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Editorial on the Research Topic

Circuits of Resident Immunity Regulating Tissue Adaptation and Organ Homeostasis

Each organ in our body serves a determined purpose, follows a distinct development pathway,
contains specialized tissue cells and uses unique mechanisms to sustain homeostasis. The disease
and pathogens threatening our organs are as diverse as themselves and require distinctly organized
responses by the immune system. Patrolling, tissue-resident immune cells populate each organ at
defined ratios and support homeostasis, defense and repair. Classical ab T cells, gd T cells, invariant
T cells, Natural Killer (NK) cells and innate lymphoid cells (ILCs) are effector lymphocytes that aid
in this function through local interactions with the microenvironment. Cytokines, growth factors
and receptor-ligand interactions play critical roles in this process and are compellingly summarized
within this collection of articles centered around the circuits that mediate the adaptation of
lymphocytes to their hosting organ and the challenges to ensure defense and homeostasis.

Sheikh and Abraham start discussing the role of the interleukin (IL)-7 receptor alpha chain, a
cytokine receptor chain used to identify ILCs but also critical for the survival and development of
ILCs. Their review beautifully covers the importance of the IL-7 receptor in ILC biology. In light of
cytokines and other pathways of tissue adaptation, Parker and Ciofani discuss the regulatory
pathways underlying the earliest event during the effector specification of gd T cells in the thymus.
This review summarizes how the fate of gd T cell specification in the thymus shapes their later
effector profile within the organ. Cong andWei discuss the role of human and mouse NK cells in the
lung and provide a detailed insight into their function during homeostasis, infection, and cancer.
Rafei-Shamsabadi et al. review ILCs in allergic skin inflammation. After providing an overview
about ILC subsets and plasticity, the authors outline the role of ILCs in atopic dermatitis and contact
hypersensitivity. They further discuss the role of group 2 ILCs (ILC2s) in the pathogenesis of allergic
skin diseases and close their article with an overarching concept on how these intriguing cells
influence the contextual balance of type I and type II immune responses. Centered around skin
inflammation, Polese et al. analyze the contribution of T cells, NKT cells and ILCs to the
pathogenesis of psoriasis, emphasizing the unique and overlapping contributions of their effector
functions at various stages of this disease. The microenvironmental impact on the phenotype and
function of heart ILC2s is the topic of an original research article by Deng et al., who define ILC2s as
the major innate lymphoid cell (ILC) population in the unique microenvironment of the heart.
Using parabiosis, the authors elegantly show that heart ILC2s are readily present at early life, retain
tissue-residency during the steady state and increased in a model of myocardial necroptosis
org April 2022 | Volume 13 | Article 90111014
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implicating their adaptation to environmental stress. Becker et al.
summarize recent findings on kidney ILCs during homeostasis
and inflammation. Importantly, the authors highlight that
kidney ILC2s constitute a permanent immune population in
both mouse and human, posing as potential therapeutic target
for reinstating. In addition to the innate immune response,
adaptive immunity plays an indisputably important role at
immunoprivileged locations. During cerebral Toxoplasma
gondii infections, an intact immunoproteasome (IP) limits the
cellular protein stress to ensure an effective T cells response.
Deficiency in three key subunits of the IP results in impaired
parasitic control as reported in this original research paper by
French et al. Domingues et al. focus their review on ILC3s as
sentinels and regulators of tissue homeostasis. They discuss the
impact of diets, the microbiota, circadian rhythm and
neuroimmune interactions on ILC3s biology and function. The
interactions with the commensal microbiota, adaptive
lymphocytes, and other immune systems are further reviewed.
Essential regulators of ILCs comprise neural factors, which are
the focus of Jakob et al. Originating from the composition of the
peripheral nervous system and, in particular, the enteric
nervous system, this article outlines neuro-immune crosstalk,
including but not limited to ILCs and the gastrointestinal tract.
Therapeutic applications of neuro-immune interactions, such as
in inflammatory bowel disease and other chronic inflammatory
diseases, are discussed as well. Within the final article of this
collection, Murphy et al. provide a comprehensive review of
human and mouse ILCs across all tissues, emphasizing their
beneficial and detrimental functions during the steady state and
organ specific pathologies and infections. The authors highlight
the underlying disease mechanisms and each ILC subset’s
selective role on cause and consequence.
Frontiers in Immunology | www.frontiersin.org 25
Collectively, these articles excellently summarize current
concepts and mechanisms underlying the adaptation of
lymphocytes to support organ homeostasis and defense.
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The lungs, a special site that is frequently challenged by tumors, pathogens and

other environmental insults, are populated by large numbers of innate immune cells.

Among these, natural killer (NK) cells are gaining increasing attention. Recent studies

have revealed that NK cells are heterogeneous populations consisting of distinct

subpopulations with diverse characteristics, some of which are determined by their local

tissue microenvironment. Most current information about NK cells comes from studies

of NK cells from the peripheral blood of humans and NK cells from the spleen and

bone marrow of mice. However, the functions and phenotypes of lung NK cells differ

from those of NK cells in other tissues. Here, we provide an overview of human and

mouse lung NK cells in the context of homeostasis, pathogenic infections, asthma,

chronic obstructive pulmonary disease (COPD) and lung cancer, mainly focusing on

their phenotype, function, frequency, and their potential role in pathogenesis or immune

defense. A comprehensive understanding of the biology of NK cells in the lungs will aid

the development of NK cell-based immunotherapies for the treatment of lung diseases.

Keywords: natural killer cells, lung, homeostasis, inflammation, infection, lung cancer

INTRODUCTION

The lungs comprise mucosae that are constantly exposed to environmental and autologous stimuli,
and they are sites of high incidence of primary and metastatic tumors (1). Accordingly, a rapid
and efficient immune response that prevents tumorigenesis and pathogen invasion without leading
to excessive inflammation is needed to maintain pulmonary homeostasis. As a type of innate
immune cell, natural killer (NK) cells are regarded as the host’s first line of defense against tumors
and viral infection (2). Moreover, involvement of NK cells in various lung diseases, such as lung
cancer, chronic obstructive pulmonary disease (COPD) and asthma, as well as infections, has been
documented (Table 1) (34, 35, 37–39).

In humans, NK cells are usually defined as CD3−CD56+ cells, and they are divided into
two main subsets with different functions and maturation statuses: CD56brightCD16− and
CD56dimCD16+. The CD56dimCD16+ NK cells are known as a highly differentiated subset with
killer cell immunoglobulin-like receptor (KIR) expression, potent cytotoxicity and the capacity to
induce antibody-dependent cellular cytotoxicity (ADCC), while the less mature CD56brightCD16−

NK cells lack KIR expression but are the major producers of cytokines (40–42). In mice, NK cells
do not express CD56 and have historically been defined as CD3−NK1.1+ cells (and, more recently,
CD3−NKp46+ cells). However, type 1 innate lymphoid cells (ILC1s) and some subsets of type 3
innate lymphoid cells (ILC3s) also express NK1.1 and NKp46 and are easily confused with NK cells
(43, 44). No equivalent subsets to the human NK cell subsets have been established to date among
mouse NK cells. Mouse NK cells are divided into four subsets from the most immature to the

6

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.01416
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.01416&domain=pdf&date_stamp=2019-06-25
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ustcwhm@ustc.edu.cn
https://doi.org/10.3389/fimmu.2019.01416
https://www.frontiersin.org/articles/10.3389/fimmu.2019.01416/full
http://loop.frontiersin.org/people/757319/overview
http://loop.frontiersin.org/people/361046/overview


Cong and Wei The Study of Lung NK Cells

most mature, according to the expression of CD27 and
CD11b: CD27−CD11b−, CD27+CD11b−, CD27+CD11b+, and
CD27−CD11b+ (45–47).

NK cell functions are modulated by the balance between
activating and inhibitory signals delivered by receptors expressed
on the NK cell surface (Table 2). Abnormal cells (including
cancer cells and infected cells) activate NK cells via lack of
ligands of NK cell inhibitory receptors (missing self) or increased
expression of ligands of NK cell activating receptors (induced
self) (48–50). In addition, cytokines such as interleukin (IL)-
12, IL-15, IL-18, and type I interferon (IFN), as well as Toll-
like receptor (TLR) ligands, are powerful activators of NK
cell functions (51, 52). Activated NK cells then function in
various environments mainly through cytotoxicity and cytokine
production. Recent findings have revealed that the functions
and phenotypes of NK cells vary depending on their local
microenvironments (53), mainly due to the distinct cytokines,
cellular composition and foreign stimuli of various tissues. In this
review, we provide an overview of the current understanding and
gaps in knowledge regarding NK cells in the lungs.

LUNG NK CELLS IN HOMEOSTASIS

Lung NK cells are generally thought to originate and develop in
the bone marrow, and then migrate to the lungs (54). In human
lungs, NK cells, accounting for about 10–20% of the lymphocytes,
are located in the parenchyma and are not detected outside the
parenchyma (Figure 1) (1). In mice, lung NK cells account for
about 10% of the lymphocytes, and this percentage is higher than
the percentages in other tissues (liver, peripheral blood, spleen,
bone marrow, thymus and lymph node) (55, 56). Moreover, the
number of mouse lung NK cells is second only to the number of
spleen NK cells (55).

Human lung NK cells are mostly composed of the
CD56dimCD16+ subset. In addition, KIR-expressing NK
cells and highly differentiated CD57+NKG2A− NK cells are
found at higher frequencies in the lungs than in matched
peripheral blood. These findings indicate that human lung NK
cells have a well-differentiated phenotype (1). Even as early as
the human fetal period, the frequency of KIR-expressing and
differentiated NK cells is highest in the lungs compared to other
tissues (57). A more mature phenotype is also observed for
mouse lung NK cells. The most mature subset, CD27−CD11b+

NK cells, is found at a higher frequency among the lung NK cells
(>70%) than those in the liver, peripheral blood, spleen, bone
marrow and lymph nodes. Moreover, NK cells in the mouse
lung express higher levels of the mature markers CD49b, CD122,
CD43, Ly49s, and CD11b, but lower levels of the immature
marker CD51, than NK cells in other tissues (56, 58).

Despite the well-differentiated phenotype, both human and
mouse lung NK cells are hypofunctional in homeostasis. Human
lung NK cells are hyporesponsive to stimulation by target cells
(irrespective of priming with IFN-α) compared with peripheral
blood NK cells (1). This may be caused by suppressive effects of
alveolar macrophages and soluble factors in the epithelial lining
fluid of the lower respiratory tract (59). Similarly, in mice, lung

NK cells exhibit lower cytotoxicity toward targets compared with
spleen NK cells when stimulated by IL-2 or IL-2/IL-12/IL-18
(58). In addition, in mice, the expression intensity of molecules
associated with activation (NKp46, NKG2D, and CD69) is lower,
and the expression of inhibitory receptors (NKG2A and CD94)
is higher, on lung NK cells than on NK cells in the spleen and
bone marrow. This indicates that lung NK cells are subject to
tighter restrictions in the steady state (56). As the lungs comprise
mucosal surfaces that are constantly exposed to environmental
and autologous antigens, the dominance of hypofunctional NK
cells may contribute to pulmonary homeostasis.

CD49a, CD69, and CD103 are regarded as markers of tissue-
resident NK cells (53, 60–63). The fact that the vast majority
of lung NK cells in mice are non-tissue-resident cells has been
demonstrated by a parabiotic mouse model and the very low
expression of CD49a and CD69 (35, 64, 65). Although the
majority of human lung NK cells are CD56dim with a non-
tissue-resident phenotype (1), a small but distinct CD49a+ lung
NK cell subset (which largely involves CD56bright NK cells) has
recently been identified (66). These CD56brightCD49a+ lung NK
cells strongly co-express CD103 and CD69 and these cells are
not found among the CD56bright NK cells in the peripheral
blood, implying that CD56brightCD49a+ lung NK cells may be
tissue-resident cells (66). However, the circulating and tissue-
resident characteristics of human lung NK cells still need to be
further investigated using humanized mice and “multi-omics”
analyses (67).

NK CELLS IN LUNG INFECTIONS

There is increasing evidence that NK cells are involved in lung
immune responses to respiratory pathogens. As an important
type of innate immune cell, NK cells can respond rapidly to
invading pathogens and clear them efficiently. On the other hand,
NK cells may cause uncontrolled inflammation and pathological
damage in some cases.

Viruses
NK cells are innate immune cells that confer early immunity
in acute viral infections and, accordingly, patients with genetic
deficiencies that cause the loss of functions of NK cells are
subjected to recurrent viral infection (39, 68, 69). However, the
rapid immune response mediated by NK cells may sometimes
occur at the cost of excessive inflammation. The lungs are
continually exposed to various respiratory viruses such as
influenza viruses. The evidence of involvement of NK cells
in influenza infection dates back to 1982. Ennis et al. (70)
demonstrated that individuals infected with influenza viruses
exhibit increased peripheral blood NK cell activity in association
with interferon (now known as IFN-γ) induction. In mouse
models, depletion of systemic or lung NK cells increases the
morbidity and mortality of mice during the early course of
medium-dose influenza infection (3, 4), indicating a protective
role of NK cells. In contrast, depletion of systemic NK cells
improves the survival of mice infected with high-dose influenza
viruses by alleviating lung immunopathology (5, 6). These
findings uncover a dual role for mouse NK cells in influenza
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TABLE 1 | Beneficial and/or detrimental roles of NK cells in mouse models of pulmonary disorders.

Pathology Beneficial role of NK cells Detrimental role of NK cells References

VIRUSES

Influenza virus Promote host defense via IFN-γ at medium-dose Induce immunopathology at high-dose (3–6)

Respiratory syncytial virus Inhibit type 2 inflammation via IFN-γ; promote host

defense via IFN-γ

Exacerbate early acute lung injury via IFN-γ (7–10)

Herpes simplex virus Promote host defense via IFN-γ and cytotoxicity (11, 12)

BACTERIA

Klebsiella pneumoniae Promote host defense via IL-22 and IFN-γ (13, 14)

Streptococcus pneumoniae Promote early clearance of bacteria in WT mice (3 h

post infection)

Amplify pulmonary and systemic

inflammation in scid mice; impair clearance

of bacteria in scid mice (24 h post infection)

(15, 16)

Pseudomonas aeruginosa Promote host defense via NKG2D and IFN-γ (17, 18)

Mycobacterium tuberculosis Promote host defense via IFN-γ in T cell-deficient

mice

(19)

Bordetella pertussis Promote host defense via IFN-γ (20)

Staphylococcus aureus Promote host defense via IFN-γ and TNF (21, 22)

Haemophilus influenzae Promote host defense via IFN-γ (23)

Chlamydia trachomatis Promote host defense via regulation of Th1/Treg

and Th17/Treg balances

(24)

FUNGI

Aspergillus fumigatus Promote host defense via IFN-γ (25, 26)

Cryptococcus neoformans Promote host defense via IFN-γ (27, 28)

Asthma Promote inflammation resolution via clearance of

eosinophils and CD4+ T cells in OVA-induced

asthma

Promote allergic sensitization via initiation of

type 2 response in OVA-induced asthma;

promote pathogenesis via NKG2D and

granzyme B in HDM-induced asthma?

(29–33)

COPD Kill autologous lung epithelial cells (34)

Lung cancer Inhibit tumorigenesis in Kras-driven cancer; inhibit

lung metastasis of cancer cells

(35, 36)

TABLE 2 | Main surface markers of the lung NK cells discussed in this review.

Relevance and function NK cell-surface molecules

Activating receptors NKG2D, DNAM1h, NKp30h, NKp44h, NKp46,

NKp80h, CD16

Inhibitory receptors CD94/NKG2A, ILT2h, KIR2DLh, KIR2DL2h

Activation marker CD69

Mature and differentiation

markers

KIRh, CD57h,CD11b, CD43, CD49b, CD122,

Ly49sm

Tissue-resident markers CD49a, CD69, CD103

Adhesion molecules CD11b, CD49a, CD49b, CD57h, CD103,

hExpressed only by human NK cells.
mExpressed only by mouse NK cells.

infection, providing protection or contributing to pathogenesis,
depending on the virus dose.

During influenza infections, NK cells are activated by infected
cells via contact-dependent mechanisms (71), and by cytokines
such as IL-12, IL-2 and type I IFN, which are derived from
infected cells and possibly from other cell types (71–76).
In addition to these conventional recognition modes during
viral infection, the NK cell receptors NKp44 (which is only
expressed on human NK cells) and NKp46 can bind to influenza

haemagglutinins (HAs). This allowsNK cells to directly recognize
influenza viruses and lyse influenza virus-infected cells (77–80).
Recent studies have found that influenza vaccines induce
the immune memory of human NK cells (81). Similarly, in
mice, influenza infection also induces memory-like NK cells,
which protect the mice against secondary influenza infection.
Intriguingly, these memory-like NK cells reside in the liver rather
than in the lungs (82–84), and NK cell-mediated recall responses
are not dependent on the NKp46-HA interaction (85).

In mice, NK cells quickly accumulate in the lungs within the
first few days of influenza infection (56, 86). These activated
lung NK cells then contribute to viral clearance through IFN-
γ production, activation of adaptive immune cells, ADCC and
cytotoxic lysis. More recently, Kumar et al. (87) reported that
conventional NKp46+NK1.1+CD127−RORγt− NK cells in the
bronchoalveolar lavage fluid (BALF), trachea and lung tissue
produce IL-22 during influenza infection, which facilitates tissue
regeneration and prevents excessive lung inflammation. These
findings indicate the multiple roles of NK cells in response to
influenza viruses.

Due to the difficulties of obtaining lung tissues from humans
infected with influenza viruses, most studies exploring the
responses of human NK cells to influenza viruses use peripheral
blood NK cells (73, 88–90), and less is known about human
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FIGURE 1 | Lung NK cells in homeostasis. NK cells account for 10–20% of lymphocytes in the human and mouse lungs, and these cells are located in the lung

parenchyma. (A) NK cells in the lungs have a more mature phenotype compared to those in other tissues. In mice, lung NK cells express high levels of the mature

markers NKp46, CD49b, CD11b, and Ly49s. In humans, lung NK cells are mostly composed of the CD56dimCD16+ subset, and highly differentiated CD57+NKG2A−

NK cells are present at a higher frequency in the lungs than in matched peripheral blood. (B) The vast majority of lung NK cells are circulating, and the existence of a

small percentage of seemingly tissue-resident NK cells in the lungs remains to be confirmed. (C,D) Lung NK cells are hypofunctional in homeostasis, and their

cytotoxicity and IFN-γ production levels are lower than those of NK cells in the spleen and peripheral blood. IFN, interferon; NK, natural killer; PB, peripheral blood.

lung NK cells in influenza infections. Recently, Cooper et al. (66)
utilized a lung explant model to characterize human lung NK
cells during the early course of influenza infection. The lung NK
cells responded quickly upon ex vivo influenza infection of lung
explants, with upregulation of CD107a by 24 h after infection.
Compared with CD56brightCD49a− NK cells, CD56brightCD49a+

lung NK cells, which possibly represent a tissue-resident and
trained NK cell subset, express higher levels of CD107a. Recent
studies have shown that some activated CD56dimCD16+ NK
cells lose CD16 expression throughADAM17-mediated shedding
and become CD56dimCD16− NK cells (91). However, the
expression of CD107a on CD56bright and CD56dim NK cells is
comparable, and there is no difference in expression between
CD56dimCD16−CD49a+ and CD56dimCD16−CD49a− NK cells
(66). Although granzyme B and IFN-γ are induced in lung
explants after influenza infection, and enhanced IFN-γ responses
are detected in peripheral blood NK cells following influenza
vaccination (66, 73, 88, 90), there is no direct evidence that
granzyme B and IFN-γ are released by lung NK cells. Thus, the
immune responses of human lung NK cells in influenza infection
remain to be further explored.

Despite the potent antiviral function of NK cells, recurrent
influenza infections are common, suggesting that influenza
viruses employ complex strategies to evade NK cell-mediated
immunosurveillance (92). First, influenza viruses replicate
rapidly before NK cells accumulate robustly in the lungs,

providing sufficient time for virus dissemination (93). Second,
mutation of influenza HA may impair the capacity of NK cells to
recognize and lyse infected cells (94). Third, activation of NK cells
can be inhibited by influenza HA in a dose-dependent manner
(95, 96). On the other hand, when the levels of HA are too low for
NK cell recognition, NK cells may not be activated sufficiently
to clear viruses (93, 97). Fourth, influenza viruses can directly
infect NK cells and induce apoptosis, leading to decreased NK
cell cytotoxicity (98).

Bacteria
NK cells are generally regarded as important contributors
to the host defense against tumors and viruses, but recent
studies have shown that NK cells also play a role in resisting
bacterial infections.

Mycobacterium Tuberculosis

Tuberculosis is a leading cause of bacterial infections worldwide.
M. tuberculosis (MTb) maintains a latent state in most
infected individuals, and active disease usually progresses slowly,
manifesting later in life (99). In vitro studies demonstrate that
human peripheral blood NK cells can be activated by MTb-
infected monocytes, and this is mediated by NKG2D recognition
of ULBP1 and by NKp46 recognition of vimentin (100, 101).
Moreover, human NK cells can directly recognize MTb by the
binding of TLR2 and NKp44 to peptidoglycan and unknown
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components of MTb cell walls, respectively, and then become
activated (102–104).

A study in immunocompetent mice showed that activated NK
cells with upregulated CD69, IFN-γ, and perforin accumulated
in the lungs in the early stage after aerosol infection with
MTb, but depletion of NK cells did not influence the course of
infection (105). Nevertheless, another study in T cell-deficient
mice demonstrated that NK cells mediated early defense against
MTb infections via IFN-γ (19, 106). Given that mice infected
withMTb progress directly to active disease without experiencing
latency, these reports indicate the redundant role of NK cells
in the active stages of MTb infection. In humans, NK cells
in the peripheral blood stimulated with MTb or live M. bovis
Bacillus Calmette-Guerin (BCG) upregulate IFN-γ expression
(107, 108). More recently, Chowdhury et al. (109) conducted
a long-term study on a cohort of South African adolescents
and found that the frequency of NK cells in the peripheral
blood can inform disease progression, therapeutic responses and
lung inflammation of patients with active tuberculosis. Pleural
fluid, which is the excess fluid that collects around the lungs of
pulmonary tuberculosis patients, may be closer to the pulmonary
milieus than peripheral blood. The pleural fluid is enriched with
IFN-γ-producing CD56bright NK cells due to selective apoptosis
of cytotoxic CD56dim NK cells induced by soluble factors present
in tuberculous effusions (110). Together, these findings in mice
and humans suggest that NK cells may function at the site of
active MTb infections mainly through IFN-γ production rather
than cytotoxic lysis. Although Chowdhury et al. (109) showed
that peripheral blood NK cells from individuals with latent
tuberculosis infection display elevated cytotoxicity and increased
frequency, whether cytotoxic lysis is employed by NK cells in
the defense against MTb, especially latent MTb, remains to be
further researched.

Klebsiella Pneumoniae

K. pneumoniae is an important cause of nosocomial pneumonia
and is infamous for multidrug resistance. In vitro studies have
shown that humanNK cells can be activated by TLR2 recognition
of recombinant protein A, the pathogen-associated molecular
pattern expressed byK. pneumoniae (111). However, whether NK
cells can recognize live K. pneumoniae and lyse K. pneumoniae
after this direct recognition is unclear. In mice, lung NK cells
promote host defense against K. pneumoniae by IL-22 and
IFN-γ production (13, 14). On the other hand, Wang et al.
(112) demonstrated that K. pneumoniae pre-infection alleviated
influenza virus-induced death and acute lung injury by inhibiting
lung NK cell expansion. These findings suggest a complex role of
NK cells in response to various pathogens. Thus, accurate and in-
depth research into NK cells in different infection conditions is
needed and this will contribute to the development of effective
interventions for lung infections.

NK CELLS IN LUNG INFLAMMATION

Asthma and COPD are very common and serious chronic
inflammatory diseases of the lungs that may lead to pulmonary
fibrosis (113, 114), and NK cells are implicated in both diseases.

Asthma
Asthma is a chronic airway inflammatory disease, and the
majority of cases involve allergic asthma which is typically
characterized by type 2 immune responses (114). Asthma can be
induced and exacerbated by many factors, such as environmental
pollutants, allergens, obesity and viral infections.

Current reports on NK cells in asthmatic patients seem to
be somewhat contradictory, both regarding the numbers and
functions of NK cells. An early study showed that the percentage
of peripheral blood NK cells increases in asthmatic children
during acute exacerbations relative to asthmatic children who are
in a stable state after prednisolone therapy (115). Nevertheless,
Barning et al. (29) and Duvall et al. (116) demonstrated that
asthmatic patients have fewer NK cells in both the peripheral
blood and BALF than healthy individuals, and the loss of NK cells
is increased in patients with severe asthma. The CD56dim NK
cell subset (but not the CD56bright NK cell subset) is selectively
lost in the peripheral blood of asthmatic patients, whereas BALF
NK cells are skewed toward a CD56dim phenotype in asthmatic
patients. With regard to the functions of NK cells, there is
evidence that NK cells can facilitate inflammation resolution by
inducing eosinophil apoptosis (29). In healthy individuals and
patients with mild asthma, NK cells in the peripheral blood
can induce the apoptosis of eosinophils efficiently. In contrast,
despite displaying a more activated phenotype, the cytotoxicity
of peripheral blood NK cells from patients with severe asthma
is impaired, and the decreased cytotoxicity can be exacerbated
by corticosteroids (29, 116). These results indicate the attenuated
capacity of NK cells to resolve inflammation in severe asthma.
In contrast, earlier studies reported that NK cell cytotoxicity
is elevated in the peripheral blood of patients with asthma
compared to healthy individuals, and it declines immediately
after acute antigen challenge (117, 118). On the other hand,
Wei et al. (37) showed that there were increased IL-4+ NK
cells in the peripheral blood of asthmatic patients compared
to healthy individuals, and IL-4+ NK cells decreased when
the patients recovered owing to erythromycin treatment. This
implies a role for NK cells in promoting IgE-mediated ongoing
allergic inflammation.

The contradictory results have also been observed in mouse
models. The ovalbumin (OVA)-induced asthmatic mouse model
is widely used in the study of allergic asthma, and many
studies have demonstrated an important role for NK cells
at all stages of asthma using this model. OVA sensitization
and challenge does not change the total number of NK
cells in the lungs, but it selectively increases the number of
immature NK cells in the lung draining lymph nodes, as well
as upregulating the expression of CD86 on NK cells in both
the lungs and lung draining lymph nodes (119). Lack of NK
cells either throughout life or just prior to sensitization leads to
decreased type 2 cytokine secretion, decreased OVA-specific IgE
production, and decreased pulmonary eosinophil infiltration (30,
31). Furthermore, adoptive transfer of OVA-specific T cells from
sensitized wild-type (WT) mice, but not mice lacking NK cells,
can induce the development of asthma in allergen-challenged
RAG−/− mice (31). These results indicate that NK cells are
essential for allergic sensitization, and that NK cell-mediated
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initiation of the type 2 response is probably involved in this
process. However, once mice have been sensitized, NK cells may
not regulate the established type 2 response but instead they may
promote pulmonary eosinophilia, as evidenced by the fact that
NK cell depletion during allergen challenge significantly reduces
BALF eosinophilia without altering airway hyperresponsiveness
or serum OVA-specific IgE levels (119). Nevertheless, Haworth
et al. (32) found that depletion of NK cells at the peak of
inflammation delays the clearance of airway CD4+ T cells and
eosinophils. Taken together, these findings suggest that besides
the pathologic role of NK cells in allergic sensitization and
inflammation promotion, NK cells also provide protection by
contributing to the resolution of allergic lung inflammation in
mice with OVA-induced asthma. In house dust mite (HDM)-
induced asthma mouse models, HDM exposure leads to the
accumulation of NK cells in the BALF and lung draining lymph
nodes, as well as the activation of NK cells in the lungs (120).
Farhadi et al. (33) have shown that NK cells play a critical role
in the pathogenesis of HDM-induced asthma via NKG2D and
granzyme B. However, a more recent study demonstrated that
NK cells are not required for the development of HDM-induced
asthmatic disease (120).

There is evidence that viral infection is associated with the
development of asthma, and NK cells have been shown to play
an important regulatory role in this setting. In mice with pre-
existing allergic inflammation and asthma, the induction of
asthma-activatedNK cells confersmore potent protection against
influenza infection (121). Nevertheless, NK cells activated by the
viral mimic polyinosinic:polycytidylic acid (poly(I:C)) exacerbate
OVA-induced asthma via IL-17a production (122). However,
when mice are infected with respiratory syncytial viruses and
then subjected to allergic sensitization, NK cells inhibit viral- and
bystander allergen-specific type 2 responses, possibly through
IFN-γ production (7). Recent studies have reported the presence
of an altered microbial composition in patients with asthma,
and airway dysbiosis is relevant to the clinical features in these
individuals (123, 124). Airway colonization by Haemophilus
influenzae and Streptococcus pneumonia at 1 month of age was
associated with an increased odds ratio of childhood asthma
(125). Although NK cells produced higher levels of IFN-γ during
H. influenzae and S. pneumonia infections (15, 23), colonization
by H. influenzae and S. pneumonia did not inhibit asthma, in
contrast to the anti-asthma role of NK cells during respiratory
syncytial virus infections. This may be because H. influenzae and
S. pneumonia activate other cell types and pathways involved
in asthma occurrence and exacerbations. Moreover, the children
were also colonized by many other bacteria, and the integrated
effect on NK cells caused by diverse bacteria may lead to variable
consequences. Thus, the exact associations between NK cells,
airway bacteria and asthma need further study.

The abovementioned contradictory results may be influenced
by the fact that asthma-associated factors (such as viral and
bacterial infections, obesity, allergens, other environmental
insults and corticosteroids) may directly affect NK cell functions
and the fact that NK cell-depleting antibodies may impair natural
killer T cells (antibodies against NK1.1) or some granulocytes
and subsets of T cells in certain conditions (antibodies against

asialo-GM1) (126–128). In the future, investigations of the exact
roles of NK cells in asthma could be enhanced by using improved
tools to specifically deplete lung NK cells, generating transgenic
mice that temporarily lack lung NK cells, establishing novel
humanized asthmatic mousemodels, and carrying out large-scale
univariate analyses in asthmatic patients.

COPD

COPD, caused mainly by cigarette smoking (CS) and biomass
fuel, is a common worldwide healthcare issue (129). Chronic
inflammation drives the irreversible airway obstruction in
COPD, eventually resulting in a decline in lung function (130).
Unlike asthma, COPD typically involves the infiltration of
neutrophils, Th1 cells and CD8+ T cells (130). NK cells are also
thought to be responsible for the progression of COPD. Although
the number of NK cells in the peripheral blood, BALF and
lung parenchyma of COPD patients are the same as in smokers
without COPD (34, 131), CD57+ cells in pulmonary lymphoid
follicles have been reported to be significantly increased in COPD
patients compared to in smokers without COPD (132). CS
enhances the IL-15 trans-presentation of dendritic cells to induce
NK cell priming (133). NK cells exhibit hyperresponsiveness
in COPD, as evidenced by the findings that CD16+ NK cells
kill autologous lung CD326+ epithelial cells and that NK cells
from CS-exposed mice produce higher levels of IFN-γ upon
stimulation with cytokines or TLR ligands (poly(I:C), ssRNA40,
or ODN1826) (34, 134, 135). An imbalance of activating and
inhibitory signaling contributes to NK cell hyperresponsiveness.
NK cells from CS-exposed mice show greater cytotoxic activity
in response to the NKG2D ligand RAE-1 (134). Moreover, CS-
induced lung inflammation is impaired in NKG2D-deficient
mice, revealing the critical role of NKG2D in COPDdevelopment
(134). In addition, the inhibitory receptor CD94 has been found
to be decreased on NK cells of COPD patients, which may be
related to increased granzyme B production (131). The state
of NK cells in the CS-induced COPD mouse model cannot
completely recapitulate that in patients with COPD. BALF NK
cells displayed comparable cytotoxic potential between current
smokers with COPD and ex-smokers with COPD, suggesting that
the alterations of NK cells are not solely caused by CS and that
other factors such as genetics and infections may contribute. In
contrast, the hyperresponsiveness of NK cells was lost following
smoking cessation in the CS-induced COPDmousemodel, which
indicated the limitation of using this model to study COPD and
that a better mouse model is urgently needed.

Bronchial colonization by potentially pathogenic
microorganisms is frequently found in COPD, and COPD
exacerbations are closely associated with viral and bacterial
infections (136–138). An NK cell-related mechanism may
contribute to enhanced lung inflammation during influenza-
induced COPD exacerbations. In a CS-induced COPD mouse
model, after influenza infection, NK cells were found to produce
more IFN-γ (135). Microbiome analyses of sputum samples
from patients with COPD exacerbations demonstrated an
alteration in bacterial diversity, with an overrepresentation
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of the Proteobacteria phylum, which includes most of
the bacteria considered to be pathogenic (139). Although
chronic colonization by Pseudomonas aeruginosa has been
found in COPD patients suffering from exacerbations, in
most cases, the exacerbations are due to other pathogenic
microorganisms (140, 141). Given that lung NK cells in mice
infected with P. aeruginosa produced increased IFN-γ through
NKG2D-mediated activation (17), a phenotype similar to
influenza-induced exacerbations, it would be fascinating to
investigate the precise effect of P. aeruginosa-only infections
on COPD exacerbations utilizing murine experiments and to
explore the role of NK cell-related NKG2D and IFN-γ in this
situation. In addition, colonization by H. influenzae, which can
lead to NK cell activation (23), has also been reported in COPD
patients (142), but the exact interaction between NK cells and
H. influenzae in COPD is yet to be determined. Collectively, local
hyperresponsive NK cells are responsible for smoke-induced
lung inflammation, leading to accelerated progression of COPD.
Therefore, targeting NK cells may represent a new strategy for
treating COPD.

NK CELLS IN LUNG CANCER

Lung cancer is the leading cause of death related to cancer
worldwide (143). It is classified into non-small-cell lung cancer
(NSCLC; ∼80%) and small-cell lung cancer (SCLC; ∼20%). NK
cells are cytotoxic lymphocytes that were originally identified
based on their ability to kill cancer cells, and their potent
antitumor effects have been confirmed in numerous tumor types
including lung cancer (144, 145). The localization of NK cells in
lung cancer is similar in humans and mice; NK cells are located
mostly in the invasive margin surrounding the tumor lesions,
with rare direct contact with cancer cells (35, 146, 147).

The most direct evidence of an anti-lung cancer role for
NK cells comes from Kras-driven spontaneous lung cancer and
cancer cell-injection experiments in mice, in which mice lacking
NK cells were generated by Nfil3 knockout or administration
of antibodies against NK1.1 or asialo-GM1. The lung tumor
burden was found to be significantly increased in the mice
lacking NK cells (35, 36). However, the robust protective role
of NK cells against tumors is limited to the early stage of lung
cancer, at least in Kras-driven lung cancer in mice, because NK
cells become dysfunctional during the late stage. In mice, NK
cell dysfunction in the lung cancer microenvironment mainly
manifests as attenuated cytotoxicity, diminished responsiveness
and impaired viability (Figure 2) (35).

Similar phenomena have been observed in NK cells in tumor
tissues of patients with NSCLC. NK cells isolated from tumors in
these patients have a decreased cell number, a distinctive receptor
expression pattern (downregulated expression of NKp30, NKp80,
CD16, DNAM1, ILT2, KIR2DL1, and KIR2DL2, but upregulated
expression of NKp44, NKG2A, CD69, and HLA-DR), impaired
IFN-γ production and CD107a degranulation, lower cytotoxicity,
and a proangiogenic phenotype compared with non-tumoral
NK cells (146–149). Moreover, NK cells infiltrating NSCLC
are enriched with the CD56brightCD16− subset (146), which

is a minor subset among non-tumoral lung NK cells. The
enrichment of CD56brightCD16− NK cells is probably due to the
exclusion of CD16+ NK cells from lung tumor lesions, because
the frequency of CD16− NK cells among leukocytes in lung
tissues is comparable in tumor and non-tumor tissues (149).
However, whether the loss of CD16+ NK cells is caused by
the impaired viability or failure to infiltrate tumor lesions, and
how CD56brightCD16− NK cells, which express high levels of
the tissue-resident marker CD69 (53), maintain their survival
and residency in the lung cancer environment, remain to
be determined.

Little is known about NK cells in patients with SCLC. Limited
information has shown that, compared to the peripheral blood
NK cells of healthy individuals, the peripheral blood NK cells of
patients with SCLC are present at the same frequency, exhibit
weakened cytotoxicity, and have downregulated NKp46 and
perforin expression (150). So far, no studies have reported on
the status of NK cells in the tumor microenvironment in patients
with SCLC, and this needs to be further investigated.

Platonova et al. (147) found that NK cell infiltration is not
correlated with clinical outcomes in NSCLC, similar to the
finding by Platonova et al. (147), we recently observed that NK
cell depletion in late-stage Kras-driven mouse lung cancer does
not influence tumor development (35). The limited prognostic
significance of NK cells in NSCLCmay be caused by intratumoral
NK cell dysfunction in patients who mainly have intermediate-
or advanced-stage tumors. Thus, both intratumoral NK cell
functions and cell densities may be critical to clinical outcomes in
NSCLC. A deeper understanding of the mechanisms associated
with NK cell dysfunction in the lung cancer microenvironment
will contribute to the development of NK cell-based lung
cancer immunotherapy.

NK cell dysfunction in tumor microenvironments can
generally be caused by tumor cells, myeloid-derived suppressor
cells, macrophages, Tregs and platelets in a contact-dependent
manner or via secretion of soluble factors such as transforming
growth factor (TGF)-β, IL-10, indoleamine-2,3-dioxygenase,
prostaglandin E2, and adenosine (145, 151). However, NK cell
characteristics may be affected by their tissue localization, and
each tumor type has a unique microenvironment composed
of diverse immune cells (53). Whether the abovementioned
mechanisms are applicable to NK cell dysfunction in lung cancer
is yet to be fully investigated. Among these mechanisms, in
Kras-driven lung cancer in mice, TGF-β may be involved
in FBP1 upregulation in NK cells, and FBP1-mediated
glycolysis inhibition and FBP1-mediated impaired viability
have been confirmed to induce NK cell dysfunction (35).
Additionally, Donatelli et al. (152) demonstrated that TGF-
β-inducible microRNA-183 silenced human NK cells via
DNAX-activating protein of 12 kDa (DAP12) depletion.
Moreover, higher levels of TGF-β in the human lung cancer
microenvironment and reduced DAP12 expression in tumor-
associated NK cells were observed simultaneously, further
indicating another TGF-β-involved mechanism associated with
NK cell dysfunction.

NK cell dysfunction favors tumor immunoevasion, so
focusing on restoring NK cell functions represents important
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FIGURE 2 | NK cell dysfunction in lung cancer. NK cells in the lung cancer microenvironment display attenuated cytotoxicity, impaired viability and a distinct

phenotype, with downregulated expression of NKG2D, DNAM1, CD16, CD27, NKp30, NKp44, and NKp80 and upregulated expression of NKG2A, KIR2DL1, and

KIR2DL2. Two mechanisms are involved in NK cell dysfunction in the lung cancer microenvironment. First, aberrant FBP1 expression in NK cells leads to dysfunction

by inhibiting their viability and glycolysis. Second, increased microRNA-183 reduces DPA12 expression in NK cells and thus suppresses NK cells. The initiation of both

mechanisms may be associated with tumor microenvironment-derived TGF-β. TGF-β, transforming growth factor-β; FBP1, fructose-1,6-bisphosphatase; IFN,

interferon; NK, natural killer; DAP12, DNAX activating protein of12 kDa; TGFβR, transforming growth factor β receptor.

potential strategies for inhibiting lung cancer. These strategies
include activating NK cells using IL-2/IL-12/IL-15/IL-18,
blocking inhibitory receptors on NK cells by targeting NKG2A,
KIR2DL1, and KIR2DL2, enhancing NK cell glycolysis
by inhibiting FBP1 and altering the immunosuppressive
microenvironment by neutralizing TGF-β.

