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Editorial on the Research Topic

Computational Learning Models and Methods Driven by Omics for Precision Medicine

Due to the high experimental cost and the exponential decline in the cost of high-throughput
sequencing, computational models, and methods are preferred by scholars. The curse of
dimensionality is the primary obstacle to dealing with the explosive growth of omics data. Machine
learning methods are applied to reduce dimensionality and perform feature selection frommassive
data. Researchers meet the requirements of data sparsity by increasing the sparsity constraints of
the computational models. The models combined with the deep learning method help to discover
potential non-linear associations. Improving data representation or adding embedding layers could
provide better performance of the models. Computational methods for biomarker discovery,
sample classification, and disease process interpretation pave the way for precision medicine.

This topic includes 34 papers and a corrigendum. These papers introduce latest researches in the
area of computational biology, catering for precision medicine and complex diseases. They include
sequencing alignment, correlation detection between omics data and biological traits, prediction
of biological functionality, computational methods for cancer subtyping, finding of pathogenic
causes, repositions and targeting, and computational methods specially designed for biological
knowledge mining.

SEQUENCE ALIGNMENT

The raw sequencing data is unstructured short sequences. The structured data can be generated
from downstream analysis through filtering, quality control, and assembly of these unstructured
data. Assembly reconciliation can generate high-quality assembly results. In Tang et al., using the
consensus blocks between contigs to construct adjacency graphs to avoid varying sequencing depth
and sequencing errors, the authors propose a scoring function to rank the input assembly sets. They
use an adjacency algebra model for accurate fusion, which performs well onM. abscessus, B. fragilis,
R. sphaeroides, and V. cholerae. Shi and Zhang apply the partition and recur platform to generate
a high-level abstraction of the sequence alignments. The algorithm component library is verified
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by Apla language. The advantage of implementing the sequence
assembly process through abstract components is that it can
effectively improve stability and reduce the possibility of errors
caused by manual selection.

ESTABLISHING OMICS—DISEASE

ASSOCIATIONS

Four groups present research on RNA association prediction,
including Long non-coding RNA(lncRNA)–protein interactions
(LPI), LncRNA-Disease, microRNA(miRNA)-Disease, and
Circular RNA(circRNA)-Disease. Peng et al. give us an overview
of how to identify lncRNA–protein interactions(LPI), and they
introduced 16 related repositories and methods. Among these
network-based and deep learning-based methods for predicting
LPI, the proposed SFPEL-LPI used assembly learning and
achieved the best Area Under Curve(AUC) performance. Hu
et al. combined the two methods of neural network and matrix
factorization (MF) to predict lncRNA-disease associations.
They achieved this combination by concatenating outputs
and sharing inputs between the two methods. Both the MF
and the neural network are trained simultaneously under the
framework of TensorFlow. In Yu, Shen et al., prior information
(lncRNA-miRNA and lncRNA-disease associations) and known
miRNA-disease associations are integrated to construct a
three-layer heterogeneous network of LncRNA, miRNA, and
disease. In this three-layer network, the edges between the layers
are filled with prior information. Random walk is applied to
predict miRNA-disease associations. The proposed methods
are evaluated using cancer data. Their results show that most
potential miRNAs can be confirmed by databases. In Lei X.
et al., the cirRNA similarity network and the disease similarity
network are used as the input of the collaboration filtering
recommendation system. Their experiments on predicting
potential circRNA–disease associations indicate the effectiveness
of the recommendation system algorithm.

Like RNA, microbes and pathogens are also the causes
of diseases. In Li, Wang, Chen et al., a bipartite network
is applied to avoid the omission of neighbor information
for predicting Pathogen–Host associations. Among the top 20
pathogen-host pairs discovered, 16 pairs can be verified by
biological experiments. In Ma et al., to explore the pathogenesis
of complex diseases from the modular perspective, the similarity
matrix is decomposed to generate microbe-disease co-modules
by non-negative matrix tri-factorization. Their method achieves
nice performance in the enrichment index and the number of
significantly enriched taxon sets. In Li S. et al., on the strength
of a matrix containing microbes similarity, disease similarity and
a bipartite graph network of the two interactions, the potential
microbe-disease associations are calculated by Katz centrality.
The prediction performance was evaluated by the leave-one-
out cross validation and reached an AUC of 0.9098. Zhu et al.
use a deep feedforward network to identify microbial markers
and realize graph embedding by replacing the first two layers
of the network with a sparse graph. Experiments show that
this Graph Embedding Deep Feedforward Network has the best

performance, comparing deep forest, random forest and Support
Vector Machine(SVM).

PREDICTION OF BIOLOGICAL

FUNCTIONALITY

Identifying acetylation proteins is conducive to understanding
the post-translational modification process. In Qiu et al., the
authors first generate a k-nearest neighbors (KNN) score, and
then use random forest to classify the acetylation proteins. The
formation of KNN scores is based on domain annotation and
subcellular localization. Five-fold cross-validation on the three
data sets was performed, and finally, an average AUC of 0.8389
was obtained. In Miao et al., the authors aim to identify which
proteins are endoplasmic reticulum-resident proteins, and they
achieved accuracy over 86%. Such work allows us to understand
the functionality of proteins, which may be potential points of
drug design. The promoter drives the flow of genetic information
from DNA to RNA, and its sequence information determines the
strength of the promoter. In Le et al., the promoter sequence
is divided into 10-gram levels and is used to form a 1,000-
dimensional vector. The vector is input into a deep neural
networks model to classify the promoter strength. Compared
with other latest methods in the same test set, this method
improves 1–4% on all indicators.

COMPUTATIONAL APPROACH FOR

CANCER SUBTYPING

Cancer subtyping is fundamental for precision therapy.
Accurately identifying cancer subtypes enables us to understand
cancer evolution. In Lu et al., Laplacian score and low-rank
representation methods are integrated to obtain a low-rank
expression of cancer gene expression data. This low rank matrix
is hoping to preserve subtype information. By sorting the
obtained matrix, the feature genes are heuristically selected
to comprise of a gene subset for accurate cancer subtyping.
The method is tested on five cancer dataset and is shown to
achieve superior performance over k-means, non-negative
matrix factorization (NMF) and several other baseline methods.
Aouiche et al. obtained the cancer stages on copy number
variation(CNV) data. The positive significance of distinct stage
division is dependent on not only a high cure rate after cancer
been detected, but also on critical markers, which are potential
therapeutic targets. Li, Wang, Wang et al. identify differentially
expressed genes(DEGs) in tumor by analyzing the residues of
each gene via a regression model and found potential biomarkers
of the individual sample from DEGs. Survival analysis is
performed on samples collected from human and mouse cancer
data, and is shown to be statistically differently.

QUANTITATIVE UNDERSTANDING OF

PATHOGENIC CAUSES

The goal of developing computational disease models is to find
a therapeutic target. As the first step, computational tools are
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required to explain the cause of the disease. Regarding the
identification of Schizophrenia (SZ), Xiang et al. construct a
Brainnetome atlas based on resting-state functional magnetic
resonance imaging. Brainnetome atlas is a weighted undirected
graph constructed with brain regions as nodes and correlations
as edges. The authors calculate the features from the altas and,
then use least absolute shrinkage and selection operator(lasso)
learning to prune the features. The classification is SZ is achieved
by using SVM with an accuracy of 93.10%. In Li X. et al., each
single sample is classified by a pathway-based approach, into
Ulcerative colitis (UC) and Crohn’s disease (CD). Even though
UC and CD have common clinical characteristics, they have
different responses to drugs. According to the gene expression
data of the sample, the author scores each pathway to form a
pathway activation for single sample matrix, which is classified
by a random forest classifier. In Zhang S. et al., the authors aim
to select CNV markers to distinguish between three different
states of mono-ADP-ribosylhydrolase 2 (MACROD2). The
frequent deletions ofMACROD2 locusmay lead to chromosomal
instability of human colorectal cancer. The authors firstly select
17 important single nucleotide polymorphism(SNP) site via
mutual information, and then uses bootstrapping scheme to train
multiple classifiers. The trained classifiers are finally ensembled to
effectively distinguish three types of MACROD2. In Lei W. et al.,
the effectiveness of lipoprotein 2 on Subarachnoid hemorrhage
(SAH) intervention is revealed from the perspective of the
cell signaling pathway. The authors discover five biomarkers,
three of which have been verified by previous experimental
evidence. Finally, the early SAH prediction is performed based
on the assembly learning of logistic regression, SVM and Naive-
Bayes, achieving an accuracy of 79%. Zhang P. et al. clarify
a pathway of polycistronic mRNA ORF73 involved in host
apoptosis through protein p53, supplementing the pathogenic
process of Kaposi sarcoma-associated herpes virus. This work is
mainly done through protein-protein interactions (PPI) analysis,
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes
pathway analyses. In Shao et al., 108 whole-non-structural
protein 5 sequences are analyzed in Zika virus, and 35 potential
glycosylation and phosphorylation sites have been discussed.
Mutations in amino acid sites are found to be correlated with
their pathogenicity and transmission efficiency. The relatively
stable nucleic acid sequence is shown to be helpful for detection
and vaccine development.

A meta-analysis can combine multiple studies, and the two
groups apply meta-analysis methods. In Fukutani et al., after the
analysis of Human T-lymphotropic virus 1 (HTLV-1)-infected
patients, the authors find that gene CD40LG and gene GBP2 can
be used as two phenotypic classifications of HTLV-1 infection,
with accuracy rates of 0.88 and 1. In Jin and Shi, a meta-analysis is
performed to test SNP-environment interaction. Based on meta-
regression (MR), the author proposes overlapping MR combined
with themethod of processing overlapping data. Thismethod can
reduce type I error and is more robust than MR in dealing with
the non-linear interaction effect.

Gao et al. screen 107 methylomic features in whole blood
methylation samples and use Support Vector Regressor to predict

age. What is interesting is that only gene CALB1 and gene KLF14
are both found in the male and female age prediction models.

DRUG REPOSITIONS AND TARGETING

Four works focus on drug repositions. In Manibalan et al.,
the authors focus on the S100A8 protein, which has a strong
interaction with the prevalence of polycystic ovary syndrome
biomarkers. Therefore, they design a series of RNA aptamers
targeting the S100A8, and select the one with minimal binding
energy as the targeted drug.Wound Scratch experiments confirm
that the synthesized 18-mer oligo has a significant inhibition
effect on tumor cell migration. Wu et al. hope to level
the differences in chemotherapy prognosis through cisplatin
resistance analysis of oral squamous cell carcinoma. Through
the analysis of differentially expressed genes, PPI network and
miRNA-mRNA targeted regulatory network, they find that five
hub genes and the miR-200 family members that regulate hub
genes may be potential drug targets. In Yu, Xu et al., new targeted
drugs for hepatocellular carcinoma (HCC) are found by the
drug repositioning bioinformatics method. Finding HCC’s kernel
genes is the first step in work. The next step is to combine
the relationship between the drug and gene expression in the
Connectivity Map database to score the relationship between
the drug and HCC. Among the top ten drugs screened by this
method, eight drugs have been supported by publications. In
Emdadi and Eslahchi, cell line similarity, drug similarity and
half maximal inhibitory concentration are combined to predict
the drug sensitivity of cells, and logistic matrix factorization
is applied to obtain latent vectors. For the drug sensitivity
prediction of the new cell line, the k-nearest neighbors of the
cell line are estimated through the decision tree to obtain the
latent vectors of the cell line. Finally, a threshold based on the
probability of the latent vector is used to predict whether the
cell line is sensitive to drugs. The genomics of drug sensitivity
on haematopoietic cell lines in cancer was tested for model
performance, with an accuracy of 0.721.

BIOLOGY-ORIENTED LEARNING

METHODS

Traditional learning methods have achieved tremendous success
and have provided solutions to even some difficult biological
problems. In Wang et al., Huber loss is applied to alleviate
non-Gaussian noise contaminations. A sparsity penalty item is
used to encourage the sparsity of representation of The Cancer
Genome Atlas data, and a graph regularization is used to preserve
the manifold structure. The clustering accuracy is improved by
5% compared with non-negative matrix factorization. Che et al.
improve the traditional methods on the basis of Sparse Group
Lasso (SGL) and proposed a weighted sparse group lasso (WSGL)
by introducing prior constraint on the sparse term. Compared
with lasso and SGL, the performance is significantly improved,
indicating that prior biological knowledge carries on valuable
message. Comparing the lasso and SGL methods, WSGL can
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screen less genes, and the ratio of candidate genes is higher
using Arabidopsis flowering time data. In Lemaçon et al., a
visualization method is proposed based on a scoring system for
rating susceptibility loci. In general, this is a visualization method
for searching for the best potential variants through aggregating
prediction approaches. In Guo, Kullback-Leibler divergence is
used to measure the distance between two SNPs, and these
distances are used as k-means clustering. Then, statistical testing
methods are applied to find epistatic interactions, and the time
cost of this method is about one-tenth that of Bayesian inference-
based method. Zheng et al. use sparse subspace clustering
to perform single-cell clustering. This method assumes that
the feature vector of a sample can be expressed as a linear
combination of other samples in the same subspace. In the test of
10 single-cell datasets, thismethodmaintains the leading position
in normalized mutual information and adjusted rand index.

These teams work together to continuously improve
model accuracy. Most articles related to computational
methods are tailored from early established models for biology
knowledge learning.
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With the development of high-throughput techniques, various biological molecules are 
discovered, which includes the circular RNAs (circRNAs). Circular RNA is a novel 
endogenous noncoding RNA that plays significant roles in regulating gene expression, 
moderating the microRNAs transcription as sponges, diagnosing diseases, and so on. 
Based on the circRNA particular molecular structures that are closed-loop structures with 
neither 5′-3′ polarities nor polyadenylated tails, circRNAs are more stable and conservative 
than the normal linear coding or noncoding RNAs, which makes circRNAs a biomarker 
of various diseases. Although some conventional experiments are used to identify the 
associations between circRNAs and diseases, almost the techniques and experiments 
are time-consuming and expensive. In this study, we propose a collaboration filtering 
recommendation system–based computational method, which handles the “cold start” 
problem to predict the potential circRNA–disease associations, which is named ICFCDA. 
All the known circRNA–disease associations data are downloaded from circR2Disease 
database (http://bioinfo.snnu.edu.cn/CircR2Disease/). Based on these data, multiple 
data are extracted from different databases to calculate the circRNA similarity networks 
and the disease similarity networks. The collaboration filtering recommendation system 
algorithm is first employed to predict circRNA–disease associations. Then, the leave-one-
out cross validation mechanism is adopted to measure the performance of our proposed 
computational method. ICFCDA achieves the areas under the curve of 0.946, which is 
better than other existing methods. In order to further illustrate the performance of ICFCDA, 
case studies of some common diseases are made, and the results are confirmed by other 
databases. The experimental results show that ICFCDA is competent in predicting the 
circRNA–disease associations.

Keywords: circRNA–disease association, collaboration filtering, multiple biological data, recommendation 
system, neighbor information
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INTRODUCTION

Circular RNA (circRNA) is a relatively novel biological molecule 
compared with the usual linear RNAs. Circular RNAs were first 
discovered in the RNA viruses before 1970 (Sanger et al., 1976). It 
is said that circRNAs lack covalently closed-loop structures with 
neither 5′-3′ polarities nor polyadenylated tails (Chen and Yang, 
2015), which causes that it is not easy to find circRNAs compared 
with linear RNAs. Because of circRNAs closed-loop structure, 
however, more and more circRNAs (Hsu and Coca-Prados, 1979; 
Arnberg et al., 1980; Pasman et al., 1996) are revealed based on 
the development of the RNA base sequence high-throughput 
techniques. In terms of recent researches, there are various kinds 
of circRNAs in the creatures, which include as follows: exonic 
circRNAs, which are mainly produced by back-spliced exons 
(Wilusz and Sharp, 2013), introns circRNAs extracted from 
introns (Lasda and Parker, 2014), exon–intron circRNAs that are 
analogous to ecircRNAs (Li et al., 2015), and integrated circRNAs 
discovered by a biological identifier, CIRI (Gao et al., 2015). 
Many recent evidences (Danan et al., 2011) show that circRNAs 
play significant roles in different biological processes and have 
multiple biological functions (Jeck and Sharpless, 2014; Qu et al., 
2015). First, circRNA can be regarded as miRNA sponges (Hansen 
et al., 2013; Kulcheski et al., 2016), which could be adopted to be 
an identifier for diseases. Second, some evidences illustrate that 
circRNAs also can regulate some transcriptional processes (Chao 
et al., 1998). Simultaneously, circRNAs also have associations 
with RNA-binding proteins (RBPs) (Panda et al., 2017) bases on 
their stable circular structures. Circular RNA has different ways 
to bind with the RBPs compared with the linear RNA (Memczak 
et al., 2013), which indicates that circRNAs have potential to be 
disease biomarkers. Moreover, circRNAs have some translational 
functions (Chen and Sarnow, 1995) like common RNAs.

With the further study of circRNAs’ functions, increasing 
numbers of evidences point out that circRNAs have associations 
with complicated diseases (Xu et al., 2017) or have effects on 
the translation of some proteins (Bartsch et al., 2018). There 
are many previous searches revealing the associations between 
circRNAs and some cancers. Circular RNA circ-PVT1 has been 
discovered to upregulate the gene expression in the gastric 
cancer (GC) tissues and promotes the GC cells reproduction 
(Chen et al., 2017a). In contrast circRNA hsa_circ_0000190, it 
regulates the gene expression in GC tissues by downregulation 
(Chen et al., 2017b). CircRNA circTCF25 can upregulate the 
gene expression or cell proliferation of 13 target locus of miRNA 
miR-103a-3p/miR-107, which can be regarded as a biomarker 
of bladder cancer (BC) (Zhong et al., 2016). Circular RNA hsa_
circRNA_105055 and hsa_circRNA_086376 are the potential 
biomarkers of colorectal cancer by working as sponges for miR-7 
(Zeng et al., 2017). Moreover, circRNA hsa_circ_0054633 also 
has association with diabetes, especially for prediabetes and type 
2 diabetes mellitus (Zhao et al., 2017).

Because of the development of RNA base sequence techniques, 
more and more circRNA-related information is excavated. Thus, 
many different kinds of circRNA-related databases are established 
for further researches of various diseases, biological molecules 
and pathways, etc. To create more convenience to the researchers, 

circBase database (Glazar et al., 2014) was developed to provide 
the evidence supporting their expression, and all the data can be 
accessed, downloaded, and browsed within the genomic context. 
Circular RNADb (Chen et al., 2016a) is a comprehensive circRNA 
database that collects human protein-coding annotations of 
circRNAs and includes some important information about 
exonic circRNAs such as genomic information, exon splicing, 
genome sequence, internal ribosome entry site, open reading 
frame, and cricRNA-related references. Furthermore, ExoRBase 
(Li et al., 2017) is an online accessible database that extracts 
data from RNA-seq data analyses of human blood exosomes. 
circNet (Lin et al., 2015) is also a circRNA-related database from 
which tissue-specific circRNA expression profiles and circRNA-
miRNA-gene regulatory networks can be downloaded. Moreover, 
circ2Traits (Ghosal et al., 2013) is an overall circRNA–disease 
associations database, which obtains the associations as follows: 
one is identifying the interactions of circRNAs with disease-
related miRNAs; the other is matching the diseases associated 
SNPs on circRNA loci. To obtain more reliable circRNA–disease 
associations, circR2Disaese (Fan et al., 2018) database (http://
bioinfo.snnu.edu.cn/CircR2Disease/) was developed. The whole 
circRNA–disease associations are collected manually from 
relevant references and reviews, which provides more convenience 
and basics to infer novel circRNA–disease associations.

Although, there are many circRNA–disease associations 
discovered by biological experiments, whose experimental 
processes are extremely expensive and time-consuming. On 
the one hand, there are a limited number of computational 
methods existing to predict potential circRNA–disease 
associations. On the other hand, we lack comprehensive 
circRNA-related diseases databases, which are our main 
motivation to propose a new computational method based on 
circR2Disease database. In this study, we develop an improved 
collaboration filtering recommendation system (Pan et al., 
2008) method to predict circRNA–disease associations, 
which is named ICFCDA. First, circRNAs target gene–related 
gene ontology (GO) terms, circRNAs base corresponding 
sequences data, and circRNA–disease associations are adopted 
to calculate the circRNA functional annotation semantic 
similarity, sequence similarity, and Gaussian interaction 
profile (GIP) kernel similarity. Second, disease-related genes 
and circRNA–disease associations are used to calculate the 
disease functional similarity and disease GIP kernel similarity. 
Furthermore, we also replace the disease names into disease 
ontology (DO) IDs to calculate the disease semantic similarity 
based on the DOSE (Yu et al., 2015) tool. Third, multiple disease 
similarities and circRNA similarities are combined with the 
final disease similarity matrix and circRNA similarity matrix, 
respectively. Finally, collaboration filtering method is adopted 
to calculate the score of each circRNA–disease pair. For the 
sake of evaluating the performance of method we proposed, 
leave-one-out cross validation (LOOCV) is used to calculate 
the area under receiver operating characteristic (ROC) curve 
(AUC) value. Moreover, several common diseases also are 
tested by the LOOCV mechanism. In addition, case studies 
of two common diseases are implemented to further illustrate 
the performance of ICFCDA.
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MATERIALS AND METHODS

Human circRNA–Disease Associations
To extract circRNA–disease associations, the initial circRNA–disease 
associations datasets are downloaded from circR2Disease database 
(Fan et al., 2018) (http://bioinfo.snnu.edu.cn/CircR2Disease/). In 
the original dataset, there are 725 circRNA–disease associations 
that have been verified by biological experiments. These 725 
circRNA–disease associations contain 661 circRNA individuals and 
100 disease individuals. In term of the initial dataset, 212 circRNA–
disease associations are picked out as the known associations in this 
study, which are composed of 42 disease entities and 200 circRNA 
entities. The adjacency circRNA–disease association matrix is 
deciphered by matrix A. If there is an association between the 
disease i and circRNA j, A(i, j) is equal to 1 or A(i, j) is equal to 0.

circRNA Similarity
circRNA Functional Annotation Semantic Similarity
On the basis of the original circRNA–disease associations, 
200 circRNA entities are screened out. Then human GO terms 
data are downloaded from human protein reference database 
(HPRD) database (Keshava Prasad et al., 2009). The initial 
circRNA–disease associations provide the circRNAs-related 
genes. Thus, the circRNA-related genes are utilized to match 
GO data extracted from HPRD database. In this study, an 
information content algorithm (Lin, 1998) is adopted to calculate 
the circRNA functional annotation semantic similarity. CFS is 
used to describe the circRNA functional annotation semantic 
similarity network. Moreover, the following equation is used to 
calculate the circRNA functional annotation semantic similarity:

 CFS i j
P C C

P C P C
i j

i j
( , )

log ( )
log ( ) log ( )

=
× ∪

+
2  (1)

where CFS(i, j) denotes the functional annotation semantic 
similarity between circRNA Ci and Cj; P(Ci) and P(Cj) represent 
the probability between the number of Ci and Cj target gene–
related GO terms and the number of the entire GO terms. 
P C Ci j( )∪  is the ratio of between the union of the number of 
circRNA Ci and Cj target gene–related GO terms and the number 
of the entire GO terms.

circRNA Sequence Similarity
For the sake of calculating the circRNA sequence similarity, 
the circRNA corresponding RNA base sequence data are 
downloaded from circBase database (Glazar et al., 2014) (http://
www.circbase.org/). In our computational model, there are 200 
circRNAs needing matching their related RNA base sequences. 
A base pairing algorithm named the Needleman-Wunsch 
pairwise alignment algorithm is used to calculate the circRNA 
sequence similarity, which is integrated into a python toolkit 
called Biopython (Cock et al., 2009). Therefore, there are some 
parameters needing setting up for obtaining a better result. 
The gap-open penalty is set as 2, and the gap-open extending 
penalty is set as −0.5 to −0.1. CSS is adopted to represent the 
circRNA sequence similarity matrix, and CSS(i, j) represents 
the similarity value between the circRNA Ci and Cj. Then, the 

Needleman-Wunsch score of each circRNA pair is normalized 
as follows:

CSS i j NW i j
NW i i NW j j

( , ) ( , )
( , ) ( , )

=
 

(2)

where NW(i, j) is the score of the Needleman-Wunsch algorithm 
between circRNA i and j.

circRNA GIP Kernel Similarity
Known circRNA–disease associations are adopted to calculate 
circRNA GIP kernel (Van Laarhoven et al., 2011) similarity 
marked as CGS. According to an assumption (Van Laarhoven 
et al., 2011) that the more similar the two circRNAs are, the more 
likely the disease associated with one of them is to be associated 
with another. Therefore, VCi is used to represent the interaction 
profile of circRNA C(i) with each disease, which means the ith 
row in the circRNA–disease association network. The GIP kernel 
similarity between circRNA C(i) and C(j) is calculated as follows:

 CGS i j V Vc C Ci j
( , ) exp( )= − −γ

2
 (3)

where CGS(i, j) is the GIP kernel similarity of circRNA i and j. γc 
is an adjusting parameter, which controls the bandwidth of each 
kernel, which can be initialized as follows:

 γ γc c
c

C
i

N

N
V

i

c

=












=
∑^ 1

1

 (4)

Where γ c
^  is the initial value, which is set as 1 based on the 

previous study (Van Laarhoven et al., 2011). Nc is total number 
of circRNAs.

circRNA Similarity Integration
Finally, we obtain the circRNA functional annotation semantic 
similarity, sequence similarity, and GIP kernel similarity. In order 
to make full use of these three circRNA similarities, the following 
equation is adopted to integrate the circRNA similarities:

 CS i j
CGS i j CGS i j

CFS i j
( , )

( , ), ( , )
( , ) ( )

=
≠

+ −
if 0

1α α CCSS i j( , ), otherwise






 (5)

where CS denotes the integrated circRNA similarity network; α 
is a harmonic mean factor to integrate the circRNA functional 
annotation semantic similarity CFS, and the circRNA sequences 
similarity CSS.

Disease Similarity
Disease Functional Similarity
Furthermore, disease-related genes are downloaded from 
DisGeNET (Pinero et al., 2017) database, which gathers more 
than 3,815,056 gene–disease associations between 16,666 gene 
individuals and 13,172 disease individuals. In order to obtain 
more reliable disease similarity, we also extract disease-related 
genes from Online Mendelian Inheritance in Man (OMIM) 
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(Hamosh et al., 2005) database. Based on the initial circRNA–
disease associations, 42 independent disease entities are picked 
out as the experimental data. Then, those above disease entities 
are used to match the disease phenotype corresponding genes in 
the OMIM dataset manually. In this study, JACCARD algorithm, 
a statistic method, is used to calculate the disease functional 
similarity as follows:

 DS i j
DG i DG j
DG i DG j

1( , )
( ) ( )
( ) ( )

=
∩
∪

 (6)

where DG(i) and DG(j) denote the subsets of the disease i and j 
related genes.

Disease GIP Kernel Similarity
GIP kernel similarity algorithm is also adopted to calculate 
the disease GIP kernel similarity between D(i) and D(j), which 
is similar to calculate circRNA GIP kernel similarities. The 
computing process is as follows:

 DGS i j V Vd D Di j
( , ) exp( )= − −γ

2
 (7)

where DGS is the disease GIP kernel similarity network, and the 
DGS(i, j) is GIP kernel similarity score between disease i and j. 
γd is also a bandwidth adjustment parameter, which is defined 
as follows:

 γ γd d
d

D
i

N

N
V

i

d

=












=
∑^ 1

1

 (8)

where γ d
^  is the initial value, which is set as 1 based on the 

previous study (Van Laarhoven et al., 2011). Nd is total number 
of diseases.

Disease Semantic Similarity
In order to calculate the semantic similarity between these  42 
diseases, the disease-relevant DO IDs are extracted from the DO 
(Kibbe et al., 2015) database. Then all the 42 diseases’ names are 
replaced into the corresponding DO IDs, which are adopted to 
input into a R package named DOSE (Yu et al., 2015) to calculate 
the disease semantic similarity. After the semantic similarity score 
of each disease pair is obtained, DS2 can be used to represent the 
diseases semantic similarity matrix.

Disease Similarity Integration
Thus, the integrated disease similarity thereby can be accessed 
by combining the disease functional similarity, GIP kernel 
similarity, and semantic similarity. In this study, when we fuse 
different disease similarities, different weights are allocated to the 
disease functional similarity matrix, GIP kernel similarity matrix, 
and semantic similarity matrix based on the following formula:

 DS i j
DGS i j DGS i j

DS i j
( , )

( , ), ( , )
( , ) (

=
≠

+ −
if 0

1 1β ββ) ( , ),DS i j2 otherwise






 (9)

where DS denotes the integrated disease similarity network.

ICFCDA
With the increasing numbers of data in all aspects, it is important 
to predict or recommend some associations between the two 
different things. It is in this case that the recommendation 
system algorithm has attracted the attention of many experts. 
Collaborative filtering algorithm (Schafer et al., 2007; Zhou et al., 
2015) is one of the recommendation system algorithms, which is 
applied to recommend movies (Zhou et al., 2008) or news (Das 
et al., 2007) for users. In this study, we first adopt the collaborative 
filtering recommendation system algorithms to predict the 
circRNA–disease associations, which is named as ICFCDA, and 
its flowchart is illustrated in Figure 1.

For scoring each circRNA–disease association, there are five 
steps in our computational method as follows:

Step 1: Obtaining the top k similar neighbors of each 
circRNA based on circRNA similarity network CS.

Step 2: Obtaining the top k similar neighbors of each 
disease based on disease similarity network DS.

Step 3: Calculating the scores of circRNA–disease association 
by the collaborative filtering recommending based on 
circRNAs.

Step 4: Calculating the scores of circRNA–disease association 
by the collaborative filtering recommending based on 
diseases.

Step 5: Integrating the final recommendation scores based 
on Steps 3 and 4.

First, the similarity scores between circRNA j and other 
circRNAs in the circRNAs dataset are listed in descending order. 
Then, the most similar top k neighbors of each circRNA are picked 
out based on the final integrated circRNA similarity network CS. 
We conduct the same above processes for each circRNA. Therefore, 
we obtain the most similar top k neighbors of each circRNA. 
Furthermore, the value of k is set as the 4% of the number of the 
whole circRNAs, which can be described as nc*0.04.

Second, in terms of the most similar top k neighbors of 
cirRNA j and the associations between the disease i and the 
neighbors of the circRNA j, the most similar top k neighbors of 
the circRNA-based recommendation score between the disease i 
and the circRNA j can be calculated as follows:

 CRS i j
k

A i n CS n j
n

k

( , ) ( , ) ( , )= ×










=
∑1

1

 (10)

where CRS(i, j) is the recommendation score between the disease 
i and the circRNA j based on the top k most similar neighbors of 
circRNA j. A(i, n) is the association information of the nth most 
similar neighbor of circRNA j and the disease i. CS(n, j) is the 
similarity score of the nth most similar neighbor circRNA and 
circRNA j.

Third, the similarity scores between disease i and other diseases 
in the disease dataset are listed in descending order. Then, the 
most similar top k neighbors of each disease are screened out 
based on the final integrated disease similarity network DS. We 
also carry out the same processes for each disease. Therefore, 
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the most similar top k neighbors of each disease are selected. 
Moreover, the value of k is set as the 4% of the number of the 
whole diseases, which can be described as nd * 0.04.

Fourth, based on the most similar top k neighbors of disease 
i and the associations between the neighbors of the disease i and 
the circRNA j, the most similar top k neighbors of the disease-
based recommendation score between the disease i and the 
circRNA j can be calculated as follows:

 DRS i j
k

DS i m A m j
m

k

( , ) ( , ) ( , )= ×










=
∑1

1

 (11)

where DRS(i, j) is the recommendation score between the 
disease i and the circRNA j based on the top k most similar 
neighbors of disease i. A(m, j) is the association information of 
the mth most similar neighbor of disease i and the circRNA j. 
DS(i, m) is the similarity score of the mth most similar neighbor 
disease and disease i.

Finally, the circRNA-based recommendation scores and the 
disease-based recommendation scores are combined with the 
final recommendation scores as follows:

 IRS i j DRS i j CRS i j( , ) ( , ) ( ) ( , )= + −γ γ1  (12)

where IRS(i, j) is the integrated recommendation scores  between 
the  disease i and the circRNA j. The parameter γ∈[0, 1.0] 
is a balance factor that can control the significance of the 

circRNA-based recommendation scores and the disease-based 
recommendation scores.

In order to solve the “cold start” problem in the collaborative 
filtering recommendation system, the importance of neighbors 
is taken into consideration. The more diseases/circRNAs are 
shared by two cicRNAs/diseases, the more significant it is. The 
importance of two diseases/circRNAs can be defined as follows:

 IMP C i C j f C i f C j f c kns cod
C

( ( ), ( )) ( ( ))* ( ( ))* ( ( ))= exp
(( ( ))c k
∑  (13)

where IMP(C(i), C(j)) is the significance coefficient between 
circRNA i and j. IMP is divided into three parts, which include the 
circRNA C(i) related diseases fexp(C(i)), which can be calculated 
as the following equation:

 f C j
D C iexp( ( ))

( ( ))
= 1  (14)

where D(C(i)) is circRNA i–related diseases, which means 
that circRNA i would provide more useful suggestion, if it is 
associated with fewer diseases. fns(C(j)) is the similarity if disease 
j based on the disease i, which is defined as follows:

 f C j
D C j I C i C jns( ( ))

( ( )) ( ( ), ( ))
=

− +
1

1
 (15)

where I(C(i), C(j)) is intersection of the circRNA i and j–related 
disease dataset. fcod(C(k)) is the disease that is merely associated 

FIGURE 1 | The flowchart of the computational method ICFCDA.
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with circRNA i and j. Therefore, for those circRNAs that have 
only one relevant disease, the following equation is adopted to 
calculate the recommendation score:

 Score IMP C t C i CS C t C icold start
i

N

=
=

( ( ), ( ))* ( ( ), ( ))
1

cc

∑  (16)

Performance Metric
In order to evaluate the performance of our proposed 
computational method, the AUC value that is the area of the 
ROC curve and the f-measure, which is a comprehensive metric 
using the precision and the recall, are the two main evaluation 
metrics in this study. The ROC curve consists of the true-positive 
rate (TPR) and the false-positive rate (FPR), which are calculated 
by the following equations:

 TPR TP
TP FN

=
+

 (17)

 FPR FP
FP TN

=
+

 (18)

where TP is the number of the positive samples that is the 
known circRNA–disease associations, which are predicted as 
the true circRNA–disease associations, and FN is the number 
of the negative samples predicted as the false circRNA–disease 
associations. FP is the number of the incorrectly predicted 
positive samples, and the TN is the number of the truly predicted 
negative samples. In addition, the precision is the true-positive 
samples in the dataset, which are predicted as positive samples 
dataset. The recall is the ratio between the samples that are 
predicted as positive samples and the whole positive samples. 
Thus, f-measure is illustrated as follows:

 precision TP
TP FP

=
+

 (19)

 recall TP
TP FN

=
+

 (20)

 f measure precision recall
precision recall

− = × ×
+

2  (21)

RESULTS

Leave-One-Out Cross Validation
In this study, a cross validation mechanism, LOOCV, is adopted 
to test the performance of our proposed computational method, 
ICFCDA. For each given disease in the circRNA–disease 
association network, there could be one or several relevant 
circRNAs with each specific disease. First, for each given disease 
i, some circRNAs are confirmed that they are associated with the 
disease i, which are the known circRNA–disease associations. 
Each association between the disease i and one particular circRNA 
could be regarded as test data, and all the left circRNA–disease 

associations are seen as training dataset. During each LOOCV 
procedure, one circRNA–disease association potential score is 
generated. When all the scores of the test dataset are obtained, 
the remaining unknown circRNA–disease associations are treated 
as the test dataset. Finally, the predictive score of each circRNA–
disease pair is obtained. Each circRNA–disease association score 
is a threshold after the final potential scores of the circRNA–
disease associations are sorted in descending order. With the 
changing threshold, we can calculate the TPRs and the FPRs, 
which are adopted to draw the ROC curve and calculate the AUC 
value. In order to evaluate the performance of ICFCDA, the AUC 
value is compared with other seven state-of-the-art methods 
such as heterogeneous graph inference (HGI) method (Chen 
et al., 2016b), KATZ (Ganegoda et al., 2014), random walk restart 
(RWR) (Chen et al., 2012), and graph regularized nonnegative 
matrix factorization (NMF) (Liu et al., 2018), respectively. The 
result is shown in Figure 2, which illustrates that the performance 
of ICFCDA is better than others. According to Figure 2, we can 
find that ICFCDA achieves greater AUC value of 0.946 compared 
with HGI (0.821), KATZ (0.841), RWR (0.774), NMF (0.776), 
K-nearest neighbor regression (0.559), support vector regression 
with rbf kernel (0.497), and support vector regression with 
poly kernel (0.451), respectively. Moreover, the experiment of 
collaborative filtering without solving the “cold start” problem is 
supplemented to evaluate the performance of ICFCDA, which is 
presented in Figure 3. We also make the prediction of other nine 
common diseases including BC, breast cancer, colorectal cancer, 
and so on, which are represented in Figure 4. In order to illustrate 
the stability of our proposed computational method, the average 
AUC values based on the 42 diseases of other methods are shown in 
Table 1. Based on Figure 2 and Table 1, ICFCDA can obtain better 
and more stable performance than other computational methods. 
Furthermore, for the sake of obtaining more comprehensive and 
reliable results, f-measure is also treated as one of our evaluating 
metric, which is described in Figure 5. In addition, we also show 
the first k correct circRNA–disease relationships in the predicting 
results, which is described in Figure 6.

Parameters Analysis
In this study, there are three main parameters that are the most 
similar top k neighbors of each circRNA/disease, the circRNA 
similarity integration adjustment factor α and the disease 
similarity integration adjustment factor β, respectively. Parameter 
k controls the selecting neighbors’ number of each circRNA/
disease, which provides the recommendation information from 
neighbors. The parameter α determines the importance between 
the circRNA functional annotation semantic similarity and the 
circRNA sequence similarity, and its value is changed from 0.1 
to 0.9. The third parameter β is a tradeoff between the disease 
functional similarity and the disease semantic similarity, whose 
value ranges from 0.1 to 0.9. At first, to avoid causing the bias 
between the circRNA and the disease recommendation scores, the 
recommendation integration factor γ is set as Nc/(Nd+Nc), where 
Nc is the number the circRNA entries, and the Nd is the number 
of the disease entries. At first, for testing the suitable value of the 
parameter k, the parameter α and the parameter β and γ are set 
up as 0.5, 0.5, and Nc/(Nd+Nc), which means that different disease 
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FIGURE 2 | The AUC value of ICFCDA compared with other 
computational methods.

FIGURE 3 | The AUC value of ICFCDA compared with CFCDA without 
solving the “cold start” problem.

FIGURE 4 | The AUC values of nine kinds of specific diseases.

TABLE 1 | The average AUC values of 42 diseases.

KATZCDA RWRCDA NMFCDA KNNR SVRrbf SVRpoly ICFCDA

Average
AUC

0.719 0.478 0.616 0.536 0.441 0.415 0.885
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similarity scores are treated equally. According to the above 
experiments, the parameter α, β, and γ are fixed. When k is set 
as 4%, ICFCDA can obtain the best AUC value (0.946), which is 
shown in Table 2. After that, we can find that the parameter α 
and β are not sensitive in our computational method according 
to Figure 7. Therefore, both the parameter α and β are set as 0.5.

Case Study
In order to further evaluate the performance of our proposed 
computational method ICFCDA, we also conduct case studies of 
two common diseases in the world, which are BC (Kaufman et al., 
2009) and breast cancer (Veronesi et al., 2005). Bladder cancer is 

one of the most common genitourinary malignant diseases, which 
has caused hundreds of thousands of people’s death since it was 
discovered clinically. What’s worse, the risk of BC increases with 
the increasing age. Another case study is about the breast cancer, 
which is an important public healthy disease worldwide and is 
also hard to prevent. Breast cancer has a very high mortality rate. 
Therefore, some computational methods should be put forward 
to identify the potential biomarkers of these above two diseases. 
In this study, the prediction results of ICFCDA are validated by 
the other three circRNA–disease association–related databases, 
which are the circ2Disease (Yao et al., 2018), circRNADisease 
(Zhao et al., 2018), and LncRNADisease v2.0 (Bao et al., 2019), 

FIGURE 6 | The number of correct circRNA–disease association in top k predicting results.

FIGURE 5 | Comparison of the precision, recall, accuracy, and f-measure with different methods.

TABLE 2 | AUC with different values for parameter k.

k 1 2 3 4 5 6 7 8 9 10

AUC 0.930 0.932 0.940 0.946 0.923 0.921 0.921 0.906 0.906 0.902
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which are shown in Tables 3 and 4. Both Tables 3 and 4 are the 
predicting results of the top 10 BC- and breast cancer–relevant 
circRNAs. Circ2Disease, circRNADiseaes, and LncRNADisease 
are represented by *, #, and +, respectively.

CONCLUSION

With the discovery of an increasing numbers of disease-related 
circRNAs, more and more attention is paid by biologists. 
People might have lots of interests to explore the complicated 
associations between the various kinds of diseases and circRNAs. 
Simultaneously, because of the development of the RNA high-
throughput techniques, it makes more convenience to find the 
potential associations of circRNAs and diseases. While the RNA 

high-throughput techniques can make this procedure easier 
than before, it is not only time consuming but also expensive, 
which becomes the main motivation to develop a computational 
method to predict the circRNA–disease associations. In this 
study, we propose a collaborative filtering recommendation 
system solving the “cold start” problem-based method to predict 
the circRNA–disease associations, which is named ICFCDA. 
For evaluating the performance of ICFCDA, LOOCV and 
f-measure show that ICFCDA can obtain better results than 
other novel computational methods. Moreover, case studies of 
BC and breast cancer also are adopted to test the performance 
of the ICFCDA. In terms of the different evaluations, we believe 
that our proposed computational method is a useful method to 
predict the associations of the circRNAs and the diseases.

ICFCDA can obtain better performance because of some 
following nonnegligible reasons. First, our proposed computational 
method is based on the recommendation system algorithm, 
collaborative filtering, which is suitable to be used to predict the 
circRNA–disease associations. Because circRNAs can be treated 
as the items, and the diseases can be regarded as the users, the 
different items (circRNAs) can be recommended to different users 
(diseases). Second, in order to solve the “cold start” problem, the 
circRNA similarity and the disease similarity are involved to figure 
out this problem. For obtaining more reliable recommendation 
information, various kinds of biological data are adopted to 
measure the circRNA and disease similarity. We download the 
circRNA-related gene annotation terms to calculate the circRNA 
functional annotation semantic similarity and the RNA base 
sequences to calculate the circRNA sequence similarity. Disease-
related genes and phenotypes (DO ID) are used to calculate the 
disease functional and semantic similarity, respectively. Third, in 
order to screen out more informative information from the noise, 

FIGURE 7 | The AUC of the parameter α and β based on the fixed parameter 
γ and k.

TABLE 3 | The top 10 bladder cancer related candidates’ circRNAs.

Rank CirRNA name/id Evidences Rank CircRNA name/id Evidences

1 hsa_circ_0000172 + 6 hsa_circ_0002024 +
2 hsa_circ_0002495 + 7 circMylk/

circRNAMYLK/
hsa_circ_0002768

*, #

3 circRNABCRC4/
hsa_circ_001598/
hsa_circ_0001577

PMID: 29270748 8 circTCF25/
hsa_circ_0041103

#

4 hsa_circ_0003221/
circPTK2

#, + 9 circFAM169A/
hsa_circ_0007158

#

5 hsa_circ_0091017 #, + 10 circTRIM24/
hsa_circ_0082582

#

TABLE 4 | The top 10 breast cancer–related candidates’ circRNAs.

Rank CirRNA name/id Evidences Rank CircRNA name/id Evidences

1 hsa_circ_0011946 + 6 circAmotl1/
hsa_circ_0004214

*, #

2 hsa_circ_0093859 + 7 hsa_circ_0006528 *, #, +
3 hsa_circ_0001982 #, + 8 hsa_circ_0002874 #, +
4 hsa_circ_0001785 #, + 9 hsa_circ_0085495 #, +
5 hsa_circ_0108942 #, + 10 hsa_circ_0086241 #, +
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we merely use the top 4% most similar neighbors of each circRNA 
and disease to obtain more reliable recommendation score.

For the future work, more biological data will be added to 
calculate the disease and the circRNA similarity for reducing the 
useless noisy information. Adding multiple data can enrich the 
information of the different biological network, such as circRNA-
lncRNA, circRNA-miRNA, and so on.
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Many studies have suggested that lncRNAs are involved in distinct and diverse biological 
processes. The mutation of lncRNAs plays a major role in a wide range of diseases. 
A comprehensive information of lncRNA-disease associations would improve our 
understanding of the underlying molecular mechanism that can explain the development 
of disease. However, the discovery of the relationship between lncRNA and disease 
in biological experiment is costly and time-consuming. Although many computational 
algorithms have been proposed in the last decade, there still exists much room to improve 
because of diverse computational limitations. In this paper, we proposed a deep-learning 
framework, NNLDA, to predict potential lncRNA-disease associations. We compared it 
with other two widely-used algorithms on a network with 205,959 interactions between 
19,166 lncRNAs and 529 diseases. Results show that NNLDA outperforms other existing 
algorithm in the prediction of lncRNA-disease association. Additionally, NNLDA can 
be easily applied to large-scale datasets using the technique of mini-batch stochastic 
gradient descent. To our best knowledge, NNLDA is the first algorithm that uses deep 
neural networks to predict lncRNA-disease association. The source code of NNLDA can 
be freely accessed at https://github.com/gao793583308/NNLDA.

Keywords: lncRNA, neural network, large dataset, non-linear, computational model

INTRODUCTION

There are about 30,000–40,000 protein-coding genes in the human genome, which are only about 
twice as many as in worm or fly (Lander et al., 2001). But the majority of the human genome 
transcripts are non-coding RNAs, in particular, long non-coding RNAs (lncRNAs) (Geng et al., 
2013). Protein-coding genes account for only 1.5% of the human genome. However, researchers 
observed a total of 62.1% and 74.7% of the human genome to be covered by either processed 
or primary transcripts respectively (Djebali et al., 2012). This suggests that lncRNA also plays 
an important role in biological processes. Recent studies revealed that numerous sets of non-
coding RNA involved in distinct and diverse biological processes, such as cell proliferation, RNA 
binding complexes, immune surveillance, ESC pluripotency, neuronal processes, morphogenesis, 
gametogenesis, and muscle development (Mitchell et al., 2009). Furthermore, some important 
lncRNA biomarkers were found in a wide range of human diseases. For example, the expression 
of HOTAIR would induce androgen-independent (AR) activation, which plays a central role in 
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establishing an oncogenic cascade that drives prostate cancer 
progression. It can also drive AR-mediated transcriptional 
programs in the absence of androgen (Zhang et al., 2015). So 
finding the relationship between lncRNA and disease can not 
only help us understand the mechanism of disease, but also 
accelerate the discovery of biomarker. However, discovering 
the potential relationship between lncRNA and disease by 
experimental ways are costly and time-consuming. Thus, 
many computational models have been proposed to predict 
potential connection patterns by utilizing existing data such as 
LncRNADisease (Geng et al., 2013), LncRNAdb (Cheng et al., 
2015), and NONE-CODE (Cheng et al., 2015).

The existing computational models can be divided into 
two categories. The first class of methods make predictions 
based on the similarity of artificial definitions. It assumed that 
similar diseases or lncRNA have similar connection patterns. 
Take a simple example, if we know that disease(i) is related 
to lncRNA(i) and disease(i) and disease(j) are very similar. It’s 
obvious that we can infer that disease(j) and lncRNA(i) are also 
related. This algorithm needs to collect a lot of additional data 
to accurately define similarity. If the definition of similarity 
is accurate, the algorithm can achieve high performance. For 
example, LncRDNetFlow utilizes a flow propagation algorithm 
to integrate multiple networks based on a variety of biological 
information including lncRNA similarity, protein-protein 
interactions, disease similarity, and the associations between 
them to infer lncRNA-disease associations (Zhang et al., 
2017a). IRWRLDA construct lncRNA expression similarity 
and lncRNA functional similarity to make prediction (Chen 
et al., 2016). RWRlncD infer potential human lncRNAdisease 
associations by implementing the random walk with restart 
method on a lncRNA functional similarity network (Sun et al., 
2014). BiWalkLDA integrating interaction profiles and gene 
ontology information to construct similarity network. Such an 
algorithm also has KATZLGO (Zhang et al., 2017b) and IDHI-
MIRW (Fan et al., 2019). It can be seen that this algorithm first 
constructs the similarity network based on the relevant data and 
then making prediction according to the constructed similarity. 
The second class of methods make predictions based on matrix 
factorization (MF). Their core idea is to learn a similarity 
rather than artificial definition similarity. This actually turns 
the prediction process into a classification question. For each 
lncRNA and disease, the aim of MF is to learn a latent factor 
to represent them and then make prediction based on learned 
latent factors. In this way, no additional knowledge is needed 
to define similarity. This method is widely used in prediction 
lncRNA-disease association. For example, the algorithm of 
MFLDA decomposes data matrices of heterogeneous data 
sources into low-rank matrices via matrix tri-factorization to 
explore and exploit their intrinsic and shared structure (Fu 
et al., 2017). SIMCLDA models the lncRNA-disease association 
prediction problem as a recommendation task and solves it 
with inductive matrix completion (IMC) (Lu et al., 2018).

The known lncRNA-disease association data used by current 
algorithms is derived from LncRNADisease (Geng et al., 2013). 
This database was proposed in 2013 and does not contain much 
lncRNA and disease (almost 300 lncRNA and 700 diseases). 

Because the data is relatively small, even though the existing 
prediction algorithms can achieve high accuracy, many results 
are repetitive and therefore cannot provide more valuable 
results. Fortunately, recently, a larger dataset LncRNADisease 
2.0 can be used (Bao et al., 2019). LncRNADisease 2.0 curated 
19,166 lncRNAs, 823 circRNAs, and 529 diseases from 3878 
literatures. Although the form of data remains unchanged, only 
the increase in the amount of data makes previous algorithms 
not applicable to LncRNADisease 2.0. For methods that need to 
artificially define similarity, it is difficult to collect the additional 
information needed comprehensively in the face of such large 
data. So, it is difficult to define an appropriate similarity for 
prediction. For the method based on MF, the time cost of the 
algorithm is unacceptable with the increase of data. Besides, MF 
is actually a linear model of latent factors, so it cannot describe 
more complex relational patterns well (He et al., 2017). As we 
all know, deep learning can be applied to large-scale data and 
learn complex non-linear relationships by means of mini-batch 
stochastic gradient descentand and nonlinear activation function. 
In recent years, deep neural networks have yielded immense 
success on object detection (Ren et al., 2017), recommendation 
System (Zhou et al., 2017), single cell denoising (Eraslan and 
Simon, 2019; Peng et al., 2019), and many other fields. However, 
no deep learning-based algorithm has been proposed to predict 
potential lncRNA-disease association. In this article, we will 
introduce our proposed framework NNLDA which uses neural 
networks to predict lncRNA-disease association. To our best 
knowledge, NNLDA is the first algorithm that uses deep neural 
networks to predict lncRNA-disease association. Experiments 
show that NNLDA can be well applied to large data and to learn 
more complex non-linear relationships.

METHOD

Our prediction framework NNLDA is improved based on the 
MF method. In this section, I will first introduce the method of 
MF and point out its shortcomings. Then, we will explain how 
we solve these shortcomings and introduce the procedure of 
NNLDA in detail.

Matrix Factorization (MF)
MF is a frequently used method in the problem of predicting 
lncRNA-disease association (Fu et al., 2017; Lu et al., 2018). 
Its core idea is to learn a corresponding latent factor for each 
lncRNA and disease. The dot product of the latent factor was 
used to represent the possible score of corresponding lncRNA 
and disease. Take the prediction of lncRNA-disease association, 
for example. First, we should construct an adjacency matrix 
Anl×nd, where nl is the number of lncRNA and nd is the number 
of diseases. Aij = 1 represents that the ith lncRNA is associated 
with dj, otherwise, Aij = 0. Then, we assign a k-dimensional latent 
factor L(i) for each lncRNA(i) and a k-dimensional latent factor 
D(i) for each disease(i). These latent factors are usually randomly 
initialized at the beginning and then be adjusted by some 
optimization algorithm such as stochastic gradient descent. Now, 
we can use the dot product of the latent factor to re-estimate A. 
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A new L and D can be learned by minimizing loss. This 
loss is actually equivalent to Loss A LD F= −|| ||2 , which was 
frequently used in other literatures because the dot product 
of vectors can be seen as the angle of vectors in space (a⋅b = 
|a||b|cos(a,b)). So, matrix factorization actually maps each 
lncRNA and disease into k-dimensional space and then defines 
the relationship between lncRNA and disease by using the 
length and angle of the latent factor. However, there are several 
shortcomings in doing so: (1) There are limitations in utilizing 
the angle between latent factor to define the relationship 
between lncRNA and disease. Take two-dimensional space as 
an example, suppose we now learn three latent factors: a1(1,0), 
a2(0,1), a3(1,1), if we also have latent factor a4 and we want the 
angle between a4 and a1, a2 to be as small as possible, but the 
angle between a2 and a3 to be as large as possible. Obviously, 
no matter where a4 is, it can’t be satisfied. Of course, we can 
describe this relationship by adding spatial dimensions, but the 
increase of k actually increases the risk of over-fitting. It can 
be concluded that angle can’t actually describe some complex 
relationship patterns perfectly. (2) The time complexity of 
matrix decomposition is too high. When calculating the loss, 
it needs to calculate all possible connections between lncRNA 
and disease. As the amount of data increases, the time required 
is unacceptable. Besides directly optimizing, global loss is easy 
to fall into local minima.

Making Matrix Factorization Applicable 
to Large Data
In order to make the matrix factorization method suitable for 
large-scale data, we made some improvements to the original 
method and implemented the method with tensorflow. We named 

this method NNMF, which is different from the traditional MF 
method in two aspects:

(1) Unlike previous MF, full data is used to minimize loss. We 
adopt mini-batch stochastic gradient descent to train model. 
This means that we use only one batch data per round to 
minimize loss, which makes our algorithm suitable for large-
scale data.

(2) The traditional matrix factorization uses mean square 
error or absolute value error to measure loss. Its goal is to 
min || ||A LD F− 2 . In NNMF, we use cross-entropy as our 
loss function, which is proved to be more applicable to 
classification problems and easier to optimize.

With above two improvements, NNMF can be adapted to 
large-scale data. The structure of the network and an example 
of computational processes are shown in Figure 1. NNMF takes 
lncRNA(i) and disease(j) as its input and outputs the probability 
of the relationship between lncRNA(i) and disease(j). First, 
the network generates a dense latent factor for corresponding 
lncRNA(i) and disease(j). This operation is done by embedding 
lookup function in tensorflow. Then, the corresponding position 
elements of the two vectors are multiplied and summed. Sigmoid 
activation functions are added to limit output to between 0 and 
1. With the predicted results, we can calculate the cross-entropy 
loss to adjust the corresponding latent factor. To avoid storing 
the whole data set into memory each time we take a batch data to 
train, the batch size is set to 1,024. This process is repeated until 
the loss is no longer reduced. NNMF changes the way of training 
and the loss function compared with the traditional matrix 
decomposition algorithm. With these small changes, NNMF can 
be adapted to large-scale data easily.

Learning More Complex Relationships 
by Using Full Connectivity Layer
Matrix factorization actually maps lncRNA and disease into 
k-dimensional space, and then measures their relationship by 
using dot product of latent factors. This approach undoubtedly 
has its limitations. In order to learn more complex non-linear 
features, a natural idea is to use the full connection layer of the 

FIGURE 1 | (A) The structure of NNMF. Each lncRNA and disease is projected into a k-dimensional space. It means each lncRNA and disease would be 
represented by a corresponding k*1 eigenvector. The relationship between lncRNA and disease is measured by the dot product of their corresponding eigenvector. 
The activation function is sigmoid. (B) A toy example of the NNMF, where k is set to 3. 
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neural network to improve it. Similar to the NNMF process, 
we initialize a latent factor for each lncRNA and disease at the 
beginning. Then, we concatenated the latent factors and add 
full connection layers to learn more complex relationships. 
RelU activation function is used on each full connection layer 
to increase the non-linear description ability of the network. 
Sigmoid activation functions are added to limit output to between 
0 and 1. Considering that using full connection layer alone may 
increase the risk of over-fitting. We adopt the following two 
strategies to prevent over-fitting:

(1) Add L2 regularization to latent factors and full connection 
layer to limit models from learning too complex features.

(2) The deep part is trained together with NNMF. In this way, we 
cannot only learn more diverse connection relationships, but 
also improve the generalization ability of the model.

We name this new model NNLDA. It means predicting 
lncRNA-disease association by means of neural networks. 
The overall structure of NNLDA is shown in Figure 2. First, 
for each lncRNA and disease, we will find their corresponding 
latent factors. MF part multiplies the corresponding elements 
of latent factors and deep part use several full-connection layers 
to learn the complex relationship between lncRNA and disease. 
Their results are concatenated together and connected to a 
full connection layer for final prediction. Sigmoid activation 
function is added to limit output to between 0 and 1. NNLDA 
learns more complex relational patterns by combining dot 
product of latent factors and full connectivity layer. Because 
NNLDA uses mini-batch stochastic gradient descent to 
minimize loss, it can also be well applied to large-scale data. We 
believe that NNLDA can perfectly solve the shortcomings of 
traditional MF methods.

Implementation
NNLDA is implemented in Python 3.5 and uses TensorFlow1.12.0. 
Length of latent factor is set to 32. Three full-connection layers 
with lengths of 32, 16 and 8 are added in deep part. L2 regulation 
is added in all full-connection layers and latent factors to prevent 
over-fitting and regulation rate is set to 0.01. We use adam for 
optimization with learning rate 0.01. Epoch is set to 100 and 
batch size is set to 1024.

EXPERIMENT

Dataset
Unlike previous algorithms which usually perform on small data 
sets such as LncRNADisease database, we use LncRNADisease 
2.0 to measure the results of the algorithm. LncRNADisease 
2.0 shows that there exists 205,959 interactions between 19,166 
lncRNAs and 529 diseases. We believe that more valuable results 
can be found by using larger data. Such large-scale data also 
challenges previous algorithms. The experimental data can be 
downloaded from http://www.rnanut.net/lncrnadisease/. We 
remove all repeating records with the same lncRNA and disease, 
and all these non-human associations. Finally, we retained 187,55 
lncRNA and 463 disease with 177,899 associations.

10-Fold Cross Validation
To test the algorithm performance, we employed a widely-used 
strategy, 10-fold cross validation. Known lncRNA and disease 
associations are divided into 10 copies. In each round, nine of 
them are used to train algorithms and the remaining one is used 
as a test set. Notice that we need negative samples to train the 
algorithm, but in fact we don’t know which lncRNAs are not 
associated with diseases. So, for each known LncRNA-disease, 

FIGURE 2 | The structure of NNLDA. MF part is same as NNMF. Deep part use several full connection layers to learn complex association relationships. Their 
results are concatenated together to make final predictions.
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we will randomly sample four lncRNA that do not interact by 
this disease as negative samples. When predicting test sets, we 
no longer use AUC as an evaluation criterion. This is because 
AUC needs to compute all possible associations. This means 
that if there are n lncRNA and m disease, we need to calculate 
n*m possible cases and then generate a rank list. It’s obvious 
that it’s unrealistic when the data set is large. So we adopt a 
new evaluation strategy. For each test sample, we will sample 
99 random lncRNA that not interact by this disease. The model 
scores 99 negative samples and one positive sample to generate 
the corresponding rank list. Then, we use Hit Ratio (HR) to 
assessment results. The HR intuitively measures whether the 
test item is present on the top-k rank list and we can interpret 
HR (K) as the probability of positive samples appearing in top-k 
rank list. If the test sample is in the first k of rank list, its value 
is plus one. The hit rate value can be obtained by dividing the 
final hit value by the number of test samples. The higher the hit 
rate, the higher the likelihood that true sample will appear in the 
top-k rank list.

The Effects of Parameters
Length of Latent Factors
In the first step of NNMF and NNLDA, both lncRNA and disease 
need to be mapped into a k-dimensional vector. This vector is 
called latent factors. Here, k is an artificially defined parameter 
and represents the dimension of feature space. If the value of 
k is very small, the model cannot learn complex relationships. 
If the value of k is big, the risk of over-fitting of the model 
increases. In order to test possible effects on the performance of 
the algorithm under different value of k, we changed the value of 
k in 8, 16, 32, 64, and 128 each time, and then calculated the HR 
10. Because KNN does not use latent factors, we only compared 
NNMF and NNLDA here. The experimental results show in 
Figure 3. The result shows that the length of latent factors don’t 
actually have much impact on the hit ration. This is because 
we added L2 regularization to latent factors. Even if the length 
of latent factors increases, it will not be over-fitting data. If no 

regularization is added, the loss of the model decreases rapidly 
and over-fitting will occur soon.

Number of Layers
We used several full-connection layers in deep part to learn more 
complex relationships. More layers can theoretically learn more 
complex models, which also increases the risk of over-fitting. 
In order to test the possible effect of number of layers on the 
performance of the algorithm. We changed the number of layers 
in 1-layer (32), two-layer (32 and 16), three-layer (32, 16, and 
8) and four-layer (32, 16, 8, and 4), and calculate the hit ration 
value. The experimental results are shown in Figure 4. It can be 
seen that increasing the number of layers of the network will not 
greatly improve the effectiveness of the algorithm. Algorithm 
performance is poor when the number of layers is 4. This shows 
that even if we use L2 regularization to prevent over-fitting, the 
number of layers of the network should not be too big.

Comparison With Other Algorithms
Because we use LncRNADisease 2.0 to compare the performance 
of our algorithm. Traditional algorithms cannot be applied to 
such large dataset. So, although many computational models 
have been proposed, they cannot be used for comparison. We 
have made some changes to the traditional algorithm. NNMF 
can be seen as a matrix factorization algorithm suitable for 
large-scale data. For algorithms that need to define similarity 
artificially, we implement an algorithm manually based on the 
idea of KNN. The specific process is as follows: First, we calculate 
the gauss similarity between diseases which is widely used in 
other papers. Then for each disease, we will find 40 diseases that 
are most similar to it and use their average interaction profile to 
make predictions.

We compare NNLDA with other two computational methods 
(NNMF and KNN) of lncRNA-disease association prediction 
in terms of HR. All algorithms use the same data to make 
predictions. The experimental results are shown in Figure 5. It 
can be seen that the performance of KNN is very poor. This is 

FIGURE 3 | HR @ k Three Algorithms under Different value of k. FIGURE 4 | Effects of lengths of latent factors.

25

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Predicting Potential IncRNA-Disease AssociationsHu et al.

6 October 2019 | Volume 10 | Article 937Frontiers in Genetics | www.frontiersin.org

because similarity-based algorithms need to artificially define 
the similarity between diseases and then make predictions based 
on similarity. As the amount of data increases, additional data 
becomes more and more difficult to obtain. Because of this, 
it is difficult to define an accurate and reasonable similarity. 
So, the performance of this algorithm is limited by similarity. 
Comparing NNLDA and NNMF, we can find that NNLDA 
outperforms NNMF in all k values. In fact, NNLDA can be seen 
as model fusion of NNMF and full connectivity layer. This shows 
that more complex connection relationships can be learned by 
using the full-connection layer.

CONCLUSION

Many recent studies suggest that lncRNAs are strongly associated 
with various complex human diseases. Therefore, the discovery of 
the potential association between lncRNA and diseases helps to 
understand the biological processes and underlying mechanisms 
of diseases. Many prediction algorithms have been proposed to 
predict lncRNA-disease association. Although the algorithm 
can achieve high accuracy, traditional prediction algorithms 
can no longer be applied to more and more large-scale data. 

In this paper, we propose NNLDA to predict lncRNA-disease 
association. NNLDA uses mini-batch stochastic gradient descent 
and cross-entropy loss to enable the algorithm to be applied 
to large-data sets and use full-connection layer to make up for 
the deficiency of MF expression ability. Our contributions can 
be summarized as follows: 1) NNLDA is the first algorithm can 
predict lncRNA-disease association on large datasets. 2) NNLDA 
is the first algorithm to use neural network to predict potential 
lncRNA-disease association. Compared with traditional MF 
algorithm, NNMF can better describe their relationship by using 
full-connection layer. In the experimental part, we compare 
NNLDA, KNN, and NNMF. The experimental results show that 
NNLDA performs better in terms of hit rate on LncRNADisease 
2.0 database. The experiment of parameter influence shows that 
NNLDA is robust to different parameter setting.
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A promoter is a short region of DNA (100–1,000 bp) where transcription of a gene

by RNA polymerase begins. It is typically located directly upstream or at the 5′ end

of the transcription initiation site. DNA promoter has been proven to be the primary

cause of many human diseases, especially diabetes, cancer, or Huntington’s disease.

Therefore, classifying promoters has become an interesting problem and it has attracted

the attention of a lot of researchers in the bioinformatics field. There were a variety of

studies conducted to resolve this problem, however, their performance results still require

further improvement. In this study, we will present an innovative approach by interpreting

DNA sequences as a combination of continuous FastText N-grams, which are then fed

into a deep neural network in order to classify them. Our approach is able to attain a

cross-validation accuracy of 85.41 and 73.1% in the two layers, respectively. Our results

outperformed the state-of-the-art methods on the same dataset, especially in the second

layer (strength classification). Throughout this study, promoter regions could be identified

with high accuracy and it provides analysis for further biological research as well as

precision medicine. In addition, this study opens new paths for the natural language

processing application in omics data in general and DNA sequences in particular.

Keywords: DNA promoter, transcription factor, word embedding, convolutional neural network, natural language

processing, precision medicine

INTRODUCTION

A promoter is a region of DNA where RNA polymerase begins to transcribe a gene. Normally,
promoter sequences are typically located directly upstream or at the 5′ end of the transcription
initiation site (Lin et al., 2018). Both promoters and transcription initiation sites are bound by RNA
polymerase and the necessary transcription factors. Promoter sequences describe the direction of
transcription and point out which DNA strand will be transcribed (known as sense strand). The
transcription process is shown in Figure 1, which contains two steps: turning on and turning off
genes. In these two stages, promoters receive information from RNA polymerase to decide the
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FIGURE 1 | Process of promoters in transcription. (A) The gene is essentially

turned off. The repressor is not inhibited by lactose and binds to operator, then

promoter is bound to make lactase; (B) the gene is turned on. The repressor is

inhibited by lactose, then the promoter is bound by the RNA polymerase and

express the genes to synthesize lactase. Finally, the lactase will digest all of the

lactose, until nothing binds to the repressor. The repressor will then bind to the

operator, stopping the manufacture of lactase.

manufacture of lactase. Promoters can be about 100–1,000
base pairs long. There are three elements of promoters in
eukaryotic cells, such as core promoter, proximal promoter,
and distal promoter. Each of them plays a different role in
DNA transcription and RNA polymerase. Many recent studies
suggested that DNA promoters may be the primary cause of
many human diseases, especially diabetes (Döhr et al., 2005;
Ionescu-Tîrgovişte et al., 2015) or Huntington’s disease (Coles
et al., 1998).

Owing to the huge importance of promoters in genetics and
human diseases, the detection of them is an essential problem
in genome research. A lot of efforts had been made to address
this issue, from researchers with wet-lab, experimental, and
computational techniques. One of themost important techniques
is to detect the promoters based on TATA box, which is a motif
that contains 24% of promoter genes in eukaryotes. Examples
of this approach include: Promoter Scan (Prestridge, 1995)
built a scoring profile by combining a weighted matrix for
scoring a TATA box; Promoter2.0 (Knudsen, 1999) combined
genetic algorithms and elements similar to neural networks to
recognize promoter regions; Reese (2001) annotated promoters
in the Drosophila melanogaster genome using a time-delay
neural network; and (Down and Hubbard, 2002) combined
TATA box with flanking regions of C-G enrichment. Later, some
approaches focused on addressing this problem with spatial
information of the base pairs in the sequences. There are some
examples in this case: PromoterInspector identified promoters,
based on the genetic context of promoters rather than their
exact location; MCPromoter1.1 (Ohler et al., 1999) identified
promoters based on three interpolated Markov chains (IMCs)
of a different order. Moreover, the location of GpG islands
had been used to predict the promoters region, as shown

in Ioshikhes and Zhang (2000), Davuluri et al. (2001), and
Ponger (2002).

Over the past decade, with the development of NGS
technology, a large number of sequences was transcribed, which
motivates researchers to build their predictors on sequence
information. Similarly for promoters, it is necessary and urgent
to develop highly efficient prediction techniques on it. Some
notable research have been reported in the identification of
promoters using sequence information. For instance (Li and Lin,
2006) recognized and predicted σ70 promoters in Escherichia
coli K-12 by using position-correlation scoring matrix (PCSM)
algorithm. This problem has been improved upon using variable-
window Z-curve composition (Song, 2011) and six local DNA
structural properties (Lin et al., 2018). Yang et al. (2017) exploited
sex cell types and word embedding to identify enhancer–
promoter interaction. Two types of promoters (σ54 and σ28)
were identified by integrating DNA duplex stability into neural
networks (de Avila e Silva et al., 2014). Later, (Lin et al., 2014)
identified σ54 promoters using PseKNC, which is an advanced
feature in bioinformatics fields. PseKNC had been used in
the latter applications to classify promoter’s types (Liu et al.,
2017) and promoter’s strength (Xiao et al., 2018). The promoter
strength of Escherichia coli σ70 has been also predicted in
Bharanikumar et al. (2018) with use of respective position weight
matrices (PWM). Deep convolutional neural networks have been
used to identify promoters using sequence information, such as
recognition of prokaryotic and eukaryotic promoters (Umarov
and Solovyev, 2017).

Identifying promoters, especially their strength, is an
important problem in this aspect and latest research (Xiao et al.,
2018) has achieved an accuracy of 83.13 and 71.20% for two
layers, respectively. However, the performance results are not
satisfactory and requires a lot of efforts from bioinformatics
researchers to enhance the accuracy. A novel approach, proposed
in this study, aims to address this problem. Our idea is based
upon the natural language processing (NLP) field which classifies
the text/sentence into its appropriate scenario. Therefore, we
would like to apply it to bioinformatics to interpret the hidden
information of DNA sequences (represented by promoters).
Over the past decade, some researchers have successfully applied
NLP techniques into biological sequences. One of the pioneering
studies is from Asgari and Mofrad (2015) and it had been applied
successfully in many later bioinformatics applications (Habibi
et al., 2017; Hamid and Friedberg, 2018; Öztürk et al., 2018).
However, most studies used the Word2Vec model or FastText
model with a single level of N-gram. Here, a novel approach is
presented, in which we used a combination of FastText N-grams
to represent the DNA sequences. With this idea, we are able to
take into account the sub-word information of DNA sequences
as well as many N-gram levels in order to aid the increase in
the predictive performance. Another point is the use of deep
learning to take advantage of the numerous promoter sequences
in this problem.

We listed some key contributions of this study which are
as follows: (1) a computational model for classifying promoters
which achieved better performance than the previous methods;
(2) a novel method for generating hidden information of
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DNA sequences by incorporating a combination of FastText N-
grams and deep learning; (3) a study that provides significant
information for researchers and biologists to better understand
the promoter’s functions; and (4) a basis for further study that
would apply the FastText model and deep learning architecture
in solving the bioinformatics problem. Here we deal with these
contributions clearly in the following sections.

METHODS

Under the operation of a specifically designed pipeline, an overall
flowchart of our approach is presented in Figure 2. Each of the
experimental steps of this proposed pipeline will be sequentially
addressed in the following subsections.

Benchmark Dataset
Collecting a high-quality dataset is one of the most important
steps to address a bioinformatics problem. In this study,
we re-used the benchmark dataset from Xiao et al. (2018)
to objectively assess the difference in performance between
our model and other existing ones. In this dataset, they
collected all experimentally—confirmed promoter sequences

from RegulonDB (Gama-Castro et al., 2015), which is a huge
database of the regulatory network of gene expression. These
sequences were categorized into two groups: strong and weak
promoters based on their levels in transcription activation and
expression. They also extracted non-promoter sequences by
considering intron, exon, and intergenic sequences excluding the
positive sequences. After that, the CD-HIT [26] was also used to
exclude the pairwise sequences whose similarities were calculated
to be more than 85%.

The benchmark dataset encompasses 3,382 promoter samples
and 3,382 non-promoter samples. In 3,382 promoter samples,
there are 1,591 strong promoter samples and 1,792 weak
promoter samples for construction of second layer classification.
It can be freely downloaded at http://www.jci-bioinfo.cn/
iPSW(2L)-PseKNC/images/Supp.pdf. The whole dataset was
randomly divided into five subsets to perform a 5-fold cross-
validation. The training process was performed using a fixed ratio
of the training set over the validation set of 4:1 with alternation.

DNA Representation With Language Model
A DNA sequence consists of four nucleotides: adenosine (A),
cytidine (C), guanosine (G), and thymine (T). These nucleotides
will combine together to form a definite sequence in the DNA

FIGURE 2 | Flowchart of this study. First, we used FastText to train model and extract features from benchmark dataset (Xiao et al., 2018), then combined 10-gram

levels to a combination sets of vectors (1,000 dimensions). Deep neural network was then constructed to learn these vectors and classify the DNA sequences.
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sequence. Feature extraction is an important step in most of the
bioinformatics problems, whereby the main features will help
in discriminating DNA sequences. One of the most common
methods is the use of k-mer. K-mers are described as all the
possible subsequences (of length k) from a read accessed through
DNA sequencing. The number of k-mers possible given a string
of length L is L-k+1, whilst the number of possible k-mers
given n possibilities (four in the case of DNA e.g., ATGC) is
nk. K-mer has been used in a lot of bioinformatics problems
and has achieved promising results. Next, Chou highlighted
PseDNC which has extracted DNA sequences via different ways.
PseDNC has helped to rectify numerous problems relating to
bioinformatics, as compared to using k-mer. Another approach
is the use of language model to represent the information of DNA
sequences. In this approach, DNA sequence will be treated as
a language sentence and then fed into supervised learning for
classification. We can easily list the methods using this approach,
from Word2Vector to FastText. In these approaches, FastText
has been proven to achieve better performance as compared to
Word2Vector or Glove.

FastText Implementation
In order to generate continuous N-grams, we made use of
FastText (Bojanowski et al., 2017), which is a library from
Facebook for representation and classification of text. In
FastText, we can train different language models such as skip-
gram or CBOW and apply a variety of parameters such as
sampling or loss functions. There are a lot of improvements from
Word2Vector to FastText as described in Bojanowski et al. (2017)
and Le et al. (2019a). In this study, each DNA sequence was
treated as a sentence with a lot of words. Moreover, each word
contains a bag of character n-gram. As mentioned in FastText’s
document, theymodified the algorithm ofWord2Vector whereby
special symbols “and” are added at the boundary of words,
which helps to differentiate prefixes and suffixes from other
character sequences. Moreover, the word itself has been also
included in the n-gram set to learn a representation for each
word (together with character n-grams). To explain the idea,
we used our DNA word “ATGAC” as an example. If we would
like to generate the representation of this word with 3-gram,
they will be consequently: <AT, ATG, TGA, GAC, AC> and
the special sequence <ATGAC>. Here, it is noteworthy that
the representation <TGA>, corresponding to the word “TGA,”
is different from the tri-gram “TGA,” derived from the word
“ATGAC.” The reason is because of the potential of extracting
sub-word information in word “TGA” of FastText and it could
help generate more information for each word. The word
generated by FastText could be considered as a continuous bag
of words. In this study, we extracted all the n-grams from 1 to 10
to consider the optimal levels of them.

What makes FastText different fromWord2Vector is the sub-
word information, and it is proposed via a scoring function s
as follows:

s (w, c) =
∑

g∈Gw

zTg vc (1)

where G is the size of n-grams, Gw ranges from 1 to G, w is a given
word, zg is a vector representation to each n-gram g, vc is context
vector. This simple modification allows objective representation
of words, thus helping the model learn reliable representation for
rare words.

Based on the recent successful applications of FastText model
in representing biological sequence (Le, 2019; Le et al., 2019a), we
introduced a more in-depth benchmark method using FastText
to improve this representation. Here we take into account
the combination of continuous N-gram levels, which was not
considered by the previous studies. It means that instead of using
only one level of N-gram and sub-word information, we used a
lot of N-gram combinations and considered which was the best
combination for this problem. A huge advantage of this approach
is that we can have many features for learning. In addition, we
can easily implement feature selection techniques and improve
the performance results in the model.

1D Convolutional Neural Network
In general, CNN is a class of deep neural networks that has been
demonstrated to be exceptionally successful in territories, such
as picture acknowledgment and order. CNN has been fruitful in
computer vision related issues such as face recognition, object
detection, or self-driving cars. CNN appears ready to reproduce
and upgrade these key strides in a bound together structure and
learn various leveled portrayals specifically from crude images.
If we take a convolutional neural organization that has been
prepared to perceive protests inside pictures, then that system
will have built up some inward autonomous portrayals of the
substance and style contained inside a given picture. Since the
input of this problem was a vector, therefore, we used 1D
CNN. Similar to 2D CNN approaches which has been used in
bioinformatics (Le and Nguyen, 2019; Le et al., 2019b; Nguyen
et al., 2019), it consisted of the following layers:

(1) Input layer: The input of our model is a 1D vector, which is a
vector of size 1× 100 (created by FastText model).

(2) Convolutional layer: A 1D convolutional layer (e.g.,
temporal convolution) is used to construct a convolution
kernel and then derive features encoded in the 1D input
vector. The convolutional layer moves in stride over the
input, transforming the values into representative values
via a sliding window. This process helps conserve the
dimensional relationship between numeric values in the
vectors, by gaining beneficial features using small parts of
input data. Since our input size was not big, a kernel size of 3
was applied to figure out more information.

(3) Rectified Linear Unit (ReLU): an additional non-linear
operation is presented after every convolution operation. It
aims to perform non-linear function in our CNN and help
our model understand data better. The output function of
ReLU is as follows:

f (x) = max (0, x) (2)

where x is the number of inputs in a neural network.
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(4) Pooling layer: It is normally added inside the convolutional
layers to reduce the calculation of the next layers. Max
pooling was selected in this step with stride of 2.

(5) Dropout layer: A technique which aims to prevent overfitting
and also help to increase themodel’s performance (Srivastava
et al., 2014).

(6) Flatten layer: a layer helps to transform the input matrix into
a vector.

(7) Fully connected layer: is normally inserted by the last stage
of the deep networks. The layer is fully-connected if each
node is connected with all of the previous nodes in the
network. Our problem is to identify between promoter and
non-promoter (or classify strong and weak promoter), thus
it was a binary classification. Therefore, the final number of
nodes in our output is 2.

(8) Softmax is a logistic function defined by the formula:

σ (z)i =
ezi

∑K
k=1 e

zk
(3)

where z is the input vector with K-dimensional vector, σ(z)i is real
values in the range (0, 1) and ith class is the predicted probability
from sample vector x. It was compulsory to insert Softmax, in
order to determine the probability of each possible output.

Assessment of Predictive Ability
To evaluate the performance of the classifiers that were
constructed by the aforementioned deep learning architecture,
the 5-fold cross-validation technique was implemented. The
average metrics among the five testing sets were determined
in order to compare the performance when constructing the
classifier. We follow Chou’s evaluation criteria which is widely
used in many bioinformatics studies (Chou, 2001; Xiao et al.,
2018; Le et al., 2019a). The criteria includes sensitivity (Sens),
specificity (Spec), accuracy (Acc), and Matthews Correlation
Coefficient (MCC) which are defined as:

Sensitivity = 1−
N+
−

N+ , 0 ≤ Sen ≤ 1 (4)

Specificity = 1−
N−
+

N− , 0 ≤ Spec ≤ 1 (5)

Accuracy = 1−
N+
− + N−

+

N+ + N− , 0 ≤ Acc ≤ 1 (6)

MCC =
1−

(

N+
−

N+ + N−
+

N−

)

√

(

1+ N−
+−N+

−
N+

) (

1+ N+
−−N−

+
N−

)

, −1 ≤ MCC ≤ 1 (7)

The relations between these symbols and the symbols in
Equations (4, 5, 6, and 7) are given by:















N−
+ = FP

N+
− = FN

N+ = TP + N+
−

N− = TN + N−
+

(8)

True positive (TP) and true negative (TN) are the respective
numbers of correctly predicted promoter and non-
promoter, whereas false positive (FP) and false negative
(FN) are the respective numbers of misclassified promoter
and non-promoter.

Likewise, we also used Receiver Operating Characteristics
(ROC) curve and Area Under Curve (AUC) (Bradley,
1997) as the additional metrics for performance
evaluation. The AUC is a probability value ranging
from 0 to 1 in which the greater AUC shows the better
predictive performance.

RESULTS

Optimal Experimental Setup
In this analysis, we attempted to observe the optimal
hyperparameters that were used in this study. Because we
integrated FastText and deep learning model, we chose the best
parameters for both methods. FastText has a lot of different
parameters for training purpose. Many prior research on it
determined that changing these parameters will help to change
the model’s accuracy drastically. Therefore, we would like to
perform a one-by-one strategy to tune up the optimal parameters
in FastText. There are a lot of parameters that may affect the
performance results and we decided to adapt these parameters
such as wordNgrams (max length of word n-gram), lr (learning
rate), dim (size of word vectors), ws (size of context window),
epoch (number of iterations), and loss (loss function). We used a
basic setting on FastText classifier to perform supervised learning
for text classification. The dataset used in this section helped
distinguish between promoters and non-promoters. In the first
experiment, we would like to examine the effect of different
levels of N-grams (from 1 to 10) on the performance results. The
important measurement metric used in this evaluation is ROC
AUC value. As shown in Figure 3, our classifier could classify
promoters with high performance (AUC ∼ 0.9), especially in
two levels: 4-gram and 5-gram. However, the differences were
not significant and it indicates that we can select any level of
N-gram to create a good model for promoter classification.
Table 1 shows the hyperparameters used for tuning the model.
After the tuning process, we also presented the best set of
hyperparameters found: learning rate of 0.1, vector dimension
of 100, context window size of 5, epoch of 100, and softmax
loss function.

The next tuning is from deep learning architecture,
in which we performed a grid search CV on a set of
potential hyperparameters. All of the parameters selected
for tuning in CNN include the number of layers, epochs,
batch sizes, dropout values, weight constant as well as
the optimizer and activation function. After this step,
we identified a set of optimal hyperparameters in CNN
as follows: 64 filter layers, batch size of 100, epoch of
100, dropout of 0.3, weight constraint of 4, adadelta
optimizer, and linear activation. We then used all of the
optimal parameters in the next experiments as well as the
later comparisons.
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FIGURE 3 | Performance results on identifying promoters using different levels

of N-gram. Our classifier could classify promoters with high performance (AUC

∼ 0.9), especially at 4-gram and 5-gram levels.

TABLE 1 | Hyperparameters chosen for tuning FastText model.

Parameters Range Stepsize Optimal

lr 0.05–0.25 0.05 0.1

Dim 50–500 25 100

Ws 1–10 1 5

Epoch 25–500 25 100

Loss [ns, hs, softmax] - softmax

Lr, learning rate; dim, dimension; ws, size of context window; epoch, number of iterations;

loss, loss function.

Effects of Different Levels of N-Gram and
Combination of Continuous N-Grams in
Classifying Promoters
According to the previous section, changing the number of N-
grams did not make significant effect on promoter classification.
It has been also proven in some of the previous works which
used the FastText model (Le, 2019; Le et al., 2019a). However,
one novel idea implemented in this study was to increase the
performance results by using a combination of N-grams. The
idea was to combine all of the N-gram levels into a big set
of features, which will then be fed into classifiers. As such,
our classifier will take full advantage of important features for
each specific N-gram level and remove some less important
features inside all of the levels. The performance results were
shown in detail in Table 2. It is noted that the 5-fold cross-
validation has been performed for several independent iterations
to give a confidence interval for the results. In these results, we
fed all 1,000 features from 10 levels of N-gram into our CNN

TABLE 2 | Comparison between single N-gram and combination of continuous

N-grams.

Methods Sens Spec Acc MCC

Single N-gram 82.43 83.34 82.88 0.658

Combination of N-grams 82.76 88.05 85.41 0.709

Single N-gram, representative by 4-gram; Combination of N-grams, combine 10 levels of

N-gram together.

TABLE 3 | Top-ranked features using MRMD feature selection technique.

No. Feature number Score

1 feature_97 1.0

2 feature_21 0.9170726107858075

3 feature_34 0.9096134637807235

4 feature_92 0.8914645287023287

5 feature_54 0.8463944338892277

6 feature_9 0.8368290059895386

7 feature_41 0.824726606348234

8 feature_8 0.8020998165541897

9 feature_77 0.7714372077391476

10 feature_3 0.7598084153408637

architecture. It is easy to say that the combination of N-grams
outperforms the single level of N-gram. This method achieved a
sensitivity of 82.76%, specificity of 88.05%, accuracy of 85.41%
and MCC of 0.709, which is improved ∼1–4% from single N-
gram in term of specificity, accuracy, and MCC. To statistically
compare betweenN-gram combination andN-gram single levels,
we performed 10 times of one-sided Wilcoxon tests of the ROC
AUC values between the combination model and each of the
1–10-gram model. After that, all of Wilcoxon tests showed a p-
value of 0.0005 (less than significance level∝= 0.05) which could
strongly conclude that the performance results of combination
features were significantly better than the single ones at high
confidence level.

Since deep learning is a black-box manner, it automatically
generated the hidden information from our feature sets.
Therefore, it is challenging to understand which features have
most contribution or play critical role for promoter distinction in
our model. As a reference, we used a common technique namely
Maximum-Relevance-Maximum-Distance (MRMD) (Zou et al.,
2016a) to evaluate and extract the important features of our
datasets. MRMD has been used a lot of works in bioinformatics
with promising results (Zou et al., 2016b; Wei et al., 2017).
According to the results, MRMD suggested that our model will
reach the highest accuracy when we selected 835 top-ranked
features (out of 1,000) to insert into our neural network. To detail,
10 features had the highest scores were shown in Table 3. These
features, therefore, play an essential role in classifying promoter
sequences using our model.

Next, we would like to compare our performance results with
a baseline machine learning technique to check whether the
deep CNN has generated more hidden information and given
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a significant performance. Since nearest neighbor (kNN) (Keller
et al., 1985) has been used to represent for traditional machine
learning classifiers in different problems, we implemented it in
our study for comparison.We used hyperparameter optimization
process and found that the model performed consistently at 10
neighbor trees. The optimal performance reached 78.8%, 86.8%,
82.8%, 0.66, and 0.885 for sensitivity, specificity, accuracy, MCC,
and AUC, respectively. Compared with the performance from
CNN, kNN was lower in term of sensitivity, accuracy, MCC, and
AUC. It is enough evidence to say that the deep neural network
could learn more features and produce a better performance than
traditional neural networks.

Classifying Promoters’ Strength
Since the combination of N-grams performed well in the first
layer classification, we aimed to use the same experimental
setups for the second layer (classifying promoter’s strength).
Our dataset includes 1591 strong promoters and 1792 weak
promoters as collected from Xiao et al. (2018) and has been
mentioned in the dataset section. The experiments show that our
method, which used a combination of N-grams, could classify
the promoter’s strength with an accuracy of 73.1%, sensitivity of
69.4%, specificity of 76.4%, and MCC of 0.46. The performance
was also better than the baseline models with single levels of N-
grams. It means that we can use this setup for both layers with
promising results.

Comparison the Performance Results
Between Proposed Method and the
Existing Methods
Our best model as mentioned in the previous sections is the
combination of different N-gram levels and deep convolutional
neural networks. To be fair, we have to compare our proposed
method with the other previous works that regarding promoter
classification. Also it is noted that we surely chose the previous
works that used the same benchmark dataset. For the first layer,
numerous studies had been done, including PCSF (Li and Lin,
2006), vw Z-curve (Song, 2011), Stability (de Avila e Silva et al.,
2014), iPro54 (Lin et al., 2014), iPromoter-2L (Liu et al., 2017),
and iPSW(2L)-PseKNC (Xiao et al., 2018). Among these studies,
only the last one performed the classification of promoter’s
strength, thus we also compared with this predictor in our second
layer. The results are shown in Table 4, and we highlighted the
highest values to highlight the significance of each metrics. We
then observed that our method outperforms other predictors in
all metrics (sensitivity, specificity, accuracy, and MCC) in both
layer classifications. Another improvement is that our approach
could be applied to actual genome sequences (long fragments of
bacterial genomes) rather only short sequences. All sequences
with different length will be trained to become a vector with a
fix-length. It helps to input any form of sequences flexibly.

DISCUSSIONS

Promoters play an important role in the transcription of genes
affect numerous human diseases. Therefore, identification of

TABLE 4 | Comparison with previous predictors on the same benchmark dataset.

Predictors Sens Spec Acc MCC

1st layer

Ours 82.76 88.05 85.41 0.709

iPSW(2L)-PseKNC 81.37 84.89 83.13 0.663

iPromoter-2L 79.2 84.16 81.68 0.6343

iPro54 77.76 83.15 80.45 0.61

Stability 76.61 79.48 78.04 0.5615

vw Z-curve 77.76 82.8 80.28 0.6098

PCSF 78.92 70.7 74.81 0.498

2nd layer

Ours 69.4 76.4 73.1 0.46

iPSW(2L)-PseKNC 62.23 79.17 71.2 0.4213

Highlighted values are the significant values for each metric.

promoters using their sequence information is one of the most
important tasks in bioinformatics. Although few computational
tools had already been presented, the performance results
require improvements. This study presents a new hybrid system,
from deep learning and a combination of FastText N-grams,
to identify promoters and their respective strengths. To our
knowledge, this is the first bioinformatics study which has
applied this hybrid into biological sequences. By using this
method, we are able to generate the hidden information
of DNA sequences unlike other methods. Our performance
results were evaluated via a 5-fold cross-validation test on a
benchmark dataset. It was found that the proposed method
could identify promoters and their strength, with an accuracy
of 85.41 and 73.1%, respectively. The rest of the measurement
metrics, such as sensitivity, specificity, and MCC, also attained
superior performances. When compared to the other state-
of-the-art predictors regarding the same problem and dataset,
our proposed method has improved at about 1–4% in all of
the metrics. Therefore, our model can be considered as a
reliable method for identifying promoters and their strength,
with use of sequence information. It can also act a basis for
further study that aims to interpret the language context of
DNA sequences.

Last but not least, scientists can use our approach to
solve further bioinformatics problems on sequencing. Since
most bioinformatics problems focused on sequencing data,
their features could be extracted by using our combination
(different levels of FastText N-grams). They then be fed into a
supervised learning to perform the prediction or classification
(e.g., using deep neural network as proposed in this work).
It could also provide a new approach for the previous works
that only used one level of FastText (Le, 2019; Le et al.,
2019a). A combination of more levels could be a solution
for boosting their predictive performances. We also provided
our source codes at https://github.com/khanhlee/deepPromoter
to help reproducing our method. Furthermore, since a lot of
previous works on promoter classification extracted features
by using PseKNC [such as (Liu et al., 2017; Lin et al., 2018;
Xiao et al., 2018)], a hybrid of this feature and our features
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could be considered in the future works for the purpose of
performance improvement.
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Patients Identifies CD40LG and GBP2 
as Markers of ATLL and HAM/TSP 
Clinical Status: Two Genes Beat as One
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Human T-lymphotropic virus 1 (HTLV-1) was the first recognized human retrovirus. 
Infection can lead to two main symptomatologies: adult T-cell lymphoma/leukemia 
(ATLL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). 
Each manifestation is associated with distinct characteristics, as ATLL presents as a 
leukemia-like disease, while HAM/TSP presents as severe inflammation in the central 
nervous system, leading to paraparesis. Previous studies have identified molecules 
associated with disease development, e.g., the downregulation of Foxp3 in Treg cells 
was associated with increased risk of HAM/TSP. In addition, elevated levels of CXCL10, 
CXCL9, and Neopterin in cerebrospinal fluid also present increased risk. However, these 
molecules were only associated with specific patient groups or viral strains. Furthermore, 
the majority of studies did not jointly compare all clinical manifestations, and robust 
analysis entails the inclusion of both ATLL and HAM/TSP. The low numbers of samples 
also pose difficulties in conducting gene expression analysis to identify specific molecular 
relationships. To address these limitations and increase the power of manifestation-
specific gene associations, meta-analysis was performed using publicly available gene 
expression data. The application of supervised learning techniques identified alterations in 
two genes observed to act in tandem as potential biomarkers: GBP2 was associated with 
HAM/TSP, and CD40LG with ATLL. Together, both molecules demonstrated high sample-
classification accuracy (AUC values: 0.88 and 1.0, respectively). Next, other genes with 
expression correlated to these genes were identified, and we attempted to relate the 
enriched pathways identified with the characteristic of each clinical manifestation. The 
present findings contribute to knowledge surrounding viral progression and suggest a 
potentially powerful new tool for the molecular classification of HTLV-associated diseases.

Keywords: human T-lymphotropic virus 1, bioinformatics, biomarkers, adult T-cell lymphoma/leukemia, HTLV-1 
associated myelopathy/tropical spastic paraparesis, meta-analysis
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INTRODUCTION 
Human T-lymphotropic virus 1 (HTLV-1) belongs to the 
Retroviridae family and Deltaretrovirus genus, and presents 
tropism in the infection of T lymphocyte cells (Mirvish et al., 
2011). Two diseases are mainly associated with this infection: 
adult T-cell lymphoma/leukemia (ATLL) and HTLV-associated 
myelopathy/tropical spastic paraparesis (HAM/TSP) (Gessain 
and Mahieux, 2012). Around 2–5% of HTLV-infected subjects 
develop ATLL (Uchiyama et al., 1977) and 0.25–3.8% develop 
HAM/TSP (Osame et al., 1986), while the majority of HTLV-
infected subjects remain asymptomatic (Galvão-Castro 
et  al., 1997). ATLL is a lymphoma-like disease classified into 
four subtypes: acute, chronic, smoldering, and lymphoma 
(Shimoyama and members of The Lymphoma Study Group 
(1984–87)*, 1991). Developing this symptomatology results 
in a life expectancy less than 1 year in around 65% of affected 
individuals (Matutes, 2007), in addition to low documented 
chemotherapeutic response (Yamada et al., 2001). HAM/TSP is 
characterized as an inflammatory disease of the central nervous 
system (CNS), can progressively evolve to spastic paraparesis, 
and results in sensory disturbance in the lower extremities and 
bladder/bowel dysfunction (Nakagawa et al., 1995).

Currently, ATLL can be diagnosed by integrating cytology 
and lymphocyte immunophenotyping with HTLV-1 serology 
(Matutes, 2007). The diagnosis of HAM/TSP is based on clinical 
evaluation and the exclusion of other disorders and molecular 
and serological diagnosis, including HTLV-1 serology, Western 
blotting, and PCR analysis (Yamano and Sato, 2012). In this 
complex scenario, the identification of biomarkers of this disease 
is crucial for improving patient care and treatment. With the goal 
of furthering the understanding surrounding the mechanisms 
related to disease manifestation, some studies employing 
gene expression have been conducted. For instance, the 
downregulation of the FOXP3 gene in T-reg cells was reported to 
be induced by the HBZ viral protein from HTLV-1. Accordingly, 
the stimulated proinflammatory response was found to be 
associated with HAM/TSP development (Yamamoto-Taguchi 
et  al., 2013). Furthermore, other molecules in cerebrospinal fluid, 
such as CXCL10, CXCL9, and neopterin, have been proposed as 
promising candidates for prognostic biomarkers of HAM/TSP, 
offering improved predictive values in comparison to proviral 
load (Sato et al., 2013).

On the other hand, CAN2 and SPTA2 proteins have been 
proposed as biomarkers capable of classifying ATLL patients. 
CAN2 activity was found to induce ATLL cell death and the 
corresponding gene was downregulated in these cells. In 
addition, 17 proteins were proposed as capable of classifying 
healthy controls from asymptomatic carriers (ACs), HAM/
TSP, and ATLL patients (Ishihara et al., 2013). Several 
alterations in anti-inflammatory cytokine levels in infected T 
cells, e.g., increased IL-10 and suppressed pro-inflammatory 
cytokines, were also associated with this disease (Kagdi 
et al., 2018). Another study suggested diagnosing patients by 

measuring antibody responses to HTLV-1 gag, Env, and Tax 
proteins (Enose-Akahata et al., 2012); however, this is akin 
to an immunological diagnosis. Despite the identification of 
biomarker candidates, various limitations have prevented 
adoption, as some markers were only identified in specific 
populations (Yasuma et al., 2016), small sample sizes were used 
(Ishihara et al., 2013), and the identification was performed 
only in specific clinical manifestations without appropriate 
confirmation for use as a general biomarker (Sato et al., 2013; 
Yamamoto-Taguchi et al., 2013).

To mitigate the impact of low sample sizes, which have 
limited the interpretation of individual studies, meta-
analysis approaches have been employed in the field of gene/
marker identification. This approach was used to highlight 
important genes and molecular pathways in endometrioid 
endometrial cancer (O’Mara et al., 2016), for the identification 
of programmed death-ligand 1 as a potential biomarker in 
glioblastoma (Xue et al., 2017), to identify a set of candidate 
genes, pathways, and transcription factors not previously 
associated with the pathogenesis of sickle cell disease (Hounkpe 
et al., 2015), and to disclose a novel set of candidate genetic 
markers, pathways, and transcription factors common to both 
thrombosis and myeloproliferative disorders (Jha et al., 2016). 
Meta-analysis, in combination with classical approaches and 
machine learning, has also been applied to identify biomarkers 
of viral infection in the Aedes aegypti mosquito (Fukutani et al., 
2017). This methodology has proven powerful in discriminatory 
classification using gene expression data and was recently 
highlighted as a potentially useful method for discovering 
new evidences (Debray et al., 2017); Sweeney et al., 2017). 
Given the need to identify biomarkers associated with HTLV-1 
infection, and considering the abundance of individual studies 
that resulted in the generation of gene expression datasets, we 
performed meta-analysis in an attempt to identify candidate 
transcriptional biomarkers that could offer improved predictive 
power in the classification of clinical manifestations in HTLV-1, 
a novelty in this field that has never been done before.

METHODOLOGY

Description of Datasets Comprising the 
Discovery Dataset
To identify published datasets relevant to HTLV infection, 
the Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/) was searched filtering Homo sapiens 
as the organism of interest and “HTLV” as the keyword. This 
query returned a total of 41 datasets (search performed in 
September 2017). After manual evaluation, 32 datasets were 
excluded due to methodological incompatibility (non-blood 
cell tissues and absence of symptomatologic information). Of 
the remaining datasets, three with detailed gene expression by 
peripheral blood mononuclear cells (PBMCs) were selected to 
build the Discovery dataset: GSE55851 (Kobayashi et al., 2014), 
GSE29312, and GSE29332 (Tattermusch et al., 2012). All of the 
studies that produced these datasets were performed in PBMCs 
and included at least two different clinical forms of infection, as 

Abbreviations: ATLL, Adult T-Cell Lymphoma/Leukemia; HAM/TSP, HTLV-
associated myelopathy/tropical spastic paraparesis; AC, Asymptomatic Carriers.
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well as controls (healthy individuals). When combined, the three 
datasets included 20 controls, 43 AC, 12 ATLL, and 20 HAM/
TSP samples (Table 1). For our analysis, the AC samples were 
discarded to avoid possible classification bias, since this form can 
evolve to another clinical manifestation at some point during the 
patient’s life, and no information regarding disease progression 
was provided. The remaining six datasets performed in other 
tissue types were used for in silico validation.

Data Retrieval, Pre-Processing, and Batch 
Correction
Raw expression data were downloaded from GEO/NCBI 
using the GEOquery package (Davis and Meltzer, 2007). Next, 
the collapseRows R function in the WGCNA package (Miller 
et al., 2011) was used to collapse the data, and only probes 
mapping to genes common to all datasets were maintained. 
Log transformation was applied to the expression data using 
the preProcessCore package (Bolstad, 2018), and outlier samples 
were identified and removed by the ArrayQualityMetrics 
package for R (Kauffmann et al., 2008). The plyr package was 
subsequently used to merge all data (Wickham, 2011). Following 
pre-processing, the combined dataset was submitted to a batch 
correction procedure using an empirical Bayes framework 
implemented in the ComBat function of the sva package (Leek 
et al., 2013), with clinical manifestations and original datasets as 
covariates. This allowed us to account for known or unknown 
sources of variation in the datasets, enabling the use of samples 
from different datasets in the integrated dataset (i.e., Discovery 
dataset). This method allowed for the inclusion of the maximum 
number of samples for analysis, in addition to more robust data 
interpretation, leading to the identification of consistent insights 
regarding biological phenomena. ComBat has been used in 
other studies and was shown to outperform other similar tools 
designed for this purpose (Chen et al., 2011). The final dataset 
consisted of 94 samples, with expression data pertaining to 
10,533 genes in total.

Classification of HTLV Patient Clinical 
Manifestation via Decision Tree
A decision tree classification procedure was performed in the 
Discovery dataset to identify the key genes related to HTLV 
patient clinical manifestation (ATLL or HAM/TSP). Decision 
trees were constructed using the rpart package Therneau et  al. 
(2015), which screens for the key factors that allow for the 
separation of the groups with maximum accuracy. To measure 
the performance of the classification model, areas under receiver 
operating characteristic (ROC) curves were calculated to 
determine a given model’s sensitivity and specificity. The overall 
accuracy of a model is calculated by estimating the area under 
the curve (AUC), permitting measurements of the degree of class 
separability in a given model. Values approximating 1.0 indicate 
that the model is suitably capable of distinguishing among 
different classes. Finally, scatterplots were generated to visualize 
the dispersion of samples according to the model threshold in 
order to verify the accuracy estimated by ROC curve analysis.

Co-Expression and Enrichment Analysis of 
Genes Related to CD40LG and GBP2
A correlation matrix between the genes CD40LG and GBP2 
(identified as best classifiers) and all the genes within the 
Discovery dataset was constructed. Correlation was calculated 
separately for each group (control, ATLL, and HAM/TSP) using 
gene expression values measured as biweight midcorrelation 
coefficients, which function similarly to Pearson’s r, except this 
technique is more robust with regard to data outliers (Langfelder 
and Horvath, 2012). Correlations were considered significant 
using a threshold of |r| ≥0.7 and p-value ≤0.05. Next, correlated 
genes were clustered according to the functional terms of the 
REACTOME pathway database (https://reactome.org/). This 
enrichment analysis was performed using clusterProfiler Yu 
et al. (2012) with the following parameters: p-value threshold = 
0.05, Q-value threshold = 0.05, minimum number of genes to 
cluster  = 20, maximum number of genes to cluster = 500.

Description of Datasets Used  
for Validation
Six microarray expression datasets were retrieved from GEO: 
GSE17718 (Kress et al., 2010), GSE6034 (Hamamura et al., 
2007), GSE38537 (Pinto et al., 2014), GSE33615 (Fujikawa 
et al., 2016), GSE57259 (Araya et al., 2014), and GSE19080 (no 
citation available at GEO/NCBI). To confirm the gene signature 
performance, we performed the gene model comparison in the 
validation dataset independently, without using the thresholds 
yielded by the decision tree model estimated during the 
discovery phase. The model comparison in each different dataset 
was obtained by applying a logistic regression fitting, which 
estimated the variable accuracy (CD40LG and GBP2), according 
to the response variable [determined by dataset metadata (HTLV 
status)]. Then, the ROC curve and the AUC were measured, 
which allows the comparison of the gene signature classification 
power across the validation datasets. A full description of the 
selected datasets is available in Table S1.

TABLE 1 | Description of the datasets used as the Discovery set.

Accession 
number

Reference Symptomatology Sample 
number

Tissue

GSE55851 Kobayashi et al. 
(2014)

Control 3 PBMCs

Asymptomatic 6 PBMCs
ATLL 12 PBMCs

GSE29312 Tattermusch et al. 
(2012)

Control 9 PBMCs

Asymptomatic 20 PBMCs
HAM/TSP 10 PBMCs

GSE29332 Tattermusch et al. 
(2012)

Control 8 PBMCs

Asymptomatic 17 PBMCs
HAM/TSP 10 PBMCs

Total Control 20 PBMCs
Asymptomatic 43 PBMCs
ATLL 12 PBMCs
HAM/TSP 20 PBMCs
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RESULTS

Gene Expression of CD40LG and GBP2 
Permits Accurate Discrimination of ATLL 
and HAM/TSP Patients
The decision tree algorithm identified two genes, CD40LG and 
GBP2, as the most informative in differentiating between the 
clinical manifestations of HTLV-infected samples and controls. 
The expression of CD40LG allowed for the discrimination 
of individuals with ATLL with 100% accuracy. To correctly 
classify the remaining samples (HAM/TSP and controls), a 
second gene (GBP2) was required. Expression levels of GBP2 
were able to discriminate HAM/TSP samples with 84.2% 
classification accuracy, and controls with 100% accuracy, with a 
15.8% misclassification rate occurring between HAM/TSP and 
controls (Figure 1A). In addition, sample dispersion was visually 
checked by scatterplot using the log expression cutoffs returned 
by the decision tree algorithm: 6.30 for CD40LG and 12.05 
for GBP2 (Figure 1B). Finally, sensitivity and specificity were 
measured using ROC curve analysis, revealing high accuracy in 
discriminating among samples using genes CD40LG and GBP2: 
AUC of 0.90 for controls, 0.88 for HAM/TSP, and 1.00 for ATLL 
(Figure 1C).

Gene Expression of CD40LG and GBP2 
Correlate With Various Immune and 
Metabolic Pathways That Could Impact 
the Course of HTLV Infection
After evaluating the high predictive power of CD40LG and 
GBP2 in discriminating HTLV clinical status, the roles played 
by these genes were investigated. Correlation analysis was 
performed considering global expression for each clinical 
manifestation (HAM/TSP or ATLL) and controls. Our results 
showed that 208 genes were significantly positively (r > 0.7 
and p-value < 0.05) and 13 genes were significantly negatively 
(r > 0.7 and p-value < 0.05) correlated with CD40LG. Also, 84 
genes were significantly positively and 1 gene was significantly 
negatively correlated with GBP2. In contrast, in the ATLL 
samples, 399 genes were significantly negatively correlated with 
CD40LG and 743 genes were significantly positively correlated 
with GBP2. A total of 12 genes were found to be correlated with 
both CD40LG and GBP2 (OAZ1, SLC39A11, NADK, TMED2, 
SLC38A5, P4HA1, HM13, MGAT2, HIST1H2BG, UQCRFS1, 
PTDSS1, and TAP1B) (Figure S1A). In addition, the HAM/TSP 
samples presented 394 positive and 420 negative correlations, 
with three being associated with both CD40LG and GBP2 

FIGURE 1 | Continued

FIGURE 1 | (A) Decision tree classification of three different 
symptomatologies using CD40LG to separate all ATLL samples from the 
others, and GBP2 to separate 84.2% of the HAM/TSP samples from 
controls. (B) Scatterplot of CD40LG (Y axis) and GBP2 (X axis) gene 
expression detailing the dispersion of the analyzed samples. Red lines 
represent the thresholds suggested by decision tree analysis. (C) ROC curve 
representing accuracy. An AUC of 0.9016 was found for the control group, 
0.8898 for the HAM/TSP group, and 1.000 for ATLL. The red line represents 
the ATLL group, blue indicates HAM/TSP, and green is indicative of controls.
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(PWP1, H3F3A, and GNE). In these samples, correlations with 
CD40LG were mostly positive, with 367 positive correlations, 
while those with GBP2 were mostly negative, with 230 negative 
correlations (Figure S1B). More comprehensive information 
regarding this correlation analysis and the commonly observed 
genes is available as supplementary material (Tables S2–
S4). The gene set previously identified correlated with the 
biomarkers (CD40LG and GBP2) was analyzed in order to 
identify their enriched pathways. Thus, the top four pathways 
identified from being negatively correlated with the CD40LG 
gene set in the HAM/TSP were “Neutrophil degranulation,” 
“Signaling by interleukins,” “TRAF6-mediated induction of 
NFkB and MAP kinases upon TLR7/8 or 9 activation,” and 
“Toll Like Receptor 7/8 (TLR7/8) Cascade.” The main pathways 
identified from the gene set that negatively correlated with 
GBP2 in the HAM/TSP were “SUMO E3 ligases SUMOylate 
target proteins,” “SUMOylation,” “rRNA processing,” and “tRNA 
processing” (Figure 2B). Only one pathway was identified from 
the gene set that positively correlated with CD40LG in HAM/
TSP: “SUMOylation of DNA replication proteins.” Several 
pathways were identified from the genes that were positively 
correlated with GBP2 in HAM/TSP: “Interferon Signaling,” 
“Interferon alpha/beta signaling,” “Activation of G protein gated 

Potassium channels,” “G protein gated Potassium channels,” 
and “Interleukin-20 family signaling” (Figure 2A).

The top 5 pathways identified from the gene set that negatively 
correlated with CD40LG in the ATLL were “MAPK family 
signaling cascades,” “MAPK1/MAPK3 signaling,” “RAF/MAP 
kinase cascade,” “Mitotic G1−G1/S phases,” and “G1/S Transition” 
(Figure 2B). Moreover, the associated pathways from the gene 
set that positively correlated with GBP2 in ATLL patients were 
“tRNA processing in the nucleus,” “tRNA processing,” “Viral 
Messenger RNA synthesis,” “Late Phase of HIV Life Cycle,” and 
“HIV Life Cycle” (Figure 2A).

By contrast, in the control group, the pathways identified 
from the gene set that correlated with CD40LG were 
“Processing of Capped Intron-Containing Pre-mRNA,” 
“tRNA processing in the nucleus,” “tRNA processing,” 
“Viral Messenger RNA Synthesis,” “Dual incision in 
TC-NER,” “Transcription-Coupled Nucleotide Excision 
Repair (TC-NER),” “Late Phase of HIV Life Cycle,” “mRNA 
Splicing—Major Pathway,” “HIV Life Cycle,” “Synthesis of 
DNA,” “SUMOylation of DNA replication proteins,” and “HIV 
infection.” With regard to GBP2’s positively correlated genes, 
the following pathways were found in the control group: 
“Neutrophil degranulation,” “Metabolism of water-soluble 

FIGURE 2 | (A) Pathways associated with genes found to be positively correlated with CD40LG and GBP2, grouped according to symptomatology. (B) Pathways 
associated with genes found to be negatively correlated with CD40LG and GBP2, grouped according to symptomatology. Analysis performed using the following 
parameters: p-value = 0.05, q-value = 0.2, minimum number of genes to cluster = 20, maximum number of genes to cluster = 500.
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vitamins and cofactors,” “FCERI mediated MAPK activation,” 
“Toll-Like Receptors Cascades,” “TRAF6 mediated induction 
of NFkB and MAP kinases upon TLR7/8 or 9 activation,” “Toll 
Like Receptor 7/8 (TLR7/8) Cascade,” “MyD88 dependent 
cascade initiated on endosome,” “Toll Like Receptor 9 (TLR9) 
Cascade,” “Signaling by Interleukins,” “Apoptotic execution 
phase,” and “Interferon signaling” (Figure 2A). Further 
information regarding the pathways associated with these 
genes (ENTREZ  ID) is available as supplementary material, 
separated into negatively correlated (Table S5) and positively 
correlated categories (Table S6).

Validation of CD40LG and GBP2 
in Independent Datasets Reveals 
Classification Robustness in Different 
Tissue Types
To validate the accuracy of our two-gene model in the 
discrimination of ATLL, HAM/TSP, and control samples, this 
model was applied to the other datasets not used in the discovery 
set: (Kress et al., 2010) (GSE17718), (Hamamura et al., 2007) 
(GSE6034), (Pinto et al., 2014) (GSE38537), (Yamagishi et al., 2012) 
(GSE33615), (Olière et al., 2010) (GSE57259), and GSE19080. 
After downloading and pre-processing these datasets, ROC 
curve analysis was applied to measure the discriminant power of 
CD40LG and GBP2 in classifying HLTV-1 clinical manifestations. 
The discriminant power of this two-gene signature was found to be 
very high, allowing for the discrimination of the HTLV-1 clinical 
status in five of the datasets with an AUC value of 1 (GSE17718, 
GSE6034, GSE38537, GSE33615, and GSE57259). The need to 
include both genes for accurate classification was evidenced in the 
GSE19080 dataset (in which the CD40LG gene is absent), yielding 
a much lower AUC (0.875) in the discrimination of control 
samples, compared to 0.666 for HAM/TSP samples and 0.5 when 
discriminating ATLL samples. These validation datasets were 
derived from a variety of tissues, such as cell lines (StEd, MT-2, Tay 
and MT-4), CD4 lymphocytes, and PBMCs. The overall accuracy 
of this two-gene signature model is delineated in Table 2. Also, the 
sample distribution using the two-gene expression in all validation 
dataset is summarized in Figure S2.

DISCUSSION
To date, few studies have attempted to identify biomarkers capable 
of discriminating between ATLL and HAM/TSP in HTLV-1 
infection. A previous report (Sato et al., 2013) suggested three 
potential prognostic biomarkers in cerebrospinal fluid for HAM/
TSP disease progression: CXCL10, CXCL9, and neopterin. Another 
study (Baratella et al., 2017) stated that the HBZ protein, exclusively 
localized in the cytoplasm, could be a biomarker of HAM/TSP. 
In addition, CAN-2 and SPTA-2 were identified as biomarkers 
capable of discriminating ATLL (Ishihara et al., 2013). However, 
these biomarkers were found in a specific population and, to the 
best of our knowledge, the literature contains no sets of biomarkers 
offering sufficient accuracy to reliably identify both the ATLL and 
HAM/TSP phenotypes. With the objective of achieving accurate 
discrimination, we employed a robust bioinformatic approach 
to consolidate the available expression data using three different 
datasets combined into a single Discovery dataset. Three studies 
were selected for this analysis, one submitted by Kobayashi et al. 
(acc number: GSE55851) and two submitted by Tattermusch et al. 
(acc number: GSE29332 and GSE29312). The study by Kobayashi 
et al. compares gene expression levels in PBMCs from ATLL, 
asymptomatic, and control patients. The other studies submitted 
by Tattermusch et al. compared gene expression levels in PBMCs 
from HAM/TSP, asymptomatic, and control individuals. Next, a 
data mining technique was applied to the merged, batch-corrected 
Discovery dataset to identify which variables (genes) could 
effectively discriminate clinical status among the samples. Decision 
tree analysis revealed genes CD40LG and GBP2 as discriminators of 
ATLL and HAM/TSP, offering accuracy rates of 100% and 84.2%, 
respectively. A previous report identified lower CD40LG expression 
in cells expressing PTHrP and MIP-1α, two proteins associated 
with ATLL progression (Shu et al., 2012). The second marker 
identified herein, GBP2, was previously associated with tax protein 
activity in HTLV-1 (Arainga et al., 2012). Despite identifying these 
associations, no previous studies proposed either of these genes as 
biomarkers of ATLL or HAM/TSP symptomatology.

The CD40LG gene encodes a protein located on the surface of 
T cells and exerts the role of regulating B cell functions (Stelzer 
et  al., 2016). GBP2 is a guanylate binding protein induced 

TABLE 2 | Performance of the two-gene signature classifying the samples from validation datasets.

Accession number Symptomatology Tissue Biomarkers AUC

GSE17718 Control CD4+ Lymphocyte CD40LG and GBP2 1.00
ATLL Cell lines StEd and MT-2 CD40LG and GBP2 1.00

GSE6034 Control CD4+ Lymphocyte CD40LG and GBP2 1.00
ATLL Cell lines TaY, MT-2 and MT-4 CD40LG and GBP2 1.00

GSE38537 Control CD4+ Lymphocyte CD40LG and GBP2 1.00
HAM/TSP CD4+ Lymphocyte CD40LG and GBP2 1.00

GSE33615 Control CD4+ Lymphocyte CD40LG and GBP2 1.00
ATLL PBMCs (Mostly CD4+ Lymphocytes) CD40LG and GBP2 1.00

GSE19080 Control CD4+ Lymphocyte GBP2 0.87
ATLL CD4+ Lymphocyte GBP2 0.50

HAM/TSP CD4+ Lymphocyte GBP2 0.66
GSE57259 Control CD4+ CD25+ CCR4+ Lymphocytes CD40LG and GBP2 1.00

HAM/TSP CD4+ CD25+ CCR4+ Lymphocytes CD40LG and GBP2 1.00
ATLL CD4+ CD25+ CCR4+ Lymphocytes CD40LG and GBP2 1.00
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by IFN-γ and is considered as a control factor for tumor cell 
proliferation and spreading (Messmer-Blust et al., 2010). Our 
functional approach entailed the correlation of these biomarkers 
with the global expression of other genes, followed by enrichment 
analysis using the REACTOME database (Fabregat et al., 2018). 
This analysis showed that the genes positively correlated with 
CD40LG are associated with pathways mainly related to tRNA 
processing, viral replication, and mRNA splicing in the control 
group. However, in the HAM/TSP group, these genes were only 
found to be associated with the SUMOylation of DNA replication 
pathway, which is specifically associated with transcription and 
replication pathways. In addition, the genes negatively correlated 
with CD40LG were found to be associated primarily with 
neutrophil degranulation, signaling for interleukins and several 
cascades of Toll Like Receptors in HAM/TSP patients. These 
pathways may be associated with immune responses involving 
inflammation (Faurschou and Borregaard, 2003; Lacagnina et al., 
2018; Weitzman, 2003), which is frequently observed in HAM/
TSP patients (Nakagawa et al., 1995).

On the other hand, the genes negatively correlated with 
CD40LG were found to be associated with MAPK cascade-
associated pathways and cell cycle-related pathways. MAPK 
cascade-related pathways are associated with a wide spectrum of 
metabolic pathways related to cell proliferation, differentiation, 
and apoptosis (Shaul and Seger, 2007). Cell cycle-related 
pathways, such as Mitotic G1-G1/S phases, G1/S Transition, 
G2/M Transition, and Mitotic G2-G2/M phases, are related to 
cell proliferation (Matson and Cook, 2017). These pathways are 
all related to cell proliferation, which is consistent with ATLL 
symptomatology and the uncontrolled proliferation of T cells 
(Shimoyama and members of The Lymphoma Study Group 
(1984–87)*, 1991).

The top pathways that positively correlated with GBP2 
were mainly related to HIV infection, tRNA, and viral 
mRNA processing and synthesis, signaling by interleukins, 
and apoptosis regulation. The pathways observed to be 
related to HIV infection may be due to similarities between 
HTLV-1 and HIV, as both these retroviruses mainly infect 
T CD4+ lymphocytes. The tRNA and viral mRNA pathways 
are associated with the highly active processing of RNAs 
that occurs in ATLL cells. Furthermore, the regulation of 
apoptosis could be associated with the immortalization of T 
CD4+ cells  that characterizes the leukemic aspect of ATLL 
(Bellon et al., 2010).

In order to evaluate the predictive power of the CD40LG/GBP2 
two-gene signature in the accurate classification of HAM/TSP and 
ATLL samples, we conducted a validation step using independent 
datasets, which revealed excellent predictive values. The majority 
of datasets returned an AUC of 1.0, corresponding to an accuracy 
rate of 100% when classifying samples as ATLL, HAM/TSP, or 
controls. In one of six validation datasets (GSE19080), a poorer 
classification accuracy was found, which is likely due to the 
absence of the CD40LG in the array, indicating the requirement of 
both genes in order to maintain reliably consistent classification. 
Additionally, the selected validation datasets sampled not only 
PBMCs but also several transformed cell lines, including MT-2, 
MT-4, StEd, and TaY, as well as isolated CD4+ cells. These high 

rates of accuracy seen in a diverse range of tissue types serve 
to confirm the robustness of the two-gene signature identified 
herein, suggesting a conserved mechanism in the regulation 
of genes associated with each symptomatology. Despite some 
limitations such as the absence of available datasets  studying 
HTLV-1 biomarkers in a transcriptional approach and the 
reduced sample numbers, our findings provide useful biomarkers 
to independently identify populations affected by HTLV-1.

CONCLUSION
Our meta-analysis of gene expression datasets in HTLV-1-
infected patients with specific disease manifestations identified 
a two-gene signature (CD40LG/GBP2) allowing for excellent 
classification of the HAM/TSP and ATLL phenotypes. This 
signature was subsequently validated in six independent 
datasets. An exploratory functional enrichment analysis of 
the genes found to be positively and negatively correlated with 
this signature revealed diverse activation and repression of 
pathways relevant to this viral disease. Our findings add to the 
accumulation of knowledge surrounding HTLV-1 infection and 
may contribute to early diagnosis, as well as the treatment of 
related symptomatologies.
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TABLE S2 | Correlations observed between CD40LG and GBP2 in the HAM/
TSP group. 

TABLE S3 | Correlations observed between CD40LG and GBP2 in the ATLL group. 

TABLE S4 | Correlations observed between CD40LG and GBP2 in the control group.

TABLE S5 | Detailed information regarding the negatively correlated pathways 
and associated genes (ENTREZ ID).

TABLE S6 | Detailed information regarding the positively correlated pathways 
and associated genes (ENTREZ ID). 

FIGURE S1 | Correlation network based on gene expression values in ATLL 
samples. Highlighted genes were found to correlate with both CD40LG and GBP2. 
B - Correlation network based on the gene expression values in the HAM/TSP 
group. Highlighted genes were found to correlate with both CD40LG and GBP2. 
C - Correlation network based on the gene expression values in the control group.

FIGURE S2 | Scatterplot of validation datasets sample distribution using the 
CD40LG and GBP2's log transformed expression values. The samples can 
be separated by symptomatology [ATLL (green), HAM/TSP (red) and control 
(blue)], this separation is shown by the collored ellipses. The GSE19080's 
scatterplot has only GBP2 within the dataset, the values of X and Y axis are both 
representing GBP2's log transformed expression value. 
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Accumulating evidence indicates that the microbes colonizing human bodies have crucial 
effects on human health and the discovery of disease-related microbes will promote the 
discovery of biomarkers and drugs for the prevention, diagnosis, treatment, and prognosis 
of diseases. However clinical experiments of disease-microbe associations are time-
consuming, laborious and expensive, and there are few methods for predicting potential 
microbe-disease association. Therefore, developing effective computational models 
utilizing the accumulated public data of clinically validated microbe-disease associations 
to identify novel disease-microbe associations is of practical importance. We propose 
a novel method based on the KATZ model and Bipartite Network Recommendation 
Algorithm (KATZBNRA) to discover potential associations between microbes and 
diseases. We calculate the Gaussian interaction profile kernel similarity of diseases 
and microbes based on validated disease-microbe associations. Then, we construct a 
bipartite graph and execute a bipartite network recommendation algorithm. Finally, we 
integrate the disease similarity, microbe similarity and bipartite network recommendation 
score to obtain the final score, which is used to infer whether there are some novel 
disease-microbe interactions. To evaluate the predictive power of KATZBNRA, we tested 
it with the walk length 2 using global leave-one-out cross validation (LOOV), two-fold and 
five-fold cross validations, with AUCs of 0.9098, 0.8463 and 0.8969, respectively. The 
test results also show that KATZBNRA is more accurate than two recent similar methods 
KATZHMDA and BNPMDA.

Keywords: microbe, disease, KATZ model, bipartite network recommendation, Gaussian interaction profile  
kernel similarity

INTRODUCTION
A microbe is a microscopic organism, including bacteria, eukaryotes, archaea, and viruses (Wu 
et al., 2018). Various types of microbes live on or in different parts of a human body such as the skin, 
mouth, hair, stomach, and gastrointestinal tract. An adult human body contains a large number of 
bacterial cells, which is estimated to reach 1014 and much more than the total number of human 
cells, with more than 5 million microbe genes, outnumbering the human genes by more than 100 
fold (Sommer and Backhed, 2013). Most microbes are harmless and some are beneficial to humans 
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(Grice and Segre, 2011). Recently, accumulated experimental 
evidence shows that microbes have an important impact on 
human health, nutrient absorption, immune response, cancer 
control, and the prevention of pathogen colonization (Wu 
et  al., 2018). For example, the gut microbiota could significantly 
contribute nutrition absorption by producing indispensable 
vitamins and decomposing indigestible polysaccharides, and it 
also has an important impact on the mucus layer, the balance 
of antimicrobial peptides, and immunoglobulin A, and the 
differentiation and activation of some lymphocyte populations 
(Sommer and Backhed, 2013). Therefore, the gut microbiota 
is thought to be an extra ‘organ’ of humans (Gill et al., 2006). 
But some microbes may contribute to disease, such as psoriasis 
and inflammatory bowel disease (IBD). There have been reports 
that psoriasis occurs after strep throat and could worsen 
due to the colonization of Candida albicans, Malassezia, and 
Staphylococcus aureus on the skin or in the gut (Fry and Baker, 
2007). Aroniadis et. al. (Aroniadis and Brandt, 2013) indicated 
that the biodiversity of bacteria, such as Bacteroidetes and 
Firmicutes, colonizing in individuals affected by IBD has been 
found to be reduced by 30 to 50%. Wang et. al. (Wang and Jia, 
2016) showed that the gut microbiota’s dysbiosis might be a key 
environmental risk factor of many human diseases, though it’s 
difficult to reveal the true causality.

To explore the relationship between microbes and their 
human hosts, scientists from many countries collaborated and 
launched the Human Microbiome Project (HMP) (Human 
Microbiome Project, 2012a). Recently, high-throughput 
sequencing techniques and corresponding software packages 
have been developed rapidly, and a growing number of research 
analyses have been carried out on the microbiome, such 
as whole-genome shotgun (WGS), 16S, and the taxonomic 
profiling (Human Microbiome Project, 2012b), and have 
demonstrated significant associations between microbes and 
complex human diseases such as rheumatoid arthritis, colorectal 
cancer, obesity, and type 2 diabetes (Wang and Jia, 2016). 
However, these studies involve time-consuming and expensive 
biological experiments. Therefore, it is necessary to utilize the 
known information to predict the unknown microbe-disease 
interactions. Identifying microbe-disease interactions could 
promote discovering biomarkers and drugs for the prevention, 
diagnosis, treatment, and prognosis of diseases. Now, more 
and more computer algorithms (Chen and Zhang, 2013; Yang 
et al., 2014; Zhang et al., 2017; Zeng et al., 2018; Zhang et al., 
2018a; Zhang et al., 2018b; Zhang et al., 2018c; Zhang et al., 
2018d; Zeng et al., 2019) have been proposed for interaction 
prediction of miRNA-disease, lncRNA-disease, and drug-drug, 
and it is feasible to apply these methods to the microbe-disease 
association prediction field.

Recently, Ma et al. (2017) collected microbe-disease 
association data from previous published studies and constructed 
the Human Microbe-Disease Association Database (HMDAD). 
Based on the data from HMDAD, some microbe-disease 
association prediction methods have been proposed. Chen et al. 
(2017) used a KATZ measure to predict human microbe-disease 
association, and proposed an algorithm named KATZHMDA. 
KATZHMDA can predict new microbe-disease associations at a 

large scale. Bao et al. (2017) used network consistency projection 
and introduced an algorithm NCPHMD to predict human 
microbe-disease association. NCPHMD deals with unknown 
diseases or microbes that are not present in the disease-microbe 
databases. He et al. (He et al., 2018) presented an algorithm 
GRNMFHMDA. GRNMFHMDA assigns likelihood scores to 
unknown microbe-disease pairs by calculating weighted K nearest 
neighbor profiles of microbes and diseases, and then adapts the 
standard non-negative matrix factorization by integrating graph 
Laplacian and Tikhonov (L2) regularization to obtain a microbe-
disease association prediction score matrix. Zou et al. (2017) 
designed an approach BiRWHMDA. BiRWHMDA constructs 
a heterogeneous network by connecting the microbe similarity 
network and the disease similarity network based on known 
microbe-disease associations, and then uses a bi-random walk to 
predict microbe-disease association.

In the paper, we propose a novel approach to predict 
potential micro-disease association based on the KATZ 
measure and bipartite network recommendation algorithm 
(KATZBNRA), which is an improvement on KATZHMDA 
(Chen et al., 2017). Similar to KATZHMDA, KATZBNRA 
uses the KATZ measure and the similarity of diseases and 
microbes according to the Gaussian interaction profile kernel 
to predict novel microbe-disease associations based on the 
known microbe-disease associations. Furthermore, in order to 
improve the predicting accuracy, KATZBNRA uses a bipartite 
network recommendation algorithm.

MATeRIAls AND MeThODs

Known Disease-Microbe Associations
HMDAD (Human Microbe-Disease Association Database, 
http://www.cuilab.cn/hmdad) collected the curated human 
microbe-disease association data from microbiota studies where 
the microbes were determined by 16s RNA sequencing on the 
genus level (Ma et al., 2017). HMDAD provides public access 
to the data, and our known microbe-disease association data 
were downloaded from HMDAD. The data contains 450 distinct 
confirmed associations between 39 diseases and 292 microbes 
and is coded in an adjacency matrix A Rn nd m   × , where nd (or 
nm) is the number of diseases (or microbes). If there has been an 
experiment confirming that microbe mj relates to disease di,A(i,j) 
is set to 1, otherwise A(i,j) is set to 0.

Disease Gaussian Interaction Profile 
Kernel similarity
According to (Chen et al., 2017), there is a generally accepted 
assumption that similar diseases show an interaction tendency 
to similar microbes. Similar to (Chen and Yan, 2013) and (Chen 
et al., 2017), we compute the disease network topologic similarity 
based on the Gaussian interaction profile kernel. For a disease-
microbe association adjacent matrix A, the binary element A(i,j) 
at row i and column j encodes whether there is a confirmed 
association between disease d(i) and microbe m(j). The ith row 
of A is denoted by IP(d(i)). IP(d(i)) can be regarded a binary 
vector and is called the interaction profile of d(i) since it provides 
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the association information of disease d(i) with all microbes. For 
two diseases, their similarity KD(di,dj), based on the Gaussian 
interaction profile kernel, is calculated from their interaction 
profiles according to the following equations.

