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Editorial: Music and AI
Alexandra Bonnici 1*, Roger B. Dannenberg2, Steven Kemper3 and Kenneth P. Camilleri 1

1Department of Systems and Control Engineering, University of Malta, Msida, Malta, 2School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, United States, 3Mason Gross School of the Arts, Rutgers, The State University of New Jersey,
New Brunswick, NJ, United States

Keywords: music composition, expressive playing, music recommendation, sight-reading, music interfaces, music
and mental health, artificial inteligence, machine learning

Editorial on the Research Topic

Music and AI

Computer algorithms have been shaping the music scene since the 1950s. Artificial intelligence,
machine learning and computational methods have left their mark not only on the way that music is
composed and performed but also on the adoption of new musical notations; different music
learning approaches as well as in different marketing strategies which change the way music is
consumed.

AI IN THE PRODUCTION OF NEW MUSIC

Computational techniques have been used in a variety of ways for the creation and production of
musical compositions with this field predating even digital music synthesis. Algorithmic music
composition techniques range from the use of stochastic processes to create music based on
random events to learning-based approaches. The paper “Computational Creativity and Music
Generation Systems: an Introduction to the State of the Art” (Carnovalini and Roda) reviews
work extending over six decades, organizing their presentation by methods, ranging from
Markov chains to deep networks, and offering a set of open challenges. An extensive
bibliography is included. Just as the techniques used to generate the music are varied, so too
is the style of music generated, from the creation of written scores to musical accompaniment.
“Evolving Musical Sight Reading Exercises Using Expert Models” (Pierce et al.) presents a
novel evolutionary algorithm for generating monophonic sight-reading exercises in the Western
art music tradition. Drawing on expert models of published sight-reading exercises, the
evolutionary process draws on six fitness measures to create new exercises designed for
specific grade levels of musical instruction. These include target note lengths, target rest
lengths, allowable lengths, target intervals, allowable intervals, and melody shape. “On the
Adaptability of Recurrent Neural Networks for Real-Time Jazz Improvisation
Accompaniment” (Kritsis et al.) describes the basic implementation of an artificial jazz
accompanist system that provides real-time accompaniment to a human musician soloist,
based on a given harmonic description of lead sheet chord symbols. Recurrent Neural Networks
are employed both for modeling the predictions of the artificial agent and for modeling the
expectations of human intention. Fuzzy logic is a branch of AI that is often overlooked in this age
of big data and neural networks. Nevertheless, fuzzy logic can be a powerful tool for modeling
and learning music information expressed as signals, parameters or symbols. Fuzzy logic offers a
useful framework for expressing models that can assist learning from less data. “Creating Music
with Fuzzy logic” (Cadiz) offers an introduction to this field and describes a software toolkit
created for composition and real-time music applications.
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AI TO CREATE EXPRESSIVE MUSIC

Music must be performed expressively to be engaging.
Computational musical expression systems learn expressive
performance models from examples of human performances to
adapt these to themusic at hand. Expressivemusic performance thus
alters the "mechanical" or literal performances implied by discrete
music notation symbols into more nuanced realizations with
alterations in timing, dynamics, timbre, vibrato and other details.
“A Dynamic Representation Solution for Machine Learning-
Aided Performance Technology” (Palamara and Deal) considers
the use of AI techniques to interpret discrete dynamic values, such as
p, mp, f and ff to control parameters that can adapt to performance
context.

EASY-TO-USE MUSIC INTERFACES

As machine learning makes its way from the worlds of science,
technology and commerce to the arts, there is a need for easy-to-
use systems and interfaces that can be applied directly by artists,
composers and performers. “Evaluating the Usability of an API
for Rapid Prototyping Music Technology with Interactive
Machine Learning” (Bernardo et al.) considers the problem of
supporting designers of creative software projects with tools for
machine learning. The study offers insights into both the design of
machine learning frameworks and evaluation strategies. Another
application of AI is toward intelligent instruments that adapt to or
enrich human performance gestures. Understanding Musical
Predictions with an Embodied Interface for Musical Machine
Learning” (Martin et al.) implements a purposefully simple
musical instrument with just one input, a lever controlling
pitch, and an internal sequence-prediction algorithm based on a
recurrent neural network and trained on human performances.
The study sheds light on how humans interact with predictive
gestural interfaces. In “Automated Page Turner for Musicians”
(Tabone et al.), the authors describe using eye-gaze tracking to
enable hands-free page turning, employing Kalman filtering to
balance the music-reading model and the noisy eye-gaze data, thus
obtaining stable and reliable page-turning.

AI IN MARKETING OF MUSIC

Music providers are also using AI to learn the musical preferences
of consumers to provide customised playlists based on listening
patterns. “Listener Modeling and Context-aware Music
Recommendation Based on Country Archetypes” (Schedl
et al.) considers how music preferences are shaped by the
country of the listener. The study uses unsupervised learning
to suggest nine archetypes or clusters of listening preferences and
shows that recommendation systems can be enhanced by using
country information.

MUSIC AND HEALTHCARE

Music has many implications for health care, and computer-
generated music is of special interest due to the possibility of
making music for specific functions or according to particular
therapeutic constraints. “On the use of AI for Generation of
Functional Music to Improve Mental Health” (Williams et al.)
uses machine learning to create music targeting a specific
physiological response. This work suggests a new direction for
the evaluation of music generation systems as well as future
applications such as games and health care.
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With an Embodied Interface for
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Machine-learning models of music often exist outside the worlds of musical performance

practice and abstracted from the physical gestures of musicians. In this work, we

consider how a recurrent neural network (RNN) model of simple music gestures

may be integrated into a physical instrument so that predictions are sonically and

physically entwined with the performer’s actions. We introduce EMPI, an embodied

musical prediction interface that simplifies musical interaction and prediction to just one

dimension of continuous input and output. The predictive model is a mixture density

RNN trained to estimate the performer’s next physical input action and the time at which

this will occur. Predictions are represented sonically through synthesized audio, and

physically with a motorized output indicator. We use EMPI to investigate how performers

understand and exploit different predictive models to make music through a controlled

study of performances with different models and levels of physical feedback. We show

that while performers often favor a model trained on human-sourced data, they find

different musical affordances in models trained on synthetic, and even random, data.

Physical representation of predictions seemed to affect the length of performances. This

work contributes new understandings of how musicians use generative ML models in

real-time performance backed up by experimental evidence. We argue that a constrained

musical interface can expose the affordances of embodied predictive interactions.

Keywords: musical performance, interface, mixture density network (MDN), recurrent neural network (RNN),

creativity, predictive interaction, embodied performance

1. INTRODUCTION

It is well-known that music is more than just what you hear. Movements, or gestures, also
contribute to musical communication (Jensenius et al., 2010). Most acoustic music performance
involves control gestures to operate instruments, but performers also use expressive auxiliary
gestures to communicate musical expression (Broughton and Stevens, 2008). In contrast, machine-
learning models of music often exist outside the world of physical performance with music
represented symbolically or as digital audio, both forms abstracted from musicians’ physical
gestures. If these models are to be applied in real-time musical performance, then it is crucial
to know whether performers and listeners understand predicted musical information and how
they use it. In this work, we consider how a recurrent neural network (RNN) model of simple
music gestures may be integrated into a physical instrument so that predictions are sonically and
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FIGURE 1 | The Embodied Music Prediction Interface (EMPI) prototype. The

system includes a lever for a performer’s physical input (left side) and a

motor-controlled lever for physical output, a speaker, and Raspberry Pi. This

system represents a minimum set of inputs and outputs to experiment with

embodied predictive interaction. A demonstration video can be viewed in the

Supplementary Material.

physically entwined with the performer’s actions. Our system,
the embodied musical prediction interface (EMPI, see Figure 1),
includes a lever for physical input from a performer, and a
matching motorized lever to represent predicted output from the
RNN model. We use this interface to investigate how performers
can make use of musical machine-learning predictions in real-
time performance, and whether physical representations might
influence their understanding of such an instrument.

Rather than predicting symbolic music, such as MIDI notes,
our RNN model predicts future musical control data—the
physical positions of the EMPI’s lever—in absolute time. These
predictions can thus be represented both through the sound
produced by predicted movements as well as through physical
actuation of these control elements. The goal is to train
a machine-learning model that can improvise on a musical
instrument directly, rather than compose notes. To examine
the potential of this idea, our EMPI system simplifies musical
interaction to the barest requirements: just one dimension of
continuous input and output which both control the pitch
of a synthesized sound. By reducing the musical prediction
problem, we seek to expose the performers’ understanding of and
adaptation to a musical ML system.

The EMPI system includes a single-board computer for
machine-learning calculations and synthesis, one lever for
physical input, one for actuated physical output, and a built-in
speaker. It is completely self-contained, with power supplied by
a USB power bank. The machine-learning model is a mixture
density RNN trained to predict the performer’s next physical
input action and the time at which this will occur (Martin and

Torresen, 2019). The system includes three different models:
one trained on a corpus of human-sourced performance data;
one trained on synthetically produced movements; and one
trained on noise, or movements that are uncorrelated in time.
Although multiple interaction designs could be possible, we
focus here on applying predictions to continue a performer’s
interactions (Pachet, 2003), or to improvise in a call-and-
response manner.

Embedded and self-contained instruments are important
current topics in digital musical instrument design (Moro
et al., 2016); however, these instruments usually do not
include predictive capabilities. On the other hand, musical
AI is often focused on composition using high-level symbolic
representations (e.g., Sturm and Ben-Tal, 2017), and not the
interactive or embodied factors (Leman et al., 2018) of music
perception and creation. In this work, an embedded instrument
design is combined with a novel, embodied approach to musical
AI. This combination of embodied musical prediction with
interaction allows us to explore musical AI within genuine
performance environments, where movement is entangled with
sound as part of musical expression.

We evaluated the success of this system through examination
of generated data from these trained models as well as through
a study of 72 performances made with this system under
controlled conditions with 12 performers. This evaluation sought
to identify whether the actions of the different predictive models
are understandable to the performers, and whether they perceive
useful musical relationships between their control gestures, and
the model’s response. We also investigated whether embodied
interactions with this system’s physical output improves or
distracts from these understandings.

Our survey findings show that, of the three models, the
performers assessed EMPI’s humanmodel as most related to their
performance, most musically creative, more readily influenced
and more influential on their playing than the other models.
However, interviews with participants revealed they also saw
value in the synthetic and even noise model based on their
interactive affordances and musical styles. While performers
were split on opinions regarding the physically embodied
response lever, the length of improvisations suggests that the
lever did effect their perceptions of the model’s actions. Our
study has demonstrated that a constrained, ML-enabled musical
interface can afford a variety of creative performance styles. The
performer’s understanding of the different ML models seems to
have a significant bearing on how they interact with the interface.
We argue that physically actuated indicators, although potentially
distracting for some performers, can expose the actions of an
embodiedmusicmodel, and encourage users to explore newways
of performing.

2. BACKGROUND

Musical instruments are not typically predictive; instead,
definitions of interactive music systems focus on behavior in
reaction to gestural input (Rowe, 1993). The advent of electronic
musical instruments including powerful computers has allowed
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experiments with instruments that are able to make intelligent
use of the musical context in which they are used. This has
been discussed since at least the early 1990s (Pressing, 1990),
but has been extended in recent years with the development
and popularity of accessible machine learning frameworks for
understanding physical gestures in performance (Fiebrink, 2017).
Artificial intelligence techniques can imbue a musical interface
with a kind of self-awareness (Lewis et al., 2016; Nymoen et al.,
2016), allowing them to act predictively, rather than in reaction
to a performer.

The question of how to make best use of musical predictions,
particularly from a performance perspective, remains open.
Present work in musical deep neural networks is often focused
on symbolic music generation (Briot et al., 2020), on the
modification (Roberts et al., 2018) or in-filling (Huang et al.,
2017) of given musical sequences, and creating musical digital
audio (Engel et al., 2019). Examples of these neural networks have
recently been embedded into digital audio workstation software
to aid users during music composition (Roberts et al., 2019).
Predictions are therefore used to make more music, or better
music. We do not stray far from this characterization in the
present work, but rather consider musical data to include gestural
feedback, as well as more typical notes and sounds. Where a
typical musical interface maps gestures into sounds, a predictive
interface can also map current gestures into future gestures and
represent these gestures themselves as well the sounds they might
produce (see Figure 2).

Music has many representations, including lead sheets, scores,
and recorded audio with varying levels of specificity over the
musical work recorded (Davies, 2005). The machine learning
models mentioned above have focused on generating music
represented either symbolically (e.g., as MIDI notes), or as digital
audio, a more-or-less finalized representation. In this work, we
use control gestures to represent musical performance; a format
that is more open than digital audio, but more specific than
MIDI notes, especially in terms of precise expression. As argued
in section 1, control and auxiliary gestures are important parts
of musical performance (Jensenius et al., 2010). Further, an
embodied view is required to understand how we perceive and
perform music (Leman et al., 2018). Some machine learning
models do predict embodied representations of artistic data. For
instance, SketchRNN predicts pen movements to draw images
(Ha and Eck, 2017), and SPIRAL generates instructions for a
paint program to generate realistic images (Ganin et al., 2018).
This concept has also been applied to musical sketches in
RoboJam (Martin and Torresen, 2018), and the IMPS system
(Martin and Torresen, 2019), which applied similar mixture
density RNNs as in the present research to predict movements on
a touchscreen or of arbitrary numbers of control values through
time. One field where embodied music is crucial is musical
robotics (Bretan andWeinberg, 2016), although physical motions
in this field are usually not the direct predictions of anML system,
but programmed in response to decisions to actuate certain notes
on an acoustic instrument.

The EMPI system in this work is an example of an embedded
and self-contained computer music interface. Handheld and
self-contained electronic instruments, such as Michel Waisvisz’

CrackleBox (Waisvisz, 2004), the toy Stylophone (McNamee,
2009), or Korg’s more recent monotron synthesizers have been
popular since the late 1960s. While most computer music
instruments involve a laptop computer externally connected
to a controller interface, Berdahl and Ju (2011) argued that it
was advantageous to embed a single-board computer (SBC),
such as a Raspberry Pi inside the musical instrument to create
an integrated and portable musical instrument. The resulting
Satellite CCRMA system used a Raspberry Pi with a USB-
connectedmicrocontroller (Berdahl et al., 2013). The Bela system
(Moro et al., 2016) developed this idea, with an integrated
hardware extension to the Beaglebone Black platform providing
an embedded instrument platform with high audio and sensor
performance (McPherson et al., 2016).

Apart from technical advantages, embedded instrument
designs can be artistically advantageous in terms of enabling
exploration through physical manipulation (Reus, 2011) and
even live hardware hacking (Zappi and McPherson, 2014).
Self-containment can also enable new research methodologies.
Gurevich et al. (2012) explored a constrained self-contained
musical interface. In this case, the self-contained nature of the
device allowed it to be distributed to participants and explored
by them on their own terms.

So far, there are few examples of embedded computer music
interfaces that include music prediction ANNs. This is despite
significant interest in ML-prediction on internet of things (IoT)
or edge computing platforms (Ananthanarayanan et al., 2017).
In one of the only present examples, Næss and Martin (2019)
demonstrated an LSTM-RNN-driven embedded music generator
based on a Raspberry Pi. This work showed that RNN prediction
is practical on an embedded system, and the resulting self-
contained interface allows the music generation system to be
examined by musicians. In the present research, we also use
a Raspberry Pi as the embedded computing platform for an
RNN-based musical prediction system. This work goes further
by exploring musical predictions at the gestural, rather than
symbolic level of representation. Our system embeds a predictive
model in a system with physical, as well as sonic output. This
allows us to examine both musical expression and predictive
interaction in a real-time performance situation.

3. SYSTEM DESIGN

Our Embodied Musical Predictive Interface (EMPI), shown
in Figure 1, is a self-contained musical interface. EMPI is a
highly constrained musical interface, with only one dimension of
continuous input. The EMPI’s matching physical output allows it
to represent the embodied predictive process to a human user.
Its self-contained form-factor allows musicians to explore and
integrate predictive musical interaction into different scenarios.

The physical design of EMPI is focused on hand-held and
self-contained interaction. The 3D-printed enclosure includes a
Raspberry Pi model 3B+, one lever for input, a speaker and
servo-controlled lever for physical output. A 5,000 mAh USB
power bank is attached to the base of the enclosure. The input
and output levers are interfaced to the Raspberry Pi through
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FIGURE 2 | Typical musical instruments translate physical gestures into musical sounds. A predictive instrument can guess future gestures and use this knowledge to

provide continuous sonic output and physical feedback to the performer.

FIGURE 3 | Hardware layout of our self-contained interface. A Raspberry Pi

computer provides sound synthesis, model predictions and manages the

interactive configuration. Physical input and output is provided by a

potentiometer and servo interfaced via a microcontroller. A speaker for audio

and USB battery are also included.

its USB ports and a small ATmega 32U4 microcontroller board.
The speaker and a small amplifier is connected directly to the
Raspberry Pi’s audio output. A system diagram shows these
components in Figure 3.

The software aspects of the system providemusical interaction
and prediction capabilities. The most important of these is a
low-level internal model of performer interactions: a sequence
of real-valued potentiometer positions, along with a time-delta
value. To model this data, we use a 2D mixture density RNN
that predicts the position, and the time, of the next user input.
Various trained models can be used with this network based on
either real-world or synthetic training data. It should be noted
that RNN predictions are computed by the EMPI’s Raspberry Pi,
not an external system.

The prediction model is implemented in Python using
TensorFlow, and applies a special case of our Interactive Music
Prediction System (IMPS) which has been previously described
(Martin and Torresen, 2019). The IMPS system contains the
predictive MDRNN model, and communicates with Pure Data
over OSC to receive user interactions and send sound and
servo commands. Pure Data synthesizes the sound output and
communicates with the microcontroller using MIDI over USB.
This system is configured for call-and-response performance.
When the performer is playing, their interactions are used to

condition the MDRNN’s memory state. If they stop playing
(after a threshold of 3 s), the MDRNN attempts to continue
where they left off, generating more interactions until the
performer plays again. The EMPI’s hardware design and software,
including trained models, are open source and can be found
online (Martin, 2019a).

3.1. Predictive Model
The EMPI uses a mixture density recurrent neural network to
predict future input on the lever. This architecture combines a
recurrent neural network with a mixture density network (MDN)
(Bishop, 1994) that transforms the output of a neural network
to the parameters of a mixture-of-Gaussians distribution. Real-
valued samples can be drawn from this distribution, and the
number of mixture components can be chosen to represent
complex phenomena. The probability density function (PDF) of
this distribution is used as an error function to optimize the
neural network. In contrast, the softmax layer used in many
music RNNs parameterizes a categorical distribution between a
set number of discrete classes.

The expressive capacity of MDRNNs has been previously
exploited to generate creative data, such as handwriting (Graves,
2013) and sketches (Ha and Eck, 2017). This architecture has only
recently been applied to musical interaction data, for instance in
RoboJam to continue musical touchscreen interactions (Martin
and Torresen, 2018), and in IMPS as a general model for musical
interaction data (Martin and Torresen, 2019). For the EMPI
interface, anMDRNNmodel has the advantage of delivering real-
valued samples for lever position and time, as well as a tuneable
learning capacity in terms of the RNN configuration (width and
number of LSTM layers) and the number ofmixture components.
This allows us to generate movements in absolute time and to
potentially learn complex behaviors from the lever movements.

EMPI’s MDRNN is a special case of the one described in IMPS
(Martin and Torresen, 2019), and is illustrated in Figure 4. The
neural network has two inputs. One input is for the current
lever position (xt), and the other for the time since the previous
movement (dtt). These inputs are fed through two layers of long
short-termmemory (LSTM) units and into theMDN layer which
outputs the mixture parameters. Each of the K components of
the mixture is a bivariate Gaussian distribution with a diagonal
covariate matrix with centers (µxk,µtk) and scales (σxk, σtk).
A set of mixing parameters (π1, . . . ,πK), forms a categorical
distribution between the mixture components. In our case, we
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FIGURE 4 | The EMPI’s internal model uses a 2D mixture density recurrent neural network (MDRNN) with one dimension predicting the input value and the second

predicting time deltas between each movement.

FIGURE 5 | Detail of the EMPI’s MDN layer. Three parallel dense layers transform the output of the LSTM units into the parameters of a mixture of bivariate Gaussian

probability distributions.

set the number of mixture components K = 5 following previous
work (Martin and Torresen, 2019).

The MDN layer is provided by the Keras MDN Layer
(v0.2.1) library (Martin, 2019b). This layer transforms the
outputs of the LSTM layers into appropriate parameters to
form the mixture distribution (see Figure 5). The outputs of
the LSTM layers are fed into parallel dense layers that output
the centers, scales, and weights of the mixture distribution,
respectively. No activation function is used for the centers and
weights. The exponential linear unit (ELU) activation function
(Clevert et al., 2016) is used for the scales, with the output
offset by 1 + 10−7. This ensures that the scales are positive
and non-zero while providing gradients at very small values
(as recommended by Brando, 2017). To train this neural
network, the PDF of the mixture model is constructed using
Mixture and MultivariateNormalDiag distributions
from the TensorFlow Probability library (Dillon et al., 2017) to
provide a likelihood function that the training target was drawn
from the mixture distribution predicted by the neural network.
The negative log of this likelihood can be used as a loss value
for gradient descent to optimize the neural network’s weights.
Further discussion of this procedure can be found in Bishop’s
work (Bishop, 1994).

To sample from the parameters output by the MDRNN, first,
a mixture component is chosen by sampling from the categorical
distribution. Then, this chosen mixture component is sampled to
produce an output value. Similarly to other generative RNNs, the
sampling diversity, or temperature, can be altered to draw more
or less conservative choices. The πk form a categorical model
that can be adjusted with the usual temperature modification
in the softmax function (Hinton et al., 2015, see Equation 1).
The covariance matrix can also be scaled to produce a similar
effect. This process yields a sample (xt+1, dtt+1), representing

a prediction of the next lever position and time at which it
could occur. By feeding this sample back into the MDRNN, a
continuous stream of lever movements can be generated.

3.2. Sound Design
The digital synthesis routine for EMPI runs in Pure Data so a
variety of mappings between lever motion and output sound are
possible. In our configuration, Pure Data receives one value from
the input lever (its position as a MIDI continuous control value),
and one from the predictive model’s virtual lever. This data is
only sent when either lever’s position changes, this is similar to
the implementation of a fader on a MIDI control surface. We
chose to use the lever positions to control pitch. The amplitude
of the sound is controlled by an envelope that is only sustained
as long as the lever continues to move. This means that rhythmic
performance is possible (albeit with small glissandi) by tapping
the lever slightly while allowing the sound to diminish in between
each movement.

We experimented with controlling a variety of sounds from
the levers, such as simple tones, plucked strings (reminiscent of a
harp glissando), sample playback, and formant synthesis. For this
research, we settled on a simple 4-operator FM synthesis routine
with a slight change to the tone controlled by having separate
envelopes on modulation and carrier oscillators. Similarly, while
it is possible to have dramatically different sounds on the input
and output levers, we used the same synth routine (separate
voices), with the EMPI’s virtual lever tuned one octave lower. This
arrangement allows the sounds to be distinguished as different
voices, but recognized as coming from the same source.

3.3. Data
We have experimented with models based on three sources of
training data: (1) a collection of solo improvised recordings using
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FIGURE 6 | Excerpt from a 10-min human-sourced improvisation with the input lever. This performance was part of the training data for the EMPI’s MDRNN model.

the EMPI; (2) synthetic data generated from simple waveforms;
and (3) uniform noise. The human-sourced data was collected
on the EMPI hardware in “human only” mode where the human
input was directly linked to a synthesized sound with no input
from the internal model. The improvised performances were
completely unconstrained and included data from the entire
input range of the lever, periods of no interaction (rests), as well
as sweeps and movements in different speeds and rhythms. The
improvisation was performed by the first author and an excerpt
example from the data is shown in Figure 6. This training dataset
is available as part of the EMPI source code (Martin, 2019a).

The synthetic data was generated to represent plausible lever
motions in repetitive patterns. To generate these, a sequence of
time-steps was drawn stochastically from a normal distribution
with mean and standard deviation identical to the human-
sourced improvisation1. This sequence of time-steps was then
fed through sine, square, and triangle wave functions with
frequencies at five steps between 0.1 and 1.1 Hz to generate
the input values. In total, 10,000 datapoints were generated for
each function and frequency resulting in 150,000 total datapoints.
The noise data associated a uniformly sampled random number
(between 0 and 1) for each of 30,000 time-steps drawn by the
same method. Excerpts from the data generated by sine, square,
and triangle waves, as well as noise, are shown in Figure 7.

The three sources of data were used to train separate models
for the EMPI that are used in the experiments described
in section 4. The rationale for using three different models
was to explore the creative utility of models based on both
human-sourced and synthetically generated data. While the
synthetic data is a simple behavior it could potentially represent
an appealing and recognizable movement to a performer. In
contrast, the noise dataset was not intended to be appealing,
rather it was intended to have no recognizable behavior.

4. EVALUATION

Our evaluation of EMPI is focused on the generative potential
of the ML models embedded in the device, and the experience
of human performers who interact with it. We first discuss
the ML models in the abstract and then describe the results

1The human data above was found to have a mean time-delta of 0.045 s

with S.D. 0.184.

of a human-centered experiment with the EMPI where twelve
participants each perform six improvisations under different
experimental conditions.

4.1. Machine Learning Models
In this section we evaluate the performance of the mixture
density RNN architecture and three models applied in the EMPI
system. We performed a small training experiment to ascertain
an appropriate size of model for the datasets that we used,
and generated unconstrained performances from each model to
observe what its behavior might be like in performances.

4.1.1. Training
Previous research has suggested that smaller MDRNNs—i.e.,
with 64 or even 32 LSTM units in each layer, might be
most appropriate for modeling small amounts of musical data
for integration into an interactive music system (Martin and
Torresen, 2019). We trained EMPI’s MDRNN models with 32,
64, 128, and 256 units in each LSTM layer to ascertain the
best accuracy in terms of reproducing held-out examples from
the dataset. Each candidate model used two layers of LSTM
units and was trained on sequences that were 50 datapoints in
length. Training was conducted using the Adam optimizer with
a batch size of 64 and with 10% of training examples held out for
validation. For each model, the number of mixture components
was held static at 5.

The human dataset contained 75,262 interaction events,
corresponding to 65 min of interaction with the EMPI system.
The noise dataset included 30,000 interaction events, and the
synth dataset included 150,000 interaction events to allow for
10,000 points with each of the 15 signal variations.

The training and validation set loss over this training process
for the human dataset are shown in Figure 8. Over the 100
epochs of training on human-sourced data, the 32-unit MDRNN
produced the lowest validation loss. For this reason, and also
out of concern for speed of computation on the Raspberry Pi,
this size of MDRNN was chosen for our experiments below.
The noise and synth models used the same size MDRNN. To
avoid overfitting, for each dataset we selected the model with
the lowest validation loss achieved during these 100 epochs of
training. These models were used for the generation experiments
below and in our performer study.
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FIGURE 7 | Excerpts from a synthesized data corpus created using stochastically sampled time steps. The function generators are sine, square, and triangle at 0.1

Hz and uniform noise. These data were used as an alternative training data source for the EMPI’s MDRNN model.

FIGURE 8 | Training data loss and validation data loss while training the human-sourced EMPI model with different size MDRNN architectures. The 32-LSTM-unit

MDRNN produced the lowest validation loss and this architecture was used for all EMPI models.

4.1.2. Generation
To demonstrate the potential output of the RNN models we
generated sample performances in an unconstrained manner—
starting with an uninitialized memory state and random first
value, and linking output to input for 500 prediction steps.
Temperature settings of 1.1 for the categorical distribution and
0.1 for the multivariate Gaussian’s covariate matrix were chosen
by trial-and-error. The results of this experiment are shown
for each of the three models (human, synthetic, and noise) in
Figure 9.

The output of the human model seems comparable with the
human-sourced dataset (see Figure 6). The MDRNN captures
a mix of behaviors, such as full back-and-forth motions,

small fast movements, and stepping motions with pauses in
between movements. The synth model produced output that,
similarly to the training data, moves back-and-forth through
the whole range of motion with the ability to change its rate
of movement. The wave shape seems to change somewhat, but
does not deviate from a roughly sinusoidal pattern. The noise
model produces unpredictable patterns as expected. Rather than
generate uniformly random outputs over the range of themotion,
it seems to alternate between the upper and lower extremes with
random movements around the middle.

One notable difference between the models is that the human
model produces movements at a finer temporal granularity.
While 500 samples yields 70 s of movement from the noise and

Frontiers in Artificial Intelligence | www.frontiersin.org 7 March 2020 | Volume 3 | Article 612

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Martin et al. Understanding Musical Predictions

FIGURE 9 | 500 Datapoints from the 32-unit MDRNN models in generation mode starting with an uninitialized memory state and a random starting point. The

human-, synthetic-, and noise-based models are shown from top to bottom.

FIGURE 10 | 4,500 Datapoints from the 32-unit MDRNN trained on human data resulting in 180 s of performance.

synth models, only 20 s is produced from the human model.
This difference becomes apparent in performance with these
models as the human model moves much more smoothly than
the other two. A longer performance with the human model,
produced by sampling 4,500 datapoints, is shown in Figure 10.
This shows that the model often focuses on particular areas of the
control range for around 10 s before changing to back-and-forth
behaviors or moving to a different location. While the long-term

structure of the real human performance is not represented, the
local structure seems to be reasonably convincing even with this
small MDRNNmodel.

Performance with the three models (see video in
Supplementary Material) shows that the noise model produces
a consistent but unpredictable pattern, unaffected by any user
input. The synthmodel starts where the user stops, and continues
back-and-forth motion. This model can be controlled somewhat
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by feeding in particularly fast or slow movements, which are
matched by the MDRNN model. The human model generates
smoother movements that sounds most like normal user inputs.
Although it starts in the same location as the user, it seems more
difficult to control with different styles of playing than the synth
model. All three models appear to be stable and computationally
tractable for extended performances on the EMPI’s Raspberry Pi.

4.2. Performer Study
A study with performers was undertaken to ascertain the
effects of the three different models and the absence or
presence of physical feedback on their perception of the musical
interaction experience. The study took the form of a structured
improvisation session where participants performed six short
improvisations with the EMPI system under different conditions.

Two independent factors were explored in this study. The first
was themodel that the EMPI device used to make predictions; the
three models tested were trained with either human-, synthetic-,
or noise-sourced data. The second factor was the feedback with
the physically-actuated arm either enabled or disabled. These
conditions were combined leading to six instrument states and
each participant improvised under each of these. The study can
be characterized as a two-factor within-groups experiment.

4.2.1. Participants
Participants for the study were recruited from the music
and computer science communities at the Australian National
University. Twelve respondents (six female, six male) were
chosen to participate based on availability and experience with
musical performance.

4.2.2. Procedure
The study sessions took the structure of research rehearsals
(Martin and Gardner, 2019) in that the participants were asked
to perform six short improvisations with each one followed
by a written survey and the whole session concluded with an
interview. The study environment is shown in Figure 11. The
improvisations were finished when the performer determined
that they wanted to stop by signaling the researcher, or at a
maximum length of 5 min. Each participant’s six improvisations
was performed with one of the instrument states. The exposure to
different states was ordered following aWilliams (1949) design to
ensure balance with respect to first-order carryover effects. This
required six different orderings, each of which was replicated with
two different participants.

The collected data consisted of audio, video, and interaction
data recordings of the session, a semi-structured interview at the
end of the session, and a short written Likert-style survey after
each improvisation. The written surveys had 8 questions with
each recorded on a 9-point rating scale with labels only on the
extremes and midpoint: “Strongly Disagree” (1), “Neutral” (5),
“Strongly Agree” (9). The survey questions were as follows:

1. I understood the ML model’s responses (understood).
2. The responses were related to my performance (related).
3. The responses had a high musical quality (quality).
4. The responses showed musical creativity (creativity).
5. The responses influenced my playing (inf-play).

6. My playing influenced the responses (inf-resp).
7. The ML model enhanced the performance (enh-perf ).
8. The ML model enhanced my experience (enh-exp).

4.2.3. Survey Results
The distributions of responses to each question are
shown in Figure 12 and the data can be found in the
Supplementary Material. Responses to the survey questions
were analyzed with an aligned rank transform (ART) and
two-way mixed-effects ANOVA procedure. This procedure was
used to establish significance of main and interaction effects
due to the two factors (model and feedback). The ART-ANOVA
was performed in R using the ARTool library v0.10.6 (Kay
and Wobbrock, 2019). This procedure was used as it has been
recommended as appropriate for factorial HCI studies with
non-parametric data (Wobbrock and Kay, 2016), such as this
experiment. Post-hoc testing via Holm-corrected paired t-tests
were performed to establish significant differences between
responses to individual conditions.

The ART-ANOVA procedure revealed that the ML model had
a significant effect on responses to five of the eight questions;
these are shown in Table 1. The model had a significant effect
on how participants rated the relation between responses in
their performance, the musical creativity of responses, whether
responses influenced their playing and vice-versa, and whether
the ML model enhanced the performance.

The presence or absence of the servo-actuated lever did not
have any significant effects on the survey results. For Question 6,
“My playing influenced the responses,” a minor effect [F(1, 55) =
2.93, p < 0.1] was observed. The distribution of responses here
(see Figure 12) show that participants seemed to perceive that
they had more influence over the response when the physical
actuation was present.

As we detected significant effects of the ML model using the
ART-ANOVA procedure, post-hoc Holm-corrected paired t-tests
were used between the results for each MLmodel to reveal which
had led to significantly different responses to these questions.
For Question 2, participants reported that the responses were
more related to their performance with the human model than
the synth model and that the noise model was least related. The
differences were significant (p < 0.05) for all three models for
this question with the human model rated as most related, then
synth, then noise. The musical creativity (Q4) of responses was
rated significantly higher with the human model than for the
other two (p < 0.05). The participants reported significantly
more influence (Q5) from the human model than from the synth
model (p < 0.01), but the noise model’s influence was not
rated significantly differently to the other two. The performers
rated their own degree of influence over the human model (Q6)
significantly more highly than both the synth and noise models.
The noise model was also rated as providing significantly less
enhancement (Q7) to the performances than with the human
model (p < 0.05).

The survey results tell us that performers perceived the ML
model as making significant impacts on their performances while
the physical feedback only had a minor effect on the participants
perception of influence over the responses. The post-hoc tests
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FIGURE 11 | A participant performing with the EMPI during a study session.

FIGURE 12 | Distribution of responses to the eight survey questions divided by ML model and the presence or absence of the physical lever movement. Outliers are

shown as diagonal markers.

TABLE 1 | Survey questions with significant effects due to the ML model.

Question F Significance

2. The responses were related to my performance 12.42 p < 0.001

4. The responses showed musical creativity 6.87 p < 0.01

5. The responses influenced my playing 6.23 p < 0.01

6. My playing influenced the responses 6.51 p < 0.01

7. The ML model enhanced the performance 3.66 p < 0.05
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showed that the human ML model’s performances were rated as
significantly more related to the performers’ actions, significantly
more creative, and significantly more able to be influenced than
the other models. It also influenced the performers’ playing
significantly more than the synth (but not noise) model. This
suggests that the human model had learned enough human-like
behavior to interact with the human performers in a natural way.
The synthmodel was rated as performing significantly less related
actions than the human model, but was significantly better than
the noise model. While the noise model was rated as providing
significantly less enhancement to the performances, it did draw
some positive ratings, and in particular, was not significantly
more or less influential over the player’s performance than the
other two models.

4.2.4. Interview Results
The interviews following each session were structured around
the performers favorite/least favorite condition, whether they
preferred the servo on or off, which model they preferred, how
they found the interface, and whether they had suggestions
for improvement.

Almost all of the participants identified one of the human or
synth conditions as their favorite, with physical actuation either
on or off. They often reported that these conditions had felt most
responsive to their different inputs. Two participants seemed to
favor the noise model due to its interesting rhythmic pattern and
the fact that it was consistent. Six of the participants indicated
that one of the noise conditions had been their least favorite;
their main complaint was that they couldn’t figure out what the
noise model was doing. The other participants chose a human or
synth condition as their least favorite. One mentioned disliking
the smooth movement of the human model and others disliked
the repetitive gestures of the synth model.

Six of the twelve participants preferred to have physical
actuation, three preferred not to have actuation, and three had
no preference. Some participants preferred to have the visual
reinforcement of the model’s responses, one noted that it was
fun to have it moving, and another that it was similar to eye
contact in an ensemble. The servo-detractors felt that it drew
their attention away from the sound. One participant even closed
their eyes when the servo was turned on.

In general, the participants were able to identify the three
distinct models in performance without having been told
explicitly during the session. They commented on the idea of
exploring the influence they had over the responses as well
as taking influence from it. Several participants attempted to
lead the models and commented that the synth model seemed
to respond most clearly to different kinds of inputs. Some
participants were frustrated that themodels weremost influenced
by their training data, rather than the current performance.
One suggested implementing something more like a looper.
While several participants noticed that the noise model did not
respond to their performances, some enjoyed the distinct sound
of its performance. Several noted that the human model was
distinguished by its “slidy” sound, and one participant thought
this made it more expressive than the other models.

In general, participants seemed to enjoy using the EMPI, and
several noted that it was “cute” and fun to interact with. Most of
the participants commented that they could only “glide” between
notes with the lever, rather than skip pitches. In general, this
was seen as a limitation when compared with the ability of the
ML model to skip between notes. One participant, however,
mentioned that they felt they had improved over the session.
The participants also saw the focus on pitch control as a
limitation and one envisaged controlling other parameters by
moving the input lever in other directions. Others suggested
extra sounds or controls to fine-tune their input. Although the
EMPI was generally seen as unique, one participant compared
the EMPI to a flex-a-tone (a novelty percussion instrument) and
another to a hurdy gurdy (a string instrument with a crank-
driven frictionwheel). Several participants saw the strict call-and-
response interaction as a limitation, and wanted responses that
could overlap with their performance. One suggested reducing
the gap between their input and the response to allow for
continuous sound.

4.3. Discussion
The results of our study reveal variations in how performers
perceive the EMPI’s machine learning models and interface. The
ML model used in each performance had a significant effect
on responses to five of the eight survey questions covering the
relationship between performance and response, the musical
creativity of responses, the amount of influence between the
participants’ performance and the responses, and the extent to
which responses enhanced performances. The human model
seemed to produce responses that were most related to the
participants’ performance and were most creative. This model
seemed to influence the performers and receive their influence
most readily. On the other hand, several participants reported
that the synth model was their favorite in interviews. One
participant even favored the noise model.

A complication of this comparison is that the synth and noise
models sounded distinct from the participants’ performances,
primarily due to their quite different temporal behavior. In
contrast, the human model sounded more similar to what the
performers played. As a result, the human model may have been
less memorable at the end of the session. In terms of interaction
with the ML models, some participants were concerned with
exploring responses, discovering ways to exert control over what
the model would do. Others reported drawing inspiration from
the ML model’s performances, particularly those based on the
noise and synth models.

Several participants expressed a desire for the responses to
be more directly related to their own performances, perhaps
more like a looper, or reflexive instrument (Pachet et al., 2013).
In contrast, our MDRNN model (similarly to other RNN-
based music systems) has only limited capacity to reflect the
performer’s input material, and the relationship to the training
dataset is much more clear. These participants may have been
more interested in ML-systems with on-line training capability.
Our study seems to have shown that the performers distinguish
between the three models, and see advantages of each one, so a
compromise may be to give them control over which ML model
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FIGURE 13 | Distribution of performance lengths by experiment condition.

The lack of physical actuation resulted in greater variation in the length of

performances for the human and synth ML models.

is active, emphasizing the strong role of the training data in what
they will hear.

The presence or absence of the servo-actuated lever did not
have a significant effect on any of the survey questions. The
interviews revealed that although half of the participants liked
having the servo turned on, the others preferred it off, or had no
preference. This split opinion could explain the negative result
in the surveys for this effect. It could be that for performers in
control of a solo instrument, the physical embodiment of gestures
are less important than for an audience watching a performance.

One objective measure of these performances, the length
(shown in Figure 13), does show some interesting results related
to the servo. For both the human and synth performance, the
interquartile range of the length is wider with the servo on
than off. For noise, the interquartile range is wider without the
servo. An interpretation of these results is that for the more
widely favored models, the presence of the servo encouraged
some performers, who played for longer, and discouraged
others, who stopped performances sooner. The random and
unyielding nature of the noise model’s performance may have
been more apparent with the servo turned on, resulting in
shorter performances. It seems that there may yet be an effect
due to physical representation of the ML model’s behavior in
terms of how quickly performers recognize and understand
boring responses. A further study could isolate this effect while
controlling for differing opinions on physical actuation.

The participants were broadly positive about the EMPI’s
interface design and interacting with theMLmodels. They agreed
in almost all performances that the ML models had enhanced
their experiences, and that the responses showed musical quality
and creativity. Although some were frustrated by constraints
of the single lever interface, they often overcame these to
some extent during performance while attempting to match the
behaviors of the ML models. Although the performers generally
tried to influence themodel’s responses, theymay have beenmore
influenced themselves. This suggests that the choice of model in
EMPI may be more important in terms of suggesting different
ways to play the instrument than in picking up the performer’s
pre-existing musical gestures. Future experiments with EMPI
could apply other RNN model architectures or datasets to
examine the musical styles they might afford performers.

5. CONCLUSIONS

In this work, we have examined musical AI through a novel,
machine-learning-enabled musical instrument, the embodied
musical prediction interface (EMPI). The EMPI system is
consciously constrained. This design choice focuses attention
toward embodied predictive interaction, where a performer
creates music in a call-and-response improvisation with an ML
model that can predict physical musical gestures. We use this
interface to investigate how different recurrent neural network
models are understood and exploited by performers. We also
ask whether the physical representation of predictions helps or
hinders the performer. While we have examined the generative
potential of our ML models, our focus has been on how this
system might be used in genuine musical performance. To this
end, we conducted a formal, controlled experiment where 12
participants created 72 improvised pieces of music.

Through this study, we found evidence that the ML model’s
training dataset affects how performers perceive the model’s
responses, the extent to which they are able to influence it and
use it as a source of inspiration. We found that the different
performers appreciated different models and that their interest
was often drawn to models that were distinct from their playing.
Although the survey results often favored the human model,
some performers expressed preferences for the model trained
on synthetic data and even the model trained on noise. We
found that the performers were split on their preference for the
physically actuated lever although analysis of the length of the
improvised performances suggests that it affects how long the
EMPI performance might hold their interest.

These findings suggest that the presence of different ML
models can change how users perform with a musical
interface. The use of an MDRNN to predict embodied gestural
data, rather than musical notes, seems to have added a
new dimension of flexibility to our instrument in terms
of creating models from synthetic data. The human model
sounded most related to the performer’s playing, but the
two models based on computer-generated data also led to
satisfying improvisations. It is entirely feasible to add more
custom-designed models to EMPI and to allow musicians to
choose which they would like to use, even during the same
performance. Our study results suggest that this could lead to
new kinds of performances both from the ML response, and the
performers’ interactions.

While the use of physical actuation was not universally
appreciated, overall, the performers reacted positively to the
EMPI instrument. Many participants continued to perform and
explore the interface and the ML responses up to the 5-min

limit of the experimental improvisations. This finding suggests

that constrained and gesture-focussed musical instruments can

benefit from generative ML interactions that, so far, have often

been limited to keyboard-style interfaces. Constrained and self-
contained electronic instruments could be an effective way to
deploy musical AI systems into broader use by musicians.
Physically actuated indicators may be controversial but have the
potential to encourage users to explore new ways of operating an
interactive music system.
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Our work has demonstrated that although simple, EMPI
supports a range of musical interactions afforded by the
presence of multiple ML models. We also found that while
physical actuation of embodied predictions can serve as both
an aid and a distraction to different performers, interacting
with embodied predictions can enhance a performer’s musical
experience. Overall, this work contributes new understandings
of how musicians use generative ML models in performance
backed up by experimental evidence. Our embodied predictive
instrument is also a contribution as an open hardware and
software system. This research has demonstrated that EMPI
can produce compelling music experiences within a lab
setting. We argue that EMPI, and future embodied predictive
instruments, hold substantial potential for enhancing and
enabling musical creativity.
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Computational Creativity is a multidisciplinary field that tries to obtain creative behaviors

from computers. One of its most prolific subfields is that of Music Generation (also called

Algorithmic Composition or Musical Metacreation), that uses computational means to

compose music. Due to the multidisciplinary nature of this research field, it is sometimes

hard to define precise goals and to keep track of what problems can be considered

solved by state-of-the-art systems and what instead needs further developments. With

this survey, we try to give a complete introduction to those who wish to explore

Computational Creativity and Music Generation. To do so, we first give a picture of the

research on the definition and the evaluation of creativity, both human and computational,

needed to understand how computational means can be used to obtain creative

behaviors and its importance within Artificial Intelligence studies. We then review the state

of the art of Music Generation Systems, by citing examples for all the main approaches

to music generation, and by listing the open challenges that were identified by previous

reviews on the subject. For each of these challenges, we cite works that have proposed

solutions, describing what still needs to be done and some possible directions for

further research.

Keywords: computational creativity, music generation, survey, meta-review, algorithmic composition, musical

metacreation, automatic composition, computer music

1. INTRODUCTION

What is Creativity?
While the term is of fairly common use in everyday life, giving a precise definition of this concept

is not a trivial task. The general idea is that it relates to the ability that some human individuals
possess to create something that did not exist before. Upon further reflection, one can notice that
most of the times these “creations” start from concepts that already existed, or at least that could
already have existed, but that nobody had already explicitly linked in a fixed product. This kind of
“novel linkage” is what brought us works of art such as Dals The Persistence of Memory: clocks
had been painted before, and everybody has experienced that things can melt, but nobody had yet
linked these two concepts in a painting.

There is another question relating to creativity that raises evenmore problematic considerations:
can computers be creative? The usual experience with machines is that we humans give a set of
instructions to the machine along with some initial data (the input), and we expect the machine
to behave in a way that is fully deterministic, always giving the same output when the same input
is given. Moreover, we expect that the output should be something that can be fully expected and
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computed even without the help of a computer, albeit the
computation of the output could be extremely time-consuming
(otherwise we would not have resorted to computers in the
first place).

The word deterministic seems to be the exact opposite of
our understanding of the concept of creativity, and yet the idea
of obtaining creative behaviors from computers has inspired
the writing of a notable amount of scientific publications, that
can be collected under the field of Computational Creativity
(CC), defined as:

“The philosophy, science and engineering of computational

systems which, by taking on particular responsibilities, exhibit

behaviors that unbiased observers would deem to be creative.”

Colton and Wiggins (2012).

Practitioners of this field share the interest in gaining a better
understanding of how creativity works, and to what extent it
can be replicated via a computer system. The above definition
underlines the diversity in background of the people researching
CC. Such a diverse community is for sure source of many
interesting insights, but there is also room for many different
goals and perspectives that sometimes can make it hard to
understand what is the current general direction of the research,
and what directions should be explored for the advancement of
the field (Lamb et al., 2018).

One of this field’s goals is for sure answering to the above
question can computers be creative?, that is most interesting to
computer scientists and engineers that wish to create advanced
models of artificial intelligence with creative capabilities. Yet,
this is only one of the possible goals: artists could be more
interested in finding out how computers can help express their
own creativity, while psychologists and philosophers are more
interested in using computer models of creativity to better
understand creative processes that happen in humans (Pearce
et al., 2002). The diversity of the goals is reflected in the diversity
of the literature concerning CC. Some works are devoted to
the definition or the assessment of creativity itself. A notable
amount of contributions focus on the design of systems that
are meant to be creative, sometimes designing them starting
from some definition of creativity, and thus trying to actually
obtain output that is creative according to a certain evaluation
method. Other times, the system is simply designed to tackle
tasks that are commonly considered to involve creativity (usually
artistic tasks like painting or composing music), but the process
involved in the generation of such output does not necessarily
involve creativity. More often than not, the creativity of the
creative systems is not evaluated in any formal way, either having
just summary evaluations of the quality of the output or not
having any evaluation at all (Jordanous, 2012). This might be
fine for the artistic goal of empowering the creativity of humans
through computational means, but is not acceptable for AI
practitioners trying to understanding whether computers can
exhibit creative behaviors.

One especially prolific research task of CC is that of music
generation, that has interested computer scientists even before
the birth of the term Computational Creativity. Ever since

the early days of computing, scientists and engineers have
used computers for musical task, creating digital synthesizers,
developing engraving software, and also writing procedures that
generate musical scores, to be performed either by computers
or by humans. This task was called Algorithmic Composition,
and as the name suggests was related to a well defined
procedure (an algorithm, once again a concept distant from
creativity Papadopoulos and Wiggins, 1999; Nierhaus, 2009;
Fernández and Vico, 2013. A name that is more common
today is Musical Metacreation, that suggests the fact that the
programmer creates a system that in turn can create some
kind of music Pasquier et al., 2017; Bodily and Ventura,
2018. Throughout this article, we will use the more neutral
term “Music Generation Systems” (MGSs). Music is especially
interesting for the investigation in CC because of the broad
possibilities that it offers in terms of mathematical and
computational representations, and because it does not need
explicit semantics like other forms of art such as poetry or
non-abstract painting (Wiggins, 2018). This might be some of
the reasons why there is so much research on MGSs, and also
many reviews of the literature. Those reviews usually focus on
the technical approaches used for music generation rather than
the contributions given to the understanding of creativity in
computers and humans.What this survey tries to accomplish is to
give a broad introduction to the field of CCwith a focus onMGSs,
first reviewing the literature on the definition and evaluation
of creativity and then focusing on the systems proposed in
literature, describing the current approaches and the challenges
that are still not fully addressed, and what kind of solutions have
been tried or proposed to overcome those problems.

2. FORMALIZING CREATIVITY

2.1. Defining Creativity
We opened the introduction to this paper asking what is
creativity. This is a question that many researchers have
faced before, especially after Guilford’s speech to the
American Psychological Association in 1950 advocating for
psychological studies on creativity (Rhodes, 1961). Since that
year, psychological research on creativity exploded, exploring
many facets of what defines and stimulates creativity in humans.
Some works were focused on the study of what are the personality
traits of the creative person (Rhodes, 1961; Getzels and Jackson,
1962), as well as what external factors can positively or negatively
influence creativity (Amabile, 1983a,b). Other researchers were
more interested on the mental processes that happen in the
creation of something creative, and finally many works were
dedicated to the definition of creativity itself.

2.1.1. Creativity as Novelty and Value
The newfound abundance of research led to having hundreds of
definitions of creativity in literature. In their works, Sarkar and
Chakrabarti analyzed over 200 of those (Sarkar and Chakrabarti,
2008, 2011; Ranjan et al., 2018), finding that the factors that have
been used as indicators for creativity can be grouped in two main
categories: Novelty (or unusualness, unexpectedness, surprise,
originality) and Value (or usefulness, quality, appropriateness,
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meaningfulness). This subdivision is not new at all, as already
Stein (1953) had proposed a definition of a creative work as
novel and useful or satisfying. Novelty is usually considered the
defining characteristic of a creative artifact, but value is also
necessary: it is easy to think of something that has never been
built before, like a car with fifteen wheels, but while such car
would be novel, it would have higher maintenance costs, with
little or no increase in performance. This kind of novelty lacks
value: creativity (that includes value) introduces innovations
useful to the purpose of the created object, possibly leading to a
general advancement in its own field. One example of creativity in
the field of car manufacturing could be the introduction of hybrid
cars: the idea of using two different energy sources was novel,
but hybrid cars are now common because of the advantages they
bring to their owners in terms of efficiency. On the contrary, it
is highly unlikely that our fifteen-wheeled car could become an
industrial standard.

While Novelty and Values are surely important features of
creativity, these give only a vague description of creativity. From
their study of the literature, Sarkar and Chakrabarti (2008)
reached a somewhat more complete definition of creativity:

“Creativity occurs through a process by which an agent uses its

ability to generate ideas, solutions or products that are novel

and valuable.”

2.1.2. The Four Perspectives of Creativity
The above definition points out that creativity is a concept that
cannot be ascribed to the final artifact, but must consider its
creation. In particular, it underlines the existence of a process,
used by an agent, to create a product. These represent three of the
four “P’s” of creativity, first identified by Rhodes (1961): Person,
Process, Product, Press. Rhodes was interested in the educational
aspects of creativity and in educating children to be creative, but
later the focus shifted toward the study of what makes something
be considered creative. This shift is probably partly due to a paper
by Anna Jordanous, who revisited the concept of the four P’s
under the light of the evaluation of creativity (Jordanous, 2016),
but the definition of the four P’s had already started changing
soon after the original paper by Rhodes (Golann, 1963), showing
that while the general idea of the four P’s was immediately utilized
by the scientific community, it took some time to reach widely
accepted definitions. Lamb et al. (2018) describe the four terms
as follows:

• Person: is the human (or non-human agent) who is seen as
creative. Person theories study what it is about the agent that
makes them creative.

• Process: is the set of internal and external actions the agent
takes when producing a creative artifact. Process theories
study what sort of actions are undertaken when creative work
is done.

• Product: is an artifact, such as an artwork or a mathematical
theorem, which is seen as creative or as having been produced
by creativity. Product theories study what it is about the
product that makes it worthy of being called creative.

• Press: is the surrounding culture which influences people,
processes, and products and which judges them as creative or
uncreative. Press theories study what it is that leads a culture
to view something as creative.

This useful subdivision into four perspectives helps frame the
various contributions on creativity, as often each work focuses
on only one or two of the above perspectives. For example, the
definitions of creativity as Novelty and Value are focused on the
Product, even if Sarkar and Chakrabarti’s definition encompasses
almost all four P’s. In the following sections we review some
contributions that focus on the other three perspectives: Person,
Process and Press.

2.1.3. Person
Regarding the Person perspective, the study of the personality
traits of creative people has unsurprisingly interested many
psychologists: already in the first years after Guilford’s speech
many works emerged (those early works were reviewed by
Golann, 1963), and soon was found out that creativity is not
directly related to intelligence (Getzels and Jackson, 1962),
and a relationship between creativity and humor was also
noted (Treadwell, 1970). Guilford himself underlined that
creatives emerge for their sensitivity to problems, mental
flexibility, and divergent thinking (Guilford, 1957, 1967). The
importance of this last trait was exploited by Torrance, who
designed the Tests of Creative Thinking (Torrance, 1965) that
give an effective measure for the individuation of creative
people (Torrance, 1988). Simonton (2000) gives a review of
psychological studies on creativity in terms of personal and
developmental traits, as well as the socio-cultural influence of
creativity (connecting the Person and the Press perspectives).

Within the field of CC, one could argue that any Turing-
complete machine is equivalent in what it can achieve,
thus making every computer system equal under the Person
perspective. Nonetheless, the Person remains an insightful
perspective at a more abstract level, for example when a
software system can be viewed as an agent or as a group
of agents collaborating together. In this case, the (virtual)
personality of each agent could give a different contribution to
the system, making it useful to consider psychological personality
aspects such as motivation (Guckelsberger et al., 2017) or
curiosity (Schmidhuber, 2012), or to try and model in software
cognitive aspects of creativity (Wiggins and Forth, 2015; Wiggins
and Sanjekdar, 2019).

2.1.4. Process
The Process perspective has interested CC the most, as someone
who wishes to obtain a creative behavior from a computer must
know how to describe creativity in algorithmic terms.While there
is no such thing as a fixed procedure to obtain something creative,
it is possible to gain insights on how to obtain creativity from the
study of the creative processes of people that have shown great
creativity throughout history (and wrote how they reached that
idea). This is in part what Margaret Boden did in her book, The
Creative Mind (Boden, 2004) (for a shorter introduction to the
same ideas, see Boden, 1998, 2009). The description of creativity
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she provides in that book has become extremely influential to the
field of CC, also because she used computer models of creativity
to discuss her ideas, explaining what was obtained and what was
still to be achieved by machines. One major contributions she
gave was the introduction of the idea of “Conceptual Space,” i.e., a
space where the possible concepts exist, some of which have been
explored and some are yet to be discovered. This idea allows the
distinction of many levels of creativity:

• Combinational Creativity: two already explored ideas from
a concept space are joined, thus creating an association that
is novel;

• Exploratory Creativity: some kind of method for the free
exploration of the concept space is used, to find regions in the
space that have not been yet explored, but are valuable;

• Transformational Creativity: the highest level of creativity
is reached when a new idea is found that was not part of
the original conceptual space, thus changing the shape of the
concept space itself.

The idea of obtaining creative ideas from the union of two
known ideas, that Boden called Combinational Creativity, is
at the basis of other theories of creativity, although with
different names: Koestler (1964) called the same idea Bisociation,
while Fauconnier and Turner (2008) used the term Conceptual
Blending. The novelty of Boden’s theory lies in the introduction
of conceputal spaces, necessary for the definition of the other
two levels of creativity. Wiggins (2006, 2019) mathematically
formalized these ideas, also showing that Transformational
Creativity is equal to Exploratory Creativity on a meta-level.

Another useful notion introduced by Boden is the distinction
between H-Creativity (historical creativity) and P-Creativity
(personal creativity). In order for something to be H-Creative, it
must be the first time it has appeared in the history of mankind,
while to be P-Creative it is enough to be new to the one creating
it. As an example, Boden mentions that if a child can prove
Pythagoras’ theorem without any help, we would find this deed
an impressive example of mathematical creativity even if that
theorem was demonstrated millennia ago. H-Creativity is what is
usually considered novel and/or creative, but Boden argues that
P-Creativity is just as important as it originates from the same
creative Process.

2.1.5. Press
The Press perspective is most interesting to the evaluation
and assessment of creativity. This is not just an appendix
to the concept of creativity: the definition we gave for CC
seeks behaviors that are deemed to be creative by an unbiased
observer, making it necessary to have an external appraisal
of the Product before calling something creative. The works
of Amabile have underlined both the importance of the
environment for the development of creativity (Amabile, 1983b;
Amabile et al., 1996) and the importance of the assessment of
creativity, proposing one of the first formalized methods for the
evaluation of creativity, using expert judges (Amabile, 1983a).
Moreover, Csikszentmihalyi (2013) pointed out the proactive
function that field’s experts can have in increasing the rate of

creativity in a particular domain. We will discuss the problems
relating to the evaluation of creativity later (see section 2.3).

Even if someone tried to directly assess the creativity of a
Product, of the Process behind it, or of the Person, he needs to
pass through the lens of human perception (and thus the Press
perspective) to be really understood (Colton, 2008), making the
Press perspective the most ubiquitous. On the other hand, the
Press perspective is not enough to give an indication of creativity,
since commercial success or reach of a Product is influenced by
a variety of factors that go beyond creativity, or even just its
Value (Fraiberger et al., 2018).

2.1.6. Dimensions of Creativity
Another interesting contribution to the definition of Creativity
comes from Jordanous and Keller (Jordanous, 2012, 2013, 2019;
Jordanous and Keller, 2012, 2016), who used a statistical language
processing techniques to identify fourteen main components of
creativity, as described by scientific research on the topic. This
study resulted in an unordered list of components, that should
be seen as different dimensions of the concept of creativity rather
than a systematic description (Jordanous and Keller, 2016):

• Active Involvement and Persistence;
• Dealing with Uncertainty;
• Domain Competence;
• General Intellectual Ability;
• Generation of Results;
• Independence and Freedom;
• Intention and Emotional Involvement;
• Originality;
• Progression and Development;
• Social Interaction and Communication;
• Spontaneity/Subconscious Processing;
• Thinking and Evaluation;
• Value;
• Variety, Divergence and Experimentation.

The notion of Novelty (here called Originality) and Value
are kept, but using all 14 components gives a much broader
definition of creativity, that considers all the four Ps: for example
General Intellectual Ability is related to the Person, Progression
and Development to the Process, Value to the Product, and
Social Interaction and Communication is connected to the Press
perspective. Jordanous and Keller (2012) explain that not all
the components listed above will be as important in all possible
creative deeds, so this list also offers the possibility to categorize
different kinds of creativity required by different activities.

To our knowledge, there is no work in literature that has
given a short definition or a model of creativity based on these
fourteen dimensions.

2.2. Computers and Creativity
The above definitions of creativity were general enough to
be applied both to humans and machines alike (although we
sometimes focused on the implication of those theories on
computers). It is now time to face the second question we posed
in the introduction: can computers be creative?
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This is a question that seems to be as old as computer
science: Lady Lovelace, while commenting the Analytical Engine,
mentioned that computers do not have the ability to originate
anything on their own (Lovelace, 1843). As paraphrased by
Bringsjord et al. (2003), her statement reads:

“Computers can’t create anything. For creation requires,

minimally, originating something. But computers originate

nothing; they merely do that which we order them, via

programs, to do.”

The Countess leaves no room whatsoever for creativity, but
other important scientists disagreed with her. Alan Turing, who
argued that artificial intelligence should have creative abilities,
responded to Lady Lovelace’s objection pointing out that she had
no real experience in programming, while we now know that a
computer can often surprise us by doing the exact opposite of
what we intended, until a program is thoroughly checked for
bugs (Turing, 1950). This response is somewhat unsatisfying,
since it seems that the only accountability for creativity from
computers would come from human errors, but in the rest of
the article Turing argues that intelligent machines should be able
to learn, thus gaining abilities beyond those envisioned by the
original programmer.

Another strong argument against computer creativity is that
of the “Chinese Room” introduced by Searle (1980). He argues
against artificial intelligence in general, but the argument applies
to creativity as well. He imagines to be locked inside a closed
room, that can accept questions and give answers written on
paper, either in English or in Chinese. For the English questions,
he would answer normally using his own intelligence, while for
the Chinese ones he would use a special script telling him, for
any combination of Chinese symbols that he sees, what symbols
to write as answer. Supposedly, the English answers would be as
good as the Chinese ones to the eyes of the people outside the
room (if the Chinese script is good enough), but the person inside
would not gain any knowledge of Chinese in this way. Searle
argues that computers work in this way, manipulating symbols
without having a real understanding of those.

Searle’s objection is rather convincing, unless we suppose that
the manipulations of symbols that happen in computers are in
reality not different from those that happen in our brains, if
not because of less “computational power” (Minsky, 1982). This
vision basically reduces human brains to extremely powerful
computers, so that an artificial computer could recreate all of
their functions. This is of course far from being a proven truth,
and does not fully account for things we experience everyday,
such as consciousness, free will, and subjectivity (Chalmers, 1995;
Hameroff and Penrose, 2014; Ceroni and Prosperi, 2018).

There is room for a long lasting debate on the possibility
of computers being “really” creative, but fortunately CC is not
ultimately interested in this debate. According to the definition
of CC, we want computer systems that have behaviors that an
unbiased observer would deem to be creative, and not necessarily
behaviors that are actually creative. This means that we aim at
simulating creativity well enough to trick observers into thinking
that the product they are seeing is actually creative.

It is nonetheless important to understand what creativity is,
and possibly to incorporate the definitions of creativity in the
generation process, because the unbiased observer will judge
creativity in the same way as it would with a human, thus
implicitly applying some of the concepts relating to creativity that
we illustrated above. The problem of the evaluation of creativity
thus becomes central: if the goal is to recreate what an observer
would deem creative, we need to give metrics of how creative
something would be perceived by an observer.

2.3. Evaluating Creativity
Despite the importance of the evaluation of creativity, most of the
scientific publications on evaluation only came about in the last
20 years (Jordanous, 2013). In this section we will describe some
of themost common creativity evaluationmethods. To read some
more extensive reviews on this subject, we suggest: Jordanous
(2012, 2013, 2014), Lamb et al. (2018), Pease and Corneli (2018),
and Ritchie (2019).

2.3.1. Turing Test-Like Approaches
The definition of CC that we gave suggests that creativity needs
to be assessed via human judgement, leading to evaluation
techniques based on the concept of “Turing Test” (Turing, 1950):
ideally, if a human cannot distinguish computer creativity from
human creativity, the computer has achieved a satisfying level
of creativity.

Amabile (1983a) proposed the Consensual Assessment
Technique, which has become the standard evaluation of human
creativity (Baer and McKool, 2009). This technique requires a
pool of experts independently evaluating a set of artifacts. An
artifact can be considered creative if it receives good evaluations
and the interrater reliability is high enough (for example having a
Cronbach’s alpha higher than 0.7). While this method was not
originally conceived for CC, it is easy to insert one or more
computer generated artifacts along some human made ones, to
get a comparison between human and computer creativity. The
judges only have access to the artifact, not knowing anything
about its author or background (including whether the author
is a computer). This means that they only evaluate the Product
perspective in a non interactive way. This is rather different
from the original Turing Test, but it was included in this section
because it operates a comparison between human and computers
carried out by a human evaluator.

Pearce and Wiggins (2001) propose a machine composition
framework that includes in its final phase an evaluation inspired
by the Turing Test (although the authors underline the major
difference of not having interaction). While it was initially
defined for music generation, it can be applied to CC in
general. This framework supposes that a corpus is available
to the software, and that some sort of learning is applied to
create a “critic” for that corpus. Once new compositions are
generated that satisfy the learnt critic, some generated pieces are
presented a group of subjects along with composition coming
from the corpus. The evaluators are asked to tell whether the
compositions they hear are human or machine made (similarly
to Turing’s imitation game). If their evaluation cannot be
statistically distinguished from a random selection, the system
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is considered effective. This approach, being entirely based on
learning a corpus, is arguably not really an evaluation of creativity
but rather one of quality in imitating human products.

Ariza (2009) underlines this and other limitations of Turing
Test approaches to the evaluation of creativity, showing how
sometimes these tests are implemented in a way that he calls “toy
Tests,” failing to understand that interactivity between human
and computers was the main feature of the “Imitation Game,” as
it was meant to assess intelligence, that is experienced through
interaction. Another critic to this kind of tests comes from Soldier
(2002), who raises a more fundamental doubt on the capability of
non-experts to act as evaluators. This is not surprising (indeed,
the Consensual Assessment Technique requires experts), but
often Turing Test approaches only require the evaluator to
be human.

Bringsjord et al. (2003) propose to go beyond the Turing Test
with the “Lovelace Test” (inspired by her statement reported
in section 2.2). The authors argue that Turing’s game could be
beat with simple manipulation of symbols without the need of
any intelligence (as Searle described with his Chinese Room
example). On the contrary, an agent passes the Lovelace Test
if and only if it is capable of creating an output of some kind
through a repeatable process, and this output cannot be fully
explained by the knowledge-base, the architecture, and the core
functionalities of the agent. Unluckily, this test is not easy to
perform in real-life situations, and arguably a machine could
never pass this test, as every output of a machine is the result
of its architecture and functionalities. This might be a good
abstract test for real creativity, but is not very useful to evaluate
CC systems.

Amoremanageable version of the Lovelace Test was proposed
by Riedl (2014), that requires the machine to be able to generate
an output that satisfies a set of requirements chosen by a human.
The generated output is then evaluated in terms of how well it
meets the requirements and if it is “not unrealistic for an average
human.” This proposal is somewhat unsatisfying, because by
losing the strong requirements of the original Lovelace Test it
basically falls back to a standard Turing Test, in a way that Ariza
(2009) described as “Directive toy Test,” meaning a Turing Test
where the interaction is only limited to giving initial directives for
the generation.

2.3.2. Self-Assessment Frameworks
Another popular approach is to have the author of the system
describe the way it works and how it can be considered creative
or not, and to what degree. These assessments try to frame the
chosen Process in some kind of creativity scale, for example
distinguishing if the used process is combinational, explorational
or transformative, using Boden’s categories. Indeed, this kind of
evaluation is reminiscent of how Boden investigated creativity in
her book (Boden, 2004).

Colton (2008) introduced these assessments with a reflection
on how the evaluation of the Product alone is not enough to
evaluate the creativity of a system. He proposes an example,
where the same object is obtained through different processes.
This can lead to different perceptions of creativity, but obviously
only if the process is known to the observer. In that paper, he

introduced the concept of the “Creative Tripod,” a tripod having
Skill, Appreciation and Imagination as legs, saying that all three
must be extended to some degree in order for the tripod to stand.

The tripod framework had little success, possibly because
it was not formalized enough, but it remained influential on
literature on creativity evaluation. Colton et al. (2011) and Pease
and Colton (2011a,b) described another framework for self-
assessment: the FACE and IDEAmodels. The FACEmodel can be
used to describe the creative capabilities of a system through a set
of symbols that tell if the evaluated system possesses or is capable
of generating Expressions (i.e., products), Concepts, Aesthetic
measurements, and Framing information (read backwards, the
initials spell FACE). The IDEA model describes instead the
impact of the system during its lifecycle, starting from the
developmental stage and ideally reaching a stage where it can
perform some kind of transformational creative processes.

These assessment frameworks are limited in the possibilities
they offer, and a common criticism is that the assessment comes
from the author of the system, making it biased. Nonetheless it
is useful to frame the capabilities of a system and to reflect on
the degree of automation in creativity it has reached, even just for
development purposes. Indeed, an extension to the FACE/IDEA
framework was proposed to consider the creative abilities of
different versions of a same software (Colton et al., 2014) to make
it easier for a developer to understand how the creativity of the
system is progressing.