CONCLUDING REMARKS

Although the biology of NK cells has been well-documented,
most studies have focused on peripheral blood NK cells in
humans, and bone marrow and spleen NK cells in mice, and
less is known about NK cells in the lungs. Recently, the concepts
of tissue-resident NK cells and tissue microenvironments have
attracted investigators’ attention. This has raised the issue that
NK cells may be profoundly affected by their local tissue
microenvironment, and the characteristics of NK cells in distinct
tissues have gradually been uncovered. Our current knowledge
about NK cells in the lungs is from studies onWT and transgenic
mice and studies comparing healthy individual samples and
patient samples (predominately lung tumor resection samples
and, less frequently, BALF and sputum samples). The present
review shows that NK cells in the lungs appear to be conserved
between humans and mice regarding several aspects, including
the high degree of differentiation, hypofunction and tissue

localization during homeostasis, and responses to tumors and
influenza infections. Thus, elaborate mouse models that closely
mimic human disease have helped to understand the biology of
NK cells in the lungs, such as the Kras-driven lung cancer mouse
model and influenza viral infection mouse model. However,
for some common lung diseases such as tuberculosis, the lack
of a good mouse model and the difficulty in obtaining lung
tissue from patients had led to a lack of understanding of
NK cells in these conditions. Moreover, as mouse NK cells
do not express CD56 and KIRs, which are important for
human NK cells, the characteristics and functions of different
human lung NK cell subsets subdivided by these molecules
remain unclear.

Over the past decade, ILCs, which include NK cells, ILC1s,
ILC2s, ILC3s, and lymphoid tissue-inducer cells, have emerged
as an important cell population with potent roles in host
defense in mucosal tissues including lung tissues (153, 154).
Generally, ILC1s respond to tumors and intracellular pathogens
such as viruses, ILC2s react to extracellular helminths and
allergens and ILC3s resist extracellular microbes such as fungi
and bacteria; some of these effects have been demonstrated
in the lungs (154–158). Although other ILCs in the lungs
are far less abundant than NK cells, ILC1s and parts of
ILC3s are easily confused with NK cells (43, 44), so previous
conclusions about lung NK cells may be influenced by the
effects of other ILCs. Thus, it is necessary to exclude other
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ILCs to further investigate the exact characteristics of lung
NK cells.

With regard to lung NK cell research, several interesting
issues remain to be solved: (i) whether lung-resident NK cells
are present in the lungs in the context of homeostasis and/or
disorders; (ii) if so, how lung-resident NK cells function in certain
conditions; (iii) the differences and connections betweenNK cells
and ILCs in the lungs; (iv) why memory-like NK cells induced by
influenza virus infection are present in the liver rather than in the
lungs; (v) whether memory NK cells can form and be maintained
in the lungs (as the lungs are frequently challenged by tumors
and pathogens); and (vi) how to establish immunocompetent
mousemodels that can closely mimic human lung diseases. In the
future, advanced technologies and tools, such as humanizedmice,
omics analyses and living microscopy imaging, may be needed
to further study lung NK cells. With deeper knowledge of the

biology of lung NK cells, effective therapeutic strategies based on
NK cells are expected to be applied to treat lung diseases.
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The discovery of innate lymphoid cells (ILC) has profoundly influenced the understanding

of innate and adaptive immune crosstalk in health and disease. ILC and T cells

share developmental and functional characteristics such as the lineage-specifying

transcription factors and effector cytokines, but importantly ILC do not display rearranged

antigen-specific receptors. Similar to T cells ILC are subdivided into 3 different helper-

like subtypes, namely ILC1-3, and a killer-like subtype comprising natural killer (NK) cells.

Increasing evidence supports the physiological relevance of ILC, e.g., in wound healing

and defense against parasites, as well as their pathogenic role in allergy, inflammatory

bowel diseases or psoriasis. Group 2 ILC have been attributed to the pathogenesis of

allergic diseases like asthma and atopic dermatitis. Other inflammatory skin diseases

such as allergic contact dermatitis are profoundly shaped by inflammatory NK cells.

This article reviews the role of ILC in allergic skin diseases with a major focus on ILC2.

While group 2 ILC are suggested to contribute to the pathogenesis of type 2 dominated

inflammation as seen in atopic dermatitis, we have shown that lack of ILC2 in type

1 dominated contact hypersensitivity results in enhanced inflammation, suggesting a

regulatory role of ILC2 in this context. We provide a concept of how ILC2 may influence

context dependent the mutual counterbalance between type I and type II immune

responses in allergic skin diseases.

Keywords: innate lymphoid cells, allergic contact dermatitis, atopic dermatitis, counter regulation, immune

crosstalk

INTRODUCTION

Innate lymphoid cells (ILC) are innate immune cells of the lymphoid lineage, which have a similar
functional diversity as T cell subsets based on the developmental dependency on lineage-specifying
transcription factors and effector functions. Like T and B lymphocytes, all ILC derive from a
hematopoietic stem cell-derived common lymphoid precursor (CLP) cell in the bone marrow
(Figure 1). The CLP gives rise to an early innate lymphoid precursor (EILP) that expresses the
transcription factor (TF) T-cell factor 1 (Tcf-1). From this branching point natural killer (NK)
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cells develop via a NK precursor (NKp) and by upregulating
the TFs eomesodermin (EOMES) and T-box transcription factor
TBX21 (T-bet). The other branch develops into an Id2 expressing
common helper-like ILC progenitor (CHILP). C-C chemokine
receptor type 6 positive (CCR6+) ILC3 can directly evolve form
the CHILP depending on the expression of RAR-related orphan
receptor (ROR)γt. All the remaining helper-like ILC subtypes,
namely ILC1, ILC2, and ILC3, evolve from an innate lymphoid
cell precursor (ILCP) which expresses the TF promyelocytic
leukemia zinc finger (PLZF). CCR6− ILC3 can adapt a more
ILC1-like phenotype by downregulating RORγt and upregulating
T-bet. These cells are called ex ILC3. Production of their marker
cytokines attributes certain physiological and pathological roles
to the particular ILC subtype (Figure 1). Effector ILC can be
classified into three interleukin-7 receptor positive (IL-7R+)
helper-like ILC groups (ILC1-3) and one IL-7R− cytotoxic ILC
group (NK cells) (1–3). More recently, several groups have also
identified IL-10 secreting ILCwith proposed regulatory functions
(4–6). Helper-like ILC and NK cells are mainly populated at

FIGURE 1 | Graphical summary of innate lymphoid cell (ILC) subtypes. ILC as well as T and B lymphocytes (T/B) derive from a common lymphoid precursor (CLP).

The CLP gives rise to an early innate lymphoid precursor (EILP) that expresses the transcription factor (TF) T-cell factor 1 (Tcf-1). From this point natural killer (NK) cells

develop via a NK precursor (NKp) and upregulate the TFs eomesodermin (EOMES) and T-box transcription factor TBX21 (T-bet). The helper-like ILC lineage derives

from an Id2 expressing common helper-like ILC progenitor (CHILP) from which C-C chemokine receptor type 6 positive (CCR6+) ILC3 can directly evolve depending

on the expression of RAR-related orphan receptor (ROR)γt. All the remaining helper-like ILC subtypes, namely ILC1, ILC2, and ILC3, evolve from an innate lymphoid

cell precursor (ILCP) which expresses the TF promyelocytic leukemia zinc finger (PLZF). CCR6− ILC3 can adapt a more ILC1-like phenotype by downregulating

RORγt and upregulating T-bet. These cells are called ex ILC3. Production of their marker cytokines attributes certain physiological and pathological roles to the

particular ILC subtype. IBD, inflammatory bowel disease; ACD, allergic contact dermatitis; AD, atopic dermatitis.

barrier surfaces like the skin, gut, and the respiratory tract,
although significant numbers can be detected in secondary
and tertiary lymphoid organs in homeostasis and disease (7).
Besides the bone-marrow, alternative sites of development exist,
such as secondary lymphoid organs or even non-hematopoietic
organs such as the gut (8–10). While ILC development continues
throughout life, it is known that some ILC lineages are long-
lived, and seed their designated tissues early in embryogenesis as
demonstrated by parabiosis experiments in mice that show only
little replenishment of helper-like ILC from the bone marrow in

later life (11–13). Although some helper-like ILC express homing
receptors for certain tissues these cells are mainly thought to
proliferate on site under proinflammatory conditions (7, 14).
Given their localization at barrier surfaces ILC perfectly serve as
sensors for danger signals but also allergens and subsequently
mount early immune responses by rapid cytokine production.
They can act as initiators of the adaptive immune response by
crosstalk with dendritic cells and T cells finally shaping full blown
type 1, 2, or 3 immune responses [reviewed in (15)]. This review
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highlights the pathogenic role of ILC in the allergic skin diseases
with a main focus on ILC2.

ILC CLASSIFICATION AND PLASTICITY

NK Cells and ILC1
NK cells are considered the innate counterpart of memory

CD8+ T cells. They share similar functions such as cytotoxicity

and interferon-γ (IFN-γ) production and both express the

transcription factors Eomes and T-bet. ILC1 on the other hand

closely resemble TH1 cells. Both express and depend on T-

bet but lack EOMES and produce IFN-γ (16–19). NK cells

and ILC1 are involved in protecting the organism against

pathogens, viruses and tumors (16, 20, 21). Intraepithelial ILC1

can be found in Crohn’s disease patients and contribute as a
proinflammatory IFN-γ-producing population in an anti-CD40-
induced colitis model in mice (22). NK cells are suggested to
be important in enhancing inflammatory responses in a hapten
based contact hypersensitivity mouse model and human allergic
contact dermatitis (23, 24). Taken together these cell types are
mainly involved in mounting a type 1 immune response.

ILC2
ILC2, like TH2 cells, highly express the transcription factor
GATA3 and produce type 2 cytokines including interleukin-
5 (IL-5), IL-13 and the epidermal-growth-factor-like molecule
amphiregulin (7). ILC2 mediate pathology in a mouse model
of atopic dermatitis and promote wound healing in an IL-33-
dependent manner (25, 26). ILC2 promote type 2 driven immune
responses by promoting TH2 differentiation of naïve CD4+ T
cells through production of IL-13, and by expression of MHC
class II on their cell surface induce T cell priming (27–29). In
addition, the inducible T-cell costimulatory (ICOS) molecule is
highly expressed on ILC2 regulating their activation status and
proliferation (30, 31). Moreover, activated ILC2 can express the
TNF receptor superfamily ligand OX40L, which promotes local
TH2 cell proliferation and adaptive type 2 inflammation (32).
Increased ILC2 numbers are linked to human allergic airway and
skin diseases like allergic asthma atopic dermatitis (25, 33–36).
Thus, type 2 immune responses are profoundly shaped by ILC2.

ILC3
ILC3 share RORγt expression with TH17 cells and can produce
IL-17 and IL-22 thereby helping the organism to fight against
bacteria and fungi and viruses, such as Citrobacter rodentium,
Salmonella enterica, Candida albicans, and rotavirus (2, 7, 37–
41). There are ILC3 expressing the chemokine receptor CCR6
which comprise lymphoid-tissue-inducer (LTi) cells and can
be CD4+ or CD4−. These cells are crucially important in the
embryonic development of many lymphoid organs, whereas in
adult mice they reside mainly in cryptopatches of the intestine
with low proliferation (42–45). In mice, CCR6− ILC3 can
express natural killer cell receptor such as NKp46 (NCR+ ILC3),
loose RORγt expression and upregulate T-bet, finally leading
to IFN-γ production (46–50). These “ex-RORγt+ ILC3” closely
resemble ILC1. A large population of ILC3 can be found in
the intestine where they are essential for maintaining barrier

integrity and immunologic tolerance to commensal bacteria of
the gut (51–53). IL-17 producing ILC3 are proposed to be
involved in plaque formation in a psoriasis mouse model based
on the topical application of the Toll-like receptor 7 (TLR7)
agonist imiquimod (54). Finally, elevated numbers of ILC3 are
found in blood and affected skin of psoriasis patients (55–57).
Given this data ILC3 are part of type 3 immune responses and
intestinal immunopathology.

ROLE OF ILC IN ATOPIC DERMATITIS

Impaired barrier function of the skin is a hallmark in
the pathogenesis of atopic dermatitis (AD). Loss-of-function-
mutations in the gene coding for the epidermal structure protein
filaggrin is strongly associated with an elevated risk to develop
atopic dermatitis by allowing elevated trans epidermal water
loss, higher prevalence of Staphylococcus aureus on the skin
and facilitated penetration of allergens (58–61). The type 2
inflammatory response in AD is known to involve innate and
adaptive immune cells like mast cells, eosinophils, and CD4+

TH2 cells, the latter producing type 2 cytokines like IL-4, IL-5,
and IL-13 (62). Since ILC2 are described in the skin (63) this
led to the hypothesis that innate lymphoid cells, especially ILC2,
may contribute to the pathogenesis of this frequently occurring
atopic disease (Figure 2).

ILC in Human Atopic Dermatitis
Significantly more ILC2 can be found in lesional skin biopsies
from patients suffering from atopic dermatitis in relation to
skin from healthy individuals (25, 36). These ILC2 produce high
amounts of the type 2 cytokines IL-5 and IL-13 and express the
membrane bound IL-33 receptor ST2 as well-receptors for IL-
25 and thymic stromal lymphopoietin (TSLP) (25, 36). These
changes are even more profound when ILC2 are isolated from
skin of house dust mite (HDM) allergic individuals that have
been challenged epicutaneously with HDM extract. IL-33 is able
to strongly enhance the expression of IL-13 and IL-5 and to
increase the migratory capacity of isolated skin-derived ILC2 in
vitro (36). Interestingly, ILC2 from atopic patients also express
higher amounts of the killer cell lectin-like receptor G1 (KLRG1),
which is even further elevated after stimulation with IL-33 or
TSLP (36).

Human ILC2 express the prostaglandin D2 (PGD2) receptor
chemoattractant receptor-homologous molecule expressed on
TH2 cells (CRTH2) (64, 65). PGD2 which is mainly produced by
mast cells induces ILC2migration, production of type 2 cytokines
and upregulation of the expression of IL-33 and IL-25 receptor
subunits (ST2 and IL-17RA) in vitro (66). The effects of PGD2 on
ILC2 can be mimicked by the supernatant from activated human
mast cells (through IgE-mediated degranulation) and inhibited
by a CRTH2 antagonist highlighting a cross-talk between mast
cells and ILC2 (66).

ILC2 respond to further mast cell mediators like cysteinyl
leukotrienes, particularly LTE4 (67). Human ILC express the
functional leukotriene receptors CysLT1 and its expression
is increased in patients with atopic dermatitis (67). LTE4
not only induces migration, promotes cytokine productions
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FIGURE 2 | Suggested pathogenic role of ILC2 in atopic dermatitis. (A) Loss-of-function-mutations in the gene coding for the epidermal structure protein filaggrin

allow elevated transepidermal water loss (TEWL), higher prevalence of Staphylococcus aureus (Staph Aureus) on the skin and facilitated penetration of allergens, e.g.,

from house dust mite (HDM). (B) Damaged keratinocytes (KC) release cytokines like interleukin-33 (IL-33), IL-25, and thymic stromal lymphopoietin (TSLP) which

activate dermal ILC2. (C) Activated ILC2 produce high amounts of IL-13 which stimulates epidermal Langerhans cells (LC). LC migrate to regional lymph nodes to

prime naïve T cells by antigen presentation via MHCII to promote development of TH2 cells that produce type II cytokines like IL-4, IL-5, and IL-13. (D) ILC2 can act as

antigen presenting cells for TH2 effector cells through antigen presentation via MHCII and/or CD1a prompting them to produce IL-2 which in turn sustains ILC2

activation and survival. (E) ILC2 can be activated by mast cell (Mast) derived prostaglandin D2 (PGD2) and cysteinyl leukotrienes LTE4. ILC2 in turn produce IL-5 which

promotes eosinophil (Eos) activation. Administration of montelukast can block LTE4-mediated activation of ILC2. IL-5 function can be therapeutically blocked by

specific monoclonal antibodies like mepolizumab. MHCII, major histocompatibility complex II; TCR, T cell receptor.

and upregulation of IL-33/IL-25 receptors in human ILC2
in vitro, but also enhances the pro-inflammatory effect of
the epithelial cytokines IL-25, IL-33, TSLP, and of PGD2
as seen by increased production of IL-5 and IL-13. This
effect of LTE4 can be partially inhibited by adding the
leukotriene antagonist montelukast. Finally, addition of IL-2
to LTE4 and epithelial cytokines significantly further amplifies
the activation of ILC2 (67). These findings clearly suggest a
pathogenic role of ILC2 in the pathogenesis if atopic dermatitis
in humans (Figure 2).

ILC in Atopic Dermatitis Mouse Models
Topical application of a synthetic form of active vitamin D3
(MC903) to the skin of mice can mimic atopic dermatitis-
like inflammation with a type 2 signature (68). Using the
MC903 AD mouse model Salimi et al. and Kim et al.
investigated inflammatory responses in the presence and absence
of ILC2. When ILC2 are depleted in Rag1−/− mice by

administering an anti-CD90.2 and/or anti-CD25 monoclonal
antibody this leads to an dramatically decreased ear swelling
response (25, 36). Furthermore, using Rorαsg/sg (Rorα-knockout)
bone marrow chimeric mice which lack ILC2, a markedly
reduced inflammatory response in the skin can be seen,
highlighting ILC2 as a main proinflammatory cell in this type
2 inflammatory model (36). An increase in IL-33 and IL-
25 expression has been reported in lesional skin of patients
with AD compared with healthy individuals underlining an
important role for these cytokines as proinflammatory ILC2
activating cytokines in AD (36, 69, 70). Strikingly, when
flow cytometry assisted cell sorting (FACS)-purified ILC2
from MC903-treated C57BL/6 wild-type mice are adoptively
transferred by intradermal injection into naïve C57BL/6 wild-
type recipient mice, the recipient mice develop AD-like skin
reactions with a type 2 T cell response indicating that these
innate cells alone are capable of eliciting an AD-like skin
response (25).
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FIGURE 3 | Context dependent role of ILC2 in type 1 and type 2 dominated contact hypersensitivity. Contact allergens irritate and penetrate the upper skin layers. (A)

Typical contact allergens like TNCB or oxazololone cause ROS and ATP release from damaged keratinocytes (KC) and uptake by epidermal Langerhans cells (LC).

(B,C) LC migrate to skin draining lymph nodes and promote a type 1 driven immune response mediated by TH1 and NK cells resulting in increased IFN-γ and IL-2

production. (D) Higher availability of IL-2 for NK cells results in their enhanced activation and effector cytokine production (IFN-γ, granzyme, perforin). (E) ILC2 are

likely to suppress LC migration, TH1 polarization and NK cells activation in this type 1 CHS response via mechanisms that are currently not well-understood. (F)

Protein allergens like papain or haptens like FITC cause IL-33 release from keratinocytes (KC) which in turn activates dermal ILC2 to produce large amounts of IL-13.

(G,H) ILC2 derived IL-13 promotes trafficking of Langerhans cells (LC) to regional lymph nodes where they prime naïve T cells by interaction of MHCII/peptide/hapten

complex and T cell receptor promoting the development of TH2 cells and a type 2 biased immune response. (I) ILC2 can act as antigen presenting cells for TH2

effector cells prompting them to produce IL-2 which in turn sustains ILC2 activation and survival. (J) ILC2 compete with other innate effector cells like NK cells for the

survival factor IL-2 leading to a reduced/moderate NK cell activation. FITC, Fluorescein isothiocyanate; MHCII, major histocompatibility complex II; ROS, reactive

oxygen species; TCR, T cell receptor; NK, natural killer cell; ATP, Adenosine triphosphate.

Another possible mouse model to study eczema like
skin reactions are the “flaky tail” mice. These mice bear
a frameshift mutation in the murine filaggrin gene (flg)
resulting in expression of a truncated profilaggrin (∼215
kDa) instead of the normal high-molecular-weight profilaggrin
(>500 kDa) (71). Topical application of allergen to mice
homozygous for this mutation results in cutaneous inflammatory
infiltrates and enhanced cutaneous allergen priming with
increased development of allergen-specific antibody responses

(71). Saunders et al. characterized changes of ILC2 numbers
and their cytokine production in flg-mutant mice (72). These
mice show spontaneous atopic dermatitis-like inflammation
and develop compromised pulmonary function. In the skin
and skin draining lymph nodes of these mice, there is a
significant increase in the frequency of IL-5-producing ILC
compared to wild type animals. However, no differences in
cell numbers are seen for ILC1 and 3. Furthermore, flg-
mutant mice show higher skin infiltrates of eosinophils, mast
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cells and basophils (72). Even more astonishing, when flg-
mutant mice are crossed with Rag1−/− mice (Flgft/ftRag1−/−)
skin lesions but not lung inflammation occur as shown by
cutaneous expansion of IL-5-producing ILC2, indicating that
skin inflammation can develop independently of the adaptive
immune system in these mice (72). Regulation of ILC responses
by adaptive immune cells is also reported in other tissues (73).
Finally, increased frequency of ILC2 can be found in skin blisters
taken from non-lesional skin of patients with filagrin mutations
compared with the skin of filagrin wildtype subjects (72). Taken
together, loss of filagrin function in humans and mice is clearly
linked to increased ILC2 activation and disease progression in
atopic dermatitis.

This latter model, however, has been challenged recently by
the work of Schwartz et al. which provides evidence that atopic
dermatitis like lesions can evolve independent of ILC2 and ILC2-
derived cytokines in Filaggrin-mutant (Flgft/ft) mice bred on
an ILC2-deficient background (74). Interestingly, inflammation
in these mice following MC903 treatment requires IL-1β and
IL-1R1-signaling but is independent of NOD-, LRR- and pyrin
domain-containing protein 3 (NLRP3) inflammasome activation
and results in elevated numbers of IL-1β-responsive connective
tissue mast cells (74). Finally, Flgft/ft mice do not develop skin
inflammation under germ-free compared to SPF conditions
indicting a crucial role for the microbiome in promoting
proinflammatory immune responses in this mouse model (74).
This issue will be discussed in more detail in a later section.

ILC2 as Possible Therapeutic Targets in AD
Development of ILC2 depends on the transcription factor
receptor-related orphan receptors alpha (RORα) and lack of
RORα results in impaired lung inflammation in response to
protease allergen in mice despite normal TH2 cell responses (75).
Dai et al. provide evidence that a synthetic RORα/γ inverse
agonist (SR1001) is able to suppress inflammation in the MC903-
induced atopic dermatitis mouse models. Topical treatment with
SR1001 reduces epidermal and dermal inflammation, suppresses
the production of type 2 cytokines and TSLP, and reverses
impaired keratinocyte differentiation (76). Since SR1001 also
inhibits RORγ signaling it is quite possible that RORγt+ ILC3
functions may also be impaired (42). If topical inverse agonists
for RORα may have anti-inflammatory functions in humans
remains to be elucidated.

A crucial role for the IL-33/ILC2 axis in the pathogenesis
of AD has been proposed by Imai et al. The authors
generated a transgenic mouse line which overexpresses IL-
33 in keratinocytes. These mice spontaneously develop an
itchy dermatitis closely resembling AD at age 6–8 weeks
with thickened epidermis, skin infiltration of eosinophils and
mast cells, and high histamine and IgE levels in the blood
(77). Moreover, IL-5 and IL-13 expressing ILC2 numbers
are significantly increased in lesional skin, peripheral blood,
and regional lymph nodes. Administering a neutralizing
monoclonal anti-IL-5 antibody results in a marked reduction
of the inflammatory response as shown by a decreased
peripheral blood eosinophil count, milder thickened epidermis
and lower inflammatory infiltrates including eosinophils (77).

Unfortunately, a randomized, placebo-controlled parallel group
design study in patients with AD could not detect a clinical
improvement by administering a monoclonal antibody to human
interleukin-5 (mepolizumab) in two single doses of 750mg, given
1 week apart, despite a significant decrease in peripheral blood
eosinophils (78).

ROLE OF ILC IN ALLERGIC CONTACT
DERMATITIS

Allergic contact dermatitis (ACD) is a prevalent inflammatory
skin disease triggered by low molecular weight organic chemicals
or metal ions which penetrate the skin and bind covalently
or by complex formation to proteins thereby activating the
innate and adaptive immune response. ACD can be separated
into two phases. The sensitization phase, were antigen upon
first encounter with the skin is taken up by dendritic cells
and transferred to the regional draining lymph nodes to
be presented to antigen specific T-cells for priming. And
the elicitation phase that is induced by subsequent antigen
contact and leads to an infiltration of antigen-specific T-cells
into the skin peaking 24–48 h after second antigen contact.
In the mouse model of ACD, the contact hypersensitivity
(CHS) model, hapten-specific CD8+ cytotoxic T-cells are
thought to be the key effector cells in the elicitation phase
rendering CHS a classical type 1 driven adaptive immune
response (Figure 3). Typical haptens used in these models
comprise oxazolone, 2,4,6-Trinitrochlorobenzene (TNCB) or
2,4-dinitrofluorobenzene (DNFB) (79–81). In addition, we and
others have previously demonstrated that sensing of danger
signals by cells of the innate immune system including dendritic
cells, neutrophils, and mast cells represent a crucial element in
the initiation and elicitation of CHS responses (82–86).

NK Cells in Type 1 Dominated CHS
Responses
Group 1 ILCs consisting of NK cells and ILC1 are involved in
inflammatory bowel and allergic skin diseases in mice (12, 24,
87, 88). Regarding ACD Carbone et al. were able to characterize
CD56highCD16−CD62L− NK cells in an ex vivo human model
which accumulate in affected skin of hapten allergic human
individuals and these NK cells release type 1 cytokines and
induce keratinocyte apoptosis in vitro (23). In mice NK cells can
be further subdivided into two distinct subsets: CD49a+DX5−

liver-resident (Trail+) and CD49a−DX5+ conventional NK cells
(cNK) (12). Furthermore, cNK cells seem to express much higher
amounts of the transcription factor EOMES (87). Liver-resident
NK cells can mediate long-lived, antigen-specific adaptive recall
responses to haptens like DNFB and oxazolone independent
of B cells and T cells (24). Preceding was the finding that a
CHS response to several haptens can be elicited in Rag2−/−

mice lacking T- and B-cells but not in mice that either contain
dysfunctional NK cells (SCID × beige mice) or completely lack
NK cells (Rag2−/− Il2rg−/− mice). A proper CHS response
can be transferred by FACS-purified antigen-specific Thy-1+

Ly49C-I+ liver-resident NK cells from sensitized Rag2−/− mice
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when transferred into naive Rag2−/− Il2rg−/− recipients (24).
The same NK cell type seems to mount antigen specific
immunity against certain viral pathogens as well (88). Our
own investigations using the hapten TNCB support the role of
EOMES+ cNK cells as the dominant proinflammatory innate
cell type in the early phase of contact hypersensitivity. NK
cell numbers increase significantly 24 h in the ear skin of mice
after allergen challenge and produce type 1 marker cytokines
like IFN-γ and TNF (89). Taken together, NK cells seem to
represent a major driving force of the innate immune system in
CHS pathogenesis pathogenesis (Figures 3A–D).

Helper-Like ILC in Type 1 Dominated CHS
Responses
Very little is known about the involvement of helper-like ILC in
the pathogenesis of CHS, however there has been some indirect
evidence for it in the past. ILC2 are known to be a major source
of IL-13 production thus playing a crucial role in innate type
2 immune responses to worms and inhaled allergens (90, 91).
IL-13-deficient mice (Il13−/−) show impaired TH2 responses
induced by epicutaneous ovalbumin (OVA) exposure whereas
i.p. sensitization is normal and results in responses equivalent
to wild type mice (92). Interestingly, Il13−/− mice display an
even enhanced ear swelling responses to the hapten DNFB,
which is also known to elicit a type 1 T-cell driven immune
response (93), compared to wild type mice. At the time, this
finding was interpreted as a lack of TH2-mediated suppression
but it’s tempting to speculate that impaired ILC2 function in
this mouse model may also have contributed to a disinhibited
and thus exaggerated type 1 immune response. We recently
characterized cell numbers and cytokine production of all ILC
subgroups (ILC1-3 and NK cells) during the elicitation phase
of a CHS mouse model based on the hapten TNCB using an
ILC reporter system (89). Numbers of ILC are elevated in skin
draining lymph nodes, show an activated phenotype and produce
elevated amounts of their marker cytokines IL-13 and IL-5 at
late time points (48 and 72 h), i.e., during the resolution phase
of the inflammatory response in the skin. On the other hand,
NK cell numbers and their production of IFN-γ and TNF are
highest 24 h after allergen challenge paralleling the strongest skin
inflammation period (89). The latter is expected since TNCB
is known to elicit a type 1 driven immune response (93, 94).
However, lack of ILC achieved by either antibody mediated
depletion using an anti CD90.2mAb in Rag1−/− mice or by using
mice that selectively lack ILC2 [Rorαsg/floxIl7rCre/+mice (29)]
results in a significantly enhanced and long lasting inflammatory
response (89). The ear infiltrate of ILC depleted mice show
a tendency toward a more type 1 biased immune response
indicated by increased numbers of T-bet+ CD4+ T-cells (89).
This data supports the concept of a counter regulatory role for
ILC2 in CHS (Figures 3A–D).

Helper-Like ILC in Type 2 Dominated
Allergic Skin Responses
Some allergens like Fluorescein isothiocyanate (FITC) and
papain rather induce allergic type 2 immune responses with
increased IL-4 producing TH2 cell infiltrates in murine skin when
reapplied topically or intradermally (28, 95, 96), suggesting that

ILC2 might rather play a proinflammatory role in these models.
Along this line we demonstrated in a papain skin challenge
model that lack of IL-13-producing ILC2 leads to a marked
reduction of inflammation with less skin infiltrating TH2 cells
[(28); (Figures 3F–J)]. A first therapeutic approach in type 2
dominated allergic skin responses has been proposed by Bao
et al. They demonstrate that ILC2 numbers are increased in
the skin of FITC-challenged mice. In addition, intraperitoneal
injection of the cycloartane triterpene saponin Astragaloside
IV during the sensitization phase leads to a reduction of the
inflammatory response as seen by a decreased ear swelling
response, less production of pro-allergic cytokines like IL-
33 and TSLP, and significantly reduced numbers of ILC2
in the skin of these mice (97). Thus, ILC2 seem to have
contrary roles in type 1 and type 2 dominated allergic skin
reactions, respectively (Figure 3).

ROLE OF DERMAL ILC2 IN INNATE AND
ADAPTIVE IMMUNE CROSS TALK

Antigen Presentation by MHCII
ILC2 and ILC3 express MHCII molecules on their surface and
can act as antigen presenting cells for helper T cells (29, 51, 52).
Our own analysis of MHCII expression on ILC2 revealed that in
skin draining lymph nodes of mice ∼50% of the ILC2 express
MHCII, while in the skin only ∼3% express MHCII. Antibody
mediated depletion of ILC leads to a significant reduction of
MHCII positive ILC2 both in skin and LN (89). Currently, we
can only speculate that ILC2 might regulate effector T cells
in a direct fashion via MHCII. In line with this, Oliphant
et al. recently demonstrated that MHCII expression on ILC2
and subsequent antigen presentation to CD4+ T cells is crucial
for successful helminth expulsion in mice (29). The crosstalk
between ILC2 and CD4+ T cells seems to involve IL-2 since
activated CD4+ T cell-derived IL-2 has been shown to synergize
with IL-33 to stimulate ILC2 (29). Thus, lack of ILC2 may
lead to a higher availability of IL-2 for proliferation of other
effector cells like NK cells leading to an augmented response
in CHS.

Antigen Presentation by CD1a
Another way how ILC2 might crosslink innate and adaptive
immunity is by expressing the lipid-presenting molecule CD1a.
Other than classical MHC proteins that present peptides, CD1
molecules present endogenous and exogenous lipid antigens
to T lymphocytes (98). In a CHS model using the poison
ivy-derived lipid contact allergen urushiol, CD1a expressing
Langerhans cells are important to promote CD1a-restricted
CD4+ T cells to produce IL-17 and IL-22. Furthermore,
treatment with blocking antibodies against CD1a alleviates skin
inflammation dramatically (99). More recently Hardman et al.
demonstrated in a human skin challenge model that skin-derived
ILC2 not only express CD1a but are also capable of helping
CD1a-reactive T cells to sense S. aureus components in an
cytosolic phospholipase A2 (PLA2G4A) and TLR-dependent–
dependent manner, suggesting a new role for ILC2 in lipid
surveillance of the skin (100). Currently, it is unclear whether
this also applies for the adaptive immune response against
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urushiol. Taken together CD1a expression on ILC2 seems to
be clearly involved in shaping the phenotype of adaptive T
cell responses.

Crosstalk With Basophils and
Macrophages
Mashiko et al. reported significantly elevated frequencies
of basophils, ILC and TH2 cells in the lesional skin of
AD patients compared to patients suffering from psoriasis.
Interestingly, basophils and ILC2 are positively correlated in
skin, whereas skin basophils are inversely correlated with blood
ILC2 suggesting that skin basophils may attract circulating
ILC2 to skin of AD patients by IL-4 production (101). Kim
et al. detected elevated numbers of basophils and ILC that
form clusters in inflamed human AD skin compared to
control skin. Using the MC903-based AD mouse model in IL-
4/GFP reporter mice, they demonstrated that murine basophil
responses preceded ILC2 responses and those basophils are
the dominant IL-4-producing cell type in inflamed skin. In
addition, ILC2 express the IL-4 receptor IL-4Rα and proliferate
in an IL-4-dependent manner. Finally using Il4−/− mice Kim
et al. provide evidence that especially basophil-derived IL-
4 is necessary for proinflammatory ILC2 responses in the
skin (102).

Most notably, Egawa et al. have shown that basophil-derived
IL-4 converts Ly6C+CCR2+ inflammatory monocytes into anti-
inflammatory M2 macrophages in an IgE-mediated chronic
allergic inflammation (IgE-CAI) mouse model, a model where
basophils rather than mast cells and T cells play a critical
role for the elicitation of allergic response (103, 104). In this
model, skin infiltrating monocytes acquire anM2-like phenotype
in an IL-4R- and basophil-dependent manner and adoptive
transfer of Ly6C+CCR2+ inflammatory monocytes dampens
the exacerbated IgE-CAI in CCR2−/− mice which also requires
IL-4R signaling (103). Thus, it is tempting to speculate, that
basophil-derived IL-4 may promote pro-inflammatory responses
via ILC2 and anti-inflammatory signals via M2 macrophages at
the same time, leading to a counterbalanced immune response.
However, the role of ILC2 in the IgE-CAI model is not known
so far.

On the other side, ILC2 have been shown to promote
polarization of the anti-inflammatory M2 macrophages by
producing type-2 cytokines (IL-4, IL-5, and IL-13) in an renal
ischemia-reperfusion injury model and experimental cerebral
malaria (105, 106). Furthermore, in obese mice PD-1high ILC2
are inhibited by PD-L1 expressing M1 macrophages which is
promoted by TNF. PD-1 blockade improves ILC2 function,
reinforces type 2 innate responses and promotes adipose
tissue homeostasis (107, 108). Interestingly, in an serum-
induced arthritis mouse model ILC2 were indispensable for
dampening proinflammatory IL-1β secretion by bone marrow-
derived macrophages (109). Finally, basophil-derived IL-4 seems
to be essential for M2 macrophage mediated trapping of
Nippostrongylus Brasiliensis larvae in the skin during second
infection of mice thereby leading to reduced worm burden in the
lung (110). However, basophils had no apparent contribution to

worm expulsion from the intestine highlighting their crucial role
in the skin (110).

Taken together, there seems to be an intense crosstalk between
basophils, ILC2 and macrophages involving cytokines like IL-
4, IL-13, and IL1β and resulting in differential polarization of
macrophages dependent on the disease model. How these three
cell type interact in AD and CHS remains to be elucidated.

Crosstalk With Dendritic Cells
Using the protease-allergen papain which induces type 2 allergic
airway and skin inflammation we showed that ILC2 are
necessary for mounting an appropriate antigen specific TH2
memory response and that ILC2 activation clearly precedes TH2
involvement in papain induced airway and skin inflammation
(28). Furthermore, ILC2-derived IL-13 is needed for the
activation and expansion of an allergen-induced subset of
dendritic cells (CD11b+CD103−IRF4+) which produce the TH2
cell chemoattractant CCL17. Using ILC2-deficient mice, we
demonstrated that dermal ILC2 are crucial to mediate expansion
of CCL17+ dendritic cells after skin challenge with papain
finally leading to an effective TH2 memory response. Thus, ILC2
licensing of dendritic cells is a critical component of the memory
TH2 cell response to certain allergens at barrier sites (28).

INFLUENCE OF SKIN MICROBIOTA ON
ILC2 IMMUNITY

As mentioned earlier, filaggrin mutant mice significantly differ in
their microbiome composition compared to wild type mice and
do not develop skin inflammation under germ-free conditions
prompting a crucial role for the microbiome in shaping this
setting (74). Several studies have investigated the role of skin
commensal bacteria in shaping the host immune cell functions of
this organ (111–113). This mostly involves skin derived dendritic
cells as sensors of bacterial antigens which promote development
of commensal-specific T cells. These T cells help to improve
tissue repair and protection to pathogens rendering them as
important players in the skin homeostasis (111, 112).

When analyzing different skin-derived bacterial strains in a
pediatric AD cohort over time, Byrd et al. were able to detect
certain clonal S. aureus strains which are associated with more
severe disease (113). Interestingly, heterogeneous Staphylococcus
epidermidis strains were found in patients with less severe disease
indicating that clonal expansion of certain bacterial strains can
trigger proinflammatory responses in human AD. Furthermore,
S. aureus isolates from AD patients with more severe flares can
induce epidermal thickening and expansion of cutaneous TH2
and TH17 cells in a murine AD model (113).

These findings are suggesting a role of the microbiome to
shape ILC2 functions as well. Interestingly, ILC2 distribution
and homeostatic function in bone marrow, fat, lung, gut,
and skin seems to be independent of commensal microbiota
when comparing SPF to germ free mice (114). However, in
mouse model of chronic obstructive pulmonary disease (COPD),
challenge with S. aureus or Haemophilis influenzae lead to loss
of GATA-3 expression in ILC2 and a subsequent increase in the
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expression of IL-12Rβ2, IL-18Rα, and T-bet giving them an ILC1-
like phenotype (115). This ILC2 plasticity can also be influenced
by viral stimuli especially influenza A virus (115).

Taken together, there is substantial evidence that
the microbiome is involved in shaping ILC2 function
and plasticity, especially in inflammatory lung diseases.
Whether this concept also applies to the pathogenesis of
inflammatory skin disease like AD and CHS remains to
be determined.

