of a
microfibrous mat composed of electrospun poly(L-lactic acid)
(PLLA), gelatin–nanoHA matrix (GHA), and 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide called GHA-MFE. When
human adipose-derived MSCs (hADMSCs) were grown on this
GHA-MFE scaffold, they displayed higher ALP activity in vitro.
Moreover, the GHA-MFE fiber scaffolds significantly increased the
rate of new bone formation in rabbit femoral cortical bone defect
after 4 weeks of implantation compared with commercial
Surgiwear™ (Shamaz et al., 2015). Obviously, the surface
morphology and overall topology of ECM in scaffolds are
significantly involved in determining their capacity for cell
loading and growth in bone tissue engineering.

Stem cells are receiving increasing attention in regenerative
medicine, including bone regeneration. Because of their good
proliferation ability and capacity for osteogenic differentiation.
On the other hand, stem cells are capable of synthesizing an
ECM that can accelerate calcification and repair, thereby
restoring the function of damaged bones (Clough et al., 2015;
Gao et al., 2017). Chamieh et al. treated critical-size calvarial
defects in rats using human dental pulp stem cells (DPSCs)
seeded onto collagen gel scaffolds. Compared to untreated
defects, the scaffolds containing DPSCs significantly promoted
the formation of correctly structured new bone and increased the
volume offibrous connective tissue and mineralized tissue, which
was accompanied by the increased expression of osteogenic ALP
and type I collagen (Chamieh et al., 2016). When MSCs on
laminated HA nanoparticle (nHA)/poly-hydroxybutyrate (PHB)
(nHA/PHB) were co-implanted, it resulted in improved
promoted the formation of osteoid tissue and ECM, with
ingrowth of blood vessels into the graft two months after
subcutaneous implantation on the dorsal site of mice model
(Chen et al., 2017). Moreover, MSCs derived from induced
pluripotent stem cells (iPSC-MSCs) combined with HAp/Col/
CTS nanofibers also had a good bone regeneration ability in mice
cranial defects, with almost 2-fold higher bone density than
either TCP, CTS or HAp/CTS scaffolds. This might due to
increased secretion of Alp and Col (Xie et al., 2016). On
account of the synergistic effect of stem cells and ECM, the
stem cells/ECM composite scaffolds are more conducive to bone
remodeling than ECM modified scaffolds. Besides stem cells,
endothelial cells (ECs) that contribute to vascularization can
provide adequate nutritional support for the scaffold. Osteogenic
differentiated MSCs (OMSCs) and ECs were seeded into a nano‐
HA/polyurethane (n‐HA/PU) scaffold at a ratio of 0.5/1.5, was
more effective for bone repair in rat condylar femoral defects
than OMSC scaffold and scaffold alone. Therefore, ECs in
OMSC/EC‐scaffold plays an important role in bone formation
and vascularization (Li et al., 2019).

In the clinical study, the absorbable collagen sponge scaffold
contains bone-stimulating agents, such as rhBMP-2, rhBMP-7,
and PRP, to treat long bone defects and fracture of the patient.
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The patients showed bony healing and new bone formation in
the defect site (Govender et al., 2002; Calori et al., 2008). Except
for collagen, controlled proportions of HA together with
modified calcium phosphate, TCP, and ionic species to form
Bonelike®, which can be used in non-critical bone defects
treatment. Bonelike® has a similar chemical and structural
composition of human bone. Bonelike® itself or combined
with MSCs improved bone regeneration by promoting bone
growth and vascularization in bone defect patients (Campos
et al., 2019). Moreover, eggshell-derived nano-hydroxyapatite for
bone transplantation has strong safety and can obtain good bone
regeneration performance. In the third month after implantation
in patients, bone graft showed increased bone density and
complete healing (Kattimani et al., 2019). Therefore, the use of
ECM-modified scaffold in bone regeneration is significantly
better than standard treatment by reducing the frequency of
secondary intervention, while reducing the infection rate in
patients with an open bone defect.

Above all, different types, proportions, structures of ECM,
and even different implanted cells can all affect the bone
regeneration performance of the ECM-modified biomaterial
scaffold, suggesting that there may be a set of elements of ECM
that work in concert to guide bone regeneration. Moreover, it
remains unknown how much each of these factors or
the combination of these factors contributes to ECM in the
scaffold. Further studies are still needed to fully reveal the
multiple functions of ECM in the ECM-modified biomaterial
scaffold during bone repair.

Decellularized ECM Scaffold
Although the ECM-modified biomaterial scaffold based on
different compositions and ratios of bone ECM can improve
bone defect repair, the complex matrix components and
activities cannot be completely stimulated in biomimetic bone
tissue. In addition, these artificial scaffolds lack specific cell niche
and anatomical structures of target tissues, and cannot guarantee
good integration of cellular and molecular cues (Zhang et al.,
2016). Therefore, decellularized ECM scaffold obtained either
from tissue in vivo or cultured cells in vitro is a promising
strategy to induce bone regeneration and has a good clinical
performance. It has the advantage of maintaining ECM
components, providing the original geometry and flexibility of
the tissue, while also offering inherently low immunogenicity
(Hoshiba et al., 2016). The decellularized ECM provides
mechanical support for the regenerating cells and affects both
their migration and cell fate decision (Gallie et al., 1989).

Tissue-Derived Decellularized ECM Scaffold
Bone-derived decellularized ECM (dECM) can provide a native
microenvironment containing ECM proteins, type I collagen,
and growth factors including bone morphogenetic proteins. Kim
et al. used dECM from porcine bone to form 3D-printed PCL/b-
TCP/bone dECM scaffolds, which promoted more new bone
regeneration 6 weeks after repair of a rabbit calvarial defect in
vivo. Importantly, bone tissue developed into the interior of the
scaffold. By contrast, bone tissue formed only at the edge of the
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scaffold without dECM (Kim et al., 2018). A dECM derived from
the porous growth plate (GP) was fabricated to repair critical-
sized rat cranial defects. Higher levels of mineralized tissue and
increased vascular volume were observed 8 weeks after
implantation, which might be caused by reduced production of
IL-1b and IL-8 and superior osteogenic capacity compared to
native GP (Cunniffe et al., 2017). In addition, 3D ECM scaffold
produced from decellularized periosteum promoted bone
mineralization by controlling the size and direction of mineral
crystals in rabbit bone defect regeneration, suggesting the crucial
role of periosteum ECM in efficient healing of fractures and bone
regeneration (Lin et al., 2018). In clinical, decellularized bone
ECM from bovine trabecular bone discs with patient autogenous
MSCs could treat distal tibia fracture. After 6 months, active
bone formation can be detected in both callus and graft of the
patient (Hesse et al., 2010). This means that native decellularized
bone transplantation has a broad application prospect in
orthopedic surgery.