2.3.3. Quantitative Metrics
In order to compare the results of different systems in terms
of creativity, and to give more scientific indications of the
effectiveness of CC applications, it is desirable to have objective
metrics that can indicate how creative a system is. Designing such
metrics is not an easy task, but many efforts have been made
toward this goal.

Ritchie (2001) proposed a set of criteria for the evaluation of
creativity based on the Product perspective, judged according to
Value and Typicality. The latter is a concept strongly related to
Novelty, but is based on the fact that an “inspiration set” (the
corpus used by the system) is available, and used to define what is
more or less typical. These two basic features must be measured
according to some rating scheme, and can then be used to
compute a set of parametrized criteria, that are basically functions
over the Value and Typicality. In his proposal Ritchie described
these criteria as either satisfied or not satisfied (if a certain
threshold is reached), but often these were applied as a continous
scale rather than a boolean one. Extending this evaluation
framework (Pease et al., 2001) focused on the measurement of
Value and Typicality, while Colton et al. (2001) investigated
the effects of fine-tuning the input knowledge. Ritchie (2007)
presented an updated version of his criteria, commenting the
works that have used it as a means of evaluation, but the presence
of many parameters to be tuned makes it difficult to use for
comparisons between different systems.

While Ritchie’s criteria are the main metrics for the evaluation
of creativity, there are other metrics in literature that can be
relevant for CC systems, although they do not evaluate directly
the creativity of the systems. Galanter (2012) made a review on
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metrics and methods to evaluate aesthetic value of computer
generated artifacts, that is a vital part ofmanyCC systems.Within
the field of computer vision, the use of fuzzy logic applied to
visual features was suggested for the automatic evaluation of
complexity, as well as interestingness and aesthetic value (Cardaci
et al., 2009; Tabacchi and Termini, 2011; Constantin et al., 2019).
Shaker et al. (2016) focus on procedural content generation, and
describe how it is possible to give a visual indication of the
capabilities of a system in terms of the variety of products it can
generate. To the best of our knowledge, this system has never
been used for CC systems, despite the fact that the representation
of the space of possible outputs generated by a system has
strong links to Boden’s theories (which in part inspired Shaker’s
work). Possibly, these graphical representations could give a
good indication of whether a system uses mere combinational
creativity or is capable of going beyond that limit.

2.3.4. Evaluation of Generated Music
The evaluation methods that we presented in the previous
paragraphs are general enough to be applied to musical
generation as well as to other CC applications. The following
methods focus instead solely on the evaluation of MGSs.

Eigenfeldt et al. (2012) used a concert setting to evaluate a
variety of MGSs, and a similar event is described by Sturm et al.
(2019). In both cases, the evaluation in itself was performed
via a questionnaire given to the audience of the concert.
This approach can be extended by turning the concerts into
music competitions, as has been done for computer-generated
expressive performances of human composed music (Katayose
et al., 2012; Schubert et al., 2017). If the program includes both
human and computer generated music, this approach becomes
similar to the ones inspired by the Turing Test, but a concert
setting is one of the most natural ways to experience music,
and could fatigue the evaluators less than a laboratory setting.
Two major limitations of this approach is that the audience will
evaluate music according to their personal taste, rather than
assessing creativity, and that this evaluation method can only
be used to compare the pieces that are included in the concert:
comparing different concerts could induce unwanted bias due to
different performers, venue and setting in general.

Another useful contribution is that of Yang and Lerch (2018),
that argue that while creativity cannot be assessed without a
human evaluator, it is useful to use formative metrics to describe
how well computer generated music fits a musical genre, in order
to help the development of the system toward “human-like”
music generation. To that goal, many quantitative metrics are
presented, and data visualization techniques are suggested.While
this does not solve the ultimate goal of the evaluation of creativity,
it is nonetheless an useful addendum to the evaluation toolbox.

An overview of the current methods for the evaluation of
MGSs is present in Agres et al. (2016), that provides both
motivations and tools to evaluate in different manners systems
that are merely generative, systems that allow for feedback,
and systems that are capable of some kind of self-reflection.
Moreover, a distinction is presented between internal and
external evaluation, the first being necessary for the functioning

of the system and the latter being the usual a posteriori evaluation
to understand the effectiveness of the system.

3. MUSIC GENERATION SYSTEMS

3.1. Meta-Review
This is not the first review on Music Generation Systems
(MGSs), and the goal of this work is not to give a
comprehensive review of every contribution to the field, but
rather an introduction through examples from literature. To
this goal, we searched on Scopus and Google Scholar for
reviews on MGSs that have been published over the last
10 years (2009–2019), by searching “computational creativity
music,” “musical metacreation,” “algorithmic composition,” and
“music generation” followed by “review” or “survey,” limiting
to first 50 results. From the results, only the papers written
in English after 2009 were kept. Of those, the abstract
was read to select those that were actually reviews of
artificial intelligence techniques for music generation. The
selected ones are listed in Table 1. Two results (Williams
et al., 2013; Briot et al., 2017) were excluded because they
were prior versions of the reviews we included by the
same authors.

It is important to notice that not all the works on MGSs
have the goal of CC in mind. Sometimes the goal of a MGS is
to create a formalization of a certain musical style, or to test
certain composition rules or assumptions by generating music
that satisfies those rules. Other times, the generation of music
itself is the only goal of those systems. This is also reflected
by the reviews on MGSs, that are not always concerned with
the creativity of the reviewed systems: we used search tools to
count the number of occurrences of the stem “creativ” in
the main body of the reviews, that we reported in the Table 1

under the column “Mentions to Creativity” to show that some
reviews on music generation hardly acknowledge the problem
of creativity at all. The goal of the reviews varies as well. Older
reviews made comprehensive lists of methods for MGSs, while
newer reviews tend to focus on more specific subsets of the
literature. A brief description of the aim of the included reviews is
listed under “Focus.” Since every review tends to group works in
clusters, we listed the criterion for the subdivision of the reviewed
works under the column “Taxonomy.” Finally, for each review we
included the number of pages and the amount of references in
their bibliography.

Some reviews also include sections or chapters are not directly
related toMGSs: Nierhaus (2009) includes a chapter narrating the
history of Algorithmic Composition; Williams et al. (2015) gives
a brief review of studies that investigate emotional correlates of
musical features; Herremans et al. (2017) gives an introduction
both to the history of Algorithmic Composition and to the
problem of Evaluation that we discussed in section 2.3. Finally,
Briot et al. (2020), gives an introduction both to the ways in
which musical data can be encoded and to deep learning in
general. Moreover, to exemplify some deep learning techniques
that were not yet used in MGSs, the authors cited some
visual generation systems.
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TABLE 1 | Summary of the reviews used as a starting point for the present survey.

Focus Taxonomy References Mentions to creativity Pages

Nierhaus (2009) Broad review of all the methods for algorithmic

composition in literature.

Method 328 24 294

Fernández and Vico (2013) Broad (yet condensed) review of all the methods for

algorithmic composition in literature.

Method 337 38 70

Williams et al. (2015) Affective/emotional assessment integrated in algorithmic

composition.

Expressive features 123 0 24

Herremans et al. (2017) An objective-based taxonomy to better understand the

state of the art in music generation.

Objective and method 165 4 30

Lopez-Rincon et al. (2018) Brief introduction on a variety of AI methods used for

music generation.

Method 32 2 7

Tatar and Pasquier (2019) Generative musical agents. Typology of agents 205 122 50

Briot et al. (2020) Music generation using deep learning techniques. Method 212 37 303

For each, the focus for the choice of works to be reviewed is reported, as well as what the classification of the systems is based upon (Taxonomy), the number of references present in

the reviews, the number of times creativity is mentioned, and finally the page count.

3.2. Methods for Music Generation
Many algorithms and techniques were applied to music
generation, but it is possible to group those in some
main categories. The subdivision we use is the one used
by Fernández and Vico (2013), which is in turn based on prior
reviews (Papadopoulos and Wiggins, 1999; Nierhaus, 2009).
More recent reviews have either used this taxonomy or expanded
specific subsets of its six classes. We decided to add a seventh
category for Agents based systems, which is a meta-approach
that has gained a lot of popularity and deserves to be treated
separately. The seven categories are:

• Markov Chains;
• Formal Grammars;
• Rule/Constraint based systems;
• Neural Networks/Deep Learning;
• Evolutionary/Genetic algorithms;
• Chaos/Self Similarity;
• Agents based systems.

In the following sections, we will describe each of these
approaches by citing works that implemented MGSs using
techniques that fall in those categories, also briefly discussing how
these approaches can be seen under the Process perspective using
Boden’s categories of creativity (see section 2.1.4).

3.2.1. Markov Chains
A Markov chain is a special stochastic process, i.e., a sequence
of random events dependant on a time variable, that has a finite
number of states, and the probability of the next state is only
dependant on the current state (Brèmaud, 2013). In practice, a
Markov chain is described by a transition table, where rows and
columns represent the states, and every cell (x, y) represents the
probability of going from the state x to the state y. Since each row
represents a probability distribution, the sum of all the cells in a
row must be equal to 1.

If the last n states are used to determine the probability of the
next state instead of just the last one, this is called n-th order
Markov chain. These can be represented with a single transition

matrix as well, by constructing an equivalent first order Markov
chain having An rows, where A is the number of states in the n-th
order chain.

Due to their sequential nature, Markov chains are well fit to
describe melodies, seen as a sequence of notes. The simplest way
to implement a melody-generating Markov chain is to use a set
of notes as the possible states, and to compute the transition
probabilities between these notes by counting the occurrences
of each transition in a given corpus to create a first order
Markov chain.

This is what was done in one of the first MGSs ever described.
Pinkerton (1956) created the “Banal Tune Maker” by analyzing
the transitions of 39 nursery tunes by hand to create a transition
matrix. The states used were the seven notes of the diatonic scale
of C major (only one octave was considered), plus one extra
symbol to indicate rests or notes that are prolonged over a beat.
In this case the states of the chain only contain pitch information,
requiring the use of other strategies to implement the rhythm.
In this case, all the notes were kept to the same duration, and
the extra symbol was used to introduce rests in the generated
music. Of course, other approaches are possible, including
implementing another Markov chain to handle durations.

The basic assumption underlying this simple approach, i.e.,
that the next note is only dependant on the previous note, is very
flawed and only lead to musical results of little interest. Pachet
(2002) used a more refined approach in the “Continuator.”
He implemented a variable order Markov chains using prefix-
trees to handle sequences of varying length (as opposed to n-
th order Markov chains that will always consider n states) and
also used a hierarchy of reductions: the system analyzed in a
single chain pitch, duration and velocity, but was able to ignore
some information when analyzing new input and comparing it
to the learnt sequences. This was especially important in the
Continuator because, as the name suggests, it was meant to
listen to a musical input and continue it in real time. Being able
to ignore part of the learnt information allowed the system to
interact with previously unmet input, and to consider musical
structures at various levels of detail.
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Hiller and Isaacson (1958) used a different approach in their
“Illiac Suite.” In their fourth experiment, they used Markov
chains to generate sequences of motions and progressions rather
than sequences of pitches and durations themselves, thus using
the model to organize the notes at an higher level. The same idea
of organizing higher structural levels via Markov chains was used
more recently in the GEDMAS system (Anderson et al., 2013),
whose goal was to generate Electronic Dance Music. To do so, a
series of Markov chains were used to choose the general form of
the song (i.e., a sequence of sections, each section being 8 bars
long), to fill each section with a chord sequence, and finally to
generate melodic patterns.

From the viewpoint of the creative process, Markov chains
risk to reuse a lot of material from the learnt corpus non
creatively, even plagiarizing when the order of the chain is too
high (Papadopoulos et al., 2014). However, they can also result
in novel combinations of smaller sections such as motifs, in a
way that can be considered Combinational Creativity, but will
hardly go beyond that limit unless other techniques are also
employed. They also remain useful at higher structural levels (like
the above example of GEDMAS), where high levels of creativity
are not usually as important as when the melodic material is
being generated.

3.2.2. Formal Grammars
Chomsky (1957) introduced the concept of Generative
Grammars, a tool for the analysis of natural language that
became extremely influential in linguistic studies. The same idea
was applied to musical studies, most notably by Lerdahl and
Jackendoff (1985), who tried to design a Generative Grammar
for the description of music starting from music analysis
concepts introduced by Heinrich Schenker in his book “Free
Composition” (Schenker, 1979), that well fit the concept of
rewriting rules, that is at the basis of Chomsky’s grammars.

A Generative Grammar is composed of two alphabets:
terminal symbols and non-terminal symbols (or variables). A
set of rewriting rules is given over the union of these two
alphabets, that allow to transform variables into other symbols
(both variables and terminals). The generated language is the set
of all the strings of terminal symbols that can be obtained starting
from a special variable chosen as starting point (usually called S)
and applying any number of rewriting rules in sequence.

Grammars can be seen both as an analysis tool and as
a generative tool. For example, Steedman (1984) compiled a
Generative Grammar to describe Jazz chord sequences: Pachet
(2000) describes a system that is in part inspired by Steedman’s
analysis to tell apart blues songs and non-blues songs, while
Chemillier (2004) implemented Steedman’s grammar creating a
software for music generation.

Chord sequences can be very easily encoded as symbols, but,
if an adequate alphabet is given, it is possible to use Grammars
to generate any kind of musical information. Hamanaka et al.
(2007) describe a system for the automatic analysis of scores
based on Lerdhal and Jackendoff’s Generative Theory of Tonal
Music, formalizing in details a grammar to describe musical
material. This was then used to create variations on melodies
by altering the derivation trees (a graphical representation of the

applied rewriting rules) (Hamanaka et al., 2008). Quick (2011)
implemented a software to generate three voice harmonies using
a Grammar derived from Schenkerian theory.

L-systems (Lindenmayer Systems) are a variant to Generative
Grammars that has been used for music generation. Their
main difference from Grammars is that they implement parallel
rewriting, thus applying all the rewriting rules at once instead
of only one at a time. This characteristic makes these system
less apt to sequential data, like simple melodies, and have
been used to generate stunning visual effects. When applied
to music generation, the most common approach was to map
visual data generated by L-systems either to score information
(Prusinkiewicz, 1986; Mason and Saffle, 1994; Nelson, 1996) or to
arrange a sequence of musical segments (Langston, 1989; Supper,
2001).

Formal grammars can be seen as a precise definition of a
conceptual space, which is then explored when generating music.
In this sense, the compilation of the rewriting rule can be seen
as Transformational Creativity, but this is usually performed
by a human rather than a computer. An exploration of the
conceptual space of the possible rules can be seen as a meta-
level creativity, which as Wiggins (2019) showed is indeed a form
of Transformational Creativity, but this can be extremely hard
to implement effectively in a CC system, since the compiling of
a formal grammar requires careful study even when done by a
human to ensure valuable results.

Another related approach is that of Transition Networks:
finite state automata that can parse languages similarly to
what Generative Grammars do. The most notable example of
Transition Networks applied to MGS is that of David Cope’s
Experiments in Musical Intelligence (Cope, 1991, 1992). His
approach was to use pattern-matching algorithms to analyze
“signatures,” short musical sequences that define the style
being analyzed, and to determine when and how to use those
signatures. After the analysis phase, the collected information is
encoded in a Transition Network that is then used to generate
new music in the style of the composer that was analyzed. While
the results are sometimes impressive, they are arguably not very
creative, since they just reuse material taken from the learnt
corpus in a way that can be at most be seen as Combinational
Creativity (Wiggins, 2007). Possibly, this is one of the reasons
why there is notmuch research on TransitionNetworks formusic
generation beside Cope’s works.

3.2.3. Rule/Constraint Based Systems
Music theory traditionally describes rules that help to guide the
compositional process. While composers regularly break those
rules, it should come to no surprise that those rules have been
used to implement MGSs since the early days of Algorithmic
Composition, like in the first two movements of the Illiac
Suite (Hiller and Isaacson, 1958). Generative Grammars can be
seen as an implementation of such rules, but the systems we refer
to in this section are usually unable to generate musical material
from scratch, and either start from some input material (like
in the case of harmonization software) or use other methods,
sometimes even random generation, to have a starting point that
is then refined through rules.
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The inclusion of rules can be implemented in many ways,
for example as a final validation step, or to refine intermediate
results. One natural way to implement rules in a MGSs is to use
Constraint Programming, whose declarative nature is well fit to
describe music theory rules. A survey on works that have used
Constraint Programming to model music theory (not only with
the goal of generation) can be found in Anders and Miranda
(2011).

One of the most influential researchers within the scope
of music generation through constraint is Ebcioǧlu, who first
implemented rules of fifth-species counterpoint into a Lisp
program, and later implemented a custom logic language that he
used to create CHORAL, a system for the generation of Bach-like
chorales that uses some 350 rules for the generation of melodies
and harmonization (Ebcioǧlu, 1988, 1990). The difficulty of
designing such a system lies in the complexity of explicitly coding
a sufficient amount of rules, many of which often do not have a
formal definition in musicology literature. Moreover, there is a
tradeoff between adding more rules to obtain results that better
fit the style that is being modeled and leaving less constraints to
be more open to different styles of music.

Constraints can be used to model more abstract features,
rather than explicit music theory rules: Herremans and Chew
(2016b) defines a way to describe tension in musical pieces based
on a geometric model of tonality called the Spiral Array (Chew,
2014). Herremans and Chew (2017) used that tension model in
a MGS that is capable of generating new music following the
tension pattern of an input piece, by first generating random
notes and then applying optimization methods (in particular,
Variable Neighborhood Search) to change the notes in order to
satisfy constraints defined by the chosen tension model.

Techniques for optimization such as integer programming
can be useful as a selection technique when more than one
possibility is available. For example, Cunha et al. (2018) describe
a MGS that creates guitar solos by concatenating guitar licks.
This approach is somewhat similar to a transition network, but
in their implementation the concatenation of any two licks had a
defined transition cost, and through a branch-and-cut algorithm
it was possible to compute the optimal solo. The computation
of transition costs was in itself another example of integration
of rules: in that work eight rules were described to assign the
transition cost between licks.

The integration of rules and constraints in a creative Process
can be see in two ways: the first is considering those rules as
bounding and reshaping the conceptual space, the second is to
see rules and constraints as a guidance in the exploration of the
conceptual space. Either way, the use of rules can result in a more
efficient Exploratory Creativity, although they might reduce the
size of the conceptual space (or limit the explored areas) thus
limiting the variety of the output.

3.2.4. Neural Networks/Deep Learning
The increased computational power of computers and the
widespread of general purpose GPU programming recently made
deep learning techniques extremely popular, with applications
that span from natural language processing, to image and video
editing, to, of course, music generation. The survey by Briot

et al. (2020) is specifically focused on these techniques, and gives
an exhaustive overview of how machine learning has been used
in MGSs.

While the interest in these algorithms grew exponentially in
the last decade, the first MGS to use Artificial Neural Networks is
that of Todd (1989), who used a three-layered Recurrent Neural
Network (RNN) to generate monophonic melodies. Recurrent
Networks reuse the results of the computations from previous
steps when new input is given, allowing them to encode temporal
sequences. This is of vital importance when generating melodies,
making them a typical approach for MGSs that use deep learning
(unlike, for example, Convolutional Neural Networks that are
more apt for the elaboration of images). Nonetheless, there is also
room for standard feed-forward networks: Lewis (1991) trained
a network with musical patterns ranging from random to well-
constructed, to learn a measure of “musicality” that is then used
by his MGS to select pleasant compositions.

As already mentioned, RNNs are a popular choice for music
generation. In particular, LSTMs (Long-Short Term Memory
networks) Hochreiter and Schmidhuber (1997) are a special
variant of recurrent networks that use special gates to decide
the amount of information that is taken from novel input and
what is maintained from older inputs. This control over the data
flow allowed LSTMs to be both more efficient and effective than
standard RNNs in a wide range of applications, and have been
used for music generation as well. The first music generation
LSTMwas applied to blues improvisation (Eck and Schmidhuber,
2002a,b). Traditional music was instead the focus of folk-rnn
(Sturm et al., 2016), that analyzed over 20000 pieces in textual
(abc) notation. A more advanced approach is used by DeepBach,
Hadjeres et al. (2017) that generates chorales in the style of
Bach (whose chorales made the training set for the software)
using two LSTMs, one going forward and one going backwards
in time, together with one feed-forward network to consider
contemporaneous notes. The results of these networks is then
handled by a final feed-forward network that joins the results
in final piece. The rationale behind this choice is explained by
the goal of generating counterpoint, which requires knowledge of
both the previous and the following notes. This gives an example
of how it is possible to design complex architectures using many
layers of Neural Networks, but the complexity comes with a price
in terms of computational time.

Another deep learning approach that is of great interest to CC
is that of Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014). The idea behind this method is to train two networks
at the same time, one that generates artifacts imitating what
is learnt from real-world examples, and the other trying to
discriminate between real and imitated artifacts. As one gets
better, the other must get better as well in order to “beat”
the other network (thus making them “Adversarial”). The two
networks can be simple feed-forward networks, but these are
not the usual choice for music generation. For example, the
eloquently called C-RNN-GAN (Mogren, 2016) uses recurrent
networks (in particular LSTMs) in an adversarial architecture
to generate polyphonic music. MidiNet (Yang et al., 2017) uses
convolutional layers instead: Convolutional Networks are trained
to reduce the dimension of the input, usually starting from

Frontiers in Artificial Intelligence | www.frontiersin.org 10 April 2020 | Volume 3 | Article 1429

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Carnovalini and Rodà Computational Creativity and Music Generation Systems

bidimensional input. This approach is often used on images,
so when applied to MGSs the input of the Network is often
some graphical representation of music, such as piano rolls. It is
important to be aware that while images have two dimensions
that are equivalent (both represent displacement in space),
graphical representations of music show two non equivalent
dimensions, usually pitch and time, possibly leading to less
reasonable results (Briot and Pachet, 2018).

Machine learning has strong implications for what concerns
creativity: Turing advocated that learning machines would have
been the key to beating the Imitation Game (Turing, 1950), and
the very concept of learning is strongly related to the possibility
of expanding and changing both the conceptual space and
the means of exploring it, possibly reaching Transformational
Creativity. However, Boden (2004) argues that connectionist
systems cannot reach human levels of creativity, and Bringsjord
et al. (2003) argues that the “learning” involved in a neural
network is not enough to pass the “Lovelace Test” (see
section 2.3.1). Both those works seem to only consider classic
feed-forward neural networks rather than state-of-the-art deep
learning approaches that are able to learn the representation and
encoding of raw data (Briot et al., 2020), which can be seen as
the definition of the conceptual space for these systems. From
this viewpoint, these systems are the closest we have come to
implementing Transformational Creativity, but the black box
nature of these systems make it hard to pinpoint exactly how
the generation process works and how the corpus information
is used, making it also hard to control the output of the system
(as we will discuss in section 4.1), a capability that is considered
fundamental by certain definitions of creativity (Riedl, 2014;
Jordanous and Keller, 2016).

3.2.5. Genetic/Evolutionary Algorithms
The general idea behind Genetic (or Evolutionary) Algorithms
is that, starting from a population of random solutions to a
problem, it is possible to combine those solutions to obtain
new solutions, and by selecting the ones that better answer the
problem it is possible to get closer and closer to the optimal
solution to the original problem. Thus, to solve a problem via
Genetic Algorithms, it is necessary to have (Sivanandam and
Deepa, 2008):

1. The ability to generate random but suitable solutions to the
problem as a starting population;

2. A way to evaluate the “fitness” of a solution;
3. The ability to mutate and recombine those solutions.

In the field of music generation, the points 1 and 3 are for sure
available (once a representation of musical material is chosen),
but it is hard to evaluate how good a solution is (as already
discussed in Section 2.3). It might be difficult even just giving a
precise definition of what the problem is. Nonetheless, Genetic
Algorithms have often been used to implement MGSs.

Possibly, the most famous Genetic MGS is GenJam, designed
by Biles (1994). The system is meant for Jazz improvisation,
where a human player interacts with the software that outputs
both the pre-made musical base and solos generated on-
the-fly by evolving the human improvisation it has just

listened to. Originally, the fitness function was implemented
by having a human decide if the output was good or bad,
an approach that is usually referred to as “Interactive Genetic
Algorithm.” This generates a bottleneck for the system, as a
lot of human intervention is required. A successive version
(Biles et al., 1996) used an Artificial Neural Network as a
fitness function, but it lead to unsatisfactory results. In the
end, the author resolved to completely eliminate the fitness
function (Biles, 2001). Basically, the algorithm retains the
ability to mutate and compose licks, an ability that is used
to respond to musical input in a way that incorporates the
human improvisation without being a mere copy, but since
there is no more evaluation of the fitness, GenJam is no more
a genetic algorithm.

GenJam passed, through his versions, some of the most
common approaches to the definition of a fitness function.
Another approach is to use rules taken from music theory
to design a fitness function. This is the approach chosen
by Phon-Amnuaisuk et al. (1999). In that case the goal
was the harmonization of a given melody, and the fitness
function incorporated rules of harmony describing forbidden
and preferred intervals and motions. In this case, the use
of genetic algorithms becomes a way to explore a space of
possibilities described by the chosen rules. One might wonder
if this is better or not than just generating samples following
those rules, as described in the previous section. Indeed,
Phon-Amnuaisuk and Wiggins (1999) found that their genetic
implementation was outperformed by a rule-based system using
the same set of rules that were incorporated in the fitness
function. The authors argue that having explicit control over a
system’s knowledge will lead to better results and more powerful
means of exploration: while the authors do not scorn genetic
algorithms in general, it seems that this approach cannot give
such explicit control over the knowledge of the system, and
thus other systems should be preferred when explicit knowledge
is available.

Genetic Algorithms offer many other forms of hybridization,
since the representation used by other algorithms can be evolved
genetically. For instance, it is possible to evolve the rules of a
grammar (de la Puente et al., 2002), or to evolve the parameters
of a Markov chain (Werner and Todd, 1997; Bell, 2011) or of a
Cellular Automaton (Lo, 2012).We alreadymentioned that rules,
Neural Networks and human assessments can be incorporated
in the fitness function for a Genetic algorithm. It is worth
mentioning that Markov chains have been used for the same
goal (Lo and Lucas, 2006). Markov chains can also generate the
initial population, obtaining starting point that is better than
random, possibly leading to convergence to good solutions with
fewer generations (Manaris et al., 2011).

The evolutionary approach is in itself an exploratory process:
the combination of two individuals from the population pool
is a combinational process, but the use of a fitness function
guides the exploration toward promising areas of the conceptual
space, which is bounded and defined by the genetic encoding
of the individuals. Losing the fitness function, or having one
that is unable to effectively guide the exploration, reverts the
mechanism to pure combinational creativity, where elements of
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the conceptual space are joined and mutated hoping to find
interesting unexplorated combinations.

3.2.6. Chaos/Self Similarity
Musical compositions show some degree of self similarity, both in
the musical structures and in its spectral density (Hsü and Hsü,
1991), roughly following a 1/f distribution, at least for pieces
that are deemed pleasant to listen to (as opposed to random
compositions) (Voss and Clarke, 1978).

Starting from these considerations, fractals and other self-
similar systems have been used to generate musical material. The
results of such systems are usually not regarded as a final output,
but rather as an inspiration for human composers (Bidlack,
1992). Another approach is to generate self similar structures
rather than directly generating self similar melodies: Leach
and Fitch (1995) generated tree structures like those described
by Lerdahl and Jackendoff (1985), by tracing the orbit of a
chaotic system, and mapping the computed values to different
hierarchical levels of the tree.

Another approach is to use Cellular Automata, dynamic
systems composed of many cells, whose states are updated at
discrete times using a set of transition rules. Famous examples
include “Game of Life” by Conway (1970), and the systems
studied in “A New Kind of Science” by Wolfram (2002)1.
Like other fractal systems, Cellular Automata tend to generate
melodies that are not too pleasing, and often need further human
intervention. CAMUS is a MGS that is based on two different
Cellular Automata, whose cells were mapped to sequences of
notes and to different instruments (Miranda, 1993). A later
version used a Markov chain to specify rhythm, but despite the
effort to create a full MGS, the authors still admit that the results
can often be not very pleasing, but can become interesting “for
the composer who is prepared to put a little effort into the
system” (McAlpine et al., 1999). Miranda (2007) later argued that
Cellular Automata are more effective for sound synthesis, rather
than for MGSs.

Since the decision making of these systems is based upon
chaotic and random processes it is difficult to describe them
using Boden’s categories, and the usual lack of aeshtetic value
of the results suggests that this is not a good example of CC
but rather a way to explore unusual melodies. For these reasons,
these systems are arguably less interesting to AI practitioners, but
were included for completeness. Nierhaus (2009) provides a good
review of these approaches, that are given less consideration by
later surveys.

3.2.7. Agents Based Systems
A software agent is an autonomous piece of software with
perception and action capabilities. Any software with such
capabilities can be seen as an agent (including many of the
systems described in the previous sections), but the definition
becomes especially interesting when multiple agents cooperate
within a single software, that can be referred to as a Multi Agent

1A web application developed by Wolfram Research, Inc. that allows users to

generate music using Cellular Automata is available at http://tones.wolfram.com/

generate/.

System. This is not a specific algorithm for music generation,
but rather a meta-technique that has gained popularity among
researchers, as testified by Tatar and Pasquier (2019).

The use of agents in MGSs makes it easy to model certain
musical behaviors. Voyager (Lewis, 2000) uses 64 player agents
that generate melodies according to one of various pitch
generation algorithms written by the author, according to his
own taste, and a behavior model that describes the general
timbre, tempo, pitch range and other features that regulate the
development of the piece. This models a band where everybody
is improvising, but still follows some general agreement. Lewis
has played together with Voyager, both in recordings and live: in
this setting one can also consider the human performer as one
additional agent of the system.

MASs are also useful to model social interactions: once
each agent is given specific characteristics (one could say, a
personality), the interaction between different agents can take
into account the difference in their characteristics, either in a
conflict or in an agreement. For example, Kirke and Miranda
(2011) introduces a system (later called MASC; Kirke and
Miranda, 2015) where each agent has a specific “emotion” and
the ability to express it by “singing” to another agent. The other
agent will be affected by the mood expressed by the singer,
adapting his own internal state. Moreover, their internal state also
defines if the listener will “like” the song, incorporating it into his
own song.

Taking further the same idea, the agents can implement
cognitive models that regulates their interaction with the others.
One such model is the Belief-Desire-Intention Architecture.
For instance, Navarro et al. (2014, 2016) describe a system
with the goal of generating harmonic sequences, where two
particular agents, the composer and the evaluator, have beliefs
based on music theory and desires (one to compose and the
other to evaluate the generated composition). The intentions are
represented by the algorithms implemented to apply and verify
the theoretic rules that form their beliefs, and are influenced by
the communication between the two roles.

Since the use of agents is a meta-technique rather than a
specific algorithm, it is not possible to frame them from the
Process perspective, but it is useful to consider the Person
and Press perspective. The use computational means to give a
“personality” is important to obtain results that are affectively
relatable for humans, possiblymaking it easier to pass Turing-like
tests. Moreover, the influence of other individuals is an important
factor in human creativity (Amabile, 1983b), and is thus an
interesting direction for research in CC (Saunders, 2019).

4. OPEN CHALLENGES FOR MUSIC
GENERATION SYSTEMS

One of the goals of this review is to give pointers to any
reader who is approaching Computational Creativity (CC) in
general and Music Generation Systems (MGSs) in particular
some pointers on what still needs to be addressed and the
open challenges in the field. To do so, we extracted a list of
problems and challenges that were identified in the reviews
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listed in Table 1, especially looking at those sections were the
reviewers gave indications for future directions. The different
surveys used variable terminology, often without giving precise
definitions for the challenges they mentioned. To group them,
we first tried to cluster those problems that we believed to be
similar, and then gave precise definition for each cluster. We then
re-read the problems descriptions in the reviews and marked as
“mentioned” the clusters that was the closest to the descriptions.
The clusters that were never mentioned were removed, and the
remaining ones were given fitting names and are listed in Table 2

as the challenges we identified. The table also lists for each
challenge which reviews mentioned it. The precise definition of
each challenge is given in the next paragraphs. It is worth noticing
that all the reviews mentioned Evaluation as an open challenge,
and nearly half also mentioned Creativity (as opposed to mere
imitation) as still lacking inmost systems. Since we already widely
discussed Evaluation, this won’t be further treated. Creativity will
be instead treated in each paragraph, as we want to make this
review useful for CC as well as MGS research. To do so, we
will try to categorize these challenges using the dimensions of
creativity described by Jordanous and Keller (see section 2.1.6).
For each of the other challenges, we will give precise formulations
of what is the problem to be addressed, citing examples of works
published in the last 10 years that have faced these problems and
gave insights to what solutions could be used to overcome those
problems and to achieve higher creativity.

4.1. Control
Control refers to having the possibility to choose specific features
that the output of the MGS will exhibit.

Having control over certain features of the output of a MGS
can be, depending on the used algorithm, trivial. But, with

TABLE 2 | For each of the identified challenges, an X is added under every review

that mentions it.
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Emotion X X

Hybridization X X

Rendering X X

Structure X X X X

Mapping X

Playing

Difficulty
X

Evaluation X X X X X X X

Creativity X X X

more data-driven approaches like machine learning, it becomes
less obvious what can be done to affect the output. It is not
surprising that this issue was only mentioned in a review focused
on deep learning.

Since data-driven approaches are meant to learn features from
their input, one simple way to influence the features of the output
is the selection of the training set. This approach is to some extent
used by every corpus-based system, knowing that learning on
Folk music will be very different from learning on Bach chorales.
The problem with this approach is that it does not allow a good
granularity of control, and any change on the input would require
retraining the system, a task that can be very time consuming.

The same idea is applied in a slightly different fashion by
Ekeus et al. (2012). Their approach was to generate a set of
randomly sampled Markov chains, which were evaluated with an
approach based on Information Theory. These were employed in
a MGS that allows the users to select a point in a triangular space
where the vertices represent periodicity, repetition, and noise.
The chosen point is mapped to the features that were evaluated
for each Markov chain, and the most appropriate one is selected
and used for melody generation.

The same approach can be used in Neural Networks by
altering the parameters that make up the network, but this can
be much more intimidating, due to the excessive number of
parameters involved and the difficulty of understanding their
meaning (Sturm, 2018). A way to obtain this is proposed
by Kaliakatsos-Papakostas et al. (2018), who used a recurrent
network trained on a small dataset (made of only three pieces)
that was augmented specifically to address the features the
authors wanted the user to be able to manipulate, in order to
study how the parameters are affected, and to be able to alter them
accordingly in the generation phase.

Control is related to the creative dimension of “Active
involvement & persistence” which suggests that the creative agent
is in control of the generation process. Using deep learning to
achieve this can be extremely hard, althoughmany advancements
in this direction are being made. We suggest to use techniques
that allow for simpler tuning over the features one wishes to
control, by either using appropriate representations (see section
4.5) or by explicitly limiting those features with rules. Machine
learning can be used in conjunction with these approaches
to ensure other creative features, such as “Variety, divergence
& experimentation.”

4.2. Narrative Adaptability and Emotion
Narrative Adaptability refers to the capability of the MGS to
convey a sense of development (Narrative) in the generated
music, giving a more complex meaning to the piece. Emotion
refers to the capability of the MGS to convey specific emotions
with the generated music.

These two are treated together because it is possible to convey
different emotions in different sections of the piece, one of the
main aspects of Narrative Adaptability. Both of these can be seen
as a special instance of Control, where the features that are being
controlled relate to emotional aspects or to specific events of the
narration. This is especially relevant in non-linear media (like
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video games) where the Narrative must adapt in real-time to the
events in the media.

The study of Emotion in music has a long history (Juslin,
2010) and, as can be seen in the review by Williams et al. (2015),
has often been considered in MGSs. Narrative Adaptability is
less commonly found, despite the fact that such adaptability is
something that human composers could never achieve without
the help of a computer, making it an interesting field of
investigation. Ventura et al. (2009) present an installation
implementing a typical architecture for emotion-aware systems:
an emotion (expressed as values in the valence/arousal plane;
Hunter and Schellenberg, 2010) is detected (in this case by
analysing the movements of the users via webcam) and then used
as the input for the MGS. To do so, some features that are known
to be related to emotional expression are manipulated, such as
tempo, pitch range and loudness (Oliveira and Cardoso, 2007). A
similar architecture is used by Scirea et al. (2018) to add music
to Checkers: the MGS analyzes the board to understand how
risky the situation is for the player, and then generates music that
emotionally expresses the level of risk.

Mezzo by Brown D. (2012), Brown D. L. (2012) uses a
different approach that takes its roots in classical music: the
use of Leitmotifs. In a video game setting, some characters and
situations are given a theme (composed by a human), and when
those are encountered in the game, a message is sent to Mezzo.
This will use the themes triggered by the messages, blending
them together to generate a music that expresses the current
situation. Similarly, when music is used within human-computer
interaction, is useful to detect musical features in the human
interaction to generate music that matches the emotional content
as a feedback (Carnovalini and Rodà, 2019b; Carnovalini et al.,
2019).

Another approach that does not necessarily involve a full
MGS, but can be used to increase its adaptive capabilities, is that
of automatically generating transitions between pre-composed
sections, to be able to connect sections without knowing a priori
when one will end and one will start (Horner and Goldberg, 1991;
Gillespie and Bown, 2017). This is usually applied to human-
made compositions, but it could be easily applied to a MGS,
as long as it is capable of generating the next musical piece in
advance, since it is needed for the transition generation.

These challenges are especially important for creativity, as they
address “Intention & emotional involvement” and “Progression
& development” and “Social interaction and communication,”
and in general are fundamental for the affective perception of
the machine, which in turn is important to pass Turing-like
tests. One research direction we suggest is to study how different
expressive features can influence each other, and how to select
one specific expressive technique to convey certain feelings rather
than altering all the features that are linked to that emotion,
so that systems could be able to generate, for example, a sad
piece which is also fast-paced. This can also improve “Variety,
divergence & experimentation” of the generated pieces and
possibly lead to more “Originality.”

4.3. Hybridization
Hybridization refers to the use of more than one technique for
music generation in a single MGS.

This is the only point of this list that does not concern a
quality of the output, but rather a characteristic of the system
itself. The need to go beyond a single method for the generation
of music was already noted 20 years ago (Papadopoulos and
Wiggins, 1999), but the call for hybridization is relevant to this
day. The rationale behind this idea is that since there is not a
single method that has been proved to be more effective than
the others, nor to be capable of addressing all the issues that a
MGS must face, it is important to take advantage of different
approaches. Nonetheless, using multiple algorithms is obviously
expensive for the development, and in general it is hard to witness
in the early stages of any project. Moreover, researchers are
often more interested in applying a specific technique for music
generation rather than creating a complete MGS that would
benefit from hybridization.

Some approaches are more prone to being used in an hybrid
context than others: we have already discussed how Genetic
algorithms and rules or constraints are often coupled with other
algorithms, but other approaches are possible. Eigenfeldt and
Pasquier (2009) describes how the various versions of the Kinetic
Engine have used different algorithms for designing agents
capable of generating rhythm, melodies, and harmony. In the
later versions, agents with different roles interacted with each
other to generate both rhythm and melody, and also a Markov
chain was used to influence the harmonic progression Eigenfeldt
and Pasquier (2010). This gives an idea of how, in an agents-based
system, it is possible to delegate different tasks to different agents,
that can each implement a different strategy when generating
their respective content.

A somewhat similar subdivision of tasks is proposed by
Carnovalini and Rodà (2019a), where the process of composing
a melodic phrase is divided in successive steps: generation of
pitch succession, generation of rhythm, and finally generation of
expressive variations of intensity and timing. Each of these steps
follows a different algorithm, but some information is passed on
through each step. In particular, all of the steps use information
about the importance of each of the generated notes, dividing
them with a Schenkerian approach (Simonetta et al., 2018). The
authors argue that this idea can be further extended to other tasks
(such as form generation and harmony), including both deep
learning and classical AI algorithms, trying to find the optimal
combination for each task (Carnovalini, 2019).

The use of expressive musical performance generation
systems (Widmer and Goebl, 2004; Canazza et al., 2012, 2015),
that are sometimes embedded in MGSs as the one just cited
above, can also be seen as a form of hybridization, but will be
better discussed in the next section.

We believe that systematic use of Hybridization could be
one of the most prolific research direction for CC, since it
could help researchers expand different dimensions of creativity
using different techniques for each. Moreover, giving a variety
of compositional approaches to a software could be seen as
giving it a better “Domain competence,” and being able to
choose between techniques can improve “Variety, divergence
& experimentation.” Explicitly modeling into the software
what different techniques are more apt for and changing
behavior according to user’s requests could be an interesting
research direction.
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4.4. Rendering
Rendering refers to the quality of the audio (meant as waveform)
that is generated by the MGS.

This might seem redundant, as the quality of the generation
is obviously important in a MGS. But in many cases, MGSs
only handle symbolic music generation, usually as MIDI or
MusicXML files, and the audio is generated with simple software
MIDI synthesizers, which are far from giving good renditions of
any musical composition.

We already mentioned that it is possible to add expressive
performance to a generated piece in order to improve its audio
rendering. This is usually done through existing algorithms that
are applied to the music after it is generated. A review of existing
algorithms can be found in Kirke and Miranda (2009).

Another way to improve the musical rendering is to
use automatic orchestration techniques: rather than having
a predetermined instrument to play the generated piece
(piano seems to be a popular choice) it is possible to
generate musical material that is then assigned to different
instruments (Handelman et al., 2012) or to have a set of possible
instruments from which to choose from and that can intervene at
different moments of the composition (Anderson et al., 2013).

Brunner et al. (2018) describe a system that uses both
expressivity and orchestration to perform Style Transfer through
Variational Autoencoders (Kingma and Welling, 2013). Style
Transfer tries to apply a certain style (for example, defined by a
certain composer or genre) to an existing musical piece that was
not originally meant for that style. This can of course be applied
to computer-generated music as well, although we are not aware
of any work in literature that has yet tried this approach.

All these approaches generate some sort of variations after the
score generation process is over. This excludes any possibility
to render audio in real-time, as the generation phase must be
over for these algorithms to function. A different approach
that has been less explored is to generate music and its
expressive variation at the same moment: one example is
PerformanceRNN (Oore et al., 2018).

A completely different approach is to model music directly
at the audio level, thus implicitly generating the rendering as
well. This approach is challenging for many reasons, including
computational complexity and the difficulty to capture semantic
structures from raw audio. Nonetheless, Dieleman et al. (2018)
found that using Autoencoders it is possible to obtain realistic
results that remain consistent for tens of seconds, meaning that
local structures can be understood and modeled directly from
the audio.

One could argue that the creative task we are interested in is
the composition, while the rendering is delegated to musicians.
While it is true that in some cases computers generate music
that is meant to be played by humans, it is more often the case
that computers directly play the generated music themselves.
Moreover, in the context of evaluation of CC, having a good
audio rendering can influence human evaluators, so it should not
be overlooked (Oore et al., 2018; Carnovalini and Rodà, 2019a).
More generally, Rendering can be seen as part of “Generating
results”: while scores are results in themselves, the fruition of
music is through sound. Therefore, to add “Value” to the output,

Rendering must be considered. We are not aware of any research
comparing user preference of computer generated music that is
emotionally rendered vs. “deadpan” executions, but that would
certainly be an useful contribution to CC research.

4.5. Structure and Mapping
Structure refers to generating longer pieces, containing
reasonable repetitions and subdivision of different sections,
usually recreating some kind of musical form. Mapping refers
to the problem of handling different representations of music
and choosing the most appropriate one for the generation of
musical content.

While the first is notoriously difficult for MGSs, the latter
is an issue that is often not considered, as usually a certain
representation is chosen a priori. There are instead notable
proposals in literature that further the possibilities for MGSs
using specific representations of music.

Herremans and Chew (2016a, 2017) used a specific data
structure, the Spiral Array (Chew, 2014), to compute the
tension profile of a musical piece. This profile is used to
generate a new piece that follows the same profile, through
constraint programming. Starting from a specific representation
for tension structures, the MGS is able to create longer pieces
with convincing structure. One might argue that the structure is
simply being copied, but a possible extension to this work could
possibly generate novel tension patterns using the same ideas.

Representations based on Schenker’s or on Lerdahl and
Jackendoff’s theories are studied, since these can capture different
levels of structural information. Most works only have the aim
of automatic analysis of musical pieces (Marsden, 2010; Marsden
et al., 2013; Hamanaka et al., 2016, 2017), but others have
used this approach to generate music that follows a defined
structure (Groves, 2016; Carnovalini and Rodà, 2019a)

Other systems approached the problem of structure without
any specific representation. GEDMAS (Anderson et al., 2013)
explicitly generates structure, seen as successions of 8-bar
segments, through a Markov chain. Medeot et al. (2018) describe
StructureNet, a neural network that studies occurrences of
repeats (either of rhythm or of interval sequences), and that can
be embedded in a larger MGS influencing the generation process
according to the learnt structures of repeats.

Structure is strongly linked with the creative dimension
of “Progression & development,” and can be linked to the
challenge of Narrative Adaptability as well. Once again, we
suggest to hybridize different approaches, possibly using different
techniques at every level of representation to consider the
development of a piece at a macro level before considering the
local melodic and harmonic content.

4.6. Playing Difficulty
Playing Difficulty refers to the ability of an MGS to regulate the
difficulty for a human to play the generated music.

This can be seen as a specific instance of Control, where the
feature that must be controlled is the technical difficulty of the
output. This problem only becomes relevant when the output of
the MGS is meant to be played by a human, which is often not
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the case: this might be the reason why this issue has hardly been
acknowledged in literature.

The review by Herremans et al. (2017), that is the only one
to mention Playing Difficulty, only cites a couple recent works
that have considered the issue. One is Sabastien et al. (2012),
that designed seven criteria used to estimate the difficulty of a
piano piece, in order to suggest pieces to learn to students. A
similar approach for guitar is presented in Xambó et al. (2018),
based on known chords. Both these systems are not MGSs, but
could be implemented as a constraint or as a fitness function
in a MGS. Another work is that of McVicar et al. (2014), that
generates guitar solos in tablature form. This is indeed aMGS, but
it does not really consider the difficulty of the generated solo, but
rather uses an algorithm to minimize fingering difficulty, without
affecting the generation of the piece. Extending on the same idea,
Ariga et al. (2017) created a guitar solo generator that considers
the fingerings as a way to measure and control the difficulty of
the generated solos. Nakamura and Yoshii (2018) describes a
system that creates piano reduction of ensemble scores, capable
of generating reductions with different levels of difficulty based
on fingering and tempo information.

On the opposite side of the difficulty spectrum, Pachet
(2012) describes a system that can generate virtuoso solos, using
variable-order Markov chains trained on a dataset of virtuoso
solos. Arguably, increasing the Playing Difficulty of a generated
piece is easier than lowering it (without losing musicality), but
the work by Pachet was motivated by a study of creativity in solos
and not of difficulty itself.

To be able to change the playing difficulty of a piece, one needs
to increase the “Domain competence” considering for example
the physical characteristics of the instruments that will be used
to perform the piece, making this challenge also relevant to the
perception of CC. Choosing an appropriate level of difficulty
can also improve the “Social interaction and communication,”
since if one wishes to create a MGS to interact with humans,
it is important to tune the difficulty to the end user’s ability.
One possibility to deepen this relatively unexplored branch is to
use published exercises books for the learning of instruments to
extract features correlated to the difficulty level.

5. CONCLUSIONS

We presented a broad introduction to the field of Computational
Creativity, and to Music Generation Systems in particular. In
the first part (section 2), we described the main concepts
needed to understand research on creativity (both human and

computational), analyzing a variety of definitions and studies on
what makes People, Processes, Products be perceived as creative
(to the Press). We reviewed some works on the evaluation of
creativity, which is one of the main challenges for computational
creativity, and is strongly intertwined with trying to give a formal
definition of creativity. In the second part (section 3) we focused
on the specific task of Music Generation, starting from existing
reviews on the subject. We described the main approaches to
Music Generation in the literature, giving examples for each.
Finally (section 4), we listed a set of issues that need further
development as identified by the reviews we analyzed. For each,
we listed possible approaches used to face these issues that have
been proposed by papers published in the last 10 years, discussing
how facing these challenges can also lead to an improvement in
the perceived creativity.

What hope that this review can serve as an introduction to
the research on Music Generation that can give all the necessary
bases to any researcher who wants to approachMusic Generation
from a Computational Creativity point of view. As we already
underlined, the main problems in this field derive from the
fact that often researchers fail to clearly state the goals of their
research, and consequently cannot give a good evaluation of
their work. This review can help frame new research within
the scope of Computational Creativity, and give an indication
of what still needs to be done. For instance, we believe that
often researchers have chosen a specific method or algorithm and
developed Music Generation Systems with the goal of using that
method rather than trying to create a complete Music Generation
System that could benefit from the use of different approaches
to face different issues. To this goal, we advocate that a well
studied hierarchical hybridization could give means to face many
of the open challenges listed above, and possibly also allow for
easier comparison between different methods, thus opening new
possibilities for evaluation.
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To better support creative software developers and music technologists’ needs, and to

empower them as machine learning users and innovators, the usability of and developer

experience with machine learning tools must be considered and better understood. We

review background research on the design and evaluation of application programming

interfaces (APIs), with a focus on the domain of machine learning for music technology

software development. We present the design rationale for the RAPID-MIX API, an

easy-to-use API for rapid prototyping with interactive machine learning, and a usability

evaluation study with software developers of music technology. A cognitive dimensions

questionnaire was designed and delivered to a group of 12 participants who used the

RAPID-MIX API in their software projects, including people who developed systems for

personal use and professionals developing software products for music and creative

technology companies. The results from questionnaire indicate that participants found

the RAPID-MIX API a machine learning API which is easy to learn and use, fun, and

good for rapid prototyping with interactive machine learning. Based on these findings, we

present an analysis and characterization of the RAPID-MIX API based on the cognitive

dimensions framework, and discuss its design trade-offs and usability issues. We use

these insights and our design experience to provide design recommendations for ML

APIs for rapid prototyping of music technology. We conclude with a summary of the

main insights, a discussion of the merits and challenges of the application of the CDs

framework to the evaluation of machine learning APIs, and directions to future work which

our research deems valuable.

Keywords: application programming interfaces, cognitive dimensions, music technology, interactive machine

learning, user-centered design

1. INTRODUCTION

Research on the design of music systems with artificial intelligence techniques goes back more
than 30 years (Dannenberg, 1985). Much of this work has been motivated by the exploration and
discovery of new sounds, music, and new forms of musicianship and performance (Miranda and
Wanderley., 2008). Within this domain, research focused on the design of mapping strategies with
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interactive machine learning (IML)—i.e., using supervised
machine learning (ML) for mapping between different kinds
of inputs (e.g., sensor data, motion descriptors, audio features)
and parameters of sound and music processes (e.g., Fiebrink
et al., 2011; Françoise et al., 2013; Caramiaux et al., 2014)—
has uncovered very meaningful advantages. They include, for
instance, workflows with increased celerity and ease-of-use,
intuitive exploration of complexmappings and high-dimensional
parameter spaces, and increased utility of small training data sets.
These findings are promising not only on their own, but also
when considering the opportunities to broaden and accelerate
innovation in music technology with ML (Bernardo et al., 2017).
However, in order to facilitate the adoption of ML by music
and creative software developers, the usability and the developer
experience with new tools for designing, developing and using
ML, must be considered and better understood.

IML approaches to building ML systems involve rapid cycles
of human actions modifying an ML model and interactive
examination of the outcomes of those modifications (Fails and
Olsen, 2003). Unlike algorithm-driven approaches such as active
learning, IML approaches entail human-driven cycles of model
creation, change, and evaluation. As Amershi et al. (2014) write,
IML enables “even users with little or no machine-learning
expertise [to] steer machine-learning behaviors through low-
cost trial and error or focused experimentation with inputs and
outputs” (p. 106). IML approaches often provide ways for users to
incorporate information about their goals or domain knowledge
into the creation of an ML system, for instance by creating or
curating training datasets that encode their understanding of the
target behavior to be learned by an ML algorithm.

IML can be useful for ML problems in which the user’s
goal is to encode a human-understandable behavior into the
system, and the user is capable of iteratively creating or curating
training data to steer the model toward achieving the desired
behavior. This is the case for many problems in music technology
involving the analysis of audio, visual, and sensor data, in which
a human user is capable of providing a supervised learning
algorithm with examples of data paired with the desired labels.
A musician could, for instance, pair examples of music clips, or
segments of gestural data, with classifier labels indicating mood
or instrumentation. Musicians and creative technologists have
frequently used IML to support the creation of new sensor-based
systems for embodied interaction andmusical expression, such as
the design of new musical instruments and new creative physical
computing systems (Hartmann et al., 2007; Fiebrink et al., 2011;
Katan et al., 2015).

In this paper, we present the design rationale and a usability
evaluation of the RAPID-MIX API, a toolkit and application
programming interface (API) for rapid prototyping music
technology with interactive machine learning (IML). Our main
objective is to explore how the design decisions and trade-offs
of an API for rapid prototyping with IML affect its usability and
the developer experience.We also identify specific design features
in other ML APIs and toolkits and provide recommendations
which our research and design experience suggests can be applied
to other work. This work contributes a deeper understanding
of ML API usability and its impact on the experience of music

technologists and creative developers who are not ML experts
and lack ML background. This work thus informs research
and practice in the domains of API usability, human-centered
ML, and music technology, where (to our knowledge) there is
little research about human-centered design and evaluation of
ML APIs.

The paper is structured as follows. This section introduces
readers to concepts with background material on the design
and evaluation of APIs, and contextualizes our work with
information about other ML API and toolkit designs used in
music technology. Section 2 describes the RAPID-MIX API as
the main material and its underlying design assumptions. Section
3 describes the study with an adapted Cognitive Dimensions
questionnaire. Section 4 presents a qualitative analysis of the
results of the CDs questionnaire. In section 5, we discuss the
main insights about the RAPID-MIX API design trade-offs and
usability issues identified by the study. We also provide a set
of recommendations for the design of ML APIs for prototyping
music technology. We conclude in section 6 with a summary of
the main insights and future work.

1.1. Design and Evaluation of APIs
Software developers integratingmachine learning (ML) into their
applications are likely to resort to third-party infrastructural
software—that is, software that supports the development and
operation of other software (e.g., middleware, software libraries
and frameworks, online services, toolkits) (Edwards et al.,
2003). The use of APIs—the developer-facing constituents of
infrastructural software—is a standard and important practice
in software engineering that prevails modularity and reusability
(Fowler, 2004). Developers use API calls within their application
code to extend their applications’ capabilities with infrastructural
software functionality.

APIs can provide potential savings in time and effort for
common development tasks. However, developers making an
informed decision about adopting an API may have to consider
their previous experience with a specific API and API domain, as
well as with the API conceptual model and the available design
cues and patterns (Blackwell, 2002). Accessing the efficiency
gains that APIs provide in relation to the cost of programming
a custom solution is not straightforward though. Furthermore,
the structure of the API and its documentation may have a
significant impact on the API learning experience, given the
ingrained assumptions about prior conceptual knowledge, target
application scenarios, code examples, and learning resources
provided (Robillard and Deline, 2011). When designing an ML
API, the lack of consideration for these aspects can lead to a
challenging and overwhelming learning experience.

Designing an API is a challenging task, let alone an
ML API. An API must meet users’ technical requirements—
e.g., performance, robustness, correctness, stability, security
(Henning, 2009). An API must be usable (Myers and Stylos,
2016) and provide effective learning (Robillard andDeline, 2011).
An API must also be useful and provide an appropriate set of
features for a space of potential client applications (Edwards
et al., 2003). An ML API should provide the ability to train and
evaluate existing ML algorithms on new data. A ML API can also
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incorporate a certain degree of domain expertise; for instance,
by making available complete ML pipelines with predefined
choices of algorithms and parameters (Mellis et al., 2017), pre-
trained models for transfer learning (Jialin and Yang, 2010), or
other functionalities that are likely to be useful for supporting
application development in particular domains.

There exist different approaches to API design and evaluation.
A designer-centric approach to API design is mostly based on
the designer’s taste or aesthetics1. This can be successful when
the designer has an extensive experience in both API design
and in the API application domain. Approaches based on API
design heuristics use empirically-based knowledge that has been
compiled into prescriptive guidelines or recommendations (e.g.,
Tulach, 2008; Cwalina and Abrams, 2009) There is, however,
contradicting empirical evidence about the usability of certain
API design heuristics (Myers and Stylos, 2016). User-centered
design (UCD) approaches inform and drive API design with
usability data (e.g., Clarke, 2010; Myers and Stylos, 2016). This
can be useful to counteract misleading assumptions about API
users who are not represented within the API designers’ group.
Nevertheless, usability approaches excessively focused on specific
design features might fail to deliver in a more holistic way1.

Myers and Stylos (2016) provide a comprehensive review
of different methods to measure and improve the design of
APIs. One traditional approach is API peer reviews (Wiegers,
2002), where technical peers examine and give feedback.
An alternative is the API Concepts framework (Scheller and
Kühn, 2015), which automatically evaluates both the API and
samples of client code, considering user characteristics (e.g.,
learning style, programming experience) among the critical
factors of evaluation. Other methods have been adapted
from traditional HCI and usability engineering, including
empirical and task-specific evaluation techniques (e.g., think-
aloud protocol, cognitive walkthrough) as well as heuristics-
based techniques (Myers and Stylos, 2016).

Other approaches to API evaluation are based on the
Cognitive Dimensions (CDs) of Notations framework (Green,
1989; Green and Petre, 1996). CDs are a “broad-brush” set of
evaluation tools that support discussion about the design trade-
offs of notations and information structures. The CDs have
been previously to applied to the analysis and assessment of
different types of music technology, including amusic typesetting
package (Blackwell and Green, 2000), music notation systems
(Blackwell et al., 2000), sequencing interfaces (Nash, 2014),
algorithmic composition software (Bellingham et al., 2014). API
studies based on CDs typically either used the questionnaire
originally developed by Blackwell and Green (2000), or a shorter
or partially refactored version, specialized to a specific domain.
For instance, the original CDs questionnaire Blackwell and Green
(2000) was used by Austin (2005), who assessed the usability
of a functional shading language for graphics programming.
Diprose et al. (2017) used it to assess the abstraction level of
an end-user robot programming API. Clarke and Becker (2003)
derived a framework from the original CDs to characterize

1Venners, B. and Eckel, B., The C# Design Process: A Conversation with Anders

Hejlsberg – Part I, https://www.artima.com/intv/csdes2.html, (accessed September

15, 2019).

specifically how API design trade-offs met the expectations
of the API users, and applied it to evaluate Microsoft ·NET
class libraries. Watson (2014) applied Clarke’s framework for
improving API documentation planning. Wijayarathna et al.
(2017) adapted Clarke’s questionnaire for evaluating the usability
of a cryptography API.

There is little research focusing on the human-centered design
and evaluation of ML APIs. To our knowledge, there is no prior
research which applies the Cognitive Dimensions framework in
the evaluation of the usability of an ML API.

1.2. Machine Learning APIs and Toolkits for
Music Technology
Developers are users of ML when they configure learning
algorithms, and when they train, evaluate, and export models,
or import the resulting pre-trained models into their music
technology applications. When building IML or other
“intelligent” systems for personal use in music performance
and composition—i.e., end-user development (Lieberman
et al., 2006)—or for others to use, in commercial applications
of music technology, developers can employ custom-built
learning algorithms. However, many developers will use general-
purpose ML infrastructural software via API calls to build their
applications, regardless of the specific end-user goal or end-user
application usage.

Over the years, a number of general-purpose ML tools have
been developed, including R packages such as Caret (Kuhn,
2008), graphical user interfaces (GUIs) such as Weka (Hall et al.,
2009), and APIs such as scikit-learn (Buitinck et al., 2013).
With the recent breakthroughs in deep learning, we observe
an intensive push of ML development toolkits and APIs into
the hands of developers—e.g., Google Tensorflow (Abadi et al.,
2016), Apple CoreML2 and TuriCreate3, Pytorch4. While most
of these APIs target ML experts, some of them cater to an
audience of ML non-expert users. However, many of these APIs
still remain difficult to use.

Other initiatives push for the democratization of ML using
a domain-specific approach, i.e., within certain domains of
application and more creative endeavors, which include the
generation and control of media, such as image, video, andmusic.
MnM (Bevilacqua et al., 2005) is a toolkit which allows users
to create custom gesture-to-sound mappings using statistical
methods such as principal components analysis5, hiddenMarkov
models6 and other algorithms. This toolkit is implemented as
a suite of externals for Max7, which is used extensively in the
context of experimental music technology. These externals (i.e.,

2Core ML, https://developer.apple.com/documentation/, (accessed September 15,

2019).
3Turi Create, https://github.com/apple/turicreate, (accessed September 15, 2019).
4Pytorch, https://pytorch.org/, (accessed September 15, 2019).
5Principal component analysis (PCA) is a statistical method which converts

observations of potentially correlated variables into a set of linearly uncorrelated

variables (the principal components). PCA is often applied for dimensionality

reduction high-dimensional data sets.
6A hidden Markov model is a Markov chain for which the state is only

partially observable. A Markov chain is a method for modeling complex systems

using random processes and probability, sequences of possible events and

interdependent states.
7Max, https://cycling74.com/products/max/

Frontiers in Artificial Intelligence | www.frontiersin.org 3 April 2020 | Volume 3 | Article 1342

https://www.artima.com/intv/csdes2.html
https://developer.apple.com/documentation/
https://github.com/apple/turicreate
https://pytorch.org/
https://cycling74.com/products/max/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Bernardo et al. Usability of Machine Learning APIs

processing components that are used within Max’s graphical
patching environment) enable users to program ML pipelines in
the data-flow paradigm.

Fiebrink et al. (2011) used the Weka API in the development
of Wekinator, a general-purpose standalone application for
applying supervised machine learning. The Weka API is an
object-oriented API, written in Java which provides standard
implementations of learning algorithms. Wekinator provides a
high-level interface to a workflow which that enables users to
rapidly create and edit datasets, and to employ these algorithms
(and others such as SVM, Dynamic Time Warping) to train and
run ML models in real time. It also supports the configuration
and mapping of sensor data to end-user musical software,
using high-level application pipelines connected through the
OSC communication protocol. This end-user programming
(Lieberman et al., 2006) approach to IML has been employed in
the exploration of user interactions with machine learning in the
context of music composition and performance.

TheGesture Recognition Toolkit (GRT) (Gillian and Paradiso,
2014) is an OSS, cross-platform C++ library aimed to
make real-time machine learning and gesture recognition
more accessible for non-specialists. GRT adopted core design
principles which include:

• Simplicity and accessibility, provided by a minimal code
footprint and consistent coding conventions.

• Flexibility and customizability, supported by modular
architecture structured around the metaphor of a real-time
multimodal data pipeline.

• A supporting infrastructure offering a wide range of
algorithms and functions for pre- and post-processing, feature
extraction and data set management.

Although GRT provided benefits and advantages over more
typical ML development environments (e.g., Matlab) it remained
difficult to utilize by people who had not the C++ and
software engineering skills for the lower-level parts of the code.
Nevertheless, it paved the way for other approaches to ease user
adoption. For instance, ml.lib (Bullock and Momeni, 2015) is an
OSS machine learning toolkit designed for two domain-specific
data flow programming environments, Max and Pure Data8.
ml.lib was implemented as a set of modules that wrap up GRT
library components (Gillian and Paradiso, 2014) and execute
within these environments as external components. Besides
GRT’s core principles which ml.lib builds upon (Bullock and
Momeni, 2015), other aspects of its design rationale include:

• enabling users without ML background to experiment
with and integrate a wide range of ML techniques into
their projects.

• taking advantage of the affordances of data-flow programming
environments, including (a) rapid prototyping and (b)
multimedia integration, (c) high-level abstraction which hides
away threading and memory management, and (d) integrated
documentation with interactive examples.

• maximizing learnability and discoverability through “a simple,
logical and consistent, scalable interface.”

8Pure Data, https://puredata.info/

• providing portability and maintainability through the use
of a cross-platform and multi-target technology stack that
supports different desktop operating systems and embedded
hardware architectures and processors.

Another ML toolkit which builds upon GRT and takes another
approach to bridge the gap for ML-non-expert developers is
ESP (Mellis et al., 2017). The ESP approach intensifies the
domain-specific and adoption orientation through the provision
of augmented code examples of end-to-end ML pipelines (e.g.,
audio beat detection). These examples are written by experts
using the GRT library and the OpenFrameworks creative coding
framework. This approach makes a few assumptions such
as the existence of a community of vested experts willing
to contribute their ML design expertise to the creation of
augmented code examples. Another assumption concerns the
tight coupling of the augmented code examples with high-level
GUIs, which is deemed fundamental to the learning of the
machine learning workflows.

Other ML toolkits have been designed with usability as a
primary concern. For instance, Keras is an open-source deep
learning API which, according to the author F. Chollet9, was
designed for usability and with usability principles in mind—
consistent and simple APIs, end-to-end pipelines with minimal
number of user actions required for common use cases, and
clear and actionable feedback upon user error. The usability-
focused innovation in ML API design of Keras led to its recent
adoption as one of the main interfaces of Tensorflow ecosystem
(Abadi et al., 2016). The Layers API from Tensorflow.js (Smilkov
et al., 2019) is modeled after Keras, also building upon the
advantages of Javascript (JS)—e.g., WebGL-accelerated end-to-
end ML pipelines supporting both training and inference in
the browser; predefined layers with reasonable defaults; ease
of distribution and deployment; portability, server-side and
client-side execution in the browser; the wide adoption and
relatively low-entry barrier of the JS programming language for
novice programmers.

As part of the Tensorflow ecosystem, Magenta.js (Roberts
et al., 2018) is an API for pre-trained music generation
models. This library was also positioned to bridge the ML-
non-expert developers gap through the provision of an even
higher abstraction level. One important design assumption
is its abstraction-level; hiding away “unnecessary complexities
from developers [...] would remove the need for machine
learning expertise” (p. 1). Magenta.js employs a transfer learning
approach (Jialin and Yang, 2010)—i.e., enables the integration
of pre-trained models to trivialize end-user adoption—with
model weights, parameters, and description made accessible
from an URL (remote js-checkpoints). Magenta provides music-
specific data structures such as NoteSequences—an abstract time
representation of a series of notes, characterized by attributes
pitch, instrument and strike velocity (akin to MIDI). It also
provides API objects which wrap up deep learning models
for musical application—e.g., music variational auto encoder
MusicVAE, MusicRNN, Music Transformer, etc. These are at the
core of a growing list of examples—both developed in-house

9https://blog.keras.io/user-experience-design-for-apis.html
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and by the community—of the application of the library to
demonstrate cutting-edge deep learning techniques for music
generation through a carefully crafted set of interactive example
applications with publicly available code.

ml5.js is another example of an ML API which also
builds on Tensorflow.js. However, ml5.js provides an even
higher-level of abstraction to empower artists and creative
coders. According to Daniel Shiffman10, the two main barriers
to the adoption of ML which ml5.js aims overcome, are
“having to install and configure a development environment
and secondly, having to implement low-level mathematical
operations and technical code.” ml5.js aims to support an
accelerated learning experience by providing an integrated
set of online resources—e.g., the API documentation linking
collections of code examples with relevant applications in the
P5.js online code editor, video tutorials. There are introduction
to complementary technologies (e.g., javascript, the library P5.js,
webservers) and to more challenging programming concepts
such as asynchronous operations and callback functions. The
code examples which are enable training in the browser employ
the Tensorflow Visor, an interactive visualization utility that
provides feedback on the neural network training and loss
function minimization.

There are common traits to these ML APIs and toolkits which
have been created using a domain-specific approach to music
technology. They share usability principles and accessibility
concerns reflected in the ease of deployment, higher-level of
abstraction, constraints to the ML pipeline building. They
also share code examples grounded on musical or sound
applications, which also show interactivity playing a fundamental
role in improving the accessibility and understandability of
the ML API for ML -non-expert developers. For instance,
in the case of ml.lib, this happens through the affordances
of the interactive data-flow environments, which are effective
at conveying information structures with a pipeline metaphor
(Green and Petre, 1996). In ESP, the GUIs are not just API
client code; rather, they play an essential role in the illustration
of the main functional code blocks and in enabling the training
and inference workflows supported by an augmented code
example ML pipeline. In ml5.js, ML model pipelines are built
according pre-defined configurations based on the specific task
(e.g., classification or regression). In Magenta, code examples
feature pre-trained models such as recurrent neural networks
for melody generation and musical accompaniment, automatic
music generation from performance MIDI datasets, and for
interpolation between melodic lines, drum sequences, and
music styles.