TYPE 1 AND TYPE 2 COUNTER
REGULATION IN CHS

Type 1 and type 2 immune responses are known to tightly
counter-regulate each other (116). TH1 cytokines such as IFN-
γ have been shown to antagonize the function of ILC2 and
type 2 innate immune responses in mouse models of allergic
lung inflammation and viral respiratory tract infections (13,
117). ILC2-mediated lung inflammation is enhanced in the
absence of the IFN-γ receptor on ILC2 cells in vivo and IFN-γ
effectively suppresses the function of tissue-resident ILC2 cells,
two observations that clearly suggest a suppressive function of
type 1 cytokines on ILC2 (13). Our own investigations reveal
that TNCB based CHS in a mouse model is counter regulated
by activated ILC, since lack of all ILC or ILC2 alone leads to
a dramatic increase in the inflammatory response with a type 1
immune response bias (89). More recently, it has been reported
that in the early stage of papain-induced lung inflammation in
mice, depletion of NK cells results in increased numbers and
cytokine production of ILC2, suggesting that NK cells negatively
regulate ILC2 (118). Hapten based CHS experiments in Il15−/−

mice, which lack NK cells, demonstrate dramatically reduced
ear swelling responses and at the same time increased numbers
of ILC2 in skin and skin draining lymph nodes (89). Thus, a
mutual balance between type 1 and type 2 immunity may also
exist in CHS, in whichNK cells negatively regulate ILC2 and ILC2
counter regulate type 1 immune responses mainly driven by NK
cells, TH1, and TC1 cells.

Recently, Kim et al. identified IL-10-producing lineage
negative lymphoid cells that show elevated numbers in the
axillary as well as inguinal lymph nodes and ear tissues of
Oxazolone challenged mice suggesting a possible regulatory role
of ILC (119). These cells were designated “ILC10” and identified
by expression of markers like CD45, CD127, and Sca-1, while
detailed characterization of the exact ILC subpopulation was not
provided. Along the same line, an IL-10 producing ILC2 effector
cell population has recently been described in murine lung and
suggested to regulate immune responses in a papain induced
allergic lung inflammation model (4). These studies prompted
us to address the presence of IL-10 producing ILC. Using highly
sensitive IL-10 transcriptional reporter mice (120) we, however,
could not identify relevant numbers of IL-10 transcribing lineage
negative cells in different tissues (skin, lymph nodes, blood, and
spleen) in the TNCB induced CHS model (89). Thus, at least in
our hands ILC derived IL-10 does not appear to be responsible for
the regulatory effects of ILC in type 1 dominated CHS of the skin.

Nevertheless, ILC2 are reported to promote regulatory T
(Treg) cell expansion, thus framing the hypothesis that ILC2 can
regulate inflammation indirectly. Molofski et al. demonstrated
that ICOSL expression by ILC2 can stimulate ICOS+ Treg cells,
providing a potential indirect link between IL-33 and Treg
cells (121). In line with this, Rauber et al. could demonstrate
that IL-9 producing ILC2 are crucial in promoting Treg driven
anti-inflammatory effects in an antigen-induced arthritis mouse
model. This ILC2/Treg interaction was dependent on direct cell
contact involving ICOS–ICOSL interaction (122).

We recently showed that IL-33-induced OX40L expression
by ILC2 is critical for tissue-specific expansion of Treg
cells (32). Moreover, our data indicates that OX40L/OX40-
driven interactions between ILC2 and Treg cells preferentially
expands GATA3+ Treg cells, which are thought to be
tissue-resident and functionally primed (123). IL-33-induced
OX40L expression by ILC2 and the associated Treg cell
expansion seems to be restricted to specific anatomical locations
such as the airway and adipose tissue but not LN or gut
(32). Thus, it remains unknown if a similar mechanism or
alternative ILC2-independent suppressive pathways are involved
in the skin.

Malhotra et al. recently found skin resident RORα-expressing
Tregs to dampen ILC2-driven inflammation in a mouse
model for atopic dermatitis (124). This effect is thought
to be based on the enhanced expression of TNF ligand–
related molecule 1 (TL1A) and death receptor 3 (DR3)
on ILC2 as well as suppressed IL-4 expression. RORα-
expressing Tregs are found in higher numbers in human skin
compared to peripheral blood suggesting a possible counter
regulatory role for these cells in ILC2-driven allergic skin
diseases (124).

Taken together, these data show that ILC2 can act as
modulators of the adaptive immune response and that the
functional outcome very much depends on the context of the
inflammatory reaction that is analyzed. In type 2 dominated
skin inflammation ILC2 seem to be primarily proinflammatory
while in the context of a type 1 dominated immune response
ILC2 can act as regulators that help to counterbalance the
inflammatory reaction (Figure 3).

CONCLUDING REMARKS AND OUTLOOK

Innate lymphoid cells are increasingly emerging as important
effectors of the innate immune system finally shaping a
distinctive adaptive immune response. This includes on the
one side important physiological functions in promoting wound
healing, adipose tissue homeostasis, protection from pathogens
and dampening of certain inflammatory disorders via Treg
induction. On the other side, ILC2 have been shown to be
important proinflammatory players in diseases like allergic
asthma and atopic dermatitis. In the case of atopic dermatitis
ILC2 have been described to be the major proinflammatory ILC
subtype accountable for the production of marker cytokines like
IL-13 and IL-5, cross-talk with other innate cells like basophils
and dendritic cells, and finally promoting the development of
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TH2 cells. ILC2 will continue to be of high interest as possible
targets in AD therapy, especially concerning their potential to
produce high amounts of cytokines.

Immunologic reaction in allergic contact dermatitis can
differ depending on the type of hapten used. Haptens like
TNCB or oxazolone inducing type 1 responses clearly favor NK
cells and TH1 cells as the driving proinflammatory force. In
these models ILC2 may have counter regulatory functions as
our own investigations suggest. On the other side, in allergic
type 2 responses of the skin, induced by distinct haptens like
FITC or protein allergens like papain, ILC2 seem to have a
proinflammatory role. These observations clearly emphasize a
context dependent function of ILC2 which is determined by the
type of model analyzed (type 1 or type 2 dominated).

Additionally, ILC2 have recently been shown to be part of
a neuro-immune interface. ILC2 function can be influenced by
the neuropeptide neuromedin U (NMU) secreted by cholinergic
neurons in the mucosal tissue of the gut and lungs. This goes
in line with other studies showing that further neuroendocrine
factors like norepinephrine, vasoactive intestinal peptide (VIP),
calcitonin gene-related peptide (CGRP), and acetylcholine can
modify ILC2 function as well (125–131). Furthermore, challenge
of mouse skin with the poison ivy compound urushiol leads to an
increase in IL-33 expression which can act on small to medium-
sized dorsal root ganglion neurons that innervate the skin and
express the IL-33 receptor ST2 (132). Strikingly, targeting IL-
33 by either neutralizing antibodies or intrathecal application
of ST2 siRNA results in significantly reduced itching and
subsequently less scratching behavior in these mice, suggesting
a new therapeutic approach in poison ivy ACD (132). Since
pruritus is a hallmark symptom of ACD in humans and
mice which is mediated by certain sensory neurons (133) it

is tempting to speculate that this new identified “neuron-
ILC2 unit” may also be important in the pathogenesis of AD
and ACD. This hypothesis is further supported by studies
showing that type 2 cytokines like TSLP and IL-4 can enhance
itching (134, 135).

Taken together, the picture of ILC function in allergic skin
diseases is far from complete. Further investigations especially
on the mode of action of how ILC modify immune responses
in a context dependent fashion are needed to fill this gap
of knowledge.
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Innate lymphoid cells (ILCs) are a group of immune cells that are important for defense

against pathogens, tissue repair, and lymphoid organogenesis. They share similar

characteristics with various subsets of helper T cells but lack specific antigen receptors.

Interleukin-7 (IL-7) and thymic stromal lymphopoietin (TSLP) are cytokines that engage

the IL-7Rα and have major roles in dictating the fate of ILCs. Recent advances in the field

have revealed transcriptional programs associated with ILC development and function. In

this article, we will review recent studies of the role of IL-7 and TSLP in ILC development

and function during infection and inflammation.

Keywords: IL-7, TSLP, innate lymphoid cells, mucosal immunity, lymphopoiesis, inflammation

INTRODUCTION

Innate lymphoid cells (ILCs) are a recently discovered subset of immune cells critical for
the development of innate immunity against external pathogens, facilitating tissue repair, and
mediating inflammation at multiple mucosal sites (1). It has become clear that these cells are
major contributors despite being rare in proportion among immune cells. Although they lack
antigen receptors, ILCs share multiple developmental circuitries with and are ancestral to the more
abundant adaptive lymphoid cells. Both populations of lymphoid cells are known to develop from
the same stem cell precursors in the bone marrow called common lymphoid precursors (CLPs) (2–
5). In addition to sharing common progenitors with adaptive cells in the bone marrow, ILCs also
require similar growth factors and cytokines to develop and function. The interleukin-7 receptor
α (IL-7Rα or CD127) dependent cytokines, IL-7 and thymic stromal lymphopoietin (TSLP) are
examples of such cytokines and they play an important role in determining the fate and function of
ILCs (1, 6, 7). IL-7 is canonically important for the early development of B and T cells from bone
marrow precursors and the thymic development of T cells (8, 9). Mature T cells also require IL-7
for survival, proliferation and multiple effector functions during infections and tumor infiltration
(10–13). TSLP is mainly and constitutively produced by epithelial cells of the skin, gut and lungs,
and shapes the response of dendritic cells and T cells against invading pathogens in a typical type
2 “weep and sweep” response that when misdirected, may also contribute to asthma and allergic
inflammation (14–17).

Due to the heterogeneity in ILC populations and their multiple precursors, and our incomplete
understanding of the biological factors (transcription factors, cytokines, disease states, etc.) that
dictate ILC lineage commitment and function, we lack the knowledge to use ILC biology to develop
new treatments or understand the precise role of ILCs in response to current therapeutics. For
example, cytokines that govern adaptive lymphoid cells such as rhIL-7 are in multiple clinical trials

33
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for treatment of HIV, solid tumors, T cell reconstitution, and
enhancing CAR-T cell therapy for B-cell lymphomas, yet the
effects this may have on ILCs and other disease outcomes
is understudied (18). In this review we will discuss relevant
findings on the roles of IL-7 and TSLP in ILC development
and function at various tissue sites as well as the mechanisms
involved downstream of their signals. Where appropriate, we
will also identify the significant gaps in the field and possible
future directions.

IL-7 AND TSLP

IL-7Rα is found on multiple subsets of lymphoid cells during
their developmental and mature states. Both IL-7 and TSLP
use IL-7Rα to initiate the formation of a heterodimeric
receptor. IL-7 is a common gamma chain (γc) cytokine and
requires the heterodimerization of IL-7Rα with the γc receptor
(CD132) for signaling (19), whereas TSLP signaling requires
heterodimerization with the TSLP receptor (TSLPR) (20, 21)
(Figure 1).

IL-7 is produced mainly by stromal cells in the bone marrow
and thymus under steady state where it plays an indispensable
role in the development of both pre- and pro-B cells in the
bone marrow (22). The dynamic expression of IL-7Ra was
shown to be critical for IL-7 responsiveness for specific stages
of maturation in the thymus in shaping T cell development and
survival (23–25). In addition to being an essential factor for
B and T cell development, IL-7 can also influence effector T
cells. For instance, exogenous IL-7 treatment enhances cytotoxic
CD8T cell anti-tumor activity and reverses T cell exhaustion
caused by chronic LCMV infection, and thus, preventing liver
pathology (10, 11).

While IL-7 is known to be produced mainly in the stromal
and epithelial cells of the bone marrow and thymus respectively,

FIGURE 1 | Illustration of the IL-7 and TSLP receptor complexes with the binding affinities. IL-7 signals through IL-7Rα paired with the γc receptor, and TSLP signals

through IL-7Rα paired with the TSLP receptor. Jak/STAT signaling is crucial in transduction of signal for both cytokines.

the cells in the various other tissues that are capable of producing
this cytokine are elusive (26). It is clear that the main producers
are radio resistant cells of non-hematopoietic origin (27). IL-
7 can be detected at low levels in the small intestine, lungs,
liver, and skin where it can modulate T cell responses (28–
32). In addition, through use of IL-7-eGFP mice, it became
apparent that while stromal and epithelial cells contribute to IL-
7 production, lymphatic endothelial cells are the key producers
of IL-7 throughout the body including mucosal tissues such as
the lung (33, 34). However, whether these cells are the primary
source of IL-7 during inflammation, and if they play a role in ILC
responses, remains a question.

What regulates the expression or availability of IL-7 in
mucosal barrier tissues is not entirely clear. In the liver, LPS
induced TLR stimulation leads to TRIF dependent expression of
IL-7 in hepatic cells (28). Whether this mechanism is conserved
in other tissues is not known. Interestingly however, while
both ILCs and T cells express IL-7Rα, the expression of this
receptor is significantly higher on ILCs due to an increased
resistance to IL-7 mediated internalization (27). As such, ILCs
are key regulators of the availability of IL-7 in lymphoid tissues
acting as a cytokine sink and limiting IL-7 availability to other
cells such as T cells which depend on IL-7 for homeostatic
proliferation (27). Considering T cells heavily outnumber ILCs,
further investigation is necessary to determine the extent to
which ILCs limit the availability of IL-7 in peripheral tissues
and how that affects other immune cells during homeostasis
and inflammation.

TSLPwas originally identified in a conditionedmurine thymic
stromal cell line supernatant and reported to play a role in
the in vitro development of B cells (35–37). However, loss of
function in vivo studies have demonstratedminimal or secondary
role for TSLP in lymphoid development (22, 38, 39). IL-7
and TSLP are often compared with each other owing to their
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shared dependency on IL-7Rα and ability to activate STAT5,
albeit through different JAK proteins (40). However, despite its
discovery from thymic cells and its nomenclature, TSLP is mainly
produced in a constitutive manner by epithelial cells, notably by
keratinocytes and that of mucosal organs such as the intestine
and lungs (14, 15, 41, 42). There is strong evidence suggesting
its importance in maintaining barrier integrity in these locations
upon infection and inflammation through tissue remodeling
and by conditioning dendritic cells (DCs) toward a tolerogenic
phenotype. This supports the development of regulatory T cells
and polarization of activated helper T cells to exhibit type 2
(Th2) characteristics (14–17). Altogether, these findings suggest
roles for TSLP that are not only segregated spatially and possibly
temporally from that of IL-7 but also serve a unique function in
developing immune responses.

ILC SUBSETS AND THEIR ORIGIN

Terminally differentiated ILCs closely resemble helper T cells,
such that a version of a helper ILC mirrors each of Th1, 2, 17
helper T cells in terms of key transcription factor dependency,
cytokine output, and resulting pathologies (43, 44). In fact, most
of what we have learned about the function and development of
ILCs since their discovery has been aided by our knowledge of
T cells.

ILCs have been documented and categorized into three
general helper ILC groups. Group 1 ILCs (ILC1s) are found
in various tissues including the small intestine and liver, are
dependent on T-bet and produce the Th1 cytokines IFN-γ and
TNF- α (4, 45). Natural killer (NK) cells are similar to ILC1s but
are not considered part of the helper ILC subset and generally
do not express the IL-7Rα (45). However, some tissue NK cells
express a range of IL-7Rα levels, like in the thymus, colon, and
small intestine lamina propria (siLP) (46, 47). Group 2 ILCs
(ILC2s) express GATA3 prominently, similar to Th2 cells, and
likewise, produce IL-5, IL-13, and in some conditions IL-9 when
activated by the alarmins TSLP, IL-33, and IL-25 (6, 48–50).
They are also the major ILC subset found in the lungs and play
an important role in airway immunity (51, 52). Group 3 ILCs
(ILC3s) are RORγt-dependent, like Th17 cells, and consist of
a major subset that produces IL-17 and IL-22 in response to
IL-23 and are critical for intestinal immunity against pathogens
(1, 53). Another subset of ILCs are the Lymphoid Tissue inducer
cells (LTi), which are also RORγt-dependent group 3 ILCs, and
are considered important for the development of secondary
lymphoid organs (54).

In mice, the fetal liver serves as the earliest known source
of ILCs where IL-7 is known to be produced and support
the development of other lymphoid cells (5, 55). The various
precursors at different stages of ILC development are primarily
studied using mouse models and are classified based on their
surface markers and the transcription factors that lead to
their lineage restriction. Common lymphoid progenitors (CLPs)
are descendants of lymphoid-primed multipotent progenitors
(LMPPs) which largely do not express IL-7Rα and are the source
of all lymphoid cells (56). CLPs can develop into all lymphoid

cell progenitor subsets including α-lymphoid progenitors (αLP),
early innate lymphoid progenitors (EILPs), and the common
helper innate lymphoid precursors (CHILPs) (57, 58). αLP and
EILPs can develop into all of the known ILC subsets including
ILCs 1, 2 and 3 and conventional NK cells (57, 58). These
cells are also known as global innate lymphoid progenitors
(GILPs). The more restricted precursors, Id2+ common helper
innate lymphoid precursor (CHILPs), can generate all helper ILC
subsets (ILC1, 2, 3 and LTi) but not NK cells (4). LTi cells arise
from PLZF− precursors while the rest of the helper ILCs 1, 2, and
3 arise from PLZF+ innate lymphoid precursors (5). However, it
is important to note that a hierarchical model of development is
prone to revision based on new studies. The developmental stages
and potentials of the various ILC precursors are more nuanced
and complex, and can change depending on the organism, age,
sex, inflammation, and the tissues examined (55).

When helper ILCs were discovered as a new subset of immune
cells and reported to play important roles in immunity, they
were described as IL-7Rα+ cells. Aside from being an important
defining marker for a major subset of ILCs, IL-7Rα is important
in mediating IL-7 and TSLP signaling in these cells to promote
their development and function.

IL-7Rα IN THE DEVELOPMENT OF ILCs

IL-7 and ILC Development
IL-7 is indispensable for the development of all helper ILCs.
The role of IL-7 in ILC development was initially discovered in
LTi cells. It is now well-established that IL-7 is important for
LTi cell development and therefore the architecture of secondary
lymphoid organs (59–61) [reviewed in (62).] The more recent
discovery of the helper-ILC groups extended the importance of
IL-7 to the development of other ILCs. It was first reported
that “natural helper” cells (now called ILC2s) associated with
the adipose tissue depend on IL-7 to survive and maintain
their numbers in the tissue (6). Despite these findings, we have
been unaware of how IL-7 instructs the development of ILCs.
The recent unveiling of the heterogeneity in ILC precursors
and their transcription factor dependency has now led to a
better understanding of the factors that mediate the development
of ILCs. Nuclear factor IL-3 (NFIL3) is a transcription factor
required for NK cell development, and it was more recently
found to be critical for the development of all other ILCs (4,
58, 63–66). The expression of NFIL3 in CLPs requires IL-7,
which directs STAT5 activation and binding of pSTAT5 to the
NFIL3 promoter (63). NFIL3 expression is specifically required
for Id2 expression and generation of CHILPs, and hence the
development of all helper-ILCs (63). While it is better established
that IL-7 controls pan helper-ILC development through control
of a common precursor from CLPs to CHILPs, it is less clear
how IL-7 controls development of more committed PLZF+ ILC
precursors (ILCPs) from CHILPs. It is known that expression
of GATA3 at the CHILP stage is required for the development
of ILCPs that give rise to the majority of the ILC lineage (67).
Since GATA3 is downstream of STAT5, it is possible that IL-7
signaling is important if not indispensable in the development
of ILCPs and their ILC2 progenies through related pathways
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(68, 69). In addition to inducing GATA3 in ILC2s, a recent studies
have found STAT5 to be a major regulator of ILC homeostasis
by regulating multiple networks ranging from survival factors
such as Bcl-2 and transcription factors such as T-bet, RORγt, and
Sall3 which each play a role in the function and differentiation of
various ILC subsets (70, 71) (Figure 2).

In addition to the BM, IL-7 is produced in the fetal liver where
earliest progenitors of ILCs can be found (72). Moreover, IL-7
is known to orchestrate the development of lymphoid cells in
this tissue (73). IL-7 is also abundant in the thymus where T
cells develop from early thymic progenitors (ETPs). Increasing
evidence suggests thymic development of ILCs, however, it is
unclear to what degree the thymus serves as a source of ILCs

and whether ILCs and T cells share the same thymic progenitors.
Early studies describe a mouse thymic NK cell subset that
expressed the IL-7Rα depends on IL-7 for their development
and has the capability to seed peripheral tissues (47). These
murine thymic NK cells also shared similar characteristics to
human CD56+ NK cells (47). More recent studies have shown
E-proteins E2A and HEB to be specifiers of T cell commitment in
thymic precursors and their deletion leads to a skew toward ILC2
development, suggesting that thymocytes explore multiple fates
before commitment (74, 75). Furthermore, IL-7Rα expression is
inversely correlated with the expression of E-proteins in early
ILC progenitors in the BM but correlates directly with that of
Id2. This suggests an increased dependence on IL-7 for ILC

FIGURE 2 | ILC development in the bone marrow (BM) is highly dependent on IL-7 signaling. IL-7 engagement with the IL-7 Receptor complex activates STAT5.

TSLPR expression on BM ILC precursors is not clear and its functional role in the development of ILCs is minimal. STAT5 activation by IL-7 induces NFIL3 in common

lymphoid progenitors (CLPs) in the BM of adult mice and this is required for the expression of ID2 and generation of all helper ILCs. STAT5 is also important for the

induction of GATA3 which can play an important role in the development of all ILCs at any stage between common helper innate lymphoid precursors (CHILP) and

innate lymphoid precursors (ILCPs) to group 2 innate lymphoid cells (ILC2s). In ILCs STAT5 also induces RORγt and Tbet. The extent to which this plays role in

terminal differentiation of ILCP to ILC 1, 2 and 3 is not clear. While IL-7 is critical for the development of LTi cells and thus lymph nodes, TSLP can partially

compensate for the loss of IL-7.
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development. To better understand the role of IL-7 in thymic ILC
development, it is important that we elucidate its downstream
signaling in various ILC precursors in the BM and thymus.

IL-7 has recently been found at the center of ILC
differentiation. For instance, the quantity of IL-7 that is available
combined with the strength and duration of Notch signaling
can dictate the fate of mouse fetal liver derived CLPs (76).
Whereas, high IL-7 andmediumNotch signaling favors ILC2 and
ILC1/NK cell differentiation, low IL-7 and high Notch signaling
favors T cell differentiation in mice (76). The results are however
different when human hematopoietic progenitor cells are treated
in a similar manner, where IL-7, and Notch signaling induce
ILC3 differentiation while suppressing IL-15 induced NK cell
differentiation (77). These findings reveal contrasting roles for
IL-7 in ILC differentiation which can be explained by differences
in mouse and human hematopoiesis and progenitor sources.
Further studies are needed to identify other contributing factors
that create divergent roles for IL-7.

While IL-7 is clearly crucial to the development of ILCs,
other cytokines can partially compensate for IL-7 or drive IL-
7-independent maintenance of ILCs. For instance, IL-15 (a γc
cytokine) can partially complement IL-7’s defects in ILCs in
IL-7Rα−/− mice (46). This is based on a study that found
residual ILCs in IL-7Rα−/− mice express the IL-15Rβ and
respond variably to IL-15 in vitro through increased survival
depending on the type of ILCs (46). Further assessment of IL-
15−/−, IL-7Rα−/−, and IL-7Rα−/− IL-15−/− mice revealed IL-
7-independent sustenance of ILCs by IL-15 that varied in degrees
depending on the type of ILCs and the tissue examined. Most
notably, NK cells were normal in numbers in IL-7Rα−/− mice
but greatly reduced in IL-15−/− mice as expected (46). However,
IL-7Rα−/− IL-15−/− mice had greater loss of NK cells compared
to IL-15−/− mice, more so in the colon than the siLP. Consistent
with this is the higher expression of IL-7Rα observed by colon
NK cells compared to siLP NK cells. This suggests a supportive
role for IL-7 in NK cell development in a tissue specific manner.
ILC1s were only marginally reduced in IL-7Rα−/− and IL-15−/−

mice compared to WT mice, while IL-7Rα−/− IL-15−/− mice
experienced a multi-fold reduction in ILC1s in the colon and the
siLP, suggesting a synergistic contribution by both cytokines in
development/maintenance of ILC1s (46). While IL-15−/− mice
have normal number of NKp46+ and CCR6+ ILC3s in the
siLP and colon, loss of both IL-7 and IL-15 signaling results in
even greater loss of these cells compared to IL-7Rα−/− mice.
Similarly, IL-7Rα−/− IL-15−/− mice had greater reduction in
number of ILC2s in the siLP and colon than IL-7Rα−/− mice.
However, IL-7Rα−/− and IL-7Rα−/− IL-15−/− mice have equal
numbers of ILC2Ps suggesting a supportive role for IL-15 in
survival of ILC2s in the periphery (46). The subset of ILC2s
most affected in IL-7Rα−/− mice were ST2+ KLRG1+ ILC2s
while ST2− ILC2s were unaffected. The functional importance
of these residual ILC2s has yet to be determined. Since they
lack ST2 (IL-33 receptor) and are IL-7Rα deficient, they are
non-responsive to IL-33, IL-7, and TSLP—the most potent
activators of ILC2s—what are the cytokines that activate these
cells? Common gamma chain cytokines including IL-7 and IL-
15 use the γc receptor which relies on Jak3 to transmit signals.
Loss or mutation of this receptor leads to loss of multiple ILC

subsets in mice and inhibition of Jak3 using tofacitinib abrogates
human ILC1 and 3 proliferation and development in vitro (78).
Investigating downstream signaling factors can help identify
overlapping pathways that are necessary for the development
of ILCs.

FLT3 ligand (FLT3L) can also compensate for IL-7 in ILC
development (79). IL-7−/− mice present with normal numbers
of NK cells in the small intestine but have reduced ILC2s
and ILC3s. Loss of FLT3L depletes all ILCs including NK cells
suggesting a role for FLT3 that is earlier than that of IL-7 in
ILC development (79). Treatment with rFLT3L for 10 days can
restore all ILC populations in of IL-7−/− mice except for ILC2s
which suggests either a greater dependence on IL-7 by ILC2s or
that FLT3L mediated rescue of ILCs occurs at later stages of ILC
development, perhaps after commitment to specific groups.

TSLP and ILC Development
The influence of TSLP in the development of ILCs is minimal,
as previous reports using TSLPR−/− mice have shown normal
numbers of ILC2s in the lungs (80). This is not surprising since
its effect in lymphopoiesis is insubstantial as well. Although loss
of TSLP signaling has little effect on lymphopoiesis, addition of
TSLP to in vitro cultures can enhance mouse and human B cell as
well as mouse T cell expansion from hematopoietic progenitors
sourced from fetal liver (37, 81–83). It is however, unclear if ILC
progenitors express the TSLPR and if significant levels of TSLP
are produced in the fetal liver and bone marrow.

Both IL-7 and TSLP use the IL-7Rα but the increased
importance that IL-7 has compared to TSLP in lymphoid
development may stem from the increased binding affinity of IL-
7 to its receptors, ormore likely due to the established importance
of γc/Jak3 in ILC development. Understanding how well TSLPR
and/or Jak2 facilitate ILC development will be important to make
a definitive statement.

Most studies of TSLP are in the context of ILC2s since
no other ILCs have been reported to express the receptor for
TSLP. Nonetheless, ILC research is in its preliminary stages and
identification of the transcriptional dependencies of the various
ILC subsets is in progress. It is possible that TSLP can mediate
aspects of ILC development through unidentified pathways that
are possibly masked by our current method of grouping ILCs.
Supporting this hypothesis, over expression of TSLP has been
shown to support the development of LTis in a compensatory
manner in IL-7-deficient mice (61) (Figure 2). It is unknown
whether these effects by TSLP are direct or indirect. Since
the manipulation of TSLP and/or IL-7 signaling is integral for
drugs that treat several conditions including allergies, cancers
and infectious diseases, it is important that we have a better
understanding of the interplay between the two cytokines in ILC
development to design more efficient drug treatments (18, 84).

IL-7Rα IN ILC HOMEOSTASIS AND
FUNCTION

IL-7 and ILC Function
While studies on IL-7’s developmental roles in ILCs are
substantial, research in its effector functions are relatively
modest. Indeed, IL-7 was considered an important factor for the
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development of T cells long before its role in effector functions
was examined. IL-7 is mainly produced in primary lymphoid
tissues such as the bone marrow and thymic stromal cells where
immune cell development occurs (26, 85). However, this cytokine
is also produced in secondary lymphoid organs and can be
induced in skin, lung, intestinal epithelial cells, and liver as shown
by fluorescence microscopy of IL-7 reporter mice and ELISA
(28, 29, 32, 85, 86). The extent of our knowledge on IL-7 and ILC
function is based on a series of in vitro experiments.

IL-7 alone or with IL-33 can stimulate the production of Th2
cytokines, IL-5 and IL-13, from murine ILC2s (6, 48, 50, 87)
(Figure 3). These Th2 cytokines are important factors produced
by ILC2s that promote helminth expulsion, antiviral effects, and
tissue repair. A recent study showed that mice lacking T-bet
had increased number of ILC2s and production of IL-5 and
IL-13 leading to enhanced worm clearance during a Trichinella
spiralis infection (88). This activity in ILC2s correlated with
higher expression of IL-7Rα leading to increased activation of
STAT5 (88). This suggests that T-bet is a regulator of IL-7Rα

expression, and that IL-7 may enhance ILC2 function (88). This
necessitates further in vivo examination of the role of IL-7 in
ILC2 function.

RORγt+ ILC3 derived IL-22 plays an important role in
defense and regulation of pathogenic and non-pathogenic
bacteria in the intestine by maintaining barrier integrity and
inducing anti-microbial peptide expression by epithelial cells
such as RegIIIγ and RegIIIβ (89–91). RORγt+ ILC3s can however
lose these abilities and differentiate into RORγt− cells through
stimulation with IL-12 and IL-15 (92). This leads to their
conversion from IL-22 producing ILC3s to IFN-γ producing
ILC1-like cells. Together with the microbiota, IL-7 is able to
counteract this transition by stabilizing RORγt expression (92)
(Figure 4). IL-23 is the key cytokine responsible for RORγt-
mediated IL-22 production by ILC3s (93). This finding suggests
that IL-7 may in part be important for maintaining the IL-
22 production status in ILC3s, which is pivotal for host
defense and barrier integrity during bacterial infection. Indeed,
IL-7 stimulation can induce RORγt expression and play a
supportive role in IL-23mediated IL-22 production in ILC3s (94).
Furthermore, in vitro co-culture of IL-7 producing mesenchymal
stromal cells (MSCs) with ILC3s led to IL-22 production and
enhanced IL-2 induced proliferation of ILC3s (95). This was due
to IL-7 derived fromMSCs as measured by ELISA (95).

IL-7, together with retinoic acid (RA), is also important
for homing of ILCs to gut-associated tissues by upregulating
ILC3-intrinsic expression of α4β7 and selectin ligands, an effect
mediated by IL-7 in T cell homing as well (96, 97) (Figure 4).
Interestingly, IL-7 is also required for survival of ILC3s in the LN
post-development, which in turn is important for homing naïve
T cells to lymphoid tissues (98). It should be noted however, that
while the RA/IL-7 axis has a positive effect on ILC3s, treatment
with RA reduces IL-7Rα expression in ILC2s and ILC2Ps and
this leads to reduced numbers of ILC2s possibly through reduced
survival, homing or development (99) (Figure 4). Taken together,
IL-7 plays diverse roles in dictating ILC function but new
approaches are necessary to clarify them and clearly distinguish
them from IL-7’s developmental roles.

FIGURE 3 | Continued
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FIGURE 3 | ILC2s in the lung, small intestine, and skin are activated by

alarmins following exposure to virus, helminthes, or allergens and this induces

cytokine production in ILC2s. IL-7 and TSLP significantly enhance the effect of

IL-33 in multiple mucosal sites. TSLP and IL-33 synergistically induce the

expression of IL-9 in an IRF4 dependent manner in ILC2s. Through autocrine

signaling, this can enhance the production of IL-5 and IL-13 and IL-9R in a

GATA3 dependent manner, thus creating a positive feedback loop to further

enhance cytokine production.

TSLP in ILC2 Function
TSLP, along with IL-33 and IL-25, are produced by mucosal
epithelial cells, and as alarmins, these cytokines are important
activators of immune responses. Stimulation of lung epithelial
cells with virus, allergens or helminths can lead to enhanced
production of TSLP, IL-33 and IL-25, and stimulation of
lung ILC2s with TSLP alone or in combination with IL-
33 can induce IL-4, IL-5 and IL-13 secretion (48–50, 80).
Interestingly, while IL-33 alone is able to induce such secretion
in vitro, adding small doses of TSLP to the stimulation cocktail
is sufficient to significantly enhance the secretory program,
indicating its potency (50) (Figure 3). Furthermore, TSLP is
able to mediate skin inflammation through ILC2s in mice
independent of IL-33 and IL-25 (100). In summary, TSLP can
greatly enhance ILC2 responses with or without help from IL-33
and IL-25.

The TSLP-GATA3 Axis in ILC2 Function and

Homeostasis

TSLP can activate multiple signaling pathways in T cells and
ILC2s alike. In T cells, TSLP as well as IL-7, are able to activate
STAT5 signaling which activates pro-survival signals mediated
by Bcl-2 (40). Similarly, ILC2s respond to TSLP by activating
STAT5, and this triggers IL-13 production (68). The transcription
factor GATA3 is indispensable for the development of all ILCs,
an important identifying marker for ILC2s, and a direct target of
STAT5 (67, 68). In addition, TSLP can induce GATA3 in ILC2s
which in turn mediates IL-4, IL-5 and IL-13 production in vitro
in these cells, and silencing GATA3 alone greatly reduces this
TSLP response (68). This signifies the importance of GATA3 for
TSLP-mediated ILC2 function. Interestingly, GATA3 induction
can lead to enhanced expression of TSLPR and IL-33 receptor
(ST2) which suggests that TSLP signaling through GATA3 can
enhance responsiveness to IL-33 and TSLP (68). This model
is consistent with studies that have suggested TSLP and IL-33
having synergistic effects on ILC2s (50). Moreover, GATA3 can
directly bind to exon 2 of the gene encoding IL-7Rα and induce
its expression thus enhancing IL-7 and TSLP signaling (101).
Altogether, assuming linearity, this suggests a positive feedback
loop whereby TSLP and GATA3 signaling rely on each other
to amplify early innate responses by relatively rare cells in an
environment with limited cytokine availability.

TSLP in Support of IL-9 Programming of ILC2

Function

ILC2s can produce IL-9 in response to TSLP in a manner
dependent on the transcription factor interferon regulatory

factor 4 (IRF4) (50). IL-9 derived from ILC2s can also serve
to enhance early ILC2 responses by signaling in an autocrine
fashion to increase IL-5 and IL-13 production during helminth
infection in mice with Nippostrongylus brasiliensis (Figure 3).
This subsequently promotes the expression of genes important
for mucus production and tissue repair in lung epithelial cells
(50, 102). Additionally, IL-9 receptor expression has been found
to be positively regulated by GATA3 through RNA-sequencing
transcriptomic analysis of ILC2s (67). Since TSLP can induce
GATA3 expression in ILC2s, this suggests that TSLP may
shape ILC2 responses through control of IL-9 receptor and
ligand expression (68) (Figure 3). This further demonstrates
that TSLP can act through multiple pathways in regulating
ILC2 function.

The Dark Side: TSLP Duality
Notwithstanding its importance at barrier sites, TSLP is well-
established as an inducer of Th2 cytokine driven allergic
inflammation such as atopic dermatitis, eosinophilic esophagitis,
asthma and allergic rhinitis, all mediated by a variety of cells
including eosinophils, basophils, and ILC2s (16, 48, 100, 103,
104). TSLP supports the production of IL-5 and IL-13 by lung
ILC2s, which contributes to eosinophilia and elevated mucus
production in papain and chitin models of allergy induction
(48, 50). Corticosteroids are a common treatment for asthma, but
TSLP can enhance the survival and proliferation of IL-13+ ILC2s
through STAT5 activation, thus limiting therapeutic effectiveness
(105–107). Similarly, respiratory syncytial virus (RSV) infection
in mice induces airway hyper responsiveness (AHR) and airway
obstruction, characterized by enhanced ILC2 proliferation and
production of IL-13, and this effect is significantly reduced
in TSLPR-deficient mice (49). Interestingly, TSLPR protein
expression can be upregulated in ILC2s early during RSV
infection. Proliferating ILC2s that produce IL-13 (but not IL-5)
had higher expression of TSLPR mRNA and protein. (49). This
differential expression by subpopulations of ILC2s may explain
how TSLP can have both beneficial and detrimental effects on
ILC2s. Nonetheless, comparative analysis of AHR, allergy, and
infection models is necessary for a definitive statement.

There are other circumstances that can lead to duality
in TSLP’s effect on ILC2s or other TSLPR expressing cells.
Relevant clinical studies have implicated the over-production
of TSLP, either due to mutation(s) or constant exposure to
allergen(s), as the main culprit in TSLP-mediated allergic
inflammation (108, 109). Another model suggests that TSLP
may have diverse roles due to the presence of two transcript
variants for TSLP producing a long and short isoforms (110,
111). The short isoform of TSLP is expressed constitutively
during homeostasis and is important for anti-inflammatory,
barrier integrity and anti-microbial responses, while the
long isoform is expressed during inflammation and supports
inflammatory cytokine production (110, 111). Lastly, it is
possible that the combined effects of other cytokines in the
environment with TSLP can influence the outcomes, and these
varying compositions may define a certain threshold. One or
more of these scenarios may occur simultaneously making
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FIGURE 4 | Retinoic acid and IL-7 induce the expression of the gut homing receptor integrin α4β7. However, in ILC2s, retinoic acid causes downregulation of IL-7Rα.

ILC3s appear to have plasticity since stimulation with IL-12 leads to conversion to ILC1-like ex-ILC3s. Aided by microbial stimulation, IL-7 induces or stabilizes RORγt

expression and maintains the IL-22 production status of ILC3s thus preventing conversion to ILC1-like ex-ILC3s.

multi-faceted approaches a preferred route of treatment for
allergic inflammations.

The negative effects of TSLP have been noted in ILC3s as
well. In a report, loss of IKKα in murine intestinal epithelial
cells (IECs) led to an overproduction of TSLP during Citrobacter
rodentium infection (112). This resulted in reduced IL-22
production by ILC3s, impaired bacteria clearance and increased
mortality. In vivo blockade of TSLP was sufficient to restore
anti-bacterial immunity. The inhibitory effect of TSLP on
ILC3 function was confirmed in in vitro experiments. Addition
of TSLP impaired the ability of IL-23 to stimulate IL-22
production from ILC3s in bulk splenocyte cultures, however this
phenomenon was not seen with sort purified ILCs, suggesting
that TSLP acted indirectly. This finding is unprecedented and
warrants further investigation to clearly map the connection
between TSLP and ILC3s, and provide more insight into their
implications in mucosal and barrier health.