A dECM produced from non-bone tissue can also be used in
bone regeneration. Mohiuddin et al. demonstrated that a
combination of decellularized adipose tissue (DAT) with
adipose-derived stromal/stem cells (ASCs) is effective in the
regenerative bone repair of mice critical-size femur defects.
The group treated with the DAT hydrogel showed a higher
deposition of OPN and collagen I as well as a higher bone area
than the untreated group (Mohiuddin et al., 2019). Beyond that,
porcine small intestinal submucosa (SIS) ECM was combined
with true bone ceramic (TBC) and mineralized, to fabricate the
tissue-derived ECM scaffold mSIS/TBC. This scaffold promoted
the viability, proliferation, and osteogenesis of rat MSCs through
the ERK1/2 and Smad1/5/8 signal pathways in vitro. Most
importantly, bone formation in a rat critical size cranial defect
model was greatly improved by the mSIS/TBC scaffold compared
to a pure TBC scaffold (Sun et al., 2018). Taken together, the
abundance of multiple ECM components in dECM from the
tissue is an ideal biomaterial for bone tissue engineering.

Cell-Derived Decellularized ECM Scaffold
Autologous cells grown aseptically in vitro can be used to
produce a cell-derived decellularized ECM avoiding the
disadvantages of a tissue-derived decellularized ECM. ECM
scaffolds derived from stem cells and bone cells can potentially
better mimic the native bone microenvironment, thereby
inducing bone regeneration (Sun et al., 2018). In vitro,
adipose‐derived stem cells (ASCs) on hMSCs derived
decellularized ECM showed more osteogenic colonies,
accompanied by increased expression of osteogenic markers
(Zhang et al., 2015). dECM derived from co-cultured MSCs
and HUVECs promoted the osteogenic and angiogenic potential
of BMSCs. Moreover, the 1/3 ratio of MSCs/HUVECs has the
best angiogenic effect on MSCs (Carvalho et al., 2019b). Cell-
derived dECM, rich in collagen, matrix macromolecules, and
growth factors, has good biocompatibility and biodegradability,
making it beneficial for the proliferation and osteogenic
differentiation of MSCs, and can be used as cell culture matrix
for bone regeneration medicine.
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In bone repair applications, cell-derived dECM combined
with inorganic material to composite hybrid scaffolds, providing
stronger osteoinductive properties and mechanical support. The
implantation of osteogenic ECM sheets (OECMS) that retain the
native collagen I and growth factors, together with HA, enhanced
bone regeneration in a rat model of femoral non-union at 5 and 8
weeks. The OECMS contained TGF-b and BMP2, leading to
increased osteoinduction and osteoconduction (Onishi et al.,
2018). When a dECM derived fromMG63 cells was deposited on
a CS/PCL scaffold, hMSCs exhibited enhanced attachment,
proliferation, and osteogenic differentiation, and the scaffold
showed anti-inflammatory features in vitro. Moreover, the
dECM-coated CS/PCL demonstrated a good bone regeneration
ability after in vivo implantation in rat calvarial defects, which
was associated with increased mineralized tissue (Wu et al.,
2019). According to the characteristics of different biomaterials
and the good osteoinduction of ECM, tissue-engineered grafts
can be customized to overcome the limitations of autograft
and allograft.

Beyond that, dECM scaffolds for bone repair can also be
obtained from other, non-bone cells. A PLGA/PLA scaffold was
coated with dECM form human lung fibroblasts (hFDM) in bone
defect repair by delivering BMP-2. The dECM/PLGA/PLA
scaffold significantly promoted new bone formation in a rat
model of a calvarial bone defect. Notably, the addition of BMP-2
led to almost complete healing of bone defects (Kim et al., 2015).
Mesenchymal stromal cells derived from human nasal inferior
turbinate tissue (hTMSCs) were combined with a 3D-printed
PCL/poly(lactic-co-glycolic acid) (PLGA)/b-TCP scaffold to
form a mineralized ECM scaffold. The corresponding implants
improved bone formation in ectopic and orthotopic rat models
compared to the bare scaffold, in accord with the increased
osteogenic differentiation of hTMSCs on 3D-printed hybrid
scaffolds in vitro (Pati et al., 2015). Further development of 3D
printing technology in ECM-based scaffolds is beneficial to the
field of bone tissue engineering and regenerative medicine.
CONCLUSIONS AND PROSPECTS

Although natural bone grafts from autologous or allogeneic
sources are the best choice for bone defect repair, their clinical
applications are limited due to complications during surgery
related to their sourcing. With the development of tissue
engineering technology, biomaterials manufactured using
materials engineering, nanotechnology, and 3D printing been
used to develop novel implants for bone regeneration. However,
many such novel materials suffer from shortcomings such as
poor biocompatibility, low osteoinductivity, and high
immunogenicity. ECM scaffolds have unique advantages in all
these areas. Because they can better simulate the composition,
distribution, and biochemical signals of various matrix
components in native bone tissue, they can emulate the natural
bone microenvironment. Consequently, such materials can
effectively support bone regeneration and guide tissue
reconstruction. Common ECM-modified scaffold designs use a
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single or a combination of components of the ECM or apply a
coating combined with biomaterials to produce scaffolds. Even
when using decellularized preparations of autologous or allogeneic
tissue or cells cultured in vitro, the integrity and mechanical
properties of the matrix components are preserved, while
achieving low immunogenicity by removing cell-bound antigens.
Bone ECM has been demonstrated to enhance bone regeneration.
Therefore, the application of the ECM-modified biomaterial
scaffold and decellularized ECM scaffold has become a new
frontier in tissue engineering and regenerative medicine.