ML APIs can influence the features and interaction style of
the resulting applications. They can also impact the developers’
working processes and experience with ML. However, the
challenges and experience of developers working with ML APIs
remain under-explored, particularly for the development of IML
systems for creative and musical technology.

10https://itp.nyu.edu/adjacent/issue-3/ml5-friendly-open-source-machine-

learning-library-for-the-web/

2. THE RAPID-MIX API

The RAPID-MIX API is a toolkit comprising ML libraries
and learning resources (Figure 1) that were designed and
implemented in the context of RAPID-MIX11, an EU innovation
project focused on the creative industries. The RAPID-MIX
project stakeholders identified a variety of potential scenarios for
an API that would support rapid prototyping with interactive
machine learning for creative and music applications. The
API was intended to support both product development
by small and medium companies (SMEs)—including music
technology companies, e.g., ROLI12, AudioGaming13, and
Reactable Systems14—aswell as by individual developers working
in creative and musical technology. Domains of use included
education, games development, music technology, e-health,
and sports. Use cases included potential creative products
from the previous domains where sensor-based interaction,
expressive multimodal control, mapping and rich audiovisual
output could benefit from a flexible rapid-prototyping API.
Target environments could be desktop, mobile or web apps, or
embedded processors.

2.1. User-Centered Infrastructural Software
The design of the RAPID-MIX API followed a user-centric
approach, where different stakeholders were engaged early
and throughout the process, including academics, end-user
developers—people developing systems for personal use
(Lieberman et al., 2006)—and professional developers working
in creative and music technology companies. The design of the
API targeted students, “hackers,” and “makers” who might wish
to develop other new technologies using ML. The RAPID-MIX
API aimed to explicitly support IML approaches to systems
development, in which developers can iteratively create, curate,
and modify supervised ML training sets in order to influence
model behavior.

Design iterations were informed by lightweight formative
evaluation actions (Bernardo et al., 2018) using techniques
such as direct observation, interviews and group discussions
in workshops and hackathons, and remote Q&A sessions
between API designers and users. This work contributed to
a better understanding of the needs, goals and values of the
target users of the RAPID-MIX API, which spanned a breadth
of software development skills, experience, motivation, and
technical approach expected from creative and music technology
developers. Most notably, target RAPID-MIX API users had little
to no prior ML expertise, which strongly informed the design
considerations and trade-offs.

Early uses of the RAPID-MIX API by creative developers
included the integration of the IML workflow in ultra-low-
latency audio applications in embedded systems, driving visual
parameters of video jockey apps with audio and multimodal

11RAPID-MIX: Realtime Adaptive Prototyping for Industrial Design of

Multimodal Interactive eXpressive technology, http://rapidmix.goldsmithsdigital.

com/
12ROLI, https://roli.com
13AudioGaming, http://www.audiogaming.net/
14Reactable Systems, https://reactable.com
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FIGURE 1 | General structure of the RAPID-MIX API.

feature analysis, and browser-based audio synthesizers and
sequencers using real-time sensor data (e.g., Leap Motion15 hand
pose data, Myo16 electromyography and inertial measurement
data, BITalino17 data), applications for custom control of 3D
mesh animation, the rock-paper-scissors game, etc. Additional
illustrative use cases have been developed by participants of this
study (section 4.1) which include the creation of commercial
musical software products.

2.2. API Design Decisions and Architecture
The RAPID-MIX API aims to facilitate rapid prototyping by
developers in ways that are similar to how Wekinator (Fiebrink
et al., 2011)—a popular GUI-based tool for creative IML—
supports its users. For instance, it aims to minimize the number
of actions a user needs to take to develop a working prototype
(see Listing 1). Users need only to create an instance of an ML
class, train a model, and run it on new data; no additional
setup is required. Further, default values that support common
use cases are provided for all configurable algorithm parameters
so that developers do not need to make initial choices when
building a working system. For example, by default themultilayer
perceptron (MLP) has one hidden layer and the same number of
hidden nodes as input nodes. If users find that this architecture
is not suited to their needs, they can use additional functions to
adjust either of these parameters.

The RAPID-MIX API aims to focus developers’ attention on
their intended system design, rather than on ML algorithms or
architectures. It presumes an ML architecture common to many

15LeapMotion, https://www.leapmotion.com/
16MYO, https://support.getmyo.com/
17BITalino, https://bitalino.com/en/

applications involving real-time audio, visuals, or sensor-based
interaction, in which inputs (i.e., vectors of values representing
current sensor or media features) are sent to a trained model or
set of models, which in turn produce a vector of outputs that are
passed to some other real-time process. For instance, the sensor
values generated by a specific hand position sensed with a Leap
Motion (inputs) might be associated with a set of parameters for
an audio synthesizer (outputs). The designer of a new system
should primarily be focused on reasoning about what inputs
are expected, what outputs are desired, and whether the current
trained model is sufficient given these criteria—not about which
specific ML algorithm should be used.

The API therefore makes a distinction between two types of
design tasks (classification or regression tasks, corresponding to
the assignment of discrete categories or continuous numerical
values), and, separately, between two types of inputs (static or
temporal data, which for instance would correspond to a hand
position or a hand movement over time). The core API classes
reflect this structure, for example “rapidmix::staticClassification.”
When we must ask users to learn ML terminology, we take care
to use standard terms, such as classification or regression.

The RAPID-MIX API wraps new and existing supervised
ML algorithms in a modular fashion, allowing them to be
configured for different use cases. Specifically, it includes
FastDTW (Salvador and Chan, 2007), XMM (Françoise et al.,
2013), Gesture Variation Follower (Caramiaux et al., 2014), k-
nearest neighbor, and neural networks. These algorithms were
chosen to have low training and run times, and the ability to
create expressive models from small training data sets (Fiebrink
et al., 2011). They have been integrated as module components
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and made available in the different API subsets (i.e., RapidLib
C++, RapidLib JS, XMM C++, mano-js).

Further classes are provided alongside the ML classes. For
instance, there is a single class that provides an API for creating
and managing sets of training data. This class is compatible
with all of the ML classes, allowing users to switch easily
between ML algorithms while keeping the same training set.
The API provides signal processing and feature extraction
functionality for audio and multimodal sensor data, ranging
from basic processes (e.g., low-pass filters or RMS values) to
audio segmentation and Mel frequency cepstral coefficients
(Logan, 2000). It also provides methods for serializing and
deserializing training data and trained models using JavaScript
Object Notation (JSON).

The RAPID-MIX API is designed to allow users to test, train,
and use algorithms onmultiple devices andmove easily from one
device to another. In order to support native desktop, browser-
based, mobile, and embedded applications, the API is available
in both JavaScript (JS) and C++. The JS API provides client-side
and server-side libraries, targeting desktop and mobile browsers.
C++ is intended for low-level audio and media developers, native
mobile apps, and embedded processors. It has been tested in
openFrameworks and JUCE, as well as on Raspberry Pi and Bela
embedded hardware (Bernardo et al., 2018).

The need to support such a wide range of users and
use cases inevitably led to compromises. One substantial
subset of the RAPID-MIX API functionality, RapidLib, includes
the functionality for classification using k-nearest neighbor,
regression using multi-layer perceptrons, temporal classification
using dynamic time warping, and signal stream processing. The
RapidLib subset is implemented in C++ and transpiled into
asm.js using Emscripten (Zakai, 2011). This approach provides
advantages such as reduced development time, a great deal of
consistency across C++ and JS versions of API components, and
more efficient JS code (Zbyszyński et al., 2017). The compromises
that such approach entails is that RapidLib generated asm.js code
base is opaque to JS users. Furthermore, some features that are
idiomatic to one specific language such as multithreading and
JSON support are difficult to implement across two languages.

In addition to the software libraries, the RAPID-MIX API
comes with documentation and examples to help users learn
about and experiment with the API. Working examples show
users exactly how to implement common use cases, such as using
a Leap Motion sensor to control multiple synthesis parameters
(Figure 2), or applying classification to an incoming video
stream. In addition to describing the API, the documentation
also explains many relevant concepts behind the API, such
as the application of filters to multimodal input, what a
machine learning model is, or how to construct a training
data get. Interactive online examples are provided so users can
experimentally apply IML workflows to data created in real time
in the browser.

In contrast to other ML APIs, the RAPID-MIX API does
not provide built-in functionality for quantitative analysis of
the performance of trained models. The RAPID-MIX IML
workflow is intended to develop quick prototypes and allow

users to subjectively evaluate whether the resultant model is
performing adequately, by applying the trained model to new
data in real-time and observing the results. When training data
are provided interactively, as in the main workflow encouraged
by RAPIDMIXAPI, such direct observation of amodel’s behavior
on new data is often the most effective way to assess a model’s
performance (and evaluation using more conventional metrics
such as cross-validation can bemisleading) (Fiebrink et al., 2011).

Listing 1 presents a “Hello World” example of the RAPID-
MIX API in C++. Where practical, the same functions are
part of the JavaScript API, although obvious differences (e.g.,
std::vectors) are not duplicated.

LISTING 1 | RAPID-MIX API “Hello World” example in C++.

#include <iostream>
#include "rapidmix.h"

int main(int argc, const char * argv[]) {

//Create a machine learning object for regression
rapidmix::staticRegression mtofRegression;

//Create an object to hold training data
rapidmix::trainingData myData;

//Set up the first element of training data
std::vector<double> input = { 48 };
std::vector<double> output = { 130.81 };
myData.addElement(input, output);

//Add more elements
input = { 54 };
output = { 185.00 };
myData.addElement(input, output);

//Train the machine learning model with the data
mtofRegression.train(myData);

//Get some input
int newNote = 0;
std::cout << "Type a MIDI note number.\n";
std::cin >> newNote;

//Run the trained model on new input
std::vector<double> inputVec = { double(newNote) };
double freqHz = mtofRegression.run(inputVec)[0];

std::cout << "MIDI note " << newNote;
std::cout << " is " << freqHz << " Hertz" << std::endl;

}

3. METHOD

The overall objective of this work was to obtain a deeper
understanding about how the design decisions and trade-offs of
an API for rapid prototyping of creative technology with IML
affect its usability and developer experience. We refined this
objective into the following key research questions:

1. What usability issues can we find with the RAPID-MIX API?
2. How do users perceive the RAPID-MIX API design trade-offs

and how do these relate to usability and developer experience?

To answer these questions we designed a study with participants
who used the RAPID-MIXAPI in their work and who were asked
to report on their experience using an adapted version of the CDs
framework questionnaire by Clarke (2010). The questionnaire
answers were analyzed using a qualitative approach that is
detailed in sections 3.2 and 4.
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FIGURE 2 | RAPID-MIX API demonstrator for a regression model mapping Leap Motion sensor data streams to a multi-parametric browser-based sampler and

synthesizer.

3.1. Participants
We selected participants who had used at least one subset of the
RAPID-MIX API within a creative software project. Participants
signed a consent form to participate on the study. Our sample set
of 12 participants (1 female, 11 males) comprises 6 professional
developers working in 3 small and medium-sized enterprises
(SME) in creative technology, and 6 creative non-professional
developers creating systems for their own personal use (students
of different levels, spanning undergraduate, masters level and
PhD students; see Table 1). Participants had varying software
development experience, varying ML experience (from none at
all to experience with frameworks such as tensorflow, scikit-
learn, etc.). Participants had used different subsets of the API
(i.e., RapidLib C++, RapidLib JS, XMM C++, or mano-js) for
varying amounts of time (for less then 1 month to a little
more than a year). Some participants used the API in personal
projects or proofs-of-concept outside the commercial sphere;
other projects were developed for commercial purposes in a
professional context.

Commercial products created by participants include: a
JS front-end component that integrated the IML workflow
into a commercial biosignal analysis toolkit for rehabilitation
engineers working with patients (P03, P04); an intelligent
drum sequencer for iOS with custom gesture activation (P05,
P08, P12); and a software-as-a-service that coordinates sonified
movement workshops and soundwalks, using the multimodal
and multimedia capacities of these collective events attendees’
mobile devices (P09).

TABLE 1 | Listing of study participants.

ID Software dev.

experience

(years)

ML

experience

API subset

used

Time

using API

(months)

Use

(personal,

commercial)

P01 4 Some RapidLib C++ 8 Personal

P02 1 Some RapidLib C++ 11 Personal

P03 6 Some RapidLib JS 1 Commercial

P04 6 Some RapidLib JS 6 Commercial

P05 14 Some XMM C++ >12 Commercial

P06 5 Some RapidLib JS 5 Personal

P07 3 Some RapidLib JS <1 Personal

P08 5 None XMM C++ 1 Commercial

P09 5 None mano-js <1 Commercial

P10 1 Some RapidLib JS <1 Personal

P11 1 Some RapidLib C++ >12 Personal

P12 7 None XMM C++ 6 Commercial

3.2. The Cognitive Dimensions
Questionnaire
We employed an adapted version of the CDs framework
questionnaire (Clarke, 2010) as our research instrument, which
appears in Appendix A. This questionnaire has been developed
to support a comprehensive and systematic understanding
of participants’ experiences with the API, broken across
several different dimensions. Clarke’s questionnaire provides
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TABLE 2 | The adapted Cognitive Dimensions framework used in our study.

Learning

Abstraction Level Magnitude of abstraction and style of abstractions

of the API

Learning Style Learning requirements and style encouraged by the

API

Penetrability Ease of access, retrieval, exploration, analysis, and

understanding of the API components

Understanding

Consistency Similar semantics are expressed in similar syntactic

form

Role-expressiveness Purpose of an API component is readily inferred

Domain Correspondence Clarity of domain mapping of API components

Usage

Working Framework Size of conceptual chunk or amount of context

necessary to work effectively

Elaboration Extent to which API must be adapted to meet

developer needs

Viscosity Resistance to change in refactoring

Premature Commitment Constraints in the order of implementing API code

Error-proneness Error incidence, recoverability and support

Application

Work Step Unit Amount of programming task completion achieved

in a single step

Progressive Evaluation Work-to-date can be checked at any time

Testability Types of evaluation and assessment metrics that are

adopted

several benefits over the original CDs questionnaire, as it
is tailored for API evaluation, and it also has an increased
focus on learnability (Clarke, 2010)—i.e., introducing additional
dimensions including Learning Style, Penetrability. We were
inspired by prior studies that fine-tuned Clarke’s questionnaire
to specific domains—e.g., Watson (2014) introduced high-level
groupings of dimensions for amore effective distillation of results
for improving API documentation planning; Wijayarathna et al.
(2017) aimed to evaluate aspects of their API that were specific to
cryptography by introducing additional dimensions (e.g., End-
user protection, Testability). We have also adopted some of
these dimensions with minor changes. Table 2 summarizes the
14 dimensions used in our questionnaire, grouped into four
high-level themes. Each dimension was addressed by several
questions (Appendix A).

We first delivered a pilot version of our questionnaire to two
participants. This version was longer and closer to the original
version by Clarke (2010), and we received complaints about its
length. We therefore shortened the questionnaire by removing
some redundancies. The final questionnaire was delivered online,
on paper, or through in-person or remote interviews, due to the
geographical spread of the participants.

4. RESULTS

In this section, we report our findings about each of the
dimensions included in our questionnaire. We employed content

analysis using NVivo to analyses responses. We adopted a
deductive analytical approach in which we used codes based on
the CDs framework and on the higher-level themes of Table 2,
and on an auto-encoding analysis performed with NVivo.

We also tried to find correlations between the variables
Software Development Experience, ML Experience, API subset,
and time using the API, in the closed-end questions of
each dimension (e.g., Q1—perceived level of abstraction, Q8—
learning experience, Q11—experience with amount of context,
etc.;Appendix A). Given the size of our sample, we ran Pearson’s
chi-squared test with Yates correction, and Fisher’s exact test.
We found no support for contingency between those variables
in the dimensions’ quantitative results as none of the tests yielded
statistical significance.

4.1. Abstraction Level (Q1–Q2)
Questions pertaining to this dimension aimed to investigate
the appropriateness of the abstraction level of the RAPID-MIX
API. We asked how appropriate the abstraction level was for
participants’ development needs and why (Q1,Appendix A), and
whether participants felt they needed to know about the API’s
implementation details (Q2).

In responses to Q1, 7 of 12 participants found the overall API
abstraction level “just right,” and 5 of 12 found it “too high level.”
No one found it “too low level.” Five of the 7 participants who had
used the API for longer than 2months found the abstraction level
“just right.” Participants who used different subsets of the API
differed in their responses; all the participants using RapidLib
C++ (4 participants) or mano-js (1 participant) considered these
had the right abstraction level, and 3 of 4 participants using
RapidLib JS considered it too high-level.

Participants who found the abstraction level just right
described how the abstraction level enabled them to achieve
their development goals (P01, P02, P06, P11). These included
rapid prototyping (...“I was able to do rapid prototyping,
rapidly!", P06), simple implementations (“for a quick and simple
implementation the abstraction level works well”, P03), and
proofs-of-concept (P04). Participants also referred to the positive
development experience the API provided, having found it
“extremely easy to use in C++, which is usually a very confusing
language” (P02), or non-obtrusive to the creative process— “I was
able to implement most of the RapidLib functionality without
losing my creative flow” (P06). P04 indicated that the API
“facilitates the final programmer use" and saved her a lot of time
by preventing her from having to handle implementation details.

Participants who found the RAPID-MIX API too high level
(P03, P05, P07, P08, P10) experienced problems mainly because
they needed further understanding of lower level details—“when
I tried to learn a little more, knowing, for example, which model
was being used, I saw the abstraction level as a hindrance” (P03)—
or finer-grained control over certain API features—I found that
while the algorithms work, I would have liked a bit more control
over certain algorithms” (P10). Some participants complained
about the lack of transparency of RapidLib JS’s high-level objects
(Classification and Regression) which prevented them from
knowing which algorithms were in use. Because RapidLib JS is
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transpiled from C++ to asm.js, the source code and algorithm
implementation is more opaque than the C++ version.

Participants who stated that they needed to know the
underlying implementation (Q2) presented different reasons for
this. Three participants (P05, P07, P10) found undocumented
algorithm parameters—e.g., k in the k-nearest neighbor
algorithm, the number of hidden units in the hidden layers of the
multi-layer perceptron—and needed to understand how to use
them, so had to look further into the implementation. Some of
these participants worked on a product and related their reasons
to needing a deeper understanding for customer-facing projects
(P03, P08). For instance: “I needed to know what was behind
the object. If I am going to make a product or give a chance to a
customer to use one of our solutions based on the result of the
api, and for some reason, something wrong happens it would be
necessary to have a deeper knowledge of the whole object.” (P03).

One professional developer, P05, considered the
understanding of the underlying implementation vital—
“The API is very concise and there’s not much to learn, however
choosing the correct parameters is a ‘dark art”’ (P05). One
participant found the library opinionated (“it is intended to work
in a specific manner”) and had to look to the implementation to
adapt it to their needs.

Participants who mentioned not needing to know the
underlying implementation either mentioned that they already
knew it, or, that they had the sufficient knowledge to be able to use
the API successfully—“I felt that I needed general knowledge of
how regression and classification algorithms worked. However,
for my purposes this was enough. I could then just use the API
without needing to know the exact implementation.” (P11).

4.2. Learning Style (Q3–Q9)
The questions about learning style aim to determine what
knowledge was essential to use the API successfully, how much
new knowledge participants had to acquire, and how participants
went about using API documentation to attain this knowledge.

Participants perceived knowledge of the following ML
concepts to be important in facilitating use of the API
(Q3): the probabilistic nature of ML (P05); the greater
importance of the choice of data in comparison to the
choice of algorithm (P01, P05); basic ML concepts such as
the difference between regression and classification (P02, P04,
P11); the stages of the supervised learning workflow, such as
collection and preprocessing of data, training and running the
models (P01, P03, P04); and understanding the ML algorithms’
implementation and inner workings (P01, P03, P07). They also
identified the following knowledge of non-ML topics as useful
(Q4): threading and non-blocking async architectures (P06),
client/server architectures (P09), deeper programming language
knowledge (e.g., using generics) (P12), statistics for modeling
data (P05), and practical knowledge about sensors, and human-
computer interaction (P11).

Participants’ responses about their learning strategies (Q6)
indicated that both novice and experienced developers tended
to adopt an opportunistic approach (Clarke, 2007) to learning
about the API: they frequently learned by copying sample code
and employing hands-on exploration. The more experienced

developers appear to have complemented this with a more
top-down approach to learning about the API components
or architecture.

The majority of participants (9 of 12) indicated that they had
to learn “just [the] right” amount to use the API (Q8). These
participants defended this response with answers that mentioned
the simplicity, ease of use, and beginner-friendliness of the API.
For instance, participants wrote that the “code of the API is
simple and concise” (P05), that it was “straightforward to use
without having to read too much documentation” (P07), and that
“I didn’t have to learn anything new to use the API and I didn’t
want to learn a lot to train such simple models” (P02). The other
3 participants stated that the RAPID-MIX API documentation
did not provide enough resources to support their learning,
particularly regarding choosing appropriate algorithms and their
parameterizations for a given problem. P12 wrote “one is left
guessing numbers and trial and error exploration, if there’s
no previous ML experience,” and P01 wanted “more complex
examples so that people can try different ML structures.”

4.3. Working Framework (Q10, Q11)
Q10 aims to elicit an understanding of the amount and type
of information (i.e., “context”) a user needs to maintain or
keep track of while working with the API. Eleven participants
responded, choosingmultiple elements from the list of contextual
information (one participant did not respond). The top 5 classes
of context identified as necessary by respondents were: API
methods (10 of 11 participants), API classes (8), data structures
for training and model input/output (7), database (e.g., JSON,
XML, CSV, database management service) (7), and types of
ML algorithm (6). Less common responses included: local
scope variables (4 of 11), system configuration settings (4), app
configuration settings (3), global scope variables (2), registered
events (1).

When we asked participants to describe this “amount of
context” was “too simple,” “too complicated,” or “just right”
(Q11), 8 of 12 participants reported it was “just right”. Participant
explanations suggest this was driven by the simplicity of the API
interface—“not very demanding, inasmuch asmethods presented
simple syntax. When developing, I didn’t usually keep track of
them. When problems arose, it was always easy to navigate to
tutorial examples and spot where scope or method syntax was
not correct.” (P03). Contrastingly, the participant with the most
ML expertise conveyed his reasons for what is important about
context using more of a conventional rationale around context—
“I needed to keep all the context in mind that is relevant to using
the algorithm. I guess I don’t care that much about the particular
data structure that the API expects, so it would be nice to not
have to think about that. I don’t see how you could avoid that
though” (P06).

Two respondents found that the amount of context they
needed to keep in mind was too complicated. One of them, the
less-experienced, found difficulties with developing architectural
support for an increasing number of model outputs—“adjusting
the output parameters of my application took a bit of time
and thought to figure out what parameters needed to be global
and what parameters needed to be local.” (P10). The other
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respondent, a more seasoned developer, implemented a non-
blocking asynchronous threading architecture for making a
robust use of the API—e.g., “Training with large amounts of data
can take a long time and should be non-blocking e.g., a future.
However, it also needs to be cancellable.” (P04)—which entailed
the use of a more comprehensive and complex “context.”

Interestingly, one participant referred specifically to training
data and its specificities for the IML workflow as part of the
‘context’ to be kept in mind—“Often in the Application I would
visualize the training data or rely on remembering it. So just being
able to save the model without the training data was not useful
and caused complexity issues. Especially when the training time
of the models is very short and the datasets are small” (P02).

4.4. Work Step Unit (Q12)
Q12 asked participants whether the overall amount of code they
had to write to integrate the API into their projects was toomuch,
too little, or just right. Eight of 11 participants mentioned that
their experience was just right.

The remaining participants answered that they had to write
too much code. Their explanations identified several tasks that
appeared to require too much code: (a) validation, (b) data
management, (c) concurrency management, and d) management
of model outputs. Three participants mentioned validation code
as necessary to make their application safe and robust—e.g.,
“there’s not too much error handling, or check on the data
format/range” (P12). Two participants referred to concurrency—
e.g., “not ‘too much’ code directly related to the API, just
too much boilerplate wrapper code in order to use the API
successfully in the context of a large multithreaded mobile app
with GUI and audio” (P05). Three participants mentioned having
used an extensive amount of code for creating data structures and
performing data management in the application. For instance, “I
had to write lots of code for formatting training data, I feel like
the API could have given an interface for recording, building and
editing data sets rather than needing to be given the whole dataset
at once or relying on user-written C++ vector functions to edit
training data” (P02).

4.5. Progressive Evaluation (Q13)
Q13 asked participants about the amount of work needed to
evaluate progress in using the API. Notably, though participants
knew the questionnaire was focused on evaluating the API
itself, we found that the majority of responses related to the
task of evaluating progress of the IML workflow outcomes
(i.e., the quality of training data, the training process, and
the model results) rather then just progress in establishing a
functional pipeline.

Participants identified the simple API interface as facilitating
progress evaluation—e.g., “It was very easy to evaluate the
integration of the API with my application. Because of the simple
user interface of the API, I knew exactly what to expect from each
method of the API.” (P02); “there is very little code required to
use the API. Evaluating the performance of the tool, selecting the
source data inputs, choosing a frame rate, ensuring orthogonality
took up 10% of our time.” (P05).

Responses that expressed difficulty in evaluating progress
shared some common themes. For instance, respondents
complained about the lack of integrated visualization tools—
“I evaluated my progress in using the API by implementing
visualizations in D3 [...] I would probably like to minimize
the amount of time spent on visualization code” (P07).
Others complained about the lack of functionality to provide
feedback about model accuracy improvements—“There’s no
proper visualization of improvement, one is left with the trial
and error to determine if the classification is improving or
not, and no information on how good/bad it is.” (P12). One
participant referred to the high abstraction level as a hindrance
for progressive evaluation—“Because some of the functionality of
the API is hidden for advanced or personalized use cases, I wasn’t
completely sure about my own progress” (P06).

4.6. Premature Commitment (Q14–Q17)
Q14–Q17 examined how participants perceived the level of
premature commitment required by the API—i.e., the need to
make certain decisions too far in advance, and inflexibility in the
order in which decisions had to be made.

Eight of 12 participants reported that they were forced to
think ahead and make early decisions (Q14). Most participants
found it necessary to make early decisions about data sources and
preprocessing, data structures for inputs and outputs and their
dimensionality, and the state machine architecture that supports
switching between the modes of training and running the models
(Q15). Some of the more advanced users, or users with more
complex requirements for commercial product implementations,
referred to planning the integration of the API components
according to specific aspects of their use case—for instance,
within a client-server or concurrent architecture.

4.7. Penetrability (Q18–Q23)
Questions about penetrability aim at understanding the degree of
ease with which developers could access information about API
components, and explore, analyse and understand their working
details in order to achieve specific development goals.

Eight participants encountered some difficulties in finding
necessary information about API details (Q18, Q19), indicating
that the documentation of API subsets was insufficient.
Most of these respondents had, at some point, finer-grained
implementation requirements for which necessary details about
the API became hard to find. Seven participants indicated
having to learn about specific ML algorithms and parameter
configurations (Q20). Some participants learned about these as
they worked—e.g., “Online tutorial materials and examples were
very helpful. However, should deeper potential of the API be
explored, I can’t say that all questions would be easily answered.”
(P02); “As my own knowledge [of IML] progressed I would
have liked to be able to find out more detailed information
about the neural network and how it performed the regression
analysis” (P03).

Participants reported working to improve their understanding
of the API (Q22) mainly through the process of trial-and-error
exploration (5 participants) and by reading through the API
source code (4 participants)—“Largely through trial and error I
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began to get a sense of how the regression model worked” (P08);
“By breaking it, using intellisense to find functions that were
templated to exist, but did not have implementations in some
models, so I started reading more of the API’s source” (P01).
Some participants reported needing to use direct communication
with the API developers (P01, P06, P09) and resorting to external
documentation resources (P05).

Four participants believed the API and its documentation
provided enough information for their needs (Q23), found easy
access to that information (Q19), and that there was no lack of
information about details (Q18). Most of these participants either
had simple goals and remained at a high implementation level,
or their exploration was technical-driven rather than design-
driven—“My original interest [lay] in the C++ API, but resources
and adaptation to the final product needs made me shift toward
Javascript, which had magnific learning materials” (P04). Some
participants admitted not understanding the working details but
were satisfied working with a “black box”—e.g., “I didn’t fully
understand then. The results were adequate enough for our
application” (P09); “I had no knowledge of the implementation
details or how the API is generally structured apart from what
was obvious from the code examples” (P05).

4.8. Elaboration (Q24)
Q24 asked about the ways that participants had adapted the API
to fulfill their design goals (if any). Five of 12 respondents used
the API “as-is.” Five others reported having wrapped the API in
adapter classes to add the necessary functionality to overcome
specific limitations of the API. Three of these respondents had
added error handling and support for asynchronicity.

Two participants reported having forked the API and
changing the library file structure. One respondent hacked the
API to improve the learning capacity of the default regression
object. His hack approximated the functionality provided by
an undocumented MLP parameter—“The hack was to increase
the dimensionality of the input vectors by duplicating their
content. This would artificially increase the number of hidden
units and allow the model to learn more complex patterns” (P06).
No respondents reported trying to derive classes or override
class methods.

4.9. Viscosity (Q25)
Q25 aims at understanding how is easy it is to make changes to
code that uses API calls. Seven of 12 respondents mentioned it
was easy and two mentioned it was very easy to make changes
to API integration code (Q25)—“Easy, there was barely any code
to write to implement the API.” (P02); “Very easy. The interface
is minimal and the actual parameters that one can change are
few” (P12). Three respondents mentioned they did not need
to refactor their code. The other two respondents described
challenges around understanding the code in the context of
refactoring it—“Easy as I wrote the code [...] When debugging
issues though, I needed to check examples a lot to understand the
described Test-Train-Run structure that I needed to implement.
As in ‘to train only once and not to run the model when testing or
training’.” (P01); “It was easy but needed a lot of understanding of
the code.” (P08). One participant referred to the growing amount

of outputs as a difficulty for change—“As the amount of output
parameters grew I found it sometimes difficult to keep track.
Otherwise it was very easy” (P11).

4.10. Consistency (Q26)
Q26 asked participants if they noticed API elements that
offered similar functionality, andwhether the differences between
them were clear (Q26). Five of 11 respondents mentioned
having noticed consistent method names across classes. Three
of the aforementioned 5 found lack of clarity between certain
API classes—e.g., “Model set, Regression and Classification.
The difference between these objects was not clear. The
implementation[s] were all very similar and it was not clear
which one to use” (P02). There were also issues around the use
of the different kinds training data structures. The other two
who noticed consistency of methods felt they understood the
differences between them. For instance: “I like that there were a
train, run functionalities in the code as this help me understand
the models in similar way apart from the inner workings of
course” (P01). The remaining respondents (6 of 11) did not
noticed such similarities; one participant did not respond.

4.11. Role-Expressiveness (Q27–Q29)
We asked participants if it was easy to read and understand
code that uses the API (Q27), and whether it was easy to know
which classes andmethods to use (Q29).We obtained unanimous
responses to both questions—“Everything was very easy to
interpret.” (P02); “Code is pretty self-explanatory and comments
are concise enough” (P04) “Classes methods are efficiently named
to understand what they are doing” (P08).

4.12. Domain Correspondence (Q30–Q32)
Questions about domain correspondence aim to determine
whether API classes and methods map easily onto the conceptual
objects in the users’ implementation.

We obtained unanimous positive responses about the ease of
mapping the API code into developers’ conceptual objects (Q30).
Two respondents provided reasons that related the simplicity of
the API interface and the IMLworkflow to the ease of mapping to
domain and conceptual objects of their implementation (Q31)—
“the simple user interface made prototyping very quick making
building a conceptual idea very easy and simple.” (P02); “I
think because the training and the recognition phase is the
same workflow, it’s easy to come up with concepts that match
both.” (P07).

Participants seemed to have had a particular understanding of
what was meant by the “mapping” of the API to an application
domain (Q30); the majority of responses mention mapping
API objects to classification or regression tasks, or to the
IML workflow tasks. Most likely, participants have understood
ML learning functions such as classification and regression, as
enablers of functional mappings between domains (e.g., mapping
gesture to sound, visuals, and discrete application events). This
seems to be confirmed by the results of asking participants
to provide examples of conceptual objects (Q31); only a few
participants were able to refer to conceptual objects that did not
overlap directly with ML domain concepts—“Once I had a clear
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idea how I wanted to activate certain functionality, this made the
process easier for me.” (P01). “Because the API enable separation
between “recording" the data (i.e., training) and estimating the
probabilities of category membership for an unknown example
(recognition)” (P03).

4.13. Error-Proneness (Q33–Q36)
Questions about error-proneness aimed to elicit the participants’
experiences with encountering and recovering from errors in
their use of the API.

Eight of 10 respondents reported that they had used the
API incorrectly (Q33). Errors included: using an inconsistent
number of data features between training data sets and test
data sets (P05, P06, P09), using malformed data (P04), using
labels inconsistently (P12) or malformed JSON (P05, P08),
using a large-size training datasets which caused a crash (P11),
attempting to predict from a model in an untrained state (P02),
and using a higher-abstraction level object as a primitive (P02).
Many of these incidents were caused by limitations in input
validation of API methods.

Four of these respondents indicated that the API did not
provide sufficient help to identify misuse (Q34)—e.g., no
error messages, some “undefined behavior” output. Participants
reported having experienced crashes of the API-client application
without any notification with the subsets XMM C++ (P04, P10,
P11) and XMM JS (P09). One participant resorted to logging
(P09) and contacted the API developers directly to find and
resolve the issue.

Most respondents indicated they were able to find a way to
correct their use of the API (35). For instance, where participants
encountered errors due to lack of input validation, they adapted
the library to implement validation (P05, P12). Other participants
simply becamemore aware of problems andmore careful (e.g., in
structuring the training data, choosing the correct dimensionality
of inputs and outputs, validating model state, etc).

4.14. Testability (Q37–Q39)
Questions about testability aim to determine the types of
evaluation and assessment metrics that were adopted by
participants as they used the API and concluded their
implementation of integration code.

Most participants indicated having used subjective evaluation
to assess the results of the trained models (9 of 12), with
criteria such as correctness (3), cost (3), decision boundary
characteristics (1). Several participants referred to other criteria
such as expressivity (1) or more creative ways of evaluation—
e.g., “No testing was done on the models, just eyeing up the
output and judging it creatively whether it works or not for the
desired output” (P01). One participant mentioned having used
seam tests for assessing training data. One participant did an
objective accuracy evaluation of the models built with the API
using unit tests with another ML library.

Seven of 11 participants found the API did not provide
guidance on how to test the resulting application. The remaining
respondents did not look for guidance for testing—e.g., “We
tested very informally since there’s no effective way to test more
objectively” (P12).

5. DISCUSSION

According to Clarke (2010), the CDs inspection can tell whether
there are significant differences between what an API exposes and
what a developer using the API expects. In this section, we use
the results of applying the CDs questionnaire with RAPID-MIX
API users to discuss design trade-offs with respect to developer
experience and ML API usability. We use these insights together
with our experience designing the RAPID-MIX API to provide
recommendations for the design of ML APIs for prototyping
music technology.

5.1. ML API Design Trade-Offs in Relation
to Learnability and Understandability
Results indicate that the RAPID-MIX API qualifies as an ML API
with a high or aggregate abstraction level. The high abstraction
level is supported by its minimal surface area comprising a small
number of classes, methods and parameters. These elements
have been subsumed into a simple conceptual model of high-
level design tasks and basic data structures. An ML API has
direct domain correspondence if ML is considered its domain of
correspondence. In the understanding of most users, RAPID-
MIX API entities map directly onto ML learning tasks.

The high abstraction level appears to be consistent with
the learning style of the RAPID-MIX API, which is more
of incremental and step-wise. Both novice and experienced
developers reported an opportunistic learning approach (e.g.,
having hands-on exploration and progressing through code
examples, exploring, changing or copying sample code to their
projects). Arguably, given that ML learning tasks and the
algorithms require extensive description from API providers
and learning from the users, this indicates that the learning
and assimilation of ML concepts was successful. ML APIs
with these characteristics can provide ML -non-expert users
with adequate scaffolding for a more satisfactory and forgiving
learning experience.

However, more experienced developers reported to have
complemented their learning strategies with a more systematic,
top-down structured learning approach to the components and
architecture of the API. More advanced developers and more
technically complex scenarios might require the flexibility and
control that a lower-level ML API with more primitives, more
ML algorithms and more exposed parameters for finer-grained
control can provide. We found that a few respondents, the
more experienced developers or the ones who had specific
implementation requirements (e.g., finer-grained control, strict
end-user concerns within customer-facing projects) needed to
go “beyond the interface” to inspect the API source code and
learn more about underlying ML algorithms. In that exploration,
a few of them found useful parameters that had not been
exposed. This finding informed a subsequent re-design to expose
the parameters.

In scenarios of exploration and intuition building about
ML, ML APIs with surface-level penetrability may appear to
provide everything that is required to enable successful use
and integration with client application code. Nevertheless,
surface-level ML APIs may allow “black box” approaches in
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its application and use. We found that the RAPID-MIX API
was no exception to this. As developers build up knowledge
and understand the IML workflow, which ML tasks to apply,
or the number of inputs and outputs to use in a ML pipeline,
they may seek to push forward their understanding of a ML
model behavior. They may engage in a deeper exploration and
experimentation to learn about the ML API intricate working
details, such as the impact of choice of underlying ML algorithms
and parameter change.

In the RAPID-MIX API, the overall penetrability is mostly
sensitive to context and to implementation needs. with
different RAPID-MIX API subsets providing distinct levels of
penetrability. There were cases of deeper exploration fraught with
fragmented documentation, and unclear dependencies between
API primitives and abstractions. This gives the RAPID-MIX API
a core consistency rather than full consistency. These issues affect
the perceived consistency of an ML API, and consequently, its
learnability. For instance, some participants resorted to external
resources to understandML concepts and algorithms, which may
be considered resorting to a top-down approach to learning ML.

Different areas of an ML API may have distinct levels of role
expressiveness which also affects its consistency. In most cases,
the purpose of the RAPID-MIX integration code was correctly
interpreted and matched user’s expectations. Nevertheless, there
issues which prevented it to fully match users expectations which
gives it a lower role expressiveness as an ML API. One opaque
subset (i.e., RapidLib transpiled from C++ to asm.js) prevented
one user from determining the underlying implementation.
As mentioned before, other users found undocumented lower-
level methods or lacked configuration settings. The transparency
at the level of the ML algorithm—or ML explainability—is
another layer that may entangle with the overall ML API role
expressiveness. However, ML explainability is a current and
significant research problem that is out of the scope of this paper.

5.2. ML API Design Trade-Offs in Relation
to Usability and Applicability
An ML API with a high-level, easy-to-acquire conceptual model
can cater well to the opportunistic approach and needs of
ML non-expert developers. In the case of RAPID-MIX API, a
simple conceptual model based on ML tasks and simple data
structures with inputs and outputs, makes it suitable for simple
implementations and rapid and pragmatic prototyping with IML.
It also helps us to uncover and better understand usage and
application of ML APIs by ML non-expert users.

ML APIs with a high API elaboration should not impede
any kind of user from achieving their design goals. They should
enable great flexibility to the more proficient end of the user
spectrum, such as the implementation of custom behaviors,
custom ML pipelines and parameterization. Almost half of
participants reported using the RAPID-MIX API “as-is” to
meet their design goals. The other half required further API
elaboration (e.g., more ML algorithms, more parameters, better
error reporting). This tells that for users with simple goals
the RAPID-MIX API was sufficient. Alternatively, it can tell
that, for more critical users, or, users with more sophisticated
implementation goals, the API was not sufficient.

Arguably, the RAPID-MIX API exhibits a medium level
of API elaboration as advanced users may use its extensible
architecture to extend the API default capabilities with custom
implementations. The few participants who extended the API
default objects did so using adapter classes to extend the default
objects and methods with validation, concurrency, and error
reporting. However, these users improved upon base limitations
of the ML API. For a user, extending an ML API might defeat the
whole purpose of using it in first place. Users who do not expect,
or do not have the know-how to extend the existing functionality,
might find problematic in doing so. They may opt for using a
different ML API or framework altogether, or resort to integrate
independent ML algorithms.

Developers integrating an ML API in their client application
code need to keep track of the information which enables them
to work effectively (i.e., the working framework). Interestingly,
half of the respondents did not mention ML algorithms as
part of their working framework. This might reflect a trade-
off with the abstraction level of the API; or alternatively, the
adoption of specific ML API design assumptions (i.e., in the case
of RAPID-MIX API, data and use cases on the foreground of
users’ attention and ML algorithms on the background). The
lack of preponderance of the ML algorithm may be unsurprising
if it reflects minimal ML requirements or a local working
framework (i.e., ML API objects and methods, local variables)
that suffices for simple implementations. However, the working
framework may not be entirely or directly represented by the
ML API or the scope of the ML API integration code—
e.g., extrinsic elements such as the ML training data, or in a
global or system-level working framework, client application and
system configuration settings, external device data specifications,
performance requirements, etc.

In a minimal test (e.g., hello world example, unit tests with
a ML API) the work-step unit might be local and incremental.
Despite the minimal surface area of a ML API, developers may
have design requirements that scale the quantity of ML API
integration code extensively. In these cases, anMLAPI can have a
parallel work-step unit, where the steps to implement and achieve
the full design goals are distributed throughout different scopes
in the integration code. Given the interactive nature of the IML
workflow, the ML API integration code will most likely scale up
to comprise multiple and independent code blocks. This was the
case with a few of the implementations with the RAPID-MIX
API, e.g., asynchronous event handlers for collecting data and
building an ML data set on the fly, for triggering evaluation of
new data, or persistence to data repository. ML API integration
code may also require the instantiation of multiple auxiliary
objects that interact together (e.g., GUI, data management,
validation, concurrency), which make using and understanding
more challenging.

Similarly, an ML API may support a progressive evaluation
of the integration code at local level, functional chunk (that
is, after the implementation of certain groups of tasks, such
as setting data structures and training data set, or after the
train and run methods), or parallel components (i.e., multiple
and independent code blocks). The majority of respondents
reported needing a fully functional pipeline and to experiment
with IML workflow in order to check progress on the overall
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implementation task with the RAPID-MIX API. An ML API
may support progressive evaluation at parallel components, as
it requires a fully functional implementation and interaction
between different ML API objects.

An ML API that presents the user with a small number of
choices about how to accomplish design goals with minimal
implementation differences between alternatives, can expose
a minor and reversible level of premature commitment. The
RAPID-MIX API also has a low level of viscosity that allows
users to easily make changes and refactor integration code.
This is consistent with the notion that raising the abstraction
level reduces viscosity (Green and Petre, 1996); low viscosity is
also supported by the API small-surface area. Such ML API
qualities invite a trial-and-error exploration and an opportunistic
approach, and are supportive for ML-non-expert users.

The RAPID-MIX API situates at a medium level of
error-proneness given the reports about recurrent issues of
misuse, error support and recoverability. These findings indicate
opportunities and the direction for technical improvements,
such as providing more robust validation of inputs, and better
communication of error status through error messages.

Concerning testability, the RAPID-MIX API promotes more
of a direct and informal evaluation using subjective criteria.
This confirms its alignment with the IML approaches that the
API is inspired on. In any case, most developers seem to be
unaware of different methods or evaluation alternatives, and
seem find the concept difficult to articulate. Also noted was the
lacking of guidance about evaluation alternatives, which seems to
require specific ways to be successfully transmitted, such as with
richer media.

5.3. Recommendations for the Design of
ML APIs for Prototyping Music Technology
1. Adopt a user-centered infrastructural software design

approach—find domain-specific core test applications
early on which might be compelling to users and help them
to understand, and that can inform the ML API core design
features (Edwards et al., 2003). In the music technology
domain, these could consist of, for instance, a range of new
sensor-based interaction applications with complex mappings
to music processes (e.g., the main focus of RAPID-MIX API,
GRT, and related toolkits), automatic music composition
applications (e.g., Magenta), or other types of automation
for music production environments. These applications can
help to determine many of the ML API design features such
as the surface area, its elaboration level (or extensibility) or
abstraction level.

2. Reduce the skills and usage barriers with a minimal code
footprint and reasonable defaults—design the ML API
abstraction level to lower the entry barrier for ML-non-
expert-users by abstracting details away. Design for improved
readability, efficiency and reduce cognitive load with terse ML
API code and minimal boilerplate. Users starting with ML
API functions should experience a default or typical behavior
with default parameters. For instance, RAPID-MIX API offers
a high abstraction level, in which ML tasks are high-level
objects and data structures are simple arrays. This contrasts
with the abstraction level of Tensorflow and GRT, with tensors

as data structures or low-level math operations. Reducing the
complexity and the number of possibilities of building ML
pipelines can accelerate the immediate engagement with the
ML algorithm and data, both programmatically and via an
IML workflow. This can foster a bottom-up learning style, and
provide an increased focus on their design goals.

3. Facilitate the first contact through an immediate hands-on-
code experience—minimize the cognitive load associated with
installation issues to accelerate the first contact at structuring
an ML pipeline and fully experiencing an IML workflow
for a musical application. Users find it difficult to adopt
a tool if they are not able to see it working quickly and
providing compelling results, and the installation steps can
drastically undermine the developer experience. ML APIs
such as tensorflow.js, ml5.js, and the RAPID-MIX API, which
offer “zero-install” access to model building and inference in a
browser environment can be very compelling for novice users
to start with. Similarly, users can benefit from plugins which
wrap up ML API components and ease the integration with
environments such as Max, Pd, or OpenFrameworks.

4. Provide adequate conceptual scaffolding for the ML API
code—help the user build an adequate mental model for
the ML integration code using different abstractions, if
possible from the domain of application, such as end-to-
end pipelines, modular building blocks, and training and
inference workflows. This can help users to better understand,
not only the alternatives which the API makes available (i.e.,
ML algorithms, objects, and data structures) but how they
fit within the working framework required to accomplish
their design goals when building musical applications. ML
API users building intelligent music systems will develop a
working framework of how to set integration hooks between
the inputs and outputs of an ML pipeline and areas of the
client code (e.g., the controller data streams, the UI event
handlers, the audio engine).

5. Provide many code examples of real-time interactivity between
user, data and ML algorithms that can be applied to musical
processes—provide support for the development of intuition
and basic understanding with an experiential approach and
contrasting ML API code examples that gradually disclose
complexity. This will provide users with a smooth learning
curve and experience to building ML pipelines and workflows
for musical applications. A real-time IML workflow where
the end-user creates, curates, and modifies training data
iteratively to build MLmodels mapped to musical parameters,
and steer their behavior based on direct observation, trial-
and-error and hands-on-exploration, can yield a smaller
gulf of execution and evaluation (Norman, 2013) than
other workflows. Code examples can support opportunistic
approaches—i.e., hacking, appropriation, e.g., ESP (Mellis
et al., 2017)—to ML systems development, which might
be more enticing to novices or aligned with the goals of
rapid prototyping musical applications. Novice users tend
to use code examples as the basis and starting point of
their music technology creation, so they might be written as
building blocks.

6. Design your API documentation with relevant ML terminology
and curated external resources— design the documentation
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with an adequate level of penetrability to support an effective
learning experience—e.g., navigation, content structure, links
to API code (Meng et al., 2019). Limit the use of specific
ML terminology conforming with standard terms, while
aiming “at the most common case”—e.g., the Glossary
of Terms (Kohavi and Provost, 1998)—applied to the
music domain. For example, understanding the meaning of
classification both as an ML task and musical design task (e.g.,
musical gesture recognition) may lead to cognitive benefits—
standardization for improved memorability (Norman, 2013),
a general principle which claims usability can be increased
by having to learn about a term only once, which potentially
lowers the barrier to participation. Documentation includes
code commenting practices and the curation of links to
third-party content which can provide competent and
alternative means of explanation—broader, deeper, or more
interactive and engaging (e.g., Youtube, StackOverflow, online
playground tutorials).

7. Error reporting, progressive evaluation and feedback
mechanisms—reduce the evaluation gap of the ML API
integration code and help users to recover from errors by
providing them with error messages for the relevant parts
of the ML API. Most errors identified during usage of
RAPID-MIX API were related to ill-structured data sets, and
inconsistency in labeling, types and number of input and
outputs. Build input validation on the methods of your API
to help users recover from run-time errors. Error messages
should be clear, objective, and indicative of the problem
and the context where it appeared, and propose a solution.
The lack of progress and termination feedback in the ML
model training stage was considered problematic. Methods
or functions which complete asynchronously such as ML
model training, benefit from progression and completion
feedback. Provide API methods and complementary tooling
(e.g., visualization libraries) for accessing the configuration
and state of the ML pipelines and workflows. Use them in the
examples and documentation to help users build a correct
mental model from a solid pattern and prevent errors.

8. Support the diversity of user engineering skills for ML -non-
experts users–novice developers require a strong proposition
with regards to the conceptual scaffolding. This might
entail creating more visual and holistic resources, which
might convey more effectively the “big picture,” and creating
minimal and simple examples, with a standard code styling
and no optimization for readability. Experienced developers
require another level of elaboration and penetrability to reach
their design goals. They will value lower-level primitives for
control and configuration of ML algorithms and pipelines,
a wider selection of ML algorithms and more sophisticated
data structures, which may yield more expressiveness in the
final result. To strike this challenging balance between both
ends of the spectrum of user developer-skills, it is fundamental
to build an extensible and modular ML API architecture. It
is also important to differentiate documentation and guides
according to user development skill levels and to tailor and
provide support for a more adequate learning journey.

9. Build a thriving community and ecosystem comprising
documentation, resources and infrastructure—an active

community can support new users with the on-boarding
process and with troubleshooting issues. It can also give more
experienced users opportunities to contribute with solutions,
mentor, network, and peer-review open-source contributions
and extensions to anML API. Online fora and Q&A platforms
such as StackOverflow provide the media for the community
to engage and interact and keep a history of answers to issues
previously raised by other users. Meetups, workshops, and
hackathons can grow the community offline and strengthen
its bonds.

6. CONCLUSION

This study employed a qualitative and user-centric approach
to explore and better understand how ML API design may
facilitate the learning, use and rapid adoption by creative software
developers andmusic technologists. The design of anMLAPI can
impact its adoption, the user-developers’ working processes, and
the client application features and interaction style. Current ML
API designs and designers show awareness about the importance
of adopting design principles which guide usability, learnability
and accessibility. However, research focused on the human-
centered design, evaluation and developer experience with ML
APIs is fundamentally under-explored, in particular, of ML
APIs specialized in the development of systems for creative
and musical technology. This kind of user study is therefore
important for how it builds upon a more nuanced connection
between designers and end users of an ML API. We used an
adapted version of the CDs questionnaire to explore how the
design decisions and trade-offs of an API for rapid prototyping
with IML relate to its usability and the developer experience.

The application of the CDs to the usability assessment
of ML APIs helped uncover problems and directions of
improvement, mostly related to documentation fragmentation,
support for understanding intricate working details, error
support and recoverability, and lack of evaluation guidance.
Results also indicate that the RAPID-MIX API caters well to
beginners and ML-non-expert users in general. It appears to
support incremental learning approaches and to provide a low
entry barrier and smooth learning curve to ML. The direct
correspondence of the API to a high-level conceptual model
which focuses on supervised ML learning tasks, end-to-end ML
pipelines and simple data structures for datasets, appears to
support effective learning, understanding and use. The structure
and set of entities of this ML API support usage with minimal
amount of code and context, trial-and-error exploration, easy
refactoring and easy adaptation to custom user needs. This
facilitates opportunistic development approaches, which are
driven by design and rapid experimentation goals, and prone
to happen in contexts of learning and creative and music
technology development.

The CDs framework opens up interesting perspectives of
analysis that support a rich and deep discussion about ML
API design. However, we faced some challenges in the general
application of the CDs, mostly related to communication and
interpretation issues with the CDs vocabulary, and validity
and reliability issues, which typically occur in questionnaire
and survey methods with small samples (Adams and Cox,
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2008). Other challenges relate to the difficulty to establish a
scale and rate a ML API for each cognitive dimension of
analysis. We also found limitations to the CDs concerning
the interactions of an ML API with other artifacts, such
as the text-editor or programming environment where ML
API integration code is programmed, or its documentation
media. Although a CD assessment cannot lead to full usability
validation (Dagit et al., 2006) of an ML API, it can lead
to new insights which may trigger new design iterations
and thus become a useful and pragmatic resource to ML
API designers.

Future work includes avenues of research which build on the
CDs and quantitative methods as pragmatic methodological tools
for ML API and notation designers. One avenue is to investigate
a more focused and formalizable set of dimensions, which may
help to analyse the use of IML and ML APIs more adequately.
Another avenue of research is to explore ways to augment the
cognitive dimensions framework to account more holistically
for a set of interdependent artifacts—including language
notations, programming interfaces, development environments,
documentation and other high-level aspects which Petre (2006)
has identified. Finally, we are exploring new research tools
for conducting online quantitative usability studies with ML
APIs which may scale to more participants and provide more
generalizable outcomes.
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This paper illuminates some root causes of confusion about dynamic representation

in music technology and introduces a system that addresses this problem to provide

context-dependent dynamics for machine learning-aided performance.While terms used

for dynamic representations like forte and mezzo-forte have been extant for centuries,

the canon gives us no straight answer on how these terms must be applied to literal

decibel ranges. The common conception that dynamic terms should be understood

as context-dependent is ubiquitous and reasonably simple for most human musicians

to grasp. This logic breaks down when applied to digital music technologies. At a

fundamental level, these technologies define all musical parameters using discrete

numbers, rather than with continuous data, making it impossible for these technologies

to make context-dependent decisions. The authors give examples in which this lack of

contextual inputs in music technology often leads musicians, composers, and producers

to ignore dynamics altogether as a concern in their given practice. The authors then

present a system that uses an adaptive process to maximize its ability to hear relevant

audio events, and which establishes its own definition for context-dependent dynamics

for situations involving music technologies. The authors also describe a generative

program that uses these context-dependent dynamic systems in conjunction with a

Markov model culled from a living performer–composer as a choice engine for new

music improvisations.

Keywords: music and machine learning, music and AI, dynamic representation, machine learning aided

performance, improvisation, Ableton Live, Max for Live, music technology

INTRODUCTION

As of this writing, music technologies (software and hardware) cannot perform relative dynamics,
only absolute dynamics. If a given system is set to play a tone at 0 dBFS, it will do so regardless
of context. Music technologists of many stripes, such as professional audio engineers, often adapt
methods for handling this, for instance, how professional audio engineers use the faders on a mixer
to adapt the incoming audio signals for a particular situation, given the particulars of the room,
the number of people present, and many other factors. However, music technologies do not adapt
themselves to different contexts natively, which often causes amateur or nascent users to make
mistakes leading tomany amplitude-related errors, such as feedback or the tendency tomix without
dynamic contrast (“brickwalling”) (Devine, 2013).
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Confusingly, there exists a dizzying preponderance of
methods music technologists use to represent dynamic levels
(dB Full Scale, dB Sound Pressure Level, MIDI velocities,
to name a few) (Dannenberg, 1993). These various systems,
helpful as they are in many respects, thus inveigle one of the
four fundamental properties of musical sound (volume, pitch,
duration, and timbre) in a haze of pseudo-scientific mystery.
The recent development of the LUFS and LKFS (the EBU R128
Standards, released in 2014) scales may do much to alleviate the
preponderance of complaints against the rising levels of loudness
(where the amplitude level of one piece of music is compared to
the next), but this scale will not fix a lack dynamic contrast within
a piece of music as it is being composed, mixed, or performed via
improvisational or generative technologies.

One might think that the system of dynamic representation
that has been with us for centuries would have been definitively
codified long ago, but as illuminated by Blake Patterson, many
musicians don’t follow a composer’s intent when they play to any
appreciable degree (Patterson, 1974). Moreover, much anecdotal
evidence suggests that this unfamiliarity with the various systems
for representing dynamic levels may result in a general dismissal
of the importance of one of the four fundamental parameters of
sound. As noted by Kyle Devine in his article Imperfect Sound
Forever: loudness wars, listening formations and the history of
sound reproduction, quite often, the lack of dynamics in modern
music has more to do with market-driven forces and personal
taste than with user’s technological naiveté (Devine, 2013).

Matthias Thiemel goes to admirable length to explain that,
concerning acoustic music makers, dynamics have always been
a fundamental parameter with which musicians “create meaning
and structure” (Thiemel, 2001). However, he also goes to great
length to explain that the history of the concept in music
is one that eschews a literal understanding of exact loudness
levels, in favor of an ever-adapting definition, which must
change according to the whims and predilections of the time
in which a composition is conceived. Thus, as he explains, the
dynamic fortissimo might mean one thing in an early piece of
Beethoven but means something completely different in a later
piece by the same composer. That dynamics must be understood
in the context of the composition and composer who wrote
them is largely understood by professional performing musicians
and musicologists, and this definition changes not only from
instrument to instrument, from piece to piece, and even depends
on the range of the instrument in question or the venue in which
the dynamic in question is to be played.

A professional trumpet player, upon encountering the
dynamic forte in the midst of an opera score of Puccini, may be
capable of calculating the required dynamic using some internal
concatenation of variables including the composer’s intention,
the conductor’s most recent indication, the range of the given
note, the size of the hall, and the probability of accidentally
overpowering the ensemble even though no “solo” was called for
in the score. The number of variables occurring to the player in
question will vary greatly due to a great many factors, i.e., the
maturity and experience level of the player, the cultural setting,
however, perhaps this short list will hopefully illustrate the sheer
number of factors involved in such a decision, which in this case

might result in the player in question playing the aforementioned
note with ameasurable dynamic level of 82 dB. In another setting,
the same player might play the same excerpt at 65 or 90 dB.
Dynamics would seem to be “all relative.”

For music technology, however, this malleable understanding
of musical dynamics presents a sizable problem. For instance,
if one was tasked with transcribing the composer’s handwritten
score into one of the many notation programs currently available
(Finale, in this case), the system would automatically assume
that the forte marking in question corresponds to a certain
MIDI velocity, which, when played via a digital instrument, will
have the same results every time the user hits the space bar.
In the case of Finale, a dynamic marking of forte corresponds
to a MIDI velocity of 88 (out of 128 possible values, from 0
to 127). When this velocity level reaches the digital instrument,
the dynamic will be converted into a loudness level, which is
easily definable as 88/128ths of the instrument’s total volume.
Every time this instrument plays this dynamic level, the same
volume level will be called upon to playback, no matter the
context. If a composer wants to prepare a “fixed media” score
or part for the aforementioned trumpet player, either there will
need to be another performer who will manage dynamics for
the fixed media part to provide context-appropriate dynamic
choices or the composer will tend to avoid large dynamic
contrasts altogether.

METHOD

To address the issues above, the authors here present a network
of interconnected programs, collectively called Avatar, which
may begin to fill the gap between musical technologies and
context-dependent musical dynamics (Figure 1). The system
has been designed trained to listen for a specific timbre
(the vibraphone), filtering out noise, and non-intentional
sound. This system then uses incoming amplitude levels to
establish an adaptive perceptual framework for two key musical
perception concepts, silence and the pain threshold. Finally,
the system provides context-dependent MIDI velocities and
musical dynamic representations of the audio it is hearing. These
dynamics can then be used by generative music systems to
play along and inform musical choices with context-dependent
volume levels. In performance, this system follows the dynamics
of the human vibraphone player, as a human collaborator would.
The current context-dependent dynamic system is composed of
two programs, sig2∼ (Figure 2), and dyna (Figure 3), and has
been written in the Max-for-Live language, to facilitate use by
music technologists in live performance using Ableton Live.

A third program, the AvatarPlayer (Figure 4), which will be
discussed toward the end of this section, makes use of a pitch
transition Markov model, culled from performances by a living
composer–improviser. This program takes in messages from
sig2∼ and dyna to generate context-dependent musical choices as
it plays along with live vibraphone input. A fourth program, the
AvatarMachineLoader (Figure 5), has been developed and used
by the authors to create a database of Markov transitions that are
used by the AvatarPlayer to generate new music.
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FIGURE 1 | A schematic of Avatar’s process for establishing

context-dependent dynamics by listening to incoming audio.

Aside from the standard objects found natively in the
Max language, these programs also make use of a number of
external (added) Max objects. Most notably among these are
a number of external Max patches developed by the authors
with the prefix HIMI (Human Inclusive Musical Intelligence, a
tangentially related project), the bonk∼ object (from Puckette,
Apel, and Zicarelli, as revised by Böhm), the ml.markov object
(from Benjamin Smith’s ml.∗ machine learning for Max external
package; Smith and Deal, 2014), and a number of utility objects
from Karlheinze Essl’s RTC-lib package of externals (Essl, 1988).
With the exception of the objects from the HIMI library,
which will be included in the commercial release, these external
objects are open source or commonly available via Cycling
“74”s Max Package manager. To produce MIDI files from audio
recordings, the authors also use the Onsets and Frames audio-
to-MIDI converter from Google Magenta (Hawthorne et al.,

2017; Dinculescu et al., 2019), which may be implemented via
JavaScript, Python, or used online, and Ableton Live’s three
built-in audio-to-MIDI converters.

THE IMPORTANCE OF PERCEPTUAL
FRAMEWORKS, SILENCE, AND PAIN

The system we present begins by establishing some fundamental
perceptual frameworks extant within a human’s musical
understanding (Buettner, 1981), but which have been largely
absent from the world of musical technologies. Though John
Cage is correct in asserting that there is “no such thing as silence”
(Cage, 1992), as argued by Elizabeth Hellmuth Margulis, the
perception of silence is fundamental to our appreciation of music
in general (Margulis, 2007). Cage’s arguments aside, human
beings appreciate music not by taking in a stream of audio
and giving attention to the loudest elements, but by framing
music as what happens between a conceptual understanding
of silence (here defined as ambient sounds, incidental noises,
and unintentional sound, which does not pertain to the music
presented) and sounds that occur beyond a loosely defined
perceptual pain threshold. While the technical human pain
threshold corresponds to volume levels over 120 dB SPL,
many listeners establish a more personal definition that most
likely includes any intensity over 90 dB SPL in most contexts
(Smith, 1970). As Margulis states, silences “facilitate processing
by chunking the [musical] stream into units whose elements
pertain to one another and should be understood, evaluated,
and remembered together, by allowing time for the listener
to synthesize and reflect on the chunk that has just passed”
(Margulis, p. 5). Conversely, the perceived pain threshold
provokes the listener to avoidance, covering, or protecting their
ears, and in extreme cases, leaving a venue while the music is
still happening. These concepts are the fundamental boundaries
of human music-making, beyond which a musical performance
is apprehended as “too quiet,” “too loud,” or “painful” (Fisher,
1929). For music technologies, without an understanding of these
two fundamental concepts, there can be no context-dependent
musical dynamics (Cope, 2004; Collins, 2012).

THE SIG2∼ PROGRAM

The sig2∼ program, the first link in the context-dependent
dynamic system, begins by taking in raw audio, measuring the
maximum and minimum levels of audio levels it encounters.
In human musical performance, these definitions change over
time, and so sig2∼ changes, accordingly, adapting its minimum
(silence, noise floor), and maximum (pain threshold) throughout
the performance as a human listener might.

The HIMI.elimin8∼ object (Figure 6), developed by the
authors for a tangentially related project, is an adaptive filter
algorithm that controls a noise gate, which is here useful for
filtering ambient sound out of the incoming audio. It takes
incoming audio for a short period of time (500ms), measures
its average strength, and gates the incoming signal accordingly,
passing only signals stronger than the established noise bed
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FIGURE 2 | Sig2∼.amxd, a program that uses machine learning to establish a conceptual framework for silence and the pain threshold.

FIGURE 3 | Dyna.amxd, a program that translates MIDI velocities into various dynamic representation systems.

through (Figure 7). This process begins automatically once the
device is loaded but can be manually reset if need be. As a
human listener ignores the ambient hum of an air conditioning
unit while trying to listen to live music, this system works best
if the performer remains as quiet as possible during this setup

process so a noise bed definition can be made. After establishing
this noise bed, the system is optimized to listen only for strong
signals and establish its dynamics with anything below this noise
bed defined as a non-musical event. As with any gating process,
there is a danger here that if the gate is set too high, it will cut
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out audio intended for the performance. If this occurs, the user
has two options, increase the signal (feed the system a higher
level of gain), or simply hit the “Set & Eliminate Noise Floor”
button again.

When using reactive electronics in a live audio situation it
is greatly advantageous to filter unwanted sounds, sustaining
resonances, and incidental sounds so the system may listen
specifically for the performer using the system, rather than trying
to distinguish the performer’s sound from an undifferentiated
stream of audio. Thus, sig2∼ uses bonk∼, a common external
Max object that may be trained to listen for specific timbres,
to build a spectral template of the player’s audio (bonk∼
was developed by Miller Puckette, Theodore Apel, and David

FIGURE 4 | AvatarPlayer.amxd, a program that uses machine learning to

generate new musical choices in a given player’s style.

Zicarelli, 64-bit version by Volker Böhm) (Puckette et al., 1998).
This template can be saved or rewritten if the player is going
to use the system again later. By clicking the “Train Timbre
Recognition System” button (Figure 8), the user enables the
bonk∼ object to listen for the timbre of the instrument you
are playing. As the current project uses a vibraphone player
as the listening target, the authors have created a timbre
template for vibraphone, which is automatically read by bonk∼
upon loading the device. This system will operate with no
training data but will simply listen for any incoming sharp
attack rather than distinguishing a specific instrument from
incidental noise.

Since bonk∼ parses an incoming audio stream into 11

frequency bands, any of which may recognize a frequency extant
in the timbre it is hearing, it was useful to include a dial

control that sets attack sensitivity (0–100). After repeated trials,
it was discovered that bonk∼ best recognizes the timbre of
the vibraphone above a sensitivity setting of 76. Similar trials
would likely be necessary to train and perfect the process for
another instrument’s timbre. Another purpose behind using the
bonk∼ object is to identify sharp attacks and pass them on to
the dyna device. Upon detecting a sharp attack, sig2∼ sends a
message wirelessly to any related objects in the session via the
“sharp” message.

The attack recognition “speed limit” default of 50ms slows

there cognition process to within human performance limits.
As of this writing, few human musicians can play notes at a

rate faster than 10Hz (Martin and Martin, 1973). Jason Barnes,

the world’s first true cyborg drummer, when wearing his robotic

drummer prosthesis, can play at speeds up to 25ms, hence the

default speed limit caps the system’s use to provide for less glitchy

playback (Weinberg and Driscoll, 2006). At this point, human

perception comes into play as well, as, beyond 20ms, human

FIGURE 5 | AvatarMachineLoader.maxpat, a standalone Max program that builds a Markov model of pitch transitions from MIDI files.
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FIGURE 6 | The process beneath sig2∼’s noise floor elimination apparatus.

beings find it hard to distinguish beats as distinct events, rather,
perceiving them as connected events or waves.

Sig2∼ uses another adaptive algorithm to establish a perceived
pain threshold. Upon encountering strong audio levels, sig2∼
again lowers its sensitivity using the HIMI.peakamp∼ object.
This process is rather simple but continually calculates an overall
maximum peak amplitude from the audio it has encountered.
Sig2∼ then uses this maximum to scale incoming audio peaks
to a MIDI-friendly 128 integer range (0–127). In this manner,
if the system suddenly encounters a greater amplitude level
than previously encountered, it simply adapts its scale to
accommodate the new peak. The newly defined 128 integer MIDI
velocity is sent out of the device via the output at the bottom and
also “wirelessly” via the “rawVEL” send object. By establishing
these perceptual frameworks and maintaining in real time, the
sig2∼ program can be relied on to convert incoming audio levels
into MIDI velocities, giving any connected program a reliable
dynamic context in an easy-to-use MIDI format.

THE DYNA PROGRAM

The dyna program is the second device that makes up the
context-dependent dynamic system. dyna takes in the equivalent

FIGURE 7 | Sig2∼’s noise floor elimination apparatus at work.

MIDI velocities sent from the sig2∼ device (via the “rawVEL”
message) and defines dynamic ranges either derived from various
popular music notation programs or as defined by the user.
The sharp message, also sent by sig2∼ acts as a trigger for
the dynamic representations, giving the performer a context-
dependent dynamic of their volume level as they play.

Inside the “sharpvelocitycalculation” subpatcher (Figure 9),
dyna combines the incoming “sharp” message (indicating that a
sharp attack has occurred) and the rawMIDI velocity of the most
recent attack into a single message. One of the stickiest problem
dyna addresses is the visual feedback to the performer, which
needs to be extremely responsive (new higher dynamics may
happen very quickly) but slow enough that the visual feedback
system does not constantly “twitch” from dynamic to dynamic
quicker than can be read by a human. To counteract this problem,
this subpatcher makes use of another preexisting object called
HIMI.waiter, a Schmitt–Trigger delay that waits until all inputs
have ceased before beginning a short delay and then sending
a second bang. In the interim, if HIMI.waiter receives further
input, the delay is canceled, and the process is reset. HIMI.waiter
slows this process and allows the system to give preference to
louder dynamics and ignore quick reflections at lower dynamics.
This is modeled after human perception, which prefers louder
dynamics, instead of perceiving quick reflections as reverberation
(Doyle, 2004).