CONCLUDING REMARKS

IL-7Rα is a cytokine receptor whose expression is tightly
regulated throughout the development and life of lymphoid
cells. IL-7 and TSLP signal through IL-7Rα and play multiple
roles in determining the fate of ILCs and T cells. Since their

discovery, research on ILCs have led to great insights in mucosal
immunology and lymphoid development. Their resemblance to
adaptive lymphoid cells has enabled us to study their biology
more efficiently. Despite the current progress, we have yet
to fill significant gaps of knowledge in ILC development and
function. It is still unclear when commitment to the ILC
fate occurs during hematopoiesis and how IL-7 controls this
program. The development of ILCs in vivo was found to rely
on key transcription factors such as NFIL3 whose activation
is dependent on IL-7 signaling. However, without a complete
picture of the source of ILCs, it is hard to pinpoint dependencies
on any given single cytokine. In addition, recent studies have
allowed us to better appreciate the complexity of hematopoiesis,
and in doing so, the differences between murine and human
lymphopoiesis. Although studies with mouse models have
provided great insight in lymphopoiesis, we should be cautious
in our interpretations. Recent advances in understanding ILC
development can be credited to transcriptomic studies and
single cell resolution analysis that have provided a complex
view of ILC heterogeneity. Further studies utilizing similar
methods can be conducted to identify ILC precursors in
lymphoid and non-lymphoid tissues and examine the factors
that regulate their development. Multiple studies that have
shown a role for IL-7 and TSLP in ILC function have
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used in vitro treatment with cytokines. While these studies
have provided great insights on how these cytokines can
influence ILCs, it is important to validate and extend these
findings through various transgenic animal models to reveal any
physiologically relevant and indispensable roles of IL-7 and TSLP
in ILC biology.
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γδ T cells are the first T cell lineage to develop in the thymus and take up residence

in a wide variety of tissues where they can provide fast, innate-like sources of effector

cytokines for barrier defense. In contrast to conventional αβ T cells that egress the thymus

as naïve cells, γδ T cells can be programmed for effector function during development in

the thymus. Understanding the molecular mechanisms that determine γδ T cell effector

fate is of great interest due to the wide-spread tissue distribution of γδ T cells and their

roles in pathogen clearance, immunosurveillance, cancer, and autoimmune diseases. In

this review, we will integrate the current understanding of the role of the T cell receptor,

environmental signals, and transcription factor networks in controlling mouse innate-like

γδ T cell effector commitment.

Keywords: γδ T cells, thymus, TCR signal strength, transcriptional regulation, innate-like lymphocyte, IL-17A, IFNγ

INTRODUCTION

γδ T cells are part of the three evolutionary conserved lymphocyte lineages (with αβ T cells and B
cells) that undergo somatic gene rearrangement for the generation of antigen receptors (1). While
immune cells can broadly be divided by adaptive vs. innate, γδ T cells straddle this classification
by having properties of both. Although γδ T cells are capable of generating unique T cell receptors
(TCRs), many γδ T cells express TCRs with limited diversity (2). Innate-like γδ T cells, also referred
to as “natural” γδ T cells, are endowed with their effector functions early during development in
the thymus and consequently do not require clonal expansion or differentiation from a naïve cell
for their effector responses (3, 4). Importantly, innate-like γδ T cells exhibit the four hallmark
characteristics of tissue-resident lymphocytes; (1) self-renewal and long-term maintenance, (2)
enrichment at barrier tissues, (3) tissue sensing capabilities, and (4) rapid effector responses (5).
These tissue-resident properties combined with early seeding during fetal life enable innate-like γδ

T cells to act as a first line of defense in the skin, gut, and reproductive tract while other lymphocytes
are still being developed.

γδ T cells play innumerable roles in pathogen clearance, wound healing, autoimmunity, and
cancer, largely through the production of soluble mediators (6). The two major effector subsets of
γδ T cells can be distinguished based on cytokine production: IFNγ producers (Tγδ1) and IL-17A
producers (Tγδ17), although γδ T cells are capable of producing many other cytokines (6). IFNγ

production by γδ T cells is associated with clearance of intracellular pathogens and anti-tumor
responses, while IL-17A production is linked to clearance of extracellular bacteria and fungi (7, 8).
Although protective against infectious diseases, cytokine production by γδ T cells is involved in
many immune pathologies and autoimmune diseases when dysregulated (9). Remarkably, the
presence of γδ T cells within tumors was found to be the most significant favorable cancer-wide
prognostic population in humans (10). While enriched at mucosal and barrier tissues, γδ T
cells are also present in many other non-lymphoid tissues where they support steady-state tissue
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homeostasis (6, 11). Recent studies have shown that IL-17A
production by γδ T cells regulates adipose tissue immune cell
homeostasis and thermogenesis (12), bone regeneration (13), and
the promotion of short-term memory in the brain meninges
(14). As innate-like lymphocytes, γδ T cells sense their local
environment and are regulated through a combination of the
TCR, cytokine receptors, co-stimulatory receptors, inhibitory
receptors, and natural killer receptors (15). These receptors
recognize various environmental ligands or stimuli that induce
signaling cascades that lead to expression of key transcription
factors (TFs) that can then dictate the identity and effector
function of γδ T cells. This review will focus on the integration
of TCR and environmental cues with downstream TF modules
that govern the effector fate of mouse innate-like γδ T cells.

γδ LINEAGE COMMITMENT IN THE
THYMUS

In the thymus, double-negative CD4− CD8− (DN) thymocytes
give rise to two distinct T cell lineages defined by the expression
of either an αβTCR or a γδTCR (16). DN thymocytes are a
heterogeneous group of developmentally linked progenitor cells
distinguished by the expression of CD44, CD117 (also known
as c-kit), and CD25 that encompass the transition of early
thymocyte progenitor cells (ETP/DN1) through the DN2, DN3,
andDN4 cell stages (16). Rearrangement of the TCRβ, TCRγ, and
TCRδ gene loci begin in DN2 cells and are completed in DN3
cells (17), a time frame that coincides with the divergence of the
αβ and γδ lineages (18, 19). Indeed, the DN3 stage represents
an obligatory checkpoint at which productive rearrangement
and expression of either a pre-TCR (TCRβ + invariant pTα)
or γδTCR complex signals the rescue of cells from apoptosis,
proliferation, and αβ or γδ lineage differentiation (17). β-selected
cells undergo further development to the CD4+CD8+ double
positive (DP) stage, where TCRα rearrangement and additional
selection events yield mature CD4+ or CD8+ single positive αβ

T cells (16, 20). Unlike αβ T cells, γδ T cells develop following a
single γδ-selection step mediated by the γδTCR, do not progress
through to a DP stage, and rather most γδ T cells remain DN
instead (16).

Developing DN thymocytes integrate signals from the TCR
complex expressed on their cell surface along with myriad
environmental cues. As such, two models were proposed to
explain αβ vs. γδ lineage choice: the signal strengthmodel and the
stochastic-selective (pre-commitment) model (16). The major
difference between thesemodels is the importance placed on TCR
signaling and the timing of its influence. The pre-commitment
model is founded on the idea that lineage fate is determined
prior to rearrangement of TCR loci. The expression of γδTCR
on γδ T cell precursors or pre-TCR on αβ precursors simply
confirms their fate and cells pre-committed to one fate with
a mismatched TCR were hypothesized to die. Initial studies
supporting this model showed that DN thymocytes lacking TCR
expression but expressing high levels of IL-7Rα (21) or the high
mobility group (HMG) box TF Sox13 (22) were predisposed to
becoming γδ T cells. However, more recent evidence that Sox13

is not required for the generation of all γδ T cells, but rather only
for a select subset of IL-17-producing γδ T cells marked by Vγ4
usage (23) [Tonegawa nomenclature (24)], is at odds with the
pre-commitment model.

In contrast, the signal strength model of αβ vs. γδ lineage
commitment has garnered widespread support. It posits that
the strength of TCR signal that DN thymocytes receive dictates
the lineage decision; weak signals promote αβ fate, while strong
signals promote the γδ fate. The extensive evidence in favor
of this model has been previously reviewed in detail (16, 25).
Most notably, key support was provided by elegant experiments
demonstrating that a single γδTCR transgene can mediate both
γδ and αβ lineage fates, dependent on the signal strength of
the TCR (26, 27). In particular, lineage fate toggled between
αβ and γδ outcomes when TCR signal strength was tuned
by genetic alterations in TCR ligand availability, TCR surface
expression levels, or in expression of TCR signaling factors (26,
27). Enhanced or prolonged activation of the extracellular signal-
regulated kinase (ERK) pathway and downstream Egr, and Id3
targets are important mediators of strong γδTCR signals that
promote γδ lineage commitment (25, 26, 28). More recent work
has begun to shed light on the mechanism by which DN cells
translate differences in signal strength and ERK signaling into
alternative lineage fates. γδ T cell development is dependent
on a non-canonical mode of ERK action mediated by its DEF-
binding pocket (29). This domain is favored by strong and more
prolonged signals and enables ERK to bind a distinct set of
proteins required for γδ lineage adoption. Thus, strong signals
mediated primarily by γδTCR complexes are required for DN cell
commitment to the γδ T cell lineage.

EFFECTOR PROGRAMMING OF γδ T
CELLS

Waves of γδ T Cell Development
A distinctive and poorly understood feature of γδ T cell ontogeny
is the development of γδ thymocytes in a series of “waves” that
are defined by γ-chain variable regions (Vγ) usage (Table 1).
Interestingly, the waves of Vγ subsets are highly correlated with
homing abilities to specific tissues early in life, where they become
long-lived tissue-resident cells. This process begins when the fetal
thymus is seeded as early as embryonic day 13.5 (E13.5) by fetal
liver progenitors to generate the first wave of γδ T cells, known as
Vγ5+Vδ1+ dendritic epidermal T cells (DETCs) that exclusively
home to the epidermis of the skin (30). The second wave of γδ T
cells, expressing an invariant Vγ6Vδ1 TCR, develop around E16
and primarily seed epithelial layers of the female reproductive
tract, lung, and tongue (31). Next, the late fetal stages give rise
to Vγ4+ and Vγ1+ γδ T cells that express more varied TCRs
due to pairing with several Vδ chains and can be found in many
tissues such as peripheral lymphoid organs, blood, lung, liver, and
dermis (2, 31). Unlike Vγ5+ and Vγ6+ γδ T cells, these subsets
are not restricted to the fetal window and can also develop during
neonatal and adult life (2, 31). Of note, the Vγ7+ γδ T cells
that reside in the intraepithelial layer of the small intestine are
thought tomature extrathymically (2, 32).While the link between
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TABLE 1 | Waves of γδ T cell development.

Subset V(D)J diversity Timing of

development

Tissue residence Major

cytokines

produced

Vγ1 High

(NKT γδ T cells

= Vγ1+Vδ6.3+)

Perinatal and

adult

Liver, lymphoid

tissues

IFNγ

(IFNγ and IL-4)

Vγ4 Variable E18 to adult Dermis, lung, liver,

lymphoid tissue

IL-17A or IFNγ

Vγ5 Invariant

(Vγ5+Vδ1+)

E13-E16 Epidermis IFNγ

Vγ6 Invariant

(Vγ6+Vδ1+)

E16-birth Uterus, lung,

tongue, liver,

placenta, kidney

IL-17A

Vγ7 Intermediate Neonatal Epithelial layer of

small intestine

IFNγ

E, embryonic day.

Vγ usage and tissue homing can be explained in DETCs with
upregulation of CCR10 in the thymus before trafficking to the
epidermis (33, 34), this association is not yet understood for other
Vγ subsets. Moreover, the molecular mechanisms governing the
unique sequential development of Vγ subsets are unknown,
however features of both the fetal progenitors and environment
have been implicated (35–38).

Effector Diversification of γδ Thymocytes
In contrast to αβ T cells that leave the thymus as naïve cells and
acquire their effector function in the periphery, γδ T cells can
commit to an effector fate during development in the thymus.
The pre-programming in the thymus allows γδ T cells to be early
innate-like responders to infection and tissue-damage, without
the delay that is required for αβ T cell responses. While this
review focuses on “pre-programmed” innate-like or “natural”
γδ T cells, some γδ T cells exit the thymus as naïve cells and
acquire effector function following activation in the periphery;
these are referred to as “inducible” γδ T cells (4, 39). Similar to
αβ T cells, innate lymphoid cells (ILCs), and other lymphocyte
lineages, γδ T cells can be divided into effector subsets based
on the expression of either T-bet/IFNγ (Tγδ1) or RORγt/IL-17A
(Tγδ17). During ontogeny, effector γδ T cell subsets differentiate
in functional waves encompassing DETCs, IL-17A producers,
and NKT γδ T cells, which are also partially associated with
Vγ usage (40). Specifically, Vγ5+ DETCs preferentially produce
IFNγ, while Vγ6+ γδ T cells mainly produce IL-17A (41). Later
waves, such as Vγ4 and Vγ1, are more heterogenous in their
capacity to produce various effector cytokines. While IL-17A
production is not limited to a specific Vγ subset, innate-like
Tγδ17 cell generation is restricted to a window of time during
fetal life, approximately E16 to birth, that enriches for Vγ6+

and Vγ4+ γδ T cell subsets (42). Within the third functional
wave, Vγ1+Vδ6.3+ NKT γδ T cells express PLZF and are capable
of producing both IL-4 and IFNγ (43, 44). Therefore, the fate
decisions of developing thymocytes during fetal life impacts the
adult reservoir of innate-like γδ T cell effectors.

γδ T cell effectors can be defined by various cell surface
markers: IFNγ producing γδ T cells typically express CD27,
CD122, NK1.1, and high levels of CD45RB, while IL-17A
producing γδ T cells lack expression of CD27, CD122, and
NK1.1 but usually express CCR6 and low levels of CD45RB
(41, 45, 46) (Figure 1). Nevertheless, the study of γδ effector
diversification has been hampered by the lack of definitive
markers that distinguish Tγδ1 and Tγδ17 precursors. Before
effector commitment, CD25 is expressed by the earliest γδ T cells
in the thymus (47), as γδ-selected thymocytes are derived from
CD25+ DN2 and DN3T cell precursors (18, 48). Post-selection
γδ thymocytes are also distinguished by CD27 upregulation (48),
and these CD25+CD27+ are the earliest progenitors of IL-17A
and IFNγ γδ effectors (46). Emerging γδ thymocytes with low
levels of γδTCR also express intermediate levels of CD45RB,
and have molecular signatures and developmental potential
consistent with being precursors to both Tγδ17 and Tγδ1 cells
(41, 49). Indicative of their immature status, these pioneer γδ T
cells are marked by high levels of CD24 expression, which is later
downregulated upon maturation (50).

Several recent studies have provided clarity regarding the
developmental trajectories of innate-like γδ T cell effector subsets
beyond the precursor stage (49, 51). Recent work by Sumaria
and colleagues identified CD45RB−CD44− γδ thymocytes as
precursors of both type 1 and type 17 effectors, suggesting that all
γδ T cells downregulate CD45RB prior to effector diversification
(Figure 1) (52). Consistent with this view, the absolute block in
Tγδ17 development in the absence of c-Maf revealed an effector
specialization checkpoint at the immature CD45RB−CD24+ γδ

thymocyte stage (49). This block also provides genetic support
for a model in which effector programming is molecularly
distinct from γδ-selection (3). Among mature CD24− γδ

thymocytes, CD45RB and CD44 distinguish effector lineages:
CD44hiCD45RBlo γδ T express high levels of RORγt and
IL-7Rα and are committed to IL-17A production, whereas
CD44+CD45RB+ γδ T cells express T-bet, but lack RORγt
or IL-7Rα expression and are committed to IFNγ production
(Figure 1) (51). Additionally, CD73 expression, which is linked
to strong ligand-dependent γδTCR signaling (53), is significantly
more expressed on IFNγ-committed than IL-17A-committed
γδ thymocytes (51), and CD73− γδ thymocytes are enriched
for those undergoing type 17 differentiation in the perinatal
thymus (54). Interestingly, although CD24+ γδ thymocytes
are considered “immature,” they nonetheless express key TFs
necessary for their effector acquisition, such as RORγt for
Tγδ17 cells (49, 54, 55), and are surprisingly also functionally
competent to produce IL-17A (51). The application of global
single cell transcriptomic analysis to fetal γδ thymocytes is likely
to add significant granularity to the developmental trajectories of
effector programming [preprint (56)].

ROLE OF γδTCR

Similar to the role of TCR in αβ vs. γδ lineage choice, the γδTCR
is important for determining the effector fate of γδ T cells. The
current understanding supports a model with two sequential
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FIGURE 1 | γδ T cell development in the thymus. DN thymocytes undergo γδ-selection and become immature γδ thymocytes that eventually diverge into either IFNγ

producers or IL-17A producers. The expression of cell surface markers and transcription factors that define transitional precursors and mature effector γδ T cells are

listed next to each cell type. CD24 and CD27 expression at the “effector precursor” stage is heterogenous and is marked by +/–, however, cells transition from

CD24+ to CD24−. DN, double negative; TCR, T cell receptor. Figure made with biorender.com.

steps in commitment; first, the decision of αβ vs. γδ, and second,
the decision to become an IFNγ- or IL-17A-secreting γδ T cell
(3). Both steps in development are dependent on TCR signal
strength integrated with numerous environmental signals. The
idea that thymic selection determines the effector fate of γδT cells
was first supported by the finding that γδT cells exposed to a TCR
ligand leading to a strong TCR signal become IFNγ producers,
whereas the absence of ligand or weak γδTCR signal result in
the IL-17A effector fate (57). Further supporting the notion that
ligand-dependent strong γδTCR signals promote the type 1 fate,
DETCs, known to produce IFNγ, adopt an IL-17A producing
γδ T cell fate in the absence of their selecting ligand, Skint-1
(discussed further below) (41). Conversely, enhancing γδTCR
signal strength through the addition of crosslinking γδTCR
antibody GL3 to fetal thymic organ cultures (FTOC) significantly
reduced the number of CD44hiCD45RB− IL-17A-committed
cells while increasing type 1-associated CD44+CD45RBhi cells
(51). A similar outcome was achieved when strong TCR signals
were mimicked by transduction of T cell progenitors with a
constitutively active form of the kinase Lck (LckF505) (49).
Together, these studies suggest that the type 17 program is the
default effector pathway that is otherwise repressed by strong
or ligand-dependent TCR signals. Whether Tγδ17 development
supported by weak TCR signaling is truly or universally ligand-
independent remains to be determined.

γδ T cell effector fate choice is also influenced by specific

TCR signal transduction pathways. For example, ERK signals

support the type 1 program as ERK-deficient TCRβ−/− mice have
an increased frequency of CD27− γδ T cells, and ERK-deficient
KN6 γδ TCR transgenic thymocytes are skewed toward IL-17A
production compared to the controls that predominately produce
IFNγ (29). More recently, it was revealed that the tyrosine kinase
Syk is selectively required for Tγδ17 development, through
activation of the PI3K/Akt pathway downstream of γδTCR
signaling (58). Studies show that impairment of TCR signal
strength with SKG [Zap70 mutant (59)] and CD3DH (CD3γ and

CD3δ double heterozygous) mice both have reduced frequencies
of IL-17A-producing Vγ6+ γδT cells (60, 61). Notably, the defect
in Zap70 signaling impacts Vγ4+ Tγδ17s as well, just to a lesser
extent, while the Vγ4+ γδT cells in the CD3DH mice are not
impaired (60, 61). These findings imply that while we group
Tγδ17s into one effector class, the Vγ subsets may require specific
signal strengths and downstream signaling molecules for their
effector programs. Taken together, these findings also support the
model that IFNγ producing γδ T cells require strong TCR signals,
while IL-17A producing γδ T cells generally require weaker TCR
signal strength (41, 46, 51).

ENVIRONMENTAL CUES

Environmental cues in the thymus are derived from both
thymic epithelial cells (TECs), developing thymocytes, and other
hematopoietic cells. Timing is also a critical factor, as the
developmental windows in which progenitors seed the thymus
influence their exposure to signals integrated from both the
stromal microenvironment and resident developing thymocytes.
Therefore, γδ T cell effector specialization can be influenced by
various environmental cues during ontogeny.

Lymphotoxin Signaling
One of the best-studied examples of such signals is a process
called “trans-conditioning.” This phenomenon was initially
discovered in TCRβ−/− mice that have an altered γδ T cell gene
profile and significantly reduced secretion of IFNγ by splenic γδ

T cells (62). The authors concluded that αβ T cells are required
for the normal development of γδ T cells (62). Subsequent
work identified lymphotoxin production by DP thymocytes
as the mechanism, in part, responsible for the regulation of
γδ T cell maturation and differentiation toward an IFNγ-
producing fate (63). Mechanistically, this was extended with
the finding that CD27, a tumor necrosis factor (TNF) receptor
superfamily member, engages CD70 and positively upregulates
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lymphotoxin beta receptor (LTBR) expression on γδ T cells
(46). Accordingly, the function of CD27 in supporting IFNγ

production coincides with its selective expression by mature
Tγδ1 as compared to Tγδ17 cells (Figures 1, 2) (46). The role
of lymphotoxin signaling in γδ T cell effector commitment is
complex as the thymic differentiation of IL-17A-producing γδ T
cells is also dependent on this pathway (64). Indeed, by way of
the lymphotoxin signaling pathway, the NF- κb family members,
RelA and RelB, play distinct roles in the thymic preprogramming
of Tγδ17 cells. RelA regulates lymphotoxin ligand expression
in accessory thymocytes, thereby indirectly controlling IL-17A
production by γδ T cells. On the other hand, γδ T cell precursors
require RelB downstream of LTBR to maintain Rorc expression
for differentiation into mature Tγδ17 cells (Figure 2) (64).
Taken together, lymphotoxin signaling regulates the effector fate
acquisition of γδ T cells through integration of γδ T cell-intrinsic
and extrinsic pathways.

Cytokines and Notch Signaling
IL-7 is known for being a non-redundant, key regulator of
lymphocyte homeostasis through promotion of survival and
proliferation (65–68). The IL-7/IL-7R pathway plays essential
roles at distinct stages in the development of multiple lymphocyte
lineages (69). In particular, γδ T cells require IL-7Rα for
their development, as IL-7R-deficient mice lack all γδ T cells
(70). Follow-up work by several groups demonstrated that IL-
7Rα-deficient mice have a block in V-J recombination of the
TCRγ genes (71), and that IL-7R controls the accessibility of
the TCRγ locus (72–74). While IL-7 signaling is required for
all γδ T cell development, high levels of IL-7Rα expression
and IL-7 signaling preferentially favor the differentiation of
IL-17A-producing γδ T cells (75, 76). In line with this
notion, Aire-deficient mice have increased production of IL-
7 by medullary thymic epithelial cells (mTECs) that results
in expanded populations of IL-17A-producing Vγ6+Vδ1+ T
cells in the thymus and the periphery (77). The IL-7 signaling
pathway also integrates with additional environmental signals
and transcriptional regulators, most notably, the Notch signaling
pathway. The Notch target and transcriptional repressor, Hes1, is
specifically expressed in IL-17A-producing γδ T cells and Hes1
ablation significantly decreases IL-17A production with no effect
on IFNγ secretion in peripheral γδ T cells (Figure 2) (78). Notch
also regulates Tγδ17 differentiation in a Hes1-independent, but
RBPJκ-dependent manner (79). Mechanistically, Notch signaling
and RBPJκ are required for IL-7Rα expression, and IL-7Rα-
mediated signaling is indispensable for the homeostasis of IL-17+

γδ T cells (Figure 2) (79). Future studies further exploring the
transcriptional activators and repressors of Il7r will help elucidate
how IL-7 signaling integrates with other environmental cues to
control γδ T cell fate.

IL-17 is another interesting example of a soluble mediator
produced in the thymus that regulates the development of γδ

T cells. The development of innate-like Tγδ17 cells is restricted
to a functional embryonic wave during fetal life from E16
to birth, resulting in long-lived, self-renewing cells that are
found in adult mice (42). Surprisingly, it was found that IL-17
production in the thymus influences the development of Tγδ17

cells through a negative feedback loop such that CCR6+CD27−

Tγδ17 cell numbers are increased in Il17af−/− mice (mice with
deletion of the entire Il17a and Il17f locus) compared to wild-
type controls (42). Interestingly, IL-17-producing Thy1+ cells
resembling group 3 innate lymphoid cells (ILC3s) were found in
the thymus of Rag1−/− mice (42). Therefore, the restriction of
Tγδ17 cell development may be attributed to IL-17 production
from both innate lymphoid cells and IL-17+ αβ and γδ T
cells (42).

TGF-β signaling has pleiotropic effects on immune cells.
Among type 17 lineages, a specific role for TGF-β was first
defined for the differentiation of naïve CD4+ T cells into Th17
cells. Specifically, TGF-β1−/− mice have severely diminished
Th17 cells in peripheral lymphoid organs (80). Despite major
distinctions between Th17 cells and Tγδ17 cells, IL-17A-
producing γδ T cells are also significantly reduced in mice
deficient for either TGF-β1 or Smad3, the TGF-β signaling
adaptor molecule, suggesting a similar dependence of TGF-β
signaling for IL-17 production in the γδ lineage (81). However,
this study was performed in neonates at a time point when
innate-like Tγδ17 cells have left the thymus, therefore, the precise
role of TGF-β signaling in Tγδ17 cell development is still unclear.
In this regard, TGF-β may support Tγδ17 cells as a driver of Ras
signaling (82), a signaling cascade that strongly promotes the type
17 program in γδ T cells (49).

Butyrophilins
Whether γδ T cells undergo thymic selection analogous to
αβ T cells has been a major question in the field. In
order to explain the domination of tissue-specific γδ T cell
compartments by particular Vγ subsets, it was hypothesized
that the same γδTCR-specific ligands expressed in both
the fetal thymus and target tissues could mediate positive
selection during ontogeny and thereafter, tissue localization
and maintenance cues for long-term residence (83). FVB-
Tac mice harboring a spontaneous mutation that selectively
disrupts the DETC compartment was reported to map back
to a single gene expressed by TECs and keratinocytes,
representing the first support for the hypothesis that DETCs
undergo positive selection in the thymus (84). A few years
later, the phenotype of FVB-Tac mice was attributed to a
mutation in the Skint1 gene (85). Skint1 is a member of the
butyrophilin-like (Btnl) family that structurally resembles the
B7 superfamily molecules CD80 and PD-L1 (86–88). Skint
gene expression is restricted to the thymus and skin, therefore,
the broader applicability of this mechanism of selection for
other intraepithelial γδ T cells was questioned (85). Recently,
expression of Btnl1 by villus epithelial cells in the small
intestine was shown to mediate the extrathymic selection
of Vγ7+ intraepithelial lymphocytes (IELs), driving their
expansion and maturation (89). In particular, joint expression
of Btnl1 and Btnl6 by intestinal epithelial cells regulates the
TCR-dependent responses of Vγ7+ IELs (89). Importantly,
human intestinal epithelium co-expressing BTNL3 and BTNL8
selectively regulated Vγ4+ γδ T cells, indicating an evolutionary
conserved mechanism of γδ T cell regulation across mouse
and human (89). While extensive progress has been made,
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FIGURE 2 | Transcription factor network regulating γδ T cell effector programming. Integration of cell surface receptors [TCR, Lymphotoxin Beta Receptor (LTBR),

CD27, and Notch] with downstream transcription factors for the programming of γδ T cell effector function. Blue-colored TFs support the type 17 program, while

red-colored TFs support the type 1 program. The dotted lines represent indirect regulation or that the supporting data was described in another cell type. The solid

lines represent more direct regulation. Figure made with biorender.com.

much remains unknown regarding the identity of γδTCR
ligands that drive specific γδ T cell subset selection for tissue
homeostasis (90).

γδ T Cell Crosstalk With mTECs
Aire-expressing mTECs are necessary for central tolerance
through expression of tissue-restricted antigens (91). Previous
work identified the importance of RANKL-RANK signaling
for induction of mTEC Aire expression by lymphoid tissue
inducer (LTi) cells (92, 93). Notably, the timing of Aire
expression on mTECs coincides with the first wave of Vγ5+

DETC precursors seeding the thymus (94). Interestingly,
RANKL-RANK interactions between RANKL+ Vγ5+ DETC
thymocytes and RANK+ mTECs also induce Aire expression
and mTEC maturation. Such RANKL-RANK signaling is
additionally required for Skint-1 expression by mTECs, and thus
is reciprocally necessary for Vγ5+ DETC development. Taken
together, this study elegantly demonstrates the crosstalk between
developing DETC progenitors and immature mTECs that each
rely on shared RANKL-RANK signals for maturation. While
DETCs are the first γδ thymocytes to emerge in ontogeny, similar
crosstalk between resident immune cells and TECs may account
for the discrete developmental windows of other innate-like γδ T
cell subsets.

TRANSCRIPTIONAL NETWORKS
REGULATING γδT CELL IDENTITY

γδ T cell effector acquisition is regulated by a highly-integrated
network of transcriptional regulators. The lineage-defining
transcription factors (LDTFs), RORγt and T-bet, promote
the effector fates of IL-17A vs. IFNγ producers in various
lymphocyte lineages, respectively (95–97). Although these LDTFs
are integral to programming γδ T cell effector function, many
other signal-dependent and collaborating TFs play essential
roles in establishing and maintaining γδ T cell identity
downstream of TCR signaling and various environmental
signaling cascades (Figure 2).

In order to better understand the effector diversification of
γδ T cells from a global perspective, the Immgen consortium
performed gene-expression profiling of isolated ex vivo γδ T
cells subsets (55). Among these, distinct clusters of immature
γδ T cells could be distinguished based on their transcriptomes,
reflecting three unique effector programs: IL-17A producers
(Vγ6+ and Vγ4+), IFNγ producers (Vγ1+, Vγ1+Vδ6.3+,
Vγ7+), and DETCs (Vγ5+) (55). Importantly, key TFs are
enriched in specific γδ effector subsets, such as Rorc,Maf, Sox13,
and Sox4 for the IL-17A producers and Tcf7 (TCF-1), Lef1, Tbx21
(T-bet), and Eomes for the IFNγ producers (55). The dual action
of many of these TFs in both promoting one effector fate, while
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repressing the alternative fate leads to a complex TF network in
γδ T cells (Figure 2). Interestingly, TFs associated with type 17
programming in adaptive Th17 cells—namely, IRF4, BATF, and
STAT3—are dispensable for Tγδ17 cells (64, 98–100).

TCR-Independent Transcriptional
Regulators
Independent of conventional TCR signaling, innate-like γδ T cell
effector programming is regulated by a quartet of HMG box TFs
including Sox4, Sox13, TCF-1, and Lef1 (101). Among these,
Sox13 and Sox4 are essential for the differentiation of Vγ4+

IL-17A-producing cells (101). This Vγ-specific requirement
is intriguing as it implies that discrete regulators drive the
specification of distinct subsets of Tγδ17 cells, although it
remains possible that redundancy between Sox13 and Sox4masks
a global role for Sox TFs in γδ T cell type 17 programming.
Within the Vγ4+ subset, Sox13 and Sox4 regulate key Tγδ17
program genes such as Rorc and Blk (23, 101), a tyrosine
protein kinase that is selectively required for the development
of Tγδ17 cells (102). While Sox proteins positively regulate
type 17 fate, TCF-1 and Lef1 function to restrain Tγδ17 cell
generation and gene expression (101). TCF-1 is targeted by
multiple environmental signals; it is a Notch-induced TF that
plays critical stage-specific roles in T cell differentiation (103,
104), and is also influenced by the Wnt signaling pathway
through its β-catenin interaction domain, which is required
to ensure DP thymocyte survival (104). In γδ T cells, TCF-1
promotes the expression of Lef1 and the IFNγ producing fate
(101). Sox13 may also counteract the type 1 program through
direct antagonism of TCF-1 via its β-catenin interaction domain
(22), and indirectly via TCF-1 targets, as evidenced by Sox13
Tg mice expressing greatly diminished levels of Lef1 (101).
The mutually opposing functions of Sox proteins and TCF-
1/Lef1 in Tγδ1 and Tγδ17 differentiation likely reinforces and
stabilizes effector fate. Together, TCR-independent HMG box
TFs represent key interconnected nodes in the transcriptional
network of γδ T cells.

TCR-Dependent Transcriptional Regulators
A crucial question in γδ T cell biology is how distinct
functional potentials arise from differential TCR signal strengths?
(41). Broadly, effector commitment to an IFNγ-producing fate
through strong TCR signaling requires both promotion of drivers
of the type 1 program, and simultaneous neutralization of drivers
of the type 17 program. TCR signaling can be linked to γδ

T cell lineage and effector commitment through the Egr-Id3
pathway. Downstream of strong TCR signaling, Erk induced Egr1
promotes the development of γδ T cells through activation of
the E protein inhibitor Id3 (26, 28). Induction of Id3 is also
required for functional IFNγ production, providing amechanism
by which signal strength is translated into downstream effectors
(28). This signal is key in suppression of E proteins that
otherwise support Tγδ17 features (Figure 2). Indeed, it has been
demonstrated in DP thymocytes that E proteins enhance RORγt
expression, while Egr3 negatively regulates RORγt expression by
inducing Id3 (105). Similarly, Id3 can antagonize the type 17
program by forming an inactive heterodimer with HEB, an E

protein TF that is required for direct promotion of Sox13 and
Sox4 expression and CD73− Tγδ17 cell development (54). Along
these lines, Egr3 is highly expressed in Vγ5+Vδ1+ thymocytes
and upregulation of Egr3 after Skint-1-mediated selection or
strong TCR signal represses Rorc and Sox13 but supports Tbx21
expression and commitment toward an IFNγ producing fate
(41). Therefore, Egr3 downstream of Skint-1-mediated selection
directs the TF balance necessary for proper DETC development
through restraint of the “default” type 17 program. These findings
highlight that TCR-dependent and TCR-independent TFs both
antagonize and promote each other to regulate the effector fate of
γδ T cells.

Regulation of Type 17 Commitment
In contrast to Tγδ17 specification factors important for type
17 differentiation of distinct Vγ subsets [e.g., Sox13, Sox4, and
HEB (54, 101)], the AP-1 factor c-Maf was recently identified as
universally required for the generation and maintenance of all
IL-17A-producing γδ T cells (49). As a canonical commitment
factor, c-Maf directly activates Rorc and key Tγδ17 effector
genes (Il17a and Blk), while also antagonizing the expression or
function of negative regulators of the type 17 program (TCF-
1 and Lef1) that promote the alternative Tγδ1 fate (Figure 2)
(49). c-Maf globally supports a Tγδ17 chromatin accessibility
landscape, with a particularly important role in the establishment
of an active regulatory status at Rorc involving the recruitment of
the histone acetyltransferase p300, and H3K27 acetylation (49).
The signals that directly activate c-Maf in γδ thymocytes remain
to be defined, but may involve known Tγδ17-promoting factors
such as Notch, TGF-β, and IL-7 that have been described as c-
Maf activators in CD4+ T cells or ILCs (75, 78, 79, 81, 106–108).
There is some evidence that Sox TFs function upstream of c-
Maf and can regulate its protein expression (49). Interestingly,
unlike Sox13 expression that is independent of TCR signaling
(101, 109), c-Maf expression is tuned by TCR signal strength
in fetal γδ thymocytes; strong TCR signals lead to low c-Maf
and weak signals result in high c-Maf protein levels, providing a
mechanism by which weak γδTCR signals can be translated into
Tγδ17 regulatory programming (49).

Integration of Type 17 Regulators
A highly-integrated network of regulators control type 17
programming (Figure 2). Sox13 and Sox4 collaborate with c-Maf
in the direct activation of Rorc and other key Tγδ17 genes such as
Blk and Il17a (49, 101). The close proximity of Maf recognition
element (MARE) and HMG box consensus sites in the c-Maf-
dependent Rorc enhancer (CNS+10) suggests that c-Maf and
Sox TFs may bind and function cooperatively in γδ T cells (49),
as has been described in multiple other cell types (110–112).
Of particular relevance, Sox5 and c-Maf can cooperatively bind
the Rorc promoter and drive its expression in Th17 cells (112).
Additionally, c-Maf and RORγt collaborate in the activation of
Il17a and potentially other type 17 signature genes, however, c-
Maf also functions independently of its direct target RORγt in
regulating key Tγδ17 lineage-modulating factors (e.g., Blk, Lef1,
and Syk) (49). Aside from activation of the type 17 program, both
Sox13 and c-Maf repress the alternative type 1 fate by targeting
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TCF-1/Lef1 (49, 101). TCF-1 negatively regulates the Rorc locus
(101), and its occupancy atRorcCNS+10 is antagonized by c-Maf
in γδ thymocytes (49). As TCF-1 harbors intrinsic HDAC activity
(113), this antagonism may represent another mechanism by
which c-Maf promotes H3K27 acetylation at the Rorc locus (49).
Intriguingly, c-Maf also restrains the expression and function of
TCF-1 in ILC3s (106), while TCF-1 represses the c-Maf/RORγt
axis to limit the formation of Tc17 cells in CD8+ T cells (114).
This suggests that c-Maf/TCF-1 antagonism is conserved across
multiple lymphocyte lineages to regulate the balance of the type
1 vs. type 17 specialization.

The integration of various signals in the effector programming
of γδ thymocytes suggests several tiers of regulators in
specialization. In building amodel, this includes: (1) specification
factors (e.g., RelB, Notch, HEB, Sox13, and TCF-1) that perceive
environmental signals to support type 1 or type 17 programming
either universally or in the establishment of discrete Tγδ17
subsets; (2) commitment factors (e.g., c-Maf, Egr-Id3) that
impart or reinforce effector identity programs, and (3) LDTFs
(e.g., RORγt, T-bet) that control genes for key canonical
effector functions (Figure 2). As γδ T cell selection and effector
diversification occur across various DN and γδ thymocyte
developmental intermediates, with numerous thymus and TCR-
derived signals likely occurring over a protracted period, the
temporal contributions of such inputs with respect to effector
commitment remains unclear. In this regard, a recent intriguing
study employing a Sox13 reporter mouse, identified DN1-like
(CD117−CD24+CD25+) precursors in the perinatal to day 10
thymus that are prewired for the expression of the Tγδ17
gene network (e.g., Rorc, Sox4, Tcf7, Tcf12, Maf, Il7r, Scart2,
and Blk) and are generated in a TCR-independent manner
(109). Remarkably, such Sox13+ DN1d cells are predisposed
to become CCR6+ IL-17A-producing cells, suggesting they are
pre-committed to the Tγδ17 fate (109). Future work focused
on how such effector-committed precursors intersect with the
rearrangement of particular Vγ TCRs and signal strengths will
broaden our understanding of the integration of environmental

and TCR inputs in the effector programming of γδ thymocytes
during ontogeny.

CONCLUDING REMARKS

The last decade of research has led to enormous leaps in the
understanding of tissue-resident lymphocytes, with newfound
appreciation for the diversity of innate lymphocytes. Although
dependent on the same LDTFs, innate-like γδ T cells and ILCs
have unique transcriptional networks that control their effector
fates. Such underlying distinctions in regulatory programming
may translate into functional differences or non-redundant roles
for innate-like γδ T cells vs. ILCs. Indeed, γδ T cells possess a
TCR complex that endow them with additional environmental
sensing capacities. Thus, uniquely, innate-like γδ T cell effector
commitment can be controlled, in part, by the fine-tuning of
key transcriptional regulators downstream of TCR signaling to
both promote one fate while repressing the other. However, there
is still much to be learned with respect to the establishment
of transcriptional programs independent of TCR signaling and
the elements that predispose γδ thymocytes to an effector fate
prior to TCR expression. In the future, taking advantage of
advances in single-cell sequencing and genomics techniques will
lead to a higher resolution picture of γδ T cell trajectories and
lineage decisions.
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Since their identification as a separate family of leukocytes, Innate lymphoid cells

(ILCs) have been shown to play crucial roles in immune-mediated diseases and repair

mechanisms that restore tissue integrity after injury. ILCs mainly populate non-lymphoid

tissues where they form intricate circuits with parenchymal cells to regulate tissue

immunity and organ homeostasis. However, the specific phenotype and function of

ILC populations that reside in specific anatomical locations, such as the kidney, still

remains poorly understood. In this review, we discuss tissue-specific properties of

kidney-residing ILCs and summarize recent advances in the understanding of ILC biology

in kidney diseases that might pave the way for development of novel treatment strategies

in humans.

Keywords: innate lymphoid cells, chronic kidney disease, acute kidney injury, glomerulonephritis, ILC modulation

INTRODUCTION

Chronic kidney disease (CKD) affects ∼10% of the population in industrialized countries and
is a major risk factor for cardiovascular mortality (1). CKD often shows a progressive course
leading to end stage renal disease with the need for renal replacement therapy (dialysis or kidney
transplantation), resulting in substantial morbidity and mortality of affected patients. Diabetes
mellitus and arterial hypertension are the most common diseases that lead to chronic renal injury
with subsequent dysfunction, but immune-mediated kidney diseases, such as glomerulonephritis
and interstitial nephritis, are also frequent causes of CKD cases (∼20%) (2).