Nevertheless, the clinical application of ECM-modified
biomaterial scaffold or decellularized ECM scaffold in bone
repair still faces many problems, such as the preservation of
growth factors and biochemical signals in the ECM during
decellularization, modification of the ECM, design, and
processing of ECM scaffolds, and standardization and mass
production for clinical studies. There are decellularization
methods that retain the characteristics and functions of the
ECM. However, due to the complexity and dynamics of its
components, there has been no systematic analysis of the
components of the ECM secreted by cells or tissues, and it is
not clear if decellularized ECM can completely match the
biochemical imprint of the native bone ECM. Therefore, the
components and composition of decellularized ECM scaffolds, as
well as the dynamic changes of ECM under different culture
conditions should be further studied to make it more similar to
the natural ECM composition. Additionally, it is difficult to
precisely control the ECM components secreted by cells, so
that they can be standardized and unified in mass production.
Cells can be genetically modified to express specific products in a
timely and quantitative manner, and appropriate bioreactors can
be used to monitor cell growth and product secretion.
Consequently, ECM release standards can be established to
improve the quality of the graft. Finally, the ECM can be
modified by adding growth factors and bioactive molecules
during the preparation of ECM scaffolds to improve the
effectiveness of bone defect repair. Therefore, the types and
amounts of bioactive molecules need to be further studied.
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While additives can enhance the bone regeneration ability of
the defect site, they must not affect the growth of other adjacent
tissues at the graft site, hence avoiding inflammation and
hyperplasia. In addition, ECM scaffolds can be combined with
autologous pluripotent stem cells or organ-specific progenitor
cells for a better therapeutic effect. Finally, the design and
processing of ECM scaffolds can make them fill the defect site
more accurately, offering better mechanical support and
functional bionics. With the development of 3D printing
technology in recent years, the ECM can be processed through
biological printing to obtain scaffolds with various topology, such
as porous and lamellar, or even scaffolds with a shape that exactly
matches the defect site. Thus, the implant can be designed for
improved bionic mechanical properties and stronger bone
regeneration ability.

In conclusion, the application of ECM in bone formation and
bone regeneration is full of opportunities and challenges. In the
future, further studies on the cellular and molecular mechanisms
the mediate the effects of the ECM on bone cells and bone repair
will contribute to the further development of ECM-based
scaffolds in bone tissue engineering.
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Anisodamine Maintains the Stability of
Intervertebral Disc Tissue by Inhibiting
the Senescence of Nucleus Pulposus
Cells and Degradation of Extracellular
Matrix via Interleukin-6/Janus
Kinases/Signal Transducer and
Activator of Transcription 3 Pathway
Ning Tang, Yulei Dong, Chong Chen and Hong Zhao*

Department of Orthopedic, Chinese Academy of Medical Sciences Peking Union Medical College Hospital, Beijing, China

Objectives: Anisodamine (ANI) has been used to treat a variety of diseases. However, the
study of ANI in intervertebral disc degeneration (IVDD) is unclear. This study investigated
the effects of ANI on degenerative nucleus pulposus cells (NPCs) and IVDD rats, and its
possible mechanisms.

Methods: Human nucleus pulposus cells (HNPCs) were treated with IL-1β (20 ng/ml) to
simulate IVDD, and an IVDD rat model was constructed. IL-1β-induced HNPCs were
treated with different concentrations (10, 20, or 40 μM) of ANI, and IVDD rats were also
treated with ANI (1 mg/kg).

Results: ANI treatment significantly reduced the apoptosis, caspase-3 and SA-β-gal
activities, and p53 and p21 proteins expression, while promoted telomerase activity and
aggrecan and collagen II synthesis in IL-1β-induced HNPCs. Moreover, the introduction of
ANI inhibited the expression of IL-6, phosphorylation of JAK and STAT3, and nuclear
translocation of p-STAT3 in Degenerated HNPCs. Additionally, the application of ANI
abolished the effects of IL-6 on apoptosis, SA-β-gal and telomerase activity, and the
expression of p53, p21, aggrecan and collagen II proteins in degenerated HNPCs.
Simultaneously, ANI treatment enhanced the effects of AG490 (inhibitor of JAK/STAT3
pathway) on IL-1β-induced apoptosis, senescence and ECM degradation in HNPCs.
Furthermore, ANI treatment markedly inhibited the apoptosis and senescence in the
nucleus pulposus of IVDD rats, while promoted the synthesis of aggrecan and collagen II.
ANI treatment obviously inhibited JAK and STAT3 phosphorylation and inhibited nuclear
translocation of p-STAT3 in IVDD rats.

Conclusion: ANI inhibited the senescence and ECM degradation of NPCs by regulating
the IL-6/JAK/STAT3 pathway to improve the function of NPCs in IVDD, which may provide
new ideas for the treatment of IVDD.
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INTRODUCTION

Intervertebral disc degeneration (IVDD) is the most common
cause of lower back pain and is the basis of spinal
degenerative diseases (Deng et al., 2017a). Due to the
limited tissue regeneration ability of the lumbar
intervertebral disc, it is difficult to be reversed after
degeneration. Nucleus pulposus cells (NPCs) are the only
constituent cells of the nucleus pulposus of intervertebral disc
that the abnormal function of NPCs seriously affects the
occurrence and development of IVDD (Rosenzweig et al.,
2017). The main manifestations of IVDD are a decrease in the
number of NPCs and a decrease in the synthesis of
extracellular matrix (ECM). It is currently believed that
IVDD is a pathological process involving multiple factors,
which is related to genetic susceptibility, mechanical load,
inflammatory cytokines, extracellular matrix degradation,
cellular senescence and apoptosis.

Since IVDD is age-related, the senescence of various
stress-induced NPCs plays a crucial role in the progression
of IVDD (Gao et al., 2018). Senescence limits the division of
NPCs and ultimately leads to apoptosis. Besides, senescence
cells can also produce a large number of matrix degrading
enzymes (MMPs) and inflammatory factors, further
worsening the living environment of cells, which is also
the pathological basis of IVDD. There is increasing
evidence that signaling pathways play an important role in
regulating the onset and persistence of senescence (Wang
et al., 2006; Zirkel et al., 2018). After cellular senescence, a
variety of kinases and transcription factors are activated, a
process involving a variety of intracellular signal
transduction pathways.

STAT3 is an important signal transduction molecule in cells
that plays an important role in cell survival, apoptosis and
senescence (Chipuk et al., 2010). STAT3 can be
phosphorylated by a variety of kinases to form homologs
or form heterodimers with other members of the STAT
family, which in turn enter the nucleus from the
cytoplasm to initiate transcription of downstream genes.
The kinase that phosphorylates STAT3 includes JAK,
proto-oncogene tyrosine-protein kinase, and the like.
JAK/STAT3 can be activated by a variety of cytokines
(such as IL-6) and growth factors (such as EGF). IL-6/
JAK/STAT3 signaling pathway is the most important
signaling pathway and its abnormal activation is related
to various pathophysiological processes including
inflammation, apoptosis and senescence (Liu et al., 2014;
Johnson et al., 2018). As a multifunctional cytokine, IL-6
promotes the accumulation of inflammatory cells and
stimulates the release of inflammatory mediators,
aggravating the inflammatory response of IVDD (Deng
et al., 2016). Additionally, IL-6 can directly participate in
the regulation of intervertebral disc cell proliferation,
apoptosis and ECM synthesis and decomposition
imbalance, which in turn causes IVDD (Zhou et al., 2017).
Moreover, IL-6 binds to its receptor and induces cellular
senescence by activating the JAK/STAT3 pathway.