The actual dynamic definitions further illuminate the
problems inherent in the dynamic representation used by many
of today’s most popular music software. As shown in Table 1,
there appears little agreement regarding dynamic and their
corresponding MIDI velocities among programs such as Finale,
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FIGURE 8 | The timbre recognition system, using bonk∼.

Sibelius, MuseScore, and Dorico. Thus, with dyna, the authors
have picked what seems to be the best solution to MIDI velocity
dynamics currently on the market and also provided options for
users to define dynamics in several other ways using the defaults
from the major notation programs as presets.

Using the minimum and maximum established amplitudes
from the processes described above, dyna’s representational
default applies a logarithmic curve to the MIDI values between
0 and 127 taken from the Dorico notation program. Dorico’s
default dynamic scheme assigns these velocity values to the 10
most common dynamic values pppp, ppp, pp, p, mp, mf, f, ff, fff,
and ffff. However, unlike the other leading notation programs,
the developers of Dorico have wisely left room at the top of
their dynamic range (velocities 124–127) to accommodate for
what audio engineersmight call headroom, but which the authors

here define as the volume above the perceived pain threshold.
By default, incoming amplitude levels are thus evaluated by
dyna based on these definitions. If situations or preferences call
for changes to these definitions, the presets for other dynamic
schemas are available via the menu at the bottom right of dyna’s
user interface.

The user may also create unique dynamic presets (which
are savable as Ableton Live.adg files for users of Max-for-Live).
However, using the Dorico default has one interesting benefit in
the case of the dyna program. Once the system has defined its
context-dependent dynamics, the upper limit will remain stable
unless the system suddenly encounters a greater dynamic. Thus,
dyna can also be used as a pedagogical tool, as, a fewminutes into
a performance, greatly expanded dynamic peaks can be jarring
to human listeners. In this case, a user employing dyna with the
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FIGURE 9 | Dyna’s sharpvelocitycalculation patch.

default settings would see the system register the “pain” dynamic
before resetting the maximum, thus alerting the performer to a
dynamic unevenness they might not have discovered otherwise.
Overall, once the context-dependent dynamic system is trained,
it will listen to the player intelligently and report on the player’s
dynamic performance, allowing the player to better assess their
dynamic proficiency vs. what is on the written page.

THE AVATARPLAYER PROGRAM

The AvatarPlayer program uses Markov note-to-note state

transitions derived from a living composer–performer’s

improvised performances as a “choice engine,” providing a

dynamically sensitive duet while listening to a live performance

on the vibraphone. Using this system, the percussionist
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TABLE 1 | A comparison of dynamic markings and corresponding MIDI velocities used by various notation programs.

Musical dynamic pppp ppp pp p mp mf f ff fff ffff

Finale MIDI velocities 10 23 36 49 62 75 88 101 114 127

MuseScore MIDI velocities 16 33 49 64 80 96 112 127

Dorico default MIDI

velocities*

5 14 25 46 61 77 89 101 119 123

Dorico linear curve MIDI

velocities*

5 14 25 46 61 77 89 101 119 123

Sibelius MIDI velocities 16 39 61 71 84 98 113 127

*These results were achieved using the default curve set to 2.5 and a linear setting of 1.

Blacked-out areas represent dynamics not used by these programs.

FIGURE 10 | AvatarPlayer’s four favored notes, chosen via a machine-learning

database.

improvises on the vibraphone while the system listens, playing
when he is playing and stopping when he stops. When the
AvatarPlayer plays, it generates novel pitch content based on
the Markov model of the player’s style, filtered through several
algorithmic AI processes. While the Markov model provides
statistical probabilities to drive note choice, these algorithmic
AI behavior processes change the way these data are used and
are patterned after real-life vibraphone improvisation techniques
used by the percussionist model.

The AvatarPlayer’s use of the Markov model is currently
governed by five playback behaviors. The first such behavior
(“favor four notes”) queries the Markov model for four notes to
favor in its performance (Figure 10). Favoring these four chosen
notes gives the note output a noticeable tonal centricity, a quality
noticeably common in the live performer model’s playing style.
The behavior “Favor novelty” queries the Markov model for
note-to-note transitions one by one, which creates a somewhat
randomized, atonal quality. The behavior “Favor repetition”
picks one note and favors repeating it two-out-of-three times.
Cycling through these behavior modes (Figure 11) provides
the system with a performance that sounds more human and
less randomized, a common complaint against many generative
music applications.

AvatarPlayer is also equipped with an autonomous AI mode,
which makes musical accompaniment without listening to the

FIGURE 11 | AvatarPlayer’s various playback behaviors.

live input. This mode is often useful in sound checking and
system tests and can even be MIDI-mapped in Ableton Live so
as to be turned on and off during performance. Its MIDI output
can be easily recorded, so as to generate new compositional
material, but Avatar’s true purpose is as a collaborator using the
sharp message from sig2∼ and the dynamic velocities from the
dyna program to create a sensitive context-dependent musical
collaborator that actively listens as a musician would in a duet.

To further invoke a blended human-machine cyborg aesthetic,
Avatar’s developers have also created a number of high-quality
Ableton Live instruments using the percussionist-model’s own
vibraphone as the sound source. In practice, the Avatar system
listens to a human playing a vibraphone and plays along
sensitively using an audible simulacrum of the vibraphone,
behaving to a certain degree in the manner of the original human
it is modeled after.
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FIGURE 12 | A schematic of how various machine learning technologies are used to create a Markov state transition table for a given performance.

BUILDING THE MACHINE LEARNING
MODEL: THE AVATARMACHINELOADER

PROGRAM

As described above, the AvatarPlayer program makes use of a
Markovmodel of pitch state transitions gathered from an analysis
of real audio (Figure 12). The first hurdle in accomplishing
this task is the transcription of a large number of audio files

into MIDI files that the AvatarMachineLoader program may
analyze. Though there are a number of systems designed to do

this currently available to the user, the best and most easily

obtainable is theOnsets and Framesmodel released by researchers

at Google Magenta. This model may be used online quite easily
or implemented via open-source JavaScript or Python code
(Hawthorne et al., 2017). Onsets and Frames achieves this level of
accuracy by using two separate neural networks (a convolutional

Frontiers in Artificial Intelligence | www.frontiersin.org 10 May 2020 | Volume 3 | Article 2967

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Palamara and Deal Dynamic Solution for Music Technology

neural network and a recurrent neural network) to detect pitch
onsets even in polyphonically complex audio files.

As the Onsets and Frames model is designed at present
to listen for piano timbres, rather than vibraphone, results
are somewhat mixed. To improve accuracy of the eventual
model, the authors also produced MIDI files using Ableton
Live’s built-in audio-to-MIDI transcription features, which use
three different algorithms to assess pitch (focusing variously on
melodic pitch movements, harmonic clusters, or rhythms). By
painstakingly converting each audio recording using all four of
these models, the authors hoped that the dataset (combined into
a single multi-hour MIDI file) is significantly large enough to
decrease the prominence of false positives and misapprehended
pitches (Li et al., 2018). As these systems represent a sort of
black box, it is difficult to say definitively whether the present
model is an accurate representation of the original player.
Accordingly, this procedure was repeatedly tested using MIDI
files of music by gold standard composers like J.S. Bach and
Vince Guaraldi. As new improvisations are supplied by the
model composer–performer, the audio files are converted in
these four ways and added to an ever-growing concatenated
MIDI file.

Once the MIDI file dataset is compiled, the file must be
passed through a Markov chain generator object (ml.markov)
in order to produce a database of state transitions. The authors
have achieved the best results setting this object to “order 4.”
This setting produces state transitions that take into account
the previous three notes. Since the ultimate goal is to create
a model for vibraphone performance, the developers thought
it best to generate a Markov model that took into account
standard vibraphone performance technique, which utilizes four
mallets in two hands, meaning the performer is often commonly
improvising using groups of four notes.

While the present AvatarPlayer program utilizes a database of
only pitch-to-pitch state transitions, the AvatarMachineLoader
program also uses additional ml.markov objects to generate
state transitions for MIDI velocities, durations, and
harmonies. These late additions will eventually make it
possible to generate novel material that is patterned after
a more complete model of the original living composer-
performer’s performance. After these models are built,
they may be saved as a simple text file that can be loaded
into the AvatarPlayer’s own ml.markov object. Once the
AvatarPlayer’s model is loaded and built, a simple bang message
will generate new MIDI pitches conforming to the model’s
state transitions.

RESULTS

The Avatar system, consisting of sig2∼, dyna, and the
AvatarPlayer, was successfully debuted at the Fata Morgana
music and art festival in Indianapolis on October 3, 2019,
by percussionist and Professor Scott Deal. The system
performed admirably and has since been featured at the
MusicaAcoustica festival in Beijing, China, on October 22,
2019. These performances were well-received, and it has

been reported that the system is rather easy to use and
implement, even in the absence of the developers. A number of
national and international performances for 2020 have already
been scheduled.

It is often difficult to quantify the success or failure of musical
experiments where the end result is a creative phenomenon. Such
is the case with the present system in that the end result is not
quantifiable data, but public performances using the system. As
outlined above, the public performance record of this system
is still in its infancy. While the recent results have all been
promising, the pool of users will be extremely limited until such
a time as the Avatar system is released commercially. As such, a
commercial release date of February 28 has been announced, after
which the system may be tested by the public and hard data may
be collected and assessed.

A data-driven comparison of similarities between the living
composer–performer upon which the system is modeled and
the model itself would be a useful metric by which the system
could be judged. The authors are presently beginning work on
a future paper involving assessments of this type, which could
be used as a model for assessments of future musical machine
learning projects.

DISCUSSION, SCALABILITY, AND
LIMITATIONS

Though various other technologies exist that purport to translate
volume into MIDI velocity, results from this context-dependent
system have been encouraging. The uses of more accurate
instantaneous audio to MIDI transcription are many, as MIDI is
the definitive control protocol underlying any music technology.
It is hoped that in the near future, systems like Onsets and
Frames may evolve into easily implementable real-time audio-
to-MIDI. However, even with reliable real-time audio-to-MIDI,
technologies will do little to cure the lack of context-based
dynamics outlined above.

That said, the context-dependent dynamic system outlined
above has many other potential applications. By filtering
out excess noise and amplitude overages, this system could
be adapted to control lighting and video effects, or to
transcribe audio to dynamic notation in real time (perhaps
as a plug-in for one of the notation programs mentioned
above). The minimum and maximum definitions defined
by sig2∼ could be used to automatically (and cheaply) mix
audio channels in situations where a professional audio
engineer is unavailable. Systems like Landr, which use
machine learning to mix or master audio files, are already
affecting the market. Perhaps a context-dependent system for
dynamics could do similar things for the ensemble classroom.
But still, the system’s most exciting possibilities revolve
around creating new music by artificial intelligence or in
enhancing the performance capabilities of human musicians
with technology (Rowe, 1992; Miller, 2003; Weinberg and
Driscoll, 2006).

While the present system works reliably, much more work is
on the horizon. At the outset, the authors sketched out a goal of
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building a system that would build a machine learning model
of what it hears in real time, save it, and update the model
as more data became available. The present system does these
things in achingly slow fashion, and not in real time. Another
drawback of the lack of real-time adjustment has only become
apparent after repeated use of the system. Users of the system
have recently reported that since the present system does not save
its definitions for the perceptual frameworks of silence and the
pain threshold from session to session, Avatar seems to begin
each session with a heightened sensitivity to loud sounds, and
takes a significant amount of interaction with a player before the
system is trained to react appropriately. It is hoped that along
with the focus on making real-time machine learning models,
the system will also eventually be able save these adaptations
and remember them in future sessions. With the advent of
very reliable audio-to-MIDI transfer via models like Onsets and
Frames, the authors hope that it may be possible to make real-
time machine learning a feature of the Avatar system in the
near future.

The current focus on dynamics, while fundamental, presents
only one important parameter of musical performance. To
truly listen to music like a human, the system must also
listen for, understand, and differentiate pitch, timbre, and
duration. Beyond these low-level features, there are high-
level features, like mood, emotion, tonal implications, and
many others that provide much of the richness inherent in
the best music of all genres. Adapting Avatar for durational
perception, closely related to the concepts of dynamics and
silence, has already begun in earnest. The machine learning
tools currently extant within the Max environment (notably,
the previously mentioned ML.∗ and the ml.lib externals package
from Nick Gillian), while brilliantly developed, leave much to
be desired in the way of easy connections to common musical
practice. Creating Markov models for monophonic pitch-to-
pitch transitions are useful and simple to build at present but
doing the same for a given MIDI file’s harmonic content or

articulative character requires a complete redesign of the system’s
inputs and outputs.

Another limitation of the project as it stands is the dependence
on the bonk∼ object’s timbre recognition capabilities, which

could be enhanced greatly. At the very least, adding multiple
timbral models to Avatar will allow the user to use instruments
other than the vibraphone, greatly widening the user base.
Once these systems are improved, it should not be difficult to
provide the system with timbral recognition capabilities. The
ultimate goal of the authors is to provide a truly intuitive
program that listens, rather than having to be managed
by a knowledgeable user. These and the many other goals
of this team will take much time and considerable hard
work, but the rewards of such an enterprise are well-worth
the effort.

OTHER INFORMATION

Project Link: http://tavellab.net/
Operating system: Mac OSX 10+ / Windows 10+.
Programming language: Max standalone, also works as Max-for-
Live device within Ableton Live.
Restrictions for non-academic use: none.
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Automated Page Turner for
Musicians
André Tabone, Alexandra Bonnici* and Stefania Cristina

Department of Systems and Control Engineering, University of Malta, Msida, Malta

An increasing number of musicians are opting to use tablet devices instead of traditional

print media for their music sheets since the digital medium offers the benefit of storing a

lot of music in a compact space. The limited screen size of the tablet devices makes the

music difficult to read and musicians often opt to display part of the music page at a time.

With fewer music lines on display, the musician will then have to resort to scrolling through

the music to read the entire score. This scrolling is annoying since the musicians will need

to remove their hands from the instrument to interact with the tablet, causing a break in

the music if this is not done quickly enough, or if the tablet is not sufficiently responsive.

In this paper, we describe an alternative page turning system which automates the page

turning event of the musician. By actively monitoring the musician’s on-screen point

of regard, the system retains the musician in the loop and thus, the page turns are

attuned to the musician’s position on the score. By analysing the way the musician’s

gaze changes between attention to the score and the instrument as well as the way

musicians fixate on different parts of the score, we note that musicians often look away

from the score and toward their hands, or elsewhere, when playing the instrument. As a

result, the eye regions fall outside the field-of-view of the eye-gaze tracker, giving rise to

erratic page-turns. To counteract this problem, we create a gaze prediction model that

uses Kalman filtering to predict where the musician would be looking on the score. We

evaluate our hands-free page turning system using 15 different piano songs containing

different levels of difficulty, various repeats, and which also required playing in different

registers on the piano, thus, evaluating the applicability of the page-turner under different

conditions. Performance of the page-turner was quantified through the number of correct

page turns, the number of delayed page turns, and the number of mistaken page turns.

Of the 289 page turns involved in the experiment, 98.3% were successfully executed,

1.7% were delayed, while no mistaken page turns were observed.

Keywords: page-turning, eye-gaze tracking, Kalman filter, eye-hand span, half-page turns

1. INTRODUCTION

In this rapidly evolving world, digital media is taking precedence over the physical, printed form for
information storage and presentation. Rather than printing books, these are instead being laid out
on screens, and whole libraries can now be accessed from one’s home or stored within a handheld
device. These convenient changes have made it to the world of music. Musical scores are readily
available as free, digital documents through digital libraries such as the IMSLP1 or as purchasable

1https://imslp.org/
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PDF files from online stores. Digital sheet music offers musicians
the advantages of availability and portability, compacting large
volumes of works into a single, portable device (Laundry,
2011). Digital sheet music, however, introduces the problem of
readability. Traditional, printed music uses the standard A4-
size paper, where music players can expect sheet music to have
stave heights of 7.5–8.5 mm (Nieweg and Vaught, 2011). The
screen-size of regular digital tablets, however, does not permit
the display of the entire page while retaining the same stave
dimensions. Thus, musicians will either downscale the sheet such
that it fits within the space available, or keep the desired size
while panning/scrolling to see the entire score (Bell et al., 2005).
The latter will require the musician to either pan the score or
incur more frequent page turns in comparison to when using a
printed score.

Page turns are annoying, requiring the player to momentarily
release one hand from the instrument to make the turn. In high-
quality music books, editors typeset the music such that the page
turn coincides with a natural pause in the music, be it in the
form of rests or notes of a longer duration (Laundry, 2011).
However, this is not always possible, and musicians develop their
particular method to overcome the annoyance of page-turning.
Although there are various options to interact with the page on
a tablet device, for example, through scrolling or tapping, these
actions are not easily controllable when executed at speed. Thus,
page-turning on a tablet device is no more comfortable than on
print material.

Commercial software and hardware that address this problem
exist. These solutions may fall under two categories, namely,
manual or fully automated page-turners. Manual page-turning
solutions require voluntary user input to trigger a page-turning
event. For example, AirTurn2 provides a foot pedal system which
allows the music player to activate page turns through the use
of an external foot-pedal device. While such an approach may
be suitable in some cases, some instrumentalists require the use
of their feet for their instrument foot pedals (Laundry, 2011).
Thus, automated page-turning would be more desirable. Tablet
applications such as MobileSheets3, SheetMusic4, PhonicScore5,
and ClassicScore6 provide such a facility by employing a scrolling
score, where the rate of the scroll is determined from the
tempo of a pre-recording playback of the music in ClassicScore,
which could be adjusted according to some preferred speed
in MobileSheets and SheetMusic. Both these options are not
ideal since the performer is required to adhere strictly to some
specific tempo for the duration of the piece, which, often,
results in a performance which is not stylistic. Applications such
as PhonicScore allow the scrolling to adjust according to the
musician’s playing by taking into account real-time audio data.
However, these methods are susceptible to background noise, the
timbre of the instrument as well as note errors by the performer
and are, therefore, not very reliable.

2http://www.airturn.com/
3http://www.zubersoft.com/mobilesheets
4http://www.musicnotes.com/apps/
5http://phonicscore.com/
6http://blog.naver.com/earthcores

An ideal page-turning system would, therefore, be one which
can operate without the use of additional gestures, that is,
a system that functions on the already existing interactions
between the musician and the score. In this manner, the musician
can remain in control over when the page turn occurs while
shifting the burden of the actual page turn onto the system
controlling the music. Moreover, the page-turning system needs
to be robust to errors that may potentially be introduced by
the musician.

In our earlier work (Bonnici et al., 2017), we show how
eye-gaze tracking can be used to monitor the musician’s
interaction with the score and thereby create a hands-free page
turning system. This system was, however, limited to rigid
head and eye movements due to the inherent noise that exists
within eye-gaze tracking. In this paper, we extend this work
by using a Kalman filter approach to model the musician’s
gaze interaction and hence provide a robust prediction of the
musician’s gaze location. We use this information together with
a half-page turning system to ensure that the musician will
have the current and the subsequent stave present on screen at
all times.

2. RELATED WORK

Page-turning systems can be broadly categorized into two groups,
namely applications for physical, printed books and applications
for digital media, as shown in Figure 1. Systems that operate on
physical books need to first engage with the top-most printed
page. The device needs to lift this page from the remaining
pages using mechanisms such as suction tubes, friction wheels,
adhesive, or magnetic clips (Wolberg and Schipper, 2012). The
page-turner then elevates the single page and transports it, face
down, on the other stack of pages. Once turned, the device
secures the sheet in place through some restrainingmechanism to
ensure that the loose sheet does not infringe on any further page-
turning actions. Thus, mechanical systems need to balance the
speed of turning the page with the relative fragility of the paper
so as not to tear the paper (Wolberg and Schipper, 2012). Such
mechanisms, therefore, tend to be relatively slow and are most
often used in the context of page-turners for people with physical
disabilities where the need outweighs speed and efficiency.

Page-turners based on digital media are more common in
music applications. The reason for this stems from the increasing
availability of tablet devices as well as digital sheet music.
As shown in Figure 1, page-turners for digital media can be
subdivided into two further categories, namely, those that are
fully autonomous and those that depend on some form of
user input. Fully autonomous systems rely on preset timing,
scrolling through the music sheets at a fixed tempo (Bell et al.,
2005). While these systems may allow for manual adjustments
of the performing speed at the start of the performance,
real-time adaptations to changes in speed are not possible.
Thus, these systems are not adequate for musicians. Systems
which depend on some user input can, once again, be divided
into two categories, those that rely on active user input
and those which utilize a passive user-input. Systems which
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FIGURE 1 | Page turners described in the literature.

require active user input require some action from the user
to activate a page turn. This action can be in the form of
tapping a foot pedal (Dannenberg, 2012) or an area on the
tablet device (Graefe et al., 1996), bite-switches (Bell, 2012), or
voice command triggers (Gibbs, 2014). While some of these
techniques may be more effective than others, they still depend
on the quick response of the device to the user response. The
alternative approach of using passive user-input is, therefore,
more attractive for the musician. These approaches involve
tracking the musician’s progress on the score and use this
implicit user-input to determine when to activate a page turn.
The tracking can be carried out through audio recordings,
through MIDI information obtained from the instrument or by
monitoring the users eye-gaze.

2.1. Score-Following Systems
When pianists perform a musical piece from a written score,
they read the music notation and translate this information into
the motor action needed to press the piano keys. The keying-
action, in turn, activates the mechanisms that produce an audio
signal. Page-turning may, therefore, utilize score-following based
on eye-gaze tracking, the keying-action or the audio signal. Eye-
gaze trackers typically provide the on-screen (x, y) coordinates
corresponding to the pianists point-of-regard, and hence, the
position on the score from which the pianist is currently playing.
The keying action and the audio signal, on the other hand,
provide information on the notes played. The data stream
obtained from both keying-action and audio signal has a different
format to the musical score and, therefore, requires alignment of
the data to the score.

In Dorfer et al. (2016), this is carried out by training an end-to-
end multimodal convolutional neural network (CNN). The score
image Si, consisting of one stave of sheet music, is quantized
into overlapping buckets Bj. Likewise, the spectrogram of the
corresponding audio signal is also divided into snippets Ei,j of a
fixed length of 12 s. The CNN is trained to match the rightmost
onset in the spectrogram Ei,j to the bucket Bj containing the
corresponding note j. The resulting CNN model is then used to
predict the expected location x̂j of an audio snippet with a target
note j in the corresponding sheet music image.

This approach matches the spectrogram within ±1 image
bucket in 84% of the test cases. However, the method does not
take into account that the music may have repeated patterns
which would result inmultiple matches between the audio extract
and the score. Moreover, the approach also does not take into
account the possibility that the performance may deviate from
the written score. Such deviations can be intentional, for example,
when the musician adds ornaments or chord embellishments
not notated in the score. The musician can also introduce
temporal changes within the music as a means of expression.
These tempo changes would typically affect the estimation of
the note onsets (Chen and Jang, 2019). Unintended changes to
the performance are also possible, depending on the skill level
of the performer. These errors may include incorrect keying of
notes, repetitions to correct note errors or note ommissions,
resulting in jumps in the performed note sequences (Noto et al.,
2019). As a result, the audio extracts may not necessarily have a
direct match with the score image.

To correct for the possibility of repeated patterns, Dorfer
et al. (2017) introduce temporal information through the use of
Dynamic Time Warping (DTW). DTW computes the optimal

non-linear alignment between two sequences, using a local cost

measure that relates points from the two sequences to each
other. In Dorfer et al. (2017), the two sequences comprise of the
sheet music and the audio excerpts. A neural network is used to
compute a local cost measure between the score sequence and
the audio excerpts. The resulting cost matrix is then used by the
DTW to align the sheet music and audio excerpts. However, the
score-audio alignment is carried out offline. Thus, this approach
is not suitable for page-turning applications, which requires
real-time alignment of the two.

Chen and Jang (2019) propose an audio-score alignment
process based on a similar approach. Note onsets are detected
from the audio signal, extracting a feature vector to describe the
signal around each onset. Finally, the feature vector is compared
to the score using a dynamic programming approach, using
a modified constant-Q transform as a measure of similarity.
This measure allows for invariance to instrument timbre and
overtone interference. To allow for the online score-following,
Chen and Jang (2019) then modify the algorithm to reduce the
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computational time required to align the audio to the score. To
achieve this, they assume performance stability and performance
continuity. That is, the musician adheres to the tempo marking
on the score, and does not introduce sudden tempo changes.
The musician is also expected to play the score sequentially
and avoid skips or jumps to other sections of the score. These
assumptions allow the onset matching algorithm to predict the
location of onsets based on the tempo. They also limit the
computation of concurrencies to onsets around the previously
matched concurrencies. Chen and Jang (2019) achieve a mean
latency of 19.2 ms obtained from 10 pre-recorded, human-
played, four-part chorales composed by Bach.

While the results obtained in Chen and Jang (2019) do allow
for real-time score following, they are based on assumptions of
continuity and stability in the performance. These assumptions
are valid for performances played when the musical piece has
been mastered but do not necessarily hold during practice time
when jumps and repetitions can be expected. While jumps and
repetitions are difficult to predict through monitoring the audio
signal alone, the eye-gaze information can provide invaluable
insights on the point-of-regard of the pianist. It is, therefore,
possible to deduce the position on the score from which
the music is being played. Reading music has commonalities
with the reading of linguistic texts, and thus, techniques for
gaze tracking in linguistic texts may also apply to musical
scores. Unlike linguistic texts, however, music does not have
groupings based on fixed words. Instead, groupings are based
on pitch structure, temporal structure, articulation, phrasing
and orthographic conventions. The visual complexity of the
musical score is, therefore, based on the decisions taken on
all these levels (Huovinen et al., 2018). When reading, the
grouping structures have an essential role in determining the eye
movement, defining the duration of the fixations and the landing
position of the next fixation.

Fixation points do not necessarily correspond to specific note
symbols as long as they lie close enough to the symbol for this
to be within the area of vision. This tolerance allows grouped
structures, for example, quaver pairs or harmonic chords, to
be treated with one single fixation (Puurtinen, 2018). In music
reading, fixating on symbols ahead of the current playing position
allow the musician to allocate sufficient time to process the
symbols while keeping the general rhythmic characteristics of the
music. In music reading, this is referred to as reading ahead and
results in an eye-hand span. That is, the difference between the
notes being played and the fixation point (Rosemann et al., 2016).
Any salient difficulties spotted in the score will affect the timing
of the saccades launched ahead. Upcoming symbols which appear
to be less regular or non-typical will attract first fixations earlier in
themusical performance. As a result, the eye-hand spanmay have
local increases due to the musico-visually complex features of
the notated score (Huovinen et al., 2018). Moreover, unexpected
rhythmic or harmonic changes can locally decrease the eye-hand
span (Penttinen et al., 2015; Rosemann et al., 2016).

It is also important to note that although pianists need to
look at the score to read the music, they do not do so at all
times. In a solo setting, glances to the keyboard are commonplace
and help the pianist verify the correct hand position on the
keys. Such glances to the keyboard are more common with

lower skill level, or when the music leaps through the keyboard
registers (Cara, 2018). In ensemble playing, glances at partners
are an essential way of communication between the ensemble
members (Vandemoortele et al., 2018).

Noto et al. (2019) use Bayesian inference to estimate the
pianist’s position on the score using both eye-gaze and keying
information, integrating the two sources into a single Bayesian
inference by using a Gaussian mixture model. The keying and
gaze data are modeled by Normal distributions whose parameters
are adapted to each subject. The subjects are instructed to
play a set extract without stopping or correcting any misplayed
notes such that the keying and eye-gaze information can be
easily aligned with the ground-truth. An exhaustive dynamic
programming search is performed to find the best matching
keying pattern from which the average and variance in the most
likely matching position is obtained. Likewise, the eye-hand span
is assumed to follow a normal distribution with mean (µgx ,µgy )
and variance (σgx , σgy ) which are obtained by aligning the gaze
data with the expected score position. By learning the eye-hand
span distribution, the current gaze point (gx, gy) can be estimated.
This estimate is then used in the Bayesian inference model to
determine the most likely position for a match between the score
and the keying data.

Similarly, Terasaki et al. (2017) also adopt a combined keying
and eye-gaze tracking approach. However, Terasaki et al. (2017)
use a Hidden Markov Model (HMM) to create a gaze model. The
output probability of the HMM follows a normal distribution
with the center coordinates of each note as the mean value.
The model determines the initial transition probability and
the state transition probability by learning the gaze position
coordinates (gx, gy) of the gaze when performers are practizing
while looking at the musical score. The output probability of the
gaze model expresses the gaze likelihood, that is, the probability
that the subject is looking at a particular place on the score.
This probability score is reflected in the score following by
multiplying the cost of the dynamic programming match with
the gaze likelihood.

Both these approaches have been evaluated with single-line
stave systems, and while Chen and Jang (2019) do take into
account the possibility of loss in eye-gaze data, their approach
simply waits for the eye-gaze data to become available once more.
The two methods also make the general assumption that the
eye-gaze will always move ahead. However, in the presence of
two stave lines, as typical in piano music, the eye-gaze may also
oscillate in the vertical direction. The eye-gaze may also shift
backwards when the subject glances at the clef, key-signature
and time-signature, particularly if these change within the piece,
while at the same time, keying information remains moving
forward. Moreover, the eye-hand spanmay require different local
distributions, depending on the characteristics of the piece. Thus,
more robust treatment of the eye-gaze information is required.

2.2. Displaying the Score
An automated page turning system must also take into account
the way the music is displayed on screen and how the page turn
is executed. Such a system must take into account the player’s
experience, allowing the pianist to, not only read the music with
ease (Bell et al., 2005; Nieweg and Vaught, 2011) but also to
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remain well aware of the context of the music they are playing.
These considerations will restrict the amount of information
that can be presented on the screen while exclude instantaneous
jumps between sections of the music (Laundry, 2011). Several
options for digital score visualizations have been proposed in
the literature. The simplest method offers the presentation of
sheet music as a continuous stream, either horizontally with
the score scrolling across the width of the screen, or vertically
with the score scrolling across the length of the screen. Such
digital layouts, however, are not popular with music players since
it is easier to lose track of the current position on the score
(Bell et al., 2005). Alternative representations, where the score
is kept static until a page turn activates overwriting old material
with new have been proposed. Here, several visualizations are
possible; for example, a two page system may be used with
the page turn shifting the whole page to the left, such that
the left hand page always displays the current score page to be
played while the right hand page displays the next one (Graefe
et al., 1996; Blinov, 2007). The screen size of a typical, portable
digital tablet, however, does not allow for the display of two
pages simultaneously without reducing the page size beyond
what can be comfortably read by the music player. Alternative
digital music systems which involve displaying a single pagemake
use of the fact that the digital screen may be divided into two
parts, allowing for split-page turning whereby, after some time
delay, the top part of the page can display new content while
the bottom part of the page retains the current content, before
this too is updated. In order to indicate the change in content,
visualizations such as page peeling, or highlight lines have been
used (Bell et al., 2005; Blinov, 2007; Laundry, 2011).

Digital page turning systems must also take into account the
display of music with repeated sections, particularly when these
sections are long. Since digital displays divide the printed scores
into sub-pages for a comfortable fit on the device display space,
any such repeat instructions may require going back several
pages, aggravating what is already an annoying problem. To
resolve the problem, automated page turning can be combined
with a system of bookmark annotations to allow the player
to go back and forth in the document with greater ease (Jin,
2013). However, instantaneous jumps from page to page in the
music are considered distracting to music players (Laundry,
2011). This supports the concept of a flattened score in which
all repeats of the musical score are expanded (Jin, 2013). Such a
flattened score may be obtained by representing the sheet music
using a formal language representation through optical music
recognition algorithms, allowing the flattened score to be checked
for errors in the interpretation of the repeat instructions (Jin,
2013; Dannenberg et al., 2014; Ringwalt et al., 2015).

3. A KALMAN FILTER MODEL FOR
EYE-GAZE PAGE TURNING

In this paper, we adopt a Kalman filter approach to create a
robust eye-gaze tracking model that can smoothen the noisy eye-
gaze data recorded from the eye-gaze tracker while compensating
for loss of input due to glances away from the score as well as
local variations in the eye-hand span. To model the eye-gaze

pattern across the screen, we assume that the score image has
been pre-processed using the score processing steps described
in Bonnici et al. (2017), that is, the page is sub-divided into sub-
pages comprising of two systems, repeats have been flattened and
a half-page turn is adopted. We also assume that each system is
comprised of two staves as typical of piano music.

3.1. Reading Model
Music, like text, is read from left to right (Huovinen et al., 2018),
such that the current position on the score may be expressed by
the linear equation:

xk+1 = xk + 1xk (1)

where xk = (xk, yk)
′ denotes the current location on the

score from which the subject is reading at the instance k while
1xk = (δxk, δyk)

′ denotes the displacement in the reading
position. The horizontal component δxk of the displacement
vector depends on the reading velocity, that is, the local velocity
with which the piece is being read which depends on the tempo of
the piece as well as the local complexity of the score. Toward the
end of the system, however, the horizontal reading position will
revert to the start of the next system and is, therefore, a function
of the width of the system. Thus, the horizontal displacementmay
be expressed as:

δxk =

{

f (v) within the same system

f (w) at the end of the system
(2)

where v is the reading velocity and w the width of the system, as
illustrated in Figure 2.

Since each system consists of two staves, let us, without loss of
generality, assign the vertical component of the reading position
to be at the middle of the system as illustrated in Figure 2. While
the reading position remains within the same system, this vertical
component is expected to remain unchanged. In the transition
from one system to the next, this vertical component is expected
to shift vertically as a function of the separation between the two
systems. Thus, the vertical displacement component δyk can be
expressed as:

δyk =

{

0 within the same system

f (s) at the end of the system
(3)

where s is the separation between two systems as illustrated
in Figure 2.

An eye-gaze tracker will provide information on the point
of regard g = (gx, gy) of the subject on the screen. This point
of regard corresponds to the subject’s current reading position
such that the point of regard g may be used to adjust and
update the reading position predicted through Equation (1).
In particular, the point of regard may be used to estimate the
local changes in the reading velocity, allowing for updates to
both the reading position and the horizontal displacement δxk.
However, from literature on eye-gaze movement during music
reading, we know that the eye movement may have variations
in the vertical directions corresponding to the subject scanning
both staves in the system. The eye-gaze movement will also have
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FIGURE 2 | Illustrating a simple reading model. (1) When reading notes within the system, the point-of-regard moves with a horizontal displacement which is a

function of the velocity v with which the piece is being played. (2) At the end of the system, the point-of-regard moves not only in the horizontal direction, but also in

the vertical direction. Here the horizontal displacement is a function of the width w of the system, while the vertical displacement is a function of the separation s

between the two systems.

horizontal variations around the note being read as the reader
shifts their gaze to read upcoming notes. Moreover, glances at
keyboards, or partners results in eye-gazes that do not always
correspond to the reading location on the score. Thus, the eye-
gaze must be considered as a noisy measurement and a method
that compensates for noisy data must be adopted.

3.2. The Kalman Filter
The discrete time Kalman filter provides such a tool. The Kalman
filter assumes that a system is governed by a process modeled
by the linear stochastic model given by Equation (4) for which
a measurement z may be related to the state vector x using
Equation (5) (Maybeck, 1979)

xk = Axk−1 + Bu+ wk−1 (4)

zk = Hxk + vk (5)

where w and v are random variables representing the process
and measurement noise, respectively. These are assumed to be
white Gaussian noise processes with zero mean and covariance
matrices Q and R, respectively. Matrix A relates the state at the
previous time instant k− 1 to the state at the current time instant
k, matrix B relates the optional control input u to the state and
matrix H relates the state to the measurement z.

The Kalman filter estimates the state inputs in two steps
referred to as the prediction step and a correction step, such
that feedback from the measurement z is used to obtain better
estimates of the state vector x. The prediction step is is used by the
filter tomake a priori predictions of the state and error covariance
using the knowledge gained about the process up to the current

time instant. These are denoted as xk|k−1 and Pk|k−1, respectively,
and are given by:

xk|k−1 = Axk−1|k−1 + Buk−1|k−1 (6)

Pk|k−1 = APk−1|k−1A
′
+ Q (7)

The a priori state and error covariance estimates are then updated
in the correction step which takes into account the most recent
measurements obtained at the current time instant. The updated
a posteriori estimates, denoted by xk|k and Pk|k are obtained
through the correction update step:

Kk = Pk|k−1H
′(HPk|k−1H

′
+ R)−1 (8)

xk|k = xk|k−1 + Kk(zk −Hxk|k−1) (9)

Pk|k = (I − KkH)Pk|k−1 (10)

where K is a gain matrix which is estimated by the Kalman
filter to minimize the a posteriori error covariance and weighs
the difference between the predicted and actual measurements to
update the a priori state estiamte xk|k−1 to obtain the a posteriori
state estimate xk|k (Maybeck, 1979).

3.3. Application of the Kalman Filter Model
for Page Turning Applications
Let us consider the pianist reading music from a single system. If
we assume a reading model in which the reading velocity remains
constant, then, the process model may be expressed as:

xk+1 = xk + δxk (11)

yk+1 = yk (12)

δxk+1 = δxk (13)
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Comparing this model to the process model defined by
Equation (4), the reading position within the system may be
modeled by a process model with a state vector x = (x, y, δx)′

such that the matrix A is given by:

A =





1 0 1
0 1 0
0 0 1





with a zero control input. By considering the eye-gaze position
g = (gx, gy)

′ as the noisy measurement z we can define the
matrix H as:

H =

[

1 0 0
0 1 0

]

We hypothesize that within the single system the Kalman filter
correction step will provide the necessary correction to the state
vector x to allow for local adjustments in the reading velocity.

Let us now consider the instance when the pianist is
transitioning from one system to the next. In section 3.1, we
note that this transition requires an additional displacement in
the reading position to initialize the reading position to the
start of the subsequent system. There are various possibilities
to take into account the transition between two systems. For
example, if we assume that the transition between the systems
is instantaneous, then the additional displacement required can
be introduced through the control input u. Alternatively, a
switching Kalman filter (Murphy, 1998) may be employed to
create two reading models, one to model reading within the
system and another to model the transition between systems,
switching between readingmodels. However, we hypothesize that
for page turning applications, the Kalman filter model will be
sufficiently quick in correcting for the reading position when
the subject transitions between systems such that no additional
inputs or readingmodels are required. In this manner, we balance
accuracy of the reading model with speed and efficiency in
the tracking.

3.4. Determining the Kalman Filter
Parameters
To apply the Kalman filter model, we need to determine the
covariance Q of the process noise, the covariance R of the
measurement noise as well as the initial error covariance P.
To determine estimates for these values, four volunteers were
invited to read and play eight set pieces while recording both
eye-gaze and keying information. The subjects were asked to
play the extracts first as a sight-reading task and then, after
allowing a 2-min practice session. Moreover, the extracts were
selected such that they contained examples of irregular time
and key signatures, varying rhythmic and pitch complexities,
and tempo changes. The keying information obtained directly
from the MIDI output of the digital piano was synchronized
with the score through dynamic time warping. The note
onset from the MIDI data was then used to align the eye-
gaze information with the keying information and the score.
In this manner, we could observe the eye-gaze data under
different conditions, allowing for monitoring of variations in

the eye-hand span, glances at keyboard and variations on the
reading advancements.

From the registration of the MIDI data with the score,
we observe that, in general, the pianists position on the
score follows the process model described by Equation (13).
Variations from this model in the vertical direction exist
when the pianist’s position on the score shifts from the top
to the bottom line of the system. While variations in the
horizontal directions are observed mainly due to deviations
from the constant tempo model. Using these observations, we
empirically determine the initial values for Pk|k−1 = 0.1I
where I is the identity matrix, and set the process noise
covariance to

Qk =





0.2 0 0.6
0 0.85 0
0.6 0 0.2





choosing these values as they best describe the observed
variances in the MIDI note onsets. Moreover, from the
registration of the point-of-regard and the MIDI data, we
observe larger deviations between the point-of-regard and the
position on the score. These deviations are due to forward
and backward glances as well as vertical oscillations as the
pianist reads from both staves of the system. Since these
deviations represent the variance that we can expect in
the measurement, we empirically set the measurement noise
covariance to

R =

[

5× 1010 0
0 5× 105

]

as this best describes the observed variances between
the measured point-of-regard and the position on
the score.

3.5. Loss in the Eye-Gaze Measurement
The discussion thus far assumes that the eye-gaze tracker
in use can locate the pianist’s eyes at all times. However,
from our preliminary study, we note that there are instances
when pianists shift their position at the piano, for example,
by leaning toward the higher or lower registers of the
piano. In doing so, the eyes shift out of the field of
view of the eye-gaze tracker, resulting in a loss of eye-
gaze measurements. This loss results in measurement data of
z = 0. While the Kalman filter tolerates noisy data, long
instances of erroneous measurements will cause the Kalman
filter to diverge, particularly since such losses in the eye-
gaze measurements tend to occur over long, consecutive time
intervals. Such divergence may lead to accidental page turns
which is undesirable.

To compensate for loss in measurement data, we monitor
the eye-gaze measurements and in the case of consecutive
losses, we interpolate the missing eye-gaze measurements. The
interpolation uses the assumed process model such that:

z1,k = x1,k−1|k−1 + x3,k−1|k−1 (14)

z2,k = x2,k−1|k−1 (15)
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When the pianist’s eye are once again within the field of view of
the tracker, the measurement data will revert to those obtained
through the eye-gaze tracker, allowing the Kalman filter to
update the state vectors with the new, actual measurement input.
Although this approach may introduce some drift, the error due
to this drift will not be as large as the divergence caused due to
loss in the measurement data.

This approach allows us to use a hybrid model to
determine the pianist’s location on the score. At instances
when measurement data is available, the pianist’s position is
determined through the Kalman filter eye-tracking model. In the
absence of anymeasurement data, we follow the constant velocity
model until sensible measurements are once more obtained
from the eye-gaze tracking device. Relying only the interpolation
models of Equations (14) and (15) would make the estimation of
the pianist’s reading position susceptible to the inherent noise of
the eye-gaze tracking device as well as variations in the eye-gaze
movements as discussed above.

3.6. Using the Reading Position to Effect a
Page Turn
Page turning is effective if, when the pianist approaches the end
of the system on the page, the new system of the subsequent page
is already within the pianist’s field of view. In this paper, we adopt
the half-page turning described in Bonnici et al. (2017), with the
score having already been pre-processed to identify the systems,
bar-lines and with all repeats flattened. Since the viewing device
is intended to be a regular-sized tablet, for readability, each page
consists of only two systems displayed at any one time. With two
systems per page, half-page turns involve updating one system
at a time. Thus, a system Sn will be updated with system Sn+2

when the pianist reads from the system Sn+1. However, we note
that due to looking-ahead habits, toward the end of a system, the
pianist may have both systems in focus. Updating a system the
instance the gaze is averted to the next system may, therefore,
be too distracting for the pianist. For this reason, it is desirable
to allow the gaze to settle in the new system before effecting the
half-page turn.

To achieve this, we create a rectangular area of interest on
each new system displayed. This rectangular area of interest spans
from the second detected bar-line to the last bar-line of the system
as shown in Figure 3. We use this region of interest to accumulate
the number of times the pianists gaze falls within the region
of interest. By requiring a minimum number of gaze instances
within the region of interest, we may ensure that the pianists
gaze would have settled on the new system such that effecting the
page turn would not be distracting. Empirically, we determine
that for pieces played at an average tempo of 120 bmp, we may
set the minimum threshold to a fifth of the width of the region
of interest. We normalize this threshold with the user-defined
average speed of execution of the piece to take into account
that faster (slower) average tempo will reduce (increase) the time
spent within the region of interest.

4. EVALUATION METHODOLOGY

To evaluate the performance of the proposed Kalman filter model
and subsequently, the eye-gaze based page-turning, we adopt
a two-step evaluation process, using the model first with a set
of simulated data, followed by an evaluation with real eye-gaze
data. The simulated tests allow us to observe the Kalman filter
model with respect to ground truth data and hence, determine the

FIGURE 3 | Illustrating the region of interest on the second system. When the eye-gaze position exceeds a set threshold of 1/5 of the region of interest, the page turn

can be effected without distracting the pianist.
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residual error of the Kalman filter model. The simulated ground-
truth data was created using the process model described by
Equation (1) using a steady tempo of 120 bpm to simulate the
reading velocity, a system width of 1,200 pixels, a system height
of 200 pixels and a separation of 300 pixels between systems,
resulting in an effective page size of 1, 200 × 700 pixels. For
simulation purposes, we create a page consisting of five systems
as shown in Figure 4. We then introduce perturbations to the
ground-truth data to simulate expected characteristics in the
real data. We first simulate short-time losses of the eye-gaze
measurement data which can be brought about by glances at the
keyboard. These are modeled as impulses in both the horizontal
and vertical components of the eye-gaze measurements. We then
model the noise in the measurement of the point of regard
due to micro-saccades in the eye movements as well as noise
introduced by the eye-gaze sensor itself. This noise is modeled
as additive Gaussian noise, changing the signal-to-noise ratio
by varying the variance of the noise distribution. The final
simulation attempts to emulate longer losses in the eye-gaze
measurements by introducing longer zero-pulses to the ground
truth measurement data. This evaluation allows us to compare
the effect of the measurement data interpolation on the resulting
Kalman filter outcome.

In all these tests, the Kalman filter outputs were
expected to follow the ideal input in an over-damped

manner due to a tendency of the Kalman filter model to
withstand changes in each direction as set in the noise
co-variance matrices.

To evaluate the Kalman filter model with real eye-gaze
data, we use the SMI RED500 eye-gaze tracker7. This eye-
gaze tracker uses infrared illumination alongside computer-
based image processing to detect the gaze location of the
user on a designated area of interest. For optimal conditions
of operation, the subject is to sit 60 − 80 cm away from
a 22-inch monitor, where an allowable head box of roughly
40 × 20 cm is formed. Under these conditions, the system
offers a binocular tracking with a maximum sampling rate
of 500 Hz, contact-free measurement, small automatic head-
movement compensation for head movement velocities of up
to 50 cm/s by using the corneal reflexes and a typical gaze
position accuracy of around 0.4 °. The eye-gaze tracker is
connected to a workstation running the iView XTM software.
This software facilitates the capturing of eye movements
by controlling all the camera equipment and processing all
eye and scene video signals captured. This workstation is
connected, via Ethernet, to a personal device which hosts
our page-turning application. Our application is Matlab-based
and communicates to the workstation by using an application

7https://imotions.com/hardware/smi-red500/

A

B

FIGURE 4 | Simulation of eye-gaze measurements while reading five systems and the Kalman filtered result. (A) The horizontal component of the eye-gaze movement

and (B) the vertical component of the eye-gaze movement.
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programming interface (API) provided by the iView XTM

software development kit (SDK). The API allows our page-
turning application to control the SMI Red500 and retrieve
eye-tracking data.

Using this setup, two tests were carried out. In the first
instance, the subject was asked to read and perform 15
piano scores normally, allowing changes in speed within the

performance. For this test, 15 different musical pieces were
selected such that the pieces exhibited different levels of difficulty

and changes in tempo. For these pieces, the performance of

the Kalman filter model for page turning applications was
evaluated by counting the number of successful page turns,

delayed page turns, and advanced page turns. For the purpose
of this work, we define successful page turns as those page turns
that do not interrupt the flow of music. Delayed page turns
are defined as those instances when the pianist has completed
the system but the next system is not displayed, introducing
a delay in the flow of the music. Likewise, advanced page
turns are page turns triggered before the pianist has finished
reading the system. These page turns are more disruptive
than delayed page turns since they introduce jumps in the
music. In the second part of the reading test, we deliberately
introduced re-starts and skips in the flow of music to determine
whether the Kalman filter model was equally able to retain the
successful page turns under large disturbances from the assumed
reading model.

5. RESULTS

Figure 4 shows the performance of the proposed Kalman filter
model under clean, idealized eye-gaze measurements. These
measurements will be used as ground-truth when evaluating
the performance of the Kalman filter model. From Figure 4,
we can observe that, as expected, the Kalman filter acts as
an over-damped filter, allowing the system states to reach the
desired output. The results shown here demonstrate that the
proposed model can follow through changes in reading direction
corresponding to shifts in the eye-gaze between different systems.
A root-mean-square (RMS) error of 106.0 pixels was observed
with this input and this corresponds to a lag between the ideal
and predicted states. This lag can be broken down into a lag of
103 pixels in the horizontal direction, equivalent to 8.5% of the
page width, and 25 pixels in the vertical direction, equivalent to
3.6% of the page height.

In Figure 5, we simulate brief losses in the measurement
data with impulses inserted at equally spaced intervals along
the measurement. We note that the Kalman model filters out
these impulses such that the predicted gaze positions lie close
to the expected ground truth. An RMS error of 109.9 pixels
was observed, which indicates that the difference between the
Kalman filter results and the ground truth is mostly due to the
lag observed in Figure 4 and that the impulses introduced have
little effect on the Kalman filter performance.

A

B

FIGURE 5 | Simulating the loss of eye-gaze data, typical of brief instances when the pianist makes quick glances at the keyboard. (A) The horizontal component of

the eye-gaze movement and (B) the vertical component of the eye-gaze movement.
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Figure 6 shows the performance of the Kalman filter model
under the presence of normally distributed noise having zero
mean and a standard deviation of 50 pixels. This graph
demonstrates how the Kalman filter model adopted compensates
for noisy signals and is, therefore, robust to noise in eye-
gaze movements due to micro-saccades as well as noise in
the sensor itself. For a noise with a standard deviation of
50 pixels, an RMS error of 107.2 pixels was observed. This
error is comparable to the error due to the lag introduced
by the model. In Figure 7, we show the change in the RMS
error with increasing noise up to a standard deviation of
500 pixels. From this graph, we may note that, although
the RMS error of the Kalman filter increases, the remaining
noise in the filtered data is greatly reduced in comparison
with the noise in the measurements. The performance of the
Kalman filter model was further observed under combined
impulse and normally distributed noise, mimicking instances
of noisy sensor and short data losses. The results of this
simulation are shown in Figure 8 and, in this case, an
RMS error of 111.5 pixels showing that the Kalman filter
has the same level of performance under the combined
noise models.

In Figure 9, we observe the effect of longer periods of
measurement data loss, comparable to instances when the

subject’s eyes fall outside the field-of-view of the eye-gaze tracker.
Here, we compare the performance of the Kalman filter (red)
with the same filter model but after performing measurement
data interpolation (green). From this result, we may note that
loss in the measurement causes the Kalman filter to drift toward
the zero level, recovering toward the ground-truth once the
measurement data is regained. By applying the measurement
data interpolation, the Kalman filter output is being effectively
clamped to the constant reading model which not only reduces
the drift from the ground truth, but also allows the Kalman
filter model to recover from the loss of measurement data
more quickly.

Figure 10 shows the eye-gaze measurements sensed by the
eye-gaze tracker while the subject performed the extract. The
state-vector from the Kalman filter model is superimposed on
this sensed data. Similar to the simulated tests, we can observe
that the Kalman filter model reduces the noise in the eye-gaze
position estimation, resulting in smoother eye-gaze movements
on the score. In Figure 11, we show the Kalman filtered gaze
locations and the instances when page turns occur for the entire
piece. We superimpose on the graph the region of interest within
which, we expect the page turn to occur. Page turns within
these regions will ensure that the pianist has the next system in
place before reaching the end of the current system. Page turns

A

B

FIGURE 6 | Simulating the performance of the Kalman filter model under noisy measurement data, typical of deviations in eye-gaze due to micro-saccades and noisy

sensors. The noise added has a normal distribution with zero mean and a standard deviation of 50 pixels. (A) The horizontal component of the eye-gaze movement

and (B) the vertical component of the eye-gaze movement.
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FIGURE 7 | Comparing the performance of the Kalman filter under increasingly noisy data.

A

B

FIGURE 8 | Simulating the performance of the Kalman filter model under combined sensor noise and short instances of measurement data loss. (A) The horizontal

component of the eye-gaze movement and (B) the vertical component of the eye-gaze movement.

that occur before the region of interest are likely to disturb the
subject by occurring too soon, when the subject is transitioning
between systems. On the other hand, page turns that occur too
late within the region of interest will delay the page turn, causing

the subject to wait for the page turn to occur. In Figure 11,
we can observe that of the 21 page turns required to perform
Columbine Dances, two of these page turns occurred just at the
end of the region of interest, introducing an undesired pause
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A

B

FIGURE 9 | Simulating longer losses in eye-gaze measurements which are typical when the user moves away from the field-of-view of the eye-gaze tracker. The

performance of the Kalman filter model (red) can be compared with proposed interpolation of the measurement values to adjust for measurement losses (green). (A)

The horizontal component of the eye-gaze movement and (B) the vertical component of the eye-gaze movement.

FIGURE 10 | Comparing the eye-gaze measurements obtained from the eye-gaze tracker and the Kalman filter results using the first two lines of Columbine Dances

(Martinu) as an example.
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A

B

FIGURE 11 | Illustrating the instances where page turns occurred during the execution of Columbine Dances (Martinu). showing (A) the horizontal component and (B)

the vertical component of the eye-gaze movement. Regions highlighted in yellow indicate the position of the region of interest of each system. The occurrence of a

successful page turn is marked with black circles while delayed page turns are marked with red circles. Page turns occurring within the region of interest do not cause

disturbance in the performance of the piece.

in the music. The remaining 19 page turns occurred within the
region of interest and can thus, be considered as successful page
turns. Table 1, documents the total number of successful, early
and late page turns for the 15 selected pieces. From this table,
we note that out of 289 page turns, only 5 page turns were
delayed, resulting in a 98.3% successful page turns. The delays
observed in the Columbine Dances are due to written tempo
change instruction from a slow section to a faster section. In
these cases, although the Kalman filter model did adapt to the
change in the tempo, the adaptation was not sufficiently quick.
The other three delays are mostly due to the score flattening
approach adopted from (Bonnici et al., 2017). These pieces had
repeat marks within the first half of the system, resulting in
very short systems where the image of the written score was cut
short to allow for the insertion of the repeated section at the
next system. In these cases, our page-turning model required the
subject to spend more time within the system before executing
a page turn. Adjusting the type-setting of the music through,
for example, re-writing the flattened score in MusicXML, would
ensure systems of more uniform lengths and hence, eliminate

this problem. Nevertheless, the delays incurred were of under 3
s in duration and thus, not unlike the delays experienced when
manually adjusting page turns, with the added advantage that the
subject can trigger the page turn without needing to remove their
hands from the keyboard.

Figure 12 further shows the performance of the eye-
gaze tracking under instances when the subject stops and
restarts reading the same section of music. The results shown
demonstrate that the Kalman filter model can react to such
changes, allowing for the eye-gaze following to function even
under changes in the subject’s gaze from the expected reading
model. Accommodating such changes is necessary as it allows
the eye-gaze page-turning to function even under instances of
practice time.

For comparison purposes, we performed a subset of the
scores presented in Table 1 using the audio-based, page turning
function of the PhonicScore App8. The music was performed
on a Yamaha Clavinova CLP545 digital piano. For purposes

8http://phonicscore.com/
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TABLE 1 | The performance of the automated page turning on 15 different

musical pieces, giving the total number of page turns required as well as the

number of successful page turns, the number of late page turns and the number

of early page turns as a percentage of the total number of page turns.

Page turns

Selected piece Total Successful

(%)

Late (%) Early (%)

Columbine Dances, Puppets II,

Martinu

21 90.5 9.5 0

Gavotte, Holberg Suite, Grieg 20 100 0 0

Gnosienne No. 1, Satie 15 100 0 0

Children’s Corner Suite, Mvt. No.

6, Debussy

18 100 0 0

Impromptu in G flat, Schubert 40 100 0 0

Maple Leaf Rag, Joplin 34 100 0 0

Minuet, from Sonata No. 1,

Beethoven

20 95 5 0

Moonshadows On The

Mountain, Linn

13 92.3 7.7 0

My Father’s Favorite, Doyle 16 100 0 0

Nocturne In C Sharp Minor,

Chopin

16 93.8 6.2 0

Papillon Noir, Massenet 15 100 0 0

Prelude In C, from 48 Preludes

and Fugues, Bach

10 100 0 0

Song For Sienna, Crain 24 100 0 0

Sundial Dreams, Kern 27 100 0 0

Total 289 98.3 1.7 0

TABLE 2 | The performance of the automated page turning using PhonicScore on

eight of the pieces given in Table 1.

Page turns

Selected piece Total Successful

(%)

Late (%) Early (%)

Columbine Dances, Puppets II,

Martinu

14 85.7 0 14.3

Gnossienne No. 1, Satie 10 20.0 80.0 0

Children’s Corner Suite, Mvt. No.

6, Debussy

12 58.3 0 41.7

Maple Leaf Rag, Joplin 23 56.5 26.1 17.4

Nocturne in C Sharp Minor,

Chopin

11 63.6 18.2 18.2

Prelude in C, from 48 Preludes

and Fugues, Bach

5 100 0 0

Song For Sienna, Crain 16 50 0 50

Sundial Dreams, Kern 18 61.2 38.8 0

Total 109 61.5 19.3 19.2

The table presents the total number of page turns required as well as the number of

successful page turns, the number of late page turns and the number of early page turns

as a percentage of the total number of page turns.

of evaluation, the CFX Grand Piano tone was used while the
use of pedals was not allowed since any other tone, or the use
of pedaling prevented PhonicScore from recognizing the notes
being played. The scores were selected on basis of the availability
of the music in MIDI and MusicXML file format which are
the two file formats recognized by the app. Table 2 gives the
number of successful, late and early page turns experienced when
using this application. It is important to note that PhonicScore
is not restricted to half-page turns and the number of systems
presented in a page depends on the density of the music. Overall,
the application therefore requires fewer page turns per score.
From Table 2, we note that this application has a larger quantity
of late and early page turns than our eye-gaze tracking system.
Moreover, in all instances, manual intervention was needed to
place the cursor position in the correct place on the score.
All late and early page turns occurred after the application
was unable to match the audio signal with the correct place
on the score. In instances of late page turns, the application
was unable to pick-up where the user was playing and did
not advance at all, whereas in early page turns, the application
found matches in places ahead of the user’s current position
on the score, skipping ahead in the score. These observations
further demonstrate the advantages of using eye-gaze tracking for
page-turning.

6. CONCLUSION

In this paper we present an eye-gaze page turning system
that allows performers to browse through the music while
performing it without lifting the hands from the keyboard. To
achieve this page turning system, we describe a simple reading
model which describes the way a subject’s eye-gaze progresses
through the music score when reading and performing the
music. This reading model makes assumptions about the reading
velocity that are not necessarily strictly observed by the subject.
Measurements of the subject’s point-of-regard through eye-
gaze trackers are therefore used to adjust the position on
the score. However, we note that such a sensor introduces
measurement noise and thus, we propose a Kalman-filter
model to reach a balance between the reading model and the
measurement data.

The resulting eye-gaze tracking allows us to create a robust
page-turning systemwhich, when paired with a half-page turning
display allows constant update of the displayed page such that
the subject always has fresh music to play from. The results
obtained show that successful page turns occurs in 98.3% of the
page turning instances. Furthermore, the page-turning system
is robust to instances of re-starts and skips along the system
being read.

In our model, we assume that, for the most part, the subject
needs to look at the score to read the notes from the score.
However, one can envisage instances when the player performs
parts of the score from memory. In such instances, our proposed
measurement interpolation prevents the Kalman filter model
from diverging. Accuracy in the model can be increased if
the proposed Kalman filter model is augmented to include a
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A

B

C

FIGURE 12 | Illustrating the performance of the page-turning under conditions of re-starts and skips, showing (A) the horizontal eye-gaze position, (B) the vertical

eye-gaze position (C) the measured and Kalman filtered eye-gaze values on the score. (1) The subject starts by reading the music normally but at (2) stops and

restarts the performance from the beginning of the system. The Kalman filter eye-gaze tracking model responds in kind and restarts from the beginning of the system

too. The current system remains visible for the subject, causing no interruptions in the flow other than those intentionally introduced by the subject. At (3) the subject

proceeds to the next system and the Kalman filter model detects this change. The subject plays the first, second, and third bars of this system, but then skips the

fourth bar and goes straight to the fifth bar. The Kalman filter treats such a skip as noise in the measurement model and lags behind. However, the page-turning

mechanism can sense that the subject has moved to the second system and can update the first system (not shown here). Thus, when the subject completes the

second system, the page is refreshed and can proceed with performing the next system which would be displayed on top.
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second measurement input, namely, sound measurement. The
Kalman filter model would then combine the stochastic nature
of the gaze and sound measurements to create a more robust
score following.
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Fuzzy logic is an artificial intelligence technique that has applications in many areas, due

to its importance in handling uncertain inputs. Despite the great recent success of other

branches of AI, such as deep neural networks, fuzzy logic is still a very powerful machine

learning technique, based on expert reasoning, that can be of help in many areas of

musical creativity, such as composing music, synthesizing sounds, gestural mappings

in electronic instruments, parametric control of sound synthesis, audiovisual content

generation or sonification. We propose that fuzzy logic is a very suitable framework for

thinking and operating not only with sound and acoustic signals but also with symbolic

representations of music. In this article, we discuss the application of fuzzy logic ideas to

music, introduce the Fuzzy Logic Control Toolkit, a set of tools to use fuzzy logic inside

the MaxMSP real-time sound synthesis environment, and show how some fuzzy logic

concepts can be used and incorporated into fields, such as algorithmic composition,

sound synthesis and parametric control of computer music. Finally, we discuss the

composition of Incerta, an acousmatic multichannel composition as a concrete example

of the application of fuzzy concepts to musical creation.

Keywords: fuzzy logic, computer music, machine learning, sound synthesis, parametric control,

algorithmic composition

1. INTRODUCTION

Music, although considered a science by many, is not an exact science, but rather a collection of
qualities, ranging from the emotional to the intellectual in varying degrees (Suiter, 2010a). Several
concepts in music are not absolute but rather relative and its terminology is not entirely precise.
Many musical concepts do not possess an absolute meaning, and composers, with a few notable
exceptions, do not specify every detail about how their musical creations should be converted into
sound. For example, a slow tempo indication in a musical score can be interpreted very differently
by different analysts or performers. Indeed, many musical attributes are described by imprecise (or
fuzzy) concepts, such as presto, forte, piano, andante, or allegro. León and Liern (2012) provide the
music of J.S. Bach as an example of such a fuzzy approach to composing, as in his music features,
such as the instrumentation or the tempo are not explicitly stated in the scores.

Following the same line of argument, authors, such as Milicevic (1999) state that music, unlike
language, is fuzzy, while others, such as León and Liern (2012) consider a musical score to be a
truly fuzzy system, meaning that performers are required to execute very complex actions based
on uncertain concepts written in the score. If we accept this premise, some aspects of fuzzy logic
theory seem to be a natural way of predicting the aesthetic outcomes of music (Suiter, 2010a) and
its structure.

Fuzzy logic (Kosko, 1993; McNeill and Freiberger, 1993; Cox, 1994; Bandemer and Gottwald,
1995; Klir and Yuan, 1995; Yen and Langari, 1999) is a branch of artificial intelligence specifically

88
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designed to handle imprecise and vague concepts. Fuzzy logic
can be conceived as a logical system based on a more general
concept of truth, one that is not two-valued (true or false) and
very appropriate for reasoning under uncertainty, by allowing
different degrees of membership or several values of truth. In
general, the application of fuzzy logic inference to a problem
emulates some aspects of human reasoning, for example, the
quantification of imprecise information or making decisions
given unclear or partial data (Kosko, 1993).

Artificial intelligence aims to construct computational
algorithms that can perform some level of reasoning and exhibit
problem-solving skills similar to those of humans. Fuzzy logic
has an additional objective: “to explore an effective trade-off
between precision and the cost in developing an approximate
model of a complex system or function” (Yen, 1999). However,
perhaps one of the most important qualities of fuzzy logic
concerning music-making is its capacity for modeling non-linear
systems without the need of explicitly constructing a complex
mathematical model. Indeed, as Suiter (2010a) states: “A
significant feature of music is that the aesthetic outcome is
often more than the sum of its technical elements. Indeed,
what is the role of timber, attack, duration, decay, articulation,
spatialization, register, texture, voicing, entries and timing,
rhythm, tempo, or meter? What does musical form, structure, or
process contribute? In fact, it is often the means and details of the
interactions between the distinct elements which significantly
influence the effectiveness of the whole work. This means music
is, technically, a non-linear system.”

This article is structured as follows. First, we briefly introduce
the main ideas and concepts behind fuzzy logic and its
application, with an emphasis on the fuzzy approximation
theorem and fuzzy inputs as latent spaces. Second, we conduct
an updated survey of the utilization of fuzzy logic in musical
applications. Third, we present the Fuzzy Logic Control Toolkit
(FLCTK), a set of tools to generate musical content in the
MaxMSP real-time sound synthesis environment. Fourth, we
provide detailed examples of applications in sound synthesis,
algorithmic composition, and many-to-many musical mappings.
Fifth, we discuss some compositional aspects of Incerta, an
acousmatic multichannel composition done in MaxMSP with
the FLCTK. Finally, some conclusions and future lines of work
are presented.

2. FUZZY LOGIC

Zadeh (1965) introduced the concept of fuzzy sets, which are
different from standard sets in the sense that they operate
with multi-valued logic. Compared to other, perhaps more
popular, artificial intelligence techniques, fuzzy logic is simpler
and more flexible, making it a very appealing tool for musical
applications. Indeed, fuzzy logic systems have found applications
in a great multiplicity of fields, notably engineering and control
applications (Kosko, 1993; Klir and Yuan, 1995), but also in
areas apparently unconnected, such as data analysis (Bandemer
and Gottwald, 1995), economics, business, and finance (Von
Altrock, 1997), sociology (Dimitrov andHodge, 2002), or geology

(Demicco and Klir, 2004). Fuzzy logic algorithms can be easily
found in everyday popular objects, such as cameras, camcorders,
or washing machines, but also on unmanned vehicles, such
as trains.

2.1. The Fuzzy Principle
Kosko (1993) coined the phrase everything is a matter of degree
to emphasize a key element of fuzzy logic theory. In fuzzy logic,
inputs and outputs are fuzzified, meaning that their values belong
in varying degrees to several fuzzy sets. For example, if we
consider the sound intensity range of 30–120 dB, and we want
to determine whether a given intensity is low, medium, or high,
does a value of 90 dB correspond to a high intensity? As it is
closer to 120 than to 30 perhaps, but there are other values which
are higher in intensity. Therefore, instead of assigning only one
label to it, it is not a bad idea to consider a fuzzified version
of this concept, one in which this particular value belongs in
different degrees to both the medium and high intensity labels.
In consequence, fuzzy sets are not exclusive, they allow partial
membership of its elements. Unlike traditional crisp logic, where
elements belong or do not belong to a particular set, in fuzzy logic
an element of the set can be a member of it only partially. In
this way, fuzzy logic handles uncertain terms and partial values of
truth. Elements are not entirely black or white; they can acquire
any shade of gray. Mathematically, this implies membership
values between 1 and 0.

2.2. Fuzzy Sets
As we previously stated, a fuzzy set contains members to some
degree (Kosko, 1993). Let F be a fuzzy set with an universe
of discourse X = {x}, defined as the mapping µF(x) :X →

[0,α]. The universe of discourse is the range of all possible real
scalar values of some measurement or items of information that
we want to fuzzify. This mapping assigns to each x a value
in the range [0,α]. When α = 1 the set is called normal. A
fuzzy set contains a distribution, also calledmembership function.
When a distribution is of zero width, the membership function
collapses to a singularity, which corresponds to the traditional
case of a crisp set. If these singularities can only have one of two
possibilities, they perform binary logic. µF is called the grade
of membership or degree of truth of x. Fuzzy sets, although
usually modeled after triangular or Gaussian distributions, can
adopt any form, and no shape has been proven to be the best
(Mitaim and Kosko, 2001).

2.2.1. Fuzzification and Defuzzification
Fuzzification and defuzzification are critical operations in fuzzy
theory, as both of these operations connect the fuzzy set
domain and the real value scalar domain (Roychowdhury
and Pedrycz, 2001). Methods and techniques for fuzzification
and defuzzification are an active line of research, and several
approaches are constantly proposed in the literature.Wewill now
illustrate one of the simplest strategies for fuzzification. Figure 1
shows the fuzzification of the physical variable “intensity” which
is often associated with loudness. Employing fuzzification, a
variable or concept can be classified into one or several fuzzy
sets. In this particular case, there are three fuzzy sets to which
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FIGURE 1 | Fuzzification of the concept “intensity.” The intensity level in dB is fuzzified into three fuzzy sets, labeled LOW, MEDIUM, and HIGH. The crisp value of 90

dB belongs to both the HIGH and MEDIUM sets in different degrees.