In addition to CKD, acute impairment of kidney function (acute kidney injury = AKI)
is a common clinical problem that affects up to 25% of hospitalized patients worldwide and
represents an important risk factor for in-hospital mortality (3). AKI can result from various
clinical conditions, including ischemia, sepsis, and nephrotoxic agents, and usually resolves after
successful treatment of the underlying condition or withdrawal of the toxin. However, it has become
evident that previous episodes of AKI increase the risk for development of CKD, underlining the
importance of AKI for long-term patient outcome (4, 5).

Regardless of the underlying etiology, the local immune response in renal tissue critically
contributes to initiation and progression of acute and chronic kidney damage. However, if activated
appropriately, regulatory components of the immune system can also promote kidney tissue
regeneration and limit renal inflammation (6, 7). Thus, immunomodulatory strategies that are
aimed at shifting the balance from a pro-inflammatory, tissue destructive immune response in
the kidney to an anti-inflammatory, pro-regenerative response are promising candidates for the
development of novel therapies for kidney diseases. In this context, several recent studies identified
kidney-residing Innate lymphoid cells (ILCs) as potential therapeutic targets in the attempt to
promote tissue regeneration in AKI and/or slow progression of CKD (8).

56

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.00072
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.00072&domain=pdf&date_stamp=2020-01-29
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:j.turner@uke.de
https://doi.org/10.3389/fimmu.2020.00072
https://www.frontiersin.org/articles/10.3389/fimmu.2020.00072/full
http://loop.frontiersin.org/people/203022/overview
http://loop.frontiersin.org/people/657441/overview


Becker et al. ILCs in the Kidney

INNATE LYMPHOID CELLS

Innate lymphoid cells (ILCs), as a separate family of leukocytes,
are considered to represent the innate counterpart of
conventional T cells. Similar to T cells, ILCs exhibit lymphoid
morphology and produce large amount of cytokines, but in
contrast to adaptive lymphocytes, they do not rely on rearranged
antigen receptors for activation. Instead, ILCs are equipped with
a wide array of receptors to sense, integrate and respond to local
cues provided by haematopoietic and non-haematopoietic cells
of the tissue niche they reside in.

ILCs are now subdivided into cytotoxic NK cells (or “killer”
ILCs) and four groups of “helper” ILCs: ILC1s, ILC2s, ILC3s, and
Lymphoid tissue inducer (LTi) cells, based on their expression of
specific transcription factor and cytokine profiles, mirroring the
classification of CD4+ T helper cell subsets into TH1, TH2, and
TH17 cells (9–11).

NK cells are the innate cytotoxic counterpart of CD8+ T
cells, depend on the transcription factors Tbx21 (Tbet) and
eomesodermin (Eomes) and produce IFN-γ, granzymes, and
perforin after activation. ILC1s resemble TH1 cells and, similar
to NK cells, express T-bet and IFN-γ, but not Eomes and are less
cytotoxic. ILC2s are defined by GATA-3 expression and produce
the TH2 cytokines IL-13, IL-5, and IL-4, as well as IL-9 and
the epidermal growth factor amphiregulin. ILC3s represent the
innate TH17 counterpart and are characterized by expression
of RORγt and AHR, as well as the production of IL-17 and/or
IL-22, GM-CSF, and lymphotoxin. Within the ILC3 subset, the
expression of Natural cytotoxicity receptors (NCRs, e.g., NKp46,
NKp44) further differentiates ILC3s into NCR+ and NCR−

ILC3s, exhibiting different effector functions (12). Similar to
ILC3s, LTi cells, that are essential for the formation of secondary
lymphoid organs during embryonic development, depend on
RORγt and produce IL-17, IL-22, and lymphotoxin, but recent
studies indicate that they develop from a different precursor (11).

In the past decade, helper ILCs were extensively studied and
are now recognized as important regulators of immune responses
in a variety of organs and inflammatory conditions (13, 14).
As largely tissue-resident cells (15), ILCs are adapted to the
microenvironment they reside in Ricardo-Gonzalez et al. (16),
thus showing organ-specific subset distribution, phenotype, and
functional regulation. While the critical function of helper ILCs
in barrier organs, such as the intestine, lung, and skin has been
elucidated in great detail, knowledge about their tissue-specific
properties in the kidney is still emerging. The role of NK cells in
kidney health and disease has been recently reviewed elsewhere
(17) and will therefore not be discussed here.

DISTRIBUTION, PHENOTYPE, AND
REGULATION OF HELPER ILC SUBSETS IN
THE KIDNEY

First evidence that ILC2s represent a major ILC subset in the
murine kidney came from a study using IL-5 reporter mice to
investigate the distribution of IL-5-expressing ILCs in various
tissues. In these analyses up to 7% of all CD45+CD90.2+ cells

were IL-5+ non-T cells, representing the kidney-residing ILC2
population (18). A more detailed characterization of the total IL-
7Rα (CD127)+Lineage− lymphocyte population in the kidney of
naïve mice revealed that, depending on the mouse strain (19, 20),
∼1–6% of total CD45+ lymphocytes are helper ILCs. Among
these, IL-5/IL-13-producing GATA-3+ ILC2s are indeed themost
abundant ILC subset in the kidney (∼80%), while RORγt+

ILC3s and Tbet+Eomes− ILC1s represent only minor fractions
(19). Kidney-residing ILC2s share important characteristics with
ILC2s in other anatomical locations, such as tissue residency (21)
and expression of specific surface receptors that determine their
responsiveness to activating and inhibitory stimuli (see below)
(19, 20, 22, 23). However, there are first indications of kidney-
specific features of the local ILC2 population (24), warranting
further investigation.

The healthy human kidney also harbors a
CD127+CD161+Lineage− helper ILC population that accounts
for ∼0.5% of total lymphocytes. In line with the mouse data,
the kidney-residing ILC population in humans contains a
considerable percentage of ILC2s (∼35%) defined by expression
of CRTH2 and the receptors for IL-33 (T1/ST2) and IL-2 (CD25)
(19, 21). However, unlike in the mouse, cKit+NCR+ ILC3s
(∼15%) and cKit+NCR− ILC3s (∼40%, possibly containing
some ILC precursors (25), are also abundant in the human
kidney in non-inflammatory conditions (19).

Strategic positioning of ILCs within barrier tissues is
especially important for their function. ILC2s can be detected
by immunohistochemical staining in the glomerular and
tubulointerstitial compartments of the mouse kidney (19), but it
was shown recently that under homeostatic conditions a majority
of renal IL-5+ ILC2s reside in the perivascular adventitial cuff
surrounding the main arterial vessels where they co-localize with
kidney dendritic cells (24, 26). Although the functional relevance
of this finding for kidney homeostasis is still unclear, it can
be speculated that, similar to the lung, stromal adventitial cells
provide cytokines, such as IL-33 and TSLP, that might promote
ILC2 maintenance in the healthy kidney tissue (27).

ILCS IN ACUTE KIDNEY INJURY

Acute kidney injury is characterized by a rapid decrease of kidney
excretory function, resulting in elevation of serum creatinine
levels and/or decreased urine output (28). Renal ischemia is
one major cause of AKI in humans and is induced by various
clinical conditions that lead to hypoperfusion of the kidney, such
as severe volume depletion, circulatory shock, or renal vascular
occlusion. The widely used ischemia/reperfusion injury (IRI)
model applies surgical clamping of the renal artery for a defined
time period with subsequent reperfusion of the kidney to mimic
the pathomechanism of ischemic AKI (29). Similar to ILC2s in
other organs, kidney-residing ILC2s express the receptors for
IL-25 (IL-17RB) and IL-33 (T1/ST2) and can be activated and
expanded in vivo by administration of these cytokines in mice
(19, 22). Application of ILC2-expanding cytokines has been
used to investigate the in vivo role of ILC2s in the IRI mouse
model of AKI (21, 22). In this model, systemic intraperitoneal

Frontiers in Immunology | www.frontiersin.org 2 January 2020 | Volume 11 | Article 7257

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Becker et al. ILCs in the Kidney

application of IL-25 or IL-33 previous to IRI induction resulted
in significant renal tissue protection, as indicated by lower serum
creatinine levels and reduced tubular damage, accompanied with
increased renal expression of the type 2 cytokines IL-4, IL-5, and
IL-13 produced by local Lin−CD127+CD90+CD25+ST2+IL-
17RB+ ILC2s and, in case of IL-25, by an additional smaller
population of Lin−CD127−CD90−ST2−CD25−IL-17RB+c-
Kit+ Multipotent Progenitor Type 2 Cells (Figure 1). Whether
the latter are a separate cell type (30) or represent IL-25-
responsive inflammatory ILC2s with low expression of the
IL-7 receptor (CD127) (31) remains to be elucidated. The
beneficial in vivo effects of IL-25 and IL-33 application were
indeed mediated by ILC2s, since transfer of IL-25- or IL-33-
elicited ILC2s was sufficient to ameliorate renal impairment in
mice with IRI (21, 22). Moreover, partial depletion of ILC2s
with anti-CD90 antibodies in IL-33-treated Rag1−/− mice
abolished the protective IL-33 effect, while depletion of Tregs in
immunocompetent mice, which have also been described to be
IL-33-responsive (32), did not (21). In line with the enhanced
intrarenal type 2 response after IL-25 or IL-33 treatment, kidney-
residing macrophages were shifted toward a M2 phenotype.
Furthermore, neutrophil accumulation in the kidney was
reduced by a yet unknown mechanism. The authors could
further demonstrate, that in vitro differentiated M2 macrophages
protected tubular epithelial cells (the primary target cells of
ischemic AKI) from apoptosis, providing a potential downstream
mechanism for ILC2-mediated tissue protection via alternative
activation of macrophages (22). In addition, it was shown that
IL-33-activated ILC2s require production of the epidermal
growth factor amphiregulin to mediate their protective effects
in renal IRI (21), indicating that ILC2s might employ multiple
pathways to shift the intrarenal microenvironment from a
pro-inflammatory to an anti-inflammatory, pro-regenerative
state (Figure 1). Importantly, the therapeutic effect of IL-33
application was maintained when cytokine therapy was started
after induction of IRI in mice and was also observed in mice
with a humanized immune system that were treated with human
recombinant IL-33 (21).

Although these results highlight the therapeutic potential of
ILC2-directed therapies in AKI, so far there is no evidence for
a role of endogenous ILC2 activation and expansion during
AKI. A recent study addressed this issue by comparing tissue
injury and renal function impairment between control IRI
mice and IRI mice that are reduced or deficient in ILC2s,
either constitutively (Il7rcre/+Rorafl/fl) or after DTx-mediated
depletion (Cd4cre/+Icosdtr/+). In these experiments, the authors
did not observe a substantial difference in histopathologic tubular
injury and inflammatory marker expression in the kidney,
leading to the conclusion that endogenous ILC2s that are
not previously expanded by cytokine therapy are redundant
in IRI (24). Moreover, a previous study provided conflicting
evidence for a pro-inflammatory role of IL-33 in AKI by showing
that its application in a mouse model of nephrotoxic AKI
induced by the cytostatic drug cisplatin aggravates renal injury
(33), suggesting that action of IL-33 and IL-33-induced ILC2s,
although not specifically addressed in this study, might be
highly context-dependent.

FIGURE 1 | Protective role of ILC2s, MPPtype 2 cells, and “ILCregs” in acute

kidney injury. After activation by an IL-2/anti-IL-2 complex (IL2C) ILC2s and

“ILCregs” (whether the latter are a separate lineage or IL-10 producing ILC2s is

still a matter of debate) prevent neutrophil accumulation in the kidney.

“ILCregs” produce IL-10 and TGF-β upon activation. ILC2s can be activated

by IL-33, IL-25, the hybrid cytokine IL233, or IL2C and secrete IL-13 and Areg

to promote tissue protection. IL-25 can stimulate MPPtype2 cells to produce

IL-4, which in addition to IL-13, IL-10, and TGF-β, has been shown to promote

the shift from a pro-inflammatory M1 phenotype (expression of iNOS and

TNF-α) to an anti-inflammatory M2 phenotype (expression of MR and Arg1) in

macrophages. The exact mechanisms of how ILC2s (and “ILCregs”) prevent

neutrophil accumulation and Areg-dependent tissue protection are still

unknown. Question marks indicate mechanisms that are so far not completely

understood and need to be further elucidated. Green lines symbolize

protective and beneficial effects, whereas red arrows indicate proinflammatory

effects. (Areg, amphiregulin; Arg1, Arginase 1; iNOS, Inducible nitric oxide

synthase; MR, mannose receptor; M1, classical macrophage; M2, alternatively

activated macrophage; TNF-α, tumor necrosis factor α; TGF-β, Transforming

growth factor β).

A recent study by Cao et al. demonstrated that a small
population of IL-10-producing ILCs (2–3% of total ILCs,
representing ∼0.06% of total lymphocytes) can be detected in
the murine and human kidney (34). Definition of these cells
was based on a previous report of a similar ILC population in
the intestine that was termed “ILCregs” (35), but, since ILC2s
can produce large amounts of IL-10 under certain stimulatory
conditions (36), it is still a matter of debate if these IL-10+
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ILCs indeed represent a separate ILC subtype (37). However, the
authors went on to show that IL-10-producing ILCs in the kidney
can be expanded by IL-2/anti-IL-2 complex (IL2C) treatment and
mediate protective effects in the IRI-AKI model by downstream
mechanisms similar to IL-25- or IL-33-elicited ILCs (Figure 1)
(34), underlining the therapeutic potential of kidney ILCs in AKI.

In the attempt to translate this concept into a therapeutic
approach for potential use in human renal disease, a novel hybrid
cytokine linking IL-33 with IL-2 has been designed to activate
cell types that express a combination of the respective receptors,
such as ST2+CD25+ Tregs and ST2+CD25+ ILC2s. This hybrid
cytokine, termed IL233, was recently shown to be effective in
protection from nephrotoxic and IRI-induced AKI by expansion
of Tregs and ILC2s (38) and might provide a valuable basis
for further development of ILC-directed therapies toward first
in-human studies.

ILCS IN CHRONIC KIDNEY DISEASE

Progressive scarring of the glomeruli (glomerulosclerosis)
and fibrosis of the tubulointerstitial compartment are
the histopathological hallmarks of CKD. In BALB/c mice,
application of the cytostatic drug Adriamycin induces podocyte
damage and breakdown of the glomerular filtration barrier,
leading to proteinuria, progressive glomerulosclerosis, and
chronic tubulointerstitial injury. This “Adriamycin-induced
nephropathy” (AN) shares main histopathological features with
human CKD and has been widely used as a model to study
the effect of therapeutic interventions in proteinuric CKD
(39). It was shown previously that, similar to the AKI model,
repeated application of IL-25 after AN induction ameliorates
its clinical course by induction of M2 macrophages, but the
IL-25-responsive cell type responsible for this effect was not
addressed in the initial study (40). More recently, our own group
showed that a short course of IL-33 treatment in mice (400 ng
i.p. on four consecutive days) leads to a massive and sustained
increase in kidney ILC2s for up to several month and effectively
improved histopathological and clinical parameters of renal
injury in the AN model (19). Mechanistically, IL-33-mediated
kidney protection in AN was accompanied by an accumulation
of eosinophils and a reduction of neutrophil and inflammatory
mononuclear phagocyte infiltration. Analysis of ILC-deficient
Rag−/−Il2rg−/− mice and eosinophil-deficient 1dblGATA
mice confirmed that the IL-33 effect depended on the presence
of ILCs and eosinophils (19) (Figure 2). In line, pre-emptive
treatment with the above-mentioned, novel hybrid cytokine
IL233 protected mice from progressive glomerulosclerosis
in AN (38).

In contrast to the beneficial effects of the IL-33/ILC2 axis in
glomerulosclerosis, a potential deleterious role of endogenous IL-
33 in kidney fibrosis was reported by Chen et al., demonstrating
partial protection from tubulointerstitial fibrosis induced by
unilateral urinary obstruction (UUO) in Il33−/− and Il1rl1−/−

mice (41). Accordingly, administration of high-dose IL-33 (500
ng i.p. daily for 14 days) promoted tubulointerstitial fibrosis
at week two after IRI-AKI, while inhibition of IL-33 reduced

AKI-induced fibrosis. Although the exact cellular mediators and
downstream mechanisms of this deleterious IL-33 effect in renal
fibrosis were not explored in these studies (41, 42), pro-fibrotic
effects of chronically activated ILC2s via production of IL-13 were
described in the liver and lung (43, 44), indicating that systemic
ILC2-directed therapies might comprise a substantial risk for side
effects which are likely to be determined by dose, duration, and
context of cytokine application. While higher amounts (1µg per
injection) and/or prolonged application of IL-33 (14 days) might
have disadvantageous effects (33, 42), lower doses (0.3–0.5µg IL-
33 or IL-25 per injection) and short-term treatment (3–5 days)
were shown to be beneficial (19–22, 34, 40) in various models.
Whether systemic ILC2 expansion after i.p. treatment with these
cytokines also contributes to the tissue protective effects in the
kidney is still unclear and warrants further studies.

Since two independent studies suggested increased numbers
of ILC2s and type 2 cytokines (IL-4, IL-5, IL-13) in the peripheral
blood of patients suffering from CKD due to type 2 diabetes
(45, 46), it can be speculated that ILC2s might be a marker for
renal fibrosis in human CKD. However, technical limitations in
the flow cytometry gating strategy used to identify ILC2s in these
studies preclude valid conclusions from these data and further
research is clearly needed to assess a potential role of ILC subsets
in human CKD.

ILCS IN GLOMERULONEPHRITIS

Glomerulonephritides (GNs) are a major cause of CKD and are
characterized by a pathogenic immune response against renal
autoantigens or by renal manifestations of systemic autoimmune
diseases, such as systemic lupus erythematosus (SLE) or anti-
neutrophil cytoplasmic antibody (ANCA)-associated small vessel
vasculitis. A potential role of ILCs in the pathogenesis of GN
is just beginning to be unraveled. In a recent study, our group
provided first evidence that kidney-residing ILC2s are decreased
in frequency and number with progression of autoimmune renal
inflammation in the MRL/MpJ-Faslpr (MRL-lpr) mouse model
of SLE (20). Progression of lupus nephritis in MRL-lpr mice was
characterized by marked increase in IFN-γ and IL-27 expression
in the inflamed kidneys that were produced by T cells and
inflammatory myeloid cells, respectively (20). We and others
could further show that, similar to ILC2s in the lung (47, 48),
kidney ILC2s express the IFN-γR and IL-27R and are extremely
sensitive to IFN-γ/IL-27-mediated inhibition of IL-33-induced
proliferation and cytokine production in vitro (20, 23), providing
a mechanism for inflammation-induced reduction of ILC2s in
the kidney (Figure 2). Most importantly, treatment with IL-33
restored kidney ILC2s, increased type 2 cytokine expression and
eosinophil accumulation, reduced severity of lupus nephritis, and
improved survival of MRL-lpr mice (20), indicating that ILC2s
might be protective in immune-mediated glomerular diseases.

While in the MRL-lpr model the other helper ILC subsets
were unaltered (20), a recent study suggested that a previously
unknown ILC1 subtype expressing CD8 might infiltrate
glomeruli in rat and potentially also in human anti-GBM
nephritis (49). However, if this CD8+ cell subset indeed
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FIGURE 2 | Protective role of ILC2s in chronic kidney diseases. ILC2s can be activated by the cytokines IL-33 and IL-25, as well as the hybrid cytokine IL233,

whereas IFNγ (secreted by CD4+ and CD8+ T cells) and IL-27 (produced by mononuclear phagocytes) suppress ILC2s. Activated ILC2s produce IL-5 and IL-13,

leading to the accumulation of eosinophils and the shift from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype in macrophages. M2

macrophages have been shown to directly protect the tissue, whereas the exact mechanisms of tissue protection mediated by eosinophils are still unclear. The

activation and expansion of ILC2s also results in decrease of the chemokines CXCL1 and CXCL2 in the kidney, preventing neutrophil accumulation that mediate renal

injury. Question marks indicate mechanisms that are so far not completely understood and need to be further elucidated. Green lines symbolize protective and

beneficial effects, whereas red arrows indicate proinflammatory effects. (Arg1, Arginase 1; iNOS, Inducible nitric oxide synthase; MR, mannose receptor; M1, classical

macrophage; M2, alternatively activated macrophage; TNF-α, tumor necrosis factor α).

represents a novel ILC subset needs to be confirmed in
future studies.

Initial studies in patients suffering from ANCA-associated
vasculitis showed that total ILC numbers in the peripheral blood
were reduced in the acute phase of the disease, as compared
to healthy controls, which was due to a reduction of both
ILC2s and ILC3s (50). Moreover, the authors could demonstrate
a significant correlation between a reduction in ILC numbers
and high disease activity, supporting the conclusion from the
murine SLE model that ILCs might have a protective effect
in chronic autoimmunity (20, 50). However, another study
analyzing peripheral blood ILC numbers in ANCA vasculitis
patients and in appropriate disease controls with a similar

impairment of renal function was unable to detect a vasculitis-
specific reduction, indicating that a decrease in peripheral ILCs
might be a non-specific manifestation of CKD (51).

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

In the last decade ILCs have emerged as important effector
cells of the innate immune system in a variety of chronic
inflammatory and autoimmune conditions. A number of
recent studies in preclinical models demonstrate a role of
ILC2-directed therapies in promoting kidney regeneration

Frontiers in Immunology | www.frontiersin.org 5 January 2020 | Volume 11 | Article 7260

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Becker et al. ILCs in the Kidney

after acute injury and in shifting the intrarenal immune
milieu toward a tissue protective type 2 response. However,
chronic and systemic over activation of ILC2s might comprise
the risk of pro-fibrotic and pro-allergic side effects in the
kidney and other organs which have to be considered in
the attempt to translate these findings into specific ILC-
directed treatment strategies for inflammatory kidney diseases
in humans.

So far, there are no comprehensive studies addressing
kidney-specific ILC properties, but first data indicate a specific
phenotype of the local ILC2 population in the kidney (24).
In the future, it will be critical to elucidate the specific
molecular pathways that drive kidney ILC activation and
to obtain a detailed understanding of their localization and
interaction with other immune cells and parenchymal cells
within the kidney tissue. These analyses will help to identify
pathways that allow for specific targeting of kidney-residing

ILCs in the attempt to exploit their tissue protective properties,

without causing potential deleterious ILC activation in other
anatomical locations.
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Recent years have seen a revolution in our understanding of how cells of the immune

system are modulated and regulated not only via complex interactions with other immune

cells, but also through a range of potent inputs derived from diverse and varied biological

systems. Within complex tissue environments, such as the gastrointestinal tract and

lung, these systems act to orchestrate and temporally align immune responses, regulate

cellular function, and ensure tissue homeostasis and protective immunity. Group 3

Innate Lymphoid Cells (ILC3s) are key sentinels of barrier tissue homeostasis and critical

regulators of host-commensal mutualism—and respond rapidly to damage, inflammation

and infection to restore tissue health. Recent findings place ILC3s as strategic integrators

of environmental signals. As a consequence, ILC3s are ideally positioned to detect

perturbations in cues derived from the environment—such as the diet andmicrobiota—as

well as signals produced by the host nervous, endocrine and circadian systems. Together

these cues act in concert to induce ILC3 effector function, and form critical sensory

circuits that continually function to reinforce tissue homeostasis. In this review we

will take a holistic, organismal view of ILC3 biology and explore the tissue sensory

circuits that regulate ILC3 function and align ILC3 responses with changes within the

intestinal environment.

Keywords: innate lymphoid cells, ILC, mucosal immunology, neuroimmune, circadian, immune circuits

GROUP 3 INNATE LYMPHOID CELLS—SENTINELS OF THE
GASTROINTESTINAL TRACT

Innate lymphoid Cells (ILCs) are a family of innate immune effectors that localize mainly to
mucosal surfaces and which play critical roles in regulating tissue immunity and homeostasis.
The ILC family can be divided into three main subsets—group 1 ILC (ILC1), ILC2, and ILC3
based on their expression of master transcription factors and associated effector cytokine profiles
[Reviewed extensively elsewhere (1–8)]. In this review we will focus on group 3 ILC (ILC3), a
group of ILC that act constitutively tomaintain intestinal health through regulation of the intestinal
barrier and commensal microbiota, and through protective immune responses against extracellular
microbial pathogens.

ILC3s are characterized by the expression of the retinoid-related orphan receptor γt (RORγt)
(1, 5, 6) and they can be further sub-divided into at least two sub-groups in adults (9).
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These subsets are developmentally, transcriptionally and
functionally heterogeneous and include lymphoid tissue inducer
cells (LTi)-like ILC3s; characterized by surface expression of
CCR6, c-kit (CD117), Neuropilin-1, and variable expression
of CD4, in addition to natural cytotoxicity receptor expressing
(NCR)+ ILC3s—which lack LTi-associated markers but express
a range of NCR (e.g., NKp46 in mice) while further co-expressing
the transcription factor T-bet (10, 11). The characteristics and
differences between ILC3 subsets have been discussed in detail
elsewhere (9) and as such, for the sake of clarity, we will largely
refer to ILC3 cumulatively in this review without distinguishing
the specific subset.

As discussed in detail below, ILC3s are at the center of
multiple tissue regulatory circuits in which a variety of inputs
(in the form of environmental and host-derived cues) are sensed
and interpreted by ILC3 and give rise to functional outputs that
culminate in the downstream modulation of tissue physiology
to maintain health and homeostasis. While the inputs of these
sensory circuits vary, and will be discussed in detail below,
a major common ILC3-associated output is the secretion of
effector cytokines including IL-22, IL-17A, IL-17F, and GM-
CSF and lymphotoxin (LT) (1, 4, 7, 8) (Figure 1). These soluble
mediators in turn act upon both neighboring tissue-resident
immune cells and non-hematopoietic cells—such as epithelia
and stroma. In this review, we will comprehensively discuss the
major tissue circuits through which ILC3 function is regulated,
and through which ILC3 propagate these signals to regulate
and orchestrate the wider immune response and to promote
optimal tissue function, mediate protective immune responses
and maintain health.

ILC3 CIRCUITS IN THE REGULATION OF
INTESTINAL HOMEOSTASIS

Host-Microbiota Sensory Circuits
Mammals have evolved multiple complimentary immunological
mechanisms to promote the anatomical containment of
commensal bacteria. These mechanisms enforce tolerance,
suppress inflammation and maximize mutualism with the
microbiota, and ILC3s have key roles in this process (12–
15). ILC3s are enriched within gastrointestinal (GI) tract
where they are ideally positioned to promote barrier repair
and to prevent bacterial translocation (15). ILC3 produce a
range of soluble mediators that enable them to continually
reinforce the barrier and maintain the containment and physical
segregation of commensal microorganisms. Chief amongst these
mediators is the cytokine interleukin (IL)-22, which binds to the
heterodimeric receptor IL22RA1-IL10RB (IL-22R) expressed by
cells of the non-haematopoietic lineage, most notably intestinal
epithelial cells (Figure 1: outputs). IL-22 signaling induces the
production of antibacterial peptides such as RegIIIβ and RegIIIγ
and S100 family members, which in turn regulate the commensal
microbiota and limit access to the epithelial and mucosal
niche (16, 17). IL-22 also promotes the physical exclusion of
commensal bacteria through induction of mucins and goblet cell
hyperplasia, and by regulating the expression of tight-junction

components (15, 17, 18). Moreover, ILC3s induce fucosylation
of intestinal epithelial cells through an IL-22 and LTα driven
process, which in turn favors colonization by mutualistic
bacterial species at the expense of potential pathogens (Figure 1:
outputs) (19–21). In addition, IL-22 produced by ILC3s acts
to regulate epithelial turnover and intestinal crypt stem cell
maintenance, and has been ascribed both pro- and anti-
tumorogenic functions, most recently being shown to promote
DNA damage response (DDR) mechanisms in order to prevent
tumor formation (22–25). IL-22 also modulates nutrient uptake
via the intestinal epithelia, in particular lipid uptake (26). In line
with this central role for ILC3 and IL-22 in maintaining intestinal
barrier function and tissue homeostasis, loss of IL-22 production
by ILC3s in mice results in dysbiosis, barrier disruption and an
increased susceptibility to experimental induced colitis (27, 28).
Moreover, depletion of intestinal ILC3 leads to peripheral
dissemination of intestinal bacteria and systemic inflammation
that can be rescued by providing exogenous IL-22 (15). Thus,
a central function, and key output, of ILC3-mediated effector
responses is the orchestration of host-microbiota interactions
(Figure 1: outputs).

Intestinal homeostasis and host-commensal interactions are
also modulated by the type 3 cytokines IL-17A and IL-17F, both
of which are also produced by ILC3 (1, 4, 7, 8). Similar to IL-22,
IL-17A/F promote tissue integrity by enhancing the synthesis of
tight junctions and antimicrobial peptides, including β-defensins,
REG proteins, S100 proteins, lipocalins and lactoferrins (29).
Additionally IL-17A/F act in part to attract myeloid cells to the
tissue site, through the induction of chemokines and growth
factor expression by epithelial cells (30, 31). While ILC3 have
been reported to be a potent source of IL-17A/F in early life,
expression of these cytokines appears to be somewhat limited
at steady state in adult tissues (28, 32). In contrast, during
infection and inflammation ILC3 produce IL-17 in response to
myeloid-derived cues including IL-23 and IL-1β (33, 34), and
ILC3-derived IL-17 has been attributed critical roles in immunity
to fungal and bacterial pathogens (34–37). In particular, IL-
17 production by ILC3s has been implicated in immunity
against fungal pathogens, specifically in response to Candida
albicans (34). Interestingly, HIV patients commonly manifest
oropharyngeal candidiasis, and loss of IL-17 production by ILC3s
was observed in tonsils and buccal mucosa during SIV infection
in macaques (38, 39).

While homeostatic IL-17 production has been attributed
protective functions in intestinal health and host-commensal
microbe interactions, elevated IL-17A/F production has also been
associated with the pathogenesis of inflammatory bowel disease
(IBD). Indeed, ILC3-derived IL-17A and IL-17F are increased
during intestinal inflammation in bothmice and humans (40, 41).
Together, IL-17A/F production by intestinal ILC3—in addition
to Th17 and γδ T cell populations—has highly contextual roles in
intestinal health, immunity and inflammation.

Conversely, the microbiota itself is also increasingly
appreciated to act reciprocally to modulate ILC3 function
(Figure 1: inputs). Indeed, early studies suggested microbial
colonization of the neonatal intestine regulates the
composition and size of the ILC3 pool within the intestinal
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FIGURE 1 | ILC3 engage in complex sensory circuits in order to integrate microbial and dietary cues and enforce mucosal homeostasis. Inputs (orange arrows):

ILC3s act as innate immune sentinels of the gastrointestinal tract, and respond rapidly to changes in the tissue environment. Environmental signals, comprising

microbial and dietary cues, are sensed either via myeloid cell intermediaries [e.g., dendritic cells (DC), macrophages, also known as mononuclear phagocytes (MNP)],

which release cytokine cues (IL-1β, IL-23, TL1A) to modulate ILC3 function, or through direct sensing of metabolites and dietary ligands. Microbial metabolites, such

as short chain fatty acids (SCFA), signal directly to modulate ILC3 function though the receptor GPR43. Additionally, ILC3 integrate dietary cues in the form of the

vitamin A metabolite retinoic acid (RA) and AhR ligands, which together promote ILC3 development and effector cytokine responses. In contrast, vitamin D acts as a

negative regulator of ILC3 activation by suppressing the ability of ILC3 to sense myeloid cues—such as IL-23. Within the complex tissue microenvironment ILC3 are

likely exposed to multiple signals in parallel, which must be appropriately integrated to maintain intestinal homeostasis. Outputs (dark blue arrows): Signals translated

by ILC3 are propagated in the form of ILC3-derived outputs—most notably cytokine signals, which are received by other immune and non-immune cells within the

local environment. In particular, ILC3-derived IL-22 acts on epithelial cells to enforce intestinal barrier integrity and induce the production of antimicrobial peptides

(AMPs) such as RegIIIβ, RegIIIγ, and S100 family proteins, secretion of mucins by goblet cells, modulation of tight junctions and epithelial cell fucosylation.

IL-22-dependent pathways further regulate the growth of specific commensal bacteria species that are intimately associated with the host, such as segmented

filamentous bacteria (SFB). Together, the balance of signals perceived by ILC3 determine the strength of the effector response, regulate the balance of the commensal

microbiota and ensure their spatial segregation from the underlying intestinal tissue. In the context of disease, dysregulation of these signals may dramatically alter

ILC3 responses and result in a loss of barrier function and translocation of the bacteria from the lumen, thus precipating or exacerbating inflammatory disease.

tract. Pups born to germ free mothers were reported to
have reduced frequencies of ILC3s—indicating a role of
microbial signals in promoting tissue seeding by ILC3
subsets (28). However, in contrast to these findings IL-22
producing ILC3 numbers were found to be suppressed in a
microbiota dependent manner through epithelial expression
of IL-25 (32). Despite these discrepancies, the dialogue
between the microbiota and ILC3s within the intestine has
emerged as a critical circuit of intestinal immunity and
tissue homeostasis.

Recent studies have begun to shed light on the microbial-
derived metabolites that mediate this immune regulatory on
ILC3. For example, ILC3s have the capacity to sense and respond
to short chain fatty acids (SCFA)—including butyrate, acetate
and propionate—critical regulators of immune responses which
are metabolized from dietary fiber by commensal microbes
(Figure 1: inputs) (42, 43). Levels of butyrate differ along the
intestinal tract, in line with differing densities of commensal
microbes, and were previously correlated with reduced ILC3 cell
number and cytokine production in distal regions of the small
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intestine (44). SCFA can signal via multiple G-coupled protein
receptors, as well as via histone deacetylase enzymes (HDAC)
(43), and despite these advances the mechanisms through which
SCFA regulate ILC3 are still being delineated. The SCFA receptor
GPR109a was implicated in the microbiota-associated regulation
of ILC3 cytokine production via the modulation of dendritic cell
(DC)-derived IL-23 in the colon, although these studies largely
utilized a GPR109a agonist—leaving the precise contribution
of endogenous SCFA unclear (45). Interestingly, a recent study
highlighted ILC3-intrinsic expression of the SCFA receptor
Gpr43 (Ffar2) in the modulation of intestinal ILC3 responses
(Figure 1: inputs) (46). Triggering of GPR43 with the SCFAs
propionate and acetate (but not butyrate) selectively promoted
colonic ILC3 proliferation and expansion and production of IL-
22, subsequently protecting mice from chemically induced colitis
and from enteric bacterial infection (46).

Dietary Circuits
Cues derived from mutualistic microbiota establish a critical
dialogue between the host and it’s environment and regulate
the intestinal immune system—including ILC3. In addition to
the microbiota, the intestine is also continually exposed to
metabolites and phytochemicals derived from the diet (Figure 1:
inputs). As highlighted above, the availability and liberation
of many dietary metabolites is also determined in part by
mutualistic, commensal microbes within the intestine—while
conversely the diet itself can modulate microbial composition
and thus, determine the nature of host-commensal interactions.
For example, the feeding of high fat diet (HFD) to pregnant
mice was found to modify the expansion of ILC3 in the
intestines of progeny through the modification of the mothers
microbiota (47).

Similarly, Aryl hydrocarbon receptor (AhR) ligands are
normally liberated from cruciferous vegetables in the diet—
such as broccoli and cabbage, but they can also be microbially
derived (48). AhR is a dietary-sensing nuclear receptor that is
expressed by ILC3s and has critical roles in the development,
transcription and function of these cells (Figure 1: inputs).
Indeed, ILC3 are highly AhR dependent, and present severe
functional impairments in the absence of cell-intrinsic AhR
expression (14, 49–51). As a result of ILC3 defects, AhR-deficient
mice fail to form tissue-associated lymphoid structures, such
as cryptopatches (CP) and are unable to control infections
with the extracellular pathogen Citrobacter rodentium (49, 52).
Intriguingly, the development and seeding of intestinal ILC3 in
neonates was demonstrated to be dependent upon the mothers
microbiota and the transfer of antibody-bound AhR ligands
through the mothers milk (48), suggesting maternal transfer
of dietary ligands to neonates may play critical roles in the
development of the immune system, microbial colonization and
protection from infections in early life.

Indeed, maternal transfer of dietary ligands is increasingly
appreciated to be a determinant of neonatal immunity and ILC3
development. In utero exposure to the Vitamin A metabolite
retinoic acid (RA) impacts directly on secondary lymphoid
organ development with long-term immunological consequences

(53). Mice genetically modified to have hematopoietic cell-
intrinsic deficiency in RA lacked PP or exhibited impairment
in LN formation and maturation as a result of defective ILC3
differentiation (Figure 1: inputs). Moreover, it was shown that
RA directly regulates the master transcription factor of ILC3,
RORγt, and in the absence of maternal retinoids ILC3 failed
to develop correctly (53). In addition to maternally derived RA
signals, deprivation of vitamin A in adulthood also results in the
collapse of the intestinal ILC3 populations and, as a consequence,
results in susceptibility to Citrobacter rodentium infection (54,
55). In addition to direct effects of RA on ILC3 development,
RA produced by DCs was also found to regulate the homing
properties of ILC3s by imprinting expression of the intestinal
homing markers CCR9 and α4β7 (56).

The importance of dietary vitamins in ILC3 effector circuits
is further supported by evidence that vitamin D also plays
a role in intestinal ILC3 homeostasis (Figure 1: inputs). ILC3
numbers in the small intestine of mice deficient for the vitamin
D receptor (VDR—KO mice) were shown to be increased,
as was IL-22 expression, resulting in enhanced resistance to
infection with Citrobacter rodentium (57). Consistently, human
ILC3s stimulated with IL-23 and IL-1β upregulate the VDR,
and VDR signaling subsequently acts to downregulate the IL-
23 signaling pathway—suggesting vitamin D acts as a negative
regulator and suppressive feedback loop to control ILC3
activation (Figure 1: inputs) (58). Vitamin D availability has
also been implicated in the pathogenesis of IBD, as patients
are reported to have lower plasma levels of vitamin D than
healthy subjects, and exhibit an upregulation of the IL-23
signaling pathway which could potentially explain exacerbated
ILC3 responses that are associated with intestinal inflammation
in IBD (58). In contrast to these studies, mice lacking
Cyp27B1—an enzyme required for the conversion of vitamin
D to it’s chemically active form—exhibit reduced colonic ILC3
numbers and IL-22 production suggesting a more nuanced
role for vitamin D in the regulation of ILC3 function (59).
Together these findings highlight the importance of dietary
cues in regulating ILC3 function and intestinal homeostasis.
An increased understanding of the complex dialogue between
diet, microbiota and host is likely to reveal novel immune
regulatory circuits and clarify how environmental cues act as
risk factors, and contribute to the onset of metabolic and
inflammatory disorders.