Targeting silencing of the IL-6/STAT3 pathway in human
intervertebral disc NPCs can delay the development of IDD by
inhibiting ECM degradation to inhibit MMP-2 production (Ji
et al., 2016).

Anisodamine (ANI), an alkaloid extracted from the root of
Anisodus tanguticus, is an M-cholinergic receptor blocker.
Studies have confirmed that ANI has the effect of relieving
microvascular spasm and improving microcirculation (Poupko
et al., 2007). ANI inhibits inflammatory response and apoptosis of
renal tubular cells by reducing the expression of endoplasmic
reticulum stress markers (IRE-1α, CHOP), NLRP3
inflammasome and inflammatory factors (IL-1α, IL-β and IL-
18) (Yuan et al., 2017), and also reduces cardiomyocyte
apoptosis by inhibiting oxidative stress, down-regulating the
expression of caspase-3 and Bax (Yao et al., 2018). Furthermore,
Luo and Zhou (2009) showed that ANI inhibits the deposition of
ECM of experimental hepatic fibrosis by inhibiting MMP-2
expression. However, the role of ANI in IVDD is currently
rarely studied.

As such, the present study was to investigate the effects of
ANI on apoptosis, senescence and ECM degradation of
degenerative human nucleus pulposus cells (HNPCs), and
to explore its potential mechanism. Moreover, we also
investigated the effect of ANI on IVDD in vivo by preparing
a rat model of IVDD. We hope to provide new ideas for the
treatment of IVDD.

MATERIALS AND METHODS

Cell Culture
Human nucleus pulposus cells (HNPCs) were obtained from
ScienCell Research Laboratories (Carlsbad, CA, United States)
and cultured in Nucleus Pulposus Cell Medium (NPCM,
ScienCell Research Laboratories) in a 37°C, 5% CO2

incubator. The NPCM was changed every 3 days. When
fused to 80%, the cells were trypsinized and subcultured at
a ratio of 3:1.

Experimental Design
HNPCs were treated with 20 ng/ml of IL-1β for 48 h to induce
a degenerated NPCs model (Deng et al., 2017b). The dose of
ANI was determined by treating HNPCs with ANI
(0–200 μM). Subsequently, cells were divided into four
groups to analyze the effects of ANI on the apoptosis,
senescence and ECM degradation of HNPCs: control
group, IL-1β group, IL-1β+ANI-10 group, IL-1β+ANI-20
group and IL-1β+ANI-40 group. Moreover, rescue
experiments were also performed by dividing the cells into
five groups: control group, IL-1β group, IL-1β+ANI-40 group,
IL-1β+IL-6 group, and IL-1β+IL-6+ANI-40 group. All
treatments were performed for 48 h. Among them, the IL-
1β+ANI + IL-6 group was first treated with IL-6 (10 mg/L) for
12 h, while IL-61β+ANI + AG490 group was first treated with
AG490 (10 µM) for 12 h; then 40 μM ANI was added for the
remaining time of 48 h.
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3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium Bromide (MTT) Assay
HPNCs cells were seeded into 96-well plates (1 × 106 cells/well),
incubated overnight at 37°C, 5%CO2 incubator. Then, HPNCs
were exposed to IL-1β (0–100 ng/ml) or ANI (0–200 μM) for 48 h.
After treatments, cells were washed with fresh medium and added
to MTT solution (Sigma-Aldrich, United States) and incubated
for 4 h at room temperature. After aspirating the MTT solution,
the cells were incubated with 100 μl DMSO for 5 min at room
temperature. The optical density values of the plate were
measured at 490 nm on a Tecan Sunrise Absorbance
Microplate Reader (Tecan Group, Switzerland).

Lactate Dehydrogenase (LDH) Assay
The cytotoxicity of ANI-treated HNPCs was evaluated by
measuring the release of LDH using a CytoTox96 Non-
Radioactive Cytotoxicity Assay kit (Beyotime, China). All
procedures were performed in strict accordance with the kit
instructions.

Caspase-3 Activity
The activity of caspase-3 was measured using a caspase-3 activity
assay kit (Beyotime, China). In brief, the treated HNPCs were
incubated with 300 μl of lysis buffer for 15 min at 4°C.
Subsequently, the supernatant was collected by centrifugation
at 15,000 g for 15 min. 10 μl protein of cell lysate per sample in
80 μl reaction buffer were incubated for 4 h at 37°C and then
placed on the auto microplate reader (Molecular Devices,
Sunnyvale, CA, United States). The activity of caspase-3 was
determined by measuring the absorbance at 405 nm.

Senescence-Associated β-galactosidase
Activity
Freshly prepared SA-β-gal staining fixative was added to the
treated HNPCs according to the kit instructions (Beyotime,
China) and incubated at 37°C for 3 h. After washing three
times with 0.01 mol/L of PBS, the SA-β-gal staining solution
was added dropwise, and placed in a humid box at 37°C
overnight in the dark. The staining was observed under a light
microscope. Five high power fields were randomly selected, and
the senescence process of HNPCs was determined by calculating
the ratio of SA-β-gal positive cells to the total number of cells
(Wang et al., 2015).

Telomerase Activity
After the treated HNPCs were lyzed and centrifuged, the
supernatant was collected. Telomerase activity (IU/L) was
measured using a telomerase enzyme-linked immunosorbent
assay (ELISA) kit (MIbio, China) according to the
manufacturer’s instructions.

Western Blot
Nuclear protein and total protein were extracted from IVDD rats’
nucleus pulposus tissues and nucleus pulposus cells using
Nuclear/Cytoplasmic protein Extraction Kit and Total protein

Extraction Kit (AmyJet Scientific, Wuhan, China), respectively,
according to the manufacturer’s instructions. Protein concentration
was determined using the BCA method. The protein was separated
by sodium dodecyl sulfate polyacrylamide gel electrophoresis and
transferred to a polyvinylidene fluoride (PVDF) membrane.
The membrane was blocked in Tris buffer containing 5%
skim milk for 2 h. After washing with PBS, the membrane
was incubated with anti-Bax antibody, anti-Bcl-2 antibody,
anti-p53 antibody, anti-p21 antibody, anti-collagen II
antibody, anti-aggrecan antibody, anti-IL-6 antibody, anti-
JAK antibody, anti-Phospho-JAK antibody, anti-STAT3
antibody, anti-Phospho-STAT3 (Tyr-705) antibody, anti-
Lamin B antibody, or anti-GAPDH antibody overnight at
4°C. After washing with PBS, the membrane was incubated
with secondary antibody (1:1,000; Abcam) for 2 h at room
temperature. Development was carried out using an enhanced
chemiluminescent reagent. Protein was detected with Image
Acquisition using Image Quant LAS 4000 (GE Healthcare
Life Sciences, Marlborough, MA, United States).