“intensity” can be classified into, denoted “LOW,” “MEDIUM,”
and “HIGH.” The membership functions of these fuzzy sets are
Gaussians and the universe of discourse X contains intensities
between 30 and 120 dB. In this example, a 90 dB intensity level
belongs 70.69% to the fuzzy set “HIGH,” 24.97% to the fuzzy set
“MEDIUM” and 0% to the fuzzy set “LOW.”

2.2.2. Operations on Fuzzy Sets
Operations can be defined for fuzzy sets in the same way they
are defined in traditional set theory and also in several different
ways. The most important fuzzy operators and the way they are
typically defined are:

• Complement. µ̄(x) = 1 − µ(x), x ∈ X. The complement
groups all the elements that do not reside in the set µ(x).

• Scalar product. µ(x) = S · µ1(x), x ∈ X. A fuzzy set can be
multiplied by a scalar S.

• Power. µ(x) = [µ1(x)]
m, x ∈ X. The power operation elevates

a fuzzy set to a particular numberm. The casem = 2 is known
as the concentration of a fuzzy set.

• Union. µ∪(x) = µ1(x) ∨ µ2(x) ∨ . . . ∨ µn(x) =

max(µ1(x),µ2(x), . . . ,µn(x)), x ∈ X. The union of two or
more fuzzy sets joins all the elements of the universe of
discourse that belong in some degree to any of those sets. This
operation can be done with any triangular co-norm. In this
particular implementation, we unite fuzzy sets by selecting the
maximum values among them.

• Intersection µ∩(x) = µ1(x) ∧ µ2(x) ∧ . . . ∧ µn(x) =

min(µ1(x),µ2(x), . . . ,µn(x)), x ∈ X. The intersection of two
or more fuzzy sets extracts all the elements of the universe
of discourse that belong in some degree to all of those sets.
This operation can be done with any triangular norm. In this
particular implementation, we unite fuzzy sets by selecting the
minimum values among them.

In set theory, both the intersection and union operators produce
one set. This is also known as aggregation. In the case of crisp
logic, the only way to aggregate one or more sets is by these two
operations. However, in the case of fuzzy sets, aggregation can
be achieved by several averaging operations, some of which are
not necessarily symmetric. For example, it would be possible to
specify different weights for each fuzzy set involved (Belohlavek
and Klir, 2011). This type of aggregation seeks the averaging of
several fuzzy sets into one, and it is not to be confused with the
process of rule aggregation, which will be discussed shortly.

2.3. Fuzzy Systems
Fuzzy systems are model-free estimators, they estimate input-
output functions where the inputs are fuzzified and the outputs
defuzzified. They estimate a function, and can approximate one
with any degree of accuracy, without an underlyingmathematical
model relating inputs to outputs. Fuzzy systems learn from
experience codified into numerical or even linguistic data (Kosko,
1992). A general fuzzy system consists of a rule base, an inference
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engine, and fuzzification and defuzzification stages (Klir and
Yuan, 1995). It operates repeating a cycle of three steps:

1. Fuzzification. Input variables are converted into
fuzzy variables.

2. Fuzzy inference engine. The fuzzified measurements are
evaluated by the rule base, resulting in one or several fuzzy
rules describing the universe of possible actions.

3. Defuzzification. The fuzzy outputs are converted into a single
value or a vector.

2.3.1. Fuzzy Rules and Inference
One of the goals of fuzzy logic is to emulate the way humans
reason, which is typically just by some imprecise rules and
common sense. Most of the decisions humans take can be
modeled after computer-like if-then statements, based on expert
knowledge or common sense. However, fuzzy rules can also be
learned from data (Kosko, 1992). One example is the FUZZEX
algorithm which can learn rules from a corpus of data mapping
inputs to outputs, in the same fashion that a neural network does
(Finn, 1999).

Formally, a fuzzy rule is a conditional of the form IF X
is A THEN Y is B, where A and B are fuzzy sets (Kosko,
1993). Typically, fuzzy systems contain a large rule base and
the method by which the computation of the contribution
of each rule is achieved is known as aggregation. There are
two main aggregation strategies, one connecting the rules with
AND operators, and another where they are connected by OR
directives (Ross, 2010). In the first, the aggregated output is
obtained by the intersection of all the individual rules, while
in the latter the output is aggregated by the union of the
contribution of all rules.

The process of aggregating all the rules in parallel is called
fuzzy inference. Different inference methods can be employed
depending on the task in question. One of the most popular
is the Mamdani method, proposed in 1975 by Mamdani and
Assilian (Ross, 2010). Several variants of this method exist, for
example the min-max method where a fuzzy rule would have
the form:

IF x1 isA
k
1 AND x2 isA

k
2 THEN yk is Bk for k = 1, 2, . . .

where Ak
1 and Ak

2 are fuzzy inputs and Bk is the desired output.
For r disjunctive fuzzy IF-THEN rules, the aggregated fuzzy
output will be:

µBk(y) = max
k

[min[µAk
1(input(1)),µA

k
2(input(2)), . . . ]]

for k = 1, 2, . . . , r

After inference, there comes defuzzification, a process to
which several approaches exist (Ross, 2010). One of the
most used ones is the centroid method, where the center
of mass of the aggregated fuzzy output is computed as a
scalar value.

Another widely used inference method is the TSK or Sugeno
method proposed by Takagi, Sugeno, and Kang. In this method,

two inputs x, y and one output z are associated by a rule of
the form:

IF x is A AND y is B THEN z is z = f (x, y)

where z = f (x, y) is a non-fuzzy function of the inputs x and
y (Ross, 2010). This inference function can be any function
that describes the output of the system within the fuzzy region
that the particular fuzzy rule encompasses. One advantage of
the TSK method over the Mamdani strategy is that it requires
less computation time by avoiding the defuzzification stage,
which can be computationally challenging if the rule base is
large enough.

2.4. Fuzzy Logic vs. Deep Learning
Both neural networks and fuzzy systems are numerical
frameworks used to estimate input-output functions without an
underlying mathematical model of how inputs relate to outputs.
In this sense, they are model-free estimators (Kosko, 1993). Both
approaches have been proven to be universal approximators for
any non-linear function to any degree of accuracy (Kosko, 1994;
Ying, 1998).

Neural networks excel at learning and adapting under
uncertainty scenarios. It is no surprise then that deep learning
has emerged as perhaps the most important branch of AI
due to its unprecedented capacity of learning data in an
unsupervised manner and superb results in tasks of classification
and estimation. However, due to the high complexity of some
network architectures and the large amount of data that is needed
for training, it is very hard to understand what is being learned or
even why some systems work. Indeed, a large amount of current
research in deep learning seeks to understand what are networks
learning. In short, neural networks can do amazing jobs at the
cost of inaccessible knowledge.

Fuzzy logic, on the contrary, is all about knowledge
representation. It is very clear what is being learned and
represented as all knowledge is encoded in the rules of the fuzzy
system. There is no major mystery as to why fuzzy systems work.
And these systems can also operate under uncertainty and require
almost no data, besides a couple of examples or common sense to
derive the rules from.

In the case where the number of inputs to a fuzzy logic system
is significantly less than the number of outputs, then the system
mimics the behavior of a latent space, in the sense that its rules,
which depend only on a few inputs, are a compact representation
of the dynamics of the many output parameters. However, the
main difference with the typical latent spaces that can be found
in auto-encoders and other types of neural networks is that this
fuzzy latent space is constructed based on simple rules and it
is not inferred or learned from data. In other words, this is a
well-understood and totally determined latent space.

Fuzzy systems offer nice opportunities for creative
applications, as they are able to mimic some characteristics of
human reasoning. The parallel calculation of fuzzy rules generally
reduces the calculation time compared to traditional deep
learning techniques or mathematical approaches. Knowledge
is encoded employing fuzzy rules that can easily be specified
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as IF-THEN statements, with simple linguistic terms, using
common sense, and they can be easily adjusted.

3. FUZZY LOGIC FOR MUSICAL
APPLICATIONS: A SURVEY

Back in 2001, Landy (2001) signaled fuzzy logic as one of the
important potential domains of development for the future’s
music world. We believe that fuzzy logic has not yet reached its
full potential in the service of musical purposes, due perhaps to
the exponential growth and development of deep learning and
other AI techniques. However, fuzzy logic has found its way
into several domains related to audio applications and musical
creative activities, as we report now.

3.1. Acoustics, Psychoacoustics, and
Digital Audio Processing
Demichelis et al. (1983) proposed an automatic recognition
method of plosive consonants, by using a fuzzy model of the
human speech perception and integration mechanisms. The
rules of the system were designed taking into consideration
prior research done by psychologists and phoneticians in the
generation and perception of these types of consonants by the
human brain, which can be characterized by several acoustic
cues. The authors found out that the performance of the system
drastically improved when more significant cues were added to
the rule base.

Civanlar and Trussel (1986) designed an audio signal
restoration method based on a fuzzy system that models a priori
information. The authors combined exact knowledge about the
signal to be restored with partial and incomplete information.
The original signal and all reasonable solutions belong to a
high degree to the feasibility set of possible solutions, while
rejected solutions have lower membership degrees. The measure
of this set gives an approximation for the quality of the solution.
This method was shown to be successful in many restoration
situations where other conventional techniques to that date
had failed.

Kostek (1999) designed a fuzzy controller of a pipe organ.
The system links the opening procedures of the pipe valves to
the manner of depressing the keyboard. The proposed solution
utilizes a velocity-sensitive MIDI keyboard, connected to a
computer with a special fuzzy microprocessor card and a buffer
to control an array of electromagnets. These, in turn, control
the pipes. Inputs to the fuzzy controller were key number and
velocity. The output can belong to the following membership
functions: low current, medium current, and high current. The
system produced one fuzzy output, associated with the current
applied to the electromagnet coils, based on eleven rules.

Breining (2001) developed a fuzzy step-gain control procedure
for adaptive filters to be used in acoustic echo cancellation
situations. Many step-gain estimators become unreliable under
adverse environments. This fuzzy logic-based controller used
a step-gain estimator combined with a double-talk detector,
resulting in a highly convenient and relatively simple method
compared with traditional alternatives.

Meng et al. (2002) designed an analytic method to extend
the sound impulse response of a room, using knowledge
from extrapolation theory for band-limited sound signals. The
evaluation of the method was conducted using a fuzzy clustering
algorithm. The authors use similarity perceptual judgment tasks
to compare the similarity between the extrapolated real impulse
responses. Typically these kinds of perceptual measurements
estimate a similarity matrix with methods, such as Kruskal’s
multidimensional scaling. However, considering that the terms
similar or dissimilar are not entirely crisp concepts, fuzzy logic
was added to transform the similarity matrix into a fuzzy
clustering matrix.

Malcangi (2008) constructed a fuzzy audio-pattern
recognition algorithm targeted for usage in very low-cost
embedded systems, to automate human-machine interaction.
This system was built on top of feature extraction algorithms
and a rule base constructed by a self-learning process. The fuzzy
logic recognition engine used membership functions according
to the spectrum of a particular audio frame to be recognized.
In consequence, if the audio pattern was, for example, a vocal
utterance, then the membership function would be modeled
according to the spectrum envelope of the stationary components
of the speech. In such a manner, a set of membership functions
covering all the stationary speech sounds to be recognized must
be generated. By using a different dictionary of membership
functions, other kinds of acoustic signals can be recognized by
such a system.

Gonzalez-Inostroza et al. (2015) proposed a fuzzy-logic based
equalizer for musical genres, by incorporating significant audio
descriptors that allow for the recognition and description of
diverse musical genres. These descriptors feed a fuzzy logic
inference system, whose outputs are the required equalization
levels for each frequency band. The rules of the system were
derived from the analysis of a well-known music database
encompassing ten different musical genres. Their approach
works for songs that exhibit multiple genre characteristics, that
are difficult to classify into one category, or that mix genres.

3.2. Music Listening, Emotion, and Analysis
Milicevic (1999) aimed to aid composers to create more
appealing music for a wider public. Assuming that composers
usually seek a positive cultural response to their music, the
authors built a fuzzy adaptive and emotion-based music system
that can reduce the internal fuzzy entropy of the compositions,
making them more appealing to people and able to produce
positive emotional responses while listening to it. They tried their
system in the special case of computer music.

Friberg (2005) was able to use a fuzzy system for the analysis
of the emotional expression and body movements in musical
performances in real-time. Parameters, such as articulation,
tempo, intensity, and motion descriptors were used as inputs
to a fuzzy mapper able to translate these variables into one of
three possible outputs: happiness, sadness, and anger, all related
to emotion. The rule base was constructed considering qualitative
data from former studies.

Yang et al. (2006) also developed a music emotion
classification system based on fuzzy logic. They declare that
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“due to the subjective nature of human perception, classification
of the emotion of music is a challenging problem,” as feeling and
emotion states provoked by music could be unequal to different
people. Their approach estimates the likelihood that a given
segment extracted from a song belongs to a particular category of
emotion. Their system can measure emotional strength to track
the variation of different musical emotions provoked by a song.

Maristany et al. (2016) have done soundscape quality analysis
by means of fuzzy logic. They conducted a comparative analysis,
based on surveys and psycho-acoustic estimations, in open
locations around the city of Córdoba in Argentina. They
found out that there is a non-linear relationship between
these indicators and the audible qualities of the spaces.
Fuzzy logic emerged then as a suitable tool to model this
non-linearity, confirmed by the model performance and the
perceptual outcomes from the users. The authors found that
this approach can be applied not only to soundscapes, but
in other studies where perception must be confronted with
objective measurements.

Hasanzadeh et al. (2019) constructed a fuzzy cascade model
designed to predict the emotional content of pieces of music
using electroencephalographic (EEG) signals. Users listened to
musical excerpts while their emotional appraisal response was
estimated as a value along two emotional axes (valence and
arousal). The proposed fuzzy model consists of parallel cascades
with each cascade containing a single multi-input/single-output
fuzzy logic-based system. The authors compared this approach
to several alternative methods, including recurrent neural
networks, and concluded that the fuzzy approach exhibited the
best performance.

Kasinathan et al. (2019) developed a music recommendation
system based on a fuzzy inference engine that considers
user activities and emotion as part of the recommendation
parameters. The authors describe that their fuzzy inference
system can decide on music recommendations based on the
user’s music listening habits as well as expert knowledge
about music genres and their effects on humans. The user’s
preference data is fed into the fuzzy system to obtain a
decision that returns a score corresponding to the recommended
music track. The top ten music tracks with the highest
recommendation score are provided as recommendations for
the user.

3.3. Music Information Retrieval and
Performance
Orio and Pirro (1998) coded gestures made during interactive
musical performances in real-time by a neuro-fuzzy system.
One of the basic contributions of their work is using only two
different levels for the codification of human gestures. These
levels usually carry a significant amount of information about
the performer’s intentions. But additional information is carried
by nuances of the gesture, and these can also be analyzed,
capturing the detailed performance of each gesture. This two-
level approach was applied in a system for interactive piano
performances. Nuances were analyzed in terms of linguistic
labels. This is where fuzzy logic plays an important role, given

its suitability to handle semantic expressions. Depending on the
kind of desired performative nuances, fuzzy controllers were
developed. Loudness and tempo are used as inputs, and the
system then calculates the level of, for example, “urgency” of
the musician. This information is later used by the system to
musically respond in real-time to the human performer.

Usa andMochida (1998) used a fuzzy system in the simulation
of the gestures of an orchestra conductor. The system is
capable of recognizing some of the most common conducting
elements of conductors. In particular, the beat recognition
system was built on top of a fuzzy model of actual orchestra
musicians’ recognition.

Liu and Huang (1998) implemented a system that
discriminates news reports from broadcast ads or music in
news programs based on the information contained in the audio
signals. Four features were extracted from the audio data. Both
a simple threshold and a fuzzy classifier were implemented
to classify the audio data. In the case of the fuzzy classifier,
descriptors were associated with fuzzy sets and the influence
of each feature was combined to obtain the final classification
decision. Results reported an improvement using the fuzzy
classifier compared to the threshold-based system.

Weyde and Dalinghaus (2001) recognized rhythmic patterns
with a neuro-fuzzy system, which determined grouping and
group relations between two sequences (comparison) or within
one sequence (analysis). The systemmakes use of knowledge and
learning from data and it is open for the integration of different
features and rules. The system defined by the rules can be trained
to prefer certain interpretations over others by example.

Liu et al. (2002) propose a fuzzy system designed to classify
and retrieve audio clips, inspired by the fuzzy nature of human
perception. Various extracted features were used as input to a
fuzzy system, whose outputs belonged to two types of classes. The
rule base was constructed from characteristics extracted from the
clips. The results show that the system can discriminate between
speech andmusic and that it can be extended for the classification
of more types of audio clips.

Monti and Sandler (2002) developed a system able to translate
audio directly into MIDI data. The system contains a fuzzy
inference system that achieves polyphonic note recognition
as a part of the overall process. First, spectral peaks from a
spectrogram are selected by the algorithm. Harmonically related
peaks are grouped into note candidates. If a note candidate
receives a good rating, it is transformed into a note hypothesis.
Finally, the hypotheses that survived an activation time threshold
become active notes. The fuzzy inference system takes the
spectral peaks that were not selected into the note continuation
process and creates new candidates. The new candidates are then
evaluated by the inference system to become note hypotheses.
The membership functions used in this system classify notes
into low, middle, and high and take into consideration pitch,
harmonic rate, and relative energy.

Leon and Liern (2010) modeled musical notes and tuning
systems as fuzzy entities to integrate tuning theory and musical
practice. The authors were able to combine different tuning
systems into a simpler fuzzy model that reflects both the
idea of proximity between different notes and whether their
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configuration, in terms of a specific tuning system, is sufficiently
similar for practical musical purposes.

Knudsen et al. (2019) propose that “to collaborate and
co-create with humans, an AI system must be capable of
both reactive and anticipatory behavior.” With this objective
in mind, the authors considered a mixed human-robot duo,
more precisely a piano and a virtual robotic drummer, and
they designed a fuzzy logic-based system to determine the
performance features of the drummer as a function of what the
human pianist performs. While the system exhibited only limited
anticipatory capabilities, the behavior of the drummer was judged
to be satisfactory by musicians in initial evaluation experiments.

3.4. Musical Composition and Generation
Lee and Wessel (1993, 1995) were among the first researchers
to incorporate a fuzzy reasoning system into the MAX real-time
music programming language. They labeled their system
MaxFUZ, and it implemented fuzzy variables, sets (limited to
trapezoidal shapes), and both Mamdani and Sugeno rules. This
was the first interactive fuzzy system that worked in real-time
inside MAX to our knowledge.

Almost at the same time, Elsea (1995) utilized fuzzy logic
features to tackle problems in the analysis and composition
of music. In his work, pitches and dynamics were represented
as fuzzy sets and fuzzy reasoning is used to produce
chord inversions and sequence of chords. These ideas were
implemented in software as external objects for Max/MSP, called
L-objects, which provide fuzzy operations and manipulation
of fuzzy sets.

Kiseliova et al. (2005) developed an interpretation fuzzy
algorithm, based on top of a rule base designed by an experienced
pianist. Their approach relies on both conventional and more
advanced information decision strategies. This system, given a
known piece of music, creates a MIDI-based interpretation of
the piece. Their general objective is to transform a mechanical
performance of a piece of music into a much more human-like
interpretation by applying the knowledge of an expert performer
in the form of a fuzzy rule base.

Cádiz (2004, 2006a) proposed a fuzzy logic system to convert
visual information into sonic information and vice-versa. This
model is useful to generate audiovisual content, given either the
visual or sonic content in advance. Parameters in one domain
are fuzzified and fed into a fuzzy inference engine that generates
parameters in the other domain. This fuzzy mapping is inspired
by the ideas of isomorphism and synaesthesia. Isomorphism
determines whether two different modalities can be mapped
onto each other based on the fact that perturbations into one of
them consistently cause changes in the other, while synaesthesia
occurs when a stimulation in one sensory modality automatically
provokes a perceptual outcome in a secondary sensory modality
when there is no direct stimulation to it.

Yilmaz and Telatar (2009) identified key areas where fuzzy
logic can be used for the composition and generation of music:
harmonization, orchestration, improvization, and composition.
They propose to focus on the harmonization with constraints
as a way of tackling these three areas. In particular, they
proposed a fuzzy feedback decision system designed to perform

accompanying tone generation dynamically. They applied this
system to the particular problem of note-against-note two-voice
counterpoint (Yilmaz and Telatar, 2010). Their method considers
membership functions and rules that mimic some known rules
of music theory, and their implementations provide feasible
procedures when compared to those of established music theory.

Suiter (2010b) devised a conceptual framework for composing
expressive music based on fuzzy logic, aimed toward reducing
the number of musical decisions that a composer must make
at the micro-level and focusing on those that contribute to
expressiveness the most. A fuzzy system is used to trace the
trajectory of all musical details of a composition, encompassing
each element and their combinations.

López-Ortega and López-Popa (2012) developed a two-
dimensional recursive fuzzy method assisting composition for
MIDI-based musical works based on fractal structures. In their
approach, notes evolve according to a particular fractal trajectory.
Tempos and duration can remain fixed or they also can follow
the fractal structure. Additionally, the set of produced pitches
are translated into tones belonging to a previously determined
musical scale.

Kuo et al. (2015) created a real-time emotion-based music
accompaniment system through a fuzzy logic tempo controller,
and an additional genetic evolutionary melody generation
system. Harmonic chord progressions were generated using
known music theory rules. For the fuzzy tempo controller, they
used a range of 60 to 180 beats per measure, and the fuzzy output
is used to adjust the current tempo compared to a target one.

Lucas et al. (2017) developed a method for representing
human emotions in the context of human-machine musical
composition based on fuzzy logic. A knowledge base of human-
produced melodies and human-labeled emotions associated with
them, in the form of a Markov chain process, is used to generate
new melody patterns, which are later classified into emotions
by a fuzzy classifier. These new melodies can be of later use to
compose music with specific emotional targets in mind.

Guliyev and Memmedova (2019) modeled some
compositional decisions as the requirement to construct
relationships between controllable elements in music, in
particular pitch, duration or amplitude, and a consequent
evaluation. They established these relationships as sets of
IF. . . THEN fuzzy rules with antecedents, the input parameters,
and a consequent, the evaluation of the generatedmusical output.
This method can be thought of as a “preference ordering” of the
attributes of a particular piece of music.

3.5. Sound Synthesis
Miranda and Junior (2005) introduced a novel Markov fuzzy
model for granular synthesis. While Markov chains control the
temporal evolution of the sound, their fuzzy system defines
the granular structure of the sound. In this sense, this method
extends the idea of a grain into the concept of a fuzzy grain.
A fuzzy grain contains several fuzzy parameters: frequency,
amplitude, and membership values of each Fourier partial of the
grain, or in other words, its weighted harmonic content.

Schatter et al. (2005) proposed a graphical user interface
for the generation of electronic sounds with a synthesizer.
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FIGURE 2 | Help screen of the Fuzzy Logic Control Toolkit (FLCTK) in the MaxMSP environment. Inputs, outputs and rules can be added and removed on-the-fly.

Twenty-three aural parameters were reduced to five parameters
controlling the visual metaphor utilizing a fuzzy logic controller.
The system allows knowledge-based mappings that are adaptable
to each user. There are two modes of operation: in the manual
operationmode, the system is used to record the parameter-input
of the user, followed by the generation of fuzzy controllers. In the
automatic mode, the system has to find parameter combinations,
employing genetic algorithms.

Cádiz (2006b) has proposed an approach for the
compositional control of computer music based on fuzzy
logic. In this case, the control of the compositional process
derives from the fuzzification of the synthesis parameters of
interest, while the rule base can be specified at will by the
composer, according to his objectives. The author provides
five different applications of this type of synthesis control in
the context of spectral synthesis, physical modeling, granular
synthesis, particle-based synthesis, and audiovisual composition,
exemplifying a significant number of situations in which such an
approach gives suitable results.

Lucas and Pelaez (2019) implemented a granular synthesis
method based on harmonic rules and fuzzy logic. In this method,
each grain is positioned in a two-dimensional space arranged in
the same fashion as the circle of fifths. A fuzzy logic prioritization
algorithm is used to order the grains in the vicinity of a
particular performing area inside this two-dimensional space.
The algorithm takes frequency and energy levels of each grain

in the vicinity as inputs and produces a prioritization index as
a result.

4. THE FUZZY LOGIC CONTROL TOOLKIT

The Fuzzy Logic Control Toolkit (FLCTK) (Cádiz and Kendall,
2006; Cádiz and Gonzalez-Inostroza, 2018) is a collection of
software tools implemented in MaxMSP1, a sound synthesis
environment that allows for the design and usage of a generic
fuzzy inference system in real-time. An important feature of this
software is its capability to import and export fuzzy systems
in the fis file format, a popular fuzzy logic specification used
by MATLAB’s Fuzzy Logic Toolbox2. This common shared file
format allows a user to design and troubleshoot a complete fuzzy
system in MATLAB, export it as a fis file, and then import the
same system into the FLCTK or vice-versa.

Figure 2 displays a screen-shot of the MaxMSP help patch of
the FLCTK’s external flctk.Fuzzy with all its options. This
external object can load a fuzzy system or create one on-the-fly
by sending messages to it. In this example, details of the fuzzy
system in use are displayed in the Max window. Some messages
can select specifics for implication, aggregation, fuzzification and
defuzzification, number of rules, their weights, and whether AND

1http://cycling74.com
2https://www.mathworks.com/help/fuzzy/index.html

Frontiers in Artificial Intelligence | www.frontiersin.org 8 October 2020 | Volume 3 | Article 5995

http://cycling74.com
https://www.mathworks.com/help/fuzzy/index.html
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Cádiz Creating Music With Fuzzy Logic

FIGURE 3 | Algorithmic melody generator example 1. The 2D coordinates [−0.433,−0.559] of the latent space generate a 12-note melody with a large range of

pitch variations.

or OR operators should be used. All fuzzy inputs and outputs
can be defined with either triangular or Gaussian membership
functions, and labels can be created for each of them.

This toolkit is very simple to use inside MaxMSP and
a complete fuzzy system can be designed by sending the
appropriate messages to the flctk.Fuzzy object. This object
can be created based on an existing fis file designed off-
line in MATLAB. In this case, the path to the fis file
should be specified. Another option would be to initialize
the object with several inputs and outputs, in which case the
external will create all necessary fuzzy variables with a standard
configuration using Gaussian membership functions and inputs
and outputs consisting of five fuzzy sets each. This configuration
can be altered after the system was created by sending modifier
messages. Once inputs and outputs are created, rules can be
added one by one by sending a message specifying the inputs
and outputs involved in each rule, the aggregation method, and
specific weight for each rule. Rules can be deleted and tested on
the fly, to customize the system’s behavior.

The FLCTK can be downloaded from its github website
at https://flctk.github.io/. The package contains the source Java
code, compiled code, help files and video examples, some of
which are detailed below. Also, a standalone version, written
from scratch in C++ and based on the Open Sound Control
protocol (Wright et al., 2003) is in the works at the time this
article was published.

5. EXAMPLES

We now provide four examples, developed by the author using

the FLCTK, that illustrate the power of fuzzy logic for audio and

music generation, in the specific domains of computer music

and algorithmic composition, sound synthesis, and parametric
control. These examples are purposely very simple, as they were

designed to clearly show the effect of fuzzy logic when applied to

very basic ideas. Illustrating videos of each of the examples can be

found in the Supplementary Material.
For the algorithmic composition and parametric control

examples, we utilize a bi-dimensional controller (shown in
Figures 3, 4, 8) as a very simple control interface. The bi-
dimensional controller has a square shape and a pointer (small
circle) that tracks the coordinates of the mouse as the user
moves it. Both axes have a range of 2.0 (from −1.0 to
+1.0). The origin (0,0) is located at the center of the square.
The controller also accepts pointer coordinates via internal
messaging. In this way, the controller can in turn be controlled
not only by the mouse but by any kind of two-dimensional
process. In the following examples, the coordinates of the
controller are fed into custom fuzzy systems designed for each
particular case. As these fuzzy systems contain more than
two outputs, this controller behaves as a latent space, which
is a compact representation of the high-dimensional output
parameter space.
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FIGURE 4 | Algorithmic melody generator example 2. The 2D coordinates [0.543,−0.071] of the latent space generate a six-note melody with a rather small range of

pitch variation in the lower register.

TABLE 1 | Input and output variables for algorithmic composition example.

Input variables Output variables

X Number of notes

Y Regularity

Duration deviation

Pitch

Pitch deviation

Each one of these variables can belong to three fuzzy sets: LOW, MEDIUM, or HIGH. As

the number of inputs is lower than the number of outputs, the input space is a latent space

of the output space.

5.1. Algorithmic Composition
Algorithmic composition is simply the use of algorithms to
compose music. This is a very common practice in the history of
music, as “for centuries musicians have been proposing methods
that can be considered as algorithmic in some sense, even if
human creativity plays a key role” (Fernández and Vico, 2013).
There is a great variety of algorithms that have been proposed for
music composition, including simple recursive equations, chaotic
systems, re-writing systems, and many others (Nierhaus, 2009;
Edwards, 2011).

Algorithmic composition using fuzzy logic is proposed here as
another alternative. Fuzzy logic, as we have previously discussed,

is flexible enough to be applied to many different composition-
related contexts and situations. This particular example consists
of the generation of a very simple melody, where the number of
notes, their pitch range, and their duration are determined by
a fuzzy inference system. The inputs to the system are the two
outputs of the aforementioned bi-dimensional controller. The
outputs are the number of notes, a regularity factor, a duration
deviation factor, pitch, and a pitch deviation factor, as specified
by Table 1. Each one of these variables can belong to three fuzzy
sets: LOW, MEDIUM, or HIGH. As there are fewer inputs than
outputs, the input space is a latent space of the output space.

This system contains nine fuzzy rules, detailed in Table 2.
All rules have the same weight and are connected by AND
operators. A “–” indicates that the value of the fuzzy variable
can be anything. As shown in Figure 3, given the coordinates
[−0.433,−0.559] of the latent space, the system generates a
twelve-note melody with a large range of pitch variations.
Another point in the latent space will produce a different output,
as is displayed in Figure 4, where the coordinates [0.543,−0.071]
of the latent space output a six-note melody with a rather small
range of pitch variation in the lower register.

5.2. Sound Synthesis
An audio synthesis technique, based on fuzzy logic and the
idea of sound particles, is presented as a second example of the
application of fuzzy logic for music generation. This technique
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TABLE 2 | Fuzzy rules for the algorithmic composition example.

Inputs Outputs

Rule X Y Num. of notes Regularity Duration dev. Pitch Pitch dev.

1 LOW – HIGH MEDIUM LOW HIGH MEDIUM

2 MEDIUM – HIGH MEDIUM – LOW LOW

3 HIGH – LOW LOW LOW HIGH LOW

4 – LOW MEDIUM HIGH HIGH – HIGH

5 – MEDIUM LOW LOW LOW LOW LOW

6 – HIGH LOW LOW HIGH MEDIUM HIGH

7 LOW HIGH LOW MEDIUM LOW HIGH MEDIUM

8 MEDIUM HIGH HIGH MEDIUM MEDIUM LOW HIGH

9 HIGH HIGH HIGH HIGH HIGH HIGH HIGH

All rules have the same weight and are connected by AND operators. A “–” indicates that the value of the fuzzy variable can be anything.

TABLE 3 | Input and output variables for the single particle sound synthesis

example.

Input variables Output variables

Time 1 Frequency

Frequency 1 Intensity

Intensity

has been shown to generate complex synthesis parametric
trajectories by very simple means (Cádiz and Kendall, 2005). This
example consist of a single sound particle (a sinusoidal oscillator)
that possesses several fuzzy properties, labeled as time, frequency
and intensity. These properties are fed into a fuzzy system that
determines the temporal evolution of the particle. Each one of
the fuzzy properties consists on several fuzzy sets or membership
functions. Table 3 displays all the inputs and outputs used in
the example. Note that as time is included as an input, complex
time-dependent behaviors or trajectories can be generated.

The time input variable can belong to seven fuzzy sets,
labeled VERY SHORT, SHORT, MEDIUM SHORT, MEDIUM,
MEDIUM LONG, LONG, and VERY LONG fuzzy sets. The
frequency and intensity variables can belong to five sets: VERY
LOW, LOW, MEDIUM, HIGH, or VERY HIGH. The outputs
of the system are a change in both frequency and intensity. This
means that, in this case, the fuzzy system is a closed-loop system,
a very common design for automatic control applications. The
outputs at each time step are used to recalculate the current
frequency and intensity of the particle. The fifteen rules of this
system are shown in Table 4. All rules have the same weight
and are connected by AND operators. A “–” indicates that the
value of the fuzzy variable can be anything. It is important to
recall that in this example the fuzzy system is dependent on
time. As time progresses linearly, the output variables frequency
and intensity exhibit a highly non-linear behavior, as it can be
observed in Figure 5.

This single particle model has been extended to many
particles, as described in Cádiz and Kendall (2005). In the

many particle case, two additional fuzzy properties were added:
spatial position and charge. Figures 6, 7 show the frequency and
intensity trajectories for a ten-particle system. In the figures,
all particles shared the same initial conditions, except for
random charges. The trajectories displayed in the figures are
quite complex, with very different behaviors as time progresses.
Sometimes they behave very chaotically and some other times,
in this example most notably in the first 6 s, they follow smooth
and apparently non-chaotic but rather well-defined trajectories.
Some clustered groups can also be noticed. This kind of behavior
is a consequence of the easiness of fuzzy logic to approximate
non-linear dynamical systems.

5.3. Parametric Control
Granular synthesis (Dodge and Jerse, 1997) is inspired by the
idea of sound particles or grains, similar in spirit to photons
or particles of light. Iannis Xenakis in 1971 and Curtis Roads
in 1978 were among the first to suggest granular synthesis as a
viable computer music technique for producing complex sounds.
This technique generates a high density of very short acoustic
events or grains, resembling clouds, with a duration between
10 and 50 ms (Roads, 2004). These grain clouds typically range
from several hundred to several thousand events per second. If
sinusoidal functions or any pure synthesis methods are used to
produce the grains, the technique is called granular synthesis,
while if pre-recorded sounds constitute the grain material, people
often call that granular processing. This technique often requires
the user to control multiple parameters without any clear relation
to what they are hearing (Wolek, 2005). This is a situation where
a fuzzy logic-based control strategy could be useful.

This example consists on the control of a granulator, whose
parameters are determined by a fuzzy inference system. In
this specific case, granular synthesis is achieved using the
nw.grainpulse object, written for Max/MSP by Wolek
(2002). This object has five parameters to be controlled. The
inputs to the system are the two outputs of the bi-dimensional
controller used for the algorithmic composition example. The
outputs are the pulse interval, buffer offset, duration, sample
increment, and gain multiplier, as specified by Table 5. Each one
of these variables can belong to three fuzzy sets: LOW,MEDIUM,
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TABLE 4 | Fuzzy rules for the single particle sound synthesis example.

Inputs Outputs

Rule Time Frequency Intensity 1 frequency 1 intensity

1 VERY SHORT – – VERY LOW VERY LOW

2 VERY LONG – – VERY HIGH VERY HIGH

3 – MEDIUM MEDIUM MEDIUM MEDIUM

4 – LOW – HIGH MEDIUM

5 – HIGH – LOW MEDIUM

6 – – LOW MEDIUM HIGH

7 – – HIGH MEDIUM LOW

8 – MEDIUM – VERY LOW VERY HIGH

9 – – MEDIUM VERY HIGH VERY LOW

10 SHORT – – LOW LOW

11 MEDIUM SHORT – – HIGH LOW

12 MEDIUM – – LOW HIGH

13 MEDIUM LONG – – MEDIUM MEDIUM

14 LONG – – VERY HIGH VERY HIGH

15 VERY LONG VERY LOW – LOW –

All rules have the same weight and are connected by AND operators. A “–” indicates that the value of the fuzzy variable can be anything.

FIGURE 5 | Particle sound synthesis example. In this case the fuzzy system is dependent on time. As time progresses in a linear fashion, the output variables

frequency and intensity exhibit a highly non-linear behavior.
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FIGURE 6 | Frequency trajectories in time for a 10-particle system. As it can be seen, highly complex behavior can be generated with a few simple if-then rules.

FIGURE 7 | Intensity trajectories in time for a 10-particle system. As it can be seen, highly complex behavior can be generated with a few simple if-then rules.
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or HIGH. As there are more outputs than inputs, the input
space is a latent space of the output space, as in the algorithmic
composition example.

This system contains nine fuzzy rules, detailed in Table 6.
All rules have the same weight and are connected by AND
operators. A “–” indicates that the value of the fuzzy variable can
be anything. Inputs and outputs of the fuzzy system are displayed
on the right of Figure 8. As the latent space is explored in both
the X and Y directions, the output variables exhibit different
non-linear behavior. This allows the parametric control of five
synthesis parameters with only two abstract parameters. The
proposed fuzzy system effectively acts as a latent space generative
model, one that can translate points from a two-dimensional
parameter space into a five-dimensional space that acts directly
on the sonic output, according to the nine rules of the system.

5.4. Many-to-Many Parametric Control
In computer music, sometimes the act of composing cannot
be separated from the control of the synthesis process (Cádiz,
2006b). As a consequence, the compositional process can be
strongly shaped by the nature of the synthesis technique that
is being used. Gerhard and Hepting (2004) propose to think of
composition as an exploration of a multidimensional parameter

TABLE 5 | Input and output variables for parametric control of granular synthesis

example.

Input variables Output variables

X Pulse interval

Y Buffer offset

Duration

Sample increment

Gain multiplier

Each one of these variables can belong to three fuzzy sets: LOW, MEDIUM, or HIGH. As

the number of inputs is lower than the number of outputs, the input space is a latent space

of the output space.

space, where a particular configuration of parameters can be
represented as a point in that space. The parameters are initially
de-contextualized, meaning that they only offer a possible set
of future musical ideas, and compositions often means to map
or re-map these parameters until targets or musical constraints
are satisfied. This parameter-based approach to composition
allows the composer to explore a high dimensional space of
musical possibilities and essentially pick trajectories in that space
that are aesthetically relevant. Dahlstedt (2001) and Gerhard
and Hepting (2004) have proposed several options for this
composition strategy.

As these parameter spaces become larger, more specialized
tools are needed. In particular, supervised neural network
methods have been often used to generate a model of the
mapping from controller inputs to synthesis outputs, using
training datasets consisting of examples of input/output
pairs (Fiebrink et al., 2009). These kinds of networks can
learn a continuous function mapping, no matter how
many dimensions are involved. For these reasons, Fiebrink
and Cook (2010) developed the Wekinator, a free and
cross-platform open-source software application that supports
interactive design and application of real-time supervised
learning systems for many-to-many parametric gestural control
of music.

Since version 2.0 of the FLCTK this kind of many-to-
many control can also be achieved with fuzzy logic in real-
time. As inputs, outputs and rules can be added on-the-fly,
high dimensional parametric gestural control can be achieved
with a regular fuzzy system. Please see the example video in
the Supplementary Material for a better understanding of this
on-the-fly mode. In the video, rules are added in real-time to
map five inputs into four outputs controlling a sound synthesis
algorithm. This is a straightforward way of learning directly from
data. As can be observed in the video, desired inputs can be
specified along with their desired corresponding outputs and
these data pairs can be encoded on a specific rule. Instead of
specifying these data points in real-time moving faders, it would
be straightforward to add a functionality to the FLCTK to learn
them directly from a file on disk.

TABLE 6 | Fuzzy rules used in the granular synthesis example.

Inputs Outputs

Rule X Y Pulse interval Buffer offset Duration Sample inc. Gain mult.

1 LOW – HIGH MEDIUM LOW HIGH MEDIUM

2 MEDIUM – HIGH MEDIUM – LOW LOW

3 HIGH – LOW LOW LOW HIGH LOW

4 – LOW MEDIUM HIGH HIGH – HIGH

5 – MEDIUM LOW LOW LOW LOW LOW

6 – HIGH LOW LOW HIGH MEDIUM HIGH

7 LOW HIGH LOW MEDIUM LOW HIGH MEDIUM

8 MEDIUM HIGH HIGH MEDIUM MEDIUM LOW HIGH

9 HIGH HIGH HIGH HIGH HIGH HIGH HIGH

All rules have the same weight and are connected by AND operators. A “–” indicates that the value of the fuzzy variable can be anything.
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FIGURE 8 | Latent space granulator example. Inputs and outputs of the fuzzy system are displayed on the right. As the latent space is explored in both the X and Y

directions, the output variables exhibit different non-linear behavior. This allows the parametric control of five synthesis parameters with only two abstract parameters.

FIGURE 9 | Screenshot of the main interface of Incerta at time 0:52. The six Gaussian curves for the control of the sound material selection and spatialization can be

seen at the bottom left. Circles on the right displays the rotation angle that is used to specify the mean value of each Gaussian curve.
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FIGURE 10 | Screenshot of the main interface of Incerta at time 3:00. The six Gaussian curves for the control of the sound material selection and spatialization can be

seen at the bottom left. Circles on the right displays the rotation angle that is used to specify the mean value of each Gaussian curve.

TABLE 7 | Input and output variables for Incerta, an acousmatic composition for

eight channels.

Input variables Output variables

Low pitch selection angle (2) Change in low pitch selection angle (1)

Middle pitch selection angle (3) Change in middle pitch selection angle (2)

High pitch selection angle (4) Change in high pitch selection angle (3)

Low spatial selection angle (5) Change in low pitch spatial angle (4)

Middle spatial selection angle (6) Change in middle pitch spatial angle (5)

High spatial selection angle (7) Change in high pitch spatial angle (6)

Time (1) Selection curve standard deviation (7)

Spatial curve standard deviation (8)

Each of the variable numbers have been assigned a number in parenthesis, as shown in

Table 8. There are seven inputs and eight outputs in totals.

6. INCERTA: AN ACOUSMATIC
MULTI-CHANNEL FUZZY COMPOSITION

Incerta is an 8-min acousmatic multi-channel composition
created in MaxMSP with the FLCTK. Incerta is a latin word
that could be translated into English as vague, in direct
relation to the ability of fuzzy logic to handle uncertain data
using vague concepts. The gist of the composition is very
simple: twenty-one separate tracks of audio are presented in
both temporal and spatial order according to a fuzzy logic
inference engine.

The fuzzy system handles both the temporal and spatial
presentation of the material across time. The twenty-one audio
tracks are separated into three different groups, according to
their pitch content, ranging from low-frequency textures to high
pitches ones. Each group is presented at a given time on a specific
spatial location.

Both the selection of individual sound files and spatial position
in an eight-speaker system are determined by the selection of a
specific Gaussian curve that specifies the amplitudes of a group
of faders, as shown in Figures 9, 10. There are three curves for
each pitch content (low, medium, and high) and three additional
curves for the circular spatial position of each group. Themean of
each curve is controlled by an angle variable in such a way that the
faders overlap circularly. The Gaussian curves can also be made
wider or thinner, and thus affecting a different number of faders,
by controlling their standard deviation.

The fuzzy system takes the rotation angle of each of the six
Gaussian curves as inputs and also a time variable that allows for
time-based behavior as time progresses. In total, there are seven
inputs to the system. The outputs of the system are the change
that each angle should experience at the next time step and two
variables that control the standard deviation of the selection and
spatial curves. This is an example of a closed feedback system,
where some of the outputs of the system affect the inputs at the
next time step.

The fuzzy variables used in this composition are described
in Table 7 and can take the following values: Very Short
(VSh), Short (Sh), Medium Short (MSh), Medium (M), Medium
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TABLE 8 | Fuzzy rules for Incerta, an acousmatic composition for eight channels.

Inputs Outputs

Rule 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

1 VSh – – – – – – Sl Sl Sl Sl Sl Sl VL VL

2 Sh – – – – – – FC FCC FCC FC FCC FC L L

3 MSh – – – – – – FCC Sl MC Sl MC Sl M M

4 M – – – – – – Sl Sl Sl Sl Sl Sl H H

5 MLa – – – – – – FC FCC FC FCC FC FCC VH VH

6 La – – – – – – FC FCC FC FCC FC FCC M M

7 VLa – – – – – – Sl Sl Sl Sl Sl Sl VL VL

8 – FCC – – – – – FC – – – FC – – –

9 – MCC – – – – – Sl – – – – – – –

10 – Sl – – – – – MC – – – – – – –

11 – MC – – – – – FC – – – – – – –

12 – FC – – – – – FCC – – – FC – – –

13 – – FCC – – – – – FC – – FCC – – –

14 – – MCC – – – – – FC – – – – – –

15 – – Sl – – – – – – – – – – – –

16 – – MC – – – – – FCC – – – – – –

17 – – FC – – – – – FCC – – FCC – – –

18 – – – FCC – – – – – MC – FC – – –

19 – – – MCC – – – – – FC – – – – –

20 – – – Sl – – – – – FCC – – – – –

21 – – – MC – – – – – MCC – – – – –

22 – – – FC – – – – – Sl – – – – –

23 – – – – FCC – – – FCC – MC MCC – – –

24 – – – – MCC – – – – – MC – – – –

25 – – – – Sl – – – – – FCC – – VH VL

26 – – – – MC – – – – – MCC – – – –

27 – – – – FC – – – – – MCC MC – – –

28 – – – – – FCC – – – – – FC – – –

29 – – – – – MCC – – – – – FC – – –

30 – – – – – Sl – – – – – FCC – VL VL

31 – – – – – MC – – – – – FCC – – –

32 – – – – – FC – FCC – – – FCC – – –

33 – – – – – – FCC – – – – – FC – –

34 – – – – – – MCC – – – – – MC – –

35 – – – – – – Sl – – – – – FC VH VH

36 – – – – – – MC – – – – – FCC – –

37 – – – – – – FC – – – – – MCC – –

All rules have the same weight and are connected by AND operators. A “–” indicates that the value of the fuzzy variable can be anything. Variable names are specified in Table 7. The

fuzzy values that the variables can take are: Very Short (VSh), Short (Sh), Medium Short (MSh), Medium (M), Medium Large (MLa), Large (La), Very Large (VLa), Fast counter-clockwise

(FCC), Medium counter-clockwise (MCC), Slow (Sl), Medium clockwise (MC), Fast clockwise (FC), Very Low (VL), Low (L), High (H), and Very High (VH).

Large (MLa), Large (La), and Very Large (VLa) for time, Fast
counter-clockwise (FCC), Medium counter-clockwise (MCC),
Slow (Sl), Medium clockwise (MC), Fast clockwise (FC) for
rotation angles and Very Low (VL), Low (L), High (H), and Very
High (VH) for standard deviations.

The rules for each system were created based on musical
criteria, as shown in Table 8. In this approach to composition,
most of the composer’s work deals with the design and tuning
of the fuzzy inference rules. Once the rules are established, the
piece unfolds in real-time as the composer specified. Rules were

designed in order. First, time dependence is established. Then,
one rule for each possible fuzzy value of each one of the inputs is
provided. This design methodology produces thirty-seven rules
in total. Of course, these rules can be tweaked and fine-tuned
to obtain specific desired behavior, but changing these rules too
much would result perhaps in a different composition.

As time progresses the state of the whole fuzzy system changes,
as it can be seen by comparing Figure 9 with Figure 10, which
corresponds to the same instance of the piece at different times,
0:51 and 3:00, respectively. The position of each of the rotating
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circles is different, resulting in a different sonic output at those
specific times. Another very interesting aspect of this approach
is that the initial point of each input variable determines a
different outcome. Even though there is some time dependence,
the fact that there are closed loops in the system results in fuzzy
outputs that are highly dependent on the initial conditions. As
this composition is based on pre-generated sonic material, this
complex behavior of the fuzzy system does not result in a totally
different piece for different starting points, but there are indeed
noticeable differences from one version to another. In this sense,
this composition does not have a unique final format, but asmany
formats as there are initial conditions, which is infinite in theory.

The fuzzy system used in this piece can produce complex
dynamic behavior, as it can be observed in the accompanying
videos of three different performances or instances of the piece.
The time evolution of each variable is distinct and the overall
behavior of the piece is not the same. This is due to the
thirty-seven inference rules encoded on the system. Videos
of each of the Incerta performances can be found in the
Supplementary Material.

7. DISCUSSION AND CONCLUSIONS

The provided examples show that the power of fuzzy systems lies
in the parallel computation of very simple rules. A mathematical
model is not needed to approximate any system, no matter how
complex it could be. Fuzzy systems are, in general, much simpler
to construct and use than other AI techniques, such as deep
neural networks. They do not require a large amount of training
or extremely large data sets. Rather, a few if-then like fuzzy
inference rules, inspired by expert knowledge or common sense,
are usually enough to develop interesting systems for musical
creation. Fuzzy systems are very suitable tools for the control of
high dimensional parameter spaces, as it could be observed from
the algorithmic composition and parametric control examples,
where five parameters could be successfully addressed with
only two control dimensions. Also, because fuzzy systems can
approximate any non-linear process, it is easy to create complex
behavior, something highly valuable in creative endeavors.

Fuzzy logic is also a powerful way to implement non-
linear mappings and intuitive control of non-intuitive synthesis
parameters. However, one of the weaknesses of a fuzzy logic
approach to parametric composition would be the time required
to appropriately design adequate rules for the inference system.
In engineering control applications, these rules are derived from
expert knowledge or machine learning processes, where the rules
are derived from trained data. In artistic applications, these rules
constitute the heart of the underlying parameter mapping and
it becomes really hard to select appropriate rules for a specific
desired output when the parameter space is highly dimensional,
which is often the case. Rule specification becomes an art form
in itself, and it requires time and the development of expert
knowledge specific to this kind of composition. In creative
applications, when designing the fuzzy variables and rules, it is
not necessary to worry about stability or controllable issues, the
items on which control engineers spend most of their time. On
the contrary, instability could be something very appealing to
a composer.

The FLCTK constitutes a powerful and simple approach to
the compositional control of computer music, as demonstrated
by the examples described in this article. It has been successfully
implemented in a variety of situations: algorithmic composition,
particle-based synthesis, and granular synthesis control, and in
the composition of a whole piece entitled Incerta. Overall, the
FLCTK is a simple way of designing and implementing fuzzy
logic inference systems inside MaxMSP. Its compatibility with
MATLAB’s fuzzy logic toolbox also allows this environment to
be used in the design and test stages of the fuzzy models.

Finally, we would like to encourage the use of fuzzy systems
as an alternative to the current trend of using deep learning
and generative models for musical creation. Both approaches
can complement each other. However, one big difference
between these approaches is knowledge representation. In neural
networks, it is sometimes very hard to understand what the
knowledge captured by the network is. In fuzzy logic, it is very
clear what is being learned and represented as all knowledge
is encoded in the rules of the system, even if the rules were
learned directly from data. This is a major difference between
these approaches, and for some types of music, a fuzzy approach
could be better suited than a purely data-based one.
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Increasingly music has been shown to have both physical and mental health benefits
including improvements in cardiovascular health, a link to reduction of cases of dementia in
elderly populations, and improvements in markers of general mental well-being such as
stress reduction. Here, we describe short case studies addressing general mental well-
being (anxiety, stress-reduction) through AI-driven music generation. Engaging in active
listening and music-making activities (especially for at risk age groups) can be particularly
beneficial, and the practice of music therapy has been shown to be helpful in a range of use
cases across a wide age range. However, access to music-making can be prohibitive in
terms of access to expertize, materials, and cost. Furthermore the use of existing music for
functional outcomes (such as targeted improvement in physical and mental health markers
suggested above) can be hindered by issues of repetition and subsequent over-familiarity
with existing material. In this paper, we describe machine learning approaches which
create functional music informed by biophysiological measurement across two case
studies, with target emotional states at opposing ends of a Cartesian affective space
(a dimensional emotion space with points ranging from descriptors from relaxation, to fear).
Galvanic skin response is used as a marker of psychological arousal and as an estimate of
emotional state to be used as a control signal in the training of the machine learning
algorithm. This algorithm creates a non-linear time series of musical features for sound
synthesis “on-the-fly”, using a perceptually informed musical feature similarity model. We
find an interaction between familiarity and perceived emotional response. We also report
on subsequent psychometric evaluation of the generated material, and consider how
these - and similar techniques - might be useful for a range of functional music generation
tasks, for example, in nonlinear sound-tracking such as that found in interactive media or
video games.
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INTRODUCTION

There is increasing evidence that mindfulness can form a positive
contributor to mental health and general wellbeing (Baker and
Bor, 2008; Economides et al., 2018). In this work we describe the
design and evaluation of a system combining machine learning
(ML) approaches with biophysiological metering and
psychological evaluation of two descriptors which we consider
to be at discrete ends of an affective space with positive mental
health states at one side of the space (mindfulness, calmness, etc.),
and negative mental states at the other side of the space (fear,
anger, etc.) (Chambers et al., 2009).

The distinction between affective state, emotion, and mood, is
complex, and is generally drawn between the duration of the
response (Calvo et al., 2009). Various models of affective state
exist, including models with dimensions for positivity and
activation strength, such as the cirumplex model of affect
(Russell, 1980). This model places valence (as a measure of
positivity) and arousal (as a measure of activation strength) on
the horizontal and vertical axes respectively. Emotional
descriptors (e.g., happy, sad, angry) can be mapped on to this
space. Other models exist, for example, multidimensional models
which also include, for example, dimensions for dominance. This
type of model might be useful when delineating between very
intense and very negative emotional descriptors, such as the
difference between anger and fear–both intense, and negative,
but one being a more dominant response and the other more
passive. Often, individual emotional descriptors can be plotted
across these types of spaces (Williams et al., 2014). In the case of
this work, we consider a general model with two specific
descriptors as approximately at either end of a scale–mindful,
and afraid. However, the descriptors themselves are open to
debate and could certainly form the subject of further work.
We intend to explore the use of AI to generate music intended to
elicit differing emotional states in an abstract emotional space and
to examine biophysiological markers in a synchronous manner.

Existing work has shown that there are responses to music in
both the central and peripheral nervous system (in other words,
both physiological, and neurological responses) (Aldridge, 2005;
Calvo et al., 2009). When listening to enjoyable music, the
listeners pupils may dilate, or they might experience a change
in heart rate, blood pressure, and skin conductivity (Blood et al.,
1999; Daly et al., 2015). Measurement of galvanic skin response
(GSR) has been shown to be a robust metric for analysis of
emotional responses to music (Shrift, 1954; Vanderark and Ely,
1993; Daly et al., 2015).

Thus, there is a potential crossover between mental state,
physiological reaction, and musical stimulation. Chambers
(Chambers et al., 2009) showed that states of mindfulness
have correlations in GSR (otherwise known as electrodermal
activity, or skin conductivity), heart rate variability, and the
ratio of alpha and beta waves in electroencephalographic
measurement. The electroencephalograph (EEG) is a technique
for metering electrical activity from the scalp used to infer
patterns of brain activity. Bondolfi (Bondolfi, 2013) and
Economides et al. (Economides et al., 2018) proposed that
proactive training and entrainment of mental states might

thus contribute to therapeutic treatment and physiological
improvement.

We aim to harness these findings to create a machine learning
based music-training system to encourage a change in affective
state as measured through biophysiological correlations. For
example, mood-based regulation (becoming less afraid or
anxious) might be a useful mental health target for the user.
Beyond mental health this type of system could have applications
in the creative industries, for example, in film, television, or video
games (Knox et al., 2008; Williams et al., 2015a), in which case,
the viewer or player might be subjected to targeted mood
disruption (i.e., rather than being calmed by the musical
stimulus, the listener might preferably be deliberately excited,
or even scared in the case of some types of gameplay).

In this paper we draw on previous experimental work
documented in (Williams et al., 2019a; Williams et al., 2019b),
and more widely, machine learning, a field of computer science
covering systems that learn “when they change their behavior in a
way that makes them perform better in the future” (Witten et al.,
2016). These systems learn from data without being specifically
programmed. Kim et al. (Kim et al., 2010) and Laurier and
Herrera (Laurier and Herrera, 2012) give a literature overview
of detecting emotion in music and focus on the music
representations. Laurier and Herrera also provide an analysis
of the machine learning algorithms used by systems in their
survey. Classification algorithms used in the literature include
C4.5, Gaussian mixture models, k-nearest neighbor, random
forest, support vector machines, (Kim et al., 2010; Laurier and
Herrera, 2012; Mostafavi et al., 2013). Regression techniques
include Gaussian mixture model regression, multiple linear
regression, partial least-squares regression and support vector
regression.

ML has been used to retrieve music by mood and ML analyses
found the personalized approach more consistent than a general
approach (Mostafavi et al., 2013). An example is supervised
learning. In supervised learning, the algorithm learns from a
set of labeled inputs. It then generates a model associating the
inputs with their respective labels or scores, and then classifies (or
predicts) the likely label for previously unseen examples using the
learned model. We use supervised learning to label newly
generated material with potential emotional descriptors in the
work documented in this paper.

Real-world testing of systems using bio-signal mappings in
music generation contexts has become an emerging field of
research, partly due to recent advances in portability,
wearability, and affordability of biosensors. For example,
Huang and Cai (Huang and Cai, 2017) generate simple music
for specific emotional states using Markov chains. The Markov
chains are used to generate music while the user wears a heart-
rate sensor to monitor their bio-physiological response to the
created music. The system was able to generate emotionally
responsive music in a limited trial considering basic emotional
descriptors. We have developed another such system, which
assumes lower skin conduction variability as a correlate for
positive affective state. It attempts to generate emotionally
congruent music as a training tool to promote positive
affective states in the context of mindfulness. In the future,
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this system could also work in reverse by using skin conductance
variability as a control signal to inform musical feature mapping
for non-linear music generation.

While the physical and mental health benefits of music use
have increasingly been reported upon (including
improvements in cardiovascular health (Szmedra and
Bacharach, 1998)), reduction of dementia in elderly
populations (Vink et al., 2003), stress reduction (Knight
and Rickard, 2001) and so on), the use of existing music to
target such outcomes can be problematic due to the influence
of familiarity, or repetition of stimulus materials (Kim, 2011;
Ladinig and Schellenberg, 2012). Thus a major focus of this
work is to evaluate a system for the automatic generation of
new musical materials with functional aims (improvement of
listener affective state on a case-by-case basis as determined
by self-report or biophysiological correlate). We therefore
aim to:

(1) Measure musical features according to a similarity model
from the human-labeled dataset and use these to inform
Markov-model generation of new music to be evaluated by a
supervised learning algorithm

(2) Evaluate the success of the supervised learning algorithm
using self-report and biophysiological measurement of GSR

We hypothesize that music generated by the automated
algorithm may be able to influence self-reported emotional

state and GSR, when compared to music which listeners may
already be familiar with from a corpus of popular film music.

MATERIALS AND METHODS

GSR is used as a marker of psychological arousal and as an
estimate of emotional state to be used as a control signal in the
training of the ML algorithm. This algorithm creates a non-linear
time series of musical features for sound synthesis “on-the-fly,”
using a perceptually informed musical feature similarity model.

We use the system described in (Williams et al., 2017) to create
functional music informed by biophysiological measurement
across two case studies, with target emotional states at
opposing ends of a Cartesian affective space (a dimensional
emotion space with points ranging from descriptors from
relaxation, to fear).

The system detects the user’s current emotional level and the
ML algorithm picks musical pieces to influence their future
emotional level to achieve their desired mood. This whole
process requires musical pieces that have an associated
emotional label (score) to allow the selection of appropriate
pieces. We use two tasks to achieve this, illustrated in
Figure 1. Firstly we analyze a corpus for musical features
using classification and regression. We use a multi-feature
music representation combining analysis of symbolic musical
feature data from a MIDI file, which represents the structure of

FIGURE 1 | Listeners rank musical excerpts to produce labeled excerpts (this process is shown in gray). These excerpts are analyzed for features to train a
supervised learning model for construction of new excerpts. New excerpts are evaluated by means of GSR and self-report feedback to revise the scores according to
sensor results and produce our adaptive system and music excerpts dataset. Shading indicates different stages of process.
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the melody, chords, rhythm and other musical properties
concerning timing, dynamics, and pitch, with Mel-Frequency
Cepstral Coefficients features (Logan, 2000) obtained from the
entire piece to represent the timbral quality of the
instrumentation. This dual representation is more flexible and
richer than either MIDI or signal-based audio content features
alone. We only use numerical data features to describe each piece
and perform feature selection to identify the most significant set
of features as described in (Hodge et al., 2016). Using this reduced
set of significant features, the ML model can predict the likely
emotional state score that a human listener would ascribe to
newly input music pieces by determining the similarity between
pieces using their respective sets of features.

We train the supervised learning algorithm to expand on a
human-labeled corpus, which was labeled by means of a survey of
53 participants using a Qualtrics on-line survey (www.qulatrics.
com). Each participant evaluated four musical excerpts, two calm
or positive (N1 and N2) and two anxious or negative excerpts (S1
and S2), in a bipolar ranking across six pairs choosing the positive
in each pair {N1vsS1, S2vsN2, S1vsN2, N1vsS2, S1vsS2 and
N1vsN2}. The survey presented an initial question to allow the
user to familiarize themselves with the format and then presented
the six questions. The Qualtrics questionnaire allowed us to
specify that each track played in full to each participant to
ensure that the participant adapted fully to the track. We
randomized the order of presentation of the questions (pairs
of tracks) to each of the participants to reduce contextual effects.
Participants were not required to answer every question in order
to complete the evaluation. The algorithmic composition system
uses hidden Markov models (HMM) to create new music to
provide sufficient quantities of labeled pieces for the system to
operate. We use a transformative algorithm based on a second
order Markov-model with a musical feature matrix. Newmaterial
is formed of permutations of the HMM with deliberate feature
constraints following the procedure described in (Williams et al.,
2015b;Williams et al., 2017). This allows discrete control over five
parameters in a 2-dimensional model.

Human experiments are only feasible on a small set of music
pieces as n pieces of music require n! comparisons and enough
human survey participants to provide enough responses for each
of the n! comparisons. Using human participants to generate a
sufficiently large database of labeled pieces for this work would be
very time consuming and complex. From our Qualtrics analyses
we were able to train our ML model using supervised learning to
map the musical sequences to scores where the sequences are
represented by features as described previously. Our generative
system can be used to create new musical sequences according to
the likelihood of a particular affective state occurring after the
current and preceding states measured in the listener and these
can be scored by the trained ML model.

We then analyze the listener’s GSR to select music which
exercises the most influence of the listener’s affective state. We
incorporate a feedback loop to adapt the corpus scores according
to the user’s affective response, selecting musically consistent
pieces and removing pieces that do not influence the user’s
emotional level (in essence a fitness function). We then
compare the listener’s GSR signal, the emotional tag they

describe after listening and the calmness level of the piece the
participant is listening to. To analyze GSR, we used the Shimmer3
wireless GSR + Unit1 which has been validated for use in
biomedical-oriented research applications. This device needs to
be calibrated on each use to establish a baseline skin conductance
signal, which varies due to many factors including skin dryness,
nervousness (due to unfamiliarity with the experimental
procedure) and ambient temperature. The captured reading
for each user under analysis is their skin conductance
response while undertaking the listening exercise, minus their
individual skin conductance response baseline. After listening to
each piece, the users completed a questionnaire describing the
emotion they felt while listening which we compared to the
GSR data.

RESULTS

Responses to the musical stimuli suggest that listeners found it
relatively easy to discriminate the affective states between stimuli,
which were rendered using different synthesized timbres.
Generally speaking, shorter durations and larger pitch ranges
were considered lower in positivity (for example, “more anxious”)
than longer durations with a more restricted pitch range,
regardless of the musical timbres. 58.1% of participants
thought S2 was more negative than S1 while 54.6% felt N1
was more negative than N2.

For S1, 94.5 and 93.2% of participants rated it more negatively
than N1 and N2 respectively. For S2, 88.1 and 89.1% of
participants rated it more negatively than N1 and N2
respectively. Yet, 58.1% of the participants rated S2 more
negatively than S1 despite S2 having created more positive
report than S1 when compared to the positive stimuli.
Similarly, for N1, 4.6 and 10.9% rated it more negatively than
S1 and S2, respectively, while for N2, 6.8 and 11.9% rated it more
negatively than S1 and S2, respectively. This presents a similar
contradiction as for the negative stimuli as N1 has lowest reported
positivity yet was rated more negatively than N2 by 54.6% of
participants.

From these comparisons, we were able to attain sufficient data
that we can calculate a ranked order (score) for the pieces from
these pairwise comparisons (Wauthier et al., 2013). In order for
the biofeedback based evaluation to be feasible, we then use the
supervised learning generated corpus to provide a large enough
quantity of stimuli.

Our analyses revealed that there is a direct correlation between
the reported negativity of a musical piece, the user’s GSR readings
and the emotions they describe feeling in a questionnaire survey
conducted after listening. Users display elevated GSR for negative
pieces which they also labeled congruently in the questionnaire
and lower GSR and appropriate labels for calmer pieces. We also
find an interaction between familiarity of existing material in the
corpus, and the perceived emotional response.

1http://www.shimmersensing.com/products/shimmer3-wireless-GSRsensor
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DISCUSSION

Our experiments highlighted that familiarity influences
individual affective responses both in self-report and in GSR.
For this reason, we have attempted to focus on generating novel
music to create functional music which responds to a listener’s
biophysiological state rather than invoked or evoking memories
(and removing some need to consider the influence of familiarity
might affect listener responses).

Overall, we saw an increased GSR in each music excerpt,
regardless of whether the excerpts were generated by the HMM
model or not. We conclude that GSR is a suitable detection tool to
evaluate emotional responses. DES-based self-report was used to
allow listeners to report on different categories of emotions (Lane
et al., 1990). However, the two measurements do not have
consistent results when considered in response to music that
listeners described themselves as being familiar with (samples of
famous film music). Nevertheless, the emotional responses to
generated music excerpt g1 showed consistent results with both
self-reporting and GSR. Thus we consider there may be an
interaction between music and familiarity (perceived
emotions). In self-reports, familiarity has insignificant effects.
Conversely, in GSR data, there are differences in the simple effect
of music between unfamiliar and familiar tracks. Familiar movie
soundtracks also have higher GSR amplitude than unfamiliar
ones but lower negative self-reports.

Hence, to induce calm states of mind reliably we believe
further work should focus on unfamiliar music composed
using artificial intelligence based approaches. Our main aim
for this work is to develop a music generator for music
therapy use that produces music which induces specific
emotions in the listener but the approach described here
might also be suitable in the design of a more generic music
generator capable of inducing specific emotions in the audience,
specifically when functional music with non-linear duration
would be useful (e.g., videogame sound-tracking and the
creative industries more broadly construed).

CONCLUSIONS AND FURTHER WORK

This work suggests that generative music technology has the
potential to produce infinite soundtracks in sympathy with a
listener’s bio-signals, and in a biofeedback loop. There are
promising applications for linking music with emotions,
especially in the creative industries art and therapy, and
particularly for relaxation. Enhancement of well-being using
music and the emotions music induces is becoming an emerging
topic for further work. We have applied a system for musical
feature analysis from MIDI features and Mel-Frequency
Cepstral Coefficients features (Logan, 2000) to train a
supervised learning algorithm with listener responses to a
corpus of training material. We use this algorithm to
influence the generation of a larger corpus by means of a
Hidden Markov Model algorithmic composition engine, and
then analyzed the complete corpus by testing listener GSR and
self-report in a DES evaluation. GSR is used as a marker of

psychological arousal and as an estimate of emotional state to be
used as a control signal in the training of the ML algorithm. This
algorithm creates a non-linear time series of musical features for
sound synthesis “on-the-fly”, using a perceptually informed
musical feature similarity model. These small case studies, with
target emotional states at opposing ends of a Cartesian affective
space (a dimensional emotion space with points ranging from
descriptors from positive descriptor states such as calmness, to
negative descriptors such as fear), show us an interaction between
familiarity and perceived emotional response. We believe further
work involves three major challenges.

(1) The extraction of meaningful control information from
signals emanating from the body.

(2) Design of generative and performative music technology in
order to respond to such information.

(3) Consideration of the ways in which such technology can be
best deployed depending on the intended end-use; for
example, in therapeutic contexts.

There is a tendency in human-computer interaction work for
music generation to prioritize the technical implementation by
focusing on increased speed or accuracy of a system, rather than
the specific needs of the application. In a music therapy context,
for example, one advantage of a functional music system is that it
might be used by a patient with no musical ability and thereby
potentially increases their own ability to express emotional states
and have access to the pleasure of performing music with other
people. Thus the use of biophysiological sensors is critical in the
development of suitable systems for audio generation in the
context of mindfulness or relaxation where improved affective
state as part of mental health is an intended outcome. These are
not trivial considerations in terms of application design, and
subsequent evaluation. Methodologies for evaluating the success
or failure of such systems remain a significant challenge for
further work.

DATA AVAILABILITY STATEMENT

The datasets analyzed in this article are not publicly available.
Requests to access the datasets should be directed to
d.a.h.williams@salford.ac.uk.