ILC3 IMMUNE CROSSTALK IN THE
ORCHESTRATION OF INTESTINAL
HEALTH

Translating Microbial Cues: Myeloid—ILC3
Circuits
While ILC3 are potently regulated by the microbiota and
diet within the intestinal environment, it remains unclear the
extent to which they are able to directly sense these cues,
beyond the pathways detailed above. Indeed, the majority of
evidence suggests third party sensory cells of the myeloid
lineage are required to directly sense, translate and communicate
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environmental information to ILC3. Classically, tissue-resident
mononuclear phagocytes (MNPs) act as key intermediaries and
signal to ILC3 via the release of cytokine mediators during both
homeostatic and protective immune responses (60, 61). Indeed,
intestinal myeloid populations are well-equipped to directly sense
microbial metabolites, pathogen associated molecular patterns
(PAMPs) and danger signals and to transfer this information to
ILC3 (Figure 1: inputs). In particular, CX3CR1+ intestinal MNPs
cluster with ILC3 in distinct, organized lymphoid structures,
such as CPs (62, 63). Microbiota sensing by CX3CR1+ MNPs
was shown to result in local production of IL-1β and IL-23,
which are key activating cytokines of ILC3 and which potently
induce IL-22 secretion (Figure 1: inputs) (63). Depletion of
CX3CR1+ MNPs resulted in impaired IL-22 production by ILC3
and failure to controlCitrobacter rodentium infection (62, 64, 65).
In addition to the provision of the activating signals IL-23 and IL-
1β, CX3CR1+ MNP-derived TL1A further acts to augment IL-22
production from ILC3 (Figure 1: inputs) (62).

NEUROIMMUNE CIRCUITS

While microbial sensing by intestinal MNP and conserved
crosstalk with ILC3 appear to be a major sensory circuit
of intestinal immunity, emerging evidence suggests diverse
sensory mechanisms across multiple biological systems provide
additional inputs to regulate ILC3 function. In particular, the
central and enteric nervous systems are rapidly being appreciated
as critical sensory and immunoregulatory systems.

It has been suggested that the immune and nervous systems
are evolutionary linked, since they share functional similarities
(66, 67). Both nervous and immune systems rely on similar
processes to for cellular communication; such as cell-cell contact
and synapse formation, release of soluble mediators and sensing
of circulating metabolites. Recent evidence suggests immune
and neuronal cells are positioned in close proximity, and form
conserved interactions that have been termed “neuro-immune
cell units” (NICUs) (67). NICUS can form through interactions
with both the central and peripheral nervous system and are
increasingly being described in peripheral tissues such as the
gastrointestinal tract and lung.

Neuroimmune interactions are evident very early in life—
and during the embryonic period the development of the
enteric nervous system (ENS) and SLO organogenesis share
many parallels. Notably, the neurotrophic factor receptor RET is
essential for the development of Peyer’s patches (PP) and also the
ENS (68, 69). Moreover, RET expression by CD11c+ cells present
in the anlagen initiates a cascade of immune cell recruitment, in
particular of fetal ILC3s, through sensing of neurotrophic factors
that drive the formation of primordial lymphoid clusters (68,
69). Moreover, increasing evidence suggests ILC3 can directly
sense these neuronal derived inputs and respond during both
development as well as in the adult intestine (Figure 2: inputs).
As mentioned previously, fetal and adult ILC3 development
and function relies on RA signaling (53). Intriguingly, neurons
have been suggested to be a physiological source of RA (70),

surprisingly suggesting RAmay be derived not only from the diet
but also from the host nervous system.

The ENS is increasingly appreciated to regulate tissue-
resident immune functions (71), include those of ILC3. One
pioneer study demonstrated that a glial-ILC3-epithelial axis is
required to regulate enteric defense against bacterial infection
(72). Like myeloid cells, intestinal glial cells also have the
capacity to sense microbial cues and alarmins in a Myd88-
dependent manner; thus, implicating the enteric nervous system
as a key player in environmental sensing circuits. In response
to these cues glial cells secrete neurotrophic factors, which
directly act on adult ILC3 cytokine production via cell-intrinsic
RET expression (Figure 2: inputs). Ablation of Ret in ILC3s
led to a reduction in IL-22, consequently impairing epithelial
function and host defense to enteric bacterial infection (72).
In addition to ENS cues, CNS–derived signals propagated by
the vagus nerve—via release of acetylcholine—have also been
implicated in the regulation of ILC3 responses to bacterial
infections in the peritoneal cavity (73). Vagal disruption was
shown to lead to dysregulated ILC3 cell numbers in the peritoneal
lavage (73). Mechanistically, acetylcholine acted to promote
the release of pro-resolving lipid mediators—generated via
ILC3-intrinsic expression of the PCTR biosynthetic pathway—
which subsequently promoted protective immunity during E.
coli-driven sepsis (73). Together, these studies illustrate the
importance of neuronal inputs in regulating ILC3 outputs during
infection (Figure 2).

Recent studies suggest that the number of neuropeptides
with immunoregulatory activity may be broader than previously
appreciated. Vasoactive intestinal peptide (VIP) release by
enteric neurons was also shown to regulate ILC3-derived IL-22
production through signaling via VIPR2, triggered in part by
feeding and dietary cues (Figure 2: inputs) (74, 75) (discussed
in detail below). However, despite the strategic location of
ILC3s within the CPs, which are enveloped by glial cell nervous
fiber bundles and neuronal projections, the full extent of
neuroimmune interactions that regulate ILC3 function are still
to be determined. Indeed, recent years have seen an explosion in
our understanding of neuroimmune signals that regulate other
immune cells, including other members of the ILC family—
most notably ILC2s (76–82). These studies have opened up new
avenues of research and expanded our understanding of crosstalk
between diverse biological systems, thus provoking the need for
further studies to fully elucidate neuroimmune sensory circuits
in the regulation of ILC3 responses, intestinal immunity and
host-microbiota interactions.

ANTICIPATORY ILC3 RESPONSES AND
CIRCADIAN CIRCUITS

In addition to local environmental cues, mammals are also
constantly exposed to a range of external stimuli and pressures
such as fluctuations in temperature, oxygen levels and the daily
light cycle. As a result many organisms have evolved circadian
rhythms to align core biological processes with time of day,
which are imprinted by an internal biological clock. Specifically,
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FIGURE 2 | ILC3 neuroimmune and circadian circuits. Emerging findings implicate inputs from the nervous system in the regulation of ILC3 circuits within the

gastrointestinal tract. Both the central (CNS) and enteric (ENS) nervous systems have the capacity to sense perturbations within the intestinal environment and relay

this information via the release of neuropeptides to influence the ILC3 response. Strikingly, enteric glial cells are able to directly sense microbial patterns and alarmins

released within the tissue, and respond by producing glial-derived neurotrophic factors (GDNF family of ligands; GFL) that directly activate the production of IL-22 by

ILC3 through the tyrosine kinase RET. Indeed, recent evidence suggests a broader spectrum of neuropeptides may act to regulate ILC3 function including

vasointestinal peptide (VIP) produced by enteric neurons in response to feeding cues. Signals transmitted by the nervous system also play critical roles in aligning ILC3

effector function with periods of activity and high risks of environmental exposure and pathogen encounter over the course of a 24 h day. In this regard, circadian

rhythms entrained by light—and sensed via the suprachiasmatic nucleus (SCN) of the brain—trigger a cascade of molecular transcriptional-translational feedback

loops of clock genes, which orchestrate rhythms in the ILC3 response. While the “central clock” within the CNS appears to be a central entrainer of ILC3 oscillatory

function in the gut, the mechanisms through which the CNS transmits this information to regulate ILC3 function peripherally remain unknown. Nonetheless, inputs

from the CNS have previously been shown to be relayed to ILC3 via the vagus nerve. Together cues from both the CNS and ENS have the potential to entrain

intestinal ILC3 function, while circadian rhythms in ILC3 may be imprinted through a combination of central clock-mediated light entrainment, feeding-associated

neuronal feedback and environmental cues from the microbiota.

circadian rhythms are driven by cell-autonomous transcriptional
feedback loops (“clocks”), which enable organisms to anticipate
and adapt to temporal changes in their environment (e.g.,
changing seasons, jet lag, shift work) and regulate metabolically
demanding biological processes including body temperature,
locomotor activity, endocrine responses, and feeding behavior—
while on the cellular level circadian clocks regulate cellular
metabolism and cell cycle (83, 84). In line with this, it is
increasingly appreciated that circadian rhythms also regulate
immune cell responses (85), and immune cells exhibit circadian
oscillations in leukocyte trafficking, priming, effector function
and host-pathogen interactions (85).

In mammals, circadian rhythms are controlled by the
central circadian pacemaker or master clock—located in the
suprachiasmatic nucleus (SCN) of the brain (86). The SCN acts
to interpret and propagate light cues received via the optical
nerve and subsequently, cell autonomous circadian rhythms
are imprinted by systemic signals that act to align oscillations
in a tripartite system of transcriptional-translational feedback-
loops (85, 87, 88). The induction of the loop starts with the
transcriptional activators CLOCK and BMAL1 promoting the
expression of the repressors Period (Per) and Cryptochrome
(Cry), which in time translocate back into the nucleus and
inhibit their own expression (85, 87, 88). The second loop is
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composed by nuclear receptors RAR-related orphan receptors
(RORs) (α, β , γ ) and REV-ERBs (α, β), which exert opposing
effects on the clock through transcription factor binding to
the promoter of Arntl (encoding BMAL1) (85, 87, 88). Finally,
the third loop consists of transcriptional activator albumin D-
box binding protein (DBP) and the repressor nuclear factor
for interleukin 3 (NFIL3), which act synergistically to regulate
the expression of D-box genes including that of Per (85,
87, 88). Upon establishment of the transcriptional loops,
the SCN keeps peripheral clocks in synchrony via neuronal
sympathetic/parasympathetic transmission and through the
hypothalamus pituitary adrenal (HPA) axis, including the
release of catecholamines (epinephrine and norepinephrine) and
glucocorticoids (84). Remarkably, similar circadian molecular
mechanisms are found in the periphery. However, while the
SCN network allows for the generation of sustained oscillations
and time-of-day alignments, perturbations from environmental
inputs such as temperature changes, the microbiota and
feeding cues can also impact on peripheral, cell-intrinsic
clocks (84).

Many constitutive innate immune processes, including the
maintenance of intestinal barrier function via steady state IL-
22 release from ILC3, come with significant metabolic costs
for the host. Thus, circadian rhythms are thought to have
evolved to align these processes with anticipated challenges
and times of highest risk—most notably during waking activity
and feeding where exposure to microbes, dietary antigens and
potential pathogens is highest. Intriguingly, several components
of the transcriptional circadian clock machinery including NFIL3
and RORγ/α are also key transcriptional regulators of ILC3
development and function, suggesting the possibility that these
cells may also be regulated in a circadian manner (89–92).
Moreover, ILC3 and IL-22 are critical regulators of the intestinal
microbiota, with oscillations also reported amongst levels of
commensal microbes in the intestinal tract (93, 94).

In line with this, several recent studies have demonstrated
circadian control and oscillatory ILC3 responses, which are
regulated by the master clock gene Arntl (Bmal1) in a cell-
autonomous fashion (95, 96). Deletion of Arntl in ILC3s resulted
in an altered epigenetic landscape, dysregulated cell numbers
and IL-22 expression, and subsequently contributed to alterations
in steady-state oscillations in the microbiome itself (95–97).
Moreover, disrupted ILC3 responses resulted in altered epithelial
responses and disrupted lipid uptake within the intestine (74, 95,
96). Of note, while deletion of Arntl led to a broad impairment
of total ILC3 numbers (95), deletion of the related clock gene
Nr1d1 (also known as Rev-erbα) resulted in altered ILC3 subset
development—with mice exhibiting a marked reduction NCR+

ILC3s, while LTi-like ILC3were unperturbed (97).Moreover, lack
of Nr1d1 increased expression of Il17 in ILC3s, a mechanism
previously reported in in Th17 cells (97, 98). Interestingly,
ILC3s isolated from the inflamed intestine of patients with IBD
presented with alterations in expression of several circadian-
related genes, including Nr1d1, suggesting circadian clock
disruptions—such as those seen in shift workers—may act to
disrupt normal immune function and have relevance in the
onset and/or pathogenesis of chronic inflammatory diseases

(96). Of note however, the role of Nr1d1 as a transcriptional
regulator of both Nfil3 and Rorc suggests clock-associated genes
may have additional roles that are independent of circadian
regulation (97).

Circadian rhythms may be imprinted by a range of systemic
and environmental cues. Within the intestinal tract feeding cues
were shown to contribute to the entrainment of oscillatory
function in ILC3 (Figure 2: inputs). Time-specific feeding altered
daily circadian rhythms in clock related genes (95) and IL-22
expression oscillated across the day between active and resting
phases (74, 75). Interestingly, signals from the ENS appear to be
critical in sensing feeding cues to entrain circadian rhythms in
ILC3 (Figure 2) (74, 75). Feeding was found to induce VIP release
from enteric neurons, consequently triggering VIPR2 signaling in
ILC3s and enhancing IL-22 production and the barrier function
of the epithelium. In contrast during fasting this neuropeptide
cue waned, resulting in decreased IL-22 production by ILC3s
and thus, imprinting diurnal rhythms onto intestinal ILC3s (74).
In contrast, another study (pre-print currently under review)
reported that VIP release from enteric neurons upon feeding
rather decreases production of IL-22 by ILC3s, allowing for the
outgrowth of the epithelial-associated commensal microbe SFB
(75). Despite these discrepancies, both studies clearly implicate
the sensing of feeding cues by the enteric nervous system as
a key entrainer of circadian rhythmicity in ILC3. One possible
explanation for the apparent differences in these findings is that
complex interplay with the host microbiota may further augment
ENS cues or act directly on ILC3 to provide complimentary
or competing inputs, which then combine with cues from the
central clock to tune anticipatory rhythms. In line with this,
the microbiota was also shown to have an impact on circadian
gene expression in ILC3s—adding another layer of complexity
in the crosstalk between ILC3s and the commensal microbiota
(95, 96).

While these studies all implicate peripheral cues in the
entrainment of anticipatory ILC3 responses, light signals derived
from the central clock (in the brain) are also known to be
central in aligning many biological processes and in imprinting
circadian rhythms. Indeed, signals from the central clock were
shown to be a key regulator of ILC3 rhythmicity (Figure 2:
inputs) (95). Utilizing mice in which the central clock was
surgically ablated, or mice genetically deficient for Arntl only
in the SCN, ILC3s developed disrupted cytokine oscillations
and an altered phenotype—including the downregulation of
intestinal homing markers which could partially explain time
of day differences in ILC3 numbers within the gastrointestinal
tract (95). The mechanisms through which the central clock in
the SCN mechanistically aligns biological processes with light
cues vary, but can include the release of hormonal cues—most
notably glucocorticoids (84). While it remains to be determined
whether this mechanism acts on ILC3 in the context of the
central circadian clock, glucocorticoids have been shown to
suppress ILC3s IL-22 production in vitro (99). Together these
findings suggest that long-range and local circadian cues may
directly regulate ILC3 numbers and function during homeostasis
or following infection, mediating ILC3 interactions with the
microbiota and regulation of intestinal barrier function.
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LYMPHOID ORGANOGENESIS:
ILC3-STROMAL CIRCUITS

Unlike cells of the adaptive immune system, ILC3 are one of the
first immune cells to colonize the intestine during the embryonic
period and are critical for the formation of SLOs (100). In this
regard one of the most fundamental circuits through which ILC3
contribute to barrier immunity is through the orchestration of
organized interactions between the innate and adaptive immune
system. In contrast to the sensory circuits described above, where
inputs derived from third party cells stimulate outputs in ILC3,
during both embryogenesis and adult life ILC3 provide the
input and stimulatory cues to stromal cells to initiate a cascade
of events that lead to the formation of secondary and tertiary
lymphoid tissues.

The formation of LN and PP is initiated via specialized
stromal cells, known as lymphoid tissue organizer cells (LTo)
that start to express chemokines such as CXCL13, CCL19,
CCL21, as well as the adhesion molecules VCAM-1, ICAM-1,
and MadCAM-1 (101, 102). The expression of these factors
creates a gradient to recruit bona fide fetal lymphoid tissue
inducer cells (LTis; fetal members of the ILC family, referred
to here as fetal ILC3), which cluster with the LTo forming
the primitive anlagen of the SLO (103). Fetal ILC3s at this
stage express CXCR5, CCR7, and α4β7; homing markers that
are important for fetal ILC3 recruitment and which were
shown to mediate migration toward LTo-derived chemokines
and adhesion molecules, respectively. In fact, full maturation
of LTo and development of lymphoid tissue is dependent on
recruitment of fetal ILC3s and provision of lymphotoxin (LT)
(103, 104). Conversely, LTo also provide critical survival signals
for fetal LTi/ILC3 with IL-7 expression shown to be necessary
for ILC3 maintenance, while IL-7R blockade in adults also
resulted in a rapid loss of normal migration of B and T cells
to the LN (105). This stromal IL-7 circuit is likely also active
at other sites such as in the fetal liver and bone marrow, where
stroma derived IL-7 signaling could trigger the expression of
NFIL3 (91). In addition, the same stromal-ILC3 circuit acts
to restore normal lymph node architecture following infection-
induced disruption of lymphoid microanatomy (106). Therefore,
the crosstalk between ILC3s and lymph node-associated stroma
is reactivated in in adulthood and crucial to enable adaptive
immune responses during secondary infections (106). Thus, a
key sensory circuit and stimulatory loop formed between ILC3
and stromal cells is critical for the formation of lymphoid tissues,
and to facilitate the action of the broader innate and adaptive
immune system.

Postnatally, a large number of organized lymphoid structures
designated as tertiary lymphoid structures start to form under the
influence of environmental stimuli. These immune cell clusters
include cryptopatches (CP), which are confined to bottom of
the crypts within the intestinal lamina propria. CP formation is
driven through similar molecular mechanisms to SLO, including
via interactions between ILC3-associated LTα1β2 with the LTβR
expressed by stromal cells and IL-7 signaling (107, 108). CPs
can further give rise to isolated lymphoid follicles (ILFs) in a
CCR6 and LTα1β2-dependent manner (109, 110), resulting in

up-regulation of secretory antibody (Immunoglobulin A; IgA)
synthesis in response to changes in the composition ofmicrobiota
(111, 112).

A unique feature of ILF development in comparison to
LN, PP, and CPs is the requirement for microbial exposure.
Intestinal bacteria are sensed by myeloid cells which increase
the interactions between ILC3s and LTos, also via a LTα1β2
dependent axis, leading to increased expression of adhesion
molecules by the stroma and recruitment of B cells to these
structures (113, 114). ILFs are largely absent in a microbiota
free environment, and are restored upon recolonization
with commensal microbes (115). Similarly inflammation and
intestinal barrier disruption results in increased numbers
of ILFs in the colon, and intriguingly mice deficient in the
transcription factor RORγt develop more ILFs than their wild
type counterparts in the context of intestinal inflammation,
suggesting a potential regulatory role for type 3 immune
responses, such as ILC3, in this setting (116).

Interactions between ILC3 and stroma also provide important
cues to localize ILC3 to defined tissue microenvironments, and
to facilitate interactions with adaptive immunity (discussed in
detail below). Within the intestine-draining mesenteric lymph
node multiple distinct stromal populations have been identified
with differential capacities to attract immune populations and
orchestrate immune cell crosstalk (117). One such population
expresses the enzyme Ch25h, which acts to generate the
cholesterol metabolite 7,α25-OH—a key migratory ligand for
multiple immune cells including ILC3 (117–120). This stromal
cue is sensed by ILC3 via the receptor EBI2 (Gpr183),
and facilitates localization of not only ILC3 but also T
follicular helper cells, DCs and B cells to the follicular
border of lymph nodes (118, 120–125). Similarly, within the
intestinal tissue stromal generation and breakdown of cholesterol
ligand cues create a migratory gradient required to recruit
ILC3 to CP in a Gpr183-dependent manner (119). Together
these studies indicate that a stromal ILC3 circuit is a key
regulator not only of lymphoid organogenesis but also of
ILC3 localization and function, which together facilitate the
interactions between ILC3 and adaptive immune cells and foster
modulatory crosstalk.

CIRCUITS OF IMMUNE ORCHESTRATION:
CROSSTALK BETWEEN ILC3 AND
ADAPTIVE IMMUNITY

ILC3s are also emerging as key orchestrators and regulators
of adaptive immune responses [Reviewed in detail in (126)].
This regulation is mediated by ILC3 either through indirect
modulation of bystander cells that subsequently modulate
the adaptive immune response or directly via both soluble
mediators and cell contact-dependent interactions with
adaptive lymphocytes.

As discussed above, ILC3s contribute to the formation of
lymphoid structures andwere found to be strategically positioned
in clusters within lymph nodes where they have potential to
interact with both T and B cells both directly and indirectly
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(127). Many of the same mechanisms employed by ILC3 to
induce lymphoid organogenesis during early life are similarly
employed in adult tissues to regulate the adaptive immune
system. For example, ILC3s can support the production of
IgA by B cells in the PP, in part through both soluble LTα3
and surface bound LTα1β2 interactions with DCs (128, 129).
Similarly, in the spleen, production of LTα1β2, GM-CSF, and
BAFF/APRIL production by ILC3s also acts to support B cell
responses (Figure 3: outputs) (130).

In line with these findings, ILC3s have the capacity to crosstalk
both directly and indirectly with the adaptive immune system
through the production of multiple soluble factors. Following
exposure to the commensal microbiota IL-22 produced by ILC3s
acts to support homeostatic tissue Th17 responses through the
induction of serum amyloid protein A (SAA) from epithelial
cells (Figure 3: outputs) (131). Interestingly, ILC3 derived IL-22
can also prevent the activation of T cells in an AhR-dependent
manner to limit immune activation or tissue damage (132).
Conversely, T cells may also regulate the magnitude of ILC3-
derived IL-22 production (26, 133), suggesting complex crosstalk
between T cells and ILC3 in determining the level of IL-22
produced in the tissue.

As highlighted previously, sensing of the microbiota by
myeloid cells is a critical regulator of ILC3 responses, and has
consequences for adaptive immunity. IL-1β induction of GM-
CSF production by ILC3s feeds back on tissue-resident MNP
to trigger IL-10 and RA production by intestinal macrophages
and DCs—resulting in the induction and maintenance of tissue
regulatory T cells (Treg) and reinforcing immune tolerance
(Figure 3: inputs/outputs) (134). Similarly, IL-1β produced by
intestinal MNP further induces ILC3 to produce IL-2, a critical
growth signal that helps to support peripherally induced Tregs
in the small intestine and to maintain intestinal tolerance
(Figure 3: inputs/outputs) (135). Conversely Treg interactions
with MNP may limit IL-23 production to prevent ILC3-driven
inflammation via a LAG3-dependent mechanism (Figure 3:
outputs) (136), implicating a bidirectional axis involving ILC3,
MNP, and Treg in determining the immune tone of the
intestinal tract.

ILC3s are increasingly appreciated to also act as a direct
orchestrator of tissue immune responses through their ability
to act as antigen-presenting cells. ILC3 are also endowed with
a broad array of accessory co-activating and co–inhibitory
molecules that enable further modulation and tuning of adaptive
immune cell function. Thus, when coupled with their strategic
localization within lymphoid structures, ILC3 have the potential
to potently regulate adaptive immune responses. At steady state,
ILC3s in the mLNs and large intestine constitutively express
MHC class II (MHCII) molecules at levels comparable with
other professional antigen-presenting cells and can acquire,
process and present antigens (Figure 3: inputs/outputs) (137).
However, under homeostatic circumstances these interactions
do not induce T cell proliferation, due in part to the absence
of classical co-stimulatory molecules such as CD40, CD80, and
CD86 on the cell surface (137). In contrast MHCII+ ILC3s were
found to suppress effector CD4+ T cell responses toward the
microbiota in the intestine (137–139). In line with a suppressive

function for ILC3-associated antigen presentation, deletion of
ILC3-intrinsic MHCII also disrupts crosstalk between ILC3 and
adaptive immune cells at the interfollicular border of the mLN
resulting in a spontaneous T follicular helper response that
subsequently drives increased IgA responses against mucosal-
dwelling commensals, and results in an altered intestinal
metabolome (Figure 3: outputs) (120). While these findings
suggest a suppressive and regulatory role for antigen-presenting
ILC3 in the context of health, additional reports suggest that
in contrast during immunization or infection tissue-specific
inflammatory cues act to alter the nature—and consequences—
of ILC3 antigen presentation. Indeed, activation of ILC3 by
IL-1β resulted in antigen-presentation dependent promotion
of T cell responses as a result of upregulated expression of
classical co-stimulatory molecules (CD80/CD86) on ILC3 (140).
In addition to antigen-presentation to CD4+ T cell subsets,
ILC3 also express CD1d—conferring the ability to present lipid
antigens to invariant (i) NKT cell populations, and promote their
functionality (141).

Indeed, ILC3 have the capacity to modulate a broad
variety of specialized adaptive immune responses through
cell-cell interactions via additional non-classical co-stimulatory
and co-inhibitory molecules. Seminal early studies in the
field demonstrated a critical role for ILC3-associated CD30L
and OX40L in the modulation of T cell memory through
cognate interactions with CD30/OX40 (Figure 3: inputs/outputs)
(126, 142, 143). Recent studies have expanded upon these
observations to demonstrate a role for tissue-resident MNP-
derived TL1A in regulating the expression of OX40L on
ILC3, which was subsequently demonstrated to enable ILC3
to promote inflammatory effector T cell responses in the
context of colitis (144). In addition ILC3 have been reported to
express co-inhibitory and immune checkpoint molecules (e.g.,
PD1, PDL1) suggesting further immunoregulatory functions
for these cells—although further investigation is required to
determine the functional relevance of this receptor repertoire
(145, 146). As investigation into this aspect of ILC3 function
increases, the nature and breadth of interactions with both
innate and adaptive immunity are likely to expand and present
new intervention possibilities for the modulation of tissue
immune responses.

CONCLUSIONS AND FUTURE
PERSPECTIVES

The maintenance of mucosal homeostasis is mediated through
a complex interplay between the host and its environment,
between immune and non-immune cells and by the balance of
pathogenic and commensal microbes. Here we have highlighted
the contributions of sensory circuits within the intestinal tract,
which culminate in the activation and regulation of ILC3s. ILC3
display connectivity with an increasing number of physiological
systems, many of which are likely to act simultaneously
within the tissue in the context of health and disease—and
ultimately to regulate the same range of ILC3-derived outputs.
Thus, despite recent advances, one future challenge will be to
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FIGURE 3 | ILC3 circuits orchestrate adaptive immune responses. In addition to their function as tissue-resident cytokine producing cells, ILC3s have the capacity to

participate in multiple cellular circuits through direct cell–cell modulation of T cell responses, as well as the release of soluble mediators that augment adaptive immune

function and development. ILC3s can control the magnitude and quality of the CD4+ T cell response via antigen presentation in the context of MHC class II (MHCII). At

steady state ILC3s lack co-stimulatory molecule expression and appear to limit CD4+ T cell responses, however this interaction may be altered in inflammatory

scenarios via upregulation of co-stimulatory molecules such as CD40, CD80, and CD86, which favor the promotion of T cell response. Furthermore, ILC3s act to

modulate the survival of recirculating memory CD4+ T cells via interactions via OX40L and CD30L, although it is unknown whether this process also requires

MHCII-dependent antigen presentation. In addition, ILC3 regulation of T follicular helper (TFH) cell responses has consequences for the priming of germinal center B

cells and the induction of T-dependent IgA responses toward colon-dwelling commensal microbes. ILC3s can also modulate adaptive immune cells through the

production of regulatory cytokines and growth factors. In line with this, ILC3 directly support B cell responses in the spleen through provision of critical growth factors

such as BAFF/APRIL. Similarly, ILC3 also modulate the magnitude of the T cell response within the intestinal tract through the production of soluble mediators. For

example, ILC3-derived IL-22 induces epithelial serum amyloid A (SAA) protein, which subsequently promotes local Th17 responses and acts to limit colonization with

segmented filamentous bacteria (SFB) via the induction of antimicrobial peptides. In addition, ILC3 facilitate the establishment of a regulatory and tolerogenic

environment in the gut by promoting regulatory T cell (Treg) responses. ILC3 crosstalk with tissue-resident myeloid cell populations establishes a feedback circuit

whereby ILC3-derived GM-CSF promotes IL-10 and RA production by myeloid cells to promote Treg conversion. Conversely, Treg, myeloid cells and ILC3 may

feedback on each other through a variety of soluble and cell-cell interactions suggesting a dynamic and malleable communication loop to ensure tolerance and tissue

homeostasis. Finally, ILC3 subsets are a potent source of IL-2 in the small intestine that provides survival signals for Treg. Together these tissue-resident immune

circuits place ILC3 at the center of a number of pathways through which they regulate adaptive immune responses to promote tissue health and homeostatic

interactions with the microbiota.

understand how ILC3 integrate multiple concurrent signals from
varying biological systems within a given tissue niche, and to
determine how these cues are translated into cell fate decisions
to determine the magnitude or quality of an ILC3 response.
Many signaling pathways downstream of both cytokine and
neuropeptide receptors converge upon core regulators of cell
function—such as the mammalian target of rapamycin (mTOR)

(147). Moreover, the appropriate licensing and modulation of
anabolic cell metabolism pathways in order to generate new
cellular biomass, effector proteins and facilitate proliferation is
a central checkpoint of cellular function, critical to regulate
immune cell function and controlled in part through mTOR
activation (148). In line with this, a recent report demonstrated
the induction of an mTOR complex 1-dependent programme
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of glycolytic metabolism as a central rate-limiting step in the
production of ILC3-derived cytokines and proliferation (149).
Engagement of glycolysis was also associated with the expression
of the oxygen-sensing transcription factor HIF1α, suggesting
other tissue-specific environmental factors may augment ILC3
responses via licensing of glycolysis and anabolic metabolism.

Ultimately, an increased knowledge of the network of inputs
and outputs—and importantly the mechanisms through which
these multiple sensory circuits are integrated and interpreted—
will allow for new approaches to target this mucosal immune
sentinel in the context of health and disease. Indeed, while ILC3
mediate many protective processes at homeostasis, dysregulated
ILC3 responses have been implicated in a wide range of chronic
inflammatory and metabolic diseases and have increasingly been
suggested to play roles in cancer development and progression.
Most notably, disruption of ILC3 responses is associated with the
pathogenesis of inflammatory bowel disease (IBD) (1, 27, 40, 41,
62, 138, 150). Interestingly, lifestyles associated with disruption
of sleep cycles and circadian rhythms (e.g., shift work, jet lag)
have been suggested as potential triggers for IBD flares (151).
Thus, while there have been recent major achievements in the
understanding of how ILC3 sense signals from the CNS and ENS
and perceive circadian cues (72, 74, 75, 95–97), the physiological
impact of these systems on ILC3 function in the context of IBD
could prove important in beginning to decode the multitude of
factors that lead to disease onset and progression.

In conclusion, ILC3 are strategically positioned within
mucosal sites where they act as a hub of multiple distinct, yet

complementary, sensory circuits. Together, these circuits act
to continually survey the intestinal tract for perturbations in
microbial, dietary and external environmental cues and enable
the rapid communication and translation of this information,
resulting in protective effector responses that continually
reinforce normal tissue function and health. Strategies aimed at
exploiting these cues and sensory circuits to promote or restore
homeostatic ILC3 function, while simultaneously suppressing
the dysregulated signaling associated with maladapted immune

function, may lead to novel therapeutic intervention strategies in
a number of human diseases.
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Skin is a fundamental component of our host defense system that provides a dynamic

physical and chemical barrier against pathogen invasion and environmental insults.

Cutaneous barrier function is mediated by complex interactions between structural

cells such as keratinocytes and diverse lineages of immune cells. In contrast to the

protective role of these intercellular interactions, uncontrolled immune activation can lead

to keratinocyte dysfunction and psoriasis, a chronic inflammatory disease affecting 2%

of the global population. Despite some differences between human and murine skin,

animal models of psoriasiform inflammation have greatly informed clinical approaches

to disease. These studies have helped to identify the interleukin (IL)-23-IL-17 axis

as a central cytokine network that drives disease. In addition, they have led to the

recent description of long-lived, skin-resident innate lymphocyte and lymphoid cells that

accumulate in psoriatic lesions. Although not completely defined, these populations have

both overlapping and unique functions compared to antigen-restricted αβ T lymphocytes,

the latter of which are well-known to contribute to disease pathogenesis. In this review,

we describe the diversity of innate lymphocytes and lymphoid cells found in mammalian

skin with a special focus on αβ T cells, Natural Killer T cells and Innate Lymphoid cells. In

addition, we discuss the effector functions of these unique leukocyte subsets and how

each may contribute to different stages of psoriasis. A more complete understanding of

these cell types that bridge the innate and adaptive immune system will hopefully lead to

more targeted therapies that mitigate or prevent disease progression.

Keywords: innate, psoriasis, lymphocyte, skin, disease

INTRODUCTION

The skin is the largest barrier organ. The most superficial layer of mammalian skin consists of an
avascular, stratified epithelial layer that provides a physical and chemical barrier to environmental
insults, is responsible for hair formation and supports a diverse commensal microbial community
that promotes colonization resistance to invasive pathogens. Underlying the epidermis is the
dermis composed of a fibroblast network providing structure for a complex neurovascular system
that regulates heat transfer, pain sensation, and host defense (1). The epidermis and dermis harbor
unique leukocyte subsets that are not only central to cutaneous immunity, but also contribute
to basic skin physiology including wound healing, hair follicle cycling, and lipid production by
sebaceous glands. Given the intimate relationship between immune-structural cell interactions,
it stands to reason that aberrant communication within this compartment can lead to altered
host defense mechanisms and/or dysregulated skin inflammation and disease. One of the most
common cutaneous inflammatory diseases is psoriasis. Affecting between 2 and 5% of the adult
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FIGURE 1 | γδ T cells and ILCs in psoriatic skin. Diverse subsets of γδ T cells colonize the skin. Under homeostatic conditions, the mouse epidermis contains

dendritic epidermal T cells, which are a monoclonal population of Vγ5+ cells. The dermis contains Vγ4+ and Vγ6+ γδ T cells enriched for expression of IL-23R, CCR6,

and IL-7R. In mouse models of psoriasiform inflammation, activated keratinocytes produce chemokines such as CCL2 and CCL20, which subsequently recruit dermal

γδ T cells to the epidermis. Among these γδ T cells, there is a subgroup that express the transcriptional factor RORγt, that are capable of producing IL-17 and IL22

upon IL-1 and IL-23 stimulation. Both mouse and human studies have shown that, upon cytokine stimulation, dermal-derived γδ T cells secrete IL-17 and IL-22 that

drives keratinocyte hyperplasia, neutrophil recruitment and disease progression. ILCs are also present in the healthy skin. They are divided into three groups based on

transcription factor expression and effector functions. Under steady-state conditions, ILC2 are the largest population. ILC3 are currently thought to be the dominant

population that contribute to disease progression. In human skin lesions, NKp44+ ILC3s are able to produce IL-22 and IL-17 that exacerbate disease progression.

population in developed countries, psoriasiform inflammation
varies in severity but is most commonly characterized by red,
scaly plaques across the surface of the body in a form referred
to as psoriasis vulgaris. Although the etiology of psoriasis has
not been identified, both environmental and genetic factors have
been shown to contribute to incidence and severity of disease (1–
3). Importantly, psoriasis is associated with comorbidities such
as atherosclerosis and metabolic syndrome suggesting systemic
dysregulation of the immune response in these patients providing
further motivation for understanding disease pathogenesis (1,
4). Despite some differences between human and rodent
skin, animal models of “psoriasiform” inflammation have been
instrumental in identifying the immunological mechanisms
underlying psoriasis development. For example, the models
described in more detail below have helped to determine the
interleukin (IL)-23/IL-17 axis as central to disease progression
(1, 5). The essential role of these cytokines has been validated
by the clinical efficacy of humanized monoclonal antibodies
targeting TNFα, IL-23, IL-17A, and the IL-17 receptor (6, 7).
However, these treatment approaches have limitations. First,

they are not curative; symptoms reappear upon cessation of
treatment. Thus, biologics must be given throughout the patient’s
lifetime. Second, the IL-23/IL-17 immune axis plays an important
role in protection against cutaneous pathogens such as Candida
and pathobiotic spp. of Staphylococcus areus (8, 9), thus raising
questions about the long-term use of these treatments regarding
susceptibility to infection. Furthermore, these biologics do not
specifically target the skin and may compromise host defense
at other barrier sites such as the intestine. Therefore, further
investigation into the initiating factors that drive psoriatic disease
will not only enrich our knowledge of skin biology in general, but
lead to more targeted, tissue-specific treatments for this chronic
inflammatory disease.

The recent discovery of immune cell subsets that are resident
to the skin such as γδ T cells and innate lymphoid cells
(ILCs) has prompted a growing interest in how these and other
better known cell types that blur the separation between the
innate and adaptive immune system such as Natural Killer (NK)
cells and NKT cells contribute to psoriasiform inflammation.
Indeed, these cells serve as acute sensors of infection and tissue
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injury without the need for specific recognition of antigen.
While these properties have likely evolved to respond rapidly
to tissue changes, their non-specific activation requirements
leave them susceptible to hyperreactive responses against
innocuous stimuli. In this review, we describe the diversity
of innate lymphocyte lineages present in the skin and our
current understanding of how each subset contributes to the
pathogenesis of psoriatic disease.

THE CUTANEOUS γδ T CELL
COMPARTMENT

Of the innate T lymphocytes in the skin, γδ T cells,
defined by expression of gamma (γ) and delta (δ) TCR
subunits, are the most studied. Their innate classification
comes from two main characteristics: first, the repertoire
of γ and δ chains possess less diversity than their more
classical αβ TCR counterparts. Second, γδ T cells do not
require TCR engagement in order to expand and exert their
effector functions. Rather, cytokines alone are sufficient to
endow γδ T cells with cytotoxic and cytokine-producing
ability (10).

In mice, γδ T are usually distinguished based on the γ

chain expression. It is worth mentioning that two nomenclatures
are often used but rarely specified in the literature, namely
the Heilig and Tonegawa vs. the Garman classification. In this
review, we will use the Heilig and Tonegawa nomenclature only,
which includes the Vγ1–Vγ7 subtypes (11). Each subtype has a
propensity to localize to specific organs as well as exert unique
effector functions. Their development and migration to the
epithelial tissues starts during fetal life (12–14) with consecutive
waves associated with different γδ T subsets migrating from
the thymus to their specific tissue (10, 15). From day E13, the
Vγ5 subtype is produced in the thymus and migrates to the
epidermis (Figure 1). Vγ5 γδ T cell development is exclusively
fetal and occurs only in mice. These cells are called dendritic
epithelial T cells (DETC) due to their morphology, are non-
migratory and are maintained by self-renewal (16, 17). As DETC
seem to be most relevant for maintaining skin homeostasis and
wound repair and have been reviewed extensively elsewhere,
we will not be discussing this subset further. On the other
hand, Vγ4 and Vγ6 subtypes constitute the dermal γδ T cell
compartment (Figure 1). Unlike DETCS, dermal γδ T cells are
motile with Vγ6+ cells seeding the dermis during fetal life
and Vγ4+ cell recruitment limited to the first days of life
(18). Accordingly, the dermal γδ T cell compartment can be
replenished after irradiation, but only if neonatal thymocytes are
transferred (19).