 KD d d IP d IP di j d i j( , ) exp( ( ) ( )|| ) ||= − −γ 2  (1)

 

γ γ
d

d

d
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kn
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KD(di,dj) is adjusted by the norm kernel bandwidth γd, which 
is controlled by the bandwidth parameter ′γ d . It is obvious that 
KD(di,di) = 1 and 0 < KD(di,dj)≤1. According to (Vanunu et al., 
2010), KD values in (0, 0.3] may be not informative, while KD 
values in [0.6, 1] may show significant similarity. Therefore, a 
logistic function transformation from KD(x, y) to KD'(x, y) in 
Equation (3) is utilized in order to measure the similarity of 
diseases x and y more appropriately.
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The parameters ′γ d  and c could be set with cross-validation, 
but to simplify the calculation, we set ′γ d  = 1 as in van Laarhoven 
et al., 2011, c = -15 as in (Vanunu et al., 2010). According to 
(Vanunu et al., 2010), we set d = log(9999) such that KD′(di,dj) = 
0.0001 when KD(di,dj) = 0.

Microbe Gaussian Interaction Profile 
Kernel similarity
As mentioned before, similar diseases show an association 
tendency with similar microbes. To measure the similarity of 
microbes, we also used the Gaussian interaction profile kernel as 
before. It could be calculated in a similar way as follows.

 KM m m IP m IP mi j m i j( , ) exp( ( ) ( )|| )||= − −γ 2  (4)
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where ′γ m  is also set to 1, and IP(mi) is the ith column of matrix 
A. Similarly, KM'(mi, mj) could be calculated as Equation (3). It 
should be noted that in each cross-validation experiment, the 
similarities of diseases and microbes will be recalculated (Sun 
et al., 2018).

Bipartite Network Recommendation
The bipartite network recommendation is a two-step resource 
allocation process (Chen et al., 2018b), which is based on a 
bipartite graph G(D, M, E), where D represents disease nodes, 

M microbe nodes, E the edges corresponding to the known 
microbe-disease associations. Let f0,i(mj) denote the initial 
resource allocated to a microbe node mj when considering disease 
di, k(mj) be the number of adjacent disease nodes of microbe mj, 
and let k(di) be the number of adjacent microbe nodes of disease 
di in graph G.

When focusing on disease di, each disease di related 
microbe node is initially allocated with a resource value of 
1, i.e. if there is an edge between the disease node di and a 
microbe node mj in G, allocate an initial resource of 1 to mj. 
The first step of the bipartite network recommendation is to 
transfer the resource from microbe nodes to disease nodes 
according to Equation (6), and the second step is to transfer 
the resource of the disease nodes back to microbe nodes 
according to Equation (8).
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where alj is an element of matrix A, i.e. alj = A(l, j) and
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In fact, f0,i(mj) is also equal to A(i, j).
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Equations (6) and (8) are integrated into Equation (9).
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Please see an example of the process of the bipartite network 
recommendation focusing on disease d1 in Figure 1. After the 
process, we obtain the recommendation scores (1, 0, 1/4, 3/4, 0) 
of the microbes for disease d1, which suggests that besides m1 and 
m4, m3 may also be related to the disease.

The matrix form of Equation (9) is as follows.

 B W AT= ×  (11)

where W wij n nm m
=

×
{ } , and B is a matrix with nm rows and nd 

columns. The ith column of B is the recommend scores of 
bipartite network recommendation regarding disease di
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KATZBNRA
KATZBNRA uses the KATZ model to compute the associations 
between diseases and microbes and is illustrated in Figure 2. 
As a network-based computation method, the KATZ model 
(Chen, 2015) had been used in the problem of link prediction 
in the heterogenous network to calculate the similarity of 
nodes. There are two factors that have been regarded as 
effective similarity metrics in the KATZ model, the walk steps 
(length, i.e. the number of edges of the walk) and the number 
of walks from one node to another. We use the KATZ model 
to calculate similarities between the nodes of the microbe and 
disease by counting the number of walks between them. Here 
Al(i,j), the element of the l-th power of A, is the number of 
l-length walks between disease node di and microbe node mj. 
Due to the limited data from HMDAD, matrix A is sparse. In 
order to use more information, we integrated the matrices KM, 
KD, B into a matrix B* as Equation (12) and replace A by B* 

in the KATZ model to calculate similarities between microbes 
and diseases.

 
B KD B

B KMT
* = ′

′











  (12)

Since walks between nodes of microbe and disease with 
different lengths have different contributions to similarities of 
node pairs, in order to dampen longer walks’ contribution, we 
introduced a parameter βl which is no smaller than 0, and if l1> l2, 
then β βl l1 2

< . The potential association between diseases di and 
microbe mj can be calculated as follows.

 
S( )d m B i ji j

l

k

l
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∑

1

β
 (13)

If k → ∞ , replace βl with βl (0<β <1) (Qu et al., 2018) and the 
matrix form of Equation (13) is as follows.

 
S = = − −

≥

−∑
l

l lB I B I
1

1β β* *( )
 (14)

S is a matrix of size (nd + nm)×(nd + nm), and could be 
partitioned into four sub-matrices as shown in Equation (12).

FIGURe 1 | Illustration of the two-step resource-allocation process in a 
bipartite graph.

FIGURe 2 | The diagram of KATZBNRA.
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where the rows of S1,1 and S1,2 are nd, the rows of S2,1 and S2,2 are 
nm, the columns of S1,1 and S2,1 are nd, and the columns of S1,2 and 
S2,2 are nm. The element S1,2(i, j) of S1,2 provides the possibility that 
an association between disease di and the microbe mj exists, and 
our prediction result can be obtained from S1,2.

Considering that the walks of long lengths may be meaningless, 
we limit k in Equation (13) to be 2, 3 and 4, and the expression 
can be as follows. 

 S B KM B B KDk= = ⋅ + ′ ⋅ + ⋅ ′⋅2
2β β ( )  (16)

   '( )S S B B B KM B KM B KD B KDk k
T

= == + ⋅ + ′ + ⋅ ⋅ + ⋅ ′⋅ ⋅ ⋅ ′ ′3 2
3 2 2β   

  (17)

 

S S
KM B B B KM B KM B B B B K

k k
T T

= ==
+ + ⋅ ⋅ + ⋅ ⋅ + ⋅⋅ ′ ⋅ ⋅ ′ ′ ⋅ ′

4 3
4 3β ( DD B B

B B B KD KM B KD KM B KD B

T

T

⋅
+ ⋅ ⋅ + ⋅ + ⋅ ⋅ +

⋅
⋅ ⋅ ′ ⋅

)
( ' ' ' 'β 4 2 2 ⋅⋅ KD ' )3

 (18)

ResUlTs

Performance evaluation
The test dataset of microbe-disease association was downloaded 
from HMDAD. We used LOOCV (leave-one-out cross 
validation), two-fold cross validation and five-fold cross 
validation to test the prediction performance of KATZBNRA on 
the HMDAD data.

In LOOCV, each known microbe-disease association takes 
turns to be picked out as the testing case and the other known 
associations are regarded as training data. We then obtained 
the prediction score of the test case output by KATZBNRA and 
ranked of the test case in the sorted list of all predicted microbe-
disease associations in descending order of their scores. We 
used different thresholds to determine the correct predictions 
and wrong predictions and calculated corresponding FPR 
(false positive rate) and TPR (true positive rate) according 
to Equation (19). Finally, the results were presented in the 
ROC (receiver operating characteristics) curve plot of TPR  
against FPR.

 
TPR TP

FN TP
FPR FP

TN FP
=

+
=

+
 ,   

 (19)

where FN is the number of false negative predictions (i.e. the 
cases whose prediction scores below the threshold), and TP is 
the number of true positive predictions (i.e. the cases whose 
prediction scores are not smaller than the threshold). FP is the 
number of the predicted associations that are not in the HMDAD 

dataset with scores not smaller than the threshold, and TN is the 
number of predicted associations that are not in the HMDAD 
dataset with scores smaller than the threshold. The area under 
a ROC curve is called AUC, and AUC is generally utilized to 
compare the power of predictive models. AUC of 0.5 indicates an 
entirely random prediction while AUC = 1 means a completely 
correct prediction.

In order to further test the prediction power of KATZBNRA, 
we also adopted 5-fold cross validation and 2-fold cross 
validation besides LOOCV. 5-fold (or 2-fold) cross validation 
randomly divides the microbe-disease associations equally 
into five (or two) parts and one of the five (or two) parts is 
reserved as the verification data while the remaining is used as 
training data. Considering the potential random sampling bias, 
we repeated each LOOCV, 2-fold and 5-fold cross validation 
test 100 times, and all ROC curves and AUCs are the average 
results of the 100 repeated tests. Meanwhile, we compared 
KATZBNRA with several state-of-the-art predictive methods 
using these validations.

For our method KATZBNRA, the walk length k plays a critical 
role. To test the effect of k, we changed the value of k, and carried 
out a series of LOOCV experiments. As shown in Figure 3, when 
k is set to 2, 3 and 4, the AUCs of each walk lengths are 0.9098, 
0.8968, and 0.8827, respectively. Obviously, when parameter k = 
2, KATZBNRA achieved the best prediction performance and 
walks of longer lengths may make the association prediction 
worse. Therefore, in the following experiments, we set k = 2. 
KATZBNRA has two more parameters, γ′ and β. The test in 
a previous work (Chen et al., 2016) showed AUC tended to 
decrease when γ′ was increased from 1.0 to 1.5, 2.0 and 2.5, and 
β was increased from 0.01 to 0.05 and 0.1. We also evaluated the 
AUC of KATZBNRA with different values of parameter γ′ and c 
in Equation (2) and Equation (3), and the test results are shown 
in Tables 1 and 2, showing similar results as Chen et al., 2016. 
Therefore, we set γ′=1.0 and β=0.01.

FIGURe 3 | The predictive performances of KATZBNRA with different ks.
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We compared KATZBNRA with another three prediction 
methods, the native bipartite network recommendation (BNR) 
(Zhou et al., 2007), KATZHMDA (Chen et al., 2017), and 
IMCMDA (Chen et al., 2018a) using LOOCV, 5-fold cross 
validation and 2-fold cross validation. The global LOOCV 
showed that the AUCs of KATZBNRA, KATZHMDA, 
IMCMDA and BNR were 0.9098, 0.8382, 0.7786, and 0.4113, 
respectively, as shown in Figure 4−6 show the 5-fold cross 
validation experimental results and the 2-fold cross validation 
experimental results, respectively. In 5-fold cross validation 
KATZBNRA, KATZHMDA, IMCMDA, and BNR obtained 
AUCs of 0.8972, 0.8330, 0.8041, and 0.5645, respectively, and in 
2-fold cross validation, their AUCs were 0.8463, 0.8190, 0.7988 
and 0.5434, respectively. In all the above experiments, the curves 
of KATZBNRA are above those of the other methods, which 
means that among the four methods, KATZBNRA achieved the 
best prediction performance.

Case studies
We studied asthma and inflammatory bowel disease (IBD) 
of microbe-related diseases of human beings based on recent 

published clinical and biological reports to further evaluate 
the ability of our method. The predicted disease-microbe 
associations which are contained in the HMDAD dataset are 
sorted according to their prediction scores in descending order. 
For asthma and IBD, we observed the microbes in the top 10 
associations of the lists. This guarantees absolute independence 
between the verification candidate and the known association for 
model training.

As a common chronic lung inflammatory disease, asthma 
causes difficulty in breathing (Martinez, 2007). It is believed 
that asthma is caused by the environment and a combination of 
genes. For severe asthma, one of the leading causes is a microbe 
(Huang et al., 2011). All of top predicted 10 candidate microbes 
of KATZBNRA (Table 3) have been verified by recent studies.

TABle 1 | The AUC of KATZBNRA with γ′set different values.

γ′ AUC

1 0.9098
1.5 0.9083
2 0.9033

TABle 2 | The AUC of KATZBNRA with c set different values.

c AUC

-15 0.9098
-10 0.9038
-5 0.8935

FIGURe 4 | The LOOCV experimental results of KAZTBNRA, KATZHMDA, 
IMCMDA, and the native bipartite network recommendation.

FIGURe 5 | The 5-fold cross validation experimental results of KAZTBNRA, 
KATZHMDA, IMCMDA, and the native bipartite network recommendation.

FIGURe 6 | The 2-fold cross validation experimental results of KAZTBNRA, 
KATZHMDA, IMCMDA, and the native bipartite network recommendation.
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As a typical chronic GI (gastrointestinal) tract inflammatory 
bowel disease, IBD includes ulcerative colitis and Crohn’s disease 
(Lomax et al., 2006). We listed the top 10 IBD-related candidate 
microbes predicted by KATZBNRA in Table 4, among which 
eight microbes have been previously validated.

DIsCUssION
Based on the bipartite network recommendation and the KATZ 
model, the paper introduced a novel disease-microbe association 
prediction method called KATZBNRA. KATZBNRA uses the 

Gaussian interaction profile kernel to calculate the similarity of 
diseases and microbes in the bipartite network containing the 
known microbe-disease associations from the HMDAD database, 
and the bipartite network recommendation score on the KATZ 
model enables KATZBNRA to predict potential disease-microbe 
associations with high accuracy. The experimental results of 
LOOCV, 5-fold cross validation, 2-fold cross validation and the 
IBD and asthma case studies have demonstrated the excellent 
and reliable prediction ability of KATZBNRA. With regard to 
similar prediction problems such as predicting lncRNA-disease, 
drug-target, gene-disease, miRNA-disease, and other biological 
associations, this model can be applied with small modifications.
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TABle 3 | The Asthma-related microbe prediction of KATZBNRA. All of top 10 
microbes were confirmed by recent studies.

Rank Microbe evidence

1 Firmicutes PMID: 23265859(Marri et al., 2013)
2 Actinobacteria PMID: 23265859(Marri et al., 2013)
3 Clostridium coccoides PMID:21477358(Vael et al., 2011)
4 Streptococcus PMID: 17950502(Preston et al., 2007)
5 Lactobacillus PMID: 20592920(Yu et al., 2010)
6 Lachnospiraceae PMID:17433177(Rados et al., 2007)
7 Pseudomonas PMID:13268970(Fein, 1955)
8 Burkholderia PMID:24451910(Beigelman et al., 2014)
9 Fusobacterium Dang et al., 2013(Dang et al., 2013)
10 Propionibacterium PMID:27433177(Jung et al., 2016)

TABle 4 | Top 10 potential IBD-related microbes predicted by KATZBNRA

Rank Microbe evidence

1 Clostridium coccoides PMID:19235886(Sokol et al., 2009)
2 Firmicutes PMID:25307765(Walters et al., 2014)
3 Bacteroidetes PMID:25307765(Walters et al., 2014)
4 Staphylococcus PMID:28174737(Pedamallu et al., 2016)
5 Prevotella PMID:25307765(Walters et al., 2014)
6 Streptococcus PMID:23679203(Kojima et al., 2014)
7 Propionibacterium unconfirmed
8 Propionibacterium acnes unconfirmed
9 Bacteroidaceae PMID:17897884(Takaishi et al., 2008)
10 Haemophilus PMID:24013298(Said et al., 2014)
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Non-negative matrix factorization (NMF) is a matrix decomposition method based on 
the square loss function. To exploit cancer information, cancer gene expression data 
often uses the NMF method to reduce dimensionality. Gene expression data usually have 
some noise and outliers, while the original NMF loss function is very sensitive to non-
Gaussian noise. To improve the robustness and clustering performance of the algorithm, 
we propose a sparse graph regularization NMF based on Huber loss model for cancer 
data analysis (Huber-SGNMF). Huber loss is a function between L1-norm and L2-norm 
that can effectively handle non-Gaussian noise and outliers. Taking into account the 
sparsity matrix and data geometry information, sparse penalty and graph regularization 
terms are introduced into the model to enhance matrix sparsity and capture data manifold 
structure. Before the experiment, we first analyzed the robustness of Huber-SGNMF and 
other models. Experiments on The Cancer Genome Atlas (TCGA) data have shown that 
Huber-SGNMF performs better than other most advanced methods in sample clustering 
and differentially expressed gene selection.

Keywords: non-negative matrix factorization, Huber loss, sample clustering, graph regularization, robustness

INTRODUCTION
Cancer is considered to be the number one killer of human health. The development of high-
throughput sequencing technology has enabled researchers to obtain more comprehensive 
information about cancer patients (Chen et al., 2019). The gene expression data of cancer patients 
can be more used for effective data mining through computational methods (Chen et al., 2018). In 
general, cancer gene expression data are characterized by high dimensionality, which is extremely 
difficult for data analysis. How to effectively reduce the dimensionality of data is the key to analyzing 
cancer data. Principal component analysis (PCA) (Feng et al., 2019), locally linear embedding (LLE) 
(Roweis and Saul, 2000), and non-negative matrix factorization (NMF) (Yu et al., 2017) are common 
methods for reducing the data dimensionality. Unlike several other methods, NMF can find two 
non-negative matrices and its product can effectively restore the original matrix. The non-negative 
constraint guarantees additive combinations between different elements. NMF demonstrates its 
advantages in facial recognition, speech processing, document clustering, and recommendation 
systems (Guillamet and Vitrià, 2002; Xu et al., 2003; Schmidt and Olsson, 2006; Luo et al., 2014).
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NMF has developed rapidly in recent years, and several 
variants of NMF have been proposed to improve the effectiveness 
of the decomposition. Cai et al. proposed graph regularized 
NMF (GNMF) for data representation (Cai et al., 2011). GNMF 
considers the association between points to preserve the internal 
structure of the data. Kim et al. applied the L1-norm constraint 
on the coefficient matrix to introduce sparse NMF for clustering 
(SNMF) (Kim and Park, 2007). Sparseness is more likely to 
remove redundant features of data. The most of cancer data have 
noise and outliers, and the original NMF cannot solve this. Wang 
et al. introduced Characteristic Gene Selection Based on Robust 
GNMF (RGNMF) (Wang et al., 2016a) to improve the robustness 
of the algorithm. RGNMF assumes that the loss follows Laplacian 
distribution and uses the loss function of the L2,1-norm (Kong 
et al., 2011) constraint. The L2,1-norm combines the advantages 
of the L2-norm and the L1-norm, which impose an L2-norm 
constraint on the entire data space and an L1-norm constraint on 
the sum of the different data points (Ding et al., 2006).

The original NMF model is simple to understand and 
computationally fast, but the squared loss function is too 
sensitive to outliers and noise. Mao et al. proposed the 
correntropy induced metric based GNMF (CGNMF) (Mao et al., 
2014) that changed the original loss function. The correntropy 
uses L0-norm approximation for large outliers and noise through 
kernel function filtering, and the normal data is constrained by 
the L2-norm (Liu et al., 2007), so it is not sensitive to outliers and 
noise. Du et al. proposed Huber-NMF (Du et al., 2012), which 
is also a loss function that is insensitive to outliers and noise. It 
uses approximate L1-norm processing for outliers and noise, and 
L2-norm for valuable data. Correntropy uses kernel functions 
to control weights, and Huber loss uses a different function 
approximation for different data through threshold adjustment. 
The robustness analysis of these several non-square loss models 
is given in the experimental part. To compare the performance of 
the NMF algorithm, the robust PCA (RPCA) based method for 
discovering differentially expressed genes proposed by Liu et al. 
(2013) is added to the experiment.

In this paper, we propose a model called sparse graph 
regularization NMF based on Huber Loss Model for Cancer Data 
Analysis (Huber-SGNMF). It effectively combines Huber loss, 
manifold structure, and sparse constraint. Huber loss is based on the 
relationship between L1-norm and L2-norm to approximate different 
data. In detail, Huber loss adjusts the square loss or linear loss to the 
data according to the threshold to enhance the robustness of the 
model to outliers. Geometric information in high-dimensional data 
should remain locally constant in low-dimensional representations 
(Cai et al., 2011), so graph regularization is added to preserve the 
manifold structure of the data. Sparse constraints in the model can 
remove redundant features contained in the data to reduce the 
amount of model calculations and improve clustering performance 
(Kim and Park, 2007).

The contributions of this article are as follows:

1.  The squared loss of the original NMF is too sensitive to outliers 
and noise; so, we use a more robust Huber loss combined with 
NMF. The Huber loss considers the relationship between the 
L1-norm and the L2-norm to effectively handle non-Gaussian 

noise and large outliers. For the update rules of Huber loss, 
we use the multiplicative iterative algorithm based on semi-
quadratic optimization to find the optimal solution.

2. The NMF model fits the data in Euclidean space but does 
not consider the intrinsic geometry of the data space. If 
the data is related in high-dimensional space, then we 
believe that the data represented by the low-dimensional 
should also be closely related. Considering the manifolds 
embedded in the high-dimensional environment space, we 
add graph Laplacian as a regularization term to the model. 
Graph regularization takes into account the impact of recent 
neighbors on data, and retaining graph structure can make 
NMF more distinguishable.

3. Sparse matrices can remove redundant data, reducing data 
complexity and model computational difficulty. In data 
analysis, sparsity can improve clustering performance by 
reducing the difficulty of feature selection. The L2,1-norm as a 
sparse constraint is added to the model because the L2,1-norm 
is robust and can achieve row sparse effect.

The remainder of this paper is organized as follows. The 
introduction of related work is shown in Section 2. Models and 
solution optimization are presented in Section 3. The experiment 
and analysis are arranged in Section 4. Section 5 summarizes the 
entire paper.

ReLATeD WORK

Non-Negative Matrix Factorization
NMF is a dimensionality reduction method based on partial 
representation. For a given dataset X = …  ∈ ×x x xn

m n
1 2, ,  , 

NMF can decompose it into the basic matrix U ∈m k×  and the 
coefficient matrix V ∈ ×k n , with the purpose of approximating 
the original matrix by two matrix products. In general, the rank 
of matrix factorization k is selected by the number of larger 
singular values.

For gene expression data matrix X ∈m n× , each row represents 
a gene corresponding to n samples, and each column represents 
a sample composed of m genes. Moreover, U contains m rows of 
metagene and V contains n rows of metapattern (Liu et al., 2018). 
Each column of V is a projection of a corresponding sample 
vector in X according to the basic matrix U (Li et al., 2017). NMF 
is visualized on gene expression data as shown in Figure 1.

The NMF loss function is minimized as follows:

 
min , . . , ,X UV U V− ≥ ≥

2
0 0s t  (1)

where ⋅  represents the application of the Frobenius norm to the 
matrix.

Lee and Seung proposed the use of multiplicative iterative 
update rules to solve the optimal solution of NMF (Lee and 
Seung, 1999). Its update formula is as follows:

 
u uik ik

ik
T

ik

=
( )

( )
XV

UVV
,  (2)
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v vkj kj

T
kj

T
kj

=
( )

( )
U X

U UV
,  (3)

where uik and vkj are elements belonging to U and V, respectively. 
The non-negative constraints of U and V only allow additive 
combinations between different elements, so NMF can learn 
part-based representations (Cai et al., 2011).

Huber Loss
Data usually contain a small amount of outliers and noise, which 
can have a worse effect on model reconstruction. For noise 
and outliers in the dataset, Huber loss uses weighted L1-norm 
processing because the L1-norm is robust and can effectively 
handle outliers and noise (Guofa et al., 2011; Yu et al., 2016). For 
other valuable data in the dataset, Huber losses still use L2-norm 
loss to fit the data. Huber loss function δ(·) is defined as follows:

 

δ e
e if e c

c e c if e c
( ) =

<

− ≥

 2

22

,

,




 (4)

where c represents the threshold parameter of the data using the 
L1-norm or the L2-norm. This function is a bounded and convex 
function that minimizes the effects of a single anomaly point 
(Chreiky et al., 2016). Huber losses often apply to the insensitive 
outliers and noise contained in the data, which are often difficult 
to find using the squared loss function (Du et al., 2012).

Manifold Regularization
The manifold learning theory (Belkin and Niyogi, 2001) shows 
that the internal manifold structure of the data can be effectively 
simulated by the nearest neighbor of the data points. Each data 
point finds its nearest p neighbors and connects the data points 
to the neighbors with edges. There are many ways to define the 
weight of an edge, most commonly 0–1 weighted: Wij=1, if and 
only if nodes i and j are connected by edges. The advantage of this 
weighting method is that it is easy to calculate.

Weight matrix Wij is only used to measure the intimacy 
between data points. For the low-dimensional representation 
sj of the high dimensional data xj, the Euclidean distance 
O s s s s( , )j l j l= −

2
 is typically used to measure the similarity 

between two low-dimensional data points. According to the 
intimacy weight W, the smoothness of the two low-dimensional 
vectors can be measured as follows:

 

R j l
j l

N

jl

j
T

j jj
j

N

j
T

l jl
j l

N

= −

= −

∑
∑ = =

1
2

2

1 1

s s W

s s D s s W

,

,∑∑
= ( ) − ( )
= ( )

tr tr

tr

VDV VWV

VLV

T T

T ,

 (5)

where tr(·) denotes the trace of a matrix. The matrix D is defined 
as a diagonal matrix with diagonal elements D Wii jl

jj
= ∑  The 

graph Laplacian (Liu et al., 2014) matrix L is defined as L=D-W.
We hope that if the high-dimensional data xj and xl are very 

intimate, then sj and sl should be close enough in low-dimensional 
representations (Cai et al., 2011). Therefore, minimizing R is 
added to our model to encode the internal geometry of the data.

MeTHOD

The Huber-Sgnmf Model
Based on the Huber loss function, we proposed a novel model that 
preserves the manifold structure and sparsity simultaneously. The 
Huber loss is combined with NMF to enhance NMF robustness. 
To further optimize the model, the graph regularization term and 
the L2,1-norm are added to the loss function as constraints. L2,1-
norm mathematical expression is as follows:

 
X 2 1

2

11 21
, , .= =

==
∗

=∑∑ ∑x xij
j

n

i

m

i
i

m
 (6)

FIGURe 1 | The gene expression data matrix X ∈m n×  is decomposed into a low-dimensional basic matrix U ∈m k×  and a low-dimensional coefficient 
matrix V ∈ ×k n . The product of two low-dimensional matrices can approximate the original matrix.
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The Huber-SGNMF final model OHuber−SGNMF is as follows:

 
min ( ) ,,

U ,V
X-UV VLV V

≥ ≥
+ ( ) +

0 0
2 1trδ α βT

 (7)

where tr(·), α, and β represent the trace of the matrix, the 
regularization term parameters, and the sparse constraint 
parameters, respectively. In the experiment, the basic matrix 
U and the coefficient matrix V are used for differential gene 
selection and cluster analysis, respectively.

Optimization
Obviously, the loss function is a non-quadratic optimization 
problem, and finding the optimal solution is not simple. 
Fortunately, the semi-quadratic optimization technique that has 
been proposed can effectively optimize the loss function. The 
loss function can be reconstructed to find the optimal solution 
by introducing auxiliary variables. According to the conjugate 
function and the semi-quadratic technique (Nikolova and 
Chan, 2007), the fixed loss function σ(Z) can be constructed 
as follows:

 
σ τ φZ Z W W

Wij ij ij ij( ) = ( ) + ( )
∈

min , ,


 (8)

where Z X - U Vij ij ik kj
k

K
=

=∑ 1
 represents the difference between 

the NMF predicted value and the actual value. σ(·) indicates the 
noise or normal data, which is processed using different loss 
functions. W ∈ ×



m n  is the introduced auxiliary variable. ϕ(Wij) 
is the conjugate function of Zij. τ ⋅ ⋅( ),  is a quadratic term for Zij 
and Wij. The NMF model only needs to consider the quadratic 
term of the multiplication form:

 
τ Z W W Zij ij ij ij, .( ) = 1

2
2  (9)

Combine Equation (8) and Equation (9) with the loss function 
(7):

min tr
U V

U V

X UV VLV V
≥ ≥

≥ ≥

( ) + ( ) +

=

0 0 2 1

0 0

, ,

,

-δ α βT

min W X UV W tr VLV V⊗ ( ) + ( ) + ( ) +- ,
,

2

2 1
φ α βT

 (10)

where ⊗ represents the Hadamard product, which is the product 
between two matrices’ elements. Operator ⊗ takes precedence 
over other matrices operators. Its Lagrangian function expansion 
is expressed as follows:

 
Huber SGNMF i i i i i i i

T

i

m

− ∗ ∗ ∗ ∗ ∗ ∗
=

( ) −( ) −( )=U X U V Q X U V
1

∑∑ + ( )tr ψψUT ,

  
  (11)

and

 

Huber SGNMF j j j j j j j
T

j

n

− ∗ ∗ ∗ ∗ ∗ ∗
=

( ) −( ) −( )=V X U V R X U V
1

∑∑
+ + +( ) + ( ) ( ) ( )tr tr trα VLV VGV U VT T T Tβ tr ψψ ϕϕ ,

  
  (12)

where Qi and Rj are defined as Qi=diag(Wi*) and R=diag(W*j), 
respectively. ψψ =  ψ ik  and ϕϕ =  ϕkj  are Lagrangian multipliers 
of non-negative constraints U 0 and V 0, respectively. G is a 
diagonal matrix with diagonal elements, which is given by:

 G vjj mj
m

k
= +

=∑1 2

1
/ ω  (13)

where ω is a number that is very close but not equal to zero.
Let ψU=0 and φV=0 by using Karush–Kuhn–Tucher (KKT) 

(Qi and Jiang, 1997) conditions. The loss function (10) can be 
iteratively optimized by the following schemes:

Update W when U and V are fixed. The weight matrix W 
according to equation (8) is defined as follows:

 
wij

ij

ij
=

′( )σ Z
Z

,  (14)

where the elements of weight matrix is wij ϵ W Combine the loss 
function (7) with the equation (14) are as follows:

 

w

if x u v c

cij

ij ik kj

ij

=

≤

−

1 - ,

X UV
otherwise,










 (15)

Update U and V when W is fixed. The update rules for U and 
Vare as follows:

 

u u

u

ik ik
i i

T

ik

i i
T

ik

ik

T

ik

=
( )

( )

=
⊗( )

∗

∗

X Q V

U VQ V

W XV

WW UV V⊗ ( )( )T

ik

,

 (16)

 

v v

v

kj kj

T
j j kj

T
j j kj

kj

=
( )

+ +( )

=

∗

∗

U X R

U R UV VL VG

U

α β

TT

kj
T

kj

W X

U W UV VL VG

⊗( )( )
⊗( ) + +( )α β

,

 (17)
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The threshold parameter c is set to the median of the 
reconstruction error,

 
c median

ij
= −( ).X UV  (18)

The corresponding algorithm is shown in Algorithm 1.

ALGORITHM 1 | Huber-SGNMF.

Data input: XX ∈ ∈× × mm nn nn nn,, LL
Data output: UU ∈ ×mm kk ,,  VV ∈ ×kk nn  and weight matrix WW ∈ ×mm nn

Parameters: α,β
Data initialize: U≥0, V≥0
Repeat
Update G by (13);
Update W by (15);
Update uik by (16);
Update vjk by (17);
Update c by (18);
End convergence

Convergence Analysis
According to the update rules of Huber-SGNMF, the loss 
function OHuber-SGNMF can converge to the local optimum through 
theorem 1.

Theorem 1. The loss function (7) is guaranteed to be non-
increasing under the update rules (16) and (17). The loss function 
is constant when the elements uik and vkj have fixed values.

To prove theorem 1, we introduce the auxiliary function H in 
Algorithm.

Lemma 1. Suppose H (r, r′) is an auxiliary function of F (r). 
If the conditions H (r,r′) F(r) and H (r,r)=F(r) are satisfied, then 
it can be concluded that F(r) is non-increasing from iteration t 
to t+1:

 
r r rt

r

+ = ′1 arg min ( , )H  (19)

Proof:

 F F( ) ( , ) ( , ) ( ).r r r r r rt t t t t t+ +≤ ≤ =1 1H H  (20)

Suppose loss function OHuber-SGNMF has a suitable auxiliary 
function HHuber If the minimum updates rule for HHuber is equal to 
(16) and (17), then the convergence of OHuber-SGNMF can be proved. 
Furthermore, the parts of the loss function OHuber-SGNMF associated 
with the elements uik ϵ U and vkj ϵ V are represented by Fik and Fkj, 
respectively. The partial derivative equation of OHuber-SGNMF can be 
derived as follows:

 
F'ik Huber SGNMF

ik
i i

T
i i

O= ∂
∂







= − +−
∗ ∗U

2 2X Q V U VQ VTT

ik
( ) ,  (21)

 
′′ = ∂

∂






= ( )−F ,ik

Huber SGNMF

ik

i
T

kk

O2

2 2
U

VQ V  (22)

 

′ = ∂
∂







= − ( )
+

−
∗Fkj

Huber SGNMF

kj

T
j j k

T
j

O
V

U X R

U R

2

2 UUV VL VG∗( ) + +j k
2 2α β ,

 (23)

 

′′ = ∂
∂







= ( ) + (−Fkj

Huber SGNMF

kj

T
j kk

O2

2 2 2
V

U R U Lα )) + ( )jj jj
2βG .

  
  (24)

Essentially, the algorithm updates each element, which means 
that if the elements Fik and Fkj are non-increasing, then OHuber-

SGNMF is also non-increasing.
Lemma 2. Define HHuber ik

tu u,( )  and HHuber kj
tv v,( )  as auxiliary 

functions for uik and vkj, respectively. The expansion items are as 
follows:

 

HHuber ik
t

ik ik
t

ik ik
t

ik
tu u u u u u, F F( ) = ( ) + ′ ( ) −( )

+
( )

−( )∗U VQ Vi i
T

ik

ik
t ik

t

u
u u

2
,

 (25)

 

HHuber kj
t

kj kj
t

kj kj
t

kj
tv v v v v v, F F( ) = ( ) + ′ ( ) −( )

+
+ +( )

−
∗U R UV VL VGT

j j kj

kj
t kj

t

v
v v

α β
(( )2

.
 (26)

Proof:
According to the lemma 1, HHuber (u,u)=Fik(u) and HHuber 

(v,v)=Fkj(v) can be obtained. We have the following formulas 
through the Taylor series expansion of the auxiliary function.

 

F F Fik ik ik
t

ik ik
t

ik
tu u u u u( ) ≈ ( ) + ′ ( ) −( )

+ 11
2

2
′′( ) −( )F ,ik ik

t
ik
tu u u

 (27)

 

F F Fkj kj kj
t

kj kj
t

kj
tv v v v v( ) ≈ ( ) + ′ ( ) −( )

++ ′′ ( ) −( )1
2

2
F .kj kj

t
kj
tv v v

 (28)

Next, HHuber ik
t

iku u u, F( ) ≥ ( )  and HHuber kj
t

kjv v v, F( ) ≥ ( )  need 
to be guaranteed.

According to (25) and (27), expand HHuber ik
t

iku u u, F( ) ≥ ( )  is 
as follows:

 

U VQ V
VQ V

i i
T

ik

ik
t i

T

u
∗( )

≥ ,  (29)
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since

 
U VQ V VQ V VQ Vi i

T

ik ia i
T

ka
a

K

ik i
T

kk
u u∗

=

( ) = ( ) ≥ ( )∑
1

.  (30)

According to (26) and (28), expand HHuber kj
t

kjv v v, F( ) ≥ ( )  is 
as follows:

 

U R UV VL VG
U R U L G

T
j j kj

kj
t

T
j kk jj jv

∗ + +( )
≥ ( ) + ( ) + ( )

α β
α β

jj
,

  
  (31)

since

 
U R UV U R U U R UT

j j kj

T
j bk

b

K

bj
T

j kk kjv v∗
=

( ) = ( ) ≥ ( )∑
1

,  (32)

 
β β βVG G G( ) = ≥

=
∑kj kb bb
b

N

kj jjv v
1

,  (33)

and

 

α α α

α

VD D D

D

( ) = ≥

≥

=
∑kj kc cc
c

N

kj jj

kj

v v

v

1

−−( ) =W L
jj kj jjvα .

 (34)

So, HHuber ik
t

iku u u, F( ) ≥ ( )  and HHuber kj
t

kjv v v, F( ) ≥ ( )  can be 
obtained. In other words, the auxiliary functions Fik (u) and Fkj 
(v) of the updated rules (16) and (17) are non-increasing, and the 
derivation of theorem 1 is completed. Finally, the convergence of 
the loss function OHuber-SGNMF is proved.

The corresponding convergence analysis curve is shown in 
Figure 2.

ReSULTS AND DISCUSSION

Datasets
Five gene expression datasets downloaded from TCGA are used 
in the experiment. TCGA is a gene data sharing system that 
contains information on thousands of cancer patients and has 
made great contributions to the path of human exploration of 
cancer genomics. The experiment used five datasets including 
cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), 
head and neck squamous cell carcinoma (HNSC), pancreatic 
cancer (PAAD), and esophageal cancer (ESCA).

To explore the association between genes and multiple cancers, 
diseased samples from multiple datasets are integrated into one 
dataset. In detail, the detesteds PAAD, HNSC, and COAD  are 
integrated into one dataset, which is represented as PHD. The 
detesteds PAAD, HNSC, and COAD are integrated into one 

dataset, which is represented as PHD. These two integrated datasets 
contain only diseased samples of different diseases. Datasets are 
standardized before using, and the data normalization scales data 
to specific time intervals. Pre-processing data speeds up searching 
for the best solution and optimizes convergence speed. Since 
high-dimensional gene expression data contains a large amount 
of redundant information, PCA (Wu et al., 2017) is used to reduce 
the dimensions to 2,000 genes in the pre-processing.

Model Robustness
To analyze the robustness of RGNMF, CGNMF, and Huber-
SGNMF, we apply these methods to a composite dataset consisting 
of 200 two-dimensional data points (Figure 3A). All data points 
are distributed in one dimensional space. In Figure 3A, there 
is only one contaminated point, and each model can restore 
the original data normally. The contaminated points in Figures 
3B–D are 50 points, 100 points, and 150 points, respectively. In 
the case where a part of the data is contaminated, only Huber-
SGNMF successfully restores the original data. CGNMF and 
RGNMF are affected by some noise or outliers when restoring 
data, while NMF is most affected by noise or outliers.

Parameter Selection
In the experiment, we consider the effect of each parameter on the 
solution model. A grid search method is used to find the optimal 
parameters of the model. The grid search range is [10-2~102]. 
As shown in Figure 4, the PHD dataset is used as an example 
to find the optimal parameters of the Huber-SGNMF model. 
Specifically, the two datasets are set to the same parameters α = 
100 and β = 0.01 Other methods in the experiment are set up with 
prior parameters or grid searches to find the optimal parameters.

FIGURe 2 | Convergence analysis curve of Huber-SGNMF model. Each 
curve represents a dataset. PHD and PHDEC are the datasets used in 
the experiment.
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Performance evaluation and Comparisons
To prove the validity of the performance of the model, six states of 
the art methods including RPCA (Liu et al., 2013), NMF (Lee and 
Seung, 1999), SNMF (Kim and Park, 2007), GNMF (Cai et al., 2011), 
RGNMF (Wang et al., 2016a), CGNMF (Mao et al., 2014), and 
Huber-NMF (Du et al., 2012) are compared with Huber-SGNMF. 
In the experiment, the basic matrix and the coefficient matrix are 
used to differentially gene selection and cluster analysis, respectively.

Feature Selection Results and Analysis
Feature selection is the selection of representative features 
from multiple feature values (Yu and Liu, 2003). In the analysis 
of cancer data, the feature selection is to find differentially 
expressed genes for cancer (that is, pathogenic genes). This is of 
great significance in exploring the link between cancer and genes 
(Chen et al., 2017). For each method, the top 500 genes with the 
greatest differential expression are analyzed.

The GeneCards (https://www.genecards.org/) system is 
used to download all gene libraries associated with the disease. 
The selected genes are compared with the gene bank to select 
overlapping genes and obtain a corresponding relevance score. 
The relevance score is the indicator that GeneCards assesses  
the association between the gene and the disease. The higher the 
relevance score is, the greater the intimacy of the gene and the 
disease. The average relevance score (ARS) and the maximum 
relevance score (MRS) are used to evaluate the performance of 
the model.

The specific experimental results of the seven methods are 
listed in Table 1. The results show that the genes selected by 
Huber-SGNMF model have higher ARS and MRS. This means 
that the model can effectively find the genes associated with 
cancer. Table 2 lists the genes for the top 10 largest relevance 
scores selected by the Huber-SGNMF model on the PHD dataset. 
The detailed genetic analysis is as follows. 

FIGURe 3 | In the case of different data points are contaminated, NMF, RGNMF, CGNMF, and Huber-SGNMF restore 200 synthetic two-dimensional data points: 
(A) the data contains 1 noise or outlier, (B) the data contains 50 noise or outliers, (C) the data contains 100 noise or outliers, (D) the data contains 150 noise 
or outliers.
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CTNNB1 is a protein-coding gene from which the protein 
encoded by the gene forms part of an adhesion-linked protein 
complex. Mutations in the CTNNB1 proto-oncogene are associated 
with most human colorectal epithelial tumors, and a significant 
increase in expression in the same tumor may indirectly or directly 
lead to intestinal adenocarcinoma (Wang et al., 2011). Moreover, 
deep sequencing of patients with pancreatic ductal adenocarcinoma 
also found CTNNB1 mutations (Honda et al., 2013; Javadinia 
et al., 2019). Multiple studies have shown that CTNNB1 mutation 
analysis is important for PAAD and COAD (Kubota et al., 2015).

ERBB2, commonly referred to as HER2, may be critical for 
enhancing the synergistic effect of PI3K inhibitors in HNSC 
patients (Michmerhuizen et al., 2019). It is generally believed that 
dysregulated ERBB2 signaling plays a key role in the development 
of pancreatic cancer (Lin et al., 2019). For the treatment of 
intestinal adenocarcinoma, ERBB2 mutations and amplification 
in small intestinal adenocarcinoma patients also make a great 
contribution (Adam et al., 2019). Recent studies have shown 
that HER2 targeted therapy has significantly improved outcomes 
in patients with breast and stomach problems with ERBB2 
mutation/amplification (Meric-Bernstam et al., 2019).

The CDH1 gene plays a regulatory role in cell growth (Nagai 
et al., 2018), and the CDH1 gene located on chromosome 16q22.1 
is considered to be a tumor suppressor of diffuse gastric cancer. 
By measuring the methylation profile of gastric cancer and breast 
cancer patients, it is found that CDH1 is closely related to low 
protein expression (Wang et al., 2016b; Wang et al., 2016c). 
Studies have shown that abnormal expression of CDH1 gene 
leads to uncontrolled growth of tumor cells (Dial et al., 2007; 
Chen et al., 2012).

The above experimental results show that Huber-SGNMF 
model can find pathogenic genes more effectively. Although 
some genes have not been confirmed, they may be a key part of 
solving cancer problems in the future.

Clustering Results and Analysis
After the Huber-SGNMF model reduces the dimensions of 
the data, the coefficient matrix is used for k-means clustering. 
Sample clustering is a common analytical method for cancer 
diagnosis and molecular subtype discrimination (Xu et al., 2019). 
Moreover, multiple evaluation criteria accuracy (ACC), recall 
(R), precision (P), and F-measure (F) are adopted to judge the 
model to be feasible and effective. ACC is an evaluation standard 

FIGURe 4 | Optimal parameter selection for the Huber-SGNMF model on the 
PHD dataset. Huber-SGNMF is set with parameters α = 100 and β = 0.01.

TABLe 1 | Relevance scores for seven methods.

NMF SNMF GNMF RGNMF RPCA CGNMF Huber-NMF Huber-SGNMF

PHD MRS 116.4 113.99 116.4 164.03 194.01 113.99 164.03 164.03
ARS 22.64 21.75 22.03 22.16 26.03 21.75 25.56 27.19

PHDEC MRS 92.51 96.36 153.66 124.37 172.9 164.91 145 172.9
ARS 29.18 30.05 36.58 27.87 37.83 35.07 35.93 44.97

Bolded texts denoted best experimental results.

TABLe 2 | Detailed analysis of the differentially expressed genes in PHD dataset.

Gene name Relevance score Gene official name Related diseases

CTNNB1 164.03 Catenin beta 1 Colorectal cancer and pilomatrixoma
ERBB2 152.33 Erb-B2 receptor tyrosine kinase 2 Lung cancer and ovary adenocarcinoma
CDH1 149.92 Cadherin 1 Gastric cancer and breast cancer
TGFBR2 102.74 Transforming growth factor beta receptor 2 Colorectal cancer and esophageal cancer
CDK4 93.35 Cyclin dependent kinase 4 Myeloma and melanoma
EPCAM 86.79 Epithelial cell adhesion molecule Pancreatic cancer and gastrointestinal carcinoma
GNAS 76.17 GNAS complex locus Osseous heteroplasia
ERBB3 74.35 Erb-B2 receptor tyrosine kinase 3 Transitional cell carcinoma
CEACAM5 59.9 Carcinoembryonic antigen related cell Adhesion molecule 5 Colorectal cancer and lung cancer
MAP2K2 51.51 Mitogen-activated protein kinase kinase 2 Head and neck squamous cell carcinoma
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that can visually reflect the clustering of samples. It is defined as 
follows:

 
ACC

a b

n
i i

i

n

=
( )( )

=∑ δ ,map
,1  (35)

Where δ (•) and map (•) represent function permutation and 
delta mapping function, respectively. The actual sample label, 
the predicted sample label, and the total number of samples are 
denoted by a, b and n, respectively.

Considering clustering accuracy alone does not fully 
demonstrate clustering performance, and more evaluation criteria 
need to be introduced. The clustering results can be divided into 
true positive (TP), true negative (TN), false positive (FP) cases, 
and false negative (FN) according to real and predictive labels. 
These four measures are listed in Table 3. The detailed evaluation 
criteria are as follows.

 
R TP

TP FN
=

+
,  (36)

 
P TP

TP FP
=

+
,  (37)

 
F R P

R P
= × ×

+
2 .  (38)

Since R, P, and F can only reflect the clustering performance 
of a certain sample categories, for multi-category problems, 
the average of each category of indicators is usually used as the 
evaluation criterions:
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,  (40)

 
Macro F Macro R Macro P

Macro R Macro P
− = × − × −

− + −
2 ,  (41)

where n represents the number of sample categories.
According to the above evaluation criterions, each algorithm 

is performed 50 times to get an average result. Since the 
initialization matrix is random, the average value can reduce the 
chance of the algorithm. Table 4 lists the comparative experiments 
of seven methods based on four evaluation criterions. Compared 
with the other six methods, our proposed model has the excellent 
clustering performance under the four evaluation criterions. The 
specific analysis of the clustering results is as follows:

1. Since the squared loss of the original NMF is sensitive to 
noise and outliers, the squared loss is replaced by Huber loss 
to improve the robustness of the algorithm. The experimental 
results show that the clustering performance of RPCA, 
CGNMF, RGNMF, Huber-NMF, and Huber-SGNMF is higher 
than standard NMF and GNMF. The reason is that both NMF 
and GNMF use square loss while other methods use more 
robust loss function. Moreover, the experimental results show 
that the robustness of the Huber loss model is higher than the 
L2,1 -norm loss and correntropy loss. The RPCA model has 
higher performance as a state-of-the-art algorithm and is still 
lower than Huber-SGNMF. The Huber loss use L1 -norm or 
L2 -norm to different data, which can effectively reduce the 
influence of noise and outliers and enhance the robustness of 
the algorithm. Compared with NMF, the clustering accuracy 
of Huber-SGNMF model on the two datasets increased by 
4.90 and 5.68%, respectively.

2. Assuming that data points are related in a high-dimensional 
state, they should also be relevant in low-dimensional 
representations. However, the association between data 
points is difficult to preserve when the data is mapped to 
low-dimensions. The manifold structure preserves the spatial 
structure of high-dimensional data in low-dimensional 
representations, enhancing the correlation between data 
points. Constructing a sample association graph of gene 
expression data to preserve the relationship between the 
samples. The experimental results of several models (NMF 

TABLe 3 | Clustering result confusion matrix.

The true 
situation

Clustering result

Positive Negative

Positive TP (true positive) FN (false negative)
Negative FP (false positive) TN (true negative)

TABLe 4 | Clustering effect for seven methods.

Dataset evaluation NMF SNMF GNMF RGNMF RPCA CGNMF Huber-NMF Huber-SGNMF

PHD ACC (%) 85.38 ± 1.24 88.93 ± 0.58 86.05 ± 1.97 86.50 ± 1.84 86.37 ± 2.04 87.18 ± 1.43 88.55 ± 0.98 90.36 ± 0.91
Macro-R (%) 82.99 ± 1.57 86.86 ± 0.82 81.02 ± 1.09 84.28 ± 2.40 84.10 ± 2.79 85.00 ± 1.79 86.41 ± 1.27 88.50 ± 1.19
Macro-P (%) 84.88 ± 1.74 89.08 ± 0.86 83.55 ± 3.76 85.68 ± 2.74 85.58 ± 2.96 86.77 ± 2.02 88.32 ± 1.36 90.18 ± 1.28
Macro-F (%) 83.92 ± 1.65 87.95 ± 0.84 82.25 ± 3.51 84.92 ± 2.60 84.83 ± 2.88 85.87 ± 1.90 87.35 ± 1.31 89.33 ± 1.23

PHDEC ACC (%) 69.84 ± 0.26 71.51 ± 0.31 70.15 ± 0.08 71.86 ± 0.69 75.02 ± 0.32 73.81 ± 0.27 72.53 ± 0.21 75.52 ± 0.20
Macro-R (%) 63.95 ± 0.18 65.33 ± 0.14 61.98 ± 0.38 64.45 ± 0.87 68.37 ± 0.28 66.74 ± 0.15 67.09 ± 0.07 69.02 ± 0.07
Macro-P (%) 61.34 ± 0.26 62.45 ± 0.19 58.77 ± 0.10 62.80 ± 0.97 65.81 ± 0.50 64.47 ± 0.27 63.92 ± 0.25 65.56 ± 0.25
Macro-F (%) 64.17 ± 0.20 63.79 ± 0.21 60.24 ± 0.27 63.49 ± 0.87 66.92 ± 0.29 65.51 ± 0.17 65.34 ± 0.12 67.17 ± 0.10

Bolded texts denoted best experimental results.
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and GNMF, Huber-NMF, and Huber-SGNMF) show that 
the clustering performance of the model with the addition 
of graph regularity constraints is improved. Compared 
with Huber-NMF, Huber-SGNMF has improved clustering 
accuracy by 1.73 and 2.99% in the two datasets, respectively.

3. Matrix sparseness removes redundant data and simplifies 
model calculations. The sparsity constraint of the coefficient 
matrix removes redundant features and improves clustering 
performance. The experimental results of SNMF and Huber-
SGNMF prove this. Compared with SNMF, since Huber-
SGNMF improves the loss function and manifold structure, 
the clustering accuracy in the two datasets is increased by 1.35 
and 4.02%, respectively.

In summary, the experimental results based on the four 
evaluation indicators demonstrate the excellent clustering 
performance of the Huber-SGNMF model. Compared with NMF, 
the clustering performance of Huber-SGNMF has improved 
5.30 and 4.49% on average in PHD dataset and PHDEC dataset, 
respectively. Huber-SGNMF clustering performance improves 
1.93 and 2.07% on average compared to Huber-NMF. The above 
experimental results strongly prove the effectiveness of Huber-
SGNMF in clustering performance.

CONCLUSION
In this paper, we propose a novel model based on Huber loss: 
Huber-SGNMF, which is dedicated to samples clustering and 

differentially expressed gene selection. On the one hand, the 
squared loss is replaced by Huber loss to enhance algorithm 
robustness. On the other hand, sparse penalty and graph 
regularization terms are added to the model to enhance the 
sparsity of the matrix and preserve data geometry information. 
Numerous experimental results confirm that the Huber-SGNMF 
method is more effective. In the future work, we will actively 
explore more effective constraints based on the traditional NMF 
method to improve the robustness and sparsity of the method.
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The microbiome-wide association studies are to figure out the relationship between 
microorganisms and humans, with the goal of discovering relevant biomarkers to guide 
disease diagnosis. However, the microbiome data is complex, with high noise and 
dimensions. Traditional machine learning methods are limited by the models' representation 
ability and cannot learn complex patterns from the data. Recently, deep learning has 
been widely applied to fields ranging from text processing to image recognition due to 
its efficient flexibility and high capacity. But the deep learning models must be trained 
with enough data in order to achieve good performance, which is impractical in reality. In 
addition, deep learning is considered as black box and hard to interpret. These factors 
make deep learning not widely used in microbiome-wide association studies. In this work, 
we construct a sparse microbial interaction network and embed this graph into deep 
model to alleviate the risk of overfitting and improve the performance. Further, we explore 
a Graph Embedding Deep Feedforward Network (GEDFN) to conduct feature selection 
and guide meaningful microbial markers' identification. Based on the experimental results, 
we verify the feasibility of combining the microbial graph model with the deep learning 
model, and demonstrate the feasibility of applying deep learning and feature selection 
on microbial data. Our main contributions are: firstly, we utilize different methods to 
construct a variety of microbial interaction networks and combine the network via graph 
embedding deep learning. Secondly, we introduce a feature selection method based on 
graph embedding and validate the biological meaning of microbial markers. The code is 
available at https://github.com/MicroAVA/GEDFN.git.

Keywords: graph embedding, deep learning, feature selection, biomarkers, microbiome

INTRODUCTION
A large number of microorganisms are parasite on various parts of the human body, mainly 
concentrated in the intestine, oral cavity, reproductive tract, epidermis and skin. The microbial 
communities existing in different parts of the body or in different host environments are very 
different (Turnbaugh et al., 2007; Lloyd-Price et al., 2017). These microorganisms include bacteria, 
fungi, viruses and protozoa. All genetic material in the particular microbial community is called 
the microbiome. Recent studies have shown that microorganisms are directly or indirectly 
related to many diseases. For example, the gut microbiome may be closely related to irritable 
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bowel syndrome and its imbalance may lead to chronic 
kidney diseases. Microorganisms may also be closely related 
to digestive tract diseases, endocrine diseases, circulatory 
diseases, reproductive system diseases, respiratory and 
psychiatric diseases (Kho and Lal, 2018). Since the microbiome 
plays a central role in the hosts' health, understanding the 
distribution and composition of microbial communities in 
humans, especially under different diseases or physiological 
conditions, is of great significance for disease diagnosis, 
prevention and treatment. The microbiome-wide association 
studies are to find disease-associated microbial markers to 
guide disease diagnosis and treatment (Gilbert et al., 2016; 
Wang and Jia, 2016). Compared with the human genome, the 
microbiome is an ideal target and more convenient to regulate. 
Therefore, the microbiome is often named “the second human 
genome” (Brüls and Weissenbach, 2011). However, there are 
many types of microorganisms and most of them cannot be 
cultured. Therefore, a high-throughput sequencing method 
is a feasible means of understanding microbial communities. 
Through high-throughput sequencing, we can understand 
the types of microorganisms and even their functions in the 
community (Ranjan et al., 2016).

The microbiome data is from high-throughput sequencing 
methods such as 16s or shotgun sequencing, which is often 
with high dimensions with noise. As a result, it is difficult 
to mine microbial signatures from these data. Traditionally, 
statistical-based methods identify markers mainly through 
microbial abundance differential expression (Paulson et  al., 
2013). However, the statistical approaches often have strong 
assumptions and the real data often do not satisfy these 
assumptions (Hawinkel et al., 2017; Weiss et al., 2017). Other 
machine learning methods are widely explored (Pasolli et al., 
2016). Recently, deep learning has received great attention, 
especially its end-to-end automatic learning ability. At 
present, deep learning is widely used in automatic driving, 
image recognition and text processing, which has received 
exciting results (LeCun et al., 2015). The deep models can 
learn specific patterns directly from the data, thus avoiding 
the artificial feature engineering (Goodfellow et  al., 2016; 
Kong and Yu, 2018). In the analysis of biomedical data, 
especially the analysis of various omics data, deep learning has 
achieved good improvement, but still faces many problems 
and challenges (Angermueller et al., 2016; Camacho et al., 
2018; Eraslan et al., 2019). First, deep learning requires a large 
amount of training data to learn useful information while the 
biological sample size is often limited and cannot fully utilize 
its capabilities. Second, the training process is often considered 
a black box and people can only control the input and models' 
parameters. More specifically, deep learning involves complex 
network structures and nonlinear transformations, as well 
as a large number of hyperparameters, which hinder people 
from understanding how deep neural networks are making 
predictions. Although deep neural networks perform well on 
some classification tasks, biological problems should be paid 
more attention to which features lead to better classification 
(Ching et al., 2018).

In this paper, we propose a feature selection method based 
on Graph Embedding Deep Feedforward Network (GEDFN) 
to conduct microbiome-wide association studies. Firstly, we 
construct three different microbial co-occurrence interaction 
networks. We utilize a graph embedding method to embed 
the network as a priori knowledge into Deep Feedforward 
Neural Network to reduce parameters, alleviate the overfitting 
problem and improve the models' performance. Secondly, 
we propose a feature selection approach based on GEDFN. 
Experiments show the microbial feature markers obtained via 
this method have biological significance. In other words, our 
results demonstrate graph embedding deep learning could 
guide feature selection.

RELaTED WORK

Microbial Interaction Network
Because of the various relationships between microorganisms, 
such as symbiosis, competition and so on, as well as the complex 
structure and function of microorganisms due to their dynamic 
properties, the network is a good way to represent complex 
relationships. Understanding microbial interaction can help us 
understand microbial functions. System-oriented graph theory 
can facilitate microbial analysis and enhance our understanding 
of complex ecosystems and evolutionary processes (Faust et al., 
2012; Layeghifard et  al., 2017). However, most microorganisms 
are uncultured, we can only construct microbial interaction 
networks from high-throughput sequencing data. At present, 
there are many computational methods to construct microbial 
interaction networks. In theory, any method of calculating features' 
relationships can be used. For example, Bray–Curtis can be used 
to measure species abundance similarity (Bray and Curtis, 1957). 
The Pearson correlation coefficient is used to evaluate the linear 
relationship and the Spearman correlation coefficient can measure 
the rank relationship (Mukaka, 2012). CoNet uses an ensemble 
approach and combines with different comparison metrics to 
detect different relationships (Faust and Raes, 2016). Maximum 
mutual information is designed to capture broader relationships, 
not limited to specific function families (Reshef et al., 2011). 
MENA applies random matrix theory to conduct microbial analysis 
and experiments show it is robust to the noise and threshold (Deng 
et al., 2012). Sparse Correlations for Compositional data (SparCC) 
is a tool based on Aitchison's log ratio transformation to conduct 
microbial composition analysis (Friedman and Alm, 2012). SParse 
InversE Covariance Estimation for Ecological Association Inference 
(SPIEC-EASI) combines data logarithmic transformation with 
graph model inference framework to build a correlation network 
(Kurtz et al., 2015).

Feature selection
Real biomedical data, especially various omics data with high 
dimensions and noise, often has feature redundancy problem. 
Feature selection is a step of data preprocessing, which involves 
selecting related features from a large number of features to 
improve subsequent learning tasks (Li et al., 2017).
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There are mainly three kinds of feature selection methods, 
including filter, wrapper and embedded method. The filter 
approach selects subset features and then trains the learner. 
The feature selection process is independent of the subsequent 
learner. This is equivalent to filter the initial feature with the 
feature selection process and train the model with the filtered 
features. However, filter methods often ignore some features 
that are helpful for classification. At the same time, many filter 
methods are based on a single-featured greedy algorithm. The 
assumption is that each feature is independent while this 
is often not the case in microbiological data. The wrapper 
feature selection directly takes the performance of the learner 
to be used as the evaluation criterion of the feature subset. In 
other words, the purpose of the wrapper feature selection is to 
select a feature subset that is most efficient in its performance 
for a given learner. Compared to the filter method, the 
wrapper method can evaluate the result of feature selection to 
improve the classification performance; however, the feature 
selection process requires to train the learner iteratively and 
the calculation is huge (Li et al., 2017). The embedded feature 
selection combines the feature selection in the learning 
and training process, both of which are completed in the 
same optimization. In other words, the feature selection is 
automatically performed during the training.

Feature selection is a traditional machine learning research 
field with many methods. For more information, please refer 
to the literature (Li et al., 2017). The previous work proposed a 
feature selection method based on Deep Forest (Zhu et al., 2018); 
however, there is less work on microbiome-wide association 
studies via Deep Neural Network and less research is done from 
the perspective of embedding approach for feature selection. 

The challenge of feature selection based on microbial network 
is that there is no microbial network available at present. The 
commonly used statistical-based interaction network methods 
may lead to high false positive rate due to the compositional bias 
(Gloor et al., 2017).

MaTERIaLs aND METhODs
We mainly explain the feature selection method based on GEDFN 
from the following three aspects (Figure 1). First, we will introduce 
the construction method of microbial interaction network, including 
sparcc, SPIEC-EASI and Maximal Information Coefficient (MIC) 
then, we will introduce a deep embedding structure to embed the 
graph into Deep Feedforward Network. Finally, we will propose a 
feature selection approach for GEDFN.

Microbial Correlation Network
The total amount of genetic material extracted from the microbial 
community and the sequencing depth will affect the whole reads. 
It is often necessary to normalize the reads in the sample. As a 
result, the microbial abundance obtained by 16s sequencing 
is relative rather than absolute, which is not independent. 
The traditional statistical measures for detecting microbial 
interactions, for example, Pearson correlation, will lead to false 
positives (Gloor et al., 2017).

Sparcc
Assuming that the network is sparse, sparcc constructs the 
association network by using standard logarithmic ratio 
transformation and iteratively calculates the variance matrix of 

FIGURE 1 | The workflow of graph embedding deep network to conduct feature selection. 1. Construct microbial interaction network. The input is Operational 
Taxonomic Unit (OTU) abundance. Different approaches are adopted to obtain different interaction networks. The vertexes are species and the edges are correlation 
coefficient. 2. Graph embedding and model training. The feature graph is embedded into the first hidden layer in order to achieve sparse connection instead of 
fully-connected between the input layer and the first hidden layer. The first hidden layer (graph embedding layer) has the same neurons as the input layer. 3. Feature 
selection. The neurons (features) are ranked according to their importance score which is calculated via each neuron's connection weights.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 118268

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Graph Embedding for Microbial BiomarkersZhu et al.

4

compositional dependence. For details of the algorithm, please 
refer to the literature (Friedman and Alm, 2012).

SPIEC-EASI
SPIEC-EASI assumes the network is sparse and combines 
logarithmic transformation of compositional data with graph 
inference framework to construct the network. It consists of 
two steps: first, logarithmic ratio transforms the data; then, 
SPIEC-EASI uses the neighborhood selection and sparse inverse 
covariance selection to infer the interaction graph from the 
transformed data (Kurtz et al., 2015).

Maximal Information Coefficient
The maximal information coefficient (MIC) is used to measure 
the degree of linear and nonlinear correlation between two 
variables (Reshef et al., 2011). The main idea of the MIC method 
is based on the recognition that if there is some correlation 
between two variables, the distribution of the data in the grid 
can be reflected after meshing the scatter plots formed by the 
two variables. The MIC divides the scatter plot of the variable 
pair (x, y) and uses dynamic programming to calculate and 
search for the maximum mutual information value that can 
be achieved under different split modes. Finally, the maximum 
mutual information value is normalized and the result is MIC.

The Framework of Graph Embedding 
Deep Feedforward Network
Deep Feedforward Neural Network
Deep Feedforward Network, also known as feedforward neural 
network or multilayer perceptron, is a typical deep learning 
model. In this model, the information moves only in one 
direction from the input nodes to the output nodes through the 
hidden nodes. There is no loop in the network. A feedforward 
neural network structure with l hidden layers is:

 P y|X,θ( ) = +( )f Z W bout out out  (1)

 Z Z W bout l l l= +( )   σ  (2)

… …

 Z Z W bk k k k+ = +( )1    σ  (3)

… …

                    Z XW bin in1 = +( )σ  (4)

where X∈Rnxp is an input matrix with n samples and p features, 
y∈Rn is the output label for the classification task. In this work, 
it is a binary classification. The label for each sample is normal 
or disease. Zout and Zk,(k=1,…,l-1) are the neurons in the hidden 
layer. Wk is the weight matrix. bk is the bias. θ is the parameters. 
σ(·)is the activation function(such as, sigmoid, tanh, rectifiers). 
F(·) is a softmax function which is used to convert the output 
layer value into the predicted probability.

The model uses a stochastic gradient descent (SGD) 
algorithm to minimize the cross entropy loss function to 
update the parameter θ. When a feedforward neural network 
is used to receive input x and produce an output  y  . During 
training, forward propagation can continue until it produces 
a scalar cost function J(θ). The backpropagation algorithm 
runs information from the cost function and flow backward 
through the network to calculate the gradient in order to 
update the weight parameters (Goodfellow et al., 2016).

 J
n

y logp y pi i i i
i

n
θ( ) = − + −( ) −( )( )

=∑  ˆ ˆ1 1 1
1

log  (5)

Graph Embedding Deep Feedforward Network
The fully connected deep feedforward neural network has 
many parameters and requires a large number of training data, 
but often the biological sample size is limited, which often 
leads to overfitting. Therefore, we construct a microbial sparse 
network and embed this graph network into the model. There 
are two main advantages. First, the sparse graph embedding 
will greatly reduce the parameters of deep feedforward 
network and mitigate the overfitting risk. Second, the sparse 
graph structure is derived from existing prior information 
and combining the priori information into the network can 
improve the reliability of the model. The main idea of graph 
embedding is to replace the full connections between the 
input  layer and the first hidden layer with a sparse graph 
(Figure 2).

Consider a graph G=(V,E), V is the vertical set with p features. E 
is a collection of all edges. A common way of representing a graph 
is to use an adjacency matrix. Given a graph G with p vertices, a 
pxp adjacency matrix A is:

 

A
if and i j p

ij =
∀ = …1 1

0

,         , , , ,

,     

V Vi j connected

                                                       .otherwise





  

G is an undirected graph and A is a symmetric matrix. At 
the same time, we consider Aii=1 which indicates that the vertex 
itself is connected. We construct a feedforward neural network in 
which the first hidden layer has the same dimensions as the input 
layer, hin=p, similarly,Win is a pxp matrix. The input X is sparsely 
connected with Z1 (Figure 2). In other words, the original fully 
connected layer:

 Z XW bin in1 = +( )σ  (6)

is changed to:

 Z X W A bin in1 = ( ) +( )σ   (7)

Where    is element-wise product. Therefore, the connection 
between the input and first hidden layer of the feedforward 
network is filtered by the graph adjacency matrix. Each feature is 
corresponding to a hidden neuron. All features have corresponding 
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hidden neurons in the first hidden layer. The feature can only 
provide information to the connected graph. In this way, the graph 
helps to achieve the sparsity of the connection between the input 
layer and the first hidden layer (Kong and Yu, 2018).

Feature selection Based on GEDFN
In addition to improving classification, it is also meaningful to find 
features that contribute significantly to classification because they 
reveal potential biological mechanisms. However, Deep neural 
network is a “black box”, the interpretability of deep learning hasn't 
been well-defined (Guidotti et al., 2019). In our experiment, we 
focus on how the input features influence the prediction and we 
borrow the idea from Olden and Jackson (2002) and Kong and Yu 
(2018). The feature importance score is the quantification values 
of the contributions of features to a model prediction, which links 
the input features and output prediction. They highlight the parts 
of a given input that are most influential for the model prediction 
and thereby help to explain why such a prediction was made. The 
feature selection is based on feature score, which means the score 
is high if the feature is important. As a result, we develop a feature 
ranking method based on the feature relative importance score, 

similar to the connection weights method introduced by Olden and 
Jackson (2002) and Kong and Yu (2018). What is learned by neural 
networks is contained in the connection weights. Based on idea of 
connection weight, we propose a graphical connect weight method 
that emphasizes the importance of the features of our proposed 
neural network architecture.

The main idea of a graphical connect weight is: the contribution of 
a particular variable directly reflects the magnitude of the connection 
weights associated with the corresponding hidden neurons in the 
graph embedding layer. The sum of the absolute values of the directly 
related weights for a neuron (or feature) gives its relative importance:

 s w I A wj j kj
in

m
h

kj
k

p

jm= = + =
=∑γ ( ) ( )( ) ,1 1

1

11Σ  (8)

 γ j kj
k

p
c A j p= =( )





= …
=∑min / , ,  ,  , .1 1 1

1
 (9)

Where sj is importance score of the feature j w(in) indicates 
the weights between the input layer and the first hidden layer, 
while w(1) indicates the weights between the first and second 

FIGURE 2 | Graph embedding deep feedforward network (GEDFN). The graph embedding layer (first hidden layer) has same neurons with the input layer. The 
sparse connect between the input layer and the first hidden layer is marked as black. Other hidden layers are fully-connected.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 118270

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Graph Embedding for Microbial BiomarkersZhu et al.

6

hidden layer. The constant c is to penalize vertices with too many 
connections so that they don’t over impact the result. In the 
following experiments, we set the parameter c = 50.

EXPERIMENTs aND REsULTs

Data set
Inflammatory bowel diseases (IBD) are a group of specific 
chronic intestinal diseases, mainly including Crohn's disease 
and ulcerative colitis. The occurrence and development of IBD 
are closely related to intestinal microorganisms (Gevers et al., 
2014). In our experiment, OTU BIOM files and metadata were 
downloaded from the QIITA (https://qiita.ucsd.edu/) database 
(study id: 1939). The detailed experiment was described in Gevers 
et al., 2014. The IBD data set consists of 1,359 metagenomic 
samples, including rectal, ileal biopsy and fecal samples (Gevers 
et al., 2014). We retained samples of mucosal tissue biopsies 
(terminal ileum and rectum) samples under the age of 18. The 
control group were without inflammatory conditions, such 
as abdominal pain and diarrhea. The final data set consisted 
of 657 IBD samples and 316 normal samples, respectively. We 
used QIIME's taxa collapse to filter the strain's species, limiting 
features at genus level.

Results
The Hyperparameters of Graph Embedding Deep 
Feedforward Neural Network
The structure of the graph embedding deep feedforward neural 
network (GEDFN) is shown in Figure 2. The most important 
part of GEDFN is that the number of neurons in the first hidden 
layer is the same as the number of neurons in the input layer and 
they are sparsely connected, which is different with normal fully 
connected feed forward neural network. The second layer, third 
and fourth hidden layers are consisting of 128, 64 and 16 neurons 
respectively and they are fully connected.

We use three different methods to construct a microbial 
co-occurrence interaction network from microbial abundance 
data. When the sparcc method is used to build the network, we 
reserve the vertexes if the correlation of two vertexes is larger 
than 0.3. We get an adjacency network with 63 vertexes and 315 
edges. We adopt the mictools (Albanese et al., 2018) to build the 
MIC relevant network and we get 279 vertexes and 3230 edges 
when the correlation threshold is 0.2. The network constructed 
by sparcc and SPEC-EASI methods is sparse while MIC gets 
relatively a dense network. Different methods get different 
interaction networks. We find the higher the threshold, the more 
reliable is the network. However, the high threshold will make 
the network too sparse. As a result, we combine three kinds of 
networks to get a larger network with 736 vertexes and 18,034 
edges. In this way, the connections between the input layer and 
the first hidden layer are more reliable and less dense than the 
fully connected approach.

Other hyperparameters of GEDFN are as follows: the learning 
rate is 0.0001, the activation function is Rectified Linear Unit 
(ReLU) and the weight initializer is he_uniform, the drop out 

is 0.2. the code is implemented in keras and available at https://
github.com/MicroAVA/GEDFN.git.

The Evaluation of Classification
Traditional classification methods such as Random Forest has 
been shown to be the best performers in omics data classification 
tasks and the results show that Random Forest has achieved the 
best performance on microbial classification (Pasolli et al., 2016). 
Therefore, we compare GEDFN with Deep Forest (DF), Random 
Forest (RF) and Support Vector Machines (SVM). For the 
binary classification, we calculate the Area Under the Receiver 
Operating Characteristics (AUROC) and classification accuracy 
for each method (Figure 3).

AUROC curve is a performance measurement for classification 
problem at various thresholds settings, which can evaluate 
classifiers considering all true positives (TP), false positives (FP), 
true negatives (TN) and false negatives (FN). Receiver Operating 
Characteristics (ROC) is a probability curve and Area Under the 
Curve (AUC) represents degree or measure of separability. It tells 
how much a model is capable of distinguishing between classes. 
The higher the AUC, the better the model is at predicting 0s as 
0s and 1s as 1s. By analogy, the higher the AUC, the better the 
model is at distinguishing between patients with disease and no 
disease. The ROC curve is plotted with true positive rate (TPR) 
against the false positive rate (FPR) where TPR is on the y-axis 
and FPR is on the x-axis.

 
TPR =

+
=

+
TP

TP FN
FPR FP

TN FP
 ,   

 

The classification accuracy means the percentage of correct 
predictions from the total number of predictions made.

   

 
ACC  = =( )

=
∑1

1
m

I y y
i

m

ˆ

 

Where ŷ  is the predicted label and yi is the true label for the 
sample i. The m means the sample size and I(·)is the indicator 
function.

In this experiment, we adopt a five-fold cross-validation. We 
use the implementation of Random Forest in python's scikit-
learn package. We set the estimator parameter to 300. The Deep 
Forest is based on the work (Zhu et al., 2018). From the AUC 
value, we find that the Graph Embedding Deep Feedforward 
Network (GEDFN) is much better than SVM (AUC = 0.663). 
Compared with Deep Forest and Random Forest, GEDFN is also 
very competitive. GEDFN achieves an AUC value of 0.843, which 
is slightly better than Deep Forest (AUC = 0.834) and Random 
Forest (AUC = 0.823). In terms of classification accuracy, 
GEDFN achieves an average accuracy of 79.52%, Deep Forest 
achieves 76.6% and Random Forest achieves 75.16%. GEDFN 
outperforms 2–4% than Deep Forest and Random Forest. These 
methods are much better than SVM (67.5%).
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The Evaluation of Feature Selection
In our experiment, we compare GEDFN with traditional feature 
selection methods, such as minimum redundancy and maximum 
Relevance (mRMR) (Ding and Peng, 2005), Random Forest and 
Deep Forest respectively. Each method selects 50 features. We 

want to know if the features obtained by the traditional machine 
learning feature selection method can also be selected by GEDFN. 
As can be seen from the Venn diagram (Figure 4), most of the 
features selected by the mRMR are different from those selected 
by the other three methods. Among these 50 features selected by 

FIGURE 3 | The Area Under Receiver Operating Characteristic curve (left) and accuracy of classification (right) for GEDFN, Deep Forest (DF), Random Forest (RF) 
and Support Vector Machines (SVM). Left: the grey dash line is the chance discrimination that located on diagonal line (AUC = 0.5). The maximum AUC = 1 means 
the classifier could discriminate the diseased and non-diseased perfectly while AUC = 0 means the classifier incorrectly classified all subjects with diseased as 
negative and all subjects with non-diseased as positive. The AUC is averaged through a five-fold cross validation. Right: the boxplot for classifiers’ classification 
accuracy.

FIGURE 4 | The feature selection based on Graph Embedding Deep Feedforward Network (GEDFN). The Venn diagram for top the 50 features selected via 
minimum Redundancy and Maximum Relevance (mRMR), Random Forest (RF), Deep Forest (DF) and GEDFN.
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GEDFN, there are 25 and 21 features which are consistent with 
the Random Forest and Deep Forest respectively.

In addition, we compare the performance of GEDFN + SVM, 
RF + SVM, RF + SVM and RF + DF. Our approach is to select top 
10, top 15, top 20,…, top 50 feature subsets from GEDFN and 
RF respectively, and test them on SVM and Deep Forest (DF) 
classifiers with five-fold cross-validation (Table 1). GEDFN  + 
SVM, means GEDFN is utilized to conduct feature selection and 
SVM is the classifier. RF + SVM, means RF is utilized to conduct 
feature selection and SVM is the classifier. GEDFN + DF, means 
GEDFN is utilized to conduct feature selection and DF is the 
classifier. RF + DF, means RF is utilized to conduct feature selection 
and DF is the classifier.

From Table 1, the combination of GEDFN and SVM 
achieves the best f1 score, while RF + SVM gets the worst 
performance. Meanwhile, GEDFN + SVM and GEDFN + 
DF have consistent performance. We find GEDFN prefers 
the sparse features while RF prefers the dense features. In 
other words, RF has a bias in the feature selection process 
where multivalued features are favored (Nguyen et al., 2015). 
In addition, RF is biased in the presence of correlation and 
often identifies non-predictive features that are independent 
from each other (Nicodemus and Malley, 2009). Actually, the 
microbial data is sparse and the features are dependent, which 
makes RF not the best choice to conduct feature selection in 
microbiome. However, GEDFN is to embed the priori sparse 
correlation network and find biomarkers as a whole, which 
makes it more suitable for microbiome-wide association 
studies than RF-based models.

The cophenetic similarity or cophenetic distance of two objects 
is a measure of how similar those two objects have to be in order 
to be grouped into the same cluster (Sokal and Rohlf, 1962; Saraçli 
et al., 2013). We calculate the cophenetic distance of the feature 
subsets. The specific process is as follows: we select different 
feature subsets obtained by Random Forest, Deep Forest and 
GEDFN, such as top 10–50 features, and then calculate node-node 
pairwise distance. The distance is characterized by the leaf nodes 
of the phylogenetic tree. We use the cophenetic method of the 
ape package in R to calculate the node-node pairwise cophenetic 
distance. The value in the matrix is the sum of the branch lengths 

separating each pair of species. We compare the top 50 features of 
Random Forest, Deep Forest and GEDFN respectively. We find 
the feature subsets of GEDFN has smallest cophenetic distances 
among these methods, which means that the subset of these 
features is better cohesive and we speculate that this cohesion may 
be functional meaningful (Figure 5). Deep Forest and Random 
Forest have similar cophenetic distance because Deep Forest is a 
cascade structure based on Random Forest.

In addition, we utilize interactive Tree Of Life (iTOL) (Letunic 
and Bork, 2016) to visualize the top 20 features selected by 
GEDFN (Figure 6). The features are ranked according to their 
importance score. We average each species' relative abundance 
for diseased and normal groups respectively. We find that 
Neisseria, Pasteurellaceae, Bamesiellaceae, S24-7, Fusobacterium, 
Anaeroplasma and Gemellaceae had high abundance compared 
to the normal group, while other microorganisms are lowly 
expressed in the disease group. The Neisseria, Pasteurellaceae, 
Fusobacterium and Gemellaceae increased in Crohn's disease, 
which was reported in the research (Gevers et al., 2014). 
The Clostridiales, Eubacterium, Erysipelotrichaceae and 
Peptostreptococcaceae, Christensenellaceae were found in lower 
relative abundance in Crohn's disease (Gevers et al., 2014; 
Matsuoka and Kanai, 2015; Pascal et al., 2017). However, there 
is no unified option on the Crohn's disease-related microbial 
biomarkers. As a result, our findings must need further 
experiments to explore and verify.

CONCLUsIONs
In this work, we propose a method of embedding a microbial 
graph into a Deep Feedforward Network to achieve feature 
selection purpose. We have verified the feasibility of this method 
through experiments. The main contributions of our work are as 
follows: Firstly, the feasibility of this method is verified through 
combining microbial interaction structure and deep learning, 
and a sparse network structure is proposed. Secondly, the feature 
selection method is introduced into the microbial sparse network 
and the reliability of the feature selection results is verified, 
indicating that deep neural networks can also conduct feature 

TaBLE 1 | The performance among GEDFN + SVM, RF + SVM, GEDFN + DF and RF + DF.

# GEDFN + sVM RF + sVM GEDGN+DF RF+DF

P R F1 P R F1 P R F1 P R F1

10 0.733 1 0.846 0.675 1 0.806 0.733 1 0.846 0.785 0.871 0.825
15 0.745 1 0.854 0.675 1 0.806 0.745 1 0.854 0.722 0.909 0.800
20 0.752 1 0.858 0.675 1 0.806 0.750 0.991 0.854 0.717 0.927 0.805
25 0.706 1 0.828 0.675 1 0.806 0.705 0.991 0.824 0.765 0.907 0.829
30 0.707 1 0.828 0.675 1 0.806 0.707 0.983 0.823 0.718 0.957 0.821
35 0.698 1 0.822 0.675 1 0.806 0.698 1 0.822 0.692 0.977 0.810
40 0.704 1 0.826 0.675 1 0.806 0.709 0.985 0.824 0.706 0.962 0.813
45 0.707 1 0.828 0.675 1 0.806 0.707 1 0.828 0.687 0.991 0.811
50 0.697 1 0.822 0.675 1 0.806 0.697 1 0.822 0.695 0.974 0.810

#, number of top features; P, precision; R, recall; F1= 
2 P R

P + R

× ×
. The best F1 scores are marked as bold.
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selection. We hope our work will bring another perspective to 
the interpretability of deep learning.

The problems still exist in the research work. First of all, 
our work does not compare the influence of various methods 
of constructing microbial networks on feature selection (Weiss 

et al., 2016). The networks constructed by various methods are 
varying. We found that the reliability of the microbial network 
directly affected the subsequent results. Secondly, the threshold 
of association network was traded off and there was no relevant 
guidance suggestion. In general, the higher the threshold, the 

FIGURE 6 | The top 20 species selected via Graph Embedding Deep Feedforward Network (GEDFN). The species in red circle are higher relative abundance while 
species in blue star are lower relative abundance in diseased group. These species are visualized on the phylogenetic tree.

FIGURE 5 | The cophenetic distance for top 50 features selected via Random Forest (RF), Deep Forest (DF) and Graph Embedding Deep Feedforward Network 
(GEDFN) respectively (The cophenetic distance is the sum of the features' pair-wise distance.). The cophenetic distance of two objects is a measure of how similar 
those two objects have to be in order to be grouped into the same cluster.
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more reliable the network, but it would make the network too 
sparse. It would be required to balance the threshold and the 
network's sparseness. Finally, we only consider the influence of 
the weight parameters of the Deep Neural Network on the feature 
selection without considering the threshold of the neuron. 
Because it would involve the nonlinear transformation which 
could make the problem complicated and difficult. Therefore, our 
future work will focus on how to build a more reliable microbial 
interaction network and get more meaningful microbial markers.
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A Corrigendum on

Graph Embedding Deep Learning Guides Microbial Biomarkers’ Identification

by Zhu, Q., Jiang, X., Zhu, Q., Pan, M., and He, T. (2019). Front. Genet. 10:1182.
doi: 10.3389/fgene.2019.01182

Although in the original article although we have cited the work (Kong and Yu, 2018) in the
Introduction section, we did not cite the work in the Materials and Methods section. Our
approach to embedding deep learning for identifying microbial biomarkers is based on their
methods and thus contributed a lot to our article. Therefore, this citation has been added to the
following sections.

In order to avoid misinterpretation, we would like to add the reference in the following places
which were highlighted in RED:

The Materials and Methods section, subsection The Framework of Graph Embedding

Deep Feedforward Network, sub-subsection Graph Embedding Deep Feedforward Network,
paragraph 4:

“Where
⊙

is element-wise product. Therefore, the connection between the input and first
hidden layer of the feedforward network is filtered by the graph adjacency matrix. Each feature
is corresponding to a hidden neuron. All features have corresponding hidden neurons in the first
hidden layer. The feature can only provide information to the connected graph. In this way, the
graph helps to achieve the sparsity of the connection between the input layer and the first hidden
layer (Kong and Yu, 2018).”

The Materials and Methods section, subsection Feature Selection Based on GEDFN,
paragraph 1:

“In addition to improving classification, it is also meaningful to find features that contribute
significantly to classification because they reveal potential biological mechanisms. However, Deep
neural network is a “black box”, the interpretability of deep learning hasn’t been well-defined
(Guidotti et al., 2019). In our experiment, we focus on how the input features influence the
prediction and we borrow the idea from Olden and Jackson (2002) and Kong and Yu (2018). The
feature importance score is the quantification values of the contributions of features to a model
prediction, which links the input features and output prediction. They highlight the parts of a
given input that are most influential for the model prediction and thereby help to explain why
such a prediction was made. The feature selection is based on feature score, which means the
score is high if the feature is important. As a result, we develop a feature ranking method based
on the feature relative importance score, similar to the connection weights method introduced
by Olden and Jackson (2002) and Kong and Yu (2018). What is learned by neural networks is
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contained in the connection weights. Based on idea of connection
weight, we propose a graphical connect weight method that
emphasizes the importance of the features of our proposed neural
network architecture.”

The authors apologize for this error and state
that this does not change the scientific conclusions
of the article in any way. The original article has
been updated.
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IBI: Identification of Biomarker 
Genes in Individual Tumor Samples
Jie Li *, Dong Wang and Yadong Wang

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China

Individual patient biomarkers have an important role in personalized treatment. 
Although various high-throughput sequencing technologies are widely used in biological 
experiments, these are usually conducted only once or a few times for each patient, 
which makes it a challenging problem to identify biomarkers in individual patients. At 
present, there is a lack of effective methods to identify biomarkers in individual sample 
data. Here, we propose a novel method, IBI, to identify biomarkers in individual tumor 
samples. Experimental results from several tumor data sets showed that the proposed 
method could effectively find biomarker genes for individual patients, including common 
biomarkers related to the mechanisms of the development of cancer, which can be used 
to predict survival and drug response in patients. In summary, these results demonstrate 
that the proposed method offers a new perspective for analyzing individual samples.

Keywords: biomarker, individual sample, tumor, regression model, gene expression data

INTRODUCTION
Biomarker discovery is critical for cancer diagnostics, prognosis, and monitoring of therapy 
in clinical trials. With the development of high-throughput biochip technologies such as next-
generation sequencing, massive quantities of cancer genomic data are being generated in the 
healthcare field, which offers an opportunity to identify high-quality cancer biomarkers for use in 
personalized medicine. Therefore, various computational methods have been proposed to identify 
cancer biomarkers. At present, the most commonly used methods are statistical tests, such as t-test, 
KS-test, and Wilcoxon’s rank sum test (Li et al., 2007; Dembélé and Kastner, 2014; Love et al., 2014; 
Moore et al., 2016; Wang et al., 2018), which identify differentially expressed genes (DEGs) from 
two types of samples and choose the group of genes with the lower p-value as potential biomarkers. 
However, the method often ignores and misses information between genes (Lewis-Wambi et al., 
2008). Machine learning algorithms and statistical models also are widely used to identify cancer 
biomarkers. For example, the 70-gene biomarkers (Van’t Veer et al., 2002), wound-response gene 
biomarkers (Chang et al., 2005), and several of our gene biomarkers (Li et al., 2008; Li et al., 2010; 
Zhang et al., 2017) are all identified using machine learning algorithms. The 21-gene biomarkers 
(Van’t Veer and Bernards, 2008) and immunotherapy response biomarkers (Ock et al., 2017; Jiang 
et al., 2018) are based on statistical models.

However, the above methods are only able to identify biomarkers in two groups of samples, not 
in an individual sample. As cancer is a complex and heterogeneous disease, different patients have 
differences in pathogenesis and need different treatments. Thus, there is a need for biomarkers 
for individual patients that reflect their status. Currently, high-throughput biological experiments 
are usually conducted once or a few times for a single patient, which makes it a challenging 
problem to analyze single samples and, in particular, to identify biomarkers in individual patients. 
Some algorithms have been developed to analyze single samples. Rezwan et al. (2015) used the 
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Crawford-Howell t-test to analyze methylation data of single 
samples and identified hypomethylation at different sites. 
However, this method could only detect differences in a single 
molecular element among different samples and may ignore the 
relationships of different molecular elements in the same sample. 
Liu et al. (2017) proposed the sDNB (single-sample dynamic 
network biomarkers) method to detect early-warning signals or 
critical states in individual patients using gene expression data. 
sDNB detects changes in gene expression levels of a pair of genes 
relative to reference samples and considers the local information 
of a gene in network. Drier et al. (2013) proposed an algorithm 
to analyze single tumor samples using pathway-level information 
instead of gene-level information. Pathways were detected that 
were significantly associated with survival of glioblastoma and 
colorectal cancer patients. However, a set of genes in the same 
pathway have similar functions; this means that models based 
on redundant features (biomarkers) are usually more complex.

Here, we propose a novel method, IBI (identification of 
biomarker genes in individual tumor samples), to identify 
biomarker genes in individual tumor samples using gene 
expression data. An overview of the IBI method is given 

in Figure  1. First, DEGs in tumor and normal samples are 
identified. Then, regression models are constructed using the 
selected DEGs, and residuals of each gene in different samples 
are analyzed using the kernel density estimation (KDE). Finally, 
we assess the degree of change of each gene according to the 
credibility interval (CI) of its residuals to decide which genes are 
biomarkers of the individual sample.

MATeRIALS AND MeThODS

Data Collection and Preprocessing
The proposed method was used to analyze three gene expression 
data sets: TCGA-BRCA (Tomczak et al., 2015), GSE63557 
(Lesterhuis et al., 2015), and GSE35640 (Ulloa-Montoya et al., 
2013). TCGA-BRCA consists of 1,090 breast cancer samples and 
113 normal tissue samples. GSE63557 contains AB1-HA tumor 
data from mice during immunotherapy with 10 anti-CTLA-4 
immunotherapeutic response samples and 10 non-response 
samples, and GSE35640 consists of advanced melanoma data 
with 22 MAGE−A3 immunotherapeutic response and 34 

FIGURe 1 | Overview of IBI method.
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non-response samples. The first data set contains RNA-seq data, 
which was preprocessed using DESeq2 (Love et al., 2014), and 
the latter two data sets were preprocessed using the z-score.

Identification of Differentially  
expression Genes
Assuming we have gene expression data with two types of 
samples and genes, let each sample be labeled with either “+” 
or “−”; n1 and n2 are the number of samples with label “+” and 
“−”, respectively (n = n1+ n2). yji is the expression value of the 
jth gene of the ith sample with label “+”, and xji is the expression 
value of the jth gene of the ith sample with label “−”. q DEGs 
are obtained using the robust algorithm (Love et al., 2014) or 
GEO2R (Smyth, 2004).

Average Sample
Let average samples with label “+” and “−” be
u u u u and u u u uq q

+ + + + − − − −= … =  …



1 2 1 2,      , , respectively.

 
u

n
y q jj ji

i

n
+

=
= ≥ ≥∑1

1
1

1

, 1

 (1)

 
 u

n
x q jj ji
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n
−

=
= ≥ ≥∑1

1

2
1
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,
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Regression Model Based on Average and 
Single Samples
Let   'y ji  be the expression value of the jth DEG of the ith sample 
with label “+” and   'x ji  the expression value of the jth DEG of 
the ith sample with label “−.” For the ith sample with label “+,”
S y y yi i i qi

+ = ′ ′ ′ 1 2, ... , ,   ′y ji  can be predicted using the following 
regression model according to u j

+ :

 
   ,  ′ = + ≥ ≥+ + +y u q jji j
 β β0 1 1

 (3)

where β0
+  and β1

+  are the regression coefficients estimated 
according to a set of data y ui1 ,

1

+( ) , y ui2 2, +( ) , …, y uqi , 2
+( ) , using 

the least squares method.
Similarity, for the ith sample with label “−” , , ,  ' ' 'S x x xi i i qi

− = … 1 2

x ji
'  can be predicted using the following regression model 

according to uj
− :

 
x u q jji j

'  ,   = + ≥ ≥− − −β β0 1 1
 (4)

where β0
−  and β1

−  are the regression coefficients estimated 
according to a set of data x ui1 1, −( ) , x ui2 2, −( ) , …, x uqi q, −( )  using 
the least squares method.

Algorithm for Identifying Biomarker Genes 
of a Single Sample
Among q DEGs, expression values of some genes of a single 
sample may undergo very significant changes compared with 
their average values, i.e., the observed values of these genes are 
far from regression line. These genes are called biomarker genes 
of the single sample. The degree of the significant difference can 
be calculated using the residual value between the predicted 
value and observed value.

For the ith sample with label “+,” the residual value of its the 
jth DEG is:

 
e y y q jji ji ji

+ = ′ − ′ ≥ ≥   ,        1
 (5)

Similarity, for the ith sample with label “−”, the residual value 
of it’s the jth DEG is:

 e x x q jji ji ji
− = − ≥ ≥' '   ,        1  (6)

To obtain biomarker genes of the ith sample with label “+”, the 
KDE is introduced to estimate the probability density function

  f ei i
 ( )  of residual values: e e ei i qi1 2

+ + +( ), ,..., . Its kernel density 
estimator with Gaussian kernel K is as follows:

 
f e
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where h is a smoothing parameter called the bandwidth (h > 
0). Let Φ be the cumulative distribution function of the kernel 
density estimator; then, the CI at confidence level α is

 
CIα

α α=












−












∪0
2

1
2

1, ,  Φ Φ
 (9)

The jth gene is considered a biomarker gene of the ith sample 
with label “+” (n1 ≥ i≥ 1) if Φ e CIji

+( ) ∈ α . Similarity, we can obtain 
the biomarker gene of the ith sample with label “−”(n2 ≥i ≥1).

ReSULTS

Performance evaluation
It was somewhat difficult to directly evaluate the performance of 
the proposed method. Three methods were employed to evaluate 
the power of the method.

 1) Statistical test: The biomarker genes of each sample should be 
specific, that is, their expression values in the sample should 
be significantly different from those of other samples. We 
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designed a method to test such differences, as follows. First, 
biomarker genes of sample Si are selected and their expression 
values extracted from all samples. Then, the expression 
values of each biomarker gene in different samples are sorted 
respectively and used to construct a rank matrix. The ith row 
vector, Ri, of the matrix denotes orders of biomarker genes 
of Si. Finally, the Kolmogorov-Smirnov test is performed to 
determine whether there is a significant difference between Ri 
and Rj (j≠i).

 2) Survival analysis: The biomarker genes of each tumor sample 
should reflect its characteristics, namely, it should be possible 
to use biomarker genes to classify tumor samples into high- 
and low-risk groups and predict the survival risk of tumor 
patients.

 3) Validation via biological evidence: The biomarker genes of 
each tumor sample should reflect the pathogenesis of cancer, 
that is, they should have been reported to be associated with 
tumor development in the published literature.

experimental Results for TCGA-BRCA
The experiments on TCGA-BRCA were performed as follows. 
First, 6120 DEGs in two groups of samples were identified using 
DESeq2 (Love et al., 2014) at a 95% confidence level and absolute 
value of log fold change > 1. Next, average tumor and normal 
samples based on 6120 DEGs were obtained using Equations. (1) 
and (2). Then, 1,090 (113) regression models were constructed 
based on average tumor (normal) samples and 1,090 tumor (113 
normal) samples, respectively; an example is shown in Figure 2. 
The residuals of the genes of each sample were calculated 

using Equations (5) and (6); Figure 3 shows residual values of 
biomarker genes from two samples. Finally, biomarker genes for 
each sample were identified using Equations (7), (8), and (9). The 
distribution of the number of biomarker genes in the 1,090 (113) 
tumor (normal) samples is shown in Figure 4.

As shown clearly in Figures 2 and 3, genes were distributed 
in two main areas. The genes scattered in the upper-left of the 
plots are those with higher expression levels, whereas genes in 
the lower-right portion have lower expression values, in the 
single tumor/normal sample. In Figure 2, there are several spots 
that are distant from the regression lines. These spots represent 
biomarker genes of the single sample. Figure 3 shows more clearly 
which genes had very significant variation in expression. For 
example, the residuals of CLEC3A and CCNO were 4.92 and 3.83, 
respectively, significantly higher than the values for other genes; 
while the residuals of HIST3H2A and TNNT1 were −3.33 and 
−2.95, respectively, significantly lower than those of other genes.

It can also be seen from Figure 4 that the number of biomarker 
genes varied among different samples. Some tumor samples had 
more than 315 biomarker genes, while others had about 290. The 
mean numbers of biomarker genes in the tumor samples and 
normal samples were 304.9 and 305, respectively. In addition, 
the biomarker genes of different samples were also different. 
In 1090 tumor samples and 113 normal samples, the biomarker 
genes had different frequencies (a biomarker gene has higher 
frequency if it is found in more samples). The top 15 biomarker 
genes with significantly different frequencies in tumor and normal 
samples are listed in Supplementary Table 1. These genes were 
common biomarkers of most tumor samples, and they had higher 
frequency in tumor samples than in normal samples. Therefore, 
these genes were likely to be related to the development of breast 
cancer. To test our hypothesis, we searched the literature using 
public databases and found that 14 of the 15 genes were indeed 
related to the development of breast cancer. The top gene was 
S100A7, which has been found to be expressed in several tissues 
including breast adenocarcinomas and squamous carcinomas 
of the head and neck, the cervix, and the lung (Emberley et al., 
2004); S100A7 is also related survival of breast cancer patients 
(Emberley, 2003). CLEC3A had the highest frequency in tumor 
samples; its overexpression promotes tumor progression and 
poor prognosis in breast invasive ductal cancer (IDC) and is 
related to higher lymph node and poorer overall survival (OS) 
of breast IDC (Ni et al., 2018). PRAME has a tumor-promoting 
role in triple-negative breast cancer, increasing cancer cell motility 
through the epithelial-to-mesenchymal transition (EMT) gene 
reprogramming. Therefore, PRAME could serve as a prognostic 
biomarker and/or therapeutic target in triple-negative breast 
cancer (Al-Khadairi et al., 2019). Kammerer et al. (2016) suggested 
that patients with estrogen receptor-positive breast cancer might be 
stratified into high- and low-risk groups based on the KCNJ3 levels 
in the tumor. CST1 was found to be generally upregulated in breast 
cancer at both the mRNA and the protein level. Furthermore, OS 
and disease-free survival in the low CST1 expression subgroup 
were significantly superior to those in the high CST1 expression 
subgroup, indicating that CST1 could be a prognostic indicator and 
a potential therapeutic target for breast cancer (Dai et al., 2017). 
Xuan et al. (2015) reported that higher expression of MMP1 in 

FIGURe 2 | Regression model based on tumor sample TCGA-Z7-A8R6-
01A-11R-A41B-07 and average tumor sample. The points in the upper-left 
(lower-right) partition are two biomarker genes with the highest (lowest) 
expression levels.
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breast cancer might play a crucial part in promoting breast cancer 
metastasis. Powell et al. (2018) demonstrated that CEACAM5 was 
a clinically relevant driver of breast cancer metastasis. NKAIN1 is 
associated with OS in breast cancer (Su et al., 2019). DSCAM-AS1 
promotes tumor growth in breast cancer by reducing miR-204-5p 
and upregulating RRM2 (Liang et al., 2019). Overexpression 
of CEACAM6 promotes migration and invasion of estrogen-
deprived breast cancer cells (Lewis-Wambi et al., 2008). Bhakta 
et al. (2018) suggested that anti-GFRA1-vcMMAE ADC might 
provide a targeted therapeutic opportunity for luminal A breast 
cancer patients. BMPR1B is related to proliferation of breast cancer 
cells (Bokobza et al., 2009). Jia et al. (2016) identified COL11A1 

as a highly specific biomarker of activated cancer-associated 
fibroblasts (CAFs), which could promote breast cancer and inhibit 
pancreatic cancer. In summary, 14 of the top 15 biomarker genes 
have been reported to be associated with breast cancer. Therefore, 
these results demonstrate that the proposed method can effectively 
identify biomarkers related to cancer.

Statistical tests were performed to evaluate whether expression 
levels of biomarker genes of a sample were significantly different 
compared with those of other samples. As the biomarker gene 
set of each sample was represented by a p-value vector with 
dimension n, 1,090*1,089 [n(n−1)], where n is the number of 
samples) p-values were obtained for the 1090 tumor samples, and 

FIGURe 3 | Residuals of genes of a single sample. (A) Breast tumor sample TCGA-A2-A0D2-01A-21R-A034-07; (B) normal tissue sample: TCGA-A7-A0D9-11A-
53R-A089-07. The green points denote the two biomarker genes with the highest/lowest expression levels in the two samples.

FIGURe 4 | Distribution of the number of biomarker genes in (A) 1090 breast tumor samples and (B) 113 normal tissue samples.
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113*112 p-values for the 113 normal samples; 1,186,999 (99.99%) 
and 12,626 (99.76%) of these p-values were less than 0.05 for the 
tumor samples and normal samples, respectively. These results 
indicate that there were significant differences between the 
expression levels of the identified biomarker genes of a sample 
and those of other samples, that is, the proposed method can 
effectively identify the biomarker genes of a single sample.

The frequencies of biomarker genes in tumor and normal 
samples were different. Here, we mainly analyzed biomarker 
genes whose frequency was higher in tumor samples than in 
normal samples, to explore which genes might have important 
roles in survival prediction and development of breast cancer. 
We selected 305 biomarker genes with higher frequency in tumor 
samples, and clustered the tumor samples into two groups using 
the multiple survival screening (MSS) algorithm (Li et al., 2010). 
Survival was significantly different between the two groups 
(p-value = 0.0089) (Figure 5). This means these biomarker 
genes are important features of breast cancer and can be used to 
distinguish tumor patients into high- and low-risk groups (here, 
we removed two samples with the negative follow-up-time, so 
there were 1,088 samples participating in survival analysis).

experimental Results for 
Immunotherapeutic Response Samples
The proposed method was also used to analyze mouse AB1-HA 
tumor data: GSE63557. A total of 8,042 DEGs in two groups 
of samples were identified using GEO2R (Smyth, 2004) at a 
95% confidence level. Regression models of 10 anti-CTLA-4 
immunotherapeutic response samples and 10 non-response 
samples were constructed; one of these is shown in Figure 6. 
Figure 7 shows residual values of biomarker genes from two 
samples. The number of biomarker genes of 10 response samples 
and 10 non-response samples is shown in Figure 8. In Figures 
6 and 7, there are several genes that are far from the regression 

lines. For example, the residuals of Krt6b and Stfa3 were 2.07 
and 2.26, respectively, significantly higher than those of other 
genes; the residuals of Chil3 and Igkv2-109 were −1.82 and −2.10, 
respectively, significantly lower than those of other genes.

The number of biomarker genes of different samples is shown 
in Figure 8, illustrating the variation between samples. The 
biomarker genes from different samples were also different. For 10 
response samples and 10 non-response samples, the top 15 genes 
with the most significant differences in frequency are shown in 
Supplementary Table 2. Four of these genes, Gzme, CD38, CD3D, 
and Chil3, appeared in the important cancer modules identified 
by Lesterhuis et al. (2015) However, the top gene, Jchain, had not 
been identified as a member of these important cancer modules; 
notably, Jchain was also found to be the most important of the 
anti-CTLA-4 immunotherapeutic response biomarker genes in 
our study, with frequencies in response and non-response samples 
of 80% and 0%, respectively. This suggests that Jchain is related to 
immunotherapeutic response. GeneCards (https://www.genecards.
org/) indeed confirms that Jchain has an important role in immune 
response. Moreover, Iglj1, Cd38, and Cd3d are also immune response 
related. This demonstrates that the IBI method can detect important 
genes contributing to the immunotherapeutic response mechanism.

According to the statistical tests, 100% of p-values were less 
than 0.05 in both response and non-response samples. The rank 
matrix of each response sample is shown in Figure 9A. These 
results indicate that there are significant differences between the 
identified response biomarker genes of a sample and those of 
other samples, that is, the proposed method also can effectively 
identify biomarker genes of individual samples even when fewer 
samples are used. We wanted to analyze biomarker genes whose 
frequency was higher in response samples than in non-response 
samples, and estimate their ability to predict survival in AB1-HA 
tumor samples. However, there was no follow-up information 
for AB1-HA mice. The selected 392 biomarker genes with higher 

FIGURe 5 | Kaplan-Meier survival curves based on 305 tumor biomarker 
genes. In the high-risk group (red line), there are 329 tumor samples. In the 
low-risk group (blue line), there are 759 tumor samples.

FIGURe 6 | Regression model based on response sample GSM1552230 
and the average response sample.
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frequency were tested against a human mesothelioma data set 
(TCGA-MESO, https://portal.gdc.cancer.gov). Notably, these 
biomarker genes could still effectively distinguish all patients into 
high- and low-risk groups (Figure 9B) with a p-value of 1.57×10-5. 
These results further support the validity of the proposed method.

experimental Results for Advanced 
Melanoma Data
The proposed method was used to analyze advanced melanoma 
data: GSE35640. A total of 1420 DEGs were identified in 22 

MAGE−A3 immunotherapeutic response and 34 non-response 
samples using GEO2R (Smyth, 2004) at a 95% confidence 
level. Regression models of 22 MAGE−A3 immunotherapeutic 
response and 34 non-response samples were constructed; one of 
these is shown in Figure 10. Figure 11 shows residual values of 
biomarker genes from two samples. The number of biomarker 
genes of 22 response samples and 34 non-response samples is 
shown in Figure 12.

As shown in Figure 12, there were small differences in 
the number of biomarkers from different samples. The mean 
number of biomarker genes in response samples was 70. The 

FIGURe 7 | Residuals of biomarker genes (A) GSM1552230, (B) GSM1552221.

FIGURe 8 | Number of biomarker genes in (A) response samples and (B) non-response samples.
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top 15 genes with the most significant difference of frequency 
in 22 response samples and 34 non-response samples are shown 
in Supplementary Table 3. We proposed that these genes 
were likely to be mainly immune or tumor related. To test our 
hypothesis, we searched GeneCards for these genes and found 
that some of them play important roles in the development of 
immune-related cells. For example, MS4A1 is associated with 
the development of B-cells into plasma cells; CD37 may play a 
part in T-cell–B-cell interactions; CD5L participates in obesity-
associated autoimmunity; MMP8, IRF5, and RHOF are related to 
innate immune pathways; MMP9 has a role in tumor-associated 
tissue remodeling; and TRAM1L1 is related to the well-known 
cancer-related NF-kB pathway. This demonstrated that the 
IBI method could detect important genes contributing drug 
response mechanisms and help to elucidate immunotherapeutic 
response mechanisms. In the statistical tests, 96.96 and 95.72% 
of p-values were less than 0.05 in the response and non-response 
samples, respectively. These results also indicate that biomarker 
genes of a sample show significant differences compared with 
those of other samples, that is, the proposed method can also 
effectively identify MAGE−A3 immunotherapeutic response 
biomarker genes in individual advanced melanoma samples 
even with fewer samples.

We wanted to analyze biomarker genes whose frequency was 
higher in response samples than in non-response samples, and 
estimate their ability to predict survival in advanced melanoma. 
However, there was no follow-up information in GSE35640, so 
we used skin cutaneous melanoma gene expression data (TCGA-
SKCM) for the survival analysis. The selected 70 biomarker genes 
were tested against TCGA-SKCM, showing that these biomarker 
genes could effectively distinguish skin cutaneous melanoma 
patients into high- and low-risk groups (Figure 13), with a 
p-value of 0.016. These results indicate that the proposed method 
performs well. In their original paper, Ulloa-Montoya et al. (2013) 
identified 84 gene expression signatures associated with response 
to MAGE-A3 immunotherapy in metastatic melanoma and non-
small-cell lung cancer, whereas 61 of the 84 genes were chosen 
as biomarker genes by our proposed method (e.g., CD86, CCL5, 
and IRF1). These genes were mainly immune related and were 
involved in interferon gamma pathways and specific chemokines. 
Experimental results showed that pretreatment MAGE-A3 
immunotherapy in metastatic melanoma influenced the tumor’s 
immune microenvironment and the patient’s clinical response. 
The proposed method could be used to identify these biomarker 
genes and predict the influence of MAGE-A3 immunotherapy on 
survival in metastatic melanoma (Figure 13).

experimental Results for the Simulated 
Data
In order to further test the performance of the proposed method, 
we added a supplemental experiment on the simulated gene 
expression data. First, the simulated gene expression data with 10 
samples 1000 genes is generated using simulateGEdata function 
in the RUVcorr (Freytag et al., 2015) package. Then, 1,000 genes 
are divided into 10 groups, we increase/decrease gene expression 
value of the ith group of genes in the ith sample by an up or down 

FIGURe 10 | Regression model based on response sample GSM872356 
and the average response sample from GSE35640 gene expression data.

FIGURe 9 | (A) Rank matrix of each response sample. (B) Kaplan-Meier 
survival curves for human mesothelioma tumor samples based on biomarker 
genes from mouse AB1-HA tumor samples; p-value=1.57×10-5. High-risk 
group includes 44 samples; low-risk group consists of 40 samples.
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perturbation value. The range of perturbation value is from 0 to 
mean value of the corresponding gene in 10 samples. Thus, the 
ith group of genes can be considered as biomarker genes of the 
ith sample. Finally, experiment is performed on the simulated 
data to observe whether the proposed method can find these 
markers. We repeated the above steps ten times and experimental 
results shown that the proposed method can effectively identify the 
biomarker genes of 10 samples. The 99% biomarker genes identified 
by the proposed method are the predefined biomarkers when the 
perturbation value is twice (see Supplementary Figure 1).

DISCUSSION
Precision medicine is an active area of cancer research. The 
key to cancer precision medicine is to find biomarker genes 
with high performance, and various approaches to identify 

FIGURe 11 | Residuals of biomarker genes. (A) GSM872356, (B) GSM872328.

FIGURe 13 | Kaplan-Meier survival curves for TCGA-SKCM based on 
biomarker genes from GSE35640; p-value = 0.016. There were 281 and 166 
samples in the high-risk and low-risk groups, respectively.

FIGURe 12 | Number of biomarker genes in (A) response samples and (B) non-response samples.
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such genes have been developed. However, identification 
of biomarker genes for individual tumor samples remains 
a challenging problem; for many reasons, there is a lack of 
effective approaches to identify biomarkers in individual 
patients. Here, we developed a novel approach to address this 
issue. Experimental results based on several different data 
sets show that the proposed method can effectively identify 
biomarker genes of individual human tumor samples, not only 
from several hundred samples but also from a few samples 
without clinical information, and even from mouse samples.
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Acetylation is one of post-translational modification (PTM), which often reacts with acetic

acid and brings an acetyl radical to an organic compound. It is helpful to identify

acetylation protein correctly for understanding the mechanism of acetylation in biological

systems. Although many acetylation sites have been identified by high throughput

experimental studies via mass spectrometry, there still are lots of acetylation sites need

to be discovered. Computational methods have showed their power for identifying

acetylation sites with informatics techniques which usually reduce experiment cost and

improve the effectiveness and efficiency. In fact, if there is an approach can distinguish

the acetylated proteins from the non-acetylated ones, it is no doubt a very meaningful

and effective method for this issue. Here, we proposed a novel computational method for

identifying acetylation proteins by extracting features from the conservation information of

sequence via gray system model and KNN scores based on the information of functional

domain annotation and subcellular localization. The authors have performed the 5-fold

cross-validation on three datasets along with much analysis of features and the Relief

feature selection algorithm. The obtained accuracies are all satisfactory, as the mean

performance, the accuracy is 77.10%, the Matthew’s correlation coefficient is 0.5457,

and the AUC value is 0.8389. These works might provide useful insights for the related

experimental validation, and further studies of other PTM process. For the convenience of

related researchers, the web-server named “iACetyP” was established and is accessible

at http://www.jci-bioinfo.cn/iAcetyP.

Keywords: acetylation, Random Forest, family and domain databases localization, post-translational modification,

identification

INTRODUCTION

To date, more than 450 unique protein modifications have been identified (Han et al., 2018),
including phosphorylation, acetylation, ubiquitination, and sumoylation, which are regulatory
mechanisms of cellular proteins with a number of biological functions, and also are very important
for regulating the function of many prokaryotic and eukaryotic proteins (Yang et al., 2017). Among
these post-translational modification (PTM), acetylation is a dynamic and highly conserved PTM
(Figure 1) that plays a vital role in the regulating processes of diverse cellular. The role of acetylation
in histones were first discovered in histones (Allfrey et al., 1964), and the first deacetylase activity
was identified back in 1969 (Inoue and Fujimoto, 1969). Owing to its important involvement
in some relevant biological processes, acetylation becomes one of the most important reversible
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FIGURE 1 | An illustration to show the acetylation protein.

protein posttranslational modifications, hence, more and more
acetylated proteins are discovered with the help of high-
throughput technologies. Thus, it is a piece of very interesting
work to identify the potential acetylation sites for finding the
underlying molecular mechanisms, and is helpful for basic
bioresearch and drug development.

However, due to the importance and complexity of
acetylation, identifying acetylation sites is a great challenge
to fully understand the regulatory roles and the molecular
mechanism of acetylation regulation. Actually, it is a time-
consuming, expensive and labor-intensive process for purifying
acetylation sites due to that the acetylation process is dynamic,
rapid and reversible (Li et al., 2017; Yang et al., 2017). Fortunately,
some studies had showed that experimental methods and
computational models can be used to identify underlying PTMs
sites (Hershko and Ciechanover, 1998; Haglund and Dikic,
2005; Tung and Ho, 2008; Radivojac et al., 2010), such as
ubiquitination model of Radivojac et al. (2010), Zhao et al.
(2011), and Cai et al. (2012), phosphorylation model of Ingrell
et al. (2007), Yao et al. (2012, 2015), Chen et al. (2015), Li et al.
(2015), Trost et al. (2015), and Xu et al. (2015), sumoylation
model of Beauclair et al. (2015), Xu et al. (2016), and Han et al.
(2018), acetylation model of Zhao et al. (2010), Wang et al.
(2012), Hou et al. (2014), and Wuyun et al. (2016), and so on.
Although these researchers did make much contribution to this
issue, there is still a lot of room for improving the prediction
quality. However, most of these efforts are on identifying some
determinate PTMs sites for a given protein sequence, and few
of computational method was proposed for distinguishing the

acetylated proteins from the non-acetylated ones. This study was
an attempt for the issue.

For a given protein represented with amino acid sequence,
how to identify whether it may be one of some certain PTM
proteins or may not? This may be the first step for identifying
PTM sites and then is helpful and meaningful for basic research
and drug development. In fact, we have made some preliminary
exploration and attempt on identifying phosphorylated proteins.
In Qiu et al. (2017a,b), we presented a method for identifying
human phosphorylated proteins and a multi-label classifying
model for different type of phosphorylated proteins with the
help of the General PseAAC concept and gray system theory.
Although the results are not so perfect, we still argue that the
formulations and models can be applied to this issue, and it may
be more powerful when some structure, function or localization
information of proteins were added into the model. This site
may be a fruitful opportunity for bioinformatics. For example,
Gene Ontology (GO) (Ashburner et al., 2000) was proposed by
Ashburner to reposit the concepts denoted as GO Terms that are
associated to other gene products, and it has been widely used in
describing the attributes for gene products (Agapito et al., 2016;
Peng et al., 2016).

The dataset we used here was fully extracted from Uniprot
(The UniProt, 2017). The present study tried to construct a
classifying model for potential acetylation proteins by fusing the
digital features which are come from its evolution information,
Subcellular localization (noted as SL) (Nakai and Horton, 1999)
information and functional domain annotation (noted as FDA)
databases including GO (Harris et al., 2004), Pfam (Bateman
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et al., 1999), Smart (Letunic et al., 2004), InterPro (Hunter
et al., 2009), PRINTS (Attwood et al., 2012), PROSITE (Sigrist
et al., 2010), SUPFAM (Pandit et al., 2004). As for subcellular
localization (Du et al., 2012), it was retrieved from the original
UniProt database, which was reorganized by UniProt build-in
hierarchical subcellular localization table. This paper proposed
a new computational model for identifying potential acetylation
proteins only on the basis of a query amino acid sequence
by using its evolution information obtained with gray system
model (Gray-PSSM) (Kaur and Raghava, 2004; Jones, 2007) and
KNN scores calculated with the fuzzy distance by using its FDA
and subcellular localization information. There are 80 amino
acid sequence features extracted by incorporating the sequence
evolution information were fused into PseAAC feature set and
KNN scores, all of these features are combined according to
different coefficients on the basis of its importance. To highlight
the advantages of the proposed model, the model was trained
and tested with three sub-datasets and cross-validationsmethods.
In addition to some discussion of protein abovementioned
features, some hypotheses for distinguishing acetylation proteins
from non-acetylation ones were also depicted with the aid of
training dataset.

MATERIALS AND METHODS

Benchmark Dataset
It is fundamental and important that a stringent benchmark
dataset be stablished for testing the proposed statistical predictor.
Luckily, the UniProtKB/Swiss-Prot database is accepted by most
of bioinformatics researchers, and has been using more andmore
widely. The data used in the current study to support this work
are established on the basis of web http://www.uniprot.org.

In this study, we assume that our work is to identify whether
an uncharacterized amino acid sequence is acetylation protein.
As we known, the input sequence is comprised by amino acids
and can be expressed as

P = P1P2P3 · · · Pi · · · PL (1)

where Pi represents the i-th residue of amino acids sequence P, L
is the length of P.

Here, we separate a benchmark dataset into a training dataset
noted as S. Thus, the datasets can be formulated as:

Sall = Sposi ∪ Snega Snega = S−1 ∪ S−2 ∪ S−3 (2)

where Sposi is composed of the acetylation proteins,
Snega is composed of the non-acetylation proteins,

S−i ∩ S−j = ∅ (i 6= j;i,j = 1,2,3). ∪ and ∩ represent the

symbol for “set union” and “set intersection,” respectively.
The version of protein data used in the current study

was released in May 2017. The positive dataset was
generated according to the following criteria: (1) The
potential acetylated proteins should be noted by anyone
keyword of the set, i.e. {N_acetylcysteine, N_acetylserine,
N_acetylglutamate, N_acetylglycine, N_acetylproline,
N_acetylthreonine, N_acetylvaline, N_acetylmethionine,
N_acetyltyrosine, N2_acetylarginine, N6_acetyllysine,

O_acetylserine, O_acetylthreonine}. (2) The collected proteins
are labeled by “Evidence” for the item of “Any assertion method.”
(3) Only the proteins which consisting of 30 and more amino
acid residues can be included, and the redundant proteins were
removed with the threshold of 50% by using CD-HIT software.

The negative dataset was generated similar to the positive one
except that those proteins should not be labeled none member of
the mentioned above keyword-set. Since there are mass number
of candidates here, we randomly collected negative datasets
which have the balance samples size with positives.

Under the aforementioned standards, we obtained 2,925
protein samples, of which, the numbers of positive and negative
samples are 725 and 2,175, respectively. In terms of Equation (2),
we have 725 positive samples in Sposi and 2,175 negative samples
in Snega. Here, we test the models with cross-validation on the

three datasets with 1,450 samples, i.e., Sposi ∪ S−1 , Sposi ∪ S−2 and

Sposi ∪ S−3 , of which, the positive and negative ones are equal, i.e.,
725 samples.

Feature Construction
General Pseudo Amino Acid Composition (PseAAC)
Most of traditional machine-learning algorithms, such as
Random Forest, SVM, and K nearest Neighbor, are not so
powerful, the input should be vectors instead of sequence samples
for biological issue. To overcome this problem, the researchers
trying their best to improve the discrete or vector model by
formulating the amino acids sequence into all kinds of pseudo
amino acid composition (PseAAC), encoding method (Zhang
et al., 2006; Chen et al., 2011; Shi et al., 2012; Jiao and Du, 2017)
or other approaches.

Here, the proposedmodel followed the idea of PseAAC (Chou,
2011), and formulated an amino acids sequence P as:

P =
[

p1 p2 · · · pu · · · pN
]T

(3)

Here, the symbol Tmeans the transpose operator for a matrix, N
is an integer representing the number of features which depend
on the method(s) used for extracting information from protein
P (cf. Equation 1). P is a vector for representing amino acids
sequence P and pi (i = 1, 2, · · · ,N) is the ith element of the
vector. Below, we will describe how to extract functional domain
annotation and subcellular localization information as well as
pseudo amino acid composition, which are used in this study,
from a query sequence to define the components for amino acids
sequence P.

Protein Sample Formulation With KNN Score Based

on FDA and Subcellular Localization (SL)
In addition to GO database, “Pfam,” “Smart,” “PROSITE,”
“SUPFAM,” “InterPro,” and “PRINTS” are established according
to cellular component, molecular function, biological process
or some other characteristics. For example, the Pfam database
is a large collected protein families generated by using hidden
Markov models. SMART is abbreviation of Simple Modular
Architecture Research Tool which can be used for research on the
protein domains and architectures. PROSITE consists of entries
describing the protein families, domains and functional sites as
well as amino acid patterns and profiles. InterPro provides a
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functional analysis of protein sequences, and PRINTS also is a
resource of detailed annotation for protein families in addition
to a diagnostic tool for newly determined sequences. Subcellular
localization feature is a key functional characteristic of potential
gene products such as proteins, especially for plant.

Actually, in the GO database, proteins are clustered in a way
in which their subcellular locations can be reflected fully. To
incorporate more information, most of the approaches need to
formulate a long list of the GO numbers, and a great part of
the GO numbers make meaningless as a whole. In literatures
(Gao et al., 2010; Yao et al., 2012), the authors show us that
local sequence clusters often appear in the neighborhood of
PTM sites for the reason that the same PTM family generally
have some similarities in local sequences. As a better choice for
depicting the character, K nearest neighbor score was proposed.
To take advantage of such cluster information of GO and other
FDA databases as well as subcellular localization for predicting
acetylation proteins, for a given potential acetylation protein,
we took the characteristics around the query neighborhood and
extracted the KNN scores features from the training dataset
containing both positive and negative samples. The algorithm is
listed as follows.

Step 1. For a query protein sequence find its k nearest
neighbors, which can be positive or negative samples, in the
whole set according to local sequence similarity. For a given

protein p, FDAj(p) = {Np,j
1 ,N

p,j
2 , · · · ,Np,j

np } represents the

keywords set of the jth FDA. The j (=1, 2, . . . , 7, 8) represents
“GO,” “Pfam,” “Smart,” “PROSITE,” “SUPFAM,” “InterPro,”
“PRINTS,” or “subcellular localization,” respectively), FDAj(q) =

{Nq,j
1 ,N

q,j
2 , · · · ,Nq,j

nq } is the similar mean for protein q. The

similarity distance Distj
(

p, q
)

between p and q can be defined
as follows:

Distj
(

p, q
)

= w1 �

(

1−
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∣FDAp
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(
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Where
⋂

,
⋃

and | | are the operators “union,” “intersection,” and
“norm” of the set theory, respectively. Here, | | is defined as the
number of its elements. dist(p, q) is the Euclidean distance on the
basis of PseAAC. w1 and w2 are the weights of the two distances.

Step 2. A corresponding KNN feature is then extracted
by calculating the KNN score, noted it as the percentage of
acetylation proteins in its k nearest neighbors.

Step 3. To obtain diverse and enough properties of neighbors
with KNN scores, the above two steps were repeated for different
k values. For the jth member of FDA, the protein P can be
formulated as:

PFDAj = [ϕ1(j), ϕ2(j), · · · , ϕK(j) ]
T (5)

In this paper, the number of features is 50 and kwas defined to be
0.1, 0.4, 0.7, . . . , 14.5 and 14.8 percent of the size of the involved
dataset. In this way, 50 KNN scores were extracted as features
for identifying acetylation proteins. To be more precisely, ϕ1(j) is
the ratio of positive neighbors to whole concerned samples, i.e.,
0.1 percent of the size of the training data set, ϕ2(j) is the ratio
of positive neighbors to whole concerned samples whose value is

FIGURE 2 | Flowchart of the proposed predictor.

the product of 0.004 and the size of the training data set, and so
forth, when K = 50, ϕ50(j) is the ratio of positive neighbors to
14.8 percent of the size of the training data set.

In a word, a query protein sequence can be
formulated with seven 50-Dimension vectors, i.e.,
PFDA = [PFDA1 ,PFDA2 , . . . ,PFDA7 ], by using FDA database.
Since Chou’s pseudo amino acid composition (PseAAC) (Chou,
2001; Mondal and Pai, 2014) have showing so great powerful
for identifying structure and function of protein, the proposed
method took it into account according to the style of reference
(Shen and Chou, 2008) (we select type 1 and let λ = 5). Thus,
a given protein sequence can be expressed as 375-dimension
vector, and these digital representations served as the input of
the query protein for the prediction model.

Operation Engine and Evaluation
Algorithms
Here we choose Random Forest as the operation engine as the
predictor, and named the final predictor as “iAcet-PseFDA.” This
name is an acronym created from its description, and Figure 2

would show how iAcet-PseFDA working.
As shown in Figure 2, the first step is to input the query amino

acid sequence P. And then, the PSI-BLAST software was used to
find the most similar protein to P, which is used to determine the
most likely GO or other information of FDA set and generate the
KNN scores with it. With the descriptor of P, the desired result
can be obtained with the framework of Random Forest classifier
trained on the benchmark.
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Metrics and Test Method
The predictor iAcet-PseFDA was evaluated with cross-
validation tests in the terms of following seven widely-accepted
measurements: accuracy (or Acc, for short), Mathew’s correlation
coefficient abbreviated as Mcc, sensitivity (abbreviated as Sn,
i.e., the fraction of the relevant documents that are successfully
retrieved), specificity (i.e., Sep), Precision (i.e., Pre, a description
of random errors), F-measure (or F-m, the harmonic mean of
precision and recall), and G-mean. Since the area under the
receiver operating characteristic curve (auROC, for short) is
another important measurement of the performance of a given
model, it was also calculated and plotted in this study. In view of
the traits of validation method trait, cross-validation method was
applied on three datasets for evaluating the proposed predictor.

RESULTS AND DISCUSSION

Investigating the Performances of KNN
Score of FDA Represent
Figure 3 depicted the comparisons of the KNN scores of
acetylation and non-acetylation proteins on all of the FDA
features, and there really are some differences between the
positive and negative samples. Figure 3A showed the comparison
of PAAC represents between acetylation proteins and non-
acetylation proteins, Figure 3B showed those of KNNScore-GO,
and so forth, Figure 3I showed those of Subcellular localization.

Overall, acetylation proteins gained obvious larger KNN
scores than non-acetylation proteins on GO and Subcellular
localization, and a little larger gap between the KNNScores of
positive and negative datasets, all of the average KNN scores are
nearly merged in 0.5 with the growth of features.

Specifically, for acetylation proteins with the view of GO
evaluated on different sizes of nearest neighbors, the average
values shown in Figure 3B are within 0.6–0.8, however, the
average digits are within 0.2–0.4 for non-acetylation proteins.
From the view of Subcellular localization as showed in Figure 3I,
most of the average KNN scores of acetylation proteins are
waved within 0.5–0.7 while those of non-acetylation proteins
fluctuating around 0.4. From the view of Smart, Supfam, InterPro
Pfam, Prosite and PRINTS as showed in Figures 3C–H, there
are clearly gaps between the acetylation proteins and non-
acetylation proteins, and the gaps are narrowing with the growth
of KNNScores number.

We tested the eight kinds of features on the three datasets
with RF, and the mean performances are depicted in the first
11th lines ofTable 1, while the comparedmeasurements obtained
from the proposed model, in which the features were selected
with Relief, are attached in the last line. As showed in the table,
the features of Subcellular localization reached the best results
with Acc is 73.95%, Mcc is 0.4843, Sn is 81.24%, Recall is 81.24%,
F-measure is 75.72%, and G-mean is 73.59%. As regards for Sp
and Precison, GO gained the best result which are 68.37 and

FIGURE 3 | (A) Comparison of KNNScore-PAAC represents between acetylation proteins and non-acetylation proteins. (B) Comparison of KNNScore-GO represents

between acetylation proteins and non-acetylation proteins. (C) Comparison of KNNScore-Pfam represents between acetylation proteins and non-acetylation proteins.

(D) Comparison of KNNScore-Smart represents between acetylation proteins and non-acetylation proteins. (E) Comparison of KNNScore-Prosite represents between

acetylation proteins and non-acetylation proteins. (F) Comparison of KNNScore-Supfam represents between acetylation proteins and non-acetylation proteins. (G)

Comparison of KNNScore-InterPro represents between acetylation proteins and non-acetylation proteins. (H) Comparison of KNNScore-PRINTS represents between

acetylation proteins and non-acetylation proteins. (I) Comparison of KNNScore-SL represents between acetylation proteins and non-acetylation proteins.
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TABLE 1 | Mean performance comparison with different KNN score feature tested with RF.

Acc% Mcc% Sn% Sp% Pre% F_m% Gmean%

PAAC 69.49 0.3909 73.01 65.98 68.22 70.53 69.40

GO 73.61 0.4754 78.85 68.37 71.39 74.90 73.39

Pfam 68.21 0.3647 70.99 65.43 67.27 69.07 68.14

Smart 67.01 0.3410 70.11 63.91 66.04 68.01 66.93

PROSITE 68.37 0.3679 70.85 65.89 67.52 69.14 68.31

SUPFAM 68.67 0.3738 71.17 66.16 67.79 69.44 68.62

InterPro 68.25 0.3658 71.40 65.10 67.17 69.22 68.18

PRINTS 66.11 0.3234 69.52 62.71 65.10 67.21 65.99

Subcellular localization 73.95 0.4843 81.24 66.67 70.91 75.72 73.59

All-MeanJK 74.64 0.4980 81.38 67.91 71.78 76.24 74.30

This paper 77.55 0.5883 96.41 71.26 52.79 68.23 82.89

*The bold value means the largest element of the column.

FIGURE 4 | Features selected by Relief.

71.39%, respectively. Thus, the features of GO gained the second
place. The other six performances are not satisfactory and worse
than those of GO and Subcellular localization, all Accs of them
are <0.7 except for GO and Subcellular localization. The results
obtained with the enhanced model are discussed below.

Performance of Proposed Model
Based on the above discussions, we argue that the local amino
acids surrounding acetylation sites, which have been verified,
would share in similar pattern(s) with positive set on average as
expected. These findings confirm that there are some acetylation-
related clusters in acetylated proteins and hence may be used to
distinguish them from the non-acetylation protein. Accordingly,
the KNN scores were used to encode query sequence for
predicting acetylation proteins in this study.

As we known, the Relief algorithm as a feature weighting
algorithm was first proposed by Kira and Rendell (1992). In
the algorithm, the features were allocated different weights in

light of the relevance of characteristics and categories. The
feature will be removed when its weight less than a threshold
by this method. Since the combined features generated a high-
dimensional vector, and the Relief method can rank the values of
features, this work thus used Relief to reduce feature redundancy.
With the help of Relief, we tested the predictor on different
features sets and listed the mean performances in the last line of
Table 1. The Acc is 77.55% which is better than 74.64%, the result
obtained by using all of the eight features, and better than that of
subcellular localization. The Relief model gained the better results
according to the other seven measurements. Figure 4 depicted
the selected features by Relief algorithm which containing 156
potential features (of which, there are 8 PSSM-gray features, 13
GO KNNScores, 27 for PFAM, 41 for SMART, 15 for PROSITE,
2 for SUPFAM, 3 for INTEPRO, 19 for PRINTS, and 28 for
Subcellular localization KNNScores). From the figure, we can see
that the importance of PAAC, SMART and PRINTS are obvious
since a lot of features are noted as blue which means their rank
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FIGURE 5 | The ROC curves of predictor with different features.

in the selected feature set. The predictor obtains the best result at
156, which means there are 156 features were selected here, with
Acc is 77.55%,Mcc is 0.5883, Sn is 96.41%, Sp is 71.26%, Precision
is 52.79% which isn’t the best performance unfortunately, Recall
is 96.41%, F-measure is 68.23% and G-mean is 82.89%. These
obtained results are better than anyone of Table 1.