Hoechst 33258 Staining
NPCs were seeded into 6-well plates embedded with aseptically
treated coverslips and cells were cultured to 80% confluence. The
medium in the 6-well plate was aspirated, and the medium
containing different concentrations of ANI was added, and
cultured in a 37°C, 5% CO2 incubator for 36 h. Subsequently,
the liquid in the well was aspirated and rinsed three times with
PBS.4% paraformaldehyde was added to the well plate for 20 min
at room temperature, followed by rinsing three times with PBS.
Hoechst 33258 working solution was added to the well plate and
stained for 20 min in the dark at room temperature, and then
rinsed three times with PBS. Finally, the slide was sealed with an
anti-fluorescence quenching solution (glycerol: PBS � 1:9), and
observed under a fluorescence microscope and photographed.

Immunofluorescence (IFC) Staining
NPCs were seeded into 24-well plates embedded with aseptically
treated coverslips and cells were cultured to 80% confluence. The
medium was removed and washed twice with PBS, and then the
cells were fixed in 3.5% formaldehyde for 30 min at room
temperature. After washing the cells three times with PBS,
they were treated with 0.1% Triton X-100 in PBS for 20 min.
Subsequently, the cells were incubated with 3% BSA and 0.05%
Tween for 30 min at 37°C. Subsequently, the cells were incubated
with rabbit monoclonal anti-p-STAT3 (1:1,000; Abcam)
overnight at 4°C. After washing, cells were treated with
fluorescent anti-rabbit secondary antibody (1:500; Abcam) for
2 h at room temperature. The nuclei were treated with 4,6-
diamidino-2-phenylindole (DAPI). Fluorescence images were
acquired under a co-aggregation microscope (Leica,
Mannheim, Germany).

Animal Model and Treatment
Male Sprague-Dawley rats (6 weeks) were provided by Institute of
Life Sciences (Beijing, China). Rats were housed in standard cages
with an ambient temperature of 23 ± 2°C, a humidity of 55% ±
10%, and a light and dark period of 12 h. The experiment was
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carried out after 1 week of adaptive feeding in rats. The IVDD rat
model was prepared by fiber loop puncture (Jeong et al., 2010). In
brief, the rat tail disc (Co4-5) was located on the coccygeal vertebrae.
A 26G puncture needle was used to pierce the entire annulus of the
fiber through the skin of the tail. The needle was held in the disc for
1min. Immediate after the operation, ANI was intraperitoneally
injected at a dose of 1mg/kg per day (Ge et al., 2018). Rats in the
control group and the IVDD group were injected with the same dose
of physiological saline. Four weeks after surgery, rats were sacrificed
by overdosing 0.1% sodium pentobarbital, tails were harvested and
Co4-5 intervertebral disc samples were collected. All surgical
interventions, treatments and postoperative animal care
procedures were performed in strict accordance with the Animal
Care and Use Committee of Peking UnionMedical College Hospital.

Immunochemistry
Immunohistochemistry was used to analyze the expression of
p53, collagen II and p-STAT3 (phospho Y705) protein in rat tail
intervertebral disc samples. After the sample was fixed with 4%
paraformaldehyde for 24 h, decalcification, dehydration, waxing,
and embedding treatment were performed to prepare paraffin
sections (6 μm). Paraffin sections were dewaxed, hydrated, and
incubated in freshly prepared 3% H2O2 for 10 min at room
temperature. After the sections were repaired by microwave
antigen for 20 min, goat serum was added and blocked at
room temperature for 10 min. Sections were incubated with
p53, collagen II and p-STAT3 (phospho Y705) antibody
overnight at 4°C. After washing, biotinylated secondary
antibodies were added to the sections for 4 h. Subsequently,
freshly prepared DAB chromogenic solution was added to the
sections for color development, and was terminated at the
appropriate time under the microscope. The samples were
counterstained with hematoxylin dye solution and rinsed with
distilled water. After dehydration by gradient ethanol, the
samples were sealed with a neutral gum. Five areas were
selected under an optical microscope for photographing and
preservation.

Terminal Deoxynucleotidyl Transferase
dUTP Nick-End Labeling (TUNEL) Assay
Frozen sections (5 μm) were prepared by taking 4%
paraformaldehyde-fixed nucleus pulposus tissue and

dehydrating in 20% sucrose overnight. Subsequently, the tail
disc samples were subjected to an in situ TUNEL reaction
using an ApopTag InSitu apoptosis detection kit (Millipore,
Billerica, United States) according to the manufacturer’s
protocol. Apoptotic cells were imaged under a light
microscope (magnification, ×400). Among them, red
fluorescence was used to label apoptotic nucleus pulposus
nuclei, and blue DAPI was used to label all nuclei. Red and
blue were superimposed on apoptotic cells.

Statistical Analysis
All statistical analyses were performed using SPSS 20.0 software
(IBM Corp., Armonk, NY, United States), and graphs were
generated using GraphPad Prism 5 Software (Graph Pad
Software, Inc., La Jolla, CA, United States). Student’s t test was
used to analyze proteins expression. An ANOVA was also
performed comparing more than two groups. p (two-tailed)
<0.05 were considered statistically significant.

RESULTS

Cytotoxicity Test
IL-1β can be used to establish IVDD in vitro (Deng et al., 2017). In
order to study the effect of ANI on IVDD, IL-1β was used to treat
HNPCs to induce IVDD in vitro. We found that when the
concentration of IL-1β was greater than 10 ng/ml, the activity of
HNPCs was delayed, and the inhibition was enhanced with
increasing concentration (Figure 1A). Hence, we used 20 ng/ml
of IL-1β for subsequent experiments. Additionally, the cytotoxicity of
ANI to HNPCs was examined by treating HNPCs with different
concentrations (0–200 μM) of ANI for 48 h. We found that ANI did
not promote or inhibit the proliferation of HNPCs at concentrations
ranging from 0 to 40 μM (Figure 1B). However, when the
concentration was higher than 80 μM, the viability of cells was
obviously decreased (Figure 1B), and cytotoxicity was also detected
by the LDH assay (Figure 1C). Therefore, we selected ANI at
concentrations of 10, 20, and 40 μM for subsequent experiments.