Vγ usage is also associated with a specific effector function
profile. In fact, γδ T cells can be largely defined based on
their expression of lineage-restricted transcription factors and
effector functions. The most prominent subsets include IFNγ

(γδ1) and IL-17 producing γδ T cells (γδ17) that rely on the
transcription factors T-bet and RORγt, respectively, for their
differentiation (20). Interestingly, however, γδ T cell effector
functions are uniquely imprinted in the thymus where SOX13

drives γδ T cell lineage commitment and subsequent TCR
dependent and independent mechanisms that dictate effector
functions (21). For example, CD27 is a thymic determinant of γδ

T cell fate by promoting γδ1 over γδ17 cells and inducing IFNγ-
associated genes (22). Additionally, strong TCR engagement
favors IFNγ-producing γδ T development (23) while limiting
γδ17 development (24). As a result, IFNγ and IL-17-producing
γδ T subsets can be identified on the basis of CD27 and CCR6
expression, amongst other markers (22, 25). Dermal Vγ4+ and
Vγ6 + γδ T cells express several hallmarks similar to Th17
cells including RORγt, IL-7R, CCR6, and IL-23R expression
as well as ability to produce IL-17 (19, 26). They can be
stimulated by IL-23, which leads to their expansion and IL-
17 production (26) (Figure 1). Dermal γδ T cells have been
associated with immunosurveillance functions. In the context
of mycobacterial infections, they have been shown to be the
dominant source of IL-17 and their absence was correlated
with diminished immune response to BCG immunization
(27). Furthermore, IL-17 production by dermal γδ T can be
stimulated by various microbe-derived products (26), further
emphasizing their immune sentinel role. As Vγ6+ cells are
rarely found in secondary lymphoid organs, MacKenzie et al.
suggested that this subset might have specifically evolved for
immunosurveillance of non-lymphoid tissues while the more
migratory, lymphoid organ-skewed Vγ4 subset might serve
as a pool that is rapidly mobilized to barrier sites following
challenge (28).

In humans, γδ T cells are usually distinguished based
on δ chain expression including Vδ1, Vδ2, and Vδ3 (i.e.,
Vδ1-Vδ2-) subtypes. Vδ1 cells seed barrier tissues while Vδ2
and Vδ3 are observed in the blood of healthy patients (29).
Similar to murine γδ T cells, human γδ T cells are potent
cytokine-producing cells, but the regulatory mechanisms are
less understood. Unlike murine γδ T cells, human γδ T cells
are more dependent on TCR engagement for activation and
appear to produce a greater diversity of effector cytokines. For
example, human γδ17 cell differentiation, which likely occurs
in the periphery since they are absent from the human mature
thymus (30), requires IL-23 and TCR activation. Furthermore,
Vγ9Vδ2 cells that represent the majority of the Vδ2 subset,
exhibit remarkable heterogeneity in term of surface markers
and cytokine production. These plastic cells are able to produce
IFNγ, IL-4, or IL-17, which contrasts with murine γδ T cell
commitment (31).

As opposed to mice, human γδ T cells are rare in the
skin with Vδ1-expressing cells being the dominant subtype
observed in healthy skin, mainly in the dermis. With the
help of αβ T cells (16), Vδ1 seem to recapitulate the role
of DETC given that they present a restricted repertoire (32),
can be observed in the epidermis, produce keratinocyte growth
factors and exert anti-tumor activity (31, 33). Vδ1+ cells are
also usually associated with IFNγ production and a cytotoxic
profile (34). Notably, human dermis-derived γδ T cells have
been shown to produce IL-17A. In fact, Cai et al. found IL-17-
producing γδ T cells to be enriched in psoriatic skin lesions.
However, the full repertoire of cutaneous γδ T cells has yet to be
investigated (26).
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γδ T Cells Are Major Contributors to
Murine Psoriasiform Inflammation and
Implicated in Human Disease
Two mouse models of cutaneous inflammation are most
commonly used to study the mechanisms underlying
psoriasiform inflammation. The imiquimod (IMQ) model
that consists of topically applying a TLR7/8 agonist emulsified in
a cream or intradermal injection of recombinant IL-23 (5, 35).
Both approaches lead to epidermal hyperplasia, parakeratosis,
and expansion of rete ridges, all features of psoriasiform
inflammation (36). These preclinical models have been shown
to depend on the presence of IL-17 for fulminant inflammation
and motivated clinical trials the development of neutralizing
antibodies targeting IL-23, IL-17A, or IL-17RA (the receptor
for both IL-17A and IL-17F) (5–7, 26). The incredible clinical
success of these biologics has validated these models and led
to further investigation into the cell types driving IMQ and
IL-23-induced inflammation (6, 7). Importantly, both models
revealed decreased inflammation and psoriasiform symptoms
inflammation in mice genetically lacking γδ T cells (TCRδ−/−)
compared to mice deficient in αβ T cells (TCRα−/−) mice
(26, 37). Importantly, TCRδ−/− mice reconstituted with Vγ4
and Vγ6 subpopulations restored disease susceptibility (18).
Similarly, selective depletion of Vγ6+ or Vγ4+ γδ T cells using
antibody-mediated or genetic depletion approaches indicate
that both subsets are necessary and sufficient for IMQ-induced
inflammation (38, 39). Interestingly, Vγ4+ γδ T cells have
been shown to have memory-like capacity. Indeed, two papers

have demonstrated that this γδ T cell subset persists in the

skin after termination of IMQ treatment and exhibits classical
features of memory cells upon secondary IMQ challenge (i.e.,

a more rapid response with greater magnitude) in the same

area or even distant sites (40, 41). Ramirez-Valle et al. further

demonstrated that the migration and recruitment to distant
sites was mediated via CCR2 signaling (41). They showed

that IMQ-activated Vγ4+ T cells expressed less CCR6 than

unchallenged γδ T cells and that the former subset demonstrated

increased responsiveness to IL-1. Downregulation of CCR6

was unexpected as it was previously shown that both models
of psoriasis induce CCL20 (42), the chemokine recognized by

CCR6, and that a CCL20/CCR6 axis was essential for disease

progression (38, 43) (Figure 1). Induction of CCL20 leads

to dermal IL-17+γδ T cell recruitment into the epidermis,
exacerbating inflammation. Accordingly, an anti-CCL20
antibody treatment reduced IL-23-induced inflammation by
decreasing the γδ T trafficking into the epidermis (42). In
the latter study, the source of chemokine secretion was not
identified but it has been demonstrated that IL-1β can stimulate
keratinocyte production of CCL2 and CCL20, which might
impact γδ T cell recruitment (18). In addition, activated dermal
γδ T cells increase expression of X-linked IL-1 receptor accessory
protein-like 1 (IL1RAPL1) which promotes a feedforward
system inducing more IL-17 production by these cells. IL-38, a
cytokine of the IL-1 family secreted by keratinocytes at steady
state, is able to restrict γδ T cell activity by inhibiting IL1RAPL1
on the surface of γδ T cells (44). Accordingly, the levels of

TABLE 1 | Cytokines produced by innate immune cells during psoriasis.

Cytokine Cell types References

IL-17A γδT cell, ILC3, NK cell (18, 26, 37, 38, 46–49)

IL-22 γδT cell, ILC3, NK cell (37, 47, 50)

IL-25 (IL-17E) γδT cell (51)

IFNγ NK and NKT cell (52–55)

TNFα NK and NKT cell (53)

IL-38 secreted by the keratinocytes is decreased in psoriatic
lesions as well as in mouse skin following IMQ treatment
(44, 45). These results underline the loop that exacerbates
psoriasis, where inflammation induces keratinocytes secretion
of chemokines, which in turn triggers γδ T cell recruitment. The
pro-inflammatory environment leads to cytokine production by
γδ T cells, which promotes keratinocyte hyperproliferation and
epidermal thickening.

Although γδ T cells are capable of cytotoxic activity, their
potent cytokine production seems to play a dominant role in
psoriasiform inflammation (Table 1). In the IMQ model, both
IL-17 and IL-22 production by RORγt + γδ T cells, Vγ4+ cells
in particular, is greatly increased (37) (Figure 1). Consistent with
these results, IL-17R deficient mice showed reduced and delayed
signs of psoriasiform inflammation such as ear thickness and
erythema after IMQ treatment (56). However, disease was not
completely abolished in IL-17R deficient mice and increased
levels of TNFα, IL-6, and IL-22 as well as IL-17-producing cells
were observed in the skin. This demonstrates the importance
of IL-17 signaling for psoriasiform inflammation, but also
suggests an alternative pathway for IMQ-induced inflammation.
Similarly, IMQ-induced inflammation was strongly reduced in
mice with a keratinocyte-specific deletion of the IL-17 receptor
(57). In another study using the IMQ model, the main producer
of IL-22 was also γδ T cells. However, in Rag-deficient mice that
lack mature T and B cells, levels of IL-22 in response to IMQ
remained elevated suggesting an alternative source of cutaneous
IL-22 (50). Although it was shown that, in addition to IL-17,
IL-22 is required for IL-23 induced inflammation, the failure of
clinical trials using anti-IL-22 antibodies have kept the focus on
the effector functions of IL-17 and its associated family members.
In fact, a recent report showed that IL-17E (better known as
IL-25) signaling via IL-17RB also plays an important role in
IMQ-induced psoriasiform inflammation (51). This work was
recently followed up by studies demonstrating that IL-17A can
signal via an alternative receptor, IL-17RD, to drive psoriasiform
inflammation (58). To conclude, γδT cells aremajor contributors
to murine psoriasiform inflammation via the production of IL-
17 and IL-22 (Figure 1, Table 1). The Vγ4 subtype is particularly
implicated in the disease due to its quick cytokine response,
migration capacities and long-lasting memory capacity.

Such as in mice, γδ T cells are expanded in human psoriatic
skin and produce IL-17A (26) (Table 1). A population of
Vγ9Vδ2+ cells that express IL-17A, IFNγ, TNFα and CCR6
has been specifically observed in human psoriatic lesions (59).
These cells were able to activate keratinocytes and stimulate
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chemokine, cytokine and defensin production. Laggner et al.
also showed that Vγ9Vδ2+ cells were increased in psoriatic skin
compared to healthy skin and, even more, increased in lesional
skin compared to non-lesional skin of the same patients (59). In
addition, Vγ9Vδ2+ cells were reduced in psoriatic patient blood.
Finally, they showed a negative correlation between blood levels
of Vγ9Vδ2+ cells and psoriasis severity. These results suggest that
the Vγ9Vδ2+ population is recruited from the peripheral blood
to the skin where they activate keratinocytes and contribute to
psoriasis development. On the other hand, it has been recently
shown that the majority of IL-17A producing T cells observed in
human psoriatic lesions are oligoclonal αβ T cells and not γδ T
cells (60). Furthermore, mast cells have been shown to produce
IL-17A and IL-22 in human psoriatic plaques (61). The diverse
subsets previously found to be expressing and/or producing IL-
17 cytokines in human psoriasis and disparate results between
groups continues to fuel a controversy over the most relevant
cytokine-producing cells for psoriatic disease development and
progression. Longitudinal studies using large, diverse patient
cohorts may help reconcile these differences.

THE INNATE LYMPHOID CELL SKIN
POPULATION

ILCs are bone marrow-derived tissue-resident lymphocytes that,
although arising from common lymphoid progenitors, do not
express rearranged antigen-specific receptors. ILC nomenclature
is largely analogous to CD4+ T helper effector cell subsets:
ILC1s express the transcription factor T-bet and secrete IFNγ,
ILC2s express GATA3 and produce the Th2 cytokines IL-5 and
IL-13 and ILC3s express RORγt and secrete IL-17 and IL-22.
Although ILCs are thought to be largely tissue-resident cells (62),
ILCs have been detected in the circulation that express high
levels of cutaneous leukocyte-associated antigen (CLA), a skin
homing marker (63). In both mice and humans, all three groups
of ILCs have been observed in the skin with ILC2s being the
largest population (63–65). Furthermore, a study examining the
cutaneous ILC population in mice showed that different layers
of the skin are populated differentially by ILCs: the epidermis is
mainly populated by ILC3s, the subcutaneous layer is populated
by ILC2s and the dermis contains both ILC2s and ILC3s (66)
(Figure 1). However, the signals that result in the differential
homing of ILCs in the skin and whether this is representative
of human ILC populations is not completely understood. ILC1s,
although present in the skin, are a rare population with unknown
functions. Although sharing several features with natural killer
(NK) cells, ILC1s do not exert cytotoxic activity—lack perforin
and granzyme expression—and do not express traditional NK cell
antigens such as CD56, CD16, or CD94. However, the cytokine
profile of ILC1s, most notably IFNγ, resembles NK cells and has
been shown to play a role in the protection against intracellular
pathogens (62, 67, 68). As ILC1s are thought to contribute to
Crohn’s disease and inflammation in a mouse model of colitis
(69, 70), they could potentially play similar roles in the skin both
in terms of protection as well as autoimmune-like pathology,
however this has not been thoroughly investigated. ILC2s on the

other hand are much more common in the skin and are thought
to play a role in maintaining skin homeostasis. For example,
ILC2s have been shown to promote wound healing in the skin
through the production of IL-13 (71, 72). Skin-resident ILC2s can
also produce high levels of amphiregulin, a molecule regulating
wound healing (73). In dermatitis, amphiregulin has been shown
to play a role in wound healing by acting as an epidermal growth
factor receptor (EGFR) ligand (74). However, other evidence
indicates the involvement of ILC2s in allergic-type or type 2
inflammation of the skin, namely atopic dermatitis likely through
dysregulated production of type 2 cytokines such as IL-5 and IL-
13 (73, 75, 76). Lastly, ILC3s are one of the subtypes of immune
cells in the skin capable of producing IL-17A and IL-22 and are
therefore of specific interest when discussing psoriasis (Figure 1).

ILC3s Are Observed in Human Psoriatic
Skin and Correlate With Disease Severity
While ILC3s seem to play a role in the development and
maintenance of psoriasis, the role of ILC1 and 2 subsets is a
matter of debate (Figure 1). Some groups found a reduction in
ILC2 numbers in psoriatic patients (64) while others saw no
difference in frequencies. Notably, different methods of tissue
processing from skin biopsies in these studies may explain the
differences (63–65). Given that ILC2s are known to play a role in
maintaining skin homeostasis and wound healing (71, 72), they
may also be playing a protective role during the development
of psoriasis. Second, these studies did not indicate involvement
of ILC1s (63–65). However, one group reported a significant
increase in the number of ILC1s in psoriatic skin (77); this latter
group detected the number of ILCs using imaging of whole skin
whereas the other groups performed flow cytometry which may
explain the difference. Since ILC1s in the gut seem to play a role
in inflammatory pathologies, it is possible that ILC1s may also
be paying a role in inflammatory pathologies in the skin such as
psoriasis. When looking at the cells in circulation, both healthy
individuals and psoriatic patients have a similar mean frequency
of ILCs in total peripheral blood mononuclear cells (PBMCs)
(65). However, there seems to be an overall increase of ILCs in
psoriatic skin (Figure 1). This increase in ILCs is mainly due to
an increase of ILC3s (63, 64, 77). NKp44 has been associated
with pro-inflammatory functions in ILC3s, its activation leading
to TNFα production (78). ILC3s in the skin of healthy patients
were shown to be mainly NKp44–, whereas NKp44+ ILC3s were
barely detectable in the skin and blood (63). NKp44 expression
is induced in NKp44-ILC3s upon IL-1β and IL-23 stimulation,
cytokines commonly present in psoriatic inflammation (63)
(Figure 1). In psoriasis patients, the levels of NKp44+ ILC3 but
not NKp44– ILC3s were increased in the blood, lesional, and
non-lesional skin. Furthermore, psoriasis severity as measured by
the PASI scoring system positively correlated with the number of
cutaneous NKp44+ ILC3s (63–65). These data suggest that the
amount of NKp44+ ILC3s in the blood or the skin can potentially
be used as a biomarker for disease severity. Furthermore, ILCs
in psoriatic skin were seen to be in close proximity to T cells,
suggesting a crosstalk between ILCs and T cells during the
development of psoriasis (77). Given the innate features of ILC3s
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and their largely tissue-resident nature, these cells may contribute
to the initiation of psoriatic inflammation. Indeed, ILC3s alone
were able to induce psoriasis in a human skin xenotransplant
mouse model to a degree similar to αβ T cells (79). Furthermore,
patients with psoriatic arthritis, a disorder with similar features of
psoriasis but with joint involvement, also had an increased ILC3:
ILC2 ratio (80).

As mentioned above, IL-17 producing γδ T cells have been
shown to be important drivers of IMQ-induced inflammation
(81). However, it has been shown that Rag-deficient mice are
still susceptible to psoriasiform inflammation via IMQ (37,
43), indicating that cells other than T cells play a role in
the pathogenesis. Using Rag1/IL-2R deficient mice lacking T
cells and ILC, Pantelyushin et al. showed that RORγT+ γδ T
cells and RORγt+ ILC contribute to IMQ-induced psoriasiform
inflammation (37). Furthermore, anti-TNFα or TNFα inhibitor
treatment has been demonstrated to be a very effective treatment
for psoriasis (82). TNFα plays a role in psoriasis development
by synergizing with IL-23 to induce IL-17 producing cells,
including ILC3s (46). Individuals undergoing successful anti-
TNFα (adalimumab) treatment for psoriasis had a reduction
in the number of pathogenic NKp44+ ILC3s and an increase
in NKp44– ILC3s in the circulation (65), suggesting that a
major role of TNFα in the pathogenesis of psoriasis includes
potentiating pathogenic ILC3s. However, it was elegantly
demonstrated that γδ17 were non-redundant effector cells in
murine skin pathology (81). Indeed, when γδ17 cells were deleted
from birth, they were replaced by IL-17 producing ILC3s that
promoted IMQ-induced inflammation. However, acute depletion
of γδ17 cells did not lead to ILC3 accumulation and mice
remained resistant to psoriasiform inflammation. In summary,
ILC2s appear dominant in healthy skin whereas NKp44+ ILC3s
are the major ILC subset associated with psoriatic disease.
Although ILC3s and γδ17 cells may play overlapping roles in
murine models of psoriasis, more studies are needed to discern
their relative contributions to human disease.

CUTANEOUS NK AND NKT CELLS

Natural Killer (NK) cells are a group of innate immune cells with
both cytotoxic and cytokine producing effector functions and
have been recently classified as one of two ILC1 subsets (83, 84).
Through germ-line encoded activating and inhibitory receptors,
NK cells can respond quickly following activation, releasing
pro-inflammatory cytokines particularly IFNγ, chemokines, or
specialized cytotoxic granules to infected or tumor cells (85). In
human and mice, there are two distinct populations of NK cells,
circulating NK cells (cNK, CD49a+CD103− or CD56dimCD16+

in human and CD49a−DX5+ in mice) and tissue-resident
NK cells (trNK, CD49a−CD103+, or CD56brightCD16− in
human and CD49a+DX5− in mice) (Figure 2); both can induce
cytotoxicity and produce cytokines (86–89). Murine skin is
composed of both trNK cells and cNK cells (87) (Figure 2).
However, the cNK and trNK cells do not share the same
development pathways. cNK cells are derived from the bone
marrow, continue their maturation in the thymus and then

the spleen, tonsils and lymph nodes (90, 91). In mice, the
transcription factors T-bet and Eomes are required for the
maturation of cNK cells (92). In humans, both T-bet and Eomes
are co-expressed in mature cNK cells (93). T-bet is expressed
at lower levels in cytokine-producing CD56bright(CD56hiCD16−)
NK cells than the highly cytotoxic CD56dim (CD56loCD16+)
NK cells, while CD56bright NK cells have higher frequency of
Eomes+ cells than CD56dim NK cells (93), indicating that there
is a gradual loss of Eomes expression during the development of
CD56bright cells to T-bethiEomes+ CD56dim cells. trNK cells were
first discovered in the murine liver, strictly require T-bet, Hobit
and PLZF for their development, however do not express Eomes
(87, 89). Murine liver trNK cells are capable of degranulation
and produce similar IFNγ levels to cNK cells. However, both
the liver IFNγ+ and degranulating trNK cells produce TNFα,
which is rarely seen among responding cNK cells (87). Unlike
mouse trNK cells, human liver trNK cells have high Eomes
expression rather than T-bet (94). Of note, the features and
developmental pathways of trNK cells differ from one organ
to another. In the murine gut and dermis, the development
of NKp46+CD3− trNK cells is reported to be dependent on
the transcriptional factor RORγt and RORγt+ trNK cells are
capable of producing IL-22 (95). The origin of skin trNK cells is
unclear, but murine studies show that skin trNK cells share some
features with liver trNK cells, in terms of phenotype, function
and developmental requirements. They are CD49a+DX5− with
no Eomes expression, and their development is dependent on IL-
15 and IL-15R. Human CD56brightCD16−NK cells are present
in the dermis at steady state and disease conditions such as
psoriasis, while CD56+CD16+ cNK cells are rare (52, 96, 97).
These CD56brightCD16− dermal NK cells lack perforin and
NKG2D expression but are capable of lysing melanoma cells after
activation in vitro (97). Recently, studies have found IL-17 and IL-
22 producing NK cells in both humans and mice, which indicates
the potential for NK cell participation in the development of
psoriasis (47–49).

Natural Killer T (NKT) cells are present in both human
and mouse skin (Figure 2). However, the composition of NKT
cells is not well-defined. In human allergic contact dermatitis,
for example, NKT cells range from 1.72 to 33% of the T
lymphocyte infiltrate and in human atopic dermatitis patients,
the proportion of NKT cells in CD3+ T cells is ∼5% (98, 99).
In murine skin, they compose ∼0.03% of total healthy skin cells
and ∼0.6% of total hyperplastic skin cells (100). NKT cells are
a unique hybrid between αβ T cells and NK cells as they co-
express an αβ TCR and NK cell lineage markers. NKT cells
are divided into four categories with type 1 (referred to as
invariant NKT cells) being the vast majority (101). Compared
to conventional T cells, they express a semi-invariant TCR α

chain (Vα14-Jα18 in mice and Vα24-Jα18 in human), which
allows specific recognition of glycolipids presented on an atypical
MHC Class I molecule, CD1 (102–104). α-galactosylceramide
(α-GalCer), a compound derived from marine sponges, has a
strong CD1d binding affinity and is a potent stimulant for iNKT
cells. Potential endogenous ligands of NKT cells were previously
believed to be glycosphingolipids (GSLs) and phospholipids that
are derived from bacterial, plant, protozoan, and mammalian
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FIGURE 2 | NK and NKT cells in psoriatic skin. NK and NKT cells are innate immune cells that have cytokine-producing and cytotoxic functions. They both reside in

the dermis. The NK cells can be divided into two groups, namely cNK and trNK cells, based on the receptors CD49a and DX5. Unlike NK cells, NKT cells also express

an antigen-specific TCR that recognizes glycolipid through CD1 presentation by antigen-presenting cells. In psoriatic skin lesions, NK and NKT cells are rare. However,

CD1d expression is reported to be elevated in keratinocytes in inflamed skin. In addition, NK and NKT cells have decreased degranulation ability, but display increased

IFNγ production. High IFNγ production can contribute to an increase in keratinocyte-derived chemokines such as CXCL10 and CCL5, and the elevated expression of

MHCI, both of which increase cell recruitment and presentation of autoantigens. In addition, NK and NKT cells produce TNFα that activate keratinocytes in an

IL-24/Stat3-dependent manner as well as indirectly enhance dermal IL-17+T cell activation by facilitating dendritic cells to produce IL-1 and IL-23.

species. However, more recent studies suggest that NKT cell
ligands are more diverse and not limited to GSLs (105, 106).
Thus, the endogenous ligands of NKT cells are still being
clarified. When stimulated with α-GalCer or its analogs, NKT
cells rapidly produce pro- and anti-inflammatory cytokines
including IFNγ, TNFα, IL-10, IL-4, IL-13, IL-17 and GM-CSF,
and participate in the regulation of infection, autoimmunity,
and tumor immunity (107). Unlike NK cells, NKT cells undergo
positive and negative selection within the thymus, but emerge
later in development than most other T cell subsets (108, 109).
During the selection process, NKT cells are only selected when
CD1 is expressed on double positive (CD4+CD8+) thymocytes,
which segregates the NKT cell (CD161 low in human and
NK1.1- in murine at this stage) from the conventional T cell
developmental pathway (110–114). The transcriptional factors
Ras, Mek, Fyn, and Ets1 are reported to participate in the
development of murine NKT cells, and the cytokine IL-15 and
its receptor IL-15R are important during NKT cell development
(115–118). After selection, the immature human CD161low or
murine NK1.1- NKT cells either stay in the thymus or migrate
to peripheral tissues, where they undergo a maturation process

with the upregulation of CD161 (human) or NK1.1 (murine)
expression (108, 109). The transcription factor T-bet was shown
to participate in the terminal maturation of NKT cells (119).
Both mouse and human NKT cells can exert cytotoxicity and
produce seemingly antagonistic IL-4 and IFNγ cytokines upon
TCR stimulation (120, 121). However, cytokine production may
be developmentally regulated as mature NKT cells produce high
levels of IFNγ while IL-4 is dominantly produced by immature
NKT cells (108, 109). Recent data showed that NKT cells can also
secrete Th17-related cytokines such as IL-17A, IL-17F, and IL-22
(107, 122, 123). A murine CD4-NK1.1- NKT cell group, which
is the precursor of CD4-NK1.1+ NKT cell, has been found to
constitutively express RORγt and IL-23R and is a major source of
IL-17+ NKT cells (107). In addition, α-GalCer-activated murine
NKT cells, that can express RORγt and IL-17, but not IFNγ or IL-
4, develop in a c-Maf dependent way. These IL-17+NKT cells are
essential for inducing neutrophil-rich airway inflammation (122).
In humans, even though RORγt+ T-betloPLZF- NKT cells are
found in the circulating PBMCs, the IL-23R expression is almost
completely absent on circulating NKT cells. These NKT cells
show poor IL-17 release after IL-23 stimulation. However, TCR
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stimulation (e.g., α-GalCer or αCD3/CD28Ab) in the presence
of IL-2, IL-23, IL-1β and TGFβ1, NKT cells successfully produce
IL-17 but not IFNβ or TNFα (123). Interestingly, there are
more IL-23R+ NKT cells in the PBMCs and joint compartment
of Spondyloarthritis patients than healthy controls, showing
an IL-17 signature (123), which suggests that NKT cells could
participate in the development of psoriasis. Although cutaneous
NKT cells are important for the anti-microbial response due
to their ability to recognize the bacterial glycolipids via CD1d
presentation (124), they may function differently in cutaneous
diseases, a result that may depend on the microbial and/or self-
antigen repertoire of the skin. It has been shown that large
numbers of NKT cells can be recruited into human skin during
contact dermatitis, producing mainly IFNγ (98, 99) however,
results in animal studies are controversial. Murine NKT cells
were previously reported to suppress this response by producing
IL-4 and IL-13 in response to CD1d-presented haptens (125),
while it was also reported that murine NKT cells enhance the
contact sensitivity reaction (126–128). Different results may be
explained by the animal model studied, which shape the NKT
cell cytokine repertoire. Studies have found decreased number
of circulating Vα24+ NK T cells in atopic dermatitis patients,
and they produce both IL-4 and IFNγ (99, 129). NKT cells were
also shown to suppress skin transplant rejection, through the
production of IL-4 (130–132). To conclude, even though the
proportion of NK and NKT cells is rare, they do participate in
cutaneous immunity through diverse effector programs.

NK and NKT Cells Are Rare in Psoriatic
Skin
The role of NK and NKT cells in psoriasis development is
not clear. Even though studies showing involvement of NK
cells in psoriasis are rare, NK cells have been shown to be
present in psoriatic skin. Human studies show that NK cells are
recruited in psoriatic plaques, particularly in the dermis (52, 133)
(Figure 2). The psoriatic lesion-isolated NK cells exhibited low
degranulation ability. However, their cytokine-producing ability
is dependent on the source of NK cells (52, 53). Ottaviani
et al. observed higher IFNγ production by NK cells isolated
from psoriatic lesions and showed that IFNγ was able to induce
keratinocyte chemokine production (such as CXCL10 and CCL5)
and MHC-I expression (52) (Figure 2, Table 1). Consistent with
the human data, mice treated with IMQ had increased NK1.1+

cells in the skin, which suggests that either NK or NKT cells
were recruited into the skin during psoriasiform inflammation
(134). Another study showed that NK cells from PBMCs of
patients with psoriasis vulgaris have reduced cytotoxicity and
lower levels of pro-inflammatory cytokines IFNγ and TNFα (53).
However, questions remain about NK cells in the context of
psoriasis. Psoriasis was initially thought to be a IFNγ related
disease but more recent studies—and the success of biologics
targeting the IL-17 pathway—indicate a more dominant role
for TNFα and IL-17 driven disease (1, 135, 136). As suggested
above, TNFα and its associated receptors have been reported to
be elevated in psoriatic lesions compared to non-lesional skin
and TNF-R is abundantly expressed by keratinocytes (137, 138).

It has been reported that TNFα signaling is involved in IL-24-
induced psoriasis like inflammation in mice (139). In addition,
both TNFα inhibitors and blocking antibodies show efficacy
in alleviating psoriatic arthritis symptoms (140). Since both
IFNγ+ and degranulating skin trNK cells produce TNFα (87),
it is possible that skin NK cells participate in the progression
of psoriasis by the production of TNFα rather than IFNγ. To
address this question, TNFα production by NK cells in the skin
of healthy control and psoriasis patients needs to be addressed.
To date, there is no direct link between IL-17 signaling and NK
cell function in psoriasis. However, NK cells have been implicated
in protection from oral and dermal Candidiasis infections that
requires IL-23 and IL-17 signaling (8, 141, 142). Whether NK
cells participate in psoriasis via IL-17 signaling needs to be further
explored. A concern about human NK cell studies is that CD56 is
routinely used as a marker for NK cells, however, CD56 is also
found on human IL-17 and IL-22-producing ILCs (47, 143, 144).
Therefore, these studies do not exclude other CD56+ ILCs in the
involvement in psoriasis.

The NKT frequency within the psoriatic lesions is very low—
<0.1%—indicating that they are an unlikely determinant of
psoriasis development (52). However, Nickoloff et al. showed
that in vitro co-culture of NKT cells with CD1d-overexpressing
keratinocytes is able to directly induce NKT production of IFNγ

and IL-13. In addition, the in vivo injection of psoriasis lesion-
derived NKT cells into the pre-psoriatic engrafted skin in SCID
mice could successfully induce psoriatic plaques (54), indicating
a potential role of NKT cells in the psoriasis progression. Of
note, the previous attempts to use IFNγ+ CD3+/CD4+ T cell
lines to induce psoriasis using this experimental approach were
unsuccessful (145). This effect may be due to increased skin-
infiltrating CD8T cells (54), which predominantly generate
IL-17 responses in human psoriasis lesions (146). This result
is consistent with a human study showing that in psoriatic
lesions, CD1d expression was highly enhanced in keratinocytes,
which may activate the NKT cells to produce more IFNγ, thus
contributing to the progression of psoriasis (55) (Figure 2).
However, as previously mentioned, IL-17, TNFα, and GM-
CSF production by NKT cells should also be also examined.
Finally, the frequency of NKT cells expressing inhibitory
receptors rather than activating receptors (CD158b+ and/or
CD94/NKG2A+) was elevated in the circulation of psoriasis
patients and correlated with disease severity (147). To conclude,
even though they are rare in psoriatic lesions, NKT might
contribute to plaque development by IFNγ production, thus
recruiting more immune cells such as IL-17 producing T cells to
exacerbate the disease progression.

CONCLUSION

γδ T, ILC, NK, and NKT cells have all been shown to
be increased in psoriasiform inflammation in humans and
mice. Consistently, evidence suggests a correlation between
disease severity and peripheral blood levels of γδ T, ILCs, and
NKT. In addition, murine models lacking γδ T and/or ILCs
demonstrated their essential role in psoriasiform inflammation
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development suggesting that NK and NKT cells likely play
a more subtle role, a finding largely supported by studies of
plaque psoriasis in humans. One fundamental characteristic of
innate cells is their ability to respond rapidly and produce
comparatively large amounts of inflammatory mediators in
the absence of cognate antigen. Consistent with these traits,
γδ T, ILCs, and NKT are all able to produce cytokines
that have established pathogenicity in psoriasis. These results
suggest that despite the relative rarity of these populations
in psoriatic lesions, they may be more amenable to non-
specific dysregulation with important consequences for disease.
Interestingly, the emerging concept of “innate memory” (148),
as implicated in γδ T cell-driven psoriasiform inflammation,

increases the complexity of these unique leukocytes and raises
new questions about their roles in complex diseases such
as psoriasis.
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The dense innervation of the gastro-intestinal tract with neuronal networks, which are

in close proximity to immune cells, implies a pivotal role of neurons in modulating

immune functions. Neurons have the ability to directly sense danger signals, adapt

immune effector functions and integrate these signals to maintain tissue integrity and

host defense strategies. The expression pattern of a large set of immune cells in the

intestine characterized by receptors for neurotransmitters and neuropeptides suggest

a tight neuronal hierarchical control of immune functions in order to systemically

control immune reactions. Compelling evidence implies that targeting neuro-immune

interactions is a promising strategy to dampen immune responses in autoimmune

diseases such as inflammatory bowel diseases or rheumatoid arthritis. In fact, electric

stimulation of vagal fibers has been shown to be an extremely effective treatment strategy

against overwhelming immune reactions, even after exhausted conventional treatment

strategies. Such findings argue that the nervous system is underestimated coordinator

of immune reactions and underline the importance of neuro-immune crosstalk for body

homeostasis. Herein, we review neuro-immune interactions with a special focus on

disease pathogenesis throughout the gastro-intestinal tract.

Keywords: neuro-immune interactions, chronic inflammatory diseases, autonomous nervous system, enteric

nervous system (ENS), tissue homeostasis

INTRODUCTION

Immune responses at mucosal barriers are of particular interest because the mucosa is the primary
entry port for many pathogens as well as the major site for chronic and sometimes detrimental
immune responses. The interaction between the immune and the nervous system at mucosal
barriers is attractingmore attention from researchers worldwide. Recent advances in understanding
the role of the interplay between both systems have uncovered a pivotal role of the nervous
system in modulating immune responses and vice versa. The notion that the immune system
and the nervous system share many commonalities emerged the idea of strong cross-interactions
(1). Evolutionary similarities, such as signaling via transmitters, information delivery to distant
body regions and migratory behavior, link the nervous with the immune system and together they
coordinate the integration of danger signals to external environmental stimuli (1). The nervous
system per se is a large interface that is strongly involved in maintaining body homeostasis (2).
On the one hand, autonomic neurons sense a broad variety of parameters such as mechanical
distortion, physicochemical attributes, secretions, nutrients and toxins (3). On the other hand,
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the autonomic nervous system controls effector functions such
as intestinal motility, blood flow, and secretory functions (4).
Specifically, the enteric nervous system (ENS) controls and
dictates the motor function of smooth muscle cells throughout
the gastrointestinal tract. Such coordinated muscular activity
results in squirting of ingested food, allows for mixing with
digestive enzymes and eventually commands the aboral transport
of non-digestible products (5). Of note, the intestine is densely
innervated by the autonomous nervous system and populated
by hematopoietic cells, therefore providing opportunities for
neuro-immune interactions (4). Advances in the understanding
of neuro-immune interactions has uncovered the immune-
modulatory properties of neurons and emerged an interesting
treatment approach for inflammatory conditions (6).

Current treatment modalities for autoimmune diseases, such
as inflammatory bowel diseases (IBD), are often insufficient.
These therapies target specific molecules on the surface of
immune cells or, more general, dampen immune responses.
However, this strategy fails to control disease-activity in many
patients (7). There is strong evidence that modulation of the
autonomic nervous system can exert strong anti-inflammatory
effects, even after exhausted therapeutical modalities (8, 9).
Current biologics targeting immune cells for example in IBD
are often insufficiently effective and associated with severe side
effects (10). There is a strong need for novel therapeutics with low
side effects that have immune-modulatory functions rather than
solely dampening effector functions. Thus, treatment strategies
that harness neuro-immune interactions may be a promising
approach because it is known that the nervous system is able
to exert strong anti-inflammatory effects in mice and humans
(9, 11). Herein, we review current knowledge in neuro-immune-
interactions that maintain body homeostasis with a special focus
on disease entities and the translational relevance as a potential
therapeutic target in inflammatory diseases within the intestine.

ANATOMICAL ORGANIZATION OF THE
AUTONOMOUS NERVOUS SYSTEM

The term “gut-brain-axis” illustrates the bidirectional
communication between the central nervous system (CNS)
and the intestine that includes the autonomous nervous and
the neuroendocrine system via the hypothalamic-pituitary-
adrenal-axis. The autonomous nervous system provides an
anatomical cue connecting the CNS with the peripheral tissues
(Figure 1). Generally, the innervation of tissues can be classified
as intrinsic, if the neuron’s cell body lies within the respective
tissue and extrinsic, if the cell body of the neuron is located
outside the tissue (Figure 2) (12). The ENS belongs together
with the sympathetic and parasympathetic nervous system
to the autonomous nervous system. Even though the ENS
receives input from the CNS, it largely functions independently
suggesting a hierarchical structural organization. As a matter of
fact, the majority of neurons in the vagal nerve are afferent and
thus transmit signals from the intestine to the CNS suggesting
that the brain is rather a signal receiver that perceives and

integrates signals arising from the gut in order to quickly
react to potential danger, damage, or threat (13). The pivotal
role of the ENS is highlighted in Hirschsprung’s disease, a
disorder characterized by congenital lack of enteric neurons. The
consequential lack of coordinated propulsive motility pattern in
the colon mediated by the ENS results in high morbidity and
mortality (14). The crucial role of the ENS for body homeostasis
is also illustrated in enteric infections that affect enteric neurons,
such as in Chagas disease, which may cause acquired loss of
enteric neurons resulting in megaviscera with potential life
threatening complications (15).