The performance of iAcet-PseFDA was also depicted with
ROC curves shown in Figure 5 in which the graphic lines are
represent for GO, Subcellular localization and other Domain
notations’ KNNScores along with PseAAC’s. As shown in first
subfigure of Figure 5, the proposed model’s AUC value is 0.8280
while those of PseAAC, GO, PFAM are 0.7521, 0.8146, 0.7548,
respectively. Thus the proposed model obtained best result of
the four methods. With similar analysis depicted in the last two
subfigures of Figure 5, the AUC values of SMART, PROSITE,
SUPFAM, INTERPRO, PRINTS, and Subcellular localization
KNNScores are 0.7453, 0.7538, 0.7614, 0.7611, 0.7144, and
0.8087, respectively. In conclusion, all of the values are <0.8280,
and there still are gaps between them and that of the proposed
model. It shows that the feature set enhanced with Relief would
obtain more satisfactory results than those of the independent
FDA features.

CONCLUSION

In order to detect acetylation proteins, this study developed
a method on the basis of Random Forest algorithm and
Relief. Our approach considered information of sequence
conservation extracted by PSI-BLAST besides with PseACC. The
involved features are extracted from the sequence conservation
information and “GO,” “Pfam,” “Smart,” “PROSITE,” “SUPFAM,”
“InterPro,” “PRINTS” and Subcellular localization information
of the given query amino acid sequence. This work may
cope with the expensive and time-consuming process of
identifying acetylation proteins because that the features only
incorporated the sequence conservation via gray system model
and Knn scores based on FDA databases. All of these

processes only need computational model instead of any physical
chemistry experiment.

Also, our result manifested that it appears that using FDAs
is essential for the prediction of acetylation functional class,
which had been reported in previous research (Qiu et al.,
2016a,b, 2017b), and the information related to subcellular
is also important for identifying the PTM proteins. As the
growing demand of verification of acetylation sites, we argue
that more effort should be input in developing organism-
specific predictors for this issue. The reason for presenting the
model here then is for the improving the predictor used in
similar research, and it may be helpful for those researchers
who would like to deal with bioinformatics problems with
computational models. In addition, the involved features may
provide important clues of the acetylation mechanism and guide
the related experimental validations.

Additionally, a web-server has been established at http://www.
jci-bioinfo.cn/iAcetyP which is user-friendly and convenient for
the researchers who are working in distinguishing acetylated
proteins from non-acetylated proteins.
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Copy number variation (CNV) is a common structural variation pattern of DNA, and it

features a higher mutation rate than single-nucleotide polymorphisms (SNPs) and affects

a larger fragment of genomes. CNV is related with the genesis of complex diseases

and can thus be used as a strategy to identify novel cancer-predisposing markers

or mechanisms. In particular, the frequent deletions of mono-ADP-ribosylhydrolase 2

(MACROD2) locus in human colorectal cancer (CRC) alters DNA repair and the sensitivity

to DNA damage and results in chromosomal instability. The relationship between CNV

and cancer has not been explained. In this study, on the basis of the genome variation

profiling by the SNP array from 651 CRC primary tumors, we computationally analyzed

the CNV data to select crucial SNP sites with the most relevance to three different

states of MACROD2 (heterozygous deletion, homozygous deletion, and normal state),

suggesting that these CNVs may play functional roles in CRC tumorigenesis. Our study

can shed new insights into the genesis of cancer based on CNV, providing reference for

clinical diagnosis, and treatment prognosis of CRC.

Keywords: copy number variation, MACROD2, colorectal cancer, subtype, classification

INTRODUCTION

Copy number variation (CNV) is a common structural variation pattern of DNA; it is defined as
a >1 kb genomic segment with a different copy number compared with the reference genome,
leading to gains, or losses of multiple DNA sites that are either microscopic or submicroscopic
(Redon et al., 2006). CNV features a higher mutation rate than single-nucleotide polymorphisms
(SNPs) and affects a larger fragment of genomes (Zhang et al., 2009). For a large number of CNVs
generated in the human genome, one of the known mechanisms is DNA recombination, which
includes non-allelic homologous recombination and non-homologous end-joining. Recently, a new
mechanism based on DNA error replication has been discovered. Named the “Fork stalling and
switching” model, this mechanism can explain complex-structure CNVs that do not conform to
non-allelic homologous recombination or non-homologous end-joining.
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With the development of high-resolution SNP arrays,
identifying large-scale CNVs in thousands of samples has been
possible (Beroukhim et al., 2010). Studies have demonstrated that
CNV is related to the genesis of Mendelian diseases, sporadic
diseases, and susceptibility to complex diseases (Yang et al.,
2008; De Cid et al., 2009; Willer et al., 2009; Sato et al., 2014;
Zhang et al., 2014). CNVs also play a potential role in cancer
risk, and the genome-wide copy number analysis can be used
as a strategy to identify novel cancer-predisposing markers or
mechanisms (Kuiper et al., 2010). Ding et al. (2010) reported that
the genome of primary tumors is diverse and frequently includes
gene rearrangements and copy number variations. Shlien et al.
(2008) used high-density oligonucleotide arrays to compare
the genomes of healthy population and a Li–Fraumeni cancer
predisposition disorder (LFS) cohort and observed that CNV
in the cell adhesion gene mixed-lineage leukemia translocated 4
(MLLT4) is associated with LFS, in which patients always harbor
a germline heterozygous mutation of the tumor suppressor gene
TP53 and experience a high probability of developing early-
stage breast, sarcoma, brain, and other tumors. Scrima et al.
(2012) revealed that 24, 31, and 26% of patients with lung
adenocarcinoma achieved a copy number gain in adenylate
kinase (AK) 1, AK2, and phosphoinositide-3-kinase, catalytic,
alpha polypeptide (PI3KCA), respectively, via fluorescence in
situ hybridization.

Evidence has recognized CNV as one of the most important
genomic alterations affecting cancer pathogenesis (Hermsen
et al., 2002), whereas chromosomal instability and allelic
imbalance at certain chromosomal loci play crucial roles in
most sporadic cases of colorectal cancer (CRC) (Zanke et al.,
2007). CRC is the fourth most common cancer and the second
leading cause of cancer death worldwide, with over 1.1 million
new cancer cases and 880,000 deaths estimated in 2018 (Bray
et al., 2018). For better assessment of the progression of
CRC, the Dukes staging system was proposed as a common
classification system for CRC (Dukes, 1932). Four stages of
CRC are defined by such system depended on the degree
of colorectal pathology. Dukes A represents the invasion of
tumor cells into but not through the bowel wall. Patients in
Dukes A stage usually have better outcomes with over 90%
5-year survival. When tumor grows through the muscle layer
of the bowel but not infiltrate into lymph nodes, it will be
identified as Dukes B stage. Dukes C refers to the spread
of cancer to at least one lymph node close to the bowel.
And lastly, widespread metastases of tumor cells in CRC, also
called advanced CRC, indicate the stage of Dukes D. The clear
stage of CRC contributes to the decision making in clinical
treatment, and also provides a detailed description for the
pathology research.

Frequent deletions of the mono-ADP-ribosylhydrolase 2
(MACROD2) locus in human CRC alter DNA repair and
sensitivity to DNA damage and result in chromosomal instability
(Sakthianandeswaren et al., 2018). In addition, MACROD2
deletion in CRC is significantly associated with the extent
of malignancy, indicating that MACROD2 acts as a haploin-
sufficient tumor suppressor, with the loss of function promoting
chromosome instability and thereby driving cancer evolution.

In this study, based on the genomic variation profiling by
SNP array from 651 CRC primary tumors (Sakthianandeswaren
et al., 2018), the log R ratio (LRR) and B allele frequency
data (BAF) of each SNP site were exported using two types of
hybridization probes specific to two types of known alleles (Wang
et al., 2007), and the SNP genotype also can be determined
by the ratios of the hybridization intensities of two types of
probes. The genotype of SNPs located in the region ofMACROD2
was used to represent the genotype state of MACROD2, which
means that the individuals with the loss of both alleles in at
least one SNP site in MACROD2 will be classified into the state
of homozygous deletion, and the deletion of only one allele
indicates the heterozygous deletion status. A wild-type stage
or normal stage refers to no deletion happened in MACROD2.
Following that, each patient was classified into one of the
three states: heterozygous deletion, homozygous deletion, and
normal state in our study. We computationally analyzed the
CNV data to select the crucial SNP sites showing the most
relevance to the four Dukes stages of CRC (A, B, C, and D)
and three different states of MACROD2 (heterozygous deletion,
homozygous deletion, and normal state), suggesting that these
CNVs may play functional roles in CRC tumorigenesis. We
constructed a classifier with high accuracy to group individuals
into the corresponding state categories. This classification model
also provides a meaningful list of genomic loci that perform
important functions in the development and progression of
cancers. To date, the relationship between CNV and cancer has
not been exactly explained. Our study can shed new light on
the genesis of cancer based on CNV, providing reference for the
clinical diagnosis and treatment prognosis of CRC.

MATERIALS AND METHODS

In this study, we first used the minimum redundancy and
maximum relevance (mRMR) method (Peng et al., 2005) to
analyze all features. Irrelevant features were discarded and
the rest features were ranked in a feature list, which was
further fed into the incremental feature selection (IFS) (Liu and
Setiono, 1998) to obtain the optimum features and extract the
classification rules for readable explanation. We adopted the
same computational pipeline to separately analyze four kinds of
carefully organized datasets, including the CRC stage with LRR
or BAF and theMACROD2 status with LRR or BAF.

Datasets
The LRR and BAF data on 651 CRC primary tumors obtained
using the Illumina Human610-Quad v1.0 BeadChip were
downloaded fromGene ExpressionOmnibus under the accession
number GSE115145 (Sakthianandeswaren et al., 2018). The LRR
and BAF were calculated with GenomeStudio (Illumina). The
651 CRC samples can be divided into four stages: 60 stage A
samples, 208 stage B samples, 297 stage C samples, and 86 stage
D samples. Based on MACROD2 status, 441 wild-type samples,
137 heterozygous deletion samples, and 73 homozygous deletion
samples were obtained. Each sample was represented by 620,901
SNP features.
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Feature Selection
As mentioned above, each sample was represented by lots of
SNP features. Clearly, not all of them were highly related
to classification of these samples. Thus, we employed some
powerful feature selection methods to analyze all features. The
analysis procedures included three stages. The first stage was
to exclude irrelevant features; the second one was to sort rest
features; the last stage was to construct optimal classifier with
optimum features and classification rules with the help of IFS
method, support vector machine (SVM) (Corinna Cortes, 1995),
and repeated incremental pruning to produce error reduction
(RIPPER) (Cohen, 1995).

The purpose of the first stage was to exclude irrelevant
features. To this end, all features were evaluated by the mRMR
method. The mRMR method was a mutual information (MI)-
based feature selection method (Peng et al., 2005; Li et al., 2019).
The importance of each feature was evaluated by its MI to class
labels. It is clear that the higher the MI values were, the more
important the features were. After a threshold for MI value was
set, irrelevant features can be excluded.

After irrelevant features were excluded, rest features were
assessed by mRMR method in another way in the second stage.
In detail, rest features were ranked in a feature list in terms of
their relevance to class labels and redundancies to other features.
The feature subset consisting of some top features in the list can
be deemed to be the optimal feature combination with highest
relevance to class labels and lowest redundancies among these
features, which can provide a powerful discrimination. In this
study, we used the mRMR program downloaded from http://
home.penglab.com/proj/mRMR/index.htm. Default parameters
were adopted.

In the third stage, we ran a two-stage IFS with a classification
algorithm to select the optimum features for building the optimal
classifier or construct classification rules. In the first stage, a
series of feature subsets with a step 10 was generated, where
feature subset 1 consists of the top 10 features, feature subset 2
consists of the top 20 features, and so on. Then, for each feature
subset, a classifier was trained on the samples consisting of the
features from the feature subset, and this classifier was evaluated
using 10-fold cross-validation (Kohavi, 1995). An interval [min,
max] with a good performance was determined. In the second
stage, a series of feature subsets within the interval [min, max]
was generated to further select the final optimum features or
construct classification rules. Based on these optimum features,
an optimal classifier can be built.

SVM
SVM attempts to identify a hyper plane with a maximummargin
between two groups of samples, and it has been widely used in
biological data studies (Pan and Shen, 2009; Mirza et al., 2015;
Cai et al., 2018; Chen et al., 2018, 2019; Zhou et al., 2019). In
this work, we used a multi-class SVM with a one vs. rest strategy.
The multi-class SVM consists of multiple binary SVMs, and each
SVM classifies the samples of one class from the rest of the classes.
When predicting the class for a new sample, the SVM predicts
the sample’s label corresponding to the class with the highest

probability. This study adopted the SVM implemented by a tool
“SMO” in Weka.

Rule Learning
To understand how a classification model makes a prediction, we
used rule learning to extract the readable classification rules. A
rule consists of an IF-THEN relationship between features and
output labels, such as IF SNP1 <= 0.7 AND SNP2 >= 1.02;
THEN stage = “A.” In this study, we applied RIPPER (Cohen,
1995), which is implemented by a tool “JRip” in Weka. RIPPER
consists of two stages, including the rule building stage and rule
optimization stage.

SMOTE
As mentioned in the Datasets section, 651 CRC samples were
classified into three or four classes. The sizes of classes varied a
lot. Thus, investigated datasets were imbalanced. For this type of
dataset, the performance of an ordinary classifier is dependent
on the biggest class. To tackle this problem, Synthetic Minority
Over-sampling Technique (SMOTE) (Chawla et al., 2002; Wang
et al., 2018; Zhang et al., 2019) was employed in this study, which
is a oversampling method. This method can produce some new
samples and pour into minority class, thereby making all classes
having equal sizes. In this study, for the BAF/LRR dataset of
CRC stage, new samples were generated by SMOTE for classes
of stages A, B, and D, while new samples were yielded by SMOTE
for classes of heterozygous deletion and homozygous deletion for
BAF/LRR dataset ofMACROD2 status.

In this study, we adopted the SMOTE program implemented
by python, which was downloaded at https://github.com/scikit-
learn-contrib/imbalanced-learn.

RESULTS

In this study, we separately analyzed the four kinds of carefully
organized datasets with a three-stage feature selection method.
Whole procedures are illustrated in Figure 1.

For the first stage, we set the threshold of MI values to
be 0.01; i.e., features receiving the MI values larger than 0.01
were kept. The number of remaining features for BAF/LRR
dataset of CRC stage was 47515/44931, while it was 20839/20973
for BAF/LRR dataset of MACROD2 status. Then, in the
second stage, remaining features in each dataset were ranked
by the mRMR method. Obtained feature lists are provided
in Tables S1–S4. The third stage employed the IFS method
and classification algorithms to extract optimum features and
construct classification rules. The key results are provided in
Tables 1–4.

Results on BAF Dataset of CRC Stage
We first ran the computational pipeline on the first BAF dataset
of CRC stage. Key results are provided in Table 1 and Figure 2.
For the first stage of IFS with a step 10, results are provided
in Table S5 and a curve with Matthews correlation coefficient
(MCC) (Matthews, 1975; Gorodkin, 2004; Zhao et al., 2018, 2019;
Cui and Chen, 2019) as Y-axis and number of features as X-axis
was plot, as shown in Figure 3A. The SVM yielded the highest

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 December 2019 | Volume 7 | Article 407101

http://home.penglab.com/proj/mRMR/index.htm
http://home.penglab.com/proj/mRMR/index.htm
https://github.com/scikit-learn-contrib/imbalanced-learn
https://github.com/scikit-learn-contrib/imbalanced-learn
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Zhang et al. CNV Pattern for Discriminating MACROD2 States

FIGURE 1 | Entire procedures to analyze the log R ratio (LRR) and B allele frequency (BAF) data on colorectal cancer (CRC) primary tumor samples. CRC samples are

classified into four stages; at the same time, they can also be classified into three classes according to their MACROD2 status. For each classification, two datasets

with LRR and BAF, respectively, were constructed. Four datasets were obtained in total, in which single-nucleotide polymorphism (SNP) features were used to

represent each CRC sample. A feature selection procedure, including three stages, was adopted to analyze all SNP features. Finally, an optimal classifier and several

classification rules were accessed for each dataset.

TABLE 1 | Performance of classification models on BAF dataset of CRC stage

with IFS method.

Classifier 1st-stage IFS* 2nd-stage IFS* Number of rules

Highest point Turning point

SVM 0.9653 (35,440) 0.9007 (8,790) 0.9008 (8,797) —

RIPPER 0.2932 (8,500) 0.2692 (2,170) 0.2745 (2,075) 30

*These performances are measured by MCC; numbers of used features are listed

in brackets.

BAF, B allele frequency; CRC, colorectal cancer; IFS, incremental feature selection;

SVM, support vector machine; RIPPER, repeated incremental pruning to produce error

reduction; MCC, Matthews correlation coefficient.

TABLE 2 | Performance of classification models on LRR dataset of CRC stage

with IFS method.

Classifier 1st-stage IFS* 2nd-stage IFS* Number of rules

Highest point Turning point

SVM 0.7542 (20,400) 0.7143 (3,960) 0.7231 (3,967) —

RIPPER 0.3420 (18,530) 0.3417 (3,040) 0.3490 (2,841) 32

*These performances are measured by MCC; numbers of used features are listed

in brackets.

LRR, log R ratio.

MCC value of 0.9653 (Table 1) when the top 35,440 features
were used. Considering this extremely large number, we used
another turning point (top 8,790 features), which still yielded a

TABLE 3 | Performance of classification models on BAF dataset of MACROD2

status with IFS method.

Classifier 1st-stage IFS* 2nd-stage IFS* Number of rules

Highest point Turning point

SVM 0.9683 (5,610) 0.9406 (2,080) 0.9436 (2,064) —

RIPPER 0.3923 (18,460) 0.3677 (5,530) 0.3677 (5,530) 23

*These performances are measured by MCC; numbers of used features are listed

in brackets.

TABLE 4 | Performance of classification models on LRR dataset of MACROD2

status with IFS method.

Classifier 1st-stage IFS* 2nd-stage IFS* Number of rules

Highest point Turning point

SVM 0.9069 (5,540) 0.8759 (1,030) 0.8785 (1,022) —

RIPPER 0.6953 (410) — 0.7385 (306) 17

*These performances are measured by MCC; numbers of used features are listed

in brackets.

high MCC value of 0.9007. Thus, in the second IFS stage, we
ran the same pipeline with the interval [1, 8800] with a step 1.
Results are collected in Table S6, and a curve was also plotted, as
shown in Figure 3B. The best MCC value was 0.9008 when the
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FIGURE 2 | Bar chart to show accuracies on four CRC stages yielded by key support vector machine (SVM) and repeated incremental pruning to produce error

reduction (RIPPER) classifiers on BAF data of CRC stage.

FIGURE 3 | Incremental feature selection (IFS) results on BAF data of CRC stage yielded by SVM and RIPPER. (A) First-stage IFS results on BAF data of CRC stage

yielded by SVM. (B) Second-stage IFS results on BAF data of CRC stage yielded by SVM. (C) First-stage IFS results on BAF data of CRC stage yielded by RIPPER.

(D) Second-stage IFS results on BAF data of CRC stage yielded by RIPPER.

top 8,797 features were used. Accordingly, we built an optimal
SVM classifier with the top 8,797 features.

In addition to SVM, we applied the interpretable rule learning
method RIPPER to evaluate the selected features’ performance in
a rule manner. After running RIPPER on the samples consisting
of features from individual feature subsets with a step 10, we
obtained the performance of RIPPER on different feature subsets,
as shown in Table S5 and Figure 3C. We obtained the best MCC
value of 0.2932 when the top 8,500 features were used. A turning
point was observed (top 2,170 features), yielding an MCC value
of 0.2692. To further select the optimum features, we ran the IFS
with RIPPER within the interval [1, 2,200]. Results are available

in Table S6 and displayed in Figure 3D. We obtained the best
MCC value of 0.2745 when the top 2,075 features were used.

Although RIPPER showed a poorer performance than SVM
in this case, one advantage of RIPPER is that it can generate
classification rules, which help us understand how the model
makes a prediction on a subgroup of samples. Considering these
data, the RIPPER produced 30 classification rules, which are
given in Table S7.

Results on LRR Dataset of CRC Stage
We ran the above same pipeline on the second dataset. Key
results are provided in Table 2 and Figure 4. When running the
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IFS with an SVM on the samples consisting of features from
individual feature subsets, we obtained the best MCC value of
0.7542 when the top 20,400 features were used. We adopted a
smaller turning value (top 3,960 features), which yielded anMCC
value of 0.7143. Then, we ran the second stage of IFS on the
interval [1, 4000] and obtained the best MCC value of 0.7231
when the top 3,967 features were used. These results are given
in Tables S8, S9 and illustrated in Figures 5A,B. Accordingly, an
optimal SVM classifier was built based on the top 3,967 features.

Similarly, IFS with RIPPER was also used on this dataset.
All results are provided in Tables S8, S9 and displayed in
Figures 5C,D. We obtained the best MCC value of 0.3420 when
using the top 18,530 features. Of note, when 3,040 features were

used, the performance showed a notable change as a performance
turning point. Thus, in the second stage of IFS, we ran the
RIPPER on the interval [1, 3100] and obtained the best MCC
value of 0.3490 when using the top 2,841 features. The 32 learned
classification rules are given in Table S10.

Results on BAF Dataset of MACROD2

Status
Instead of analyzing the association between the CRC stages and
CNV states, we used the same pipeline to analyze theMACROD2
status associated with particular CNV types. For the BAF dataset
of MACROD2 status, key results are provided in Table 3 and
Figure 6. Results of the first stage of IFS with SVM are available in

FIGURE 4 | Bar chart to show accuracies on four CRC stages yielded by key SVM and RIPPER classifiers on LRR data of CRC stage.

FIGURE 5 | IFS results on LRR data of CRC stage yielded by SVM and RIPPER. (A) First-stage IFS results on LRR data of CRC stage yielded by SVM. (B)

Second-stage IFS results on LRR data of CRC stage yielded by SVM. (C) First-stage IFS results on LRR data of CRC stage yielded by RIPPER. (D) Second-stage IFS

results on LRR data of CRC stage yielded by RIPPER.
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Table S11, and a curve was plotted in Figure 7A.We obtained the
best MCC value of 0.9683 when the top 5,610 features were used.
We detected the turning point 2,080, which yielded an MCC
value of 0.9406. In the second stage of IFS, we ran the SVM on
the interval [1, 2080]. Results are collected in Table S12, and a

curve was plotted in Figure 7B. The best MCC value was 0.9436
when the top 2,064 features were used, which can be used to build
an optimal SVM classifier.

We also ran the IFS with RIPPER on this dataset. The first-

stage results are provided in Table S11. A curve was plotted in

Figure 7C. RIPPER yielded the best MCC value of 0.3923 when

the top 18,460 features were used. We also selected the turning

point 5530 for the second stage of IFS, which yielded an MCC
value of 0.3677. For the second stage of IFS within the interval [1,
5530], results are available in Table S12 and a curve was shown
in Figure 7D. We still obtained the best MCC value of 0.3677
when the top 5,530 features were used. The 23 classification rules
generated by RIPPER are listed in Table S13.

Results on LRR Dataset of MACROD2

Status
We did the similar procedures for the LRR dataset ofMACROD2
status. Key results are provided in Table 4 and Figure 8. For the
first stage of IFS with SVM, results are provided in Table S14 and

FIGURE 6 | Bar chart to show accuracies on three MACROD2 status yielded by key SVM and RIPPER classifiers on BAF data of MACROD2 status.

FIGURE 7 | IFS results on BAF data of MACROD2 status yielded by SVM and RIPPER. (A) First-stage IFS results on BAF data of MACROD2 status yielded by SVM.

(B) Second-stage IFS results on BAF data of MACROD2 status yielded by SVM. (C) First-stage IFS results on BAF data of MACROD2 status yielded by RIPPER. (D)

Second-stage IFS results on BAF data of MACROD2 status yielded by RIPPER.
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a curve was plotted in Figure 9A. We obtained the best MCC
value of 0.9069 when using the top 5,540 features. Similarly, a
smaller turning point 1,030 was used for the second stage of IFS,
because it still yielded a satisfactory MCC value of 0.8759. In
the second stage of IFS, we set the interval [1, 1,100]. Results
are collected in Table S15, and a curve was plotted in Figure 9B.
We obtained the best MCC value of 0.8785 when the top 1,022
features were adopted. The optimal SVM classifier was built using
the top 1,022 features.

We ran the IFS with RIPPER again. Results are provided in
Table S14. A curve was plotted in Figure 9C, from which we
can see that the best MCC value was 0.6953 when the top 410

features were used. Then, we ran the second stage of IFS within
the interval [1, 410]. Results are available in Table S15. A curve
was plotted in Figure 9D. It can be seen that the best MCC value
was 0.7385 when using the top 306 features. Table 5 lists the 17
classification rules generated by RIPPER.

DISCUSSION

On each of four datasets, a group classification rules were
generated by RIPPER. According to the performance of RIPPER
listed in Table 4, rules on the LRR data ofMACROD2 status were

FIGURE 8 | Bar chart to show accuracies on three MACROD2 status yielded by key SVM and RIPPER classifiers on LRR data of MACROD2 status.

FIGURE 9 | IFS results on LRR data of MACROD2 status yielded by SVM and RIPPER. (A) First-stage IFS results on LRR data of MACROD2 status yielded by SVM.

(B) Second-stage IFS results on LRR data of MACROD2 status yielded by SVM. (C) First-stage IFS results on LRR data of MACROD2 status yielded by RIPPER. (D)

Second-stage IFS results on LRR data of MACROD2 status yielded by RIPPER.
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TABLE 5 | Classification rules on dataset of MACROD2 status with LRR.

Index Condition Result Supporta% Accuracyb%

1 rs353149 <= −0.3811

rs6034087 <= −0.2724

Homozygous

deletion

5.84 92.11

2 rs445945 <= −0.3040

rs6712905 >= 0.1367

rs377954 <= −0.3691

Homozygous

deletion

3.23 90.48

3 rs6135314 <= −0.5109

rs6685801 <= −0.0057

rs2900712 <= −0.0619

rs9444675 <= 0.1020

Homozygous

deletion

4.61 93.33

4 rs6135362 <= −0.2468

rs2100272 >= 0.1398

rs700029 <= 0.0035

Homozygous

deletion

1.84 91.67

5 rs6110500 <= −0.2528

rs10500528 <= −0.0094

Homozygous

deletion

7.37 83.33

6 rs6079537 <= −0.2319

rs2900712 <= −0.0981

rs6043173 >= −0.0832

Homozygous

deletion

0.92 100.00

7 rs9355387 <= −0.2856

rs11905979 <= −0.3878

Homozygous

deletion

1.84 91.67

8 rs199305 <= −0.4455

rs377201 >= −0.2189

Homozygous

deletion

0.77 100.00

9 rs6135314 >= −0.0746

rs1998086 >= 0.0340

rs381053 >= −0.0576

Wild-type 35.48 98.70

10 rs1475531 >= −0.0454

rs365516 >= 0.0220

Wild-type 31.80 96.14

11 rs2423866 >= −0.1223

rs385770 >= −0.0670

rs7241111 >= −0.1500

Wild-type 24.42 98.11

12 rs449849 >= −0.0559

rs716316 >= −0.0107

rs5904713 >= −0.1428

Wild-type 27.80 97.24

13 rs1327323 <= −0.2719

rs6135269 <= −0.1044

Wild-type 6.76 75.00

14 rs353149 >= −0.0059

rs13011654 >= 0.0742

rs445945 <= 0.067

Wild-type 5.07 96.97

15 rs6034046 >= −0.015

rs6135314 >= −0.0323

rs6034011 <= 0.0668

Wild-type 19.05 95.16

16 rs6043173 >= 0.131

rs449849 >= −0.0689

Wild-type 23.81 94.84

17 Others Heterozygous

deletion

20.28 85.61

aThe support of a rule is the percentage of samples satisfying the rule.
bThe accuracy of a rule is the proportion of the corrected classified samples among

samples satisfying the rule.

with the highest performance (MCC= 0.7385). Thus, we mainly
discussed these rules, which are listed in Table 5. Each rule can
cover some CRC samples and give high accuracies.

Given that the status of MACROD2 is significantly relevant
to the intestinal tumorigenesis and plays a crucial role in cancer
development (Sakthianandeswaren et al., 2018), our classifiers
are expected to be prognostic indicators for evaluating the
malignancy of intestinal tumor. On LRR data, 17 decision rules
were generated by RIPPER, which can distinguish the three status

of MACROD2 with LRR with a classification accuracy of 0.7385.
Depending on the CNV profiles of selected loci, predicting
whether a heterozygous, or homozygous depletion ofMACROD2
exists in CRC patients is possible. To validate the reliability of
these rules, we examined existing experimental evidence through
a literature review.

We focused on the 17 decision rules and a few top-ranked
features on data of MACROD2 status with LRR. Such rules and
features described specific CNV characteristics contributing to
the identification of MACROD2 status and CRC classification,
indicating their crucial roles in cancer development. Especially,
several top-ranked features showed strong biological and
biomedical relevance with MACROD2, indicating that they also
play relevant functions in cancer progression.

Among the 17 rules, 8 rules could identify the homozygous
deletion ofMACROD2, and the other 8 decision rules can identify
the normal non-depletion status of MACROD2. The last one
indicates the heterozygous deletion, whichmeans that if the CNV
profiles in patients failed to meet any criteria of the other 16
rules, they were predicted to carry the heterozygous deletion
ofMACROD2.

Rules for Homozygous Deletion
In the eight rules identifying the homozygous deletion of
MACROD2 (see first eight rules in Table 5), 21 criteria involving
20 SNP sites were located in different regions of six genes.
Notably, 12 of these SNP sites were located in the genomic
regions of MACROD2, and the LRR of specific regions near
these SNP sites featured a low value, which is naturally and
logically consistent given that the CNV loss in MACROD2 leads
to homozygous deletion. Thus, our analysis actually highlights
the potential core roles of specific SNP sites, suggesting its
capability to identify the overall state ofMACROD2 based on the
CNV conditions of a few loci. In detail, the 12 SNPs (rs353149,
rs6034087, rs445945, rs377954, rs6135314, rs6135362, rs6110500,
rs6079537, rs6043173, rs11905979, rs199305, and rs377201)
were distributed in different locations of the intron regions of
MACROD2 and displayed strong relevance to the overall status
of MACROD2. By the detection of CNV in these selected loci
markers, we can identify the deletion state of MACROD2 in
patients. We will find the corresponding therapy methods for
the treatment targets in the future. Further research about these
incompletely elucidated SNP sites may reveal the mechanisms
of tumor development at the genomic level. The biological and
biomedical significance of several SNPs is summarized below.

The SNP site rs6685801 located in chr1:3547887 required
a low value of LRR to identify the homozygous deletion of
MACROD2 in our decision rules. This position is in the intron
region of multiple EGF-like-domains 6 (MEGF6) gene, which
was reported to play a critical role in cell adhesion and involved
in many disorders of neural system development (Sunnerhagen
et al., 1993). Recent publications have confirmed that MEFG6
can promote the epithelia-to-mesenchymal transition in CRC
metastasis (Hu et al., 2018). This gene is also significantly
upregulated in tumor tissue and results in the poor survival of
a colon adenocarcinoma cohort. MEGF6 can also accelerate the
cell growth and inhibit apoptosis in CRC as demonstrated by the
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experiment in vitro. All these results suggest that MEGF6 may
serve as an oncogene, and its overexpression may contribute to
the tumorigenesis in CRC patients. We inferred that the copy
number loss in this specific intron region caused the upregulated
expression of MEGF6 as it may perform inhibitory effects on
transcription. Thus, the low LRR of the SNP site rs6685801
can indicate the severe extent of CRC, consistent with the
homozygous deletion state ofMACROD2.

Another important SNP site rs9444675, which displayed
strong relevance to the status of MACROD2 in our classifier,
is located in the intron region of gamma-aminobutyric
acid receptor subunit rho-1 (GABRR1). GABRR1, also called
GABA(A) receptor, is a member of the rho subunit family and
acts as the receptor of major inhibitory neurotransmitters in the
mammalian brain (Cutting et al., 1992). A recent study has shown
that GABRR1 is significantly upregulated by the transcriptome
of chemokine (C-X-C motif) ligand 1-(CXCL1) treated colon
cancer cells (Hsu et al., 2018). Further analysis via bioinformatics
methods reported that high expression of GABRR1 showed
a significant correlation with reduced overall survival rates,
suggesting the crucial role of GABRR1 in the progression
of colon cancer. In addition, another research reported the
upregulation of GABRR1 in cancer cohorts compared with the
controls with regard to gene expression profiles of medullary
thyroid carcinoma (Oczko-Wojciechowska et al., 2006). These
pieces of evidences support the decision rule that copy number
loss of specific region located in GABRR1 will lead to the
upregulation of GABRR1 and contribute to the carcinogenesis
of CRC, resulting in the similar consequence as the homozygous
deletion state ofMACROD2.

One important criterion identified in the decision rules
suggests the high value of LRR near the specific SNP site
rs2100272. This site is located in the intron regions of VWA3B,
which showed a tendency toward malignancy development.
VWA3B encodes an intracellular protein thought to function in
transcription, DNA repair, and membrane transport (Kawarai
et al., 2016; Huttlin et al., 2017), playing a role similar to
MACROD2, which was reported to influence DNA repair
and sensitivity to DNA damage and result in chromosome
instability (Sakthianandeswaren et al., 2018). In the patients of
bladder urothelial carcinoma, evident copy number alterations
were observed in the 2q12 regions in which the VWA3B was
mapped (E. Pontes et al., 2013), in line with the suggestion
that VWA3B plays a crucial role in bladder carcinogenesis.
In addition, VWA3B is significantly differentially expressed in
tongue squamous cell carcinoma samples at the transcriptome
level (Song et al., 2019). These results confirm our decision
rules, which indicate that the copy number gain of the specific
regions near rs2100272 will alter the expression of VWA3B and
contribute to the development of certain cancers including CRC.

Another criterion was found in the experimental findings, and
it required a low LRR near the SNP site rs700029 to identify
the homozygous deletion state of MACROD2. This SNP site is
located in chr1:81805339 and was mapped in the intron region
of adhesion G protein-coupled receptor L2 (ADGRL2), which
encodes a member of the latrophilin subfamily of G-protein
coupled receptors. ADGRL2 functions as a p53 target gene and

regulator of neuronal exocytosis (Hamann et al., 2015). Recent
research has shown the low expression level of ADGRL2 in
genomic sequencing analyses of both gastric cancer and colon
cancer cell lines due to the hypermethylation of CpG islands
within the gene (Jeon et al., 2016). ADGRL2 is also associated
with lung squamous cell carcinoma and may serve as the
diagnostic marker for small cell lung cancer (Huang et al., 2018).
The rules that require the copy number loss of specific intron
region in ADGRL2 may result in the alteration of expression
profile and lead to the development of CRC.

We also identified a critical SNP site rs9355387 located in the
intron region of gene Parkin RBR E3 ubiquitin protein ligase
(PRKN), which according to the rules indicates the homozygous
deletion state of MACROD2. The gene PRKN, best known as
PARK2, is a key component of a multiprotein E3 ubiquitin
ligase complex, whichmediates the targeting of substrate proteins
for proteasomal degradation. Mutations occurring in this gene
cause Parkinson’s disease (Oczkowska et al., 2013). The loss of
PRKN at both the DNA copy number and mRNA expression
levels contributes to cancer progression via redox-mediated
inactivation of phosphatase and tensin homolog (PTEN) (Gupta
et al., 2017). The depletion of PRKN also enhanced pancreatic
tumorigenesis in KRAS-driven engineered mouse models based
on its role in mediating the degradation of mitochondrial iron
importers (Kang et al., 2019), implying that PRKN can be a
potential target for pancreatic cancer therapy. These results
highlight the crucial role of PRKN in cancer progression and
confirm our predicted rules, indicating that the loss of copy
number near rs9355387 would be an indicator of severe status
of cancer.

Rules for Wild-Type
The eight rules for identifying the non-deletion or wild-type
status of MACROD2 included 21 criteria with 19 SNP sites, 15
of which are located in the intron regions of MACROD2. The
LRR of these specific regions requires a high value opposite
that of the homozygous deletion state. Among the 15 SNP
sites located in MACROD2 and with built non-deletion status,
4 SNPs (rs6135314, rs353149, rs445945, and rs6043173) have
been applied in the identification of the homozygous deletion
state of MACROD2 with relatively low values as mentioned
before. The other 11 SNP sites (rs1998086, rs381053, rs1475531,
rs365516, rs2423866, rs385770, rs449849, rs716316, rs6135269,
rs6034046, and rs6034011) showed different distributions in
varying locations in the intron regions ofMACROD2, displaying
a significant correlation with the overall state of MACROD2 and
implying that these selected loci may play unexplained functional
roles in regulating DNA replication. The candidate SNP sites
identified by our prediction model can be applied as biomarkers
for the pathologic evaluation of CRC, given that the state of
MACROD2 has been confirmed to be a significant signal in
intestinal cancers.

The copy number loss of the regions near the SNP site
rs1327323 can indicate the non-deletion state of MACROD2
in one decision rule. This site is located in chr13:52296316
and mapped in the intron regions of transmembrane
phosphoinositide 3-phosphatase and tensin homolog 2
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pseudogene 2 (TPTE2P2), which is considered a putative
promoter in human genome (Kimura et al., 2006). By the
whole-exome sequencing analysis of 42 tumor–normal paired
samples, highly frequent sites of increased copy number were
found in the specific position of chromosome arm 13q (Corraliza
Márquez, 2014), the gains in which have been associated with
a poor prognosis and metastasis in CRC (Leary et al., 2008).
TPTE2P2 is present in the segments with copy number loss,
suggesting that it probably facilitates defect in tumorigenesis.
Another publication also reported TPTE2P2 as one of the key
genes identified in gastric cancers (Zeng et al., 2018), implying
its crucial role in certain cancers. We inferred that the copy
number gain in the specific intron region of TPTE2P2 results
in the progression of CRC, and the loss of copy number in our
decision rules identifies the normal status ofMACROD2 and the
absence of CRC.

Some SNP sites (rs5904713 and rs13011654) are located in the
intron regions of the non-coding RNA gene or the intergenic
regions in our decision rules. They have not been reported in
current research literature but show strong relevance to the
progression of CRC at the CNV level, implying their potential
roles in the regulation of oncogenes.

Numerous top-ranked features display the significant
relevance to the classification of three status of MACROD2,
most of which are located in the intron regions of MACROD2.
Coincident with the relevant information and our inferred
decision rules, the CNVs in MACROD2 resulted in the direct
altered states (e.g., cancer). In addition, our approach provides an
effective method to evaluate the malignancy extent by detecting
a few biomarkers (e.g., SNP sites) rather than conducting an
overall detailed analysis of the large gene MACROD2, which is
more than two million base pairs in size. In summary, our study
has proposed for the first time that specific SNP sites can be
applied as biomarkers in cancer diagnosis, and further research
on these sites will shed light on the molecular mechanism on
how these specific DNA regions contribute to the progression
of CRC.
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Background: The endoplasmic reticulum (ER) is an important organelle in eukaryotic
cells. It is involved in many important biological processes, such as cell metabolism,
protein synthesis, and post-translational modification. The proteins that reside within the
ER are called ER-resident proteins. These proteins are closely related to the biological
functions of the ER. The difference between the ER-resident proteins and other non-
resident proteins should be carefully studied.

Methods:We developed a support vector machine (SVM)-based method. We developed
a U-shaped weight-transfer function and used it, along with the positional-specific
physiochemical properties (PSPCP), to integrate together sequence order information,
signaling peptides information, and evolutionary information.

Result: Our method achieved over 86% accuracy in a jackknife test. We also achieved
roughly 86% sensitivity and 67% specificity in an independent dataset test. Our method is
capable of identifying ER-resident proteins.

Keywords: pseudo-amino acid composition, support vector machine, endoplasmic reticulum resident protein,
leave-one-out cross-validation, weight transfer
INTRODUCTION

The endoplasmic reticulum (ER) is an important subcellular organelle in eukaryotic cells. Two
major functions are usually recognized for ER. One is that it selectively transports secreted proteins
and membrane proteins. The other is that it retains some proteins to maintain its own structure and
function (Lavoie and Paiement, 2008). The ER proteins are sorted precisely with quality controls
(Ellgaard and Helenius, 2003; Araki and Nagata, 2011). An understanding of these processes
contributes to the elucidation of endoplasmic reticulum function and the pathogenesis of many
diseases (Paschen and Frandsen, 2001; Verkhratsky, 2002).

ER-resident proteins are an important topic in ER-related studies. Some of the ER-resident
proteins possess sorting signals, such as KDEL or KXXX, while some others do not (Stornaiuolo
et al., 2003). Over the last two decades, several efforts have been made to determine the ER sorting
December 2019 | Volume 10 | Article 12311112
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signals experimentally. For example, Teasdale and Jackson
(1996) found that UGT2 localizes to the endoplasmic
reticulum when they studied the UDP-galactosyl transporter
(UGT). They also reported that the C-terminal sequence
“LLTKVKGS” of the UGT2 is useful in the sorting process.
Kabuss et al. (2005) proved that mutating this part of the
sequence will result in re-localization of UGT2 to the Golgi
apparatus. Although wet experiments for detecting protein
localization signals can provide clear evidence and distinguish
between maintenance and return signals, performing these
experiments is always costly and time-consuming. Therefore,
computational predictions are recognized as an alternative
approach that provides useful and informative guidance to the
experimental methods.

Computational predictions of protein subcellular
localizations have been heavily studied in bioinformatics. In
the early 1990s, computational systems were developed to
recognize the sorting signals from the primary sequences of
proteins (Nakai and Kanehisa, 1991; Nakai and Horton, 1999;
Wang et al., 2014). When statistical sequence features were
introduced to represent protein sequences, machine learning-
based algorithms were employed to predict protein sorting
destinations. Many studies have tried to apply various
algorithms to predict protein subcellular localizations at
different levels in different contexts. Several online services
have proved useful in this regard. These services include
ProLoc-GO (Huang et al., 2007; Huang et al., 2008),
KnowPredsite (Lin et al., 2009), SlocX (Ryngajllo et al., 2011),
iLoc-Animal (Lin et al., 2013), iLoc-Euk (Chou et al., 2011), Cello
v-2.5 (Yu et al., 2006), HybridGO-Loc (Wan et al., 2014),
mGOASVM (Wan et al., 2012), Hum-mPloc (Shen and Chou,
2007; Shen and Chou, 2009; Zhou et al., 2017), Euk-mPloc (Chou
and Shen, 2007; Chou and Shen, 2010), HPSLPred (Wan et al.,
2017), and many others (Chou and Shen, 2008; Briesemeister
et al., 2010; Du et al., 2011; Du and Xu, 2013; Almagro
Armenteros et al., 2017; Wei et al., 2018; Chen et al., 2019).

The general-purpose protein subcellular location predictors
take ER as only one of many subcellular locations. The dataset
used for training and testing these methods does not distinguish
between ER-resident proteins and non-ER-resident proteins.
Since both of these types of proteins may be annotated with
subcellular localization ER, constructing a high-quality dataset
that is capable of separating them is important. Kumar et al.
(2017) proposed the ERPred method, using a carefully curated
dataset to distinguish the ER-resident proteins from the non-ER-
resident proteins. By using split amino acid compositions
(SAAC), they achieved a very promising result. Their results
confirmed that the peptide sequences at the terminals of proteins
are very informative in guiding the protein sorting process in the
ER. Moreover, their results revealed that even if no known
sorting signals were found on the sequence, the terminal
peptides were still very useful in identifying ER-resident
proteins (Kumar et al., 2017).

Pseudo-amino acid composition, which was proposed by
Chou (2001), has been widely applied in representing protein
sequences for predicting various attributes of proteins. By
Frontiers in Genetics | www.frontiersin.org 2113
coupling this with many different machine-learning algorithms,
a series of consecutive successes have been achieved. These
successful efforts provide consolidated evidence that the
pseudo-amino acid compositions are capable of representing
protein sequences of various lengths using a fixed-length
numerical vector without losing much of the sequential
information (Chou, 2011; Chou, 2013; Chou, 2015).

In this study, we introduced a U-shaped weight-adjustment
function to improve the pseudo-amino acid compositions. The U-
shaped weight-adjustment function transfers weights from the
middle-positioned residues to those at the terminals. Besides the
weight-adjustment function, we have made two more
augmentations to the original pseudo-amino acid compositions.
One is to introduce the auto-cross covariance pseudo-factor form,
which has been applied in finding protein folding patterns (Dong
et al., 2009). The other is to incorporate positional-specific
physicochemical properties, which have been applied in
predicting protein submitochondrial locations and sub-Golgi
locations (Du and Yu, 2013; Jiao and Du, 2017; Zhao et al., 2019).

Our method actually emphasizes the terminal signaling
peptide information in pseudo-amino acid compositions. We
expect that our approach can be applied not only in predicting
ER-resident proteins but also in other topics associated with
analyzing protein sorting and localization processes.
MATERIALS AND METHODS

Benchmarking Datasets
In this study, we took the ERPred dataset as our benchmarking
dataset. Kumar et al. (2017) released this dataset along with their
ERPred study. The ERPred dataset contains two parts: the
training set and the independent testing set. Table 1 gives a
breakdown of the entire ERPred dataset. The training set
contains 124 ER-resident proteins and 1200 non-ER-resident
proteins. The independent testing set contains 65 ER-resident
proteins and 2900 non-ER-resident proteins. It is obvious that
this dataset is highly imbalanced. The number of non-ER-
resident proteins is about 10 times that of the ER-resident
proteins in the training set and over 40 times that in the
independent testing set. The identifiers of the proteins in the
benchmarking dataset are listed in the supplementary materials
(Tables S1–S3).

Sequence Representations
The ERPred study applied SAAC sequence representations. The
result of ERPred implied that the terminal peptides contain more
TABLE 1 | Breakdown of the dataset.

Data set ERRP
a

non-ERRP
b

Training set 124 1200
Independent testing set 65 2900
Dece
mber 2019 | Volume 10 |
aERRP, Endoplasmic reticulum resident proteins.
bnon-ERRP, Non-endoplasmic reticulum resident proteins.
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information for sorting proteins to ER (Kumar et al., 2017).
Therefore, we introduced a U-shaped weight-adjustment
function to transfer weights from those residues in the middle
part of the sequence to those at the terminals of the sequence.
Besides this improvement, we incorporated the sequential
evolution information using the posit ional-specific
physicochemical properties (PSPCP) (Du and Yu, 2013; Jiao
and Du, 2017), as well as the auto-cross covariance form pseudo-
factors (Dong et al., 2009).

In order to explain our method properly, we developed a new
set of matrix-based notations to describe the Type-II classic
pseudo-amino acid compositions, also known as the amphiphilic
pseudo-amino acid compositions (Chou, 2005). These new
formulations, in mathematics, equal the original ones but with
a much simpler appearance. We first give the definitions of the
all-ones vector and the shifting matrix.

An n-D all-ones vector is defined as follows:

Jn = d1 d2 ⋯ dn½ �T , (1)

where di = 1 (i = 1, 2, …, n).
An n-sized shifting matrix is defined as:

Mn = mi,j

� �
n�n, (2)

where

mi,j =
1 , when i − j = 1;

0 , otherwise
(i = 1, 2, :::, n, j = 1, 2, ::, n)

(
(3)

A given protein sequence p with length l can be represented as
a string:

p = r1r2 ⋯ rl , (4)

where rj (j = 1, 2,…, l) is the j-th residue on the protein sequence.
Every residue represents one of twenty different kinds of amino
acids. We use a 20-D binary vector Aj to represent rj (j = 1, 2,
…, l):

Aj = a1,j a2,j ⋯ a20,j
� �T , (5)

where

ai,j =
1 ,when rj is the i−th type amino acid;

0 , otherwise
i = 1, 2,…, 20, j = 1, 2,…, lð Þ

(

(6)

The whole sequence can be represented using a matrix,
as follows:

A pð Þ = ½A1 A2 ⋯Al�T , (7)

where A(p) is a matrix-based sequence representation, and Aj

(j = 1, 2, …, l) as in Eq. (5).
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When the PSSM can be created using the PSI-BLAST
program for protein p, we can obtain a normalized PSSM
scoring matrix for p, as elaborated in (Du and Yu, 2013). The
normalized PSSM scoring matrix is denoted as follows:

B pð Þ =

b1,1 b1,2 ⋯ b1,l

b2,1 b2,2 ⋯ b2,l

⋮ ⋮ ⋱ ⋮

b20,1 b20,2 ⋯ b20,l

2
666664

3
777775

T

, (8)

where the following normalization condition is satisfied:

o
20

i=1
bi,j = 1 j = 1, 2,…, lð Þ (9)

We define the following matrix to combine matrix B(p) and
matrix A(p):

S pð Þ =
EB pð Þ , when PSSM can be created for protein p;

EA pð Þ , otherwise :
,

(

(10)

where matrix E is a weight-adjustment matrix. It can be defined
as a diagonal matrix, as follows:

E = diag e1 e2 ⋯ elð Þ, (11)

where ej (j = 1, 2,…, l) is a weight-adjustment factor for the j-th
residue on the sequence. It is computed by a U-shaped function,
as follows:
ej = l
exp k 2j − lð Þ=l½ � + exp k l − 2jð Þ=l½ �

o
l

j=1
exp k 2j − lð Þ=l½ � + exp k l − 2jð Þ=l½ �ð Þ

j = 1, 2,…, lð Þ,

(12)

where k is a weight distribution parameter, exp(.) is the
exponential function, l is the length of the sequence, and j is
the j-th residue.

Given a type of physicochemical property H, the values for
20 different types of amino acids can be represented using a
20-D vector.

H = h1 h2 ⋯ h20½ �T , (13)

where hi (i = 1, 2,…, 20) is the physicochemical property value of
the i-th type amino acid. We use the following method to
standardize the physicochemical property vector:

Ĥ = H −m Hð ÞJ20ð Þ=sd Hð Þ, (14)

where J20 is a 20-D all-ones vector,

m Hð Þ = HTJ20=20, (15)
December 2019 | Volume 10 | Article 1231
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and

sd Hð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HTH=20 −m2 Hð Þ

q
: (16)

In this study, we took two different kinds of physicochemical
properties into consideration: the hydrophobicity and
hydrophilicity of amino acids. We denote them as H1 and H2,
respectively. We define the sequence auto-cross covariance
matrix of physicochemical properties as:

Ru,v pð Þ = S pð ÞĤuĤ
T
v S

T pð Þ, (17)

where u, v ∈{1,2}.
The k-th order covariance factor can be defined as:

tk,u,v pð Þ = tr Ru,v pð ÞMk
l

� �
= l − kð Þ, (18)

where tr(.) computes the trace of a matrix,Ml the l-sized shifting
matrix, and u, v as in Eq. (17). For every given value of k, a 4-D
covariance vector can be generated as:

qk pð Þ = tk,1,1 pð Þ tk,1,2 pð Þ tk,2,1 pð Þ tk,2,2 pð Þ½ �T : (19)

By setting the maximum value of k, which is denoted as l, we
can use a 4l-D vector to contain all covariance factors as:

Vl pð Þ = qT1 pð Þ qT2 pð Þ … qTl pð Þ� �T
: (20)

Considering the weight-adjustment factors, the 20-D
conventional amino acid composition vector can be
constructed as follows:

C pð Þ = S pð ÞJl=l : (21)

We can combine the Vl(p) and the C(p) to create a (20 + 4l)-
D vector to represent the protein sequence p, as follows:

F pð Þ = CT pð Þ
CT pð ÞJ20+wVT

l pð ÞJ4l
wVT

l pð Þ
CT pð ÞJ20+wVT

l pð ÞJ4l

h iT
, (22)

where w is a balancing parameter between 0 and 1. We use F(p)
to represent protein p in this study.

Prediction Algorithm
We employed a support vector machine (SVM) as the prediction
algorithm. The SVM searches for an optimal separating hyper-
plane in the high-dimensional feature space, which is widely used
in bioinformatics problems (Liao et al., 2018; Meng et al., 2019a;
Meng et al., 2019b). The hyper-plane can maximize the margin
in the feature space. We applied the radial basis function (RBF)
as the kernel function in SVM, because the RBF kernel function
is the most flexible and the most widely used of such functions. It
can be defined as follows:

K F pð Þ,F qð Þð Þ = exp � g F pð Þ − F qð Þj j2	 

, (23)

where p and q are two proteins, and |.| is the operator that
computes the Euclidean length of a vector.

Due to the dataset imbalance, we developed a voting scheme
to use all samples in the dataset. We partitioned the negative
samples into m subsets. The first m - 1 subsets have an equal
number of negative samples as that of all the positive samples.
The remaining subset contains all the remaining negative
samples. For each of these m subsets, all the positive samples
Frontiers in Genetics | www.frontiersin.org 4115
were replicated to compose a training subset. We trained the
SVM classifier on each of these training subsets. The final
prediction result is the majority result of these m classifiers.
Figure 1 is a flowchart of the entire algorithm.

Evaluation Method
Three validation methods are commonly applied in evaluating a
bioinformatics predictor. They are known as the self-consistency
test, jackknife test, and independent dataset test (Jiao and Du,
2016). Of them, the jackknife test is usually considered as the
most objective and rigorous (Chou and Zhang, 1995). However,
some recent studies have shown that the independent dataset test
can provide even better estimation to the true performance if a
sufficiently large testing dataset can be given (Jiao and Du, 2016).
Due to the limited size of the training dataset and the fact that
our training dataset is highly imbalanced, we applied the
jackknife test to estimate the prediction performance of our
method. We also evaluated our method using the independent
testing dataset, which allowed us to compare our method to the
state-of-the-art methods in a fair manner.

Four statistics were applied to measure the prediction
performances of our method quantitatively. They are the
FIGURE 1 | Flowchart of the algorithm. The input sequence will be first
converted to matrix-based notations. These notations will be converted into
fixed-length numerical vectors, which can represent the sequence order
information, the evolutionary information, and the importance of the terminal
signaling peptides.
December 2019 | Volume 10 | Article 1231
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sensitivity, specificity, overall accuracy, and the Matthew’s
Correlation Coefficient (MCC). They are defined as follows:

Sen =
TP

TP + FN
, (24)

Spe =
TN

TN + FP
, (25)

Acc =
TP + TN

TP + TN + FP + FN
, (26)

MCC =
TPTN − FPFNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ FP + FNð Þ TN + FNð Þp , (27)

where Sen is the sensitivity, Spe the specificity, Acc the overall
accuracy, MCC the Matthew’s Correlation Coefficient, and TP,
TN, FP, and FN are the number of true positives, true negatives,
false positives, and false negatives, respectively.

Parameter Calibrations
Several parameters can be adjusted in our method. The values of
these parameters affect the prediction performances. We applied
a grid-search strategy to optimize the jackknife test performance
by scanning different combinations of the values of k, l, and w.
The parameter k was scanned in the set {0, 0.01, 0.1, 1, 1.5}, the
parameters l from 2 to 20 with a step of 1, and the parameter w
from 0.05 to 0.95 with a step of 0.05. For each parameter
combination, we use another grid-search to find the best values
of c, g, and w, where c is the cost parameter of SVM, g is the
parameter in the RBF kernel, and w is the class weight ratio
between two classes. In this study, we applied the SVM functions
in the scikit-learn python package. The grid search of SVM
parameters was conducted automatically with a python script.
RESULTS AND DISCUSSION

Performance Analysis and Comparison
We obtained the optimized combination of parameters when k =
0.1, l = 16, w = 0.55, c = 1000, g = 0.01, and w = 1.2. The PSSM
matrix was created using the PSI-BLAST program with three
iterations and 0.001 as the threshold of e-values.

In the jackknife test, our method can correctly identify 111
out of all 124 ER-resident proteins. The prediction performance
values are recorded in Table 2, with comparison to the
ERPred method.

According to these performance values, our method performed
better than the ERPredmethod. Our method achieved a sensitivity
of 83.06% and a specificity of 86.38%, which are both higher than
the values for ERPred on the same dataset.
Frontiers in Genetics | www.frontiersin.org 5116
Independent Dataset Test
The training dataset of our work is identical to that used for
ERPred. This dataset is highly imbalanced. To further eliminate
the concern of over-estimated performances, we performed
testing with an independent dataset. We took the same
independent testing dataset as used in the ERPred method.
The independent testing dataset was processed by the predictor
that was trained with the training dataset. The prediction
performances of our method are recorded in Table 3.
Although the specificity is lower than that from the jackknife
test, the sensitivity value remains almost unchanged. Therefore,
we think the prediction performance is not over-estimated.

We also entered the same testing dataset into several other
predictors for comparison. The compared predictors include
ERPred (Kumar et al., 2017), Cello v2.5 (Yu et al., 2006), iLoc-
Euk (Chou et al., 2011) and Euk-mPLoc 2.0 (Chou and Shen,
2007; Chou and Shen, 2010), which all provide the option to
identify ER proteins. According to the prediction performance
values, our method has the best sensitivity. However, the
specificity of our method is lower. The results indicate that
Cello and iLoc-Euk tend to assign non-ER locations to an ER-
resident protein. They increase the specificity by severely
sacrificing the sensitivity. As the nature of the ER-resident
proteins is that the number of non-ER resident proteins is
much larger than the resident ones, we think it is acceptable to
sacrifice some specificity for the balance to the sensitivity. The
ERPred method, Euk-mPLoc 2.0, and our method have a better
balance between sensitivity and specificity. Particularly, it seems
that the Euk-mPLoc 2.0 method has the best performance, as it
achieves over 66% sensitivity while maintaining over 99%
specificity. However, it should be noted that Euk-mPLoc 2.0 is
not specifically designed to identify ER-resident proteins. Some
of the proteins in the testing dataset may have already been used
as training samples when Euk-mPLoc 2.0 was developed. This
may result in an over-estimated performance value in the
comparison. Another factor that should be noticed for Euk-
mPLoc 2.0 is that it relies on GO annotations, which makes it not
an ab initio predictor. Although using GO annotations is
common in developing this kind of predictor (Du and Xu,
2013), comparing an ab initio predictor with a homology
search-based method is not a fair comparison. Therefore, we
believe that our method has, at least, comparable prediction
performance to other existing methods. Especially in identifying
ER-resident proteins, our method should be considered with a
h igher pr io r i t y than genera l -purpose subce l lu l a r
location predictors.
TABLE 2 | Prediction performance estimations using a jackknife test.

Methods Sensitivity Specificity Accuracy MCC

This work 83.1% 86.4% 86.1% 50.6%
ERPred 79.8% 81.6% 81.4% 42.0%
TABLE 3 | Prediction performance comparison using the independent dataset.

Methods Sensitivity Specificity

This work 85.7% 67.2%
ERPred 72.3% 83.7%
Cello 2.5 16.9% 99.9%
iLoc-Euk 15.4% 99.8%
Euk-mPloc 2.0 66.2% 99.0%
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Effects of the Residue Weight-Transfer
Function
The ER-resident proteins can be roughly divided into two
different types. One type is proteins with a specific C-terminal
tetra-peptide signal, which usually has a form like KDEL or
HDEL. The other type is proteins without this kind of signaling
peptide on either its C-terminal or N-terminal. The latter types
of proteins usually have an N-glycan modification or similar
modifications like cereal prolamin storage proteins (Stornaiuolo
et al., 2003). In our training dataset, we searched for the tetra-
peptide signals by using ProSite. We found only 41 signaling
peptides in all of the 124 ER-resident proteins. In our testing
dataset, we performed the same search. We found only 11
singling peptides in all of the 65 non-ER-resident proteins.
Therefore, it is not practical to identify ER-resident proteins
using only the signaling peptide information. This observation is
consistent with the motivation of the ERPred study.

ERPred is a very powerful and useful computational method. It
introduces SAAC sequence representations, which successfully
emphasize the terminal signaling sequence information.
However, the sequence order information is lost in the amino
acid composition representations. Although the pseudo-amino
acid composition representation can preserve the sequence order
information, it cannot emphasize the terminal signaling peptides in
the protein sequence. Therefore, we introduced a U-shapedweight-
transfer function into the pseudo-amino acid composition in this
study. The purpose of this weight-transfer function is to emphasize
the terminal signaling information and also to incorporate the
sequence order information. However, it is difficult to decide how
many weights should be transferred to the terminals from the
Frontiers in Genetics | www.frontiersin.org 6117
middle part of a sequence. We formulate this factor as a parameter
k in Eq. (12). Figure 2 illustrates the shape of the function with
different k values. Figure 2 enables an intuitive understanding of
this U-shaped weighting function. The larger the value of k, the
more weights are transferred to the terminals of a sequence. Please
also note that Figure 2 is only an intuitive illustration of the U-
shaped function when the length of a protein is 100. The crossing
point under this condition cannot be extended to other cases.

To find an optimized k value, we trained and tested predictors
with different k values. Figure 3 plots the performance values
with different k. The sensitivity increases slightly with an increase
in k. The specificity peaks when k = 0.1. Therefore, at least for
predicting ER-resident proteins, k = 0.1 creates a good weight-
transfer function.

The choice of using a U-shaped function rather than another
shape is not easy. Since we do not know how much weight should
be transferred, this must be an adjustable parameter in the
function. Besides, we need to make the function satisfy the
following conditions at the same time: (1) all weights are
positive; (2) the sum of all weights equals the sequence length;
(3) the portion of the weight-increased part and weight-decreased
part remains almost unchanged when we adjust the amount of
weight that is transferred. This will make the function only transfer
weights among residues, not create or remove total weight. The U-
shaped function not only satisfies all these conditions but also
provides us with a simple way to implement it.

Sequence Representation Augments
Besides the U-shaped weight-transfer function, we augmented
the classic amphiphilic pseudo-amino acid compositions in two
FIGURE 2 | Illustration of the U-shaped weight-transfer function with various k values. The U-shaped function transfers weights from the middle part of a sequence
to its terminals. The total weight of a sequence does not change after applying the U-shaped weight-transfer function. When the parameter k is 0, every residue on
the sequence has equal weights, which will produce identical results as where there is no weight-transfer function. When the value of k increases, more and more
weights are transferred from the residues in the middle part of a sequence to the residues on its terminals.
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ways. One is to use auto-cross correlation to replace the auto-
correlation in the classic amphiphilic pseudo-amino acid
compositions, while the other is to use matrix-based notations
to represent the sequence itself.

The advantage of using auto-cross correlation over auto-
correlation has been proved in predicting protein folding
patterns (Dong et al., 2009). The matrix-based sequence
notations see each residue on the sequence as a 20-D
composition vector. The original sequence can then be
represented using the one-hot encoding scheme, which can be
unified with the normalized PSSM. Since PSI-BLAST cannot
generate PSSM for every protein sequence, the matrix-based
notation actually provides a mathematically compatible way to
compensate for the missing PSSM using the one-hot encodings. As
elaborated in Du and Yu (2013), when the PSSM is available for a
protein sequence, this matrix-based notation also adjusts the
weights of residues according to the evolutionary information.

Therefore, our sequence representation actually encoded the
sequence order information and the evolutionary information
with emphasis on the terminal signaling peptides in a (20 + 4l)-
D numerical vector. Compared to other studies, our sequence
representation has a much lower number of dimensions. On a
dataset with limited samples, the risk of over-estimated
performance increases with the number of dimensions of the
representation. Our method should be a better choice when the
number of samples is limited.
CONCLUSIONS

Many existing methods can predict protein subcellular locations.
However, only the ERPred method can specifically identify ER-
resident proteins. The ER may be the most important type of
Frontiers in Genetics | www.frontiersin.org 7118
subcellular organelle, linking all the major subcellular structures,
including the nucleus, cytoplasm, and cell membrane. In this
study, we present a new method for predicting ER-resident
proteins. Although establishing a web server for a predictive
method is good practice, it is not easy for us to do so due to the
limitations of our resources and the complexity of this new
method. We will establish a web server for this method in the
future. The most important part of this work is to introduce a U-
shaped weight-transfer function into the pseudo-amino acid
compositions. Since the signaling peptide information is useful
in analyzing many different subcellular processes and this is the
first time that the signaling peptide information has been
empha s i z e d i n p s eudo - am ino a c i d compo s i t i on
representations, we believe that our method has great potential
for application in predicting various attributes of proteins.
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Zika virus was first discovered in 1947. For a long time afterward, no large-scale outbreaks
occurred. However, more recently, in 2007 and 2016, there were two episodes of ZIKV
outbreak that have produced serious public health problems. By analyzing the evolution of
the viral genome, we can understand the potential for its outbreak. In this study, we
constructed a maximum clade credibility (MCC) tree for the ZIKV non-structural protein 5
(NS5) gene using the Bayesian method. A total of 108 whole-NS5 sequences were
retrieved from the GeneBank. We carried out an analysis of potential glycosylation and
phosphorylation sites of the ZIKV virus NS5 gene and dynamic analysis of the evolutionary
characteristics of the gene. Phylogenetic analysis revealed the presence of two sequence
lineages: African and Asian. The sequence of the strains obtained from GeneBank has
high homology of 85% to 100%. There are 35 potential phosphorylation sites and
glycosylation sites in the ZIKV-NS5 sequences. This article analyzes the possible
causes of ZIKV virus outbreaks from the perspective of genetic evolution and analyzes
the dynamic trends of virus outbreaks to provide a theoretical basis for predicting the
outbreak of the virus.

Keywords: zika virus, NS5, evolution, dynamic changes, Bayesian method
INTRODUCTION

In 1947, Zika virus (ZIKV) was first isolated from a monkey in Zika forest, Uganda. (Dick et al.,
1952). ZIKV is a member of the virus family Flaviviridae and genus Flavivirus and is a mosquito-
transmitted virus. The virus particles are spherical, with diameters of about 40 ~ 70 nm. Zika virus
is a type of single-stranded, positive-sense RNA virus. The whole-genome length is about 10.8 kb,
and its single ORF encodes three structural proteins and seven non-structural proteins (NS1,
NS2A, NS2A, NS4A, NS4A, NS4B, and NS5) (Kuno and Chang, 2007). The nonstructural protein
5 (NS5) is necessary for genomic replication of zika virus. The N-terminal of NS5 contains
methyltransferase (MT), followed by the RNA-dependent RNA polymerase (RdRp).
Abbreviations: ZIKV, Zika virus; NS5, non-structural protein 5; MCC, maximum clade credibility.
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Themethyltransferase domain at the N-terminal stabilizes the viral
RNAgenome through5' capping,while theRdRpdomainat the end
of C-terminal is very important for the RNA replication of the virus
(Decroly et al., 2011; Lu and Gong, 2013; Zhao et al., 2015).

The main means of transmission of ZIKV is through Aedes
mosquito bites, perinatal transmission, sexual contact, and
blood transfusion (Besnard et al., 2014; Musso et al., 2014;
Franchini and Velati, 2016). Since the first discovery of Zika
virus in 1947, it has gradually spread to become a large-scale
problem in the world. The first strain isolated from Asia was
named “P6–740” and was isolated from Aededon in Malaysia in
1966 (Haddow et al. , 2012). Molecular biology and
bioinformatics analysis showed that there are two subtypes of
ZIKV, the African and Asian lineages. However, from 1966 to
2007, confirmed cases were scarce, and there was no associated
sequence data regarding the Asian linkage. That was until 2007,
when 49 cases of ZIKV infection were confirmed in Yip Island
and became the first large-scale human infection event in
history (Duffy et al., 2009). Now, more than 30 countries have
reported ZIKV infections, and these infections have led to
multiple imported cases. The ZIKV epidemic has become an
important public issue of concern to the whole world (Gong
et al., 2016). Base variation, including base recombination,
conversion and deletion, will affect the codon usage pattern of
the virus, and changes in the codon usage pattern will affect the
encoded protein. It is reported that there are potential mutation
sites associated with microcephaly (Wang et al., 2017). Studies
have shown that envelope protein and NS1 protein of zika virus
are predicted to have glycosylation modification sites (Lanciotti
et al., 2008; Haddow et al., 2012; Faye et al., 2014). Recently, it
has been suggested that correlation between the polymorphism
of glycosylation sites and vectors has caused the evolution of
Zika virus (Faye et al., 2014). The prediction of viral mutation
sites and glycosylation sites is of great significance for
understanding the evolution of the virus and the spread of
the disease.

Bayesian Inference (BI) is based on using the evolutionary
model of sequence evolution to reconstruct the statistical method
of the system tree. The resulting tree not only reflects the best
estimate of the phylogenetic relationship but also provides the
exact support for the branch (Battaglia et al., 2016). Because of
the important function of the NS5 gene and the previous
construction of an evolutionary tree using the NS5 gene (Gong
et al., 2016; Shen et al., 2016), this article uses the Bayesian
method to analyze the evolution of the Zika virus NS5 protein,
with simultaneous analysis of possible mutation sites. The
research result provides a significant theoretical guide to the
prevention and treatment of the disease.
MATERIALS AND METHODS

Sequence Collection
The total of 108 NS5 gene sequences that had been added to
GenBank before October 2017 were downloaded for Bayesian
analysis. These gene sequences are the complete NS5 sequences.
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The detailed sequence information is listed in Additional
Table S1.

Sequence Analysis and Comparisons
of NS5
The nucleotide sequences of Zika virus NS5 were analyzed using
DNASTAR Lasergen 7.0 software to compare their homology.

Analysis of Potential Protein
Modification Sites
We used the NetOGlyc 4.0 Server (http://www.cbs.dtu.dk/
services/NetOGlyc/) (Steentoft et al., 2013) to estimate the O-
glycosylation status of these NS5 sequences (Boon et al., 2016).
GlycoMine was used to predict the C-linked and N-linked
glycosylation (http://glycomine.erc.monash.edu/Lab/
GlycoMine/).

Analysis of the Obtained Viral Genome
Data by the Bayesian Method
The Bayesian analysis method was used to study the present
evolution rate and evolution model of the epidemic ZIKV strain.
The complete NS5 sequence alignment of the ZIKV was disposed
carefully with the Clustal W program in MEGA. The RDP3
recombination package was used to detect the recombination of
all the sequences. The saturation monitoring was also tested by
screening sequences with DAMBE software. If ISS < ISS.c, it means
that the sequence substitution is not saturated and meets the
requirements for building a phylogenetic tree using Bayesian
methods. Finally, the best evolution model was selected with
jModelTest software. BEAST v1.8.0 was employed under the GTR
+I+Gmodel of nucleotide substitutions andwith the Relaxed clock:
Uncorrelated Log-normal setting to perform 80 million MCMC
runs to construct a maximum clade credibility tree (effective
sampling size >200). The analysis was sampled at every 8000
states. Posterior probabilities were calculated with a burn-in of 8
million states. The analysis of the sampling data was output by
Tracer v1.6, and the Tree Annotator program was employed to
output the results of the MCC tree model. FigTree program was
then used to plot the MCC molecular evolutionary tree.
RESULTS

Homologous Comparison of Zika
Virus Sequences
Zika virus is a member of the family Flaviviridae and genus
Flavivirus and is a mosquito-transmitted virus. In the
phylogenetic tree, it is close to Dengue virus, Japanese
encephalitis virus, and West Nile virus;, the closest virus is
Spondweni (Figure 1). The Zika virus strains used in this
study were 108 strains collected from 20 districts. The results
showed that the nucleotide homology of the 108 strains of Zika
virus was between 85.4% and 100% and that some of them were
100% homologous. Twenty-four strains from the United States
(Figure 2A) and seventeen strains from Brazil are compared
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respectively (Figures 2B). We can see the homogeneity of the
twenty-four strains of the NS5 gene from the United States is
96.3%~100%, and there are many sequences of the strains of the
NS5 amino acid that have a homology of 100%. The same result
was found in the Brazil strains. The nucleotide homology of the
Frontiers in Genetics | www.frontiersin.org 3123
Brazil strains is 99.4%~100%. This result shows that the
mutation rate in the 108 strains is low and that the NS5 gene
is relatively conservative.

Prediction of Glycosylation Sites
We performed three types of glycosylation site prediction for
NS5 sequences of 100 strains. We used GlycoMine to predict C-
linked and N-linked glycosylation sites and NetOGlyc to predict
O-glycosylation. It can be seen from the results that there are 10
sites that are potentially modified by O-glycosylation (Figure
3), and the number of sites of N-linked and C-linked
glycosylation that may occur in different strains is not much
different (Figure 3). For example, comparing one strain of
KY014296 from Brazil with other strains from Brazil that lack
a C-linked site 654 (Figure 3), we can see in the sequence
alignment that the amino acid of the strain at this position is
arginine, whereas the amino acid of the other strains at this
position is tryptophan.

Recombinant Analysis of Virus Strains
In order to identify whether recombination occurs between
different strains in the same region, we used SimPlot to analyze
the sequences of different strains in the same region. As shown
in Figure 4, there is no recombination in the strains of Brazil.
The sequences of all of the NS5 genes were then grouped by
region, with the strains from the same region grouped together.
SimPlot was then used to verify the occurrence of
recombination events further. From Figure 4, we can see that
FIGURE 2 | Homologous comparison. (A) Homology alignment analysis of 24 Zika strains from the United States using the DNASTAR software package.
(B) Homology alignment analysis of 17 Zika strains from Brazil using the DNASTAR software package.
FIGURE 1 | Phylogenetic analysis of Zika virus, Dengue virus, Spondweni virus,
West Nile virus, Yellow fever virus and Chikungunya virus based on NS5 gene.
January 2020 | Volume 10 | Article 1319
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FIGURE 3 | Functional site prediction. (A) Prediction of O-glycosylation site of Zika virus from Brazil using the NetOGlyc website. (B) Heat map of predicted N-linked
and C-linked glycosylation sites. The ordinate of the heat map represents the sequence of different strains; the abscissa represents all amino acid sites of the NS5
gene. Glycosylation predictions are performed on 100 sequences. The darker the red color, the higher the score. (C) Sequence alignment result.
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there is no recombination event in any of the sequences. The
above results indicate that no recombination occurred in the
selected strain sequences.

Evolutionary Tree Construction Based on
the Bayesian-Markov Chain Method
A total of 108 complete NS5 gene sequences were used in the
phylogenetic analysis. Samples were collected from 20 regions.
Although these strains were from 20 different regions, they were
eventually divided into two groups, the African lineage and the
Asian lineage. After 2015, the isolated strains were very close to
each other and the new outbreak strains selected in this study are
all Asian-type. Indicating that during this time, the NS5 gene
sequence of ZIKV was conservative. There is no extra genotype
from after the outbreak of the ZIKV epidemics in 2015 and 2016.
The recent outbreak was predominantly in Asia, and the
Frontiers in Genetics | www.frontiersin.org 5125
contemporary epidemics are dominantly evolved from Asian
strains. Neither the American strains nor the Brazilian strains
have a very specific genotype (Figure 5C). Moreover, among
these strains, there is no clear dividing line between the strains of
each country. As can be seen from Figure 5, strains from the
United States, Brazil, and the Dominican Republic are cross-
distributed in the phylogenetic tree, with the closest ancestor
being a tree root. Strains from Honduras, Nicaragua, and Mexico
are closely spaced, and these are the strains most distant from the
Africa linkage. From a temporal perspective, the kinship strains
we collected at different times from the same area were the most
recent. This shows that the strains in each region are from local
ancestors, and there is no cross-infection with other regions.

The Bayesian-Markov chain method was used to determine
the codon mutation rate of the Zika NS5 gene, and the BEAST
results were analyzed by Trace. The results showed that the
FIGURE 4 | Recombination analysis of Zika virus. Plots of the similarity (generated by SimPlot) of a set of reference sequences. (A) Sequences of Zika virus from
Brazil. (B) Comparison after grouping the Zika virus into different regions.
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codon mutation rates of the amino acids encoded of ZIKV NS5
were different, and, respectively, the mutation rates of the three
codons were 0.3695, 0.1596, and 2.4709 (Figures 6A). Thus, the
mutation rate of the third codon was the highest. Since the
mutation rate of the third codon is the highest and the codon has
degeneracy, some mutations do not change the amino acids of
the encoded protein, which makes the homology between the
Zika virus strains very high. These values indicate that during
this period, there was a base mutation of the NS5 gene, and this
may be associated with the recent outbreak of the Zika virus. The
geographical distribution of Zika viruses is steadily growing. As
Frontiers in Genetics | www.frontiersin.org 6126
can be seen from the skyline plot (Figure 6), the effective size of
the Zika virus has decreased since its discovery, but it also
increased somewhat in 2015, coinciding with the Zika
virus outbreak.
DISCUSSION

The Zika virus, which was discovered in 1947, returned 70 years
after its discovery, unexpectedly appearing in the Pacific Islands
and Latin America. Pathogenic changes, including microcephaly
FIGURE 5 | Phylogenetic analysis of Zika virus. (A) Evolutionary development of 24 strains of Zika virus NS5 genes from the United States. (B) Evolutionary
development of 17 strains of Zika virus NS5 genes from Brazil. (C) Evolutionary development of 108 strains of Zika virus NS5 genes.
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and Guillain-Barre syndrome, have caused widespread concern.
One possible reason for this is the objective environmental
conditions of an increased global population and an increased
mosquito vector population (Pettersson et al., 2016; Shi et al.,
2018). Another possibility is that amino acid substitution occurs
that affects the rate of transmission and the pathogenicity of the
virus. The effect of amino acid substitution on pathogenicity has
been reported previously. For example, it was found that there
was a substitution from S to N at position 139 of the prM protein
before the French Polynesian outbreak of 2013 and that the
subsequent strains in the Americas were all 139N. In vitro
experiments showed that amino acid substitution enhanced
infectivity and induced more severe microcephaly. Interaction
between the virus and the host can lead to different infection
outcomes (Yuan et al., 2017). Yang Liu et al. showed that
spontaneous mutations on NS1 proteins increase their own
antigenemia (Liu et al., 2017). Hongjie Xia et al. believe that
mutations in Zika NS1 protein increase the body's ability to
evade the immune response and increase the possibility of
infection and epidemic (Xia et al., 2018). The replacement of
one amino acid site has the potential to improve pathogenicity
and transmission efficiency, which may explain why Zika virus
has re-emerged after so many years. This is of great significance
to study this mutation.
Frontiers in Genetics | www.frontiersin.org 7127
Compared with other gene fragments, NS5 and envelope gene
fragments still had higher variability, although the non-structural
proteins NS3 and NS5 were relatively conserved compared with
other gene fragments according to homologous modeling
analysis (Koh, 2014; Mazeaud et al., 2018), which in turn
affects the genetic stability of the protein, making it easier for
the virus to invade the human body (Yuan et al., 2015). We can
observe an obvious cluster of NS5 genes consisting of only
Chinese strains (Figure 4 red), and the genetic distance
between Chinese strains and French Polynesian strain is small.
In 2013, a study showed that this strain from China and the Latin
American strains have a common ancestor. (Faria et al., 2016).
This suggests that this Chinese lineage may have evolved from an
ancestor that erupted in the Pacific islands in 2013. Asian strains
form an independent cluster, and the recent outbreaks of the
Zika virus are of Asian lineage, indicating that Asian strains are
more diversified than African Zika virus strains. There is a
certain degree of mutation in the NS5 genes of Zika virus
strains collected from Brazil and the United States. However,
these mutations did not alter the glycosylation and
phosphorylation sites of the NS5-encoded protein, suggesting
that though there are mutations in the NS5 gene, these mutations
did not impair the stability of the virus, and the protein structure,
which plays an important role in the protein structure, remained
FIGURE 6 | Zika virus NS5 codon mutation rate and skyline plot (A, B). The codon mutation rate of the Zika virus NS5 gene was estimated by the Bayes-Markov
chain method. The codon mutation rate is the result of a BEAST run using Trace analysis. (C) Dynamic study of Zika virus NS5 gene genetic diversity by Bayesian
skyline plot. The thick solid line is the median estimate, and the dotted line shows the 95% confidence interval. The abscissa is time, and the ordinate is the effective
population size. The curve shows that the Zika virus NS5 gene has been in a stable state and the population gradually began to grow in 2015.
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stable. From Figure 5, we can see that the mutation rate of the
third codon is the highest. Because of the degeneracy of the
codon, mutations that occur on the third codon may not cause
amino acid changes, which could explain why the various
glycosylation and phosphorylation sites did not change after
mutation. Glycosylation sites in the Zika virus genome display
polymorphisms and may have adaptive value in evolutionary
processes (Singh et al., 2016). It has been reported that Zika virus
has a loss of glycosylation sites (Hanna et al., 2005; Lee et al.,
2010). Mutations at amino acid sites play an important role in
the pathogenicity of Zika virus, so analysis of the virus evolution
is critical to better understand the pathogenesis of viral infection
and the variability of its clinical phenotype.

The data we selected included the NS5 protein sequence of the
Zika virus that broke out in 2016 and previously. The relatively
stable NS5 gene nucleotide sequence will provide a great
opportunity to develop a vaccine for this disease. We predicted
the dynamic phylogenetic trends, which indicate the outbreak
trends of ZIKV and provide theoretical foundations for clinical
prevention. The potential glycosylation and phosphorylation
sites of the NS5 gene were predicted and discussed in
conjunction with existing functional assays.
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Intelligence and Smart Learning, Central China Normal University, Wuhan, China

miRNA plays an important role in many biological processes, and increasing evidence
shows that miRNAs are closely related to human diseases. Most existing miRNA-disease
association prediction methods were only based on data related to miRNAs and diseases
and failed to effectively use other existing biological data. However, experimentally verified
miRNA-disease associations are limited, there are complex correlations between
biological data. Therefore, we propose a novel Three-layer heterogeneous network
Combined with unbalanced Random Walk for MiRNA-Disease Association prediction
algorithm (TCRWMDA), which can effectively integrate multi-source association data.
TCRWMDA based not only on the known miRNA—disease associations, also add the
new priori information (lncRNA–miRNA and lncRNA–disease associations) to build a
three-layer heterogeneous network, lncRNA was added as the transition path of the
intermediate point to mine more effective information between networks. The AUC value
obtained by the TCRWMDA algorithm on 5-fold cross validation is 0.9209, compared with
other models based on the same similarity calculation method, TCRWMDA obtained
better results. TCRWMDA was applied to the analysis of four types of cancer, the results
proved that TCRWMDA is an effective tool to predict the potential miRNA-disease
association. The source code and dataset of TCRWMDA are available at: https://
github.com/ylm0505/TCRWMDA.

Keywords: miRNA-disease association prediction, three-layer heterogeneous network, unbalanced random walk,
LncRNA, Laplace normalization
INTRODUCTION

MiRNAs are widely found in eukaryotes and regulate the expression of other genes. miRNA is very
important for the control of animal development and physiology (Victor, 2004). miRNA is involved
in regulating cell differentiation (Lee et al., 1993)and plays an important role in many biological
processes, including cell cycle progression and apoptosis (Brennecke et al., 2003). Mutations and
biogenic dysfunction of miRNA and disorders of miRNA and its targets may lead to a variety of
diseases. Calin et al. published the first study that microRNAs linked to cancer in 2002, there was a
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significant association between decreased levels of both miRNAs
and chronic lymphoblastic leukemia, suggesting a potential
relationship between miRNA and cancer (Calin et al., 2002).
miRNA is an important factor in tumorigenesis, and the artificial
regulation of some miRNAs may lead to the occurrence or
apoptosis of tumors, which depends on the regulation of
miRNA (Yang et al., 2009). With the development of miRNA
research, the association between miRNA and disease has been
extended to many types of cancer, including leukemia and lung
cancer (Johnson et al., 2005; Bandyopadhyay et al., 2010), breast
cancer, and colon cancer (Michael et al., 2003), and so on,
exploring the relationship between miRNA and disease has
become the subject of many kinds of cancer research. More
and more evidence proving that miRNA is closely related to
diseases, understanding relationships between miRNA and
disease is conducive to understanding the pathogenesis of
diseases at the molecular level, but more importantly is
conducive to prognosis, diagnosis, evaluation, treatment, and
prevention of diseases and the promotion of human medical
progress. Traditional experiments are costly, time consuming,
and only suitable for small-scale data, with the development of
biology, mass biological data about miRNA have been generated.
There is an urgent need to develop a powerful computational
method to predict the potential disease-related miRNAs, possible
candidate miRNAs with higher prediction score were obtained
by computational methods can reduce the time and cost of
biological experiment.

In the early research methods of miRNA-disease association
prediction, under the assumption that functionally related
miRNAs are often related to diseases with similar phenotypes
(Lu et al. , 2008), A computational model based on
hypergeometric distribution to predict the miRNA-disease
association was proposed (Jiang et al., 2010), and constructed a
heterogeneous phenome-microRNAome network for human
phenome-microRNAome by combining the miRNA functional
similarity network and the disease phenotype similarity network
with the known miRNA-disease association, However, this
method relies on the neighbor point information of the
predicted miRNA, and the false positive and false negative
rates are relatively high, so the prediction accuracy of this
method is not high. With the development of miRNA-disease
research, the restart random walk algorithm was used to predict
the miRNA-disease association (RWRMDA) based on the
similarity model, which is the first to use the global network to
predict miRNA-disease association (Chen et al., 2012b). A
restart random walk was performed on the MiRNA functional
similarity network to predict potential MiRNA disease
interactions, but RWRMDA did not work on any known
related MiRNA disease. A semi-supervised classification
method RLSMDA to predict the potential miRNA-disease
association based on regularized least squares is proposed
(Chen and Yan, 2015), RLSMDA is a semi-supervised model
that does not require negative samples and a global approach
that prioritizing the association of all diseases at the same time.
CombinedWithin-Score with Between-Score for miRNA-disease
association prediction (WBSMDA) was proposed (Chen et al.,
Frontiers in Genetics | www.frontiersin.org 2131
2016), WBSMDA based on the basis of known miRNA-disease
association data and assuming that miRNAs with similar
functions are more likely to be associated with diseases with
similar phenotypes may lead to bias (preference) on miRNAs
with more known diseases, In addition, the accuracy of the
model is still not very high. Then, a KNNmodel based on rank to
predict potential related miRNAs for diseases (RKNNMDA) was
proposed (Chen et al., 2017), which based on miRNA functional
similarity, disease semantic similarity, Gaussian interaction
profi le kernel similarity and known miRNA-disease
association. In RKNNMDA, k-nearest neighbor algorithm was
used to search k-nearest neighbor of miRNA and disease, and
these k-nearest neighbors were reordered and reweighted
according to the support vector machine model to obtain the
final predicted results. Random walk has also been further
developed in the prediction of miRNA-disease association. The
random walk technique has also been developed in association
prediction, unbalanced bi-random walk on the heterogeneous
networks (BRWH) based on RWR was proposed (Luo and Xiao,
2017) to predict the miRNA-disease Association. From the
matrix, making use of matrix completion algorithm
(MCMDA) to update the adjacency matrix based on the
known miRNA-disease association data to predict its potential
association proposed in (Li et al., 2017). In 2018, there is a
KATZMDA model for miRNA-disease association prediction
(Qu et al., 2018), which based on KATZ model to calculate
miRNA similarity and disease similarity to predict the
association between miRNA and disease, and KATZMDA
yields better results than the previous algorithms mentioned.
Based on the idea of MCMDA, a new induction matrix
completion model (IMCMDA) for MiRNA-Disease
Association prediction was proposed (Chen et al., 2018).
Different from MCMDA, IMCMDA uses disease similarity and
miRNA similarity as the characteristics of disease and miRNA to
complete the missing miRNA-disease association. Recently, a
kernel-based soft-neighborhood similarity model combined with
similar network fusion for miRNA-disease association prediction
was proposed (Ma et al., 2018a). The improvement of the
similarity model improves the accuracy of predicting miRNA-
disease. Ha et al. predict miRNA and disease associations based
on matrix decomposition, which has been widely used in
recommendation systems (Ha et al., 2019). Based on the
heterogeneous network of miRNA and disease, structural
perturbation method is also applied to the prediction of
miRNA-disease correlation, and the final perturbed matrix
represents the correlation score between the two (Zeng et al.,
2018). However, these methods mentioned above only
considered the miRNA-disease association data sets and
functional similarity, without extracting more information
from other data sets related to them to improve the accuracy
and reliability of the model.

With the development of biomedicine, the number of
biological databases increases, and the association between
biological data is gradually excavated, which enables us to
combine different information from different databases to
reliably predict the miRNA-disease association. In view of the
January 2020 | Volume 10 | Article 1316
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limitations of the above methods, in this paper, we put forward a
novel prediction model of three-layer network combining
unbalanced random walk for miRNA-disease association
prediction (TCRWMDA). Based on the known associated data
of miRNA-disease, lncRNA–miRNA and lncRNA-disease,
TCRWMDA build a three-layer heterogeneous network and
performs unbalanced random walk between networks and on
heterogeneous networks to obtain the final prediction results.

To evaluate the effectiveness of the TCRWMDA, we
compared it with other classical and advanced algorithms
based on the same similarity measure on 5-fold cross-
validation. In addition, compared with the latest model based
on the kernel-based soft neighborhood network fusion similarity
model. In order to verify the applicability of TCRWMDA
algorithm, four diseases were studied by TCRWMDA
algorithm. Experimental results and case studies show that this
method can be effectively used to predict the potential
association between miRNA and disease.
MATERIALS AND METHODS

The Dataset
The associated data sets used in this article are from (Chen,
2015). The dataset mainly consists of three association data sets.
First, miRNA-disease association data set is from HMDDV2.0
(Li et al., 2013), finally, 5,430 miRNA-disease associations were
obtained, including 383 diseases and 495miRNAs.A represents the
known association between miRNA and disease, A(i,j)=1. denotes
miRNA m(i) is related to disease d(j), otherwise, A(i,j)=0.

A(i, j) =
1, if miRNA m(i) is associated with lncRNA l(j)

0, otherwise

(

Second, the lncRNA–miRNA association dataset was derived
from the star-base v2.0 database (Yang et al., 2011). Repeated
associations of different evidences were deleted, as well as the
lncRNA–miRNA associations that did not exist in 5,430 known
miRNA-disease associations and their corresponding lncRNA–
miRNA associations in the lncRNA-disease association. Finally,
704 lncRNA–miRNA associations were obtained. B represents the
known relationship between lncRNA–miRNA, B(i,j)=1 represents
miRNA m(i) is related to lncRNA l(j),otherwise, B(i,j)=0.

B(i, j) =
1, if  miRNA m(i) is associated with IncRNA I(j)

0, otherwises

(

Third, the lncRNA-disease association data set in the lncRNA
Disease database (Geng Chen et al., 2012a) was downloaded, and
the repeated association of different evidences and the
association of lncRNA-disease related to the disease or lncRNA
were removed. After removing the data of diseases not shown in
the above data set, 182 lncRNA-disease associations of 34
lncRNAs were finally obtained. C represents association matrix
between lncRNA and disease, C(i,j)=1 denotes lncRNA l(i) is
related to disease d(j), otherwise, C(i,j)=0.
Frontiers in Genetics | www.frontiersin.org 3132
C(i, j) =
1, if  lncRNA l(i) associated with disease d(j)

0, otherwise

(

TCRWMDA
Based on the idea of unbalanced bi-random walk, we proposed
three-layer heterogeneous network combined with unbalanced
random walk for miRNA-disease association prediction
algorithm. TCRWMDA algorithm includes three random walks,
including the random walk on miRNA–miRNA network, disease
similarity network, and the mapping relationship of miRNA–
lncRNA-disease. Figure 1 shows the flow chart of TCRWMDA
algorithm to predict miRNA-disease association. In the dotted
black box above Figure 1, blue dots represent miRNA, yellow dots
represent disease, and red dots represent lncRNA. A three-layer
heterogeneous network consist of the similar networks formed by
same color nodes with straight lines and the heterogeneous
networks formed by nodes of different colors with dotted lines.
The similarity measure can be obtained by calculating the
similarity of association data, the similarity measure was use to
obtain the transition probability matrix by Laplace normalization,
finally, TCRWMDA algorithm using the transition probability
matrix to unbalanced random walk on heterogeneous network to
get the potential association scores between the disease and its
associated miRNAs and sorting. The feasibility and effectiveness of
the algorithm is verified by whether the predicted results already
exist in the existing database.

Construction of Similarity Networks
The similarity networks in this paper consist of lncRNA
similarity network, Disease similarity network, miRNA
similarity network.

lncRNA Similarity Network
Genes can be mutated, inserted and deleted, it is difficult to
achieve a complete match of two sequences, so we use sequence
information as its feature. We extract the sequence features by
considering sequence composition (Zhang et al., 2018). For
lncRNA sequences, we calculated the proportion of four
nucleotide types (A, C, G, T) and 16 dinucleotide types (AA,
AG, AC…) in each lncRNA sequence, every lncRNA l(i) can get a
20−dimensional eigenvector, where (i) is its component, named
as lncRNA sequence composition. The sequence data of 34
selected lncRNA were downloaded from LNCipedia5 (Volders
et al., 2019). Use cosine similarity method to calculate the lncRNA
similarity sl, the formula of lncRNA similarity is as follows:

sl i, jð Þ = o20
i=1L ið Þ � L jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o20
i=1 L ið Þð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o20

j=1 L jð Þð Þ2
q

Disease Similarity Network
In this paper, we used the same method as in literature (Wang
et al., 2010) to calculate the disease similarity.

Disease semantic similarity model 1: Directed acyclic graph
(DAG) was constructed to describe the disease based on MeSH
January 2020 | Volume 10 | Article 1316
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descriptor downloaded from national library of medicine
(Lipscomb, 2000) (http://www.nlm.nih). According to DAG,
the contribution of disease d to the semantic value of disease d
DAG (d) is expressed as:

D1D dð Þ = 1                                                                           if d = D

D1D dð Þ = D ∗D1D d0ð Þf jd0 ∈ children   of   dg if d   ≠ D

(

Δ denotes attenuation coefficient of semantic contribution.
The self-semantic value of disease D was defined as follows:

DV1 Dð Þ =od∈T Dð ÞD1D dð Þ
Where T(D) represents all ancestor nodes of D and D itself.

Based on the assumption that the two diseases share a large part
of DAG and their semantic similarity is large, the semantic
similarity between disease d(i). and disease d(j) can be defined as:
Frontiers in Genetics | www.frontiersin.org 4133
SS1 d ið Þ, d jð Þð Þ = od∈T d ið Þð Þ∩T d jð Þð Þ D1d ið Þ dð Þ + D1d jð Þ dð Þ� �
DV1 d ið Þð Þ + DV1 d jð Þð Þ

Disease semantic similarity model 2: It is unreasonable to give
the same contribution value for diseases in the same layer of
DAG (D). Therefore, according to the model proposed by Xuan
et al., we define the contribution of disease d to the semantic
value of disease d in DAG (d) as follows:

D2D dð Þ = − log
the   number   of  DAGs   including   d

the   number   of   diseases

� �

We define the semantic similarity of diseases d(i),d(j) as the
ratio of share ancestor node contributions to all ancestor node
contributions. The semantic similarity model 2 is calculated
as follows:
FIGURE 1 | Flow chart of TCRWMDA algorithm. The steps of TCRWMDA for the association prediction between miRNA and disease are divided into four stages: the
construction of similarity network, the calculation of transition probability matrix and the random walk on the three-layer heterogeneous network. Finally, the final prediction
score is obtained to analyze the association probability of a certain disease and a certain miRNA. In the black dotted box is the construction of similarity network, which
are based on association data and related data from the available database. The red dotted line shows that an unbalanced random walk on a three-layer heterogeneous
network.
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SS2 d ið Þ, d jð Þð Þ = od∈T d ið Þð Þ∩T d jð Þð Þ D2d ið Þ dð Þ + D2d jð Þ dð Þ� �
DV2 d ið Þð Þ + DV2 d jð Þð Þ

Among them,

DV2 Dð Þ =od∈T Dð ÞD2D dð Þ

miRNA Similarity Network
Wang et al. (2010) proposed the method of MISIM and miRNA
functional similarity based on the hypothesis that miRNAs with
similar functions are more likely to be associated with diseases
with similar characteristics. The miRNA function similarity data
downloaded from http://www.cuilab.cn/files/images/cuilab/
misim.zip. We use FS(m(i),m(j)) to represent association score
between miRNA m(i) and miRNA m(j)

Gaussian Kernel Similarity
Based on the basic assumption that similar diseases are often
associated with miRNAs with similar functions (Wang et al.,
2010), we calculated the Gaussian kernel similarity for miRNA
and disease to obtain the miRNA similarity and disease
similarity. First, we use vector IP(d(i)) to represent there is or
is not an association between each miRNA and disease d(i) and
regard IP(d(i)) as interaction profile of the disease d(i), then, the
gaussian interaction profile kernel similarity between disease d(i)
and d(j) was calculated:

kd i, jð Þ = exp −gd jj IP d ið Þð Þ − IP d jð Þð Þ jj2� �
gd = g 0

d=(
1
ndo

nd

i=1
jjIP d ið Þð Þ)jj2)

gd controls kernel bandwidth. Similarly, the Gaussian kernel
similarity between disease m(i) and disease m(j) can be obtained
as follows:

km i, jð Þ = exp −gm jj IP m ið Þð Þ − IP m jð Þð Þ jj2� �
gm=g

0
m=(

1
nmo

nm

i=1
jjIP(m(i))jj2)

Integrated Similarity for Diseases and miRNAs
We could not obtain the DAGs of all diseases, that is, for a
specific disease without DAG, we could not calculate the
semantic similarity score of this disease with other diseases.
Therefore, for the disease pairs with semantic similarity score, we
used the semantic similarity score to express the disease
similarity, and for other disease pairs, we used the gaussian
kernel interaction profile similarity to represent the disease
similarity. The disease similarity matrix of disease d(i) and
disease d(j) was constructed as follows:

sd i, jð Þ =
SS1 d ið Þ,d jð Þð Þ+SS2 d ið Þ,d jð Þð Þ

2 d ið Þ and d jð Þ has semantic

similarity

kd d ið Þ, d jð Þð Þ                                   otherwise

8>><
>>:

Similarly, the similarity matrix of miRNA can be obtained:
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sm i, jð Þ =
FS m ið Þ,m jð Þð Þ m ið Þ and m jð Þ has functional similarity

km m ið Þ,m jð Þð Þ                                                                     otherwise

(

The similarity between the two miRNAs is the weight of edge
in the miRNA similarity network, in the same way, the similarity
between the two diseases is the weight of edge in the disease
similarity network.

Calculation of Transition Probability Matrix
To perform a random walk on three-layer heterogeneous
networks, the state transition between networks must be
considered and transition probability matrix needs to be
created. To calculate the transition probability in the miRNA
similarity network, we make use of the Laplace normalization
(Zhao et al., 2015) to calculate transition probability matrix in
the miRNA similarity network, and the exit degree of nodes and
the entry degree of nodes were taken into account.

Laplace normalization: Assuming that Z=[(i,j)],i,j=1,2,…,N is
a symmetric matrix, Y is a diagonal matrix, defined as: Y (i,i) is
the sum of the i row of Z, When i is not equal to j,Y (i,j)=0.
Matrix normalization: Z=Y-1/2AY-1/2 also a symmetric matrix,
The elements in can be defined as:

Z i, jð Þ = Z i, jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y i, ið ÞY j, jð Þp

Then the transition probability matrix M in the miRNA
similarity network can be expressed as:

M(i, j) =

sm(i,j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oism(i, j)ojsm(i, j)

q ifo
i
sm(i, j)ando

j
sm(i, j) ≠

     0 otherwise

8><
>:

Similarly, we can obtain the transition probability matrix D
and L in the disease similarity network and lncRNA similarity
network as follows:

D(i, j) =

sd(i,j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oisd(i, j)ojsd(i, j)

q ifo
i
sd(i, j)ando

j
sd(i, j) ≠ 0

     0 otherwise

8><
>:

L(i, j) =

sl(i,j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oisl(i, j)ojsl(i, j)

q ifo
i
sl(i, j)ando

j
sl(i, j) ≠ 0

     0 otherwise

8><
>:

TCRWMDA Algorithm Process
Specifically, TCRWMDA algorithm can be divided into two
parts: one is random walk on heterogeneous networks, and the
other is random walk between networks. Table 1 introduces the
process of TCRWMDA algorithm in predicting miRNA-disease
association, and Table 2 introduces the process of unbalanced
random walk between networks.

Random Walk on Three-Layer Heterogeneous Networks
Where MD represents the predicted correlation matrix between
miRNA and disease, MDt represents t-step random walk were
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performed MD, A、 B、 C denotes matrix of prior knowledge.
TCRWMDA algorithm has six parameters: a, b, l, r, s. l, r. s
represents the number of steps random walk on miRNA-miRNA
network, disease-disease network and networks respectively. a
controls network walk or return to the proportion of prior
knowledge; The function of l is to provide a new priori
knowledge, there is a linearly combination of the new state
form by a random walk between networks and the known
initial state by l. That is, if the current particle is in the
miRNA network, then the particle has probability of a to
perform the l-step random walk in the miRNA network, to
perform the l-step random walk (1-a)×l perform the s-step
random walk into disease network, and has probability of (1-
)×(1-l) to return the start node. If the current particle is in the
disease network, then the particle has probability of a to perform
the r-step random walk in the disease network, has probability of
(1-a)×l perform the s-step random walk into miRNA network.

Random Walk Between Networks
ML represents the predicted association score between miRNA
and lncRNA, while LD represents the probability matrix of
disease generation on lncRNA. b notes the probability of
controlling the random walk on the lncRNA network or
Frontiers in Genetics | www.frontiersin.org 6135
returning to prior knowledge during random walk among
networks. R represents the miRNA-disease association matrix
formed through Random Walk between networks.

MLt and LDt represents t-step random walks were performed
ML and LD, respectively. In equation (18), the association matrix
between miRNA and lncRNA is multiplied by the right
transition probability matrix L on the lncRNA network, which
represents a random walk on lncRNA network to update ML.
Similarly, the left multiplication probability transition matrix L
represents a random walk on lncRNA network to update LD,
finally, we can obtain association between miRNA and disease.
RESULTS AND ANALYSIS

Parameter Analysis
Receiver operating characteristic curve (ROC curve) takes true
positive rate (sensitivity) as the vertical coordinate and false
positive rate (1-specificity) as the horizontal coordinate. The area
under the ROC curve is the AUC value, which can be used as the
evaluation index to intuitively evaluate the classifier. The higher the
AUC value, the better the performance of the algorithm. In the
process of parameter selection, AUC value is selected as the index to
evaluate the influence of parameters. For an algorithm, if the
parameters are set with different values, it corresponds to different
models. For whichmodel to choose, the best way is to use the model
with the minimum generalization error. However, it is generally
impossible to directly obtain the generalization error of the model,
we select the model parameter when the AUC value is the largest.

TCRWMDA has six parameters, set step size of a, b and l is
0.1, with values ranging from 0 to 1. For l, r and s, set the step size
to 1 and the value range to 1–5. The known association between
495 miRNAs and 383 diseases verified by 5-fold cross validation.
First, fix some parameters, change the value of a parameter, and
then the influence of parameters on the model performance was
determined according to the change of AUC value. In the process
of parameter selection, the value of s was changed in the
experiment, and the AUC value did not change much. The
increase in the number of steps in the network could not
provide us with more information, and the information that
could be mined was limited. Moreover, the larger s was, the
higher the algorithm complexity, and the performance of the
model barely changed as s increased, so we set s = 1 in this paper,
which also indicates that the data volume in the lncRNA data set
is too small to provide more network structure information.

Change the values of l and s and fix other parameters. The
change result of AUC is shown in Figure 2. For parameters l and
r, the results are significantly better when l ≥ r than when l < r.
Fixed l, with the increase of r, the AUC value decreased
significantly, which indicated that excessive walking on the
disease network would lead to a certain false positive, and the
overall performance decreased. According to the results of
parameter analysis, we set l = 1 and r = 1.

Next, fix l = 1, r = 1, s = 1, Change the values of a, b, and l,
the experimental results are shown in Figure 3. a denotes restart
probability, when a = 0, only random walk between networks
TABLE 2 | The description of the BNetWalk algorithm.

Algorithm 2 BNetWalk (Random Walk between networks)

Input: Transition probability matrix L; Initial association matrix B and C;
parameter b,s

Output: Predicted miRNA-disease association matrix R
1: ML0 =B/sum(B), LD0 =C/sum(C)
2: for t=1 to s
3: R′=R
4: MLt=b ×MLt-1×L+(1-×b)×B
5: LDt=b ×L×LDt-1+(1-×b)×C
6: R=MLt×LDt

7: end for
7: return R
TABLE 1 | The description of the TCRWMDA algorithm.

Algorithm 1 TCRWMDA (Random Walk on three-layer heterogeneous
network)

Input: Transition probability matrix M, D, L; Initial association matrix A, B, C;
Parameter a, l, b, l, r, s.
Output: Predicted miRNA-disease association matrix MD
1: MD0 =A/sum(A)
2: for t=1 to max (l, r)
3: MD'=MD
4: if t≤l then

5: MDt
left = a�M�MDt−1 + (1 − a)� ½l� BNetWalk(B, C,L,b,S) + (1 − l)� A�

6: end if t ≤ r then

7: MDt
right = a�MDt−1 � D + (1 − a)� ½l� BNetWalk(B, C,L,b,S) + (1 − l)� A�

8:MDt = dt≤l �MDt
left + dt≤r �MDt

right

9: end for
10: return MD
E is identity matrix, if ≤x, dt≤x is 1, and 0 otherwise.
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played a role, ignoring the random walk between the miRNA
network itself and the heterogeneous network on the disease
network. Therefore, the results of the model were not ideal, but
the remaining values of AUC were 0.9205~0.9209, with no
significant fluctuation. When b = 0.1, the AUC value is the
maximum and the model performance is the best. When the
parameter b is larger, the probability of prior knowledge is
reduced. The known association information is gradually
ignored, and the results presented are reduced, which indicates
that the known association information plays an important role
in the algorithm itself and cannot be ignored. Parameter l has
little influence on the model, when l = 0.9, AUC is the largest.
From what has been discussed above, we select l = 1, r = 1, s = 1,
a = 0.1, b = 0.1, l = 0.9.
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Algorithm Performance Comparison
In this paper, we take the AUC (Area under Curve) value as the
evaluation index, all known miRNA-disease associations were
divided into five groups of the same size, four of which were used
as training set for model learning, then, the similarity calculation
method mentioned above was used to calculate miRNA and
disease similarity, we compare TCRWMDA with IMCMDA
(Chen et al., 2018), RWRMDA(Xing Chen et al., 2012),
KATZMDA (Qu et al., 2018), BRWH (Luo and Xiao, 2017) for
5-fold cross validation. The results of TCRWMDA and other
methods for 5-fold cross validation are shown in Figure 4. True
positive rate (sensitivity) is the percentage of a test sample ranked
above a given threshold. False positive rate (1-specificity) is the
percentage of samples below the threshold. In this paper, for the
specified threshold, the true positive rate is the percentage that
accurately predicts the miRNA associated with a known disease,
and the false positive rate is the percentage that predicts the
miRNA unrelated to the disease. When AUC = 1, the
performance of the model is the best. When AUC = 0.5, it
indicates that the classification method is completely ineffective
and has no classification value.

It can be seen from Figure 4, the area under the ROC curve of
TCRWMDA algorithm is the largest, that is, the prediction
performance of this algorithm is better than other methods.
The AUC values obtained by IMCMDA (Chen et al., 2018)
(Chen et al., 2018) (Chen et al., 2018) (Chen et al., 2018) (Chen
et al., 2018) (Chen et al., 2018) (Chen et al., 2018) (Chen et al.,
2018) (Chen et al., 2018) (Chen et al., 2018) (Chen et al., 2018)
(Chen et al., 2018), RWRMDA, KATZMDA, BRWH, and
TCRWMDA on 5-fold cross validation are respectively
0.8351、0.8676、0.9088、0.9106、0.9209. The AUC value of
the TCRWMDA algorithm was 1.3% higher than that of the
BRWH, which indicates add new related dataset and perform a
random walk on constructed multi-layer network and then is
effective. TCRWMDA is 10.3% better than IMCMDA, 6.1%
better than RWRMDA, and 1.1% better than KATZMDA.
FIGURE 2 | Effects of parameters l and r on the result of 5-fold cross
validation. (a=0.1, b=0.1, s=1, l=0.9). When the value of a, b, s, and l are
fixed, the AUC value is maximized when l and r are both equal to 1.
FIGURE 3 | Effects of parameters a, b and l on the result of 5-fold cross
validation. (l=1, r=1, s=1). When a=0, AUC value is the lowest. In this case,
only the random walk between the networks is at work. AUC is relatively
stable with the variation of parameters b and l.
FIGURE 4 | The AUC value of TCRWMDA and other methods for 5-fold
cross validation.
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Based on Kernel-Based Soft-
Neighborhood Network Fusion
Similarity Model
Ma et al. considered the distance factor and the reconstruction
relationship between samples to establish the nuclear soft
neighborhood similarity model (Ma et al., 2018b), and combined
the nuclear soft neighborhood similarity matrix of miRNA (disease)
with the functional similarity (disease semantic similarity) of
miRNA using similarity network fusion (SNF) (Wang et al.,
2014), proposed kernel-based soft-neighborhood network fusion
similarity model, and obtained good results. The following analysis
based on kernel-based soft-neighborhood network fusion similarity
model. After parameter analysis, the final selection is l = 1, r = 1, s =
1, a = 0.2, b = 0.1, l = 0.9.

Figure 5 shows the results of TCRWMDA and LKSNF soft
neighborhood network of nuclear fusion based similarity model
on 5-fold cross validation. In Figure 5, the red solid line
represents the result of TCRWMDA algorithm for 5-fold cross
validation, the green dotted line represents the result of
TCRWMDA algorithm based on kernel-based soft-
neighborhood network fusion similarity model, and the black
dotted line represents the result of the LKSNF algorithm on 5-
fold cross-validation. Based on kernel-based soft-neighborhood
network fusion similarity model, the AUC value of the
TCRWMDA algorithm is improved by 0.99%. However, the
association data of lncRNA-miRNA and lncRNA-disease are
sparse, the number of lncRNAs that can be considered is also
small, resulting in a certain deviation in the prediction results,
the AUC value obtained by TCRWMDA algorithm is almost the
same as that obtained by LKSNF algorithm.

Case Study
Globally, breast cancer is the most common cancer in women,
accounting for 25% of all cancers in women. In 2012, there were
1.68 million cases of breast cancer and 520,000 deaths due to
Frontiers in Genetics | www.frontiersin.org 8137
breast cancer. Mir-200c inhibits the growth and differentiation of
cancer cells, and strongly inhibits the ability of normal breast
stem cells to form mammary ducts and human breast cancer-
driven tumorigenesis in vivo (Shimono et al., 2009). In addition,
miRNA may be abnormally downregulated or upregulated in
colon cancer tissues. In 2003, the first study on miRNAs was
published in colon cancer (Michael et al., 2003), identifying mir-
143 and mir-145 as new misaligned miRNAs in colon cancer.

In order to further prove the predictive performance of
TCRWMDA in predicting miRNA-disease association, we used
TCRWMDA algorithm to carry out analysis of breast cancer and
colon cancer, as shown in Tables 3 and 4.

The predicted results were verified by dbDEMC database
(Yang et al., 2017) and HMDD (Li et al., 2013), for breast tumor
diseases, 44 of the first 50 predicted miRNAs were verified in
dbDEMC and 45 of the top 50 predicted colon tumor diseases
were verified by dbDEMC. In order to enhance the persuasion,
we also listed two other cases (lung neoplasms and lymphoma),
whose prediction results were verified as shown in the
Supplementary Tables 1 and 2.
CONCLUSION

With the development of bioinformatics, more and more
experiments and evidence show that miRNA is closely related
to the generation and development of human diseases, and the
discovery of miRNA that may be related to diseases has attracted
much attention. The experiment is time-consuming and costly,
the new and effective miRNA-disease association prediction
FIGURE 5 | The AUC value of TCRWMDA and LKSNF for 5-fold cross
validation based on kernel-based soft-neighborhood network fusion similarity
model.
TABLE 3 | The top 50 potential miRNAs predicted by TCRWMDA for breast
neoplasms and their associations confirmed by database (column 1: top 1–25;
Column 3: top 26–50).

miRNA Evidence miRNA Evidence

hsa-mir-106a dbDEMC hsa-mir-454 dbDEMC
hsa-mir-130a dbDEMC hsa-mir-421 dbDEMC
hsa-mir-15b dbDEMC hsa-mir-181d dbDEMC
hsa-mir-150 dbDEMC hsa-mir-216a dbDEMC
hsa-mir-192 dbDEMC hsa-mir-330 dbDEMC
hsa-mir-142 unconfirmed hsa-mir-451 dbDEMC
hsa-mir-130b dbDEMC hsa-mir-544a dbDEMC
hsa-mir-372 dbDEMC hsa-mir-181c dbDEMC
hsa-mir-196b dbDEMC hsa-mir-198 dbDEMC
hsa-mir-98 dbDEMC hsa-mir-376a dbDEMC
hsa-mir-92b dbDEMC hsa-mir-211 dbDEMC
hsa-mir-30e unconfirmed hsa-mir-363 dbDEMC
hsa-mir-32 dbDEMC hsa-mir-455 unconfirmed
hsa-mir-186 dbDEMC hsa-mir-490 unconfirmed
hsa-mir-99b dbDEMC hsa-mir-494 dbDEMC
hsa-mir-424 dbDEMC hsa-mir-381 dbDEMC
hsa-mir-212 dbDEMC hsa-mir-154 dbDEMC
hsa-mir-449a dbDEMC hsa-mir-216b dbDEMC
hsa-mir-449b dbDEMC hsa-mir-370 dbDEMC
hsa-mir-99a dbDEMC hsa-mir-520e dbDEMC
hsa-mir-491 unconfirmed hsa-mir-484 dbDEMC
hsa-mir-28 dbDEMC hsa-mir-217 dbDEMC
hsa-mir-151 HMDD hsa-mir-302e dbDEMC
hsa-mir-144 dbDEMC hsa-mir-590 unconfirmed
hsa-mir-95 dbDEMC hsa-mir-377 dbDEMC
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algorithm can effectively provide research directions and reduce
the cost and time of biological experiments.

In this paper, we propose a novel TCRWMDA algorithm, which
is different from the traditional prediction methods based on
heterogeneous network and incorporates new prior knowledge
(lncRNA information related to miRNA and disease) to effectively
make the best use of the information that we have. TCRWMDA is a
framework for integrating multiple sources of information, which
may yield better results when the data set is large. TCRWMDA is
applied to miRNA-disease association prediction, which
implements unbalanced random walk on three-layer
heterogeneous networks and integrate the related similarity
information to predict disease-related miRNAs. TCRWMDA is
efficient because it makes use of multi-source information from
reliable data sources. Considering the association between lncRNA
and disease and the association between miRNA and disease,
TCRWMDA mines the association information on between data
and topological information in the network to improve the
Frontiers in Genetics | www.frontiersin.org 9138
prediction accuracy. Experimental results and case studies prove
that the TCRWMDA algorithm is an effective tool for predicting the
potential miRNA-disease association. If more data sets are added,
the increase and optimization of parameters is a problem worth
thinking about. In the future, we hope to conduct more stable data
integration and seek methods for optimizing parameter selection.
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Schizophrenia (SZ) is a functional mental disorder that seriously affects the social

life of patients. Therefore, accurate diagnosis of SZ has raised extensive attention

of researchers. At present, study of brain network based on resting-state functional

magnetic resonance imaging (rs-fMRI) has provided promising results for SZ identification

by studying functional network alteration. However, previous studies based on brain

network analysis are not very effective for SZ identification. Therefore, we propose an

improved SZ identification method using multi-view graph measures of functional brain

networks. Firstly, we construct an individual functional connectivity network based on

Brainnetome atlas for each subject. Then, multi-view graph measures are calculated by

the brain network analysis method as feature representations. Next, in order to consider

the relationships between measures within the same brain region in feature selection,

multi-view measures are grouped according to the corresponding regions and Sparse

Group Lasso is applied to identify discriminative features based on this feature grouping

structure. Finally, a support vector machine (SVM) classifier is employed to perform SZ

identification task. To evaluate our proposed method, computational experiments are

conducted on 145 subjects (71 schizophrenic patients and 74 healthy controls) using

a leave-one-out cross-validation (LOOCV) scheme. The results show that our proposed

method can obtain an accuracy of 93.10% for SZ identification. By comparison, our

method is more effective for SZ identification than some existing methods.

Keywords: Schizophrenia identification, fMRI, functional brain networks, multi-view graph measures, SVM

1. INTRODUCTION

Schizophrenia (SZ) is a functional mental disorder which caused by genetic factors and
environmental effects. Patients with SZ (SZs) share some common symptoms which include
depression, hallucinations, cognitive dysfunction and disorganized thinking (Marín, 2012).
Impairments of this disorder cover multiple cognitive areas, including memory (He et al., 2012),
attention and executive function (Heinrichs and Zakzanis, 1998). One percent of the population is
affected by the serious psychiatric disease worldwide (Ripke et al., 2013). The clinical diagnosis of SZ
relies mainly on mental state examination rather than any biomarker (Arbabshirani et al., 2013; Liu
et al., 2017d) since the cause and mechanism of the disease are not clearly revealed. However, this
diagnosis method is usually subjective and not completely effective. Therefore, it is urgent to find an
objective method to realize the automatic diagnosis of SZ and improve the accuracy of recognition.
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Nowadays, Magnetic resonance imaging technology has been
widely used in various studies related to brain disease diagnosis
(Nieuwenhuis et al., 2012; Liu et al., 2016, 2017b,c, 2018a; Yang
and Wang, 2018). Since SZ is reported to be a functional disease,
functional magnetic resonance imaging (fMRI) is increasingly
used to study brain dysfunction in patients with mental illness
(Castro et al., 2011; Huang et al., 2018; Liu et al., 2018b; Moghimi
et al., 2018; Chen et al., 2019). In addition, fMRI provides a
database for functional analysis of these brain diseases owing to
it’s massive spatial and temporal information.

In recent years, the number of neurobiological literatures
using fMRI to study SZ disease has increased significantly. fMRI
is usually applied to discover anomalous patterns present in
activationmaps [i.e., Regional Homogeneity (REHO), Amplitude
of Low Frequency Fluctuations (ALFF), fractional Amplitude of
Low Frequency Fluctuations (FALFF)] (Guo et al., 2014; Chyzhyk
et al., 2015; Huang et al., 2018) of SZ. These activation maps
are widely used as potential clinical biomarkers for the diagnosis
of SZ. For example, Huang et al. (2018) used tree-guided group
sparse learning method to perform feature selection on fALFF
data in multi-frequency bands, and then used multi-kernel
learning (MKL) method to achieve an accuracy of 91.10% on
34 subjects. Chyzhyk et al. (2015) combined these activation
maps by using extreme learning machines and successfully
distinguished SZs from healthy controls (HCs). However, these
methods focus on the voxel-wise information in these maps
rather than the connectivity between regions of interest (ROIs).

Functional connectivity has been reported to analyze the
differences in the functional organization of brain networks
between patients and HCs (Lynall et al., 2010; Pettersson-Yeo
et al., 2011). Functional connectivity networks are usually derived
from fMRI data (Van Den Heuvel and Pol, 2010; Craddock
et al., 2013). Nodes of a functional brain network could be the
voxels of fMRI data, ROIs defined by brain atlas or the discrete
regions with similar size by randomly parcellating the brain
(Fornito et al., 2013). Links of a functional brain network could
be determined by the correlations estimated from time courses
between pairs of nodes (Liu et al., 2017a). For example, Yu et al.
(2015) created functional brain network using group ICA and
Pearson correlation coefficient, and they found the new evidence
about altered dynamic brain graphs in SZ. Abraham et al. (2017)
investigated the most predictive biomarkers for Autism spectrum
disorders (ASD) by building participant-specific connectomes
from functionally-defined brain areas. For these methods, the
connections between all pairs of nodes in a brain network
are employed as features, but the topological measures of
connectivity networks are not considered.

To quantitatively analyze functional brain networks, graph
theoretical analysis is employed for investigating the topological
organization of functional connectivity (Anderson and Cohen,
2013; Brier et al., 2014). The most commonly used graph
measures include betweenness centrality, degree, local efficiency,
participation coefficient, average clustering coefficient, average
path length, global efficiency, and small-worldness (Liu et al.,
2017a). These topological measures have been applied in the
brain disease classifications (Cheng et al., 2015; Khazaee et al.,
2015, 2017; Moghimi et al., 2018). For example, Moghimi et al.

(2018) calculated a set of 25 graph measures including global
and local measures for each subject and obtained a classification
accuracy of 80% with a double-cross validation scheme. Cheng
et al. (2015) achieved an accuracy of 79% by using betweenness
centrality measure in SZ identification, and they found that
changes in functional hubs were associated with SZ. Overall,
these methods using graph measures for SZ identification have
not achieved a good classification performance.

In this paper, we propose an improved method based on
multi-view graph measures to identify SZs from HCs. Functional
brain networks are constructed based on fMRI scans. Nodes of
functional brain network are brain regions parcellated with the
Brainnetome atlas (Fan et al., 2016), and edges of functional brain
networks are determined by Pearson’s correlation coefficients.
Five local graph measures are calculated from functional brain
networks by graph theoretical approach as features. The five local
graph measures include betweenness centrality, nodal clustering
coefficient, local efficiency, degree and participation coefficient.
In order to consider the relationship of features within the
same region, firstly we need to group graph measures according
to brain regions defined by Brainnetome atlas. Then Sparse
Group Lasso feature selection method is employed to select the
most important regions as well as discriminative features within
the selected regions. Finally, support vector machine (SVM) is
trained for SZ identification. Our experiments are conducted
on 145 samples with fMRI data, including 74 HCs and 71 SZs.
Our proposed method achieves a mean classification accuracy
of 93.10% using a leave-one-out cross-validation (LOOCV)
scheme. The overall framework of our proposed method is
shown in Figure 1, which consists of four main components
include image preprocessing, feature representation, feature
selection, and classification with SVM classifier. The code for
this classification framework is available for download at https://
github.com/xyzxzj/SZClassification.

2. MATERIALS AND METHODS

2.1. Subject Description and Image
Preprocessing
The data involved in this study is collected by the Center
for Biomedical Research Excellence (COBRE). COBRE1 dataset
consists of 148 subjects with functional and anatomicalMRI data.
74HCs and 71 SZs of the dataset are employed for our subsequent
experiments owing to the class labels of the other three subjects
are not given. During the scan, all participants are asked to
remain relaxed and keep their eyes open. A brief summary of
demographic information of subjects is listed in Table 1.

All of the fMRI images are preprocessed by using Data
Processing & Analysis for Brain Imaging (DPABI) (Yan et al.,
2016). The preprocessing procedure is as follows: the first 10
volumes of functional runs are removed owing to the fMRI
signal instability. Then, the rest volumes are performed slice time
correction, head-motion correction, and co-registration of T1-
weighted MRI images and fMRI images. After that, the fMRI
images are normalized to Montreal Neurological Institute (MNI)

1http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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FIGURE 1 | The overall framework of our proposed method using multi-view

graph measures of functional brain network for SZ/HC classification.

space and resampled to 3 × 3 × 3mm3 voxels. Smooth (4-mm
FWHM) and band-pass filter (0.01–0.1Hz) are applied to the
images which are transformed to MNI space.

In order to construct time series matrices for all subjects, first
all brain images are parcellated into 246 regions by registering
images to the Brainnetome atlas after fMRI data preprocessing.
Then we extract the averaged time series for each of 246 brain
regions for each subject. The time series of each brain region
is derived from averaging fMRI signals of all voxels within the
region. Finally, a time series matrix consists of 246 regional
time series.

2.2. Feature Representation
2.2.1. Brain Network Construction
A network is composed of a collection of nodes and links. It
can be described as a graph G = (V, E), where V denotes

TABLE 1 | Demographic information of 145 subjects from COBRE dataset.

Type Number Age Gender (M/F)

SZ 71 38.1 ± 13.9 57/14

HC 74 35.8 ± 11.5 51/23

the set of nodes and E is the set of links. There are four types
of network topology, including weighted undirected, weighted
directed, binary undirected and binary directed. In this study, the
functional connectivity network is represented by an weighted
undirected graph. The nodes in functional connectivity network
usually are defined by brain regions, and links can represent
temporal correlation in activity between pairs of nodes. Given
a time series matrix, we can construct a functional connectivity
network by calculating Pearson correlation coefficients (Pedersen
et al., 2018) between signals of all pairs of regions. The generated
functional brain network has 246 × (246 − 1)/2 = 30, 315
weighted edges under the condition of 246 brain regions and
the strength of each edge is the Pearson correlation coefficient
between a pair of connected nodes.

2.2.2. Brain Network Analysis
A great deal of functional connections in the network may lead
to feature redundancy. A threshold t is employed in the dense
network to keep a certain proportion of edges with the highest
correlation. Graph-theoretic measures can quantify topological
organization of network. Thus, we can extract some measures
which can characterize the global or local functional connectivity
from the threshold network. We compute 5 local graph measures
using brain network analysis as feature representations, including
degree, betweenness centrality, nodal clustering coefficient, local
efficiency, and participation coefficient.

Degree is the most fundamental and important measure to
characterize the centrality of nodes. In general, nodes with a
higher degree are more important in networks. Betweenness
centrality can also reflect the centrality of nodes. The betweenness
centrality of a brain region can measure its ability on
information transmission. Nodal clustering coefficient represents
the possibility that any two neighbors of a given node are also
neighbors of each other. It measures the ability of the node on
functional segregation. Local efficiency measures the efficiency of
a subnetwork formed by a given node and all its direct neighbors
to transfer information. Local efficiency is related to the shortest
path length of the node, the shorter the shortest path length, the
greater the local efficiency of the node, the faster the information
transmission in the subnetwork. Participation coefficient of a
node measures its diversity of intermodular interconnections.
The nodes with low participation coefficient but high degree in
the module are regarded as provincial hubs, it indicates that
the hubs are likely to have a great impact on the modular
segregation. These five local measures play an important role
in information exchange of functional networks. They can be
calculated as follow:

K(i) =
∑

j∈N

aij (1)
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B(i) =
1

(N − 1)(N − 1)

∑

m 6= j 6= i

nmj(i)

nmj
(2)

C(i) =
2swi

(Ki(Ki − 1))
(3)

Eloc(i) =
1

NGi (NGi − 1)

∑

j 6=h6=Gi

1

ljh
(4)

PC(i) = 1−
∑

m∈M

(
ki(m)

ki
)
2

(5)

where K(i), B(i), C(i), Eloc(i), and PC(i) are the degree,
betweenness centrality, clustering coefficient, local efficiency, and
participation coefficient of node i, respectively. N is the number
of nodes in a network, aij = 1 if node i and node j are connected,
aij = 0 otherwise; nmj(i) is the number of shortest paths between
m and j that pass through node i, and nmj is the number of
shortest paths between m and j; swi is the sum of the weights of
all the connected edges between the neighbors of node i; Gi is
the subnetwork that contains node i and its all direct neighbors,
NGi is the number of nodes in the subnetwork Gi, ljh is the length
of shortest path between node j and node h in the subgraph; M
denotes the set of modules, ki is determined as the number of
links between i and the nodes within modulem.

In this study, we adopt the Brain Connectivity Toolbox
(http://www.brain-connectivity-toolbox.net) (Rubinov and
Sporns, 2010) to calculate these five local graph measures.
For each local graph measure (gm), we compute 246 values
corresponding to the 246 brain regions. Therefore, the dimension
of the final feature vector for each subject is 1,230.

2.3. Feature Selection
The raw feature matrices have high dimension, multiple
redundancy and multi-noise characteristics. Thus, applying a
suitable feature selection algorithm to identify features related
to SZ/HC identification and remove unnecessary information
appears especially important. Least absolute shrinkage and
selection operator (Lasso) (Chan et al., 2015) is widely used in
various areas due to the very low data requirements. In addition,
lasso can filter variables and reduce the complexity of the model.
It aims to select the most important features from dense data
matrix by using l1 norm constraint. The optimization problem
can be formulated as follow:

min
α

||y− Xα||2 + λ1||α||1 (6)

where X denotes an n × p feature matrix, and n is the number
of subjects, p represents the dimension of a feature vector. y
is defined as a class label, α is a coefficient vector, and λ1 is a
regularization parameter.

Graph measures within the same region usually have a certain
correlation. However, Lasso has not consider the relationship
between graph measures derived in the same brain region. Hence
we use the priori information of brain regions to group measures
and then perform feature selection based on this feature grouping
structure. Group Lasso (GLasso) (Yuan and Lin, 2006), a group
variable selection method, is the extension of Lasso. It can select

FIGURE 2 | The grouping structure: the nodes in the third layer represent local

graph measures and the blocks in the second layer represent brain regions;

Gj =
{

gmj_1, ..., gmj_5

}

is a group set which consists of 5 local graph

measures calculated for j_th region.

the most important groups by grouping all the variables and
penalizing the l2 norm of each group. The effect is that we can
eliminate the entire set of coefficients into zero at the same time
and then this set of features are excluded. The objective function
of GLasso is as follow:

min
α

||y− Xα||2 + λ2

M
∑

j=1

wj||αGj ||2 (7)

where αGj denotes the set of coefficients of all features in the
group Gj, wj is a weight for group Gj.

Actually, there are also many redundant features in the
important groups selected by GLasso. It is necessary to perform
another feature selection to choose the most important features
from these selected groups. Sparse Group Lasso (SGLasso) (Liu
et al., 2009) is introduced to select the most significant groups as
well as the discriminative features within the selected groups by
adding l1 and l2 penalties. The objective function of the SGLasso
can be written as:

min
α

||y− Xα||2 + λ1||α||1 + λ2

M
∑

j=1

wj||αGj ||2 (8)

Before performing SGLasso, 1230-dimensional feature vector for
each subject is grouped as G =

{

G1, ...,Gj, ...,GM

}

according the
brain regions defined by Brainnetome atlas. M is the number
of groups. Gj =

{

gmj_1, gmj_2, gmj_3, gmj_4, gmj_5

}

is a group
consists of 5 local graph measures calculated for j_th region. The
grouping structure is shown in Figure 2. In addition, z-score
transformation is used to normalize the feature matrix before
feature selection. It is worth noting that, after feature selection,
those features are kept with corresponding regression coefficients
greater than the mean value of absolute values of all elements in
coefficient vectors.
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2.4. Classification
SVM (Chang and Lin, 2011) is widely applied in various fields
such as natural language processing, target detection, pattern
classification due to its good performance as a supervised
machine learning approach. The choice of SVM kernel functions
is critical to their performance. In this study, we choose the linear
kernel SVM (LSVM) to identify SZs from HCs. Linear kernel is
mainly used in linear separability cases, and the dimension of
the feature space and input space is the same. It performs good
classification in most linear separable problems owing to the less
parameters and fast calculation. The formulation of SVM model
and linear kernel function are as follows:

max
λ

− 1
2

N
∑

i=1

N
∑

j=1
λiλjyiyjK(xi, xj)+

N
∑

i=1
λi

s.t.
N
∑

i=1
λiyi = 0

0 ≤ λi ≤ C, i = 1, 2, ...,N

(9)

K(xi, xj) =< xi, xj > (10)

where λ is the Lagrange multiplier, N is the number of samples,
xi represents the feature vector of the i-th sample, and yi is the
label corresponding to xi, K(., .) denotes the kernel function, C is
determined as the soft margin parameter.