ANI Inhibited Apoptosis, Senescence and ECM
Degradation of HNPCs Induced by IL-1β
Next, we used different concentrations (10, 20, 40 μM) of ANI to
treat IL-1β-induced HNPCs to analyze the effect of ANI on IVDD

FIGURE 1 | Cytotoxicity experiments. (A) The effect of IL-1β on the activity of HNPCs was analyzed by MTT assay. (B) The effect of ANI on the activity of HNPCs
was analyzed by MTT assay. (C) The toxic effects of ANI on HNPCs were analyzed by LDH assay. *p ＜ 0.05, **p ＜ 0.01.
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in vitro. Hoechst33258 staining showed that the apoptosis of
HNPCs after IL-1β treatment was obvious, and the apoptosis rate
of IL-1β group was obviously higher than that of control group
(p < 0.05), while ANI treatment could markedly reduce the
apoptosis of HNPCs induced by IL-1β (p < 0.05, Figures 2A,
B). Further analysis of the activity of the apoptotic initiation
marker protein caspase-3 revealed that the activity of caspase-3 in
the IL-1β group was evidently higher than that in the control
group (p < 0.05), while ANI treatment inhibited the activation of
caspase-3 in degenerating HNPCs in a dose-dependent manner
(p < 0.05, Figure 2C).

Senescence associated β-galactosidase (SA-β-gal) activation is a
hallmark feature of cellular senescence (Strzeszewska et al., 2018),
and p53 is the most important senescence regulatory protein that
promotes cellular senescence (Kim et al., 2009). A decrease in
telomerase activity reflects an increase in cellular senescence (Li
et al., 2019). In the present study, SA-β-gal staining showed that
the proportion of cells stained with SA-β-gal positively in IL-1β-
induced HNPCs was markedly increased, while treatment with
20 and 40 μM of ANI markedly reduced the proportion of SA-
β-gal positive cells (Figures 2D,E). Telomerase activity assay
further confirmed that ANI treatment significantly improved

IL-1β-induced senescence of HNPCs (Figure 2F). What is
more, western blot analysis showed that IL-1β could induce
the increase of p53 and p21 protein expression in HNPCs,
while ANI treatment could inhibit the expression of p53 and
p21 proteins in degenerative HNPCs (p < 0.05, Figures 2G,H).

HNPCs mainly secrete aggrecan and collagen II, which are
also the main components of ECM.We next observed the effect of
ANI on the extracellular matrix. The results showed that collagen
II and aggrecan proteins expression in IL-1β-induced HNPCs was
significantly decreased, while ANI could promote the synthesis of
collagen II and aggrecan (p < 0.05, Figures 2G,I). These results
suggested that ANI may mitigate disc degeneration by reducing
apoptosis, senescence and ECM degradation of HNPCs.

ANI Inhibited Activation of Interleukin-6/Janus
Kinases/Signal Transducer and Activator of
Transcription3 Pathway in Human nucleus pulposus
cells Induced by IL-1β
To investigate the possible mechanism by which ANI improves
IVDD, we analyzed changes in IL-6/JAK/STAT3 signaling
pathways in degenerative NPCs. Western blot analysis showed
that IL-1β treatment significantly increased IL-6 expression in

FIGURE 2 | ANI inhibited apoptosis, senescence and ECM degradation of HNPCs induced by IL-1β. (A,B) Hoechst 33258 staining was used to analysis the
apoptosis of HNPCs. Bar � 50 μm. (C) The activity of caspase-3 in HNPCs was detected by a caspase-3 activity kit showed that ANI inhibited caspase-3 activity of
HNPCs induced by IL-1β. (D,E) SA-β-gal staining was used to analyze senescence of HNPCs. Bar � 100 μm. (F) Telomerase activity assay was used to analyze
senescence of HNPCs. (G–I) The expression of p53, p21, aggrecan and collagen II in HNPCs treated with or without ANI was analyzed by western blot assay. All
experiments were performed as means ± SD of three times in duplicates. *p ＜ 0.05, **p ＜ 0.01 vs. control group; #p ＜ 0.05, ##p ＜ 0.01 vs. IL-1β group.
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HNPCs and promoted phosphorylation of STAT3 and JAK compared
with the control group (Figures 3A–C). Moreover, IGF staining also
observed that IL-1β treatment induced nuclear translocation of
p-STAT3 in HNPCs (Figure 3D), and increased the expression of
p-STAT3 in the nucleus (Figure 3E). Compared with the IL-1β group,
ANI treatment inhibited IL-6 expression, phosphorylation of JAK and
STAT3, and nuclear translocation of p-STAT3 inHNPCs. These results
suggested that ANI treatment could inhibit the activation of the IL-6/
JAK/STAT3 pathway in IL-1β-induced HNPCs.

ANI Inhibited IL-1β-Induced Apoptosis, Senescence
and ECM Degradation of HNPCs by Regulating IL-6/
JAK/STAT3 Signaling Pathway
To analyze whether ANI suppresses HNPCs degradation by
inhibiting the IL-6/JAK/STAT3 signaling pathway, we performed a
rescue experiment on IL-1β-induced HNPCs with IL-6 (10mg/L) or
PI3K/AKT inhibitor AG490 (10 µM) prior to treatment with ANI
(40 μM). As expected, IL-6 treatment could enhance the activation of
IL-1β stimulation on the IL-6/JAK/STAT3 pathway, which was
reflected by increased IL-6 expression and increased
phosphorylation levels of JAK and STAT3, while ANI treatment
could eliminate this effect to a certain extent (Figure 4A). Moreover,
IL-6 treatment could eliminate the activation of IL-6/JAK/STAT3
pathway stimulated by IL-1β, and ANI treatment enhanced this effect
(Figure 4B). The results showed that IL-6 treatment could promote
apoptosis (Figure 4C), caspase-3 activity (Figure 4D), SA-β-gal
activity (Figure 4E), and p53 and p21 proteins expression (Figures

4G,H), while decreased telomerase activity (Figure 4F), and aggrecan
and collagen II synthesis (Figures 4G,I). More importantly, the
apoptotic rate and caspase-3 activity in the IL-1β+IL-6+ANI-40
group were significantly lower than those in the IL-1β+IL-6 group
(Figures 4C,D). Furthermore, ANI abolished the effects of IL-6 on SA-
β-gal activity (Figure 4C), telomerase activity (Figure 4F), and p53 and
p21 proteins expression (Figures 4G,H). Moreover, ANI reversed the
inhibitory effect of IL-6 on the synthesis of aggrecan and collagen II
(Figures 4G,I) in IL-1β-induced HNPCs. Moreover, ANI treatment
enhanced the effects of AG490 on IL-1β-induced apoptosis, senescence
and ECM degradation in HNPCs (Figures 4C–I). These results
revealed that ANI may play a protective role in degenerative
HNPCs by regulating the IL-6/JAK/STAT3 pathway.