ETHICS STATEMENT

The experiment was conducted with ethical approval from the
University of York, Dept of Electronic Engineering review board.
The patients/participants provided their written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

DWand VH contributed conception and design of the study; DW
composed the musical sequence database; CW led the human

Frontiers in Artificial Intelligence | www.frontiersin.org November 2020 | Volume 3 | Article 4978645

Williams et al. AI Generation of Functional Music

112

mailto:d.a.h.williams@salford.ac.uk
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


analyses under guidance from DW and VH, VH developed the
Qualtrics survey, CW and VH performed the statistical analyses;
DWwrote the first draft of the article; VH and CWwrote sections
of the article. All authors contributed to article revision, read and
approved the submitted version.

ACKNOWLEDGMENTS

This work was supported by the Digital Creativity Labs (www.
digitalcreativity.ac.uk), jointly funded by EPSRC/AHRC/
InnovateUK under grant no EP/M023265/1.

REFERENCES

Aldridge, D. (2005). Music therapy and neurological rehabilitation: performing
health. London UK: Jessica Kingsley Publishers, 272.

Baker, F., and Bor, W. (2008). Can music preference indicate mental health status
in young people? Australas. Psychiatr. 16 (4), 284–288. doi:10.1080/
10398560701879589.

Blood, A. J., Zatorre, R. J., Bermudez, P., and Evans, A. C. (1999). Emotional
responses to pleasant and unpleasant music correlate with activity in paralimbic
brain regions. Nat. Neurosci. 2 (4), 382–387. doi:10.1038/7299.

Bondolfi, G. (2013). [Depression: the mindfulness method, a new approach to
relapse]. Rev. Med. Suisse. 9 (369), 32–39. doi:10.1176/appi.focus.20170039.

Calvo, R. A., Brown, I., and Steve, S. (2009). “Effect of experimental factors on
the recognition of affective mental states through physiological measures,”
in Australasian joint Conference on artificial intelligence (Berlin,
Heidelberg: Springer), 62–70.

Chambers, R., Gullone, E., and Allen, N. B. (2009). Mindful emotion regulation: an
integrative review.Clin. Psychol. Rev. 29 (6), 560–572. doi:10.1016/j.cpr.2009.06.005.

Daly, I., Malik, A., Weaver, J., Hwang, F., Nasuto, S. J., Williams, D., et al. (2015).
“Toward human-computer music interaction: evaluation of an affectively-
driven music generator via galvanic skin response measures,” in 7th
computer science and electronic engineering conference, September 24–25,
2015. Colchester, UK: IEEE, 87–92. doi:10.1109/CEEC.2015.7332705.

Economides, M., Martman, J., Bell, M. J., and Sanderson, B. (2018). Improvements
in stress, affect, and irritability following brief use of a mindfulness-based
smartphone app: a randomized controlled trial. Mindfulness 9 (5), 1584–1593.
doi:10.1007/s12671-018-0905-4.

Hodge, V. J., O’Keefe, S., and Austin, J. (2016). Hadoop neural network for parallel
and distributed feature selection. Neural Network. 78, 24–35. doi:10.1016/j.
neunet.2015.08.011.

Huang, C-F., and Cai, Y. (2017). “Automated music composition using heart rate
emotion data,” in International conference on intelligent information hiding
and multimedia signal processing (Cham, Switzerland: Springer), 115–120.

Kim, J. (2011). Affective states, familiarity and music selection: power of
familiarity. Int. J. Art Tech. 4 (1), 74–89. doi:10.1504/ijart.2011.037771.

Kim, Y. E., Schmidt, E. M., Migneco, R., Morton, B. G., Richardson, P., et al. (2010).
Music emotion recognition: a state of the art review. Int. J. Arts Technol. 4, 74–89.

Knight, W. E. J., and Rickard, N. S. (2001). Relaxing music prevents stress-
induced increases in subjective anxiety, systolic blood pressure, and heart
rate in healthy males and females. J. Music Ther. 38 (4), 254–272. doi:10.
1093/jmt/38.4.254.

Knox, D., Cassidy, G., Scott, B., and Macdonald, R. A. R. (2008). “Music
emotion classification by audio signal analysis: analysis of self-selected
music during game play,” in Proceedings of the 10th international
conference on music perception and cognition, Sapporo, Japan, August
25–29, 2008, 581–587.

Ladinig, O., and Schellenberg, E. G. (2012). Liking unfamiliar music: effects of felt
emotion and individual differences. Psychol. Aesthet. Creat. Arts. 6 (2), 146–154.
doi:10.1037/a0024671.

Lane, R. D., Quinlan, D. M., Schwartz, G. E., Walker, P. A., and Zeitlin, S. B.
(1990). The levels of emotional awareness scale: a cognitive-developmental
measure of emotion. J. Pers. Assess. 55 (1–2), 124–134. doi:10.1207/
s15327752jpa5501&2_12.

Laurier, C., and Herrera, P. (2012). “Automatic detection of emotion in
music: interaction with emotionally sensitive machines.” in Machine
learning: concepts, methdologies, tools and applications Jyväskylä,
Finland, August 12-16, 2009 (IGI Global), 1330–1354.

Logan, B. (2000). Mel frequency cepstral coefficients for music modeling. ISMIR,
270:1–11.

Mostafavi, A. C., Ras, Z. W., and Wieczorkowska, A. (2013). “Developing
personalized classifiers for retrieving music by mood,” in Proc. Int.
workshop on new frontiers in mining complex patterns, Prague, Czech
Republic, September 27, 2013 (Cham, Switzerland: Springer International
Publishing).

Russell, J. A. (1980). A circumplex model of affect. J. Pers. Soc. Psychol. 39 (6),
1161–1178. doi:10.1037/h0077714.

Shrift, D. C. (1954). The galvanic skin response to two contrasting types of music.
Lawrence, KS: University of Kansas,

Szmedra, L., and Bacharach, D. (1998). Effect of music on perceived exertion,
plasma lactate, norepinephrine and cardiovascular hemodynamics during
treadmill running. Int. J. Sports Med. 19 (1), 32–37. doi:10.1055/s-2007-971876.

Vanderark, S. D., and Ely, D. (1993). Cortisol, biochemical, and galvanic skin responses
to music stimuli of different preference values by college students in biology and
music. Percept. Mot. Skills. 77 (1), 227–234. doi:10.2466/pms.1993.77.1.227.

Vink, A. C., Bruinsma, M. S., and Scholten, R. J. P. M. (2003). Music therapy for
people with dementia. Cochrane Database Syst. Rev. 4, doi:10.1002/14651858.
CD003477

Wauthier, F., Jordan, M., and Jojic, N. (2013). “Efficient ranking from
pairwise comparisons,” in International conference on machine
learning (Thousand Oaks, CA: SAGE), 109–117.

Williams, D., Kirke, A., Miranda, E. R., Roesch, E., Daly, I., and Nasuto, S. (2014).
Investigating affect in algorithmic composition systems. Psychol. Music. 43 (6),
831–854. doi:10.1177/0305735614543282.

Williams, D., Kirke, A., Eaton, J., Miranda, E., Daly, I., Hallowell, J., et al. (2015a).
“Dynamic game soundtrack generation in response to a continuously varying
emotional trajectory.” in Audio engineering society conference: 56th
international conference: Audio for games, February 11–15, 2015. New
York, NY: Audio Engineering Society.

Williams, D., Kirke, A., Miranda, E., Daly, I., Hallowell, J., Weaver, J., et al.
(2015b). Investigating perceived emotional correlates of rhythmic density in
algorithmic music composition. Trans. Appl. Percept. 12 (3), 8. doi:10.1145/
2749466.

Williams, D., Kirke, A., Miranda, E., Daly, I., Hwang, F., Weaver, J., et al. (2017).
Affective calibration of musical feature sets in an emotionally intelligent music
composition system. Trans. Appl. Percept. 14 (3), 1–13. doi:10.1145/3059005.

Williams, D., Hodge, V., Gega, L., Murphy, D., Cowling, P., and Anders, D.
(2019a). “AI and automatic music generation for mindfulness.” in Audio
engineering society conference: 2019 AES international conference on
immersive and interactive audio, York, UK, March 27-29, 2019 (New York,
NY: AES). Available at: http://www.aes.org/e-lib/browse.cfm?elib�20439.

Williams, D., Wu, C-Y., Hodge, V., Murphy, D., and Cowling, P. (2019b). A
psychometric evaluation of emotional responses to horror music. in Audio
engineering society convention 146, Dublin, Ireland, March 21-23, 2019
(New York, NY: AES). Available at: http://www.aes.org/e-lib/browse.cfm?
elib�20270.

Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016). Data mining: practical
machine learning tools and techniques. Burlington, MA: Morgan Kaufmann.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Williams, Hodge and Wu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org November 2020 | Volume 3 | Article 4978646

Williams et al. AI Generation of Functional Music

113

http://www.digitalcreativity.ac.uk
http://www.digitalcreativity.ac.uk
https://doi.org/10.1080/10398560701879589
https://doi.org/10.1080/10398560701879589
https://doi.org/10.1038/7299
https://doi.org/10.1176/appi.focus.20170039
https://doi.org/10.1016/j.cpr.2009.06.005
https://doi.org/10.1109/CEEC.2015.7332705
https://doi.org/10.1007/s12671-018-0905-4
https://doi.org/10.1016/j.neunet.2015.08.011
https://doi.org/10.1016/j.neunet.2015.08.011
https://doi.org/10.1504/ijart.2011.037771
https://doi.org/10.1093/jmt/38.4.254
https://doi.org/10.1093/jmt/38.4.254
https://doi.org/10.1037/a0024671
https://doi.org/10.1207/s15327752jpa5501&2_12
https://doi.org/10.1207/s15327752jpa5501&2_12
https://doi.org/10.1037/h0077714
https://doi.org/10.1055/s-2007-971876
https://doi.org/10.2466/pms.1993.77.1.227
https://doi.org/10.1002/14651858.CD003477
https://doi.org/10.1002/14651858.CD003477
https://doi.org/10.1177/0305735614543282
https://doi.org/10.1145/2749466
https://doi.org/10.1145/2749466
https://doi.org/10.1145/3059005
http://www.aes.org/e-lib/browse.cfm?elib=20439
http://www.aes.org/e-lib/browse.cfm?elib=20439
http://www.aes.org/e-lib/browse.cfm?elib=20270
http://www.aes.org/e-lib/browse.cfm?elib=20270
http://www.aes.org/e-lib/browse.cfm?elib=20270
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Evolving Musical Sight Reading
Exercises Using Expert Models
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Sight reading skills are widely considered to be crucial for all musicians. However, given
that sight reading involves playing sheet music without having seen it before, once an
exercise has been completed by a student it can no longer be used as a sight reading
exercise for them. In this paper we present a novel evolutionary algorithm for generating
musical sight reading exercises in the Western art music tradition. Using models based on
expert examples, the algorithm generates material suitable for practice which is both
technically appropriate and aesthetically pleasing with respect to an instrument and
difficulty level. This overcomes the resource constraint in using traditional practice
exercises, which are exhausted quickly by students and teachers due to their limited
quantity.

Keywords: expert models, musical sight reading, melody representation, music education, evolutionary algorithms

1 INTRODUCTION

Sight reading is widely believed to be a basic skill every musician should obtain (Spillman, 1990;
Crozier, 2000; Lehmann and McArthur, 2002; McPherson and Gabrielsson, 2002; Galyen, 2005;
Kopiez and In Lee, 2008), and is required at most levels of formal musical achievement in many
countries (Ji, 2017; Australian Music Examinations Board, 2018a; The Associated Board of the Royal
Schools of Music, 2018). It enables musicians to learn new music quickly, to rapidly expose
themselves to a variety of repertoire and musical styles, and to become independent musical
learners (Gregory, 1972). For students specifically, good sight reading skills allow them to dedicate
more lesson time to musical interpretation rather than learning notes. For music teachers, sight
reading is essential for demonstrating examples to their students.

As with most skills, practice is key to improving musical sight reading ability. This is shown by
Kopiez and In Lee (2008), who found that there is a positive correlation between the time a person
has spent practicing sight reading and their level of sight reading skill. As sight reading is the ability to
perform a piece or phrase of music without having seen it before, as soon as a single exercise has been
completed once by an individual it is no longer a sight reading exercise for them (Schulz, 2016).
Currently, practice material for students preparing for formal music exams in the Western tradition
is written by experts and disseminated to students through online stores and physical books. This is
an ineffective approach. Access to expertize is limited, and practice material is consumedmuch faster
than it is created. This means that students often exhaust the available resources before achieving
competency. Given that both the quantity and quality of practice is key to gaining competence in
sight reading (Kornicke, 1992; Banton, 1995; Galyen, 2005; Kopiez and In Lee, 2008; Tsangari, 2010),
this resource constraint is a large barrier for musicians attempting to develop the skill.

To overcome this resource constraint, in this paper we present a novel evolutionary algorithm
(EA) for generating monophonic sight reading exercises in theWestern art music tradition. The goal
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of the algorithm is to generate exercises which are both
technically appropriate and aesthetically pleasing. It does so by
using expert models of professionally-written sight reading
exercises as templates for emulation.

There are four primary reasons for selecting EAs in this work.
First, Biles (2007) notes that evolutionary approaches have been
applied to melody generation problems more often than any
other technique, and with more success. Secondly, the solution
space when generating a melody is large, and evolutionary
algorithms are well suited to navigating that space (Johnson
et al., 2004). Thirdly, evolutionary algorithms allow for specific

goals to be set for a solution while still providing space for
random elements and emergent behaviors to appear. This
means that the solutions found by the algorithm are likely to
maintain a higher level of variability compared to other methods,
even when using identical configurations. Lastly, preliminary
experiments using probability-bound random sampling
indicated that simpler approaches were not able to
satisfactorily handle the complexities of the problem.

Figure 1 shows the general process followed by EAs. An EA
begins with a randomly generated set of candidate solutions,
referred to as a ‘population’, then follows an iterative process until

FIGURE 1 | The general process followed by an evolutionary algorithm. Recreated from Koza (2018). Note that the number of parent candidates selected and the
number of children generated depends on the operator. This example shows two parents generating two offspring.
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some termination criteria is met. This iterative process involves
generating a series of new candidate populations, each of which is
based on the previous. The aim is that over time the populations
will contain incrementally superior solutions to those in previous
populations.

First, all candidates are measured for their suitability as a
solution and assigned a corresponding numerical value
(i.e., fitness value). The top n best or “elite” candidates (where
n can be 0) are then directly copied into the next population
without any alterations. The remainder of the new population is
formed through the application of the genetic operators crossover
andmutation. Crossover is a reproduction method used to create
candidates by combining elements from two ‘parents’ from the
previous population. The mutation operator applies small
random changes to a candidate in order to introduce diversity
into the population.

Once the new population has reached its target size, the
termination criteria are checked. If they have been met, the
candidate with the highest fitness over all iterations is returned
as the solution. If not, the process is repeated.

The algorithm requires a number of aspects be defined:

• Population size The number of candidate solutions in a
population. If this value is too small the algorithm may
converge on a suboptimal solution due to lack of diversity.
However, if this value is too large the algorithmmay take an
excessive amount of time to finish.

• Termination criteriaWhen the algorithm should stop. It is
typically a target fitness value, a specific number of
iterations, a number of iterations without improvement,
or a combination of the three. For example, target a fitness of
0.95, but if it hasn’t been reached within 1,000 iterations
terminate the algorithm anyway.

• Fitness function A numerical measure for quantifying the
suitability of a candidate solution. This dictates the
likelihood that a candidate will be selected to be part of
the next population.

• Number of elites The number of top candidates from the
previous population that will be directly copied to the new
population without any adjustments.

• Genetic operators How the crossover and mutation
operators will be implemented.

• Selection method The method for selecting candidates for
the crossover operator. Typically a function of each
candidate’s fitness value.

• Probability of mutation How likely it is that candidates
resulting from the crossover operator will be mutated.

• Candidate representation How each candidate is encoded.

Section 2 will describe the method used in this work. This
includes the curation of a suitable set of expert models, the
technique used to represent candidate solutions, and the
experimental design. The results of this experimental design
will be detailed in Section 3. Finally, Section 4 will discuss the
implications of these results and potential directions for
future work.

2 METHOD

2.1 Building Expert Models
Four books of sight reading exercises were selected, representative
of the curricula of the Australian Music Examinations Board
(AMEB), Associated Board of the Royal Schools of Music
(ABRSM), and Trinity College. Grade 1 and 2 exercises were
extracted from each book, as summarized in Table 1. A expert
model was derived from each exercise, capturing the following
characteristics:

• Key and time signatures
• length,
• range,
• number of ties and rests
• ratio of notes to rests
• proportions of note lengths, rest lengths, and intervals, and
• melody shape (defined in Section 2.3.2).

These characteristics can be viewed as a whole to gain an
appreciation of a “typical” exercise at the Grade 1 and 2 difficulty
levels. They can also be considered individually to see a distilled
view of the key characteristics of each individual exercise. In
practice, this data will primarily be used at the level of an
individual exercise, where the set of characteristics relating to
one exercise is used to form a single expert model. This is
discussed further in Section 2.4.1.

2.2 Exercise Representation
Many published works in the field of melody generation are not
clear on how melodies are represented. However, two primary
themes emerge: tree-based and sequential structures (Biles, 2007).
This is true for works which both do and do not utilize
evolutionary algorithms.

Sequential structures, such as that used by Acevedo (2004),
represent melodies as ordered lists of musical elements. These
elements are typically individual notes and rests, with each
having a length and (where appropriate) a pitch. Pitches can be
represented absolutely (e.g., C4), or as an offset from some epoch.
Length can also be represented absolutely (e.g., crotchet), or as a start
and end time offset from the start of the melody. In some cases,
elements may also contain ornamental information such as dynamic
or articulation markings. Melodies represented this way are read by
examining the sequence of musical elements in order.

TABLE 1 | Summary of expert-written example exercises extracted from
published books.

Book Grade 1 Grade 2

Improve your sight-reading! (Harris, 1994) 25 16
Flute sight-reading (Selleck, 2012) 12 12
Sound at sight - sight reading pieces for flute; book 1 (Rae,
2007)

20 20

Flute specimen sight reading 15 16
The Associated Board of the Royal Schools of Music (1995)
Total 72 64
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Regardless of the specific encoding scheme, sequential
structures are not an ideal choice for an evolutionary
algorithm. This is particularly true in this work, where the
desired result is a melody of an explicit, fixed length. The
practical reason for this lies in the crossover operator. This
operator swaps sections of two parents to create two new
candidates. When using a sequential structure, it is easy for
the newly created candidates to have different lengths, simply
by choosing asymmetrical crossover points. It is also easy for
crossover to create candidates whose note and rest sequences do
not fit neatly into entire bar lengths. For example, if two 4-bar
parents were selected, while asymmetrical crossover could result
in two children with 4-bar lengths it is much more likely to create
two children with different lengths and partially complete bars
(e.g., 3.4, and 4.6 bars). Symmetrical crossover would eliminate
this problem, but would severely reduce the variety of new
candidates that could be created, as the selected crossover
points would always need to be symmetrical.

While not without fault, tree-based structures avoid these
problems entirely. As such, they are used in this work.

2.2.1 Tree-Based Structures in the Literature
In the literature, tree-based solutions for melody representation
typically follow a binary structure where each node represents a
musical element with half the duration of its parent. This means
that the structure of a melody tree adheres to the duration
hierarchy shown in Figure 2, where the length of a note is
entirely dependent on its depth within the tree. The root of
the tree represents the entire melody, with nodes in the first layer
representing individual bars. From this point onwards each
additional layer of depth splits durations in two. For example,
in a 4

4 melody nodes with a depth of 1 would represent

semibreves, nodes with a depth of 2 would represent minims,
nodes with a depth of 3 would represent crotchets, and so on.
Within this structure only leaf nodes represent concrete musical
elements that would be directly shown on a score. Internal nodes,
at a minimum, serve to maintain the duration hierarchy.
However, some implementations also assign some or all
internal nodes special meaning in order to support additional
functionality. When interpreting a melody tree, leaf nodes on the
left are typically played before leaf nodes on the right.

Table 2 shows a comparison of the characteristics of the
melody trees in the literature. All of the trees are able to
represent monophonic melodies and dotted notes.
Additionally, all three representations allow for subtrees from
two different melodies to be swapped at any point, without
breaking the tree structure.

The trees proposed by Rizo et al. (2003) and de León et al.
(2016) both support simple time signatures–that is, time
signatures such as 4

4 and 2
4 where measures can recursively be

divided into equal halves without the need for dotted notes.
However, neither of these trees support compound time
signatures such as 6

8 and 9
8, where measures do not neatly fit

into a binary structure. They also do not support simple time
signatures such as 3

4 which do not neatly divide into two.
Dahlstedt’s tree is noted as supporting neither simple nor

compound time. This is because the tree does not structure its
nodes according to a duration hierarchy. Instead, it assigns the
duration of nodes independently of one another. A time signature
is applied to the melody when translating it to a score rather than
within the tree itself, and the melody has no guarantee of fitting
within the chosen time signature. This means that Dahlstedt’s
tree, unlike the trees of Rizo et al. (2003) and de León et al. (2016),
also does not maintain a musical grammar. That is, it can not

FIGURE 2 | The duration hierarchy typically used by tree structures which are designed to represent melodies in common time. The bottom row of semiquavers has
been truncated for space, and the right-hand side of the tree is not shown to completion as it is identical to the left.
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guarantee that the represented melody will fit neatly into any
particular time signature.

None of the melody tree structures discussed explicitly support
irregular divisions such as triplets or tuplets. This severely limits
their representational capacities. Rizo’s tree has an additional
problem, in that it does not offer a mechanism for representing
tied notes.

For representing sight reading exercises a melody tree would,
at a minimum, need to support:

• monophonic melodies
• dotted notes
• tied notes
• triplets
• simple time signatures
• compound time signatures,
• enforceable musical grammar, and
• swapping of subtrees at any point.

Additional features that would be useful for representing
melodies include support for

• polyphonic melodies
• multiple time signatures in one melody
• ornamental and stylistic markings (e.g., mordents,

trills), and
• additional irregular divisions (e.g., duplets, any variation of

the “x in the time of y” pattern).

These additional features are not necessary for the task of
generating monophonic sight reading melodies of low level
difficulties, and thus are left as future work.

None of the trees in the surveyed literature support the
necessary combination of minimally viable features. As such, a
novel melody tree was created that would meet this criteria. This
novel tree is described in Section 2.2.2.

2.2.2 Designing a Novel Melody Tree
Several of the minimally viable features for a melody tree are
already supported in existing trees. This is capitalized upon in this
work by taking elements from existing trees where possible then
adding the additional, missing functionality necessary for
representing musical sight reading exercises.

Of the trees in the literature, that proposed by Rizo et al. (2003)
offers the most desired features, thus will act as a starting point for
a novel tree structure. The features covered by this tree include
support for:

• monophonic melodies
• dotted notes
• tied notes
• simple time signatures,
• enforceable musical grammar, and
• swapping subtrees at any point.

This leaves two key features absent:

• upport for compound time signatures
• Support for triplets

The implementation of these two features is discussed below.

2.2.2.1 Supporting Compound Time Signatures
The ability to swap subtrees at any point while enforcing
musical grammar is entirely due to a tree following a
duration hierarchy as described in Section 2.2.1.
Unfortunately, this encourages a binary structure, which is
not ideal for representing compound time signatures or other
time signatures which do not neatly divide into two. For
example, to represent a melody in 3

4 time (a simple time
signature that does not neatly divide into two), splitting bars
equally would result in the first layer of nodes representing
dotted crotchets. Continuing this pattern, the following layer
would contain nodes representing half that value again–a dotted
quaver. The next layer would represent dotted semiquavers,
then dotted demisemiquavers, and so on. This pattern results in
a structure where node lengths are unnecessarily complex, and
individual nodes do not represent lengths commonly found in
melodies (i.e., non-dotted lengths).

An alternative strategy might be to split any compound-
lengthed node into two non-equal but more typical lengths.
Returning to the example of a melody in 3

4 time, this would
result in the first layer being a combination of a minim and
crotchet node. The next layer would then comprise two crotchet
nodes (from splitting the minim) and two quaver nodes (from
splitting the crotchet).

TABLE 2 | A comparison of the features of the melody trees proposed in the literature.

Feature Rizo et al. (2003) Dahlstedt (2007) de León et al. (2016)

Monophony ✓ ✓ ✓
Polyphony 7 ✓ 7

Dotted notes ✓ ✓ ✓
Tied notes 7 ✓ ✓
Irregular divisions 7 7 7

Simple time ✓ 7 ✓
Compound time 7 7 7

Maintain musical grammar ✓ 7 ✓
Crossover anywhere ✓ ✓ ✓
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This approach presents two problems. Firstly, it breaks the
duration hierarchy which requires that all nodes at the same
depth have the same length. This complicates the continuation
operator as no assumptions can be made regarding a node’s
length with respect to its depth. It also adds more complexity
when swapping subtrees in ensuring nodes are reassigned the
correct length given their new depths.

Secondly, it introduces a decision regarding which node
should be left-most in the tree–the longer or shorter of the
split? For example, when splitting a 3

4 bar should the minim or
crotchet node be left-most? This choice informs how elegantly a
melody can be represented and how often continuation operators
need to be used to form longer note lengths.

The solution to these problems is for bars of a time signature n
m

be split into n nodes ofm length, wherem indicates the number of
that length note required to equal the length of a semibreve. So,
m � 1 indicates a semibreve, m � 2 indicates a minim, m � 4
indicates a crotchet, and so on.

This strategy means that the second layer of a melody tree is
non-binary, but the remainder is. Unfortunately, this gives rise to
one problem. In order to successfully implement the crossover
operator, it must be possible to swap any subtree from one
melody with any subtree from another. This is an issue when
the second layer of the tree is non-binary, as the parent node of a
non-binary layer (i.e., the node representing a single bar) may be
swapped with the parent node of a binary layer.

The solution to this problem is to remove the layer of ‘bar’
nodes entirely, meaning that the tree starts with a layer containing
n* number_of_bar nodes of m length. This means that the first
layer of the tree may contain many nodes, but every one of those
nodes is binary and has children with exactly half of their length.
Additionally, because the value of ‘m’ is taken from the time
signature, these nodes are guaranteed to be of a length which can
be recursively split into two equal, non-compound halves. Notes
longer than m can still be represented through the use of one or
several linked continuation operators.

2.2.2.2 Supporting Triplets.
Triplets are implemented with an internal node operator

similar to the split and continuation operators used by de
León et al. (2016). As shown in Figure 3, the triplet operator
is placed on the first direct parent of the triplet leaf nodes. If all
leaves within the triplet are of the same length, the triplet operator
is placed one layer above. If the leaves within the triplet are of
different lengths, the triplet operator is placed on the first
common parent.

The triplet operator does not break the duration hierarchy, nor
does it restrict the swapping of subtrees. If the triplet operator
itself is selected to be swapped, the entire triplet is moved. If a
subtree within the triplet is selected to swap, notes within that
subtree will–assuming they are swapped to a non-triplet parent
node–be interpreted as having a standard, non-triplet length.
Conversely, the subtree swapped into its place will then be
interpreted as part of the triplet.

2.3 Evolutionary Operators
2.3.1 Parent Selection
In this work, Pareto selection is used. Instead of considering a
candidate’s overall fitness value, Pareto selection examines fitness
in terms of individual characteristics. This is a relative probability
measure which is useful for situations where a single fitness value
does not make sense (Horn et al., 1994; Fonseca and Fleming,
1995).

For example, consider the task of evolving a box with an
appropriate width, depth, height, strength, and weight. Here, an
overall or combined fitness value will not work, as perfection in
one aspect of the box does not offset weakness in another aspect.
That is, better fitness in height does not compensate for poor
fitness in depth. Similarly, good fitness in width does not make up
for poor fitness in strength. Pareto selection deals with this issue
by considering the individual aspects of fitness. The probability
that a candidate will be selected is based on the number of other
candidates in the same population that it is superior to in every
aspect. Using the box example, a candidate is only better than
another candidate if it has a superior width, depth, height,
strength, and weight. Once this value is known, Eq. 1 can be
used to determine the selection probability for a candidate.

probability of selectioni � (1 +Wi)
∑ n

j�1Wj

Wi : the number of candidates the ith candidate in a population

is superior to in every aspect

n : the total number of candidates in the population

(1)

The task of evolving musical sight reading exercises benefits from
the use of Pareto selection. An exercise needs to meet multiple
criteria, both technical and esthetic. For example, an exercise at
the Grade 1 level might need to use only crotchet lengths and have
only one or two rests. Additionally, the melody might also need to
meet esthetic criteria such as beginning and ending on the tonic
note. As with the box problem, an overall fitness value does not
work for these requirements. A good selection of note lengths

FIGURE 3 | A melody tree containing a triplet and a combine operator.
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does not make up for a lack of esthetic qualities. Similarly, a melody
sounding good does not make up for an absence of appropriate
technical characteristics. As such, Pareto selection is an ideal solution.

2.3.2 Fitness Measures
The fitness measures are designed to guide the evolutionary
process toward creating a melody with a specific set of
characteristics. For this work six measures are used, each of
which has an associated target value. A melody is assigned a
score in the range [0..1] for each measure. This score is calculated
using Eq. 2 as the difference between the candidate’s actual and
target value for a fitness measure.

fitnessfi � 1.0 − abs(tf − afi)
tf : the target value for fitness measure f
afi : the actual value for fitness measure f for candidate i

(2)

To illustrate this idea, return to the example of evolving a box.
A target height for the box may be set as 10 cm. If a candidate
box had a height of 10 cm it would receive a score of 1.0 for
the ‘height’measure. However, if the box had a height of 5 cm
it would receive a score of 0.5. Similarly, if the box overshot
the target with a height of 15 cm it would also receive a score
of 0.5.

Each of the six fitness measures used in this work are based
on counting a specific element within the melody. These
counts are described as being either “time” or “count”
based. A count-based measure takes the count as a raw
value. For example, 6 notes in the melody are crotchets.
Time-based measures take the raw count value and
interpret it as a proportion of melody time. For example, in
a 4 bar melody in 4

4 time a count of 8 crotchets would be
interpreted as 50% of the melody being crotchets, because the
melody could potentially fit a total of 16 crotchets.

The six fitness measures used in this work are:

• Target note lengths (time-based) The proportion of
melody time to be taken by each note length. For
example, 50% of the melody time should be filled by
crotchets; 25% of the melody time should be filled by
quavers.

• Target rest lengths (time-based) The proportion of melody
time to be taken by each rest length. For example, 25% of the
melody time should be filled by crotchet rests.

• Allowable lengths (count-based) The acceptable lengths
for notes and rests in the melody. For example, only use
notes and rests with crotchet or quaver lengths.

• Target intervals (count-based) The proportion of each size
of interval to include. Size is represented in scale degrees.
For example, 50% of intervals should be 1 scale degree in
size; 50% of intervals should be 2 scale degrees in size.

• Allowable intervals (count-based) The acceptable interval
sizes to use in the melody. Size is represented in scale
degrees. For example, only use intervals with sizes of 1 or
2 scale degrees.

• Melody shape (count-based) The number of segments in
the melody containing three contiguous notes where the

pitches move consistently up or down. For example, 80% of
the melody segments should be shapely.

The target note proportions and target rest proportions
should sum to represent exactly 100% of the melody time.
Similarly, the target interval proportions should sum to
represent 100% of the intervals. The allowable lengths and
allowable intervals are derived automatically from the target
note, rest, and interval proportions. For example, if
target proportions are set for crotchet and quaver notes,
and a target proportion is set for crotchet rests, the
allowable lengths are crotchets and quavers. Similarly, if
target proportions are set for intervals of size 1, 2, and 3,
the allowable intervals are 1, 2, and 3.

The purpose of combining “target” and “allowable”measures
rather than just using one or the other is to guide the algorithm
toward rewarding the use of an “allowable” length more than an
undesirable length, even if doing so breaks the target
proportions. The “target” measures represent the ideal
proportions of note lengths and intervals. However, if the
algorithm is struggling to reach the ideal targets it is better
to sacrifice melodies score with respect to the targets, in the
interest of still only using “allowable” note lengths and intervals.
This is because introducing “unallowable” note lengths or
intervals is a much bigger problem for the overall fitness-for-
purpose of an exercise than having slightly incorrect
proportions. That is, if only crotchets and quavers are
“allowable” and the algorithm can not form an exercise with
the desired proportions of these note lengths, it is still better for
the algorithm to use extra quavers and potentially lower the
score for target note proportions than to introduce some other
note length that is considered inappropriate.

The “melody shape”measure is illustrated further in Figure 4.
In this example, the melody contains a total of ten segments. Note
that segments containing rests or fewer than three notes are not
counted. Of these ten segments, only four contain notes which
move consistently up or down in pitch. Therefore, in this case the
melody shape is 4

10, or 0.4.
Consider the example target values for a melody set out in

Table 3. These targets indicate that the evolutionary algorithm
should attempt to create a melody made entirely of crotchets,
most of which are notes (as opposed to rests). They specify a large
target proportion for intervals with a size of 1, but also requests
that some intervals of 0 and 2 scale degrees be used. The melody
shape target is set to 0.3, meaning that 30% of the segments in the
melody should have notes which move consistently up or down
in pitch.

Now consider the melody shown in Figure 5. To calculate the
fitness value for each measure we must calculate the actual
proportions and numbers of notes, rests, and intervals, and
compare them to the targets. For measures such as “target
note/rest proportions”, “target interval proportions”, and
“melody shape”, the fitness value is calculated according to Eq.
2. The remaining fitness measures are calculated as raw counts, as
their target is for 100% of the melody to fit within the assigned
parameters. For example, the fitness for “allowable intervals” is
calculated as the number of intervals of an allowable size divided
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by the total number of intervals in themelody.Table 3 shows how
each fitness measure would be calculated for this melody, given an
arbitrarily selected set of targets.

2.3.3 Crossover
The implementation of crossover is reasonably straightforward.
First, two parent candidates are selected using Pareto selection.
Then, a node from the melody tree of each candidate is randomly
picked. The subtrees starting from these nodes are taken from
each parent and their positions are swapped.

Once the subtrees are swapped, the durations of their nodes
are altered with respect to their overall depth within their new
tree. For example, if a node is placed one layer higher in its new
tree than in its old tree, its duration is doubled. Similarly, a node
placed one layer lower would have its duration halved. No
additional alterations are made.

This simple implementation is possible because the melody
tree representation ensures that no matter which subtrees are
swapped the resulting melody trees will still be grammatically
correct. Additionally, the length of the melodies remains fixed

FIGURE 4 | Calculating the shape of a melody. Tick marks indicate the segments which are counted as having shape, as the pitches within the segment move
consistently up or down.

TABLE 3 | Calculating the fitness of the melody in Figure 5 against an arbitrarily selected set of targets. The final fitness value for each measure is in bold.

Fitness measure Target Actual Fitness

Target note proportions 0.75 crotchets Crotchets 1 − abs(0.75 − 13
16) � 0.94

Target rest proportions 0.25 crotchets 2
16 crotchets 1 − abs(0.25 − 2

16) � 0.88

Allowable lengths Crotchets 15
17 allowable Lengths 15

17 ≈ 0.88

Target interval 0.3 size 0 0
13 intervals Of size 0 1 − abs(0.3 − 0) � 0.7

Proportions 0.5 size 1 9
13 intervals Of size 1 1 − abs(0.5 − 9

13) ≈ 0.81

0.2 size 2 3
13 intervals Of size 2 1 − abs(0.2 − 3

13) ≈ 0.97

(0.7+0.81+0.97)
3 ≈ 0.83

Allowable intervals 0, 1, and 2 12
13 allowable Intervals 12

13 ≈ 0.92

Melody shape 0.3 6
11 shapely Segments 1 − abs(0.3 − 6

11) ≈ 0.75

FIGURE 5 | An example melody.
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as the node durations are adjusted according to their new
depths.

2.3.4 Mutation
As the candidates in this work are melodies, the potential
mutations are musical in nature and specific to the domain.
One alteration type is randomly selected from the following:

• Change note type Randomly select a leaf node. If the node
represents a note, change it to a rest. If the node represents a
rest, change it to a note with a random pitch.

• Split node Randomly select a leaf node. Change that node
into an internal node with two randomly initialized
children.

• Reduce node Randomly select a leaf node. Remove that
node and its siblings and randomly reinitialize their parent.

• Reinitialize note Randomly select a node representing a
note (not a rest). Reinitialize the node with a random pitch.

• Add triplet Randomly select any node within the tree. If the
node is a leaf, change it to an internal node, add the triplet
operator, and randomly initialize and add three children to
it. If the node already has children, add the triplet operator
and randomly initialize and add a third child to it.

• Remove triplet Randomly select any node within the tree
that has a triplet operator attached. Remove the triplet
operator then randomly select one of the node’s children
and remove the subtree from that point.

• Add continuation Randomly select any leaf node within the
tree that does not already have a continuation operator
attached. Add a continuation operator to the node. Then, if
the next leaf node in the tree is not the same type, change it
so that it is. For example, if the randomly selected node is a
note and the next leaf node is a rest, change the rest to a note
with the same pitch as the randomly selected node.

• Remove continuation Randomly select any node that has a
continuation operator attached. Remove the operator.

Any change that is not possible is not considered when
randomly selecting an alteration. For example, if a melody
does not contain any triplets then “Remove triplet” will not be
selected. The algorithm configuration also allows for individual
mutation operators to be disabled regardless of whether they are
possible or not for any given candidate. Additionally, the random
elements of mutation (e.g., giving a note a new randomly selected
pitch) are constrained with respect to a target range and key
signature as dictated by an expert model.

2.4 Experimental Design
2.4.1 Overview
The design of the algorithm allows for exercises to be generated
for any monophonic instrument. However, for consistency
and comparability between results only a single
instrument–the flute–is used in this experimental design.
The flute was chosen as it is both monophonic and non-
transposing. It is also a relatively popular instrument,
meaning there are a large number of sight reading exercise
books published for it. This is important as parameter sets for

the algorithm were derived from the characteristics of expert
models, which are in turn derived from published books of
exercises. This ensures that the targets set for the algorithm are
both realistic and grounded in accepted, widely-used,
professionally written examples.

Grades 1 and 2 were chosen as the difficulty levels with which
to validate the algorithm’s capabilities. The reason for selecting
these earlier grades lies in the utility of the exercises. Formal
exams at the Grade 1 level are a student’s first exposure to musical
sight reading, so naturally students at this level find large
quantities of practice material useful. A wide variety of
practice exercises is also useful at other early grade levels as
students come to grips with sight reading techniques. Students
studying later levels–typically Grade 5 and above–often require
fewer practice exercises. There are likely two reasons for this.
Firstly, students at this level should already have a solid
foundation of sight reading skills, and thus require less
practice material. Secondly, at these levels students can use
entire pieces from lower grades as sight reading exercises,
reducing the need for purpose written material.

As discussed in Section 2.1, the set of individual expert-
written sight reading exercises extracted from published
exercise books were transformed into a set of expert models,
where each model corresponds to one published exercise. The
reason for modeling exercises individually rather than as a
collective is twofold. Firstly, targeting only the most typical
characteristics of a group of exercises ignores the variety in
musical and technical content in exercises of even the lowest
level of difficulty. This severely limits the variety of solutions the
algorithm can generate, as it would be constrained by a single
expert model for any one difficulty level. The second reason
relates to the purpose of the experimental design in exploring the
capabilities of the algorithm. If the algorithm is tasked only with
generating ‘typical’ sight reading exercises, the results only
indicate how it performs generating typical sight reading
exercises. To gain a wider understanding of the algorithm’s
performance, it should be tested on a broader range of input.
Using models based on individual expert-written examples allows
this to be done.

2.4.2 Algorithm Configurations
Given a configuration, the algorithm generates tree structures
using an evolutionary approach, as described in Section 2. When
the algorithm is finished the best candidate is converted into a text
format supported by music21a, which is then used to render the
solution and save it in the MusicXML format.

A unique algorithm configuration was created for each expert
model. Each of these configurations (i.e., parameter sets) covers
three elements:

• Fixed characteristics,
• target characteristics, and
• evolutionary parameters.

The fixed characteristics represent targets for the algorithm
which can be set or ‘hard-coded’ during initialization. These
characteristics are:
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• Length (number of bars)
• time signature
• key signature
• range
• use of ties, and
• use of rests.

There are two reasons for setting these characteristics as hard
limits rather than targets that may or may not be achieved. Firstly,
as discussed in Section 2.2.2, both the length and time signature
are required to form the structure of the melody tree used to
represent candidate solutions. Given this, they need to be fixed
during initialization, and can not change during the evolutionary
process without requiring fundamental alternations to the
melody tree structure.

The second reason relates to the key signature, range, use of
ties, and use of rests, in that setting non-negotiable limits on these
characteristics significantly reduces the search space the
algorithm needs to explore. If the key signature and range is
known, random pitch selection can be restricted to a pool of
pitches which are both in the given key signature and within the
given range. As pitches outside the target range and key signature
add no value to a candidate solution, this approach serves only to
reduce the search space–it is highly unlikely to reduce the quality
of the final solution, only the time needed to find it.

Similarly, if the melody of the expert model being used does
not include any rests or ties, then rests and ties should not be
introduced into the solution space. That is, mutations relating to
rests and ties should not be applied, and the initial population of
candidate solutions should not contain any rests or ties.

The target characteristics relate to specifying target values for
each of the six fitness measures defined in Section 2.3.2. Unlike
the fixed characteristics, these targets may not be perfectly met.
Targets for the target note lengths, target rest lengths, target
intervals, and melody shape measures can be found directly
within an expert model. Targets for the remaining two
measures–allowable lengths and allowable intervals can be
inferred from these values. This was discussed in Section 2.3.2.

Finally, the evolutionary parameters relate to values which
influence the evolutionary process but which are not specific to
the chosen application of generating musical sight reading
exercises. These remain static regardless of the expert model
being used:

• Population size: 50
• Number of elites: 1
• Probability of mutation: 0.01 (i.e., 1%)
• Random function: Gaussian
• Selection method: Pareto
• Termination criteria: 100 generations with no improvement

in the best candidate

Each configuration is also assigned a fixed random number
generator seed, so that its output can be reproduced.

The parameters of the algorithm are intended to be specific
enough to guide the evolutionary process, but still broad enough
that there are many acceptable solutions for a given expert model.

To show this, three configurations were created for each expert
model, differing only in their random number generator seed.
This means that after being executed with every configuration the
algorithm will have generated three different sight reading
exercises for each expert model. Comparing these results will
indicate how consistent the algorithm is in finding acceptable
solutions, and the similarities between solutions generated using
the same set of targets.

2.4.3 Evaluating the Generated Exercises
Describing exactly what makes a musical sight reading exercise fit
for purpose requires quantifying both the esthetics of themelody as
well as its technical appropriateness with respect to a specific
difficulty level and instrument. Either one of these tasks is
uniquely challenging on its own. Some guidance can be found
by examining existing published exercises. These mostly reveal the
technical properties which are appropriate for each difficulty level,
such as the acceptable note lengths, interval sizes, and use of
syncopation. Additional guidelines can be inferred. For example,
some sequences of notes are clearly unplayable. Other components,
such as repeated large intervals between notes, are widely accepted
as being difficult to play (Schoenberg, 1967).

Other factors to consider relate to the esthetics of the melodies.
Musical esthetics are notoriously difficult to quantify and remain
the subject of much debate and ongoing research. One reason for
this is that musical rules tend to be derived empirically, in that
they emerge by examining trends in common practice rather than
being determined a priori. Another reason is that they are largely
contextual, depending on the culture, genre, age, and purpose of
the music in question. This means that not only are they open for
discussion and interpretation, but they also evolve over time.

Fortunately, the application domain of the algorithm presented
in this work naturally restricts the scope of the musical rules that
need to be considered. The purpose of the proposed algorithm is to
generate sight reading exercises which would be suitable for students
preparing for formal musical examinations such as those facilitated
by the Australian Music Examinations Board (AMEB) and the
United Kingdom’s Associated Board of the Royal Schools of
Music (ABRSM). The curricula developed by these organizations
strictly fall within Western Classical Music from the Common
Practice period. This is a relatively well-documented period with
a number of widely accepted musical guidelines for aesthetically
pleasing melodic and harmonic structures. As the algorithm focuses
on monophonic melodies, only guidelines relating to melodic
structures need to be considered.

Additionally, sight reading exercises are uniformly short in
length, meaning that complex concepts of musical form, which

TABLE 4 | Criteria for assigning each generated sight reading exercise a rating.

Rating Fit for purpose? Percentage of melody violating ruleset

Very good Yes −
Good Yes ≤10%
Average Yes ≤25%
Bad No >25%
Very bad No Unplayable elements
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describe formal structures for musical pieces to follow, do
not apply.

Each generated exercise was evaluated against a ruleset
containing 29 rules relating to technical appropriateness and
melodic esthetics. Evaluation was performed by one person
who has over 20 years of musical experience, and who has
obtained formal musical qualifications in both performance
and musical theory studies. The proportion of an exercise in
violation of the ruleset was translated to a Likert quality rating on
a five-point scale according to Table 4. This means that although
the weighting of the rules is equal, their impact on the final score
for a melody differs as some are easier to violate than others.
Exercises assigned a “Very good”, “Good”, or “Average” rating are
said to be “fit for purpose”, with the remainder being ‘unfit for
purpose’.

Each exercise is also given a rating based on whether it can be
improved or upgraded with a small number of alterations. An
exercise is said to be “improved” if it was already fit for purpose
and becomes more so as a result of the changes. Alternatively, an
exercise is said to be ‘upgraded’ if the changes transform it from
being unfit to being fit for purpose. Currently, changes are made
manually when assessing each exercise.

When determining potential changes, at most 5% of the
melody can be altered. Acceptable alterations include changes
to note pitches, note and rest lengths, and note and rest
placements. Only changes which could be represented
algorithmically should be used, as it is intended that these
changes could be incorporated into the algorithm in the
future. Once a small set of changes is made, an exercise is
evaluated again with respect to the ruleset and a new Likert
rating is assigned.

The post-alteration ratings serve a dual purpose. They show
the potential of the algorithm to be improved, and serve to
highlight the biggest problems currently preventing the
generated exercises from being more fit for purpose. This
information could be used to drive future work.

The evaluation ruleset was derived from an examination of
relevant literature and published expert-written examples
(i.e., expert models) of sight reading exercises. As well as
relating to the technical appropriateness of an exercise, the
melodic esthetics of an exercise, or both, each individual rule
can be further categorized as relating to one of four facets:

• Note/Rest selection

Rules relating to the length, pitch, and location selected for
each note and rest in the melody.

• Intervals

Rules relating to the size and placement of intervals.

• Melodic structure

Rules relating to the shape and form of the melody.

• Rhythmic structure

Rules relating to the sequences of note and rest lengths in the
melody.

Many of the rules refer to the “strong” beats of a melody. Beats
which are seen as “strong” depend on the time signature. In time
signatures where bars can be divided into two equal parts, the first
beat and the beat half-way through are strong (e.g., beats 1 and 3
in 4

4 bars are strong). In all other time signatures the first beat of
the bar is strong.

Some rules also refer to scale degrees, either numerically or in
roman numerals. In this case, the scale degrees should be
interpreted with respect to the target key signature of the
generated exercise (e.g., scale degree 3 in C major would
indicate the pitch E).

Many of the rules are written generally, for example “An
exercise should only use rest lengths seen in expert models of the
same difficulty level.” In order to implement the ruleset a
reasonable sample of expert models need to be collected. For
the application of the algorithm presented in this work these
expert models are those for the flute described in Section 2.1. The
ruleset can easily be translated to evaluate exercises for other
monophonic instruments by replacing this set of expert models
with another specific to the instrument being considered.

Table 5 summarizes the ruleset, including the source from
which each rule was derived. The individual rules are defined as
follows:

• Rest proportions

No more than 10% of the melody should be made up of rests,
unless a larger proportion is present in the target expert model.

• Note lengths

An exercise should only use note lengths seen in expert models
of the same difficulty level. For example, Grade 1 exercises for the
flute are expected to only use minim, crotchet, quaver,
semiquaver, and semibreve length notes.

• Rest lengths

An exercise should only use rest lengths seen in expert models
of the same difficulty level. For example, Grade 1 exercises for the
flute are expected to only use crotchet, quaver, and semiquaver
length rests.

• Tied notes

Grade 1 exercises for the flute should not contain any
tied notes.
Grade 2 exercises for the flute should contain at most 5%
tied notes.

If the target expert model contains a larger proportion of tied
notes than those listed here, the maximum percentage of tied
notes an exercise can contain is that of the target expert model.

• Interval sizes
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An exercise should only use intervals seen in expert models of
the same difficulty level. For example, Grade 1 exercises for the
flute are expected to only use intervals up to a size of 7.

• Interval proportions

At least 90% of the intervals should be between 0 and 3 in size,
inclusive (i.e., between a unison and a fourth).

At least 50% of the intervals should be between notes only one
scale degree apart (i.e., a second).

7 Key signature

An exercise should only be written in a key signature seen in
expert models of the same difficulty level. For example, Grade 1
exercises for the flute are expected to only be written in the keys of
C, F, G, and BX major, or A, D, and E minor.

8 Time signature

An exercise should only be written in a time signature seen
in expert models of the same difficulty level. For example,
Grade 1 exercises for the flute are expected to only be written in
4
4,

2
4, or

3
4.

9 Playability

Each bar of the melody should only contain sequences of note
lengths seen in expert models of the same difficulty level. For
example, a bar in a Grade 1 exercise for the flute in 4

4 time can
contain two minims in a row, but would not be filled with a string
of semiquavers.

10 Note placement

Strong notes from the target key (i.e., 1, 3, 5) should be placed
on at least 50% of the strong beats in the melody.

11 Tonic repetition

TABLE 5 | The origin of each rule in the ruleset for evaluating algorithmically generated sight reading exercises. Note that there are no rules for evaluating just the melodic
esthetics of rhythmic structures, only technical appropriateness alone or technical appropriateness and melodic esthetics combined.

Rules Evaluating. . . Facet Rule Origin

Technical Note/Rest selection 1. Rest proportions Expert models
Appropriateness 2. Note lengths Expert models

3. Rest lengths Expert models
4. Tied notes Expert models

Intervals 5. Interval sizes Expert models
6. Interval proportions Expert models; Miller (2005)

Melodic Structure 7. Key signature Expert models
Rhythmic Structure 8. Time signature Expert models

9. Playability Expert models
Melodic Note/Rest selection 10. Note placement Perricone (2000)
Esthetics 11. Tonic repetition Laitz (2008); Perricone (2000)

12. Opening note Laitz (2008); Perricone (2000); Australian Music
Examinations Board (2018b)

13. Phrase endings Expert models; Goetschius (2009)
14. Peak note Australian Music Examinations Board (2018b)

Intervals 15. Tritones Expert models; Perricone (2000); Goetschius (2009);
Aldwell and Cadwallader (2018); Schoenberg (1967)

16. Augmented and diminished intervals Expert models; Perricone (2000); Goetschius (2009);
Aldwell and Cadwallader (2018); Schoenberg (1967)

17. Closing intervals Expert models; Laitz (2008)
18. Interval resolutions Goetschius (2009)

Melodic structure 19. Melodic direction Goetschius (2009)
20. Contextualizing leaps Goetschius (2009); Perricone (2000); Kwalwasser (1955);

Schoenberg (1967)
21. Peak placement Australian Music Examinations Board (2018b)

Rhythmic structure − −
Technical Note/Rest selection 22. Placement of long notes Expert models; Goetschius (2009)
Appropriateness 23. Placement of rests Expert models; Goetschius (2009)
and Melodic 24. Target key signature Expert models; Miller (2005)
Esthetics Intervals 25. Gap placement Expert models; Laitz (2008); Miller (2005)

26. Leaps Laitz (2008)
Melodic structure 27. Repetition Expert models; Australian Music Examinations Board

(2018b); Miller (2005)
28. Length Expert models; Goetschius (2009)

Rhythmic structure 29. Syncopation Expert models; Miller (2005)
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At least 10% of the strong beats in the melody should be filled
with a tonic note.

12 Opening note

The opening pitch of an exercise should be 1, 3, or 5.

13 Phrase endings

The note before a rest should be at least crotchet length.

14 Peak note

The highest note in the melody should be used no more than 3
times.

15 Tritones

Tritones should never be used.

16 Augmented and diminished intervals

Augmented and diminished intervals should never be used.

17 Closing interval

The melody should end with 2 → 1, 7 → 1, 4 → 1, or 5 → 1.

18 Interval resolutions

After a jump (i.e., an interval greater than a fourth), instability
should always be resolved.

• should resolve to 3.
• should resolve to 1 or 3.
• should resolve to 5.
• should resolve to 1.

19 Melodic direction

If the melody is moving up in pitch, it should not change
direction on pitch 7.

If the melody is moving down in pitch, it should not change
direction on pitches 4 or 6.

20 Contextualizing leaps

The melody should switch direction after a leap (i.e., an
interval greater than a fourth).

If there are two leaps in a row, the first should be larger.

21 Peak placement

The peak should fall within the middle 50% of the melody.

22 Placement of long notes

80% of notes longer than a crotchet should be placed on strong
beats of the bar.

23 Placement of rests

80% of rests should be placed on weak beats of the bar.

24 Target key signature
All notes should have pitches from the target key signature.

25 Gap placement

There should be no more than 3 intervals of a third or more in
sequence, unless the sequence forms an arpeggio.

26 Leaps

There should be no more than two intervals of a fourth or
more in a row.

27 Repetition

A self-similar structure should not be repeated exactly more
than twice in a row. If the structure is transposed when repeated,
it is not considered to be repeated exactly.

28 Length

An exercise should be of a length, in bars, seen in expert
models of the same difficulty level. For example, Grade 1
exercises for the flute are expected to only be 4, 8, 12, 14, or
16 bars long.

29 Syncopation

Grade 1 exercises for the flute should contain no syncopation.
Grade 2 exercises for the flute can contain up to 10%
syncopation.

3 RESULTS

3.1 Most Typical Characteristics
3.1.1 Overview
A preliminary examination of the generated exercises can be
done by comparing the most typical values for a set of
measured characteristics between the expert-written and
algorithmically-generated exercises. These results, presented
in Sections 3.1.2 and 3.1.3, show how closely the generated
exercises were able to match the characteristics of the expert-
written exercises. This is a good indication of the fitness for
purpose of the results.

3.1.2 Grade 1
The Grade 1 generated exercises almost exactly match the most
typical characteristics of the expert-written Grade 1 exercises, as
seen in Table 6. Compared to the expert-written exercises, the

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 49753013

Pierce et al. Evolving Musical Sight Reading Exercises

126

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


generated exercises often exhibit a slightly smaller range, the most
common highest note falling one full tone from G5 to F5. The
generated exercises also include some semibreves, which were not
seen in the expert-written exercises. They also exhibit slightly
fewer crotchet rests and slightly increased proportions of quaver
and semiquaver rests.

3.1.3 Grade 2
Table 7 shows that, compared to the expert-written exercises, the
generated Grade 2 exercises exhibit only slight differences in their
most typical characteristics. As with the Grade 1 exercises, the most
common highest note drops a full tone, this time fromA5 to G5. The
typical proportions of crotchet note lengths increase in range from
80–90% to 75–90%. This is compensated for by increases in other
note lengths, but not enough to alter the most typical proportions.
The typical proportions of rest lengths also change. Crotchets are

used less frequently, a drop which is compensated for by an increased
use of quavers, semiquavers, and minims.

3.2 Target Characteristics
3.2.1 Pitch Range
Compared to the expert-written exercises, the generated exercises
exhibit a greater variety of ranges and an increased use of smaller
ranges (i.e., ranges less than 12 semitones in size). However, overall,
the pitch ranges of the expert-written and algorithmically-generated
exercises are similar.

Although the range for each exercise was fixed with respect to a
particular expert model, the algorithm does not enforce that the
specified range be used to its limits, only that all selected pitches must
fall within that range. It is for this reason that the range sizes and
spreads differ between the expert-written and algorithmically-
generated exercises.

TABLE 6 | Typical characteristics of expert-written and generated Grade 1 sight reading exercises. Ratios and proportions are represented in terms of time. Differences
between the expert-written and generated exercises are highlighted in bold. Characteristics marked with ‘*’ are fixed and not expected to change.

Characteristic Typical Value(s)

Expert-written exercises Generated exercises

Key signature* F major, C major F major, C major
Time signature* 4

4
4
4

Exercise length* 8 bars 8 bars
Range 14 semitones (one octave and one tone) 12 semitones (one octave)

F4 → G5 F4 → F5
Note lengths 90–100% crotchets 90–100% crotchets

0–10% quavers 0–10% quavers
0–5% minims, dotted minims, semiquavers 0–5% minims, dotted minims, semiquavers, semibreves

Rest lengths 95–100% crotchets 90–100% crotchets
0–5% quavers, semiquavers 0–10% quavers, semiquavers

Ratio of notes to rests 90% notes: 10% rests 90% notes: 10% rests
Intervals 95–100% gaps of 1 scale degree 95–100% gaps of 1 scale degree
(As scale degrees) 0–5% gaps of 0 or 2–7 scale degrees 0–5% gaps of 0 or 2–7 scale degrees

TABLE 7 | Typical characteristics of expert-written and generated Grade 2 sight reading exercises. Ratios and proportions are represented in terms of time. Differences
between the expert-written and generated exercises are highlighted in bold. Characteristics marked with ‘*’ are fixed and not expected to change.

Characteristic Typical Value(s)

Expert-written exercises Generated exercises

Key signature* G major, A minor, F major G major, A minor, F major
Time signature* 4

4
3
4

4
4
3
4

Exercise length* 8 bars 8 bars
Range 12 semitones (one octave and one tone) 12 semitones (one octave)

G4 → A5 G4 → G5
Note lengths 80–90% crotchets 75–90% crotchets

0–10% quavers 0–10% quavers
0–10% minims 0–10% minims
0–5% dotted minims, semiquavers, dotted 0–5% dotted minims, semiquavers, dotted
Crotchets, dotted quavers, semibreves Crotchets, dotted quavers, semibreves

Rest lengths 95–100% crotchets 85–100% crotchets
0–5% quavers, semiquavers, minims 0–15% quavers, semiquavers, minims

Ratio of notes to rests 95% notes: 5% rests 95% notes: 5% rests
Intervals 85–95% gaps of 1 scale degree 85–95% gaps of 1 scale degree
(As scale degrees) 0–10% gaps of 0 or 2 scale degrees 0–10% gaps of 0 or 2 scale degrees

0–5% gaps of 2–7 scale degrees 0–5% gaps of 2–7 scale degrees
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3.2.2 Proportion of Notes vs. Rests
The amount of time in each exercise that should be filled by notes and
rests is not specified exactly in the expert models, but can be inferred
from the target proportions of specific note and rest lengths. That is, if
the target proportion for crotchet notes is 0.5, the target proportion of
quaver notes is 0.25, and target proportion of crotchet rests is 0.25, it
can be inferred that the target proportion of notes is 0.75.

In the generated exercises there were no cases where an
exercise contained rests if its corresponding expert model
contained no rests. This is because, as discussed in Section
2.4.2, rests were not introduced at any stage of the algorithm’s
execution if there were no rests in the expert model used to derive
the algorithm parameters. For cases where both note and rest
target proportions were provided, the generated exercises
regularly matched the given target proportions exactly.

3.2.3 Note Lengths
The generated exercises closely emulate the target note lengths
extracted from the expert models. However, at both the Grade 1
and 2 difficulty levels there were note lengths in some generated
exercises that were not present in any of the expert-written
exercises. For Grade 1 the only unallowable note length used
was a semibreve. This is not of significant concern given that
semibreves are valid note lengths, and not unheard of at a Grade 1
level even though they are not present in the sample of expert-
written Grade 1 exercises used in this work. The unallowable note
lengths at the Grade 2 level, however, represent more of an issue.
These were notes such as doubly dotted quavers and
hemidemisemiquavers, which are rarely if ever seen at even
the highest difficulty levels. However, very few generated
exercises contained such note lengths.

3.2.4 Rest Lengths
As with the note lengths, the proportions of rest lengths in the
generated and expert-written exercises are reasonably close.

However, at both difficulty levels the generated exercises exhibited
some rest lengths that were not present in the expert-written exercises.
For example, some Grade 1 generated exercises contained minim
rests, which were not in any of the expert-written Grade 1 exercises.
Some exercises also contained rests with lengths that would rarely be
seen at any difficulty level, such as doubly dotted semiquavers.

Overall, the proportions of rest lengths are more variable in the
generated exercises compared to the expert-written exercises.
This indicates that the generated exercises were not always
able to match the target rest proportions exactly. They were,
however, able to come close. Additionally, the spread of
proportional values in the generated exercises is close to those
of the expert-written exercises.

The generated exercises were not able to as closely match the target
rest lengths as they were the target note lengths. It is important to note
that this is most likely a side effect of the exercises containing
significantly fewer rests than notes. A low number of rests within
each exercise means that discrepancies between the actual and target
rest proportions are amplified simply because each individual rest
represents a relatively large proportion of the overall rest time. This
results in cases where a single rest length being of an “unallowable”
length can have a large effect on the overall rest proportions. For

example, if an exercise was given a target of containing 4 crotchet rests,
having one of those rests generated as two quaver restsmeans that 25%
of the rest time is filled by an “unallowable” length, and the target rest
proportion was only 75% met. This situation is much less likely to
happen with note proportions, simply because significantly more time
within each exercise is filled by notes.

3.2.5 Intervals
At each of the difficulty levels, the proportions of intervals
exhibited in the generated exercises closely match the target
proportions set by the expert models.

In both grade levels the use of intervals with a size of 0 is higher in
the generated exercises than in the expert-written exercises. However,
as this increase in use is only slight it is not overly concerning.
Compared to the expert-written exercises, the generated exercises
exhibit greater variation in interval proportions. Aswith the rest length
proportions, this is most likely an indication that the generated
exercises were not always able to exactly match the target
proportions. They were, however, able to come close.

3.3 Fitness of the Generated Exercises
As shown in Table 8, the generated exercises consistently achieved
high fitness values on every fitness measure. At each grade level
there was at least one exercise that achieved a perfect score on each
of the fitness measures. The average fitness value for each measure
was consistently high, ranging between 0.95 and 0.99 inclusive.
Similarly, the standard deviations of the fitness values were
consistently low, indicating that little variance was exhibited
across the fitness values for each measure. The minimum values
aremore variable, both across fitnessmeasures andwithin the same
fitness measure across different grade levels. However, given the
high average fitness and low standard deviations, such minimum
values represent outliers rather than trends.

Overall, there are no fitness measures on which the generated
exercises scored consistently better or worse. This is true both
when comparing different fitness measures within a grade level,
and when comparing fitness values on the same measures across
different grade levels.

TABLE 8 | Summary of fitness values for each grade level of generated exercises.
Shows that at least one exercise reached the maximum value for each fitness
measure (i.e., 1.0), and that the average fitness values for each measure were high
at every difficulty level.

Fitness measure Grade Minimum Maximum Average SD

Target note lengths 1 0.53 1.0 0.95 0.11
2 0.66 1.0 0.96 0.08

Target rest lengths 1 0.96 1.0 0.95 0.01
2 0.94 1.0 0.99 0.01

Allowable lengths 1 0.65 1.0 0.99 0.04
2 0.95 1.0 0.99 0.01

Target intervals 1 0.82 1.0 0.95 0.05
2 0.92 1.0 0.97 0.03

Allowable intervals 1 0.94 1.0 0.99 0.01
2 0.96 1.0 0.99 0.01

Melody shape 1 0.8 1.0 0.99 0.02
2 0.88 1.0 0.99 0.01

ahttp://web.mit.edu/music21/.
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Given the application domain, it is likely that some of the fitness
measures may have conflicting goals. That is, an increase in one
fitness value may be directly related to a decrease in another. For
example, consider an exercise which meets its target proportion of
notes and rests, but contains two unallowable rest lengths (e.g., two
quaver rests instead of a single crotchet rest). If one or both of those
unallowable rests were changed to notes, the “Allowable lengths”
fitness of that exercise would improve. However, the extra notes
would mean that the exercise no longer meets the target note
and rest proportions, thus decreasing its fitness in the “Target
note lengths” and “Target rest lengths” measures. The set of
results presented in this work indicate that the fitness measures
do not influence one another, given that the generated exercises
achieved consistently high fitness scores. As such, potentially
conflicting goals among the fitness measures can be considered
not to be an issue.

3.4 Fitness for Purpose of the Generated
Exercises
3.4.1 Grade 1
The majority of the Grade 1 generated exercises are “fit for
purpose”, with over 60% being assigned a “Very good”,
“Good”, or “Average” rating. This proportion increases to
almost 80% when small repairs are made to some exercises.

Figure 6 provides examples of generated Grade 1 exercises
assigned each of the Likert ratings. None of the exercises at this
difficulty level were assigned a “Very bad” rating, so no example
has been given. Reasons are provided for each example’s rating.

3.4.2 Grade 2
Approximately half of the Grade 2 generated exercises are fit for
purpose. This is roughly 15% less than the Grade 1 generated
exercises. The proportion of Grade 2 exercises rated as “fit for
purpose” increases once small repairs are made, reaching
approximately the same percentage as the Grade 1 generated
exercises before repairs (i.e., roughly 60%). This drop in the
number of “fit for purpose” exercises is an expected result due to
the increased complexity of the Grade 2 exercises compared to
Grade 1.

The major difference between the Grade 1 and 2 ratings is the
presence of “Very bad” exercises. These account for around 10% of
theGrade 2 generated exercises, a proportionwhich does not change
after repairs are made. This indicates that the “Very bad” exercises
can not be upgraded in fitness for purpose, or even improved to a
“Bad” rating. Given that the criteria for a “Very bad” rating is
unplayable elements within an exercise, it is not surprising that a
small number of changes could not resolve these issues. For
reference, examples of generated Grade 2 exercises assigned each
Likert rating are provided in Figure 7.

4 DISCUSSION AND FUTURE WORK

4.1 Current Capabilities of the Evolutionary
Algorithm
These results show that the proposed EA is capable of emulating
the characteristics of expert-written sight reading exercises at the
Grade 1 and 2 difficulty levels, and that it is able to do so in a way

FIGURE 6 | Examples of Grade 1 generated exercises assigned each of the Likert quality ratings. An example of an exercise rated as “Very bad” is not provided as
none of the Grade 1 exercises were assigned this rating.
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that is generally fit for purpose. This is a particularly promising
outcome given the relatively simplistic and general nature of the
fitness measures. The capabilities of the algorithm to produce
appropriate sight reading practice material is additionally
supported by the Likert quality ratings, which show that the
generated exercises also conform to the expectations of musical
esthetics and technical appropriateness defined by the field of
music theory.

Although the results indicate the potential of the algorithm,
there are areas in which the algorithm’s capabilities can be
improved. When examining the Likert quality ratings of an
exercise with respect to its characteristics there appear to be
no links. That is, the quality of an algorithmically generated
exercise is not related to its key signature, time signature, length,
note proportions, or interval proportions. This indicates that the
primary difficulty in applying the algorithm to generate exercises
at higher difficulty levels will be in managing the overall increase
in musical and technical complexity. Even at the difficulty levels
currently examined (i.e., Grades 1 and 2), higher quality results

should be possible were this complexity to be better modeled and
incorporated into the evolutionary process.

For example, the presence of rests in an exercise affects its
overall structure. If not placed carefully within a sequence of
notes, rests can cause unintended syncopation or awkward breaks
in phrasing. The existence of a rest also affects the measurement
of intervals within an exercise, as two notes separated by a rest are
not considered to be part of an interval during fitness calculations.
Given that rests become more frequent in number and length at
later difficulties, these issues will become more prominent.

The pitch range of exercises also grows with the difficulty
level. For example, exercises at the Grade 2 level cover a greater
range of pitches than exercises at the Grade 1 level. An increase
in pitch range increases the solution space. This is because there
are simply more potential pitches to select, thus more potential
for an algorithm to select pitch sequences which are
aesthetically or technically inappropriate. Naturally, this
increase in the size of the solution space also causes an
increase in the difficulty of algorithmically generating fit for

FIGURE 7 | Examples of Grade 2 generated exercises assigned each of the Likert quality ratings. Note that the “Very bad” example was given this rating due to the
rhythm in bar 6 being uncharacteristically difficult for the Grade 2 difficulty level.
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purpose solutions. This problem is compounded when
considering other musical artifacts, as the size of the
solution space similarly increases with additions to the sets
of allowable note lengths and intervals. The interaction of these
elements also needs to be considered. For example, increasing
the allowable intervals in an exercise where only crotchet note
lengths are allowed would increase the overall solution space. If
additional note lengths were also to be allowed, the solution
space would increase exponentially, not linearly. This is
because some interval sequences, which would have been
appropriate between crotchets, would not be appropriate
with shorter note lengths.