After feature selection, the optimal feature set X =
{x1, ..., xi, ..., xn} is used as the input to SVM classifier, i = 1,..., n.
Giving a test subject x, the trained SVMwill predict its label based
on a decision function P(x) as follows:

P(x) = sign(

N
∑

i=1

λiyiK(xi, x)) (11)

3. EXPERIMENTS AND RESULTS

3.1. Experiment Settings
In our study, the classification performance of our proposed
method is estimated by adopting LOOCV scheme. LOOCV
scheme is not affected by the random sample partitioning because
n samples are only divided into n subsets in a unique way,
each subset contains one sample. Each subset will be tested
as a test data in turn while remaining subjects as the training
data. In addition, we usually adopt the LIBSVM library (Chang
and Lin, 2011) to solve SVM classification. We further calculate
classification accuracy (ACC), sensitivity (SEN), specificity (SPE)
to measure the performance of the method. These three metrics
can be written as follows:

ACC =
TP + TN

TP + FP + FN + TN
(12)

SPE =
TN

TN + FP
(13)

SEN =
TP

TP + FN
(14)

where true positive (TP), true negative (TN), false negative (FN),
and false positive (FP) are defined as the number of correctly
classified SZs, HCs and misidentified SZs, HCs, respectively.

FIGURE 3 | Classification accuracies for SZ identification based on different

network thresholds.

In addition, the area under receiver operating characteristic
(ROC) curve (AUC) is also used to evaluate overall classification
performance of our method.

At the stage of feature representation, we set t =
[0.1, 0.12, ..., 0.48, 0.5] to represent a collection of threshold values
from 0.1 to 0.5 by the step of 0.02, and then calculate the 5 local
graph measures at these 21 thresholds. The two regularization
parameters for SGLasso are set as λ1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
and λ2 = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], which are
optimized with the grid search algorithm.

3.2. Identification Performance for SZ
We use LSVM to perform SZ/HC classification on the optimal
feature set obtained from feature selection of SGLasso at each
of 21 thresholds. The classification results corresponding to 21
thresholds are showed in Figure 3.

According to Figure 3, we can see that the best accuracy
(93.10%) is achieved at t = 0.30. Furthermore, the classification
accuracies at these 21 thresholds are all higher than 70%.
In addition, the number of selected features is 55 and SEN,
SPE, AUC values are 92.96%, 93.24%, 0.950, respectively. The
experimental results indicate that the feature combination of five
local measures extracted at t = 0.30 has a relatively strong
correlation with SZ identification.

4. DISCUSSION

4.1. Comparison With Different Feature
Selection Methods
In order to demonstrate the SGLasso method is more effective
than the common feature selection methods based on these five
local measures for SZ classification, we compare four feature
selection methods. The first one is t-test which is the one of the
most basic feature selection method and the most critical part
of this method is selecting features based on the p-value (i.e.,
0.05). The rest methods are Lasso, GLasso and Elastic Net (Enet).
These three methods are based on linear sparse models. GLasso
and Enet are the extension of Lasso. GLasso is used to solve
l1/lq-norm regularized problem. Enet is used for the situations
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TABLE 2 | Classification with different feature selection methods.

Methods Number of

selected features

ACC (%) SEN (%) SPE (%)

t-test 153 78.62 80.28 77.03

Lasso 123 83.45 88.73 78.38

GLasso 225 86.21 85.92 86.49

ENet 64 85.52 84.51 86.19

SGLasso 55 93.10 92.96 93.24

FIGURE 4 | ROC curves for SZ/HC classification for different feature selection

methods.

where features are related to each other and always produce
valid solution.

These four feature selection methods perform the same
experimental procedure as SGLasso for the sake of fairness. It’s
worth noting that the five local graph measures are extracted at
the threshold of 0.30. Table 2 shows the experimental results of
the abovementioned fourmethods and SGLasso feature selection
method. As we can see that SGLasso method selects the least
features (55) but achieves the best ACC (93.10%), SEN (92.96%),
SPE (93.24%). The ROC curves for SZ/HC classification for
different feature selection methods as shown in Figure 4. We
notice that SGLasso achieves the highest AUC (0.950) than
other four feature selection methods. Experimental result shows
that considering within- and between- group sparsity is likely
helpful for selecting significant features that are effective for
SZ identification.

4.2. Comparison With Different Classifiers
In order to prove that LSVM is optimal to conduct classification
in this context, a series of comparative experiments using several
SVMs with different kernels including Radial Basis Function
kernel (RBF), Ploynomial kernel (Poly), Sigmoid kernel (Sigm)

TABLE 3 | Comparison with other SVMs using different kernels.

Methods ACC (%) SEN (%) SPE (%) AUC

RBF-SVM 80.00 76.06 83.78 0.8601

Poly-SVM 82.07 77.46 86.49 0.8506

Sigm-SVM 87.59 83.10 91.89 0.9393

LSVM 93.10 92.96 93.24 0.950

Bold text indicates that the best result is obtained on a certain evaluation metric.

TABLE 4 | Comparison with other commonly used classifiers.

Methods ACC (%) SEN (%) SPE (%) AUC

KNN 82.07 74.65 89.19 0.7912

RForest 77.93 74.65 81.08 0.8378

NBayes 84.83 83.10 86.49 0.9069

LDA 90.34 87.32 93.24 0.9418

LSVM 93.10 92.96 93.24 0.950

Bold text indicates that the best result is obtained on a certain evaluation metric.

under the same condition as the LSVM have been performed.
These SVMs are denoted as RBF-SVM, Poly-SVM, Sigm-SVM,
respectively. The experimental results of SVMs with different
kernels are shown in Table 3. It is worth mentioning that bold
text indicates that the best result is obtained on a certain
evaluation metric.

In addition, we also compare four commonly used classifiers,
such as k-nearest neighbors (KNN), Random Forest (RForest),
NaiveBayes (NBayes), and Linear Discriminant Analysis (LDA).
These classifiers are all implemented on the platform of
Matlab2016a. We evaluate the performance of the above four
classifiers under the same conditions as LSVM. The experimental
results of these five classifiers are shown in Table 4. As can be
seen from Tables 3, 4, LSVM can achieve the best classification
performance than other classifiers.

4.3. Regularization Parameter Selection
The regularization parameters of SGLasso have a great influence
on the results of feature selection. Using different regularization
parameters, the selected features are also different. It affects
not only the feature dimension, but also the final classification
performance. Therefore, selecting the appropriate regularization
parameters can improve the efficiency of SGLasso method and
obtain more effective features associated with the labels.

The two regularization parameters of SGLasso are λ1 and
λ2. λ1 is used to control the model sparseness, and λ2 can
control the sparse constraint of each feature group. We use
the grid search algorithm to find the optimal combination
of regularization parameters. Figure 5 shows the classification
results using different combination of λ1, λ2. According to
Figure 5, when the parameter combination is (λ1=9, λ2=0.1), the
features obtained from SGLasso feature selection method are the
most effective for SZ/HC classification.
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FIGURE 5 | Classification results using different combination of λ1,λ2.

4.4. Regression Coefficient Selection
In general, the non-zero elements in the coefficient vector α

generated from the SGLasso feature selection algorithm indicate
that the corresponding features are selected. In order to retain
the least but most informative features according to α, we test the
impact of the three coefficient selection strategies on classification
performance. We named these three strategies as SGLasso_absZ,
SGLasso_absM, and SGLasso_absMS. The description of these
three strategies is as follows:

• SGLasso_absZ is a common strategy to retain non-zero
coefficients of α.

• SGLasso_absM strategy is to retain those coefficients which are
greater than the mean value of absolute values of all elements
in α.

• SGLasso_absMS strategy is more strict for selecting
coefficients, since it retains the coefficients which are
larger than the mean value of absolute values of all non-zero
coefficients in α.

We apply the above mentioned three strategies to feature
selection, and then select the corresponding features according
to the retained coefficients in α. SVM performs SZ identification
using these selected features. The classification results using three
different regression coefficient selection strategies are shown in
Figure 6. According to Figure 6, the classification accuracy is
the best when using SGLasso_absM strategy. Experimental result
indicates that using SGLasso_absM strategy in feature selection
can select the most effective features for SZ/HC classification.
Therefore, we finally choose the SGLasso_absM strategy to select
the regression coefficients.

4.5. Classification Comparison Using
Different Feature Combinations
In order to explore the impact of different feature combinations
on SZ/HC identification, we combine these five local measures

FIGURE 6 | Classification results using three different regression coefficient

selection strategies.

extracted at the threshold of 0.30 in C2
5 + C3

5 + C4
5 + C5

5 = 26
ways. Furthermore, we don’t consider individual graph measure
because we only investigate multiple measures in this study.
We evaluate these 26 feature sets under the same experimental
settings. The classification results are shown in Figure 7.

As can be seen from Figure 7, the combination of 5 local
graph measures achieves the best classification performance
compared to other feature sets. At the same time, we also
find that the classification accuracies obtained by using feature
sets including two measures are lower than the classification
accuracies obtained by using feature sets including three
measures, four measures and five measures. It indicates that
using fewer measures may not be enough to characterize brain
network alternation, and we find that the combination of
five local measures can provide more useful information for
SZ identification.

4.6. Comparison With Existing
Classification Methods
To verify the effectiveness of our proposed classification
method, we compare some recently proposed methods for SZ
classification using fMRI in the literature. Huang et al. (2018)
proposed a tree-guided group sparse learning method to select
the most important information from FALFF data in four
frequency bands and get a classification accuracy of 91.1% by
using multi-kernel SVM. Cheng et al. (2015) calculated only
betweenness centrality measure to characterize the network.
They used the rank of betweenness centrality of all nodes as
feature representations and used SVM to classify SZs from HCs.

The two above mentioned methods are performed on the
COBRE dataset. The classification results and ROC curves for
SZ/HC classification of the two methods and our proposed
method are shown in Table 5 and in Figure 8, respectively.
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FIGURE 7 | Classification result for different feature combinations. A: betweenness centrality, B: nodal clustering coefficient, C: local efficiency, D: degree, E:

participation coefficient.

TABLE 5 | Comparison with some existing methods for SZ/HC classification.

Methods ACC (%) SEN (%) SPE (%) AUC

Huang et al. (2018) 77.24 77.46 76.58 0.815

Cheng et al. (2015) 74.48 73.53 69.12 0.792

Proposed 93.10 92.96 93.24 0.950

Bold text indicates that the best result is obtained on a certain evaluation metric.

According to Table 5 and Figure 8, Our proposed method gets
the best ACC (93.10%), SEN (92.96%), SPE (93.24%), and
AUC (0.950) values. The experimental result illustrates that
our proposed method has made a significant improvement in
classification performance on the COBRE dataset.

4.7. Analysis of Discriminative Graph
Measures and Corresponding Regions
The graph measures selected in the feature selection stage are
considered to be related to their corresponding brain regions.
Our method can select the most discriminative brain regions
as the biomarkers to guide the disease-induced interpretation.
There is a total of 145 experiments in the LOOCV scheme
due to 145 subjects. And the number of feature occurrence in
145 experiments is introduced to indicate the contribution of
the feature to classification. We assume that if the occurrence
number of a local graph measure extracted from a certain
brain region is greater than 140 in a total of 145 experiments,
the brain region is considered to have the most discriminative
power to distinguish between SZs and HCs. Based on this
hypothesis, 21 salient brain regions have been found. These
significant brain regions are shown in Table 6. Five brain
regions include left superior frontal gyrus (SFG_L_7_2), right
inferior temporal gyrus (ITG_R_7_7), right inferior parietal
lobule (IPL_R_6_4), right postcentral gyrus (PoG_R_4_1), and

FIGURE 8 | ROC curves for SZ/HC classification for different classification

methods.

right thalamus (Tha_R_8_7) are related to more than one local
graph measure.

These findings on discriminative brain regions are in
agreement with the following studies: superior frontal
gyrus,cingulate gyrus, postcentral gyrus (Szeszko et al., 1999;
Gur et al., 2000; Arbabshirani et al., 2013; Chyzhyk et al., 2015),
parahippocampal gyrus (Shenton et al., 1992; Chyzhyk et al.,
2015), middle temporal gyrus, fusiform gyrus and thalamus
(Chyzhyk et al., 2015; Li et al., 2019), inferior parietal lobule,
inferior temporal gyrus (Peng et al., 1994; Goldstein et al., 1999;
Li et al., 2019). However, we cannot report agreement with these
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TABLE 6 | The most discriminative graph measures and corresponding

Brainnetome regions.

Graph measures Hemisphere Brainnetome regions Occurrence

number

Nodal clustering coefficient SFG_L_7_2 Superior Frontal Gyrus 144

Degree SFG_L_7_2 Superior Frontal Gyrus 145

Nodal clustering coefficient SFG_R_7_2 Superior Frontal Gyrus 140

Participation coefficient SFG_R_7_7 Superior Frontal Gyrus 144

Betweenness centrality IFG_L_6_3 Inferior Frontal Gyrus 143

Betweenness centrality OrG_L_6_2 Orbital Gyrus 143

Betweenness centrality OrG_R_6_6 Orbital Gyrus 145

Betweenness centrality PrG_L_6_3 Precentral Gyrus 142

Degree MTG_L_4_4 Middle Temporal Gyrus 145

Betweenness centrality MTG_L_4_1 Middle Temporal Gyrus 141

Participation coefficient ITG_R_7_7 Inferior Temporal Gyrus 145

Betweenness centrality ITG_R_7_7 Inferior Temporal Gyrus 145

Betweenness centrality FuG_R_3_3 Fusiform Gyrus 145

Betweenness centrality PhG_L_6_3 Parahippocampal Gyrus 144

Degree PhG_R_6_5 Parahippocampal Gyrus 145

Local efficiency IPL_R_6_4 Inferior Parietal Lobule 145

Participation coefficient IPL_R_6_4 Inferior Parietal Lobule 145

Degree IPL_R_6_2 Inferior Parietal Lobule 145

Degree PCun_L_4_3 Precuneus 145

Nodal clustering coefficient PoG_R_4_1 Postcentral Gyrus 145

Betweenness centrality PoG_R_4_1 Postcentral Gyrus 145

Local efficiency PoG_R_4_1 Postcentral Gyrus 143

Degree PoG_R_4_1 Postcentral Gyrus 145

Participation coefficient CG_L_7_4 Cingulate Gyrus 145

Betweenness centrality CG_R_7_3 Cingulate Gyrus 145

Participation coefficient LOcC_L_4_3 lateral Occipital Cortex 145

Degree BG_R_6_1 Basal Ganglia 145

Betweenness centrality BG_R_6_4 Basal Ganglia 145

Participation coefficient Tha_L_8_8 Thalamus 145

Degree Tha_L_8_5 Thalamus 145

Degree Tha_R_8_8 Thalamus 145

Nodal clustering coefficient Tha_R_8_7 Thalamus 140

Local efficiency Tha_R_8_7 Thalamus 141

regions:inferior frontal gyrus, orbital gyrus, precentral gyrus,
precuneus, lateral occipital cortex and basal ganglia.

5. CONCLUSION

In this paper, we propose a method to classify SZs from
HCs using multi-view graph measures of functional brain

networks. We get five local network measures using graph
theoretical approach from multiple views. These measures
paly an important role in the information exchange of brain
networks. Our proposed method achieves a good classification
performance on the COBRE dataset. Experimental results
demonstrate that this approach is efficient for the clinical
diagnosis of SZ. Furthermore, multiple measures have the
potential to be used as clinical biomarkers to differentiate SZs
from HCs.
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One of the most challenging tasks of the post-genome-wide association studies (GWAS)
research era is the identification of functional variants among those associated with a trait
for an observed GWAS signal. Several methods have been developed to evaluate the
potential functional implications of genetic variants. Each of these tools has its own scoring
system, which forces users to become acquainted with each approach to interpret their
results. From an awareness of the amount of work needed to analyze and integrate results
for a single locus, we proposed a flexible and versatile approach designed to help the
prioritization of variants by aggregating the predictions of their potential functional
implications. This approach has been made available through a graphical user interface
called DSNetwork, which acts as a single point of entry to almost 60 reference predictors
for both coding and non-coding variants and displays predictions in an easy-to-interpret
visualization. We confirmed the usefulness of our methodology by successfully identifying
functional variants in four breast cancer and nine schizophrenia susceptibility loci.

Keywords: fine-mapping analysis, variant prioritization, decision support, deleteriousness prediction,
network visualization
INTRODUCTION

Since 2006, thousands of susceptibility loci have been identified through Genome-Wide Association
Studies (GWAS) for numerous traits and complex diseases, including breast cancer (MacArthur
et al., 2017). GWAS build on the concept of linkage disequilibrium (LD) to identify statistical
associations between genetic variants and diseases (Visscher et al., 2017). While this approach is
powerful for locus discovery, it cannot distinguish between truly causal variants and non-functional
highly correlated neighboring variants. Thus, for the vast majority of these loci, the causal variant(s)
and their functional mechanisms have not yet been elucidated.

Statistical fine-mapping analyses combined with the functional annotation of genetic variants
can help pinpoint the genetic variant (or variants) responsible for complex traits, or at least narrow
down the number of variants underlying the observed association for further functional studies. In
this regard, tremendous efforts have been put forth to assist the functional assessment of variants at
January 2020 | Volume 10 | Article 13491151
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risk loci and numerous scoring methods and tools have been
developed to predict the deleteriousness of variants based on a
number of characteristics such as sequence conservation,
characteristics of amino acid substitution, and location of
the variant within protein domains or three-dimensional
protein structure.

In recent years, efforts have been made towards the
aggregation of many different functional annotations resulting
from these scoring methods in a single integrative value called
metascore (Ionita-Laza et al., 2016; Feng, 2017), an approach
that seems to yield better performances than any predictor
individually (Dong et al., 2015). Although these methods
demonstrate themselves to be useful, they have some
limitations, notably not being directly comparable to one
another due to integration of different sets of annotations or
different weighting of these annotations, and sometimes having
contradictory results.

In order to allow a quick survey of a wide range of predictors
for a given list of variants and assist in the interpretation of the
resulting prediction scores, we propose a flexible and integrative
method capable of gathering information from multiple sources
in an easy-to-interpret representation rather than a static new
metascore. For this purpose, we created a single point of entry
fetching predictors for coding and non-coding variants and
presenting them as a network, where the nodes illustrate the
scores of each predictor for a given variant and the edges the LD
between variants. The network is built with the aim of
rendering the predictor results easier to peruse during
analyses involving multiple variants, and therefore, assist in
the variant prioritization process in the context of fine-
mapping analyses.

This approach has been made available through a graphical
user interface (GUI) stand-alone application called DSNetwork.
The tool is freely available via bitbucket repository and is also
accessible through our portal for demonstration purpose at:
http://romix.genome.ulaval.ca/dsnetwork/.
MATERIALS AND METHODS

Annotations Retrieval
Variant annotations and scoring data are fetched on-the-fly from
MyVariant.info high-performance web services (Xin et al., 2016)
using their third-party R package. SNPnexus (Dayem Ullah et al.,
2018) scorings are fetched upon request through a Python script
kindly provided by the SNPnexus team. Due to their novelty and
relevance for our purpose, three complementary whole genome
resources are included: LINSIGHT (Huang et al., 2017),
BayesDel (Feng, 2017), and predictions and sequence
constraint data (di Iulio et al., 2018), which can be used as a
proxy to score functionality and the consequences of mutations.
BayesDel, LINSIGHT, and Context-Dependent Tolerance scores
were extracted from a local copy. A description of the integrated
predictors is available in the Supplementary Material.

LD data are computed from 1000 Genomes Phase 3 (1000
Genomes Project Consortium et al., 2015).
Frontiers in Genetics | www.frontiersin.org 2152
Visual Integration
Prediction result for variants of interest are displayed as a
network, whose components, namely, the edges and nodes, are
used to convey different types of information in an easy-to-
comprehend way.

The following paragraphs describe DSNetwork’s approach
through the hypothetical analysis of a loci containing five
variants rs4233486, rs35054111, rs11808410, rs11804913, and
rs7554973 using the deleteriousness scores of five distinct fictive
predictors A, B, C, D, and E. Table 1 summarizes the scores
generated by these five predictors, reflecting their predictions
regarding the functional impacts of the candidate variants.

DSNetwork integrates the characteristics of the different
predictors and creates a reference frame containing the lower
and upper boundaries as well as the direction [ascending (ASC)
or descending (DESC)] of their prediction scores (Figure 1A).
The direction is used to rank variants from the most deleterious
to the least deleterious on the basis of their respective scores. The
boundaries are used to establish the absolute deleteriousness level
of each variant. Once the different reference frames are
integrated, they can be used to prioritize the variants according
to three types of representations: the intra-predictor relative
ranks, the intra-predictor absolute scores, and the global ranks.

Intra-Predictor Ranks
Intra-predictor ranks allow the prioritization of a list of variants
relative to one another. According to the reference frames
illustrated in Figure 1A, the five predictors produce scores
ranging from 0 to 1. We can classify the five variants of interest
from themost deleterious (rank 1) to the least deleterious (rank 5)
with each predictor. In order to summarize this information in an
easy-to-interpret representation, each variant is depicted as a pie
chart where each slice represents the rank of the variant for one of
the predictors. Thus, in the current analysis, five pie charts are
generated and each pie chart is divided by five slices of the same
size. We used a color gradient ranging from red to green, where
red corresponds to the most deleterious variant (rank 1) among
the candidates for a given predictor. The gray color represents
missing data. Figure 1B depicts the pie charts generated for the
five candidate variants. The slices can be ordered by color to allow
easy identification of variants that appear the most deleterious
across predictors.

Intra-Predictor Absolute Scores
Intra-predictor absolute scores allow prediction of variant
deleteriousness in reference to the thresholds established for a
particular predictor. Given these boundaries, we can determine
TABLE 1 | Deleterious scores generated by five different approaches.

A B C D E

rs4233486 0.13 0.4 0.78 0.23 0.12
rs35054111 NA 0.7 0.21 NA 0.43
rs11808410 0.51 0.4 0.21 0.2 0.77
rs11804913 0.01 0.4 0.21 0.3 0.37
rs7554973 0.2 0.5 0.55 NA 0.01
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where each variant is located on the deleteriousness spectrum for
each predictor. We chose to divide the score range of each
approach into 20 equal intervals. This number of intervals was
chosen as a compromise between granularity and readability.
The first interval contains the most deleterious scores and the
20th, the least deleterious. Thus, the annotation scores obtained
for each variant are translated into their corresponding intervals.
Frontiers in Genetics | www.frontiersin.org 3153
This allows the user to know if a variant is predicted as
deleterious by a particular approach without having to know
the implementation details of this approach. For clarity purposes,
in this example the range of scores has been divided into four
intervals (instead of 20) (Figure 1C).

As for intra-predictor ranks, each variant is depicted as a pie
chart where each slice represents the score interval of the variant
FIGURE 1 | DSNetwork visual approach. (A) Representation of predictors reference frames illustrating each approach boundaries and direction. (B) Representation
of intra-predictors ranking based on the predictors reference frame. (C) Representation of intra-predictors absolute score intervals based on the predictors reference
frame. (D) Representation of the global mean rank. (E) The edges between the nodes can be used to map Linkage Disequilibrium (LD) levels between two variants.
January 2020 | Volume 10 | Article 1349
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for a particular predictor. We used a color gradient ranging from
red to blue. The red color represents the most deleterious interval
for a given predictor. The gray color represents missing data.
Figure 1C depicts the pie charts generated for the five candidate
variants. The slices can be ordered by color to easily identify
variants with the most predictions of deleteriousness.

Global Ranking
In order to further facilitate the prioritization, we propose to
summarize the information regarding the relative ranks in an
overall rank for each variant. To do so, we calculate the average
rank of each variant based on its intra-predictor ranks. Then, we
order the variants according to their average rank. Variants with
the lowest average ranks are considered as the best candidates for
being deleterious. Because in some cases there may be missing
values for some of the predictors when analyzing a specific set of
variants, we propose three strategies for calculating a consistent
average rank, which will be comparable between variants and
which will take into account these missing values: 1) replace
missing values with the median value (default one); 2) replace
missing values with the average value; or 3) systematically
attribute missing values the “worst” rank. Once the necessary
substitutions are made, the average ranks can be calculated and
the global ranks generated. As for the intra-predictor scores and
ranks, the global ranks are made available for each variant under
the form of a pie chart where the rank is represented by a color
gradient ranging from red to green. The color red represents the
most deleterious variant among the candidates for all approaches
(Figure 1D).

Variants Network
DSNetwork offers the possibility to simply visualize scores and LD
between variants in order to identify potential haplotypes through
an interactive interface. Users can interact with the network using
the mouse by scrolling in and out to zoom, or double-click on a
variant node to display variant annotation details among other
features. They can also update the predictors used to prioritize the
variants. As displayed in Figure 1E, edges between nodes can be
used to map LD levels between two variants. LD (squared
correlation r2) is based on a user-chosen 1000 genomes
population and is represented by an absolute color gradient
ranging from yellow to red. Red indicates a high disequilibrium.
The gray color represents the missing information. By default, no
LD data are shown. To map LD on the network edges, users have
to choose a population from 1000 Genomes and can restrict the
LD range to display for a particular variant.

Implementation
DSNetwork was created using the Shiny framework (Chang
et al., 2017). This tool provides users with deleteriousness
predictions for a selected set of coding and non-coding human
Single Nucleotide Variants (SNVs) and short inserts and
deletions (InDels) (hg19 build) and generates a set of
prioritized results for further analysis. These prediction scores
are recovered from several trusted sources and presented in a
cross-platform, user-friendly web interface. The interface is
organized in three sections, namely, Input, Selection, and
Frontiers in Genetics | www.frontiersin.org 4154
Visualization, as illustrated and described in Figure 2. For
complete usage guide, see the Supplementary Material.
DSNetwork is encapsulated using Docker platform to
guarantee the cross-platform compatibility. The source code
and installation procedure are available at https://bitbucket.org/
vmtrap/dsnetwork_deploy/src/master/. The tool can be installed
on all operating systems supporting Docker Engine (see
supported platforms at https://docs.docker.com/install/) and is
also accessible through our portal for demonstration purpose at:
http://romix.genome.ulaval.ca/dsnetwork/.

Case Studies
We chose to demonstrate the utility of DSNetwork in the context
of the functional analysis of four breast cancer susceptibility loci
identified through the latest published breast cancer association
study (full description in Michailidou et al., 2017) and nine loci
reported in the latest published study on schizophrenia
susceptibility (full description in Huo et al., 2019). Michailidou
et al. (2017) report the discovery of 65 new breast cancer risk loci
and deepens the functional characterization for four regions,
namely, 1p36, 1p34, 7q22, and 11p15. For each of these regions,
the authors defined sets of credible risk variants (CRVs) and
investigated their impact through functional assays in order to
identify the functional variants. Huo et al. (2019) investigated
over 180 loci reported to be associated with schizophrenia in
several GWA studies and prioritized regulatory single-nucleotide
polymorphisms (SNPs) at these risk loci. They deepen the
functional validation of 10 variants from nine different loci.
RESULTS AND DISCUSSION

Prioritization of Four Breast Cancer
Susceptibility Loci
The original study by Michailidou et al. (2017) reported 65 novel
breast cancer susceptibility loci. For each of these regions, they
defined a set of CRV containing variants with P-values within
two orders of magnitude of the most significant SNPs in this
region. They then selected four loci for further evaluation,
namely, 1p36, 1p34, 7q22, and 11p15. Initially, these four
regions contained, respectively, 54, 13, 19, and 85 significantly
associated variants. The p-value cutoff enabled them to reduce
the number of variants to, respectively, 1, 4, 6, and 19 CRVs. The
list of variants for these loci was extracted from the original
paper’s Supplementary Tables 8 and 13 in the context of the
current analysis. Following data extraction, the analysis
procedure was: 1) upload the variants of interest on the web
tool, 2) fetch the annotations, 3) visualize the variants through
the overview plot, 4) visualize the available deleteriousness scores
through the relative ranking in the decision network, 5) use
absolute interval visualizations to identify the best candidates,
and finally 6) conclude.

Locus 1p36
This region contains a single CRV, rs2992756 (P = 1.6×10−15).
For demonstration purposes, we selected the 30 most associated
January 2020 | Volume 10 | Article 1349
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variants in this region to put to the test. Among these 30 variants,
2 variants (rs200439143, rs71018084) weren’t annotated by
DSNetwork because of their absence from MyVariant.info
service, and 24 were identified as regulatory variants and 4 as
non-synonymous variants. For the purposes of our analysis, we
focused on the regulatory variants.

Based on the deleteriousness scores available for this subset of
variants, a quick overview of variant nodes has allowed to easily
identify rs2992756 as the best candidate. Indeed, the node for this
variant contained the largest proportion of red, indicating a high
ranking for most of the scoring approaches (Figure 3A). To
confirm this observation, we used the relative rank visualization
(Figure 3B). The mean rankings of variants, clearly materialized
by both the color code and the values, enabled the confirmation
of rs2992756 as the best candidate among the 30 most breast
cancer-associated variants at the 1p36 locus. Using reporter
assays, Michailidou et al. (2017) demonstrated that the
presence of the risk T-allele of this variant within KLHDC7A
promoter significantly lowers its activity.

Locus 1p34
This region contains four CRVs among 13 significantly
associated variants. All the variants were found by DSNetwork
and identified as regulatory variants.

Based on the deleteriousness scores available for this subset of
variants, a quick overview of variant nodes has allowed to easily
identify two variants, rs42334486 and rs7554973, as the best
candidates. Indeed, the nodes for these variants contained the
largest proportion of red and orange indicating a good ranking of
these variants for most of the scoring approaches (Figure 4A).
The sorting by color (Figure 4B) facilitated the prioritization of
these two variants, which initially seemed to present the same
proportion of high ranks. The visualization of the mean ranking
confirms rs4233486 as the most credible candidate among the
CRVs (Figure 4C). This observation is in accordance with results
Frontiers in Genetics | www.frontiersin.org 5155
from Michailidou et al. (2017), which demonstrated, using
reporter assays, that the presence of the risk T-allele of this
variant within a putative regulatory element (PRE) reduced
CITED4 promoter activity.

Locus 7q22
This region contains six CRVs among 19 significantly associated
variants. All the variants were found by DSNetwork and
identified as regulatory variants.

Based on the deleteriousness scores available for this subset of
variants, a quick overview of variant nodes has allowed to easily
identify two variants, rs6961094 and rs71559437, as the best
candidates. Indeed, the nodes for these variants contained the
largest proportion of red, indicating a good ranking for most of
the scoring approaches (Figure 5A). The visualization of the
mean ranking confirms rs6961094 and rs71559437 as the most
credible candidates among the CRVs (Figure 5B). These
observations are supported by the functional experiments
performed by Michailidou et al. (2017), which demonstrated,
using allele-specific Chromatin Conformation Capture (3C)
assays, that the presence of the risk haplotype (rs6961094
combined with rs71559437) is associated with chromatin
looping between CUX1, RASA4, and PRKRIP1 promoters
suggesting that the protective alleles abrogate this phenomenon.

Locus 11p15
This region contains 19 CRVs among 85 candidate variants.
Among the 19 CRVs, five variants, located in the proximal
promoter of PIDD1 (a gene implicated in DNA-damage-
induced apoptosis and tumorigenesis; Lin et al., 2000), namely,
rs7484123, rs7484068, rs11246313, rs11246314, and rs11246316,
were further analyzed by Michailidou et al. (2017). They
demonstrated, using reporter assays, that these variants,
incorporated in a construct, significantly increased PIDD1
promoter activity.
FIGURE 2 | Architecture overview. The first section is dedicated to user input and parameters for data retrieval. The middle panel presents a relevant subset of
annotations for each submitted variant and enables the selection of variants to be integrated in the final visualization. The bottom part on the interface is dedicated to
the integrated visualization of the deleteriousness predictions displayed as a network.
January 2020 | Volume 10 | Article 1349
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A quick overview of the relative and absolute metascores
visualization allowed to easily prioritize the 19 CRVs (Figures
6A and B). First, the prioritized list based on the metascores
confirms the selection of these five variants as functional credible
SNPs. Indeed they are ranked at the first, second, third, fifth, and
eighth place out of 19. Moreover, we notice that variants
rs7484123 and rs11246314 demonstrate a higher level of
coloration, confirming them as the best candidates among the
variants located in the proximal promoter of PIDD1. The variant
rs7484123 particularly stands out as a very promising candidate
for subsequent experiments.

Prioritization of Nine Schizophrenia
Susceptibility Loci
As a second example, we have applied DSNetwork to data from an
extensive study by Huo et al. (2019) investigating over 180 loci
reported to be associatedwith schizophrenia in severalGWAS.This
study has prioritized regulatory SNPs at these risk loci using five
annotation methods (CADD, Eigen, LINSIGHT, GWAVA, and
RegulomeDB) and expression quantitative loci (eQTL) annotation.
Potentially causal SNPs have further been identified using
functional genomics data such as CHIP-Seq experiments
Frontiers in Genetics | www.frontiersin.org 6156
performed on brain tissues. Doing so and using reporter gene
assays, theyhavevalidated the regulatory effect ofnine transcription
factor binding-disrupting SNPs from nine different loci.

The list of credible causal variants (CCV) for these nine loci
was downloaded from the Psychiatric Genomics Consortium
portal (https://www.med.unc.edu/pgc/results-and-downloads/
scz/). These regions contained, respectively, 37 CCV
on chromosome 1, 73 CCV on chromosome 3, 51 CCV on
chromosome 6, 55 CCV on chromosome 7, 32 CCV on
chromosome 12, 14 and 5 CCV on chromosome 15, 75 CCV
on chromosome 16, and 128 CCV on chromosome 17.

The list of CCV for each locus was uploaded on the
DSNetwork tool to identify the best functional candidates.
FIGURE 3 | Networks representing the 30 most significant variants
associated with breast cancer at the 1p36 locus. (A) All available predictions
represented under the form of relative rank grouped by color. (B) Global
ranking representing the mean relative ranks with missing values substituted
by the median value. Based on the deleteriousness scores available for this
subset of variants, a quick overview of variant nodes has allowed to easily
identify rs2992756 as the best candidate.
FIGURE 4 | Networks representing the four CRVs associated variants with
breast cancer at the 1p34 locus. (A) All available predictions represented
under the form of relative rank ordered by predictors. (B) All available
predictions represented under the form of relative rank grouped by color.
(C) Global ranking representing the mean relative ranks with missing values
substituted by the median value. Based on the deleteriousness scores
available for this subset of variants, a quick overview of variant nodes has
allowed to easily identify two variants, rs42334486 and rs7554973, as the
best candidates.
January 2020 | Volume 10 | Article 1349
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Table 2 presents, for each of the nine loci, the SNP that was
prioritized in the original paper and in the DSNetwork analysis.
In cases where results diverged, we also present the ranking
provided by DSNetwork for the SNP prioritized in the original
paper. From these analyses, we can conclude that DSNetwork
found the same top SNP in the majority of cases (five SNPs
ranked first and two SNPS ranked in the top 3). Two SNPs
ranked in the top 10 but one of them rs696520 was not
functionally validated in the original paper. Finally, rs17821573
on the chromosome 16 locus ranked 22nd with DSNetwork. It is
important to note that fine-mapping analyses aim at reducing the
list of candidate variants and not identifying the causal variant
(Cannon and Mohlke, 2018). Furthermore, there is a difference
between causal and functional variants: a variant showing a
regulatory effect in functional assays does not confirm its
Frontiers in Genetics | www.frontiersin.org 7157
implication in a phenotypic variation. Therefore, it would be
interesting to test if the top SNP identified by DSNetwork
(rs17854029) could also be functional.

These examples demonstrate the ability of DSNetwork to
effectively reduce the amount of CCV despite a large number of
candidate variants.

Furthermore, compared to other existing methods for
prioritization, DSNetwork has the advantage of being scalable
and flexible. Indeed, as a majority voting based approach where
each predictor is a crowdsourcing annotator proposing its
prioritized list, DSNetwork enables the addition of an infinite
number of annotators. However, in practice, one drawback of
usual crowdsourcing systems is that the annotators are
FIGURE 5 | Networks representing the six CRVs associated variants with
breast cancer at the 7q22 locus. (A) All available predictions represented
under the form of relative rank grouped by color. (B) Global ranking
representing the mean relative ranks with missing values substituted by the
median value. Based on the deleteriousness scores available for this subset
of variants, a quick overview of variant nodes has allowed to easily identify
two variants, rs6961094 and rs71559437, as the best candidates.
FIGURE 6 | Networks representing the 19 CRVs associated variants with
breast cancer at the 11p15 locus. (A) Global ranking representing the mean
relative ranks with missing values substituted by the median value. The purple
arrows highlight the five credible causal variants identified by Michailidou et al.
(B) The absolute intervals show rs7484123 and rs11246314 as the best
candidates with regard to deleteriousness predictions. The best candidate
variant rs7484123 sports a high level of linkage disequilibrium (depicted by
the red links emanating from rs7484123’s node) with the other candidate
variants in the European population.
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https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Lemaçon et al. DSNetwork: Integration of Deleteriousness Predictions
anonymous. Therefore, their expertise levels are often unknown
and uneven, which makes it difficult for the end-user to trust the
final vote. In DSNetwork, the annotations are derived from
several databases and their reliability level can be estimated
through their performance reported in the literature. By
default, all the available predictors are used to produce an
optimal decision. However, we enable users to adjust the list of
predictors used according to their preferences and expertise. As
explained in Ribeiro et al. (2016), “explaining the rationale
behind individual predictions would make us better positioned
to trust or mistrust the prediction, or the classifier as a whole.”
For this reason, in order to assist the users in their decision, we
provide a short description of each predictor and the list of the
annotations they use. Another way to take into account
annotator reputation is to add a weight to each vote, the
weights representing the competence levels (Tao et al., 2019).
This explicit way to incorporate weight in the voting process
could be included in further development.
CONCLUSION

We analyzed four breast cancer risk loci through DSNetwork and
were able to pinpoint the same most plausible causal variants
than those proposed in the original paper. In a similar way, we
were able to efficiently circumscribe the number of credible
candidate variants throughout the prioritization of nine
schizophrenia susceptibility loci. DSNetwork provides a user-
friendly interface integrating predictors for both coding and non-
coding variants in an easy-to-interpret visualization to assist the
prioritization process. The use of DSNetwork greatly facilitates
the selection process of potentially deleterious variants by
aggregating the results of nearly 60 prediction approaches and
easily highlighting the best candidate variants for further
functional analysis.
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As an important approach to cancer classification, cancer sample clustering is of
particular importance for cancer research. For high dimensional gene expression data,
examining approaches to selecting characteristic genes with high identification for cancer
sample clustering is an important research area in the bioinformatics field. In this paper, we
propose a novel integrated framework for cancer clustering known as the non-negative
symmetric low-rank representation with graph regularization based on score function
(NSLRG-S). First, a lowest rank matrix is obtained after NSLRG decomposition. The
lowest rank matrix preserves the local data manifold information and the global data
structure information of the gene expression data. Second, we construct the Score
function based on the lowest rank matrix to weight all of the features of the gene
expression data and calculate the score of each feature. Third, we rank the features
according to their scores and select the feature genes for cancer sample clustering.
Finally, based on selected feature genes, we use the K-means method to cluster the
cancer samples. The experiments are conducted on The Cancer Genome Atlas (TCGA)
data. Comparative experiments demonstrate that the NSLRG-S framework can
significantly improve the clustering performance.

Keywords: cancer gene expression data, low-rank representation, feature selection, score function, clustering
INTRODUCTION

High-throughput DNAmicroarray technology has long been used to collect biomedical cancer gene
expression data (Russo et al., 2003). In general, gene expression data contain a notably large number
of genes (high dimension), a small number of samples (low sample size), irrelevant genes and noisy
genes caused by complex processing (Mohamad et al., 2010). Therefore, it is necessary to select
feature genes or informative genes that contribute to identifying different cancers and the cancerous
state (Mohamad et al., 2013; Ge and Hu, 2014; Tang et al., 2014). The selected genes have potential
for use in developing cancer treatment strategies (Rappoport and Shamir, 2018). However, the high-
dimensional and low-sample-size characteristics of the cancer gene expression dataset present a
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challenge for researchers in terms of data mining. To mitigate
this problem, researchers have proposed many methods (Cui
et al., 2013; Ge and Hu, 2014; Wang et al., 2016; Wang et al.,
2018; Xu et al., 2019). Among the existing methods, feature
selection is a reasonable method that has achieved great success.

Feature selection is an important data processing method that
can select the most important feature subset from a set of features
and reduce the dimension of the feature space. The existing
feature selection methods can be divided into two groups:
“wrapper” methods and “filter” methods (Kohavi and John,
1997). Wrapper methods use the learning algorithm to
evaluate the candidate features. However, because wrapper
methods are highly complex with a large amount of
calculation, they are not suitable for large-scale datasets
(Langley, 1994). Filter methods select a feature subset via the
evaluation function. Construction of an evaluation function is
based on the correlations between the features and properties of
the raw data, such as the distance measures, information
measures, dependence measures or others (Dash and Liu, 1997;
Talavera, 2005; He et al., 2006). Among the existing evaluation
functions, as a criterion, the data variance might be the simplest
evaluation for feature selection. The main idea of the data-
variance-based approach is to capture the directions of the
maximum variance in the data, which reflects the major power
of the data. The Principal Component Analysis (PCA) method
and its variants belong to the filter methods and are used to find
features that are useful for recovering data. However, there is no
reason to confirm that selected features can effectively
discriminate between data points in different classes. He et al.
proposed the Laplacian Score (LS) method to select features with
high identification, and the LS method is a “filter”method that is
independent of other methods (He et al., 2006). The LS method
constructs a nearest neighbour graph to preserve the local
geometric structure. The selected features can reflect the local
structure of the data space.

As we know, the global structure plays an important role in
clustering when the data contain multiple subspaces (Liu et al.,
2010). The LS method focuses excess attention on the
relationships between local data points but ignores the influence
of global data structures. This drawback might lead to reduced
discrimination effects of the selected feature when the given data
contain multiple subspaces. For the feature selection method, it is
a challenge to satisfactorily characterize and represent global data
structures from a dataset with multiple subspaces. Fortunately, the
Low-Rank Representation (LRR) method solves this issue nicely.
The LRR method can find a low-rank matrix to capture and
represent the global structure of the raw dataset (Liu et al., 2010).
The key to the LRR method is that the high-dimensional data can
be represented by potential low-dimensional subspaces (You et al.,
2016). In bioinformatics, LRR has achieved great success in gene
expression data mining. For example, Cui et al. used the LRR
method to identify subspace gene clusters and obtained good
results (Cui et al., 2013). To preserve the intrinsic geometric
structures of gene expression data, Wang et al. introduced graph
regularization into LRR and proposed the Laplacian regularized
LRR (LLRR) method (Wang et al., 2016). Recently, LLRR was
Frontiers in Genetics | www.frontiersin.org 2161
applied to cancer sample clustering (Wang et al., 2019a).
Furthermore, Wang et al. introduced the mixed-norm to
increase the robustness of the LLRR method and proposed the
mixed-norm Laplacian regularized LRR (MLLRR) method for
tumour sample clustering based on penalized matrix
decomposition (Wang et al., 2018). However, cancer sample
clustering is processed on the obtained low-rank matrix, which
is the global structural representation of the raw data. These LRR-
based approaches mainly consider the global structure of data, but
sometimes they ignore the single feature gene.

Motivated by the above insights, we propose a novel
framework that integrates the advantages of the LRR and LS
methods. Based on the multi-cancer gene expression dataset, the
proposed framework is used to select the feature gene for cancer
sample clustering.

First, we incorporate the constraints of the non-negative
symmetric low-rank matrix and graph regularization in the LRR
method and propose a non-negative symmetric low-rank
representation graph regularized method, or NSLRG method for
short. The NSLRGmethod considers the property and structure of
the gene expression data. The NSLRG method obtains the lowest
rank matrix, which preserves the local data manifold information
and the global data structure information of the raw data.

Second, according to the lowest rank matrix, we construct a
Score function to evaluate each gene for selection of the feature
genes. The importance level of a gene depends on its significance
for the global and local structures of the raw data. We integrate
the NSLRG method with the Score function to achieve the aim of
evaluating and selecting feature genes, and we refer to it as the
NSLRG-S framework.

Finally, we apply the K-means method to cluster cancer
samples based on the selected feature genes. Based on the
different multi-cancer gene expression data, the experimental
results suggest that the performance of the NSLRG-S framework
is better than that of other methods.

In summary, the contributions of this paper include the
following main aspects:

(1.) We propose a novel data mining method known as the
NSLRG method. The NSLRG method operates under graph
regularization and non-negative symmetric low-rank matrix
constraints. The NSLRG method can learn the lowest rank
matrix to satisfactorily represent the gene expression data
and can capture the global structures and local geometric
structures of the raw data. Non-negativity is more consistent
with biological modelling. The symmetric constraint
improves the interpretability of the lowest rank matrix. The
constraints of non-negativity and symmetry facilitate the
lowest rank matrix to learn the structure of the gene
expression data.

(2.) Based on the lowest rank matrix, we propose a Score function
to select the feature genes for cancer sample clustering. The
selected feature genes have important significance to the raw
data. In the clustering of cancer samples, the selected genes
have strong discriminability to realize the classification of
different samples.
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(3.) We present a novel feature selection framework, known as
NSLRG-S, that is designed to evaluate and select the feature
genes for cancer sample clustering. Based on this framework,
the selected result of the gene expression dataset has lower
dimensionality. In multi-cancer sample clustering, this
method has a high recognition rate to find subsets using the
selected result as experimental data. We conduct extensive
experiments to demonstrate that the feature gene subset
selected by NSLRG-S has good performance in cancer
sample clustering.

The remainder of this paper is organized as follows. In section
Related Work, we briefly review the original LRR and several
related variants as well as the LS method. In section Method, we
first present the NSLRG method and its optimal solution, and
based on the Score function, the NSLRG-S framework is clearly
given for modelling of multi-cancer gene expression data.
Section Experiments analyses and discusses the NSLRG method
based on multiple evaluation indicators and convergence
analysis. The performance of the NSLRG-S framework is
validated by experiments based on synthetic data and multi-
cancer gene expression data. Section Conclusions Work presents
the conclusion of our work.
RELATED WORK

In this section, we briefly introduce the original Low-Rank
Representation (LRR) (Liu et al., 2010), the related variants
based on the original LRR method, and the Laplacian Score
method (He et al., 2006).

Low-Rank Representation
Original LRR Method
The Low-Rank Representation (LRR) method is an efficient
method for exploring observed data and subspace clustering.
The main idea is that each data sample can be represented as a
linear combination of the dictionary data. In general, the matrix
X = [x1,x2,…,xn]∈Rm×n represents the observed data, of which
each column is a data sample. Therefore, the matrix X contains n
data samples drawn from independent subspaces. The matrix
D = [d1,d2,…,dk]∈Rm×k represents the dictionary data and is
overcomplete. The general model of the LRR method is
formulated as follows.

min
Z

rank Zð Þ   s : t :    X = DZ, (1)

where the matrix Z∈Rk×n is the coefficient matrix. The aim of
this model is to learn a lowest rank matrix Z* to represent the
observed data X. In the actual application, the matrix X always
replacesD as the dictionary data (Liu et al., 2010; Liu et al., 2013).
Therefore, Z becomes a square matrix and Z∈Rn×n. The element
zij ∈ Z*n�n can denote the confidence of sample i and j in the
same subspace (Wang et al., 2019b). Hence, the matrix Z* can be
used in subspace clustering that clusters data samples into several
sets, with each set corresponding to a subspace.
Frontiers in Genetics | www.frontiersin.org 3162
The problem of min
Z

rank(Z) is a rank function, which is

difficult to optimize with an NP-hard nature. To mitigate this
problem, the best alternative is convex relaxation on problem (1),
and it is written as follows.

min
Z

∥Z ∥*   s : t :    X = XZ, (2)

where ∥⋅∥* is the nuclear norm, and ∥Z∥* is defined as ∥Z ∥* =

on

i di, where di is the singular value of matrix Z∈Rn×n. It has been

confirmed in the literature (Cai et al., 2010) that matrix Z of the
LRR can capture the global structure of the raw data using the
nuclear norm item. Furthermore, to address the real data under
the noise and outliers, a more reasonable formula is applied after
adjustment, and it is expressed as follows.

min
Z,E

∥Z ∥* +l ∥E ∥P   s : t :  X = XZ + E, (3)

where ∥E∥P is the error term, and it selects a different P to model
special noise or outliers based on error prior information, such as
l1-norm (∥E∥1) and l2,1- norm (∥E∥2,1) (Chen and Yang, 2014),
and l > 0 is the parameter that trades off the effect of the
error item.

Many researchers have attempted and proposed variants
based on the original LRR method. The main idea is to
introduce constraint items to optimize or improve existing
methods. For example, the original LRR method is improved
by considering the geometric structures within the data,
including the graph regularization method (Lu et al., 2013) and
k-nearest neighbour graph method (Yin et al., 2016). The
different norm items are used to improve the robustness of the
original LRR method (Wang et al., 2018) and others.

LRR With Graph Regularization
Under certain conditions, the geometric structure within the
data is crucial for the result that we desire. To address this
issue, researchers introduced graph regularization into the
LRR method to create the graph-regularized low-rank
representation (GLRR) method (Lu et al., 2013). The equation
of GLRR is written as follows.

min
Z,E

∥Z ∥� +l1tr ZLZT� �
+ l2 ∥ E ∥2,1  s : t :   X = XZ + E, (4)

where the error item uses the l2,1-norm and ∥E ∥2,1 =on

j=1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
om

i=1(½E�ij)2
q

, tr(⋅) is the trace of the matrix, L is the graph

Laplacian, and l1 and l2 are two parameters used to balance the
graph-regularized item and the error item. Based on manifold
learning, the graph-regularized item achieves the aim that
representative data points zi and zj can hold the property of
the data points xi and xj of X, which are closed in the intrinsic
manifold. Therefore, the inherent geometric structure in the raw
data is preserved in the low-rank matrix Z.

Non-Negative LRR With Sparsity
The non-negativity constraint ensures that every data point is in
the convex hull of its neighbours. The sparse constraint ensures
that each sample is associated with only a few samples. The non-
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negative and sparse low-rank matrix supplies a well
discriminated weight for the subspace and information group.

Inspired by the above insights, Zhuang et al. proposed the
non-negative low rank and sparse graph (NNLRS) method
(Zhuang et al., 2012). The formula is given as follows.

min
Z,E

∥Z ∥� +l1 ∥Z ∥1 +l2 ∥E ∥2,1  s : t :   X = XZ + E,  Z > 0, (5)

where ∥Z∥1 is the l1-norm to guarantee the sparsity of coefficient
matrix. In real-world applications, the sparsity and non-
negativity matrix Z obtained by the NNLRS method can offer a
basis for semi-supervised learning by constructing the
discriminative and informative graph (You et al., 2016).

Laplacian Score Method
According to the Laplacian eigenmaps (Belkin and Niyogi, 2001)
and the locality preserving projection (He and Niyogi, 2005), the
aim of the Laplacian Score (LS) method is to evaluate features
based on their locality preserving power (He et al., 2006). The LS
is defined as follows.

LS rð Þ =oij xri − xrj
� �2Sij
Var xr,:

� � ,   1 ≤ r ≤ m, 1 ≤ i ≤ j ≤ nð Þ, (6)

where the heat kernel function Sij = e−
∥ xi−xj ∥

2

t is used to obtain
weight matrix S, and t is a suitable constant, which is set
empirically. The matrix S is used to model the local structure of
the raw data space. Additionally,Var(xr,:) is the estimated variance
of the r-th feature in all data points, and the larger theVar(xr,:), the
more information held by the r-th feature. Theoij(xri − xrj)

2 is
the sum of differences in the expression of r-th feature between
all samples. For larger values of Sij and the smaller values ofoij
(xri − xrj)

2, the value of LS(r) tends to be smaller, meaning that the
importance level of the feature is higher. Therefore, the important
features are selected according to LS(r).
METHOD

In this section, we propose a novel feature selection framework to
select the feature genes for cancer clustering. This framework is
set up based on the NSLRG method and the Score function. We
refer to this approach as the NSLRG-S Subsection NSLRG
Method presents the NSLRG method and its optimization
algorithm. In subsection NSLRG With Score Function, we
introduce the NSLRG method with the Score function. The last
subsection Framework of NSLRG-S is devoted to clustering of
cancer samples based on NSLRG-S modelling of gene
expression data.

NSLRG Method
Graph Regularization
Because graph regularization can preserve the intrinsic local
geometric structure in the original data, it has received much
attention from researchers. The theory of graph regularization is
Frontiers in Genetics | www.frontiersin.org 4163
based on the principle that the representation of the intrinsic
local geometric structure that is distributed in the original data is
inherited by a graph under the new basis mapping. In the graph,
the vertices correspond to the data points, and the edge weights
represent the relationships between the data points (Du et al.,
2017). Thus far, graph theory has been widely applied and
developed (Chen et al., 2018).

For this paper, in the step of graph construction, we assume
that if data points xi and xj are “close”, an edge exists between xi
and xj. In this work, we use the K-nearest neighbour method to
find the connection of xi and xj. In other words, if xi or xj is
among the K-nearest neighbours of each other, the data points xi
and xj are located on the same edge. This construction strategy is
simpler for determination of connected edges, which tends to
lead to a connected graph. In the next step, the edge weights are
defined to represent the affinity between the data points. In
current study, we define a symmetric weighting matrixW by the
heat kernel weighting function (Cai et al., 2005). The weighting
formula is defined as follows.

Wij =
e−

∥ xi−xj ∥
2

t , if xi and xj are connected

  0  ,   otherwise
,

8<
: (7)

where the parameter t is defined as the mean value of the Euclidean
distance for all data points, which can be automatically adjusted
based on the different dataset. Therefore, the degree matrix D is
defined asDii =ojWij, which is a diagonal matrix. Finally, based
on the connected graph, we obtain the graph Laplacian matrix L,
which is defined as follows.

L = D −W : (8)

Accordingly, a reasonable minimize objective function exists
to satisfy our assumption, and it is defined as follows.

min
z o

ij

∥ zi − zj ∥
2 Wij = min

z
tr Z D −Wð ÞZT� �

= min
Z

ZLZT� �
, (9)

where zi and zj are mappings of xi and xj under the new basis,
which are also close to each other if xi and xj are close. The
objective function is known as the graph regularization item.

Objective Function
We introduce graph regularization and sparse items into the
original LRR. Furthermore, we impose the non-negative and
symmetric constraints on the low-rank matrix Z. This method is
known as the non-negative symmetric low-rank representation
graph regularized (NSLRG) method, and its objective function is
written as follows.
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min
Z,E

∥Z ∥� +l1tr ZLZT� �
+ l2 ∥E ∥1 +l3 ∥Z ∥0  

s : t :   X = XZ + E,  Z = ZT,  Z > 0:

(10)

In the NSLRG method, we represent a given set of data points
as a linear combination of other points using a low-rank matrix
Z. The low-rank matrix should be sparse to improve the
recognition ability. Therefore, the matrix Z with a sparse
constraint could make the result of the representation more
discriminative. However, the ∥Z∥0 item of problem (10) is NP-
hard. Thus, as suggested by matrix completion methods (Candès
et al., 2011), we use ∥Z∥1, a proper relaxed convex item, to
replace ∥Z∥0, and the objective function of NSLRG can be
rewritten as follows.

min
Z,E

∥Z ∥� +l1tr ZLZT� �
+ l2 ∥E ∥1 +l3 ∥Z ∥1  

s : t :   X = XZ + E,  Z = ZT,  Z > 0:

(11)

The matrix Z* is learned by the NSLRG method, and matrix
Z* is a non-negative symmetric lowest rank matrix. The element
zij of Z* can be treated as the degree of similarity between the
data points xi and xj. In addition, the obtained matrix Z* has
good interpretability, for which the element of matrix Z* can be
directly converted to similar-degree weights. The symmetry
constraint can strictly guarantee the consistency of similarity of
data pairs. The similarity of data points i and j corresponding to
the similar-degree weights elements zij and zji is equal, as shown
as Figure 1. The non-negative constraint is more adaptive for the
property of the gene expression data. In other words, the NSLRG
method avoids the situation in which the lowest rank matrix
might be negative and asymmetric, and it also avoids
symmetrization of itself, as suggested in (Liu et al., 2010), i.e.,
Z^= (jZ*j + jZ*jT)=2. Therefore, we refer to the matrix Z* as the
similar-degree matrix.

Optimization
As we know, many algorithms are based on convex relaxation to
solve the high-dimension optimization problem, such as Singular
Value Thresholding (SVT) (Cai et al., 2010), Accelerated
Proximal Gradient (APG) (Toh and Yun, 2010), Alternating
Direction Method (ADM) (Lin et al., 2009) and Linearized
Alternating Direction Method with Adaptive Penalty
(LADMAP) (Lin et al., 2011). As an extended ADM, the
LADMAP algorithm adds the quadratic penalty term
linearization and the penalty self-adaption change, which leads
to use of fewer auxiliary variables and avoids matrix inversions to
solve the problem. Specifically, LADMAP reduces the complexity
of the LRR from O(n3) to O(rn3), where r is the rank of low-rank
matrix Z. This algorithm makes it possible for LRR to be applied
on large-scale dataset, such as video surveillance, digital images,
and gene expression data. Therefore, the LADMAP algorithm
has been recognized as the most efficient algorithm for solving
the problem of convex relaxation of low-rank and sparse
matrices. Similarly, we also adopt LADMAP to solve (11).

First, to easily and effectively obtain matrix Z, we use an
auxiliary variable Q to separate the variables, i.e., nuclear norm
(∥Z∥*) and l1-norm (∥Z∥1). The objective function can be
rewritten as equation (12) using the Augmented Lagrange
Frontiers in Genetics | www.frontiersin.org 5164
Multiplier method (Lin et al., 2010).

‘ Z,E,Q,Y1,Y2,mð Þ = min
Z,E,Q

∥Z ∥* +l1tr ZLZT� �
+l2 ∥E ∥1 +l3 ∥Q ∥1 +Y1,  X − XZ − E + Y2,  Z −Q

+ m
2 ∥X − XZ − E ∥2F +

m
2 ∥Z −Q ∥2F   s : t :    Z = ZT,Z ≥ 0,

(12)

where l1, l2, and l3 are positive weighting parameters; m > 0
is the penalty parameter; Y1,Y2 are Lagrangian multipliers; A,
B=tr(ATB) is the Euclidean inner product between the matrices
A and B; and ∥⋅∥F is the Frobenius-norm. Mathematically,
equation (12) is equivalent to equation (13) after applying a
small transformation. Equation (13) facilitates processing of the
next step.

‘ Z,E,Q,Y1,Y2,mð Þ = min
Z,E,Q

∥Z ∥*

+l1tr ZLZT
� �

+ l2 ∥E ∥1 +l3 ∥Q ∥1

+f Z,E,Q,Y1,Y2,mð Þ     s : t :    Z = ZT,Z ≥ 0:

(13)

Hence, f (Z,E,Q,Y1,Y2,m) = m( ∥X − XZ − E + Y1=m ∥2F + ∥
Z −Q + Y2=m ∥2F )=2:

We divide equation (13) into three subproblems and solve it
in three steps. The three subproblems are written as follows.

‘1 = min
Z

∥Z ∥* +l1tr ZLZT� �
+ f Z,E,Q,Y1,Y2,mð Þ 

s : t :  Z = ZT,Z ≥ 0

(14)
FIGURE 1 | The matrix Z with the symmetry constraint.
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‘2 = min
E

l2 ∥E ∥1 +m ∥X − XZ − E + Y1=m ∥2F =2 (15)

‘3 = min
Q

l3 ∥Q ∥1 +m ∥Z −Q + Y2=m ∥2F =2 (16)

Finally, we solve the above subproblems to find the optimal
solution. The specific steps are given as follows.

Step 1. Update Z: The matrix Z can be obtained by solving
subproblem ℓ1 while keeping E and Q fixed. First, we define the
following formula (17) based on ℓ1.

‘k1 Zk,Ek,Qk,Y
k
1,Y

k
2,mk

� �

= l1tr ZLZT� �
+ f Zk,Ek,Qk,Y

k
1,Y

k
2,mk

� �
: (17)

By setting the first derivative of ‘k1 with respect to Zk, we can
obtain the following formula (18).

∂ ‘k1
∂Zk

= l1 ZkL + ZkL
T� �

+ mkX
T XZk − X + Ek − Yk

1=mk

� �

+ mk Zk − Qk + Yk
2=mk

� �
: (18)

According to LADMAP, subproblem ℓ1 can be replaced by
solving the following problem (19).

min
Z

∥Z ∥* +
∂ ‘k1
∂Zk

,Z − Zk +
h1

2
∥Z − Zk ∥

2
F  

s : t :    Z = ZT,Z ≥ 0,

(19)

where h1 = 2l1 ∥ L ∥2 +mk(1 + ∥X ∥22 ).
Equation (19) can be transformed into the following formula

(20).

min
Z

1
h1

∥Z ∥* +
1
2
∥Z − Zk −

∂ ‘k1
∂Zk

=h1

� �
∥2F  

s : t :    Z = ZT,Z ≥ 0:

(20)

To solve the symmetric and non-negative constraints of low-
rank matrix Z, we adopt Lemma 1 of (Chen et al., 2017) and the
non-negative operator, i.e., equation (24), respectively. Lemma 1
is defined as follows, and the detailed proofs have been given in
the literature (Chen et al., 2017).

Lemma 1: If there is an expression similar to equation (21), its
closed solution is equation (22).

arg min
G

1
b
∥G ∥* +

1
2
∥G −H ∥2F   s : t :    G = GT, (21)

G* = Ur Sr −
1
b
Ir

� �
VT

r : (22)

In this work, Ur, ∑r and Vr are the members of the skinny
singular value decomposition (SVD) of the matrix ~G = USVT;
Sr = diag(d1,d2,…,dr); dr is the singular value for which the positive
singular values are greater than 1

b , i.e., fr : d r >
1
bg; ~G is defined

as ~G = (H +HT)=2; and Ir is an identity matrix with size r × r.
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Based on Lemma 1, we make ~Zk =
1
2 ½(Zk −

∂ ‘k1
∂Zk

=h1) + (Zk −
∂ ‘k1
∂Zk

=h1)
T�. We solve the Zk+1 using the singular value

thresholding operator qϵ(A) = UrSϵ(Sr −
1
h1
Ir)V

T
r , where Sϵ =

sgn(x)max(| x |−ϵ,0). The iterative formula is written as follows.

Zk+1 = q 1
h1

Zkð Þ, (23)

where h1 = 2l1 ∥ L ∥2 +mk(1 + ∥X ∥22 ). After obtaining matrix
Zk+1 by equation (23), the non-negative constraint is imposed
on matrix Zk+1 through a non-negative operator. The non-
negative operator is defined as follows.

F Z*
i,jð Þ

k+1

� �
=

Z i,jð Þ
k+1,          Z

i,jð Þ
k+1 > 0

0,                             otherwise
:

(
(24)

Finally, the non-negative symmetric low-rank matrix Z*k+1
is obtained.

Step 2. Update E: The matrix E can be obtained by solving
subproblem ℓ2 while keeping Z and Q fixed. Analogously,
following equation (18), the first derivative of ℓ2 is set with
respect to Ek, i.e.,

∂ ‘2
∂Ek

, and set ∂ ‘2
∂Ek

= 0. Thus, we obtain equation
(25).

∂ ‘2
∂Ek

= mk Ek − X + XZk+1 − Yk
1=mk

� �
= 0

! Ek = X − XZk+1 + Yk
1=mk : (25)

According to the NSHLRR method (Yin et al., 2016), the
iterative formula of E is given as follows.

Ek+1 = Yl2
mk

X − XZk+1 + Yk
1=mk

� �
: (26)

Step 3. Update Q: The matrix Q can be obtained by solving
subproblem ℓ3 while keeping Z and E fixed. Similar to Step 2, we
set the first derivative of ℓ3 with respect to Qk, i.e., 

∂ ‘3
∂Qk

, and set
∂ ‘3
∂Qk

= 0. Thus, we obtain the following equation.

∂ ‘3
∂Qk

= mk Qk − Zk+1 + Yk
2=mk

� �h i
= 0

! Qk = Zk+1 + Yk
2=mk (27)

According to the NSHLRR method (Yin et al., 2016), the
iterative formula of Q is written as follows.

Qk+1 = max Yl3
mk

Zk+1 + Yk
2=mk

� �
, 0

	 

(28)

Algorithm 1 clearly summarizes the above solution steps. The
initialization parameter values are set based on experimental
experience and the existing relevant research recommendations
(Yin et al., 2016).

NSLRG With Score Function
It is known that both local structure and global structure can
influence the importance of features in raw data. However, the LS
method primarily focuses on the locality preserving power of
data to evaluate the features. Inspired by the lowest rank matrix
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Z* of the NSLRG method, which can capture the global and local
structure of the raw data, we believe that the important feature of
high-dimension data can be extracted based on the matrix Z*.
Therefore, we propose a Score function that is established on the
lowest rank matrix Z* for selection of the important feature. The
formula is defined as follows.

Score rð Þ =oij xri − xrj
� �2Zij−NSLRG

Var xr,:
� � ,   1 ≤ r ≤ m, 1 ≤ i ≤ j ≤ nð Þ,

(29)

where the Zij-NSLRG is the element of Z* obtained by the NSLRG
method, and Zij-NSLRG denotes the similarity degree of the i-th
and j-th samples and is used to measure the r-th feature between
two samples. The property of the global and local structure
captured by the lowest rank matrix can be used as a constraint for
feature selection. The selected feature results are quite useful for
capturing the subspace structures of raw data. In different classes,
this constraint can guarantee the selected feature with
high discrimination.

Based on the result of the Score function, all features are
arranged in ascending order to form a score curve. The number
of selected features is t (t <m), which occurs before the first
inflection point of the score curve. Thus, we cluster the cancer
samples based on the selected feature genes.

We refer to the NSLRGmethod with the Score function as the
NSLRG-S framework for short. In a nutshell, the NSLRG-S
framework can be divided into four steps. In the first step, the
lowest rank matrix is obtained by the NSLRG method. In the
second step, the Score function is used to evaluate and rank
features based on the lowest-rank matrix of the first steps. In the
third step, the feature genes are selected according to the results
of the Score function. In the fourth step, cancer sample clustering
is processed based on the selected feature genes. This novel
framework delivers better reliability in selection of the most
ALGORITHM 1 | The NSLRG method.

Input: data X; parameters l1, l2 and l3; the number of k-nearest-neighbors.

Initialization: Z0 = E0 = Q0 = Y0
1 = Y0

2 = 0, r0=2.5, m0=10−3, mmax=10
6, ϵ1=10

−6,
ϵ2=10

−2, L.
While not converged do

1. Update Z by Step1.
2. Update E by Step2.
3. Update Q by Step3.
4. Update Lagrangian multipliers Y1 and Y2:

Yk+1
1 = Yk

1 + mk (X − XZk+1 − Ek+1)

Yk+1
2 = Yk

2 + mk (Zk+1 −Qk+1)
5. Update mk+1:
mk+1=min(mmax,rkmk),

where rk = f

r0,     if  max  fh1 ∥Zk+1 − Zk ∥,mk ∥Ek+1 − Ek ∥,    mk ∥Qk+1 −Qk ∥g ≤ ϵ2
1,    otherwise

Checking convergence:
if ||X−XZk+1−Ek+1||/||X||<ϵ1 or
max{ h1∥Zk+1−Zk∥,mk∥Ek+1−Ek∥, mk∥Qk+1−Qk∥ }<ϵ2

End while
Output: The lowest rank matrix Z*.
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important feature for cancer sample clustering according to the
global and local structure of the raw data.

Framework of NSLRG-S
Based on the proposed NSLRG-S framework, our goal is to
model the gene expression data and cluster the cancer samples
according to the selected feature genes.

The modelling process is shown in Figure 2. At the start, the
matrix Xm×n represents the gene expression data with sizem × n,
and one row represents the expression level of a same gene in
different samples. The totals of genes and samples are m and n,
respectively. Usually,m is notably large and n is rather small. The
matrix Z*n�n is the lowest-rank matrix obtained by the NSLRG
method as the basis for the Score function. Second, according to
the score result, all of the genes are ranked in ascending order.
The total number of t (t <m) feature genes are selected based on
the first inflection point of the score curve. Finally, we cluster the
cancer samples based on the selected feature genes to
demonstrate the selected genes with efficient discrimination.
The result is compared with those of different methods,
including the K-means, Graph Regularized Nonnegative
Matrix Factorization (GNMF) (Cai et al., 2011), Robust
Principal Component analysis (RPCA) (Candès et al., 2011),
Sparse Principal Component Analysis (SPCA) (Journée et al.,
2010), Graph-Laplacian PCA (GLPCA) (Jiang et al., 2013), LS
(He et al., 2006), and LLRR (Wang et al., 2016) methods. The
details of the experimental result are described in subsection
Experiments on Gene Expression Data. Algorithm 2 is the
framework of the NSLRG-S for clustering of gene
expression data.
EXPERIMENTS

To evaluate the performance of the NSLRG-S framework, we
compare the NSLRG-S framework with multiple typical
methods, including the K-means, GNMF (Cai et al., 2011),
RPCA (Candès et al., 2011), SPCA (Journée et al., 2010),
GLPCA (Jiang et al., 2013), LS (He et al., 2006), and LLRR
(Wang et al., 2016) methods. In subsection Evaluation and
Quantitative Benchmarks, we select three quantitative
benchmarks to evaluate the experimental results. In
subsection Experiments on Synthetic Data and subsection
Experiments on Gene Expression Data , comparative
experiments are conducted on synthetic data and cancer gene
expression data, respectively.
ALGORITHM 2 | Framework of NSLRG-S for clustering gene expression data.

Input: Gene expression data X clustering number k
Step:
1) Learn a lowest rank matrix Z* by the Algorithm 1;
2) Obtain the ranked feature genes by the Score-function;
3) Obtain the selected feature genes.
4) Obtain the clustering cancer samples results using the K-means method.

Output: Clustering results
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Evaluation and Quantitative Benchmarks
To evaluate the performance of the clustering results based on
comparison methods, we select three quantitative benchmarks:
the clustering accuracy rate (Acc) (Cui et al., 2013), F1
measurement (F1) (Rijsbergen, 1979), and Rand Index (RI)
(Rand, 1971).

Clustering Accuracy Rate
The Acc is defined as follows.

Acc =o
N

i=1X xi,map rið Þð Þ
N

� 100% (30)

where N is the total number of samples, and X(xi,map(ri)) is used
to identify whether xi and ri are matched. The xi and ri are the
actual label and clustering label of the i-th sample, respectively,
and if they are matched, the value of X(xi,map(ri)) is equal to one;
otherwise, its value is equal to zero. The map(ri) is the mapping
function based on the Kuhn-Munkres method (Lovász and
Plummer, 1986).

F1 Measurement
The F1 measurement is a special form of the F-Measure under a
certain parameter. The F-Measure is also referred to as the F-
Score and is the weighted harmonic mean of the Precision rate
and Recall rate of the result of clustering. The F-Measure,
Precision rate, and Recall rate are defined as follows.

F =
f2 + 1
� �� P � R

f2 � P + Rð Þ , (31)

P =
tp

tp + fp
, (32)
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R =
tp

tp + fn
, (33)

where F is the F-Measure, P is the Precision rate and R is the
Recall rate. The tp (true positives) is the item that records the
number of positive samples that are clustered into their own
positive class, fp (false positives) is the item that records the
number of negative samples that are clustered into the positive
class, and fn (false negatives) is the item that records the number
of positive samples that are clustered into negative class. Figure 3
clearly shows tp, fp and fn. The F-Measure can balance the
contribution of fn by weighting Recall through the parameter
f > 0. When the parameter f = 1, F-Measure becomes the most
common form, i.e., F1 measurement, and equation (31) is
rewritten as follows.

F1 =
2� P � R
P + R

: (34)

F1 measurement reaches its best value at 1 and its worst score
at 0. The relative contributions of the Precision rate and Recall
rate to the F1 measurement are equal.

Rand Index
The given data have two partitions: one is the actual
classification, and the other is the clustered result (returned by
our Algorithm 2). The Rand Index (RI) is used to compute how
similar the result of clustering is to the actual classification. The
RI is defined as follows.

RI =
a + b
C2
nsamples

, (35)

where a indicates the number of pairs of data points belonging to
the same class in both the actual classification and the clustered
result, b indicates the number of pairs of data points belonging to
FIGURE 2 | Framework of NSLRG-S for clustering gene expression data.
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the different class in both the actual classification and the
clustered result, and C2

nsamples
represents the total number of data

pairs obtained from the given data. The range of RI is [0,1], and
the larger the value, the more the clustering results are in
accordance with reality.

Experiments on Synthetic Data
In this subsection, comparison experiments are conducted on
synthetic data. In subsection Synthetic Data, we construct the
synthetic data. In subsection Convergence Analysis, we perform
convergence analysis to compare the NSLRG-S framework and
other methods. In subsection Clustering Results, we analyze the
performance of comparison methods on clustering data samples.

Synthetic Data
The synthetic data are constructed by the following steps (1) and
(2). These synthetic data contain ten independent subspaces.

(1.) Construction of 10 original databases by Oi+1 = TOi, 1 ≤
i ≤ 9. The value of the database ranges from 0 to 1, T is the
transform random rotation matrix, and O1 is a random
orthogonal matrix of 1000×100. The rank of each original
database is 100.

(2.) We extract 10 data vectors from each original database by Xi

= OiQi,1 ≤ i ≤ 10, where the matrix Q100�10
i is an indepen-

dent identical distribution matrix N(0,1), and its size is
100×10. All extracted data vectors are combined in synthetic
data X1000�100

Synthetic   data = ½X1,  X2,…,X10�.
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Convergence Analysis
We define an Error-Values function FE-V(k) based on the loss
function value to calculate the convergence rate. In the same
iterations, the smaller the value of the Error-Values, the faster the
convergence rate. The formula is given as follows.

FE−V kð Þ = ∥X − XZk + Ekð Þ ∥F , (36)

where the minimum value of FE-V(k) is equal to zero. To clearly
characterize the convergence rate, Figures 4A, B show the
convergence trends of the NSLRG-S and the compared
methods GNMF, RPCA, SPCA, and LLRR in 100 iterations. In
Figure 4B, we find that the convergence rate of the NSLRG
method is faster than those of the other methods.

Clustering Results
Table 1 lists the results of the GNMF, RPCA, SPCA, GLPCA, LS,
LLRR, and NSLRG-S methods on the three quantitative
benchmarks as Acc, F1, and RI. The results show that the
performance of NSLRG-S is better than those of other methods.

Experiments on Gene Expression Data
In this subsection, we conduct experiments on gene expression
datasets. The experimental datasets are downloaded from the
famous gene expression database The Cancer Genome Atlas
(TCGA). We cluster the cancer samples based on the feature
genes obtained by the NSLRG-S framework. The experimental
results demonstrate that we can improve the performance in
cancer samples clustering by applying the selected feature genes.
FIGURE 3 | The tp, fp, and fn of the clustering result.
January 2020 | Volume 10 | Article 1353
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Gene Expression Datasets
The TCGA database is a source of experimental data and is an
important project for accelerating and comprehensively
understanding cancer genetics using innovative genome
analysis technologies (Tomczak et al., 2015). This database is
one of the invaluable sources for gene expression datasets.
Therefore, we select the TCGA database as the data source to
research the clustering performance of the NSLRG-S framework.

We downloaded five cancer gene expression datasets, namely,
esophageal carcinoma (ESCA), head and neck squamous cell
carcinoma (HNSC), cholangiocarcinoma (CHOL), colon
adenocarcinoma (COAD) and pancreatic adenocarcinoma
(PAAD). Each type of gene expression dataset contains cancer
tissue samples and normal tissue samples. There are 20,502 genes
in each tissue sample. The distribution of each gene expression
dataset is listed in Table 2.

In addition, to find the feature gene with a high recognition
rate between different cancers for cancer sample clustering, we
construct seven mixed datasets. The mixed datasets are HN-PA,
Frontiers in Genetics | www.frontiersin.org 10169
ES-PA, CO-ES and HN-CH; HN-PA-CH, ES-PA-CH, and CO-
PA-CH. The construction rule combines tumour tissue samples
that come from different gene expression data, and the combined
datasets contain two or three types of cancers. For example, in
the HN-PA data, HN represents all of the cancer tissue samples
of the HNSC data, and PA represents the total of the cancer
tissue samples of the PAAD data. The cancer tissue samples of
HN and PA are combined to construct the new mixed data, i.e.,
HN-PA, which contain two types of cancers and have 574 cancer
tissue samples. For the other mixed datasets, the distributions are
listed in Table 3.

The five original datasets and seven mixed datasets are used in
experiments. We classify all datasets into three categories
according to the number of cancers they contain. The datasets
that contain one type of cancer belong to Category I. Thus,
Category I contains PAAD, HNSC, ESCA, COAD, and CHOL.
Datasets that contain two types of cancers belong to Category II,
and they are HN-PA, ES-PA, CO-ES, and HN-CH. The datasets
that contain three types of cancers belong to Category III, and the
names of these datasets are HN-PA-CH, ES-PA-CH, and CO-
PA-CH. Table 4 clearly lists the category results.

Parameter Selection
In the experiments, we need to select the optimal parameters of
the different datasets. For the three parameters (l1, l2, l3) of the
FIGURE 4 | (A and B): The convergence analysis of different methods in 100 iterations.
TABLE 1 | The clustering results of compared methods and NSLRG-S method
on synthetic data.

Method Acc (%) F1 (%) RI (%)

GNMF 72.44 68.42 93.01
RPCA 80.68 78.82 95.57
SPCA 70.42 67.6 91.07
GLPCA 67.28 64.45 89.84
LS 80.62 78.37 96.12
LLRR 81.04 78.67 96.12
NSLRG-S 82.00 79.21 96.27
Acc, clustering accuracy rate; F1, F1 measurement; and RI, Rand Index; GNMF, Graph
Regularized Nonnegative Matrix Factorization; SPCA, Sparse Principal Component
Analysis; GLPCA, Graph-Laplacian PCA; LS, Laplacian Score; and LLRR, Laplacian
regularized Low-Rank Representation; NSLRG-S, non-negative symmetric low-rank
representation with graph regularization based on score function.
The bolded texts mean the results are better than the others.
TABLE 2 | The distribution of five gene expression datasets.

Dataset Cancer tissue
samples

Normal tissue
samples

Total
samples

Total
genes

PAAD 176 4 180 20502
HNSC 398 20 418 20502
ESCA 183 9 192 20502
COAD 262 19 281 20502
CHOL 36 9 45 20502
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NSLRG method, we assume that the optimal value of each
parameter exists within an estimation range of 10t(t = { −5,−4,
−3,−2,−1,0,1,2,3,4,5 }). We study the influence of each parameter
on feature selection and select the optimal parameters according
to the different datasets. First, our main task is to determine the
sensitivity of each parameter to the different datasets. We change
one parameter within the candidate interval while holding the
other two parameters fixed to explore the influence degree of this
parameter on the dataset. We find that the parameter l3 is
insensitive for all datasets. Therefore, the NSLRG method is
robust for the parameter l3, and we select the l3 = 10-3 according
to experimental experience. The details of selection of the other
two parameters are listed in Table 5.

Results and Discussion
In this subsection, based on the datasets of subsection Gene
Expression Datasets, we apply the NSLRG-S to cluster the cancer
samples. We adopt seven clustering methods, including K-
means, GNMF, RPCA, SPCA, GLPCA, LS, and LLRR, for
comparison with NSLRG-S.

Typically, gene expression data mining can be recognized as
addressing a small sample size and high-dimensional problem.
The applied methods must face and suffer from what is known as
the curse of dimensionality. This situation occurs because the
more dimensions contained in the data (20,502 in our case), the
more unstable the result. Therefore, in our experiments, we
improve the reasonableness of the result by running the
experiment 50 times. The mean of the results is taken as the
measurement of the clustering results.

Table 6 clearly lists the experimental results of all methods.
Based on Table 6, we obtain the mean metrics of each category
dataset, and they are listed in Table 7. Furthermore, to clearly
show the experimental results on different categories of dataset
Frontiers in Genetics | www.frontiersin.org 11170
and different methods, Figure 5 presents a broken-line graph for
the three category datasets corresponding to different methods.
Figure 6 presents a histogram for the different methods
corresponding to the three category datasets.

By comparing the clustering results of NSLRG-S and other
methods, we find that the results of the NSLRG-S method are the
best of all methods in most datasets. According to Table 6, for the
Category I dataset, the clustering performance of NSLRG-S for the
HNSC and ESCA datasets is higher than that of other methods. In
the COAD and CHOL dataset, NSLRG-S achieves the same best
results as the other methods. For the Category II dataset, the
clustering performance of NSLRG-S is the best of all methods.
For the Category III dataset, except for themetrics of Acc and F1 on
HN-PA-CH and Acc on CO-PA-CH, which are obtained by
GNMF, and F1 on HN-PA-CH obtained by LLRR, the clustering
performance of NSLRG-S is better than that of other methods.

In addition to the numerical comparison, we also find that the
NSLRG-S method has different advantages after comparing it
with different comparison methods. In the next section, we
conduct a more detailed comparison and analysis between
NSLRG-S and the other comparison methods.

In the seven comparison methods (K-means, GNMF, RPCA,
SPCA, GLPCA, LS, and LLRR), K-means is the traditional
clustering method; GNMF belongs to matrix factorization
techniques, which extend the nonnegative matrix factorization
with preservation of the intrinsic geometric structure (Cai et al.,
2011); RPCA, SPCA, and GLPCA are variant methods of
principal component analysis, which is a well-established
descending dimension method for mining high dimensional
data (Journée et al., 2010); LS is the feature selection method;
and the LLRR is the subspace clustering method. In addition, the
NSLRG-S framework combines the NSLRG method and Score
function. Therefore, this framework belongs to a mixed method
that combines the advantage of both sides.

First, we compare the NSLRG-S framework with K-means.
Based on Table 6, we find that a higher clustering result is
obtained by NSLRG-S. This comparison result shows that the
proposed NSLRG-S framework is better than the traditional
clustering method in cancer sample clustering. This result
occurs because the NSLRG-S considers the local and global
TABLE 3 | The distribution of mixed datasets.

Dataset Cancer tissue and the number Total number

HN-PA 398 from HNSC; 176 from PAAD; 574
ES-PA 183 from ESCA; 176 from PAAD; 359
CO-ES 262 from COAD; 183 from ESCA; 445
HN-CH 398 from HNSC; 36 from CHOL; 434
HN-PA-CH 398 from HNSC; 176 from PAAD; 36 from CHOL; 610
ES-PA-CH 183 from ESCA; 176 from PAAD; 36 from CHOL; 395
CO-PA-CH 262 from COAD; 176 from PAAD; 36 from CHOL; 474
ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; CHOL,
cholangiocarcinoma; COAD, colon adenocarcinoma; and PAAD, pancreatic adenocar-
cinoma.
TABLE 4 | The category result of experimental datasets.

Category I II III

Dataset PAAD HN-PA HN-PA-CH
HNSC ES-PA ES-PA-CH
ESCA CO-ES CO-PA-CH
COAD HN-CH /
CHOL / /
ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; CHOL,
cholangiocarcinoma; COAD, colon adenocarcinoma; and PAAD, pancreatic adenocar-
cinoma.
TABLE 5 | The parameter selection.

Dataset l1 l2 l3

PAAD 10-5 10-2 10-3

HNSC 10-3 10-4 10-3

ESCA 104 10-1 10-3

COAD 104 100 10-3

CHOL 10-1 10-1 10-3

HN-PA 10-4 101 10-3

ES-PA 10-2 10-1 10-3

CO-ES 102 105 10-3

HN-CH 10-1 105 10-3

HN-PA-CH 10-5 10-2 10-3

ES-PA-CH 10-4 100 10-3

CO-PA-CH 101 10-2 10-3
January 2020
 | Volume 10 | Article 1
ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; CHOL,
cholangiocarcinoma; COAD, colon adenocarcinoma; and PAAD, pancreatic adenocar-
cinoma.
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structure of the raw data. This framework can select feature genes
with a high recognition rate for cancer sample clustering. In
addition, the K-means method performs cancer sample
clustering based on the raw data, which ignores the contents
considered in NSLRG-S. Figure 5 clearly shows that the NSLRG-
S is superior to the K-means method.
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Second, we compare the NSLRG-S with the GNMF method.
In GNMF, a nearest neighbour graph is constructed by encoding
the geometrical information of the data space. The method seeks
matrix factorization, which incorporates the graph structure (Cai
et al., 2011). Based on Table 5, the GNMF method obtains good
results, and a subset of them are even better than those of
TABLE 6 | The result of comparison experiment.

Category Dataset Measure K-means GNMF RPCA SPCA GLPCA LS LLRR NSLRG-S

I PAAD Acc 69.50% 74.67% 63.49% 56.47% 76.53% 97.78% 81.46% 97.22%
F1 43.28% 46.69% 41.42% 40.31% 45.53% 66.10% 48.45% 49.30%
RI 63.77% 61.96% 55.23% 50.58% 64.45% 95.63% 69.73% 94.57%

HNSC Acc 69.50% 81.72% 64.52% 62.20% 90.71% 93.54% 81.44% 94.37%
F1 46.78% 44.97% 47.34% 46.59% 68.51% 48.33% 48.43% 48.55%
RI 59.44% 70.05% 54.19% 52.86% 83.68% 87.89% 69.69% 89.36%

ESCA Acc 62.01% 54.69% 53.65% 53.97% 84.90% 94.79% 67.47% 94.91%
F1 43.97% 40.00% 40.22% 41.15% 46.74% 48.66% 46.97% 64.18%
RI 58.34% 50.18% 50.01% 50.06% 76.19% 90.07% 56.41% 90.40%

COAD Acc 74.71% 99.29% 86.39% 81.28% 84.42% 87.09% 88.20% 99.29%
F1 60.02% 97.31% 71.08% 65.41% 68.68% 47.54% 73.40% 97.31%
RI 65.22% 98.58% 76.45% 69.48% 73.60% 78.08% 79.15% 98.58%

CHOL Acc 85.72% 97.78% 100.00% 100.00% 100.00% 63.82% 100.00% 100.00%
F1 66.16% 96.66% 100.00% 100.00% 100.00% 44.81% 100.00% 100.00%
RI 75.03% 95.56% 100.00% 100.00% 100.00% 53.36% 100.00% 100.00%

II HN-PA Acc 97.66% 99.83% 99.48% 99.30% 98.95% 68.95% 99.65% 100.00%
F1 95.99% 99.80% 99.39% 99.19% 98.78% 41.77% 99.59% 100.00%
RI 96.38% 99.65% 98.96% 98.61% 97.93% 57.11% 99.30% 100.00%

HN-CH Acc 85.42% 98.39% 82.56% 89.59% 92.06% 90.12% 94.14% 99.54%
F1 73.89% 94.18% 71.16% 77.83% 81.62% 47.40% 86.08% 98.45%
RI 76.94% 96.82% 72.33% 81.36% 85.37% 82.15% 89.46% 99.08%

ES-PA Acc 96.41% 97.21% 98.25% 99.16% 99.16% 50.86% 99.16% 99.72%
F1 73.89% 97.21% 97.95% 99.16% 99.16% 34.37% 99.16% 99.72%
RI 95.44% 94.57% 97.37% 98.34% 98.34% 49.89% 98.34% 99.44%

CO-ES Acc 96.58% 80.67% 97.53% 96.85% 96.18% 59.10% 97.30% 98.65%
F1 96.07% 77.59% 97.45% 96.75% 96.06% 37.65% 97.21% 98.60%
RI 93.95% 68.75% 95.17% 93.89% 92.63% 51.55% 94.74% 97.33%

III HN-PA-CH Acc 81.01% 92.79% 77.20% 78.83% 80.13% 65.25% 87.71% 88.62%
F1 62.79% 63.16% 61.82% 63.15% 65.25% 26.69% 70.03% 63.36%
RI 84.14% 94.79% 81.99% 81.85% 81.76% 51.20% 87.74% 89.98%

ES-PA-CH Acc 81.14% 68.86% 73.91% 72.78% 72.52% 46.51% 86.03% 89.37%
F1 65.98% 52.42% 63.41% 66.55% 66.13% 22.30% 69.23% 72.11%
RI 86.29% 77.41% 82.73% 80.33% 80.29% 42.64% 85.98% 90.58%

CO-PA-CH Acc 80.24% 89.45% 74.04% 74.63% 75.40% 55.59% 85.57% 83.74%
F1 68.56% 63.60% 61.77% 63.27% 64.27% 26.89% 70.44% 73.56%
RI 84.22% 84.00% 82.27% 84.02% 83.65% 45.84% 84.53% 85.52%
J
anuary 2020 |
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ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; and PAAD, pancreatic adenocarcinoma.
The bolded texts mean the results are better than the others.
TABLE 7 | The mean metrics of result for all methods on Category dataset I, II, III.

Metrics Category K-means GNMF RPCA SPCA GLPCA LS LLRR NSLRG-S

ACC I 72.29% 81.63% 73.61% 70.78% 87.31% 87.40% 83.71% 97.16%
II 94.02% 94.03% 94.45% 96.23% 96.59% 67.26% 97.56% 99.48%
III 80.80% 83.70% 75.05% 75.42% 76.02% 55.78% 86.44% 87.24%

F1 I 52.04% 65.13% 60.01% 58.69% 65.89% 51.09% 63.45% 71.87%
II 84.96% 92.20% 91.49% 93.23% 93.91% 40.30% 95.51% 99.19%
III 65.78% 59.73% 62.34% 64.32% 65.21% 25.29% 69.90% 69.67%

RI I 64.36% 75.27% 67.18% 64.60% 79.58% 81.01% 75.00% 94.58%
II 90.68% 89.95% 90.96% 93.05% 93.57% 60.17% 95.46% 98.96%
III 84.88% 85.40% 82.33% 82.07% 81.90% 46.56% 86.08% 88.70%
Acc, clustering accuracy rate; F1, F1 measurement; and RI, Rand Index; GNMF, Graph Regularized Nonnegative Matrix Factorization; SPCA, Sparse Principal Component Analysis;
GLPCA, Graph-Laplacian PCA; LS, Laplacian Score; and LLRR, Laplacian regularized Low-Rank Representation; NSLRG-S, non-negative symmetric low-rank representation with graph
regularization based on score function.
The bolded texts mean the results are better than the others.
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NSLRG-S method. For most of the datasets, the results of
NSLRG-S are still better than those of GNMF. The reason for
this result is that the NSLRG-S method can obtain the
characteristics of the subspace structure of the raw data, and
the corresponding subspace of different types of cancer can be
satisfactorily distinguished.

Third, we compare the NSLRG-S with the RPCA, SPCA, and
GLPCA methods. RPCA, SPCA, and GLPCA belong to principal
component analysis methods and are suitable for processing
high-dimensional gene expression data by learning a low-
dimensional representation. The results of NSLRG-S are better
than those of three methods, except for the CHOL dataset. We
can conclude that the NSLRG-S method is better than the variant
methods of principal component analysis in clustering of
multiple cancer samples.

Fourth, we compare the NSLRG-S with the LS method. Based
on Figure 5, we find that the performance of LS decreases
gradually on the Category I, Category II and Category III
datasets, and this trend is different with other methods. The
Frontiers in Genetics | www.frontiersin.org 13172
reason for this result is that the feature genes selected by the LS
method have locality-preserving power attributes but do not
have good multi-subspace separation attributes. In the
framework of the NSLRG-S, feature genes are obtained under
the Score function based on the low-rank matrix obtained by the
NSLRG method. This low-rank matrix can preserve the global
and local structure of the raw data, and after further processing
the low-rank matrix through the Score function, the selected
genes have a strong discrimination in multi-subspace clustering.
Therefore, the performance of NSLRG-S is better than that of LS.

Finally, we compare the NSLRG-S with the LLRR method.
Based on Figure 5, the broken line of the NSLRG-S is always
above that of the LLRR method except for F1 on the Category III
dataset. The comparison results show that the Score function
plays an important role in further mining of the low-rank matrix
of the NSLRG method.

Furthermore, we note an interesting trend in the results of
three categories of datasets for each method, as shown in
Figure 6. Other than the LS method, which shows a
FIGURE 5 | The mean metrics of experimental result for Category I, II, and III. (A) Accuracy-Category (B) F1-Category (C) Rand Index-Category.
FIGURE 6 | The mean metrics of experimental result for all methods. (A) Accuracy-Method (B) F1-Method (C) Rand Index-Method.
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downward trend, the other methods show an upward trend first
followed by a downward trend. In other words, except for the LS
method, after comparing all of the results of the other methods,
we note that the experimental results of the Category II datasets
are the best, followed by the Category III datasets or the Category
I datasets, and this trend occurs in all metrics. According to
Tables 2–4, the distributions of sample size in the Category II
datasets are more balanced than those in Category I and
Category III. Therefore, the result of the Category II dataset is
more reasonable and stable than the results of Category I and
Category III. However, with an increasing number of subspaces,
the structure of the data is more complex, and the global and
local structures of raw data are more difficult to capture.
Therefore, compared with the experimental results of the
Category II datasets, the experimental results of the Category
III datasets decrease. Fortunately, according to Table 7, the
NSLRG-S is still better than other methods. This observation
demonstrates that the NSLRG-S framework has better
advantages in cancer sample clustering than other methods
when working with unbalanced and multi-subspace datasets.
Based on the above discussion and analysis, we conclude that the
NSLRG-S framework has a good effect for cancer sample
clustering based on a gene expression dataset.
CONCLUSIONS WORK

In this paper, we cluster the cancer samples of multi-cancer gene
expression datasets based on select feature genes obtained by the
NSLRG-S framework. In addition, NSLRG-S simultaneously
considers the local and global structure of the raw gene
expression dataset. The selected feature genes have a high
recognition rate in subspace clustering. The comparison
Frontiers in Genetics | www.frontiersin.org 14173
experimental results suggest that the NSLRG-S framework can
significantly improve the cancer samples clustering performance.
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Background: Oral squamous cell carcinoma (OSCC) is a solid tumor, which originates
from squamous epithelium, with about 400,000 new-cases/year worldwidely. Presently,
chemoradiotherapy is the most important adjuvant treatment for OSCC, mostly in
advanced tumors. However, clinical resistance to chemotherapy still leads to poor
prognosis of OSCC patients. Via high-throughput analysis of gene expression database
of OSCC, we investigated the molecular mechanisms underlying cisplatin resistance in
OSCC, analyzing the differentially expressed genes (DEGs) and their regulatory
relationship, to clarify the molecular basis of OSCC chemotherapy resistance and
provide a theoretical foundation for the treatment of patients with OSCC and
individualized therapeutic targets accurately.

Methods: Datasets related to “OSCC” and “cisplatin resistance” (GSE111585 and
GSE115119) were downloaded from the GEO database and analyzed by GEO2R.
Venn diagram was used to obtain drug-resistance-related DEGs. Functional enrichment
analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were
performed on DEGs using The Database for Annotation, Visualization and Integrated
Discovery (DAVID) software. Protein–protein interaction (PPI) network was constructed by
STRING (search tool for recurring instances of neighbouring genes) database. Potential
target genes of miRNA were predicted viamiRDB, and cBioportal was used to analyze the
function and survival of the potential functional genes.

Results: Forty-eight upregulated DEGs and 49 downregulated DEGs were obtained from
the datasets, with cutoff as p < 0.01 and |log FC| > 1. The DEGs in OSCC mainly enriched
in cell proliferation regulation, and chemokine activity. In PPI network with hub score >
300, the hub genes were identified as NOTCH1, JUN, CTNNB1, CEBPA, and ETS1.
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Among miRNA–mRNA targeting regulatory network, hsa-mir-200c-3p, hsa-mir-200b-3p,
hsa-mir-429, and hsa-mir-139-5p were found to simultaneously regulate multiple hub
genes. Survival analysis showed that patients with high CTNNB1 or low CEBPA
expression had poor outcome.

Conclusions: In the OSCC cisplatin-resistant cell lines, NOTCH1, JUN, CTNNB1,
CEBPA, and ETS1 were found as the hub genes involved in regulating the cisplatin
resistance of OSCC. Members of the miR-200 family may reverse drug resistance of
OSCC cells by regulating the hub genes, which can act as potential targets for the
treatment of OSCC patients with cisplatin resistance.
Keywords: differentially expressed genes, resistance, oral squamous cell carcinomas, cisplatin, miRNA
INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC), the sixth
most common malignant tumor in the world (Kim et al., 2011a),
is an important public health issue worldwide. Among the total
HNSCC cases, 30% are oral squamous cell carcinoma (OSCC)
cases (World Health, 2003; Petersen, 2003a; Petersen, 2003b). In
2012, about 145,000 patients with OSCC died worldwide, with a
mortality rate of 1.8% (Petersen, 2005; Kim et al., 2011a; Ong
et al., 2016). Interestingly, OSCC is one of the three most
common malignancies in Central and South Asia. In India, the
age-standardized incidence of OSCC is 12.6 per 100,000 people
(Petersen, 2005). According to statistics, the incidence of OSCC
has increased sharply in several countries and regions, including
Denmark, France, Germany, Scotland, and Central and Eastern
Europe (Petersen, 2005).

OSCC can occur in different areas of the mouth and tongue,
including lips, alveolar ridge, oral floor, oral tongue, hard palate,
posterior molars triangle, and buccal mucosa, lined by squamous
epithelium and scattered in smaller salivary glands and
lymphatic drainage pathways. OSCC is common in the elder
people with a history of tobacco and alcohol usage, with
malignant tumors or somatic cell mutation by inducing DNA
damage (Leemans et al., 2011). Although surgery is the main
treatment strategy for OSCC, chemoradiotherapy is also an
effective method, especially for advanced tumors. However,
drug resistance due to unraveled molecular mechanisms
significantly reduces the survival of OSCC patients.

Since the first miRNA— lin-4 was identified in 1993, miRNAs
have attracted the attention of researchers in the field of gene
expression regulation and gene therapy (Liang et al., 2014). By
inhibition of RNA translation or degradation of target mRNA,
miRNAs act as negative gene regulators at the post-
transcriptional level (Sakai et al., 2013). Importantly, miRNAs
can simultaneously modulate many target genes, such as tumor
suppressors or oncogenes, widely influencing the phenotype of
malignant tumors. Since miRNAs have been found to have
important role in various aspects of malignant tumors, including
oncogenesis, proliferation, metastasis, multidrug resistance, self-
renewal, and differentiation of malignant stem cells (Wu et al.,
2014), they may represent a new set of therapeutic target
2176
biomarkers for finding multidrug resistance in malignant tumors
(Hong et al., 2013).

In this study, the potential molecular mechanisms of cisplatin
resistance of OSCC were studied by using high-throughput gene
expression database. The differentially expressed genes (DEGs)
in OSCC and their regulatory relationships were analyzed, in
order to elucidate the molecular basis of OSCC chemotherapy
resistance, and to provide theoretical basis and individualized
precise therapeutic targets for the treatment of OSCC patients.
MATERIALS AND METHODS

Microarray Datasets
“OSCC” and “cisplatin resistance” were used as the keywords for
searching the GEO database, and GSE111585 and GSE115119
were downloaded as the gene expression data sets for cisplatin
resistance in OSCC; the platforms used were GPL14715
and GPL16955.

GSE111585 included six samples of SCC9 cells and was
divided into normal group and drug resistance group (Lin
et al., 2018). GSE115119 contained four samples of CAL-27
cells, with normal group and drug resistant group. Both SCC9
and CAL-27 are human OSCC cell lines.

Data Analysis and Differential Expressed
Gene Acquisition
Limma package of R software (GEO2R) was used for analysis of
the original datasets. |log FC| > 1 and p value < 0.01 were defined
as the cutoff values for further analysis of DEGs. Volcano maps
were constructed by SangerBox software.

Furthermore, the list of oncogenes (http://ongene.bioinfo-
minzhao.org/) (Liu et al., 2017) and tumor-suppressor genes
(https://bioinfo.uth.edu/TSGene/index.html) (Zhao et al., 2016)
provided potential functional roles of genes in cancer process. To
obtain DEGs in cisplatin-resistant OSCC cells, Venn package
(http://bioinformatics.psb.ugent.be/webtools/Venn/) was used to
draw the intersection of the up-regulated or down-regulated
genes in the datasets with oncogenes or tumor-suppressor
genes, respectively.
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Functional Enrichment Analysis of DEGs
Gene Ontology (GO) provides a computational model of
biological systems, from the molecular to the organism level,
across different species in the following three categories:
biological process (BP), molecular function (MF), and cellular
component (CC) (Thomas, 2017). Kyoto encyclopedia of genes
and genomes (KEGG) is a database for high-level functions and
utilities of the biological systems, based on molecular-level
information of genome sequencing and other high-throughput
experimental technologies (Kanehisa et al., 2017). DAVID
Bioinformatics Resources 6.8 (https://david.ncifcrf.gov/)
comprises a comprehensive set of functional annotation tools
for functional enrichment analysis of gene groups (Huang da
et al., 2009). To identify the biological significance of DEGs in
cisplatin-resistant OSCC cells, DAVID 6.8 was used to analyze
GO function and KEGG pathway enrichment, with the
enrichment standard as p < 0.05.

Protein–Protein Interaction Network
of DEGs
Protein–protein interaction (PPI) network analysis is helpful to
investigate the molecular mechanisms of diseases and discover
new drug targets from a systematic perspective. STRING 11.0
(https://string-db.org/), covering more than 5,000 organisms
with known and predicted protein–protein interactions,
provides direct (physical) and indirect (functional) association
(Szklarczyk et al., 2019). The PPI analysis of DEGs was
performed by STRING 11.0, and the results were analyzed by
Cytoscape 3.7.1. Furthermore, the cytoHubba plug in was used to
calculate the interaction coefficient score between the DEGs. The
top genes with hub score > 300 were identified as the hub genes
with high connectivity in the PPI network.

Predicting Hub Gene-Related miRNAs
MicroRNAs (miRNAs), small non-coding RNA molecules with
highly conserved regions, regulate the expression of target genes
by binding to the 3’-untranslated regions (3’-UTR) of specific
mRNAs, involved in many physiological and disease processes.
Each miRNA is thought to regulate multiple genes with
enormous potential regulatory circuitry afforded by miRNA
(Lim et al., 2003). To identify the potential miRNA–mRNA
interaction in the network of the hub genes, miRDB (http://
mirdb.org/), an online resource for miRNA target prediction and
functional annotation (Wong and Wang, 2015), was used to
predict the hub gene-related miRNAs, and the miRNA–mRNA
regulatory network was constructed by Cytoscape 3.7.1.

Expression and Survival Analysis of
Hub Genes
The Oncomine database (https://www.oncomine.org/resource/
login.html), an online cancer microarray database-mining
platform (Rhodes et al., 2004), was used to investigate the
difference in transcriptional levels of the hub genes in HNSCC
and normal tissues.

As mutations of oncogenes and/or tumor-suppressor
genes are frequent in tumor tissues, the Human Protein
Frontiers in Genetics | www.frontiersin.org 3177
Atlas (http://www.proteinatlas.org/) was analyzed for the
prognostic values of the hub genes (Uhlen et al., 2017), and
cBioportal database (http://www.cbioportal.org/), an open-access
online resource for multi-dimension analysis of data from The
Cancer Genome Atlas (TCGA) (Gao et al., 2013), was used to
analyze the effects of mutations in hub genes on the survival of
patients with OSCC (MD Anderson, Cancer Discov, 2013).
RESULTS

Difference of Gene Expression Between
Parental and Cisplatin-Resistant
OSCC Cells
The gene expression microarray datasets, GSE111585 and
GSE115119 were downloaded from GEO datasets with paired
parental and cisplatin-resistant OSCC cells. As shown in Figure 1,
the expression of most genes in cisplatin-resistant OSCC cells was
similar to that of the parental OSCC cells. Cluster analysis by R
software (|log FC| > 1 and p value < 0.01 as the cutoff) revealed
1,386 up-regulated genes and 643 down-regulated genes in
cisplatin-resistant OSCC cells compared with parental OSCC
cells in GSE111585 (Figure 1A), and 757 up-regulated genes
and 625 down-regulated genes in cisplatin-resistant OSCC cells
compared with parental OSCC cells in GSE115119 (Figure 1B).

The intersection between DEGs and the list of oncogenes
drawn by Venn software showed 48 up-regulated DEGs
(Figure 1C), and 49 down-regulated DEGs were obtained via
intersection between down-regulated genes and the list of tumor-
suppressor genes (Figure 1D).

Close Association of the DEGs With the
Regulation of Transcription and
microRNAs in Cancers
Using the DAVID analysis software, functional enrichment
analyses (BP, MF, and CC) of the DEGs were done. BP
enrichment showed that the up-regulated DEGs were mainly
enriched in cell proliferation regulation, inflammatory reaction,
lipopolysaccharide, cells in response to growth factors to
stimulate, neuronal migration, transmembrane receptor protein
tyrosine kinase signaling pathway, and transcription of RNA
polymerase II promoter (Figure 2A), whereas down-regulated
DEGs were significantly enriched mainly in the following GO
terms: response to X-ray, RNA polymerase II promoter negative
transcription regulation, and DNA damage response (Figure 2B).

MF enrichment showed that the up-regulated DEGs were
significantly enriched in chemokine activity, transcription factor
activity, sequence specific DNA binding, non-membrane crossing
protein tyrosine kinase activity, and sequence specific DNA
binding (Figure 2C), and the down-regulated DEGs were
enriched in p53 binding, sequence specific DNA binding,
transcriptional activator activity, and RNA polymerase II hub
promoter proximal region sequence specific binding (Figure 2D).

CC analysis predicted close association between the up-
regulated DEGs and the following GO terms: mRNA cutting,
polyadenylation specific factor complex, extracellular space,
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promyelocytic leukemia proteome, and transcription factor
complex (Figure 2E), and significant relation was found
between the down-regulated DEGs and the following GO
terms: junction complex, desmosomes, ciliated tips, cytoplasm,
nuclear cytoplasm, and plasma membrane (Figure 2F).

KEGG pathway analysis provided the potential function
cluster of DEGs, showing that the up-regulated DEGs were
clustered in malaria, human T-cell leukemia virus type I, the
way of malignant tumor, legionella infection disease, TNF
signaling pathways, and T-cell receptors signaling pathways
(Figure 3A), whereas the down-regulated DEGs were
significantly concentrated in axon guidance and microRNAs in
cancers (Figure 3B).

Identification of Hub Genes Through PPI
Network of DEGs
To further analyze the correlation between DEGs in cisplatin-
resistant OSCC cells, STRING was used to construct PPI network
showing close relationship between the DEGs (Supplemental
Figure 1), and their hub score was calculated. The genes with
high hub score were predicted to have a strong association with
other genes (shown in dark color in the figures). As shown in
Frontiers in Genetics | www.frontiersin.org 4178
Figure 4, based on the cutoff hub score > 300, the following five
genes were selected as the hub genes: NOTCH1, JUN, CTNNB1,
CEBPA, and ETS1.

Construction of miRNA–mRNA Network
Based on Predicting miRNA-Target Genes
As the DEGs in cisplatin-resistant OSCC cells were closely
related to tumor-related miRNA, miRDB database was used to
predict potential miRNAs that might participate in the
transcriptional regulation of the hub genes in this process. The
prediction scores were also collected from the miRDB database,
and the miRNA–mRNA with high score meant close potential
function of miRNA in regulation of the target mRNA. After
setting cutoff > 80, Cytoscape software was used to construct the
miRNA–mRNA network (Figure 5). Interestingly, hsa-miR-
200c-3p, hsa-miR-200b-3p, hsa-miR-429, and hsa-miR-139-5p
could simultaneously regulate multiple hub genes, which may be
the key miRNAs involved in this process. Interestingly, hsa-miR-
200c-3p, hsa-miR-200b-3p, and hsa-miR-429 belong to miR-200
family members, with similar functions; suppression of ZEB1/2,
fo l lowed by inhib i t ion of epi the l ia l–mesenchymal
transition (EMT).
FIGURE 1 | Identification of cisplatin-resistant DEGs in OSCC. (A) Volcano map of GSE111585. (B) Volcano map of GSE115119. (C) 48 up-regulated DEGs was
selected based on the intersection between up-regulated gene in GSE111585/GSE115119 and oncogenes. (D) Forty-nine down-regulated DEGs was selected
based on the intersection between down-regulated gene in GSE111585/GSE115119 and tumor-suppressor genes.
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The Expression Pattern of Hub Genes
in OSCC
To investigate the potential function of the hub genes in OSCC,
Oncomine database was used to analyze the difference in the
expression levels of the hub genes. However, due to limited
research on OSCC, only one study revealed that the expression of
CTNNB1 and ETS1 in tumor tissues was higher than that in
normal tissues, with 2.285 and 2.111 fold change, respectively,
Frontiers in Genetics | www.frontiersin.org 5179
while no difference was found in the expression of NOTCH1 and
JUN genes in the two tissues (Figure 6).

Survival Value of Hub Genes in OSCC
For survival analysis, cBioportal based on TCGA database was
used, which revealed that low expression of CTNNB1 in patients
with OSCC showed better overall survival (p = 0.01) (Figure 7C),
and low expression of CEBPA predicted poor overall survival in
FIGURE 2 | Functional enrichment analysis of cisplatin-resistant DEGs in OSCC. (A) BP analysis of up-regulated DEGs. (B) BP analysis of down-regulated DEGs.
(C) MF analysis of up-regulated DEGs. (D) MF analysis of down-regulated DEGs. (E) CC analysis of up-regulated DEGs. (F) CC analysis of down-regulated DEGs.
FIGURE 3 | KEGG pathway analysis of cisplatin-resistant DEGs in OSCC. (A) KEGG of up-regulated DEGs. (B) KEGG of down-regulated DEGs.
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OSCC patients (p = 0.04) (Figure 7D). Although the expression
of other hub genes did not show a significant relationship with
the survival status of OSCC patients (p > 0.05), the OSCC
patients with high expression of NOTCH1 (Figure 7A) and
ETS1 (Figure 7E) or low expression of JUN (Figure 7B)
tended to have long lifespans.

The dataset obtained from MD Anderson, Cancer Discov
2013, showed that the median overall survival of all OSCC
patients was 78.8 months. Except for NOTCH1, no mutation
was found in the other hub genes in the OSCC patients. And the
mutations in NOTCH1 showed no significant association with
the overall survival of patients with OSCC (Figure 8), suggesting
that the regulation, without mutation of the hub genes was the
main mechanism of cisplatin resistance in OSCC.
DISCUSSION

Worldwide, OSCC is an important public health issue with
limited therapy strategies and researches; systemic drug
resistance has aggravated this situation. In this study, high-
throughput screening was used to explore the potential genes
involved in cisplatin resistance of OSCC, and NOTCH1, JUN,
CTNNB1, CEBPA, and ETS1 were identified as the hub genes in
the occurrence of cisplatin resistance. These genes were found to
be regulated by the members of the miR-200 family. Regulation
of the corresponding hub genes by miRNAs may reverse
Frontiers in Genetics | www.frontiersin.org 6180
cisplatin resistance of OSCC, and the sensitivity of tumor cells
to cisplatin maybe restored; thus, providing a novel potential
target for anticancer therapy.

Studies have shown that changes in NOTCH signaling
pathway are associated with many human cancers (Villanueva
et al., 2012). NOTCH1 is reported to be both a tumor suppressor
gene and a tumor oncogene. The tumorigenic or anti-tumor
activity of NOTCH family members in different types of tumors
displays its role in promoting or inhibiting the undifferentiated
state of stem cells in the corresponding tissues (Wang et al.,
2012). Carcinogenic action of NOTCH has been found in many
cancers, including non-small cell lung cancer (Lenhart et al.,
2015), acute T lymphoblastic leukemia (Weng et al., 2004), and
malignant gliomas (Purow et al., 2005). In contrast, NOTCH1
signaling is inhibited in neuroendocrine tumor cells, including
small cell lung cancer (Platta et al., 2008). This suggests that
induction of NOTCH1 expression is an effective strategy for
treating these tumors. NOTCH signaling pathway is also
involved in chemotherapy resistance. For example, NOTCH1
plays an important role in cisplatin resistance mechanism of
head and neck squamous cell tumor, colorectal tumor, ovarian
cancer (Wang et al., 2010), and other malignant tumors. In this
study also, expression of NOTCH1 gene was found to be
significantly inhibited in cisplatin-resistant OSCC cell lines as
compared to that in normal or tumor tissues, but no effect was
observed on the overall survival of patients. These results suggest
that NOTCH1 signaling molecules may be involved in different
FIGURE 4 | The PPI network of DEGs with Hub score. The dark color indicates high hub score, and the light color predicts low hub score.
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biological processes of malignant tumor development through
different molecular pathways, and could play an important role in
resistance of OSCC against cisplatin and other chemotherapy drugs.

JUN is a protein-coding gene and has no introns; it is located
in 1p32-p31: a chromosomal region involved in human
malignant translocations and deletions (Fazal et al., 2017)
JUN-related diseases, include sarcomas and whooping cough
(Syc-Mazurek et al., 2017). JUN is involved in the following
pathways: apoptosis regulation, signal transduction, tacrolimus/
cyclosporine pathway, and pharmacodynamics. JUN is also
associated with sequence-specific DNA binding (GO
Frontiers in Genetics | www.frontiersin.org 7181
annotation). In this study, although JUN molecular expression
was significantly changed, its correlation with malignant tumor
tissues and its influence on patient survival were not found.
Therefore, its function and molecular mechanism will be
explored in future studies.

The protein encoded by CTNNB1 is a part of the protein
complex that forms the adhesive junctions. Adhesion is necessary
to create and maintain the epithelial layer (Li et al., 2017a). The
coding proteins, which also include the actin cytoskeleton, are
responsible for signaling contact inhibition, and once the upper
cortex completes signaling, the cell stops dividing. Finally, the
FIGURE 5 | The construction of miRNA–mRNA network of hub genes in OSCC. The red circles predicted the potential miRNAs that can regulate multiple hub
genes in OCSS.
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FIGURE 6 | The mRNA expression pattern of hub genes in OSCC. (A) The expression of CTNNB1 was increased in OSCC tissues, compared with normal tissues.
(B) The expression of ETS1 was increased in OSCC tissues, compared with normal tissues.
FIGURE 7 | The survival value of the expression of hub genes in cisplatin-resistant OSCC. (A) NOTCH1. (B) JUN. (C) CTNNB1. (D) CEBPA. (E) ETS1.
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protein binds to the product of the APC gene, which is mutated in
colorectal adenomatous polyposis. The mutation is a cause of
colorectal cancer, hairy tumors, medulloblastoma, and ovarian
cancer (Li et al., 2017b). Selective splicing of CTNNB1 RNA leads
to multiple transcript variants. Diseases associated with CTNNB1,
include hairy tumors and intellectual disability, both being 19
autosomal dominant (Lee et al., 2018). The pathways associated
with CTNNB1 are beta-adrenergic signaling and blood-brain
barrier pathways. Because it inhibits the expression of
downstream signals, GO annotations associated with it, include
DNA-binding transcription factor activity and binding. In this
study, it was found that the expression of CTNNB1 in tumor
Frontiers in Genetics | www.frontiersin.org 9183
tissues was significantly higher than that in normal tissues, and the
survival period of patients with high expression of CTNNB1 was
significantly shortened. These results suggest that CTNNB1 also
plays an important role in the occurrence and development of
OSCC, but the mechanism of its influence on cisplatin
chemotherapy resistance needs to be further studied and explored.

CEBPA is an intron-free transcription factor that contains
a basic leucine zipper domain and recognizes the CCAAT
motif in the target gene promoter (Mannelli et al., 2017). The
coding proteins act in homodimers and heterodimers with
CCAAT or enhancer binding proteins, beta and gamma. The
activity of CEBPA protein regulates the expression of genes,
FIGURE 8 | The survival value of the mutations of hub genes in cisplatin-resistant OSCC. (A) NOTCH1. (B) JUN. (C) CTNNB1. (D) CEBPA. (E) ETS1.
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which are involved in cell cycle regulation and weight balance.
Mutation in the CEBPA gene has been linked to acute myeloid
leukemia (Avellino et al., 2016). CEBPA mutations are
particularly associated with cytogenetically-normal AML
(Taskesen et al., 2011). CEBPA is necessary for granulocyte
formation in mice. Mutations in CEBPA are associated with
longer survival of OSCC patients. CEBPA-related diseases,
include leukemia, acute myeloid leukemia, and myeloid
leukemia. The pathways associated with CEBPA are adenoid
cystic carcinoma and the adipogenesis pathway. CEBPA has
important DNA binding transcription factor activity and can
bind to sequence specific DNA. However, there are no relevant
studies on CEBPA and cisplatin resistance of OSCC at present.
In the current study, we found that high expression of CEBPA
is closely related to the prognosis of OSCC patients.

ETS1 is a member of the encoding transcription factor ETS
family, which has a conserved DNA binding domain of ETS that
recognizes the hub consistent DNA sequence GGAA/T in the
target gene (Poon and Kim, 2017). These proteins act as
transcriptional activators or inhibitors of many genes and are
involved in stem cell development, cell aging and death, and
tumorigenesis. Splicing transcriptional variants encoding
different subtypes have also been previously described.
Jacobsen syndrome and estrogen receptor negative breast
cancer are the diseases associated with ETS1 (Carpinelli et al.,
2015). The pathways involving ETS1 include focal adhesion and
focal adhesion kinase mediated signal transduction events. The
gene also has important DNA-binding transcription factor
activity and transcription factor binding. We found that ETS1
is an important cisplatin resistant gene based on high-
throughput data analysis, PPI network, and expression
verification. Studies have shown that overexpression of ETS1
induces IKK alpha mRNA and protein expression as well as IKK
alpha activity (Gu et al., 2004). In a previous study, ETS1 protein
expression and IKK alpha were significantly upregulated in 231
cisplatin-resistant cell lines. Inhibition of ETS1 expression has
been reported to enhance cisplatin sensitivity of resistant cell
lines. ETS1 knockout increases the stability of cisplatin in mouse
xenograft models (Zhang et al., 2018). These results are similar to
the results obtained in the current study.ETS1washighly expressed
in cisplatin-resistant OSCC cell lines as compared to that in the
normal tissues; ETS1 was highly expressed in tumor tissues,
suggesting that it is an important molecule in this process.

Based on previous studies on hub genes and members of the
miR-200 family, miR-200b/a/429 transcription is known to be
regulated by different transcriptional factors in tissue-specific
manner (Kim et al., 2011b). ZEB1/2 is the classical target gene of
miR-200s, and many other potential factors have also been
reported as the genes regulated by miR-200s (Nagalla et al.,
2011). In the current study, new potential target genes were
reported as the hub genes in cisplatin-resistant OSCC cells. In
2018, Liu et al. reported a smart miRNA-reporter gene for in
vitro and in vivo imaging of biogenesis of miRNA and their
related functions (Liu et al., 2018). Further study involving the
reporter system could be helpful in investigation of the
relationship between miR-200s and the hub genes in OSCC.
Frontiers in Genetics | www.frontiersin.org 10184
And as the researches related to OSCC are limited, the
relationship between the expression of hub genes and
clinicopathological parameters in OSCC patients will be
collected and analyzed in the further, to confirm their roles in
the occurrence of cisplatin resistance in OSCC.

CONCLUSION

We found thatNOTCH1, JUN, CTNNB1, CEBPA, and ETS1 were
the key genes regulating cisplatin resistance in OSCC drug-
resistant cell lines, and the miR-200 family may be capable of
reversing OSCC cell resistance by regulating NOTCH1, JUN, and
ETS1, which could also act as potential targets for treating
cisplatin resistant OSCC patients.
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Background: Kaposi sarcoma-associated herpes virus (KSHV) is one of the most
common causal agents of Kaposi Sarcoma (KS) in individuals with HIV-infections. The
virus has gained attention over the past few decades due to its remarkable pathogenic
mechanisms. A group of genes, ORF71, ORF72, and ORF73, are expressed as
polycistronic mRNAs and the functions of ORF71 and ORF72 in KSHV are already
reported in the literature. However, the function of ORF73 has remained a mystery. The
aim of this study is to conduct comprehensive exploratory experiments to clarify the role of
ORF73 in KSHV pathology and discover markers of AIDS-associated KSHV-induced KS
by bioinformatic approaches.

Methods and Results: We searched for homologues of ORF-73 and attempted to
predict protein-protein interactions (PPI) based on GeneCards and UniProtKB, utilizing
Position-Specific Iterated BLAST (PSI-BLAST). We applied Gene Ontology (GO) and
KEGG pathway analyses to identify highly conserved regions between ORF-73 and p53to
help us identify potential markers with predominant hits and interactions in the KEGG
pathway associated with host apoptosis and cell arrest. The protein p53 is selected
because it is an important tumor suppressor antigen. To identify the potential roles of the
candidate markers at the molecular level, we used PSIPRED keeping the conserved
domains as the major parameters to predict secondary structures. We based the FUGE
interpretation consolidations of the sequence-structure comparisons on distance
homology, where the score for the amino acids matching the insertion/deletion (indels)
detected were based on structures compared to the FUGE database of structural profiles.
We also calculated the compatibility scores of sequence alignments accordingly. Based
on the PSI-BLAST homologues, we checked the disordered structures predicted using
PSI-Pred and DISO-Pred for developing a hidden Markov model (HMM). We further
applied these HMMs models based on the alignment of constructed 3D models between
the known structure and the HMM of our sequence. Moreover, stable homology and
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structurally conserved domains confirmed that ORF-73 maybe an important prognostic
marker for AIDS-associated KS.

Conclusion: Collectively, similar variants of ORF-73 markers involved in the immune
response may interact with targeted host proteins as predicted by our computational
analysis. This work also suggests the existence of potential conformational changes that
need to be further explored to help elucidate the role of immune signaling during KS
towards the development of therapeutic applications.
Keywords: herpesvirus, immune evasion, sequence homology, protein–protein interactions, AIDS, ORF-73
INTRODUCTION

Pre-existing human immunodeficiency virus (HIV) infections
affect the immune system increasing the risk for development of
Kaposi sarcoma (KS). Since the discovery of Kaposi sarcoma-
associated herpesvirus (KSHV), also termed human herpesvirus
8 (HHV8), the tumor development and oncogenesis were
associated with co-expression of different genes (Barré-Sinoussi
et al., 1983; Gelmann et al., 1983). KS is a common type of cancer
associated with blood vessels and lymph nodes. Soon after the
discovery of HIV-1, scientists discovered g-herpesvirus in KS
lesions (Chang et al., 1994). Now that the full KSHV genome has
been sequenced, it fulfils Koch's modern postulates linking the
KS cancer initiation to the oncogenic virus (Russo et al., 1996; zur
Hausen, 2001). KSHV is a key viral pathogen in cancer biology
affecting humans and its discovery promoted clinical and
epidemiological research into viral oncology (Chang et al.,
1994). However, many questions remain unanswered due to
the significant mortality and rapid morbidity of those affected by
HIV-1 and KSHV (Parkin, 2006; Sinfield et al., 2007; Dittmer
and Damania, 2019; Gaur et al., 2019).

In fact, KS was named after Dr. Moritz Kaposi, a prominent
Hungarian dermatologist, who described KS as an ‘idiopathic
pigmented sarcoma of the skin' in 1872 (Kaposi, 1872). The
evolved gamma-herpesviruses have been classified into many
subfamilies (Roizman et al., 1981) and produce many viral gene
products capable of subverting the normal cellular machinery
through processes involving apoptosis, cell cycle progression,
antiviral responses, and immune surveillance resulting in
alterations in master cell signaling pathways to establish a
persistent host infection. The double-stranded KSHV genome
(124–174 kb) is enclosed in an icosahedral capsid composed of
162 capsomeres with many of its ORFs being conserved in alpha-
and beta-herpesviruses, but absent from other herpesviruses.

The KSHV is closely related to the subfamily Rhadinoviridae
(gamma-2-herpesviruses), which is also close to the Herpes virus
saimiri (HVS); therefore, similarities between ORFs of KSHV
and HVS may influence the pathogenesis of KS (Schäfer et al.,
2003). The HVS genome exists as a stable non-integrated circular
episome in altered human and simian T cells. A group of genes,
ORF71, ORF72, and ORF73, are located at the right end of the L-
DNA and are expressed as polycistronic mRNAs (Fickenscher
et al., 1996). Initial studies discerned that both KSHV and HVS
ORF71 encode the anti-apoptotic FLICE inhibitory protein
2188
(vFLIP) (Thome et al., 1997), although HVS ORF71 is not
mandatory for viral replication, transformation, or
pathogenicity (Glykofrydes et al., 2000). ORF72 produces a v-
Cyclin D homolog which is important for transformation of
human T lymphocytes (Ensser et al., 2001). However, the
function of ORF73 has remained a mystery. Therefore,
developing and conducting comprehensive exploratory
experiments to clarify the role of ORF73 in KSHV pathology
is important.

Typically, the phenotypic features of KS initially appear on
the face, legs, or feet as painless red spots but, in severe cases, the
lesions also appear in the lungs and digestive tract (Bhutani et al.,
2015; Yarchoan et al., 2015). KSHV is considered an oncogenic
human virus (Martin et al., 1998). People with weak immune
systems are more susceptible to HHV-8 infection (triggering KS
development). Even with the availability of the anti-retroviral
treatment [HAART], the prevalence of AIDS-associated KS has
not declined significantly (Nguyen et al., 2008). Although KSHV
infection is important for the onset of KS, additional factors must
be present to allow the establishment of the lesions. The chance
of infection is one in 100,000 among the general population, but
only around one in 20 among HIV-infected individuals (La Ferla
et al., 2013). The chance of acquiring the infection was one in
three among HIV-infected individuals before the introduction of
HAART (Beral et al., 1990; Gallo, 1998). Epidemiological
observations from incidence rates in endemic areas suggest
that HIV-negative individuals with KSHV infections never
develop KS due to the role of immunological host factors
including immune-response genes and genetic polymorphisms
of the inflammatory modulators (Cottoni et al., 2004; Gazouli
et al., 2004; Dorak et al., 2005).

KSHV infection of endothelial and/or hematopoietic
progenitors (Della Bella et al., 2008) alter their morphology
(Moses et al., 1999), growth rate, gene expression (Flore et al.,
1998; Ciufo et al., 2001), and glucose metabolism (Delgado et al.,
2010), leading to development of KS. Antibody titers specific for
KSHV correlate with its viral load. Among individuals with low
viral load, antibody titer concentrations may be too low for
current serological assays to identify them. Identification of
circulating biomarkers in KSHV-associated disease may help in
predicting clinical outcomes (Aka et al., 2015). Immune
modulatory and evasion proteins of KSHV modulate cellular
responses associated with complement activation, autophagy,
IFN family signaling, chemokines, natural killer cells, and
January 2020 | Volume 10 | Article 1376
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apoptosis (Liang et al., 2008). They are located in a region of the
viral capsid that is rich in a protein known as tegument. Six
tegument proteins have been identified: ORF21, ORF33, ORF45,
ORF63, ORF64, ORF73 and ORF75. Among these, the roles of
ORF63 and ORF64 in immune evasion have been elucidated
(Zhu et al., 2005; Gregory et al., 2011). We focused on the
identification of the role of ORF73 in KSHV. The ORF73 gene
encodes the HHV-LANA1 viral proteins that have been linked
with AIDS-associated KS, indicating an association between HIV
and ORF73. For our computational study, we hypothesized that
ORF-73 is a viral proliferation factor based on studies on KS and
on its interactions with the host gene p53 (Woodberry et al.,
2005). The importance of ORF-73 for cellular host apoptosis
through the p53 signaling pathway and p53 is in order of ORF-73
which illustrates the molecular mechanism of this key biomarker
associated with KS (Duus et al., 2004).

The variability in KS lesions observed in histopathological
assays include spindle cell hemangiomas, cutaneous
ang iosarcomas , vascu lar l e iomyomas , and fibrous
histiocytomas (Hunt et al., 2004). Endothelial biomarkers, such
as CD31 and CD34, bcl-2, c-kit, Ki-67, and p53, have been used
to distinguish nonvascular spindle sarcomas from angiosarcomas
(Weeden, 2002; Fukunaga, 2005). Hence, investigating the HHV-
latent associated nuclear antigen-1 (LANA-1) viral protein
encoded by ORF-73 is important to identify markers for
AIDS-associated KS. Also, studying its interactions may help in
the development of preventive strategies and therapeutic options
against KS. In this study, we used advanced bioinformatics tools
and approaches to identify KS markers Supplementary Figure 1.
MATERIALS AND METHODS

Selection of Markers
We used publicly available databases including the National
Centre for Biotechnology Information (NCBI), GeneCards
(Hou et al., 2017) and UniProtKB (Tang et al., 2013) to
identify potential markers of KS and selected the most specific
ones using “Kaposi's sarcoma” as a keyword. Human protein
markers were further ran through a BLAST search for homology
sequences. We extracted ORF-73 sequences from the NCBI
database search using the accession number AAC57158.1.
These are the exact URLs of the searched databases we used to
identify markers associated with KS : GeneCards https://
genecards.weizmann.ac.il/v3/index.php?path=/Search/keyword/
kaposi%20sarcoma%20markers/0/20; UniPortKB https://www.
uniprot.org/uniprot/?query=kaposi+sarcoma&sort=score; and
NCBI https://www.ncbi.nlm.nih.gov/protein/?term=ORF-73%
20kaposi%20sarcoma).