ANI Inhibited Apoptosis, Senescence and ECM
Degradation of Nucleus Pulposus Tissue by Inhibiting
IL-6/JAK/STAT3 Signaling Pathway In Vivo
We treated IVDD rats for 4 weeks by intraperitoneal injection of
ANI to analyze the effect of ANI on IVDD in vivo. The TUNEL
assay showed a significant decrease in apoptosis in the nucleus
pulposus of the IVDD + ANI group (Figure 5A). Consistently, ANI
increased Bcl-2 expression while decreased Bax expresson of IVDD
rats (Figure 5B). Western blot analysis (Figures 5C,D) showed that
ANI treatment markedly inhibited the expression of p53 and
p21proteins in the nucleus pulposus of IVDD rats, whereas
promoted the expression of aggrecan and collagen II (Figure 5E).
Additionally, immunohistochemical analysis also showed that ANI

FIGURE 3 | ANI inhibited IL-1β-induced activation of IL-6/JAK/STAT3 pathway in HNPCs. (A–C) The expression of IL-6, JAK, p-JAK, STAT3 and p-STAT3 in
HNPCs was analyzed by western blot assay. (D) Immunofluorescence staining was used to analyze nuclear translocation of p-STAT3 in HNPCs. Bar � 25 μm. (E) The
expression of p-STAT3 in nucleus was analyzed by western blot assay. *p ＜ 0.05, **p ＜ 0.01 vs. control group; #p ＜ 0.05 vs IL-1β group.
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treatment increased the expression of p53 and collagen II in the
nucleus pulposus of IVDD rats (Figure 5F). What is more, ANI
treatment significantly inhibited the expression of IL-6 expression,
phosphorylation of STAT3 and JAK, and nuclear translocation of
p-STAT3 in nucleus pulposus of IVDD rats (Figures 5G–J).
Moreover, ANI treatment reduced the localization of p-STAT3 in
the nucleus pulposus of IVDD rats (Figure 5K).

DISCUSSION

As an M receptor blocker, ANI has proven to be a relatively safe
and effective drug that has been used in the treatment of various
diseases including rheumatoid arthritis, ischemia-reperfusion
injury, and respiratory diseases (Poupko et al., 2007; Zhou et al.,
2014). However, the role of ANI in IVDD is unclear. This study
found that ANI could inhibit IL-1β-induced apoptosis and
senescence of HNPCs, and promote collagen II and synthesize
in vitro. Consistent with in vitro study, ANI could improve the
degeneration of intervertebral disc degeneration in IVDD rats by
inhibiting the apoptosis and senescence of NPCs and inhibiting
ECM degradation in the nucleus pulposus tissue. More importantly,
we found that the improvement in IVDD by ANI may be related to
its inhibition of IL-6/JAK/STAT3 signaling pathway.

Cellular senescence is a proliferative cell that continues to
suffer from exogenous and endogenous stress and damage,
entering a perpetual cell cycle arrest state (Yousefzadeh et al.,
2019). Adult intervertebral discs are the largest avascular tissue in
the body. Ischemia, hypoxia, and nutrient deprivation in the
intervertebral disc increase the stress factors such as high lactate
metabolism, high osmotic pressure, and oxidative damage, which
induce premature senescence of NPCs (Feng et al., 2016).
Apoptosis is the final link in the senescence of nucleus
pulposus cells (Jung et al., 2019). We found that the apoptotic
rate of degenerative HNPCs increased significantly, and the
activity of caspase-3, a key executive molecule and the main
effector molecule of apoptosis, was also significantly increased in
IL-1β-induced HNPCs, suggesting the occurrence of apoptosis in
degenerative HNPCs. SA-β-gal is a relatively specific cell
senescence marker (Oh et al., 2018) that is derived from
lysosome β-galactosidase that reflects increased expression of
lysosomal β-galactosidase protein in senescent cells (Bo et al.,
2006). Roberts et al. (2006) and Gruber et al. (2007) showed an
increase in SA-β-gal staining-positive cells in degenerated
intervertebral discs and nucleus pulposus compared with
undegenerated discs. Two signaling pathways alone or
synergistically induce cellular senescence: the p53/p21 and
p16INK4A/pRB pathways, in which the p53/p21 pathway is

FIGURE 4 | ANI inhibited IL-1β-induced apoptosis, senescence, and ECMdegradation of HNPCs bymodulating the IL-6/JAK/STAT3 signaling pathway. (A,B) The
expression of IL6, JAK, p-JAK, STAT3 and p-STAT3 in HNPCs was analyzed by western blot assay. (C) Hoechst 33258 staining was used to analyze the apoptosis of
HNPCs. Bar � 50 μm. (D) Detection of caspase-3 activity. SA-β-gal staining (E) and telomerase activity assay (F) were used to analyze senescence of HNPCs. Bar �
100 μm. (G–I) The expression of p53, p21, aggrecan and collagen II in HNPCs was analyzed by western blot assay. *p ＜ 0.05, **p ＜ 0.
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dominant in IVDD (Kim et al., 2009). Progressive shortening of
telomeres activates the expression of the tumor suppressor gene
p53 by mimicking DNA damage signals, which in turn activates

its downstream gene p21. Activation of p21 inhibits cyclin-
dependent kinase two and cyclin E, which in turn reduces the
degree of phosphorylation of retinoblastoma (RB) protein. The