These issues were expected, particularly given the general
approach taken to measuring fitness in this work. Further
efforts in modeling the requirements of higher difficulty
exercises and incorporating those models into the algorithm
would help to manage the expanding size of the solution space,
thus the algorithm’s capacity to generate more complex exercises.

One potential drawback of the Likert ratings currently
presented in the results is that they were all measured using a
single rater. To check for consistency more robustly it would be
ideal to have the same exercises rated using the same framework
by multiple experts.

4.2 Future Directions for Algorithmic
Development
When developing an algorithm for generating musical sight
reading exercises, there are trade-offs to be made. One key
decision is whether the algorithm will be specific or general. For
example, a specific algorithmmight only generate Grade 2 exercises
focusing on breath control for the clarinet. Alternatively, a general
algorithmmight aim to generate exercises for any wind instrument
at any difficulty level. There are benefits and drawbacks to each
approach. The more specific the target, the more focused the
algorithm can be. This means more domain knowledge can be
incorporated and more restrictive parameters can be set. It is likely
that a specific approach would enable the quality of output to be
improved. However, a specific approach would, by definition, also be
limited in its utility. A general approach would need to consider
many more factors. For example, for an algorithm to target multiple
instruments it would need to model the differences between the
technical requirements for those instruments. A more general
algorithm is likely to have an increased utility. However, it also
takes on the risk of attempting to cover too much scope, which
would limit its ability to generate quality output.

The approach taken in this work is somewhere in between. It is
not so general as to target many difficulty levels, but it also isn’t
restricted to a single type of exercise. Although the application of
the algorithm presented in this work was generating musical sight
reading exercises for the flute, its parameters are purely data
driven–they are not instrument-specific. Instead, appropriate
values can be extracted from models of expert-written
examples, which may relate to any monophonic instrument.
This is discussed further in Section 4.4.

Some avenues for future development can be found in the
ruleset used to evaluate the fitness for purpose of solutions. For

example, the rule for ‘Note placement’ states that Strong notes
from the target key (i.e., I, III, V) should be placed on at least 50%
of the strong beats in the melody. This indicates that music sounds
better when strong notes from the target key are placed on strong
beats of the bar. Such note placements could be encouraged by the
evolutionary algorithm. Doing so might reduce or even remove
the need for this evaluation rule, but should also increase the
esthetics of results by reinforcing the key signature.

A similar approach could be taken to reinforce the time
signature of an exercise. This relates to the “Placement of long
notes” rule, which states that 80% of notes longer than a crotchet
should be placed on strong beats of the bar, and the “Placement of
rests” rule, which states that 80% of rests should be placed on weak
beats of the bar. By encouraging these optimal note and rest
placements the music should ‘feel’ like it is written in the target
time signature. This would increase the overall esthetics of the
generated melodies and avoid some situations where phrases
seem to end abruptly.

As an addition tomodeling expert-written examples, the algorithm
could incorporate alternative models of musical complexity. These
models would be relative to a specific instrument. One possible model
is the musiplectics system (Holder et al., 2015). In this work, Holder
et al. (2015) defines a method for computationally measuring the
complexity of a musical score for any instrument. Measuring the
complexity of a score first requires the definition of several parameters
for the chosen instrument. Currently, only the parameters for a BX
clarinet are provided. Implementing support for more instruments
represents a non-trivial quantity of work,most of which requires input
from an expert in the instrument in question. However, doing so
might result in a valuable addition to the capabilities of the
evolutionary algorithm.

Another area of improvement for the algorithm would be to
use chord progressions. Currently, the algorithm generates exercises
within a particular key signature. It does not, however, createmelodies
which follow chord progressions. For example, a common 4 bar chord
progression is I, IV, V, I. If the exercise was in C major, this would
mean that the 4 bars would be rooted in C major, F major, G major,
and Cmajor, in that order. Chord progressions give a melody a sense
of movement and interest. Although not considered in this work, the
expert-written exercises do use chord progressions. As such, it would
make sense for the algorithm to do so as well.

One way chord progressions could be implemented would be
to use the progression map proposed by Stephen (2017). This
map defines transitions between chords which will sound
aesthetically pleasing. This implementation would not
require any changes to be made to the tree structure used to
represent melodies. Although each bar would be rooted in a
different key, the melody overall would still be in the one key
signature. That is, even if the second bar in a C major melody
might be written in F major, it would still only use pitches from
the C major scale. The ruleset for evaluating exercises, however,
would need to be updated. This is because some of the rules
explicitly reference the target key. For example, the “Note
placement” rule states that Strong notes from the target key
(i.e., I, III, V) should be placed on at least 50% of the strong beats
in the melody. If the generated melodies were to follow chord
progressions, the “target key” part of this rule would need to be
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interpreted as referring to the chord of the bar, not of the overall
melody.

Some of the expert-written exercises also change key completely as
they progress, or contain accidentals outside of the key signature.
Neither of these features is currently supported by the algorithm.
Allowing additional accidentals is trivial, as it would simply require
removing the restriction within the algorithm preventing it from
selecting pitches outside the target key. However, this implementation
would introduce significant complexity to the system, as the potential
for selecting poor sounding pitch sequences would dramatically
increase. A better implementation would allow non-key pitches to
be selected, but restrict when that could occur.

Allowing for complete key changes is a more difficult task.
Currently, the melody tree structure does not record the key
signature of the melody it describes. As such, it also does not
support the ability to record a change in key signature. This is not
necessarily an issue, as information relating to the key signatures
can be recorded elsewhere. The true difficulty lies in determining
when a key change is appropriate, what the new key should be, and
how to smoothly transition between the old and new keys. Such
functionality would require significant changes to the algorithm. It
would also require the key change to be noted in the output so that
the melody can be interpreted correctly.

Another feature of the expert-written exercises not currently
shown in the generated exercises is anacruses. An anacrusis is
where a single bar is split into two parts which are placed at the
beginning and end of a melody. This type of structure is not
supported by the melody tree or the algorithm, and adding
support would require significant work.

4.3 Building Better Models of Expert
Knowledge
Given that the algorithm is designed to emulate expert models of
musical sight reading exercises, it stands to reason that developing
better expert models would improve the quality of its output.
Currently, the expert models are a combination of simple
characteristics (i.e., key signature, time signature) and statistical
measures (i.e., note/rest/interval proportions). As such, there is
significant scope for further development in this area.

One area for potential development relates to the analysis of co-
occurring features. Currently, the note, rest, and interval proportions
are treated separately. However, it is possible that there are some
dependencies between these features that are not currently being
captured. For example, it might be that larger intervals are more likely
to be placed on longer notes, and smaller intervals on shorter notes.
Finding these types of co-occurrences should be a relatively simple
task.More difficult would be determining which co-occurring features
are important to emulate, and how they should be implemented.

A similar area is that of sequence or pattern identification. The
expert-written exercises, and music in general, exhibit many clear
patterns. For example, often a dotted quaver will be followed by a
semiquaver, or four semiquavers will be used in sequence. These
types of patterns generally serve to reinforce the beats within the
music and create a sense of rhythmic stability. Identifying the use of
these patterns within the expert-written exercises, and
incorporating them into the algorithm would serve to both

better emulate the characteristics of the expert-written examples,
and create more generally aesthetically pleasing results.

A complex area that has not yet been addressed either through
the analysis of expert-written exercises or in the algorithm
development is that many musical sight reading exercises are
targeted to developing a specific skill. For example, some
exercises for the flute contain a large proportion of long notes
to encourage the development of breath control. Others might
specifically use a series of arpeggios to reinforce scale structures.

Incorporating this type of information into the algorithm
would be a significant undertaking. It would require extensive
expert knowledge to identify the purposes of different musical
sight reading exercises and describe how they have been written
to address these purposes. Developing the ability to
algorithmically generate similarly targeted exercises would be
as, if not more, difficult. However, doing so would greatly increase
the utility of the generated exercises, as they would be able to
more specifically target the needs of different users.

4.4 Applying the Algorithm to Other
Instruments
Although the use of the algorithm presented in this work was to
generate musical sight reading exercises for the flute, the
parameters are purely data driven. That is, they are instrument-
agnostic. Given this, the algorithm can be applied to generate
exercises for any monophonic instrument. This would involve
curating a set of expert-written examples, and using those examples
to determine appropriate parameters. Additional work would be
required to support polyphonic instruments, particularly in the
development of the tree structure used to represent melodies.

To validate the algorithm’s abilities in generating exercises for other
instruments, the evaluation ruleset would need to be revisited. While
the rules themselves are instrument-agnostic, their exact interpretation
is sometimes relative to the analysis of expert-written examples. If the
algorithmwere applied to another instrument, those rules would need
to be revised with respect to a new set of expert-written examples.
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Listener Modeling and Context-Aware
Music Recommendation Based on
Country Archetypes
Markus Schedl1,2*, Christine Bauer3, Wolfgang Reisinger1, Dominik Kowald4 and
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Music preferences are strongly shaped by the cultural and socio-economic background of
the listener, which is reflected, to a considerable extent, in country-specific music listening
profiles. Previous work has already identified several country-specific differences in the
popularity distribution of music artists listened to. In particular, what constitutes the “music
mainstream” strongly varies between countries. To complement and extend these results,
the article at hand delivers the following major contributions: First, using state-of-the-art
unsupervized learning techniques, we identify and thoroughly investigate (1) country
profiles of music preferences on the fine-grained level of music tracks (in contrast to
earlier work that relied on music preferences on the artist level) and (2) country archetypes
that subsume countries sharing similar patterns of listening preferences. Second, we
formulate four user models that leverage the user’s country information on music
preferences. Among others, we propose a user modeling approach to describe a
music listener as a vector of similarities over the identified country clusters or
archetypes. Third, we propose a context-aware music recommendation system that
leverages implicit user feedback, where context is defined via the four user models. More
precisely, it is a multi-layer generative model based on a variational autoencoder, in which
contextual features can influence recommendations through a gating mechanism. Fourth,
we thoroughly evaluate the proposed recommendation system and user models on a real-
world corpus of more than one billion listening records of users around the world (out of
which we use 369 million in our experiments) and show its merits vis-à-vis state-of-the-art
algorithms that do not exploit this type of context information.

Keywords: music, recommender system, culture, country, clustering, context, user modeling, music preferences

1 INTRODUCTION

Recommendation systems (or recommender systems) have become an important means to help
users find and discover various types of content and goods, including movies, videos, books, and food
(Ricci et al., 2015). As such, they represent substantial business value. In the music industry,
recommender systems—powered by machine learning and artificial intelligence—have radically
changed the market; they have even become major drivers in this industry. Essentially, music
recommender systems (MRS) shape today’s digital music distribution (Schedl et al., 2015) and have
become vital tools for marketing music to a targeted audience, as evidenced by the success of
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recommender-systems-featuring music streaming services such
as Spotify, Deezer, or Apple Music. While MRS operate in a
multi-stakeholder environment including platform providers,
artists, record companies, and music consumers/listeners
(Bauer and Zangerle, 2019), it is most commonly the music
consumers/listeners, who are considered the users of an MRS. In
the paper at hand, we also take this perspective.

Traditionally, content-based filtering and collaborative
filtering (CF)—or hybrid combinations thereof—have been the
most common algorithms to create recommender systems (Ricci
et al., 2015). The former assumes that users will like items similar
to the ones they liked in the past, and therefore selects items to
recommend according to some notion or metric of similarity in
terms of item content (e.g., music style, timbre, or rhythm)
between the user’s liked items and unseen items from the
catalog. In contrast, CF assumes that a user will prefer items
that are liked by other users with similar preferences. In this case,
items to recommend are, for instance, found by comparing the
target user’s consumption or rating profile to that of the other
users, identifying the most similar other users, and
recommending what they liked (user-based CF). Alternatively,
users and items can be directly matched via similarities computed
in a joint low-dimensional representation of users and items
(i.e., model-based CF).

Enhancing the classical approaches CF and content-based
filtering, in recent years, researchers started to leverage
additional information—beyond users, items, and their
interactions—to improve recommendations. Recommender
systems that consider user characteristics or information
describing a situation are typically referred to as context-aware
recommendation systems (Adomavicius and Tuzhilin, 2015).
Next to considering time and location as contextual side
information, taking information derived from the user’s
country into account has been demonstrated to improve
recommendation quality; for instance, cultural and socio-
economic characteristics of the user’s country (Zangerle et al.,
2018), or the user taste’s proximity to their country-specific music
mainstream (“mainstreaminess”) (Bauer and Schedl, 2019).

Against this background, we approach the task of context-
aware music recommendation based on country information; in
contrast to most previous works, we consider user country in our
approach without using any external information about the
country, such as cultural, economic, or societal information.
The reason is that respective data sources about countries
(e.g., Hofstede’s cultural dimensions,1 the Quality of
Government measures,2 or the World Happiness Report3)
provide information on the country level, which may not
necessarily reflect the circumstances of individual users and,
thus, can introduce problems in the recommendation process.
For instance, cultural values or income may be very unequally
distributed among a country’s population.

To avoid this, instead of using external information derived from
the user’s country, we leverage purely the self-reported country
information of the users as available in the system, and investigate
how behavioral data aboutmusic listening can be used to (1) identify
archetypal country clusters based on track listening preferences, (2)
how users can be modeled using the results of (1), and (3) how the
resulting user models can be integrated into a state-of-the-art deep
learning-based music recommendation algorithm.

As in many other domains, nowadays, deep neural network
architectures dominate research in music recommendation
systems, due to their ability to automatically learn features
from low-level audio signals and their superior performance
(Schedl, 2019). This article is no exception. We propose a
multi-layer generative model in which contextual features can
influence recommendations through a gating mechanism.

In this context, we formulate the following research questions:

RQ1: To what extent can we identify and interpret groups of
countries that constitute music preference archetypes,
from behavioral traces of users’ music listening records?

RQ2: Which are effective ways to model the users’ geographic
background as a contextual factor for music
recommendation?

RQ3: How can we extend a state-of-the-art recommendation
algorithm, based on variational autoencoders, to include
user context information, in particular, the geo-aware
user models developed to answer RQ2?

In the remainder of this article, we first explain the conceptual
foundation of our work and discuss it in the context of related
research (Section 2). Subsequently, we detail the methods we
adopt to investigate the research questions; in particular, we
specify the approaches used for data preparation, clustering,
user modeling, and track recommendation (Section 3). The
results of our experiments on uncovering geographic music
listening archetypes and on music track recommendation,
altogether with a detailed discussion thereof, are presented in
Section 4. Finally, Section 5 concludes the article with a brief
summary of the major findings, a discussion of limitations, and
pointers to future work.

2 CONCEPTUAL BACKGROUND AND
RELATED WORK

Amultitude of factors have been found to influence an individual’s
music preferences. There is a long history of research investigating
the relationships between music preferences and, for instance,
demographics (Colley, 2008; Bonneville-Roussy et al., 2013;
Cheng et al., 2017), personality traits (Rentfrow and Gosling,
2003; Schäfer and Mehlhorn, 2017), and social influences (ter
Bogt et al., 2011; Bonneville-Roussy and Rust, 2018).

In the middle of the nineteenth century emerged a cultural
hierarchy in America (DiMaggio, 1982; Levine, 1988) where a
high social status patronized the fine arts (referred to as
“highbrow”) while all other forms of popular culture were
associated with a lower status (referred to as ”middlebrow” or

1https://geerthofstede.com/research-and-vsm/dimension-data-matrix
2https://qog.pol.gu.se
3https://worldhappiness.report
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“lowbrow”). In the 1990s, a series of studies (Peterson and Simkus,
1992; Peterson and Kern, 1996) have defended the view that, for the
elite, highbrow was being replaced by a consumption pattern
termed “omnivorousness”. Cultural omnivorousness reflects that
people’s taste includes both elite and popular genres. This was
subsequently shown to hold for various countries (e.g., Holbrook
et al., 2002; Coulangeon, 2003; Fisher and Preece, 2003). Also, the
consumption practices of low status taste were reconceptualized:
The earlier view that the lowbrow group would be willing to
consume any entertainment on offer (Horkheimer and Adorno,
1972) was replaced by the finding that low status people tend to
choose one form of entertainment and avoid others (Bryson, 1997).
Thus, overall the view evolved from highbrow–lowbrow to
omnivore–univore. Analyzing music consumption across eight
European countries, Coulangeon and Roharik (2005) supported
the “omnivore–univore” scheme rather than the former
“highbrow–lowbrow” model. The omnivorous cultural taste was
later found unstable over time (Rossman and Peterson, 2015),
though. Katz-Gerro (2002) has shown that the dividing line of
class distinctions varies across countries and also the genre
associations to social classes deviate. She concludes that, while
class matters, the main determinants of cultural preferences
relate to gender, education, and age (Katz-Gerro, 1999).
Coulangeon (2005) questions the earlier view on the reasons for
the different tastes of higher- and lower-status classes: He challenges
that it would be the upper class’ familiarity with the so-called
“legitimate” culture and the little accessibility to that culture for the
lower-status classes, that distinguished what the upper class and
lower-status classes prefer. Instead, he attributes it to the diversity of
the stated preferences of people of the upper class, whereas the
preferences of members of lower-status classes appear more
exclusive. Later work, studying music taste in the “modern age”
(Nuccio et al., 2018), found little evidence that musical taste is
indeed aligned with class position.

Although there is a multitude of factors that influence an
individual’s music preferences that lead to a diversity of music
created and listened to, there are (market) structures and other
mechanisms that effect certain tendencies in what music is
preferred within a particular community. For instance, the
music recording industry is typically considered a globally
oriented market (Dolata, 2013). Yet, studies have revealed the
existence of national boundaries (Bauer and Schedl, 2018). There
are various country-specific mechanisms that affect an
individual’s music preferences and consumption behavior:
Preferences are culturally shaped (Baek, 2015; Budzinski and
Pannicke, 2017); music perceptions vary across cultures, for
instance, with respect to mood (Morrison and Demorest, 2009;
Stevens, 2012; Lee and Hu, 2014; Singhi and Brown, 2014); and
countries have substantially different national market structures
with respect to, for instance, available music repertoire due to
copyright and licensing, advertising campaigns, local radio
airplay, or quotas for national artists (Hracs et al., 2017;
Gomez Herrera and Martens, 2018).

Knowledge about country-specific differences in music
preferences can be explicitly used to improve music
recommender systems, for instance, by leveraging information
about the users’ geographic or cultural background. For instance,

Vigliensoni and Fujinaga (2016) use a factorization machine
approach for matrix factorization and singular value
decomposition to integrate—amongst others—a user’s country
as context information. Bauer and Schedl (2019) use a contextual
pre-filtering approach (Adomavicius and Tuzhilin, 2015), where
the user base is first segmented by user country, and a target
person is then compared to other people from the very same
country (in contrast to a comparison with the entire user base).
Sánchez-Moreno et al. (2016) use a k-nearest neighbor (k-NN)
approach integrating, among others, the user’s country as
attribute. Zangerle et al. (2018) leverage further country-
specific data sources; for each country, they use the respective
scores on the cultural dimensions by Hofstede et al. (2005) as well
as the scores of the World Happiness Report (Helliwell et al.,
2016) to tailor recommendations to the individual.

The work at hand differentiates from related work in several
aspects.

• First, although music preferences vary across countries,
several studies (e.g., Moore et al., 2014; Pichl et al., 2017;
Schedl et al., 2017; Bauer and Schedl, 2019) have shown
similarities in music preferences between countries,
typically identified with clustering approaches. Yet, to the
best of our knowledge, the work at hand is the first one to
integrate information on country similarities into the music
recommendation approach.

• Second, while other work, most notably, Zangerle et al. (2018),
reaches out to include external data about countries (such as
economic factors, happiness index, cultural dimensions), the
approach at hand remains independent from any external
data sources, enabling platform providers to build a self-
sustaining recommendation system. Such a system can rely
exclusively on data that is contained in the provider’s
platform, including users’ self-disclosed country information.

• Third, most existing research on music preferences and
recommender systems considers music preferences on a
genre level (e.g., Skowron et al., 2017; Adiyansjah et al.,
2019) or artist level (e.g., Sánchez-Moreno et al., 2016;
Bauer and Schedl, 2019). Research on country-aware music
recommendation systems that provide recommendations on
the track level is rare (e.g., Zangerle et al., 2018). However, the
genre and the artist level may be too coarse-grained to reflect
users’music preferences, for several reasons. Music genres are
vaguely defined (Beer, 2013; Sonnett, 2016; Vlegels and
Lievens, 2017) and users’ perceptions thereof differ
tremendously (van Venrooij, 2009; Brisson and Bianchi,
2019). Artists frequently cover several music styles
throughout their career, where some tracks may be more
favored than others for reasons including lyrics quality, the
influence of associated music videos, over-exposure, or
associations with unpleasant personal experiences
(Cunningham et al., 2005). Accordingly, the work at hand
investigates music recommendations on the track level to
reflect users’ preferences in a more fine-grained manner than
genre labels attributed to an artist’s overall repertoire could do.

• Fourth, while deep learning approaches are increasingly
used for recommender systems in general and for music
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recommendation in particular, the integration of geographic
aspects—especially user country—with deep learning for
music recommendation is a particular asset of the work at
hand. For instance, a recent survey on deep learning-based
recommender systems (Batmaz et al., 2019) reports that
extant research mainly uses textual information to capture
context in approaches to context-aware recommender
systems. The authors particularly consider context that is
extracted from items (e.g., text documents) instead of users.

3 METHODS

In the following, we detail how we gather and process the dataset
used in our study, which contains information about users’music
listening behavior (Section 3.1). We then describe our approach
to identify country clusters based on this dataset (Section 3.2).
Finally, we elaborate on our approaches to create user models
incorporating country information and we detail our neural
network architecture that integrates these models (Section 3.3).

3.1 Data Acquisition and Processing
We base our investigations on the LFM-1b dataset (Schedl, 2016),
which we filter according to our requirements as detailed below.
The LFM-1b dataset4 contains music listening information for
120,322 Last.fm users, totaling to 1,088,161,692 individual
listening events (LEs) generated between January 2005 and
August 2014; the majority of LEs was created during years
2012–2014.5 Each LE is characterized as a quintuple of user-id,
artist-id, album-id, track-id, and timestamp. The average number of

LEs per user in the dataset is 8,879 (std. 15,962). For some users, also
demographic data (country, age, and gender) is available in LFM-
1b. More precisely, 46% of the users do provide information about
their country, the same percentage do provide information about
their gender, and 62% about their age. The majority of users who
provide their country are from the United States (18.5%), followed
by Russia (9.1%), Germany (8.3%), the United Kingdom (8.3%),
Poland (8.0%), Brazil (7.0%), and Finland (2.6%). The mean age of
the users who reveal it is 25.4 years (std. 9.4); the median age is
23 years. The age distribution differs significantly between
countries, though. In Figure 1, we show the age distribution for
the countries with at least 100 users (47 countries), categorized into
age groups. The youngest users are found in Estonia and Poland,
while the oldest users are Swiss and Japanese. Among the users who
indicate their gender, 72% are male and 28% are female. These
percentages differ, however, considerably between countries. In
Figure 2, we therefore depict the ratios between genders, again
for the top 47 countries in terms of number of users. While the
Baltic countries Lithuania and Latvia have an almost equal share of
male and female users, India and Iran show a very unequal
distribution (around 90% male users).

As reported above, about 46% of users in the LFM-1b dataset
disclose their country. For our country-specific analysis, we
therefore only consider users (and their LEs) for whom
country information is available. This results in a dataset of
55,186 users, who have listened to a total of 26,021,362 unique
tracks. The distribution of the number of LEs over tracks is
visualized in Figure 3.

We subsequently reduce the data to decrease noise originating
from the user-generated nature of the metadata in the LFM-1b
dataset (in particular, misspellings and ambiguities), i.e., we filter
out tracks and countries. This noise would otherwise likely cause
distortions in future steps of our approach. First, we drop tracks
that have been listened to less than 1,000 times, globally, resulting
in a total of 122,442 tracks to consider further. Second, to
minimize possible distortions caused by countries with a low
number of LEs or a low number of unique users, we only consider

FIGURE 1 | Distribution of age over countries. Countries are sorted in decreasing order of number of users from left to right.

4http://www.cp.jku.at/datasets/LFM-1b
5The LFM-1b dataset used in our study is considered derivative work according to
paragraph 4.1 of Last.fm’s API Terms of Service (https://www.last.fm/api/tos). The
Last.fm Terms of Service further grant us a license to use this data (according to
paragraph 4).
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countries with at least 80,000 LEs and at least 25 users. We chose
these values as thresholds based on an empirical investigation of
the distributions of LEs and of users over countries (cf. Figures 4
and 5, respectively). The former shows a flat characteristic around
country-id 100, followed by a clear gap between country-id 110
and 111 (which corresponds to 80,000 LEs). The latter reveals a
sudden drop at country-id 70 (which corresponds to 25 users).
Applying this country filtering eventually results in 70 unique
countries and a total of 369,290,491 LEs, which represents only a
small drop of 1.5% (in comparison to 374,770,382 LEs created by
users of all countries in the dataset). After these preprocessing
steps, each country is represented as a 122,442-dimensional
feature vector containing the LEs over all tracks.

3.2 Identifying Country Clusters and
Archetypes
To cluster countries according to their citizens’ listening
behavior, it is important to first normalize the data of each

FIGURE 2 | Distribution of gender over countries. Countries are sorted in decreasing order of number of users from left to right.

FIGURE 3 | Distribution of number of listening events over all tracks
(semi-log-scaled). Track identifiers are ordered by number of LEs.

FIGURE 4 | Distribution of number of listening events over all countries
(semi-log-scaled). Country identifiers are ordered by number of LEs.

FIGURE 5 | Distribution of number of users over all countries (semi-log-
scaled). Country id ordered by number of users.

Frontiers in Artificial Intelligence | www.frontiersin.org February 2021 | Volume 3 | Article 5087255

Schedl et al. Music Recommendation Leveraging Country Archetypes

138

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


country to avoid distortions caused by different country sizes. To
this end, we normalize each country’s feature vector to sum up to
one.6 We next apply truncated SVD/PCA (Halko et al., 2001),
reducing the dimensionality of the feature vectors to 100, while
still preserving 99.8% of the variance in the data.7 Taking these
100-dimensional feature vectors as an input to a t-distributed
Stochastic Neighbor Embedding (t-SNE) (van der Maaten and
Hinton, 2008) and subsequently using OPTICS (Ankerst et al.,
1999) enables us to visualize the data and identify clusters of
countries sharing similar music listening behaviors.

T-SNE is a visualization technique that embeds high-dimensional
data in a low-dimensional (typically, two-dimensional) visualization
space, paying particular attention to preserving the local structure of
the original data. It is particularly useful to disentangle data points
that lie onmore than onemanifold. T-SNE represents proximities or
affinities between pairs of data items by estimating the probability
that the first data item will choose the second one as its nearest
neighbor, and vice versa. In the original data space, this probability is
modeled by means of a Gaussian distribution centered around each
data item in the high-dimensional space; in the visualization space by
means of a t-student distribution centered around each data item in
the low-dimensional space. Kullback–Leibler divergence of the joint
distributions between pairs of data points in the original space and in
the visualization space is then minimized via gradient descent.

Ordering Points To Identify the Clustering Structure (OPTICS)
is a density-based clusteringmethod that creates a linear ordering of
data items based on their spatial proximity. For this purpose,
OPTICS first identifies core data points that have at least a
certain number of neighbors in their vicinity (the minimum
cluster size) and assigns a core distance to them, describing how
dense the area around each core point is. Furthermore, a
reachability distance between each pair of data items o and p is
established, which is the maximum of (1) the distance between o
and p, and (2) the core distance of o, whichever is bigger. Data items
assigned to the same cluster have a lower reachability distance to
their nearest neighbors than items that belong to different clusters.
OPTICS subsequently creates an ordering of data items in terms of
their reachability distance and identifies sudden changes in
reachability between neighboring items, assuming that these
correspond to cluster borders. The number of clusters is
controlled by a parameter ξ that defines the minimum steepness
(relative change in distance) between neighboring data items to be
considered a cluster boundary.8

As for parameter optimization, we adopt a grid search strategy
to identify a well-suited perplexity for t-SNE (5) and a minimum
size of clusters, i.e., minimum number of data items in each
cluster, for OPTICS (3).9 Please note that we use ISO 3166 2-digit
country codes to refer to countries in this article.10

For an analysis of the identified clusters in a way that enables
the establishment of archetypes of music preferences, we adopt
the following approach. As shown in Figure 3, we observe a long-
tail distribution of listening events over tracks, which means that
a few dominating tracks are listened to by a lot of users, while
most tracks are only listened to by a few users. Thus, these
dominating tracks will also be popular among the list of top-
tracks per cluster, which makes it hard to distinguish between the
clusters and to interpret their corresponding archetypes. To
overcome this, we adapt a scoring function similar to the
inverse document frequency (IDF) (Jones, 1972) metric from
the field of information retrieval, which assigns high scores to
rarely occurring tracks and low scores to frequently occurring
tracks. Formally, we define IDF for each track ti as
IDF(ti) � log10

N
ni
, where N is the number of all listening events

and ni is the number of LEs for track ti. The distribution of IDF
values of the top 50 tracks, in terms of IDF(ti), is plotted in
Figure 6. In an empirical analysis, we identify 10 overall
dominating tracks using a threshold of 4.2 on the IDF values
(see Figure 6). These tracks are Rolling in the Deep by Adele,
Somebody That I Used to Know by Gotye, Islands and Intro by
The xx, Blue Jeans by Lana Del Rey, Supermassive Black Hole by
Muse, Skinny Love by Bon Iver as well as Use Somebody, Sex on
Fire and Close by Kings of Leon. We remove these tracks from

FIGURE 6 | Inverse document frequency (IDF) scores for the top 50
tracks.

6Please note that country-specific results may still be influenced by some users
showing particularly high playcounts. Nevertheless, we decided against excluding
or penalizing the listening information of such users just because users with a high
playcount indicate a more pronounced inclination to listen to music. Our
reasoning is that users who contribute only few listening events to Last.fm
should be considered less important to model their country-specific listening
behavior than users who heavily contribute. In addition, removing such “power
listeners” would distort the original distribution of usersâ€™ playcounts in the
sample.
7Reducing the dimensionality of the dataset to 50 dimensions preserves only 90.1%
of the variance.
8In this work, we use Euclidean distance as distance metric and set ξ � 0.05.

9More precisely, we performed grid search on t-SNE perplexity in the range [1, 2, 3,
5, 10, 15, 20, 25, 30, 35, 40, 50] and on the minimum number of data points per
cluster enforced by OPTICS in the range [2, 3, 4, 5], optimizing for average
neighborhood preservation ratio (nearest neighbor consistency).
10https://www.iso.org/iso-3166-country-codes.html
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further analyses when discussing archetypes as these are not
suited to discriminate between clusters.

In our analysis of archetypes, we include genre annotations,
which we obtain as follows. For all tracks in the dataset, we
retrieve the top user-generated tags using the Last.fm API.11

Subsequently, we filter the tags of each track using a
comprehensive list of music genres and styles from Spotify,
called Spotify microgenres (Johnston, 2018). This list contains
3,034 genre names (as of May 2019 when we extracted them),
including umbrella genres such as pop and country, as well as
smaller niches such as Thai hip-hop, German metal, and discofox
(Johnston, 2018). The fine-grained reflection of subtle differences
in microgenres provides a more particularized basis for
describing the clusters, compared to the use of a more coarse-
grained taxonomy of music genres. We note as a limitation that
the microgenre categories are defined in a similarly vague manner
as coarse-grained taxonomies of music genre (Beer, 2013;
Sonnett, 2016; Vlegels and Lievens, 2017); and the semantics
associated with (micro)genre names have evolved over time so
that a precise definition appears difficult. Relying on a big corpus
of data where microgenres are visualized and sonified (see The
Every Noise project12), we nevertheless believe that using the
concept of microgenres helps future research to build upon our
work. Further note that we rely on the top user-generated tags
from the Last.fm community for attributing microgenres to
tracks; the microgenre–track associations, thus, reflect the
Last.fm community’s understanding of microgenres, which
may not be congruent with the music experts’ understanding.
Additionally, synonyms may be present in the user-generated
tags and, thus, two different tags could be used interchangeably to
annotate the same tracks (e.g., “Rap” and “HipHop”).

To allow interested readers to conduct further analyses of
the identified clusters on a microgenre level, we release the full
list of the top 20 tracks (and corresponding artists) per cluster,
and we include—for each track and artist—all microgenre
annotations.

3.3 User Modeling and Music Track
Recommendation
We build our context-aware music recommendation approach on
top of a variational autoencoder (VAE) model (Jordan et al., 1999).
VAEs are a type of autoencoders (Kramer, 1991) that consist of an
encoder, a decoder, and a loss function. In contrast to classic
autoencoders, which learn encodings directly, VAEs learn the
distribution of encodings using variational inference. Via sampling
from the learned distribution,more representations of the same items
can be generated given the same amount of training data. Thus,
VAEs can learn more complex items than classic autoencoders.

We opted to extend the VAE architecture for collaborative
filtering presented by Liang et al. (2018) because in a large-scale
study conducted by Dacrema et al. (2019), the approach followed
by Liang et al. (2018) was found the only deep neural network-

based approach that outperformed equally well tuned non-deep-
learning approaches. In addition, Liang et al. (2018) evaluated their
VAE architecture on the Million Song Dataset (Bertin-Mahieux
et al., 2011), a common benchmark in the music domain. They
showed substantially superior performance compared to several
baselines, in particular, the linear model weighted matrix
factorization and collaborative denoizing autoencoders.

As depicted in Figure 7, we extend the VAE architecture by
integrating context information using a gating mechanism. The
gate output modulates the latent code in a way to incorporate
context-based (country and cluster) differences of users. The
abstract concepts are weighted based on how important the
models deem them for a specific user group.13 Specifically, we
model users in form of a 122,442-dimensional listening vector
(i.e., n tracks), which represents their track listening history,
together with context information. We investigate four
different ways to define a user’s context: (1) the user’s country,
(2) the cluster membership of the user’s country, (3) the
Euclidean distances between the user’s listening vector and all
identified cluster centroids, and (4) the Euclidean distances
between the user’s listening vector to all country centroids.

We derive context from the self-reported country of a user. For
our VAE model with country context (i.e., model 1), a one-hot
encoding of the 70 included countries is used, whereas for VAE
with cluster context (i.e., model 2), context is determined by the
user’s country membership in a cluster (see Table 1), resulting in
a one-hot encoding of length 9. For the context models 3 and 4,
we first calculate the cluster centroids, i.e., each track’s listening
events of all users belonging to a cluster are summed and then
normalized by the total amount of listening events across all
tracks. Subsequently, for each user, the Euclidean distances
between the respective user’s normalized feature vector and all
cluster centroids are determined and used as context features for
the VAE with cluster distances (i.e., model 3). Country distances
are calculated accordingly, where each country is considered as its
own cluster (i.e., model 4). Taken together, n context is 70 in case
of model 1 and model 4, and 9 in case of model 2 and model 3.

Our recommendation approach assumes that each user can be
represented by a latent k-dimensional multivariate Gaussian,
which is sampled, weighted by gates derived from context
information, and transformed with a non-linear function to
reconstruct the initial track listening history (cf. Figure 7). As
mentioned before, our VAE model without contextual features is
based on the work of Liang et al. (2018). To integrate context
models, we extend the VAE by adding a gating mechanism to feed
in contextual information according to the four ways detailed
above. In a two-layer feed-forward neural network, the initial
feature vector is encoded first into an intermediate representation
enc1 and then into a latent k-dimensional multivariate Gaussian.
The mean values μ and variance values σ are the outputs of the
encoding network:

11https://www.last.fm/api/show/track.getTopTags
12http://everynoise.com

13We also run experiments in which we simply concatenate track listening history
and context information, but this did not show improvements over the VAE based
on just the listening history.
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enc1 � tanh(Wenc1 · t) (1)

μ � tanh(Wencμ · enc1) (2)

σ � tanh(Wencσ · enc1) (3)

We use tanh as a nonlinearity for all layers in the
autoencoder. Based on our experiments (see Section 4.2.1),
we set the size of Wenc1 to n tracks × 1,200 and both Wencμ and
Wendσ to 1,200 × 600. This results in a length of 1,200 for enc1
and 600 for the latent representation z. The user context, given

by its input vector c is transformed by a dense layer with sigmoid
nonlinearity into a context gate cgate of the same length as latent
z. Next, the gate is applied with component-wize multiplication
to z:

cgate � σ(Wcontext · c) (4)

ε ∼ N (0, 1) (5)

z � (μ + σ⊙ε)⊙cgate (6)

The weighted latent representation is then decoded back into
the original space by a network with mirroring size but different
learned parameters of the encoder:

dec1 � tanh(Wdec1 · z) (7)

t̂ � tanh(Wdec2 · dec1) (8)

The detailed data flow and computation in each layer is
visualized in Figure 7. Based on the known track history of a
target user, the models generate a variational distribution t̂. Top-k
track recommendations are then retrieved by ranking the mean
values of this distribution.

4 RESULTS AND DISCUSSION

In the following, we present and interpret the results of our
approach to identify country clusters and archetypes of music

FIGURE 7 | Architecture of the variational autoencoder with gated context information.

TABLE 1 |Country clusters as determined by OPTICS with a minimum cluster size
of 3, based on the output of a t-SNE visualization (perplexity of 5) on PCA-
reduced country feature vectors (100 dimensions).

Cluster Countries

0 ES, IT, IS, SI, PT
1 BE, NL, CH, SK, CZ, DE, AT, FI, PL
2 GB, EE, JP
3 AU, NZ, US, CA, PH
4 CL, CR, IL, UY
5 CO, MX, BG, GR
6 RO, EG, IR, TR, IN
7 BR, ID, VN, MY
8 LT, LV, UA, BY, RU, MD, KZ, GE
−1 AQ, FR, NO, ZA, IE, MK, AR, HR, RS, BA, HU, TW, DK, HK, SG, CN, KR,

PE, TH, SE, PR, VE, GT

Countries identified as too noisy by OPTICS are represented as Cluster -1.
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listening preferences (Section 4.1) and of the music track
recommendation experiments (Section 4.2). We further
connect the discussion to the initial research questions, which
we answer in the context of the obtained results.

4.1 Clustering of Countries According to
Music Listening Preferences
We present the identified clusters and discuss the relationship of
the countries subsumed in each cluster beyond music preferences
(Section 4.1.1), for instance, in terms of geographic proximity,
linguistic similarities, and historical background. Furthermore,
we discuss differences in user characteristics such as the users’
gender, age, and their listening patterns in terms of playcounts. In
Section 4.1.2, we describe the characteristics of the clusters with
respect to music preferences, i.e, we detail the track preferences
that characterize the corresponding music archetypes.

4.1.1 Identified Country Clusters
Using the approach described in Section 3.2, we can identify
nine country clusters, which are presented in Table 1 and
visualized in Figure 8. Cluster 0 contains Spain (ES), Portugal
(PL), Italy (IT), Slovenia (SI), and Iceland (IS). Cluster 1
includes as many as nine countries: Belgium (BE), The
Netherlands (NL), Austria (AT), Switzerland (CH),
Germany (DE), Czech Republic (CZ), Slovakia (SK), Poland

(PL), and Finland (FI). Cluster 2 refers to the United Kingdom
(GB), Estonia (EE), and Japan (JP). Cluster 3 includes
Australia (AU), New Zealand (NZ), the United States (US),
Canada (CA), and the Philippines (PH). Cluster 4 refers to
Chile (CL), Costa Rica (CR), Uruguay (UY), and Israel (IL).
Cluster 5 contains Colombia (CO), Mexico (MX), Bulgaria
(BG), and Greece (GR). Cluster 6 the following countries:
Romania (RO), Egypt (EG), Iran (IR), Turkey (TR), and India
(IN). Cluster 7 is composed of Brazil (BR), Indonesia (ID),
Vietnam (VN), and Malaysia (MY). Cluster 8 encompasses
eight countries: Lithuania (LT), Latvia (LV), Ukraine (UA),
Belarus (BY), Russia (RU), Moldova (MD), Kazakhstan (KZ),
and Georgia (GE).

Four of the countries in Cluster 0 are geographically tied
together, sharing national borders (i.e., Spain (ES), Portugal (PL),
Italy (IT), and Slovenia (SI)). Only Iceland (IS) is geographically
dislocated. Furthermore, Spain (ES), Portugal (PL), and Italy (IT)
share their roots in Romance language. Moreover, there is a
Slovene minority in Italy (IT), which may lead to partly similar
music preferences in Slovenia (SI) and Italy (IT).

Cluster 1 contains nine countries. Belgium (BE) and the
Netherlands (NL) are neighboring countries and share the official
language spoken (note, Belgium (BE) has two official languages).
Austria (AT), Switzerland (CH), and Germany (DE) share the
German language (note, Switzerland (CH) has four official
languages). Czech Republic (CZ) and Slovakia (SK) are not only

FIGURE 8 |Results of t-SNE (perplexity of 5) and OPTICS (minimum cluster size of 3) on country feature vectors. The left part shows the full t-SNE output space, the
right part a zoomed version onto the major clusters.
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neighboring countries, but actually formed one joint country until
1992. The languages spoken in the Czech Republic (CZ), Slovakia
(SK), and Poland (PL)—a neighboring country to the former
two—show strong linguistic similarities. Altogether, we can see
that Belgium (BE), the Netherlands (NL), Austria (AT),
Switzerland (CH), Germany (DE), Czech Republic (CZ), Slovakia
(SK), and Poland (PL) are geographically connected, sharing
national borders (cf. Figure 9). Only Finland (FI) is
geographically disconnected from the other countries in this cluster.

Cluster 2 delivers a highly surprising result because it
contains three countries that are geographically far away
from each other without any linguistic similarities or close
historical connections: the United Kingdom (GB), Estonia (EE),
and Japan (JP). The United Kingdom (GB) and Estonia (EE) are
located at the Northwest and the Northeast of Europe—thus, at
the opposite borders of Europe; Japan (JP) is even almost
8,000 km farther east of Estonia (EE). Although this cluster
contains only three countries, with Japan (JP) and the
United Kingdom (GB), it embraces two of the largest music
markets worldwide (Statista Research Department, 2019).
Interestingly, the United Kingdom (GB) is not part of
Cluster 3 that includes most English-speaking countries.
Considering the age distribution (Figure 10) in the

identified country clusters, we find that Cluster 2 shows the
highest average age with a relatively large span.14 Furthermore,
Cluster 2 shows by far the highest average playcount per user
for the countries in this cluster (Figure 11). This indicates that
users in this cluster are characterized as being ‘power listeners’.
As the combination of countries in this cluster seems
surprising, age and listening intensity may be the
hidden—though determining—aspects for the emergence of
this cluster.

The major connector of the countries in Cluster 3 is that they
are all English-speaking countries: Australia (AU), New Zealand
(NZ), United States (US), Canada (CA), and the Philippines
(PH), where English is one of the two official languages in both
Canada (CA) and the Philippines (PH).

Cluster 4 comprises the countries Chile (CL), Uruguay (UY),
Costa Rica (CR), and Israel (IL). Both Chile (CL) and Uruguay (UY)
are located in South America and are connected by their language:
Spanish. The official language in Costa Rica (CR) is Spanish as well;
located in Middle America, the geographic distance to Chile (CL)
and Uruguay (UY) is not far. Israel (IL), in contrast, is a country in

FIGURE 9 | Countries in Cluster 1 on a map.

14Please note that observations concerning age relate to our sample of Last.fm users.
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the Middle East and is, thus, geographically disconnected from the
other three countries in this cluster.

Cluster 5 contains two Latin-American countries as well as
two countries in Southeastern Europe. The Latin-American
countries, i.e., Mexico (MX) and Colombia (CO), are both
Spanish-speaking countries. With Mexico (MX) located in the
Southern part of North America and Colombia (CO) being part
of South America, these are no neighboring countries, though.
The two countries in Southeastern Europe, i.e., Bulgaria (BG) and
Greece (GR), share a border. Thus, the cluster contains two
country groups, which are geographically spread.

The countries in Cluster 6 are geographically connected,
centered around countries being part of the Middle

East—Turkey (TR), Iran (IR), and Egypt (EG)—and flanked
by Romania (RO), that has historical relations to the others
due to the Ottoman Empire, and India (IN), that is adjacent to
the Middle East and, thus, shows a geographical proximity to
the other countries in this cluster. Furthermore, all the
countries in Cluster 6 are very diverse when it comes to the
various (minority) languages spoken, which may also be
reflected in music preferences. Considering the female/male
ratio of users (Figure 12) in the identified country clusters, we
find that Cluster 6 shows the most unevenly distributed ratio
across the countries in this cluster. Despite the wide span of
female/male ratios in this cluster’s countries, Cluster 6 is the
cluster with the overall lowest female/male ratio compared to
the other clusters. With respect to age (Figure 10), this cluster
comprises rather young users in our sample of the Last.fm
community (with the average age of users in the Clusters 7 and
8 being even younger, though). Overall, with respect to age and
gender, Cluster 6 seems to have a differentiating profile
compared to the other clusters. Furthermore, Cluster 6
shows by far the lowest average playcount per user
(Figure 11). This low number could be the result of a
listening pattern that is shaped by cultural aspects, but
could, for instance, also be the consequence of limited
access to the resources (e.g., broadband Internet connection,
streaming platforms operating in the respective countries,
licenses for music content). Considering those and similar
aspects is a fruitful path for future research.

Cluster 7 covers three neighboring countries (with
maritime borders) in the Southeast of Asia—Indonesia
(ID), Vietnam (VN), and Malaysia (MY)—and Brazil (BR)
in South America. The three countries in the Southeast of Asia
have many similarities, including common frames of
reference in history, culture, and religion; also their
national languages are closely related. From a geographic
perspective, Brazil (BR) appears being disconnected from
the other countries in this cluster. The connection of Brazil

FIGURE 11 | Distribution of users’ average playcount in the identified
country clusters. While the highest average playcount can be found in Cluster
2, the lowest one can be found in Cluster 6.

FIGURE 12 | Female/male ratio distribution of users in the identified
country clusters. We find that the female/male ratio is most unevenly
distributed in Cluster 6 and most evenly distributed in Cluster 7.

FIGURE 10 | Age distribution of users in the identified country clusters.
While the oldest users can be found in Cluster 2, the youngest can be found in
Cluster 7.
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(BR) with Indonesia (ID) and Malaysia (MY) is that all three
countries have formerly been Portuguese colonies (Bada,
2018). Whether this historical connection is indeed also
conclusive for similar music preferences is subject to
further research. Referring back to Figure 10, where we
plot the age distribution for the identified country clusters,
and Figure 12, where we plot the female/male ratio, we see
that Cluster 7 shows the lowest average age and is close to the
highest female/male ratio. Furthermore, the female/male ratio
is very evenly distributed in Cluster 7. We, thus, suspect that
age and gender are the hidden factors construing this cluster
or, at least, accentuating it.

As can be seen from Figure 13, Cluster 8 comprises nine
countries that are in geographical proximity: the Baltic countries
Lithuania (LT) and Latvia (LV), the Russian Federation (RU),
Ukraine (UA), Belarus (BY), Moldova (MD), Kazakhstan (KZ),
and Georgia (GA). Besides being characterized by the geographic
proximity, these countries share a history of having been part of the
Russian empire. Russian is a major (or influential) language in all of
the countries in this cluster (Central Intelligence Agency, 2019).

Overall, we note that the country clusters show different
characteristics with respect to age (Figure 10), gender
(Figure 12), and average playcount per user (Figure 11). With
respect to age, we find especially large differences between the
Clusters 2 and 7: While the highest average age can be found in
Cluster 2, the lowest average age can be found in Cluster 7. The
female/male ratio is high in Cluster 7 and also evenly distributed. In
contrast, the female/male ratio is most unevenly distributed in
Cluster 6 with a high span of ratios across the countries in this
cluster; and overall, the ratio is—in comparison to the other
clusters—very low. With respect to the average playcount per
user, it is also the Clusters 2 and 6 that show the largest
differences: Among the users in Cluster 2 there seems to be a
high ratio of ‘power listeners’, whereas the average playcount of
users in Cluster 6 is low in comparison. Overall, it can, thus, not be
rejected that those and similar aspects may be hidden factors that
accentuate the differentiation between the clusters or may even be
indicative for the emergence of those clusters.

4.1.2 Characteristics of the Identified Clusters and
Music Preference Archetypes
To address the question what characterizes the various clusters in
terms of music preferences, we use the approach described in
Section 3.2 to identify the most important tracks and genres for
each cluster. Table 2 provides a list of the 10 tracks with the highest
playcounts per cluster (after the IDF-based filtering explained in
Section 3.2) and their genre annotations;15 for genre annotations, we
rely on the user-generated annotations retrieved from the Last.fm
API and aligned with the Spotify microgenres, as described in
Section 3.2. These most important tracks define the music
preference archetypes corresponding to each cluster.

The most popular tracks in Cluster 0 are mainly attributed to
the microgenres indie rock and alternative rock. Six tracks in the
top 20 have indie rock as the most associated microgenre, three
alternative rock. Eight of 20 tracks have both indie rock as well as
alternative rock within their five most associated microgenres. All
of the 19 tracks among the top 20 that have microgenres on track
level (Si Te Quisieras Venir by the Los Planetas does not have
microgenres assigned on a track level), are associated with indie
rock or alternative rock; most of them with both. Only a few
tracks in later positions (thus, not in the top 10) deviate from
these genres (e.g., Set Fire to the Rain by Adele ranks on position
14 and is associated with the genres soul and pop, Hurt by Johnny
Cash is on position 16 and is mainly associated with country and
folk, or Get Lucky by Daft Punk feat. Pharrell Williams on the
position 20 that is associated with electronic). With 5 of the 20
most frequently listened tracks in this cluster, the band Arctic
Monkeys is particularly dominant in that cluster.

While indie rock and alternative rock are represented in the
most frequently listened tracks in Cluster 0 as well as Cluster 1,
the tracks in Cluster 1 differentiate insofar from those in Cluster 0
as there is a tendency that the tracks include pop or electronic
elements (e.g., VCR by The xx associated with electronic and

FIGURE 13 | Countries in Cluster 8 on a map.

15We released the full list of the top 20 tracks (and corresponding artists) per cluster
and all microgenre annotations (for each track and artist).
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TABLE 2 | The 10 most popular tracks per cluster. Playcount refers to the total number of listening events by the users in each cluster.

Cluster no. Track title Artist Playcount within cluster Track genres

0 Mr. Brightside The Killers 4,248 rock, indie rock, alternative rock
Uprizing Muse 3,955 alternative rock, rock, progressive rock
I Bet You look Good on the Dancefloor Arctic Monkeys 3,835 indie rock, rock, alternative rock
Fluorescent Adolescent Arctic Monkeys 3,772 indie rock, rock, alternative rock
VCR The xx 3,597 electronic, indie rock, indie pop
Reptilia The Strokes 3,394 indie rock, rock, alternative rock
Mardy Bum Arctic Monkeys 3,345 indie rock, rock, alternative rock
Hoppípolla Sigur Rós 3,336 post-rock, ambient, post-rock
There Is a light that Never Goes out The Smiths 3,289 new wave, rock, brit-pop
Teardrop Massive Attack 3,260 triphop, electronic, downtempo

1 Set Fire to the Rain Adele 20,460 soul, pop, singer/songwriter
Little Lion Man Mumford & Sons 20,160 folk, indie folk, banjo
Otherside Red hot Chili Peppers 19,469 rock, alternative rock, funk
Radioactive Imagine dragons 19,338 rock, indie rock, alternative rock
VCR The xx 19,220 electronic, indie rock, indie pop
Heart Skipped a Beat The xx 19,004 electronic, indie rock, rock
Teardrop Massive Attack 18,810 triphop, electronic, downtempo
Sail AWOLNATION 18,728 electronic, rock, indie rock
The Pretender Foo Fighters 18,636 rock, alternative rock, grunge
Cosmic Love Florence + the Machine 18,486 indie pop, rock, pop

2 There Is a Light That Never Goes Out The Smiths 7,479 new wave, rock, brit-pop
Mr. Brightside The Killers 7,128 rock, indie rock, alternative rock
Little Lion Man Mumford & Sons 6,979 folk, indie folk, banjo
R U Mine? Arctic Monkeys 6,408 indie rock, rock, alternative rock
I Bet You look Good on the Dancefloor Arctic Monkeys 6,302 indie rock, rock, alternative rock
I Miss You Blink-182 6,295 rock, punk, pop-punk
Teardrop Massive Attack 6,187 triphop, electronic, downtempo
The Cave Mumford & Sons 6,150 folk, indie folk, banjo
VCR The xx 6,147 electronic, indie rock, indie pop
Harder Better Faster Stronger Daft Punk 6,083 electronic, house, electronica

3 It Ain’t Cool To Be CRAZY ABOUT YOU George Strait 19,048 country, traditional country,
Electric Feel MGMT 18,108 electronic, electronica, indie pop
Little Lion Man Mumford & Sons 17,089 folk, indie folk, banjo
Time to Pretend MGMT 16,802 electronic, indietronica, electronica
Flume Bon Iver 16,032 folk, singer/songwriter, indie folk
In the Aeroplane Over the Sea Neutral Milk Hotel 15,753 indie rock, folk, lofi
Midnight City M83 15,635 electronic, electro-pop, electro
1901 Phoenix 15,591 indie pop, electronic, indie rock
Such Great Heights The Postal Service 15,481 electronic, indie pop, electronica
The Cave Mumford & Sons 15,412 folk, indie folk, banjo

4 Mephisto Dead Can Dance 2,468 ambient, medieval, folk
3 Libras A Perfect Circle 1,284 alternative rock, progressive rock, rock
Ariane Nova 1,238 –

World’s End Hatsune Miku & Megurine Luka 1,228 –

Mr. Brightside The Killers 1,109 rock, indie rock, alternative rock
Las Fuerzas Dënver 1,080 –

Jeremy Pearl Jam 1,069 Grunge, rock, alternative rock
Reckoner Radiohead 1,064 Alternative rock, rock, experimental
Them Bones Alice in Chains 1,057 Grunge, rock, alternative rock
Nude Radiohead 1,050 Alternative rock, rock, electronic

5 Häaden Two Robert Fripp 11,616 –

The Smile Phase 7,898 alternative rock, progressive rock, art rock
Ibidem Phase 7,858 alternative rock, art rock, rock
Perdition Phase 7,752 rock, psychedelic rock, progressive rock
Transcendence Phase 7,690 psychedelic rock, rock, alternative rock
Hypoxia Phase 7,614 psychedelic rock, rock, alternative rock
Static Phase 6,988 rock, progressive rock, space rock
A Void Phase 6,913 rock, alternative rock, indie rock
Static (live) Phase 6,877 progressive rock, psychedelic rock, rock
Evening On My Dark Hillside Phase 6,793 psychedelic rock, rock, alternative rock

(Continued on following page)
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indie rock or Cosmic Love by Florence + the Machine). Four
tracks in the top 20 have indie pop as the most associated
microgenre, 3 electronic. Ten tracks in the top 20 have indie
rock as well as alternative rock as tagged microgenres. For all
tracks except Hurt by Johnny Cash and Lonely Day by System of a
Down, pop is one of the tagged microgenres. Electronic is
associated with 9 of the 20 tracks.

In Cluster 2, two tracks that are most associated with folk are
among the most popular tracks in the cluster (e.g., Little Lion
Man or The Cave by Mumford & Sons). Among the top 20, there
are 4 tracks associated mostly with folk. Tracks that are associated
with electronic and pop (e.g., Judas by Lady Gaga) and tracks
associated with triphop and electronic (e.g., Teardrop by Massive
Attack) are also strongly represented. We recall Figure 10
showing that Cluster 2 has the highest average age in our
sample of Last.fm users. The high average age of users in
Cluster 2 and the tendency to like folk music are in line with
previous research that found that folk music is more established
among older users compared to younger ones (Schedl and
Ferwerda, 2017; Schedl and Bauer, 2017). Yet, the results in
Schedl and Ferwerda (2017) suggest that the preference for
folk music is more prevalent for female than for male users;
this seems not to be fully in line with the characteristics of Cluster
7 at first sight because the female/male ratio in Cluster 2 is not
particularly high (Figure 12). Delving deeper on the track
characteristics, though, we notice that previous works
considered a rather coarse-grained taxonomy of genres,

whereas the work at hand considers microgenres. Table 2
shows that the 10 most popular tracks in Cluster 2 reflect
indie rock (4 out of 10), alternative rock (3 out of 10), and
(indie) folk (2 out of 10). In previous work (Schedl and Ferwerda,
2017), alternative (rock) was associated rather with male users
(typically with younger users, though). So the indie and
alternative element may suggest a rather male audience.

While the most listened song in Cluster 3 is associated with
country (It Ain’t Cool To Be Crazy About You by George Strait),
this cluster shows a lot of tracks that are tagged with folk among
the most popular ones for that cluster; 4 of the top 20 have it as
their most associated microgenre. The folk tracks are either
associated with folk and the singer/songwriter genre (e.g.,
Flume or Holocene by Bon Iver) or are attributed to indie folk
(e.g., In the Aeroplane Over the Sea by Neutral Milk Hotel).
Eleven tracks in the top 20 are associated with electronic or
electronica within the track’s five most tagged microgenres.

The most popular tracks in Cluster 4 are predominantly
associated with progressive rock or alternative rock (e.g., 3
Libras by A Perfect Circle). Within the top 20 of this cluster,
10 tracks are associated with some form of progressive rock and 2
with progressive metal, 14 with alternative rock, and 9 with some
form of metal (i.e., progressive metal, alternative metal, doom
metal, or with the gernic term metal). An interesting deviation
from the dominance of the rock genre is the trackWorld’s End by
Hatsune Miku & Megurine Luka, who is a vocaloid and j-pop
artist. Indeed, all playcounts for that track are generated by a

TABLE 2 | (Continued) The 10 most popular tracks per cluster. Playcount refers to the total number of listening events by the users in each cluster.

Cluster no. Track title Artist Playcount within cluster Track genres

6 If I Could Sophie Zelmani 13,420 singer/songwriter, pop, folk
I Can’t Change [New Song] Sophie Zelmani 13,409 –

Without God Katatonia 8,024 doom metal, metal, death metal
Day Katatonia 7,947 doom metal, metal, progressive metal
Lady of the Summer Night Omega 6,787 Rock
Sorrow Pink Floyd 6,485 progressive rock, rock, classic rock
Equinoxe Part 5 Jean Michel Jarre 6,457 ambient, electronic rock,
Gammapolis Omega 5,958 classic rock, progressive rock, space rock
To Know You Sophie Zelmani 4,783 singer/songwriter, folk, pop
To Know You (Alt. Version) Sophie Zelmani 4,641 –

7 Set Fire to the Rain Adele 17,247 soul, pop, singer/songwriter
Fluorescent Adolescent Arctic Monkeys 13,007 indie rock, rock, alternative rock
Parade Garbage 11,770 rock, alternative rock, pop
National Anthem Lana Del Rey 11,602 indie pop, pop, triphop
Skyscraper Demi Lovato 11,451 pop, pop-rock, disney
Come & Get It Selena Gomez 11,387 pop, electro-pop, dubstep
Pumped Up Kicks Foster the People 11,171 indie pop, pop, indie rock
Dark Paradise Lana Del Rey 11,056 pop, indie pop, chamber-pop
Heart Attack Demi lovato 10,606 pop, electro-pop, pop-rock
You Only Live Once The Strokes 10,501 indie rock, rock, alternative rock

8 Another Bottle Down Asking Alexandria 19,779 post-hardcore, metal-core, screamo
Only You Savage 17,657 disco, pop, new wave
. . .Meltdown Enter Shikari 16,320 post-hardcore, trance-core, electronic
What You want Evanescence 12,345 rock, alternative metal, Gothic rock
Gandhi Mate Gandhi Enter Shikari 12,273 post-hardcore, electronic, dubstep
Dexter Ricardo Villalobos 11,889 minimal, minimal techno, electronic
Paradise Circus Massive Attack 9,922 triphop, electronic, downtempo
Teardrop Massive Attack 9,891 triphop, electronic, downtempo
Kill Mercy within Korn 9,484 numetal, electronic, dubstep
Seven Nation Army The White Stripes 9,380 rock, alternative rock, indie rock
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single user 9 from Chile (CL); thus, this track is not representative
for Cluster 4. A further deviation is constituted by Por la Ventana
by Gepe associated with the genres folk and singer/songwriter,
which is listened to by more than one user.

The most popular tracks in Cluster 5 are mostly associated
with the psychedelic rock genre. Interestingly, 11 of the 20 most
popular tracks are by the band Phase. An exception from the
strong psychedelic rock representation in this cluster is the track
Slow Me Down by Anneke van Giersbergen, a track that is
associated with the singer/songwriter genre, while the artist is
mainly associated with alternative rock and metal, but also pop-
rock.

Cluster 6 is characterized by a dichotomy of genres among the
most popular tracks. On the one hand, there are tracks associated
with singer/songwriter and pop (e.g., If I Could and I Can’t
Change by Sophie Zelmani). On the other hand, there is a strong
representation of doom metal with tracks such as Without God
and Day by Katatonia. Interestingly, both Sophie Zelmani as well
as Katatonia are present with several songs among the most
popular tracks in this cluster. Recalling Figures 10–12 that
visualize the user characteristics for the eight clusters, uneven
distribution with respect to the female/male ratio and the
generally low playcount per user (compared to the other
clusters), and the young age of its users may be characterizing
aspects for Cluster 6 that result in this heterogeneous picture with
singer/songwriter and pop tracks, on the one hand, and the strong
representation of doom metal, on the other. For instance, Schedl
and Ferwerda (2017) found pop being more popular among
female than male users, while it is the opposite for metal.
Interestingly, the results of Schedl and Ferwerda (2017)
(considering a global sample, also relying on data from
Last.fm) suggest that the age group in which the users of
Cluster 7 range, is the age group that likes pop least of all
analyzed age groups, and for liking of meta this age group
ranges in the middle field.

The only cluster that includes many popular tracks
associated with the pop genre is Cluster 7. Tracks include
Skyscraper by Demi Lovato, Come and Get It by Selena
Gomez, and Dark Paradise by Lana Del Rey. Next to the
generic tag pop (19 occurrences), the most mentioned
microgenres among the top 20 in this cluster are poprock
(16 occurrences) and indie pop (13 occurrences), followed by
britpop (9), electro pop (6), dance pop (6), dream pop (4), synth
pop (3), chamber pop (3), alternative pop (3), teen pop (2), art
pop (2), power pop (1), jangle pop (1), and k-pop (1). The high
ratio of female users (Figure 12) might be a cohesive
characteristic in this cluster as already previous work has
shown that female users are more inclined to listen to pop
music than male users, in particular in the Last.fm community
(Schedl and Bauer, 2017; Schedl and Ferwerda, 2017).

Cluster 8 is characterized by the post-hardcore genre. Seven
tracks in the top 20 in this cluster are tagged with post-hardhore,
five of those have it as their most tagged microgenre. Triphop (8
tracks), screamo (6 tracks), and hardcore (6 tracks) are also well
represented among the top 20 in this cluster. Popular tracks
include Another Bottle Down by Asking Alexandria, . . .
Meltdown by Enter Shikari, and Nineteen Fifty Eight by

A Day to Remember. An interesting deviation from this post-
hardcore association are, for instance, Dexter by Ricardo
Villalobos (minimal techno) and Cookie Thumper! by Die
Antwoord (hip hop), which are also among the most popular
tracks in this cluster.

Summarizing the answer to RQ1, which we addressed here (To
what extent can we identify and interpret groups of countries that
constitute music preference archetypes, from behavioral traces of
users’music listening records?), we find nine clusters of countries,
with each of the clusters representing amusic preference archetype
that reflects different nuances of music preferences in terms of the
Spotify microgenres. While some music preference archetypes
represent countries with geographical proximity (e.g., Cluster 6
and Cluster 8) and some archetypes share linguistic similarities
(e.g., Cluster 3 and Cluster 8), others include interesting outliers
(e.g, Iceland (IS) in Cluster 0, Israel (IL) for Cluster 4, or Brazil
(BR) in Cluster 7).

4.2 Music Track Recommendation Using
Country Context
In the following, we first detail the setup of the conducted
evaluation experiments for the music track recommendation
task, including evaluation protocol, baselines, and performance
metrics (Section 4.2.1). Subsequently, we report and discuss the
obtained results and answer the related research questions
(Section 4.2.2).

4.2.1 Experimental Setup
After preselection and filtering (cf. Section 3.1), the dataset
contains the listening histories of 54,337 Last.fm users. To
carry out the recommendation experiments, we split the data
into training, validation, and test sets. For each of validation and
test set, 5,000 users are randomly sampled. The original VAE
model (Liang et al., 2018) and our extended VAE architecture
that integrates the user context models described in Section 3.3
are trained on the full listening events of the uses in the training
set. For users in the validation and test set, 80% of all listening
events are randomly selected to act as an input for the model, and
the remaining 20% are used for evaluation. The NDCG@100
metric (see below) on the validation set is used to select the
hyperparameters of our models.

Baselines: In addition to comparing our extended context-
aware model to the original VAE recommendation architecture
(Liang et al., 2018), we also include two baselines in the
experiments, i.e., variants of most popular (MP) and implicit
matrix factorization (IMF). In the most popular (MP) models, a
popularity measure is calculated for each track based on its sum of
listening events across users in the training set. We implemented
and evaluated three flavors of MP: MP global computes the most
popular tracks on a global scale (independent of country); MP
country considers only the top tracks in the country of the target
user; MP cluster considers only the top tracks within the cluster
the country of the target user belongs to. We then rank tracks
accordingly and use the ranking to produce recommendations,
which are evaluated on the 20% split of the test set (for each user).
To make results between the baseline and our proposed model
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comparable, we exclude tracks that are part of a user’s known
listening history, i.e., listening events from the remaining 80%. As
a second baseline, we adopt a collaborative filtering approach
using implicit matrix factorization (IMF) according to Koren et al.
(2009). We use the implementation provided by Spotlight16 with
random negative sampling (50:50), 128 latent dimensions, and a
pointwise loss function.

Performance metrics: To quantify the accuracy of the
recommendations, we use the following metrics (similar to
Liang et al., 2018; Schedl et al., 2018; Aiolli, 2013), which we
report averaged over all users (in the test set). Thus, for each user
in the test set, we generate recommendations using the data in the
training set and compare the recommended tracks with the
actually listened tracks of the user present in the test set in
order to calculate the performance metrics. Note that we use the
definitions common in recommender systems research, which are
partly different from the ones traditionally used in information
retrieval. Precision@K for user u:

P@K(u) � 1
K
∑
i�1

K

rel(i), (9)

where K is the number of recommended items and rel(i) is an
indicator function signaling whether the recommended track at
rank i is relevant to u or not. This means that rel(i) � 1 if the
recommended track at rank i can be found in the test set; rel(i) �
0 if not. Recall@K for user u:

R@K(u) � 1
min(K,Nu)∑i�1

K

rel(i) (10)

where Nu is the number of items in the test set that are relevant to
u, K is the size of the recommendation list, and rel(i) is the same
indicator function as used for Precision@K. When comparing
Precision@K and Recall@K, Precision@K can be seen as a measure
of the usefulness of recommendations and Recall@K as a measure
of the completeness of recommendations. Normalized discounted
cumulative gain@K:

NDCG@K(u) � DCG@K(u)
IDCG@K(u) (11)

where IDCG@K(u) is the ideal DCG@K for user u, achieved
when all items relevant to u are ranked at the top, and
DCG@K(u) is the discounted cumulative gain at position k for
user u. It is given by:

DCG@K(u) � ∑
i�1

K rel(i)
log2(i + 1) (12)

where rel(i) is the same indicator function as used for Precision@
K and Recall@K. In contrast to those two performance metrics,
NDCG@K is a ranking-basedmetric, which also takes the position
of the recommended tracks into account since higher-ranked
items are given more weight.

We compute and report all metrics for K � 10 and K � 100,
simulating users who are just interested in a few top
recommendations and users who inspect a large part of the
recommendation list, respectively.

4.2.2 Results and Discussion
Table 3 shows the performance achieved on the test set, averaged
over all users in the test set. As a general observation, we see that
the VAE-based approaches outperform the baselines (MP and
IMF) by a substantial extent. Of the baselines, IMF performs
superior to MP global while the other two variants of MP (MP
country and MP cluster) yield better results than IMF. The poor
performance of MP global is somewhat surprising since several
studies (e.g., Tiwari et al., 2018; Lai et al., 2019; Vall et al., 2019)
have shown that recommendation approaches leveraging
popularity information—e.g., always suggesting the items that
are most frequently consumed—often achieve highly competitive
accuracy values in offline experiments, despite the obvious fact
that such recommendations will likely not be perceived very
useful by the users. A likely reason is that we perform track
recommendation while the earlier mentioned works commonly
adopt an artist recommendation setup. In an artist
recommendation scenario, it is very likely that a user has
consumed every highly popular artist at least once. This leads
to a high performance of a popularity-based approach. In the
track recommendation scenario adopted in the work at hand, the
granularity of items (tracks vs. artists) is higher and—in
comparison to the artist recommendation scenario—it is not
necessarily the case that the most popular tracks have been
consumed by most users at least once. Overall, a popularity-
based approachmay work well for artist recommendation but less
so for the more fine-grained track recommendation.