Bioinformatics: Sequence
Computational Analysis
We used publicly available internet-based protein search tools
and bioinformatics programs with default settings, unless
otherwise stated in the text, for the analysis. We tested selected
protein sequences to identify conserved domains from NCBI and
Frontiers in Genetics | www.frontiersin.org 3189
BLAST algorithms, and we used the PSIPRED program to
predict the secondary structure of proteins based on the
conserved domain sequences. We further executed a position
specific iterative BLAST (PSI-BLAST) search to build a PSSMs
(position specific score matrix), which could predict the
secondary structure of the input sequences (Majerciak et al.,
2015) to predict secondary structures of the selected conserved
domains based on multiple sequence alignment related proteins
spanning a variety of organisms to reveal sequence regions
containing the same, or similar, patterns of amino acids. We
submitted the primary sequence of ORF-73 to FUGUE to show
the sequence-structural homology by identifying distant
sequence-structure homologues and alignments comparing
amino acid insertions/deletions (Shi et al., 2001). We used
BLASTp and PSI-BLAST (non-redundant protein databases)
for pattern specific profiling (Bujnicki and Rychlewski, 2001).
Gene Ontology and Pathway
Enrichment Analysis
We chose the ORF-73 target effector to perform a Gene Ontology
(GO) search, is a hierarchical graph-based annotation system
where the terms closer to the root describe more general
information while those away from the root provide more
specific information about a given GO category and all the GO
terms associated with a protein sequence were obtained from the
GO database. The KEGG network pathway enrichment analysis
by collecting data of related genomes and their pathways
associated with diseases (Yan et al., 2013) and we set a P value
<0.05 as the cut-off criterion.
Protein–Protein Interaction (PPI)
Network Analysis
We used the online Search Tool for the Retrieval of Interacting
Genes (STRING) (Franceschini et al., 2013) and GeneMania
(https://genemania.org/) to analyze interactions associated with
KS among the proteins encoded by the DEGs. The two parts of
GeneMania algorithm consists of an algorithm based on linear
regression to calculate functional association from multiple
networks from different data sources; and a label predicting
gene function of composite network. We employed keywords
such as—ORF73 to determine interacting partners. This was
pursued using downstream regulator p53 as an apoptosis marker
during pathogenesis in the host. Moreover, the marker protein
was used for transient interaction study.
PPI Biochemical Analysis
We immobilized His-tag, GST-tag, or biotin-tag bait proteins to
an affinity resin and incubated them with solution expressed
proteins as prey proteins. We then captured the bound bait and
pulled down the cell lysate flow through. Subsequently, we used
mass spectrometry (MS) or Western blots to confirm
interactions. Using this technique, we determined interacting
protein partners of relevant proteins (Einarson, 2001;
Arifuzzaman et al., 2006).
January 2020 | Volume 10 | Article 1376
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RESULTS

Homology Search and KS Marker
Identification
Annotations used to search for the KS-associated markers in the
UniProtKB database quoted about 137 entries, which we then
screened to find those with computationally annotated data.
Search engine GeneCards reported about 369 KS markers with a
relevance score. Table 1 lists the markers with the top ten scores.

We found61 ORF-73 marker homologous hits related to the
family of human gamma herpes virus 8 with varied E-values. Out
of these, we used only the most identical sequence (based on
sequence identity was measured by matched by dividing the
length of region aligned match), AAC57158.1, for our
computational analyses. A search for proteins similar to the
selected marker ORF-73 resulted in8 protein accessions (ORF21,
ORF33, ORF45, ORF63, ORF64, and ORF75), and 2 CDS regions
(accession numbers AAC57158.1 and AAC55944.1).

Domain Prediction and Structural Profile
We looked for conserved domains in the marker protein ORF-73
based on hypothetical domain sequences using literature
recapitulation NCBI's Conserve Domain Database (CDD). To
identify potential marker roles at the molecular level, we focused
on its predicted secondary structure. Therefore, we searched for
hypothetical protein having conserved domain and used
accession number AAC5744 of gi.1633572 in an NCBI domain
search and found only one significant hypothetical conserved
domain (PHA03169) with the same accessison number (Figure
1). We then used PSIPRED to predict the secondary structure,
noted the conserved domains (Figure 2) and highlighted the
regions with different markers to predict the secondary
structures. FUGE interpretation consolidations of the
sequence-structure comparison were based on distance
homology, where the score for the amino acids matching the
insertion/deletion (indels) detected were based on structures
compared to the FUGE database of structural profiles and we
calculated the compatibility scores of sequence alignment
accordingly (Table 2).
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TABLE 1 | GeneCards and UniPortKB databases used to choose the top-most
scored identities of markers associated with KS.

GeneCard database

Sl.
No

Symbol Description GC id Score

1 KRT15 Keratin 15 GC17M039675 1.58
2 OSM Oncostatin M GC22M030658 1.58
3 TAT Tyrosine aminotransferase GC16M071599 1.27
4 MKI67 Marker of proliferation Ki-

67
GC10M129894 1.14

5 CD34 CD34 molecule GC01M208057 1.11
6 PTX3 Pentraxin 3, long GC03P157154 1.09
7 PECAM1 Platelet/endothelial cell

adhesion molecule 1
GC17M062399 1.01

8 FLI1 Fli-1 proto-oncogene,
ETS transcription factor

GC11P128596 1.01

9 IFNA2 Interferon, alpha 2 GC09M021374 1.01
10 ACTC1 Actin, alpha, cardiac

muscle 1
GC15M035080 0.99

Uniport KB database
Sl.
No.

Entry name Protein name Entry Gen name

1 MIR1_HHV8P E3 ubiquitin-protein ligase
MIR1

P90495 K3

2 MIR2_HHV8P E3 ubiquitin-protein ligase
MIR2

P90489 K5

3 GB_HHV8P Envelope glycoprotein B F5HB81 gBORF8
4 ARBH_HHV8P Apoptosis regulator Bcl-2

homolog
F5HGJ3 vBCL2

ORF16
5 SCAF_HHV8P Capsid scaffolding protein Q2HRB6 ORF17
6 OX2V_HHV8P OX-2 membrane

glycoprotein homolog
P0C788 K14

7 GN_HHV8P Envelope glycoprotein N F5HFQ0 gN ORF53
8 GM_HHV8P Envelope glycoprotein M F5HDD0 gM ORF39
9 ORF45_HHV8P Protein ORF45 F5HDE4 ORF45
10 VMI2_HHV8P Viral macrophage

inflammatory protein
Q98157 ORF K4

11 VIRF1_HHV8P VIRF-1 F5HF68 vIRF-1
12 ICP27_HHV8P mRNA export factor

ICP27 homolog
Q2HR75 ORF57

13 GH_HHV8P Envelope glycoprotein H F5HAK9 gH ORF22
14 AN_HHV8P Shutoff alkaline

exonuclease
Q2HR95 ORF37

15 LANA1_HHV8P Protein LANA1 Q9QR71 LANA1
ORF73
January 202
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FIGURE 1 | Conserved hypothetical protein domain of PHA03169 in reference to the ORF-73 of Human gamma herpesvirus 8,E-value 38e−18.
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Using PSI-BLAST, we confined the search of HHV-latency-
associated nuclear antigen homology to ORF-73 homologs. The
DNA binding of viral protein associated with HHV-8 LANA
sheltered 134 residues covering 12% of the sequence with 100%
confidence based on the single highest scoring template of c4k2jB
(Figures 3 and 4). 598 residues covering 51% could be modelled at
>90% confidence using multiple-templates. We submitted the top-
ranking model of the protein (c4k2jB, 100.0% confidence) to the
3DLigandSite (Wass et al., 2010) server to predict potential binding
sites. Based on PSI-BLAST homologues, the predicted disordered
structures were checked using PSI-Pred (Jones, 1999) and DISO-
Pred (Jones and Cozzetto, 2015) for generating a hidden Markov
model (HMM). The models were based on the alignment of the
Frontiers in Genetics | www.frontiersin.org 5191
constructed 3D models between the known structure and the
HMM of our sequence predicting the3-states—a-helix, b-strand
or coil (“SS” indicates the predicted confidence; middle orange,
yellow, and green indicate the confidence of prediction).

Gene Expression and Pathway Prediction
The exclusive over-expression of HHV-8 LANA-1 in KS confirms
significant sensitivity and specificity. The domain is conserved in
the HHV-8 and ORF-73, suggesting its expression during viral
latency and allowing it to interact with p53, thereby inducing the
apoptosis pathway. The evidence from another study indicates
abnormal expression of p53 in the nodular region and metastatic
lesion of angiosarcomas (rather than in the primary lesion) (Yee-
Lin et al., 2018). To account for this, the lead p53 in KS was taken
with reference to the database for a herpes virus-associated infection
model so as to understand the immune evasion with a detailed
pathway demonstrating the dominant role of a p53 oncogene in
KSHV- (Figure 5). The tumor suppressor antigen p53 depends on
cellular conditions inducing arrest of the cell growth and controlling
cell division. This process inhibits cyclin-dependent kinases
mediated by the expression of BAX and FAS antigens or by the
repression of the Bcl-2expression (Kanashiro et al., 2003).
Addressing the markers involved in the cell-cycle arrest is
important to understand the molecular evolution of KS and for
work towards its eradication. We examined PPIs to explore the
complex biochemical interactions and molecular functions of
proteins of interest with cellular components, as reported in
Table 3. Table 3 also presents the functional enrichment of p53
including its biological process, molecular functions, and cellular
components. The effector p53 is directly involved in the arrest of the
FIGURE 2 | Overview of the ORF-73 secondary structure prediction. The predicted structural positions incorporate two feed-forward neural networks obtained from
PSI-BLAST.
TABLE 2 | Structure of Kaposi sarcoma marker ORF-73 predicted based on an
environmental-specific substitution table and its structure-dependent gap
penalties.

Sl. No. Profile Hit PLEN RAWS RVN ZSCORE

1 hs4blga 121 −755 247 24.21
2 hs2ap3a 191 215 8 17.29
3 hs2qiha 136 −822 10 16.57
4 hs2p03a 323 249 21 14.78
5 hs1i4da 188 157 33 14.61
6 hs4cgka 351 325 115 13.67
7 hs2eqbb 93 −880 5 13.53
8 hs1fxka 103 168 19 13.45
9 hs1owaa 156 166 6 13.28
10 hs4hpqc 396 −555 5 12.92
PLEN, Profile length; RAWS, Raw alignment score; RVN, (Raw score)-(Raw score for
NULL model); ZSCORE, Z-score normalized by sequence divergence (evolutionary rela-
tionship associated with a score >5.0 to the sequences are compared to each other);
ZORI, Original Z-score (before normalization).
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G1/S cell-cycle progression from normal to cancerous cells (Chen,
2016). Analysis of PPI with STRING showed an enriched p-value of
1.31e−05 with respect to the network having significantly more
interactions than expected with 11 nodes, 47 edges, an average node
degree of 8.55 and an average local cluster coefficient of 0.919
(Figure 6). The functions of the protein p53, a tumor protein, are
associated with various expression levels during oncogenesis.
GeneMania predicted various valuable functions of the query
protein and interacting partners associated with it (Figure 7).

Pulldown Strategy and Protein Interaction
Prediction for Biomarker Selection
Pull-down assays serve as a complementary method to further
validate the predicted interactions in a quantitative manner
towards understanding their dissociation constants and relative
bindings of proteins and their direct binding sites. However, this
is beyond the scope of this study. We believe the following
recommendations should be followed by researchers
investigating transient protein interactions: First, determining
Frontiers in Genetics | www.frontiersin.org 6192
the protein solubility is essential. If the prey protein is at a too-
high concentration, it will not be sufficiently soluble. Second,
shortening the time and adjusting buffer conditions of
incubation help prevent prey protein degradation. Third,
checking the prey protein with beads if bait protein is not
bound should be done as a control. Fourth, conducting all
assays at a constant temperature of 4 °C should be considered
if a variation in Kd is found between repeated experiments.

The tumor suppressor antigen p53 depends on specific
cellular conditions to induce arrest of cell growth and to
control cell division (Pucci et al., 2000; Chen, 2016).

Our network analysis (entry N00170, class nt06164) showed
involvement of LANA and other effector markers in KS
conditions and helped elucidate their mechanisms of action
(Figure 8, Table 4). Therefore, we suggest that ORF-73 is an
important protein that may be a useful biomarker for AIDS-
related KS. Studies have suggested a linkage between ORF-73 and
host apoptosis through p53 signaling pathways (Tornesello et al.,
2018), that could represent a molecular mechanism for the
predicted markers associated with KS. Our study discovered
KS-associated markers which trigger cancer. ORF-73 encodes
LANA-1 virtual proteins of KSHV, linking them with AIDS-
associated KS, by their interaction with several cellular processes
which include cell apoptosis (through p53) and inhibition of
downstream transcriptomic performance. The association
between HIV and ORF73 can be inferred by these findings.
DISCUSSION

Many viral genes are homologous to host cellular genes in KSHV
(Swanton et al., 1997). The PubMed, Google Scholar, and Scopus
searches confirmed the key diagnostic markers for KS based on the
available literature. Our computational study on them revealed
their importance and evolutionary role in human cancer biology.
LANA-1 imparts important immunogenic effects to KSHV, and it
specifically interacts with many cellular pathways, including that
of cell apoptosis (through its interaction with p53, and repression
of downstream transcripts; see Table 4). This induces oncogenesis
by targeting the protein-E2F transcriptional regulatory pathway
(Radkov et al., 2000). The protein homologues identified through
our search were structurally different from each other. Therefore,
we analyzed selected proteins and compared them using
homology searches for the selected domains to prove
FIGURE 3 | Highest scored template c4k2jB chain B structure.
FIGURE 4 | Decameric ring structure of KSHV HHV-LANA DNA binding
domain with dimensions (X:40.909, Y:43.389, and Z:44.674).
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interactions with other host proteins that trigger and induce
cancer in individuals with immunosuppression (Kersse et al.,
2011). Hyper mutation and conserved structural sequence
similarities help to maintain key aspects of secondary and
tertiary structures, which were consistent with the
computational analyses in our study (Huang et al., 2002). Figure
5 shows the KSHV infection pathway from KEGG. We
highlighted the reference pathway using a red box that shows
that LANA is associated with the p53 signaling pathway. A BLAST
homology search confirmed an ORF-73 marker interaction during
herpesvirus pathogenesis. The results of STRING and KEGG
searches suggested ORF-73 interacts with the host p53.

ORF-73 is not the only protein marker implicated in KS
pathology, but much about it remains unknown. It is used as a
marker for KSHV; especially, its protein folding and motifs are
important for the marker assessment observed in the pattern of
structural domains in the selected sequence analyzed with PSI-
PRED. The pathogenic interactions in the network-based analysis
between LANA and the host p53 suggest that LANAwas confirmed
by STRING and FUGUE tools. The predicted sequence motifs give
detailed interactions that are conserved in the subfamilies of the
herpesviruses as discussed in detail on the KEGG pathway with
Frontiers in Genetics | www.frontiersin.org 7193
notable mechanisms described in the literature (Schulz, 2000;
Direkze and Laman, 2004; Sharma-Walia et al., 2004; Mesri et al.,
2010). However, the markers associated with KS need to be
incorporated into comprehensive clinical cohort studies, designed
using differential protein purification techniques and evidence-
based knowledge on protein interactions with bait proteins to
develop practical medical applications in the future.

Many PPIs have been elucidated using pull-down assays to
map the genomes of many organisms, such as yeast (Valente
et al., 2009), Escherichia coli (Arifuzzaman et al., 2006)
Caenorhabditis elegans (Remmelzwaal and Boxem, 2019).

Like all other herpesviruses, KSHV displays latency and a lytic
life cycle replication that are characteristic of some viral gene
expressions. The genes LANA, v-FLIP, v-cyclin, and Kaposins A, B,
and C for latency facilitate the establishment of life in its host and
survival against host immune mechanisms. During latency,
proteins expressed as K1, K15, vIL6, vGPCR, vIRFs, and vCCLs
participate in inflammatory and angiogenic processes evident in KS
lesions. Many other lytic and latent viral proteins are involved in
the transformation of KSHV host cells into malignant cells. Also,
Bcl-2 is one of the major KS progression factors, and TP53 and c-
myc have a role in the progression of disease. KS pathology is
FIGURE 5 | The Kaposi sarcoma-associated herpesvirus infection pathway from KEGG. Reference pathway highlighted using red box shows that LANA is
associated with p53 signaling pathway which confirms the predictable role of the ORF-73 protein in the KS associate marker protein.
January 2020 | Volume 10 | Article 1376

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Zhang et al. Identification of AIDS-Associated Kaposi Sarcoma

Frontiers in Genetics | www.frontiersin.org
 8194
interconnected with immune modulation effects such as cell cycle
arrest in the host cell, which is required for pathogenic conditions
and is mitigated by modulating key factors such as LANA.

Likewise, measuring the expression level and identifying the
function of the encoded protein products is important to
understand the pathogenesis of KS. We used a methodology
similar to that in co-immunoprecipitation (Co-IP) experiments
because of our ligand's affinity to capture the strongest interacting
proteins (Lapetina and Gil-Henn, 2017). MS identifies subunits
and helps explore the structural information associated with the
protein of interest (Byrum et al., 2012). Dynamic PPI machines
assemble or disassemble the ever-changing inter-, intra-, and
extracellular influx cues as a preliminary step towards
understanding the structure of proteins and to determine their
functions to identify the relevant pathways of interacting proteins
(Einarson, 2001; Vikis and Guan, 2004; Einarson et al., 2007). The
role and important reason to select ORF-73 in the study is that
TABLE 3 | Functional enrichment of p53.

Biological process (GO)

Sl.
No

GO-term Description Count in
gene set

False
discovery

rate

1 GO:0016579 Protein deubiquitination 10 of 275 3.83e−15
2 GO:0007249 I-kappaB kinase/NF-kappaB

signaling
8 of 70 3.83e−15

3 GO:0035666 TRIF-dependent toll-like receptor
signaling pathway

6 of 24 8.43e−13

4 GO:0051092 Positive regulation of NF-kappaB
transcription factor activity

5 of 2142 6.64e−11

5 GO:0070423 Nucleotide-binding
oligomerization domain

5 of 27 4.65e−10

Molecular function (GO)

1 GO:0031625 Ubiquitin protein ligase binding 5 of 311 4.44e−05
2 GO:0042975 Peroxisome proliferator activated

receptor binding
2 of 10 0.00062

3 GO:0019899 Enzyme binding 7 of 2197 0.0012
4 GO:0042802 Identical protein binding 6 of 1754 0.0032
5 GO:0032813 Tumor necrosis factor receptor

superfamily binding
2 of 46 0.0052

Cellular components (GO)

1 GO:0043657 Host cell 4 of 29 2.76e−07
2 GO:0030666 Endocytic vesicle membrane 5 of 152 2.90e−07
3 GO:0098805 Whole membrane 8 of 1554 3.85e−06
4 GO:0012506 Vesicle membrane 6 of 743 1.69e−05
5 GO:0005741 Mitochondrial outer membrane 4 of 181 3.05e−05
KEGG pathway

1 hsa04668 TNF signaling pathway 4 of 108 1.27e−05
2 hsa04064 NF-kappa B signaling pathway 4 of 93 1.27e−05
3 hsa05160 Hepatitis C 4 of 131 1.60e−05
4 hsa04210 Apoptosis 4 of 135 1.60e−05
5 hsa05167 Kaposi's sarcoma-associated

herpesvirus infection
4 of 183 3.53e−05

Reactome pathways

1 HSA-5357956 TNFR1-induced NFkappaB
signaling pathway

9 of 30 3.98e−21

2 HSA-5357905 Regulation of TNFR1 signaling 9 of 32 3.98e−21
3 HSA-5689880 Ub-specific processing proteases 10 of 202 1.94e−17
4 HSA-6804757 Regulation of TP53 Degradation 7 of 35 2.30e−15
5 HSA-5675482 Regulation of necroptotic cell

death
6 of 17 2.63e−14

UniPort keywords

1 KW-0832 Ubl conjugation 9 of 2380 1.28e−05
2 KW-0013 ADP-ribosylation 4 of 100 1.28e−05
3 KW-1017 Isopeptide bond 7 of 1713 0.00017
4 KW-0945 Host–virus interaction 4 of 432 0.00094
5 KW-0963 Cytoplasm 9 of 4972 0.0015
PFAM Protein Domains

1 PF14560 Ubiquitin-like domain 4 of 14 3.12e−09
2 PF11976 Ubiquitin-2 like Rad60 SUMO-like 4 of 21 6.44e−09
3 PF00240 Ubiquitin family 4 of 46 7.76e−08
4 PF02201 SWIB/MDM2 domain 2 of 5 2.86e−05
5 PF00641 Zn-finger in Ran binding protein

and others
2 of 16 0.00017

INTERPRO Protein Domains and Features

1 IPR019956 Ubiquitin 4 of 12 1.83e−09
2 IPR019954 Ubiquitin conserved site 4 of 10 1.83e−09
3 IPR000626 Ubiquitin domain 4 of 57 3.14e−07
4 IPR016495 p53 negative regulator Mdm2/

Mdm4
2 of 2 1.46e−05

5 IPR029071 Ubiquitin-like domain superfamily 4 of 184 1.75e−05

(Continued)
TABLE 3 | Continued

Biological process (GO)

Sl.
No

GO-term Description Count in
gene set

False
discovery

rate

SMART Protein Domains

1 SM00213 Ubiquitin homologues 4 of 45 6.77e−08
2 SM00005 DEATH domain, found in proteins

involved in cell death
2 of 27 0.00035

3 SM00184 Ring finger 3 of 308 0.0012
January 2020 | V
olume 10 |
FIGURE 6 | Protein–protein interactions (PPI) between cell arrest marker p53
of cancer cell and Ubiquitin Specific Peptidase 2 (USP2). TNF receptor-
associated factor 2 (TRAF2), tumor necrosis factor receptor superfamily
member 1A (TNFRSF1A), polyubiquitin-C (UBC), protein Mdm4, E3 ubiquitin-
protein ligase Mdm2, ubiquitin-40S ribosomal protein S27a, polyubiquitin-B
(UBB), NF-kappa-B essential modulator (IKBKG), receptor-interacting serine/
threonine–protein kinase 1 (RIPK1), and Ubiquitin-60S ribosomal protein L40
(UBA52) play important roles in the regulation of cell survival and apoptosis.
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encoding LANA protein distinct domain induces a putative
nuclear localization signal (NLS), which product shown
interacting with many co-cellular p53, pRb, and ATF4/CREB2.
Frontiers in Genetics | www.frontiersin.org 9195
LANA also modulates transcriptional activity of HIV-1 long
terminal repeat and to understand the how ORF-73 appears to
prevent activity of KS-associated genes was new to know to make
FIGURE 7 | (A) Tumor protein 53 (TP53) network analysis and (B) members of the complex pathway and genes with co-expression, co-localization, genetic
interactions and specific functions.
FIGURE 8 | Network map of KEGG for the selected KS protein marker LANA. Protein downstream effect in the cell cycle of disease progression with pooled
effectors in cell cycle arrest at G1/S and KS activating mechanisms.
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preventive strategy (Schäfer et al., 2003). Our findings may help
researchers planning cancer prevention strategies, but we used
common computational analyses alone, and future studies with
expression and interaction analyses should be used to confirm our
results and generate treatment options for KS.

CONCLUSION

Our computational studies found that ORF-73 is involved in host
apoptosis through p53 signaling pathways and is a key marker
associated for Kaposi Sarcoma. This study also identified
potential KS-associated genes which are reported to trigger
cancer and suggested mechanisms of interaction that may help
researcher developing prevention strategies.
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TABLE 4 | Identities of associated markers, downstream signaling candidates,
and linked pathways during Kaposi sarcoma pathogenesis.

Sl.
No

Entry Description

1 N00216 HGF-MET-RAS-ERK signaling pathway
2 N00160 KSHV K1 to RAS-ERK signaling pathway
3 N00188 IL1-IL1R-JNK signaling pathway
4 N00189 KSHV K15 to JNK signaling pathway
5 N00186 IL1-IL1R-p38 signaling pathway
6 N00187 KSHV Kaposin B to p38 signaling pathway
7 N00182 IGF-IGFR-PI3K-NFKB signaling pathway
8 N00179 KSHV K1 to PI3K-NFKB signaling pathway
9 N00030 EGF-EGFR-RAS-PI3K signaling pathway
10 N00159 KSHV K1 to PI3K signaling pathway
11 N00056 Wnt signaling pathway
12 N00175 KSHV LANA to Wnt signaling pathway
13 N00053 Cytokine-Jak-STAT signaling pathway
14 N00181 KSHV vIL-6 to Jak-STAT signaling pathway
15 N00147 EGF-EGFR-PLCG-calcineurin signaling pathway
16 N00180 KSHV K1 to PLCG-calcineurin signaling pathway
17 N00172 KSHV K15 to PLCG-calcineurin signaling pathway
18 N00148 TLR3-IRF7 signaling pathway
19 N00162 KSHV vIRF3 to TLR3-IRF7 signaling pathway
20 N00163 KSHV KIE1/2 to TLR3-IRF7 signaling pathway
21 N00149 TLR3-IRF3 signaling pathway
22 N00161 KSHV vIRF1/2 to TLR3-IRF3 signaling pathway
23 N00463 Alternative pathway of complement activation
24 N00213 KSHV Kaposin to alternative pathway of complement activation
25 N00150 Type I IFN signaling pathway
26 N00261 KSHV vIRF2 to IFN signaling pathway
27 N00151 TNF-NFKB signaling pathway
28 N00174 KSHV vFLIP to TNF-NFKB signaling pathway
29 N00173 KSHV K15 to TNF-NFKB signaling pathway
30 N00171 KSHV vFLIP to NFKB signaling pathway
31 N00152 CXCR-GNB/G-ERK signaling pathway
32 N00157 KSHV vGPCR to GNB/G-ERK signaling pathway
33 N00153 CCR/CXCR-GNB/G-PI3K-RAC signaling pathway
34 N00462 KSHV vCCL1/2/3 to CCR signaling pathway
35 N00212 KSHV vCCL2 to CCR signaling pathway
36 N00178 KSHV vGPCR to GNB/G-PI3K-JNK signaling pathway
37 N00154 CXCR-GNB/G-PI3K-AKT signaling pathway
38 N00158 KSHV vGPCR to GNB/G-PI3K-AKT signaling pathway
39 N00363 Antigen processing and presentation by MHC class I molecules
40 N00184 KSHV MIR1/2 to antigen processing and presentation by MHC

class I molecules
41 N00185 KSHV MIR2 to cell surface molecule-endocytosis
42 N00155 Autophagy-vesicle nucleation
43 N00177 KSHV vBCL2 to autophagy-vesicle nucleation
44 N00156 Autophagy-vesicle elongation
45 N00176 KSHV vFLIP to autophagy-vesicle elongation
46 N00066 MDM2-p21-Cell cycle G1/S
47 N00167 KSHV vIRF1/3 to p21-cell cycle G1/S
48 N00169 KSHV LANA to p21-cell cycle G1/S
49 N00168 KSHV vCyclin to cell cycle G1/S
50 N00170 KSHV LANA to cell cycle G1/S
51 N00146 Crosstalk between extrinsic and intrinsic apoptotic pathways
52 N00166 KSHV vFLIP to crosstalk between extrinsic and intrinsic

apoptotic pathways
53 N00164 KSHV vBCL2 to crosstalk between extrinsic and intrinsic

apoptotic pathways
54 N00165 KSHV vIAP to crosstalk between extrinsic and intrinsic

apoptotic pathways
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Pathogen–host interactions play an important role in understanding the mechanism by
which a pathogen can infect its host. Some approaches for predicting pathogen–host
association have been developed, but prediction accuracy is still low. In this paper, we
propose a bipartite network module-based approach to improve prediction accuracy.
First, a bipartite network with pathogens and hosts is constructed. Next, pathogens and
hosts are divided into different modules respectively. Then, modular information on the
pathogens and hosts is added into a bipartite network projection model and the
association scores between pathogens and hosts are calculated. Finally, leave-one-out
cross-validation is used to estimate the performance of the proposed method.
Experimental results show that the proposed method performs better in predicting
pathogen–host association than other methods, and some potential pathogen–host
associations with higher prediction scores are also confirmed by the results of
biological experiments in the publically available literature.

Keywords: BNMP, bipartite network project, pathogen, host, pathogen–host association
INTRODUCTION

Pathogen–host interactions (PHIs) play a crucial role in understanding the mechanisms of
infections and identifying potential targets for infection therapeutics. Therefore, various
biological experimental or computing methods have been developed to test and predict the
interactions between pathogens and hosts. However, it is not only time-consuming and laborious
to test PHIs through biological experimentation but also costs a lot of money. Computing methods
such as biological reasoning and machine learning are considered as another important approach
for predicting PHIs. Three main approaches can be used to predict PHIs: biological reasoning
homology-based, structure-based, and domain/motif interaction-based (Nourani et al., 2015). The
basis of homology-based prediction is that the interaction between conserved homologous
organisms would also be conserved. Lee et al. inferred more than 3000 H. sapiens–P. falciparum
protein–protein interactions (PPIs) based on orthologous pairs, revealing that Plasmodium
falciparum can utilize calcium regulatory proteins in host cells to maintain Ca2+ levels (Lee
et al., 2008). Wuchty et al. used the random forest method to evaluate and filter homology-based
prediction results, which further improved prediction accuracy (Stefan, 2011). Structure-based
prediction assumes that a pair of proteins with similar protein structures that are known to interact
may interact in the same manner. Davis et al. proposed an algorithm for predicting possible
January 2020 | Volume 10 | Article 13571199
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interactions based on the physical structure of the protein by
scanning the genome of the pathogen and host to find
structurally similar proteins (Davis et al., 2010). Aloy and
Russell also proposed a method for inferring the molecular
details of interactions that might occur by evaluating a pair of
potentially interacting proteins on a complex of known 3D
structures (Patrick and Russell, 2002). Doolittle et al. used this
method to predict the interaction between HIV and human
proteins, providing assistance for further trials and therapeutic
intervention targets (Doolittle and Gomez, 2010). Domain/motif
interaction-based prediction combines the known intraspecific
PPI with the protein domain spectrum to predict the PPI
between host and pathogen proteins (Dyer et al., 2007). Evans
et al. used the method to predict the interaction between HIV-1
and human proteins, confirming that the linear binding motif
shared by the virus and the host protein was an important part of
the crosstalk between the virus and the host (Evans et al., 2009).
Machine learning methods are widely used in the prediction of
pathogen–host interaction relationships. Ahmed et al. used a
comparison of a neural network model versus SVM for the
prediction of host-pathogen PPI based on a combination of
features including amino acid quadruplets, pairwise sequence
similarity, and human interactome properties; they found that
the neural network achieved a significant improvement in overall
performance compared to a predictor using the triplets feature
and that it achieved good accuracy in predicting B.anthracis–
human interaction (Ahmed et al., 2018). Mei et al. proposed
the AdaBoost approach to predict proteome-wide interactions
between Salmonella and human proteins based on multi-
instance transfer learning (Mei and Zhu, 2014). Subsequently,
a new negative data sampling method based on single-class SVM
was proposed to predict the protein interaction between HTLV
retrovirus and Homo sapiens. Use of this method provided
valuable cues for the pathogenesis of HTLV retrovirus (Mei
and Zhu, 2015).

Predicting unknown relations between pathogens and hosts
in advance is of great significance for detecting changes in their
relations and preventing the spread of infectious diseases in
hosts. The above methods are used to predict protein–protein
interactions of pathogens and hosts based on protein-related
information. However, in cases where protein information or
other molecular information is unavailable and we only know the
relations between pathogens and hosts, we need to develop a new
method to predict the potential relations between pathogens and
hosts based only on the relations of pathogens and hosts. Zhang
et al. developed a bipartite network project (BNP) (Zhou et al.,
2007) to predict the relations between an X set and Y set (two sets
included in the bipartite network). The experimental results on
personal recommendation shown that BNP performed much
better than the most commonly used global ranking method.
Chen et al. proposed a novel computational model of Bipartite
Network Projection for MiRNA–Disease Association prediction
(BNPMDA) (Chen et al., 2018) based on the known miRNA–
disease associations, integrated miRNA similarity, and integrated
disease similarity. BNPMDA could effectively predict the
potential miRNA–disease associations with a high accuracy
level. Sun et al. developed the NTSMDA method to predict
Frontiers in Genetics | www.frontiersin.org 2200
miRNA–disease associations by integrating network topological
similarity (Sun et al., 2016). NTSMDA demonstrates excellent
predictive performance. Tad et al. developed an algorithm to
predict missing links based on conditional probability estimation
and associated, node-level features (Dallas et al., 2017). They
validated this algorithm on simulated data and then applied it to
a desert small mammal host-parasite network. The approach
achieved high accuracy on simulated and observed data,
providing a simple method for accurately predicting missing
links in networks without relying on prior knowledge about the
network structure. These methods are based on bipartite network
models and are widely used in different fields. However, these
methods not only ignore the relations of elements in the X set but
also the relations of elements in the Y set, though these relations
are important to predict the relations of the X set and Y set.
Zhang et al. proposed a weight-based model (Zhang et al., 2015)
in a dual-layer network, using the cell line similarity network,
drug similarity network, and drug-cell line response network.
WBSMDA (Chen et al., 2016a) employed the concepts of within-
score and between-score to predict the association score in the
association network. These methods consider the relations of
elements in the X and Y sets from a global perspective, and
collecting the information from a local perspective and then
integrating them from the global perspective can detect the
information in the network more comprehensively. Based on
this idea, we proposed a bipartite network module-based project
(BNMP) to predict pathogen–host associations by adding
modular information into a bipartite network projection.
Firstly, a pathogen–host bipartite network is constructed, and
the distances of pathogens and hosts are computed respectively
on the basis of the topological structure. Pathogens are then
divided into several modules, as are hosts. Finally, the module
information of pathogens and hosts, respectively, is applied to
BNP to calculate the prediction score.
MATERIALS AND METHODS

Data Collection and Pre-Processing
First, the pathogen–host interaction data were downloaded from
PHI-base (Urban et al., 2017) (http://www.PHI-base.org/index.
jsp), HPIDB (Ammari et al., 2016) (https://hpidb.igbb.msstate.
edu/index.html), and IntAct (Sandra et al., 2014) (https://www.
ebi.ac.uk/intact/). These three databases are commonly used
molecular interaction databases that cover most of the
molecular interaction data in open data sources. We
downloaded all of the entire datasets of these three databases
on September 8, 2019. These three databases provide downloads
of previous version data, and researchers can select the related
version for replication. Then, based on the taxonomy ID, we
selected bacteria–host interaction data and deleted duplicate data
from the data sets. The final dataset comprised data on 997
bacteria–host interactions, covering 243 hosts and 388 bacteria.
The number of pathogens and hosts were s and t, respectively.
We used them to generate the pathogen–host association matrix
A. A[ pi ][ hj ]=1 means that there is a pathogen–host protein–
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protein interaction between the ith pathogen and the jth host,
whereas A[ pi ][ hj ]=0 means there is no interaction between the
ith pathogen and the jth host.

Bipartite Network Projection
Here, for a bipartite network G(P,H,E) where P={ p1,p2,…,ps }
and H={ h1,h2,…,ht } are pathogen and host sets respectively,
E⊆P×H is the edge set between pathogens and hosts, and the
association scores between a host and all pathogens can be
calculated using the bipartite network projection (Zhou et al.,
2007) (BNP) method. If we let a host hseed be the seed vertex, the
association scores between hseed and all pathogens are as follows.

BNP P,H, hseedð Þ = scp p1ð Þ, scp p2ð Þ,…, scp psð Þf g
scp pið Þ =ot

j=1A pi½ � hj
� �

sch hj
� �

=d hj
� �

sch hj
� �

=os
i=1A pi½ � hj

� �
A pi½ � hseed½ �=d pið Þ

where d(hj) and d(pi) are the degrees of the jth host and the ith
pathogen, respectively. scp(pi) is the association score between
hseed and the ith pathogen, which requires sch(h1), sch(h2),…, sch
(ht) as the input.

Bipartite Network Module-Based Project
For G(P, H, E) with s pathogens and t hosts, BNMP comprises
the following steps (Figure 1):

1) Let a host hseed be the seed vertex. Calculate the distance
between two pathogens. Dis(pi,pj) is the distance between
pathogen pi and pj in the following formula (Figure 1A), where
A[ pi ] is the binary vector in the ith row in association matrix A.

Dis pi, pj
� �

= 1 − exp −jjA pi½ � − A pj
� �jj2� �

2) Divide pathogen set P={ p1,p2,…,ps } into m modules {M1,
M2,…,Mm} with s1,s2,…, and sm pathogens, respectively (Figure
1B) where m is the degree of hseed, namely the number of
pathogens associated with hseed, as expressed in the following
formula. The intersection between two modules is empty. So s =

om
l=1sl , Ml = fplrjplr ∈ P,   1 ≤ r ≤ slg :

m =o
s

i=1
A pi½ � hseed½ �

The process of generating m modules is as follows: (1) m
pathogens associated with hseed are divided into m modules
respectively and marked as the core vertexes of the
corresponding m modules; (2) pi (i=1,2,…,s) is added to the
module whose core vertex has the shortest distance from it; (3) In
order to keep a balance of resources received by the hseed from
different modules, select sl−⌈s/m⌉ (⌈s/m⌉ means the rounded-up
value of the result of s/m) pathogens with the furthest distance
from the core vertex of Ml if sl is larger than ⌈s/m⌉ and reassign
them to other modules in which the number of pathogens is less
than ⌈s/m⌉. (4) Repeat (3) until the number of pathogens in each
module does not exceed ⌈s/m⌉.

3) Calculate the association score set scoreMl
between hseed and

Ml(l=1, 2,…,m) (Figure 1C).

scoreMl
= o1≤j≤m,j≠lw Ml ,Mj

� �� BMl

o1≤j≤m,j≠lw Ml ,Mj

� �
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where

w Ml ,Mj

� �
= exp −

opu∈Mlopv∈Mj
Dis pu, pvð Þ

Mlj j � Mj

�� ��
 !

BMl ,Mj
= BNP Mlj ,Hlj ,  hseed

� �
BMl ,Mj

= BMl
∪ BMj

Mlj = Ml ∪ Mj

Hlj = hnf jA pk½ � hn½ � = 1, pk ∈ Mlj , 1 ≤ n ≤ t g
w(Ml,Mj) is the weight coefficient of resources that Ml receive

from Mj (j≠l). BMl ,Mj
is the association score set obtained by

running the BNP algorithm on Mlj  ,Hlj,     and   hseed , which
includes two sets: BMl

and BMj
. BMl

and BMj
are the association

score sets of pathogens in BMl
and BMj

, respectively.
Finally, the association score set fscoreM1

, scoreM2
,…, scoreMm

g
between hseed and all pathogens is obtained.

4) Select each host as the seed vertex in turn, and repeat the
process above. Obtain r association score sets, and combine them
to form a pathogen and host association score matrix Spathogen−host
(Figure 1D). Each element of Spathogen−host is an association score of
a pathogen and a host. Similarly, chose a pathogen as the seed
vertex in turn, and obtain another association score matrix, Shost
−pathogen (Figures 1E–H).

5) Finally, take the integrated value of the two matrices,
Spathogen−host and SThost−pathogen, as the association score matrix
between pathogens and hosts, where x is a parameter to balance
Spathogen−host and SThost−pathogen (Figure 1I):

S = x � Spathogen−host + 1 − xð Þ � SThost−pathogen
RESULTS

Performance Evaluation
Leave-one-out cross-validation (Kohavi, 1995) (LOOCV) is used
to evaluate the performance of BNMP relative to previous
evaluation methods (Geeleher et al., 2014; Zhang et al., 2015;
Chen et al., 2016b; Sun et al., 2016 Fei et al., 2018; Le and Pham,
2018). Specifically, each known pathogen–host interaction is
chosen as a test data set in turn, the remaining known
interactions are chosen as the training set, and the pathogen–
host association score in the training set is calculated using
BNMP. After the LOOCV test process is completed, we plot the
receiver operating characteristic (ROC) curve and precision
recall (PR) curve and use the area under the ROC curve
(AUROC) and the area under the PR curve (AUPR) to
evaluate the performance of BNMP.

Performance Analysis of BNMP
We constructed the pathogen–host association network, namely
network 1, which consists of 388 pathogens, 243 hosts, and 997
associations, as shown in Table 1. To clarify the influence of the
balance parameter x, AUROC and AUPR values were calculated
with different values of x, as shown in Figures 2A and B. It can be
found that the prediction performance with x, ∈ (0, 1) is better
than with x = 0 or x = 1, demonstrating the effectiveness of the
January 2020 | Volume 10 | Article 1357

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Li et al. BNMP to Predict Pathogen–Host Association
FIGURE 1 | Process of the bipartite network module-based project. (A) Construct the pathogen–host bipartite network and choose a host as the seed vertex.
(B) Divide the pathogen set into several modules. (C) Calculate the association score between the seed and pathogens in each module. (D) Select each host as the
seed vertex in turn and repeat process (A–C) then obtain the pathogen–host association score matrix Spathogen−host (E) Choose a pathogen as the seed vertex.
(F) Divide the host set into several modules. (G) Calculate the association score between the seed and hosts in each module. (H) Select each pathogen as the seed
vertex in turn and repeat process (E–G) then obtain the host–pathogen association score matrix Shost−pathogen. (I) Integrate matrix Spathogen−host and Shost−pathogen as
the association score matrix between all pathogens and hosts.
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integrated association score matrix. When x = 0.575, BNMP
acquires the highest AUROC and AUPR values. We plotted the
ROC and PR curves when x = 0,0.575, and 1, as shown in Figures
2C and D. It is noteworthy that the ROC curves take the form of
an oblique upward-sloping straight line. We analyzed the results
and found that more than half of the hosts are related to only one
pathogen. As a result, the association scores between these hosts
and pathogens are predicted to be zero in the LOOCV
experiment, which has little worth for our prediction and
results in the oblique upward-sloping straight line rather than
a smooth ROC curve. To evaluate the prediction accuracy of
BNMP on hosts (pathogens) that have more than one association
with pathogens (hosts), the rows or columns with only one “1”
are removed from the pathogen–host association matrix. After
processing, 167 pathogens, 96 hosts, and 653 associations
remained, namely network 2, and this was used to evaluate the
performance of BNMP, as shown in Table 1. The analysis
regarding x is shown in Figures 3A and B. When x = 0.675,
Frontiers in Genetics | www.frontiersin.org 5203
BNMP achieves the highest AUROC value of 0.8656. When
x = 0.825, BNMP achieves the highest AUPR value of 0.4318.

Comparison With Existing Methods
In order to further prove the effectiveness of the proposed
method, BNMP is compared with four other methods :
Zhang's method (Zhang et al., 2015), NTSMDA (Sun et al.,
2016), WBSMDA (Chen et al., 2016a), and BNP (Zhou et al.,
2007). BNMP has different prediction performance when x is
different (see Figure 3). To ensure the fairness of the
comparison, we did not select the best prediction performance
of BNMP for comparison with the other four methods. Instead,
we ranked the AUROC values in Figure 3A in descending order
and selected the upper quartile (the corresponding x value is 0.8)
for comparison with other methods. LOOCV experiments were
performed with BNMP, Zhang's method, NTSMDA, WBSMDA,
and BNP, and the resulting ROC and PR curves are shown in
Figure 4. BNMP acquires an AUROC value of 0.8645, exceeding
those of NTSMDA (0.8376), BNP (0.8352), Zhang's method
(0.7807), and WBSMDA (0.7592). Meanwhile, BNMP obtains
an AUPR value of 0.4315, exceeding those of NTSMDA (0.3729),
WBSMDA (0.3254), Zhang's method (0.2644), and BNP (0.201).
We also calculated the AUROC and AUPR values for each
pathogen by these methods, and performed a paired t-test
(Demišar and Schuurmans, 2006) between BNMP and the
other methods (see Figure 5). The result is that all the p-values
FIGURE 2 | Prediction performance of BNMP with network 1. (A) Influence on AUROC values by different balance parameter values. (B) Influence on AUPR values
by different balance parameter values. (C) ROC curves of BNMP with the different balance parameter values. (D) PR curves of BNMP with the different balance
parameter values.
TABLE 1 | The constructed network 1 and network 2.

Network Number of
pathogens

Number of
hosts

Number of
associations

Network 1 388 243 997
Network 2 167 96 653
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FIGURE 4 | Comparison of five methods. (A) ROC curves. (B) PR curves.
FIGURE 3 | Prediction performance of BNMP with network 2. (A) Influence on AUROC values by different balance parameter values. (B) Influence on AUPR values
by different balance parameter values.
FIGURE 5 | Paired t-test for the AUROC and AUPR values of pathogens between BNMP and other methods. (A) Box-and-whisker plot of AUROC values with
p-values. (B) Box-and-whisker plot of AUPR values with p-values.
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are less than 0.05, indicating that the proposed approach is a
significant advance over the previous approaches and has better
prediction ability.

Validation via Biological Evidence
Most data sources use text mining algorithms to obtain the
original interaction data. Due to the limitation of the
development of pathogen–host interaction text mining
algorithms, the existing open data sources can only cover a
part of pathogen–host interaction data. To further test the ability
of BNMP to predict potential pathogen–host associations, we
rank pathogen–host pairs without relations in existing data sets
according to association scores and search the public literature to
see whether there is evidence that pathogens and hosts with
higher association scores have relations. It is found that among
the top 20 pathogen–host pairs without relations in the existing
data set, biological experiments have verified that 16 pairs have
associations (Table 2); these 16 pairs are ranked lower by the
other four methods. The pair of pathogen Serratia marcescens
and host Mus musculus ranks 1st. Iwaya A et al. studied the
clinical application and evaluation of rapid and quantitative
detection of blood Serratia marcescens by a real-time PCR
assay in a mouse infection model (Iwaya et al., 2005). The pair
of pathogen Cronobacter turicensis and host Mus musculus
ranks 3rd. Tóthová Ľ et al. used Cronobacter turicensis to
infect female mice to prove the effects of isolated Cronobacter-
specific phages on renal colonization in a model of urinary tract
infection in mice (Tóthová et al., 2011). The pair of pathogen
Escherichia coli O157:H7 and host Mus musculus ranks 4th.
Tanji Y et al. found that repeated oral administration of SP15-21-
22 can effectively treat mice infected with Escherichia coli O157:
H7 (Tanji et al., 2005). The pair of pathogen Acinetobacter
nosocomialis and host Homo sapiens ranks 5th. Visca P et al.
discussed the infection mechanism and threats of Acinetobacter
nosocomialis and other Acinetobacter species to humans
(Visca et al., 2011). The pair of pathogen Stenotrophomonas
maltophilia and host Mus musculus ranks 6th. Bacterial
adhesion to mouse tracheal mucus as the role of flagella in the
Frontiers in Genetics | www.frontiersin.org 7205
adhesion process were investigated using clinical isolates of
Stenotrophomonas maltophilia (Zgair and Chhibber, 2011).
The pair of pathogen Sclerotinia sclerotiorum and host
Nicotiana tabacum ranks 7th. Researchers carried out a
preliminary evaluation of the potential of polyamine
biosynthesis inhibition a strategy for the control of plant
diseases initiated by S. sclerotiorum ascospores, using tobacco
(Nicotiana tabacum) leaf discs as an experimental system (Garriz
et al., 2010). The 8th-ranking confirmed pair is pathogen
Pseudomonas aeruginosa and host Oryctolagus cuniculus.
Researchers have determined the pharmacokinetics and
adverse effects following SC administration of ceftiofur
crystalline free acid (CCFA) in Oryctolagus cuniculus by using
Pseudomonas aeruginosa and other bacterium (Gardhouse et al.,
2017). The 9th-ranking confirmed pair is pathogen Enterococcus
faecalis and host Homo sapiens. A study showed that an 88-kDa
secreted protein, endoglycosidase (Endo) E, which is most likely
responsible for the activity of the human pathogen Enterococcus
faecalis, degrades the N-linked glycans of human RNase B to
acquire nutrients (Mattias and Fischetti, 2004). The pair of
pathogen Alternaria citri and host Citrus reticulate ranks 10th.
Reasearchers found that the phytopathogenic fungus, Alternaria
citri (Alternaria alternata pathotype citri), produces a complex of
analogous toxins (ACTG-toxin) that selectively damages Dancy
tangerine (Citrus reticulata) and other mandarin cultivars
(Kohmoto et al., 1979). The pair of pathogen Mycobacterium
marinum and host Homo sapiens ranks 12th. Flowers found that
a person was infected with Mycobacterium marinum by being
bitten by a dolphin and thus associated human mycobacterial
infection with an aquatic mammal (Flowers, 1970). The 14th
score is the pair of pathogen Mycobacteroides abscessus and host
Homo sapiens. Mycobacterium abscessus is one of the common
species that causes disseminated infections in patients with cystic
fibrosis. It has been reported that NLRP3 inflammasome
activation contributed to antimicrobial responses against
M. abscessus in human macrophages and that its activation
was dependent on dectin-1/Syk signaling (Hye-Mi et al., 2012).
The pair of pathogen Alternaria alternata and host Solanum
TABLE 2 | Pathogen–host pairs predicted using BNMP and their rank according to five methods.

Pathogen HOST BNMP NTSMDA BNP Zhang's method WBSMDA

Serratia marcescens Mus musculus (Iwaya et al., 2005) 1 43 15 17 13
Cronobacter turicensis Mus musculus (Tóthová et al., 2011) 3 10 26 24 109
Escherichia coli O157:H7 Mus musculus (Tanji et al., 2005) 4 38 172 14 10
Acinetobacter nosocomialis Homo sapiens (Visca et al., 2011) 5 13 251 119 18
Stenotrophomonas maltophilia Mus musculus (Zgair and Chhibber, 2011) 6 44 124 21 13082
Sclerotinia sclerotiorum Nicotiana tabacum (Garriz et al., 2010) 7 61 44 540 169
Pseudomonas aeruginosa Oryctolagus cuniculus (Gardhouse et al., 2017) 8 588 62 960 55
Enterococcus faecalis Homo sapiens (Mattias and Fischetti, 2004) 9 37 33 109 19
Alternaria citri Citrus reticulata (Kohmoto et al., 1979) 10 528 57 9021 41
Mycobacterium marinum Homo sapiens (Flowers, 1970) 12 39 36 115 26
Mycobacteroides abscessus Homo sapiens (Hye-Mi et al., 2012) 14 20 25 102 20
Alternaria alternata Solanum lycopersicum (Hai and Gubler, 2012) 15 261 40 447 3045
Enterococcus faecium Homo sapiens (Lester et al., 2006) 16 40 27 106 121
Fusarium oxysporum Nicotiana tabacum (Jennings et al., 2001) 17 118 43 537 1313
Pectobacterium carotovorum Arabidopsis thaliana (Lee et al., 2012) 19 259 74 199 764
Mycoplasma agalactiae Mus musculus (Smith, 1967) 20 26 201 101 211
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lycopersicum ranks 15th. A study evaluated whether 1-MCP
treatment could affect postharvest decay caused by A. alternata,
B. cinerea, and Fusarium spp. in Solanum lycopersicum (Hai and
Gubler, 2012). The 16th-ranking association is the pair of
pathogen Enterococcus faecium and host Homo sapiens. A
previous study was performed to determine whether resistance
genes from an E. faecium isolate of animal origin could be
transferred to a human E. faecium isolate in the intestines of
human volunteers without any selective antimicrobial pressure
(Lester et al., 2006). The 17th pair of pathogen and host is
Fusarium oxysporum and Nicotiana tabacum. Jennings et al.
found that protein Nep1 from Fusarium oxysporum inducted
defense responses in tobacco (Jennings et al., 2001). The 19th
potential link is Pectobacterium carotovorum and Arabidopsis
thaliana. The study indicated that Arabidopsis thaliana were
infected with Pectobacterium carotovorum (Lee et al., 2012). The
20th potential link is pathogen Mycoplasma agalactiae and host
Mus musculus. Smith G R. et al. used Mycoplasma agalactiae to
infect mice to verify the toxicity of the Mycoplasma agalactiae
(Smith, 1967). Based on the above findings, one can argue that
BNMP is very efficient in predicting associations between
pathogens and hosts.
DISCUSSION

In this study, we focus on the problem of pathogen–host
association prediction. To consider the relations of pathogens
and hosts comprehensively, we adopt the pattern of local before
global, proposing a novel approach, BNMP. The method is based
on bipartite network modules and integrates module
information of pathogens and hosts, respectively, into a
bipartite network projection model to improve prediction
performance. Where the host is the seed, the time complexity
of acquiring the association score vector between the seed and all
pathogens is O(ms3t), where m is the degree of the seed. Hence,
the time complexity of acquiring Spathogen−host is O(es

3t), where e
is the number of associations in the host-pathogen association
network. Similarly, the time complexity of acquiring SThost−pathogen
is O(et3s). BNMP has a time complexity of O(est(s2+t2)), namely
O(es3t) when s>t and O(et3s) when t>s. Experimental results
show that BNMP achieved better prediction performance
compared with other efficient methods.

Although BNMP is used here in pathogen–host association
prediction, it can also be applied to association analysis in other
Frontiers in Genetics | www.frontiersin.org 8206
fields, such as miRNA–disease association prediction, drug–
target interaction prediction, and drug–cell line response
prediction. Hence, our study has a wide range of uses. Module-
based information can help improve the score in the bipartite
network because more information related to the nodes in a
network is included in the predictive model, which avoid missing
the information of neighbors. Although BNMP performs well on
the existing data set, the number of associations between
pathogens and hosts in the data set is insufficient, which affects
the performance of the proposed method. As more association
relationships are found or added into databases and more
information about regulatory modules (Chen et al., 2019a;
Chen et al., 2019b) is employed in the future, the prediction
performance of BNMP should further improve.
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Hepatocellular carcinoma (HCC) is the fourth most common primary liver tumor and

is an important medical problem worldwide. However, the use of current therapies for

HCC is no possible to be cured, and despite numerous attempts and clinical trials, there

are not so many approved targeted treatments for HCC. So, it is necessary to identify

additional treatment strategies to prevent the growth of HCC tumors. We are looking for

a systematic drug repositioning bioinformatics method to identify new drug candidates

for the treatment of HCC, which considers not only aberrant genomic information, but

also the changes of transcriptional landscapes. First, we screen the collection of HCC

feature genes, i.e., kernel genes, which frequently mutated in most samples of HCC

based on human mutation data. Then, the gene expression data of HCC in TCGA

are combined to classify the kernel genes of HCC. Finally, the therapeutic score (TS)

of each drug is calculated based on the kolmogorov-smirnov statistical method. Using

this strategy, we identify five drugs that associated with HCC, including three drugs that

could treat HCC and two drugs that might have side-effect on HCC. In addition, we also

make Connectivity Map (CMap) profiles similarity analysis and KEGG enrichment analysis

on drug targets. All these findings suggest that our approach is effective for accurate

predicting novel therapeutic options for HCC and easily to be extended to other tumors.

Keywords: hepatocellular carcinoma (HCC), drug repositioning, mutated genes, kernel genes, gene expression

INTRODUCTION

Identifying a cure for cancer is a difficult, costly and often inefficient process (Adams and Brantner,
2006). Drug repositioning, i.e., the discovery of new indications of existing drugs, beyond their
original indications, is an increasingly attractive new-use discovery model. In addition to saving
time and money, one advantage of the drug reuse approach is that existing drugs have been
reviewed for safety, dose and toxicity (Ashburn and Thor, 2004; Fathima et al., 2018; Su et al.,
2019; Yu et al., 2019). As a result, repurposed drugs usually go into clinical trials faster than newly
developed drugs (Yu et al., 2017a, 2018). The rapid development of genomics has resulted in the
generation of genomic and transcription group data from disease samples, normal tissue samples,
animal models and cell lines. Transcriptomic profiles, such as gene expression data, are most widely
used for drug repositioning (Yu et al., 2016). A key data source behind several re-use efforts is the
Connectivity Map (CMap) (Lamb et al., 2006), which generated large-scale gene expression profiles
in human cancer cell lines treated with different drug compounds under different conditions. The
CMap method attempts to provide a more comprehensive view of this transcription data and use
them to connect expression profiles across conditions (Lamb et al., 2006). In particular, it suggests
that if there is a strong negative correlation between disease characteristics and drug expression
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characteristics, the drug may have a therapeutic effect on the
disease. For example, by systematically comparing the gene
expression characteristics of GEO-derived inflammatory bowel
disease (IBD) with the gene expression characteristics of a group
of 164 drug compounds from CMap, Dudley et al. (2011)
predicted several interesting new drug-disease pairs and, in the
IBD preclinical model, validated one pair. Yu et al. (2015)
proposed a method that discovered the drug-disease association
based on protein complexes. In another case, Jahchan et al. (2013)
applied a drug repurposing bioinformatics method to identifying
antidepressant drugs for the treatment of small cell lung cancer
through querying a large compendium of gene expression
profiles. Although many machine learning-based methods have
been developed by using features (Zhang et al., 2017, 2018a,b,
2019), more and more literature supports the usage of CMap
for drug repositioning; despite this, there are still problems. A
candidate can often be strengthened using independent disease
signatures. But disease signatures are often selected by statistical
methods, they are lack of biological information.

Hepatocellular carcinoma (HCC) is the fourth most common
primary liver tumor and is an important medical problem
worldwide (El-Serag and Mason, 1999; Yu et al., 2017b). HCC is
usually caused by infection with hepatitis B virus (HBV) (Chang
and Liu, 2016) and hepatitis C (HCV) (Lingala and Ghany, 2015),
exposure to aflatoxin B1 from Aspergillus (Kew, 2013), alcohol
abuse (Abenavoli et al., 2016), or non-alcoholic fatty hepatitis
(Charrez et al., 2016). However, the use of current therapies for
HCC is no possible to be cured, and despite numerous attempts
and clinical trials, there are not so many approved targeted
treatments for HCC. So, it is necessary to identify additional
treatment strategies to prevent the growth of HCC tumors.

Many diseases, but especially cancer, are related with
abnormal genomes and transcription landscapes (Chakravarthi
et al., 2016; Tang et al., 2018). In this study, we seek to use
systematic drug repositioning bioinformatics to identify new
drug candidates for the treatment of HCC. First, we screen
the collection of HCC feature genes that frequently mutated in
most samples of HCC based on human mutation data. Then,
the gene expression data of HCC in TCGA are combined to
classify the gene set of HCC. Finally, the therapeutic score (TS)
of each drug is calculated based on the kolmogorov-smirnov
statistical method. Using this strategy, we identified five drugs
that associated with HCC, including three drugs that could
cure HCC and two drugs that might have bad effect on HCC.
In addition, we also make CMap (Lamb et al., 2006) profiles
similarity analysis and KEGG enrichment analysis on drug
targets. All these findings suggest that our approach is effective
for accurate discovering novel therapeutic options for HCC and
easily to be extended to other tumors.

MATERIALS AND METHODS

Datasets
HCC Gene Expression Data
The Cancer Genome Atlas (TCGA) (Tomczak et al., 2015)
is a comprehensive and coordinated effort to accelerate
our understanding of the molecular basis of cancer by

applying genomic analysis techniques, including large-scale
genome sequencing. TCGA researchers aim to catalog
and discover major changes to the cancer-causing genome
to create a comprehensive “atlas” of cancer genomes. So
far, the project analyzed groups of more than 30 human
tumors through large-scale genome sequencing and integrated
multidimensional analysis.

We download the gene expression profiles of HCC from
TCGA, and there are 423 samples in the data set. The type
of a sample is distinguished by the barcode provided by
TCGA. If the fourth part of the barcode of one sample is
in the range from 01 to 09, the sample is a cancer sample.
If the fourth part of the barcode in the range from 10 to
19, the sample is a normal sample. The specific introduction
to the barcode can be found in TCGA help file. First, we
obtain gene expression matrix data (20,501 × 423), which
contains 373 cancer samples, 50 normal samples, and 20,501
genes. Then, we standardize the expression values of all genes
as follows:

zij =
gij −mean(gi)

std(gi)
(1)

where gij represents the expression value of gene i in sample j, and
mean

(

gi
)

and std
(

gi
)

, respectively represent mean and standard
deviation of the expression vector for gene i across all samples.
Finally, we use Limma (Ritchie et al., 2015) to analyze cancer
and normal samples and get the log FC value of each gene. The
definition of log FC is as follows:

log FCi = log2







1
|T|

∑

k∈T
zik

1
|N|

∑

k∈N
zik






(2)

where log FCi is the log FC value of gene i; zik is the normalized
expression of gene i in sample k [see formula (1)]; T is
the set of cancer samples (|T|=373); N is the set of normal
samples (|N|=50).

For a gene, if its
∣

∣log FC
∣

∣ ≥ 1 and p− > value ≤ 0.02,
it is a differentially expressed gene. The thresholds of log FC and
p− > value refer to Dalman et al. (2012).

Gene Expression Data Related to Drugs
The gene expression data related to drugs is downloaded
from the CMap (http://www.broadinstitute.org/cmap/)
database. It contains 6,100 instances which cover 1,309
drugs. These instances are measured on five types of human
cancer cell lines, including the breast cancer epithelial cell
lines MCF7 and ssMCF7, the prostate cancer epithelial
cell line PC3, the nonepithelial lines HL60 (leukemia) and
SKMEL5 (melanoma).

SNP Mutation Data of HCC
We download the single nucleotide polymorphism (SNP) gene
mutation data of HCC from TCGA database. The SNP mutation
data contains 373 cancer patient sample files, and each sample
file contains the detailed descriptions of all the mutated genes.
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Since the mutation frequency of each gene across all samples is
different, we select genes with relatively high mutation frequency
for further analysis. Here, the mutation frequency is set to be
no less than 11 (11 = 373 × 3%), that is a gene mutated in
at least three percent of all samples. These genes are defined
as frequently mutated genes. Finally, we find 406 frequently
mutated genes.

Methods
Defining the Feature Gene Set of HCC
According to the data analysis we have done in section Datasets,
we can divide the 20,501 genes into three classes based on
their mutation frequency and differential expression value.
One category is the kernel genes, which mutate frequently.

The second category is the secondary genes, which do not
mutate frequently but differentially express. The third category
is the marginal genes, which neither mutate frequently nor
differentially express.

In our work, we take the 406 kernel genes, i.e., frequently
mutated gene, as the feature gene set of HCC.

Calculating the Therapeutic Scores of Drugs
We select kernel genes as the feature genes of HCC and rank
them in descending order based on their differential expressions.
For a gene, if its log FC value is >0, it is stored in up-
regulated gene set. Otherwise, it is stored in down-regulated
gene set. Finally, we get two ordered gene lists for HCC:

FIGURE 1 | Characteristics of the three gene types. (A) Average degree for three different gene types. (B) Average PubMed records associated for each gene type.

(C) Gene Ontology terms annotated for each gene type. (A–C) The red rectangle represents kernel genes, the blue rectangle represents secondary genes, the gray

rectangle represents marginal genes. (D) Type distribution of five kernel genes’ direct neighbor genes. Green rectangle represents differentially expressed genes in

HCC, and yellow rectangle represents frequently mutated genes in patients with HCC.
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the up-regulated gene list (Gup) and the down-regulated gene
list (Gdown).

We get 6,100 gene expression instances covered 1,309 drugs
from CMap database. In other words, a drug may correspond to
multiple instances. We rank the genes in each instance by their
differential expression values between drug-treated and drug-
untreated cell lines. In this way, we get 6,100 drug-related gene
lists. Therefore, based on kernel genes and 6,100 drug-related
gene expression instances, we use a non-parameter, ranking-
based pattern matching strategy that was originally introduced
by Lamb et al. (2006) to evaluate the relationship between drugs
and HCC.

TABLE 1 | HCC related genes extracted from OMIM.

Gene names Gene entrez IDs

IGF2R 3482

CASP8 841

MET 4233

PDGFRL 5157

TP53 7157

PIK3CA 5290

CTNNB1 1499

AXIN1 8312

We take each ranked drug expression profile as reference
signature and assess their similarity to HCC. We compute a
connectivity score separately for the set of up- or down-regulated
genes: ESup or ES

down
. The computational formulas as follows

(Lamb et al., 2006):

a =
m

Max
p=1

[

p

m
−

V
(

p
)

n

]

(3)

b =
m

Max
p=1

[

V
(

p
)

n
−

p− 1

m

]

(4)

ESup/down =
{

aup/down(if aup/down > bup/down)

−bup/down(if aup/down < bup/down)
(5)

Where n represents the total number of genes in the reference
drug expression profile; m represents the size of Gup or the size
of Gdown; p represents the position of the input set (p = 1...m);
V(p) is the position of the pth input gene in the gene list of drug
expression profile.

The therapeutic score (TS) of a drug is calculated as follows:

TS =
1

k

k
∑

j=1

ESup−ESdown (6)

If the up-regulated genes are near the top (up-regulated) of the
rank-ordered drug gene lists and the down-regulated genes are

FIGURE 2 | The precision of our approach at different top-x drugs.
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near the bottom (down-regulated) of the rank-ordered drug gene
lists, we can get high positive therapeutic scores (TS), which
indicate the drugs and HCC have similar expression profiles and
the drugs might aggravate HCC. On the other hand, if the up-
regulated pathway genes are near the bottom of the rank-ordered
drug gene lists and the down-regulated pathway genes are near
the top of the rank-ordered drug gene lists, we can get negative
therapeutic scores (TS), which imply the given drugs and HCC
have adverse expression profiles and the drugs could be treatment
candidates for HCC.

RESULTS

Analysis of Disease Characteristics of HCC
We characterize the kernel, secondary, and marginal genes in the
context of protein interaction (PPIs) network, PubMed (www.
ncbi.nlm.nih.gov/pubmed), and Gene Ontology (Ashburner
et al., 2000) term annotation. The Human Protein Reference
Database (HPRD) (Prasad et al., 2009) is a protein database for
experimentally derived information about human proteomics,
including protein and protein interactions (Ding et al., 2016;
Wei et al., 2017a), post-translational modifications (PTMs) (Wei
et al., 2017b) and other information. We download all human
PPIs from this database, containing 15,231 proteins and 38,167
interactions. Interestingly, we find that all three gene types had
heterogeneous degree distribution, and that the kernel genes tend
to have higher degrees than those of secondary and marginal
genes (Figure 1A). Similarly, kernel genes are related with more
PubMed records and Gene Ontology term annotation than
secondary and marginal genes (Figures 1B,C).

In order to analyze biological functions of kernel genes,
we analysis the nine HCC pathogenic genes obtained from
Online Mendelian Inheritance in Man (OMIM) (Hamosh et al.,
2005) from two aspects of gene mutation and expression level
change. These eight HCC pathogenic genes (Table 1) are IGF2R,
CASP8, MET, PDGFRL, TP53, PIK3CA, CTNNB1, and AXIN1.
We find that five (IGF2R, TP53, PIK3CA, CTNNB1, AXIN1)
of these genes are belong to kernel genes, these genes are
frequent mutations, but their expression level don’t change
significantly. For direct neighbors in PPIs of these five genes, we
find that there are frequently mutated or differentially expressed
genes (see Figure 1D) among their direct neighbors. TP53 is
a quite important tumor suppressor gene, which can translate
and synthesize protein P53. P53 protein is a vital regulator
for cell growth, proliferation and injury repair. For the direct
neighbors of TP53, there are 27 frequently mutated genes, and
11 differentially expressed genes. CTNNB1 gene can encode
β-catenin, a dual function protein that involves in regulation
and coordination of cell–cell adhesion and gene transcription
(Nollet et al., 1996). Recent study of HCC has shown that
CTNNB1 gene mutations and overexpression of its encoded
protein are closely related to occurrence, progression and
prognosis of tumor (Kitao et al., 2015). CTNNB1 has 7 frequently
mutated direct neighbors, and 9 differentially expressed direct
neighbors. The above analysis results show that the kernel genes
selected by mutation and expression information contain more

comprehensive biological knowledge and to some extent, the
characteristics of HCC can be depicted.

Choosing Potential HCC Drugs Through
CTD Benchmark
To find most likely HCC-related drugs, we need evaluate
the precision of our method firstly. We take Comparative
Toxicogenomics Database (CTD) (Davis et al., 2015) as
benchmark. CTD supplies manual collated information about
drug-gene, drug-disease, and gene-disease interactions. Curated
chemical-disease relationships are obtained from the published
literature by CTD biocurators and inferred relationships are set
up via CTD curated chemical-gene associations.

For a drug in CMap, if it cannot find corresponding chemical
name in CTD, we will not calculate its therapeutic score (defined
in section “Methods”). In this way, we finally get 1168 scored
drugs. Because most drug-disease associations in CTD are not
marked as positive or negative, we rank the 1168 drugs in
descending order by the absolute values of their therapeutic
scores. We know the top drugs imply stronger connections with
HCC. And then we calculate the precisions of our approach at
different top-x drugs, which are shown in Figure 2. The precision
is calculated as follows:

precision =
PCTD

P
(7)

TABLE 2 | Nineteen therapeutic drugs for HCC in the Top-30 drugs.

Rank Drug name Evidence Inferred count

1 Daunorubicin T 42

2 Chrysin Inferred 34

3 Topiramate Inferred 8

4 Securinine NULL NULL

5 Piperlongumine Inferred 8

6 Luteolin Inferred 28

7 Apigenin Inferred 36

8 Celastrol Inferred 19

9 Sirolimus T 68

10 Mercaptopurine NULL NULL

11 Genistein T 93

12 Irinotecan Inferred 46

13 Sanguinarine Inferred 5

14 Tyrphostin Ag-825 Inferred 7

15 Decitabine M 84

16 Camptothecin Inferred 28

17 Reserpine NULL NULL

18 Mycophenolic Acid Inferred 7

19 Tyrphostin Ag-1478 Inferred 35

Evidence represents a drug-disease association is curated, inferred or not existed in

CTD database. Curated associations include three types: marker/mechanism (Evidence=
“M”), therapeutic (Evidence= “T”), marker/mechanism & therapeutic (Evidence= “M&T”).

If an association is inferred by CTD, Evidence = “inferred,” and if it is not existed in CTD,

Evidence = “NULL”; Inferred Count represents the number of inferrederence (s) for the

curated and inferred associations. If an association is not existed in CTD, Inferred Count

= “NULL”.
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where P represents the number of top-x drugs, i.e., P = x; PCTD
represents the number of drugs in the top-x drugs, which can be
found related with HCC in CTD database.

We find in the top-10 drugs (x = 10), there are 9 drugs
associated with HCC in CTD. That is to say, the precision is
0.9. For the top-20 drugs (x = 20), the precision is 0.85 and

there are three potentially HCC-related drugs. When x is 30, its
precision is 0.83 and we get five potential drugs with HCC. From
the Figure 2, we notice that with the increase of x, the precision
declines and the number of potential drugs increases. We aim to
predict relatively more HCC-related drugs with high precision.
Then, we choose top-30 (x= 30) drugs for further analysis.

FIGURE 3 | Diagrams of the possible mechanism of between HCC and two drugs. (A) A possible mechanism of securinine treating HCC. Securinine has been found

to be active as a γ-amino butyric acid (GABA) receptor antagonist. GABA stimulates HCC cell line HepG2 growth. Consequently, it means that securinine is a

promising agent with therapeutic effect on HCC patients through inhibiting GABA receptor. (B) A possible mechanism of thioguanine aggravating HCC. Thioguanine is

a guanine analogs and it can decrease the expression of CDKN3. But, CDKN3 gene inhibits tumor growth by controlling mitosis. Hence, thioguanine may get

aggravating effect on HCC patients.
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Validating Potentially HCC-Related Drugs
Through Pubmed Literature
In the above section, we choose the top-30 drugs (precision
= 0.83) for further analysis. There are 19 therapeutic drugs
with negative TS values in the top-30 drugs, shown in Table 2.

Sixteen of them can be found having connections with HCC
in CTD (Davis et al., 2015). Three of the 16 drugs are marked
as therapeutic drug (Rank = 1, Rank = 9, Rank = 11, and
Evidence = “T” in Table 2) for HCC. Meanwhile, one drug is
marked as marker/mechanism drug (Rank = 15, Evidence =
“M” in Table 2) for HCC and the other 12 inferred drugs are
unmarked in CTD. Here, we can indicate these 12 unmarked
drugs are possibly therapeutic drugs for HCC. The rest three
drugs (Securinine, Mercaptopurine, and Reserpine) are newly
predicted ones by our method, which are marked as bold in
Table 2. Based on PubMed, we analyze the three drugs further.

TABLE 3 | Eleven aggravating drugs for HCC in the Top-30 drugs.

Rank Drug name Evidence Inferred count

1 Cytochalasin B Inferred 5

2 Exemestane Inferred 2

3 Spiperone Inferred 2

4 Cinchonine Inferred 1

5 Mepacrine Inferred 8

6 Tioguanine NULL NULL

7 Rifabutin NULL NULL

8 N-Phenylanthranilic Acid Inferred 1

9 Valinomycin Inferred 1

10 Betulin Inferred 2

11 Puromycin Inferred 13

TABLE 4 | The relationships of five predicted drugs with known HCC therapeutic

drugs in CTD.

Predicted drugs Known HCC drugs in CTD Connectivity scores

Securinine Daunorubicin 0.916

Troglitazone 0.902

Paclitaxel 0.844

Mercaptopurine Estradiol 0.941

Dexamethasone 0.926

Sirolimus 0.845

Troglitazone 0.833

Reserpine Roxithromycin 0.922

Resveratrol 0.834

Tioguanine Genistein −0.973

Sirolimus −0.928

Indometacin −0.891

Paclitaxel −0.872

Rifabutin Calcium Folinate −0.878

Estradiol −0.873

The potentially therapeutic drugs of HCC are marked as bold. The other two drugs are

potentially aggravating drugs of HCC.

PubMed, a free resource, is developed and maintained by the
National Center for Biotechnology Information (NCBI) at the
National Library of Medicine (NLM). PubMed comprises more
than 26 million inferrederences and abstracts on life sciences and
biomedical topics.

Securinine (Rank = 4 in Table 2), a quinolizine
pseudoalkaloid (not from amino acid) from securinega
suffurutiosa or securinini nitras, is one of central nervous

TABLE 5 | Pathway enrichment analysis result of five selected drugs.

Drug name Drug

targets

KEGG pathways

Securinine None None

Mercaptopurine HPRT1,

PPAT

Purine metabolism;

Metabolic pathways;

Drug metabolism other enzymes;

Alanine aspartate and glutamate

metabolism;

Biosynthesis of antibiotics

Reserpine SLC18A2,

SLC18A1

Cocaine addiction;

Synaptic vesicle cycle;

Amphetamine addiction;

Serotonergic synapse;

Dopaminergic synapse;

Parkinson’s disease;

Alcoholism

Tioguanine None None

Rifabutin rpoA,

rpoB,

rpoC,

HSP90A1,

HSP90B1

NOD-like receptor signaling pathway;

Prostate cancer;

Estrogen signaling pathway;

Protein processing in endoplasmic

reticulum;

PI3K-Akt signaling pathway;

Pathways in cancer;

Antigen processing and presentation;

Thyroid hormone synthesis;

Progesterone-mediated oocyte

maturation

The potentially therapeutic drugs of HCC are marked as bold. The other two drugs are

potentially aggravating drugs of HCC. “NULL” represents the drug has no targets in

DrugBank at present. Thus, its corresponding KEGG pathway is “NULL” too.

TABLE 6 | Twelve enriched tissue-specific KEGG pathways with HCC.

Pathways Number of HCC-specific genes P-values

Pathways in cancer 20 3.06E-13

Prostate cancer 10 1.41E-08

Adherens junction 8 1.44E-06

Endometrial cancer 7 2.15E-06

Colorectal cancer 8 2.62E-06

Apoptosis 8 3.32E-06

Melanoma 7 1.36E-05

Wnt signaling pathway 9 1.41E-05

Cell cycle 7 3.28E-04

Notch signaling pathway 5 4.16E-04

Basal cell carcinoma 5 7.61E-04

Melanogenesis 6 8.61E-04
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stimulants and clinically applied to treat amyotrophic lateral
sclerosis (ALS) (Buravtseva, 1958), poliomyelitis (Copperman
et al., 1973) and multiple sclerosis (Copperman et al., 1974). It
is found to be active as a gamma-aminobutyric acid (GABA)
receptor antagonist (Perez et al., 2016). GABA is the main
inhibitory neurotransmitter of the central nervous system
and plays an important role in reducing neuronal excitability
throughout the nervous system. Studies show that GABA
stimulates HCC cell line HepG2 growth (Lu et al., 2015).
Consequently, it means that securinine is a promising agent
with therapeutic potential for HCC through inhibiting GABA
receptor. Figure 3A gives a diagram of the possible mechanism
of the treatment of HCC by securinine.

Mercaptopurine(6-MP, Rank = 10 in Table 2) is a drug for
cancer and autoimmune diseases (Sahasranaman et al., 2008). As
a purine analog, mercaptopurine belongs to purine antagonist
anti-metabolic drugs (Thackery, 2002). 6-MP nucleotides inhibit
the synthesis and metabolism of pure nucleotides by inhibiting
an enzyme called phosphoribosyl pyrophosphate (PRPP)
amidotransferase PRPP Amidotransferase is a rate-limiting
enzyme for pure synthesis (Zollner, 1982). This changes the

synthesis and function of RNA and DNA. Mercaptopurine
interferes with nucleotide conversion and glycoprotein synthesis.
This makes the mercaptopurine can effectively inhibit the
synthesis of DNA, thereby inhibiting the growth of tumor
cells (Cara et al., 2004). At present, although there is no direct
experiment that mercaptopurine can inhibit the growth of
HCC cells, it is used to treat acute lymphoblastic leukemia
(ALL), chronic myeloid leukemia (CML), Crohn’s disease
and ulcerative colitis (Joint Formulary Committee, 2011). In
summary, mercaptopurine is likely to achieve a certain effect
on HCC.

Reserpine (Rank = 17 in Table 2) is an antipsychotic and
antihypertensive drug (Bridgwater and Sherwood, 1960) used to
control hypertension and relieve psychotic symptoms (Arnt et al.,
1985). The results of Gwak et al. (2009) showed that reserpine
could reduce the expression level of CCND1 gene and its encoded
protein. The CCND1 gene encodes the cyclin D1 protein. Cyclin
D1 protein is amember of the circulatory protein family, involved
in regulating cell cycle progression. This protein plays a key role
during the transition from the G1 phase, in which the cell grows,
to the S phase, during which DNA is replicated. Overexpression

FIGURE 4 | Pathway analysis of mercaptopurine. The purple circles represent pathways related to mercaptopurine, and the green circles represent the tissue-specific

KEGG pathways of HCC. The gray edges indicate that there are common genes between two pathways, and the more genes there are, the wider the edges in the

network.
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of this protein allows cells to be easily crossed G1/S checkpoint
that limits the growth of cells, which promotes tumor hyperplasia
and is therefore considered to be an oncoprotein (Donnellan
and Chetty, 1998). Some studies have found that CCND1 gene
is over-expressed in HCC (Xu et al., 2004). Thus, reserpine can
potentially be used as an agent against HCC.

The other 11 drugs with negative TS values are shown in
Table 3. They are possible to aggravate HCC. Nine of them have
been found having relationships with HCC in CTD database
and we can infer these relationships are possibly negative. The
remaining 2 drugs (Tioguanine, Rifabutin) are newly potential
drugs for aggravating HCC marked as bold in Table 3. We
will investigate the two drugs (Tioguanine, Rifabutin) based
on PubMed.

Tioguanine, also known as thioguanine, (Rank= 6 in Table 3)
is a guanine analogs, with cell cycle specificity, for the S cycle
of the strongest cell sensitivity. In addition, thioguanine can
inhibit the synthesis of guanosine nucleoside, by inhibiting the
biological activity of guanylate kinase, the drug can inhibit
the guanosine monophosphate (GMP) phosphoric acid to
guanosine bisphosphate (GDP) transformation process (Golan,
2011). Thibird is a drug used to treat acute myeloid leukemia
(AML) (Gill et al., 1982), acute lymphoblastic leukemia (ALL)
(Marmont and Damasio, 1973) and chronic myeloid leukemia
(CML) (Yang et al., 2006). In 2005, Ganter et al. showed that
CDKN3 expression was significantly decreased after a period of
administration of thioguanine (Ganter et al., 2005). The CDKN3

gene inhibits tumor growth by controlling mitosis, which is a
tumor suppressor gene (Nalepa et al., 2013). Dai et al. found that
CDKN3 expression in patients with HCC was significantly lower
than that in normal humans. CDKN3 knockout experiments
indicated that CDKN3 could inhibit tumor growth (Dai et al.,
2016). A possible mechanism of thioguanine aggravating HCC
is shown in Figure 3B. Therefore, in order to ensure the
effectiveness of the treatment, clinical patients should avoid HCC
patients taking thioguanine.

Rifabutin (Rank = 7 in Table 3) is a piperazine-containing
rifamycin derivative, the drug has a broad spectrum of
antibacterial activity. It can able to bind to the β-subunit of
RNA polymerase and inhibit RNA polymerase activity, thereby
reducing the number of RNA synthesis of bacterial (Beard, 2001).
Rifabutin has been approved to prevent and treat disseminated
infections of mycobacterium mycobacterium complex (MAC)
carried by HIV-infected persons (Arevalo et al., 1997), and it
is also used to treat multidrug-resistant tuberculosis (Skolik
et al., 2005). Kobayashi et al. find that rifabutine will lead
to an increase in the expression of cytochrome P450 3A4
(CYP3A4) in liver tissue (Nakajima et al., 2011). CYP3A4 is an
important metabolic enzyme, belongs to the cytochrome P450
family. It is also the most important component of adult liver
microsomes CYP450, this gene is expressed in the intestinal,
liver and kidney (Hashimoto et al., 1993). However, Fanni et al.
find a significant increase of expression of CYP3A4 in HCC
patients and overexpression of CYP3A4 gene could result in

FIGURE 5 | Pathway analysis of reserpine. The purple circles represent pathways of reserpine, and the green circles represent the tissue-specific KEGG pathways of

HCC. The gray edges indicate that there are common genes between two pathways, and the more genes there are, the wider the edges in the network.
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drug degradation or even a decreased therapeutic effect (Fanni
et al., 2016). Therefore, for both suffering from HCC and
tuberculosis patients, doctors should avoid using rifabutin to
treat tuberculosis.

Analyzing Potentially HCC-Related Drugs
Through CMap Database
The CMap database can not only be applied to calculate drug-
disease correlations, but also can be used to identify connections
between two drugs. In particular, for a same disease, if two
drugs have strongly positive relationship, they may have similar
effects on this disease. On the contrary, if their relationship
is negative, they may have opposite effects. In this section, we
further analyze the five predicted drugs (three therapeutic drugs
shown in Table 2: securinine, mercaptopurine and reserpine; two
aggravating drugs shown in Table 3: tioguanine and rifabutin)
based on CMap and estimate their correlations [evaluated by
formula (6)] with known HCC drugs marked as “therapeutic” in
CTD database. The results are shown in Table 4.

For the three potentially therapeutic drugs (securinine,
mercaptopurine and reserpine) marked as bold in Table 4,
we find that they all have strong positive correlation with
known drugs for HCC. Securinine yields highly positive
connectivity score [calculated by formula (6)] with drugs
daunorubicin, troglitazone and paclitaxel. Mercaptopurine is
found having strongly positive relationships with drugs estradiol,

dexamethasone, sirolimus, and troglitazone. Reserpine gets high
positive connectivity scores with drugs roxithromycin and
resveratrol. For the two potentially aggravating drugs (tioguanine
and rifabutin) in Table 4, they all have negative relationship with
known HCC drugs. Tioguanine has high negative connectivity
scores with drugs genistein, sirolimus, indomethacin, and
paclitaxel. Rifabutin have clear negative connection scores with
drugs calcium folinate and estradiol.

Overlap Between Pathways Associated
With Predicted Drugs and HCC-Related
Tissue-Specific Pathways
In this part, we further analyze the relationship between these
five drugs (three therapeutic drugs: securinine, mercaptopurine
and reserpine; two aggravating drugs: tioguanine and rifabutin)
and HCC from the point of view of drug targets. First, we get
the target set of drugs from DrugBank (Law et al., 2014) because
DrugBank contains the most complete information on drug and
drug targets. Then, we use DAVID (Huang et al., 2009) to obtain
all the KEGG (Kanehisa et al., 2010) pathways of the drug target.
The p-value is set to be less than or equal to 0.05. The results are
shown in Table 6.

From Table 5, it can be seen that securinine and tioguanine
have no corresponding target information in the DrugBank
database. So we can’t enrich their associated pathways.
Mercaptopurine has two drug targets, and we find five KEGG

FIGURE 6 | Pathway analysis of rifabutine. The purple circles represent pathways of the rifabutine, and the green circles represent tissue-specific KEGG pathways of

HCC. Nodes with two colors represent overlapping pathways for rifabutine and HCC. The gray edges indicate that there are common genes between two pathways,

and the more genes there are, the wider the edges in the network.
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pathways related to them. Reserpine has two drug targets,
which are included in seven KEGG pathways. Rifabutine has
five drug targets, and nine KEGG pathways are enriched
to them.

In order to obtain the tissue-specific KEGG pathways of HCC,
firstly, the eight genes (see Table 1) related to HCC are extended
through obtaining their direct neighbors in liver-specific protein-
protein interaction (PPI) network got from GIANT (Greene
et al., 2015). Then, we obtain a subnetwork from the liver PPI
network, which contains 57 genes and 838 edges with weight ≥
0.1. Finally, by using DAVID tool, we obtain 12 KEGG pathways
related to the 57 genes (see Table 6). The parameters of DAVID
are fixed as: p-value= 0.001 and count= 5.

We find that there are four pathways related to
mercaptopurine have common genes with the 12 tissue-
specific KEGG pathway of HCC. The interactions between
the four pathways and the 12 tissue-specific KEGG pathway
of HCC is shown in Figure 4. The gray edges indicate that
there are common genes between two pathways, and the more
genes there are, the wider the edges in the network. “Metabolic
pathways” have common genes with seven tissue-specific KEGG
pathways of HCC. Though there is only one edge between
“purine metabolism” and HCC related pathway, the edge is very
wide, indicating that there are a lot of common genes. These
overlap genes between the pathways of mercaptopurine and
HCC tissue-specific KEGG pathways show that mercaptopurine
has a potential effect on treating HCC.

For drug reserpine, there are six pathways have common
genes with the 12 tissue-specific KEGG pathway of HCC. Their
relationships are shown Figure 5. For example, “serotonergic
synapse” has common genes with ten pathways of HCC.
“Dopaminergic synapse” has common genes with nine pathways
of HCC. Overall, drug reserpine has more overlapping pathways
with HCC, and more genes overlap between pathways. The
results indicate that drug reserpine is likely to become the
treatment of HCC.

For the potential aggravating drug rifabutine, we also analyze
its pathway overlap with HCC. We try to explain the possible
reasons for its aggravating HCC in terms of pathway overlap.
Two pathways of rifabutine (“Pathways in cancer” and “Prostate
cancer”) are overlapped with pathways of HCC highlighted in
Table 6. The interactions between the pathways and the 12 tissue-
specific pathways of HCC is shown in Figure 6. Two overlapping
pathway nodes are colored in two colors (purple and green)
in Figure 6. We find the pathways of rifabutine have a very

large number of overlapping genes with the pathways of HCC.

This shows a strong correlation between rifabutine and HCC,
confirming our prediction on the other hand.

DISCUSSIONS

We propose a method based on the combination of gene
mutation data and differential expression data. First, we select the
feature genes of hepatocellular carcinoma (HCC) that frequently
mutated in most samples of HCC based on human somatic
mutation data. Then, the gene expression data of HCC in TCGA
are combined to classify the genes related to HCC. Finally, the
therapeutic score (TS) of each drug is calculated based on the
kolmogorov-smirnov statistical method. By this method, five
drugs associated with HCC are obtained, including three drugs
that could be the potential treatment for HCC and two drugs
that might have side effect on HCC. There are advantages in
our method. First, we take into account the essential impact of
genetic changes on HCC. Secondly, we integrate multiple data
to define the type of a gene. Finally, our method can clearly
distinguish positive and negative relationships between drugs
and HCC.

In the future, as more and more drug-related data continues
to be generated, such as cell lines, gene expression and mutation
data, we will further improve our computational model and
predict more accurate potential drugs for the treatment of HCC.
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Meta-analysis, which combines the results of multiple studies, is an important analytical
method in genome-wide association studies. In genome-wide association studies
practice, studies employing meta-analysis may have overlapping data, which could
yield false positive results. Recent studies have proposed models to handle the issue of
overlapping data when testing the genetic main effect of single nucleotide polymorphism.
However, there is still no meta-analysis method for testing gene-environment interaction
when overlapping data exist. Inspired by the methods of testing the main effect of gene
with overlapping data, we proposed an overlapping meta-regulation method to address
the issue in testing the gene-environment interaction. We generalized the covariance
matrices of the regular meta-regression model by employing Lin’s and Han’s correlation
structures to incorporate the correlations introduced by the overlapping data. Based on
our proposed models, we further provided statistical significance tests of the gene-
environment interaction as well as joint effects of the gene main effect and the interaction.
Through simulations, we examined type I errors and statistical powers of our proposed
methods at different levels of data overlap among studies. We demonstrated that our
method well controls the type I error and simultaneously achieves statistical power
comparable with the method that removes overlapping samples a priori before the
meta-analysis, i.e., the splitting method. On the other hand, ignoring overlapping data
will inflate the type I error. Unlike the splitting method that requires individual-level
genotype and phenotype data, our proposed method for testing gene-environment
interaction handles the issue of overlapping data effectively and statistically efficiently at
the meta-analysis level.

Keywords: meta-regression, meta-analysis, gene-environment interaction, overlapping data, correlation matrix
INTRODUCTION

Numerous associations between human traits or diseases and single nucleotide polymorphisms
(SNPs) have been identified by genome-wide association studies (GWAS) (Manolio, 2010). Meta-
analysis combines the results from multiple studies to increase the effective sample size and
statistical power of the association test (Fleiss, 1993; Borenstein et al., 2009). It has played an
important role in finding the genetic architectures of complex traits and diseases.
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Many meta-analysis methods are used in GWAS (Eleftheria
and John, 2009). The fixed effect model is a commonly used
method. It assumes that there are the same effect sizes across
different studies. This method is effective if the heterogeneity
among studies is small (Pfeiffer et al., 2009). Other methods, such
as random effect models, are used in GWAS as well. They assume
that the effect sizes of the studies follow a probability distribution
due to the heterogeneity (Pereira et al., 2009). Recently, we
proposed a new random effect method for testing the
interaction between SNP and environment factor, which
provides a higher power than the fixed effect methods when
heterogeneity is large (Jin and Shi, 2019). The P-value based
method (Fisher, 1967) was widely used earlier and has been
abandoned because it does not include directions of effects under
test; thus, it cannot provide an overall estimation of the effect
size. The application of this method may lead to false positive
results (Evangelou and Ioannidis, 2013). The Z scores method
considers the direction of effect and its weight is estimated as the
square root of the sample size of each study (Evangelou and
Ioannidis, 2013). Bayesian methods (Kraft and Haiman, 2010)
depend on the assumption of the prior distribution of the
parameters and are usually computationally intensive. The
subset method (Morris, 2011; Wen and Stephens, 2014) is
similar to the fixed effect methods; however, it assumes that
the effect exists only in a subset of the studies. All these classical
methods assume that the studies have no overlapping samples,
thus helping maintain independence among the summary
statistics of the studies.

However, in GWAS practice, overlapping data between
studies may occur. This may be caused inadvertently or
intentionally by researchers. Spurious association may be
achieved if overlapping data exist and are ignored in the meta-
analysis (Lin and Sullivan, 2009; Han et al., 2016). Recently,
meta-analysis methods, such as the P-value based method
(Zaykin and Kozbur, 2010), subset method (Bhattacharjee
et al., 2012), Bayesian method (Wen, 2014), fixed effect
method (Lin and Sullivan, 2009), and random effect methods
(Han and Eskin, 2011; Han et al., 2016) have been proposed for
handling the overlapping data issue. All existing methods are for
testing the SNP main effect. Lin’s method (Lin and Sullivan,
2009) is proposed for combining the results of case-control
studies. It has been shown to yield higher and more robust
power than the splitting method that removes the overlapped
data in studies before calculating the study-level summary
statistics. Han’s method (Han et al., 2016) involves modeling
the covariance matrix of the estimated effects due to the
overlapping data in fixed or random effect models and
transforming the covariance matrix to be diagonal. The
transformed matrix can then be synthesized by regular
methods that assume independent data among studies.

Meta-regression (MR) (Xu et al., 2013) is an efficient meta-
analysis method for testing SNP-environment interaction
assuming independent data among studies. In MR, subjects in
each study are divided into groups by the distribution of an
environment variable. Then, the SNP main effects, standard
errors, and the average environmental variables in each group
Frontiers in Genetics | www.frontiersin.org 2222
are estimated using linear or logistic regressions. The SNP main
effects and environmental variables across all groups are then
collected and synthesized by MR. The overall main effect of the
SNP, the effect of SNP-environment interaction, and the
corresponding standard errors can be derived. The MR
method is also shown to be robust when confounding effects
exist (Shi and Nehorai, 2017).

Many complex diseases or traits are owing to the combination
of effects of genetic factors, environment factors, and gene-
environment interactions and involve in complex regulatory
networks (Chen et al., 2019; Chen et al., 2019). Consider
CDKN2A/B-rs10811661 as an example, which is associated
with dyslipidemia. Researchers used CC/CT genotypes with a
low-energy diet and a high frequency of exercise as the control
group to study the effect of the interaction between rs10811661
gene polymorphism and energy intake and exercise on the level
of blood lipid. The study found that the incidence of
hypercholesterolemia was approximately 2 times higher in the
TT genotype than in the control group and 1.5 times higher in
the CC/CT genotype than in the control group (Mehramiz et al.,
2018). The analysis of the genes and environment interactions
can provide new insight into complex traits or disease
mechanisms. However, a meta-analysis of SNP-environment
interaction method with overlapping data does not exist
currently. Data have to be split in studies such that every study
contributes non-overlapped samples, i.e., the so-called splitting
method. The splitting method requires the study-level genotype
and phenotype data, which is usually unavailable for the meta-
analysis. In addition, different ways of splitting samples may lead
to different results.

In this paper, inspired by Lin’s method (Lin and Sullivan,
2009) and Han’s decoupling method (Han et al., 2016) for testing
the SNP main effect, and based on MR, we propose the
overlapping MR (OMR) method, which is a fixed effect MR
model designed especially for handling overlapping data. The
remainder of this paper is organized as follows: In the materials
and methods section, we present the correlation matrices for the
OMR method and then the method for testing the SNP-
environment interaction. We also provide the relationship
between MR and OMR. In the Results section, we simulate
numerical examples and use them to examine the type I error
and power of our method and the splitting method. We also
show that the type I error is inflated with regular MR without
considering overlapping samples. In the discussion and
conclusion sections, we discuss the results and conclude
the paper.
MATERIALS AND METHODS

Based on Lin’s and Han’s correlation structures (Lin and
Sullivan, 2009; Han et al., 2016), we generalized regular MR
model for independent studies to consider studies with
correlated summary statistics due to overlapping data. To
describe our method clearly, we first briefly introduce the
regular MR method.
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Regular MR Method
Before the MR analysis, individuals in each study are first
stratified into several groups according to their environmental
measurements. The main effects of SNP at the group level can be
estimated via linear regression as follows:

Y = b0 + bGG + bEE + ϵ,

where Y is a quantitative phenotype, G is the code of the SNP,
and E is the environmental measurement.

Assume that b̂ is the estimate of the SNP main effect, and b̂ ij 
is the estimate of the SNP main effect for the i-th study and the j-
th group where i= 1,2,…,n, j=1,2,…,ni, The symbol n is the
number of studies and ni denotes the number of groups in the i-
th study, and ê ij  denotes the standard error in the j-th group of
the i-th study. The mean environmental measurement in the j-th
group of the i-th study is Eij. a is the regression coefficient vector
of interest. The symbol X is the interest matrix and Xi is the
interest matrix for the i-th study. e is the standard error matrix
and the ei is the standard error matrix for i-th study. In MR, the
SNP effect is regressed on the environmental factor as follows:

b̂ = Xa + ϵ, (1)

where

b̂ =

b̂ 1

b̂ 2

⋮

b̂ n

0
BBBBB@
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⋮
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and ϵij eN(0, ê ij), i = 1, 2,…, n,   j = 1, 2,…, ni.
a and Cov(a) are estimated by (Xu et al., 2013; Shi and

Nehorai, 2017).

â = X0S−1X
� �−1X0S−1b̂

â 2 = 0, 1ð Þ â
Cov âð Þ = X0S−1X

� �−1
Cov âð Þ22= 0, 1ð Þ X0S−1X

� �−1 0

1

 ! (2)

Under the null hypothesis H0:a2=0, Wald statistic for testing
the SNP-environment interaction effect is â 2=Cov(â )22, which
follows a 1 degree of freedom (df) c2 distribution. Under the null
hypothesis of H0:a=0, the Wald statistic for testing joint effects of
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the SNP and the interaction is â
0
Cov(â )−1â , which follows a 2

df c2 distribution.
The model (1) can be specified as any nonlinear function of

the environmental variable as necessary. For example, to test
quadratic SNP-environment interaction, the model can be
formulated as

b̂ = XNaN + ϵN (3)

where

XN =

XN
1

XN
2

⋮

XN
n
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The Wald statistic then follows a 2 df c2 distribution when
testing the two interaction effects simultaneously. The Wald
statistic follows a 3 df c2 distribution for testing the SNP main
and interactions jointly (Xu et al., 2013).

Overlapping MR Method
Inspired by the methods for testing the SNP main effect with
overlapping data (Lin and Sullivan, 2009), based on regular MR,
we propose the OMR model for testing the SNP-environment
interaction when data among studies are overlapped.

We consider the kernel process for modeling the correlations
due to the overlapping data. Following Lin’s recommendation,
the covariance matrix under the correlated studies can be
modeled as follows (Lin and Sullivan, 2009):

W = S1=2CS1=2, (4)

where C is the correlation matrix. The dimensions of this matrix
C are related to the number of studies and the group number of
each study. The details of the correlation matrix will be presented
in the next section.

Alternatively, the variance covariance matrix can be
generalized according to Han’s suggestion as follows (Han
et al., 2016):

W = diag e0 S1=2CS1=2
� �−1� �−1

(5)

where e is a vector of ones whose length is the sum of the number
of groups among all studies. After this modification, the
correlation matrix becomes a diagonal matrix. This matrix is
highly likely to be positive semi-definite and the analysis of the
positive semi-definite matrix is similar to the condition of case-
control studies (Han et al., 2016).

Lin’s variance covariance matrix is equivalent to Han’s (Han
et al., 2016). The variance covariance matrix based on Han’s
formula (5) is more flexible. However, it is more computationally
intensive. The method of Lin is simple in its mathematical form
and calculation. In cases analyzing with existing programs that
require studies to be independent, Han’s method can be applied.

Correlation Matrices
Lin and Sullivan (2009) developed a correlation matrix C for
incorporating correlations among summary statistics of studies
due to the overlapping data. The correlation of studies i and j is
given as follows:
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gij ≈ nij=
ffiffiffiffiffiffiffiffi
ninj

p
, (6)

where ni and nj are the numbers of studies i and jrespectively,
and nij is the number of overlapped individuals between the i-th
and j-th studies.

When considering the MR method, this correlation can be
modeled as follows:

gihjk ≈ nihjk=
ffiffiffiffiffiffiffiffiffiffiffi
nihnjk

p
, (7)

where   nih and njk are the sample sizes of the h-th group of study
i and the k-th group of study j, and nihjk is the number of
overlapping samples between them. In this correlation structure,
the block matrix that corresponds to each study is an identity
matrix; that is, the diagonal block matrices of the correlation
matrix are all identity matrices.

Hypothesis Testing
With the introduced correlation matrix, linear unbiased
estimates â and Cov(â ) can be found as follows (Becker and
Wu, 2007):

â = X0W−1X
� �−1X0W−1b̂

â 2 = 0, 1ð Þâ
Cov âð Þ = X0W−1X

� �−1
Cov âð Þ22= 0, 1ð ÞCov âð Þ

0

1

 ! (8)

Under the null hypothesis a2=0, the Wald statistic for testing
the SNP-environment interaction effect is given as follows:

SI = a 2
2=Cov âð Þ22 (9)

This statistic follows a 1 df c2distribution.
Under null distribution a=0 the Wald statistics for testing the

SNP and the interaction joint effects are given as follows:

SJ = â 2=Cov âð Þ (10)

which follows a 2 df c2 distribution.
OMR method can also be extended to test nonlinear SNP-

environment interaction for overlapping method. This process is
similar with model (1), the Wald statistic for the test of SNP-
environment interaction and quadratic SNP-environment
interaction follows a 2 df c2 distribution. The Wald statistic for
testing the SNP, SNP-environment interaction, and quadratic
SNP-environment interaction interactions jointly follows a 3 df
c2 distribution.

As can be seen, our models are generalized versions of the
regular MR. When the data of studies are independent,
correlation matrix C is an identity matrix, and the two
covariance matrices become

W = S
1
2CS

1
2 = S (11)

and

W = diag e0 S1=2CS1=2
� �−1� �−1

= S (12)

In this case, the covariance matrix is identical to that of the
regular MR.
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RESULTS

We evaluated the type I error to ensure that the false positive rate
is appropriately controlled by our proposed OMR method when
overlapping data exist, that is, whether the empirical type I error
rate is close to the specified level. We compared our method with
the splitting method and regular MR method, which did not
consider overlapping data. The power was then compared at
different levels of sample overlap. We considered two scenarios
where there were 100 and 400 overlapping subjects between
every two studies.

Simulation
The quantitative phenotype Ywas simulated as being related toG
and E, which were the genotypes of the SNP and environment
variables, respectively. The simulation model representing this
relationship is given as follows:

Y = bGG + bG�EG� E + bEE + ϵ

Here, the SNP was assumed to have an additive genetic effect;
the minor allele frequency was 0.3, and G was the code of SNP,
which was the number of minor alleles. We generated random
numbers by the runif function in R, then the values of G are
determined by which intervals the random numbers fall into, and
the intervals are determined by genotype frequency. Variable E
was normally distributed, E~N(0,1). 10% of the variation in Y
was explained by bEE. The fixed effects bG and bG×E varied in our
simulated datasets. The random error e was normally distributed
with zero mean and its variance was chosen such that phenotypic
variance is unit. The environment variable and error term were
generated by the rnorm function in R. In all our numerical
experiments, we considered meta-analyses of data from 2, 3, 4, 5,
and 6 studies, each of which had 1,000 unrelated individuals. In
each study, we simulated three variables: the phenotype Y,
environmental E, and genotype SNP. Across studies, there
were 100 or 400 overlapping samples between any two studies.
Under each simulation setup, data were generated with
1,000 replicates.

We divided 1,000 unrelated individuals in each study into five
groups according to the distribution of E, before meta-analyses.
In each group, we applied linear regression to estimate the main
effects bG, its corresponding error e, and the mean environment
variable E. Meta-analysis were performed with 2, 3, 4, 5, and
6 studies.

Type I Error
To obtain the type I error of the interaction test, the effect of the
SNP-environment interaction was set to be zero and the SNP
main effect explained 0.5% variance of the trait variance. The
empirical type I error of our method was calculated by
transforming the covariance matrix with overlapping data into
a diagonal matrix and then using regular MR. Under this
simulation, the test of empirical type I error of our method
followed a 1 df distribution. The empirical type I error of the
splitting method with two studies was estimated by removing
100 or 400 overlapping subjects of study 1, and the data in study
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2 were left unchanged. The empirical type I error of the splitting
data method with 3, 4, 5, and 6 studies was estimated by
discarding 100 or 400 overlapped subjects from each study.
Figures 1A, B show the type I error rates of 2, 3, 4, 5, and 6
studies in the test of SNP-environment interaction with 100 and
400 overlapping subjects, respectively. We can see that both our
method and the splitting data method yielded type I error results
close to the specified 0.05 level. The regular MR method, which
did not consider overlapping data, yielded inflated type I error
rates. The greater the overlap, the more the inflation was.

To calculate the type I error rates of the joint test of the SNP
main effect and the interaction, we set both the SNP and the
SNP-environment interaction effects to be zeros. The Wald test
statistics followed a 2 df c2distribution. Figures 1C, D show the
type I errors of the joint test under the null hypotheses. We can
also see that the results of the two methods were around 0.05 as
well; thus, both our OMR method and splitting method treated
the overlapping data appropriately. The regular MR method in
Frontiers in Genetics | www.frontiersin.org 5225
the joint test yielded a higher type I error than in the interaction
test because it included more information on overlapping data.

In real meta-analysis, sample sizes of studies vary and
percentages of overlapping may be different for studies. Here,
we set the sample sizes of the 6 studies as (1,000, 1,200, 1,400,
1,600, 1,800, 2,000). Let the effect of the SNP-environment
interaction to be zero and the SNP main effect explained 0.5%
of trait variance. Type I errors of testing the SNP-environment
interaction are shown in Figures 2A, B, which represent results
of testing the interaction with 100 and 400 overlapping
individuals in each study, respectively. Setting both the SNP
and the SNP-environment interaction effects to be zeros, we
conducted joint tests for SNP and SNP-environment interaction.
Figures 2C, D show type I errors of the joint test with 100 and
400 overlapping individuals, respectively. As the results in
Figure 1, OMR and the splitting method control type I errors
as expected, while inflated type I errors can be observed for the
regular MR.
FIGURE 1 | Type I error of testing SNP-environment interaction and jointly testing SNP main effect and the interaction. (A, B) are type I errors of the interaction test
with 100 and 400 overlapping data, respectively. (C, D) are type I errors of the joint test with 100 and 400 overlapping data, respectively. Solid line with crosses is
type I errors of the splitting method with 2, 3, 4, 5, and 6 studies. Solid line with filled squares is type I errors of OMR method with 2, 3, 4, 5, and 6 studies. Solid line
with filled triangles is type I errors of the regular MR with 2, 3, 4, 5, and 6 studies when overlapping data is ignored.
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Power
To compare the statistical power of testing the SNP-environment
interaction, both SNP-environment and SNP effects explained
0.5% variance of the trait variance. In this simulation, statistical
significance was determined by the P values of the tests, which
were smaller than 0.05. The empirical power was obtained by
calculating the proportion of the significant results in 1,000
replicates. The P values were calculated using the Wald test
(9), which followed a 1 df c2 distribution. Figures 3A, B show the
power of the SNP-environment interaction with overlapping
data of 100 and 400, respectively. We can see that our method
yields similar results to those of the splitting method. Note that
our method does not require the study-level genotype or
phenotype data, which is its major advantage.

In the joint test of the SNP main effect and the SNP-
environment interaction effect, both SNP-environment and SNP
effects explained 0.5% variance of the trait variance. In this
Frontiers in Genetics | www.frontiersin.org 6226
simulation, the P values were again calculated using the Wald test
(10) following a 2 df c2 distribution. Figures 3C, D show the powers
of the joint test with 100 and 400 overlapping samples, respectively.
We compared our method with the splitting method. These results
are similar to those from the SNP-environment interaction test;
however, the joint test yielded higher power than the interaction
test. This is because the joint test included more effects than the
SNP-environment interaction test (Kraft et al., 2007).

For studies with unequal sample sizes (1,000, 1,200, 1,400,
1,600, 1,800, 2,000), power of testing the SNP-environment
interaction and power of the joint test for the SNP and the
interaction are presented in Figure 4. Effects of the SNP and the
interaction are the same as those in previous example. We can
see that powers in Figure 4 demonstrate similar patterns as those
in Figure 3, whereas the former are in general larger than the
latter. This is because that total sample size employed in Figure 4
is larger than that in Figure 3.
FIGURE 2 | Type I error of testing SNP-environment interaction and jointly testing SNP main effect and the interaction with 6 studies of 1,000, 1,200, 1,400, 1,600,
1,800, 2,000 individuals, respectively. (A, B) are type I errors of the interaction test with100 and 400 overlapping data, respectively. (C, D) are type I errors of the
joint test with 100 and 400 overlapping data, respectively. Solid line with crosses is type I errors of the splitting method with 2, 3, 4, 5, and 6 studies. Solid line with
filled squares is type I errors of OMR method with 2, 3, 4, 5, and 6 studies. Solid line with filled triangles is type I errors of the regular MR with 2, 3, 4, 5, and 6
studies when overlapping data is ignored.
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In GWAS, it is a common phenomenon that effects of the
SNP and SNP-environment interaction may have different
directions. Here, we consider the scenario that both the SNP
and the interaction explained 0.5% variance of the trait variance
but the directions of their effects are opposite. As in the previous
example, we tested the SNP-environment interaction as well as
joint effects of the SNP and the interaction. Figures 5A, B show
powers of the interaction test with 100 and 400 overlapping
samples. Figures 5C, D present powers of joint test with 100 and
400 overlapping samples. Compared with the results in Figure 3,
whose effects of the SNP and interaction have the same direction,
we can see that the powers of the two tests are about the same in
the two scenarios.

Finally, we added simulation for nonlinear SNP-environment
interaction when testing the effect of SNP-environment interaction
and the joint effects of SNP and SNP-environment. Both the effect of
Frontiers in Genetics | www.frontiersin.org 7227
SNP and the effect of SNP-environment interaction explained 0.5%
variance of the trait variance, the effect of nonlinear SNP-
environment interaction explained 0.05% variance of the trait
variance. We compared the model considering nonlinear SNP-
environment as in (Xu et al., 2013). with the model not
considering nonlinear SNP-environment. Figures 6A, B show the
results of this comparison with 100 and 400 overlapping individuals
for the test of interaction respectively, in each of the two figures, we
can see that the two lines we compared present similar results. From
Figures 6C, D we can see that the powers under the model
considering nonlinear SNP-environment are lower than that not
considering with 100 and 400 overlapping individuals for the joint
test respectively. That is because the column variables in X are not an
orthonormal basis when considering nonlinear interaction. The
nonlinear interaction enters the model as part of the SNP main
effect (Xu et al., 2013).
FIGURE 3 | Statistical power of testing SNP-environment interaction and jointly testing SNP main effect and the interaction. (A, B) are statistical powers of the
interaction test with 100 and 400 overlapping data, respectively. (C, D) are statistical powers of the joint test with 100 and 400 overlapping data, respectively. Solid
line with crosses is powers of the splitting method with 2, 3, 4, 5, and 6 studies. Solid line with filled squares is powers of the OMR method with 2, 3, 4, 5, and
6 studies.
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DISCUSSION

SNP may indeed interact with E nonlinearly in real biological
process. In this case, regressing the main effect of SNP on E linearly
involved model mis-specification. On the other hand, such linear
regression can hopefully capture a portion of the main effect. In this
case, we can employ Hermite polynomials to the nonlinear
interaction model to avoid this phenomenon (Xu et al., 2013).

The sample sizes of studies vary in real meta-analysis. As
explained in the reference (Manning et al., 2011), there are 561
individuals in the FamHS Study, 1,661 in the HealthABC Study,
2,854 in the CHS Study, 8,367 in the ARIC Study, 6,023 in the
FHS Study, which gives a total sample size of 19,946. For
methodological evaluations, the authors of (Manning et al.,
2011) chose to simulate five studies each of 1,000 individuals.
In our work, we also adopted a relatively moderate sample size
1,000 to verify the effectiveness of our method. In the revised
Frontiers in Genetics | www.frontiersin.org 8228
manuscript, we conducted additional simulations to have studies
with different sample sizes to evaluate the sensitivity to the
unbalanced sample sizes among studies.

When testing the SNP main effect, the splitting method for
case-control studies was reported to yield a lower power than Lin’s
method, which is because the studies share common controls (Lin
and Sullivan, 2009). Splitting these studies such that every subject
contributes only once leads to a dramatic decrease in the effective
sample size. Our simulation examples based on cohort studies
yielded slightly less power than the splitting method because the
overlapping structure in our examples differed from that in the
case-control studies. The splitting method in the cohort studies
drops less data than in case-control studies, so the power loss due
to splitting the data is smaller.

Our method is based on the MR in which one divides the
studies into several groups according to the environmental
variable. Thus, when calculating the correlation matrix, we
FIGURE 4 | Statistical power of testing SNP-environment interaction and jointly testing SNP main effect and the interaction with 6 studies of 1,000, 1,200, 1,400,
1,600, 1,800, 2,000 individuals, respectively. (A, B) are statistical powers of the interaction test with 100 and 400 overlapping data, respectively. (C, D) are statistical
powers of the joint test with 100 and 400 overlapping data, respectively. Solid line with crosses is powers of the splitting method with 2, 3, 4, 5, and 6 studies. Solid
line with filled squares is powers of the OMR method with 2, 3, 4, 5, and 6 studies.
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must consider both the number of overlapping data among
studies and the number of overlapping data among groups.
When the overlaps among groups are unavailable and the data
overlap is independent of the environment variable, the overlaps
between two groups can be estimated by the overlaps between
their studies and the sample proportions of the groups in the two
studies. In either case, our method does not require individual-
level data as the splitting method does.

To the best of our knowledge, there is still no meta-analysis
method for testing SNP-environment interaction with overlapping
data among studies. Our OMR method was generalized from
regular MR. When evaluating our proposed OMR method, we
compared our method with the splitting method and regular MR.
Figure 1 indicates that regularMR yielded inflated type I error rates;
the more the amount of overlapping data, the higher the amount of
inflation. On the other hand, our OMRmethod controlled the type I
error rates appropriately. Therefore, regular MR is unsuitable for
studies that have overlapping data.
Frontiers in Genetics | www.frontiersin.org 9229
CONCLUSION

In this paper, we generalized the regular MR model to OMR by
incorporating correlations among studies due to the overlapping
data. We proposed a test for the SNP-environment interaction as
well as a joint test for the SNP and the interaction under the
OMR framework. The two test were compared with the splitting
method in terms of their type I error rate and statistical power.
Through simulation, we demonstrated that our method yielded
comparative power with respect to the splitting method and the
type I error rate of the regular MR is inflated when overlapping
data are ignored. We also evaluated our OMR method with
unequal sample sizes among studies, opposite directions of the
SNP effect and the interaction effect, and assessed the robustness
of our method when nonlinear interaction effect exists. Our
method does not require individual-level genotype and
phenotype data, which overcomes the major limitation of the
splitting method. In GWAS practice, our OMR method can be
FIGURE 5 | Statistical power of testing SNP-environment interaction and jointly testing SNP main effect and the interaction with opposite directions for the effects of
the SNP and the SNP-environment interaction. (A, B) are statistical powers of the interaction test with 100 and 400 overlapping data, respectively. (C, D) are
statistical powers of the joint test with 100 and 400 overlapping data, respectively. Solid line with crosses is powers of the splitting method with 2, 3, 4, 5, and 6
studies. Solid line with filled squares is powers of the OMR method with 2, 3, 4, 5, and 6 studies.
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used to control false positive results when the studies with
overlapping individuals are included in the meta-analysis, thus
improve the probability of finding genuine associations.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.
AUTHOR CONTRIBUTIONS

QJ: conceived the concept, designed and conducted the
simulation studies, and drafted the manuscript. GS: conceived
Frontiers in Genetics | www.frontiersin.org 10230
the concept, supervised the work, and reviewed and revised
the manuscript.
FUNDING

This work was supported by the National Thousand Youth
Talents Plan.
ACKNOWLEDGMENTS

This work has been accepted by the Fourth China Computer
Federation Bioinformatics conference (CBC2019) which was held
in Guangzhou, 23–25 August 2019. The authors want to thank for
the helpful comments from anonymous reviewers of CBC2019.
FIGURE 6 | Statistical power of testing SNP-environment interaction and jointly testing SNP main effect and the interaction with nonlinear SNP-environment
interaction effect. (A, B) are statistical powers of the interaction test with 100 and 400 overlapping data, respectively. (C, D) are statistical powers of the joint test
with 100 and 400 overlapping data, respectively. Solid line with filled squares shows powers of OMR when nonlinear interaction effect was considered in the model.
Solid line with filled triangles is powers of the OMR when nonlinear interaction effect was not considered in the model.
January 2020 | Volume 10 | Article 1400

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Jin and Shi Method for Overlapping Data
REFERENCES

Becker, B. J., and Wu, M. J. (2007). The synthesis of regression slopes in meta-
analysis. StatSci 22 (3), 414–429. doi: 10.1214/07-STS243

Bhattacharjee, S., Rajaraman, P., Jacobs, K. B., Wheeler, W. A., Melin, B. S.,
Hartge, P., et al. (2012). A subset-based approach improves power and
interpretation for the combined analysis of genetic association studies of
heterogeneous traits. Am. J. Hum. Genet. 90 (5), 821–835. doi: 10.1016/
j.ajhg.2012.03.015

Borenstein, M., Hedges, L. V., Higgins, J. P. T., and Rothstein, H. R. (2009).
Introduction to meta-analysis (Chichester: John Wiley & Sons.Ltd).

Chen, J., Peng, H., Han, G., Cai, H., and Cai, J. (2019). HOGMMNC: a higher
order graph matching with multiple network constraints model for gene-drug
regulatory modules identification. Bioinformatics 35 (4), 602–610. doi:
10.1093/bioinformatics/bty662

Chen, J., Han, G., Xu, A., and Cai, H. (2019). Identification of multidimensional
regulatory modules through multi-graph matching with network constraints.
IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2927157

Eleftheria, Z., and John, P. A. I. (2009). Meta-analysis in genome-wide association
studies. Pharmacogenomics 10 (2), 191–201. doi: 10.2217/14622416.10.2.191

Evangelou, E., and Ioannidis, J. P. (2013). Meta-analysis methods for genome-wide
association studies and beyond. 14 (6), 379–89. Nat. Rev. Genet. doi: 10.1038/
nrg3472

Fisher, R. A. (1967). Statistical methods for researchworkers (Edinburgh:
Oliver&Boyd ).

Fleiss, J. (1993). The statistical basis of meta-analysis. Stat. Methods Med. Res. 2
(2), 121–145. doi: 10.1177/096228029300200202

Han, B., and Eskin, E. (2011). Random-effects model aimed at discovering
associations in meta-analysis of genome-wide association studies. Am. J.
Hum. Genet. 88 (5), 586–598. doi: 10.1016/j.ajhg

Han, B., Duong, D., Sul, J. H., de Bakker, P. I., Eskin, E., and Raychaudhuri, S.
(2016). A general framework for meta-analyzing dependent studies with
overlapping subjects in association mapping. Hum. Mol. Genet. 25 (9),
1857–1866. doi: 10.1093/hmg/ddw049

Jin, Q., and Shi, G. (2019). Meta-analysis of SNP-environment interaction with
heterogeneity. Hum. Hered. doi: 10.1159/000504170

Kraft, P., and Haiman, C. A. (2010). GWAS identifies a common breast cancer risk
allele amongBRCA1 carriers.Nat.Genet. 42 (10), 819–820. doi: 10.1038/ng1010-819

Kraft, P., Yen, Y. C., Stram, D. O., Morrison, J., and Gauderman, W. J. (2007).
Exploiting gene-environment interaction to detect genetic associations. Hum.
Hered. 63 (2), 111–119. doi: 10.1159/000099183

Lin, D. Y., and Sullivan, P. F. (2009). Meta-analysis of genome-wide association
studies with overlapping subjects. Am. J. Hum. Genet. 85 (6), 862–872. doi:
10.1016/j.ajhg.2009.11.001
Frontiers in Genetics | www.frontiersin.org 11231
Manning, A. K., LaValley, M., Liu, C. T., Rice, K., An, P., Liu, Y., et al. (2011).
Meta-analysis of gene-environment interaction: joint estimation of SNP and
SNP×environment regression coefficients. Genet. Epidemiol. 35 (1), 11–18. doi:
10.1002/gepi.20546

Manolio, T. A. (2010). Genome-wide association studies and assessment of the
risk of disease. N. Engl. J. Med. 363 (2), 166–176. doi: 10.1056/NEJMra0905980

Mehramiz, M., Ghasemi, F., Esmaily, H., Tayefi, M., Hassanian, S. M., Sadeghzade, M.,
et al. (2018). Interaction between a variant of CDKN2A/B-gene with lifestyle factors
in determining dyslipidemia and estimated cardiovascular risk: a step toward
personalized nutrition. ClinNutr. 37 (1), 254–261. doi: 10.1016/j.clnu.2016.12.018

Morris, A. P. (2011). Transethnic meta-analysis of genomewide association
studies. Genet. Epidemiol. 35 (8), 809–822. doi: 10.1002/gepi.20630

Pereira, T. V., Patsopoulos, N. A., Salanti, G., and Ioannidis, J. P. (2009). Discovery
properties of genome-wide association signals from cumulatively combined
data sets. AM. J. Epidemiol. 170 (10), 1197–1206. doi: 10.1093/aje/kwp262

Pfeiffer, R. M., Mitchell, H. G., and Pee, D. (2009). On combining data from
genome-wide association studies to discover disease-associated SNPs. Statist.
Sci. 24 (4), 547–560. doi: 10.1214/09-STS286

Shi, G., and Nehorai, A. (2017). Robustness of meta-analyses in finding gene ×
environment interactions. PLoS One 12 (3), e0171446. doi: 10.1371/
journal.pone.0171446

Wen, X., and Stephens, M. (2014). Bayesian methods for genetic association
analysis with heterogeneous subgroups: from meta-analyses to gene-
environment interactions. Ann. Appl. Stat. 8 (1), 176–203. doi: 10.1214/13-
AOAS695

Wen, X. (2014). Bayesian model selection in complex linear systems, as illustrated
in genetic association studies. Biometrics 70 (1), 73–83. doi: 10.1111/
biom.12112

Xu, X., Shi, G., and Nehorai, A. (2013). Meta-regression of gene-environment
interaction in genome-wide association studies. IEEE Trans. Nanobiosci. 12 (4),
354–362. doi: 10.1109/TNB.2013.2294331

Zaykin, D. V., and Kozbur, D. O. (2010). P-value based analysis for shared controls
design in genome-wide association studies. Genet. Epidemiol. 34 (7), 725–738.
doi: 10.1002/gepi.20536

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Jin and Shi. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or repro-
duction is permitted which does not comply with these terms.
January 2020 | Volume 10 | Article 1400

https://doi.org/10.1214/07-STS243
https://doi.org/10.1016/j.ajhg.2012.03.015
https://doi.org/10.1016/j.ajhg.2012.03.015
https://doi.org/10.1093/bioinformatics/bty662
https://doi.org/10.1109/TBME.2019.2927157
https://doi.org/10.2217/14622416.10.2.191
https://doi.org/10.1038/nrg3472
https://doi.org/10.1038/nrg3472
https://doi.org/10.1177/096228029300200202
https://doi.org/10.1016/j.ajhg
https://doi.org/10.1093/hmg/ddw049
https://doi.org/10.1159/000504170
https://doi.org/10.1038/ng1010-819
https://doi.org/10.1159/000099183
https://doi.org/10.1016/j.ajhg.2009.11.001
https://doi.org/10.1002/gepi.20546
https://doi.org/10.1056/NEJMra0905980
https://doi.org/10.1016/j.clnu.2016.12.018
https://doi.org/10.1002/gepi.20630
https://doi.org/10.1093/aje/kwp262
https://doi.org/10.1214/09-STS286
https://doi.org/10.1371/journal.pone.0171446
https://doi.org/10.1371/journal.pone.0171446
https://doi.org/10.1214/13-AOAS695
https://doi.org/10.1214/13-AOAS695
https://doi.org/10.1111/biom.12112
https://doi.org/10.1111/biom.12112
https://doi.org/10.1109/TNB.2013.2294331
https://doi.org/10.1002/gepi.20536
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Frontiers in Genetics | www.frontiersin.org

Edited by:
Quan Zou,

University of Electronic Science and
Technology of China, China

Reviewed by:
Xingpeng Jiang,

Central China Normal University,
China

Cuncong Zhong,
University of Kansas, United States

*Correspondence:
Min Li

limin@mail.csu.edu.cn

Specialty section:
This article was submitted to

Bioinformatics and
Computational Biology,
a section of the journal
Frontiers in Genetics

Received: 23 October 2019
Accepted: 20 December 2019
Published: 31 January 2020

Citation:
Tang L, Li M, Wu F-X, Pan Y and

Wang J (2020) MAC: Merging
Assemblies by Using Adjacency

Algebraic Model and Classification.
Front. Genet. 10:1396.

doi: 10.3389/fgene.2019.01396

METHODS
published: 31 January 2020

doi: 10.3389/fgene.2019.01396
MAC: Merging Assemblies by Using
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With the generation of a large amount of sequencing data, different assemblers have
emerged to perform de novo genome assembly. As a single strategy is hard to fit various
biases of datasets, none of these tools outperforms the others on all species. The process
of assembly reconciliation is to merge multiple assemblies and generate a high-quality
consensus assembly. Several assembly reconciliation tools have been proposed.
However, the existing reconciliation tools cannot produce a merged assembly which
has better contiguity and contains less errors simultaneously, and the results of these tools
usually depend on the ranking of input assemblies. In this study, we propose a novel
assembly reconciliation tool MAC, which merges assemblies by using the adjacency
algebraic model and classification. In order to solve the problem of uneven sequencing
depth and sequencing errors, MAC identifies consensus blocks between contig sets to
construct an adjacency graph. To solve the problem of repetitive region, MAC employs
classification to optimize the adjacency algebraic model. What’s more, MAC designs an
overall scoring function to solve the problem of unknown ranking of input assembly sets.
The experimental results from four species of GAGE-B demonstrate that MAC
outperforms other assembly reconciliation tools.

Keywords: adjacency algebraic model, contig classification, contig reconciliation, de novo assembly,
next-generation sequencing
INTRODUCTION

Next-generation sequencing technologies (NGS) offer a large volume of short sequences with relatively
short insert size compared to the traditional Sanger sequencing technology and the third generation
sequencing technologies, e.g., Pacific Biosciences (Eid et al., 2009) and Oxford Nanopore (Clarke et al.,
2009). Although considerable third generation sequencing data has been produced, due to the higher
cost per base and higher sequencing errors, NGS sequencing data still plays an important role in tackling
an increasing list of biological problems. The de novo genome assembly is a fundamental process for
computational biology (Schatz et al., 2010), which drives the generation of many assemblers to complete
the construction of genome sequences, such as Velvet (Zerbino and Birney, 2008), ABySS (Simpson et al.,
2009), ALLPATHS- LG (Gnerre and Jaffe, 2011), SOAPdenovo (Li et al., 2010), EPGA2(Luo et al., 2015),
Miniasm (Li, 2015), BOSS (Luo et al., 2017), SCOP (Li et al., 2018a), ARC (Liao et al., 2018), iLSLS
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(Li et al., 2018b), MEC (Wu et al., 2017), EPGA-SC (Liao et al.,
2019a), PE-Trimmer (Liao et al., 2019b), and so on.

However, there is no single assembler that could perform
optimal ly in every qual i ty metr ic , which has been
demonstrated repeatedly (Earl et al., 2011; Salzberg et al.,
2012; Bradnam et al., 2013). The situation is caused by
various factors: (1) Assembly algorithms are mainly based on
overlap-layout-consensus graphs or de Bruijn graphs, these
two types of algorithms use different strategies to deal with
errors, inconsistencies, and ambiguities; (2) NGS genome
assemblies suffer from long repeats and duplications, which
is the primary reason why some assemblers outperform others
in specific regions and specific species (Alkan et al., 2010); (3)
the uneven sequencing coverage of NGS data increases the
complexity of assembly, which makes the parameters having
great influence on the assembly results, such as k-mer size; (4)
the sequencing errors and chimeric reads cause direct
assembly mistakes. Besides, different sequencing platforms
usually introduce different bias (Harismendy et al., 2009), so
the assemblies generated by various platforms may present
different features, and there is usually complementarity
between them (Diguistini et al., 2009). Thus, it is appealing
merging different assemblies to generate a high-quality
assembly by using complementary, which is first proposed by
Zimin et al., called assembly reconciliation. The main goal of
assembly reconciliation is to increase the contiguity of
assembly results while reducing (or at least not increasing)
the errors in assembly.

Many assembly reconciliation algorithms have been
proposed, for some earlier ones, such as Reconciliator (Zimin
et al., 2005) and GAM (Casagrande et al., 2009). Reconciliator
detects apparent errors in the assembly, and then the error
regions are modified by using the alternative draft assembly,
through which the gaps between sequences are reduced. GAM
defined supercontig to facilitate the integration, which takes two
assemblies as input, and regards the former one as reference. For
some reference-based algorithms, such as eRGA (Francesco
et al., 2011), RAGOUT (Kolmogorov et al., 2014), and MAIA
(Nijkamp et al., 2010), if there is no corresponding reference or
relative reference genome, they cannot work properly, so we
don’t discuss these methods here. The algorithm CISA is used to
integrate the assemblies of bacterial genome in the four major
phases (Lin and Liao, 2013). Firstly, CISA extracts the largest
contig as a representative contig, and aligns the remaining
contigs to the representative coting, then conducts extension
with the contig whose alignment rate is more than 80%. This step
is repeated iteratively until there is no representative contig
found. Secondly, CISA identifies two types of misassemble
contigs: for the misjoined error, CISA removes the contig; for
the insertion error, CISA splits the contig. Thirdly, CISA merges
contigs which have at least 30% overlap, and also estimates the
size of repeats. Finally, if the overlap between two contigs is
greater than the maximum size of repeats, CISA merges the
contigs. CISA could be used to merge more than two assemblies.

The objective of GAA is to generate an accordance assembly
from two or more large genome assemblies (Yao et al., 2012).
Frontiers in Genetics | www.frontiersin.org 2233
GAA takes a target assembly and a query assembly as input,
then uses BLAT aligner (Kent, 2002) to align the query
assembly to target assembly. The high scoring matches are
used to construct the accordance graph, GAA finds the
maximal sub-paths from the graph, and the gaps can be
divided into two types, between contigs and inside contigs.
For the gaps between contigs, GAA compares the observed
value and expected value of gap size, then decides whether to
merge two contigs. For the gaps inside contigs, a compression-
expansion(CE) statistic module (Zimin et al., 2005) is used to
evaluate the gap regions. The 454 and Illumina de novo
assemblies are used to examine the performance of GAA.

GAM-NGS (Vicedomini et al., 2013) is the updated version of
GAM, GAM-NGS can be used on all NGS-based assemblies,
especially for eukaryote genomes. Two assemblies and a SAM
alignment file are taken as input, GAM-NGS first searches the
mapping file to identify highly similar fragments between two
assemblies, which is called “blocks”, then a graph is used to record
and weight the information of blocks, and the conflicts are resolved
in the graph. A semi-global alignment between contigs is computed
by GAM-NGS, and two contigs are merged if the identity between
them is larger than 95%. The CE statistic module (Zimin et al., 2005)
is used to choose which assembly can be merged.

The main purpose of MIX (Soueidan et al., 2013) is to reduce
both the fragmentation of contig sets and reduce the time
consumption of genome finishing. MIX builds an extension
graph where vertices represent the terminals of contigs, and
the edges represent the alignment situation between contigs.
MIX attempts to solve the maximal independent longest path set,
which is NP-hard. The performance of algorithm is evaluated on
the GAGE-B (Tanja et al., 2013) bacterial dataset.