FIGURE 5 | ANI inhibited apoptosis, senescence and ECM degradation in nucleus pulposus tissue by inhibiting IL-6/JAK/STAT3 signaling pathway. (A)
TUNEL assay was used to analyze apoptosis in the nucleus pulposus tissue of IVDD rats with or without ANI treatment. Bar � 100 μm. Red was the apoptotic nucleus
pulposus nucleus, and blue was the nucleus. (B)Western blot assay was used to analyze the expression of Bcl-2 and Bax proteins in the nucleus pulposus of IVDD rats with
or without ANI treatment. (C–E)Western blot assay was used to analyze the expression of p53, p21, aggrecan and collagen II proteins in nucleus pulposus tissue of
IVDD rats with or without ANI treatment. (F) Immunohistochemistry was used to analyze the expression of p53 and aggrecan proteins in nucleus pulposus tissues. Bar �
100 μm. (G–I) Western blot analysis was used to analyze the expression of p-JAK and p-STAT3 in the nucleus pulposus of IVDD rats with or without ANI treatment. (J)
Western blot assay was used to analyze the expression of p-STAT3 protein in the nucleus pulposus tissue. (K) The localization of p-STAT3 in nucleus pulposus tissues was
analyzed by immunohistochemistry. Bar � 50 μm. N � 6. *p ＜ 0.05 vs. control; #p ＜ 0.05 vs. IVDD.
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hypophosphorylated RB protein binds to and inactivates the nuclear
transcription factor E2F, eventually causing senescence (Jeyapalan
and Sedivy, 2008). Moreover, the p53 pathway can also be directly
caused by cellular DNA damage induced by stress. Studies have
shown that hyperosmolar states can activate this pathway by
damaging the DNA of NPCs, and inactivation of p53 reverses
this process (Mavrogonatou and Kletsas, 2009). We also observed
an increase in activity of SA-β-gal, as well as p53 and p21 protein
expression in IL-1β-induced HNPCs, and a decrease in telomerase
activity, suggesting senescence in degenerative intervertebral discs.
Senescence not only reduces the cell viability of NPCs, but also causes
phenotypic changes that lead to the degradation of ECM (Gruber
et al., 2007). ECM not only maintains the integrity of the
intervertebral disc, but also regulates the survival, morphology
and differentiation of NPCs by providing mechanical and
biochemical pathways to NPCs. A typical feature of IVDD is the
loss of ECM components. Aggrecan and collagen II are the most
important components of nucleus pulposus ECM.We also observed
a decrease in the expression of aggrecan and collagen II in IL-1β-
induced HNPCs, suggesting degradation of ECM in HNPCs. These
results demonstrated that IL-1β could induce degeneration of
HNPCs in vitro by inducing apoptosis, senescence, and ECM
degradation, thereby inducing IVDD. Consistent with in vitro
studies, we also observed senescence, apoptosis, and ECM
degradation in degenerated intervertebral disc nucleus tissues in
IVDD rats.

Delaying the senescence of NPCs and promoting the synthesis
of ECM components to inhibit the initiation of IVDD is expected
to be the key to the treatment of IVDD (Cai et al., 2016; Chen et al.,
2018). ANI has been shown to have anti-inflammatory, anti-apoptotic
and anti-oxidative effects. The present study showed that ANI
inhibited apoptosis and SA-β-gal activity, whereas increased
telomere activity and collagen II and aggrecan synthesis in IL-1β-
inducedHNPCs. Simultaneously, the results also showed in the IVDD
rat model that ANI treatment could increase Bcl-2 expression while
reduce Bax expression in nucleus pulposus tissue, which are key
regulators of apoptosis (Chipuk et al., 2010; Delbridge et al., 2016),
inhibited the expression of p53 and p21, and promoted the synthesis
of collagen II and aggrecan. Zhang et al. (2019) also showed that
moxibustion treatment may be beneficial to IVDD by reducing
apoptosis, which is manifested in the up-regulation of Bcl-2
expression and down-regulation of Bax expression. Collectively,
these results revealed that ANI may extenuate IVDD by inhibiting
apoptosis, senescence, and ECM degradation of NPCs.

As one of the pro-inflammatory cytokines, IL-6 has been
shown to accelerate IVDD (Risbud and Shapiro, 2014). IL-6
forms a complex IL-6/IL6R/gp130 by binding to its receptor
IL-6R, and dimerization of the gp130 molecule results in
phosphorylation with JAK. Activated JAK further
phosphorylates STAT3, which forms a dimer and translocates
to the nucleus to activate transcription and expression of the
corresponding target gene, such as Bcl-xL, Bcl-2, CyclinD1,
Fas, VEGF, MMP-2, etc. (Wang and Sun, 2014). Blocking the
IL-6/JAK/STAT3 pathway has become a new strategy for the
treatment of disease (Johnson et al., 2018). For example, IL-6
and its receptor IL-6R monoclonal antibody have been used in the
treatment of rheumatoid arthritis (Pelechas et al., 2017) and uveitis

(Elkinson and McCormack, 2013), and JAK small molecule
inhibitors have also been used in the treatment of rheumatoid
arthritis and myelofibrosis (Mascarenhas and Hoffman, 2012;
Traynor, 2012). We found that ANI inhibited the expression of
IL-6 and the phosphorylation of JAK and STAT3 in IL-1β-induced
HNPCs, and also inhibited nuclear translocation of p-STAT3
in vitro. Additionally, IL-6 reversed the inhibitory effect of ANI
on IL-6/JAK/STAT3 pathway activation in vitro. And, IL-6 could
eliminate the anti-apoptosis, anti-aging and anti-ECM degradation
effects of ANI on degenerative HNPCs to some extent. More
importantly, ANI abolished the effects of IL-6 on apoptosis,
senescence and ECM degradation of degenerative HNPCs.
Additionally, ANI treatment enhanced the effects of AG490
(inhibitor of JAK/STAT3 pathway) on IL-1β-induced apoptosis,
senescence and ECM degradation in HNPCs. Moreover, ANI
treatment was also observed in IVDD rats to inhibit the
activation of the IL-6/JAK/STAT3 pathway in nucleus pulposus
tissues. Kojima et al. (2012) found that IL-6 and soluble IL-6R
stimulation induce cellular senescence by causing DNA damage
response and p53 accumulation, a process that uses STAT3 as a
major trigger and enhancer component. Inhibition of IL-6/JAK/
STAT3 pathway activation can delay IVDD by inhibiting apoptosis
of NPCs and degradation of ECM (Suzuki et al., 2017; Zhou et al.,
2017). Based on these studies, we hypothesized that ANI may play a
protective role in IVDD by inhibiting the activation of IL-6/JAK/
STAT3 pathway to suppress apoptosis, senescence and ECM
degradation of NPCs.

CONCLUSION

Taken together, ANI could improve the function of NPCs in IVDDby
inhibiting the apoptosis, senescence and ECM degradation via
negatively regulating IL-6/JAK/STAT3 signaling pathway. This
study may provide insight for further study into the protective
effects of ANI. However, further studies are needed to demonstrate
the effect of ANI in IVDD to promote the clinical treatment of IVDD.
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