On the other hand, we also note that the other two variants
(MP country and MP country) achieve much better results than
MP global, even outperforming the IMF approach. This might be
explained by the more narrow but better user-tailored
consideration of the country-specific mainstream (cf. Bauer
and Schedl, 2019), which is reflected in the computation of
most popular tracks in the MP country and MP cluster models.

Comparing the proposed context-aware extensions of the
VAE recommendation architecture to the original VAE (Liang
et al., 2018), we observe a clear improvement of all metrics when
integrating the user context models. This improvement is
achieved irrespective of the actual user model we adopt
(models 1–4). Precision@10 increases by 3.4 percentage points
(7.1%) from VAE to the best performing VAE context model
(model 4) that leverages the distances between users and country
centroids. Likewise, Precision@100 increases by 1.7 percentage
points (5.5%). Recall@10 and Recall@100 improve, respectively,
by a maximum of 3.5 percentage points (7.2%), realized by model
4, and by 1.8 percentage points (4.9%), realized by model 2. In
terms of NDCG, the largest gains are realized by VAE context
model 2 that incorporates cluster ids. NDCG@10 improves by 3.7
percentage points (7.4%) compared to VAE; NDCG@100
increases by 2.1 percentage points (5.5%).

We investigate statistical significance of the results as follows.
For all usedmetrics (i.e., P@10, P@100, R@10, R@100, NDCG@10,16https://maciejkula.github.io/spotlight/factorization/implicit.html
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NDCG@100), data is non-normally distributed (Kolmogorov-
Smirnov test, p≤ 0.001). Accordingly, we use the Friedman test
(Friedman, 1937) to test the models’ performances for differences.
For each metric, the models differ at a significance level of
p≤ 0.001. In pairwise comparisons using a Wilcoxon signed-
rank test (Wilcoxon, 1945), for each metric, the tests indicate
that VAE outperforms each of the baselines (i.e, MP an IMF) at a
significance level of p≤ 0.05. Furthermore, we perform a pairwise
comparison, again using Wilcoxon’s signed-rank test, for each
metric and each pair of pure VAE and one of the models
integrating context information (i.e., models 1–4). For each
metric and each of the models 1–4, the models 1–4 outperform
the pure VAE (without context integration) at a significance level
of p≤ 0.05. Yet, the Friedman test did not indicate any significant
differences of the models 1–4 for any of the metrics.

Returning to the original research questions, we answer RQ2
(Which are effective ways to model the users’ geographic
background as a contextual factor for music
recommendation?) by pointing to the fact that all four user
models proposed are effective to significantly improve
recommendation quality in terms of precision, recall, and
NDCG measures. We note, however, that performance
differences between the four user context models are largely
negligible. In summary, leveraging country information for
music track recommendation (either as country or cluster
identifier, or as distances between the target user and each
cluster’s centroid) is beneficial compared to not including any
country information.

As for RQ3 (How can we extend a state-of-the-art
recommendation algorithm to include user context
information, in particular, our geo-aware user models?), we
proposed an extension of a state-of-the-art recommender
based on a VAE architecture (Liang et al., 2018), i.e., we
devised a multi-layer generative model in which contextual
features can influence recommendations through a gating
mechanism.

To investigate the generalizability of our findings to a dataset
with different characteristics, we perform an additional
experiment as follows. We estimate performance on a more
diverse dataset in terms of track popularity than the one that
considers only the top 122,442 tracks. More precisely, we create a
second dataset by first considering all tracks that have been
listened to as least 100 (instead of 1,000) times, yielding
1,012,961 unique tracks. We then randomly sample, three
times, exactly the same amount of tracks (122,442) as used in
our main experiment, and we evaluate the VAE approaches on
each randomly sampled subset, averaging performance measures
across the three runs.17 Results can be found in the five last rows
of Table 3 (models named “VAE sampling . . .”). While we
observe an obvious decrease in performance when considering
items further down the popularity scale, results are still in line
with the findings obtained on the main dataset. In particular, our
extended VAE models (models 1–4) still outperform the original
VAE architecture, with respect to all performance metrics.

5 CONCLUSIONS, LIMITATIONS, AND
FUTURE WORK

In summary, we approached the task of identifying country
clusters and corresponding archetypes of music consumption
preferences based on behavioral data of music listening that
originates from Last.fm users. Together with the users’ self-
disclosed country information, we used the listening data (369
million listening events created by 54 thousand Last.fm users) as
an input to unsupervized learning techniques (t-SNE and
OPTICS), allowing us to identify nine archetypal country
clusters. We discussed these clusters in detail with respect to

TABLE 3 | Results with respect to Precision@K, Recall@K, and NDCG@K metrics.

Model P@10 P@100 R@10 R@100 NDCG@10 NDCG@100

MP global 0.048 0.033 0.048 0.036 0.050 0.037
MP country 0.203 0.156 0.203 0.157 0.209 0.166
MP cluster 0.193 0.149 0.193 0.149 0.199 0.158
IMF 0.080 0.072 0.080 0.064 0.081 0.071
VAE 0.482 0.309 0.486 0.367 0.500 0.383
VAE country id (model 1) 0.513 0.325 0.517 0.384 0.532 0.402
VAE cluster id (model 2) 0.515 0.326 0.520 0.385 0.537 0.404
VAE cluster dist (model 3) 0.513 0.325 0.518 0.384 0.534 0.403
VAE country dist (model 4) 0.516 0.325 0.521 0.383 0.535 0.403
VAE sampling 0.224 0.099 0.239 0.255 0.252 0.223
VAE sampling country id (model 1) 0.230 0.102 0.245 0.259 0.259 0.227
VAE sampling cluster id (model 2) 0.231 0.101 0.246 0.259 0.261 0.227
VAE sampling cluster dist (model 3) 0.232 0.102 0.245 0.258 0.246 0.258
VAE sampling country dist (model 4) 0.225 0.100 0.239 0.255 0.255 0.223

For all metrics, pairwise comparison using a Wilcoxon signed-rank test shows significant improvements from MP global to IMF to VAE to all VAE models with context (models 1–4); there
are no significant differences between the 4 VAEmodels that use context, though. The five rows at the bottom (“VAE sampling . . .”) show results for another set of experiments in which we
randomly sampled (three times) exactly 122,442 tracks from about 1 million tracks instead of computing performance measures on the top 122,442 tracks of the whole collection as done
in the main experiment.

17Please note that computational limitations prevented us from running
experiments on all 1,012,961 tracks, even more so on the entire LFM-1b dataset.
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their corresponding users’ music preferences on the track level
and the linguistic, historical, and cultural backgrounds of the
countries in each cluster. Additionally, we considered the
distribution of age, gender, and average playcount per user as
aspects in our analysis.

Furthermore, we proposed a context-aware music
recommendation approach operating on the music track level,
which integrates different user models that are based on the user’s
country or country cluster. To this end, we extended a variational
autoencoder (VAE) architecture by a gating mechanism to add
contextual user features. We considered four user models, either
encoding the target user’s country information (model 1) or cluster
information (model 2) directly, or as a feature vector containing the
distances between the target user and all cluster centroids (model 3)
or all individual country centroids (model 4). In evaluation
experiments, using precision, recall, and NDCG as performance
metrics, we showed that all VAE architectures outperformed a
popularity-based recommender and implicit matrix factorization,
which served as our baselines. Results further revealed superior
performance of all VAE variants that include context information
vis-à-vis VAE without context information, regardless of how
country information is encoded in the user model.

Yet, this work has potential limitations with respect to the
underlying dataset, which we discuss in the following. There are
social patterns that define how and why people access music
(López-Sintas et al., 2014). A dataset containing logs of the
interactions with an online platform can, thus, only capture
those listening events of people using any form of online
music platform. According to López-Sintas et al. (2014), music
access patterns are structured by an individual’s social position
(indicated by education) and life stage (indicated by age). A bias
with respect to the users’ social background can therefore be
expected for our dataset. For instance, the dataset has a strong
community bias toward users in the United States (US), while
other countries are less represented. Furthermore, user
information is self-reported by the users, which may be prone
to errors and may not necessarily reflect the truth. For instance,
some users report as their country Antarctica (AQ) or a birth year
of 1900, which both do not seem overly plausible—especially in
combination (also see Figure 1 in Schedl, 2017). Moreover, some
users show very high playcounts for single tracks, which are not
popular among other users. This also affects six of the tracks
presented in our discussion of the music preference archetypes.
For instance, World’s End by Hatsune Miku & Megurine Luka
has a playcount of 1,228 generated by a single unique user.
Similarly, One Thing’ by Runrig and Resemnare by Valeriu
Sterian both have exactly one unique listener, who generated a
playcount of 4,000 and 3,591, respectively. The track Ariane by
Nova has 3 unique users; I Can’t Change [New Song] and To
Know You (Alt. Version)—both by Sophie Zelmani—have 5
unique users each, whereof almost all playcounts were
generated by only one single user. For both songs, this is the
same user. Notably, also the preferences of the Last.fm users in
our dataset toward certain genres differ from the genre
preferences of the population at large. For instance, we found
that rap and R&B as well as classical music is substantially
underrepresented in Last.fm listening data (Schedl and Tkalcic,

2014), which we use in the present study. To some extent, these
limitations related to the dataset could be alleviated in the future
by performing further data cleansing and preprocessing steps,
e.g., threshold-based filtering of exorbitant playcounts by a
minority of listeners.

Another limitation of the work concerns a characteristic of
t-SNE, which is that the cost function t-SNE uses is non-convex.
This, in turn, may result in a different embedding of data points in
the low-dimensional output space when the t-SNE algorithm is run
on different software or hardware configurations.18 Please note that
this does not only concern the present work, but potentially the
entire (large) body of research that employs t-SNE for visualization.
It is, however, an aspect that is barely discussed. We address this
issue in the current work by providing exact details on our
implementation and used software, and by releasing to the
public the source code, parameter configurations, and dataset
used in our experiments.

In this work, we used simple mechanisms to integrate country
information as context factors into a VAE architecture. While
they worked out well, i.e., outperformed a non-context-aware
VAE, we expect even better performance with other user models,
whose creation will be part of future research. For instance, we
contemplate using probabilistic models to describe the likelihood
of each user to belong to each cluster (or country), e.g., via
Gaussian mixture models. Given the actual country of a user, we
could then analyze in more detail users whose stated country is
not the country with highest probability. Such a framework could
also be used to diversify recommendations according to a user-
selected country, fulfilling user intents such as “I want music of
my preferred genre, but listened to by Brazilians”.

Furthermore, it would be worthwhile to compare the clustering
and recommendation results we achieved here on the track level to
results achieved whenmodelingmusic preferences on the artist level,
keeping all othermethodological details the same. In particular, since
previous studies have predominantly shown that popularity-based
music recommendation systems perform well when recommending
artists, such a comparison could be enlightening.

Finally, we aim at delving into the possible cultural, historical, or
socio-economic reasons that may underlie the differences in music
preferences between the identified archetypes. To this end, we will
consider theories and insights from cultural sciences, history,
sociology, and economics, and connect our music preference
archetypes to these theories. Another promising path for further
analysis of the country clusters is to consider dimensions rooted in
the music market or the music content itself, including
considerations such as local demand, production of music
styles, reception of music styles, diffusion, etc., as well as
dimensions related to the users’ listening habits.

18Note that our results are stable for a given machine, software configuration, and
parameter setting since we fixed the seed of the random number generator.
Running the code on other configurations, however, may result in a slightly
different visualization and clustering.
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On the Adaptability of Recurrent
Neural Networks for Real-Time Jazz
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Jazz improvisation on a given lead sheet with chords is an interesting scenario for studying
the behaviour of artificial agents when they collaborate with humans. Specifically in jazz
improvisation, the role of the accompanist is crucial for reflecting the harmonic and metric
characteristics of a jazz standard, while identifying in real-time the intentions of the soloist
and adapt the accompanying performance parameters accordingly. This paper presents a
study on a basic implementation of an artificial jazz accompanist, which provides
accompanying chord voicings to a human soloist that is conditioned by the soloing
input and the harmonic and metric information provided in a lead sheet chart. The model of
the artificial agent includes a separate model for predicting the intentions of the human
soloist, towards providing proper accompaniment to the human performer in real-time.
Simple implementations of Recurrent Neural Networks are employed both for modeling the
predictions of the artificial agent and for modeling the expectations of human intention. A
publicly available dataset is modified with a probabilistic refinement process for including all
the necessary information for the task at hand and test-case compositions on two jazz
standards show the ability of the system to comply with the harmonic constraints within the
chart. Furthermore, the system is indicated to be able to provide varying output with
different soloing conditions, while there is no significant sacrifice of “musicality” in
generated music, as shown in subjective evaluations. Some important limitations that
need to be addressed for obtaining more informative results on the potential of the
examined approach are also discussed.

Keywords: automatic accompaniment system, music generative system, real-time music interaction, music
improvisation, machine learning, long short-term memory

INTRODUCTION

The use of automatic systems for generating music is a captivating vision and a multidisciplinary
research problem studied for decades. The diversity of music generative systems relies on their
different objectives and the musical content that they produce, such as chord progressions,
melody generation, accompaniment arrangements and counterpoints (Briot et al., 2019).
Already from the late 1950s and early 1960s, composers such as Lejaren A. Hiller (Hiller Jr
and Isaacson, 1957) and Iannis Xenakis (Xenakis, 1963) explored stochastic models for
algorithmic music generation.
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With the recent advances in the computational capabilities of
modern computers, there is an exploding tendency of generative
system proposals, incorporating complex artificial neural
network architectures as a technical foundation. Conditional
generative models based on Generative Adversarial Networks
(GANs) have been used to combine unpaired lead sheet and
MIDI datasets for generating lead sheet arrangements. The lead
sheet arrangement can be defined as the process that receives a
lead sheet as input and outputs piano-rolls of a number of
instruments to accompany the melody of a given lead sheet.
Liu and Yang (2018) proposed an architecture that comprises
three stages (lead sheet generation, feature extraction and
arrangement generation) in order to generate eight-bar phrases
of lead sheets and their arrangement. The feature extraction stage
is responsible to compute symbolic-domain harmonic features
from the given lead sheet in order to condition the generation of
the arrangement. Wang and Xia (2018) developed a framework
for generating both lead melody and piano accompaniment
arrangements of pop music. Specifically, they consider a chord
progression as input and propose three phases for generating a
structured melody with layered piano accompaniments. First, the
harmony alternation model receives a given chord progression in
order to transform it to a different one that fits better with a
specified music style based on Hidden Markov Models (HMMs).
Then, the melody generation model generates the lead melody
and the layered accompaniment voices through seasonal ARMA
(Autoregressive Moving Average) processes. The final phase
implements the melody integration model which is responsible
for integrating the melody voices together as the final piano
accompaniment.

On the other hand, Recurrent Neural Networks (RNNs) are
often used to generate sequences of musical content in a stepwise
manner, where the network input is the previous note and output
is considered the predicted note to occur on the following time
interval (Mozer, 1994). In a similar manner, RNNs with Long
Short-Term Memory (LSTM) cells have been utilized for
generating blues style melodies conditioned by a given chord
progression (Eck and Schmidhuber, 2002). By definition, LSTM-
based models have the ability to correlate and capture the
temporal context of a sequence, thus simulating the human
cognitive abilities for predicting sequential information. Also,
RNNs have proven efficacy on modelling complex musical
structures such as polyphonic chorales. For instance, the
DeepBach system was trained to generate four-part chorales in
the style of J. S. Bach (Hadjeres et al., 2017). Generative systems
can be also constrained by music theory rules via a reinforcement
learning mechanism as it is demonstrated by Jaques et al. (2017).
In addition to the music theory rules, Boulanger-Lewandowski
et al. (2012) employed probabilistic harmonic and rhythmic rules,
based on distribution estimators conditioned by a RNN that is
trained to discover temporal dependencies from polyphonic
music scores of varying complexity.

Other approaches take into account the chord progressions for
providing longer musical structures. For instance, in the work of
Choi et al. (2016), a text-based LSTM network is employed for
capturing the relationships within text documents that contain
symbols of chord progressions. Another example based on chord

progressions is the JamBot system (Brunner et al., 2017) that
generates music in two steps. The bottom network is a LSTM
architecture that predicts a chord progression based on a chord
“embedding,” while a second LSTM generates polyphonic music
based on the predicted chord progression received from the
bottom network. Nevertheless, this approach lacks the ability
of modeling interactions within a polyphonic musical ensemble.
In order to overcome this limitation, Chu et al. (2016) proposed a
hierarchical architecture, where each level is a RNN that generates
different accompaniments for the song. A monophonic melody is
generated first, followed by the accompanying chords and drums.

In the scope of the Impro-Visor (Jazz Improvisation Advisor)1

project, Johnson et al. (2017) proposed a neural network
architecture consisting of two LSTM-based sub-networks that
jointly learn to predict a probability distribution over future notes
conditioned on past notes in the melody. Additionally,
researchers from the same laboratory developed the JazzGAN
system (Trieu and Keller, 2018) that utilizes RNN-based GANs to
improvise monophonic jazz melodies over given chord
progressions. Their results indicated that the proposed system
was capable to address frequent and diverse key changes, as well
as unconventional and off-beat rhythms, while providing
flexibility with off-chord notes. Other proposals incorporate
music theory grammar in combination with LSTM neural
networks to generate jazz music. For instance, Wang et al.
(2019) extracted the interval, duration and note category
information from jazz MIDI files and trained a LSTM model
to learn the transition probabilities between notes. Then they take
advantage of the music grammar in order to arrange and output
the generated sequence of notes.

LSTM networks have been also tested for generating jazz
music compositions constrained by a given performer’s style.
In particular, De Prisco et al. (2017) developed a three staged
generative system, consisting of a One-Class Support Vector
Machine (OCSVM) for learning the performing style of a
specific jazz musician, an LSTM network to generate patterns
relevant to the learned style and a splicing system to compose
melodic lines in the given style. Splicing systems are formal
models for generating languages (sets of words), inspired by a
recombinant behavior of DNA (De Felice et al., 2015). A music
splicing composer requires to define an alphabet, an initial set and
a set of rules. Another example of a complex system that utilizes
LSTM networks for learning statistical correlations between
instruments within a jazz piano trio ensemble (piano, bass,
drums) was proposed by Hori et al. (2017). They trained a
LSTM architecture to learn the relationship between the
musical features of the piano performance that is applied on
top of a Hidden Markov Model (HMM), which is responsible to
segment the bass and drums performance feature spaces. Overall
the system is capable to generate coherent rhythmic patters and
bass melodies as accompaniments to a piano solo input. However
the authors specify that their model can be further improved due
to the lack of available jazz datasets. To this regard, Hung et al.

1https://www.cs.hmc.edu/∼keller/jazz/improvisor/ – last accessed February
1st, 2020.
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(2019) employed transfer learning techniques aiming to solve the
problem of jazz data insufficiency. They proposed a Bidirectional
Gated Recurrent Unit (BGRU) Variational Autoencoder (VAE)
generative model trained on a dataset of unspecified genres as
source and a Jazz-only dataset as target.

It is worth noting that only a few projects experiment with
real-time creative scenarios where a human improviser is
accompanied by an automatic agent without any musical
constraints. To this end, Kaliakatsos-Papakostas et al. (2012)
proposed an accompaniment system that employs Differential
Evolution and Genetic Algorithms for producing the
accompanying music. Another approach to real-time music
generation for jazz improvisation that was proposed by
Hutchings and McCormack (2017), implements a composite
system with an LSTM-based melody agent, which was trained
on chord progressions of jazz “standard” compositions and a
rule-based harmony agent that manipulates precomposed
melodies for improvising new themes and variations. The
composition flow between the agents is controlled by a rating
system that rewards harmonic consistency and melodic
continuity.

Aim of this paper is to examine the characteristics of
musical accompaniment that an artificial agent can provide
in real-time to a human improviser, in a setting similar to
typical forms of jazz improvisation, i.e. under the constraints
of previously agreed upon harmonic sequence and metrical
structure. Software tools and methods that are able to generate
“static” accompaniment to human soloists, exist for a long
time (Ferguson, 2005). The paradigm discussed in this paper
includes “spontaneous” alterations in accompaniment
responses of an artificial agent both in terms of rhythm and
harmony, based on the improvisation of a human soloist. The
algorithmic cornerstone of the examined approach relies on
LSTM RNNs architectures. The motivation for pursuing and
studying such an approach in modeling human-machine
improvisation and the reasons for choosing to examine
basic deep learning neural networks as an algorithmic
backbone is analysed in the following section.

MOTIVATION, RESEARCH QUESTIONS
AND CONTRIBUTION

In music, “masterful” violation of anticipation has been identified
as key component for the emergence of emotion, meaning,
concepts and overall interest (Huron, 2006). Furthermore,
anticipation is shaped by the exposure to stimuli with
common characteristics, a fact that induces relations between
fundamental mechanisms of music understanding and statistical
learning (Huron, 2006). The basic principles of jazz
improvisation evolve around the violation of expectation, with
improvising musicians constantly attempting to introduce
meaningful novelty in the way they express themselves and
communicate with other musicians in real-time. Therefore,
jazz improvisation could be described as an exemplar for
studying the core-mechanism of music cognition: interplay
between anticipation and violation thereof.

Communication between improvising musicians is a key-
point for achieving interesting and meaningful improvisations.
In jazz improvisation, specifically, the role of each musician is
manifold; the most prominent characteristics of the role of each
musician, according to how they relate with the study at hand, can
be summarised as follows:

1. Preserve harmonic and rhythmic characteristics of a piece.
Typical jazz improvisation incorporates a standard jazz
melody with a fixed harmonic description in a fixed metric
structure. These components, however, are expected to be
creatively altered by improvising musicians (usually not the
metric structure though), towards creating meaningful
violations of anticipation on the overall harmonic and
rhythmic domain. For instance, chord substitutions are
usual, either by introducing chords that include alternate
voicings, extensions or even by including new chords
altogether (e.g. tritone substitution).

2. Express original ideas. Violation of harmonic/rhythmic
expectations is expected to come “with a reason.” A
common approach for soloists to attempt to build new
musical phrases when improvising, is by creatively
modifying and combining “standard” jazz licks, a fact that
helps towards building and violating anticipation. Jazz licks in
the (muscle) memory of the soloist are products of statistical
learning, built through practicing and listening multiple jazz
pieces, excerpts and phrases.

3. Communicate musically with the improvisation/
accompaniment of other musicians. In a broad sense, the
role of the accompanist is to highlight musical choices of
the soloist, or, even further, understand the intentions of
the soloist and improvise accompaniments accordingly.
Therefore, communication, on the side of the accompanist,
includes predicting the intentions of the soloist and preparing
the response in a timely manner, given that proper
accompaniment needs to be provided concurrently with the
solo. Jazz musicians, as musicians in any other field, develop a
common perception that, in the examined case, can be
described as the integration of a “similar” statistical model
both in the soloist and the accompanist; this model allows the
accompanist to roughly predict the imminent soloist choices
during improvisation.

To this end, an artificial agent that is able to perform basic
musical accompaniment in real-time under the aforementioned
setting needs to have: 1) the ability to comply with harmonic and
metrical constraints set by an input chart; 2) a model of
anticipating for imminent actions of the human soloist; 3) a
dictionary of accompanying voicings for given chords that is rich
enough for producing diverse/interesting accompaniment; and 4)
the ability to “adapt” its playing style (both in terms of voicings
and rhythm) to the anticipated choices of the human soloist.
Since the problem description incorporates statistical learning
and given the fact that deep neural networks have exhibited
impressive capabilities in capturing the prominent statistical
behaviour in large amounts of training data, this study
examines the incorporation of such machine learning tools for
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the task at hand. Therefore, the research questions revolve around
the suitability of deep learning methods for the described
improvisation setting, under the methodological framework
that is presented in Materials and Methods. These questions
are formulated as follows:

A. Is the presented framework able to capture “static” harmonic
information of a given chart in a setting of dynamic
constraints (changing playing style of the human soloist)?

B. To what extent is the proposed system responding to
dynamic components introduced by the human agent?

C. Is the examined setup suitable for real-time performance,
both in terms of robustness and computational feasibility?

Recent advances in deep learning include the development of
systems that are able to generate music that adapts to pre-
configured constraints. In general terms, such systems either
compose music sequentially or non-sequentially. In sequential
systems (e.g. as the one presented by Makris et al. (2019)), the
decision for each note depends only on previous notes, with
additional potential constraints. In non-sequential systems (e.g.,
as Deep Bach; Hadjeres et al. (2017)), new notes are inserted by
sampling, forming “dynamic” constraints for notes that are
inserted later on, regardless of time precedence – i.e. notes at
the end of the piece could be inserted at an earlier stage than notes
earlier in the piece, depending on randomly sampled priorities. In
one sense, a system that is able to perform real-time
accompaniment, as described in the presented study, needs to
be able to both compose sequentially (since time moves forward
while performing) and comply with constraints that change as the
composition is constructed (since the human soloist is expected
to violate the expectations reflected by the solo predictive model).

The main contribution of this paper is that it studies the
characteristics of a complex, multi-layered neural network where
both static and dynamic components are combined for
preforming predictions. The real-time improvisation setup
discussed herein offers a well-defined platform of
experimentation with potential interest for real-world
applicability and clearly defined research questions.

MATERIALS AND METHODS

The proposed system provides real-time accompaniment to a
human musician, based on a given harmonic description of lead
sheet chord symbols. The role of the system is to reflect harmonic
information as given in the lead sheet and also interpret this
information with variability, responding to the predicted implied
harmonic variability of a human solo. To this end, data need to
include information about: 1) metric structure, for letting the
system become aware of measure changes; 2) lead sheet
information, for learning to comply with given lead sheet
chords; 3) a human solo channel, for learning to respond to
what the human soloist is expected to play; and 4) an
accompaniment channel, for learning to play proper
accompaniment chords/voicings over the given lead sheet
chords. Up to our knowledge, such a dataset containing all the

aforementioned properties is missing from the research
community. To this end, Data Preparation describes the
processes for constructing a dataset by starting off with an
initial dataset collected from online resources that covers most
of the requirements. Afterwards, we present the proposed system
that incorporates two layers of information processing: the first
for predicting the imminent steps of the human performance and
the second for integrating this prediction along with other static
constraints (i.e. metric and lead sheet information) for making
the final chord accompaniment prediction.

Data Preparation
The initial dataset2 (Liu and Yang, 2018) contains all necessary
information about the pieces, including tempo, beat, melody and
the chords on a lead sheet. It should be noted that only lead sheet
information is included in this dataset without actual notation of
the accompaniment chords. In order to address this issue we
performed a harmonic enrichment procedure that is discribed in
detail later in this section. Furthermore, the beat information
indicates the start of a measure. A single time step corresponds to
the 1/24 of a quarter note, a time resolution which is fine enough
to even represent rhythm values of sixty-fourth triples. The
melody and the accompanying chords are represented as 128-
key piano rolls with the aforementioned time resolution, where
each active note at each time instance is annotated with the
respective velocity value. With this representation however, the
information about a note repetition is potentially obscured. For
instance, there is no differentiation between a single note/chord of
a quarter duration (24 time steps) and two successive notes/
chords with a duration of an eighth per note (12 time steps). A
time resolution reduction from 24 steps per beat (quarter) to two
steps per beat was performed, such that each time step was
represented by 1/2 of a quarter note, which is an eighth note.
In other words, from each beat (24 time steps) we only kept the
melodic information of the first and 13th time step, by splitting
each quarter (24 time steps) in half. Thus keeping only the first of
each of the two subsets of time instances (12 time steps).

In order to construct a suitable and compact representation of
chord information in the form of a jazz standard lead sheet, we
use the information extracted from the accompanying chords
channel of the initial dataset. Specifically, instead of keeping the
velocity values of the chord notes and their MIDI numbers, we
only kept the pitch class of their root, as well as the type of those
chords, by using ready-made functions from the MIT
Music21 Python library3, which contains a set of functions for
computer-aided musicology. Moreover, we chose to represent the
jazz standard chord information as a binary vector of size 15,
where the first 12 bits represent the root pitch class information,
while the remaining 3 bits represent major/minor third, perfect/
augmented/diminished fifth and major/minor seventh
respectively. The reason for performing such an abstraction
for representing chord information on the lead sheet is

2https://github.com/wayne391/lead-sheet-dataset/ – last accessed February
1st, 2020.
3https://web.mit.edu/music21 – last accessed February 1st, 2020.
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motivated by the fact that jazz musicians need a fundamental
description of harmony, which they can manipulate/alter in a
creative manner. The employed scheme allows for basic chord
types to be represented, e.g., major/minor triads, dominant
seventh, major seventh, (half) diminished and augmented.

As mentioned earlier, the initially obtained dataset includes
information only about lead sheet chords, without specific
notation of actual accompanying chords. Hence we
constructed the actual accompaniment chords algorithmically
by applying a basic “harmonic enrichment” process, where the
lead sheet chords are transcribed into actual accompanying
chords with different inversions and diverse rhythmic patterns.
The enrichment process begins by assigning accompaniment
chords to positions of lead sheet chord symbols. After that,
inverted chords are probabilistically inserted after the initially
placed chords. The probability of chord insertion at a specific
position on the score depends on the time passed without a chord
event (the more the time, the higher the probability) and whether
there is a melodic note event (melody notes increase the
probability for chord insertion). Aim of this process is to
introduce rudimentary variability in the accompaniment
channel, based on the lead sheet chord symbols and the
melodic rhythm.

Since the melody channel is monophonic, the 128-sized
vector representation of each note in the melody channel is
flattened to its single non-zero value (the actual MIDI number
of that note). For the accompaniment channel, i.e. the actual
notes that the system is intended to learn, a dictionary of all the
unique chords in the training set is created and each chord is
represented by its index in the dictionary. Practically, the

“flattened” values for both the melody and the
accompaniment parts allow us to apply one-hot
representation of the respective data streams. Before the
harmonic enrichment process, the initial dictionary of the
accompaniment chords incorporated 476 chord classes,
while after the augmentation and before the transposition
to all the possible 12 pitches we had 847 classes. Finally,
after all the data preparation procedure, including the
augmentation and transposition processes, we ended up
having 2677 unique accompanying chord classes.

System Architecture and Real-time
Considerations
As it is already mentioned, the generated accompaniment part
should be related to the soloist’s intentions on the future melody
notes to be played. To this regard, the proposed system
architecture depicted in Figure 1, consists of two sub-systems,
namely the Human Agent RNN (HA-RNN) and the Artificial
Agent RNN (AA-RNN), that rely on the effectiveness of the
LSTM recurrent neural network (RNN) for modeling sequential
information.

The overall system receives as input successively overlapping
windows comprising 16 time steps, representing events within a
time resolution of eighth notes. The window slides one step/
eighth note at each iteration, which occurs in every eighth
successively. Information for each time step includes:

• The metric information (bt).
• The soloist’s melodic/solo part (ht).

FIGURE 1 | A detailed overview of the proposed system architecture. Consecutive overlapping time frames are processed by the two sub-systems. The HA-RNN
predicts the soloist melody that is later used by the AA-RNN for predicting the accompaniment chords for the following time step.

Frontiers in Artificial Intelligence | www.frontiersin.org February 2021 | Volume 3 | Article 5087275

Kritsis et al. RNNs for Jazz Improvisation Accompaniment

159

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


• The accompaniment chords that are expected to be learned
from the system (mt).

• The chord information in the abstract lead sheet style
described in Data Preparation (ct).

Since the HA-RNN is responsible for predicting the solo melody
of the following time step (ht+1), it excludes the accompaniment
channel from its input, while having the beat and chord information
channels one eighth ahead from the current melody. On the other
hand, the AA-RNN takes under account all the information
channels, in addition to the predicted P(ht+1) of the HA-RNN,
in order to anticipate the accompaniment chord for the future eighth
(mt+1). Both agents at their core, implement a similar neural network
architecture. Firstly, the input time frame is processed by the bottom
“Dense linear” (fully connected) layer, where it gets embedded to a
fixed size dimension through a linear transformation. Next, the
embedded output is further encoded into a latent space through the
LSTM RNN layer. Then, the top “Dense linear” layer receives the
encoded LSTM output and applies a linear transform to a space with
a dimensionality equal to the number of the target classes. Finally the
output of the top fully connected layer passes through a softmax
function, resulting to a probability distribution for the target classes
(P(h) and P(m)). The final prediction is the class with the highest
probability.

As a proof-of-concept, we trained a basic system with batches of
128 samples. The embedding dimension of the bottom fully
connected layer was equal to the size of the feature dimension of
the input frame, whilst the RNN layer contained 64 LSTM cells. We
used the Adam optimisation algorithm (Kingma and Ba, 2014) for

the minimization of the cross entropy cost function with a learning
rate of 0.001. Both the HA-RNN and AA-RNN architectures were
implemented using the TensorFlow 2.0 framework (Abadi et al.,
2016) and trained for at least 1,200 epochs on a computer equipped
with the NVIDIA Tesla K40c GPU, an Intel Core i7-5820K CPU at
3.30 GHz and 32 GB DDR4 RAM at 2133 Mhz. With the
aforementioned experimental setup, we observed that the average
time of the overall system to predict an accompaniment chord was
around 0.66ms (0.31ms for the HA in addition to 0.35ms for the
AA). This fact indicates the feasibility of the proposed system to be
adopted in real-time applications, however a thorough evaluation of
the real-time capabilities of the presented method needs to be
examined as future work. In this regard, we developed a prototype
web application based on MIDI.js and Tensorflow.js javascript
libraries for testing the adaptability of the proposed model to the
user’s soloing input in a real-time setting. The model implementation
and training code of the LSTM models, as well as the real-time web
interface are hosted on a GitHub repository4. Since the project
continuously evolves, the online repository will be updated with
future developments and improvements.

RESULTS

The results are oriented towards answering the research
questions given in Motivation, Research Questions and
Contribution, i.e. whether and to what extent is the system

TABLE 1 | System interpretations of chart chords for “All of Me” without solo (top) and with random (bottom) solo at epoch 59, shown as pitch class sets.

No solo
Chart chord

System interpretations

[0, 4, 7, 11] [0, 4, 7, 11] (80) [0, 3, 8] (4) [2, 7, 10] (12) [0, 2, 4, 5, 7] (24)
[0, 4, 7, 10] [0, 5, 7, 10] (1) [2, 6, 11] (1) [2, 4, 6, 8] (4) [2, 4, 8, 11] (1) [0, 4, 7, 10] (25)
[2, 4, 8, 11] [2, 6, 9, 11] (1) [2, 4, 8, 11] (185) [0, 4, 7] (4) [0, 4, 7, 10] (18)
[1, 4, 7, 9] [1, 4, 7, 9] (168) [2, 5, 9] (4) [2, 7, 10] (4)
[2, 5, 9] [2, 5, 9] (128)
[0, 4, 9] [0, 4, 9] (64)
[0, 2, 6, 9] [0, 2, 6, 9] (64)
[0, 2, 5, 9] [1, 4, 7, 9] (8) [0, 2, 5, 9] (72)
[2, 5, 7, 11] [2, 5, 7, 11] (79)
[0, 5, 9] [0, 5, 9] (32)
[0, 5, 8] [0, 5, 9] (4) [0, 5, 8] (28)

Random solo
Chart chord

System interpretations

[0, 4, 7, 11] [4, 6, 8, 10, 11] (1) [4, 6, 8, 11] (3) [2, 6, 11] (3) [0, 4, 7, 11] (80)
[0, 3, 8] (4) [2, 7, 10] (12) [0, 2, 4, 5, 7] (24)

[0, 4, 7, 10] [0, 4, 7, 10] (32)
[2, 4, 8, 11] [0, 4, 7] (4) [2, 4, 8, 11] (186) [0, 4, 7, 10] (18)
[1, 4, 7, 9] [1, 4, 7, 9] (168) [2, 5, 9] (4) [2, 7, 10] (4)
[2, 5, 9] [2, 5, 9] (128)
[0, 4, 9] [0, 4, 9] (64)
[0, 2, 6, 9] [0, 2, 6, 9] (64)
[0, 2, 5, 9] [1, 4, 7, 9] (8) [0, 2, 5, 9] (72)
[2, 5, 7, 11] [2, 5, 7, 11] (79)
[0, 5, 9] [0, 5, 9] (32)
[0, 5, 8] [2, 5, 9] (4) [0, 5, 8] (28)

Numbers in parentheses show the total time steps that a system-generated PC-set occurs under the respective chart PC-set.

4https://github.com/kosmasK/JazzICat.
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able to capture the harmonic lead sheet constraints, to what
extent is the system influenced by different soloing styles and
what are possible limitations for applying this approach in
real-time settings with current technologies. To this end, two
test jazz standards, “All of Me” and “Au Privave” are
examined in different and diverse artificial improvisation
settings, that simulate two extreme scenarios: where the
human player 1) is not playing any note during the solo
(consecutive occurrences of pause events) and 2) is playing
random notes within two octaves (as a form of extremely
complex improvisation). The responses of the system under
these two settings for each piece are analysed for different
epochs of training (randomly sampled across all training
epochs), providing insights about how harmonic
compliance is varied and how the existence of a solo

affects system responses (adaptability) at different stages
of training. Since technical limitations led to building a
system with limited computational power (incorporating
solely a single LSTM layer with few neurons for the
artificial agent) and keeping time resolution to eight notes,
getting useful feedback from musicians through exhaustive
real-time experiments was not possible. In this regard, a
preliminary empirical evaluation based on listening tests
was conducted by comparing generated and original
accompaniments. We maintain, however, that the results
presented herein indicate that employing more
sophisticated architectures for (at least) the part of the
artificial agent would lead to a system that both adapts to
the playing style of the user and preserves harmonic
consistency according to the given lead sheet.

TABLE 2 | System interpretations of chart chords for “All of Me” without solo (top) and with random (bottom) solo, shown as pitch class sets.

No solo
Chart chord

System interpretations

[0, 4, 7, 11] [3, 5, 8, 11] (2) [0, 2, 9, 10] (1) [2, 4, 9] (1) [1, 3, 10, 11] (1) [1, 3, 6, 10] (1)
[0, 3, 8] (1) [2, 5, 10] (1) [0, 4, 7, 11] (103) [3, 7, 10] (13) [0, 5, 9] (3)

[0, 4, 7, 10] [0, 3, 8] (2) [2, 5, 10] (1) [0, 4, 7, 10] (23) [2, 5, 7, 11] (3) [2, 7, 11] (3)
[2, 4, 8, 11] [2, 4, 8, 11] (162) [4, 8, 11] (1) [4, 7, 11] (4) [0, 3, 5, 9] (1) [3, 6, 8, 11] (1)

[1, 4, 9] (1) [1, 4, 7, 9] (12) [1, 4, 6, 10] (3) [2, 6, 8, 11] (3) [2, 5, 9] (6)
[0, 2, 5, 9] (3) [0, 2, 6, 9] (3)

[1, 4, 7, 9] [1, 4, 7, 9] (124) [2, 4, 7, 11] (9) [1, 2, 6, 9] (11) [2, 4, 8, 11] (7) [1, 3, 10, 11] (4)
[2, 6, 8, 11] (4) [5, 8, 11] (3) [2, 8, 11] (3)

[2, 5, 9] [2, 5, 7, 9] (15) [2, 7, 10] (4) [2, 5, 9] (94) [1, 3, 10, 11] (3) [1, 5, 8, 10] (3)
[3, 7, 10] (6)

[0, 4, 9] [0, 4, 9] (12) [3, 6, 10] (1) [1, 6, 9] (1) [4, 8, 11] (1) [0, 2, 4, 9] (45)
[2, 5, 9] (3)

[0, 2, 6, 9] [0, 2, 6, 9] (54) [0, 4, 9] (5) [0, 3, 6, 10] (1) [0, 5, 8] (1) [0, 3, 5, 8] (1)
[2, 5, 10] (1)

[0, 2, 5, 9] [2, 5, 10] (13) [0, 2, 5, 9] (36) [0, 3, 7, 10] (2) [3, 7, 10] (1) [1, 3, 4, 11] (8)
[0, 5, 8] (12) [2, 4, 7, 11] (4) [2, 5, 7, 10] (4)

[2, 5, 7, 11] [2, 5, 7, 11] (65) [2, 3, 7, 10] (4) [0, 3, 7] (4) [0, 5, 8] (3) [2, 5, 9, 10] (3)
[0, 5, 9] [0, 4, 5, 9] (28) [2, 5, 9] (4)
[0, 5, 8] [0, 5, 8] (28) [3, 7, 10] (4)

Random solo
Chart chord

System interpretations

[0, 4, 7, 11] [3, 5, 8, 11] (1) [1, 3, 6, 8] (2) [2, 4, 9] (1) [0, 4, 5, 9] (1) [1, 3, 6, 10] (1)
[2, 7, 10] (1) [0, 5, 9] (5) [0, 4, 7, 11] (86) [3, 7, 10] (5) [0, 2, 4, 5, 7] (14)
[0, 4, 7] (2) [2, 4, 5, 9] (1) [1, 5, 8, 11] (1) [2, 5, 10] (1) [0, 2, 6, 9] (1)

[0, 3, 6, 8] (1) [1, 4, 9] (2) [2, 5, 9, 10] (1)
[0, 4, 7, 10] [0, 4, 7, 10] (28) [1, 5, 8] (1) [0, 4, 5, 9] (1) [2, 7, 11] (2)
[2, 4, 8, 11] [2, 4, 8, 11] (177) [1, 4, 7, 9] (12) [4, 8, 11] (2) [4, 7, 11] (3) [1, 4, 8, 11] (2)

[1, 6, 9] (2) [2, 4, 5, 9] (1) [3, 6, 9, 11] (1) [2, 4, 7, 11] (1)
[1, 4, 7, 9] [1, 4, 7, 9] (140) [1, 2, 6, 9] (5) [2, 4, 8, 11] (5) [1, 4, 6, 10] (4) [1, 6, 8, 11] (5)

[0, 2, 6, 9] (6) [2, 4, 7, 11] (4) [2, 4, 5, 9] (1)
[2, 5, 9] [2, 5, 9] (95) [2, 5, 7, 9] (30) [2, 7, 10] (2) [0, 4, 7] (1)
[0, 4, 9] [0, 2, 4, 9] (30) [2, 5, 9] (2) [0, 4, 9] (25) [1, 3, 10, 11] (2) [2, 4, 6, 7] (2)

[4, 8, 11] (1)
[0, 2, 6, 9] [0, 2, 6, 9] (46) [0, 4, 9] (8) [1, 3, 10, 11] (2) [2, 5, 7, 10] (2) [0, 4, 7, 9] (2)

[2, 7, 11] (2)
[0, 2, 5, 9] [0, 2, 5, 9] (49) [1, 3, 10, 11] (3) [0, 2, 5, 8] (2) [0, 4, 7] (6) [0, 1, 5, 8] (2)

[2, 5, 7, 10] (6) [3, 7, 10] (3) [2, 6, 9] (2) [0, 3, 5, 8] (2) [2, 5, 10] (2)
[0, 5, 8] (1) [0, 2, 5, 7] (1)

[2, 5, 7, 11] [2, 5, 7, 11] (62) [2, 5, 9, 10] (2) [2, 5, 10] (8) [2, 3, 7, 10] (1) [2, 7, 11] (1)
[5, 8, 11] (1) [0, 4, 7, 10] (1) [0, 2, 5, 9] (1) [0, 4, 7] (1)

[0, 5, 9] [0, 4, 5, 9] (28) [2, 5, 9] (4)
[0, 5, 8] [0, 5, 8] (28) [3, 7, 10] (4)

Numbers in parentheses show the total time steps that a system-generated PC-set occurs under the respective chart PC-set.
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Compliance with Lead Sheet Harmony
This section examines the ability of the system to play chords that
correspond to the chord symbols on the lead sheet chart. This
part of the study concerns the compliance with the basic
harmonic guidelines provided by the chart and, therefore,
comparison is presented on the level of pitch class sets (PC-
sets). To this end, the lead sheet chart chords are translated to
their corresponding pitch classes as well as the interpretations of
the system. To obtain insight on how training epochs influence
the harmonic compliance of the system, results are taken from an
early and a late epoch of training (59 and 1,251). Table 1 (epoch
59) and Table 2 (epoch 1,251) show the chord symbols and the
responses of the system in “All of me” when no solo (top) and
random solo (bottom) was provided; similarly, Tables 3, 4 show
the responses of the system in “Au Privave” without and with
random solo.

Regrading “All of Me”, Table 1 shows that in most cases the
exact harmonic description in the lead sheet chart is reflected by
the system. Initially, it should be noted that harmonic deviations
mostly concern the first few starting measures of each piece,
where the system has not incorporated any memory in its
decisions. The beginning chord of the chart, [0, 4, 7, 11],
appears to have the most alterations, some of which are
clearly erroneous (e.g. the [4, 6, 8, 10, 11] interpretation that
was composed for random solo). Figure 2A shows the first eight
measures and Figure 2B measures 33 to 40, composed by the
system for “All of Me” in a real-time simulation setting with
random solo (the solo part is not shown). The “erroneous”
choices appear to be artefacts of the initial delay of the system
to catch up with the constraints and start building up harmonic
memory; Figure 2A shows that the first three chord shown in the
lower part of Table 1 are a result of this delay. Other harmonic
deviations concern the delay of the system in complying with
“unexpected” chord changes – given that most pieces in the
dataset are pop songs. For instance, some misinterpretations of
the E7 chord ([2, 4, 8, 11]) are a result of delay in
“comprehending” the unexpected change; this is shown in the
third bars of both (A) and (B) parts of Figure 2. System-generated
chords for “Au Privave” follow a similar pattern in terms of
harmonic compliance but with fewer erroneous harmonic
deviations, as evident in Table 3.

Variability
The chords generated by the system in each improvisation setting
for each piece are expected to be different, since different
improvisations from the human soloist should trigger different
responses. Those differences are examined by direct comparison
of the system generated chords for the two improvisation modes,
i.e. the chords generated by the system without human solo and
with a random solo. A general figure that describes the differences
between the system-generated chords in both examined pieces
with (random) and without solo, is given by computing the
percentage of chords that are different per time step for
accompaniment sessions comprising four repetitions of the
entire chart, with (random) and without solo. In “All of Me”
only 2% of system-generated chords are different between
random and no solo for epoch 59, which jumps to 60% for

epoch 1,251, showing that the system decisions are affected
slightly by the presence of a solo in early epochs, while the
effect of solo is more evident as epochs progress. In “Au Privave”
this percentage starts from 74% during epoch 59 and jumps to
84% at epoch 1,251, showing that system generations are more
sensitive to the presence of a chord solo for this piece.

For observing the differences within each improvisation
session, the system-generated chords in four repetitions of the
entire chart are examined repetition-by-repetition – forming four
quarters of the entire composition, referred to as “quartiles”.
Tables 5–8 show the quartile similarities for “All of Me” (epochs
59 and 1,251) and “Au Privave” (epochs 59 and 1,251)
respectively, without (left) and with random solo (right). In
“All of Me” and with an absence of solo, both in the early and
the late epoch of training only the first repetition is different from
the remaining three, as show in the first rows and columns of both
matrices in Tables 5, 7. The insertion of the random solo does not
influence the overall result in the early epoch (right matrix in
Table 5), but for the late epoch the influence is evident (right
matrix in Table 7). Therefore, the example of “All of Me” shows
that training the system for more epochs allows some sense of
responsiveness to human input, as evident by the variability that
emerged from the random solo. In “Au Privave”, on the other
hand, the incorporation of the random solo (Table 6) influences
each repetition even from early training epochs, therefore
creating different variations of the chart in each of the four
iterations (except repetition three and four that differ only by
1%); variations for this test piece are even more evident in the
more progressed training epoch (Table 8).

TABLE 3 | System interpretations of chart chords for “Au Privave” without solo
(top) and with random (bottom) solo at epoch 59, shown as pitch class sets.

No solo
Chart chord

System interpretations

[0, 5, 9] [2, 5, 10] (6) [0, 5, 9] (61) [0, 5, 9, 10] (12)
[2, 5, 7, 10] [2, 5, 7, 10] (60) [0, 4, 7, 9] (36) [2, 5, 9] (16)
[0, 4, 7, 10] [0, 4, 7, 10] (35) [2, 5, 8, 10] (4) [1, 3, 7, 10] (4) [0, 2, 6, 9] (4)
[0, 3, 7, 10] [0, 3, 7, 10] (16)
[1, 3, 5, 9] [0, 3, 5, 9] (1) [0, 3, 6, 8] (2) [5, 8, 11] (9)
[2, 5, 8, 10] [2, 5, 10] (1) [2, 5, 8, 10] (28) [3, 6, 10, 11] (3)
[1, 5, 8, 10] [1, 5, 8, 10] (16)
[1, 3, 7, 10] [2, 5, 8, 10] (16)
[0, 4, 7, 9] [2, 5, 7, 10] (8) [0, 2, 5, 9] (4) [0, 4, 7, 9] (4)
[0, 2, 6, 9] [0, 4, 5, 9] (12) [2, 5, 9, 10] (4) [0, 2, 5, 9] (4) [0, 2, 6, 9] (12)

Random solo
Chart chord

System interpretations

[0, 5, 9] [2, 5, 10] (3) [0, 5, 9] (73) [0, 5, 9, 10] (3)
[2, 5, 7, 10] [0, 5, 9] (1) [2, 5, 7, 10] (83) [0, 4, 7, 9] (12) [2, 5, 9] (16)
[0, 4, 7, 10] [0, 4, 7, 10] (46) [0, 2, 6, 9] (1)
[0, 3, 7, 10] [0, 3, 7, 10] (16)
[1, 3, 5, 9] [0, 3, 5, 9] (5) [0, 3, 6, 8] (6) [2, 6, 9, 11] (1) [2, 5, 9, 11] (2)
[2, 5, 8, 10] [2, 5, 10] (1) [2, 5, 8, 10] (31)
[1, 5, 8, 10] [1, 5, 8, 10] (16)
[1, 3, 7, 10] [2, 5, 8, 10] (4) [1, 3, 7, 10] (12)
[0, 4, 7, 9] [0, 4, 7, 9] (16)
[0, 2, 6, 9] [0, 2, 5, 9] (2) [0, 2, 6, 9] (30)

Numbers in parentheses show the total time steps that a system-generated PC-set
occurs under the respective chart PC-set.
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A final examination of variability in the generated chords is
performed by measuring the number of different voicings per
chord symbol on the chart. This is a more detailed examination
of how the PC-sets presented in Tables 1–4 are further split
down in voicing layouts, i.e. what is the variability in terms of
inversions and note doublings in the chords generated by the
system. Figure 3 shows the average number of different
voicings composed by the system for each chord label in
the chart, in form of errorbars for some random epochs
sampled accross all training epochs. In “All of Me” (left
image), each chord symbol in the chart is materialised with
approximately 2.5 different voicing implementations in epoch
59, almost regardless of the presence of solo (red “x” indicates
presence of random melody and blue circle absence thereof).
The system presents increased voicing variability dependence
on human solo input for this piece as the epochs increase. In

the case of “Au Privave,” the tendency of the system to become
more dependent on human input becomes more evident as
epochs increase. The error value of the objective function in a
validation set during training is shown in Figure 4. The typical
decrease that is observed indicates that there is a relation
between error loss and system adaptability to human input,
i.e., better training leads to further variability.

Listening Tests
The dataset used to train the artificial agent, contains a broad
variety of popular western music melodies with simulated
accompaniments derived from an augmentation process.
Furthermore, the quantitative metrics presented in the
previous subsections are not capable to completely capture the
perceptual quality and originality of the chord accompaniments
generated by the proposed system. To this end, we carried out a

TABLE 4 | System interpretations of chart chords for “Au Privave” without solo (top) and with random (bottom) solo at epoch 1,251, shown as pitch class sets.

No solo
Chart chord

System interpretations

[0, 5, 9] [1, 3, 10, 11] (5) [0, 3, 5, 9] (5) [0, 3, 7, 8] (1) [3, 6, 11] (1) [2, 6, 8, 11] (1)
[1, 3, 7, 10] (1) [0, 5, 8] (1) [0, 3, 8] (1) [2, 7, 11] (1) [0, 5, 9] (51)
[5, 8, 11] (4) [2, 7, 10] (4) [0, 5, 7] (3)

[2, 5, 7, 10] [2, 5, 8, 10] (2) [2, 5, 7, 10] (59) [0, 1, 5, 8] (1) [2, 3, 7, 10] (1) [0, 5, 8] (1)
[1, 3, 10, 11] (4) [1, 4, 6, 9] (4) [0, 4, 7, 10] (10) [1, 4, 7, 9] (4) [0, 3, 7] (4)
[2, 5, 10] (4) [0, 2, 5, 7] (12) [0, 2, 5, 9] (3) [0, 2, 7, 10] (3)

[0, 4, 7, 10] [0, 3, 7] (16) [2, 5, 10] (1) [1, 3, 6, 10] (1) [0, 4, 7, 10] (24)
[0, 3, 7, 10] [0, 3, 7, 10] (16)
[1, 3, 5, 9] [0, 3, 5, 9] (1) [0, 1, 5, 8] (8) [1, 3, 7, 10] (3)
[2, 5, 8, 10] [3, 5, 8, 11] (4) [0, 3, 7] (7) [2, 7, 10] (3) [2, 5, 8, 10] (4) [2, 5, 10] (7)

[0, 5, 8] (4) [2, 5, 9] (3)
[1, 5, 8, 10] [3, 5, 7, 10] (10) [1, 3, 7, 10] (6)
[1, 3, 7, 10] [1, 3, 7, 10] (2) [0, 3, 8] (4) [0, 5, 8] (4) [3, 7, 10] (6)
[0, 4, 7, 9] [0, 4, 7, 9] (16)
[0, 2, 6, 9] [0, 2, 6, 9] (12) [0, 3, 7] (8) [0, 5, 8] (4) [0, 5, 7, 8] (4)

Random solo
Chart chord

System interpretations

[0, 5, 9] [1, 3, 10, 11] (4) [2, 5, 7, 10] (5) [3, 5, 8, 10] (1) [1, 3, 7, 10] (1) [1, 3, 5, 8] (1)
[1, 5, 8] (1) [3, 5, 7, 10] (2) [2, 5, 10] (2) [3, 6, 11] (6) [0, 4, 5, 9] (11)

[2, 5, 8, 10] (5) [0, 3, 7] (2) [0, 5, 9] (17) [3, 7, 10] (4) [4, 8, 11] (3)
[0, 3, 5, 9] (3) [3, 5, 8, 11] (2) [0, 4, 7, 10] (2) [0, 5, 8] (3) [0, 3, 8] (1)

[2, 5, 7, 10] [1, 3, 7, 10] (2) [0, 3, 7] (1) [0, 3, 8, 10] (1) [2, 6, 8, 11] (1) [2, 5, 7, 10] (57)
[5, 6, 8, 11] (2) [0, 3, 5, 9] (2) [2, 5, 9] (7) [1, 3, 10, 11] (4) [1, 4, 6, 9] (3)
[1, 5, 8, 10] (1) [2, 3, 7, 10] (3) [1, 4, 9, 11] (2) [1, 4, 6, 10] (3) [0, 5, 7, 9, 10] (1)
[0, 5, 8, 10] (1) [1, 4, 9] (1) [0, 5, 9] (1) [2, 5, 10] (4) [5, 8, 11] (1)

[0, 2, 3, 5, 10] (1) [3, 6, 8, 11] (1) [0, 2, 5, 9] (1) [0, 3, 7, 8] (2) [0, 5, 8] (1)
[2, 7, 11] (1) [2, 5, 9, 10] (1)

[0, 4, 7, 10] [0, 3, 7] (6) [3, 5, 7, 8] (1) [0, 5, 8] (2) [0, 4, 7, 10] (18) [0, 3, 8] (1)
[2, 5, 10] (3) [1, 4, 6, 9] (1) [1, 3, 6, 10] (1) [3, 6, 8, 11] (1) [2, 7, 10] (1)
[0, 3, 7, 8] (2)

[0, 3, 7, 10] [0, 3, 7, 10] (11) [1, 4, 9, 11] (1) [1, 3, 10, 11] (1) [3, 7, 10] (2) [0, 1, 5, 8] (1)
[1, 3, 5, 9] [0, 3, 5, 9] (5) [1, 4, 6, 10] (1) [2, 6, 8, 11] (1) [0, 3, 5, 8] (1) [1, 3, 7, 10] (1)

[0, 5, 8] (1) [0, 3, 7] (3)
[2, 5, 8, 10] [2, 7, 10] (1) [2, 5, 8, 10] (19) [0, 5, 8] (5) [1, 3, 7, 10] (1) [3, 7, 10] (1)

[2, 5, 10] (3) [2, 5, 7, 10] (2)
[1, 5, 8, 10] [1, 3, 6, 10] (1) [1, 3, 5, 10] (3) [1, 3, 7, 10] (2) [3, 5, 7, 10] (3) [1, 5, 8, 10] (6)

[2, 5, 8, 10] (1)
[1, 3, 7, 10] [1, 3, 7, 10] (8) [0, 5, 8] (1) [3, 6, 10] (1) [3, 7, 10] (4) [0, 3, 8] (1)
[0, 4, 7, 9] [0, 4, 7, 9] (12) [0, 2, 3, 5, 10] (1) [2, 5, 7, 10] (1) [1, 3, 5, 6, 8] (1)
[0, 2, 6, 9] [0, 2, 6, 9] (10) [0, 3, 5, 9] (2) [0, 3, 7] (5) [0, 5, 8] (3) [0, 2, 5, 9] (3)

[2, 5, 7, 11] (1) [0, 1, 3, 8] (1)

Numbers in parentheses show the total time steps that a system-generated PC-set occurs under the respective chart PC-set.

Frontiers in Artificial Intelligence | www.frontiersin.org February 2021 | Volume 3 | Article 5087279

Kritsis et al. RNNs for Jazz Improvisation Accompaniment

163

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


subjective evaluation based on listening tests, aiming to study
whether the generated accompaniments are comparable to the
original chords existing in the dataset.

For preparing the listening tests we randomly selected 10 solo
melodies along with their original accompaniments from the
validation set. Then we used the 10 selected melodic parts to

FIGURE 2 | First eight measures (A) and measures 33–40 (B) of system-generated chords over the respective lead sheet chords for “All of Me” with random solo
part (ommitted in the depiction).

TABLE 5 | “Quartile” similarity in system-generated chords in “All of Me” without
(left) and with random solo (right) at epoch 59.

No solo

1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.09 0.09 0.09
2nd qrt 0.09 0.00 0.00 0.00
3rd qrt 0.09 0.00 0.00 0.00
4th qrt 0.09 0.00 0.00 0.00

Random solo

1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.05 0.05 0.06
2nd qrt 0.05 0.00 0.00 0.00
3rd qrt 0.05 0.00 0.00 0.00
4th qrt 0.06 0.00 0.00 0.00

TABLE 7 | “Quartile” similarity in system-generated chords in “All of Me” without
(left) and with random solo (right) at epoch 1,251.

No solo

1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.53 0.53 0.54
2nd qrt 0.53 0.00 0.00 0.00
3rd qrt 0.53 0.00 0.00 0.00
4th qrt 0.54 0.00 0.00 0.00

Random solo

1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.51 0.72 0.19
2nd qrt 0.51 0.00 0.30 0.55
3rd qrt 0.72 0.30 0.00 0.72
4th qrt 0.19 0.55 0.72 0.00

TABLE 6 | “Quartile” similarity in system-generated chords in “Au Privave”without
(left) and with random solo (right) at epoch 59.

No solo

1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.34 0.34 0.35
2nd qrt 0.34 0.00 0.00 0.01
3rd qrt 0.34 0.00 0.00 0.01
4th qrt 0.35 0.01 0.01 0.00

Random solo

1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 1.00 0.99 0.99
2nd qrt 1.00 0.00 0.33 0.34
3rd qrt 0.99 0.33 0.00 0.01
4th qrt 0.99 0.34 0.01 0.00

TABLE 8 | “Quartile” similarity in system-generated chords in “Au Privave”without
(left) and with random solo (right) at epoch 1,251.

No solo

1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.40 0.40 0.41
2nd qrt 0.40 0.00 0.00 0.01
3rd qrt 0.40 0.00 0.00 0.01
4th qrt 0.41 0.01 0.01 0.00

Random solo

1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.65 0.96 0.70
2nd qrt 0.65 0.00 0.91 0.73
3rd qrt 0.96 0.91 0.00 0.83
4th qrt 0.70 0.73 0.83 0.00
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generate their corresponding chord accompaniments with the
proposed artificial agent, thus ensuring that the system receives
novel input, not wielded during training. Accordingly, each
participant was presented with 10 tests; each test included
three audio clips, starting only with the melodic part and
followed by its combinations with the two accompaniments
(original and generated), which are introduced in a random
order so as to avoid any possible biases. The actual audio
excerpts had a duration of around 30 s and looped for six
times to reach 3 min. Then, the participants had to answer the
following three questions for each accompaniment (six questions
per test) in a Likert scale from 1 (low) to 5 (high):

• Q1: Evaluate the overall high-level structure of the accom-
paniment with respect to the introduced melody.

• Q2: Evaluate the harmonic compliance of the accompaniment
with reference to popular western music.

• Q2: Evaluate the rhythmical compliance of the accompaniment
with reference to popular western music.

In our study 21 participants were involved, 15 male and six
female, with the majority being 20–40 years old. All of the

participants were musicians with different levels of expertise,
having at least intermediate knowledge of music theory.
Consequently, we collected a total of 1,260 answers and the
results are presented in Table 9. By inspecting only the mean
values we can observe that the participants evaluated slightly
better the original accompaniments in most questions. However
in order to determine whether this preference is statistically
important, we performed a Wilcoxon rank sum test, having as
null hypothesis that there is no difference between the two
accompaniments. The calculated p-values demonstrated that there
is statistically significant difference between the original and the
generated accompaniments in examples 5, 6, 7, 9 and 10 (highlighted
with bold fonts inTable 9), while we cannot reject the null hypothesis
for the remaining examples. In other words, in 50% of the examples,
we cannot be certain about whether the generatedmusic is inferior to
the original, as far as the examined qualities can define.

Overall, we can say that the accompaniments generated by the
proposed artificial agent had better rhythmical compliance rather
than harmonic, which might be due to the metric information
that is included in the system input. Also, the poor performance
in some examples indicates that the computational capabilities
of a single LSTM layer are limited, thus suggesting more
sophisticated architectures to be tested. We strongly encourage
the reader to visit the online repository and listen to the audio files
of the listening tests.

CONCLUSION

The paper at hand presented a study on how deep neural network
architectures can be employed for simulating a jazz improvisation
setting between a human soloist and an artificial accompanist, based
on a common chord chart. A basic implementation incorporating
deep neural networks was presented and publicly available data were
transformed in a way that all necessary information for the task at
hand became available, i.e. information about metric structure, lead
sheet chords, human-generated solo/melody and system-generated
accompaniment responses. The motivation of this work is based on
modeling the interplay between expectation and its violation by two
improvising musicians (one human and one artificial) with implicit

FIGURE 3 | Error-bars of different voicings employed by the system for each chord label in the chart accross a sampled set of epochs.

FIGURE 4 | Loss of the training objective function in the validation set
across multiple epochs.
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machine learning approaches (deep neural networks) and the
methodology included the development of “a model within a
model”, that allows the artificial agent to have its own model of
expectation for the human improviser. Additional challenges included
the adaptation of large amounts of data to the desired form, leading to
the development of a data enrichment process that generated
variability in the accompaniment parts of the collected pieces.

Results were obtained by testing the system in two real-time
simulation settings: without any assumed human solo and with the
inclusion of a random solo. The responses of the system under these
two settings in two well-known jazz standards (“All of me” and “Au
Privave”) indicated that harmonic compliance with the chart chords
was mainly achieved, except mainly from the beginning of each
accompaniment session where the system needs to “collect memory”
for starting performing better; this is possibly due to the random
initialisation of the states in the LSTMnetworks that are in the core of
the presented basic implementation. Even though it was expected for
the system to be influenced by the incorporation of a human solo, this
was not the case in both examined pieces. Specifically, in “All of Me”
the inclusion of a random solo did not appear to affect the output of
the system, while the system-generated chords exhibited self-
repetition in accompaniment sessions incorporating four iterations
of the chart. Conversely, in “Au Privave” the inclusion of the random
solo affected the system output both by decreasing self-repetition in
four iterations and by increasing the number of chord voicings
employed by the system for given chart chords. In order to

evaluate the perceptual quality of the generated chords, we also
performed a subjective evaluation based on listening tests, where
participants had to compare original and generated accompaniments
given their corresponding melodies, by ranking their harmonic and
rhythmical compliance in a liker scale. AWilcoxon rank sum test on
the responses showed that 50% of the examples were not significantly
inferior to the original accompaniments.

Future research is necessary for a more thorough examination of
such system for real-time accompaniment. The results presented
herein indicate that it is possible to model expectation and violation
thereof for real-time jazz accompaniment with deep neural
networks, however, severe limitations have to be acknowledged
for performing further studies:

1. There is no proper data available with all the necessary
information (lead sheet chords, metric information, solo
and accompaniment). A crucial part of the data, i.e. the
accompaniment, was actually constructed algorithmically
while the solo part included melodies (rather than solos)
with restricted expressional variability. The data enrichment
method that was developed to construct artificial variability
in the data was based on a rudimentary probabilistic
implementation which is not enough for creating consistent
connections that could be learned from the system.

2. The execution time of predictions might be marginally
acceptable for scalable real-time systems. For the presented

TABLE 9 | Results of our listening tests.

Question p-value Accompaniment Median Mean Question p-value Accompaniment Median Mean

Example 1 Q1 0.48121 Original 4.0 3.57 Example 6 Q1 0.04689 Original 4.0 3.71
Generated 3.0 3.33 Generated 3.0 2.9

Q2 0.35198 Original 3.0 3.43 Q2 0.00025 Original 4.0 3.95
Generated 4.0 3.71 Generated 2.0 2.48

Q3 0.6966 Original 4.0 3.95 Q3 0.00826 Original 4.0 3.86
Generated 4.0 3.86 Generated 3.0 2.86

Example 2 Q1 0.30236 Original 4.0 3.57 Example 7 Q1 0.00007 Original 4.0 4.19
Generated 3.0 3.24 Generated 2.0 2.43

Q2 0.44293 Original 4.0 3.52 Q2 0.0 Original 4.0 4.19
Generated 3.0 3.24 Generated 1.0 1.62

Q3 0.66891 Original 4.0 3.52 Q3 0.00005 Original 5.0 4.33
Generated 4.0 3.33 Generated 2.0 2.43

Example 3 Q1 0.26296 Original 4.0 3.67 Example 8 Q1 0.48907 Original 4.0 3.95
Generated 3.0 3.29 Generated 4.0 3.86

Q2 0.08951 Original 4.0 3.86 Q2 0.1159 Original 4.0 4.24
Generated 3.0 3.24 Generated 4.0 3.76

Q3 0.95987 Original 4.0 3.71 Q3 0.88003 Original 4.0 3.9
Generated 4.0 3.71 Generated 4.0 4.0

Example 4 Q1 0.32656 Original 4.0 3.86 Example 9 Q1 0.03353 Original 4.0 3.76
Generated 4.0 3.52 Generated 3.0 3.0

Q2 0.15523 Original 4.0 3.86 Q2 0.00001 Original 5.0 4.24
Generated 3.0 3.38 Generated 2.0 2.24

Q3 0.41361 Original 4.0 3.86 Q3 0.00037 Original 4.0 4.1
Generated 4.0 3.52 Generated 2.0 2.57

Example 5 Q1 0.0543 Original 4.0 3.71 Example 10 Q1 0.00153 Original 4.0 3.95
Generated 3.0 2.9 Generated 2.0 2.76

Q2 0.00022 Original 4.0 3.76 Q2 0.0014 Original 4.0 3.71
Generated 2.0 2.19 Generated 2.0 2.29

Q3 0.00766 Original 4.0 4.0 Q3 0.02863 Original 4.0 3.52
Generated 3.0 2.86 Generated 2.0 2.62

The bold fonts indicate the statistically significant differences provided by a Wilcoxon rank sum test between the original and the generated accompaniments.
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study, time resolution was significantly reduced for making the
system safely compatible with real-time conditions, however,
this fact reduced the expressional capabilities of the system. This
includes not only restricted capabilities for the system responses,
but also restricted capabilities for the system to identify
expressional characteristics of the human soloist.

3. The prominent style found in the datasetwas pop,which comprises
smaller harmonic variability in comparison to jazz. Therefore, the
resulting accompaniment had to be creatively adjusted for more
reflecting complex jazz lead sheet progressions. A consistent dataset
of jazz standard accompaniment sessions is necessary for studying
this problem more deeply.
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