Metassembly (Wences and Schatz, 2015) merges all the
input assemblies into a final one, which is better than or as
good as the original assemblies. Metassembly regards one of
the inputs as a “primary” assembly, then the others are
“secondary” assemblies, the secondary assemblies are used to
add useful information to the primary assembly. A pairwise
algorithm is used to merge multiple assemblies, the
primary assembly is aligned to the secondary assembly, and
the best aligned position can be evaluated by LIS (longest
increasing subsequence) function. The CE statistic (Zimin
et al., 2005) is used to assess the conflicts and select the
locally best sequence.

In general, most of the methods described above are based
on the CE statistic (Zimin et al., 2005), which is used to detect
compression or expansion misassemblies between two input
assemblies. However, the CE statistic is obtained by aligning
paired-end or mate-pair reads to the assembly, which is
impacted by the alignment quality and the false positive
within error detection leads to the misassembly directly. In
addition, most of the current reconciliation tools are designed
for merging short sequences (<100bp), like CISA and GAM-
NGS, which performed poorly in merging longer sequences
(>200bp). Therefore, there is an urgent require for the robust
reconciliation tool to increase the length and quality of
assembly, as well as adapt to longer sequencing data.
January 2020 | Volume 10 | Article 1396
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In this study, we propose a novel assembly reconciliation tool,
namedMAC, which uses alignment information and GC-content of
paired-end reads to classify all the contigs into two types. Then,
consensus blocks between contig sets are identified, and the
unreliable fragments caused by uneven sequencing depth or
sequencing errors could be filtered out. In addition, MAC utilizes
the adjacency algebraic model to facilitate the merging process, in
which the adjacent graph is used to fulfill accurate fusions between
consensus blocks. The classification result of contigs is used to
optimize the model, and the repetitive regions could be eliminated
by splitting contigs and reconstructing the adjacent graph. What’s
more, an overall scoring function is proposed to solve the problem of
unknown ranking of input assemblies, the scoring function evaluates
the overall quality of assembly sets by alignment quality and coverage
information. The experimental results from the datasets of GAGE-B
demonstrate that MAC performs better than other
reconciliation tools.
METHOD

MAC employs the adjacency algebraic model (Sankoff et al.,
2000) and the classification to merge assemblies. The
identification of consensus blocks is to filter out the unreliable
fragments caused by uneven sequencing depth and sequencing
errors; the addition of classification is to optimize the adjacency
algebraic model and eliminate the influence of repetitive regions.
The outline for the whole algorithm is as follows: (1)
Preprocessing: MAC aligns paired-end/mate-pair reads to
contig sets, and filters out the low-quality alignment; (2)
Ranking input assemblies: MAC designs an overall scoring
function to rank the input assemblies; (3) Classifying contigs:
MAC utilizes the alignment results and GC-content of paired
reads to classify contigs; (4) Adopting the adjacent algebraic
model: MAC constructs an adjacent graph to fulfill some
accurate fusions of consensus blocks, then uses classification
results of contigs to optimize the remaining processing steps. The
flowchart of MAC algorithm is shown in Figure 1.

Preprocessing
MAC takes multiple contig sets and paired-end/mate-pair reads
as input, the aligner Bowtie2 needs to be installed in advance.
The input reads are aligned to each contig set, respectively. For
reads aligning to multiple positions, MAC only maintains the
highest score alignment for each read, and removes the
redundant alignments. According to the paper of Luo et al.,
the length of insert size follows a normal distribution N (mis, sis),
so the distance between two paired reads, which align to the same
contig, should be in the range of [mis– 3*sis, mis+ 3*sis]. For the
reads which violate this rule, MAC removes the corresponding
alignment. To reduce the impact of sequencing errors, MAC
extracts the sequencing quality of every base in reads, and
calculates the average and standard deviation of sequencing
quality for the remaining alignment, denoted by Mq and sra,
respectively. Let Qi represent the mean value of sequencing
Frontiers in Genetics | www.frontiersin.org 3234
quality for the i-th alignment. If Qi < Mq- 3*sra, MAC
removes the alignment information.

Ranking Input Assemblies
As most existing assembly reconciliation tools depend on the
ranking of input, and the results usually change when the order
of input assemblies change. To achieve better results, users
have to evaluate the contiguity and correctness of every input
assembly by taking the reference into Quast (Gurevich et al.,
2013) or other evaluation tools. In the study, MAC utilizes the
mapping quality and read coverage to rank the input
assemblies. The compact idiosyncratic gapped alignment
report (CIGAR) can be obtained from files in the SAM
format, in which “M” represents match/mismatch, “I”
represents insertion, “D” represents deletion, and the
number before a character represents its corresponding
quantity. Assume that the length of contig C is L, j (1≤j≤L)
is the position at C, qj represents the CIGAR of position j,
which is calculated as follows.

qj =
1,   if   j = M

−1,   if   j = M*or   I   or  D,

(
(1)

where M denotes match and M* denotes mismatch. In fact, we
cannot distinguish match and mismatch from a single
character “M”, so MAC calculates the average mapping score
of the SAM file. If the mapping score of the corresponding read
is larger than or equal to the average mapping score, the
character “M” is thought to be match, otherwise, “M” is
thought to be mismatch.

To take the coverage into consideration, MAC extracts the
alignment of contig C, to calculate the average rc, and standard
deviation src of read coverage. Assume that rci is the read
coverage of the spanning region of read i, RC is used to
indicate whether the coverage of the region deviates too much,
which is computed as follows.

RC =
1,   if   (rci > rc + 2 * src)   or   (rci < rc − 2 * src)  

−1,   otherwise

(
(2)

In order to comprehensively consider the mapping quality
and read coverage, MAC employs an overall scoring function to
rank the input assemblies, which is calculated as follows.

score =o
N

c=1oL

j=1qj −oN

c=1oK

i=1RC

N
(3)

Classifying Contigs
In this step, MAC evaluates the quality of contigs by using the
alignment result and GC-content, and then classifies all the
contigs into two types. Due to the problems of sequencing
errors, uneven depth, existence of repetitive regions and the
b ias o f a lgor i thm st ra tegy , cont ig s o f t en conta in
misassemblies, which influence the subsequent assemblies
directly. Therefore, MAC estimates the correctness of
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contigs, and marks the type for every contig, and records the
potential error positions.

For a contigC, whose length is L, the coordinate of position j is in
the range of [1, L]. The fragment coverage fc(j) could be defined as
the number of reads with the high alignment scores which span the
position j. Because low coverage regions more likely contain error
joints, MAC employs a cutoff fc* to identify the potential error
positions, fc* can be calculated by the average of fragment coverage
for all the positions of contig C as follows (Wu et al., 2017).

fc* = a*
oL

j=1fc(j)

L
(4)

The parameter a can be set by users. If the fragment coverage
of position j is less than the cutoff, that is fc(j) ≤ fc*, the position j
is regarded as a potential error position. If there are multiple
continuous potential error positions, the region covering these
positions can be group into a region set T (T = {[m, n] | n ≥m, ∀
j∈ [m, n], fc(j) ≤ fc*}). For every region in set T, MAC chooses
the position whose fragment coverage is the lowest as the
breakpoint, Bp (m≤ Bp≤ n).

Owing to the uneven sequencing depth, some low-depth regions
may be mistakenly categorized as containing error positions.
Therefore, MAC estimates the coverage condition of the neighbor
flanking regions for breakpoint Bp to reduce false positives.Ms is the
Frontiers in Genetics | www.frontiersin.org 4235
number of paired reads whose left mate maps to the left flanking
region of Bp, and rightmatemaps to other contigs.Mp is the number
of paired reads whose rightmatemaps to the right flanking region of
Bp, and left mate maps to other contigs. Then two rates: Pcs and Pcp,
are calculated as follows (Wu et al., 2017).

Pcs =
fc(Bp)

fc(Bp) +Ms
(5)

Pcp =
fc(Bp)

fc(Bp) +Mp
(6)

Pcs and Pcp are used to estimate whether the region [m, n] is
low-depth or not. If Pcs>b or Pcp>b, the region is thought to be
a low-depth region, and should be removed from the
potential set.

Owing to the GC-content bias, some regions may cover less
reads or even no reads, and these regions are mistakenly
categorized as containing error positions. Therefore, MAC
evaluates whether the GC-content of the neighbor flanking
regions for Bp is too high or too low. PGC is the GC-content
rate of the potential error region which contains Bp, and Pg is the
GC-content of the whole genome, Pg is calculated as follows (Wu
et al., 2017).

Pg =
oN

i=1oLi

j=1Ij

oN

i=1Li
, (7)

where N represents the number of contigs, Li is the length of
the i-th contig, Ij is an indicator variable, when the base at
position i is G or C, Ij equals to 1, otherwise, Ij equals to 0. If
PGC ≥ Pg + 1, the region is thought to be GC-rich, otherwise, the
region is thought to be GC-poor. Both GC-rich and GC-poor
regions are removed from the potential set.

After removing the low-depth regions and GC-bias regions,
the remaining single potential positions and potential regions are
certainly false. which satisfy the following conditions at the
same time:

① fc(j) ≤ fc*;

② Pcs ≤ b and Pcp ≤ b;
③ PGC < Pg + 1 and PGC > Pg + 1.

The regions estimated as low-depth or GC-bias are thought to
be uncertain regions, and the positions in these regions satisfy
the following conditions simultaneously:

① fc(j) ≤ fc*;

② Pcs > b or Pcp > b;
③ PGC ≥ Pg + 1 or PGC ≤ Pg + 1.

After excluding the above two types of positions, the rest
positions are certainly true. For the certainly false positions/
regions, MAC breaks the corresponding contigs at the false
position or the Bp position of the false region, and eliminate
certainly false positions. Based on the above evaluation, all the
FIGURE 1 | Flowchart of MAC algorithm.
January 2020 | Volume 10 | Article 1396

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Tang et al. MAC: Merging Assemblies
input contigs can be divided into two types: Uncertain (U) and True
(T). If the contig contains one or more uncertain regions, the contig
is classified as U contig, while the contig only containing true
positions is classified as T contig.

Adopting Adjacency Algebraic Model
The order of merging is determined by the ranking of overall
scores, which are calculated in the previous step. MAC merges
two assemblies at a time, the next assembly and the resultant
assembly are merged iteratively. In the merging process, MAC
utilizes an adjacency algebraic model (Sankoff et al., 2000) to
find the conjunctions between contigs. The adjacency algebraic
model was introduced by Feijã£O and Meidanis to find a
permutation to minimize the algebraic rearrangement
distance (Feijã£O and Meidanis, 2013), and the adjacency
algebraic model was proved to be efficient on the problem of
contig ordering (Chen et al., 2018). In this study, MAC uses the
adjacent graph to represent the adjacency algebraic model and
utilizes the classification of contigs to optimize the model, the
pseudo-code of adopting the adjacency algebraic model is as
shown in Algorithm 1 of Supplementary Material.

Constructing Adjacent Graph
Given two input contig sets O and R, MAC utilizes the
NUCmer package from MUMmer (Kurtz et al., 2004) to
identify the high similarity fragments between O and R,
which are called “consensus blocks”, and numbers these
consensus blocks. Two consensus blocks are thought to be
adjacent, if they are next to each other, or if they overlap each
other end-to-end with the overlapping length of l (l ≤ lcmin*
0.01), where lcmin is the smaller one between the lengths of two
consensus blocks, l is called the adjacent region. In general,
there are two or more consensus blocks in one contig, and the
consensus blocks may connect with each other, or maybe
contain intervals between them. As described above, every
contig can be divided into two types: “U” and “T”. For the “U”
type of contigs, if potential error positions locate at the
adjacent regions of consensus blocks , the posit ion
information is retained. Otherwise, if potential error
positions locate at the center region of consensus blocks,
these positions are thought to be reliable, and could be
removed form the potential error set. For the “T” type of
contigs, MAC retains its state. MAC distributes the orientation
for every consensus block, and uses tail(“t”) to denote the
starting position, head(“h”) to denote the ending position. As
shown in the example of Figure 2, 9 consensus blocks are
found between two contig sets O and R, the adjacent
relationships are enclosed in brackets, so O and R can be
represented by O = {[1, 5], [9], [8, 2], [-3, 7], [6, 4]}, R = {[1, 6,
5], [4, 3], [2, 7, 8]}, respectively. As the orientation of
consensus block “3” in O is reversed (from 3h to 3t), we use
“-3” to represent this consensus block in O. In Figure 2, we
suppose that there were uncertain positions between [1,5] in
the first contig of O and [7,8] in the third contig of R, so these
two contigs were regarded as “U” type, which are marked by
red cycles on the contigs, and the corresponding consensus
Frontiers in Genetics | www.frontiersin.org 5236
blocks are also marked with underlines in Figure 2, the detail
classification strategy has been described above.

Then the adjacent graph G = <V, E > is constructed, V is the
vertices set of the adjacent graph, the single terminals or
conjunctions of consensus blocks are regarded as vertices, in
the example of Figure 2, 1t, 9t, 9h, 6t, and so on are the single
terminals of O set, 1h5t, 6h4t, and so on are the conjunctions of
O set. E is the edges set of the adjacent graph, an edge is added
betweenO and R if two vertices have a terminal in common, such
as 1h5t of O and 1h6t of R both have 1h, so there is an edge
between 1h5t and 1h6t.

Extracting Good Paths
The major objective of the adjacent algebraic model is to
minimize the algebraic distance between two contig sets, which
can be denoted by d(O,R) = N − C − P

2 (Feijã£O and Meidanis,
2013), where N represents the number of contigs, C represents
the number of cycles, P represents the number of paths in the
adjacent graph G.

Through the demonstration of Lu et al., getting the minimum
algebraic distance is equivalent to obtaining the maximum
number of cycles, and the term of “good path” is defined for
the cycle (closing path), which can connect multiple consensus
blocks to generate a longer assembly. Here we define the
conjunctions between two consensus blocks as adjacency,
which are enclosed in square brackets in Figure 2. The paths
in adjacent graph can be summarized according to the length,
whether two ends of the path in the same set or in the same
adjacency or not. We list all the possible combinations of the
features mentioned above, as shown in Table 1 there are 9 types
of combinations in total. In the adjacent graph, two ends of the
path appear in the same contig only if they appear in the same
contig set, so if two ends of the path cannot be found in the same
contig set, they cannot be found in the same contig or adjacency,
thus for the types of No.3 and 7 in Table 1, two ends of the paths
are in different contig sets, they cannot in the same adjacency,
here we use “-” to represent the type is absent. If the length of
path is odd, two ends should be found in different contig sets, so
types of No.1 and 2 are absent. If the length of path is even, two
terminals should be found in the same set, so type of No.8 is
absent. However, there is an exceptional case, when two
terminals form a circle, they can be found in different sets and
different adjacencies.

From Table 1, four types are absent, and the type of No.6 is
regarded as a good path, whose length is even, both of the ends
are in the same set but in different adjacencies. There are two
kinds of poor paths: No.4 and No.5. As the example in Figure 2
shows, the paths of {4h, 4h3t, 3t7t, 2h7t, 2h}, {9t, 3h9t, 3h}, {7h,
7h8t, 8t} are good, which can form the cycles of [4h, 2h], [9t,
3h], and [7h, 8t]. Through the fusion of [4h, 2h], adjacencies
[8, 2] and [6, 4] can be joined into [8, 2, -4, -6]. Through the
fusion of [9t, 3h], adjacencies [9] and [-3, 7] can be joined into
[-9, -3, 7]. Through the fusion of [7h, 8t], adjacencies [8, 2] and
[-3, 7] can be joined into [-3, 7, 8, 2], and these two newly
generated results can be further merged into [-9, -3, 7, 8, 2, -4,
-6], equals to [6, 4, -2, -8, -7, 3, 9].
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Optimizing the Adjacency Algebraic Model
In the study of Lu et al., two odd paths (No.4 in Table 1) are
chosen to join into a cycle repeatedly, until the odd path graph
becomes an alternating cycle with the length of two. The
remaining No.4 and No.5 paths can be arbitrarily joined
together into two longer paths. However, in the actual
implementation process, they found the fusion of these two
types of paths resulting in error joints. In this study, MAC
utilizes the classification of contigs to optimize the processing of
poor paths in the adjacency algebraic model. Due to the circle
paths in the graph represent the same adjacencies between two
sets, so MAC maintains these paths without any process.

As described above, all the input contigs are divided into two
types: Uncertain (“U”) and True (“T”), the classification result is
stored in the form of a label for every contig together with the
potential error positions. After extracting good paths from the
adjacent graph, the poor-1 type of paths can be further divided
into two sub-types: single path and non-single path. The length
of single path is 1, and two terminals are the same, for example,
{1t, 1t}, {5h, 5h} and {3h, 3h} in Figure 2 are single paths, {6t,
1h6t, 1h5t, 6h5t, 6h4t, 4t} is a non-single path. MAC uses the
following steps to process poor paths:

• For non-single paths, MAC extracts the adjacencies which are
included in the path, then checks the classification of contigs
where the adjacencies are located. If contig is “U”, and there is
potential error position locating at adjacent region l, MAC
splits the contig at the potential error position, and then
reconstructs the sub-graph to extract good paths again.

• For single paths, MAC does not take any treatment, because
during the process of graph reconstruction, some single paths
would be eliminated automatically.

• For poor-2 type of paths, if both terminals of a poor-2 path
appears in any good path, then the poor-2 path is thought to
be spurious, and MAC removes this path along with the
contig contained in the path. Otherwise, the poor-2 path can
be retained temporarily.
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MAC repeats these processing steps iteratively until there is
no good path added, and single paths are merged into good paths
to generate new adjacencies. For the new adjacencies, if there are
overlapping blocks, the shorter adjacency is merged into a longer
one. Here we use the same example as Figure 2 to explain the
optimization process, and the detail procedure is as shown in
Figure 2.

After extracting good paths for the first time, the remaining
are two types of poor paths. For non-single path {6t, 1h6t, 1h5t,
6h5t, 6h4t, 4t}, the adjacency included in the path are: [1, 5],
[6, 4] in set O and contig [1, 6, 5] in set R, according to the
processing steps, the error position of adjacency [1, 5] locates
at the adjacent region, so the first contig of O should be split
at the position. In fact, the head of block 1 and the head of
block 6 contain the same repetitive sequences, which cause a
misjoin between 1 and 5, as shown in the dashed line box
of Figure 3. As such MAC could solve the problem of
repetitive regions. Then the sub-graph is reconstructed, two
more good paths are extracted, and there are four single paths
remaining. After merging these single paths into good paths,
the final contigs can be represented by the adjacencies: [1, 6, 4,
-2, -8, -7, 3, 9] and [1, 6, 5]. MAC identifies there is an
overlapping region between two adjacencies, and thus merges
[1, 6, 5] into [1, 6, 4, -2, -8, -7, 3, 9] to get the final adjacency [1,
6, 5, 6, 4, -2, -8, -7, 3, 9].
TABLE 1 | Nine types of paths in the adjacent graph.

No. Length of path In the same set In the same adjacency Type

1 Odd Y Y –

2 Odd Y N –

3 Odd N Y –

4 Odd N N Poor-1
5 Even Y Y Poor-2
6 Even Y N Good
7 Even N Y –

8 Even N N –

9 Even N N Circle
Janua
ry 2020 | Volume 10 | Artic
FIGURE 2 | An example for constructing adjacent graph.
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EXPERIMENTAL RESULTS AND
DISCUSSION

Datasets and Evaluation Metrics
In this study, we perform the experiments on four real
bacterial genomes: M.abscessus, B.fragilis, R.sphaeroides
and V.cholerae from GAGE-B (Genome Assembly Gold-
Frontiers in Genetics | www.frontiersin.org 7238
standard Evaluation for Bacteria) (Tanja et al., 2013), GAGE-
B evaluates the performance of multiple genome assemblers on
a spectrum of bacterial genomes sequenced by the sequencing
technologies of MiSeq and HiSeq. Here, we use the sequences
generated byMiSeq technology, the average read length of these
four species is 250 bp, the coverage is 100x, and the genome
sizes are 5.1 Mb, 5.4 MB, 4.6 Mb, and 4.0 Mb, respectively. The
FIGURE 3 | Detail of optimization process.
TABLE 2 | The experimental results of M. abscessus.

Contigs num Largest contig Size Genome fraction N50 NGA50 MA

Velvet 203 226,629 5,136,825 98.965 48,155 41,485 54
ABySS 149 245,660 5,116,522 98.926 70,424 68,549 2
SOAPdenovo 91 286,460 5,133,667 99.139 131,561 113,272 19
(Velvet+ABySS)
GAA 339 129,152 5,152,501 99.094 39,271 37,715 61
MIX 118 245,660 5,376,417 98.891 108,584 70,302 18
Metassembler 200 226,629 5,130,215 98.944 48,155 41,485 54
MAC 190 317,945 9,856,881 99.304 163,219 90,766 58
(Velvet+ABySS+SOAP)
GAA 211 210,497 5,146,833 99.129 54,850 50,904 55
MIX 91 286,460 5,133,667 99.139 131,561 113,272 17
Metassembler 191 226,629 4,934,916 95.03 47,284 39,706 64
MAC 80 287,168 5,146,285 99.249 141,537 131,561 10
Ja
nuary 2020 | Volu
me 10 | Article 1
The bolded data indicates the highest value of N50 or NGA50 within each comparison.
396

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Tang et al. MAC: Merging Assemblies
insert sizes are 335 bp, 600 bp, 540 bp, and 335 bp, respectively.
The detail information of raw data is listed in Table S1 of
Supplementary Material. All the assemblies and paired-end
reads are available at the website of GAGE-B (http://ccb.jhu.
edu/gage_b/).

The evaluation tool Quast (Gurevich et al., 2013) is used to
estimate the contiguity and correctness of assemblies. For the
Frontiers in Genetics | www.frontiersin.org 8239
metrics provided by Quast, N50 is the metric to evaluate
contiguity without reference, and NGA50 could compare the
assemblies to a reference genome to get more accurate and
comprehensive evaluation. The number of misassemblies is an
important metric to measure the correctness of assemblies. In
most cases, the increase of N50 and NGA50 inevitably leads to
more misassemblies. The contig sets generated by different tools
TABLE 3 | The experimental results of B. fragilis.

Contigs num Largest contig Size Genome fraction N50 NGA50 MA

Velvet 373 91,844 5,310,336 97.661 24,465 24,465 3
ABySS 87 430,487 5,380,960 98.451 130,570 130,570 2
SOAPdenovo 79 606,530 5,341,631 98.226 246,346 246,346 0
(Velvet+ABySS)
GAA 2053 16,951 10,676,299 98.811 4,999 4,999 4
MIX 87 430,487 5,380,960 98.451 130,570 130,570 2
Metassembler 256 127,644 5,317,077 97.819 40,339 39,580 3
MAC 136 568,455 10,618,547 98.812 270,064 144,965 9
(Velvet+ABySS+SOAP)
GAA 2933 429,861 15,592,962 98.896 6,079 6,075 4
MIX 55 700,546 6,089,165 98.554 353,741 380,728 9
Metassembler 194 215,440 5,317,760 97.819 57,802 57,596 3
MAC 42 1,195,331 5,355,147 98.306 485,219 455,989 2
Ja
nuary 2020 | Volu
me 10 | Article 1
The bolded data indicates the highest value of N50 or NGA50 within each comparison.
TABLE 4 | The experimental results of R. sphaeroides The highest value of N50 or NGA50 within each comparison.

Contigs num Largest contig Size Genome fraction N50 NGA50 MA

Velvet 332 71,713 4,485,514 97.419 23,979 24,300 2
ABySS 382 71,578 4,503,182 97.76 21,441 21,441 1
SOAPdenovo 354 115,051 4,527,360 97.98 33,491 33,491 1
(Velvet+ABySS)
GAA 1745 9,976 8,988,696 98.651 6,650 6,650 3
MIX 274 113,766 4,728,490 97.493 35,067 28,685 35
Metassembler 325 71,713 4,480,778 97.337 23,979 23,979 2
MAC 434 126,603 8,043,496 98.718 53,057 52,641 17
(Velvet+ABySS+SOAP)
GAA 2683 13,133 13,487,438 99.281 7,589 7,571 4
MIX 237 171,915 4,982,251 98.446 51,508 41,915 22
Metassembler 323 71,713 4,477,669 97.269 23,979 23,979 2
MAC 122 173,958 4,574,809 98.282 58,392 56,244 7
The bolded data indicates the highest value of N50 or NGA50 within each comparison.
TABLE 5 | The experimental results of V. cholerae.

Contigs num Largest contig Size Genome fraction N50 NGA50 MA

Velvet 156 246,346 3,944,260 97.563 92,036 63,574 14
ABySS 196 178,118 3,904,784 96.699 61,965 60,272 2
SOAPdenovo 186 246,179 3,924,635 96.94 71,357 65,464 16
(Velvet+ABySS)
GAA 271 170,890 3,958,224 97.207 73,177 56,472 14
MIX 147 310,702 4,038,894 96.915 124,754 91,942 19
Metassembler 150 246,346 3,935,482 97.48 92,036 63,574 13
MAC 232 312,914 7,221,147 97.322 174,216 163,176 21
(Velvet+ABySS+SOAP)
GAA 160 243,299 3,981,614 97.713 110,446 110,446 16
MIX 118 310,703 4,338,139 97.496 112,745 86,841 32
Metassembler 145 246,346 3,914,378 96.972 93,191 63,574 13
MAC 87 358,265 3,997,554 97.709 167,523 110,538 13
The bolded data indicates the highest value of N50 or NGA50 within each comparison.
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are evaluated in Tables S2–S5 of Supplementary Material. The
major objective of MAC is to increase the contiguity of
assemblies, at the same time make sure the number of
misassemblies reducing or at least not increasing.

Experimental Results
Although lots of assembly reconciliation tools have beendeveloped,
someof the tools have stoppedupdating, someneed the referenceof
relative species, and some tools don’t fit for merging relatively
longer next-generation sequences which are in ~250bp. Therefore,
we exclude these unsuitable tools, and only compare MAC with
three assembly reconciliation tools: GAA, MIX andMetassembler.
The assemblies are generated by Velvet, ABySS and SOAPdenovo.
The contigs generated by Velvet are fragmental and with poor
contiguity. ABySS could provide more reliable contigs which have
lessmisassemblies. SOAPdenovo is a powerful toolwhich produces
higher contiguityandcorrectness contigs. In theexperiment,we test
the merging performance of four reconciliation tools on the
assemblies which have different features. The experiment results
are shown inTables 2–5. For each dataset, we take the experiments
on two assemblies as input (Velvet+ABySS), and multiple
assemblies as input (Velvet+ABySS+SOAPdenovo). “MA” in
tables represent the numbers of misassemblies.

For the case of two assemblies as input, the number of
misassemblies of four reconciliation tools have increased
somewhat because the quality of input assemblies is relatively
low. Even the metrics of N50/NGA50 have remained static or
decreased for some tools, such as GAA and Metassembler. By
comparison, MAC achieves significant growth in N50 and
NGA50 compared to the original input assemblies and the
merging results of other reconciliation tools in four datasets,
although the number of misassemblies is basically flat.

For the case of three assemblies as input, the metrics of N50/
NGA50 of four reconciliation tools have increased in various
degrees, due to the addition of high quality assemblies
generated by SOAPdenovo, while there is no obvious change
in the number of misassemblies for GAA, MIX, and
Metassembler. However, MAC not only achieves the obvious
increase of N50 and NGA50, but also greatly reduces the
number of misassemblies. Especially in the dataset of
B.fragilis, the N50 and NAG50 of MAC are 485219 and
455989, which have the growth rate of 79.6% and 214.5%,
respectively, compared to the case of two assemblies as input
of MAC, and the growth rate of 96.9% and 81.7%, respectively,
compared to the high quality input of SOAPdenovo. What’s
more, the number of misassemblies has decreased from 9 to 2,
which is less than the number of velvet and equals to the
number of ABySS.

From the results of Tables 2–5, MAC outperforms the other
reconciliation tools, MAC is not only adapted to merge low
quality assemblies to generate a more continuous one, but is
also good at fusing different features between assemblies to
further improve the contiguity of high quality assemblies, at
the same time maintaining the correctness. In addition, we
evaluated the computational costs of four tools, as shown in
Table S6 of supplementary material.
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CONCLUSION

In this study,wehave proposed a novel assembly reconciliation tool
MAC. MAC classifies all the contigs into “U” and “T” by using
alignment results and GC-content of paired-end reads, then
identifies consensus blocks between assembly sets, through which
unreliable fragments caused by uneven sequencing depth or
sequencing errors could be filtered out. In addition, MAC utilizes
adjacency algebraic model to fulfill the merging process. The
adjacent graph is employed to identify good paths between
consensus blocks, which could be used to generate some accurate
fusions. Secondly, the classification result of contigs is used to
optimize the processing steps of poor paths, through which
repetitive regions could be eliminated by splitting contigs and
reconstructing the adjacent graph. What’s more, to solve the
problem of unknown ranking of input assemblies, MAC designs a
scoring function to evaluate the overall quality of assembly sets. The
experimental results from four real species of GAGE-B illustrate
that MAC performs better than other reconciliation tools.
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Identifying lncRNA–protein interactions (LPIs) is vital to understanding various key
biological processes. Wet experiments found a few LPIs, but experimental methods are
costly and time-consuming. Therefore, computational methods are increasingly exploited
to capture LPI candidates. We introduced relevant data repositories, focused on two
types of LPI prediction models: network-based methods and machine learning-based
methods. Machine learning-based methods contain matrix factorization-based
techniques and ensemble learning-based techniques. To detect the performance of
computational methods, we compared parts of LPI prediction models on Leave-One-Out
cross-validation (LOOCV) and fivefold cross-validation. The results show that SFPEL-LPI
obtained the best performance of AUC. Although computational models have efficiently
unraveled some LPI candidates, there are many limitations involved. We discussed future
directions to further boost LPI predictive performance.

Keywords: lncRNA–protein interaction, computational method, network-based method, machine learning-based
method, data repositories
INTRODUCTION

Long non-coding RNAs (lncRNAs) are transcripts with greater than 200 nucleotides but lack
protein coding capacity (Sanchez Calle et al., 2018). lncRNAs are closely associated with various key
biological processes, such as cell cycle regulation, immune response, and embryonic stem cell
pluripotency (Liu et al., 2018; Agirre et al., 2019; Li et al., 2019b). More importantly, lncRNAs play
an important role in understanding pathogenesis of various diseases, especially tumors (Chen et al.,
2016a; Fu et al., 2017; Jiang et al., 2018; He et al., 2018a; Dallner et al., 2019). Although lncRNAs play
a spectrum of regulatory roles across different cellular pathways, understanding about their
regulatory mechanisms is very limited (Munschauer et al., 2018).

Recently, one broad theme is that lncRNAs can drive the assembly of RNA–protein complexes
by facilitating the regulation of gene expression (Rinn and Chang, 2012; Chen and Yan, 2013;
Hentze et al., 2018; Munschauer et al., 2018; Nozawa and Gilbert, 2019). lncRNAs achieve their
specific functions by interacting with multiple proteins and thus regulating multiple cellular
processes (Zhang et al., 2018c; Pyfrom et al., 2019). Studies reported that lncRNAs can activate
post-transcriptional gene regulation, splicing, and translation by binding to proteins (Zhang et al,.
2018c; Li et al., 2019a) Therefore, identifying possible lncRNA–protein interactions (LPIs) is
January 2020 | Volume 10 | Article 13461242
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essential for unraveling lncRNA-related activities (Qian et al.,
2018; Zhang et al., 2018c; Zhao et al., 2018c). Wet experiments
validated parts of LPIs, but experimental methods remain costly
and time-consuming. Therefore, different computational models
are explored to infer potential LPIs (Pan et al., 2016; Cheng et al.,
2018; Zhang et al., 2018c; Zhao et al., 2018c). There exist
numerous unexplored lncRNAs and proteins in public
databases, which makes it possible to efficiently identify their
underlying associations.

In this study, we introduced relevant repositories, summarized
computational models and algorithms for LPI prediction, discussed
their advantages and weaknesses by comparison, and presented
further directions for boosting LPI prediction performance. We
focused on two categories of computational models: network-based
methods and machine learning-based methods. The machine
learning-based methods contain matrix factorization-based
methods and ensemble learning-based methods.
RELEVANT REPOSITORIES

There are abundant repositories related to LPI prediction. These
repositories provide diverse information for efficiently
uncovering potential LPIs.

Noncode
The NONCODE database (Zhao et al., 2015) (http://www.
noncode.org/) is an interactive database aiming to collect the
most complete annotation for ncRNAs, especially lncRNAs. The
latest NONCODE database (current version v5.0) contains
lncRNA information from 17 species including human, mouse,
cow, rat, chimp, gorilla, orangutan, rhesus, opossum, platypus,
chicken, zebrafish, fruit fly, Caenorhabditis elegans, yeast,
Arabidopsis, and pig. There are 548,640 lncRNAs in the latest
version. There are 172,216 and 131,697 lncRNAs from human
and mouse, respectively. More importantly, NONCODE has
introduced some important features including conservation
annotation, lncRNA–disease associations, and an interface to
select credible datasets.

NPInter
The NPInter database (Hao et al., 2016) (http://www.bioinfo.org.
cn/NPInter/contact.htm) provides abundant association data
that are experimentally verified. For example, the database
contains information on interactions between noncoding
RNAs (ncRNAs) and biomolecules including proteins,
mRNAs, miRNAs, and genomic DNAs. The database contains
491,416 interactions in 188 tissues/cell lines from 68 types of
experimental technology.

RAID
The RAID database (Yi et al., 2016) (http://www.rna-society.org/
raid/) includes more than 40,668 lncRNA-associated RNA–
protein interactions and more than 34,790 lncRNA-associated
RNA–RNA interactions.
Frontiers in Genetics | www.frontiersin.org 2243
starBase
The starBase database (Li et al., 2013) (http://starbase.sysu.edu.cn/)
contains more than 1,100,000 miRNA–ncRNA (CLIP) interactions,
117,000 RNA-binding protein (RBP)–ncRNA interactions, and
32,000 miRNA–ncRNA interactions. In addition, it provides more
than 10,800 RNA-seq data and 10,500 miRNA-seq data from 32
cancer types and 3,236,000 mutations from 366 disease types.

VirBase
The ViRBase database (Li et al., 2014) (http://www.rna-society.
org/virbase) integrates experimental and predictive association
information from manual literature curation and other resources
based on one common framework from 119 species, especially
ncRNA-associated virus–virus, host–host, host–virus, and virus–
host interactions.

POSTAR2
The POSTAR2 database (Zhu et al., 2018) (http://lulab.life.
tsinghua.edu.cn/postar2/index.php) provides various post-
transcriptional regulation data based on CLIP-seq, Ribo-seq,
RNA-seq, and other high-throughput sequencing information
from six species: yeast, Arabidopsis, fly, worm, mouse, and
human. It hosts about 40 million RBP binding sites validated
by CLIP-seq experiments. It provides three modules: the “RBP”
module, “RNA”module, and “Translatome”module. The “RBP”
module contains RBP binding sites and their annotations and
functions. The “RNA” module is composed of a few sub-
modules, including “disease,” “variation,” “crosstalk,” and
“binding sites,” and is applied to annotate the RBP binding sites.

ChIPBase
The ChIPBase database (Zhou et al., 2016) (http://rna.sysu.edu.
cn/chipbase/) is used to identify transcription factor binding sites
and motifs, and decode transcriptional regulatory networks of
miRNA, lncRNAs, and other ncRNAs from ChIP-seq data. It
provides about 10,200 curated peak datasets from 10 species:
human, mouse, fruit fly, worm, Arabidopsis thaliana, yeast, rat,
zebrafish, Xenopus tropicalis, and chicken.

LNCipedia
The LNCipedia database (Volders et al., 2018) (https://lncipedia.
org) is a comprehensive database. Its central work is to merge
redundant transcripts from different data sources and group the
transcripts into genes, thus producing a highly consistent
database. The latest update of lncRNA (LNCipedia 5) contains
information about annotation and sequence for 1,555 human
lncRNAs from 2,482 lncRNA publications. This information
originates from Ensembl (Cunningham et al., 2018), RefSeq
(Rajput et al., 2018), and FANTOM CAT (Hon et al., 2017).

lncRNA2target
The lncRNA2Target database (Cheng et al., 2018) (http://123.59.
132.21/lncrna2target) contains a comprehensive repository of
lncRNA target genes to provide information about target genes
regulated by lncRNAs. The latest version provides a special web
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interface in which users can search the targets for a particular
lncRNA or the lncRNAs for a particular gene.

lncRNAdb
The lncRNAdb database (Quek et al., 2014s) (http://lncrnadb.
org) is a comprehensive database in compliance with the
International Nucleotide Sequence Database Collaboration. It
provides 287 eukaryotic lncRNAs and an interface enabling users
to access sequence data, expression information, and the
literature. The latest update of lncRNAdb integrated nucleotide
sequence information, Illumina Body Atlas expression profiles,
and a BLAST search tool.

lncRNASNP2
The lncRNASNP2 database (Miao et al., 2017) (http://bioinfo.
life.hust.edu.cn/lncRNASNP2) provides 7,260,238 single
nucleotide polymorphisms (SNPs) on 141,353 human lncRNA
transcripts, and 3,921,448 SNPs on 117,405 mouse lncRNA
transcripts. More importantly, it contains abundant
information about mutations in lncRNAs and their impacts on
lncRNA structure and function. It also provides online tools for
analyzing new variants in lncRNA.

LbcRNAwiki
The lncRNAWiki database (Ma et al., 2014) (http://lncrna.big.ac.cn)
integrated various human lncRNAs from different resources. It
makes existing lncRNAs able to be updated, edited, and curated by
diverse users. More importantly, any user can add newly
uncovered lncRNAs.

Lnc2Cancer
TheLnc2Cancer database (Gao et al., 2018) (http://www.bio-bigdata.
net/lnc2cancer) provides lncRNA–cancer associations supported by
experiments. It contains 4,989 associations between 165 human
cancer subtypes and 1,614 human lncRNAs, 366 experimentally
validated circulating-related lncRNA-cancer associations, 593 drug-
resistance-related lncRNA-cancer associations, and 1,928 prognosis-
related lncRNA–cancer associations, and abundant lncRNA
regulatory mechanisms in cancers including 211, 1139, 225, and
319 lncRNAs regulated by variant, miRNA, transcription factor, and
methylation, respectively.

LncRNAdisease
The lncRNADisease database (Bao et al., 2018) (http://www.
rnanut.net/lncrnadisease/) integrated experimentally validated
circular RNA–disease associations, and regulatory mechanisms
among mRNA, miRNA, and ncRNA. Particularly, it contains
more than 200, 000 lncRNA–disease associations. In addition, it
gives confidence scores for all ncRNA–disease associations and
maps each disease to disease ontology and medical
subject headings.

MNDR
The MNDR database (Cui et al., 2017) (http://www.rna-society.
org/mndr/) integrates more than 260,000 ncRNA–disease
Frontiers in Genetics | www.frontiersin.org 3244
associations. These associations are supported by 10
experiments and 4 predictive algorithms. The experimental
repositories include Lnc2Cancer (Gao et al., 2018), dbDEMC
(Yang et al,. 2016), LncRNADisease (Bao et al., 2018), MNDR
(Wang et al., 2013), HMDD (Huang et al., 2018b), NSDNA (Wang
et al., 2016a), LincSNP (Ning et al., 2016), miRCancer (Xie et al.,
2013),PhenomiR(Rueppet al., 2012), andmiR2Disease (Jianget al.,
2008). The four prediction algorithms are LDAP (Lan et al., 2016),
miRDP (Mørk et al., 2013) LncDisease (Wang et al., 2016b), and
PBMDA(You etal., 2017). Itprovides8,824 experimental lncRNA–
disease, 70,381 experimental miRNA–disease, 118 experimental
piRNA–disease, and67 experimental snoRNA–disease associations
across 6 mammalsix (Homo sapiens, Macaca mulatta, Mus
musculus, Pan troglodyte, Rattus norvegicus, and Sus scrofa). In
addition, it provides 153,508 predicted lncRNA–disease
associations and 28,144 predicted miRNA–disease associations
for H. sapiens. MNDR contains 19,575, 110, 4,150, and 23 non-
redundant lncRNA–disease, piRNA–disease, miRNA–disease, and
snoRNA–disease interactions, respectively, associated with
1,416 disease.

UniProt
The UniProt database (Consortium et al., 2018) (http://www.
uniprot.org/) is an important database providing protein
sequences and annotations. It provides 80 million sequences
and is a useful tool. Users can calculate a new proteome identifier
to find a particular assembly for a species or subspecies. It also
provides an effective measurement for computing an annotation
score for all entries.
METHODS

Most computational methods contain two procedures: data
extraction and model selection. In the first part, computational
methods usually extract LPIs related to human lncRNA, lncRNA
sequences, and protein sequences from NPInter (Hao et al.,
2016), NONCODE (Zhao et al., 2015), and UniProt (Consortium
et al., 2018), respectively. Computational methods filter LPIs by
removing lncRNAs/proteins only interacting with one protein/
lncRNA. In the second procedure, computational methods
design various models to uncover potential LPIs. These models
can be roughly classified into two categories: network-based
methods and machine learning-based methods.

Data Representation
Computational methods utilize an lncRNA set l = {l1, l2, l3…. ln},
a protein set, P = {p1, p2, p3 …. pm}, and an LPI matrix Yn×m,
where yij = 1 if there is an association between an lncRNA li and a
protein pj; otherwise, yij = 0.

Network-Based Methods
Network-based methods obtain better performance by effectively
integrating related biological information and network
propagation algorithms into a unified framework.
January 2020 | Volume 10 | Article 1346

http://lncrnadb.org
http://lncrnadb.org
http://bioinfo.life.hust.edu.cn/lncRNASNP2
http://bioinfo.life.hust.edu.cn/lncRNASNP2
http://lncrna.big.ac.cn
http://www.bio-bigdata.net/lnc2cancer
http://www.bio-bigdata.net/lnc2cancer
http://www.rnanut.net/lncrnadisease/
http://www.rnanut.net/lncrnadisease/
http://www.rna-society.org/mndr/
http://www.rna-society.org/mndr/
http://www.uniprot.org/
http://www.uniprot.org/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Peng et al. Probing lncRNA-protein interactions
LPIHN
Li et al. (2015) developed an LPI prediction method combing a
heterogeneous network model and random walk with restart,
LPIHN. LPIHN can be broken down into four steps:

Step 1 Extracting known ncRNA–protein associations from
the Npinter 2.0 database (Hao et al., 2016) and filtering the
ncRNAs and their associated proteins based on organism and
type of ncRNAs. LPIHN then selects lncRNAs from filtered
ncRNAs based on the human lncRNA dataset provided by the
NONCODE database (Zhao et al., 2015).

Step 2 Obtaining lncRNA expression profiles from the
NONOCODE 4.0 database (Zhao et al., 2015). Given the
expression profiles of two lncRNAs E1 and E2, LPIHN
calculates lncRNA expression similarity based on the Pearson
correlation coefficient:

SL(i, j) =
cov(E1,E2)
se1se2

����
���� (1)

where cov(E1, E2) is the covariance of E1 and E2, and se1 and se2
are the standard deviations of E1 and E2, respectively.

Step 3 Extracting protein–protein interactions (PPIs) from
STRING 9.1 (Szklarczyk et al., 2016) and obtaining 804 PPIs and
the corresponding score matrix SP. SP is normalized as follows:

SP*ij =
SPijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M i, ið ÞM j, jð Þp (2)

whereM is a diagonal matrix, andM(i, i) is the sum of row i in SP.
Step 4 Propagating the random walk to score for unknown

lncRNA–protein pairs based on the following iterative equation:

Yt+1 = (1 − d )WTYt + d  Y0 (3)

The details are shown as Figure 1.

LPLNP
Zhang et al. (2018b) proposed a linear neighborhood
propagation-based method, LPLNP, to probe potential LPIs.
LPLNP found novel LPIs through the following steps.

Step 1 Extracting 4,158 LPIs between 27 proteins and 990
lncRNAs from NPInter (Hao et al., 2016) and NONCODE (Zhao
et al., 2015) by filtering unreliable lncRNA sequences and
removing lncRNAs/proteins only interacting with one
protein/lncRNA.

Step 2 Obtaining three types of features for lncRNAs
(interaction profile, expression profile, and sequence
composition) and two types of features for proteins [interaction
profile and CTD (composition, transition, and destruction)].

Step 3 Computing linear neighborhood similarity and
regularized linear neighborhood similarity between lncRNA/
proteins by Eqs. (4) and (5), respectively:

ϵi = ‖Xi − o
ij :Xij

∈N(Xi)

wiijXij ‖
2

s : t : o
ij :Xij

∈N(Xi)

wiij = 1,wiij ≥ 0
(4)
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where Xi denoted the feature vector of the ith lncRNA, and N(Xi)
is K nearest neighbors of Xi.

ϵi = wT
i (G

i + lI)wi

s : t : o
ij :Xij

∈N(Xi)

wiij = 1,wiij ≥ 0 (5)

where Gijik = (Xi − Xij )
T (Xi − Xij).

Step 4 Computing the interaction probabilities for
unobserved lncRNA–protein pairs:

Y = (1 − a)(I − aW)−1Y0 (6)

The details are shown in Figure 2.

LPI-BNPRA
Zhao et al. (2018a) developed a novel LPI prediction model based
on a bipartite network projection recommended technique, LPI-
BNPRA. LPI-BNPRA can be broken down into five steps.

Step 1 Extracting 4,158 high-confidence LPIs between 990
lncRNAs and 27 proteins from NPInter (Hao et al., 2016) and
NONCODE (Zhao et al., 2015) by filtering unreliable lncRNA
sequences and removing lncRNAs/proteins only associated with
one protein/lncRNA.

Step 2 Calculating lncRNA–lncRNA similarity based on the
Smith–Waterman technique:

LSM li, lj
� �

=
sw li, lj

� �
max   (sw li, lið Þ, sw lj, lj

� �
)

(7)

where sw(li, lj) denotes the Smith–Waterman score between two
lncRNAs li and lj.

Step 3 Calculating the protein–protein similarity matrix based
on the Smith–Waterman technique:

PSM(pi, pj) =
sw(pi, pj)

max (sw(pi, pi), sw(pj, pj))
(8)

where sw(pi, pj) denotes the Smith–Waterman score between two
proteins pi and pj.

Step 4 For a given lncRNA lj, computing its bias ratings of
lncRNAs for a protein pi with the agglomerative hierarchical
clustering and associated measurement of minimum variance
method:

r(pi, lj) =
ncr
T(pi)

(9)

where ncr is the number of lncRNAs in the cluster cr including lj,
and Tpi is the number of all lncRNAs interacting with pi.

Step 5 Finding LPI candidates based on the recommended
bipartite network projection technique and bias ratings of every
lncRNA for proteins:

Rfin(lj) =o
n

i=1
Rfin(pi, lj) (10)
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where

Rfin(pi, lj) =
r(pi, lj)

o
n

k=1

r(pk, lj)
� R(pi) (11)

R(pi) =o
m

j=1
R(pi, lj) (12)

R(pi, lj) =
rini(pi, lj)

o
n

k=1

rini(pk, lj)
� Rini(lj) (13)

Rini(lj) = rini(pi, lj) (14)
Frontiers in Genetics | www.frontiersin.org 5246
rini(pi, lj) =
r(pi, lj)

rave(pi, lj)
(15)

r(pi, lj) =
ncr
T(pi)

(16)

rave(pi, lj) =
o
m

j=1
r(pi, lj)

T(pi)
(17)

The details are shown in Figure 3.

LPISNFHS
Zheng et al. (2017) presented a new LPI identification method,
LPISNFH. LPISNFHS fused multiple protein–protein
similarity networks, the similarity network fusion (SNF)
FIGURE 1 | Flowchart of LPI prediction method based on heterogeneous network model and random walk with restart.
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technique, HeteSim algorithm, and known LPI network into a
unified framework. LPISNFH can be broken down into
three steps.

Step 1 Obtaining 4,467 LPIs between 1,050 unique lncRNAs
and 84 unique proteins from NPInter (Hao et al., 2016) and
NONCODE (Zhao et al., 2015) by manually filtering LPIs not
involving lncRNAs and removing the lncRNAs only associated
with one protein.

Step 2 Constructing a protein–protein similarity network.
LPISNFHS fused the sequence similarity, functional annotation
semantic similarity (Go), domain similarity, and STRING
similarity into a unified protein–protein similarity network
based on the SNF technique.
Frontiers in Genetics | www.frontiersin.org 6247
Step 3 Inferring novel LPIs by combining the HeteSim
algorithm and heterogeneous LPI network.

LPI-IBNRA
Xie et al. (2019) developed a LPI prediction model, LPI-IBNRA.
LPI-IBNRA integrated lncRNA–protein interactions, protein–
protein interactions, and similarity matrix for proteins and
lncRNAs, and improved bipartite network recommender
algorithm. LPI-IBNRA can be broken down into seven steps.

Step 1 Obtaining 4,796 LPIs between 1,105 lncRNAs and 26
proteins from NPInter (Hao et al., 2016) and NONCODE (Zhao
et al., 2015) after filtering lncRNAs and proteins that have only
one association.
FIGURE 2 | Flowchart of linear neighborhood propagation-based LPI prediction method.
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Step 2 Computing lncRNA similarity matrix simL based on
lncRNA expression similarity and Gaussian interaction profile
(GIP) kernel similarity, and protein similarity matrix simP based
on protein interaction similarity and GIP kernel similarity.

Step 3 Computing the score between protein pi and lncRNA lj
based on protein similarity and lncRNA similarity by Eqs. (18)
and (19), respectively.
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SP pi, lj
� �

=

o
np

k=1

simP
pi ,pkð ÞI pk ,ljð Þ

o
np

k=1

simP
pi ,pkð Þ

 if I pi, lj
� �

= 1

0      otherwise

8>>>>><
>>>>>:

(18)
FIGURE 3 | Flowchart of LPI prediction model based on the recommended bipartite network projection technique.
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SL pi, lj
� �

=

o
nl

k=1

I pi ,lkð ÞsimL lk ,ljð Þ

o
np

k=1

simL
lk ,ljð Þ

 if I pi, lj
� �

= 1

0      otherwise

8>>>>>><
>>>>>>:

(19)

Step 4 Obtaining the initialized association score matrix as
follows:

Sini = g SP + 1 − gð ÞSL (20)

Step 5 Computing the first-round scores of the lncRNA lk
over all proteins:
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s1 lkð Þ =o
np

j=1

Sini pj, lk
� �

s0 pj
� �

d pj
� � (21)

Step 6 Computing the second-round scores of the protein pi
over all lncRNAs:

s2 pið Þ = o
nl

k=1

Sini pi, lkð Þ
d lkð Þ o

np

k=1

Sini pj, lk
� �

s0 pj
� �

d pj
� � (22)

Step 7 Computing the final association score matrix:

S0fin = W 0Sini (23)

where W′ = W + aW2 and a ∈ (−1,0).
The details are shown in Figure 4.
FIGURE 4 | Flowchart of LPI prediction method based on improved bipartite network recommender algorithm.
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LPBNI
Ge et al. (2016) proposed an lncRNA–protein bipartite network
inference method, LPBNI, to find potential LPIs. LPBNI can be
broken down into five steps.

Step 1 Extracting data. LPBNI first downloads 7,576 ncRNA–
protein associations from NPInter 2.0 (Hao et al., 2016) with the
restricted type of “NONCODE” and organism “Homo sapiens.”
LPBNI then selects 2,380 lncRNAs based on a human lncRNA
dataset provided by the NONCODE database (Zhao et al., 2015).
Finally, LPBNI extracts 4,870 LPIs between 2,380 lncRNAs and
106 proteins.

Step 2 Utilizing the LPI network to construct a bipartite graph
G (L, P, Y).

Step 3 Propagating known biological information in G. For a
lncRNA lj, SL (lj) denotes the score on lj after the first step of
propagation:

SL(lj) =o
m

i=1

aijS0(i)

d(pi)
, j ∈ 1, 2, 3…: nf g (24)

where S0 (i) = sij, i ∈ {i, 2,…,m} denotes the original information
of P for a given lncRNA lj. sij = 1 if pi associates with lj; otherwise,
sij = 0. d(pi) =on

j=1aij denotes the number of lncRNAs associated
with pi.

Step 4 Propagating all information in L back to P. SF(pi)
represents the final information on protein pi to denote the
associated score between pi and lj:

SF ið Þ =o
n

j=1

aijSL lj
� �

d lj
� � =o

n

j=1

aij
d lj
� �om

k=1

akjS0 kð Þ
d pkð Þ (25)

where d(li) =om
i=0aij is the number of proteins interacting

with lj.
Step 5 Computing the final associated score SF after the above

two-step information propagation yields

~SF = WS0
!

(26)

where~S0 denotes the column vector of S0, SF(i) =om
k=1wikS0(k),

where wij = 1
d(pi)o

n
j=1

aijakj
d(lj) .

The details are shown in Figure 5.

ACCBN
Zhu et al. (2019) exploited an ant-colony-clustering-based
bipartite network method for revealing potential LPIs,
ACCBN. The model can be roughly broken down into
three steps.

Step 1 Describing lncRNA interaction profiles and protein
interaction profiles as row vectors and column vectors based on
the LPI network, respectively.

Step 2 Calculating the probability that two entities xi and xj
belong to the same cluster basedon the ant colony clusteringmethod:

pij tð Þ =
Tij tð Þ
� �a hij tð Þ

� �b
o
k

j=1
Tij tð Þ
� �a hij tð Þ

� �b (27)
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where

hij =
1
dij

(28)

dij = (om
k=1jxik − xjkj2)

1
2 (29)

Tij t + 1ð Þ = 1 − rð ÞTij tð Þ + DTij tð Þ (30)

Tij tð Þ =
1 dij ≤ r

0 dij > r

(
(31)

DTij tð Þ =
Q

d xi, cj
� � (32)

where r is the cluster radius, cj is the cluster center of the jth
cluster, and a ∈ (0, 5), b ∈ (0, 5), r ∈ (0.1, 0.99), and Q ∈
(1, 10000).

Step 3 Applying lncRNA–protein bipartite network to
identify LPI candidates. Given a protein pk, its association
scores with all lncRNAs at the tth iteration Pt

k can be
computed as follows:

Pt
k = rWPt−1

k + 1 − rð ÞM :, kð Þ (33)

where W is a similarity matrix.
The association scores for all proteins {p1, p2,…, pm} can be

represented as follows:

Pt = rWPt−1 + 1 − rð ÞM (34)
Machine Learning-Based Methods
Machine learning-based LPI prediction methods utilize machine
learning-based models and algorithms to uncover potential LPIs.
This type of method can be roughly classified into two categories:
matrix factorization-based methods and ensemble learning-
based methods.

Matrix Factorization-Based Models
Matrix factorization is exploited in recommendation systems and
has been widely applied to bioinformatics (Shi et al., 2018; Zhang
et al., 2018a; Zhao et al., 2018b; Cantini et al., 2019). Matrix
factorization-based LPI prediction techniques transformed the
problem of LPI identification into a recommender task, and
adopted the matrix factorization model to capture unobserved
LPIs. Given an LPI matrix Y and two nonnegative matrices W ∈
ℜk x n and H ∈ ℜk x m the problem of predicting LPIs can be
formulated as the following objective function:

min  
W,H

‖Y −WTH ‖2F  s:t: W ≥ 0,H ≥ 0 (35)

A few LPI identification methods have been designed based
on matrix factorization method.
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LPGNMF
Zhang et al. (2018a) designed a graph regularized nonnegative
matrix factorization-based (NMF) method to predict potential
LPIs, LPGNMF. LPGNMF consists of three steps.

Step 1 Extracting LPI information based on data provided by
NONCODE (Zhao et al., 2015), NPInter (Hao et al., 2016), and
UniProt (Consortium et al., 2018). Obtaining 9,484 LPIs between
50 proteins and 2,190 lncRNAs after filtering and removing
lncRNAs/proteins only interacting with one protein/lncRNA.

Step 2 Computing lncRNA similarity and protein similarity.
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LPGNMF computes the lncRNA expression profile similarity
Sl (i, j):

Given the expression profiles of two lncRNAs E1 and E2,
LPIHN calculates lncRNA expression similarity based on the
Pearson correlation coefficient:

Sl i, jð Þ = cov(E1,E2)
se1se2

����
���� (36)

where cov(E1, E2) is the covariance of E1 and E2, and se1 and
se2 are the standard deviations of E1 and E2, respectively.
FIGURE 5 | Flowchart of lncRNA–protein bipartite network inference method.
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LPGNMF computes the weight matrix based on lncRNA
similarity:

Ml
ij =

1 i ∈ N lj
� �

    &    j ∈ N lið Þ
0 i ∉ N lj

� �
    &    j ∉ N lið Þ

0:5     otherwise

8>><
>>: (37)

Here,N(li) andN(lj) denote the p nearest neighbors of li and lj.
LPGNMF then calculates the sparse similarity matrix of

lncRNAs Sl*:

S
l*
ij = Ml

ijS
l
ij (38)

Similarly, LPGNMF calculates the sparse similarity matrix of
proteins Sp*.

Step 3 Building the following optimization model based on
the graph regularized nonnegative matrix factorization method:

min
W ,H

‖Y −WTH ‖2F +lpo
n

i,j=1
‖wi − wj ‖2S

p*
ij

+ llo
m

i,j=1
‖ hi − hj ‖2S

l*
ij + b1o

n

i,j=1
‖W( :, i) ‖21

+ b2o
m

i,j=1
‖H( :, i) ‖21s : t : W

≥ 0,H ≥ 0 (39)
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The details are shown in Figure 6.

LPI-NRLMF
Liu et al. (2017) designed a novel LPI identification model based
on neighborhood regularized logistic matrix factorization, LPI-
NRLMF. LPI-NRLMF can be roughly broken down into
three steps.

Step 1 Extracting the lncRNA sequence, protein sequence,
and LPIs based on data provided by NONCODE (Zhao et al.,
2015), NPInter (Hao et al., 2016), and UniProt (Consortium
et al., 2018); and obtaining 4,158 LPIs between 27 proteins and
990 lncRNAs.

Step 2 Computing lncRNA sequence similarity matrix LSM
and protein sequence similarity matrix PSM based on the Smith–
Waterman algorithm:

LSM li, lj
� �

=
sw li, lj

� �
max   (sw li, lið Þ, sw lj, lj

� �
)

(40)

PSM pi, pj
� �

=
sw pi, pj

� �
max   (sw pi, pið Þ, sw pj, pj

� �
)

(41)

Step 3 Defining neighborhood information for lncRNAs and
obtaining the adjacency matrix A of lncRNAs:

aiu =
sliu if lu ∈ N lið Þ
0   otherwise

(
(42)
FIGURE 6 | Flowchart of LPI prediction method based on graph regularized nonnegative matrix factorization.
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Similarly, LPI-NRLMF computes the adjacency matrix B
of proteins.

Step 4 Computing associated scores SN for unknown
lncRNA–protein pairs based on the neighborhood regularized
logistic matrix factorization model:

pij =
exp   (uiv

T
j )

1 + exp   (uivTj )
(43)

Here, ui ∈ ℜ1xr and vj ∈ ℜ1xr can be computed by the
following neighborhood regularized logistic matrix factorization
model:

min
U ,Vo

m

i=1
o
n

j=1
(1 + cyij − yij) ln½1 + exp (uiv

T
j )� − cyijuiv

T
j

+
1
2
tr½UT (llI + aLl)U � + 1

2
tr½VT (lpI + bLp)V� (44)

where Ll = (Dl
i + Dl

u) − (A + AT ), Dl
i =om

u=1aiu,D
l
u =om

i=1aiu.
Similarly, LP can be computed. U ∈ ℜm x r and V ∈ ℜ1 x r can
be calculated by dividing L.

The details are shown in Figure 7.
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IRWNRLPI
Zhao et al. (2018b) fused the random walk into LPI-NRLMF and
exploited a novel LPI prediction model based on LPI-NRLMF,
IRWNRLPI. IRWNRLPI is a semi-supervised learning-based
model and does not require negative samples. IRWNRLPI
contains the following five steps.

Step 1 Extracting the lncRNA sequence, protein sequence,
and LPIs from NONCODE (Zhao et al., 2015), NPInter (Hao
et al., 2016), and UniProt (Consortium et al., 2018); and
obtaining 4,158 LPIs between 27 proteins and 990 lncRNAs.

Step 2 Computing the lncRNA sequence similarity matrix LS
and protein sequence similarity matrix PS based on the Smith–
Waterman algorithm:

LS li, lj
� �

=
sw li, lj
� �

max   sw li, lið Þ, sw lj, lj
� �� � (45)

PS pi, pj
� �

=
sw pi, pj

� �
max   sw pi, pið Þ, sw pj, pj

� �� � (46)

Step 3 Building a random walk model to compute associated
scores SR for unknown lncRNA–protein pairs:
FIGURE 7 | Flowchart of LPI prediction model based on neighborhood regularized logistic matrix factorization.
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S t + 1ð Þ = rQL
T
QS(t) + pQ 1 − rQ

� �
X + rUL

T
US(t) + pU 1 − rUð ÞX

(47)

where rij represents the extent of association between a neighbor
vj and a protein p for a given node vi. L(lij)M x M is computed by
lij = rij=oN

j=1rij. IRWNRLPI divides L into two arrays of LU
and LQ.

Step 4 Computing associated scores SN for unknown
lncRNA–protein pairs based on the neighborhood regularized
logistic matrix factorization model:

pij =
exp   (uiv

T
j )

1 + exp   (uiv
T
j )

(48)

ui ∈ ℜ1 x r and vj ∈ ℜ1 x r can be computed by the following
neighborhood regularized logistic matrix factorization model:

min
U ,Vo

m

i=1
o
n

j=1
(1 + cyij − yij) ln½1 + exp (uiv

T
j )� − cyijuiv

T
j

+
1
2
tr½UT (llI + aLl)U � + 1

2
tr½VT (lpI + bLp)V� (49)

where U ∈ ℜm x r and V ∈ ℜn x r.
Step 5 Computing the final associated scores for unknown

lncRNA–protein pairs:

S =
SR + SN

2
(50)

The details are shown in Figure 8.

LPI-KTASLP
Shen et al. (2019) designed a kernel target alignment-based semi-
supervised model, LPI-KTASLP, to find novel LPIs. LPI-
KTASLP utilizes matrix factorization and an approximation
technique. LPI-KTASLP can be roughly broken down into
three steps.

Step 1 Computing lncRNA kernels and protein kernels from
four levels.

Level 1 GIP kernel:
The GIP kernels between two lncRNAs and two proteins are

defined as follows, respectively:

Klnc
GIP(li, lj) = exp ( − glnc ‖Yli − Ylj ‖

2 ) (51)

Kpro
GIP(pi, pj) = exp ( − gpro ‖Ypi − Ypj ‖

2 ) (52)

Level 2 Sequence kernel:
The sequence kernels of two lncRNAs and two proteins are

defined as follows, respectively:

Klnc
SW(li, lk) =

SW(Sli , Slk )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW(Sli , Sli )

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW(Slk , Slk )

p (53)

Kpro
SW(Pi, Pk) =

SW(Spi , Spk )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW(Spi , Spi )

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW(Spk , Spk )

p (54)
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where SW(.,.) is the Smith–Waterman score, and S represents the
sequence information of a lncRNA/protein.

Level 3 Sequence feature kernel:
Constructing radial basis function kernels Klnc

SF and Kpro
SF for

lncRNAs and proteins based on the conjoint triad and pseudo
position-specific score matrix, respectively.

Level 4 lncRNA expression kernel:
Calculating the expression kernel of lncRNA Klnc

EXP based on
the expression profiles of lncRNAs provided by the NONCODE
database (Zhao et al., 2015).

Step 2 Fusing the above kernels to generate the optimal kernel
based on kernel target alignment:

K*lnc = o
4

a=1
wlnc
a Klnc

a , Klnc
a ∈ℜn�n (55)

K*pro = o
3

a=1
wpro
a Kpro

a , Kpro
a ∈ℜm�m (56)

Step 3 Constructing the following model to compute
interaction probabilities for unobserved lncRNA–protein pairs
based on matrix factorization, low-rank approximation, and
eigen decomposition:

Y* =
1

1 + 3d
Y +

1
1 + 3d 2 Vlnc D⊙ VT

lncFVpro

� �� �
VT
pro (57)

The details are shown in Figure 9.

Ensemble-Based Methods
Ensemble learning methods are widely applied to LPI prediction.
HLPI-Ensemble (Hu et al., 2018) and SFPEL-LPI (Zhang et al.,
2018c) are two state-of-the-art ensemble-based LPI
prediction methods.

HLPI-Ensemble
Hu et al. (2018) developed the HLPI-Ensemble method for
human LPI identification. HLPI-Ensemble consists of two
major processes: benchmark dataset construction and HLPI-
Ensemble model construction.

In the first process, HLPI-Ensemble downloads lncRNA
sequences, protein sequences, and LPIs from NONCODE
(Zhao et al., 2015), UniProt (Consortium et al., 2018), and
NPinter (Hao et al., 2016). HLPI-Ensemble then extracts 82
features of lncRNAs and 1,516 features of proteins based on
Kmer, DAC, and PC-PseDNC-General.

In the second process, HLPI-Ensemble utilizes the ensemble
technique and generates three ensemble learning frameworks,
HLPI-SVM, HLPI-XGB, and HLPI-RF. These three frameworks
are based on support vector machines (SVMs), extreme gradient
boosting (XGB), and random forests (RFs), respectively. The
details are shown in Figure 10.

SFPEL-LPI
Zhang et al. (2018c) exploited a sequence-based feature
projection ensemble learning framework, SFPEL-LPI, to
uncover novel LPIs. SFPEL-LPI integrated ℓ1,2-norm
regularization, ensemble graph Laplacian regularization, and
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various biological information into a unified framework. It can
be roughly broken down into five steps.

Step 1 Downloading LPIs, lncRNA sequences, and protein
sequences from NPInter (Hao et al., 2016), NONCODE (Zhao
et al., 2015), and SUMPERFAMILY (Pandurangan et al.,
2018), respectively.

Step 2 Describing lncRNA and protein features based on
sequence information and known LPIs.

SFPEL-LPI describes lncRNA features based on parallel
correlation pseudo dinucleotide composition (PSEDNC). Given
the occurrence frequency of different dinucleotides and the
physicochemical properties of every dinucleotide, the PseDNC
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feature vector for an RNA sequence L can be represented as

L = ½d1, d2,……:: d16, d16+1,…d16+t � (58)

where

dk =

fk

o16
i=1fi+wot

j=1qj
1 ≤ k ≤ 16

wqk−16
o16

i=1fi+wot
j=1qj

17 ≤ k ≤ 16 + t

8><
>: (59)

In addition, SFPEL-LPI represents the interaction profile of
an lncRNA as a row vector of the LPI matrix Y: IPLi = Y(i, : ).
FIGURE 8 | Flowchart of LPI prediction model based on the random walk and neighborhood regularized logistic matrix factorization.
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SFPEL-LPI describes protein features based on the parallel
correlation pseudo amino acid composition (PseAAC):

P = ½c1, c2,……:: c20, c20+1,…, c20+t � (60)

where

ck =

fk

o20
i=1fi+wot

j=1qj
1 ≤ k ≤ 20

wqk−20
o20

i=1fi+wot
j=1qj

20 ≤ k ≤ 20 + t

8><
>: (61)

Similarly, the interaction profile of a protein can be defined as
a column vector of the LPI matrix Y: IPpi = Y( :, i).

Therefore, a features for lncRNAs/proteins can be
represented as feature matrix: fXigai=1.

Step 4 Computing lncRNA similarity and protein similarity.
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SFPEL-LPI first computes the linear neighborhood similarity
of lncRNAs based on PseDNC and IP.

SFPEL-LPI then computes the Smith–Waterman subgraph
similarity (SWSS) of lncRNAs:

SWSS(Li, Lj) =oP01∈A(Li)oP02∈A(Lj)
SW(Po1, Po2)
n1� n2

(62)

Similarly, the PseAAC similarity, IP similarity, and SWSS
similarity of proteins can be computed.

Therefore, b types of similarities of lncRNAs/proteins can be
represented as b similarity matrices fWigbi=1.

Step 5 Computing the association scores for novel lncRNAs/
proteins based on Eqs. (63) and (64).

Rl =o
u

i=1
qliXliG

T
li (63)
FIGURE 9 | Flowchart of kernel target alignment-based semi-supervised model for LPI prediction.
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Rp =o
v

i=1
qpiXpiG

T
pi (64)

Gi, R, and q can be obtained by solving the following
optimization model:

min
Gi ,R,q

‖R − Y ‖2F +mo
a

i=1
‖XiG

T
i − R ‖2F +o

b

i=1
qh
i tr(R

T (Di −Wi)R)

+ lo
a

i=1
‖Gi ‖21,2

s : t :  Gi ≥ 0,o
b

i=1
qi = 1

(65)

The details are shown in Figure 11.

Other Methods
There are several methods used to predict possible LPIs except
for matrix factorization-based methods and ensemble learning-
based methods, for example, Fisher's linear discriminant-based
LPI prediction method (IncPro) (Lu et al., 2013), eigenvalue
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transformation-based semi-supervised model (LPI-ETSLP) (Hu
et al., 2017), and kernel ridge regression model based on fast
kernel learning(LPI-FKLKRR) (Shen et al., 2018).

lncPRO
Lu et al. (2013) explored a Fisher's linear discriminant-based LPI
prediction method, lncPro. lncPro found new LPI through
executing the following four steps.

Step 1 Downloading complexes data from the PDB database.
Step 2 Encoding sequence information into numerical feature

vectors for lncRNAs and proteins based on the secondary
structure, the Van der Waals' propensities, and the hydrogen-
bonding propensities.

Step 3 Transforming the feature vectors to unify the
dimension based on the Fourier series:

X0
k =

ffiffiffiffi
2
L

r
o
L

i=0
Xi cos

p
L

n +
1
2

� 	
k +

1
2

� 	
 �
  

k = 0, 1,…, 9

(66)

where L is the length of feature vector of lncRNAs/proteins.
FIGURE 10 | Flowchart of ensemble-based LPI identification method.
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Step 4 Calculating the final score matrix < p|M|r> for the
RNA feature vector r and a protein feature vector p based on
Fisher's linear discriminant method:

< p Mj jr >= M1p1r1 +M2p1r2 +M3p2r1 +M4p2r2 (67)

LPI-ETSLP
Hu et al. (2017) presented an eigenvalue transformation-based
semi-supervised model, LPI-ESTLP, to uncover the underlying
LPIs. LPI-ESTLP can be broken down into three steps.

Step 1 Downloading lncRNA sequences, protein sequences,
and LPIs from NONCODE (Zhao et al., 2015), UniProt
(Consortium et al., 2018), and NPInter (Hao et al., 2016); and
extracting 4,158 LPIs between 27 proteins and 990 lncRNAs
after preprocessing.
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Step 2 Computing the lncRNA sequence similarity matrix
LSM and protein sequence similarity matrix PSM based on the
Smith–Waterman algorithm:

LSM(l(i), l(j)) =
sw(l(i), l(j))

max (sw(l(i), l(i)), sw(l(j), l(j)))
(68)

PSM(p(i), p(j)) =
sw(p(i), p(j))

max (sw(p(i), p(i)), sw(p(j), p(j)))
(69)

Step 3 Calculating the score matrix based on the following
objective function:

�Y =
�Yl + �Yp

2
(70)
FIGURE 11 | Flowchart of LPI prediction method based on sequence feature projection ensemble learning framework.
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where

�Yl = (sLl + I)−1Y

�Yp = (sLp + I)−1Y
(71)

and Ll = I – LSM and Lp = I – PSM denote the Laplacian
matrices of lncRNAs and proteins, respectively.

LPI-ETSLP can obtain the final scores between unobserved
lncRNA–protein pairs by integrating eigenvalue transformation
into Eq. 70:

Y =
1
2
(VlUlV

T
l + VT

p UpVp) (72)

where Ūl is a diagonal matrix with ½�Ul�ii = (1 + s(1 − lali ))
−1.

Ll = I – Dl
–0.5 Kl Dl

–0.5 and the eigen decomposition of Kl can be
expressed as Kl = VlUl  Vl . Similarly, Kp = VpUp Vp and  Up can
be defined.

The details are shown in Figure 12.

LPI-FKLKRR
Shen et al. (2018) developed an LPI prediction algorithm, LPI-
FKLKRR, combining a kernel ridge regression model based on
fast kernel learning. LPI-FKLKRR can be broken into six steps:

Step 1 Computing lncRNA GIP, sequence feature, sequence
similarity, and lncRNA expression kernels Klnc

GIP , K
lnc
SW , Klnc

SF , and
Klnc
EXP .
Step 2 Computing protein GIP, sequence features, protein

sequence similarity, and protein GO kernel Kpro
GIP, K

pro
SW , Kpro

SF , Kpro
GO .
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Step 3 Generating the optimal lncRNA and protein kernels
with fast kernel learning:

Klnc = o
4

a=1
wlnc
a Klnc

a ,Klnc
a ∈ ℜm�m (73)

Kpro = o
4

a=1
wpro
a Kpro

a ,Kpro
a ∈ ℜm�m

where wlnc
a and wpro

a represent each element in wlnc and wpro,
respectively; Klnc

a and Kpro
a denote the corresponding normalized

similarity matrices in lncRNA and protein spaces, respectively.
Step 4 Constructing the optimization model to compute the

optimal solution for wlnc or wpro:

min
w

 wT (A + lI)w − 2bTw

s : t :o
J

a
wa = 1

Au,v = tr(KT
u Kv)

(74)

where w denotes the optimal solution wlnc or wpro, Ku and Kv

denote two different kernel matrices, and tr(·) denotes the
trace function.

Step 5 Computing lncRNA–protein association score matrix:

F* = Klnc(Klnc + l‘I)
−1F(Kpro + lpI)

−1Kpro (75)
FIGURE 12 | Flowchart of eigenvalue transformation-based semi-supervised model.
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Step 6 Producing the optimal F* by adjusting the parameters
lℓ and lp.

The details are shown in Figure 13.
DISCUSSION

lncRNAs play important regulatory roles in diverse biological
processes, such as protein modification, DNA methylation, and
chromosome (Weber et al., 2018; Huang et al., 2018a; He et al.,
2018b; Zhao et al., 2018c). However, the regulatory mechanism
remains unknown (Esteller, 2011; Jiang et al., 2018; Agirre et al.,
2019). Studies reported that identifying protein molecules
binding specific lncRNAs help to probe the mechanism of
lncRNAs (Lu et al., 2013; Ge et al., 2016; Chen et al., 2018).
Therefore, identifying possible LPIs has an important role in
understanding lncRNA-related activities (Lu et al., 2013; Pan
et al., 2016; Peng et al., 2017; Zhang et al., 2018c).

However, experimental methods are expensive and time-
consuming. For limited existing knowledge, computational
methods become vital as a silver-bullet solution to capture
LPIs on a large scale, which contributes to prioritize LPI
candidates and deploys further experimental validation (Chen
et al., 2018).

In this study, databases involved in LPI identification are
summarized. More importantly, the components of state-of-the-
art computational models for LPI prediction, such as network-
based methods and machine learning-based methods, are
introduced. Particularly, machine learning-based models can
be broken into matrix factorization-based methods and
ensemble learning-based methods. To consider the
performance of LPI prediction methods, we compared nine
models (IRWNRLPI, LPBNI, LPGNMF, LPI-BNPRA, LPI-
ETSLP, LPIHN, LPI-NRLMF, LPLNP, and SFPEL-LPI) on
leave-one-out cross-validation (LOOCV). These nine models
are conducted on the datasets provided by the corresponding
papers. Parameters are set as the values recommended by the
corresponding studies. Table 1 shows the comparison results
based on AUC, precision, accuracy, and F1. In Table 1, SFPEL-
LPI obtained the best performances of AUC and accuracy;
LPGNMF obtained the best performances of precision and F1.
The results demonstrated that SFPEL-LPI can correctly predict
LPIs with a relative high proportion. LPGNMF can better
identify potential LPIs when taking into account the
proportion of correctly predicted LPIs and successfully
predicted LPIs.

To further detect the performance of SFPEL-LPI, we
compared it with four representative LPI prediction methods,
LPBNI, LPI-ETSLP, LPIHN, and LPLNP, on fivefold cross-
validation. The experiments were conducted on the same
dataset, i.e., LPIs, lncRNA sequences, and protein sequences
are from NPInter (Hao et al., 2016), NONCODE (Zhao et al.,
2015), and SUMPERFAMILY (Pandurangan et al., 2018),
respectively. The details are shown in Table 2. The results
demonstrate that SFPEL-LPI obtained the best performance of
AUC and can better identify possible LPIs.
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In general, network-based methods have become one type of
effective tool in possible LPI identification by utilizing LPI
network, lncRNA similarity network, and protein similarity
matrix. Although network-based methods efficiently discovered
unknown LPIs and obtained promising results from the
perspective of propagation (Li et al., 2015; Ge et al., 2016;
Zheng et al., 2017; Zhao et al., 2018b), this type of method has
some weaknesses.

1. Parts of computational methods tested their performances
only on one database, which may result in biased predictions
because of the sparse nature of LPI data (Li et al., 2015). More
importantly, the lack of known LPIs limits the further research
of LPI prediction in a larger network (Ge et al., 2016).

2. It is important to unravel potential LPIs for lncRNAs/
proteins without any associated information (we represent
these lncRNAs/proteins as new lncRNAs/proteins); however,
most network-based models fail to capture LPI candidates
(Zhang et al., 2018b).

3. Current network-based methods tend to be biased to the
lncRNAs/proteins with more known associated proteins.
Some lncRNAs/proteins interact with multiple proteins/
lncRNAs and others interact with a few or even only one
protein/lncRNA in an LPI network. The unbalanced nature
of degree distributions in the LPI network may affect
prediction performance. Increasing resistance based on the
random walk may improve predictive accuracy for LPI
prediction models (Li et al., 2015).

4. Parts of methods compute lncRNA similarities based on the
expression profile and may produce incomplete coverage of
the lncRNA similarity network when adding LPI datasets.
This problem may be solved by increasing appropriate data
including LPIs (Li et al., 2015).

5. Network-based methods can be applied to an LPI network in
which there exists at least one link between two nodes.
Especially for a bipartite network, network-based methods
require that each node in the network has at least two
linkages. However, the LPI network is usually composed of
a few isolated subnetworks, and most of the existing network-
based models fail to identify the LPIs between the lncRNAs in
one subnetwork and the proteins in another (Ge et al., 2016).

6. Most current network-based methods utilized local network
information and showed better performance; however, many
previous computational biology studies showed that global
network information contributes to capturing the
associations between two entities, such as LPIs (Karuza
et al., 2016; Meng et al., 2016; Shi et al., 2017).

7. Biology finally aims at providing personalized medicine for
cancer patients, and it is a key issue to predict relevant drugs/
targets for a certain disease by integrating multiple
heterogeneous networks and constructing multiple-partite
biological networks, such as protein–lncRNA–disease
association networks and drug–protein–lncRNA–disease
networks. However, current network-based methods are
still not applied to this type of prediction (Yao et al., 2016;
Yang et al., 2017; Bester et al., 2018; Lu et al., 2018; Ping et al.,
2018; Fan et al., 2019).
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In summary, machine learning-based LPI prediction methods
have some limitations.

1. There are no non-LPIs (negative samples) with experimental
validation; therefore, most supervised learning-based LPI
prediction models can only randomly select unknown
Frontiers in Genetics | www.frontiersin.org 20261
lncRNA–protein pairs as negative LPIs. However, this part
of randomly selected negative LPIs may contain true LPIs
(positive samples) as well, which significantly influences the
predictive performance (Liu et al., 2017; Zhao et al., 2018a;
Zhao et al., 2018b; Zhang et al., 2018c; Shen et al., 2019).
Although semi-supervised learning-based models utilized
FIGURE 13 | Flowchart of LPI prediction method based on fast kernel learning with kernel ridge regression.
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unlabeled information to decrease the limitations of negative
LPI selection, it still has the same disadvantage as classifier
combination (Liu et al., 2017; Zhang et al., 2018a; Shen et al.,
2019).

2. Some machine learning-based methods constructed two
different classifiers, based on lncRNAs and proteins,
respectively. The final results are an average of the
performances of two predictive models. This type of model
will produce biased results (Zhao et al., 2018b).

3. Many lncRNAs/proteins do not have known association
information with any proteins/lncRNAs, and we represent
them as new lncRNAs/proteins. Most current predictive
models are unable to capture possible proteins/lncRNAs for
new lncRNAs/proteins (Zhang et al., 2018c).

4. The proposed methods rely heavily on known LPI data;
however, the current number of known LPIs is still very
low. Therefore, most machine learning-based models are
trained using RNA–protein interaction information instead
of LPI data. This results in limited predictive performances
(Liu et al., 2017; Zhao et al., 2018a). With the increase in
experimentally validated LPIs, the prediction performances
of models will improve (Zhao et al., 2018b).

5. The better performances of existing machine learning
methods rely severely on data called features (Goodfellow
et al., 2016). Current computational methods utilize various
lncRNA features and protein features. However, identifying
more appropriate features for a given task is still a challenge
(Liu et al., 2017; Min et al., 2017). More importantly, these
features are not available for all proteins or lncRNAs (Liu
et al., 2017; Zhang et al., 2018c).

6. Most experimental data are provided by the NPInter
database. NPInter is a relatively abundant database for
lncRNA and protein data, but it only provides gene–
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protein interaction data corresponding to relevant lncRNAs
instead of direct LPIs. Gene–protein interactions were
directly applied to machine learning-based methods to find
possible ncRNA–protein associations and did not discover
true LPIs (Liu et al., 2017; Zhao et al., 2018a; Zhao et al.,
2018b).

7. Most current computational models for LPI interaction
prediction are measured based on cross-validation. Park
and Marcotte (2012) used a proteochemometrics model
(Wikberg and Mutulis, 2008) for drug–protein interaction
prediction and observed that the paired nature of input
samples has significant implications on the cross-validation
of these pair-input methods. That is to say, there are
significant cross-validation differences between input
sample and out-of-sample interactions (Park and Marcotte,
2012). For drug–target interaction identification problems,
the paired feature of input samples may produce a natural
partition of test pairs, and thus the pair-input methods may
obtain significantly distinct prediction accuracies for different
test classes (Chen et al., 2015). The same situation applies to
LPI prediction, which is still a pair-input computational
identification problem.
CONCLUSION AND FURTHER RESEARCH

There are a few LPIs and numerous unknown lncRNA–protein
pairs not validated by experimental methods in the existing
databases. In addition, similar lncRNAs tend to interact with
similar proteins, and vice versa (Xiao et al., 2017; Zhang et al.,
2018a). Therefore, LPI data have a sparse, low-rank, and
unbalanced nature (Li et al., 2015; Zhang et al., 2018a; Shen
et al., 2019). With the development of experimental technology,
more LPIs will be confirmed, and thus the prediction accuracy of
computational models will increase. In this section, we present
some suggestions for further research based on the nature of
LPI data.

Fusing Comprehensive LPI Datasets
Parts of computational methods tested their performances only
on one database, which may result in biased predictions because
of the sparse nature of LPI data (Li et al., 2015). More
importantly, existing computational models utilize various
biological information from proteins and lncRNAs, for
example, physicochemical properties including hydrogen
bonding, secondary structure, and van der Waals propensities
(Belluci et al., 2011; Xiao et al., 2017). It is important to utilize
diverse biological features to improve the performances of LPI
prediction models. However, these features are not available for
all proteins or lncRNAs, and thus computational methods
cannot capture LPI candidates when information is unavailable
(Zhang et al., 2018c). Therefore, exploring advanced data fusion
methods to integrate more available data sources may further
boost the performance of LPI identification.

Focusing on the drawbacks of current network-based LPI
identification methods, future research can begin with
TABLE 1 | Performance of LPI prediction methods on LOOCV.

Methods AUC precision accuracy F1

IRWNRLPI 0.9150 0.7178 0.9009 0.6516
LPBNI 0.8586 0.9681 0.9581 0.3868
LPGNMF 0.8520 1 0.7854 0.6871
LPI-BNPRA 0.8754 0.6540 0.8799 0.5564
LPI-ETSLP 0.8876 0.5932 0.8834 0.5978
LPIHN 0.8030 0.3713 0.9581 0.3868
LPI-NRLMF 0.9025 0.6129 0.8804 0.6197
LPLNP 0.9594 0.1153 0.9592 0.1621
SFPEL-LPI 0.9735 0.0016 0.9731 0.0033
These bolded texts represent that the corresponding method is the best among
comparison methods.
TABLE 2 | Performance of LPI prediction methods on fivefold cross-validation.

Methods AUC Precision Accuracy F1

LPBNI 0.84177 0.2898 0.9431 0.3336
LPI-ETSLP 0.8876 0.5932 0.8834 0.5978
LPIHN 0.8531 0.4139 0.9581 0.3868
LPLNP 0.9104 0.4102 0.9646 0.4520
SFPEL-LPI 0.9200 0.4490 0.9600 0.4702
These bolded texts represent that the corresponding method is the best among
comparison methods.
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integrating more heterogeneous networks, such as protein–
protein interaction network (Zhang et al., 2019a), lncRNA–
miRNA interaction network (Zeng et al., 2016; Huang et al.,
2018c; Zhao et al., 2019), lncRNA–mRNA interaction network
(Alaei et al., 2019), lncRNA–disease association network (Fu
et al., 2017; Wang et al., 2019), and lncRNA–miRNA–mRNA
regulatory network (Chen et al., 2018; Zhang et al., 2019b).
However, how to address the data conflict problems while
integrating diverse LPI data from different repositories is
a challenge.

Although there are not currently data conflict solutions for
LPI prediction, we can find some clues by other problems in the
area of bioinformatics. For example, Liu et al. (2015) set a
confidence level for each DTI and gave a higher score to a DTI
from a more reliable data repository. For example, the STITCH
database assigns a score with a range [0, 1,000] to each DTI based
on four types of different sources: model prediction, text mining,
manually curated databases, and experimental validation.
Particularly, Liu et al. (2015) gave DTIs from Matador and
DrugBank the highest values (1,000) because DTIs from these
two databases are reported by biochemical experiments and
relevant studies. Lou et al. (2017) exploited another type of
data fusion from a multiple-views perspective. This involved five
steps: screening relevant information from different data sources;
removing isolated nodes without edges in the networks; fusing
various types of nodes and edges and building a heterogeneous
network; constructing multiple similarity networks to boost the
network heterogeneity; and excluding homologous nodes from
the constructed heterogeneous networks to further reduce the
possible redundancy of associated information. Inspired by these
two methods, we can fuse diverse heterogeneous data to improve
performance in future research. More importantly, new exploited
network-based methods should be implemented on a
constructed heterogeneous network rather than a single network.

Screening Credible Negative Samples
There are some known LPIs (positive samples) and abundant
unknown lncRNA–protein pairs in existing LPI data resources.
More importantly, there are no experimentally validated non-
LPIs, and thus most supervised learning-based models have no
other choice but to randomly screen negative LPIs from
unlabeled lncRNA–protein pairs or even regarded all unlabeled
lncRNA–protein pairs as negative samples (Liu et al., 2017; Zhao
et al., 2018b). However, the randomly screened negative LPIs
may contain positive LPIs as well, and thus there are severe biases
in supervised learning-based techniques. Therefore, exploiting
an efficient model to select high-quality negative samples is a
challenging task for boosting LPI prediction accuracy.

Cheng et al. (2017) designed a FInding Reliable nEgative
samples method (FIRE) to select negative RNA–protein
interactions. FIRE was based on the following assumption:
given a known RNA–protein interaction between an RNA i
and a protein j, for an RNA k, the more differences between i and
k, the less possibility that k interacts with j, and vice versa. FIRE
screened negative RNA–protein interactions through the
following steps: computing the protein similarity matrix,
building a positive sample set based on known interaction
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information, scoring an unknown RNA–protein pair not
included in positive sample set based on protein similarities,
generating m negative samples by sorting these RNA–protein
pairs via their scores in increasing order, and selecting the top-m
RNA–protein pairs. Similarly, we may generate negative LPIs
based on lncRNA–lncRNA similarities, protein–protein
similarities, and the above assumption.

Positive-unlabeled (PU) learning (de Campos et al., 2018;
Sansone et al., 2018; Yang et al., 2018) is applied to various
situations. In PU learning, a supervised learning-based method is
designed to learn a classification model from a positive sample
set and an unlabeled dataset from an unknown class. Yang et al.
(2018) designed an adaptive sampling framework with class label
noise based on PU learning and introduced two new
bioinformatic applications: identifying kinase-substrates and
identifying transcription factor target genes. Therefore, PU
learning may be one strong way to solve the problem of
lacking negative LPIs.

Deep Learning
Existing computational methods have utilized different lncRNA
features and protein features. For example, Bellucci et al. (2011)
integrated three types of physicochemical properties, including
hydrogen bonding, secondary structure, and van der Waals
propensities; meanwhile, Lu et al. (2013) used six types of
RNA secondary structures (besides physicochemical
properties), which were provided by Bellucci et al. (2011).
Therefore, designing more powerful models to integrate
relevant biological features is a key issue. However, features are
typically exploited by human biomedical engineers, and
determining which features are more suitable for LPI
prediction remains difficult. More importantly, encoding
vectors that are too short may restrict the prediction accuracy
of classification model. More importantly, most computational
models only used sequence information but did not consider
structure information (Peng et al., 2019).

Deep learning-based computational models composed of
multiple processing layers require very little engineering
knowledge and can efficiently extract features from raw data
and construct high-level representations (Wei et al., 2018; Peng
et al., 2019). These types of models have been applied to diverse
analysis problems, and have obtained better performance due to
the excellent power of feature learning (Jurtz et al., 2017; Min
et al., 2017; Peng et al., 2019). Therefore, it is valuable and feasible
to exploit deep learning-based methods to highly and effectively
represent biological features for relevant entities in bioinformatics
(Min et al., 2017; Zhang et al., 2018d; Peng et al., 2019; Zeng et al.,
2019), such as information relevant to LPI prediction (Xiao et al.,
2017; Shen et al., 2019; Zhu et al., 2019). More importantly,
although deep learning demonstrated promising performance, it
is not a silver bullet in LPI prediction. There still exist many
challenges in LPI identification, such as the imbalanced nature of
LPI data, limited LPI data, appropriate architecture selection,
hyper parameter selection, and interpretation of learning results
(Min et al., 2017). Therefore, solving these problems is the key to
promoting deep learning-based LPI prediction models in
future research.
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Particularly, deep learning can be combined with PU learning
and improve the performance of computational models (Bepler
et al., 2018; Pati et al., 2018). For example, Bepler et al., 2018
designed the first particle-picking framework, Topaz. Topaz
combined a convolutional neural network with a generalized-
expectation-binomial-based objective function. The
convolutional neural network was used to train classification
models using only positive and unlabeled samples. Meanwhile,
the generalized-expectation-binomial-based objective function
was used to learn model parameters based on positive and
unlabeled samples. Topaz utilized convolutional neural network
classifiers to fit labeled particles (samples) and the remaining
unlabeled samples based on the minibatched stochastic gradient
decent method. Deep learning methods based on PU learning
provide valuable insight and may be a starting point for deep
learning applied to LPI prediction in future research.

Capturing LPI Candidates for New
LncRNAs/Proteins
Network-based methods can be applied to an LPI network that
has least one link between two nodes. For a bipartite network
especially, network-based methods require that each node in the
network has at least two linkages. That is to say, network-based
methods cannot discover possible proteins for any lncRNA–
protein pair without any known reachable paths in the LPI
network (Ge et al., 2016; Zhang et al., 2018c). These lncRNAs/
proteins without any interaction information are regarded as
new lncRNAs/proteins (Zhang et al,. 2018c).

Given a known LPI dataset, we aim to predict (S1) LPIs
between known lncRNAs and known proteins; (S2) LPIs
between new lncRNAs and known proteins; (S3) LPIs between
known lncRNAs and new proteins; and (S4) LPIs between new
lncRNAs and new proteins. S1 has the most abundant
association information, S2 and S3 have less data, and S4 has
the least data. Computational models appropriate for S2 can still
be applied to S3, and vice versa.

To the best of our knowledge, SFPEL-LPI provided by Zhang
et al. (2018c) may be one of the rare computational methods for
predicting possible LPIs for new lncRNAs/proteins. Although
few computational models can be applied to the last three
situations, some methods have been designed to solve similar
problems in other areas in bioinformatics, and thus provide some
clues for LPI prediction. For example, Shi et al. (2015) enhanced
the similarity measures and introduced the concept of a “super-
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target” to capture the missing interactions for new drugs/targets.
Furthermore, Chen et al. (2016b) exploited a miRNA–disease
association prediction model based on within and between scores
(WBSMDA) to uncover possible miRNA–disease associations
for new miRNAs/diseases. These solutions provide clues for
capturing LPI candidates for new lncRNAs/proteins.

Cross-Validation
Inspired by the evaluation methods proposed by Park and
Marcotte (2012) and Chen et al. (2015), the test samples of
LPIs could be categorized into four different groups: C1 is
composed of the test samples sharing both lncRNAs and
proteins with the training samples; C2 is composed of the test
samples sharing only lncRNA with the training samples; C3 is
composed of the test samples sharing only proteins with the
training samples; and C4 is composed of the test samples sharing
neither lncRNAs nor proteins with the training samples (Chen
et al. (2015)). Therefore, it is vital to give cross-validation results
under the above four independent test classes for LPI prediction.
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Since similar complex diseases are much alike in clinical symptoms, patients are easily
misdiagnosed and mistreated. It is crucial to accurately predict the disease status and
identify markers with high sensitivity and specificity for classifying similar complex
diseases. Many approaches incorporating network information have been put forward
to predict outcomes, but they are not robust because of their low reproducibility. Several
pathway-based methods are robust and functionally interpretable. However, few
methods characterize the disease-specific states of single samples from the
perspective of pathways. In this study, we propose a novel framework, Pathway
Activation for Single Sample (PASS), which utilizes the pathway information in a single
sample way to better recognize the differences between two similar complex diseases.
PASS can mainly be divided into two parts: for each pathway, the extent of perturbation of
edges and the statistic difference of genes caused by a single disease sample are
quantified; then, a novel method, named as an AUCpath, is applied to evaluate the
pathway activation for single samples from the perspective of genes and their interactions.
We have applied PASS to two main types of inflammatory bowel disease (IBD) and widely
verified the characteristics of PASS. For a new patient, PASS features can be used as the
indicators or potential pathway biomarkers to precisely diagnose complex diseases,
discover significant features with interpretability and explore changes in the biological
mechanisms of diseases.

Keywords: similar complex diseases, pathway activation, single sample, inflammatory bowel disease,
pathway biomarkers
INTRODUCTION

Complex diseases threaten human health and life quality. Similar complex diseases make the early
diagnosis of patients more difficult due to similar clinical symptoms. Therefore, mining effective
biological information to accurately discriminate between similar complex diseases has become the
most important research area of biomedicine. In the previous research, several methods based on a
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single biological network, such as the metabolic network,
regulatory network, or protein–protein interaction (PPI)
network, have been put forward to aid in disease prediction,
diagnosis, prognosis, and so on (Winter et al., 2012; Cun and
Fröhlich, 2013). Nevertheless, these methods are not robust
because of the low reproducibility (Yousefi and Dougherty,
2012; Amar et al., 2015; Choi et al., 2017) that results from the
cellular heterogeneity within tissues, the heterogeneity of
samples, and errors of measuring technologies.

Since genes generally take effect synergistically by forming
functional modules, inferring features related to disease
classification at the functional level can effectively ameliorate
the adverse effects of heterogeneity and obtain more reproducible
markers. Some methods utilize Gene Ontology (Ashburner et al.,
2000) to differentiate disease states (Zhang et al., 2017) while
others integrate pathway information. Pathways reflect biological
processes within cells, such as metabolism, signaling, and growth
cycles, and markers identified based on pathway information can
thus maintain functional interpretability (Haider et al., 2018).
Moreover, the occurrence and progression of complex diseases,
such as inflammatory bowel disease (IBD), are often related to
the dysregulation of significant pathways. Discovering the
involved pathways and quantifying their disorders are of great
significance in understanding complex diseases (Bild et al., 2006;
Thomas et al., 2008; Markert et al., 2011; Drier et al., 2013).

A series of methods for disease classification integrate
pathway information from the Molecular Signatures Database
(MSigDB) (Subramanian et al., 2005) or Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa and Goto, 2000).
Several works extract significant features from the genes along
pathways to distinguish diseases (Huang et al., 2003; Bild et al.,
2006; Lee et al., 2008a; Young and Craft, 2016). Although these
works can combine pathway information to classify diseases
effectively, they only regard a pathway as a set of genes and
ignore the edge information between genes, which may lead to
the loss of important information related to diseases. To
overcome this problem, some methods for analyzing the
intrinsic structures of pathways and integrating topological
characteristics of pathways have been proposed (Liu et al.,
2013; Han et al., 2017). These existing algorithms can
effectively utilize the topological information of pathways to
predict disease status. Nevertheless, none of them assesses
condition-specific states for each patient from a pathway
perspective, but this is essential to revealing the molecular
mechanisms of complex diseases at the system level.

By analyzing the high-dimensional information of expression
data and the differential distribution (i.e., volcano distribution)
of a single patient against a given number of normal samples
(Liu et al., 2016), we propose a novel framework to classify two
similar complex diseases by evaluating the pathway activation
based on single sample analysis. Our method consists of
two steps: (1) a fully connected network for each pathway
is constructed and the perturbation of each edge in the
network caused by the introduction of each disease sample is
evaluated. For all genes in the pathways, the statistical difference
of gene expression between a single disease sample and normal
Frontiers in Genetics | www.frontiersin.org 2269
samples is evaluated; (2) a novel method named as AUCpath
is introduced to evaluate the pathway activation for single
sample (PASS) of each pathway from both node and edge
aspects, which converts the high-dimensional, small-sample
gene expression matrix into a PASS matrix. Finally, a random
forest classifier based on PASS features is built to examine the
classification performance.

We applied PASS to classify ulcerative colitis (UC) and
Crohn's disease (CD) (Ananthakrishnan, 2015). UC and CD
have many common clinical features, such as abdominal pain,
diarrhea, recurrent episodes, and so on. They are therefore
collectively referred to as IBD. IBD is a special kind of
intestinal inflammatory disease caused by common factors
such as genetics, environmental triggers, immunoregulatory
defects, and microbial exposure (Hanauer, 2006). Currently,
there is no gold standard for discriminating UC and CD, but
the responses and effects after medication of these two complex
diseases are not the same (Akobeng et al., 2016; Baumgart and
Sandborn, 2007), and this has motivated many attempts to
understand the differences in the molecular characteristics
between these two similar complex diseases at the tissue level
(Lawrance et al., 2001; Burczynski et al., 2006; Wu et al., 2007).
The improved understanding of the differential mechanisms of
UC and CD from a molecular perspective can improve the
diagnostic accuracy and have the potential to improve the
therapeutic effect and the success rate of clinical trials.

We compare our method with seven network-based, GO-
based, and pathway-based methods, respectively, and obtain
prominent performance against these methods. In addition,
our experimental results showed that our method can elucidate
the molecular mechanism of UC and CD and has the potential to
identify biomarkers with functional interpretability.
MATERIALS AND METHODS

Dataset and Preprocessing
We downloaded two pediatric datasets and three adult datasets
from the Gene Expression Omnibus (GEO) (Edgar et al., 2002),
namely GSE9686 (Carey et al., 2007), GSE3365 (Burczynski et al.,
2006), GSE36807 (Montero-Meléndez et al., 2013), GSE71730
(Gurram et al., 2016), and GSE16879 (Arijs et al., 2009). All of
them contain UC, DC, and normal samples.

In order to maintain the consistency of data and reduce the
impact of noise, we selected data from the same anatomical site
and patients under the same conditions. We excluded samples of
CD patients during treatment for GSE9686 and samples of
Crohn's ileitis for GSE16879. We mapped probes to gene ID
using files provided by the corresponding platforms, discarded
probes corresponding to multiple genes, and chose the median
when multiple probes were mapped to the same gene to
eliminate the influence of measurement errors. Only genes
detected in all datasets can be used for the downstream
analysis. As a result, there were 11242 genes included in all five
datasets. Table 1 summarizes the above datasets.
February 2020 | Volume 10 | Article 1401

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Li et al. Pathway Activation for Single Sample
From the KEGG database, all human pathways were
downloaded using the KEGGgraph package (Zhang and
Wiemann, 2009). A total of 294 pathways were extracted. Each
pathway consisted of a set of genes and their interactions; genes
were represented by nodes, and interactions were edges in the
KEGG human pathways. Genes that were not present in the
expression profiles and their corresponding interactions were
discarded. Considering the following analysis, pathways
containing only one edge were not included. Finally, 291
pathways were retained, and these contained 3926 genes in total.
Pathway Activation for Single Sample
Pathway-based features are more robust while maintaining
biological interpretability and tend to be small in number,
which can prevent overfitting. In this study, we introduced a
new method, called PASS, to evaluate the state of each known
pathway. PASS defined the state of a pathway from the aspect of
genes and regulatory links. Although it was difficult to analyze
the regulatory links in the pathway for each patient, the sample-
specific network (SSN) analysis provided a feasible and effective
way to mine the different regulatory patterns for each patient.

In this study, we first constructed a fully connected network
for each pathway. For each dataset, we analyzed the condition-
specific state for each disease sample based on the pathway and
thus assessed the PASS features. The schematic diagram of our
framework is shown in Figure 1.
Statistical Difference of Edges Between Single
Disease Sample and Normal Samples
For each fully connected network, we used a group of n healthy
samples to calculate the Pearson correlation coefficient (PCC) of
each pair of genes as background value of the corresponding
edge, denoted as PCCn. PCCn is defined as follows:

PCCn x1, x2ð Þ = E x1x2ð Þ − E x1ð ÞE x2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E x21ð Þ − E2 x1ð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E x22ð Þ − E2 x2ð Þ

p (1)

where x1 and x2 are the expression profiles of a pair of genes
that correspond to an edge, and E represents the operator of
mathematical expectation.

Next, a single disease sample was added to the set of the
normal samples, and the new PCC was calculated and denoted as
PCCn+1. After that, the difference between background and
interference values for the edges in each fully connected
Frontiers in Genetics | www.frontiersin.org 3270
network could be quantified, which is represented as DPCCn

(equal to PCCn+1−PCCn). The difference was derived from the
influence of the newly added disease sample, thus it can reflect
the specific characteristics of this single sample. Statistically,
DPCCn obeys the volcano distribution. Therefore, the
significance of DPCCn can be estimated by the hypothesis test
Z-test. Z-value is calculated as follows:

Z =
DPCCn

1 − PCC2
nð Þ= n − 1ð Þ (2)

Statistical Difference of Gene Expressions Between
Single Disease Sample and Normal Samples
The statistical difference of genes between single disease sample
and normal samples in the expression level was calculated by fold
change:

FC xið Þ = b
�a

(3)

where b represents the expression value of gene xi in the
individual disease sample and �a is the mean of expression values
of gene xi over the n healthy samples.
Pathway Activation for a Single Sample
Based on the single sample analysis, we used AUCpath to
estimate the activation of a pathway, which can evaluate the
enrichment of an attention set as an area under the receiving
operating characteristic curve (AUC) according to the ranking of
all objects in a fully connected network. There were two sets,
called the attention set and the background set. The attention set
contained the subset of objects we considered as important, while
the background set contained all the possible objects except
important objects. We described the states of pathways from the
aspect of genes and regulatory links.

From the perspective of edges, the input was the Z-value of all
edges in each fully connected network, and the output was the
activation of each pathway. The scoring approach was divided
into two steps. First, the edges that exist in the pathway were
regarded as an attention set (i.e., positive label), and the
artificially added edges (in the step of the construction of fully
connected network) were considered as the background set (i.e.,
negative label). Then, all edges in each fully connected network
were ranked in ascending order of their Z-values. Second, AUC
TABLE 1 | Summary of the gene expression datasets.

Name Healthy UC CD Total genes Type of samples Reference URL

GSE9686 8 5 11 15747 Pediatric samples (Carey et al., 2007) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9686
GSE3365 42 26 59 12432 Adult samples (Burczynski et al., 2006) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3365
GSE36807 7 15 13 20486 Adult samples (Montero-Meléndez et al.,

2013)
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE36807

GSE71730 10 15 22 20486 Pediatric samples (Gurram et al., 2016) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE71730

GSE16879 6 24 19 20486 Adult samples (Arijs et al., 2009) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE16879
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was applied to evaluate whether edges in a pathway are enriched
in the top ranking, and we thus regarded the AUC value as the
quantitative indicator of pathway activation. It is defined as
follows:

AUCpath =
∑i∈ importantSubset ranki −

m 1+mð Þ
2

m� n
(4)

where ranki represents the ranked position of the i-th edge of
the attention set, m represents the number of edges in the
attention set, and n is the number of edges in the background set.

Besides, considering that genes were also critical for mining
effective information, we calculated the pathway activation from
the perspective of genes. We first obtained all genes in pathways.
For each pathway, genes on it were regarded as an attention set,
and other genes were considered as the background set. Then, we
assessed the enrichment of genes in the attention set as AUC
based on the ranking of all genes, whereby all genes were ranked
in ascending order according to their fold change between a
single disease sample and normal samples.

After the evaluation of pathway activation from both nodes
and edges, we obtained a matrix with PASS scores for pathways
and patients.
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RESULTS AND DISCUSSION

Stronger Effectiveness of PASS Compared
to the Representative Feature Engineering
Methods
We built a comprehensive scheme to demonstrate the performance
of our approach for distinguishing two similar diseases as well as
compare them with other state-of-the-art feature engineering
methods. We selected seven representative methods from three
aspects: network-based, GO-based and pathway-based methods,
that is, NetRank (Winter et al., 2012), stSVM (Cun and Fröhlich,
2013), comparative network stratification (CNS) (Zhang et al.,
2017), principal component analysis (PCA) (Young and Craft,
2016), normal tissue centroid (NTC) (Young and Craft, 2016),
gene expression deviation (GED) (Young and Craft, 2016), and
probabilistic pathway score (PROPS) (Han et al., 2017). For a better
comparison, we downloaded the PPI network from STRING
database (http://string-db.org/) for NetRank, stSVM and CNS,
and collected biological processes (BP) terms of Gene Ontology
(GO) (http://www.geneontology.org/) for CNS.

NetRank (Winter et al., 2012) is a modification of PageRank.
For a given gene, NetRank identifies the rank of a gene
according to the rank of its neighbors in a PPI network.
FIGURE 1 | Schematic diagram of the framework. (A) Fully connected networks are derived from pathways. The colored edges represent the real interactions in
pathways and are regarded as attention sets, and the black edges are artificially added to construct fully connected networks and regarded as the background sets.
(B) Single sample theory for the evaluation of differential value of each edge in fully connected networks. (C) Obtaining all genes in pathways. For a pathway, genes
on this pathway are considered as the attention set and others are treated as the background set. The fold change value of each gene in each disease sample
relative to the normal sample is evaluated for subsequent analysis. (D) PASS expression matrix. For each pathway, the AUCpath is used to evaluate the enrichment
of edges in a pathway as an AUC according to the ranking of all edges in a fully connected network, whereby all edges were ranked according to their Z-scores. For
each pathway, the AUCpath is used to assess the enrichment of genes in the pathway as an AUC based on the ranking of all pathway genes, whereby all genes
were ranked according to the gene expression data.
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stSVM (Cun and Fröhlich, 2013) is a feature selection method
which smooths the marginal statistic for differential expression
genes by random walk kernel.

CNS (Zhang et al., 2017) is a framework that captures
functional features for discriminating the disease states. Genes
that are enriched by the same function (GO term) are aggregated
through a flux balance model, and functional modules that
maximize the distinction between UC and CD are then obtained.

For genes on each pathway, PCA (Young and Craft, 2016)
compresses gene expression data and extracts principal
components for the classification of disease status. For the
hyperspace formed by genes on a particular pathway, NTC
(Young and Craft, 2016) treats each disease sample as a point
in the hyperspace and computes the Euclidean distance between
the coordinates of disease samples and healthy samples. GED
(Young and Craft, 2016) firstly uses the Kolmogorov–Smirnov
test to capture genes that have the different distribution in
normal and disease samples, and scores of those genes are then
calculated based on the expression deviation in normal and
disease samples. According to the scores, GED gives two
features to each pathway, one for over-expression and one for
under-expression. PROPS (Han et al., 2017) regards each
pathway as a Gaussian Bayesian model. For each gene, after
calculating the parameters in the model through normal samples,
probabilistic pathway scores can be obtained using the
loglikelihood values.

Improved Discrimination of PASS
Evaluated by Classification Performance
Analysis
We used the random forest classifier to verify the classification
results and applied three-fold cross-validation considering the
small sample size of several datasets. For unbiased evaluation, we
repeated these experiments for a total of 500 times for the entire
datasets. The results of eight methods are shown as ROC curves
and AUC corresponding to the ROC in Figure 2 and Table 2,
respectively. Although the AUC of PROPS on GSE3365
somewhat exceeded PASS, and the AUC of PCA on GSE16879
was equal to PASS, our method was more stable and more
prominent than the other seven methods on the five datasets.

Analysis of Differential Pathways With
Significance According to PASS
In order to validate the effectiveness of PASS features, we
analyzed the differential pathways according to the PASS
index. The p-value was calculated using two-sample t-test for
the five datasets. Supplementary Figure S1 shows the
quantitative distribution of p-value of differential pathways
based on the PASS scores for the five datasets. The pathway
activation we defined can acquire lots of differential features with
significance in two similar diseases, which indicates that the
PASS index can widen the gap between UC and CD.

We analyzed pathways that were differentially expressed (p-
value < 0.05) on all the datasets (Supplementary Table S1). The
majority of differential pathways have been shown to be related
to IBD as reported in the literature (Table 3). These pathways
Frontiers in Genetics | www.frontiersin.org 5272
not only demonstrate the metabolic and immune abnormalities
of IBD, but they also reveal the pathogenesis of IBD from specific
perspectives. Furthermore, the expression of genes in differential
pathways related to IBD can reflect the changes in the course of
disease. For the differential pathways associated with IBD, we
analyzed the up-regulation and down-regulation of differentially
expressed genes with significance in UC and normal samples, CD
and normal samples. Figure 3 shows the Venn diagrams of
Epstein-Barr virus infection pathway, and others are shown in
Supplementary Figures S2–S10. Most genes have the same
regulatory relationship in UC and CD, but a small number of
genes have different expressions. This also verifies that these two
FIGURE 2 | Aggregate ROC curves.
TABLE 2 | Classification performance comparison on independent datasets.

Methods GSE9686 GSE3365 GSE36807 GSE71730 GSE16879

PASS 0.94 0.77 0.78 0.74 0.72
NetRank 0.88 0.75 0.65 0.69 0.56
stSVM 0.88 0.72 0.75 0.71 0.55
CNS 0.91 0.75 0.75 0.70 0.69
PCA 0.91 0.66 0.73 0.69 0.72
NTC 0.89 0.72 0.75 0.67 0.68
GED 0.88 0.70 0.73 0.67 0.70
PROPS 0.88 0.78 0.70 0.73 0.67
F
ebruary 2020 |
 Volume 10 |
TABLE 3 | Differential pathways related to IBD.

Entry Name Reference

hsa05169 Epstein-Barr virus infection (Yanai et al., 1999)
hsa00190 Oxidative phosphorylation (Soderholm et al., 2000; Söderholm

et al., 2002)
hsa00531 Glycosaminoglycan

degradation
(Lee et al., 2008b)

hsa00730 Thiamine metabolism (Mehanna et al., 2008)
hsa00860 Porphyrin and chlorophyll

metabolism
(Jansson et al., 2009)

hsa04012 ErbB signaling pathway (Ando et al., 2013)
hsa04340 Hedgehog signaling pathway (Ghorpade et al., 2013)
hsa04920 Adipocytokine signaling

pathway
(Karmiris et al., 2006)

hsa00062 Fatty acid elongation (Belluzzi et al., 2000)
hsa00020 Citrate cycle (TCA cycle) (Schicho et al., 2012)
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types of diseases are very similar, but there are differences
between them.

Furthermore, we have visualized samples using the two
principal components of our PASS features and overlaid the
classification results from PASS model (Figure 4). The CD
samples misclassified as UC and the UC samples misclassified
as CD are mainly concentrated in the overlapping regions of the
two types of diseases. However, some UC samples are more like
Frontiers in Genetics | www.frontiersin.org 6273
CD samples, while some CD samples resemble UC samples,
which leads to the misclassification of samples.

Enrichment of Known Disease-Associated
Genes
After choosing a p-value < 0.01 as the threshold of statistical
significance, we obtained the significant differential pathways.
Next, we analyzed the enrichment of the known disease-
associated genes (DAGs) in differential expression pathways.
DAGs relevant to UC and CD were collected from DisGeNET
(Piñero et al., 2016), and a hypergeometric test was used to
calculate the p-value of the enrichment of DAGs:

P = 1 − ∑m−1
i=0

(M
i
)(N−M

n−i
)

(N
n
)

(5)

where N is the number of genes in all pathways, M is the
number of DAGs, n is the number of genes in the differential
pathways, and m is the number of DAGs enriched in the
differential pathways.

For convenience, we transformed p-value to −log10(p−value).
We compared the statistical significance of the enrichment of
DAGs in the significant differential pathways identified by PASS
index with other pathway-based indexes (Figure 5). It shows
that, with the exception of being outperformed by PROPS in
GSE36807, the differential pathways obtained from PASS values
have the statistical significance of the enrichment of DAGs and
FIGURE 3 | Expression of genes in Epstein-Barr virus infection pathway. (A)GSE9686,(B)GSE3365, (C)GSE36807, (D)GSE71730, (E)GSE16879.
FIGURE 4 | Visualization of classification results using the two principal
components of PASS features.
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have lower p-values than other methods in all datasets. This
indicates that the PASS index has the ability to identify
differential features enriched by DAGs.
CONCLUSION

Complex diseases are not determined by a single gene, but by
the combination of multiple genes, multiple factors, genetics,
and the environment, similar complex diseases are more
difficult to diagnose due to similar symptoms. In this study,
we have presented PASS as a novel framework for classifying
two main types of IBD from a single disease sample rather
than a population of patients. For each pathway, we evaluated
the difference between each patient and healthy sample
from the perspective of genes and their interactions and
calculated the pathway activation of individual samples.
From the edge aspect, we constructed a fully connected
network for each pathway, where edges in the pathway were
regarded as the attention sets and artificially added edges were
used as the background sets. Subsequently, we calculated the
extent of perturbation of each edge based on single sample
theory. From the node perspective, we collected all genes on
all pathways. For each pathway, nodes on it were the attention
set and others were the background set. Then, we evaluated
the statistic difference of each node between single patient and
healthy samples. Hereafter, we evaluated the pathway
activation of each patient by computing the enrichment of
attention set as an AUC according to the ranking of all genes
or edges in the fully connected network.

We applied our method to UC and CD, which are two similar
complex diseases of IBD. We compared PASS with seven state-
of-the-art approaches (NetRank, stSVM, CNS, PCA, NTC, GED,
and PROPS) on five IBD datasets. The results show that our
Frontiers in Genetics | www.frontiersin.org 7274
PASS had the more discriminative power and was more stable
than other seven methods. Besides, the PASS index can capture
more differential expressed pathways with biological
interpretability, which indicates that our PASS feature can
widen the gap between UC and CD and aid researchers in
comprehending the pathogenesis of these two similar
complex diseases.

Our method can be applied to the classification of two similar
diseases and has improved classification accuracy compared to
seven state-of-the-art methods. However, due to the complexity
and difficulty of similar complex diseases, there is still a space for
improvement in the discriminative power. The performance of
the PASS method relies on the all human pathway data and the
topology of pathways, and more complete pathway information
can better reveal the biological processes within cells and the
statistic difference between a single disease sample and healthy
samples calculated by our method can be also more accurate.
With the rapid development of human interaction databases, we
believe that the completer and more accurate pathway
information could help to further improve the diagnosis of UC
and CD.
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Microbe-disease association relationship mining is drawing more and more attention due
to its potential in capturing disease-related microbes. Hence, it is essential to develop new
tools or algorithms to study the complex pathogenic mechanism of microbe-related
diseases. However, previous research studies mainly focused on the paradigm of “one
disease, one microbe,” rarely investigated the cooperation and associations between
microbes, diseases or microbe-disease co-modules from system level. In this study, we
propose a novel two-level module identifying algorithm (MDNMF) based on nonnegative
matrix tri-factorization which integrates two similarity matrices (disease and microbe
similarity matrices) and one microbe-disease association matrix into the objective of
MDNMF. MDNMF can identify the modules from different levels and reveal the
connections between these modules. In order to improve the efficiency and
effectiveness of MDNMF, we also introduce human symptoms-disease network and
microbial phylogenetic distance into this model. Furthermore, we applied it to HMDAD
dataset and compared it with two NMF-based methods to demonstrate its effectiveness.
The experimental results show that MDNMF can obtain better performance in terms of
enrichment index (EI) and the number of significantly enriched taxon sets. This
demonstrates the potential of MDNMF in capturing microbial modules that have
significantly biological function implications.

Keywords: microbe-disease association, matrix factorization, phylogenetic distance, human microbiome,
co-modules
INTRODUCTION

With the development of high-throughput sequencing technology, such as 16S ribosomal RNA (16S
rRNA), more and more microbes were identified. Nearly 1014 bacterial cells are existed in human
internal gut and provide a wide variety of gene products which induce diverse metabolic activities
(Micah et al., 2007; Shah et al., 2016). The dynamic balance of human microbiome composition is
essential to maintain good health. Once such balance is broken, many closely related human disease
and disorders may be caused (Medzhitov, 2007; Thiele et al., 2013), such as colorectal cancer (CRC)
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(Boleij et al., 2014), obesity (Turnbaugh et al., 2009),
inflammatory bowel disease (IBD) (Qin et al., 2010), bacterial
vaginosis (Fredricks et al., 2005), and so on. For example, Jorth et
al. have reported that gene expression profiles of periodontitis-
related microbial communities have highly conserved changes,
relative to healthy samples (Jorth et al., 2014). It means that
microbiome composition changes in oral cavity could be
associated with pathogenesis of periodontitis. Furthermore,
Socransky et al. have found that subgingival plaque is
connected with several major microbial taxon including
Fusobacterium, Prevotella, and so on (Socransky et al., 1998).
Chen et al. have observed that the colonization with Helicobacter
pylori has negative correlation with the symptom of allergy
(pollens and molds), especially in the childhood (Chen and
Blaser, 2007; Blaser, 2014). All these reveal the potential
association between pathogenic microorganisms and complex
human diseases.

Considering the key role of microbes in health, many
important projects including the Human Microbiome Plan
(HMP) (Gevers et al., 2012), the Earth Microbiome Project
(EMP) (Gilbert et al., 2010), Metagenomics of the Human
Intestinal Tract (MetaHIT) (Ehrlich and Consortium, 2011)
were launched to investigate the relationships between
microbiota and diseases. Moreover, some related databases and
tools have been developed to analyze the increasing information
for disease-related microbes. A human microbe-disease
association database, called HMDAD (Ma et al., 2016a),
manually collected 483 microbe-disease association entries
from previously published literatures. These databases provide
a possibility for microbe-disease association relationship
prediction by computational approaches. Zhang et al. proposed
bidirection similarity integration method (BDSILP) for
predicting microbe-disease associations by integrating the
disease-disease semantic similarity and the microbe-microbe
functional similarity. Wang et al. proposed a semisupervised
computational model called LRLSHMDA to predict large-scale
microbe-disease association (Wang et al., 2017). Huang et al.
combined neighbor-based collaborative filtering and graph-
based model into a unified objective function to predict
microbe-disease relationship (Huang et al., 2017). He et al.
integrated symptom-based disease similarity network into
graph regularized nonnegative matrix factorization models
(GRNMF), meanwhile utilizing neighbor information to boost
the performance of GRNMF (He et al., 2018). Zhang et al.
utilized the advantages of ensemble learning to improve the
performance of association prediction, which provided a new
way for mining microbe-disease relationship (Zhang et al.,
2018a; Zhang et al., 2019). All these efforts pave the way for
further understanding complex regulatory mechanisms by
means of which disease-related microbiota get involved.

However, cellular system is complicatedly organized and
biological functions are mainly performed in a highly modular
manner (Barabasi and Oltvai, 2004; Chen and Zhang, 2018). In
microbial ecosystems, microbes often cooperate with each other
to finish some biochemical activities. For example, ammonifiers
decompose nitrogen-containing organic compounds to release
Frontiers in Genetics | www.frontiersin.org 2278
ammonia. Nitrous acid bacteria (also known as ammonia
oxidizing bacteria) oxidize ammonia to nitrous acid. Then,
nitric acid bacteria (also known as nitrous acid oxidizing
bacteria) oxidize nitrous acid to nitric acid. These two types of
bacteria can obtain the energy needed for growth from the above
oxidation process. Therefore, the mutualism relationship among
ammonifier, nitrous acid bacteria, and nitric acid bacteria forces
them to form a tight biological community. Guo et al. studied the
contributions of high-order metabolic interactions to the activity
of four-species microbial community and demonstrated that the
interactions between pairwise species play an important role in
predicting the complex cellular network behavior (Guo and
Boedicker, 2016). Although knowledge about microbe-disease
associations could provide helpful insights into understanding
complex disease mechanisms (Huang et al., 2017; He et al.,
2018), the “one-disease, many microbes” models ignore
interactions within microbial community composed of
several species.

Recently, multilayer interaction and modular organization
have attracted more and more attentions. Several studies
proposed co-module discovery methods to identify
combinatorial patterns using pairwise gene expression and
drug response data (Kutalik et al., 2008; Chen and Zhang,
2016). In addition, Chen et al. proposed a new method based
nonnegative matrix factorization (NMF) to reveal drug-gene
module connections from different molecular levels (Chen and
Zhang, 2018). Cai et al. proposed a new network-guided sparse
binary matching model to jointly analyze the gene-drug patterns
hidden in the pharmacological and genomic datasets with the
additional prior information of genes and drugs (Cai et al., 2018).
Chen et al. also proposed a higher order graph matching with
multiple network constraints (gene network and drug network)
to identify co-modules from different multiple data sources
(Chen et al., 2018).

All these have made great progresses to study the coordinate
regulatory mechanisms between two or more biological
molecular networks from a systematic view. However, as far as
we know, less work focuses on microbe-disease co-modules
discovering. Previous studies mainly aimed to microbe-disease
association prediction, and did not reveal within-module
interactions (microbe-microbe, disease-disease) from the same
level and cross-module interactions (microbe-disease) from
multiple molecular levels.

To this end, we design a new algorithm based on NMF to
construct the two-level microbe-disease module network by
Gaussian profile kernel similarity (MDNMF). In order to
improve efficiency and effectiveness of the proposed algorithm,
we introduce human symptoms-disease network (Zhou et al.,
2014) and microbial phylogenetic distance into this model,
which makes functionally similar microbes (diseases with
similar symptoms) tend to appear in the same microbial
module (disease module). We applied MDNMF to HMDAD
dataset and compared it with two classical NMF methods to
demonstrate its effectiveness. The experimental results show that
the majority of identified microbial modules have significant
functional implications [significantly enriched in taxon sets that
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refer to groups of microbes that has something in common
(Dhariwal et al., 2017)]. Figure 1 gives the illustrative example
of MDNMF.

The contribution of this paper lies in (1) an efficient two-level
module discovering algorithm (MDNMF) has been proposed to
reveal microbe-microbe, disease-disease and microbe-disease
modules association. (2) The phylogenetic distance of disease-
related microbes is introduced into the proposed MDNMF
model to make phylogenetically close microbes tend to
intertwine in the development of similar disease. To our
knowledge, this is the first attempt to link microbial
phylogenetic relatedness to NMF-based module identification.
(3) The proposed MDNMF algorithm is easily extended to other
multiple-level molecular network application, for example, virus-
host co-modules, microbe-drug co-modules discovering, and so
on. The rest of this paper is organized as: in the next section, we
give a brief overview of NMF and MDNMF. And then, followed
by the experimental results and the conclusions are provided in
the last section.
MATERIALS AND METHODS

Dataset
The dataset is downloaded from the Human Microbe-Disease
Association Database (HMDAD, http://www.cuilab.cn/hmdad)
(Ma et al., 2016a). It contains 483 microbe-disease associations,
which cover 292 microbes and 39 diseases. By 16S RNA
sequencing techniques, most microbe names was recorded at
the genus level. Based on these known microbe-disease relation,
Frontiers in Genetics | www.frontiersin.org 3279
an adjacency matrix X∈R292×39 can be constructed where Xij=1 if
microbe i is related to disease j, and vice versa.

The NMF Model
NMF and its variants have been widely applied to various fields
including bioinformatics (Ma et al., 2016b; Ma et al., 2017; Chen
and Zhang, 2018). In NMF, given an original data matrix
X∈Rn×m, we seek to find two low-rank matrices W∈Rn×k (also
called basis matrix) and H∈Rk×m (coefficient matrix) to
approximate X, such that X≈WH, where k<<min(m,n). Here,
data X can be represented as the linear additional combination of
basis vectors. We can obtain such a decomposition by solving the
following least squares problem:

min
W ,H≥0

‖X −WH ‖2F , (1)

where ||•||F denotes Frobenius norm.

Gaussian Interaction Profile Kernel
Similarity for Microbes
Based on the hypothesis that functionally similar microbes could
be associated with more common human diseases, Gaussian
kernel interaction profiles can be used to calculate the inferred
microbe similarity (Wang et al., 2017; He et al., 2018). Given
microbe-disease association matrix X, the ith row of X indicates
the interaction profiles between microbe mi and all the diseases.
For any two microbes mi and mj, their similarity can be
computed as follows:

MS(mi,mj) = exp −g m‖Xi,* − Xj,* ‖
2� �
, (2)
FIGURE 1 | Illustrative example of MDNMF. First, based on Gaussian kernel function we can obtain microbe and disease similarity matrices from the original
microbe-disease association matrix. Then, these three matrices are served as the input of MDNMF. Simultaneously, in order to improve the accuracy of module
finding and biological interpretability of modules identified by MDNMF, human symptoms-disease network and microbial phylogenetic distance are also introduced
into the model. At last, microbe-disease co-modules from different levels can be obtained.
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where Xi,* denotes the ith row of matrix X. gm is bandwidth
parameter that needs to be normalized based on a novel
bandwidth parameter g′m and the interaction profile for each
microbe, i.e., the ith row of X:

g m = g
0
m=

1
nm

 o
nm

i=1
‖Xi,* ‖

2

 !
: (3)

Here, nm is the number of microbes related to all diseases
(here, nm=292). g′m was set as 1 according to the previous study
(Wang et al., 2017). In this way, microbe similarity matrix MS
can be constructed, the element of MS indicates the similarity
score between two arbitrary microbes.

Gaussian Interaction Profile Kernel
Similarity for Diseases
Similarly, Gaussian kernel based disease similarity matrix can be
inferred as follows:

DS(di, dj) = exp −g d‖X*,i − X*,j ‖
2� �

(4)

g d = g
0
d=

1
nd
o
nd

i=1
‖X*,i ‖

2

 !
, (5)

where X*,i denotes the ith column of X, nd is the number of
diseases related to all microbes (nd=39), g′d was also assigned to 1.

Phylogenetic Distance for Disease-Related
Microbes
Gaussian interaction profiles kernel similarity reflects the
intertwining between microbes in term of microbe-disease
association relationship. However, functionally similarity could
not be explained only by disease relatedness, homology and
phylogenetic correlation should be considered as side information
tomake the connectedmicrobes in themicrobe-disease association
matrix likely to be placed in the same co-modules.

We searched 91 nucleotide sequences of disease-related
microbes from NCBI, and imported them into MEGA to
compute the phylogenetic distance between pairwise sequences
by Kimura 2-parameter model. Other parameters are set in
default. Thus, we can obtain the final microbial phylogenetic
distance matrixM phy which is used to enforce microbe members
within identified modules likely to be near in phylogeny.

In order to demonstrate the role of phylogenetic information in
identifying disease-related microbe modules, we extract the top 10
largest and smallest phylogenetic distance pairs as illustrative
examples to further analyze whether closely related taxa tend to
associate with the same disease, or similar diseases. For each
microbe-microbe phylogenetic distance pair, we compute the
Jaccard coefficient (JC) between two microbe-related disease
profiles (rows of microbe-disease association matrix). The results
shows that top 10microbe pairs which are closely related in genetic
have the largest JCs in terms of disease profile similarities. Similarly,
we also compute the disease similarities between phylogenetically
distant microbes and find that 9 in 10 microbe pairs have the
Frontiers in Genetics | www.frontiersin.org 4280
smallest JCs. This suggests that closely related taxa tend to associate
with the same disease or similar diseases, and phylogenetically
distant taxa usually have distinct disease profiles.

The MDNMF Algorithm
Besides the typical NMF as Dataset described, tri-factor NMF (tri-
NMF,X≈FSG) is also an importantmatrix factorizationmethod for
clustering (Ding et al., 2006). In tri-NMF, factorized matrices F,G
provide an approach to perform biclustering of X, respectively.
Factorized matrix s not only provides an additional degree of
freedom to enforce the reconstruct error tiny, but also implicitly
denotes the relationship between clusters (Ding et al., 2005). In
particular, given the symmetric similarity matrix A, we can
decompose it into A≈HSH

T. The similarity matrix reflects the
intrinsic connection patterns within its original data matrix (Van
Dam et al., 2017). In this paper, we propose a novel algorithm
MDNMF to simultaneously factorize two similarity matrices
(microbe similarity matrix MS, disease similarity matrix DS) and
onemicrobe-disease associationmatrixX. The objective function is
formulated as follows:

min
H1,  H2,  S1,  S2

 ‖MS − H1S1H
T
1 ‖

2
F + l1‖X − H1H

T
2 ‖

2
F + l2

‖DS − H2S2H
T
2 ‖

2
F

s : t : H1,  H2,  S1,  S2 ≥ 0:

(6)

where MS ∈Rnm×nm, DS∈Rnd×nd are microbe-microbe and
disease-disease similarity matrices, respectively. H1∈Rnm×k,
H2∈Rnd×k are cluster indication matrices, S1∈Rk×k, S2∈Rk×k are
the symmetric matrices. Here, k is the number of clusters, and l1, l2
are the parameters to balance the weights of three terms in Eq.6. The
second term‖X − H1H

T
2 ‖

2
F establishes the one-to-one relationships

between identifiedmicrobemodules anddiseasemodules.Moreover,
it can be regarded as a tri-NMF‖X − H1IH

T
2 ‖

2
F , here I is the identity

matrixwhich enforce the ithmodule identified bymicrobe clustering
indicationmatrixH1 is only boundupwith the ithmodule byH2.The
other two terms respectively identify one type of modules at
individual levels and reveal the module associations within them
via S1 and S2.

In order to further improve the performance of the proposed
algorithm, we introduce symptoms-based disease similarity
network and microbial phylogenetic distance into MDNMF.
The symptoms-based disease similarity was previously studied
based on co-occurrence of disease/symptom terms (Zhou et al.,
2014). Here, we use DSsym to denote symptoms-based disease
similarity matrix. The objective function of MDNMF (Eq.6) can
be rewritten as follows:

min
H1,  H2,  S1,  S2

 ‖MS − H1S1H
T
1 ‖

2
F + l1‖X − H1H

T
2 ‖

2
F + l2

‖DS − H2S2H
T
2 ‖

2
F + m tr HT

1 L1H1

� �
+ tr HT

2 L2H2

� �� �
s : t : H1,  H2,  S1,  S2 ≥ 0:

(7)
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Where L1=D1-MSphy, L2=D2-DSsymp are Laplacian matrices,

(D1)i =o
j
(MSphy)ij,(D2)i =o

j
(DSsymp)ij are degree matrices,

respectively. MSphy=1-Mphym is the regularization parameter
and the whole last term in Eq.7 is used to exert a penalty for
violating the prior cognition about microbial phylogeny and
disease phenotype associations.

Note that disease symptoms dataset collected from PubMed
literatures contains diseases and symptoms terms. The
association between symptoms and diseases are quantified
using term co-occurrence (just like in the field of information
retrieval, if the document and keyword simultaneously appear,
the corresponding position of the word-document matrix is set
to the frequency of co-occurrence). And then, each disease can be
represented by a vector of symptoms. At last, the cosine
similarity function is used to quantify the similarity between
two diseases. The link weight between two diseases quantifies the
similarity of their respective symptoms. Thus, these two disease
similarities based on microbes and human symptoms are
different essentially in that HMDAD dataset describes the
binary relationships between microbes and diseases, however,
disease symptoms dataset describes the co-occurrence
relationships between symptoms and diseases. Integrating
them into the objective of MDNMF will simultaneously take
account of the diffusion and propagation of the information from
different source.

We used the multiplicative update rules to solve MDNMF
problem and can find a local minimal solution by alternately
updating matrices H1, H2, S1, S2.

(1) Fix H1,H2, S2 and update S1 with

S1ð Þij ← S1ð Þij
HT

1MSH1

� �
ij

HT
1H1S1H

T
1H1

� �
ij

(8)

(2) Fix H1, H2, S1 and update S2 with

S2ð Þij ← S2ð Þij
HT

2DSH2

� �
ij

HT
2H2S2H

T
2H2

� �
ij

(9)

(3) Fix S1, S2, H2 and update H1 with

H1ð Þij ← H1ð Þij
2MSH1S1  +  l1XH2 + mD1H1ð Þij

2H1S1H
T
1H1S1 + l1H1H

T
2H2 + mMSphyH1

� �
ij

(10)

(4) Fix S1, S2, H1 and update H2 with

H2ð Þij ← H2ð Þij
2l2DSH2S2  +  l1X

TH1 + mD2H2

� �
ij

2l2H2S2H
T
2H2S2  +  l1H2H

T
1H1  +  mDSsympH2

� �
ij

(11)

Determination of Modules
In fact, the same microbe may play different roles in the
development of diseases. Therefore, the idea of soft clustering
is more suitable to model the function associations among
Frontiers in Genetics | www.frontiersin.org 5281
microbes. The factorized matrices H1, H2 can be used to
identify two types of modules, respectively. The elements with
relatively large values of each column of H1 (H2) is assigned to
the members of corresponding module. We calculate the
threshold for each feature (each rowh1i,*of H1 (h

2
i,*of H2)) with

Th fð Þ = m fð Þ + ts fð Þ, (12)

where m(f ) = 1
kokhfk, s (f ) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1ok(hfk − m(f ))2
q

, t is a given
threshold. Based on this rule, we determined the ith module
members if the entries of h∗fi are larger than Th (f). In
Experimental Results and Discussion section, we set t=1.5 for
two clustering indication matricesH1 andH2 to identify modules
with proper resolution.

Determination of Module Links
Given the symmetric similarity matrix A, tri-NMF factorizes it to
be A ≈ HSHT =ok

i=1ok
j=1sijhih

T
j . Here, hi denotes the ith

column of H, sij is the corresponding element of s. The latent
clustering indication vector hi can reconstruct the original
similarity matrix A, and sij can be viewed as the weight of hih

T
j

. It means that the larger sij is, the stronger the connection
between the modules identified by hi and hj is. Therefore, the
diagonal elements of s can be used to evaluate the quality of
clustering, and the off-diagonal elements can be used to establish
the possible connections between different modules.

Functional Enrichment Analysis for
Co-Modules
We use MicrobiomeAnalyst (Dhariwal et al., 2017) tools to
conduct functional enrichment analysis for microbe modules,
and select the significantly enriched taxon set terms if P-value <
0.005 and FDR < 0.05 (hypergeometric tests). Because
MicrobiomeAnalyst provides 229 taxon sets associated with
host-intrinsic factors such as diseases. For microbe-disease co-
modules we define the enrichment indices between significantly
enriched taxon set terms and diseases within the same co-module
to evaluate the performance of different algorithms. The
enrichment index (EI) is formulated as follows:

EI =
significantly enriched taxon setf g ∩ diseasesf gj j
significantly enriched taxon setf g ∪ diseasesf gj j , (13)

where |{significantly enriched taxon set}| denotes the number of
significantly enriched taxon sets, |{diseases}| denotes the number
of diseases which is related to microbes within the same co-
module. Generally speaking, higher EIs indicates good clustering
quality of identified co-modules.
EXPERIMENTAL RESULTS
AND DISCUSSION

Results and Comparison
We compared MDNMF with typical NMF and NetNMF (Chen
and Zhang, 2018) (without considering microbial phylogenetic
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https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Ma et al. Microbe-Disease Co-Modules Identifying
information and symptoms-based disease similarity) by
applying them to HMDAD dataset. Since NMF-based
algorithms cannot guarantee a global optimal solution, we run
50 times with different initializations and selected the
factorization with minimal objective function value as the
downstream analysis.

We adopted EI (as described in Functional Enrichment
Analysis for Co-Modules) and the number of significantly
enriched microbe taxon set (TSsig) as metrics to evaluate the
performance of different algorithms. Other taxon sets (OTS=|
{significantly enriched taxon set}|=|identified disease-related
taxon sets|) indicate the significantly enriched taxon sets that
are not considered by EI. To some extent, the number of other
taxon sets reflects the identified ability of different methods in
potential microbe function modules discovering. Extensive
Frontiers in Genetics | www.frontiersin.org 6282
comparison experiments are conducted and the results are
shown in Table 1.

As Table 1 shown, compared with other two NMF-based
algorithms, MDNMF achieves the best performance in terms of
EI and TSsig, indicating that MDNMF could potentially discover
the meaningful function modules as much as possible by
introducing symptoms-based disease network and microbe
phylogenetic distance.
Comparison of All the Significantly
Enriched Taxon Sets of Modules Identified
by MDNMF, NMF, and NetNMF
To demonstrate the effectiveness of MDNMF, we compared the
microbe modules identified by these three approaches in terms
of biologically functional enrichment. We performed microbe
taxon set enrichment analysis for these three groups of modules
and reserved the taxon set (TS) terms (FDR < 0.05,
hypergeometric test) which are significantly enriched by two
modules derived of MDNMF and NetNMF (or NMF). Then, for
each TS term, we calculated enrichment scores (-log10(p-
value)) and took the highest scores among all modules as the
final score of this TS for each method. Note that the co-modules
identified by MDNMF cover about 20 microbes and 3 diseases
on average. There is only one co-module which contains no
TABLE 1 | The performance of three co-model discovering algorithms in term of
EI and TSsig.

(#) identified co-modules EI (#) TSsig OTS

NMF 12 0.08676 39 29
NetNMF 13 0.11563 49 36
MDNMF 14 0.30182 62 48
*(P-value < 0.005 and FDR < 0.05). # represents the number of identified co-modules or
significantly enriched taxon sets.
FIGURE 2 | Comparison of all the enriched TS terms of microbe modules detected by MDNMF, NMF, and NetNMF using HMDAD dataset.
February 2020 | Volume 11 | Article 83

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Ma et al. Microbe-Disease Co-Modules Identifying
diseases. This is consistent with the average size of each microbe
or disease module (see Parameter Analysis).

Applying MDNMF to HMDAD dataset, many TS terms are
above the diagonal line (see Figure 2). Specifically, the enriched
TS terms obtained by MDNMF have more significant Q-value
(FDR < 0.05) than those of NMF and NetNMF. For microbe
modules, 58.33% (MDNMF versus NMF, P < 0.005 and FDR <
0.05, hypergeometric test) and 47.06% (MDNMF versus
NetNMF, P < 0.005 and FDR < 0.05, hypergeometric test) TS
terms are above the central diagonal line, respectively.

As Figure 2 shown, compared to NetNMF, microbe modules
identified by MDNMF had lower significance for 52.94%
modules. One of the possible reasons is that when selecting
microbes, NetNMF just concerns the relationships among
microbes from the original microbe-disease association matrix,
whereas MDNMF has to take their phylogenetic relationships
into account. This kind of extra constrains of MDNMF might
affect the selected microbe subsets and their enriched functions.
Despite that, MDNMF still identified more significantly enriched
taxon sets than NetNMF (62 vs. 49, Table 1).

Parameter Analysis
In MDNMF, there are three parameters:l1, l2, and µ. We set

l1 =
nm
nd

, l1 =
n2m
n2d

according to the previous study (Chen and

Zhang, 2018). When applying these three NMF-based algorithms
to HMDAD data, the reduced dimension k is needed to be pre-
determined. Here, we selected k=15 from the candidate set
{10,15,20}, and µ=0.001 from {0.001,0.01,0.1}, respectively.
Under this setting, the number of identified microbe modules
with significantly enriched taxon sets terms is highest
(hypergeometric tests, P-value < 0.005 and FDR < 0.05). Mode
selection is demonstrated in Figure 3.
Frontiers in Genetics | www.frontiersin.org 7283
Case Studies
To further validate the performance of MDNMF, we select
several microbe-disease co-modules identified by MDNMF to
analyze their biological functions and inner connections. In total,
60% microbe modules are enriched in at least one TS term. In
these identified microbe-disease co-modules, the diseases caused
FIGURE 3 | Model selection of parameters: m and k.
TABLE 2 | The identified microbe-disease co-modules by MDNMF.

Co-
module_id

Disease
module

Microbe
module

Taxon sets
(matched disease,
descending order

by FDR)

Associated
co-module

9 Bacterial
Vaginosis
Clostridium
difficile
infection
(CDI)
Ileal
Crohn's
disease(CD)
Irritable
bowel
syndrome
(IBS)
Liver
cirrhosis
Necrotizing
Enterocolitis
Periodontal
Type 1
diabetes

Actinobacteria
Bacteroidaceae
Bacteroides
Bacteroides
uniformis
Bacteroidetes
Firmicutes
Fusobacteria
Fusobacterium
Haemophilus
Lachnospiraceae
Lactobacillus
Prevotella
Proteobacteria
Streptococcus
Veillonella

Liver Cirrhosis
Chronic Obstructive
Pulmonary Disease
Bacterial Vaginosis
(increase)
Asthma
Colorectal
Carcinoma
Resistance to
Immune
Checkpoint
Inhibitors (increase)
Type I Diabetes
Diarrhea Irritable
Bowel Syndrome
(IBS)
Parkinsons
(increased)
Third Trimester (vs
First Trimester,
increase)
Crohn's Disease

10,4,7
Febr
uary 2020 | Volume 1
* Colors indicate different diseases or enriched taxon sets.
TABLE 3 | The detailed information of identified microbe-disease co-module 4.

Co-
module_id

Disease
module

Microbe
module

Taxon sets
(matched disease,
descending order

by FDR)

Associated
co-module

4 Allergic
sensitization

Acinetobacter
Bacteroides
ovatus
Bacteroides
vulgatus
Burkholderia
Clostridium
coccoides
Clostridium
difficile
Clostridium
leptum
Dietzia maris
Escherichia
coli
Lysobacter

Cystic Fibrosis
Atopic dermatitis
Aging (decrease)
Dandruff
Crohn's Disease
(increase)
Head and neck
squamous cell
carcinoma (increase)

9,7

Constipation
IBS
COPD
Cystic
fibrosis
Eczema
IBD
New-onset
untreated
rheumatoid
arthrits
Psoriasis
Rheumatoid
arthrits
Ulcerative
colitis
*Colors indicate different diseases or enriched taxon sets.
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by microbes also exist in their matched disease modules. Tables 2
and 3 show two of the identified microbe-disease co-modules
and the associations between different disease (microbe) modules
(according to S2). As The MDNMF Algorithm shown, in tri-
factor NMF X≈HSH

T, the matrix S has a special meaning. To see
this, let us assume thatHTH=I. Setting the derivative ∂min ‖X −
HS

HT ‖2 = ∂ S to be 0, we can obtain:

S = HTXH,  or Slk = hTl Xhk =
oi∈ Cloj∈ Ck

xijffiffiffiffiffiffiffiffiffi
nlnk

p : (14)

S indicates proper normalized within-cluster sum of weights
(l = k) and between-cluster sum of weights (l ≠ k). Therefore, S
provides a good representation for the clustering quality. If the
clusters are separated well, respectively the diagonal elements of
S will be much larger than the off-diagonal elements. We conduct
extensive experiments, and find that some off-diagonal elements
are large, for example co-modules 4 and 9. According to Eq.14,
this case may reflect a close connection between these two
modules. The connections can provide some insights to further
understand the relationships between microbe and disease,
disease and disease, and microbe and microbe.

As Table 2 shown, in co-module 9, 5 of 8 diseases (62.5%,
same color from disease module and taxon sets columns
indicates matched or associated disease) are in accord with
significantly enriched microbe TS terms (FDR < 0.05). Besides,
several TS such as “Chronic Obstructive Pulmonary Disease,”
“Asthma,” “Colorectal Carcinoma,” “Resistance to Immune
Checkpoint Inhibitors (increase)” which have no matched
diseases are also identified. This could provide potential
associations among diseases or microbes. Figure 4 shows top
biological terms enriched in the microbe module 9.
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In order to demonstrate that MDNMF can indeed cluster
similar diseases to the same co-module, we retrieval each disease
existed in co-module 9 from the MeSH website (https://meshb.
nlm.nih.gov) and find that most of the diseases belong to the
same MeSH disease category. For example, Ileal Crohn's disease
(CD), Irritable bowel syndrome (IBS), Liver cirrhosis and
Necrotizing enterocolitis are clustered together and they are all
divided into the same MeSH disease category C06 (Digestive
System Diseases). Interestingly, Clostridium infections and
Bacterial vaginosis which belong to C01 (Bacterial Infections
and Mycoses) are also divided into the co-module. A detailed
analysis of these related diseases may yield novel insights into the
more and more widely recognized the associations between
microbes and human diseases.

Based on the factorized matrix s2, we identified the
connections among microbe modules 9 and 4, 7, 10. For
example, microbe modules 9 and 4 share the “Crohn's Disease”
and “Head and neck squamous cell carcinoma”microbe sets, but
focus opposite aspects. In microbe module 9, the enriched
microbe TS term “Crohn's Disease” is decreased, but is
increased in module 4. These two microbe modules may afford
us an opportunity to further investigate the complicated
pathogenic mechanism in system level.

Without loss of generality, we also analyzed another microbe-
disease co-module 4, the detailed information is shown in Table 3.

From Table 3, we can see that 7 of 10 diseases (70%, same color
from the “disease module” and “taxon sets” columns indicates
matched or associated disease) are in accord with significantly
enriched microbe TS terms (FDR < 0.05). Especially, for enriched
microbe TS term “Atopic dermatitis,” three diseases (“Allergic
sensitization,” “Eczema,” and “Psoriasis”) in matched disease
module are associated with it. This demonstrates the ability of
FIGURE 4 | Top enriched biological terms in microbe module 9.
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the proposed MDNMF algorithm in finding correlation among
diseases and microbes. Figure 5 shows top biological terms
enriched in microbe module 4.

Similarly, we retrieval each diseasemember in co-module 4 from
the MeSH website and find that a few similar diseases belong to the
same MeSH disease category. For example, Eczema, Psoriasis,
Rheumatoid arthritis, and New-onset untreated rheumatoid
arthritis are all from the same MeSH disease category C17 (Skin
and Connective Tissue Diseases). In addition, we also find that
Chronic Obstructive Pulmonary Disease (COPD), Cystic Fibrosis,
Allergic sensitization, and Intestinal diseases (IBS, Irritable bowel
disease, and Ulcerative colitis) have also been clustered together.
Several diseases belong to two or more MeSH categories, which
indicates the pathological connections between the human genetic
susceptibility to infectious diseases and inflammatory diseases.

Based on factorized matrix s2, we can find that co-module 4
has more links to co-module 7(s4.7=2.72). Matched disease
modules 4 and 7 own the similar disease members, such as
“Allergic sensitization” (from module 4) and “Asthma” (from
module 7) induced by “Atopic dermatitis.” Besides, two
corresponding microbe modules 4 and 7 share TS term “Aging.”

Note that in Tables 2 and 3 some related diseases and
microbes are divided into different co-modules. One possible
of reasons is that the connection weight between these co-
modules is large, MDNMF as a soft clustering approach,
cannot well separately these related microbes or disease. In the
future, we will design more robust threshold selecting method to
assign each diseases or microbes to accurate modules.

In summary, for the identified module pairs by MDNMF,
especially for microbe modules, some of them share a few
biological functions (TS), but also have their special roles.
Simultaneously, some associations between microbe modules,
disease modules can be also detected by MDNMF.
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CONCLUSIONS

The association between microbes and human diseases has been
verified by more and more researches. However, previous studies
mainly focused on detecting the relationship such as “one
microbe, one disease,” rarely analyzed the pathogenesis of
microbial-related complex diseases from a modular perspective.
In this paper, we propose a novel microbe-disease co-module
detecting algorithm MDNMF to construct a two-level module
network by integrating two similarity matrices (microbe-microbe,
disease-disease similarity matrices) and one microbe-disease
bipartite network. Using the identified individual modules from
different levels (microbe, disease levels) and their links, we are able
tofind a few disease-relatedmicrobes (taxon sets) which provide an
opportunity to further understand the microbe high-order
relationship and their potential functions.

Meanwhile, in order to improve the accuracy of module
finding and biological interpretability of modules identified by
MDNMF, we introduce human symptoms-disease network and
microbial phylogenetic distance into the model. Compared with
other two NMF-based approaches, MDNMF can achieve better
performance in terms of EI and the number of significantly
enriched taxon sets. The proposed MDNMF is also easily
extended to other multiple-level molecular network
application, for example, virus-host co-modules, microbe-drug
co-modules discovering, and so on.
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Exploring the evolution process of cancers and its related complex molecular

mechanisms at the genomic level through pathological staging angle is particularly

important for providing novel therapeutic strategies most relevant to every cancer patient

diagnosed at each stage. This is because the genomic level involving copy number

variation (CNV) has been recognized as a critical genetic variation, which has a large

influence on the progression of a variety of complex diseases. Great efforts have been

devoted to the identification of recurrent aberrations, single genes and individual static

pathways related to cancer progression. However, we still have little knowledge about the

most important aberrant genes related to the pathology stages and their interconnected

pathways from genomic profiles. In this study, we propose an identification framework

that allows determining cancer-stages specific patterns dynamically. Firstly, a two-stage

GAIA method is employed to identify stage-specific aberrant copy number variants

segments. Secondly, stage-specific cancer genes fully located within the aberrant

segments are then identified according to the reference annotation dataset. Thirdly, a

pathway evolution network is constructed based on the impacted pathways functions

and their overlapped genes. The involved significant functions and evolution paths

uncovered by this network enabled investigation of the real progression of cancers, and

thus facilitated the determination of appropriate clinical settings that will help to assess

risk in cancer patients. Those findings at individual levels can be integrated to identify

robust biomarkers in cancer progressions.

Keywords: cancer evolution, somatic copy number alteration, aberrant genes, pathological stages, pathway

interaction network

1. INTRODUCTION

Somatic copy number alterations (SCNAs) are one of the prevalent forms of genetic variations
which play important roles in the progression of numerous diseases, such as cancers (Zack
et al., 2013; Heitzer et al., 2016). SCNAs have much clinical relevance compared to other genetic
alterations, and they can be good markers of cancer genome aggressiveness (Heitzer et al., 2016).
Hence, the identification of specific signatures from CNAs will shed light on elucidating the
complex mechanisms behind cancers evolution, and therefore lead to a promotive development
in cancer treatment strategies (Lowe et al., 1994; Tsao et al., 2005; Kim et al., 2008; Cheang et al.,
2009).
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The evolution of cancers involves many complex and dynamic
cellular processes that can be precisely described through
pathological stages, which are often divided into several stages,
from the initial stage to the later deleterious stage. Where cancers
at early appearance (stage I or II) are typically viewed as treatable;
however, many more aggressive and active therapies would be
needed as they developed to harmful stages (stage III or IV).
Thus, there was a critical need toward the extraction of reliable
biomarkers characterizing the dynamics associated with these
stages, including (1) stage-specific recurrent SCNAs, (2) their
related aberrant genes, and (3) their enriched dysfunctional
pathways (Chen et al., 2009, 2010; Lee et al., 2016; Liang et al.,
2016; Wang et al., 2016; Nibourel et al., 2017; Zhu et al., 2017).

Recent developments on high-throughput genomic
technologies have generated diverse tumor datasets with
various clinical/pathological stages, conditions or tissues, for
which CNAs and other omics-data have been collected. They
provide effective ways to identify different biological patterns
including individual genes, pathways, specific loci and individual
chromosomal regions. However, the majority of these proposed
ways completely ignore the topology and the interaction between
these patterns, as well as their specificity along with the pathology
stages. Since specific genes and pathways extracted from these
stages across different regions will often act together in complex
systems (Karczewski and Snyder, 2018; Ma et al., 2018), whose
dynamic events are the results of multiple complex interactions
that help to extract useful dynamic cellular functions, and that
can well illustrate the progression and metastasis of cancers.

Fortunately, the usage of biological networks/pathways has
turned out to be an effective method to describe the details
of the dynamic changes and functional mechanisms associated
with the individual stages of cancers, where individual nodes
represent biological entities, i.e., genes or pathways, and each
edge corresponds to an interaction between a pair of nodes.
Those biological networks include but not limited to cellular
pathways, gene regulation networks (Vaquerizas et al., 2009),
protein-protein interaction networks (Schwikowski et al., 2000),
and many disease related networks (Menche et al., 2015). Such
networks can be efficiently used to investigate the dynamic
biological activity behind cancers evolution.

A suite of well-established algorithms has also been proposed
at the chromosome level to accurately detect recurrent SCNAs
(Morganella et al., 2011), to investigate multiple cancer stages
(Xia et al., 2004), or to use gene expressions to analyze the
evolution processes of cancers.

To further extend the study to individual cancer
stages, we propose an analysis framework to elucidate
the dynamic evolution processes of cancers. Firstly, the
recurrent aberrations associated with cancer-specific stages
were discerned through (a) the identification of occurring
sequential changes moving from stage I to stage IV and (b)
the determination of correlations between higher frequency
of CNA and the higher aggressive stage. Secondly, the
stage-specific cancer related genes were carefully detected
via the obtained CNV information. Thirdly, the stage-
specific pathways were extracted and a pathway interaction
network was generated by connecting functional pathways

TABLE 1 | The clinical and CNV datasets information from Broad Firehose TCGA

project.

Pathology stages Clinical samples CNV samples

Pathology_t1 9 1,255

Pathology_t2 46 9,232

Pathology_t3 145 32,293

Pathology_t4 19 4,360

in adjacent stages. The remainder of the paper includes
three sections: section 2 discusses the data sources and the
methodology used in the identification framework, section 3
reports the results, and section 4 provides the conclusion of
the study.

2. MATERIALS AND METHODS

2.1. Data Collection and Grouping
Clinical and Somatic copy number alteration (by SNP 6.0
array) datasets on Level3 colorectal cancer (COADREAD) were
downloaded from the Broad GDAC Firehose1.

Somatic copy number alteration (SCNA) minus germline
SCNAwas produced using GISTIC 2.0 and then divided into four
groups based on the available clinical information of the same
group of clinical patients. From clinical data, we take only the
patients with available “pathology t stage” information, which
defines the diagnosis stage of individual samples (t1, t2, t3, and
t4). For the sample collection, we count the number of patients
in the four t stages. Those individual samples with pathological
information were aligned to the corresponding SCNA samples to
get their copy number information for our following analysis.

Finally, 219 samples (t1 = 9, t2 = 46, t3 = 145, and t4 = 19)
retained from clinical data were mapped to 47,140 samples from
SCNA data (t1 = 1,255, t2 = 9,232, t3 = 32,293, and t4 = 4,360),
respectively, and used to conduct our subsequent analysis. These
details are shown in Table 1.

In addition, for recurrent CNAs identification from pre-
computed GISTIC 2.0 SCNA data, GAIA (Morganella et al.,
2011) with FDR Q < 0.10 was applied separately for each
pathology stage using ten iterations. For genomic SCNA gains
and losses plotting, an R script was used with a cut-off also
specified at FDR Q < 0.10. For the genes annotation of the
recurrent SCNA regions, the biomaRt (Durinck et al., 2005)
and GenomicRanges (Lawrence et al., 2013) packages available
through Bioconductor of R Studio were considered.

For the network construction, pathways were extracted from
the Reactome database2. Since pathways with a smaller number
of genes may lack significant biological knowledge, we collected,
in this study, a set of pathways by filtering those with five genes.
We ended up with 447 impacted pathways.

1http://firebrowse.org/
2http://www.reactome.org
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FIGURE 1 | GAIA illustrative example. (A) Represent an example of matrix A, where + denotes gain, − denotes loss and 0 denotes no alteration. (A) Contain two

homogeneous regions from probes P4 to P6 for samples S1 and S2 and from probes P5 to P7 for samples S2 and S3. (B,C) Show the matrices AL and AD

determined of the matrix in (A).

2.2. Stage-Specific Related Recurrent
Somatic Copy Number Alteration Regions
Identification
To identify the recurrent SCNA for the series of the pathological
stages separately, a two-stage GAIA (genomic analysis of
important aberrations) method (Morganella et al., 2011) was
performed to determine the most significant recurrent CNA for
the four pathology stages. In particular, this method follows
two main steps: Significance testing and Homogeneous peel-off,
to identify the most significant independent regions where a
discrete representation of data is mainly considered.

Based on that, we first build a CNV matrix of regions using
probes meta file from GISTIC 2.0 (available at3). Then, we define
the recurrent CNA by FDR Q < 0.10 using ten iterations.
Finally, we generate the genomic plots of the four stages using
a GAIA plot function in R Studio, with the cut-off set also to
FDR Q < 0.10.

Suppose there is a set of N samples (patients) andM observed
probes, the data can be arranged as an N × M dimension
matrix A. As an illustrative example (Figure 1), A can represent
a chromosome of seven observed probes and three samples. The
matrix A can be split into two matrices AL and AD where each
element a_ij ∈ AL(AD) i = 1, . . . ,N and j = 1, . . . ,M can be
denoted either by 1 as a gain (or loss) found in the j_th marker
of the i_th sample, or by 0 otherwise as shown in Figures 1B,C,
which represents the matrices AL and AD determined from the
matrixA reported in Figure 1A. Three major steps can be applied
to this matrix (gain or loss interest) to identify the significant
peaks and omit the spurious peaks in a region based on q-values
configuration, h-values calculation and multiple iterations. More
details are described here and depicted in Figure 2.

First, a permutation test is performed on every individual
marker to compute the probability distribution, so that we can
estimate the statistical significance of the observed data.

Second, in order to define the homogeneous regions, we focus
on the state of every paired adjacent markers (j and j + 1) rather
than a single marker, and we calculate the degree of homogeneity
between them. Given a matrix H of size (N × M − 1), with an

3ftp://ftp.broadinstitute.org/pub/GISTIC2.0/hg19support/

Performing data preprocessing

Computing discontinuity matrix

Computing probability distribution

Running homogeneous peel-off algorithm

Run GAIA

FIGURE 2 | The flow chart of the GAIA method implementation steps.

element Hij that has the value of 0 for maximum homogeneity,
or the value of 0.5 for a medium homogeneity, or the value of 1
for a minimum homogeneity. From this matrix, we can obtain
overall information on the homogeneity of the dataset based on
the (h-value) that can be computed as follow:

hj =
1

N

N
∑

i=1

Hij, j = 1, . . . ,M − 1 (1)

Third, an iterative peel-off procedure is carried out on the matrix
H by expanding the left and right boundaries of the region
until the following conditions are satisfied. The left boundary
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expanded if:

ql−1 ≤ qthr AND hl−1 ≤ hthr (2)

and the right boundary expanded if:

qr+1 ≤ qthr AND hr ≤ hthr (3)

where l and r denote the left and the right boundary of the peak
withminimum q-value, with 1 ≤ l, r ≤ M, while h_thr represents
a significance threshold value for homogeneity measurement.
This value can take 0, 1, or values between 0 and 1.

Remarkably, large recurrent SCNAs have been produced
in this study at different chromosome positions moving from
pathology_t1 to pathology_t4. More details are shown in
Figures 3–6, respectively, which summarize the frequencies of
the four pathology stages.

2.3. Stage-Specific Related Aberrant
Genes Identification
The second essential step allowing a comprehensive elucidation
of the cancer evolution process after SCNA regions identification
is to identify the corresponding signature genes for individual
stages. Therefore, the aberrant recurrent regions obtained
previously at every pathology stage were then annotated to
retrieve the genes that were significantly amplified or deleted.
Using the reference annotation dataset of genes of biomaRt
(Durinck et al., 2005), the final set of genes at cut-off = 0.10 with
the precise co-ordinates regions from human genes in which it
was found to have CNA, have been obtained. Further details are
shown in Table 2, which lists the total number of genes selected
in the four pathology stages.

2.4. Stage-Related Pathways Extraction
After obtaining the deviant amplified or deleted genes at every
pathology stage, the given genes were aligned to pathways
on the basis of the biological pathways in the Reactome
database from which a total of 3,305 was collected. The
pathways found include clusters of pathways from different
pathologies: 396 pathways from pathology_t1, 895 pathways
from pathology_t2, 1,218 pathways from pathology_t3, and 796
pathways from pathology_t4.

As long as a single gene can be assigned to different pathways,
and the latter would consist of a different number of genes, we
set the study sample to every pathology’s pathways consisting of
genes whose size is >5. This is due to the fact that pathways with
fewer genes would have limited biological content (Ahn et al.,
2014). Therefore, a total of 656 pathways (t1 = 5, t2 = 110, t3 =
447, t4 = 94) was collected (Table 2). Finally, duplicated
pathways were omitted, and only pathways that occurred in at
least two pathological stages were extracted and considered as our
stage-specific pathways to be further analyzed.

2.5. Pathway Evolution Network
Construction
After identifying the signature genes for each stage and
after extracting and integrating their specific Reactome

pathways, they are pooled together, their terms are unified,
and their official annotated pathway descriptions are
obtained from the database. Next, a pathway interaction
network related to SCNA is constructed where each
node represents a biological specific pathway, and if
the two pathways share common genes, then they
are connected.

To clearly illustrate the dynamic evolution process
through this pathway network, specific colors were
used to evince the pathways that get evolved between
the four individual stages, and the width of edges is
applied to indicate the strength of associations between
them. The width was calculated using an overlap score
defined as:

W =
k2

p ∗ q
. (4)

where k represents the number of the overlapping genes between
a pair of pathway Pi and pathway Pj, p and q stand for the total
numbers of genes in Pi and Pj, respectively.

3. RESULTS AND DISCUSSIONS

3.1. Stage-Related Recurrent
Genome-Wide SCNAs Frequencies
The recurrent CNAs from four pathology stages were identified
by investigating the sequential changes from pathology_t1 to
pathology_t4 according to their different frequencies. This is
based on the assumption that higher frequency of CNA will
correlate with higher cancer stages. In fact, large genomic
differences in recurrent SCNAs were observed in each pathology
stage. Figures 3–6 represent the genome-wide amplifications and
deletions of the four pathology stages, which generated with cut-
off defined at FDR Q < 0.10. To be more specific, there were
no significant segments in stage 1, but for stage 2, stage 3, and
stage 4, the most of their regions were significantly amplified
or deleted.

Moreover, more aberrant chromosomes get involved in
these three stages. The frequency of aberrant segments were
higher in stage 2 than in stage 1, and it kept increasing in

stage 3. For example, stage 1 involved only three abnormal

chromosomes with very low frequency. However, stage
2 and stage 3 involved more abnormal chromosomes

segments with higher frequencies of amplifications or
deletions. A clear evolution process of cancer could

be observed by connecting those major chromosomal
abnormalities stage-by-stage.

3.2. The Number of Stage-Specific Related
Genes
The amplified and deleted genes which fully located within the
aberrant regions of the four pathological stages were detected
by using the biomaRt and the GenomicRanges packages in
R (Table 2), wherein a total of 423, 3,265, 8,500, and 2,244
genes were identified as representative signature genes in stage
1, 2, 3, and 4, respectively. All of these potential candidate
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FIGURE 3 | Recurrent genome-wide SCNAs in stage 1. Genome-wide amplifications (red blocks) and deletions (green blocks) in stage 1.

FIGURE 4 | Recurrent genome-wide SCNAs in stage 2. Genome-wide amplifications (red blocks) and deletions (green blocks) in stage 2.

FIGURE 5 | Recurrent genome-wide SCNAs in stage 3. Genome-wide amplifications (red blocks) and deletions (green blocks) in stage 3.

genes were carried out for pathway network generation and
functions interpretation, due to their ability to effectively explore
cancer progression.

3.3. Dynamic Pathway Interaction Network
Generation and Visualization
The evolution network was generated by considering the
enriched pathways as nodes, and the overlapping genes in two

corresponding pathways as edges. The network contains 50
nodes and 339 edges. Different colors (pink, orange, green,
yellow) were used to showcase how these pathways evolved
across the four pathologies adjacent stages, whereas the width of
edges indicated the strength of their connections. The network
was then visualized by Cytoscape software, where the different
significant evolution paths are shown. These further details are
depicted in Figure 7.
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FIGURE 6 | Recurrent genome-wide SCNAs in stage 4. Genome-wide amplifications (red blocks) and deletions (green blocks) in stage 4.

TABLE 2 | The number of aberrant genes and enriched pathways detected at

each pathology stage.

Pathology stages Defined # of genes # Of aligned pathways

Pathology_t1 423 5

Pathology_t2 3,265 110

Pathology_t3 8,500 447

Pathology_t4 2,244 94

TABLE 3 | The pathway enrichment of both the amplified and deleted genes from

each pathology stage.

Pathway

DNA repair

Transport of small molecules

Developmental biology

Programmed cell death

Cell-cell communication

Hemostasis

Post-translational protein modification

Cellular responses to external stimuli

3.4. Stage-Related SCNAs Pathways
Specific Functions Interpretation
The substantial analysis in this study confirmed the efficacy of
the proposed framework. The detected genes were first enriched
in many important pathways and these pathways, in turn, were
strongly related to many critical cellular functions, such as cell
cycle, disease, gene expression (Transcription), immune system,
neuronal system, signal transduction, andmetabolism of proteins
and RNA. Some extra extremely enriched pathways obtained
from both the amplified genes and deleted genes are shown
in Table 3.

Interestingly, most of these functions were related to the
immune system. This preliminary investigation can be clearly
seen from the evolution network depicted in Figure 7. In
this network, most of the pathways-related immune system
were strongly related to each other with thicker edges.
Furthermore, since the pathways enriched from the deleted

genes (2,630 pathways) were higher than those of the amplified
genes (2,069), the genes annotated in them were probably
dynamically changed with the four pathological stages as can
be observed from the evolution paths of the constructed
evolution network. This dynamic change may lead to decrease
the immunity in colorectal cancer and thus to homeostasis
perturbance. Therefore, increasing the immunity activities
across the stages will be effective and beneficial for many
cancer types.

Moreover, signal transduction and cell cycle were also
highlighted here. These functions are invariably perturbed in
cancer since they are essential in regulating, activating multiple
cellular process and signaling molecules. They can induce cell
proliferation, differentiation, and survival of various cancers
(Cao et al., 2014).

These functions were also involved in diverse human
and animal diseases, and they provide useful information
to understand the initiation and progression of many
complex diseases.

4. CONCLUSION

Complex diseases evolution process is too difficult to be inferred
by single genes, individual pathways or even a type of genomic
data. However, understanding this evolution mechanism at a
single level can be leveraged to identify more robust biomarkers
and valid biological functions when integrating it with other
genomic levels.

CNAs hold a very important role in cancers. Therefore,
finding the recurrent CNA from cancer specific stages
is a promising task for identifying their essential driver
events. We have proposed to investigate the key indicators
associated with cancer progressions by: (1) identifying
the sequential changes/chromosomal abnormalities related
to these stages, (2) defining their significant key genes,
and (3) generating an evolution network rather than
gene networks.

We have also used an interesting rCNA-algorithm that has the
ability to identify many significant recurrent regions, due to its
powerful homogeneous peel-off and its parameter setting that is
very straightforward.

Frontiers in Genetics | www.frontiersin.org 6 February 2020 | Volume 11 | Article 160293

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Aouiche et al. Predicting Stage-Specific Recurrent Aberrations

FIGURE 7 | Pathway functions interaction network. Node illustrate the biological pathways function. Edges illustrate the relationships between the functions at the

adjacent stages. The size of the node is proportional to the number of genes in the pathway, The thicker the edges, the more overlapped genes between pathways of

the adjacent stages. The color of pink, orange, green, and yellow inside the nodes indicate the pathways functions belongs to the four stages.

These critical factors identified from this valid alternative
method enabled us to identify the differences between the
molecular portraits of the different pathological stages,
and improved our understanding of the pathogenesis and
underlying molecular mechanism related to cancer initiation
and progression. Moreover, the aberrant candidate genes and
pathways characterized every pathology stage identified here
could give us a clue to specific therapeutic targets for treatment
of cancers.

In summary, such findings at a single level will help
decide which types of omics data and methodologies will be
better integrated to improve clinical research endpoints, and
therefore get insights into the serious issues driving complex
diseases. Furthermore, an interesting work would be to not only
compare CNA events between cancer stages, but to also link
these to somatic mutations in CIN (chromosomal instability)
signature genes.
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In recent years, there has been an explosive increase in the amount of bioinformatics data
produced, but data are not information. The purpose of bioinformatics research is to
obtain information with biological significance from large amounts of data. Multiple
sequence alignment is widely used in sequence homology detection, protein secondary
and tertiary structure prediction, phylogenetic tree analysis, and other fields. Existing
research mainly focuses on the specific steps of the algorithm or on specific problems,
and there is a lack of high-level abstract domain algorithm frameworks. As a result,
multiple sequence alignment algorithms are complex, redundant, and difficult to
understand, and it is not easy for users to select the appropriate algorithm, which may
lead to computing errors. Here, through in-depth study and analysis of the heuristic
multiple sequence alignment algorithm (HMSAA) domain, a domain-feature model and an
interactive model of HMSAA components have been established according to the
generative programming method. With the support of the PAR (partition and recur)
platform, the HMSAA algorithm component library is formalized and a specific alignment
algorithm is assembled, thus improving the reliability of algorithm assembly. This work
provides a valuable theoretical reference for the applications of other biological sequence
analysis algorithms.

Keywords: heuristic multiple sequence alignment algorithms, feature model, generative programming, component
interaction model, partition and recur platform
INTRODUCTION

Since the beginning of the 21st century, with the development of high-throughput sequencing
technology, gene sequencing has become much cheaper and more efficient, enabling the
development of various genome projects. Since the implementation of the Human Genome
Project (Collins et al., 1998), the amount of bioinformatics data being produced has grown
explosively, with genome sequencing data doubling every 4–5 months. At the same time,
bioinformatics (Zhang, 2000), a new interdisciplinary subject, has developed rapidly.
Bioinformatics covers all aspects of the acquisition, processing, storage, distribution, analysis, and
interpretation of biological information. It integrates tools from mathematics, computer science,
and biology to clarify and understand the biological significance of large amounts of data (Hogeweg
and Searls, 2011). One of the major problems faced by bioinformatics today is how to process the
February 2020 | Volume 11 | Article 1051296
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data generated by genetic engineering. Data are not information;
data need to be mined using systematic scientific methods to find
biologically relevant information.

Sequence alignment is a fundamental method to study
biological sequence data in bioinformatics (Mount, 2005). The
theoretical basis of sequence alignment is the chemistry in biology,
that is, if the similarity between two biological sequences reaches a
threshold, it is considered that they have similar functions and
structures as well as evolutionary relationships. By comparing an
unknown biological sequence with a known functional structure,
and identifying similar regions between them, the homology
between the species can be judged, and the biological
information contained in the unknown sequence can be
revealed. According to the number of sequences to be aligned,
sequence alignment can be divided into pairwise and multiple
sequence alignment. The standard solution for pairwise sequence
alignment is to use a dynamic programming algorithm to find the
optimal solution. The classical algorithm is the Needleman-
Wunsch (Needleman and Wunsch, 1970) algorithm, which is
used to solve the global pairwise sequence alignment problem; the
more biologically significant local alignment problem can be
solved by the Smith-Waterman (Smith and Waterman, 1981)
algorithm. Also, the heuristic-based BLAST (Altschul et al., 1990)
algorithm is widely used in similarity sequence searches of gene
databases. Theoretically, the dynamic programming approach to
pairwise sequence alignment can be used for multiple sequence
alignment problems. A two-dimensional dynamic programming
matrix is extended to the three-dimensional or multi-dimensional
case, where the dimension of the matrix reflects the number of
sequences to be compared. This method is only suitable for
multiple sequence alignments with few dimensions, otherwise it
will be a great challenge with respect to computer resources. It has
been proved that the multiple sequence alignment problem based
on the SP (sum of pairs) metric is NP (Wang and Jiang, 1994), and
multiple sequence alignment uses a heuristic algorithm. Here, we
mainly focus on the heuristic multiple sequence alignment
algorithm (HMSAA) domain.

HMSAAs include progressive alignment (Feng and Doolittle,
1987) and iterative alignment (Wang and Li, 2004); this paper
mainly considers the progressive alignment method. The
progressive multiple sequence alignment algorithm was
proposed by Feng and Doolittle in 1987. Thompson and
Higgins implemented the progressive multiple sequence
alignment algorithm and proposed the ClustalW (Thompson
et al., 1994) algorithm. Subsequently, Notredame et al. (2000)
proposed the T-Coffee (tree-based consistency objective function
for alignment evaluation) algorithm; the latter two algorithms
are the most commonly used progressive multiple sequence
alignment algorithms. The HAlign (Zou et al., 2015) algorithm
is a progressive alignment algorithm based on central star
alignment. Clustal Omega (Sievers et al., 2011) is a completely
rewritten and revised version of the widely used Clustal series of
programs for multiple sequence alignment. The main
improvement over ClustalW algorithm is the use of the mBed
algorithm to generate guide trees of any size and the use of
HHalign Package based on the idea of hidden Markov model in
Frontiers in Genetics | www.frontiersin.org 2297
the last step of Profile alignment. The main disadvantage of the
progressive multiple sequence alignment algorithm is its
principle of “once vacant, always vacant.” The errors generated
in the alignment will always affect the sequence alignment
process, which may lead to a suboptimal result and reduce the
accuracy of the algorithm. The basic idea of the progressive
alignment algorithm is that there is an evolutionary relationship
between the multiple sequences that are aligned; after
determining the evolutionary order of the sequences, they are
gradually aligned along the evolutionary order until all sequences
are aligned. This means that before proceeding to the progressive
alignment, it is necessary to find the evolutionary relationship
between the sequences. At present, optimization of the
progressive alignment algorithm usually focuses on the step of
confirming the evolutionary relationship (Zhang et al., 2005;
Huo and Xiao, 2007). In order to speed up sequence alignment
when the scale of the alignment is large, parallel computing may
be combined with progressive alignment (Hung et al., 2015). The
basic idea of iterative alignment is first to improve the multiple
sequence alignment based on an algorithm that can generate
alignments, through a series of iterations, until the alignment
results no longer improve or have reached the maximum number
of iterations. This paper mainly considers the combination of
iterative alignment and progressive alignment. Such algorithms,
which include MultAlin (Corpet, 1988) and Muscle (Edgar,
2004), have improved robustness and wider application scope.

At present, most research on sequence alignment algorithms
focuses on the optimization of specific steps of a particular
algorithm. The optimization effect on different sequences will
be different, and the diversity and complexity of sequence
alignment algorithms may make it difficult for users to select
an algorithm appropriate to the characteristics of a given
sequence, resulting in unnecessary computing errors in
practice. On the other hand, it may be difficult for users to
understand the structure of a sequence alignment algorithm,
which may affect its correct use and to some extent affect the
accuracy of the sequence analysis. The specificity and low
abstraction of a sequence alignment algorithm reduce its
reusability and maintainability. Therefore, it is necessary to
study sequence alignment algorithms at the domain level.
Concerns on algorithm families will be helpful for extracting
the commonality and variability of different algorithms and for
the formal development of sequence alignment algorithms.

In this work, the generative programming method is used to
design an abstract generic algorithm component library, after
which a specific alignment algorithm for the HMSAA domain is
assembled, thus improving the reliability and reusability of the
algorithms. First, domain analysis of HMSAA is carried out, the
common domain features and variability features are identified,
and a domain feature model of HMSAA is established.
Furthermore, relationships among features are analyzed and an
interaction model of algorithm components is designed and
constructed. Finally, using a generic abstract programming
language, Apla, the domain components are formally
implemented and a high abstract component library is built on
top of Apla.
February 2020 | Volume 11 | Article 105
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RELATED METHODOLOGY
AND TECHNOLOGY

Generative Programming
Software reuse is considered to be one of the solutions to the
“software crisis.” High-quality software reuse can improve the
efficiency and quality of software development and ultimately
result in the construction of an industrialization pipeline to
develop software. Generative programming (Czarnecki and
Eisenecker, 2000) is the use of components and the creation of
software products in an automated manner. Implementation
consists of two steps. First, the current software development
model is transformed into the development of the software
system family. Then, a generator is used to automatically
assemble the components. Through domain analysis of the
software system family, generative programming constructs a
domain model of the system family and further develops the
domain design and domain based on this model. New software
development in the same field is based on the established domain
model, and the reusable components are selected for assembly
and implementation. It is not the development of software.

A domain model based on generative programming includes a
problem space, a solution space, and domain-specific configuration
knowledge for mapping between the two. The problem space is
used to represent the requirements of the customization system,
and is mainly for use by application programmers and customers.
The solution space includes the implementation components
required for the system family implementation and the
combination, dependencies, and interactions among
implementation components. Domain-specific configuration
knowledge is mainly used to separate the problem space and
solution space, which not only reduces the redundancy and
coupling of the implementation components but also improves
their composability and reusability. The composition of such a
generative domain model is shown in Figure 1.
Frontiers in Genetics | www.frontiersin.org 3298
Domain Modeling
Domain modeling requires the identification and modeling of key
concepts (Lee et al., 2002). Feature engineering (Turner et al.,
1998) considers features to be first-order entities that traverse the
software life cycle and span the problem space and solution space,
and reduce the difference in demand awareness between users and
software developers through features. Features in FODA (feature-
oriented domain analysis) (Kang et al., 1990) are considered to be
user-visible, significant, and distinctive aspects, qualities,
characteristics, etc., in a software system. Features are the
domain knowledge accumulated by users and experts from
long-term practice in a domain. Feature modeling is an activity
that models the commonality and variability of features and the
relationships among them. Zhang and Mei (2003) proposed a
feature-oriented domain modeling (FODM) method that
considered the features of services, functions, behavioral
characteristics, etc. This was based on service analysis activities,
functional analysis activities, and behavioral characteristics
analysis in combination with domain terminology analysis,
commonality and variability analysis, interactive process
analysis, and quality demand analysis concurrently, with
continuous retrospective refinement to finally obtain the feature
model. The domain modeling process is illustrated in Figure 2.

Partition and Recur Method
PAR (Xue, 1993; Xue, 1997; Xue, 1998; Shi and Xue, 2009; Xue,
2016) (partition and recur) is a formal development method
based on partition and recursion, containing an algorithm design
language (Radl; recurrence-based algorithm design language), an
abstract generic programming language (Apla), and a unified
algorithm design and proof method, as well as a series of
generation systems (the PAR platform).

The Apla language can be used to directly write programs
using abstract data types and abstract procedures. It has the
advantages of concise and rigorous mathematical language, and
FIGURE 1 | Composition of generative domain model.
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its high level of abstraction makes it suitable for describing
abstract algorithmic programs.

The generic programming mechanisms supported by Apla
include type parameterization, subroutine parameterization, and
user-defined generic abstract data types (ADT). 1) Apla
introduces the keyword sometype to define the type variable,
the type parameter, the parameter return value type of the
procedure function, and the basic type of the combined data
type. The type is used as a parameter to implement the
general ization of the program. 2) Apla subroutine
parameterization includes procedure parameterization and
function parameterization. In a subroutine, the keywords proc
and func are used to declare procedure parameters and function
parameters, and the procedure or function is used as a parameter
list. 3) As well as the predefined ADT in Apla, users can create
custom ADT to make the language more flexible and the
program description more powerful. These custom operations
include the definition and the implementation of ADT. The ADT
definition contains the operation name, the operation type, the
parameters of the operation, etc. The ADT implementation gives
the specific implementation methods of these operations, and
define, ADT, enddef, implement, endimp, and other keywords are
used to describe the custom ADT. In addition, the PAR platform
supports the transformation of Apla into an executable high-
level programming language such as C++ or Java.
HEURISTIC MULTIPLE SEQUENCE
ALIGNMENT ALGORITHM MODELING

In this section, the FODM method is used to construct the
feature model according to the service, function, and behavior
characteristics in the HMSAA domain. Heuristic multiple
sequence alignment operations are core services in the domain.
Frontiers in Genetics | www.frontiersin.org 4299
The sequence legality check (seq_check), heuristic alignment
mode selection (heur_mode), pairwise sequence alignment
operation (psa), distance matrix (dist_matrix), result output
(result_op), progressive alignment (prog_align), and iterative
alignment (iter_align) are the main functions in the domain.
Progressive alignment and iterative alignment are sub-functions
of heuristic alignment mode selection. Sequence legality check,
heuristic alignment mode selection, and alignment result output
are mandatory, where as function, pairwise sequence alignment
operation, and distance matrix are optional. For progressive
alignments, the progressive alignment mode (prog_align_mode)
is a behavioral feature that has the following three values: the
phylogenetic tree (phy_tree), the extended library (expan_lib),
and the center alignment. For pairwise sequence alignment
operations, the pairwise sequence alignment mode (psa_mode)
is a behavioral feature that has two values, fast alignment (k-mer)
and dynamic programming alignment (dp). According to the
above analysis, a feature model was constructed for the domain,
as shown in Figure 3.
DESIGN AND IMPLEMENTATION
OF HEURISTIC MULTIPLE SEQUENCE
ALIGNMENT ALGORITHM COMPONENTS

Interaction of Algorithm Components
in Heuristic Multiple Sequence Alignment
Algorithm Domain
According to the feature model described in the previous section,
in order to achieve a complete library of algorithm components,
it is necessary to further analyze the interaction modes among
different algorithm components. The interactions of algorithm
components involve constraints and dependencies between
FIGURE 2 | Feature modeling process.
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features. Therefore, this section describes an interaction model of
algorithm components in the HMSAA domain according to their
interaction modes.

Through the establishment of the HMSAA feature model, it
can be concluded that the algorithm consists of four main
process features, i.e., heuristic alignment mode selection,
progressive alignment, iterative alignment, and result output.
In addition, the input of the algorithms in this domain consists of
Frontiers in Genetics | www.frontiersin.org 5300
sequences of biological information, including DNA, RNA, and
protein sequences. Before the implementation of the algorithm,
the legality of the sequence information needs to be checked, for
example, a DNA sequence can only contain four letters, A, T, C,
and G. The main components in this domain are sequence
legality checking, heuristic alignment mode selection,
progressive alignment, iterative alignment, and result output.
Other features and data structures in the feature model are used
FIGURE 4 | Algorithm components interaction model.
FIGURE 3 | Feature model of heuristic multiple sequence alignment algorithm (HMSAA).
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as auxiliary components, and the interaction model of
components is established according to the dependencies
between them, as shown in Figure 4.

The nodes connected by solid lines are the basic components
that must be included in the HMSAA domain, namely, the three
mandatory features and two sub-features selected by the heuristic
mode. The solid line arrow denotes the execution priority of the
component from high to low along the direction of the arrow.

Dotted and underlined arrows represent the data, structures,
and associated operations required in the assembly of the
algorithm components. For example, the establishment of an
extended library requires the information of alignment in psa.
The dotted arrow indicates the interaction between the two
components during the execution of the algorithm. For
example, before an iterative alignment, a progressive alignment
should be carried out. By setting the number of iterations and the
iterative method, the result of the progressive alignment is
iterated until there is no further change or the maximum
number of iterations has been reached.

In summary, the above interaction model includes most
mainstream HMSAAs, including the progressive alignment
algorithm based on tree and central alignment, the progressive
alignment algorithm based on a compatible optimization
objective function to form an expanded library, and the
multiple sequence alignment algorithm combining iteration
and progress. Here we just outline simple formal specification
description of two components below for examples.

1 seq_check component

|[in a[][]: Array[][]; out bl: Boolean]|
AQ: bio-sequences.
AR: if bl is true, the legality check is passed;
false is the opposite.

2 prog_align component

|[in heur_mode: ADT; phy_tree: ADT; a[][]:
Array[][] out b[][]: Array[][]]|
AQ: phy_tree component, the sequence to be
aligned, heur_mode component.
AR: alignment of multiple sequences.

Here in and out in the front of pre-condition AQ are two key
words defined in PAR platform and are used to denote the input
and output respectively; array, Boolean, etc., are the predefined
types in PAR platform, and AR stands for post-condition
of algorithm.

Apla Formal Implementation
In this section, we make use of the advantages of Apla, including
high-level abstraction, strong support for ADT, and easy
correctness verification, and formally implement the HMSAA
model. Here, only the implementation of the tree-based
progressive alignment algorithm is illustrated.

1 seq_check component
Frontiers in Genetics | www.frontiersin.org 6301
Check whether the sequence group meets the biological
definition. For example, the character set of the DNA sequence
is {A, T, C, G}.

procedure seq_check(a[]:array[String]);

2 Penalty component

We designed the penalty model as an ADT, using an affine
penalty model, where sometype is a keyword in the Apla language
that defines the type variable. GapOpen, GapExtend, and score
represent the penalty points of open vacancy, extended vacancy,
and non-vacancy, respectively.

define ADT penaltyMatrix(sometypeelem);
GapOpen : Integer;
GapExtend : Integer;
score:array[array[Integer]];
enddef.

3 heur_mode component

The Heur_mode component is defined as an ADT that selects
the operation mode of multiple sequence alignment and defines
the data structure and information required for alignment. The
setPenaltyMatrix, setGapOpen, and setGapExtend functions are to
set penalty matrix, open vacancy penalty, and extend vacancy
penalty, respectively. The generic procedure tree_prog_align sets
the alignment mode to one designated by the user. The useLib
means to select the expan-lib component, useFullPW denotes the
use of the conventional dynamic programming pairwise sequence
alignment algorithm, useIter represents the iteration, and
treeAlgorithm is the algorithm to generate the phylogenetic tree.

define ADTheur_mode(sometypeelem);
f u n c t i o n s e t P e n a l t y M a t r i x ( p m :
penaltyMatrix):Array[Array[Integer]];
functionsetGapOpen(gapOpen: Integer):
Integer;
function setGapExtend(gapExtend:
Integer): Integer;
procedureprog_align(useLib: bool;
u s e F u l l P W : b o o l ; u s e I t e r : b o o l ;
treeAlgorithm : String)
enddef.

4 dist_matrix component

The dist_matrix is defined as an ADT that calculates the
distance matrix element and returns it using the score of the
pairwise alignment, and the pairwise sequence alignment
operation is defined as the generic parameter. The function
getDist is used to get the data from the distance matrix. Proc
psa is described in detail in reference (Shi and Zhou, 2019).

define ADT dist_matrix (sometypeelem);
function calDistMat (proc psa(…):Array

[Array[Integer]];//.
function getDist (ii: Integer; jj:
February 2020 | Volume 11 | Article 105
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Integer): Integer;
······
enddef;

5 phy_tree component

Phylotree data structure is defined as an ADT, facilitating
subsequent operations on the tree. The parameters treeMess, left,
and right, respectively, represent the information of the tree node
and the left and right subtrees. The phylotree component is defined
as an ADT that generates a phylogenetic tree using the data in the
distance matrix. The ADT contains the generic procedure
generateTree and takes selAlgorithm as its generic parameter.
The generic procedure can generate phylogenetic trees through
different algorithms. The function calWeight calculates the weight
of each sequence when calculating the score of multiple sequences
alignment, the generic procedure getStepsForMSA is used to
generate the sequence of subsequent multiple sequence
alignments, and the generic procedure readTree is used to read
information from the generated phylogenetic tree.

define ADT phyloTree (sometypeelem);
treeMess: Array[Array[Integer]];
left: Integer[];
right: Integer[];

enddef.
define ADT phy_tree (sometypeelemMatrix);

procedure generateTree(distMat:
e l e m M a t r i x ; s e q N a m e : S t r i n g [ ] ;
funcselAlgorithm():String;treeName :
String; result: Boolean);

function calWeight (firstSeq: Integer;
lastSeq: Integer; seqsW: Array[Integer]):
Array[Integer];

procedure readTree (seqName: String[];
treeName: String; firstSeq: Integer;
lastSeq: Integer);

p r o c e d u r e g e t S t e p s F o r M S A
(procreadTree; distMat: elemMatrix;
result: Boolean);
······
enddef.

6 prog_align component

The prog_align component is defined as an ADT that includes
the generic procedure multiSeqAlign, which performs
progressive alignment according to the alignment order
obtained from the phylogenetic tree and the sequence weight.

define ADT prog_align (sometypeelem);
procedure multiSeqAlign (seqs: Array

[String]; steps: elem; seqName: String[];
seqW:Array[Integer]; start: Integer);

······
enddef.

7 result_op component
Frontiers in Genetics | www.frontiersin.org 7302
The result_op component is defined as an ADT. It is
composed of two generic procedures, multiAlign_op and
phyloTree_op. The multiAlign_op procedure annotates the
results of multiple sequence alignments and outputs them;
pathAlignOutput is the path of the output file. The
phyloTree_op procedure outputs the phylogenetic tree; here,
pathTreeOutput is the path of the output file.

define ADT result_op(sometypeelem)
p r o c e d u r e m u l t i A l i g n _ o p

(pathAlignOutput: String; seqs: Array
[ S t r i n g ] ; s e q N a m e : S t r i n g [ ] ;
sometypeprog_align);

procedure phyloTree_op (pathTreeOutput:
S t r i n g ; s e q N a m e : S t r i n g [ ] ;
sometypephyTree; sometypedistMat);
enddef.
ASSEMBLY OF CLUSTAL ALGORITHM

In this section, a phylogenetic tree-based progressive alignment
algorithm, clustalW, is assembled on top of the HMSAA
component library introduced in previous section. The Apla
program is as follows.

program clustalW;
const/* input sequences*/
var
seqs, seqsName: Array[String];//Seqs is
the sequence to be aligned

//seqsName is the identification name
of the sequence
const pathTreeOutput, pathAlignOutput:
String;
/*omit the initialization of pairwise
sequence alignment*/
ADT pm: new penaltyMatrix ();
ADT psa: new psa (……);
ADT distM: new dist_matrix (psa);
ADT phyloTree: new phylotree ();
ADT tree: new phy_tree (phyloTree;
distM);
ADT msa: new prog_align (tree);
ADT mode: new heur_mode (pm);
var
clustalw: mode; gapOpen, gapExtend:
I n t e g e r ; p e n a l t y : A r r a y [ A r r a y
[Integer]];
begin
clustalw.setPenaltyMatrix (penalty);
clustalw.setGapOpen (gapOpen);
clustalw.setGapExtend (gapExtend);
end;
A D T r e s u l t O p : n e w r e s u l t _ o p
();//instantiate and initialize the
required components
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procedure heur_multiple_sequence_align
(clustalw; psa; distM; tree; msa;
resultOp);
//heuristic multiple sequence alignment
operations
var
NJTree: String; result: Boolean
begin
check (seqs);

clustalw.prog_align (false; true; false;
“NJTree”);

if(clustalw.getUseLib = false)!
if(clustalw.getUseFullPW = true) !
distM.calDistMat (psa);
t r e e . g e n e r a t e T r e e

(clustalw.getTreeAlgorithm;
seqsName; clustalw; distM;
result);

msa.multiSeqAlign (seqs; seqsName;
tree; 0);
resultOp (msa; tree; pathTreeOutput;
pathAlignOutput);

end.
EXPERIMENTS

As the Apla language cannot run directly, in this section we make
use of the PAR platform to transform the Apla algorithm
components into the corresponding C++ components.

ADT algorithm components in Apla containing only data
members are transformed into struct data types in C++, such as
penaltyMatrix and phyloTree. The results are as follows.
Frontiers in Genetics | www.frontiersin.org 8303
struct penaltyMatrix
{

int gapOpen;
int gapExtend;
vector < vector < int>> score;

};
struct phyloTree
{

vector < vector < int> > treeMess;
vector < double > leftBranch;
vector < double > rightBranch;

};

ADT components containing data members and member
functions are transformed into classes in C++, such as
dist_matrix and phy_tree. The function body code is long, and
so part of it is omitted here. The partial result of the
transformation is shown in Figure 5.

Generic procedures and functions defined in Apla are
converted into separate class member functions in C++ to
reduce coupling between components. In particular, the calling
functions are converted into indicator functions in C++, and the
generic parameter is converted into the pointer parameter to
implement the polymorphism of the Apla program. After
converting each component into C++, the Apla code for the
heuristic multiple sequence alignment operation is converted
into the main function executed in C++; finally, the clustalW
algorithm program is run through manual assembly of the
components, as shown in Figure 6.

To test the program, we used four pieces of DNA data,
Cyprinus carpio (common carp) alpha-globin, Homo sapiens
(human) alpha globin, Mus musculus (house mouse) alpha-
globin, Capra hircus (goat) alpha-globin. The alignment results
between our algorithm and the other two Clustal algorithms are
shown in Figure 7. Due to the different selected pairwise
FIGURE 5 | Result of ADT transformation.
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alignment parameters and types, the structure of the
phylogenetic tree is different from that of the ClutsalW
algorithm, and the sequence of alignment has also changed,
but the results remain biologically significant.
SUMMARY AND FUTURE WORK

As a key topic in bioinformatics research, sequence alignment
algorithm and its applications have attracted extensive research
attention. However, there has been no work considering it as a
domain for high-level abstraction to improve the reliability and
the productivity of the algorithms, and to reduce the probability
of suboptimal solutions, errors of the algorithm, etc.

Generative programming and the composition of a generative
domain model are first briefly presented in the paper, and the
FODM method is described. The feature model can be obtained
by taking the characteristics of the service, function, and
behavior characteristics of the domain into account, and
carrying out a series of feature analysis activities.

By using generative programming and feature modeling, the
HMSAA domain has been analyzed, resulting in the following
three algorithm classes: progressive alignment algorithms based
on tree and central alignment; progressive alignment algorithms
based on the compatible optimization objective function to form
an expansion library; and multiple sequence alignment
algorithms based on a combination of iteration and increment.
Through analysis of this domain, general and variable features
have been extracted and mapped to components, and an
Frontiers in Genetics | www.frontiersin.org 9304
HMSAA feature model has been established. Moreover, an
interaction model of HMSAA domain components has been
designed based on the relationships among features and formally
implemented using the generic abstract programming language
Apla in support of the PAR platform. An HMSAA component
library has been established, the reliability of which can be
guaranteed owing to the ease of verification with the
Apla language.

It is expected that the formal components could be
automatically or semi-automatically assembled to generate a
specific problem-solving algorithm, thus reducing the errors
resulting from manual algorithm selection for multiple
sequence alignment, and improving the algorithm efficiency,
which will enable assembly of a new, more efficient, multiple
sequence alignment algorithm. Furthermore, the high-level
abstraction of generic components, such as generateTree,
provides a diversity of algorithm components assembly as well
as a good demonstration of the connections between algorithm
features, thus improving the understandability and ease-of-use
of algorithms.

Next, we will release our codes in GitHub. Future work also
include developing a user-friendly visual interface to facilitate
component assembly. Users will be able to generate different
sequence alignment algorithms by selecting different
components via the interface and use XML files to describe the
composition and constraint relations among components,
without any change to the component library. We are
encouraged by the success of algorithm assembly on the
PAR platform.
FIGURE 6 | C++ assembly process of clustalW.
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The methodology and techniques for HMSAA are not only
applicable to multiple sequence alignment algorithms but also
have theoretical reference significance and practical
application value for other biological sequence analysis
algorithms, such as the assembly algorithm based on
DeBruijn graph structure used in the process of gene
assembly (Li et al., 2010; Peng et al., 2012).We are currently
applying some of these ideas to more problems in the domain
of biological sequence analysis, to implement automatic or
semi-automatic assembly of an algorithm component library
based on the PAR platform. We hope to report on this work in
the near future.
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The ability to predict the drug response for cancer disease based on genomics information
is an essential problem in modern oncology, leading to personalized treatment. By
predicting accurate anticancer responses, oncologists achieve a complete
understanding of the effective treatment for each patient. In this paper, we present
DSPLMF (Drug Sensitivity Prediction using LogisticMatrix Factorization) approach based
on Recommender Systems. DSPLMF focuses on discovering effective features of cell
lines and drugs for computing the probability of the cell lines are sensitive to drugs by
logistic matrix factorization approach. Since similar cell lines and similar drugs may have
similar drug responses and incorporating similarities between cell lines and drugs can
potentially improve the drug response prediction, gene expression profile, copy number
alteration, and single-nucleotide mutation information are used for cell line similarity and
chemical structures of drugs are used for drug similarity. Evaluation of the proposed
method on CCLE and GDSC datasets and comparison with some of the state-of-the-art
methods indicates that the result of DSPLMF is significantly more accurate and more
efficient than these methods. To demonstrate the ability of the proposed method, the
obtained latent vectors are used to identify subtypes of cancer of the cell line and the
predicted IC50 values are used to depict drug-pathway associations. The source code of
DSPLMF method is available in https://github.com/emdadi/DSPLMF.

Keywords: cancer, drug response, recommender system, matrix factorization, personalized treatment
INTRODUCTION

Cancer is a genetic disease that results when cellular changes and accumulation of different types of
mutations cause the uncontrolled growth and division of cells. There are more than 200 different
types of cancer, having a significant global impact on public health. Since cancer is a disease of
genetic complexity and diversity, the drug response for different patients can be different. The main
reason for this occurrence is the difference in the molecular and genetic information of individuals,
such as gene expression data, the type of mutation in the genome and copy number alteration
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information. These findings and achievements have recently
made a significant challenge in the prediction of drug response
for an individual patient in the research of precision medicine.

High-throughput drug screening technologies on several
panels of cancer cell lines have been provided. For instance,
two recent consortiums Genomics of Drug Sensitivity in Cancer
(GDSC) Yang et al. (2012) and Cancer Cell Line Encyclopedia
(CCLE) Barretina et al. (2012) have collected around 1,000 cell
lines and their pharmacological profiles for several cancer drugs.
The IC50 measure (minimal concentration of drug that induced
50% cell line death) is usually used as a sensitivity measure. To
facilitate and speed up drug discovery and prediction process,
many methods have been developed in these fields by researches
from numerous domains such as computational biology,
machine learning, and data mining approaches.

In the challenge of the DREAM project, the performance of
44 drug response prediction algorithms was considered for breast
cancer cell lines. The introduced algorithms were evaluated using
the weighted probabilistic c-index (WPC-index) and resampled
Spearman correlation Costello et al. (2014). Various machine
learning methods have been proposed in this area. Barretina et al.
proposed a method for predicting drug response based on naive
Bayes classifier that selected importance features by two steps.
First, they used Wilcoxon Sum Rank Test and Fisher Exact Test
to select the 30 top features and then they applied naive Bayes
classifier for drug response prediction Barretina et al. (2012).
SVM-RFE method is a wrapper that used SVM classifier and
recursive feature selection method Dong et al. (2015). FSelector
method used k-nearest neighbor (KNN) algorithm based on
selected features that are achieved by information entropy
Soufan et al. (2015). Suphavilai et al. (2018) proposed the
CaDRReS method as a predictor cancer drug response model
based on the recommender system and learning projections for
drugs and cell lines into a latent space. AutoBorutaRF was
presented by Xu et al., based on feature selection for
classification of anticancer drug responses. The method first
built a subset of essential features, then used Boruta algorithms
Kursa et al. (2010) to select some features for applying Random-
Forest classifier to predict drug response Lu et al. (2019).

In this paper, we modeled the cancer drug sensitivity problem
based on “Recommender Systems” approach. A logistic matrix
factorization algorithm was used for predicting drug cancer
response. By applying the proposed model to GDSC and CCLE
datasets , we proved that DSPLMF is of exce l lent
prediction accuracy.
MATERIALS AND METHOD

Datasets
The performance of drug response prediction algorithms was
evaluated on two benchmark datasets, including GDSC and
CCLE. The datasets were downloaded by using R package
PharmacoGx Smirnov et al. (2015). In these datasets, there are
several types of information such as IC50 values according to the
set of cell lines and drugs and some other information such as
Frontiers in Genetics | www.frontiersin.org 2308
gene expression profile, copy number alteration, and single-
nucleotide mutation that used in the model designing for more
efficiency. Since in these datasets some of the above information
is missing, the method of compensating for missing values given
by Lu et al. (2019) is used. The missing value for a cell line can
belong to response value, copy number alteration, and single-
nucleotide mutation features. The cell lines with more than 50%
missing value were removed from the dataset and for remaining,
the missing values were predicted from the known values of k-
nearest cell lines. At the end, 555 cell lines and 98 drugs remain
without any missing value for GDSC and 363 cell lines and 24
drugs for CCLE datasets.

Method
The main idea of the model DSPLMF is to construct a
classification model for predicting how a cell line responds to a
drug. Since drug response can be divided into two classes
“sensitivity” and “resistance,” there are many ways for the
purpose of classification based on IC50 values. By considering
the histograms of IC50, we observed some histograms are
normal-like, and others have skewness. Also, it can be
supposed that the labels of classes should be determined by the
data of individual drugs. For normal-like histograms, median,
and mean are the same. If the histogram is skewed right, the
mean is greater than the median, and if the histogram is skewed
left, the mean is smaller than the median. We chose medium
because we wanted to set a single, universal standard threshold
for all drugs. So, the strategy introduced by Li et al. (2015) was
used and the median of IC50 values were applied as a threshold
for classification. The "sensitivity" or class with label 1 was
assigned to a cell line if its IC50 is smaller than the median of
cell lines for an individual drug and "resistance" or class with
label 0 to a cell line was assigned, otherwise. DSPLMF method
has four main steps as follows.

In the first step, by converting the model to a classification
problem, a 0,1 observation matrix was achieved, as cell lines and
drugs are rows and columns of the matrix, respectively. Then, a
logistic matrix factorization method for constructing the latent
vectors for each cell line and drug is applied. In the second step,
for improving the prediction accuracy of the model, the
similarity information for cell lines and drugs are used. In the
third step, a model is applied to learn to predict the probability
that a new cell line would sensitive to a drug. Subsequently, with
applying the threshold to predicted probabilities of the cell line-
drug pairs, we classified each pair to sensitive or resistance class.
In the next section, first the similarity matrices used in the model,
were introduced and then the details of each step are explained in
the following steps. The main scheme of DSPLMF algorithm is
represented in Figure 1.

Similarity Matrix
Cell Line Similarity
In this part, the four similarities between each pair of cell lines
based on the information of gene expression, single-nucleotide
mutation, copy number alteration, and IC50 values
were defined.
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• Gene expression Similarity, Simexp Gene expression
information is an auxiliary feature for similarity between
cell lines. Let ei denoted the gene expression vector of cell
line ci in cancerous conditions. For pair of cell lines ci and cj,
Simexp(ci, cj) is defined as the Pearson correlation between
the vectors ei and ej and the gene expression similarity
matrix between cell lines considered as Simexp = [Simexp(ci,
cj)]n × n, where n is the numbers of cell lines. Each entry of
these metrics is in [−1,1]. The numbers of considered genes
for two datasets GDSC and CCLE for similarity measure are
11,712 and 19,389, respectively. So the length of vector ei is
11,712 and 19,389 for GDSC and CCLE dataset ,
respectively.Q[SpecialChar] Verify that all the equations
and special characters are displayed correctly.

• Single-nucleotide mutation Similarity, Simmut Let zero-
one vectorsmi indicate that whether a mutation occurred in
the set of genes for cell line ci or not. Simmut(ci, cj) is defined
as the Jaccard similarity between the vectors mj and mj and
the single-nucleotide mutation similarity matrix between
cell lines considered as Simmut = [Simmut(ci, cj)]n × n.
Frontiers in Genetics | www.frontiersin.org 3309
Each entry of these metrics is in [0, 1]. The mutation
information of 54 genes are accessible for cell lines in
GDSC dataset and 1667 genes for cell lines in CCLE
dataset, respectively.

• Copy number alteration Similarity, Simcnv Let vi denoted
the copy number alteration vector for cell line ci. Simcnv(ci, cj)
is defined as the Pearson correlation between the vectors vi
and vj and the copy number alteration similarity matrix
between cell lines considered as Simcnv = [Simcnv(ci, cj)]n × n.
Each entry of these metrics is in [−1, 1]. The information of
copy number alteration of 24,959 and 24,960 genes for two
GDSC and CCLE datasets are accessible, respectively.

• IC50 value Similarity, SimIC50 Moreover, the similarity
between cell lines proposed by Liu et al. (2018) based on
the correlation between their response IC50 values was used.
Let ICi denoted the vector of IC50 values of drugs in cell line
ci. SimIC50(ci, cj) is defined as the Pearson correlation between
the vectors ICi and ICj and the similarity based on IC50
matrix between cell lines considered as SimIC50 = [SimIC50(ci,
cj)]n × n and each element of these metrics in [−1, 1].
FIGURE 1 | Scheme of DSPLMF algorithm. First, similarities between each pair of cell lines are constructed based on the information of gene expression, single-
nucleotide mutation, copy number alteration, and IC50 values. Also, similarity between each pair of drugs is defined based on chemical substructure and the median
of IC50 values are applied as a threshold for classification. Using DSPLMF model, the latent vectors for each cell line and drug are achieved. For each new cell line,
decision tree classifier is applied to find its t-most nearest neighbors and the probabilities that this cell line is sensitive to drugs are estimated based on the latent
vectors of its neighbors. Eventually, a threshold is applied on probabilities to assign sensitive or resistance class to each new cell line-drug pair.
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To aggregate these similarities to a single matrix, Simtotal =
[SCij]n × n, the following formula is used:

Simtotal =
lSimexp + g Simcnv + fSimmut + ySimIC50

l + g + f + y
(1)

where g, l, f and y are parameters that represent the
importance of each of the matrix and tuned in the model.
The numbers of considered genes for two datasets GDSC and
CCLE for Simexp are 11,712 and 19,389, respectively. The
mutation information of 54 genes is accessible for cell lines in
GDSC dataset and 1,667 genes for cell lines in CCLE dataset.
The information of copy number alteration of 24,959 and
24,960 genes for two GDSC and CCLE datasets are accessible,
respectively. Since three matrices Simexp, Simcnv, and Simmut

have been constructed by different sets of genes (the number
of common genes between them is about 50%), there is not an
additive relation between them. In general, an absolute
correlation coefficient of >0.7 among two or more predictors
indicates the presence of collinearity. But as Table 1 shows, all
correlation coefficients between similarity matrices are very
low, so there is not collinearity between matrices and they can
be linearly combined.

Drug Similarity, Simdrug

Since it is expected that similar drugs have the same effect on
cell lines, drug similarity information for predicting drug
response was used in the proposed method. A drug can be
represented as a binary feature vector, by using drug
substructures, drug transporters, drug targets, drug enzymes,
drug pathways, drug indications, or drug side effects
information. Since there is only information about chemical
substructures, for each drug we have a zero-one vector of size
881, where 881 is the number of known chemical
substructures of a drug. In this vector one indicates the
presence of a substructure of drug and zero otherwise. We
downloaded the substructure for each drug from PubChem.
The PubChem system generates a binary substructure
fingerprint for chemical structures. These fingerprints are
used by PubChem for similarity neighboring and similarity
searching. Let Vdi and Vdj are the vectors correspond to the
drugs di and dj. Similarity (di, dj) is considered as Jaccard
similarity between these two vectors. We construct the matrix
Simdrug = [SDij]m × m as similarity matrix between each pair
of drugs.

Logistic Matrix Factorization
Assume the set of cell lines is denoted by C = {c1, c2, …, cn } and
the set of drugs is denoted by D = {d1, d2,…, dm }, where n and m
Frontiers in Genetics | www.frontiersin.org
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are the numbers of cell lines and the numbers of drugs,
respectively. The relationship between cell lines and drugs are
represented by a binary matrix Q = [qij]n × m, where each element
qij ∈ {0, 1}. If a cell line is ci sensitive to a drug dj, qij = 1 and
otherwise qij = 0. The probability of sensitivity of a cell line to a
drug is defined by a logistic function as follows:

pij =
exp   (uiv

T
j + bc

i + bd
j )

1 + exp   (uivTj + bc
i + bd

j )
(2)

where ui nd vj are the latent vectors of size L corresponding to
i-th cell line and j-th drug, respectively and the latent vectors of
all cell lines and all drugs are denoted by U and V, respectively.
On the other hands, the non-negative values bc

i and bd
j are the

bias parameters according to cell line i and drug j, respectively.
Moreover, we denoted bc ∈Rn × 1 and bd ∈ Rm × 1 as bias vectors
for cell lines and drugs, respectively. Bias parameters are
considered because some cell lines respond significantly to
many drugs and there are cell lines that respond to few drugs.
Similarly for some drugs, there are many cell lines that respond
to them, and there are drugs that most cell lines do not respond
to significantly. Thus, by applying these parameters, we try to
reduce bias. The vectors bc = (bc

1,…, bc
n)and bd = (bd

1 ,…, bd
m)

considered as bias vector of the model.
In this model, all the data in the training set are assumed

to be independent. So the probability that matrix Q
occurred, considering the latent and bias vectors, can be
computed as:

p(QjU ,V , bc, bd)

=
Y

1≤i≤n,1≤j≤m,qij=1

½pqijij (1 − pij)
(1−qij)�r

0
@

1
A�

Y
1≤i≤n,1≤j≤m,qij=0

p
qij
ij (1 − pij)

(1−qij)

0
@

1
A

(3)

When qij = 1 then both r (1 – qij) and 1 – qij are zero.
Similarly, when qij = 0, rqij = qij = 0. So, formula 3 is rewritten as
follows:

p(QjU ,V , bc , bd)

=
Y

1≤i≤n,1≤j≤m,qij=1

p
rqij
ij (1 − pij)

(1−qij)

0
@

1
A�

Y
1≤i≤n,1≤j≤m,qij=0

p
rqij
ij (1 − pij)

(1−qij)

0
@

1
A :

(4)

Finally, the above probability is shown as follows:

p(QjU ,V , bc, bd) =
Yn
i=1

Ym
j=1

p
rqij
ij (1 − pij)

(1−qij) : (5)

Where (r ≧̸ 1) is used to control the importance levels of
observed interactions. In some classification problems with two
classes (0 and 1), lack of information make us to assign label zero to
some objects. But, it may be that the real label of these objects are
one. So, the members of class one are highly trusted, while some
members assign to class zero because of lack of information. As an
example, in drug-target prediction or drug-drug interaction
prediction models, the observed interacting drug-target pairs or
drug-drug pairs have been experimentally verified; thus, they are
TABLE 1 | Correlation coefficient between four matrices Simexp, Simcnv, Simmut,
and SimIC50.

Correlation Coefficient Simexp Simcnv Simmut SimIC5

Simexp 1.0 0.24 −0.11 0.19
Simcnv 0.24 1.0 0.14 0.015
Simmut −0.11 0.14 1.0 −0.06
SimIC50 0.19 0.015 −0.06 1.0
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more trustworthy and important than the unknown pairs. Toward
more accurate modeling for these prediction models, the authors
can assign higher importance levels to the interaction pairs than
unknown pairs. This importance weighting strategy (considering r >
1) has been demonstrated to be effective for personalized
recommendations. On the other hand, in DSPLMF model, both
classes (sensitivity and resistance) have the same importance and
validity. So, we set r to be one.

We also deposited zero-mean spherical Gaussian priors on
latent vectors of cell lines and drugs as:

p(U js 2
c ) =

Yn
i=1

N (ui 0,s
2
c I)

�� (6)

p(V js 2
d ) =

Ym
j=1

N (vj 0,s 2
d I)

�� (7)

where I denotes the identity matrix and s 2
c and s2

d are
parameters for contro l l ing the var iances of pr ior
distributions of cell lines and drugs. Based on Bayesian
theorem we have:

p(MjQ) = p(QjM)p Mð Þ
p Qð Þ : (8)

SinceU, V, bc, bd are the parameters in the modelM, Bayesian
theorem is as follows:

p(U ,V , bc, bdjQ) = p(Q U ,V , bc, bd)p(U
�� ��s 2

c )p(Vjds2)
p Qð Þ : (9)

So we can conclude the following relation:

p(U ,V , bc, bd Q) ∝ p(Qj jU ,V , bc, bd)p(U s 2
c )p(V

�� ��s2
d ) : (10)

According to the Bayesian theorem and equations 5, 6, and 7,
the log of the posterior distribution is estimated as follows:

log  p(U ,V , bc, bdjQ,s2
c ,s 2

d ) =o
n

i=1
o
m

j=1
½rqij(uivTj + bc

i + bd
j )−

1 + rqij − qij
� �

log  (1 + exp  (uiv
T
j + bc

i + bd
j ))�−

lc
2 o

n

i=1
jjuijj22 −

ld
2 o

m

j=1
jjvjjj22 + T

:

(11)

In formula 11, regarding how Bayesian theorem is applied
to classification problems, we could convert the direct
proportional relation between the left hand side and the
numerator of the fraction of equation 10 to equalized, by
adding constant term T to the formula. Where T is
independent of the model parameters Hand et al. (1999). lc =
1
s 2
c
, ld = 1

s 2
d
. The parameters of the model can be learned by

maximizing the above formula, which is equivalent to
minimizing the following objective function:
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min
U ,V ,bc ,bd

 o
n

i=1
o
m

j=1
½(1 + rqij − qij) log  (1 + exp  (uiv

T
j + bc

i + bd
j ))−

rqij(uiv
T
j + bc

i + bd
j )� + lc

2 jjU jj2F + ld
2 jjVjj2F

(12)

where ‖·‖F denotes the Frobenius norm of matrix.
For regularization the objective function 12, for each cell line

ci, we choose the set Nk(ci) that denotes the k-most similar cell
lines to c (except ci) using Simtotal matrix. We constructed
adjacency matrix A= [aij]nxn that represents cell line
neighborhood information as follow:

aij =
SCij     cj ∈ Nk(ci)

0     otherwise
:

(
(13)

A is an n × n matrix, which for the row corresponding to
cell line ci, the entries of columns corresponding to the k-
most similar cell lines of ci are obtained from their
similarities, Simtotal matrix, and the other elements of this
row are zero.

Similarly, for a drug di, the set Nk(di) denotes the k-most
similar drugs to di (except di) using Simdrug matrix. The
adjacency matrix B to describe the drug neighborhood
information is denoted by B = [bij]m×m, where;

bij =
SDij     dj ∈ Nk(di)

0     otherwise
:

(
(14)

B is an m × m matrix, which for the row corresponding to
drug di, the entries of columns corresponding to the k-most
similar drugs of di are obtained from their similarities, Simdrug

matrix, and the other elements of this row are zero.
To illustrate the data structure of these similarity matrices,

as an example, for k = 5 and 24 drugs in CCLE dataset, the
similarity matrix B is denoted in Figure 2A. Figure 2B, shows
the graph corresponding to this matrix. As it can be seen from
Figure 2A, each row i of the matrix has five nonzero elements
corresponding to the five-most similar drugs of di in Simdrug

matrix, and the other elements are zero. In Figure 2B, the
degree of each node is five and the red edges denote the
neighbors of the nutlin-3. 5-most similar drugs to Nutlin-3
based on sim drug matrix are AEW541, AZD0530, Lapatinib,
crizotinib, and sorafenib.

To minimize the distance between feature vector
corresponding to cell line i and vectors of its nearest
neighbors in latent space, we minimize two objective
functions in formulas 15, 16 as follows:

a
2 o

n

i=1
o
n

j=1
(aijjjui − ujjj2F)

= a
2 ½o

n

i=1
(o
n

j=1
aij)uiu

T
i +o

n

j=1
(o
n

i=1
aij)uju

T
j � −

a
2
tr(UTAU)−

a
2 tr(U

TATU) = a
2 tr(U

THcU)

(15)
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b
2o

m

i=1
o
m

j=1
(bijjjvi − vj j2F)

��
= b

2 ½o
m

i=1
(o
m

j=1
bij)viv

T
i +o

m

j=1
(o
m

i=1
bij)vjv

T
j � −

b
2
tr VTBV
� �

−

b
2 tr VTBTV

� �
= b

2 tr VTHdV
� �

(16)

Where tr(.) is the trace of a matrix, Hc = (Ec + ~Ec) − (A + AT ), Ec

and ~Ec are two diagonal matrices and their diagonal elements are
Ec
ii =on

j=1(aij) and eEc
jj = Sn

i=1(aij), H
d = (Ed + ~Ed) − (B + BT ). Ed

and ~Ed are two diagonal matrices and their diagonal elements are
Ed
ii =om

j=1(bij) and
eEd
jj =om

i=1(bij). a and b are two parameters for
weighting the similarity between cell lines and drugs, respectively.

The values of two matrices A and B show the similarity of
the cell lines to each other and the similarity of the drugs to
each other, respectively. Using the calculation of Frobenius
Frontiers in Genetics | www.frontiersin.org 6312
norm multiplied by the elements in A and B is because of we
would like more similar cell lines (drugs), have closer latent
vectors in the latent space. But, the parameters a and b
determine the effectiveness of these two matrices A and B in
the objective function. By these strategies and tuning the
parameters a and b, we determine the impact of cell line
similarity and drug similarity in DSPLMF method.

By plugging two equations 15, 16 into formula 12, we will
have the following:

min
U ,V ,bc ,bd

 o
n

i=1
o
m

j=1
(1 + rqij − qij) log  (1 + exp  (uiv

T
j + bc

i + bd
j ))−

rqij(uiv
T
j + bc

i + bd
j ) +

lc
2 jjU jj2F + a

2 tr(U
THcU) + ld

2 jjV jj2F +
b
2 tr(V

THdV)

(17)
FIGURE 2 | Data structure of the similarity matrix for 24 drugs in Cancer Cell Line Encyclopedia (CCLE) dataset. (A) The similarity matrix B24 × 24. (B) The graph
corresponding to the similarity matrix B24 × 24.
February 2020 | Volume 11 | Article 75

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Emdadi and Eslahchi DSPLMF
Finally, we upgrade the formula 17 as follows:

min
U ,V ,bc ,bd

 o
n

i=1
o
m

j=1
(1 + rqij − qij) log  (1 + exp  (uiv

T
j + bc

i + bd
j )) − r

qij(uiv
T
j + bc

i + bd
j ) +

1
2 tr½UT (lcI + aHc)U �+

1
2 tr½VT (ldI + bHd)V �

:

(18)

By this function, we try to predict the latent vectors of cell
lines and drugs, where the similar cell lines or drugs have closer
latent vectors to their KNNs.

For optimization the above function, the alternating gradient
descent method was used. In each iteration of this algorithm, first
U and bc

i are fixed to compute V and bd
j and then V and bd

j are
fixed to compute U and bc

i . Besides, to accelerate the
convergence, the AdaGrad algorithm was applied and the
details of this algorithm are deposited in the Supplementary
File 3 (Data Sheet 3). The objective function in formula 18 is
denoted by Y and the partial gradients of biases and latent
vectors are calculated as follow:

∂Y
∂ ui

=o
m

j=1

vTj (1 + rqij − qij)(exp   (uiv
T
j + bc

i + bd
j ))

(1 + exp   (uivTj + bc
i + bd

j ))
− rqijv

T
j +

(lcui + aHc
ijui)

∂Y
∂ vj

=o
n

i=1

ui(1 + rqij − qij)(exp   (uiv
T
j + bc

i + bd
j ))

(1 + exp   (uivTj + bc
i + bd

j ))
− rqijui+

(ldvj + bHd
ijvj)

∂Y
∂ bc

i
=o

m

j=1

(1 + rqij − qij)(exp   (uiv
T
j + bc

i + bd
j ))

(1 + exp   (uivTj + bc
i + bd

j ))
− rqij

∂Y
∂ bd

j
=o

n

i=1

(1 + rqij − qij)(exp   (uiv
T
j + bc

i + bd
j ))

(1 + exp   (uivTj + bc
i + bd

j ))
− rqij

:

(19)

Once the latent matrices U and V and the biases bc
i and bd

j

have been learned, the probability of sensitivity cell line i to drug
j can be estimated by logistic function in formula 2. Since in our
model, the importance of the positive observations and negative
observations are the same, we set r = 1 in this logistic function.

Prediction
When a new cell line is given, its information of IC50 of the
drugs is unknown and SimIC50 matrix values cannot be
calculated, while it must be calculated to predict the latent
vectors of this new cell line. In this section, we introduced a
classification model for predicting t-most nearest neighbors by
using the similarity values between cell lines which are obtained
from gene expression profile, copy number alteration and single-
nucleotide mutation information. The purpose of this model is to
find t-most nearest neighbors for the new cell line and then to
estimate the latent vector for this new cell line based on average
of latent vectors of its neighbors. After obtaining the latent
vector, we can predict the IC50 values across all drugs for the
Frontiers in Genetics | www.frontiersin.org 7313
new cell line. For training the model, 10-fold cross validation
technique is used on cell line dataset, so the dataset was
partitioned into 10 equal-sized subsets, nine subsets were used
as the train set for learning this classification model. A single
subset was used as the test set to predict the t-most nearest
neighbors for each cell line of this set.

In this classification model, the amounts of SimIC50 matrix of
train set were converted to 0 or 1. To do this, the values of each row
of the matrix are sorted in descending order and then t-largest
values are set to 1 and remaining values are set to 0. Among the
methods available for classification, we chose “Decision Tree
Classifier” method. It is one of the predictive modeling
approaches that used tree models to predict the value of a target
variable based on several input features. Where leaves represent
class labels and branches denote conjunctions of features that lead
to those class labels. Learned trees can be represented as sets of if-
then rules. Decision tree classifier is a heuristic and
nonbacktracking search through the space of all possible decision
trees. The main idea of decision tree classification is recursively
partition data into subgroups. The functionality of decision tree
classification is as follows: Polat and Güneş (2007)

• Choosing an attribute and formulating a logical attribute test.
• Branching on each test result, transferring subset of examples

(training information) to the appropriate child node to satisfy
that result.

• Running each child’s node recursively.
• The end rule indicates when a leaf node is to be declared.

For decision tree classifier, the three features of train set,
Simexp, Simcnv, and Simmut, are considered as input and 0 or 1
value of each pair (ci,cj) are considered as output and then as the
classifier train. If the number of predicted nearest neighbors for a
cell line was less than t, we considered them as nearest neighbors
for this cell line. If this number was greater than t, t neighbors
were selected randomly. Finally, ui was estimated as the average
of latent vectors of neighbors of the new cell line ci.

When the latent vector of the new cell line is predicted, the
probabilities that this cell line is sensitive to drugs are estimated.
Eventually, a threshold on probabilities to assign sensitive or
resistance class to each cell line-drug pair is applied. So if the
predicted value is lower than this threshold for a cell line-drug
pair, the resistance class is assigned to it; otherwise, it is labeled as
a sensitive class.
RESULT

We empirically evaluate our proposed approach and compare it
against some of the state-of-the-art methods. This section first
describe evaluation criteria and then demonstrate the
performance of DSPLMF method.

Evaluation Criteria
To evaluation the performance of DSPLMF method, the 10-fold
cross-validationWas performed and this process was repeated 30
times. The mean of following criteria was obtained in the 30
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times and it was used as the final criteria to evaluate the
predictive performance of the methods.

Accuracy =
TP + TN

TP + FP + TN + FN

Recall =
TP

TP + FN

Precision =
TP

TP + FP

Specificity =
TN

TN + FP

F1Score =
2TP

2TP + FP + FN

MCC =
TP*TN − FP*FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN)(FP + TN)(FN + TN)
p

(20)

where TP or true positive prediction is the number of cell lines
labeled with sensitivity and predicted as sensitivity. TN or true
negative is the number of cell lines labeled with resistance and
predicted as resistance. FP or false positive is the number of cell
lines labeled with resistance and predicted as sensitivity. FN or
false negative is the number of cell lines labeled with sensitivity
and predicted as resistance.

In addition to the above metrics, we used area under the receiver
operating characteristic curve (AUC), which is one of the most
important evaluation metrics for checking the performance of any
classification model. This metric was calculated for the methods.

Comparison With the State-of-the-Art-
Methods
To demonstrate the effectiveness of our method, we compared
the predictive performance of the proposed model against the
Frontiers in Genetics | www.frontiersin.org 8314
state-of-the-art-methods such as naive Bayes Barretina et al.
(2012), SVM-RFE Dong et al. (2015), FSelector Soufan et al.
(2015), CaDRReS Suphavilai et al. (2018), AutoBorutaRF Lu
et al. (2019), and the AutoHidden method, which is constructed
based on the hidden layer of the autoencoder in AutoBorutaRF
method as features Lu et al. (2019).

All the methods mentioned above are classification models
except the CaDRReS, since this method predicted IC50 values as
output, a threshold was applied for its output. So if the value
predicted for a cell line-drug pair is smaller than this threshold, the
resistance class was assigned to it; otherwise, it was labeled with
sensitive class. Themedian of the IC50 values was chosen as the best
threshold for this algorithm. The results of the mentioned methods
on two datasets GDSC and CCLE are shown in Tables 2 and 3, and
the bold number represents the best result. The results of Table 2
show that the value of Accuracy criterion by DSPLMF has increased
by 0.03 compared to the result of the best algorithm, AutoBorutaRF.
Furthermore, the value of Recall, F1Score, MCC, and AUC criteria
have increased by 0.10, 0.05, 0.06, and 0.05 compared to the best
algorithm. Only in the case of the Specificity criterion, the naive
Bayes method performs significantly better than the other methods.
The reason is that this method has predicted zero class data for most
of the data, and by looking at the result of other criteria, such as
Accuracy, Recall, and F1Score for this method, we can see that this
method does not predict sensitive class data very well. The results of
Table 3 are the same as those in the previous table, except that the
best result for the AUC criterion belongs to the AutoBorutaRF
method, demonstrating the effectiveness of this method. The best
result for the Specificity criterion belongs to the AutoHidden
method; the low performance of other criteria indicates that this
method is weak in predicting sensitive data. In general, the results of
these two tables show that the DSPLMF significantly outperforms
other methods. Thus, it is evident our method able to find much
TABLE 2 | Prediction performance of the different algorithms based on seven criteria on Genomics of Drug Sensitivity in Cancer (GDSC) dataset.

Method Accuracy Recall Precision Specificity F1Score MCC AUC

DSPLMF 0.682 0.750 0.671 0.615 0.702 0.373 0.760
CaDRReS 0.541 0.540 0.547 0.546 0.549 0.110 0.510
AutoBorutaRF 0.653 0.652 0.646 0.654 0.650 0.310 0.711
naive Bayes 0.610 0.424 0.590 0.796 0.494 0.247 0.679
SVM-RFE 0.594 0.579 0.589 0.609 0.585 0.191 0.515
FSelector 0.606 0.617 0.593 0.595 0.606 0.215 0.647
AutoHidden 0.578 0.557 0.571 0.598 0.565 0.158 0.609
February 2020
 | Volume 11 | Art
The 10-fold cross validation is applied on the evaluation metrics and the mean value of them is used as criteria for comparison.
TABLE 3 | Prediction performance of the different algorithms based on seven criteria on Cancer Cell Line Encyclopedia (CCLE) dataset.

Method Accuracy Recall Precision Specificity F1Score MCC AUC

DSPLMF 0.770 0.723 0.636 0.772 0.677 0.481 0.776
CaDRReS 0.671 0.353 0.493 0.830 0.412 0.202 0.501
AutoBorutaRF 0.763 0.656 0.594 0.813 0.624 0.452 0.821
naive Bayes 0.683 0.332 0.406 0.919 0.366 0.275 0.779
SVM-RFE 0.728 0.428 0.631 0.812 0.523 0.296 0.551
FSelector 0.743 0.506 0.630 0.805 0.563 0.353 0.737
AutoHidden 0.697 0.133 0.201 0.950 0.356 0.219 0.706
The 10-fold cross validation is applied on the evaluation metrics and the mean value of them is used as criteria for comparison.
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more useful features for drug response prediction rather than other
methods. Overall, DSPLMF improvement on the GDSC dataset
is stronger.

Performance of the Novel Regularization
Approach
To evaluate the improvement of the logistic matrix factorization
method by applying the novel regularization approach, we
compared the predictive performance of the DSPLMF model
against the logistic matrix factorization method without the novel
regularization approach. In this model, the classification method for
predicting t-most nearest neighbors for each new cell line by using
the similarity values between cell lines which are obtained from
gene expression profile, copy number alteration and single-
nucleotide mutation information, is not applied. The result of the
above algorithm based on seven criteria on GDSC and CCLE
datasets is calculated, and the 10-fold cross-validation is applied on
the evaluation metrics, and the mean value of them is used as
criteria for comparison. The results of Tables 2 and 4 show that the
value of Accuracy criterion by DSPLMF on GDSC dataset has
increased by 0.10 compared to the result of the logistic matrix
factorization method without the novel regularization approach.
Furthermore, the value of Recall, Precision, Specificity, F1Score,
MCC, and AUC criteria have increased by 0.04, 0.10, 0.17, 0.07,
0.21, and 0.14 compared to this algorithm. The results of Tables 3
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and 4 show that the value of Accuracy criterion by DSPLMF on
CCLE dataset has increased by 0.10 compared to the result of the
logistic matrix factorization method without the novel
regularization approach. Furthermore, the value of Recall,
Precision, Specificity, F1Score, MCC, and AUC criteria has
increased by 0.05, 0.11, 0.10, 0.09, 0.16, and 0.10 compared to
this algorithm. So, using of the classification method for predicting
t-most nearest neighbors of each new cell line in logistic matrix
factorization algorithm, will increase the performance by 10%.

Specific Tissue of Cell Line Type
The data in the GDSC dataset is related to different cancers. To
demonstrate the performance of DSPLMF method on cancer
tissue type, 73 hematopoietic cell lines and 98 drugs from GDSC
dataset are considered. This specific type of cell lines are used to
train the proposed model and predicted responses for the drugs
based on this tissue type. Figure 3 shows the results of all
mentioned criteria on these cell lines for the DSPLMF method
using 30 times 10-fold cross-validation. The mean of these values
are shown in Table 5. As the table shows, if the algorithm is
specifically run on a particular type of cancer, it would be
expected to yield better results than when considering different
types of cancer. These results indicate that DSPLMF can also
achieve consistent performance on a specific type of cancer.

Correlation Between Predicted
and Observed Responses Values
For further evaluation and to demonstrate the performance of the
proposed algorithm, the scatter plots of observed versus predicted
responses values for four drugs in CCLE are illustrated in Figure 4.
The values predicted by our model are probabilities that cell lines
are sensitive to the drugs. For calculation correlation between
predicted and observed responses values, the values (uiv

T
j + bc

i +
bd
j ) in Formula 2 as the predicted IC50 values for cell line ci and

drug dj were used. As the plots indicate, there is a high correlation
between observed and predicted response values. The scatter plots
of all 24 drugs in the CCLE dataset are illustrated in the
Supplementary File 2 (Data Sheet 2: Figures S1–S4).

Learning Hyperparameters
For tuning hyperparameters, GDSC dataset has been used, and
the obtained hyperparameters are considered for both datasets.
The 10-fold cross-validation procedure is applied on GDSC and
hyperparameters are chosen empirically by maximizing the
summing up of the Accuracy, Recall, Precision, Specificity,
F1Score, and MCC criteria. For each set of hyperparameters,
the whole 10-fold process is repeated 30 times and the average
value of the above summing has been calculated. Since the search
space of hyperparameters values is large, a grid-search procedure
for choosing the hyperparameters was applied.

The dimension of latent space, L, was selected between 1 and 98,
the number of drugs. The number of KNNs for building Nk(ci) in
equation 13 and the number of t-nearest neighbors in prediction
section, were selected from 1 to 50 by step 2. The impact factors of
nearest neighbors a and b in equations 15 and 16 were picked from
{2–5, 2–4,…, 22} and the variance controlling parameters, lc and ld,
were chosen from{2–5, 2–4,…, 21}. The g, l, f and y parameters
TABLE 4 | Prediction performance of the logistic matrix factorization method
without the novel regularization approach based on seven criteria on Cancer Cell
Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC)
datasets.

Dataset Accuracy Recall Precision Specificity F1Score MCC AUC

GDSC 0.580 0.713 0.571 0.442 0.630 0.168 0.626
CCLE 0.672 0.673 0.523 0.670 0.582 0.328 0.671
The 10-fold cross validation is applied on the evaluation metrics and the mean value of
them is used as criteria for comparison.
FIGURE 3 | Box Plots of seven criteria on haematopoietic cell lines in
Genomics of Drug Sensitivity in Cancer (GDSC) dataset to show the
prediction performance of DSPLMF method.
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represent the importance of each similarity measure between cell
lines in formula 1 and were selected from 1 to 10. Threshold
parameter applied on equation 2 for determining the label of the
class for each new cell line ci, and was picked from 0.1 to 1 by step
0.1, and the best accuracy of the result is obtained by threshold=0.6.

In Table 6, the learned hyperparameters using GDSC dataset
is shown. For both datasets, these tuned hyperparameters are
used to design the model, except to L, that is calculated for CCLE
dataset separately and for this dataset it is set as 23.
DISCUSSION

Cell Line Subtypes in Latent Space
We used 555 cell lines from different cancerous tissue types in
GDSC dataset. For representing the higher similarity between
latent vectors ~ui of the cell lines from the same tissue type rather
Frontiers in Genetics | www.frontiersin.org 10316
than the cell lines from different tissue types, the t-SNE plot for
some tissue types of cancer cell lines is shown in Figure 5. Top
five most frequent tissue types including, breast, central nervous
system, hematopoietic and lymphoid tissue, COREAD, and lung
cancer were considered. As it can be seen from Figure 5 (A), the
embedded latent vectors of the cell lines with the same tissue type
are located closer than the cell lines with diverse tissue types. This
suggests that the proposed method assigned more similar latent
vector to cell lines with the same tissue type. In the following, we
consider an example of some latent vectors and the similarities
between them: Let v1, v2 and v3 are three latent vectors obtained
DSPLMF method of length 95 corresponding to Breast cancer
cell line BT − 20, Breast cancer cell line BT − 549 and
hematopoietic cancer cell line CA46, respectively. v1 = [0.01,
0.23, −0.14,…, 0.12]1x95, v2 = [0.17,0.67, −0.1,…,0.34]1x95 and v3
= [0.89, −0.9, 0.55,…, −0.17]1x95. Similarity (v1,v2) = 0.78,
Similarity (v1,v2) = 0.13 and Similarity(v2,v3) = 0.04. As the
results show, two vectors belonging to the same tissue types are
more similar than two vectors that belong to two different tissue
types. Also, in the t-SNE plot, these two vectors belonging to the
same tissue types are closer than two vectors that belong to two
different tissue types.

In Figure 5B, the latent vectors of different subtypes of lung
cancer were considered. These different subtypes are:
adenocarcinoma, large cell, squamous cell, and small cell
carcinoma. In this figure, the closeness of vectors
TABLE 5 | Prediction performance of DSPLMF method on haematopoietic cell
lines based on seven criteria on Genomics of Drug Sensitivity in Cancer (GDSC)
dataset.

Method Accuracy Recall Precision Specificity F1Score MCC AUC

DSPLMF 0.721 0.800 0.690 0.645 0.750 0.441 0.730
The 10-fold cross validation is applied on the evaluation metrics and the mean value of
them is used as criteria for comparison.
FIGURE 4 | Correlations between observed and predicted activity areas using DSPLMF method for CCLE cell lines across four drugs. (A) shows the scatter plot of
observed and predicted drug responses for Topotecan with 0.71 as Pearson Correlation. (B) shows the scatter plot of observed and predicted drug responses for
17-AAG with 0.60 as Pearson Correlation. (C) shows the scatter plot of observed and predicted drug responses for AZD6244 with 0.68 as Pearson Correlation.
(D) shows the scatter plot of observed and predicted drug responses for PD-032590 with 0.79 as Pearson Correlation.
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corresponding to cell line of the same subtype in this cancer
justifies the efficiency of obtained latent vectors.

Investigation Drug-Pathway Association
For inferring drug-pathway associations, the heatmap of Pearson
correlation between predicted drug responses and pathway
activity scores similar to Suphavilai et al. (2018) is used. We
considered 50 Biocarta pathway gene sets from MSigDB
Liberzon et al. (2011), and pathway activity scores for CCLE
cell lines were calculated as follows:

Let PW is a pathway and G(PW) = {g1,g2,…, gr} is the set of
genes corresponding to pathway PW. Let fold-change value of gi
in cell line cj is xij, which is obtained by:

xij = Log2(expression   intensity   of   gi   in   cell   line   cj)−

median(Log2(expression   intensity   of   gi   in   all   cell   lines))

(21)

Pathway activity score of pathway PW for cell line cj, PASj
(PW) was calculated by formula 22.

PASj(PW) =o
r

i=1
xij (22)

Pathway activity score of PW for all cell line, PAS(PW), are
considered as the vector PAS(PW) = [PAS1(PW), PAS2(PW),…,
Frontiers in Genetics | www.frontiersin.org 11317
PASn(PW)], where n is the numbers of cell lines. Also, the
predicted drug responses by DSPLMF for each drug were
considered as the vector IC50predicted = [IC1, IC2,…,ICn].

Then, the association between drug dj and pathway PW is
computed by the Pearson correlation between IC50predicted for
drug dj and PAS(PW). A positive correlation indicates that a
pathway plays a role in drug resistance and negative correlation
demonstrated that a pathway is important in drug sensitivity.
The result of the Pearson correlation of 30 pathway gene sets and
24 drugs of CCLE dataset is shown in Figure 6 and the result of
20 other pathways is represented in the Supplementary File 1
(Data Sheet 1). In this figure, the blue is represented the
assistance and the red is represented the resistance case. Below,
we investigated several instances that indicates consistency
between the result of calculated Pearson correlation and
previous studies and researches.

• The activation score of the HDAC (Histone deacetylases)
pathway is negatively correlated (assistant association) with
predicted IC50 value of some drugs such as Panobinostat.
These observations were consistent with two studies, showing
that the Panobinostat can inactive HDAC pathway De
Marinis et al. (2013); Yee and Raje (2018).

• We observed the RELA (Acetylation and Deacetylation of
RelA in The Nucleus) pathway had an assistant association
with the 17-AAG (HSP90 inhibitor) drug. The RELA gene is
one member of the NF-kB family and two important roles of
the RELA are the transcriptional regulation and NF-kB signed
transduction. Since the 17-AAG drug affects the NF-kB
activity, it also affects the RELA gene and RELA pathway
Thangjam et al. (2014).

• The activation score of the EGFR − SMRTE pathway was
negatively correlated with predicted IC50 value of four EGFR
TABLE 6 | Learned hyperparameters of DSPLMF method based on Genomics
of Drug Sensitivity in Cancer (GDSC) dataset.

Hyperparameters L k t lc ld a b l g f y Threshold

value 95 20 20 0.6 0.6 0.5 0.1 1 1 1 3 0.6
FIGURE 5 | (A) shows the t-SNE plot of latent space corresponding to four different cancer subtypes in GDSC dataset. In this figure, red points show the latent
vectors of breast cancer and green, dark blue, and light blue points show the latent vectors of COREAD, central nervous system, and haematopoietic and lymphiod
tissue, respectively. (B) shows the t-SNE plot of latent space corresponding to different lung cancer subtypes in Genomics of Drug Sensitivity in Cancer (GDSC)
dataset. In this figure, purple points show the latent vectors of adenocarcinoma and light green, black and orange points show the latent vectors of large cell,
squamous cell, and small cell carcinoma, respectively.
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inhibitors drugs, namely, Lapatinib, Erlotinib, Vandetanib,
and AZD0530. These observations matched the previous
study that denoted the amplification of the EGFR gene is
correlated with a high response to EGFR inhibitors
Normanno et al. (2006). Moreover, the predicted IC50
values of the Crizotinib (ALK-inhibitor) were positively
correlated with the activity score of this pathway and this
issue was confirmed in the previous studies Sasaki et al.
(2011).

• The MTA3 (Downregulated of MTA-3 in ER-negative Breast
Tumors) pathway was associated (positively correlated) with
Frontiers in Genetics | www.frontiersin.org 12318
two predicted IC50 vectors belong to L-685458(gamma-
secretase) and PD-0332991(CDK4/6) drugs. Therefore, the
cell lines with inactivated MTA3 pathway tend to sensitive to
these two drugs Suphavilai et al. (2018).

• The VEGF-Hypoxia-Angiogenesis (VEGF) pathway was
assistance associated with two RAF inhibitors drugs,
namely, PLX4720 and RAF265 drugs that were verified in
the previous researches. One of these studies considered
inducing the VEGF expression by Raf promotes
angiogenesis and blocking RAF/MEK/ERK pathway by RAF
inhibitors McCubrey et al. (2007). Moreover, the activity
FIGURE 6 | Drug-pathway association based on Cancer Cell Line Encyclopedia (CCLE) dataset. For visualization, 30 Biocarta pathways across 24 drugs were
selected. Negative and positive correlations between pathway activity and drug sensitivity scores are denoted as being “assistant” and “resistant” associations,
respectively. The blue color is represented the assistance and the red color is represented the resistance.
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score of the VEGF pathway was negatively correlated with
Sorafenib drug Liu et al. (2006).

• The activity score of the mTOR Signaling Pathway that is a
central regulator of metabolism and physiology was
negatively correlated with predicted Ic50 vector of some
drugs such as Panobinostat. Various preclinical studies have
been performed to combine panobinostat with several drugs
as mTOR inhibitor Singh et al. (2016).

• It has been shown that c-met inhibitor drugs such as PHA-
665752 and Crizotinib can inhibit WNT pathway activity in
tumour cells. We observed the activity score of this pathway
was negatively correlated with predicted IC50 vectors of these
drugs Tuynman et al. (2008); Zhang et al. (2018).

• The assistant association was observed between L − 685458
drug and IGF-1 MTOR pathways. These observations were
also reported by Shih et al Shih and Wang (2007).

• We observed that the MEK inhibitors such as AZD6244 and
PD − 0325901 were positively correlated with activity scores
for the EIF2 pathway. Therefore, as mentioned in the previous
researches, the cell lines with inactivated EIF2 p athway
were sensitive to these drugs Quevedo et al. (2000);
Liberzon et al. (2011).
Conclusion
In this work, we introduce a novel method for cancer drug
sensitivity prediction based on a recommender system
approach. A logistic matrix factorization is applied to
predict the extent to which a cell line is sensitive to a drug.
The advantage of this method is to obtain latent features of
cell lines and drugs for better prediction performance. Since
the similarity information of cell lines and drugs can improve
higher predictive power, some information such as gene
expression profile, copy number alteration and single-
nucleotide mutation data for cell lines and Chemical
structures of drugs are used.

To demonstrate the validity of DSPLMF method for identifying
drug response 10-fold cross validation on CCLE and GDSC datasets
Frontiers in Genetics | www.frontiersin.org 13319
are performed. The comparison of DSPLMF with six other the
state-of-the-art prediction methods showed that DSPLMF
outperformed other methods. The results indicated that the
proposed method was able to uncover much more effective
features than the other methods for drug response prediction.
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Identification of genetic variants associated with complex traits is a critical step for
improving plant resistance and breeding. Although the majority of existing methods for
variants detection have good predictive performance in the average case, they can not
precisely identify the variants present in a small number of target genes. In this paper, we
propose a weighted sparse group lasso (WSGL) method to select both common and low-
frequency variants in groups. Under the biologically realistic assumption that complex
traits are influenced by a few single loci in a small number of genes, our method involves a
sparse group lasso approach to simultaneously select associated groups along with the
loci within each group. To increase the probability of selecting out low-frequency variants,
biological prior information is introduced in the model by re-weighting lasso regularization
based on weights calculated from input data. Experimental results from both simulation
and real data of single nucleotide polymorphisms (SNPs) associated with Arabidopsis
flowering traits demonstrate the superiority of WSGL over other competitive approaches
for genetic variants detection.

Keywords: genome-wide association studies, genetic variants, single nucleotide polymorphisms, minimum allele
frequency, sparse group lasso
INTRODUCTION

Since completion of the sequencing-based structural genome project, the focus of life science
research has gradually shifted from determining the composition of DNA sequences to elucidating
the function of identified genes. However, the greatest challenge of functional genomics is to
determine the risk genes associated with complex diseases or traits among the huge amount of DNA
sequences. Approximately, 90% of all gene fragments in any two individuals of almost all organisms
are identical; thus, the fragments affecting individual characteristics, diseases, or traits only appear
in a small range of sequences (Tenaillon et al., 2001; Reich et al., 2002). Polygenic recombination or
mutation can cause individual differences in genome sequences, resulting in genetic polymorphism.
Single nucleotide polymorphisms (SNPs) are the most common form of such genetic variation.
Therefore, identification and characterization of SNPs help to discover the underlying causes of
various diseases or variable traits and to develop new therapeutic strategies and targets for drug
development or crop improvement.

The goal of genome-wide association studies (GWAS) is to elucidate the relationship between
millions of SNPs and complex traits (Klein et al., 2005). A single-locus association approach is
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typically used in GWAS; however, the “polygenic theory”
proposes that complex traits are controlled by the action of
multiple SNPs together rather than by individual genes or
variants (Dudbridge, 2016). Since the number of SNPs far
exceeds the number of samples in a multi-loci association
study, the “curse of dimensionality” becomes the main
challenge of this type of analysis (Waddell et al., 2005). Many
machine-learning algorithms have been widely used to overcome
this limitation and facilitate investigating the association between
traits with SNPs. Based on current approaches, association
studies can be divided into two main categories: one based on
feature selection (FS) and the other based on statistical machine
learning with regularizing penalty.

FS is the process of selecting the most effective features among
a set of original features so as to reduce the dimensionality of the
dataset. There are two types of FS methods: the wrapper method
as a dependent classifier (Hall and Smith, 1999), and the filter
method as an independent classifier (Liu and Setiono, 1996).
Typically, the wrapper and filter approaches are combined as the
final selected method. When applying FS methods to GWAS, the
SNPs are treated as the features, phenotypes are the labels, and
the candidate SNPs are then selected according to their
associations with phenotypes. Numerous FS methods have
been applied in genetic association studies (Evans, 2010;
Batnyam et al., 2013; Anekboon et al., 2014; Alzubi et al., 2017;
An et al., 2017; Setiawan et al., 2018; Tsamardinos et al., 2019).
For example, Evans (2010) combined two filter FS methods with
classification methods in a machine-learning approach, and
obtained strong association results. To further improve the
accuracy of the selected SNPs, Batnyam et al. (2013) applied
four popular FS approaches (Robnik-Šikonja and Kononenko,
2003; Liang et al., 2008; Seo and Oh, 2012; Lee et al., 2013) to
select novel SNPs, which were then used to generate artificial
features by applying a feature fusion method. Finally, the
artificial features were classified by traditional classifiers. As an
alternative combinational algorithm, Anekboon et al. (2014)
proposed a correlation-based FS method as a filter to first
select a portion of the SNPs, followed by a wrapper phase to
sequentially feed each of these SNPs into k-nearest neighbor,
artificial neural network, and Ridge regression classifiers. Alzubi
et al. (2017) developed a hybrid FS method by combining
conditional mutual information maximization and support
vector machine-recursive feature elimination (SVM-RFE).
An et al. (2017) used a hierarchical feature and sample
selection framework to gradually select informative features
and discard ambiguous samples in multiple steps to improve
the classifier learning. Setiawan et al. (2018) firstly employed
random forest algorithm to reduce the search space, then selected
associated SNPs by sequential forward floating selection.
Tsamardinos et al. (2019) applied p-values of conditional
independence tests and meta-analysis techniques to select
features, and made use of parallel techonology to increase the
computing speed. Current methods based on FS have sufficient
ability for selecting a candidate feature set. Nevertheless, it is
important to use available biological information as prior
knowledge in biocomputing. Since FS methods can only reflect
Frontiers in Genetics | www.frontiersin.org 2322
the dataset itself, they are not suitable to screen features based on
prior biological knowledge.

Regression models with penalty can also be used for GWAS.
With this approach, the SNPs correspond to the independent
variables, and phenotypes are mapped to dependent variables in
the regression model. Since the number of SNPs typically far
exceeds the number of samples, it is necessary to regularize the
sparsity of coefficients in the regression model. As a
representative example, the well-established lasso method
proposed by Tibshirani (1996) can learn a sparse weight vector
by penalizing the weight vector with a 1-norm loss while
shrinking less important coefficients to zeros. Owing to this
property, lasso and its extensions have been widely applied in the
detection of genetic variants (Cao et al., 2014; Arbet et al., 2017;
Tamba et al., 2017; Cherlin et al., 2018; Wang et al., 2019). For
example, Cao et al. (2014) incorporated prior information in
lasso to further increase the selection accuracy. Arbet et al. (2017)
imposed a permutation method on lasso to improve the
performance of the algorithm. Tamba et al. (2017) first
reduced the number of SNPs to a moderate size, then used
expectation maximization Bayesian lasso to detect the
quantitative trait nucleotide (QTN). Cherlin et al. (2018) used
lasso to explore the association between phenotype and SNP data
and achieved good prediction. Wang et al. (2019) promoted a
precision lasso that utilized regularization governed by the
covariance and inverse covariance matrices of explanatory
variables to increase sparse variable selection. However, SNPs
(features) are generally found in groups, whereas lasso does not
encourage sparsity between groups. Yuan and Lin, (2006)
proposed the group lasso (GL) method, which sets a
regularization of the sum of the ℓ2 norm onto groups that
encourages only a few groups to be selected. The GL approach
has also been successfully applied in GWAS (Li et al., 2015; Lim
and Hastie, 2015; Gossmann et al., 2017; Du et al., 2018).
Gossmann et al. (2017) extended sorted L1 penalized
estimation (SLOPE) in the spirit of Group LASSO to handle
group structures between the predictor variables. Du et al. (2018)
proposed the SCCA with truncated L1 penalized and GL to
improve the performance and effectiveness of discovering SNPs
or QTs in imaging genetics. However, once a group is chosen, all
of its comprising features are also selected, which is not
compliant with the actual biological situation in which SNPs
are distributed sparsely across the genome in only a few groups.
Simon et al. (2013) developed sparse GL (SGL) that uses the ℓ2
penalty to select only a subset of the groups and the ℓ1 penalty to
select only a subset of the variables within the group. Indeed, SGL
has been widely applied in detecting genetic variants (Rao et al.,
2015; Li et al., 2017; Samal et al., 2017; Guo et al., 2019). Samal
et al. (2017) proposed a method based on SGL to identify
phenotype associated extreme currents decomposed from
metabolic networks data. Combined SGL with group-level
graph structure, which takes advantages of gene-level priors to
penalty the nucleotide-level sparsity to identify the risk SNPs.
Guo et al. (2019) proposed a method that combined SGL and
linear mixed model (LMM) for multivariate associations of
quantitative traits, and it obtained a good power. Despite this
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improvement, the limitation of this method is that SGL selects
sparse features within a group, but gives the same penalty for all
features within the group. Consequently, this approach can easily
result in swiping out low-frequency features that may play an
important role in influencing phenotypes. To overcome this
obstacle, it is important to assign different penalties to different
features. Ideally, candidate SNPs should have a smaller penalty
weight while others would have a larger penalty weight. In this
way, candidate SNPs will stand out among the data more readily.
To achieve this goal, we here propose a novel approach termed
weighted SGL (WSGL) by introducing biological prior
information for more accurate genetic variants detection.
Specifically, we compute the minimum allele frequency (MAF)
among a dataset of SNPs and use those values to reweight as the
ℓ1 penalty of each SNP site, which can increase the chance of
retaining low-frequency variants without loss of information. To
validate this approach, we compared the performance of our
model with simulation and real data against the three
mainstream models discussed above.
MATERIALS AND METHODS

Materials
Simulation Data
We used Arabidopsis thaliana data from Atwell et al. (2010),
downloaded from https://github.com/Gregor-Mendel-Institute/
atpolydb for the simulation. We used a quality control protocol
on the original data. The SNPs are eliminated by the standard
that Minor Allele Frequency (MAF) is < 0.01, the missing rate
is > 0.05, or the allele frequencies are not in Hardy-Weinberg (P
< 0.0001). After data preprocessing, we chose 200 genes on
chromosome 1 covering a total of 1,993 SNPs. Twenty of these
SNPs were chosen as the associated variants.

Real Data
The genotype information was the same as that obtained from
the simulation data. Ten phenotypes were selected among the
107 reported. First, from chromosome 1 to 5, we chose the first
1,000 genes, which were sorted according to sequence length,
including 49,962 SNPs. Second, we selected 19 genes containing
367 SNPs, which have been verified to be associated with
flowering time in Arabidopsis. Thus, a total of 50,329 SNPs
were analyzed in our experiments.

Statistical Model and Methods
We first give a problem statement, followed by a brief overview of
lasso and its extension for application in a genetic association
study. Finally, we describe our new WSGL method.

Let X = (x1, x2,…, xn)
T denote the n × p genotype matrix,

where n is the number of samples and p is the number of
genotypes. Let Y = (y1, y2,…, yn)

T represent the n × 1 phenotype
vector, containing the phenotype values of the n samples. We
then establish a linear model between X and y:

Y = Xb + ϵ (1)
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where b = (b 1, b 2,…, b n)
T is a p × 1 regression coefficients

vector, and ϵ ∼N(0, 1).

Lasso and Its Extension for Association Mapping
Tibshirani (1996) proposed the popular lasso estimator,

min
b

1
2
‖ y − Xb ‖22 +l ‖ b ‖1 (2)

whereb is the regression coefficients vector, and x, corresponding to
the nonzero estimated coefficients in b, represents the candidate
SNPs. ||b||1 is the ℓ1 penalty item. l is a regularization parameter,
and its size determines the sparsity.When l= 0, the lasso estimator
is equivalent to ordinary least-squares regression.

However, the lasso applies to the situation in which the
variables are independent of each other. For the situation in
which the variables can be divided into m groups, Yuan and Lin
(2006) proposed the GL estimator,

min
b

1
2
‖ y − om

l=1X
lð Þb lð Þ ‖22 +lom

l=1
ffiffiffiffi
pl

p
‖ b lð Þ ‖2 (3)

wherem is the group of variables, the first part is OLS, the second
part is the sum of the ℓ2 penalty of the coefficients of each group,
and l is the regularization parameter. If the size of the group is 1,
it will degenerate to the standard lasso.

The GL can generate a sparse in groups; however, the
variables in a group are not sparse. To solve this problem,
Simon et al. (2013) proposed the SGL,

min
b

1
2n

‖ y − om
l=1X

lð Þb lð Þ ‖22 + 1 − að Þlom
l=1

ffiffiffiffi
pl

p
‖ b lð Þ ‖2 +al ‖ b ‖1 (4)

where l still controls the overall penalty and a determines the
ratio between ℓ1 and ℓ2. When a = 1, it will be transformed into
lasso, whereas when a = 0, it will be GL. SGL can either select the
variables in a group-by-group manner, or screen the individual
variables in the remaining groups.

Our Method
With respect to the genetic association problem, the variables in
a group have different effects on the independent variable.
However, the SGL uses the same penalty coefficients for all
variables, regardless of the relative importance among SNPs in
the screened groups.

To tackle this problem, we introduce the prior informationw in
themodel to improve the statistical power, and propose theWSGL,

min
b

1
2n

‖ y − om
l=1X

lð Þb lð Þ ‖22 + 1 − að Þlom
l=1

ffiffiffiffi
pl

p
‖ b lð Þ ‖2 +al ‖wb ‖1 (5)

The objective function in (5) is clearly convex; therefore, the
optimal solution can be achieved by subgradient equations. Letb̂
be the optimal solution of WSGL. For group k = (1, 2,…, m), the
solution b̂ (k) satisfies

1
n
X kð ÞT y − om

l=1)X
lð Þb̂ lð Þ

� �

=
ffiffiffiffiffi
pk

p
1 − að Þlm kð Þ + alw kð Þn kð Þ (6)
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where µ(k) and v(k) are subgradients of ‖ b̂ (k) ‖2 and ‖ b̂ (k) ‖1,
respectively. According to Simon et al. (2013), m(k) = b̂ (k)= ‖ b̂ (k)

‖2 if b(k) ≠ 0; otherwise, || µ(k) ||2 ≤ 1. n(k)
j = sign(b̂j

(k)) when
b̂j

(k) ≠ 0; otherwise, ‖ n(k)
j ‖2 ≤ 0.

Following the analysis in Simon et al. (2013), the condition
for b̂ (k) = 0 is

‖ S X kð ÞTg −kð Þ=n,alw
kð Þ

� �
‖2 ≤

ffiffiffiffiffi
pk

p
1 − að Þl (7)

whereg(−k) = y −ol≠kX
lb̂ (l)is the partial residual of y, and S is

defined as (S(a, b))j = sign(aj)(jajj − bj)+.
If b̂ (k) ≠ 0, the subgradient condition for b (k)

i becomes

1
n
X kð ÞT
i y − om

l=1X
lð Þb̂ lð Þ

� �

=
ffiffiffiffiffi
pk

p
1 − að Þl

bbi kð Þ

‖ b̂ kð Þ ‖2
+ alw kð Þ

i n kð Þ
i (8)

This is satisfied for b̂ (k) = 0, if jX(k)T
i g(−k,i)j ≤ nalw , where

g(−k,i) = g(−k) −oj≠iX
(k)
j b̂ (k) is the partial residual of y.

When b (k)
i ≠ 0, we can get

b̂ kð Þ
i =

S X kð ÞT
i g −k,ið Þ=n,alw

� �
X kð ÞT
i X kð Þ

i =n + 1 − að Þl= ‖ b̂ kð Þ ‖2
(9)

For each locus, MAF indicates, to some degree, its rareness. The
MAF of low-frequency variants is usually small, so the associated
low-frequency variants are more susceptible to sparsity
regularization than other common variants. With normal sparse
group lasso, the pressure of being zeroed out on each locus within
the same group is equally high. In this case, those low-frequency
variants are more likely to be excluded during the process. So
selection of an appropriate weight can help to filter out more
accurate candidate low-frequency variants.

There are several approaches for deciding the weights. For
example, a small penalty can be assigned to the loci in known
susceptibility genes to ensure including them into the model.
Alternatively, the weights can be dependent on the MAF. For a
dataset including both low-frequency and common variants,
low-frequency markers are assigned smaller weights to
compensate for their low frequencies. Here, we assign each
locus a weight as follows: weight = 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAF(1 −MAF)

p
. Each

weight wi is calculated in advance, which contains genotypes
and biological explanations. The importance of the ith variable
can be adjusted by the weight wi. Thus, to choose a locus, we can
give it a relatively small penalty weight. Conversely, a larger
weight can be assigned to exclude a locus. If wi = 1, our model
will be transformed to the SGL. Moreover, it is important to
select an optimal regularization parameter l, as a larger l will
generate a sparser result. For the present model, we chose cross-
validation to select the optimal l.

A brief algorithmic description of our method is shown in
Algorithm 1. Let n represent the number of samples and p be the
number of genotypes. The time complexity of subgradient step in
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each iteration is O(np). In real data, p is usually supposed to be
large, resulting in comparatively high time complexity.
Therefore, in genome-wide association analysis, we suggest to
analyze chromosomes individually for huge genome.

Performance Measurements
For performance evaluation of the new model, we treat the loci
detection as a binary classification under class imbalance, in
which associated loci are assigned the label 1, and all others are
assigned the label 0. The testing frequency of each locus is then
regarded as the predicted probability for label 1. The receiver
operating characteristic (ROC) curve and the area under the
precision-recall curve (AUPR) are typically used for performance
assessments. The ROC curve is plotted based on the sensitivity
and specificity, whereas AUPR is generated based on the
precision and recall. In our problem, the number of variants is
significantly lower than the number of all loci, resulting in an
imbalanced dataset. In the ROC curve, the false positive rate
cannot descend greatly when the true negative is huge. However,
the AUPR is sensitive to false positive. Considering these factors,
we chose the AUPR as the performance metric for this purpose.
RESULTS AND DISCUSSION

Experiments on Simulation Data
For assessing the performance of WSGL in selecting candidate
SNPs associated with a trait of interest, its performance was
compared with lasso, GL, and SGL. Two parameters needed to be
controlled in this experiment: a, which is the proportion of ℓ1
and ℓ2 loss in SGL, and l, which is the coefficient of the entire
regularization term and influences the sparsity. We set a to 0.95.
Based on the results of cross-validation, l was set to 0.09.

Figure 1 shows the results of the four methods with the
simulation data, which clearly exhibits the superior performance
of WSGL. The AUPR of WSGL is 0.652, which outperformed
lasso by 23.6%, GL by 50.8%, and SGL by 24.4%. Lasso uses ℓ1 to
guarantee the sparsity of selected SNPs, but does not consider the
group information; therefore, the candidate SNPs may be
selected from all groups equally. Although GL imposes group
information on the model, it still lacks sparsity constraint within
the group, which does not correspond with the biological
assumption that only a small number of candidate SNPs are
contained in a small number of groups. SGL considers the
sparsity between and within groups, but can still easily exclude
ALGORITHM 1 | Parameter estimation for weighted sparse group lasso.

Input: Genotype X, phenotype y ratio a, regularization hyperparameter l

Output: Estimated b̂
1: calculate w = 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAF(1 −MAF)

p
;

2: while not converge do
3: for k from 1 to number_of_groups do
4: for i from 1 to length_of_groups (k) do

5: update b̂ (k)
i using equation (9);

6: return b̂ ;
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important SNPs with a lower MAF. By introducing biological
information to adjust the penalty of SNPs in the selected groups,
WGSL places less weight on the low-frequency variants and thus
increases their chance of being kept out. Despite its simplicity,
the simulation results demonstrated the effectiveness of this
approach for screening out important SNPs.

To further compare the performance of the four algorithms,
we computed their AUPR values by fixing a at 0.95 and varying
l from 0.01 to 0.1 by steps of 0.01. As shown in Figure 2, with
smaller l, the model shows lower sparsity. When l is 0.01 or
0.02, the model will include more SNPs, which may include more
non-candidate SNPs that would cause a high false positive rate.
Conversely, as l increases, the number of selected SNPs
decreases, which might result in the loss of some candidate
SNPs, leading to a low TP rate. However, WSGL will include
more candidate low-frequency loci by introducing prior
knowledge to adjust the weight. Accordingly, WSGL keeps the
highest position starting from l = 0.03. When l increases from
0.02 to 0.05, the AUPR of WSGL increases significantly from
58% to 64.5%, whereas the AUPR of lasso decreases from 59.2%
to 53.2%, and that of SGL decreases from 59.9% to 56.1%.
Surprisingly, the AUPR of GL decreases even more sharply
from 51.1% to 34.1%. When l reaches 0.05, the AUPR of
WSGL tends to be stable, and the peak of 65.2% occurs at l =
0.09. The AUPR of both lasso and SGL gradually decreases, and
finally drops to around 40%. When l is 0.1, the AUPR of GL
Frontiers in Genetics | www.frontiersin.org 5325
drops to 13.3%. These results were consistent with our
expectation that the performance of WSGL would be the best,
SGL would perform better than lasso, and GL would show the
worst performance overall.

Experiments on Real Data
To verify the ability of WSGL to detect candidate SNPs, we
compared the performance of the four models using Arabidopsis
flowering time data with known genetic associations. The dataset
included 10 different phenotypes, FT10, FT16, FT22, LD, LDV,
SD, SDV, LN10, LN16, and LN22, and the descriptions of the 10
phenotypes are shown in Table 1. We analyzed the associated
number of genes covered by 100 SNPs with top probabilities of
being target loci.

As shown in Table 2, WSGL could link more candidate genes
with phenotypes FT10, FT16, FT22, LD, SD, and SDV. In
particular, WSGL demonstrated excellent performance for
FT10, not only by selecting less groups but also by including
less SNPs within each group, and the ratio of candidate genes was
23.08%. By contrast, the ratios of candidate genes were 4.65%,
9.09%, and 5.13% for lasso, GL, and SGL, respectively. For
phenotypes FT16, FT22, LD, SD, and SDV, WSGL still
achieved the best detection performance. However,
unexpectedly, the GL model obtained better results for the first
four phenotypes. We consider that this may be due to the specific
distribution of loci in the dataset. In cases for which most or all of
FIGURE 1 | Precision-recall (PR) curves of WSGL and the other methods.
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FIGURE 2 | Precision-recall (PR) curves of WSGL and the other methods for varying l.
TABLE 1 | Description of the 10 flowering related phenotypes in A.thaliana in real data application.

Phenotype Accessions Phenotype description Growths
conditions

Phenotype scoring

LD 167 Days to flowering time (FT) under
Long Day (LD) and Short Days (SD)
+/− vernalization

18°C 16-h
daylight

Number of days following stratification to opening of the first flower. The
experiment was stopped at 200d, and accessions that had not flowered at the
point were assigned a value of 200.

LDV 168 18°C 16-h
daylight,

vernalized (5wks
4)

SD 162 18°C 16-h
daylight

SDV 159 18°C 16-h
daylight,

vernalized (5wks
4)

FT10 194 10°C 16-h
daylight

FT16 193 16°C 17-h
daylight

Plants were checked bi-weekly for presence of first buds, and the average
flowering time and average leaf number of four plants of the same accession at
each temperature were collected.

FT22 193 Flowering time (FT) and leaf number
at flowering time (LN)

22 °C 18-h
daylight

LN10 177 10 °C 19-h
daylight

LN16 176 16°C 20-h
daylight

LN22 176 22°C 21-h
daylight
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the candidate objects are located in only one group, GL will
apparently show a good result. By contrast, all four methods
could link all six genes with LDV, LN10, LN16, and LN22. This
surprising result may reflect the strong association between the
selected SNPs and these phenotypes, which is highly
discriminable. Nevertheless, this assessment demonstrated that
our new weighted method achieves the best performance overall,
highlighting the importance of considering prior biological
information for selection of candidate SNPs.
CONCLUSION

We proposed a method named weighted sparse group lasso
(WSGL) to improve the detection of genetic variants. WSGL
incorporates the ℓ1 penalty, ℓ2 penalty, and prior biological
knowledge into a single linear regression model, and then uses
Frontiers in Genetics | www.frontiersin.org 7327
SGL to either select or clear out all SNPs in a group potentially
associated with a phenotype of interest. To screen candidate low-
frequency variants, we introduced the MAF as the weight to re-
scale each element for calculating ℓ1 loss. In addition, WSGL can
detect meaningful associations with more accuracy compared to
available methods, which conforms with the general assumption
that complex traits are affected by a few SNPs in a few genes.
Experiments with both simulation and real data of SNPs related
to the flowering time of A. thaliana demonstrated the
effectiveness of our approach.
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TABLE 2 | Summary of four methods associations found in real data.

Phenotype Method Number of genes covered by top 100 SNPs Number of genes in the 19 genes Ratio of candidate genes

FT10 Lasso 86 4 4.65%
GL 66 6 9.09%
SGL 78 4 5.13%
WSGL 26 6 23.08%

FT16 Lasso 76 8 10.53%
GL 62 8 12.9%
SGL 64 7 10.94%
WSGL 67 10 14.93%

FT22 Lasso 78 7 8.79%
GL 72 7 9.72%
SGL 77 6 7.79%
WSGL 71 9 12.68%

LD Lasso 81 9 11.11%
GL 67 9 13.43%
SGL 73 11 15.07%
WSGL 74 12 16.22%

LDV Lasso 6 6 –

GL 6 6 –

SGL 6 6 –

WSGL 6 6 –

SD Lasso 78 5 6.41%
GL 70 5 7.14%
SGL 79 6 7.59%
WSGL 77 6 7.79%

SDV Lasso 84 1 1.19%
GL 66 1 1.52%
SGL 78 2 2.56%
WSGL 72 2 2.78%

LN10 Lasso 6 6 –

GL 6 6 –

SGL 6 6 –

WSGL 6 6 –

LN16 Lasso 6 6 –

GL 6 6 –

SGL 6 6 –

WSGL 6 6 –

LN22 Lasso 6 6 –

GL 6 6 –

SGL 6 6 –

WSGL 6 6 –
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Aging was a biological process under regulations from both inherited genetic factors

and various molecular modifications within cells during the lifespan. Multiple studies

demonstrated that the chronological age may be accurately predicted using the

methylomic data. This study proposed a three-step feature selection algorithm AgeGuess

for the age regression problem. AgeGuess selected 107 methylomic features as the

gender-independent age biomarkers and the Support Vector Regressor (SVR) model

using these biomarkers achieved 2.0267 in themean absolute deviation (MAD) compared

with the real chronological ages. Another regression algorithm Ridge achieved a slightly

better MAD 1.9859 using the same biomarkers. The gender-independent age prediction

models may be further improved by establishing two gender-specific models. And it’s

interesting to observe that there were only two methylation biomarkers shared by the

two gender-specific biomarker sets and these two biomarkers were within the two known

age-associated biomarker genes CALB1 and KLF14.

Keywords: age prediction, methylomic biomarker, regression, support vector regressor, ridge

INTRODUCTION

Aging is a ubiquitous phenomenon in almost all the multi-cellular organisms (Horn and Schweppe,
2015). It is also a challenging issue concerned by citizens in many countries (Baltes and Smith,
2003; Banister et al., 2012). Evidences were accumulating about that aging is a biological process
strictly regulated by epigenetic modifications rather than random events (Fraga and Esteller, 2007;
Martino et al., 2011; Schellenberg et al., 2011; Pal and Tyler, 2016). So it’s technically reasonable
to estimate an individual’s biological age through the biomarkers like telomere length (Saeed et al.,
2012; Barrett et al., 2013), age-dependent changes in T cell DNA (Zubakov et al., 2010; Ou et al.,
2012), and RNA biomarkers (Alvarez and Ballantyne, 2006), etc. Recent studies also demonstrated
that DNA methylation levels at certain CpG residues were linearly associated with the biological
ages, and may serve well as age biomarkers (Zubakov et al., 2016).

DNA methylation has been implicated to be involved in various aging-associated biological
processes (Jones et al., 2015; Field et al., 2018). DNAmethylation is a biological process of selectively
adding a methyl group to a cytosine to form 5-cytosine facilitated by a DNA methyltransferase
(Moore et al., 2013). This epigenetic modification plays an essential role in transcriptional
regulation and other biological processes (Vaillancourt et al., 2017; Suzuki et al., 2019). Quite a
few age prediction models were proposed based on the methylation biomarkers. Besides clinical
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application, these models can also be used in forensic
investigation (Vidaki and Kayser, 2018; Alsaleh and Haddrill,
2019). Blood and other liquids are one of the most important
biological evidences found in the crime scene, so it’s necessary to
use the whole blood to establish an accurate age predictionmodel.

Themajor challenge is finding a subset of methylation features
with a good age prediction performance using the methylomic
datasets. About half a million methylation features may be
generated for one sample by the popular array-based methylome
profiling technologies like Illumina HumanMethylation450
BeadChip (450K) (Fernandez-Jimenez et al., 2019). The feature
number is much larger than the sample number, and a step
of feature selection has to be conducted to avoid the model
over-fitting (Feng et al., 2018).

The existingmethylome-based age prediction studies explored
different feature selection algorithms to find the best age-
associated biomarkers. Horvath used the elastic net algorithm
to select 353 methylomic features to predict the human ages
and the mean absolute error of the predicted age was about 3.6
years (Horvath, 2013). Yi et al. detected three age-related gene
fragments from the blood samples of 40 volunteers and used the
CpG locus of these fragments to train the age-regression model
with a prediction difference of 4 years compared with the real
ages (Yi et al., 2015). Hong et al. proposed a linear regression-
based age prediction model, which achieved 94.5% in correlation
and 3.13 years in the mean absolute deviation (Small et al., 2011)
from the chronological ages (Hong et al., 2017). Another study
investigated this forensic problem by selecting 23 methylomic
features and established a multi-variate regression model with an
age prediction deviation of about 4.6 years (Vidaki et al., 2017).

Feature selection algorithm has been utilized in many
biomedical research areas. Various biomedical high-throughput
data producing technologies were rapidly invented and
developed and may produce as many as millions of features per
sample (Diao and Vidyashankar, 2013; Ye et al., 2017; Ceglia
et al., 2018). But the number of samples collected in a study
was usually limited by the difficulty of patient recruitment and
the cost of generating the data. So a biomedical big data project
usually had a much larger number of features than the number of
samples. A feature selection algorithm may significantly reduce
the model complexity and the possibility of over-fitting (Le
et al., 2017; Ma and Fan, 2017). Feature selection was not only
widely used in the bioinformatics problems of genes (Tian et al.,
2019), proteins (Liu et al., 2019), and metabolism system (Grissa
et al., 2016), but also played an important role in the analysis
of biomedical images (Pan et al., 2019) and time series data (Li
et al., 2017).

This study proposed a three-step feature selection algorithm,
AgeGuess, to find the best age prediction biomarkers using
the methylomic profiles. The metrics Maximal Information
Coefficient (MIC) was a sensitive correlation measurement
(Reshef et al., 2011) and was utilized to remove those methylomic
features with small MIC association with ages. The remaining
features were recursively eliminated based on the evaluation of
a support vector regressor. The last step removed the features
iteratively based on an exhaustive screening. Our experimental
data demonstrated an improved prediction performance of

chronological ages. Gender information was also evaluated in
further optimizing the age prediction models.

MATERIALS AND METHODS

Dataset Summary
This study used the methylomic dataset GSE40279, which
was publicly available from the database Gene Expression
Omnibus (GEO) (Clough and Barrett, 2016). The dataset
GSE40279 was profiled using the methylomic platform Illumina
HumanMethylation450 BeadChip (accession GPL13534)
(Alsaleh and Haddrill, 2019). There were 656 samples with
chronological ages in this dataset, and each sample was profiled
for 485,577 methylomic resides (Alsaleh and Haddrill, 2019).
The methylome was generated using the human whole blood
samples, obtained from 426 Caucasians and 230 Hispanics
individuals with chronological ages 19–101. As similar to the
existing study (Hannum et al., 2013), sex chromosomes were
excluded from analysis in this study. So there were 473,034 CpG
features left for further analysis.

Feature Selection Algorithm AgeGuess
Not all of these half-million methylomic features were associated
with the aging process and all the existing studies selected a subset
of features for building their age prediction models (Horvath,
2013; Yi et al., 2015; Hong et al., 2017; Vidaki et al., 2017). So this
study proposed a feature selection algorithm AgeGuess to find a
feature subset with the best age prediction performance.

Single-step feature selection algorithm may be roughly
grouped as two major types, i.e., filters and wrappers (Suto
et al., 2016). A filter evaluated each feature’s association with the
class labels with the assumption of inter-feature independence
and can be easily scaled to a large number of features (Guyon
and Elisseeff, 2003; Solorio-Fernández et al., 2016). A wrapper
screened a feature subset by a heuristic rule for its classification
performance of a user-defined classifier. A wrapper usually
outperforms a filter in accuracy with the cost of a high
computational complexity (Guyon and Elisseeff, 2003; Solorio-
Fernández et al., 2016). In order to fully utilize the advantages of
both filters and wrappers, a multi-step feature selection algorithm
may significantly reduce the number of features in the first step.
Then more sophisticated and slow algorithms may be utilized.
The following algorithm AgeGuess was designed based on this
rule for the chronological ages.

Firstly, AgeGuess selected 10,000 methylomic features that
were highly correlated with the sample label, i.e., chronological
age. There were 473,034 methylomic features for each sample
in this dataset, and not all these features contributed to the
age prediction. The metrics Maximum Information Coefficient
(MIC) demonstrated a very sensitive power in detecting linear
and non-linear correlations between two variables (Reshef et al.,
2011). This study calculated the MIC correlation of each
methylated features with the chronological ages, and kept the
10,000 features with the largest MIC values for further analysis.

Then the Recursive Feature Elimination (RFE) strategy was
utilized to remove un-related features. The RFE strategy relied
on the feature ranking and iteratively removed the k least-ranked

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 March 2020 | Volume 8 | Article 80330

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Gao et al. AgeGuess to Detect Methylomic Age Biomarkers

FIGURE 1 | The line plot of the regression metrics MAD of AgeGuess. (A) RFE strategy to removed 50 features in each iteration on [10000, 50] and (B) The scale was

zoomed to [2000, 50]. The horizontal axis was the number of features remained for building the classification model.

features. The investigated problem in this study was a regression
model, and the Support Vector Regressor (SVR) was used to
calculate the metrics to rank the features. The trained SVR
model produced a weight vector Feature Importance, and the
features were sorted by the descendent order of the weights.
This procedure was conducted iteratively until all the features
were removed. The feature subset with the best regression
performance was returned.

One more redundancy-removal step was conducted to further
refine the feature subset obtained in the above step. The
iterative exclusion of the feature with the least performance
decrease was carried out, which was the same as the backFS
strategy in the other studies (Feng et al., 2019; Zhang et al.,
2019). The performance was calculated by the 10-fold cross
validation strategy.

A good feature selection algorithm tended to select fewer
features and to achieve a higher prediction performance.
But these two performance metrics usually cannot achieved
simultaneously. So this study defined the integrated evaluation
index (EI) as the optimization goal. EI was defined as
(MAD+FNum/100), where MAD was the mean absolute
deviation and FNum was the number of features selected by
the feature selection algorithm. This regression performance
metrics suggested one more selected feature increased the overall
performance by 0.01. And the metrics EI was used to optimize
the above-mentioned backFS strategy.

Performance Evaluation Metrics
This study investigated the age prediction problem using the
656 samples from the platform GEO. Multiple regression
performance metrics were used to evaluate how the generated
regression model performed. The metrics Mean Absolute
Deviation (Small et al., 2011) was the averaged absolute error
value between the predicted age and the chronological age (Pan
et al., 2019). The Mean Squared Error (MSE) and the squared
root version of MSE (RMSE) were another two widely used
regression performancemetrics (Liu et al., 2019; Thompson et al.,
2019). The metrics Goodness of Fit (R2) quantitatively evaluated
how well the regression model fitted the data (Chong et al.,
2017). These regressionmetrics were implemented in the package
scikit-learn version 0.19.1 of Python version 3.6.4.

RESULTS

Optimizing the Proposed Algorithm

AgeGuess
The proposed feature selection algorithm AgeGuess selected
10,000 out of the 473,034 methylomic features with the largest
MIC coefficients (Reshef et al., 2011) with the chronological ages.
AgeGuess hypothesized that the contributions of the excluded
features may be neglected since their MIC coefficients with the
chronological ages were small.

The second step of AgeGuess utilized the RFE framework to
iteratively remove the features, as shown in Figure 1. Due to the
number of remaining features was still very large, this study set k
= 50, i.e., 50 features with the least Feature Importance weights
calculated by the trained SVR model were removed in each
iteration. Figure 1A illustrated that the majority of the 10,000
methylation features didn’t contribute to the age prediction
performance. And there was a “valley” smaller than 1,500 features
in the line plot in Figure 1A. So Figure 1B zoomed in the line plot
within the range [2000, 50]. The data showed that the small MAD
value was achieved between 900 and 500. And the minimum
value MAD= 0.5809 was achieved with 750 features.

The proposed algorithm AgeGuess further removed the
redundancies in the methylated features by the function backFS
(Feng et al., 2019; Zhang et al., 2019). The 750 methylation
features chosen in the above step was iteratively evaluated and
one feature was removed per iteration if its removal generated
the least contribution to the age prediction performance metrics
EI. Figure 2A illustrated that the valley was around 100 features
in the horizontal axis. The plot was further zoomed-in for the
number of features between 50 and 150, as shown in Figure 2B.
The age regressionmetrics EI reached the minimum 3.0316 when
107 features were selected.

The SVR regression model was trained using the 107
methylation features, and was evaluated by the following
regression performance metrics. Figure 3 illustrated that the
RealAge and the PredAge were very close to each other. The
prediction performance was averaged over the 10-fold cross
validations, and 10 random rusns were averaged to generate
the final results. The Mean Absolute Deviation (Small et al.,
2011) was 2.0267 years. AgeGuess’s model achieved the other two
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FIGURE 2 | Iterative elimination of redundant features by backFS. (A) The line plot for the numbers of features no more than 750 features. (B) The zoomed-in plot for

the numbers of features between [50, 150]. The horizontal axis was the number of features. And the vertical axis was the regression performance metrics EI.

FIGURE 3 | Dot plot between the real chronological age and the predicted

age of these samples. The horizontal axis was the chronological age of a

sample (RealAge) and the vertical axis was this sample’s age averaged over

the 10-fold cross validation (PredAge). The regressor was SVR. The perfect

prediction of age was represented by the gapped line y=x.

metrics RMSE and R2 were 1.6149 and 0.9672, respectively. The
regression coefficients of the methylomic features were given in
Supplementary Table 1.

Comparison With Other Commonly Used

Feature Selection Algorithms
This study compared the proposed AgeGuess with the existing
feature selection algorithms. Three filter algorithms were
evaluated, i.e., the uni-variate F-Regression (FR), Mutual
Information (MI), and Pearson Correlation Coefficient (PCC).
Filter algorithms returned an ordered list of all the features
and the same number of features as AgeGuess was used for

a fair comparison. Three recursive feature elimination (RFE)
algorithms were also compared with AgeGuess, i.e., L1-RFE,
L2-RFE, and SVR-RFE. An RFE algorithm eliminated a feature
if its removal induced the least regression performance loss.
And the regression performances of the above three RFE
algorithms were calculated by the L1-regularized, L2-regularized
and Support-Vector-based regressors, respectively. The number
of selected features was an importance factor of a feature selection
algorithm. So we also set the number of features selected by these
RFE algorithms to the same as AgeGuess.

Figure 4 demonstrated that AgeGuess outperformed the
existing feature selection algorithms in all the three regression
performance metrics. AgeGuess achieved 2.0267 in MAD, which
was 2.1142 smaller than that of FR and 2.1603 smaller than that
of MI. A larger R2 value suggested that a regressor performed
better. AgeGuess achieved the best R2 and outperformed the next
best algorithm L2-RFE by 0.0040 in R2. The smaller RMSE was
the better. And AgeGuess outperformed the next best algorithm
SVR-RFE by 0.0262 in RMSE.

We also compared our best model with the existing age
prediction models and AgeGuess performed the best on
estimating the chronological ages. Weidner et al. used 102
methylation features from the same dataset as this study to
establish their age predictor, which achieved 4.12 inMAD, 5.34 in
RMSE and 0.87 in R2 (Weidner et al., 2014). Another study also
used the same dataset as this study and detected 41 methylomic
features as the age biomarkers. They built the age predictor
achieving 10.69 in MAD (Sarac et al., 2017). The same features
from the study (Shadrina et al., 2018) were used to train the
regressor as in this study and the age predictor only achieved
9.9017 in MAD, 12.1120 in RMSE and 0.0521 in R2, respectively.

Gender Specificity of Age Prediction
The literature provided different ideas on the correlations
between aging and gender variations. Hannum et al. proposed
that aging was impacted by various factors and utilized the
information of gender and body mass index (BMI) together with
the methylomic features in building an age predictor (Hannum
et al., 2013). Their model achieved 3.9 years in the age prediction
errors and 96% in the correlations of the predicted ages with
the chronological ages. Their data suggested that gender was a
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FIGURE 4 | Performance comparison of AgeGuess with six existing feature selection algorithms. The regression performance metrics MAD, RMSE, and R2 were

Mean Absolute Error, squared root of mean squared error, and the Goodness of Fit (R2), respectively.

FIGURE 5 | Line plots of AgeGuess’s steps 2 and 3. (A) The second step of AgeGuess screened features using SVR-RFE. (B) The third step of AgeGuess further

eliminated redundant features by backFS.

significant factor to the aging rate. But professor Steve Horvath
hypothesized that an age-dependent CpG signatures may be
defined independent of genders and his group built a gender-
independent age predictor achieving 3.6 years in the metrics
median error.

We evaluated this hypothesis with the gender-specific models
using the same feature selection algorithm on the same dataset, as
shown in Figure 5. The original dataset was split into the dsMale
and dsFemale datasets, and the same feature selection procedure
AgeGuess was carried out on these two datasets. Figure 5A
suggested that AgeGuess achieved 0.5783 and 0.6287 in MAD
for the datasets dsMale and dsFemale, respectively. Figure 5B
demonstrated that the last step of AgeGuess further refined
the gender-specific models to achieve 2.2954 and 2.2148 in EI,
respectively. So the Male and Female models outperformed the
model using the dataset dsMale∪dsFemale by at least 0.6605 in
MAD. And the gender-specific models used the similar numbers
of features compared with the original model using the dataset
combined from both dsMale and dsFemale.

The SVR regression model trained on the dataset dsMale
achieved 1.5072 in MAD, 1.3804 in RMSE and 0.9832 in

R2. The three performance metrics of the model trained on
dsFemale were 1.1669, 1.2112, and 0.9881, respectively. So both
gender-specificmodels outperformed the best model trained over
dsFemale∪dsMale, which achieved 2.0267 in MAD, 1.6149 in
RMSE and 0.9672 in R2. The dot plots in Figure 6 illustrated
how well gender-specific age prediction models achieved on
estimating the chronological ages. The regression coefficients of
the methylomic features for the two gender-specific models were
given in Supplementary Tables 2, 3.

Evaluating AgeGuess on Another

Methylomic Dataset on the EPIC BeadChip
Anewmethylation probing array, the InfiniumMethylationEPIC
(EPIC array), was recently launched and provided 868564
methylomic features, which was almost two times as that of the
Illumina 450 k array. The EPIC array shared about 94% of the
probes in the 450 k array (McEwen et al., 2018; Alsaleh and
Haddrill, 2019).

AgeGuess was applied to an independent dataset GSE116339
generated on the EPIC arrays (Curtis et al., 2019). This dataset
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FIGURE 6 | Gender-specific age prediction performances. (A) Dot plot for male samples. (B) Dot plot for female samples. (C) Dot plot for the dataset combined both

male and female samples. The perfect prediction of age was represented by the gapped line y=x.

FIGURE 7 | The training dataset size was important for the age prediction performance. (A) The regression model was trained using the regressor SVR. (B) The

regression model was trained using the regressor Ridge. (C) The performance metrics of SVR minus those of Ridge. The horizontal axis was the percentage of the

training dataset used for training the model. The three regression performance metrics MAD, RMSE and R2 were calculated.

was publicly available from the database Gene Expression
Omnibus (Clough and Barrett, 2016) and provided the
methylomes of 679 whole blood samples with the chronological
ages (Curtis et al., 2019). AgeGuess finally selected 388 CpG
features to establish the age prediction model. Two hundred
fourteen of these 388 features were shared with the 450 k
array and the other 174 features were EPIC-specific. The Mean
Absolute Deviation (MAD) of this model was 2.4780, while
the other two metrics RMSE and R2 were 1.8101 and 0.9319,
respectively. So the EPIC array-based model performed slightly
worse in the metrics MAD than the model based on the 450 k
array. And it also used more than three times of features than
the 450 k array-based model. The experimental data suggested
that the EPIC array may need the 6% of the 450 k array-specific
methylomic features to precisely describe the aging process.

Impact of Training Dataset Sizes on Age

Prediction Performances
An experiment series was carried out to evaluate how different
numbers of training samples may impact the age prediction

performances, as shown in Figure 7. Firstly, 30% of the whole
dataset was randomly selected as the test dataset. Then we
randomly selected 20, 40, 60, 80, and 100% of the remaining
samples to train the regression models, and tested the model
prediction performances on the test dataset. Figure 7A suggested
that more training samples did improve the regression model’s
performances. The 40% model improved the 20% model by
33.94% in MAD, but the 60% model only achieved a 14.94%
improvement in MAD compared with the 40% model. And
even smaller improvements were achieved when more training
samples were added. Similar patterns were observed for the other
two regression performance metrics RMSE and R2.

Another regression algorithm Ridge was evaluated for its
age prediction performances using the same features, as shown
in Figures 7B,C. The Ridge-based age prediction models also
demonstrated a similar pattern on different numbers of training
samples, as shown in Figure 7B. After 60% of samples in the
training dataset was used to train the model, more training
samples didn’t facilitate a major model improvement. We
calculated the metrics differences between SVR and Ridge, as
shown in Figure 7C. A small value of MAD or RMSE suggested
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FIGURE 8 | Gender-specific methylomic biomarkers for age prediction. (A) Venn plot of the three sets of methylomic biomarkers. The dataset “Both” included both

male and female samples. The two datasets “Male” and “Female” consisted of male and female samples, respectively. (B) Each column gave the metrics MAD values

of the age regression SVR model trained by the biomarker set denoted on the first row. BothModel, MaleModel and FemaleModel denoted the sets of biomarkers

detected using the datasets Both, Male, and Female.

a good age prediction model, and Figure 7C illustrated that
the MAD or RMSE values of Ridge were always smaller than
those of SVR. And a large R2 value suggested a good regression
model. Figure 7C illustrated that Ridge was always larger than
SVR in the performance metrics R2. So the regression algorithm
Ridge outperformed SVR in all the three regression performance
metrics MAD, RMSE, and R2.

The Biological Relevance of Age

Biomarkers to the Aging Process
Figure 8 illustrated that there were little overlaps between
the gender-specific methylomic biomarkers, and there were
no methylomic biomarkers shared among the three sets
of biomarkers BothModel/MaleModel/FemaleModel. The data
suggested that there existed differences in aging biomarkers
between males and females. Even the aging biomarkers of
the BothModel performed worse on the individual genders
(datasets dsMale and dsFemale). And the cross-gender validation
demonstrated much worse age regression performances, as
shown in Figure 8B.

Some of the gender-specific age methylomic biomarkers were
known to have gender-biased expression patterns (Gershoni
and Pietrokovski, 2017). There were two female-biased age
methylomic biomarkers were cg06419846 (gene CD248) and
cg25371036 (gene AMOTL1), which were from the chromosome
11 (Gershoni and Pietrokovski, 2017). CD248 was observed to
be hypermethylated during aging and suggested the impaired T
cell functionality in the aged adults (Tserel et al., 2015). AMOTL1
(Angiomotin Like 1) was also differentially expressed in different
age groups of females, which was verified by the quantitative
real-time PCR (qRT-PCR) (Pelissier et al., 2014).

Some of the male-specific age methylomic biomarkers in
this study were also supported by the literature. Both of the
two biomarkers cg25478614 (gene SST) and cg04084157 (gene
VGF) were observed to exhibit male-biased expression patterns

(Gershoni and Pietrokovski, 2017). The gene SST received
hypermethylation to decline its expressions gradually with age
(McKinney et al., 2015). The SST+ neuronsmay also be impacted
with chronic exposures to different photoperiods and resulted
in behavioral alternations (Pritchard et al., 2019). The gene
VGF encoded the Nerve Growth Factor Inducible protein and
gradually increased its expressions in the T lymphocytes when
the host age increases (Busse et al., 2014).

These gender-specific biomarker genes were screened by the
online GO (Gene Ontology) analysis system DAVID version
6.8 (Huang da et al., 2009a,b). The biomarker genes were
input as the foreground and the species Homo sapiens was

chosen as the background. The enriched terms with P ≤
0.05 in the functional annotation chart were collected for
further analysis, as shown in Supplementary Table 4. Figure 8A
suggested that the three datasets dsBoth, dsFemale and dsMale

shared very few biomarkers. Supplementary Table 4 further
supported the observation with that only oneGO term (biological
process “regulation of catalytic activity”) was shared by two
datasets dsBoth and dsMale. The top two ranked terms in the
female biomarkers were two molecular function terms “RNA

polymerase II transcription factor activity, ligand-activated
sequence-specific DNA binding” and “RNA polymerase II core
promoter proximal region sequence-specific DNA binding.” The
female-specific aging associated RNA polymerase II activities
were supported by the experimental evidences observed from
the female rat brain (Shults et al., 2015) and the female
rat liver (Spindler et al., 1991). While we focused on the
aging biomarkers from the dataset dsBoth, the top-ranked
enriched GO term was the biological process “homophilic cell
adhesion via plasma membrane adhesion molecules,” as shown
in Supplementary Table 4. It is well-known that the growth
hormone was actively involved in the aging process and some
of the state-of-the-art results were reviewed in Allshouse et al.
(2018) and Bartke (2019).
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DISCUSSION

The aging process was impacted by both inherited genetic and
environmental factors. Multiple studies demonstrated that the
methylomic biomarkers served as a rich information source for
predicting the chronological ages (Hong et al., 2017; Shadrina
et al., 2018). Most of the existing studies selected their age
biomarkers based on these biomarkers’ biological relevance to the
aging process (Zubakov et al., 2016) or statistically correlations
with the chronological ages (Shadrina et al., 2018).

This study hypothesized that the chronological age may be
more accurately predicted using delicately chosen methylomic
biomarkers. A three-step feature selection algorithm AgeGuess
was proposed and evaluated for the age regression problem
based on the methylomic features. The SVR model using the
AgeGuess-selected methylomic biomarkers outperformed the
existing age prediction models. Our experimental data suggested
that another regression algorithm Ridge achieved a slightly better
age regression performance compared with the SVR model.
So the AgeGuess-selected features represented important age
biomarkers independent of regression algorithms.

This study further investigated whether the age process
was gender-specific. The proposed algorithm AgeGuess selected
97 methylomic biomarkers for the male samples, and 110
biomarkers for the females. But there were only two methylomic
biomarkers cg26290632 (gene CALB1) and cg07955995 (gene
KLF14) selected by AgeGuess in both the male and females
samples. Both CALB1 (Loerch et al., 2008) and KLF14 (Small
et al., 2011) were known age-related biomarkers. CALB1
demonstrated robustly down-regulated expression across rhesus
monkeys and humans (Loerch et al., 2008; Pabba et al., 2017).
While KLF14 served as a master regulator of many genes and
its altered methylation patterns were associated with the aging
process (Spolnicka et al., 2018). But both of these two genes
didn’t demonstrate gender-specific patterns. So these two genes
may be robust age biomarkers without gender-bias. Some of the
gender-specific age methylomic biomarkers were also supported
by the literature.

The age prediction models proposed in this study may need
further validated by various tissue samples. Gene expression
patterns differred across tissues, so did patterns of DNA
methylation (Decato et al., 2017; Zhou et al., 2017; Slieker et al.,
2018). Only whole blood methylation samples were used in
this study. Considering the influence factors such as tissues and

environments, the age prediction models in this study may have
reduced prediction capabilities for forensic samples other than
whole blood. In addition, Hannum et al., demonstrated that some
electronic health record (EHR) data like BMI may be integrated
with the methylomic data to achieve a better age prediction
(Hannum et al., 2013). So more types of biomedical data of the
participants may further improve the proposed models.
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Subarachnoid hemorrhage (SAH) is devastating disease with high mortality, high disability

rate, and poor clinical prognosis. It has drawn great attentions in both basic and clinical

medicine. Therefore, it is necessary to explore the therapeutic drugs and effective targets

for early prediction of SAH. Firstly, we demonstrate that LCN2 can effectively intervene or

treat SAH from the perspective of cell signaling pathway. Next, three potential genes that

we explored have been validated by manually reviewed experimental evidences. Finally,

we turn out that the SAH early ensemble learning predictive model performs better than

the classical LR, SVM, and Naïve-Bayes models.

Keywords: bioinformatics, genomics, big data, artificial intelligence, genetics

INTRODUCTION

Subarachnoid hemorrhage (SAH) is the fastest developing and most critical hemorrhagic
cerebrovascular disease, accounting for 5% of cerebrovascular diseases (Macdonald, 2014), and
is associated with high rates of mortality and disability and poor clinical prognosis (Suarez
et al., 2006). Although there have been significant advances in diagnostic methods, surgery, and
endovascular techniques in recent years, the mortality rate of SAH remains as high as 15%
(Macdonald et al., 2008).

Recent research has shown that early brain injury (EBI) may be themain cause of poor prognosis
in SAH patients. Therefore, current SAH studies focus on exploring therapeutic drugs and targets
for reduction of EBI after SAH and the early prediction of SAH (Sozen et al., 2011).

Lipocalin 2 (LCN2) is an acute secretory protein that regulates the pathophysiological processes
of various organ systems in mammals and participates in the intrinsic immune protection of the
central nervous system (CNS) (Flo et al., 2004; Ferreira et al., 2015). Studies of acute white matter
injury in a mouse SAH model and the role of LCN2 in injury (Egashira et al., 2014) indicate that
LCN2 plays an important part in SAH-induced white matter injury. Since above evidences suggest
that LCN2 is closely related to SAH, we propose our first research question: is specific intervention
for LCN2 (Warszawska et al., 2013) a promising SAH treatment strategy?

On the other hand, most previous studies (Chu et al., 2011; Ni et al., 2011; Zhang et al., 2017a)
have only explored biomarkers for SAH prediction and treatment in a narrow molecular range,
rather than taking a genome-wide approach. We propose our second research question: could
we use a genome-wide approach to find potential biomarkers for SAH based on the effects of
LCN2 treatment?
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Previous studies have usually predicted SAH based on
diagnostic imaging (Frontera et al., 2006; Ramos et al., 2019)
and clinical automation data (Roederer et al., 2014), which may
not provide enough predictive power. Thus, we propose our
third research question: could we use key genes to build a more
powerful early prediction model for SAH?

In this paper, we propose a new research plan to answer the
above three research questions. First, we use SAH intervention
experiments to screen out candidate genes that are susceptible
to LCN2, then employ Fisher’s exact test (Xie et al., 2011; Li
et al., 2017; Xia et al., 2017; Zhang et al., 2019b) to choose
signaling pathways from among the candidates under different
experimental conditions. Second, we use E-Bayes (Carlin and
Louis, 2010), SVM-RFE (Duan et al., 2005), SPCA (Zou et al.,
2006), and statistical tests (Zhang et al., 2016, 2018, 2019b,d,
2020; Xiao et al., 2019) to investigate key genes from experimental
data by considering both SAH and LCN2 as factors. Third, we
integrate the logistic regression (LR), support vector machine
(SVM), and Naive-Bayes algorithms (Xia et al., 2017; Zhang et al.,
2017a, 2019a) into an ensemble learning model (Gao et al., 2017;
Zhang et al., 2019b) to build a model for early SAH prediction.

First, manual review of the experimental evidence (Osuka
et al., 2006; Majdalawieh et al., 2007; Hanafy et al., 2010; Hao
et al., 2014; Kwon et al., 2015; Yu et al., 2018) demonstrates
that we could intervene or treat SAH by targeting LCN2 from
a cell signaling pathway perspective. Next, we explore three
key genes that are sensitive to both SAH and LCN2 treatment,
again using manual review of the experimental evidence (Huang
et al., 2016; Sabo et al., 2017; Yu et al., 2018) to cross-validate
the relationships between SAH and these key genes. Finally, we
show that our SAH early prediction ensemble-learning model
outperforms the classical LR, Naive-Bayes, and SVM models. In
summary, we consider that this work provides a novel strategy for
the future study of clinical treatment of SAH and related diseases.

MATERIALS AND METHODS

Experimental Configuration
All experimental procedures were approved by the Ethics
Committee of Southwest Hospital and were performed in
accordance with the guidelines of the National Institutes of
Health Guide for the Care and Use of Laboratory Animals.

Intervention Experiment for SAH
The original chip data for this experiment were provided by the
Department of Neurosurgery, Southwest Hospital, PLA Military
Medical University. SAH and sham-operated models were
established; details are given in the Supplementary Material.
Each experimental group included five mice, and the white
matter area of the cerebral cortex was taken for gene chip testing.
A total of 10 original chip samples were obtained from the SAH
intervention experiments; these were divided equally into two
groups as follows.

(1) SAH disease group: brain tissue in the white matter region
of the cerebral cortex of SAH mice.

(2) Control group normal-1: brain tissue in the white matter
region of the cerebral cortex of normal mice.

The chip was an Affymetrix GeneChip Mouse Gene 1.0 ST
Array. Raw data included sample RNA extraction (white
matter brain cells from the SAH model and from normal
mice), sample RNA quality detection (total RNA>1 ug), cDNA
synthesis, sense strand cDNA fragmentation, biotin labeling, chip
hybridization, chip elution, and chip scanning. The raw data
are available at http://www.ebi.ac.uk/arrayexpress/experiments/
E-MTAB-8407.

We then carried out mass analysis and used the R
Bioconductor package to perform quality control for each
original chip (the SAH disease group and the control group
normal-1). In the output gray scale image (Figure S1) for each
chip sample, each chip name and the four corner patterns were
very clear, and the contrast between light and dark was moderate.

The right panel of Figure 1A shows the Relative Log
Expression (RLE) boxplot for these 10 chips. The center
of each sample was close to the position RLE = 0. This
indicates that the expression levels of most genes in the sample
were consistent. In addition, Figure S2 describes a normalized
unscaled standard errors (NUSE) detection (Marta and Marc,
2014). Since Figure S2 shows that the center of each sample is
close to the position NUSE = 1, we consider that the samples
are too stable to have obvious batch effect. Then, we used
Robust Multi-chip Analysis (RMA) (Irizarry et al., 2003) for data
preprocessing, including background and perfect match probes
(PM) correction, normalization, and summarization, to obtain
the probe expression data matrix (Table S1). Finally, clustering
analysis (Liu et al., 2019; Xiao et al., 2019; Zhang et al., 2019c; Wu
and Zhang, 2020) (Figure S3) shows that the major differences
between the chip of each group comes from SAH.

Intervention Experiment for LCN2
Here, in order to interfere with the expression of LCN2, 2
µL of specific short interfering RNAs (siRNAs) was delivered
into the lateral ventricle with a Hamilton syringe. The injection
was performed 48 h before SAH and three groups were
used, as described below. We detail the procedures in the
Supplementary Material.

(1) SAH-siRNA-LCN2: the SAH model was established and
treated with intrathecal injection of LCN2 siRNA, and two
samples were taken on the first and third days after surgery.

(2) SAH-siRNA-NC: the SAH model was established and
treated with intrathecal NC siRNA, and two samples were taken
on the first and third days after surgery, which helped us to
remove the interference factors associated with the siRNA vector.

(3) Control group normal-2: the brain tissue of the white
matter region of the cerebral cortex without any treatment.
The total number of samples in all experiments was 25 (Table 1).
RNA sequencing was performed on the samples and the raw data
are available at https://www.ncbi.nlm.nih.gov/sra/PRJNA575372.

Workflow of the Study
The workflow of the study is illustrated in Figure 1.
First, we designed the intervention experiment for
SAH detailed in section “Intervention Experiment
for SAH”, which allowed us to obtain the differential
genes under different experimental conditions. Based
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FIGURE 1 | Workflow of the study. (A) SAH intervention experimental chip RLE box line diagram; the abscissa is log_2 (Median value of sample expression) and the

ordinate represents each chip; (B) The volcano map of the comparison group SAH-siRNA-NC (1 day) vs normal-2. The abscissa is log2(Fold change) and the ordinate

is −log10(FDR); The red point is the up-regulated gene, the blue point is the down-regulated gene, and the non-dispersive point is the non-differentiated gene; (C) Key

gene screening workflow; (D) The accuracy for ensemble learning, LR, SVM and Naive-Bayes.
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TABLE 1 | Experimental sample description after LCN2 intervention experiment.

Sample Number of

samples

Description

SAH-siRNA-LCN2(1day) 5 Mouse (SAH) brain cells, Intrathecal

injection of LCN2 siRNA for 1 day

SAH-siRNA-LCN2(3day) 5 Mouse (SAH) brain cells, Intrathecal

injection of LCN2 siRNA for 3 day

SAH-siRNA-NC(1day) 5 Mouse (SAH) brain cells, Intrathecal

injection of blank siRNA for 1 day

SAH-siRNA-NC(3day) 5 Mouse (SAH) brain cells, Intrathecal

injection of blank siRNA for 3 day

Normal-2 5 Mouse (normal) brain cells, blank

control group-2

on these differential genes, we could identify the key
signaling pathways.

As targeting LCN2 could result in changes in these related
signaling pathways (causing remission or promotion of SAH),
we consider that LCN2 plays an important part in the entire
biological cell process for SAH.

Next, we used an intervention experiment for LCN2 to
obtain gene expression levels for diseased and normal mouse
brain cells at different time points. Then, we employed
commonly used dimensional reduction algorithms to
explore three key genes under the impact of both SAH and
LCN2 treatment.

Finally, we used these three key genes as classifiers to develop
an ensemble learning model for early SAH prediction, the
predictive power of which wasmuch better than that of the classic
LR, Naive-Bayes, and SVMmodels.

RESULTS

Signaling Pathway Analysis
Differentially Expressed Gene Selection
We used E-Bayes, one of the most commonly used methods
for differential expression analysis (Edwards et al., 2005), to
screen the differential genes by setting Fold change ≥ 1.5 and
p-value < 0.05. Table S2 lists 2942 differentially expressed genes,
accounting for 10.16% of the total number of genes (28,944).
Among them, there were 1016 and 1926 genes with upregulated
and downregulated expression (Figure S4), respectively.

Pathway Analysis
We used Equation 1 and the data in Table S3 to explore related
signaling pathways by carrying out Fisher’s exact test (Xia et al.,
2017) using Kobas 3.0 (Wu et al., 2006; Xie et al., 2011; Ai and
Kong, 2018) for the differentially expressed genes from Table S2.

pF(nf , n,Nf ,N) = 2 ∗

nf
∑

x=1

(

n
x

) (

N − n
Nf−x

)





N
Nf





(1)

TABLE 2 | Differential expressed genes for different experimental group.

Experimental group Total number

of genes

Up-regulation

of genes

Down-regulation

of genes

SAH-siRNA-LCN2(1day) VS

normal-2

25342 1541 634

SAH-siRNA-LCN2 (3day)

VS normal-2

25055 1264 451

SAH-siRNA-NC(1day) VS

normal-2

25384 1159 556

SAH-siRNA-NC(3day) VS

normal-2

25564 1297 409

SAH-siRNA- LCN2 (1day)

VS SAH-siRNA-NC(1day)

25293 99 14

SAH-siRNA- LCN2 (3day)

VS SAH-siRNA-NC(3day)

25251 5 18

Here, N is the number of genes in the sample and n
is the number of genes contained in the pathway. Nf

is the number of differentially expressed genes and nf is
the number of differentially expressed genes included in
the pathway.

The Fisher’s exact test assumes H0 : p1 = p2; the alternative
hypothesis is H1 : p1 6= p2. p1is the probability that the
differentially expressed gene will fall in the pathway, and p2 is the
probability that the non-differentiated gene does not fall in the
pathway. The p-value (pF) of Fisher’s exact test was obtained by
Equation 1.

Table S2 lists 70 signaling pathways for which the p-value
was less than 0.001. LCN2 is a protein involved in MAPK
signaling pathways that protects the CNS as part of the innate
immune system (Warszawska et al., 2013). Previous studies have
shown that LCN2 activates phosphorylation of p38MAPK, which
phosphorylates the Ser168 and Ser170 sites of NFATc4 and
inhibits nuclear translocation of NFATc4 (Olabisi et al., 2008).
NFATc4 is a key factor in remyelination and closely related to
SAH, indicating that white matter damage after SAH is associated
with remyelination (Kao et al., 2009; Guo et al., 2017).

Therefore, we hypothesize that LCN2 could promote the
phosphorylation of transcription factor NFATc4 and inhibit
its nuclear transcription by activating p38 MAPK, thereby
preventing remyelination and causing white matter damage
after SAH.

LCN2 Intervention Experimental Results Analysis
To prove our hypothesis, we designed a LCN2 intervention
experiment (Figure 1B) to test whether LCN2 could affect SAH
from the perspective of the differential expressed genes and the
related signaling pathways.

First, we used the DESeq2 (Varet et al., 2016) method to
select differentially expressed genes from SAH-siRNA-LCN2
and normal-2, SAH-siRNA-NC and normal-2, and SAH-siRNA-
LCN2 and SAH-siRNA-NC groups on days 1 and 3, respectively
(Table 1). The results are shown in Table 2, Table S4, and
Figure S5.
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TABLE 3 | Cross-validated SAH related signaling pathway.

Experimental group Important pathways related to SAH

SAH-siRNA-LCN2 (1day)

VS normal-2

PI3K-Akt (Hao et al., 2014), Jak-STAT (Osuka

et al., 2006), p53 (Yu et al., 2018), TNF (Hanafy

et al., 2010), Toll-like receptor (Kwon et al.,

2015), NF-kappaβ (Majdalawieh et al., 2007)

SAH-siRNA-LCN2 (3day)

VS normal-2

PI3K-Akt (Hao et al., 2014), Jak-STAT (Osuka

et al., 2006), p53 (Yu et al., 2018), TNF (Hanafy

et al., 2010), Toll-like receptor (Kwon et al.,

2015), NF-kappaβ (Majdalawieh et al., 2007)

SAH-siRNA-NC (1day) VS

normal-2

PI3K-Akt (Hao et al., 2014), Jak-STAT (Osuka

et al., 2006), TNF (Hanafy et al., 2010), Toll-like

receptor (Kwon et al., 2015), NF-kappaβ

(Majdalawieh et al., 2007)

SAH-siRNA-NC (3day) VS

normal-2

PI3K-Akt (Hao et al., 2014), Jak-STAT (Osuka

et al., 2006), TNF (Hanafy et al., 2010), Toll-like

receptor (Kwon et al., 2015), NF-kappaβ

(Majdalawieh et al., 2007)

SAH-siRNA- LCN2 (1day)

VS SAH-siRNA-NC (1day)

TNF (Hanafy et al., 2010), Toll-like receptor

(Kwon et al., 2015)

SAH-siRNA- LCN2 (3day)

VS SAH-siRNA-NC (3day)

Transcriptional misregulation in cancer (Lee and

Young, 2013)

FIGURE 2 | Venn plot for the key genes.

Next, we used Kobas 3.0 (Wu et al., 2006; Xie et al.,
2011; Ai and Kong, 2018) to carry out Fisher’s exact test for
the differential genes in Table 2, to identify related signaling
pathways (Table S5). Next, we used the manually reviewed
evidence (Osuka et al., 2006; Majdalawieh et al., 2007; Hanafy
et al., 2010; Hao et al., 2014; Kwon et al., 2015; Yu et al., 2018)
to cross-validate the SAH-related signaling pathways in Table S5.
Table 3 lists the cross-validated SAH-related signaling pathways.

As shown in Table 3, all the experimental groups had
SAH-related signaling pathways except the transcriptional
misregulation in cancer signaling pathway (Lee and Young,
2013) in the SAH-siRNA-LCN2 (3 day) vs. SAH-siRNA-NC (3
day) experimental group. However, as one of the proteins from
this pathway, Gzmb (Table S5), is closely associated with post-
ischemic brain cell death (Chaitanya et al., 2010), we consider

that it could be a new target for secondary brain injury inhibition
(Armstrong et al., 2017). Therefore, we conclude that specific
intervention for LCN2 is a promising SAH treatment strategy.

Feature Selection
After demonstrating the impact of LCN2 on SAH, we chose
potential biomarkers for SAH using a genome-wide approach.
Figure 1C shows the workflow used to choose key genes that
were not only related to both SAH and LCN2 but were also
insensitive to treatment at different time points. Figure 1C shows
the following three modules.

(1) SAH intervention experiment module

Owing to the large number of differential genes (Table S2),
it was necessary to further narrow down the scope of the
screening. First, we used the E-Bayes method (Edwards et al.,
2005) to filter the probe expression data matrix (Table S1) by the
E-Bayes function of R’s limma package (Smyth et al., 2005). The
differential probes were obtained by setting the filter parameters
to Fold change ≥ 2 and p-value < 0.05.

Second, we used SVM-RFE (Duan et al., 2005) (Equation 2)
to rank the genes in the probe expression data matrix, and then
carried out the t-test and F-test (Zhang et al., 2017b) for the top
100 genes.

{

DJ(i) = (1/2)αTHα − (1/2)αTH(−i)α
H =yiyjK(xi,xj)

(2)

where yi and yj represent the classification labels of
probes xi and xj, respectively; K(xi, xj) is the kernel function,
i, j = 1, 2, . . . , n; α is obtained by training the SVM classifier;
DJ(i) is the sort function; and H is the matrix.

We then combined the results of these two methods to
obtain the significant probes for both the E-Bayes and SVM-
RFE methods.

Finally, we used the transcription cluster annotation file
(version:MoGene-1_0-st-v1) downloaded from the Affy (Gautier
et al., 2004) website to extract the gene ID for these probes,
resulting in 47 key genes (Table S6).

(2) LCN2 intervention experiment module

We performed t-tests and F-tests (Zhang et al., 2017b) for
the key genes (Table S6) in the SAH-siRNA-LCN2 (1 day) vs.
normal-2 and SAH siRNA-LCN2 (3 day) vs. normal-2 groups
(Table S4).

There were 15 and 13 statistically significantly differential
genes for the SAH-siRNA-LCN2 (1 day) vs. normal-2 group
(Table S7) and the SAH-siRNA-LCN2 (3 day) vs. normal-2 group
(Table S8), respectively. Taking the intersection of the results
from these two experimental groups gave nine key genes, Tk1,
Cyr61, Nupr1, Dcn, Lum, Olig1, Pcolce2, Slc6a9, and Kcnt2,
which were sensitive to both SAH and LCN2 intervention,
regardless of treatment, at different time points.

(3) Dimensional reduction module

Next, we employed the SPCA algorithm (Zou et al., 2006;
Li et al., 2017) to perform dimensional reduction for the nine
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FIGURE 3 | SAH predictive ensemble learning model.

Frontiers in Genetics | www.frontiersin.org 6 April 2020 | Volume 11 | Article 391344

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Lei et al. Predictive Model of Subarachnoid Hemorrhage

key genes. This resulted in five candidate genes (Tk1, Cyr61,
Olig1, Slc6a9, and Pcolce2). However, manual review of the
experimental evidence indicated that only Cyr61 (Yu et al., 2018),
Olig1 (Sabo et al., 2017), and Slc6a9 (Huang et al., 2016) were
closely related to SAH, cerebral hemorrhage, and brain injury.
Therefore, we considered these three genes (Figure 2, Table S9)
to be potential biomarkers for SAH.

Ensemble Learning Model
Early SAH Prediction Model
This study used three classification algorithms, LR (Hosmer
et al., 2013), SVM (Suykens and Vandewalle, 1999), and Naive-
Bayes (Wang et al., 2007) to develop the SAH prediction model,
using the selected key genes as the respective classifiers. These
three classic methods were then integrated into a novel ensemble
learning model to improve the predictive accuracy.

Figure 3 shows the workflow of the SAH prediction model,
based on our previous studies (Li et al., 2017; Xia et al., 2017;
Zhang et al., 2019b). The key equations of the model are
as follows.

Dt(i) =
1

n
(3)

εt =
number of incorrectly classified samples

total number of samples
(4)

αt =
1

2
ln
1−εt

εt
(5)

Dt+1 (i) =
Dt (i)

sum(D)

{

exp (−αt) , if ht (xi)=yi
exp (αt) , if ht (xi) 6=yi

(6)

Hm(x) = sign

T
∑

t=0

αtht(x) (7)

EHm, =
3

∑

m=1

PHm (8)

Y(x) =
{

1 EHm≥0.5
0 EHm< 0.5

(9)

Here, Dt (i) is the weight distribution, t is the iteration
time, i is the index of the sample, and n is the number
of the sample. εt and αt are the error rate and weight of
each weak classifier ht , respectively. For a sample set S =
{ (

x1, y1
)

,
(

x2, y2
)

, . . . ,
(

xn, yn
) }

, xn are the samples and yn ∈
{0, 1} are the labels; yi =0 indicates that xi is not an SAH
patient, and yi =1 indicates that xi is an SAH patient. Hm is
the homomorphic integration for each weak classifier ht ; m is
the index of the weak classifier, m= 1, 2, 3; T is the threshold
of the iteration time; PHm is the predictive probability of disease;
and EHm is the estimated probability of the model Hm. Y (x)
is the result of the final classifier obtained by a voting method
(Dietterich, 2000).

Predictive Performance Comparison
Figure 4A compares the classification performance for the LR,
Naive-Bayes, SVM, and ensemble learning models, based on
four commonly used classification measurements (Table S10)
(Zhang et al., 2019b). The numerical values used in Figure 4A

FIGURE 4 | Model performance. (A) Comparison of classification performance

of LR, SVM, Naive-Bayes, and ensemble learning model; (B) ROC chart

plotted for LR, SVM, Naive-Bayes, and ensemble learning model.

are listed in Table S11; these demonstrate that the ensemble
learning method outperforms the other three methods with
respect to accuracy, precision, sensitivity and specificity. The
ROC chart plotted in Figure 4B compares the classification
effects of LR, Naive-Bayes, SVM, and ensemble learning models.
The classification effect of ensemble learning models is also
superior to the other three.

DISCUSSION

This study aimed to interrogate the potential therapeutic targets
of SAH and use them as classifiers to develop a model for early
prediction of SAH.

To achieve this aim, we proposed the following three
scientific questions. First, is specific intervention involving
LCN2 a promising SAH treatment strategy? Second, could we
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choose potential biomarkers for SAH at a genome-wide level
by considering the effects of LCN2? Third, could we use key
genes to build an SAH early prediction model with strong
predictive power?

Regarding the first question, as the manually reviewed
experimental evidence (Osuka et al., 2006; Majdalawieh et al.,
2007; Hanafy et al., 2010; Hao et al., 2014; Kwon et al., 2015;
Yu et al., 2018) and the results in Table 3 all indicate that
LCN2-related signaling pathways play an important part in the
pathogenesis SAH, we propose that LCN2 could promote or
alleviate SAH-related diseases, and could also be used to treat
SAH in the future.

To answer the second question, we used mathematical
algorithms to explore five potential gene biomarkers (Tk1, Cyr61,
Olig1, Slc6a9, and Pcolce2), considering the impact of both SAH
and LCN2 treatment at different time points, and also used the
manually reviewed experimental evidence to demonstrate that
Cyr61 (Yu et al., 2018), Olig1 (Sabo et al., 2017), and Slc6a9
(Huang et al., 2016) were closely related to SAH. Although Tk1
and Pcolce2 have not been reported to be associated with SAH,
we will investigate their connections in future work.

Regarding the third question, although this study represents
significant progress in SAH prediction, it had several drawbacks.
For example, the SAH intervention experiment sample size
was too small for us to demonstrate high predictive accuracy
for the model. In future work, we will integrate more recent
bioinformatics research algorithms (Zhang et al., 2016, 2017a,
2018, 2019a,d; Gao et al., 2017; Zhang and Zhang, 2017) and data
into the system to overcome the problems.

In summary, this study analyzed the impact of LCN2 on SAH
and explored the key biomarkers of SAH under LCN2 treatment
at different time points. An ensemble learning model was
developed to predict SAH occurrence. The results demonstrate
that LCN2 (Warszawska et al., 2013) can effectively intervene
in or treat SAH from a cell signaling pathway perspective. Also,
three key genes were identified and validated bymanual review of
the experimental evidence (Huang et al., 2016; Sabo et al., 2017;
Yu et al., 2018). Finally, the results showed that the ensemble

learning model performed better for early SAH prediction than
the classical LR, SVM, and Naive-Bayes models.
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The rapid development of single-cell transcriptome sequencing technology has provided

us with a cell-level perspective to study biological problems. Identification of cell types is

one of the fundamental issues in computational analysis of single-cell data. Due to the

large amount of noise from single-cell technologies and high dimension of expression

profiles, traditional clustering methods are not so applicable to solve it. To address the

problem, we have designed an adaptive sparse subspace clustering method, called

AdaptiveSSC, to identify cell types. AdaptiveSSC is based on the assumption that the

expression of cells with the same type lies in the same subspace; one cell can be

expressed as a linear combination of the other cells. Moreover, it uses a data-driven

adaptive sparse constraint to construct the similarity matrix. The comparison results of 10

scRNA-seq datasets show that AdaptiveSSC outperforms original subspace clustering

and other state-of-art methods in most cases. Moreover, the learned similarity matrix can

also be integrated with a modified t-SNE to obtain an improved visualization result.

Keywords: single cell RNA-seq, subspace clustering, adaptive sparse strategy, similarity learning, visualization

1. INTRODUCTION

Cells are the basic functional unit all organisms aremade of and play significant roles in the different
stages of life. Through various DNA and RNA sequencing data, researchers have a comprehensive
and deep understanding of cell biology. However, traditional sequencing data is obtained from
bulks of cells, and these are composed of the mixed effect of numerous cells and ignore cell
heterogeneity. These bulk-seq data will lead to deviations in downstream analysis if a specific type
of cell is expected. Recently, single-cell sequencing techniques have developed rapidly and make up
the defect of bulk sequencing data. Although the single-cell sequencing technique cannot capture
all cell information, it provides a great opportunity to reveal the characteristics of an individual cell.

The fundamental step of analyzing the single-cell data is to identify the cell types. Utilizing
single-cell RNA-seq (scRNA-seq) data to obtain the cell clusters is one of the most efficient methods
available. The amount of clustering methods on the basis of scRNA-seq data have been proposed.
A group of methods are focused on calculating more accurate and robust similarity scores between
cells. SNN-cliq (Xu and Su, 2015) constructed the distance matrix and counted the number of
common neighbor cells for each pair of cells as the similarity scores and then incorporated these
within a clique-based clusteringmethod. Seurat (V3.0) was inspired by an SNN-cliq and applied the
SNN graph with a louvain algorithm (Butler et al., 2018; Stuart et al., 2019). Seurat is one of themost
widely used methods. SIMLR (Wang et al., 2017) and SC3 (Kiselev et al., 2017) adopted multiple
similarity metrics from different aspects. In SIMILR, we could learn the inherent similarity matrix
from a different resolution of Gaussian kernels, while SC3 combinedmultiple sub-clustering results
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together to build up a consensus matrix. Random forest (Pouyan
and Kostka, 2018) was another way to calculate the similarity.
The correlation coefficient has been proven to be effective
when estimating the pairwise similarity of cells, and a high-
order correlation coefficient was also applied in the scRNA-seq
data analysis (Jiang et al., 2018; Tang et al., 2019). Compared
to the methods based on pair-wise distance or correlation
measurement, SinNLRR (Zheng et al., 2019b) considered
the subspace characteristics of cells’ expression and assumed
the low rank and non-negative properties of the similarity
matrix. Besides, several methods, including nonnegative matrix
factorization (NMF) (Shao and Höfer, 2017; Zhu et al., 2017),
imputation, and dimensionality reduction-based methods (Yau
et al., 2016; Lin et al., 2017), have been used widely in assessing
cellular heterogeneity. In the other aspect, the increasing number
of well-learned scRNA-seq datasets also drives the appearance
of supervised methods. These methods depended on labeled
training datasets or some prior biological knowledge, such as
gene markers (Wagner and Yanai, 2018; Pliner et al., 2019).
According to the latest study (Abdelaal et al., 2019), most
of the supervised methods are sensitive to prior knowledge,
dataset complexity, or input features. Moreover, this kind of
method has a fixed resolution and cannot find the detailed
subtypes from a rough cell group. In this study, we have focused
on the unsupervised clustering methods to identify the cell
types. Inspired by previous methods, calculating the distance or
similarity matrix of cells is a critical step. To recognize more
accurate similarities of cells from high dimensional expression
profiles, we have proposed an adaptive sparse subspace clustering
method called AdaptiveSSC. AdaptiveSSC follows the subspace
assumption and remains the nearest neighbors of a cell by a
data-driven adaptive sparse constraint. The derived similarity
matrix is used to obtain the clustering result and visualization.
AdaptiveSSC obtains an improved performance on multiple
experimental datasets.

2. MATERIALS AND METHODS

The pipeline of AdaptiveSSC is shown in Figure 1. Taking
the scRNA-seq expression matrix as the input, AdaptiveSSC
constructs the sparse cell-to-cell similarity matrix by keeping
the most similar cells for each cell before then applying it
to spectral clustering and modified t-distributed stochastic
neighbor embedding (t-SNE) to obtain cell groups and the
visualization result.

2.1. Data Pre-processing
The quantified scRNA-seq data contain thousands of genes,
and the sparsity of gene expression is usually high. Therefore,
AdaptiveSSC filters the genes expressed in <10% of the cells
(the maximum number is 100), which are not regarded as
informative genes. AdaptiveSSC investigates the linear effect
of other cells on the target cell. To remove the scale of cells’
expression, the L2 normalization is carried on the original gene
expression matrix.

Xij = Gij/

√

√

√

√

M
∑

k=1

G2
kj

(1)

where G is the original expression matrix with M genes
and N cells. The normalized matrix X is used in the
following calculation.

2.2. Adaptive Sparse Subspace Clustering
Most clustering methods depend on the calculation of the
similarity or distance matrix. The most popular similarity
measurements include Euclidean distance, Pearson or Spearman
correlations, and cosine similarity, which are all based on
a pairwise estimation. The scRNA-seq data usually contains
thousands of genes; however, only a part of a gene determines
the cell type, which corresponds to a low-dimensional manifold
surface. According to the common strategy in manifold learning,
only the local measurement of similarity or distance is reliable,
so previous scRNA-seq clustering methods (Xu and Su, 2015;
Wang et al., 2017) usually apply k-nearest neighbors (KNN) to
keep the locality. However, the KNN is used arbitrary to select
the same number of neighbors for each cell, and the selection
of k would have a great influence on the final result in some
situations. In order to overcome these shortcomings, we propose
an adaptive sparse subspace clustering method, which we have
called AdaptiveSSC.

AdaptiveSSC is developed from sparse subspace clustering
(SSC) methods. SSC is proposed to solve the motion
segmentation and face clustering problems (Elhamifar and
Vidal, 2013). SSC assumes that the feature vector of a sample can
be expressed as the linear combination of other samples in the
same subspace or type. Based on the assumption, the expression
of a cellXi = c1X1+c2X2+· · ·+ci−1Xi−1+ci+1Xi+1+· · ·+cNXN

and ck is the subspace coefficient denoting the similarity score
between cells. If the cell i and k are the same type, ck > 0,
otherwise it is 0. By adding l1 term, the most similar cells lying
in the same subspace are retained. Extending it to all cells,
the calculation of the subspace coefficient matrix is defined as
Equation (2):

min|C|1 s.t, X = XC and diag(C) = 0 (2)

where X is the normalized expression matrix. C is the coefficient
matrix and Cij denotes similarity between cell i and j. | · |1 denotes
l1 norm. The larger values in C mean the more similar cells. The
relaxation formula of the optimization problem is shown:

min
1

2
||X−XC||2F+λ|J|1 s.t, diag(C) = 0 and C−J = 0

(3)
where || · ||2F means the Fresenius norm and λ is the l1 penalty
factor, which controls the sparsity of the coefficient matrix. J is an
auxiliary matrix.

In the Equation (3), the coefficient matrix C is sensitive to
the selection of the l1 penalty factor. Another problem is that
the same penalty factor for all coefficients will lead to the loss
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FIGURE 1 | The pipeline of AdaptiveSSC to identify and visualize cell types from scRNA-seq data.

of consistency between estimation and variable selection (Zou,
2006). Therefore, we have introduced a data-driven adaptive
strategy to solve these problems. As a Pearson correlation has
been proven to be effective when measuring the similarity in
previous studies (Kiselev et al., 2017; Wang et al., 2017), we
utilized it to adjust the penalty factor for each coefficient.
If the correlation of two cells is high, the penalty factor is
decreased and vice versa. The modified optimization problem is
therefore defined:

min
1

2
||X − XC||2F + λ|

J

W
|1 s.t, diag(C) = 0 and C − J = 0

where,Wij =

{

pearson(Xi,Xj) If pearson(Xi,Xj) > 0

0 otherwise

(4)
where J

W means element division of matrix J and W. We set the
negative value of the Pearson correlation to 0. Because only the
trend of the expression of two cells are positively correlated, we
regard them as similar cells. Some zero values inW would lead to
zero values in J during the optimization.

Alternating direction method of multipliers (ADMM) (Boyd
et al., 2011) is an efficient method to solve Equation (4).
According to ADMM, the augmented Lagrangian formula
is defined:

ιγ ,λ (C, J,Y) =
1

2
||X − XC||2F + λ|

J

W
|1 + tr(YT (C − J) )

+
1

2γ
||C − J||2 and diag(C) = 0 (5)

where Y is a dual variable, γ is an augmented Lagrangian penalty
parameter, and tr means the trace of the matrix. ADMM updates
C, Y , or J by fixing others. In iteration k+ 1, the optimized form

of Ck+1, Jk+1, and Yk+1 is shown in Equations (6–8):

Ck+1 =
(

XTX +
1

γ
I

)−1 (

XTX +
1

γ

(

Jk − Yk
)

)

Ck+1 = Ck+1 − diag
(

Ck+1
)

(6)

Jk+1 = threshold λ
W ,γ

(

Ck+1 + Yk
)

= sign
(

Ck+1 + Yk
)

·max

(

|Ck+1 + Yk| −
λ

γW
, 0

)

Jk+1 = Jk+1 − diag
(

Jk+1
)

(7)

Yk+1 = Yk +
1

γ

(

Ck+1 − Jk+1
) (8)

where sign() means the sign function. The convergence of
ADMM mainly includes primal residuals and dual residuals. On
the basis of updating process, the penalty parameter γ affects
the speed of convergence. In AdaptiveSSC, we apply a balance
strategy (Boyd et al., 2011) between primal residuals and dual
residuals to adjust γ . The setting of γ is shown:

γk+1 =











γk/2, when ||rk||2 > µ||sk||2,

2γk, when ||sk||2 > µ||rk||2,

γk, others.

(9)

where rk = Ck− Jk is the primal residual and sk = 1
γ

(

Jk − Jk−1
)

is the dual residual. The µ is set to 50 as default. To reduce the
computational complexity, γ is updated by 10 iterations. When
max(abs(C − J)) < 0.0001 or the number of iteration is larger
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TABLE 1 | Single cell RNA-seq datasets.

Datasets Cell number Gene number Techniques

Darmanis (Darmanis et al., 2015) 420 22,085 SMARTer

Kolod (Kolodziejczyk et al., 2015) 704 10,685 Smart-Seq2

Treutlein (Treutlein et al., 2014) 80 959 SMARTer

Yan (Yan et al., 2013) 90 20,214 Tang et al., 2011

Ting (Ting et al., 2014) 114 14,405 Single CTC RNA-Seq

Engel (Engel et al., 2016) 203 23,337 Smart-seq2

Kumar (Kumar et al., 2014) 361 11,497 SMARTer

Vento (Vento-Tormo et al., 2018) 5,418 33,693 Smart-seq2

Baron (Baron et al., 2016) 8,569 20,125 inDrop

Shekhar (Shekhar et al., 2016) 26,830 13,166 Drop-seq

than 200, this update process is finished. To keep the symmetry
of the similarity matrix, the final similarity matrix S = CT + C.

Finally, the spectral clustering (SC) (Von Luxburg, 2007) is
applied on the learned similarity matrix. The SC is based on
the point of graph cut and utilizes the characteristic of the
corresponding Laplacian matrix to divide the graph into several
clusters. In AdaptiveSSC, we use the normalized Laplacianmatrix

Lnorm = I−D− 1
2 SD− 1

2 , whereD is the degreematrix, to obtain its
k eigenvectors corresponding to the smallest k eigenvalues. Then,
k-means is used to obtain the final clusters.

3. RESULTS AND DISCUSSION

3.1. scRNA-seq Datasets
We collected 10 scRNA-seq datasets to evaluate the performance
of AdaptiveSSC. These datasets are based on different single-
cell techniques or protocols, such as Smart-seq, SMARTer,
and Drop-seq based methods. Meanwhile, the scale of these
datasets ranges from the tens to the tens of thousands. The
variety of the datasets could indicate the generalization ability of
AdaptiveSSC comprehensively. The details of these datasets are
shown in Table 1. All datasets contain the real cell types from the
original researches.

3.2. Evaluation Metrics
In order to compare the performance of different clustering
methods, we selected two popular metrics: normalized mutual
information (NMI) and adjusted rand index (ARI). Both NMI
and ARI can quantify the consistency between the clustering
results and the real labels. The definition of NMI and ARI
is shown:

NMI (T, P) =
I(T, P)

[

H(T)+H(P)
] (10)

ARI (T, P) =

∑
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(11)

Where T and P mean the real labels and clustering labels,
respectively. In Equation (11), nij denotes the number of cells
belonging to i group in real labels and j group in clustering labels;
ni denotes the number of cells belonging to the i group in real
labels, while nj denotes the number of cells belonging to the j
group in clustering labels.

3.3. Parameter Analysis
Although the adaptive strategy is used in AdaptiveSSC, there
are still some hyperparameters to be set. The most important
hyperparameter is the l1 penalty factor λ. By the adaptive
adjustment, the learned similarity matrix is not so sensitive to
it. We evaluated the NMI and ARI of AdaptiveSSC on eight
small datasets (smaller than 5,000 cells) with λ ranging from 0.01
to 0.19 and the interval set to 0.02. The results for eight small
datasets are shown in Figure 2. Based on the result, when the λ

was in the 0.01–0.05, both NMI and ARI were in the best range
and were more stable. Therefore, we used λ = 0.03 as a default in
AdaptiveSSC. During the experiment, we also found the optimal
λ was not consistent for big datasets (in Baron is 0.01 and in
Shekhar and Vento is 0.007). We recommend that users select
the proper λ by grid searching with the following rule. If the
corresponding sparsity ofC is between 0.02 and 0.05, the λ should
be selected. In Baron and Shekhar, we selected the corresponding
λ with the sparsity of C is 0.03.

3.4. Comparison Analysis of Clustering
Methods
To validate the effectiveness of AdaptiveSSC, we selected seven
competitive methods, including SIMLR (Wang et al., 2017),
MPSSC (Park and Zhao, 2018), SNN-cliq (Xu and Su, 2015),
RAFSIL (Pouyan and Kostka, 2018), Seurat(V3.0) (Butler et al.,
2018; Stuart et al., 2019), SinNLRR (Zheng et al., 2019b), and
sparse subspace clustering (SSC) (Elhamifar and Vidal, 2013). All
these methods are based on the construction of similarity matrix.
SNN-cliq and Seurat recalculate the similarities based on their
shared neighbors. SIMILR and MPSSC focus on the different
resolution of Gaussian kernels, while RAFSIL applies random
forest. SinNLRR is based on the subspace assumption with low
rank constraint. The original SSC was selected as the baseline
method. The results of NMI and ARI on 10 datasets are shown
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FIGURE 2 | The corresponding NMI and ARI with different values of λ on eight datasets.

FIGURE 3 | The corresponding (A) NMI and (B) ARI of SIMLR, MPSSC, SNN-cliq, RAFSIL, Seurat, SinNLRR, SSC, and AdaptiveSSC on 10 datasets.

in Figure 3. Compared to SSC, AdaptiveSSC improved NMI
and ARI in six datasets. Especially in Treutelin, Kumar, Vento,
and Shekhar, AdaptiveSSC exhibited a significant improvement,
more so than SSC, which means the adaptive penalty factor
leads to the more accurate similarity matrix. In Kolod and
Ting, AdaptiveSSC achieved the same performance with SSC.
Overall, AdaptiveSCC exhibited a better performance than SSC

in most cases. Besides, AdaptiveSSC achieved the best (or a tie
for first place) performance in seven datasets upon NMI and
eight datasets upon ARI compared with other six state-of-the-art
methods. It is worth noting that only AdaptiveSSC obtains the
perfect result on Treutelin. The results in Baron and Shekhar also
verify AdaptiveSSC’s effectiveness in large datasets. Estimation
of the number of cell types is another important aspect in
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FIGURE 4 | The visualization of t-SNE, SIMLR, MPSSC, and AdaptiveSSC on (A) Darmanis and (B) Treutelin.

application. In AdaptiveSSC, we also used eigengap to determine
the number of clusters, which was popular in previous studies.
The results can be found in the Supplementary Material. As
shown in the results, none of the methods predict the correct
number of clusters in all datasets. However, AdaptiveSSC obtains
the correct number of clusters in three datasets and gets the
closest number in five datasets, which is a better selection overall.
Moreover, we select five different scale datasets to evaluate the
computational efficiency of these methods. The running time
can be found in the Supplementary Material. AdaptiveSSC has a
faster speed than SSC but is still time-consuming in large datasets
compared with SIMLR and Seurat. All the experiments run on
the server with 24 cores and 512 GB memory. The methods with
running timemore than 36 h are excluded, such as RAFSIL, SNN-
cliq, and SinNLRR in large scale datasets, and MPSSC gets out of
memory error on Shekhar.

3.5. Comparison Analysis of Visualization
Visualization of scRNA-seq is another important issue.
Previous study (Wang et al., 2017) proposed a modified t-
distributed stochastic neighbor embedding (t-SNE) to validate
the performance of learned similarity. We also adopted this
evaluation to AdaptiveSSC and generate 2D-embedding images
on Darmanis and Treutelin with the learned similarity matrix
of t-SNE, SIMLR, MPSSC, and AdaptiveSSC, respectively. The
result is shown in Figure 4. The points with the same color
mean they have the same cell type. Compared to other methods,
AdaptiveSSC could group the same cells together and exhibits

good silhouettes. Although SIMILR and MPSSC contain more
dense parts, they divide cells with same type into different
cliques, which are usually far away from each other. This will give
the researchers a misconception that they are belong to exactly
different types. Therefore, AdaptiveSSC has a better performance
and potential in the visualization of scRNA-seq data.

3.6. Discussion and Conclusion
The identification of cell types is a fundamental problem is
scRNA-seq data analysis. In recent years, a lot of clustering
methods have been proposed to solve it. However, most of
these methods do not exhibit a good generalization on different
datasets. In this study, we proposed a subspace clustering with
an adaptive sparse constraint, called AdaptiveSSC. AdaptiveSSC
regards the expression of a cell can be expressed as a
linear combination of other cell’s expression from the same
type. A data-driven adaptive sparse strategy is applied to
keep the locality of cells in the original dimension and
decrease the sensitivity to the penalty factor. Eight scRNA-
seq datasets were used to evaluate the performance of
AdaptiveSSC. By comparing with SSC, AdaptiveSSC improves
the clustering results significantly in some cases, which indicates
the effectiveness of our strategy. Moreover, six state-of-the-art
methods were selected as comparison. From the NMI and ARI,
AdaptiveSSC achieves the best performance in most of datasets.
Finally, we integrated the learned similarity with modified t-SNE
further, which also shows the powerful potential of AdaptiveSSC
in visualization.
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However, the computational efficiency of AdaptiveSSC is still
low for large datasets and should be improved in the future. Some
strategies used in the fast clustering method could be considered
to make AdaptiveSSC more efficient (Ren et al., 2019). Moreover,
AdaptiveSSC explores the cell heterogeneity from a gene level,
but it is also important to study the different biological functions
of cells. Regulatory modules (Aibar et al., 2017) have been proved
effective when showing the functional heterogeneity of cells. It is
possible to identify the cell type from the whole gene regulatory
network perspective (Li et al., 2017; Zheng et al., 2018, 2019a).
Besides, motivated by previous studies (Lan et al., 2018; Chen
et al., 2019; Shi et al., 2019), multi-view learning and integrating
with prior knowledge are promising directions to improve the
accuracy of clustering and give a higher resolution of cell types.
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The prevalence of polycystic ovary syndrome (PCOS) has been gradually increasing
among adult females worldwide. Laparoscopy drilling on ovary is the only available
temporary solution with a high incidence of reoccurrence. S100A8 with S100A9
complex is believed to facilitate the cyst migration in PCOS condition. The high
evident protein interaction network studies between PCOS biomarkers, cancer invasion
markers, and the interactors of S100A8 confirm that this protein has strong interaction
with other selective PCOS biomarkers, which may be associative in the immature
cyst invasion process. Through the network studies, intensive structural and pathway
analysis, S100A8 is identified as a targetable protein. In this research, the non-SELEX
in silico method is adapted to construct RNA Library based on the consensus DNA
sequence of Glucocorticoid Response Element (GRE) and screened the best nucleotide
fragments which are bound within the active sites of the target protein. Selected
sequences are joined as a single strand and screened the one which competitively binds
with minimal energy. In vitro follow-up of this computational research, the designed RNA
aptamer was used to infect the MCF7 cell line through Lipofectamine 2000 mediated
delivery to study the anti-cell migration effect. Wound Scratch assay confirms that the
synthesized 18-mer oligo has significant inhibition activity toward tumor cell migration at
the cellular level.

Keywords: network analysis, druggability, RNA aptamer, lim method, pcos targets, protein network

INTRODUCTION

Nucleotide aptamers are successfully explored as better therapeutics to treat diseases and disorders.
Time-consuming low-throughput procedures have been in practice to design the aptamers in vitro
(Ghavami et al., 2009). Therefore, in silico non-SELEX approach is the better choice to perform
the selection of aptamers, which involves the construction of an oligonucleotide library without
amplification and binding them with suitable target protein unlike SELEX (Berezovski et al.,
2006; Tseng et al., 2011). Designing the RNA aptamer for the validated biomarker helps us to
normalize the disease state at the genetic level. Hence, delivering a well-designed aptamer against
response elements (REs) can control the strange translation of the target gene. REs are the critical
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elements involved in the activation of target gene regulation.
Inhibiting biomarkers of specific pathophysiological conditions
at the molecular level is a better choice to oversee the disease
(Strimbu and Tavel, 2010). Target validation is one of the
necessary procedures in drug discovery protocol. Since the
exact cause of polycystic ovary syndrome (PCOS) is imprecise
(Sir-Petermann et al., 2002), it is tedious to identify the best
target clinically. Assay on endometrial cell migration is one
of the diagnostic tools to identify the complications of this
syndrome, and metformin has a proven attenuating effect on
the invasion of endometrial cells of diseased women (Tan et al.,
2011). Previously, researchers have found that 500 biomarkers
are prevalent in PCOS (Dai and Lu, 2012). In this research
work, we focused on S100A8 protein which is one of the
important biomarkers in PCOS. Protein–protein interaction
network (PPIN) is used to identify the associative proteins
and its pathways in PCOS. Additionally, druggable properties
of S100A8 were studied through pocket analysis. Besides, the
aptamer library for specific RE of S100A8 was constructed by
a non-SELEX fragment approach. The best aptamer sequence
was screened through quality assessments, such as affinity and
stability parameters.

MATERIALS AND METHODS

Network Profile of S100A8 in Polycystic
Ovary Syndrome and Enrichment
Analysis
Interactors of S100A8 are obtained from BioGRID3.5, a dataset
repository (Oughtred et al., 2019), and the molecular interaction
network was constructed in STRING Database (Szklarczyk et al.,
2019). Biomarkers specific to PCOS and cancer cell invasion are
retrieved from the recent research articles (Daan et al., 2016; Lu
et al., 2017; Gerashchenko et al., 2019) and are used to construct
another network. Both the networks were merged to find the
first shell interactors of S100A8. Cytoscape 3.7.2 is employed
to merge the networks and find proteins which are associated
with S100A8. Pathways of S100A8 and its clusters are identified
by using ClueGO, a Cytoscape application for clustering the
functional network by terms or pathways (Bindea et al., 2009).
Molecular functions of Gene Ontology (GO), Reactome Pathway
Database (Croft et al., 2011), and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways are used as resources for
enrichment analysis. P-value 0.005 is set as a significance to select
the clusters of S100A8.

Structure and Druggability Studies on
S100A8
Druggability analysis is used to predict the receptiveness
and stability of drug target. Physiochemical and geometric
properties such as number of pockets, druggable score,
and pocket volume determine the efficiency of the target
candidate. DoGSite Scorer is used for binding site prediction
analysis and druggability assessment, which is based on
heavy-atom coordinates employing support vector machines

(SVMs) (Volkamer et al., 2012). Pocket volume, lipophilic
character, and pocket enclosures were accounted for
simple score calculation to suggest the competence of
targetability. Three-dimensional structure of the target
was retrieved from PDB (ID: 5HLV) and used for the
druggable screening.

Glucocorticoid Response Elements for
S100A8
REs are the inducers of the receptor and ligand interaction
which results in the expression or activation of a particular
protein. Since the aptamers are crucial elements in the
control of target expression so we decide to design RNA
oligomer against specific PCOS targets. Glucocorticoid RE (GRE)
(Hsu et al., 2005), hypoxia RE (HRE) (Rees et al., 2001),
antioxidant RE (ARE) (Nioi et al., 2003), and interferon gamma
(INF-γ) RE (IRE) (Yang et al., 1990) are identified as the
influencing REs of the S100A8 gene. Specifically, GREs have
the proficiency to inhibit S100A8 through the downregulation
of leukocyte transmigration. Glucocorticoids also induce the
expression of inhibition factor for macrophage migration,
which ultimately downregulates the cyst inflammation. The
earlier research report shows that GRE consists of two
half-sites with three spacer bases; the consensus pseudo
palindromic sequence of GRE is 5′ CAGAACATCATGTTCTGA
3′ (Weikum et al., 2017).

Nucleotide Fragment Library
Construction
RNA Composer utilizes the Dot-Bracket format notation of
the secondary structure sequence to model the RNA, and
the 3D element of modeled RNA was chosen from RNA
Frabase (Biesiada et al., 2016). RE is a sequence, which binds
with the receptor and plays a crucial role in expression,
so the RNA analog library of specific RE was created to
mimic the inhibitory action. The consensus sequence was
segregated as fragments in such a way that six nucleotides
at a stretch were taken per fragment (Figure 4A) for analog
library construction. Resulted library sequences were later
utilized for binding studies with the target by RNA-Lim
method and recognized the various conformations of fragments
bound in the active sites of the protein (Hall et al., 2015).
Fragments which bound on active sites are selected to design
the high précised aptamer model. Diversity in the exhibited
conformations of ssRNA–protein complexes was meticulously
sampled to construct a fragment library. MC-Fold | MC-Sym
pipeline was employed to obtain the secondary and tertiary
structures of the constructed aptamer (Parisien and Major,
2008). The proposed mechanism for PCOS control through
the aptamer binding on S100A8 is illustrated in Figure 1.
Refinement on docking results of their chain-forming poses was
done in Molecular Operating Environment (MOE) suit (Ahirwar
et al., 2016). The fragment-based approach was adopted for
competent docking with S100A8 (Ahirwar et al., 2016); this
unusual method has numerous advantages over conventional
rigid based docking.
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FIGURE 1 | Proposed mechanism of aptamer inhibition. Aptamer binds to the S100A8 and prevents the intracellular initial complexation with S100A9. Due to
aptamer binding, extracellular receptor of advanced glycation end products (RAGE) complexed inflammatory sequences are also prevented.

FIGURE 2 | Merged network of Polycystic Ovary Syndrome (PCOS). Combined network of S100A8 integrators with PCOS biomarkers; yellow colored nodes are the
first shell interacting proteins with S100A8 that are suspected for cyst migration activity.
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Affinity and Stability Studies of the
Designed Aptamer
PatchDock tool is efficiently used to study the binding
properties of designed aptamers with target protein
(Schneidman-Duhovny et al., 2005).Based on the global binding
energy, FireDock is employed to decipher the docked result
by flexible refinements rather than the rigidity of protein and
also it optimizes the side-chain residues, which minimizes the
rigid body conformation of the interactive protein (Mashiach
et al., 2008). Previously, it was reported that the stability of
RNA will be analyzed by the inverted repeats which form
stable hairpin loops (Ahirwar et al., 2016). Oligoanalyzer is
an inclusive oligonucleotide scrutinizer employed to check
the hairpin loop and stability of the designed aptamer
(Owczarzy et al., 2008).

Anti-migration by Scratch Wound
Healing Assay on Cell Lines
MCF-7 cells were seeded into a 24-well tissue culture plate
containing antibiotic-free minimal essential medium (MEM)
and incubated for 24 h at 37◦C with 5% CO2. Sterile
microtip was used to a make scratch on the 80% confluence
monolayer (Camorani et al., 2014). The culture medium
was immediately replaced with fresh medium to remove the
dislodged cells. Then, 20 nmol/l of the designed aptamer with
the transfecting agent, Lipofectamine 2000 (Invitrogen), was
dissolved in dimethyl sulfoxide (DMSO) for timeline studies
(Zhou et al., 2008). Cell migration of both sample and control
were monitored and compared to study the aptamer effect
on cell migration.

RESULTS AND DISCUSSION

S100A8 Network With Polycystic Ovary
Syndrome Biomarkers
S100A8 interacts with 74 proteins (Supplementary File S1).
The high confidential STRING network of S100A8 interactors
has 55 nodes with 181 edges. The second network with
biomarkers has 98 nodes with 431 edges; among 98, two proteins
(SLC35D2, MORC4) are unconnected with the main network.
Interactor network and biomarker network details are given in
Supplementary Material. Merged network with connected nodes
of the interactors and the biomarkers shows 96 nodes with 430
edges (interactions) that are illustrated in Figure 2. Immediate
interacting proteins with s100A8 are shown in yellow. By the
network analysis, we found that S100A8 directly interact with 10
proteins (Table 1).

A total of 246 ontology processes were found within the given
significant p-value, among them, S100A8 is found in 88 different
processes. Particularly, 10 ovulation and maturation-related GO
terms with 14 proteins are identified in the enrichment analysis
and are listed in Table 2. Apart from S100A8, RETN and S100A9
are found in both networks and also in enriched biological
terms with high distribution. ESR1, GDF9, PDGFRA, and LEP
are the other proteins found in a greater number of pathways

TABLE 1 | Proteins associated with S100A8 in the network.

Protein ID Name Polycystic Ovary Syndrome (PCOS)
relative function

MMP9 Matrix
Metallopeptidase 9

Proteolytic activity on the extracellular
matrix (ECM) and involved in leukocyte
migration

RETN Resistin Promotes chemotaxis in myeloid cells

CTSS Cathepsin S Endo protease involved in the removal of
unwanted proteins

S100A9 S100 Calcium
Binding Protein A9

Potent amplifier of inflammation as well as
in cancer development and tumor spread

NCF2 Neutrophil
Cytosolic Factor 2

Involved in superoxide generation

MPO Myeloperoxidase Produce hypochlorous acid and other toxic
intermediates which enhance PMN
microbicidal activity

ALB Albumin Regulates blood plasma colloid osmotic
pressure and acts as a carrier protein for
hormones, fatty acids, metabolites, and
exogenous drugs

BECN1 Beclin 1 Mediates vesicle-trafficking processes,
tumorigenesis, neurodegeneration, and
apoptosis

TP53 Tumor Protein P53 Prevents CDK7 kinase activity when
associated to CAK complex in response to
DNA damage, thus stopping cell cycle
progression

GRB2 Growth Factor
Receptor Bound
Protein 2

Adapter protein involved in the Ras
signaling pathway

comparatively in the selected terms. Distribution of proteins is
given in the graph of Figure 3A.

Target Compatibility Evaluation
S100A8 is involved in seven GO functions which are positively
regulated cyst formation and cancer cell migration. Additionally,
S100A8 poses 18 pockets, among them, nine are druggable
(score > 0.3) and four shows better cutoff scores (Table 3).
Targets with low specificity on small-molecule were identified
as poorly druggable targets (Barelier et al., 2010). Here we
have found four high scored druggable pockets in the selected
S100A8 (Figure 3C). Structural features and active sites of
S100A8 are shown in Figures 3B,D, respectively. Due to
the positive druggable results, it is considered as a notable
target to control PCOS. Considerably, calcium-binding protein
(S100A8) acts as a ligand for receptor of advanced glycation
end products (RAGE) which is involved in many inflammatory
and oncogenic pathways. There is evidence that S100A8
has a growth-promoting effect, and it helps cells to acquire
cell migration activity through the RAGE binding pathway
(Ghavami et al., 2008). S100A8 causes uteroplacental perfusion
deficiency which leads to embryo abortion that supports the
competence of our target selection (Sir-Petermann et al., 2002).
Structural analysis shows that S100A8 has two helix loop
helix Ca2+ binding domains known as EF-hands and exists
as a complex with S100A9. Calprotectin is present in 1q21
locus of chromosome 1 in humans and has a molecular

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 May 2020 | Volume 8 | Article 328360

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00328 May 11, 2020 Time: 19:25 # 5

Manibalan et al. Aptamer Designing to Control PCOS

TABLE 2 | Enriched terms of S100A8 in Polycystic Ovary Syndrome (PCOS).

GO term Group p-value No. of
proteins

Associated proteins found

Ovulation cycle 2.11E-13 9 EGFR, ESR1, GDF9, HAS2, LEP, PDGFRA, RETN, S100A8, S100A9

Female sex differentiation 6.47E-21 12 CTNNA1, ESR1, GDF9, ICAM1, LEP, MYC, PDGFRA, RBP4, RETN, S100A8,
S100A9, VEGFA

Ovarian follicle development 6.47E-21 7 CTNNA1, ESR1, ICAM1, MYC, S100A8, S100A9, VEGFA

Ovulation cycle 1.38E-24 9 EGFR, ESR1, GDF9, HAS2, LEP, PDGFRA, RETN, S100A8, S100A9

Ovulation cycle process 1.38E-24 7 ESR1, GDF9, LEP, PDGFRA, RETN, S100A8, S100A9

Development of primary female sexual
characteristics

1.38E-24 11 CTNNA1, ESR1, GDF9, ICAM1, LEP, MYC, PDGFRA, RETN, S100A8, S100A9,
VEGFA

Gonad development 1.38E-24 11 CTNNA1, ESR1, GDF9, ICAM1, LEP, MYC, PDGFRA, RETN, S100A8, S100A9,
VEGFA

Ovarian follicle development 1.38E-24 7 CTNNA1, ESR1, ICAM1, MYC, S100A8, S100A9, VEGFA

Female gonad development 1.38E-24 11 CTNNA1, ESR1, GDF9, ICAM1, LEP, MYC, PDGFRA, RETN, S100A8, S100A9,
VEGFA

Regulation of female gonad development 1.38E-24 4 GDF9, RETN, S100A8, S100A9

weight of 10–12 kDa. During tumor development, chromosomal
rearrangements take place in the locus of the S100A8 gene
and majorly contribute to the cyst formation in PCOS. Also,
serum calgranulin (S100A8 and S100A9) levels are higher
in women with PCOS than normal women (Dai and Lu,
2012). This evidently shows that binding of S100A8 with
RAGE facilitates the p38 mitogen-activated protein (MAP)

kinase signaling through calcium phosphorylation which also
governs cyst migration.

Construction of RNA Analog Library
Using Glucocorticoid Response Element
The fragment-based approach of aptamer docking yielded
better interaction with S100A8. By the RNA-Lim method,

FIGURE 3 | Gene ontology enrichment and structural properties of S100A8. (A) Distribution of proteins in polycystic ovary syndrome (PCOS)-related terms in
enrichments. (B) Homo dimer crystal structure of S100A8—global symmetric view. (C) High druggable pockets of S100A8—shown in filled purple, sky blue, yellow,
and orange colors. (D) Active sites of S100A8.
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TABLE 3 | Druggability assessment of S100A8 protein.

Pocket ID Volume A2 Surface A2 Drug score Simple score

P_0 2,694.56 2,620.71 0.81 0.61

P_1 2,652.05 2,822.45 0.81 0.64

P_3 209.65 195.14 0.66 0

P_4 180.41 168.05 0.6 0

P_2 252.39 481.15 0.5 0.14

P_6 166.91 273.52 0.37 0

P_7 165.23 357.95 0.37 0.04

P_5 173.21 283.31 0.35 0

P_8 137.56 211.73 0.33 0

P_9 130.58 204.55 0.28 0

P_10 127.43 196.55 0.27 0

P_11 120.91 239.32 0.27 0

P_14 109.89 180.88 0.26 0

P_12 117.99 208.39 0.25 0

P_13 116.19 209.36 0.22 0

P_15 109.89 259.05 0.16 0

P_16 106.85 216.05 0.15 0

P_17 100.78 249.25 0.14 0

18 fragments with the consensus sequence of GRE were
constructed and used for binding analysis (Figure 4A). Frag6,
Frag9, and Frag10 showed better interaction (Table 4) in
the active domain of target with minimal global binding
energy. Among the three possible conformations, sequence 1

(Figure 4B) shows better thermal stability and lowest energy
than the other two sequences. Optimal structure with a
folding simulation at physiological pH shows there are three
nucleotides at positions 4–7 that make intramolecular base
pairing for loop structure (Figure 4C). Energy minimized
aptamers are significantly stable, and the aptamers with a
binding energy of ≥-40 are optimal in the therapeutical
aspect (Pagano et al., 2008). Oligo fragments selected are
by their binding ability on the active sites of the target.
The compiled 18-mer binds effectively than the fragments.
Stability comparison among the newly constructed aptamer
sequences is stated in Table 5. Among the three, Apt1 has
high stability with a melting temperature of 41.8◦C, and
also the simulation studies confirmed that it requires the
minimum free energy (–27.93 kcal/mol) for hairpin loop
formation. In addition, the Apt1 fragment poses low molecular
weight (5,327.4 g/mol) comparatively. Aptamers in practice
are available in the range of 15–81 nucleotide length with
higher molecular weights (Shigdar et al., 2013), but here, the
designed is 18-mer with lower molecular weight so the plasma
clearance may be faster.

Interaction, Inhibition, and Stability
Studies
Primarily, RAGE being the receptor for S100A8 was docked
to confirm for its binding ability in the domain, which
may affect the binding of the designed aptamer. As a result

FIGURE 4 | RNA library and structures. (A) Library construction by RNA-Lim method using the consensus sequence of glucocorticoid response element (GRE).
(B) 3D structure of potential aptamer candidate. (C) Sequence and physiological structure of aptamer after optimal simulation and folding, and the color of bases
indicates their energy levels.
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TABLE 4 | Binding energies of RNA analog fragments with S100A8.

Fragments Predicted 1G
(kcal/mol)

Fragments Predicted 1G
(kcal/mol)

Frag 1 –16.24 Frag 10 –30.51

Frag 2 –8.55 Frag 11 –14.34

Frag 3 –16.52 Frag 12 –15.66

Frag 4 –51.85 Frag 13 –15.17

Frag 5 –18.46 Frag 14 –11.21

Frag 6 –31.71 Frag 15 –18.70

Frag 7 –16.54 Frag 16 –10.68

Frag 8 –13.17 Frag 17 –21.76

Frag 9 –38.76 Frag 18 –23.71

of protein–protein docking analysis, Arg 114 residue at A
domain of RAGE interacting with Gln 44 residue at H
domain of S100A8 is found as the most active interaction.
To test the comparison of binding interactions, RAGE was
docked with GRE, which resulted in a binding energy of –
24.38, comparatively higher than its binding with the designed
aptamers (–46.33) that is shown in Table 6; this infers that
the designed nucleotide aptamer also binds efficiently at the
S100A8 binding domain of RAGE (Figures 5B,C). In parallel,
interactions of S100A8 with GRE and S100A8 with the designed
aptamer were inspected to find the competency, which was
found as –22.11 and –45.32 energy levels, respectively. The
designed aptamer binds efficiently in the active dimer of the
target (Figure 5A).

Anti-cell Migration Assay on MCF-7 Cell
Line
Within 4 h of scratch, development of closure was seen in
the control (which does not have aptamer), the wounded
area has turned into a normal layer when compared with the
initial image of well. In the aptamer well, there is no cell
migration observed even after the fourth hour of incubation,
it was confirmed in the images of 0 and 4 h of wounded
well (Figure 6).

CONCLUSION

From the network analysis, S100A8 is identified as a targetable
protein to control PCOS. The druggable property of the
target was validated by topological measures. S100A8 acts
as a ligand for RAGE to promote cell migration in cancers
and PCOS conditions. GRE inhibits S100A8 by competitive
binding at the minimal level through a feedback mechanism.
Additionally, S100A9 and resistin were also found along with

TABLE 6 | Docking results.

Protein Target Binding site Global energy

RAGE S100A8 Arg A 114→ Gln H44 –25.75

RAGE GRE Arg B 203→ U14, Arg B 228→ G17 –24.38

S100A8 GRE Asn D 61→ C6, Ala B 1→ U13 –22.11

RAGE Aptamer • Try B 118→ A13, Arg B 216→ A13 –46.33

• Arg B 218→ G10, Asn B 25→ U16

• Gln B 24→ U16

S100A8 Aptamer • Lys B 36→ U9, Lys F 48→ U17 –45.32

• Ser H 86→ A13, Asp C 32→ G10

• Lys B 18→ G10, Lys B 21→ G10

S100A8 as associative proteins. We adopted a computational
method to develop an RNA aptamer and designed 18

FIGURE 5 | Mechanism of inhibition and docking with RNA aptamer.
(A) Aptamer bases binding at the active sites of S100A8. (B) Binding pose of
aptamer on receptor of advanced glycation end products (RAGE) protein.
(C) Optimal binding pose of aptamer on the S100A8.

FIGURE 6 | Wound scratch assay. Cell migration studies by wound healing
assay on MCF7 cell line. Leitz labovert FS inverted microscope was used to
view the cell migration. (A) A 4 mm scratch with a sterile tip at 0 h, and the
wound is pointed at with an arrowhead in the 10 × magnified illustration.
(B) Ten times magnified view of aptamer incubated (4 h) cell line. No cell
migration was observed after 4 h of aptamer incubation. (C) Fifty times
magnification of scratch in control plate (cell migration seen) after the fourth
hour.

TABLE 5 | Aptamer stability comparison.

Aptamers GC content (%) Tm (◦C) Molecular weight (g/mol) 1Gmax (kcal/mol)

Apt1 CAUCAUCAUGUUAUGUUC 33.3 41.8 5327.4 –27.93

Apt2 AACAUCACAGAAGACAGA 38.9 37 5504.7 –28.3

Apt3 CUGACAACAUCAAUCAUG 38.9 36.6 5395.5 –29.04
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oligos based on the consensus sequences of GRE, which
binds to both RAGE and S100A8. In addition to the
computational studies, the cell line studies proved the anti-
migration activity of the designed aptamer at minimal dose
delivery with Lipofectamine 2000. The newly designed 18mer
effectively stopped the cancer cell migration through dual
action, and it is identified as a potential therapeutic to control
PCOS and cancers.
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Taking advantage of the high-throughput genotyping technology of Single Nucleotide

Polymorphism (SNP), Genome-Wide Association Studies (GWASs) have been

successfully implemented for defining the relative role of genes and the environment

in disease risk, assisting in enabling preventative and precision medicine. However,

current multi-locus-based methods are insufficient in terms of computational cost

and discrimination power to detect statistically significant interactions with different

genetic effects on multifarious diseases. Statistical tests for multi-locus interactions

(≥2 SNPs) raise huge analytical challenges because computational cost increases

exponentially as the growth of the cardinality of SNPs in an interaction module. In

this paper, we develop a simple, fast, and powerful method, named JS-MA, based

on Jensen-Shannon divergence and agglomerative hierarchical clustering, to detect

the genome-wide multi-locus interactions associated with multiple diseases. From the

systematical simulation, JS-MA is more powerful and efficient compared with the

state-of-the-art association mapping tools. JS-MA was applied to the real GWAS

datasets for two common diseases, i.e., Rheumatoid Arthritis and Type 1 Diabetes. The

results showed that JS-MA not only confirmed recently reported, biologically meaningful

associations, but also identified novel multi-locus interactions. Therefore, we believe that

JS-MA is suitable and efficient for a full-scale analysis of multi-disease-related interactions

in the large GWASs.

Keywords: GWAS, Jensen-Shannon divergence, clustering, epistasis, genetic factors

1. INTRODUCTION

Genome-wide association studies (GWASs) have been proved to be a powerful tool to identify
the genetic susceptibility of associations between a trait of interests using statistical tests (Sabaa
et al., 2013). Recent studies have confirmed that single nucleotide polymorphisms (SNPs) are
associated with a variety of common diseases (Peter and Hunter, 2009). The current primary
research paradigm in GWASs is dominated by analyzing the susceptibility of single SNP to
one disease at a time. One SNP might only explain a small part of causal genetic effects for
multiple complex diseases (He and Lin, 2011). The word, epistasis, is defined generally as the
interaction among different genes (Cordell, 2002). Many studies have demonstrated that epistasis
is an important contributor to genetic variation in complex diseases. Most common diseases, such
as obesity (Cordell, 2009), cancer (Ritchie et al., 2001), diabetes (Wang et al., 2012), and heart
disease (Nelson et al., 2001), are complex traits, which result from a joint effect of various genetic
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variants, environmental factors, or their interactions. It is of
great interest for us to identify the genetic risk factors for
complex diseases, so as to understand disease mechanisms,
develop effective treatments, and improve public health. The
cost of genomic technologies is falling exponentially over time.
For instance, the Human Genome Project took 13 years and
cost $2.7 billion in the early twenty-first century, whereas now
we can sequence a genome with $1,000 and less than a week.
The availability of large-scale genotyping technology with its
rapid improvement makes the cost of genome-wide analyses
widely decrease, and a great number of large-scale genetic
association studies are initiated. Complex diseases do not show
the “simple” inheritance pattern observed in Mendelian diseases,
where alterations in a single gene or a unique locus are causal
for a phenotype. In complex disease, multiple genes are involved,
each with low-penetrance that each gene modestly increases
the probability of disease and does not ultimately determine
disease status. These factors often render the traditional genetic
dissection approaches, such as linkage analysis, ineffective tools
to study complex diseases. In this article, we consider epistatic
interactions as the statistically significant associations of d-SNP
modules (d ≥ 2) with multiple phenotypes (Wang et al., 2011).

The problem of detecting high-order genome-wide epistatic
interaction for case-control data has attracted more research
interests recently. Generally, there are two challenges in mapping
genome-wide associations for multiple diseases on a large GWAS
dataset (Guo et al., 2014a): the first is arose from the heavy
computational burden, i.e., the number of association patterns
increases exponentially as the order of interaction goes up. For
example, there are around 6.25 × 1011 statistical tests required
to detect pairwise interactions for a moderate dataset with
∼500,000 SNPs. The second challenge is that existing approaches
do not have enough statistical powers to report significant high-
order multi-locus interaction on multiple diseases. Because of
the huge number of hypotheses and the limited sample size,
a large proportion of significant associations are expected to
be false positives. In recent, many computational algorithms
have been proposed to overcome the above difficulties. They
can be broadly classified into three categories (Xie et al., 2012):
exhaustive search, stepwise search, and heuristics approach. The
naive solution to tack the problem is exhaustive search using
statistical tests, like χ2 test, exact likelihood ratio test or entropy-
based test, for all SNPmodules (Wan et al., 2010c; Liu et al., 2011;
Yung et al., 2011). In order to minimize the huge computation
requests, stepwise search strategies select a subset of SNPs or
their combinations based on some low-order measurement tests,
then extend them to higher-order interactions if it is statistically
possible (Marchini1 et al., 2005; Li, 2008). Heuristic methods
adopt machine learning or stochastic procedures to search the
space of interactions rather than explicitly enumerating all
combinations of SNPs (Zhang and Liu, 2007; Wan et al., 2010b).
More details about the popular GWAS mapping tools can be
found in recent surveys (Guo et al., 2014b; Niel et al., 2015;
Visscher et al., 2017; Wen et al., 2017).

To the best of our knowledge, most epistasis detecting tools
are only capable of identifying interactions on the data of
GWAS with two groups, i.e., case-control studies. These tools

are incompetent to discover genetic factors with diverse effects
on multiple diseases. Moreover, using a limited number of
case samples may lose the benefit of alleviating deficiency of
statistical powers by pooling different disease samples together.
Recently, Guo et al. developed a Bayesian inference based
method, named DAM, to detect multi-locus epistatic interactions
on multiple diseases (Guo et al., 2015, 2017). From our
experiments, DAM took 3 days to finish the analyzing a real
GWAS dataset using a desktop computer and only reported a few
significant epistatic interactions. In this manuscript, we present
a heuristic method, named JS-AM, based on Jensen-Shannon
divergence and agglomerative hierarchical clustering to select a
set of candidate SNPs that potentially have effects on multiple
phenotypic traits (Guo, 2015). A stepwise interaction evaluation
is engaged in JS-MA to further determining the association
types. Systematic experiments on both simulated and real GWAS
datasets demonstrate that JS-AM is feasible for identifying multi-
locus interaction using GWAS datasets and enriches some novel,
significant high-order epistatic interactions with various effects
on multiple diseases.

2. MATERIALS AND METHODS

2.1. Notation
For a GWAS dataset, let L denote the total number of groups,
including L − 1 case groups and one control group. Each group
has Nl samples with l ∈ {1, 2, . . . , L}. Let N be the total count of
samples from these L groups, and M be the number of diallelic
SNP markers. In general, the major alleles are represented
by uppercase letters (e.g., A, B,...) and the minor alleles are
represented by lowercase letters (e.g., a, b). We use {0, 1, 2}
to represent {AA,Aa, aa}. We use X to indicate the SNP set,
where xi indicates the i-th SNP. Let gxi ,...,xj be the combination

of genotypes giving a list of SNPs
{

xi, . . . , xj
}

. The probability
distribution of gxi ,...,xj is denoted as pgxi ,...,xj , or pg for simplicity.

Different from the most existing methods that deal with
one case and one control groups, we have two or more
cases. The number of partitions of L groups is known as the
Bell number (Guo et al., 2015). The SNPs can be assigned
to be associated with one or more cases either with the
same or different effects. Here, we call the assignment based
on association as trait-association types, or AT in short. An
example about five association types for a three-group dataset is
shown in Figure 1. In this example, each AT includes 2 SNPs.
There are three different probability distributions of genotype
combinations, which are labeled by color white, gray, and black.
SNPs 1 & 2 are related to case 1, and we call this type effect
as AT1. Similarly, we call the trait-association types for SNPs 3
& 4 and SNPs 5 & 6 are AT2 and AT3, respectively. For SNPs
7 & 8, the genotype combinations display different effects on
two cases, and we label it as AT4. For the last two SNPs, they
are not related to any case, i.e., following the same probability
distribution among three groups, and we call it AT5. In general,
the number association types is increasing as the number of
phenotype groups increases, which is controlled by the Bell
number.We use9 to denote the set of association types that have
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FIGURE 1 | The illustration for five association types by giving three groups. Ten SNPs of AT 1, 2, 3, 4, and 5 are associated with the phenotype traits with interactions

between each pair of them.

different probability distribution between the case and control
groups. Given L groups, we denote the number of all pairwise
combinations as |H| = L(L − 1)/2 and the combination set as
H =

{

h1, . . . , h|H|
}

. The probability distributions of genotype

data in hi combination are denoted as p(hi) and q(hi) for the first
and second groups, respectively.

2.2. Jensen-Shannon Divergence
We used a distance measurement based on the Jensen-Shannon
divergence (JS) for measuring the similarity between two SNPs.
JS is a popular distance measurement based on Kullback-Leibler
divergence (Lin, 1991), which evaluates the similarity between
two probability distributions. Given two distributions, p and q,
both with g categories, the Kullback-Leibler divergence is defined
as follows:

KL
(

p ‖ q
)

=
g

∑

i=1

pg log
pg

qg
(1)

The KL divergence is not a distance because it is not symmetric.
One symmetric version of KL divergence is JS, defined as:

JS
(

p, q
)

= 0.5KL

(

p ‖
p+ q

2

)

+ 0.5KL

(

q ‖
p+ q

2

)

(2)

where
p+q
2 is the pointwise mean of p and q. Here, for a genotype

g,
p+q
2 is equal to the average of pg and qg . Given a pairwise

group combination hk and two SNPs, xi and xj, we denote the

probability distributions of the genotype combination of xi and xj

as phk for the first group and qhk for the second group. Based on
JS, we define the distance between two SNPs, xi and xj as follows:

Dist(xi, xj) =

∑

hk∈H
JS

(

phk , qhk
)

|H|
(3)

If these two SNPs are associated to any cases, the distribution
of genotype combinations in case groups should be the same as
the one in control. And Dist(xi, xj) should be a very small value
toward 0; otherwise, Dist(xi, xj) is a large value toward 1.

2.3. Clustering
Our goal is to find a list of SNP modules containing d(d ≥
2) SNPs, which have large JS dissimilarity between any two
groups. It is computationally expensive to examine all d SNP
combinations when d ≥ 3 given millions of SNPs in one dataset.
In order to diminish the time complexity, we use agglomerative
hierarchical clustering to group SNPs into clusters so that SNPs
jointly affecting a trait go into separate clusters. More specifically,
the complete-linkage clustering criterion was used to determine
the distance between sets of SNPs. The distance from an SNP, xi,
to a cluster, C, is defined as

Dist(xi,C) = max
xj∈C

Dist(xi, xj) (4)

The distance between two clusters is defined as

Dist(Ci,Cj) = max
a∈Ci ,b∈Cj

Dist(a, b) (5)
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In the implementation of JS-MA, we used the nearest-neighbor
chain algorithm (Murtagh, 1983; Müllner, 2011). Compared to
the greedy algorithm that repeatedly forms a new cluster by
merging the closest pair of clusters, the nearest-neighbor chain
algorithm runs faster by merging pairs of clusters in a different
order. In brief, the nearest neighbor chain algorithm grows a
chain of clusters, where the newly added cluster is the nearest
neighbor of the previous one, and stops growing when reaching
a pair of clusters that are mutual nearest neighbors. For our
complete-linkage clustering criterion, the nearest neighbor chain
algorithm can be guaranteed to generate the same hierarchical
clustering as the greedy algorithm (Murtagh, 1983; Müllner,
2011). The time complexity of the nearest-neighbor chain
algorithm is O(M2), where M is the number of SNPs. In our
setting, we will stop the chain growing once the number of
clusters reaches the expected number. Here, the number of
clusters is a user-defined parameter. It can be set to the largest,
expected size of epistatic modules. In our simulation, we set the
number of clusters to two and three for 2- and 3-locus models,
respectively. In the real data experiments, we set the number of
clusters to ten. Once the clustering is done, top f SNPs from every
cluster are selected for further interaction testing. Here, f is a
user-defined number. An SNP will be picked if it shows a high
dissimilarity measured by JS with other SNPs between any two
groups. Every SNP is ranked based on the following score.

Score(x) =
∑

x/∈Ci ,

Dist(x,Ci) (6)

2.4. Stepwise Evaluation of Interaction
We apply the χ2 statistic and the conditional χ2 test similar
to the ones in (Guo et al., 2015) to measure the statistical
significance for a SNP module. Let A = (x1, x2, . . . , xd :T)
denote an SNP module A with d SNPs of association type T.
We use χ2(x1, x2, . . . , xd :T) to denote the χ2 statistic of A

and χ2(x1, x2, . . . , xd|xc1 , xc2 , . . . , xcd′ :T) as the conditional χ2

statistic given a subset A′ = (xc1 , xc2 , . . . , xcd′ ) with d′ SNPs. The

χ2 statistic is calculated as

χ2(x1, x2, . . . , xd :T) =
|ST |
∑

i=1

3d
∑

s=1

(ni,s − ei,s)
2

ei,s
(7)

where ni,s is the frequency of s-th genotype combination in i-th
disjoint set for the association type T, ei,s is the corresponding
expected frequency, and ST denotes all the disjoint sets for L
groups. The degrees of freedom for Equation (7) is (|ST | − 1) ·
(3d − 1). The conditional χ2 statistic is defined as follows

χ2(x1, . . . , xd|xc1 , . . . , xcd′ :T) =

3d
′

∑

ι=1

|ST |
∑

i=1

3d−d
′

∑

s=1

(n
(ι)
i,s − e

(ι)
i,s )

2

e
(ι)
i,s

(8)

where we calculate χ2 statistic for A − A
′ separately for

each genotype combination in A
′. The degrees of freedom for

Equation (8) is 3d
′
· (|ST | − 1) · (3d−d

′
− 1). We treat SNPs as

redundant SNPs when they are conditional independent given
a subset of the SNP module. To avoid the redundant SNPs, we
are looking for compact epistatic interactions, which is defined
as follows:

Definition 1. An SNP module A = (x1, x2, . . . , xd) is considered
as a significant, compact interaction given a significant level αd, if
it meets the following two conditions:
(1) The p-value of χ2(x1, . . . , xd) ≤ αd, where the p-value of
χ2(x1, . . . , xd) = minT χ2(x1, . . . , xd :T);
(2) The p-value of χ2(x1, . . . , xd|xc1 , . . . , xcd′ ) ≤ αd, for
∀A′ = (xc1 , xc2 , . . . , xcd′ ), given the association type =
argminT χ2(x1, . . . , xd :T).

Based on the Definition 1, we develop a stepwise algorithm to
search for d-locus significant compact interactions. We assume
that one SNP can only participate in one significant interaction
and is only associated with one association type. We first search
all modules with only one SNP based on Definition 1. Then
we recursively enlarge the SNP module size by one at a time
until it reaches a user pre-set value d. We add all novel d-way
interactions (i.e., none of the SNPs in the module has been
reported earlier) that are significant to a list L after applying
Bonferroni correction for 9 ·

(M
d

)

tests. For the interactions
whose subsets have been reported as significant before, we use the
conditional independent test, and put the interaction in L if it is

still significant after Bonferroni correction for 9 ·
(M
d

)

·
(d
d′

)

tests.
We also apply a distance constraint that the physical distance
between two SNPs in a multi-locus module should be at least
1Mb when analyzing real data. This constraint is used to avoid
associations that might be due to the linkage disequilibrium
effect (Cordell, 2002).

2.5. Algorithm
The details of the JS-MA algorithm are shown in Algorithm 1
consisting of three steps: clustering, SNP ranking, and stepwise
evaluation. In clustering, the nearest neighbor chain algorithm
repeatedly follows a chain of clusters, where each cluster is has
the smallest distance to the previous one, until the number of
clusters reaching user-defined parameter. In the second step, all
SNPs are ranked based on Equation (6) and inserted into a size-
limited descending list to select promising SNPs. In the last step,
the χ2 and the conditional χ2 statistics are used to search for the
significant, compact epistatic interactions.

3. EXPERIMENTAL DESIGN

In this section, we introduce the simulation design, including the
definitions of 10 two-locus, 6 three-locus multi-disease models
and the power metric. The other start-of-the-art methods we
used to compared with JS-MA, including BOOST (Wan et al.,
2010a), DAM (Guo et al., 2015), SEE (Sun et al., 2019), and
SNPRuler (Wan et al., 2010b). Note that BOOST and SEE are
designed for detecting gene-gene interactions, i.e., interactions
between two loci.

Frontiers in Genetics | www.frontiersin.org 4 October 2020 | Volume 11 | Article 507038369

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Guo JS-MA

3.1. Data Simulation
To evaluate the performance of JS-MA, we perform extensive
simulation experiments using 10 two-locus disease models
(Model 1–10) and 6 three-locusmodels (Model 11–16) with three
groups, including 2 case and 1 control groups. Since there are
three phenotype groups, we could have five different association
types (ATs 1–5). Note that AT1 and AT2 are equivalent if
case 1 and case 2 are interchangeable, which is the case in
our simulation.

The odds tables describing these 16 models are in the
Supplementary Material. For the two-locus models, models 1–
4 are the base models, and the rest are derived from the base
ones by combining two models or letting one case group follow
the same distribution as the control group. For the four two-
locus base models, we took the same parameters as in Wan et al.
(2010a) and Guo et al. (2014a). More specifically, we have h2 =
0.03 for Model 1, h2 = 0.02 for Models 2, 3, and 4 and p(D) =
0.1 for all four models. Minor allele frequencies (maf ) are set to
three levels: {0.1, 0.2, 0.4}. For the three-locus models, models 11
to 13 are the base models, the rest are derived using the same
way as for the two-locus models. We set h2 = 0.03 and p(D) = 0.1
for Model 11, 12, and 13. The solved parameters µ and θ under
different settings are provided in the Supplementary Material.
The genotypes of unassociated SNP are generated by the same
procedure used in previous studies (Guo et al., 2014a) with mafs
sampled from [0.05, 0.5].

As introduced in the section 2.1, AT1 indicates the loci having
different effects on the first case group compared to the other
groups. AT2 indicates the loci having different effects on the
second case group compared to the other groups. AT3 indicates
the loci showing an identical effect on both case groups but
different from the control group. AT4 indicates the loci with
distinct effects on each group. We generate 100 replicas for each
model, as well as for each maf . Note that some models do not
have mathematical solution for µ and θ when maf = 0.1 or
= 0.2. In this case, the power metric value is missing for all

methods. Each simulated replica containsM = 1, 000 SNPs. The
sample sizes of two case groups and one control group are set to
(500, 500, 1, 000) or (1, 000, 1, 000, 2, 000).

3.2. Statistical Power
The measure of discrimination power is defined as the fraction of
100 replicas on which the ground-truth associations are the top
one signification epistatic interactions.

4. RESULTS AND DISCUSSION

In this section, we first present the type 1 error rate of JS-
MA under the null model. And then we show the experimental
results on the simulated datasets. We also present the results
of JS-MA on two real GWAS datasets from WTCCC (Zeggini
et al., 2007), i.e., Rheumatoid Arthritis (RA) and Type 1 Diabetes
(T1D). Note that among these five approaches, only JS-MA and
DAM are able to label the association types that we defined in
section 2.1, and the rest methods can only report the interactions
without information about the phenotype(s) on which they have
genetic effects.

4.1. Null Simulation to Test Type I Errors
We examined the type I error rate for interactions with different
number of SNPs, i.e., d = 2, 3, 4. We generated 1,000 null
datasets for six settings, respectively. Specifically, we fixed the
number of SNP to 1,000 and vary the number of samples in each
group. The first four settings contained the following numbers
of samples: N1 = {200, 200, 400}, N2 = {400, 400, 800}, N3 =
{800, 800, 1, 600}, andN4 = {1, 600, 1, 600, 3, 200}, where the first
two numbers indicated the sizes of two case groups, and the last
number was the control group size. For the last two settings,
using N4, we increased the number of SNP to 2,000 and 4,000.
All SNPs were generated independently, with maf uniformly
distributed in [0.05, 0.5]. Note that we set the significance level to
0.1 and applied the Bonferroni correction for multiple hypothesis

FIGURE 2 | False positive rates of JS-MA under null simulation. The plots in (A,B) show the false positive rates for different ds, sample sizes, and the numbers of SNP.
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testing. The degree of freedom for Pearson’s χ2 test is df =
(|T| − 1)(|G| − 1), where |T| denotes the number of disjoint
set of groups for the association type |T|, and G is the set of
genotypes given the SNP module. The degree of freedom for

conditional χ2 test is |G′|(|T| − 1)(|G/G′| − 1), where G′ is the
set of genotypes given a subset of the SNP module, and G/G′

denotes the set of genotypes for the rest SNPs. The results shown

in Figure 2 demonstrated that JS-MA can well control the type
I error rate.

4.2. Simulation Experiments on Two-Locus
Models
We tested the performance of JS-MA and four other methods
on the datasets generated by two-locus models. The test results

FIGURE 3 | Performance comparison between JS-AM, BOOST, DAM, SEE, and SNPRuler on the simulated two-locus models 1, 2, 3, and 4 for association types 1,

2, and 3.

Frontiers in Genetics | www.frontiersin.org 6 October 2020 | Volume 11 | Article 507038371

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Guo JS-MA

FIGURE 4 | Performance comparison between JS-AM, BOOST, DAM, SEE, and SNPRuler on the simulated two-locus models 5–10 for association type 4. Note that

the models 5, 6, and 7 have no mathematical solution when maf = 0.1.

are illustrated in Figures 3, 4. As we expected, the powers of all
methods increased when the sample size increased from (500,
500, 1,000) to (1,000, 1,000, 2,000). For all models, the powers
of JS-MA and SEE increased when the maf increased from 0.1
to 0.4. We do not observe a similar trend for BOOST, DAM, and
SNPRuler. All models were more powerful for AT3 than ATs 1
and 2 because ATs 1 and 2 have some cases similar to controls,
whichmakes it hard to locate the embedded interactions. Overall,
the powers of JS-MA are higher compared to other methods
except in a few cases where the power is comparable with
others. For a more intuitive comparison, we adopt a concept,
overall quality q = 100 × ncorrect/ntotal from (Guo et al.,
2014a), where ncorrect is the number of datasets from which the
method successfully detected the ground-truth interaction, and
ntotal is the total number of datasets. The overall quality of JS-
MA, BOOST, DAM, SEE, and SNPRuler are 94, 50, 89, 51, and
11% for the sample size (500, 500, 1, 000), and 97, 78, 93, 71,
and 13% for the sample size (1, 000, 1, 000, 2, 000), respectively.

It showed that JS-MA achieved 3–5% better results than the
second best.

4.3. Simulation Experiments on
Three-Locus Models
The experimental results on models 11–16 are shown in
Figures 5, 6. In these experiments, BOOST and SEE were
dropped because they cannot detect three-locus interactions.
From Figures 5, 6 we can find that all three methods had nearly
no power when the sample size is small. It is reasonable since a
high-order interaction needs to have larger effect size for small
sample size compared to large sample size. When the sample
size was doubled, all three methods started to gain some power.
Compared to the results from two-locus models, all the methods
are not as powerful as before. In all settings, JS-MA is the most
powerful approach. Using the same overall quality measurement
introduced in the last section, JS-MA, DAM, and SNPRuler
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FIGURE 5 | Performance comparison between JS-AM, DAM, and SNPRuler on the simulated three-locus models 11, 12, and 13 for association types 1, 2, and 3.

reached 4, 3, and 1% for sample size (500, 500, 1,000), and 77,
70, and 9% for sample size (1,000, 1,000, 2,000), respectively.

4.4. Computation Efficiency
From a practical point of view, a challenging bottleneck of
mapping multi-locus epistatic interactions in GWASs is the
computational efficiency. Traditional tools for two-locus epistatic
interaction detection usually take several days for a dataset with
millions of SNPs using a standard desktop (Wan et al., 2010a).
We measured the running time of JS-MA, BOOST, DAM, SEE,

and SNPRuler on one computing node of an HPC system with
a UNIX operating system, Intel Xeon E5-2699v4 Broadwell, and
128 GB memory. The results are shown in Table 1. Here, we set
the target number of SNPs in an epistatic interaction to be two,
and the rest of the parameters for each tool were left unchanged
with default values. Table 1 showed that JS-MA was faster than
BOOST, DAM, and SNPRuler in most scenarios. The running
time used by JS-MA did not increase as fast as SNPRuler and
DAM did when the number of SNPs increased. Since SEE is a
heuristic method, it used the least amount of time. However, its
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FIGURE 6 | Performance comparison between JS-AM, DAM, and SNPRuler on the simulated three-locus models 14, 15, and 16 for association type 4. Note that the

models 14 and 16 have no mathematical solution when maf = 0.2.

TABLE 1 | Time comparison of JS-MA, BOOST, DAM, SEE, and SNPRuler (in

seconds).

Data size JS-MA BOOST DAM SEE SNPRuler

N = 6,000, M = 1,000 8 6 31 6 13

N = 6,000, M = 5,000 20 31 187 10 184

N = 6,000, M = 10,000 81 96 512 18 741

performance is not as good as the rest. We also measured the
memory consumption for JS-MA. JS-MA used 10, 62, and 130
MB for 1,000, 5,000, and 10,000 SNPs, respectively. The majority
of the consumed memory was used for storing the genotype data.

4.5. Experiments on The WTCCC Data
We employed JS-MA to analyze real data from the
WTCCC Zeggini et al. (2007) for two common human
diseases, i.e., Rheumatoid Arthritis (RA), Type 1 Diabetes
(T1D). There are 3999 cases and 3004 shared controls. We
constructed a dataset with RA as case 1 and T1D as case 2. The
procedure of quality control is the same as presented in Guo et al.
(2014a). After the SNP filtration, the dataset contains 333,739
high-quality SNPs. By setting f × k = 100 with k = 10 as the
number of clusters, JS-MA finished the searching in 3 h using
the same computing node, which was used in the computation
time analysis. JS-MA reported some novel epistatic interactions.
For example, (rs6679677, rs805301) was labeled as AT4, and its
p-value is 6.2 × 10−120 from the χ2 test. For this interaction,
rs6679677, located on Chromosome 1, has been reported to be
associated with both RA and T1D (Burton et al., 2007). The
association between rs6679677 and T1D is due to a closely linked,
potentially causal variant identified as rs2476601, which is also
known as Arg620Trp (Smyth et al., 2008). Whereas, rs805301 is
located inside gene BAG6 on Chromosome 6. BAG6 encodes a
nuclear protein that forms a complex with E1A binding protein
p300 and is required for the response to DNA damage. The
SNP module (rs6679677, rs805301) shows different association

effects on RA and T1D compared to the control group. Another
interesting interaction is (rs200991, rs11171739) labeled as
AT2, and its p-value is 6.7 × 10−26 from the χ2 test. In this
interaction, rs200991 is located on Chromosome 6 near the gene,
HIST1H2BN, which encodes Histone H2B type 1-N. Histones
play a central role in transcription regulation, DNA repair, DNA
replication, and chromosomal stability. And rs11171739 has
been reported to be associated with T1D (Burton et al., 2007).
AT2 means the SNP module may not have a genetic effect on RA.

Algorithm 1: The JS-MA Algorithm.

Require: An N × (M + 1) matrix
Require: Number of clusters k, top f SNPs in a cluster
1: Read N × (M + 1) matrix file
2: Calculate the pairwise distance based on JS (Equation 3)
3: Initialize each SNP as a cluster
4: n← M
5: while n > k do

6: Apply nearest neighbor chain algorithm
7: n− = 1
8: end while

9: Initialize descending list L with length f × k
10: for each SNP x do
11: Calculate Score(x)
12: Place x into L if Score(x) is among top f SNPs
13: end for

14: Stepwise evaluate all possible SNPmodules using SNPs in L

JS-MA also reported some three-locus epistatic interactions. For
instance, (rs6679677, rs377763, rs9273363) labeled as AT2 with
p-value 1.3 × 10−116. Both rs377763 and rs9273363 are located
on Chromosome 6. rs377763 is near the downstream of gene
NOTCH4, which is found to be associated withmultiple sclerosis,
a chronic inflammatory disease. rs9273363 is inside the gene
HLA-DQA1, which plays a critical role in the immune system.
The protein produced from the HLA-DQA1 gene binds to the
protein produced from the MHC class II gene, HLA-DQB2.
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Many studies have reported the MHC region on chromosome
6 with respect to infection, inflammation, autoimmunity, and
transplant medicine (Lechler and Warrens, 2000; Wan et al.,
2010a; Zhang et al., 2012). A four-locus interaction found by JS-
MA is (rs10924239, rs17432869, rs7610077, rs11098422) labeled
as AT4 with p-value 3.9× 10−106. rs10924239 is an intron variant
of the gene KIF26B on Chromosome 1. KIF26B is essential
for embryonic kidney development. rs17432869 is located on
Chromosome 2 and inside gene LOC105373439, which is an
RNA Gene and is affiliated with the ncRNA class. rs7610077 is
located on Chromosome 3 and inside gene SNX4, which encodes
a member of the sorting nexin family. rs11098422 is located
on Chromosome 4 and inside gene NDST3, whose expression
impacts the cardiovascular system. Validating the relationship
between these SNP modules and RA and T1D is beyond
the scope of this work. The significant enrichment of some
genotype combinations from these SNP modules in both cases
implies that they might interact and/or be associated with these
two diseases.

5. CONCLUSION

The enormous number of SNPs genotyped in genome-wide case-
control studies poses a significant computational challenge in
the identification of gene-gene interactions. During the last few
years, many computational and statistical tools are developed
to find gene-gene interactions for the data containing only two
traits, i.e., case-control groups. Here, we present a novel method,
named “JS-MA,” to address the computation and statistical power
issues in multi-disease GWASs. We have successfully applied JS-
MA to systematically simulated datasets and analyzed two real
GWAS datasets. Our experimental results on both simulated
and real data demonstrate that JS-MA is capable of detecting

high-order epistatic interactions for multiple diseases at the
genome-wide scale. It is worth mentioning that when JS-MA is
used to analyze real data, quality control procedures are necessary
because sequencing bias and genotyping bias could confound
JS-MA by leading to false-positives. For example, the coverage
bias caused by sequencing machines may have SNPs with low,
uneven coverage. Thus, quality control is required to filter out
unreliable SNPs.
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