The ENS is organized in afferent/sensory neurons that
transfer information to the CNS, and efferent/motor neurons
that transmit signals from the CNS to the periphery.
Upon stimulation, somatosensory information is further
processed/integrated by dorsal root ganglia located in proximity
to the spinal cord. The effector function of the nervous system
can be categorized into a somatic and an autonomous arm.
The somatic efferent system originates from the brainstem and
spinal cord and forms motor neurons that innervate skeletal
muscles. The effector function of the somatic neuronal system
can be consciously controlled. The autonomous nervous system
on the other hand is largely independent of CNS control and
can be further subdivided into the sympathetic nervous system,
parasympathetic nervous system and ENS (Figure 1, right
vs. left panel). The sympathetic and parasympathetic nervous
system are anatomically distinct and in many aspects designed
to be biochemical and functional counter players (16). The
conserved function of sympathetic neurons is to elicit a fight-
or-flight reaction, whereas parasympathetic neurons activate a
rest-and-digest reaction. The cell bodies of the preganglionic
neurons from the sympathetic nervous system are localized in
the thoraco-lumbar region, which receive input from the brain
stem, hypothalamus and the formation reticularis. Preganglionic
sympathetic neurons synapse with postganglionic neuron
located in the latero-dorsal thoracolumbar region, which is
also referred to as sympathetic trunk. After signal transmission,
the long postganglionic sympathetic neurons innervate the
gastro-intestinal tract and maintain tissue homeostasis. The cell
bodies of parasympathetic preganglionic neurons on the other
hand are located in the brainstem and the pelvic sacral nerves.
Similar to the sympathetic, the parasympathetic nervous system
transmits signals from the brainstem to the respective organs
via two neurons. However, the postganglionic parasympathetic
neurons are localized in immediate proximity to the target organ.
The parasympathetic nervous system innervates the gastro-
intestinal tract with nerve fibers from the vagal nerve that end
just before the splenic flexure of the transverse colon (also known
as Cannon’s point) and afterwards with fibers originating from
pelvic sacral nerves. Both, the sympathetic and parasympathetic
preganglionic neurons are cholinergic and predominantly
express and secrete the neurotransmitter acetylcholine (Figure 1;
neurotransmitters highlighted in red/green/yellow). The
parasympathetic postganglionic neurons are also cholinergic
whereas the sympathetic postganglionic sympathetic neurons
are catecholaminergic and predominantly express and secrete
norepinephrine as a neurotransmitter. The identification of the
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FIGURE 1 | Anatomical organization of the autonomous nervous system. The autonomous nervous system is organized in three anatomical and biochemical distinct

systems. (1) The sympathetic nervous system has its preganglionic cell bodies in the thoraco-lumbar region (sympathetic trunk). The pregangliotic sympathetic

neurons synapses with the postgangionic neuron in the sympathetic trunk, whereas the long postganglionic neuron (red) innervates the respective part of the

gastro-intestinal tract. (2) The cell bodies of the parasympathetic nervous system are located in the brainstem and the pelvic sacral nerves. The vagal nerve includes

preganglionic fibers from parasympathetic nervous system (green) that innervates the gastro-intestinal tract and ends just before the splenic flexure of the transverse

colon (also known as Cannon’s point). After Cannon’s point, the colon is innervated by the pelvic sacral plexus. The postganglionic neuron is localized in immediate

proximity to the target organ. (3) The enteric nervous system is located within intestinal tissues (Auerbach plexus, Meissner plexus) and has a characteristic

architecture (details see Figure 2).

respective neuronal subsets is therefore based on the expression
of enzymes involved in neurotransmitter synthesis such as
tyrosine hydroxylase for sympathetic catecholaminergic neurons
and choline acetyltransferase (Chat) for parasympathetic
cholinergic neurons (17). Because many different immune
cells express the receptor for norepinephrine, such as α- and
β-adrenoreceptors, the sympathetic nervous system is tightly
linked to immune regulation (18). Potentially as a part of
the fight-and-flight reaction that need to ensure survival of
the organism, the sympathetic nervous system initially has a
pro-inflammatory function (19). In long term, the sympathetic
nervous system rather suppresses inflammation via β-adrenergic

receptors expressed on Neutrophils, Macrophages, innate
lymphoid cells (ILCs) and other immune cells (20–25). The exact
response of catecholamines, however, is also context-dependent
for example on environment and local challenges, co-stimulatory
factors and activation levels of cells (19). The parasympathetic
nervous system acts via secretion of acetylcholine, which
binds to muscarinic and nicotinic acetylcholine receptors. In
general, acetylcholine has a rather anti-inflammatory effect
following activation. This can be observed upon stimulation
of the vagal nerve, which has been termed the “cholinergic
anti-inflammatory reflex” (26). Apart from controlling vegetative
functions, acetylcholine and norepinephrine regulate cytokine
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cellular composition of the ENS including neurons and glial cells. The innervation of the ENS is classified as intrinsic, if the neuron’s cell body lies within the intestinal

wall and extrinsic, if the cell body of the neuron is located outside the intestinal wall.

secretion of hematopoietic cells. Vice versa, neurons express
cytokine receptors to adequately react on inflammatory stimuli
(27). The effect of autonomic innervation of lymphoid organs
has been highlighted in the spleen, which is innervated by the
superior mesenteric ganglion and eventually the splenic nerve
(Figure 1). Especially in the white pulp, T- and B-cell as well as
macrophages are in close contact with neuronal innervation (28).
Functionally, the interaction of the autonomous nervous system
and immune cells control local and systemic inflammation
via the cholinergic anti-inflammatory pathway (26). This anti-
inflammatory pathway originates anatomically from the vagal
nerve that innervates abdominal organs and controls the release
of its predominant neurotransmitter acetylcholine. Activation of
the vagal nerve lowers the systemic inflammatory response via
inhibition of TNF production by myeloid cells (29).

The ENS is organized in plexuses throughout the intestine
composed of neurons whose cell bodies lie within the intestinal
wall (Figure 2). It forms a continuous modality and ranges
from the upper esophagus to the internal anal sphincter. The

ENS is the largest accumulation of neurons outside the CNS
and contains 100 to 500 million neurons and is thus referred
to as the “abdominal brain” (30, 31). The myenteric plexus
(Auerbach plexus) lies between the longitudinal and circular
muscle layer in the intestinal wall whereas the submucosal
plexus (Meissner plexus) forms a network within the submucosal
layer (Figure 2). The ENS forms a dense network that mainly
includes neurons and glial cells and controls peristalsis, blood
flow and maintains water and electrolyte homeostasis. Neurons
in the ENS can be categorized based on their anatomy, function
and neurotransmitter signature. Up to 20 functional classes of
neurons can be identified in the guinea pig. Functionally and
phenotypically, several types of enteric neurons are distinguished
and can be further sub-classified: Excitatory neurons innervating
intestinal muscles, inhibitory neurons innervating intestinal
muscles (to circular and longitudinal muscles, respectively),
secretomotor and vasodilator neurons, secretomotor neurons
without vasodilator activity and neurons to enteroendocrine
cells, sensory intrinsic primary afferent neurons, ascending and
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descending interneurons and intestinofugal neurons (32–34).
Single-cell sequencing experiments revealed nine clusters of
enteric neurons in mice, which can be classified based on
the two neurotransmitters nitric oxide (NO) (Nos1 expression,
cluster 1–3) and acetylcholine (Chat expression, cluster 4–
9) (35). Structurally, Nos1+ neurons are preferentially type
I neurons whereas among Chat+ neurons type II neurons
are overrepresented (34). Additional neurotransmitters include,
gamma-Aminobutyric acid (GABA), epinephrine and dopamine,
but also vasoactive intestinal peptide (VIP), neuromedin U
(NMU), calcitonin gene-related peptide (CGRP), Substance P,
Galanin, Tachykinin, and others (32, 35).With regard to neuronal
regulation of immune responses, the biochemical signature of
the neuron (neurotransmitters, neuropeptides) appear to be
functionally most relevant, since many of the neuropeptides such
as VIP, NMU, CGRP regulate immune responses via different
subsets of immune cells (36–44). The in-depth characterization
of enteric neurons may allow to identify neuronal subsets based
on the expression of neurotransmitters/neuropeptides and to
assign specific inflammatory functions analog to immune cells.
However, how the immune modulatory function of neuronal
factors is linked to their physiological function is still poorly
understood. Such insights would provide an integrated view
on the regulation of intestinal and immune homeostasis. For
example, it is well-established that inhibitory motor neurons
in the ENS are characterized by co-expression of NO and
VIP as main neurotransmitters (34, 35). However, how the
inhibition of motor activity is linked to regulation of immune
cells and what are the respective stimuli for their release remains
poorly understood.

NEURONAL AFFERENT SIGNALS
MODULATE TISSUE IMMUNITY

Sensory neurons play an important role in detecting harmful
environmental challenges, transmit these signals to the CNS
and allow for an adequate reaction against potential pathogenic
threats or tissue damage. Recent evidence suggests that the CNS
receives direct neuronal afferent signals upon the input from
gut enteroendocrine sensory cells. Enteroendocrine cells are gut
epithelial cells that form a tight connection with vagal neurons.
This interaction builds the basis of a neuro-epithelial circuit
to the CNS that senses gut stimuli via glutamate as the main
neurotransmitter (45). However, this finding is controversial
because another study did not observe direct neuronal contact
with epithelial cells (46). Thus, further experiments need to
clarify the exact interaction between sensory neurons and
epithelial cells. Sensory neurons respond to a broad variety
of chemical and physical stimuli that can activate different
ion channels, such as transient receptor potential vanilloid
(TRPV1), transient receptor potential ankyrin 1 (TRPA1) and
transient receptor potential cation channel subfamily M member
8 (TRPM8) (18, 47). An important class of sensory neurons
are nociceptors that are able to detect noxious stimuli such
as heat, chemical and mechanical perturbations (48). The role
of nociceptors in sensing a broad variety of stimuli, and in

turn, regulating immunological functions has been proposed by
several studies (49–54). For example, sensing of type 2 cytokines,
such as Interleukin (IL)-4, IL-5, IL-13 directly activate sensory
neurons and promote chronic itch that is dependent on neuronal
IL-4Rα and JAK1 signaling (53). Interestingly, JAK inhibitors
improved chronic itch in patients, even after failure of state-
of-the-art immunosuppressive therapy and therefore represent
a novel treatment option for atopic dermatitis (53). In addition
to type 2 effector cytokines, the epithelial cell-derived alarmin,
thymic stromal lymphopoetin (TSLP), which is an important
initiator of type 2 immune responses, can activate TRPA1+

sensory neurons in the skin and induce itch behavior in mice
(50). Besides itch, also pain-sensitizations have been proposed to
be induced by bacterial products following direct activation of
nociceptor sensory neurons (49, 55). In fact, Nav1.8+ neurons
sense bacteria-derived N-formylated peptides and α-hemolysin
suggesting that pain can be a direct consequence of neuronal
sensing of bacteria during certain infections in addition to the
reaction to immune activation or inflammation (49). Meseguer
and colleagues found that lipopolysaccharide (LPS) was able
to directly stimulate excitatory actions on TRPA1+ neurons
and thus eliciting nociceptor activity and eventually pain (55).
The finding that bacteria directly induce pain-sensitizations is
intriguing because subclinical, not overt low grade infections
may be causative for different chronic pain syndromes in
humans. Thus, blocking of specific, bacteria-derived neuronal
sensitizations may be a valuable treatment option for such
chronic pain syndromes (56). These studies further unraveled
the potential of pathogen-sensing via the autonomous nervous
system that has classically been attributed to pathogen-receptors
expressed on immune cells. Therefore, the autonomous nervous
system may be an important player in the establishment of
host-microbial mutualism. Another fact that has not yet been
deeply addressed is the expression of classical pattern-recognition
receptors, such as toll-like receptors (TLRs) 2, 4, and 7 on enteric
neurons, which have been well-studied on myeloid and epithelial
cells (57, 58). If we consider the broad variety of existing TLR-
ligands, the ENS may therefore be an unprecedented player
in pathogen recognition. In fact, the ENS has recently been
shown to directly recognize parasite-derived excretory-secretory
products in a Myd88-dependent fashion during Nippostrongylus
brasiliensis (N. brasiliensis) infection in mice underlining the
concept of pathogen-sensing by the ENS (37). Furthermore,
viruses can stimulate different TLRs, thus broadening the
functional role of the ENS in mounting immune reactions
against infections (59, 60). However, there is a fundamental
lack in knowledge of how the ENS can sense these signals and
consequently adapt immune effector functions. While functional
studies investigating the role of TLRs in neurons are scarce,
several reports highlight the importance of TLRs in glial cells.
Deletion of the signaling adapter molecule MyD88 on glial cells,
which transduces signals of many TLRs but also IL-1 cytokine
receptors such as IL-1R, IL-33R, IL-18R, resulted in decreased
ILC activation during DSS colitis and N. brasiliensis infection
and suggests that there is TLR-mediated sensing of pathogens by
the ENS and vice versa leading to immune activation (37, 61).
Especially TLR2 seems to play an important role in controlling
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ENS architecture and consequently intestinal inflammation via
glial cell-derived neurotrophic factor (GDNF) (62). In fact,
enteric neurons from TLR2−/− mice had smaller ganglia, fewer
HuC/D+ and nNOS+ neurons as wells as shorter betaIII-
tubulin axonal networks, whereas supplementation with GDNF
corrected the observed phenotype (62). Nociceptors on the other
hand release neuropeptides, such as CGRP, substance P, and VIP,
which can adapt the local immune function depending on the
milieu and the local challenge. That neurons have the ability
to directly sense and integrate signals may also be represented
by the fact that the microbial colonization has an important
impact on neurophysiology and behavior (63, 64). In fact, germ-
free mice, which are devoid of any microbial exposure, develop
relevant alterations in behavior and the microbiota seem to
be relevant to different neurodegenerative diseases (65, 66). A
detailed discussion of the gut-brain axis is, however, beyond the
scope of this review and the reader is kindly referred to excellent
articles (64, 67).

THE ENTERIC NERVOUS SYSTEM
INTEGRATES SIGNALS FROM
COMMENSAL MICROBIOTA

The microbiota inhabit all mammalian body surfaces and
play a pivotal role in the education of the host immune
system (68). Recent evidence now suggests that the presence of
commensal microbiota also shape the neuronal gene programs
and eventually the extrinsic sympathetic activity (46, 69).
Muller and colleagues proposed that the commensal microbiota
shape intrinsic enteric-associated neuronal programs (EAN)
region-dependent along the intestine, whereas intrinsic EAN
are functionally adapted to the specific intestinal region
and its associated microbial challenge. Interestingly, germ-
free mice exhibited hyperactivation of sympathetic neurons
whereas the microbial product, butyrate, suppressed sympathetic
hyperactivation (46). These results reveal that a metabolite-
mediated gut-brain circuit adapt autonomic nervous functions
dependent on the local milieu. Because the sympathetic nervous
system controls different autonomic nervous functions (blood
pressure, heart rate and other) one may speculate that certain
human diseases may be caused by alterations in the intestinal
microbial composition. Furthermore, the aryl hydrocarbon
receptor (AhR) has been shown to be expressed by virtually
all myenteric neurons in the colon and the distal small
intestine in specific-pathogen-free (SPF)-colonized mice whereas
its expression was absent in the duodenum and jejunum of SPF-
colonized mice or in the colon of germ-free mice suggesting
that the microbial colonization dictates AhR expression. Enteric
neuron-specific deletion of AhR resulted in an increase in gut-
transit time whereas supplementation of the Ahr-ligand, I3C,
restored intestinal transit time suggesting that neuron-specific
and ligand-dependent activation of AhR controls intestinal
motility (69). Taken together, these studies reveal a link between
the intestinal microbiota and enteric neurons suggesting that
enteric neurons constantly sense the commensal microbiota in
order to maintaining body homeostasis.

CELLULAR MECHANISTICS OF
NEURO-IMMUNE INTERACTIONS

Innate Lymphoid Cells (ILCs)
ILCs enclose diverse populations of innate immune cells,
which are derived from the common lymphoid precursors,
but which lack rearranged antigen-specific receptors and thus
develop independently of Rag recombination (70, 71). Based
on developmental and functional aspects, two different main
groups of ILCs are distinguished, cytotoxic ILCs [conventional
natural killer (NK) cells] and helper-like ILCs (ILC 1, 2,
and 3) (72, 73). Conventional natural killer cells (NK cells)
are known since the 1970s because they are well-represented
in the blood and secondary lymphoid organs (74, 75). NK
cells are developmentally dependent on the transcription factor
Eomesodermin and mediate immunity to intracellular pathogens
and tumors. The immunology of helper-like ILCs was mainly
studied in the last 10 years (76) with the exception of lymphoid
organ development mediated by lymphoid tissue inducer cells
(LTi cells) (77). The reason for the late discovery has been
discussed (78) but one reason might be the enrichment of
helper-like ILCs at barrier surfaces, which were less in research
focus at that time. Helper-like ILCs are characterized based on
the expression of and developmentally dependency on lineage-
specifying transcription factors and the effector cytokine profile:
(i) ILC1s require T-bet and secrete IFN-γ and TNF and are
involved in control of mainly intracellular pathogens, (ii) ILC2s
require GATA-3 and BCL11b and secrete IL-5, IL-9, and IL-13 to
combat helminth infections or to drive allergic reactions, and (iii)
ILC3s are RORγt dependent IL-22 secreting cells, whichmaintain
barrier integrity and protect from intestinal infections. ILC3s can
be subdivided in CCR6+ LTi-like producing IL-17A and CCR6−

ILC3, which co-express T-bet and IFN-γ and have the potential to
differentiate into ILC1-like cells. For a more detailed overview on
ILCs biology the reader is kindly referred to more comprehensive
reviews on this is topic (76, 79, 80).

ILCs are mainly located at barrier surfaces and act as
a first line of defense against potentially invading microbes
and are establishing host-microbial interactions. In addition to
host-defense mechanisms, ILCs have also been implicated to
contribute to tissue repair and maintenance of barrier integrity
and organ homeostasis (81–84). In order to fulfill this function,
ILCs need to be rapidly activated. However, in contrast to
myeloid cells, the expression of pattern recognition receptors is
very limited in ILCs suggesting that they do not sense danger
signals directly by expression of pattern recognition receptors.
Instead, they are activated indirectly by cytokines secreted by
other cells in tissues, e.g. by alarmins and other cytokines such
as IL-12 and IL-15 for ILC1s, IL-25, IL-33, and TSLP for ILC2s,
IL-1β, IL-23, and TL1A for ILC3s (79, 85, 86).

Since ILCs are present in large numbers in the intestine, which
is also densely innervated by the ENS and the other components
of the autonomic nervous system, neuronal factors emerged
as potential regulators of immune responses and sensors for
danger signals. Indeed, recent research has provided evidence
that ILCs integrate neuronal signals and express receptors for
neuropeptides and neurotransmitters (Figure 3) (23, 36–42, 44,
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87, 88). ILC responses are regulated by the ENS as well as the
sympathetic and parasympathetic nervous system, glial cells and
by endocrine loops (89).

The sympathetic arm and the respective neurotransmitter
norepinephrine has been shown to inhibit ILC2s and
consequently decrease type 2 responses via β2-adrenergic
receptors (Figure 3A). Absence of the β2-adrenergic receptor on
ILC2s in a mouse model of N. brasiliensis magnified the type 2
immune reaction and resulted in improved worm clearance (23).
Similar to the cholinergic anti-inflammatory pathway, regulation
of acetylcholine on ILC2s has been shown to bind on alpha7-
nicotinic acetylcholine receptors (α7nAChR) (Figure 3A).
Administration of a specific agonist for α7nAChR on ILC2s
reduced ILC2 effector function and eventually dampened allergic
lung inflammation (88). In contrast, vagotomy and lack of
acetylcholine results in a delayed resolution of Escherichia
coli infection via peritoneal ILC3 (90). Mechanistically,
abrogation of vagal neuropeptides functionally decreased
secretion of the immunoresolvent PCTR1 by peritoneal ILC3
whereas supplementation of either PCTR1 or ILC3 restored host
responses against E.coli. These results suggest that the cholinergic
modulation has a tissue protective role and shapes the ILC3
compartment to regulate tissue homeostasis (91). Furthermore,
signals from the vagal nerve regulate the formation of tertiary
lymphoid tissue during chronic inflammation (92). However,
how much LTi cells are involved as receivers of neuronal signals
in this process requires further investigation.

ILC3 are critical in host-defense at mucosal sites and
regulators in inflammation. Recent data show that adult
CCR6+ ILC3 express the neurotrophic receptor RET and ILC3-
autonomous RET ablation decreased IL-22 production and
increased the susceptibility to bowel inflammation and infection

suggesting a modulatory interaction of the nervous system
with ILC3 (61). Microbial sensing of the microenvironment
is mediated by glial cells adjacent to cryptopatches, in
which the CCR6+ ILC3s are located. Upon sensing of
microbial-associated molecular patterns, glial cells released the
RET-ligand glial cell-derived neurotrophic factor (GDNF) to
stimulate IL-22 production of CCR6+ ILC3s in the cryptopatch.
(61). Within intestinal tissues, ILCs and nerves show a
close co-localization, which presumably supports neuronal
regulation of ILC responses. Enteric neurons express the
neuropeptides NMU, VIP, and CGRP whereas the receptors
for these neuropeptides are expressed on ILCs (Figure 3B)
(37–44).

NMU is a highly conserved neuropeptide, which is generated
by proteolytic cleavage of a pro-protein by unknown proteases
into bioactive small peptide fragments (93). NMU is mainly
expressed in the thalamus in the CNS and enteric neurons
within the gastrointestinal tract. NMU binds to two large G-
protein coupled receptors, coined NMUR1 and NMUR2. While
NMUR2 is mainly expressed by neurons, NMUR1 was found to
be selectively expressed by ILC2s (Figure 3B) (37–39, 90, 93).
Furthermore, NMU was a very strong stimulator of ILC2s and
triggered type 2 immune responses promoting anti-helminth
immunity in the intestine or in the context of lung inflammation
via NMUR1 (37, 38). Interestingly, NMU was shown to be
upregulated during helminth infection and enteric neurons
were shown to directly sense worm-derived excretory/secretory
products in a Myd88-dependent manner and react to that stimuli
with the production of NMU as an immune effector molecule.
Altogether these data support a model where cholinergic neurons
regulate type 2 inflammation via production of NMU and
engagement of NMUR1 on ILC2s.
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While NMU from cholinergic neurons stimulate ILC2s,
the neuropeptide CGRP is also secreted by neurons with a
cholinergic signature but in contrast inhibits ILC2 activation
(Figure 3B). Interestingly, ILC2 also produce CGRP themselves
in addition to being equipped with the receptors for CGRP
CALCRL/Ramp1. Therefore, CGRP might act as a negative
feedback loop to control ILC2 activation. CALCRL/Ramp1
engagement by CGRP binding triggers a signaling cascade
in ILC2s, which signals via Gαs proteins and regulate
intracellular cAMP levels. ILC2 activation is suppressed by
CGRP and genetic deletion of components of the CGRP—
CALCRL pathway resulted in elevated ILC2s responsiveness
and type 2 inflammation in the context of helminth infection,
lung inflammation and food allergy (40–43). Other findings
uncovered the regulation of ILC2s by neuroendocrine cells (94)
and tuft cells that share many commonalities with neurons
(Chat-expression, sensing, signal transmission). Pulmonary
neuroendocrine cells on one hand secrete CGRP and GABA and
reside in close proximity to ILC2 in the lung. In models of allergic
asthma, neuroendocrine cells are pivotal players in regulating
ILC2s and consequently mucosal type 2 responses (94). Tuft cells
on the other hand are chemosensory cells in the intestine and
the major source of IL-25 and can activate ILC2 to mount type
2 responses (95–97). The commonalities of these cell types with
the nervous system however requires further investigation.

While Nmur1 was reported to be selectively expressed by
ILC2, Vipr2, one receptor for VIP, is expressed on both ILC2 and
ILC3 (Figure 3B). VIP, known as the circadian synchronizer, has
been shown to stimulate ILC2 via Vipr2 resulting in the release
of IL-5. (87). Nav1.8+ nociceptors in the lung secrete VIP upon
stimulation and the resulting induction of IL-5 has been linked to
eosinophil accumulation and consequently worsened ovalbumin-
induced lung inflammation (87). The ILC2-mediated production
of IL-5 further increased the nociceptor stimulation in the sense
of a backward loop (36). VIP can also adapt ILC3 function in the
intestine dependent on the day and oscillating between active and
resting phases (41). ILC3 expressed high levels of Vipr2 whereas
VIP induced the IL-22 production that has been shown to be
an important player in maintaining bowel integrity (98). In fact,
genetic deletion of the VIP-Vipr2 pathway by using Vipr2−/−

mice resulted in an increased susceptibility to DSS-colitis (41). A
study by Talbot and colleagues found that CCR6+ ILC3s but not
CCR6− ILC3s, in cryptopatches expressed Vipr2 and additional
molecules related to neuro-immune interaction. CCR6+ ILC3s
are an important source of IL-22, which regulates epithelial
function including production of antimicrobial peptides and
lipid absorption and thereby adapting the immune control
to nutrient uptake (44). While the VIP–VIPR2 pathway links
antimicrobial immunity, circadian rhythm and food adsorption,
whether ILC3 are stimulated or inhibited by VIP is controversial.
Seillet and colleagues measured that VIP induces ILC3s and IL-
22 production whereas Talbot et al. found inhibition of ILC3s and
IL-22 by VIP (41, 44). Therefore, further experiments need to be
conducted to investigate context-dependent effects of VIP.

The hypothalamic-pituitary-adrenal axis (HPA) regulates the
immune system via control of glucocorticoid secretion, which is
key negative regulator of hematopoetic cells. Although secreted

by the adrenal gland, the production of glucocorticoids is
under control of the CNS and, therefore, linked to neuronal
regulation of immune responses. Quatrini and colleagus
recently showed that the regulation of natural killer (NK) cell
function is dependent on the glucocorticoid receptor (GR) for
resistance to sepsis and for immunopathology in the context of
murine cytomegaly virus infection. Mechanistically, endogenous
glucocorticoids induced the expression of PD-1 on NK cells and
limited the production of IFN-G eventually preventing mortality
in infected mice (99, 100). These results highlight the importance
of further studies that investigate the functional role of the HPA
axis in tuning or downregulating immune functions.

In summary, neuronal regulation of ILCs via multiple
neuropeptides and neurotransmitters and the corresponding
receptors expressed by ILCs, emerged as an important signaling
hub in tissues for integration of body homeostasis and immunity
at barrier surfaces.

Dendritic Cells
Dendritic cells (DC) are classical antigen-presenting cells that
express pattern recognition receptor (PRRs) to sense the
environment for the presence of danger signals and if necessary
initiate an immune response against the pathogenic encounter.
In addition to PRRs, DCs express adrenergic receptors and
receptors for neuropeptides suggesting a modulative effect
of the autonomous nervous system in mounting immune
responses (22). In fact, β2-adrenergic stimulation of DCs
results in skewing the T cell response toward Th2 and Th17
responses at the costs of Th1 promotion (Figure 3A) (22).
However, conclusions drawn from these findings are limited
because experiments, which demonstrate the importance of DC-
neuron interaction via β2-adrenergic receptors in vivo are still
missing (25).

The interaction of neurons and DCs has recently been
highlighted in the skin in the context of Candida albicans (C.
albicans) infections and Psoriasis-like inflammation (51, 52).
Nociceptive signals by C. albicans in the skin can directly
induce the secretion of CGRP. Such stimuli lead to the
production of IL-23 by DCs further resulting in activation of
GδT cells and secretion of IL-17A (Figure 3B). Notably, the
absence of sensory neurons increased the susceptibility to C.
albicans infections suggesting that neurons sense pathogens
in order to control infections in close interaction with DCs
(52). Another study showed that DCs are in close contact
to nociceptive neurons and express the ion channels TRPV1
and Nav1.8 in the skin. Ablation of nociceptors led to
failure of IL-23 production by DCs and consequently did
not induce inflammatory cytokine production by GδT cells.
Interruption of this neuro-immune cue failed to recruit
inflammatory cells upon infection suggesting that TRPV1+

Nav1.8+ nociceptors regulate the IL-23/IL-17 pathway and
control cutaneous immune responses (51). These experiments
suggest a clear link between the neuro-DC interaction and
skin disease pathogenesis. However, the expression of a broad
variety of receptors for neuropeptides/neurotransmitters on
DCs remains a blackbox and studies need to delineate the
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role of the DC-neuron interaction in steady-state and other
disease models.

Neutrophils
Neutrophils express and release a large variety of cytokines to
regulate inflammatory reactions, and to recruit and activate other
cells of the immune system. In addition, they have the ability for
engulfment and intracellular killing and thus are players at the
front-line of defense against invading pathogens (101). Because
these cells act at the fore-front of tissue damage, the neuronal
signalingmay be obvious because of the urgency of infections and
the need for cell recruitment.

In the context of Streptococcus pyogenes infection in the
skin, bacteria can directly activate nociceptive neurons via
secretion of streptolysin S. Activation of nociceptors resulted
in the release of the neuropeptide CGRP that inhibited the
recruitment of neutrophils and phagocytic killing that can
be seen as a hide-me signal of bacteria (Figure 3B) (56).
Interestingly, Botulinum neurotoxin A and CGRP antagonists
reversed the suppressed immune-reaction suggesting that this
may be a valuable strategy to overcome the pathogenicity
of highly invasive bacterial infections. In line with this
data and in a model of Staphylococcus aureus pneumonia,
TRPV1+ nociceptors suppressed the recruitment of neutrophils
and altered GδT cells whereas this inflammatory suppression
worsened survival, cytokine production and bacterial clearance
(54). Another study that highlights the role of neuronal-
neutrophil crosstalk has shown that noradrenalin suppressed
chemotaxis and phagocytosis in a stroke model (Figure 3A) (24).

Taken together, there is good evidence that neuronal sensing
of microbes shapes immune responses at barrier surfaces such
as the skin and the lung. However, there is a fundamental lack
of knowledge on the complex interaction of neurotransmitters
and neuropeptides at other barrier surfaces such as the intestine.
For example, because the receptor for CGRP CALCRL/Ramp1
is relatively broadly expressed on immune cells, future studies
need to address if the adaptation of neutrophil function is a rather
direct effect mounted by CGRP itself or an indirect effect through
functional changes of other cells. A direct effect of neurons on
neutrophil function would be intriguing because it could explain
rapid cell recruitment during inflammation. However, further
studies need to address the expression and function of specific
neuropeptide or neurotransmitter receptors on neutrophils.

Macrophages
Macrophages are specialized phagocytes that are located in
most body tissues. As a part of the innate immune system,
macrophages help keeping the organism clean and restore tissue
damage. Thus, they process dead cells, debris, foreign bodies,
and initiate inflammatory processes via antigen-presentation.
The expression pattern of receptors for neuropeptides and
neurotransmitters on macrophages suggests that neurons and
macrophages are closely linked in order to regulate tissue
homeostasis and to fight infections.

The pivotal role of macrophages in integrating cholinergic
signals resulting in a profound anti-inflammatory effect has
been shown by the group of Tracey, which has been termed

the “cholinergic anti-inflammatory pathway” (Figure 3A)
(102). The initial observation that vagus nerve stimulation
prevented the development of septic shock in mice implies
neuronal control of macrophage function in acute disease
(11). Later on, the group of Tracey discovered that vagal
signals are transmitted via acetylcholine that binds α7 nicotinic
acetylcholine receptors (α7nAChR) expressed on macrophages
and results in dampening of TNF production (102). If we
consider the speed of neuronal conductance, central stimuli are
capable of instantaneous cell recruitment and modulatory signals
to the site of inflammation (8). Another example of cholinergic
vagal control of inflammation via macrophages has been shown
in a model of postoperative ileus. The α7nAChR was expressed
on muscularis macrophages and controlled postoperative ileus
formation whereas stimulation of the vagal nerve attenuated
surgery-induced intestinal inflammation (103). The interplay
and the tight connection of macrophages located within the
longitudinal and circular muscle layer in close contact with the
myenteric plexus (Figure 2) not only controls postoperative
ileus formation, but is also involved in the pathogenesis of
diabetic-induced gastroparesis (104). There are clear parallels
between the autonomous nervous-macrophage interaction in
the periphery and the interaction of tissue-resident macrophages
within the CNS (105). This close proximity of biologic functions
in different tissues has been suggested because neuronal signals
in the CNS keep tissue-resident macrophages at a quiescent state
and macrophages in the CNS express high levels of CX3CR1,
a pattern that has been postulated to be unique for tissue
resident-macrophages in the CNS, the microglia (105).

In the intestine, the growth factor for macrophage
development, colony stimulatory factor 1 (CSF1), is secreted
by the nervous system and controls gastrointestinal motility.
Reciprocally, macrophages sense the microbiota and change the
pattern of smooth muscle contractions via bone morphogenic
protein 2 (BMP2) binding on the BMP receptor expressed
on enteric neurons (Figure 3B) (106). These results suggest a
reciprocal tight regulation of gastrointestinal motility via the
interaction of muscularis macrophages and enteric neurons that
in turn depend on signal input from the intestinal microbiota.

The anatomic location of intestinal macrophages is highly
specialized dependent on the proximity to the gut-lumen.
In fact, lamina propria macrophages represent a rather pro-
inflammatory phenotype in comparison to macrophages located
in the muscularis that represent a rather tissue-protective
phenotype. Extrinsic sympathetic neurons mediate tissue-
protective effects via activation of β2-adrenergic receptors
expressed on macrophages in the muscular sheet (Figure 3A)
(21). Furthermore, intestinal muscularis macrophages
protect neurons from cell-death via β2-adrenergic mediated
upregulation of neuroprotective programs (107). Taken together,
macrophage function is highly dependent on the signal input
from the autonomous nervous system and vice versa to rapidly
react to infectious stimuli and tissue damage.

Mast Cells
Urticaria, a common psycho-dermatological disorder, is the
result of vascular dilation, edema, and the immediate release of
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histamine by mast cells in the skin (108). It has been suggested
that psychological stress is strongly involved in the pathogenesis
of urticaria underlining the role of neuronal triggers to effector
cells such as mast cells (109). Throughout the gastrointestinal
tract, mast cells are located in close proximity to sensory nerve
fibers (110). Mast cells contain granules rich in histamine and
heparin, which can be immediately released and trigger rapid
responses such as allergic reactions or anaphylaxis.

Mast cells have also been implicated in atopic dermatitis,
where dermal lesions are hyper-innervated with a high
abundance of substance P fibers and an increased respective
receptor expression on mast cells (111). Nerve-derived substance
P induced the rapid release of histamine, TNF, leukotriene B4,
and vascular endothelial growth factor by mast cells suggesting
a close interaction of neurons and mast cells in allergic diseases
(18, 112, 113). This neuronal-mast cell connection has been
underlined in the context of allergic skin disease models in
mice. House dust mites directly activated TRPV1+ nociceptive
sensory neurons driving the development of allergic skin
inflammation via the secretion of substance P that eventually
resulted in degranulation of mast cells (113). This data provides
an important signaling pathway that may be the mechanistical
basis for a broad variety of allergic diseases. Psychological stress
additionally triggers the release of neuropeptides (Substance P,
Corticotropin Releasing Hormone) that act on mast cells and
promote the release of mast cell mediators (114). Interestingly,
mast cells but not eosinophils or T-cells were associated with
asthmatic diseases in patients underlining the importance of
these cells for allergy development in humans (115).

T- and B-Cells
Autonomous nervous fibers innervate lymphoid organs such
as mesenteric lymph nodes and Peyer’s patches (116, 117).
There is evidence that lymph nodes may receive neural
afferent innervation in addition to the sympathetic efferent
innervation that may suggest neuronal sensing of imminent
immunologic threats whereas such coordinated actions direct
the immune system to sites of injury and infection (118,
119). The close proximity to adaptive immune cells suggests
that nerve fibers participate in neuro-immune cross-talk and
modulate signals from the adaptive immune system. Sympathetic
neurotransmitters such as epinephrine and norepinephrine
predominantly bind β2-adrenergic receptors that are highly
expressed on B cells and to a lower level in CD4+ T cells
(Figure 3A) (20). Activation of β2-adrenergic receptors in
general increase intracellular cAMP that activates protein kinase
A. Such activation of the B-cell compartment via β2-adrenergic
receptors seems to be needed for maintenance of an optimal
antibody response suggesting that the autonomous nervous
system controls and shapes the magnitude of immune responses
(120). In line with the effects observed in B-cells, T cells and the
release of their effector cytokines are controlled via sympathetic
activity whereas sympathetic innervation suppresses Th1 and
promotes Th2, Th17 and Treg responses (20, 25). Another
finding that supports the notion that the autonomous nervous
system controls adaptive immune functions and recruits cells
to effector sites is that activation of β2-adrenergic receptors

enhanced retention-promoting signals and inhibited lymphocyte
egress from lymph nodes (121). Such migratory effects are
dependent on circadian regulation in the T-cell compartment
suggesting that the magnitude of adaptive immune responses
can depend on neuronal-regulated signaling input from the
CNS (122). It should be noted that the β2-adrenergic receptor
was reported to control ILC2 and macrophage activation. Thus,
further experiments need to clarify if the modulation of T-cell
function is rather a consequence of the release of cytokines
by other cells or delineate the exact downstream effects upon
β2-adrenergic receptor activation in steady-state and disease.

NEURO-IMMUNE INTERACTIONS IN
DISEASE

Inflammatory Bowel Disease
Psychologic disorders show a lifetime prevalence of up to 30%
in the general population and major depression may become
the most important disease in Western societies (123, 124). In
line with the constant increase of psychologic disorders, the
incidence of IBD increase as well emerging an unprecedented link
between a potential nervous dysregulation and overwhelming
immune activation (125). In fact, many patients with IBD have
alexithymia that is characterized by the impossibility to verbalize
emotions. Such endogenous stress may interfere with body
homeostasis and lead to a distorted integrity of the neuro-
immune axis that may be causative or at least worsen the
clinical course of IBD (126). In mouse models, catecholamines
acting on α2-adrenoreceptors led to pro-inflammatory cytokine
production worsening dextran sodium sulfate (DSS) colitis.
Paradoxically, sympathetic denervation induced clinical signs
of colitis (Figure 4A) (127, 128). In vitro experiments have
shown that norepinephrine blocks the secretion of a variety
of proinflammatory cytokines and mice lacking the beta-2-
adrenergic receptor were more susceptible to DSS-colitis (129).
These studies reveal that sympathetic innervation can have
pro- and anti-inflammatory effects and studies need to further
clarify its role in IBD. In fact, a retrospective study in humans
by using pharmacological inhibition of β-adrenergic receptors
showed higher risk for IBD relapse suggesting that solely
blocking the pro-inflammatory effect of sympathetic activation
may have rather pro-inflammatory effects in long term (130). The
parasympathetic tone via the vagal nerve also impedes with IBD.
Studies in vagotomised mice showed increased susceptibility
to develop colitis upon DSS treatment similar to the anti-
inflammatory reflex observed in models of septic shock (131,
132). The absence of the vagal tone was associated with an
increase in pro-inflammatory cytokines such as IL-1β, IL-
6, and TNF (Figure 4A). These cholinergic signals seem to
be transmitted via α7nAChR (131). Apart from the α7nACh
receptor, also α5nAChR knockout mice had more severe colitis
suggesting that vagal innervation acts in different acetylcholine
receptor subunits and modulates immune functions (133). As
mentioned above, the psychological distress profile of IBD
patients focused the interest on the finding that mucosal levels
of acetylcholine in a murine model of depression were associated
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with more severe colitis in response to DSS suggesting that
chronic modulation of the vagal tone enhances the susceptibility
to IBD (132). Interestingly, adoptive transfer of macrophages
from depressive mice induced inflammatory markers and
increased the severity of DSS colitis. These data identified the
pivotal role of macrophage in linking stress and susceptibility
to intestinal inflammation whereas this effect was reversible
with antidepressants (Figures 4A,B) (134). Apart from the
importance ofmacrophages as effector cells of the neuro-immune
axis, transfer of CD4+ T cells isolated from vagotomised animals
resulted in an increased susceptibility to DSS colitis suggesting
that more players are involved in cholinergic signal transmission
underlining the need to study this interaction in more detail
(135). Taken together, the sympathetic and parasympathetic
nervous system play important roles in mounting pro- and anti-
inflammatory immune reactions in the context of IBD. As a
potential therapeutic target in a preclinical model of colitis, the
α7nAChR agonist anabaseine, showed considerable effect and

the mice developed less weight loss and less severe colitis in
a DSS colitis model (Figure 4B) (136). Other reports showed
opposite results. Although α7nAChR agonists reduced NF-κB
transcriptional activity, IL-6 and TNF release, α7nAChR agonists
worsened the effects of DSS-induced colitis or were ineffective
in a model of TNBS-induced colitis (137). It is in addition of
importance to emphasize that anti-inflammatory effects may
lead to an increased susceptibility to infectious diseases (8).
Following bacterial peritonitis, virtually all α7nAChR knock-out
mice cleared the infection from their peritoneal cavities and
had sterile blood cultures mediated via neutrophil recruitment,
whereas wild type mice had high bacterial loads at the primary
site of infection and were bacteremic (138). These data underline
the potential importance of the α7nAChR in host defense. In
line with this observations, acetyl-cholinergic agonists, such
as nicotine, worsened bacterial clearance and survival upon
abdominal sepsis (139, 140). Thus, translation into the clinical
setting has to be obtained with caution because solely dampening
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effector immune function and consequently immune suppression
may lead to serious infectious complications. Another interesting
approach for the treatment of IBD is the direct electric
stimulation of the vagal nerve via an implantable device targeting
the anti-inflammatory pathway (Figure 4B). First results have
shown improvement in disease activity and endoscopic indices
in patients following electric stimulation of the vagal-nerve (141).
These results are promising because treatment failure of available
biologics is not uncommon and effective treatment is associated
with considerable side-effects and mortality in the long term
(142). A deeper understanding is needed andmay help to uncover
novel therapeutic measures for treating IBD. Of note, depression
and other psychological disorders may enhance the disease
severity and either antidepressive medication or psychological
co-therapy may adjust immune functions and lower the severity
of the clinical course.

Furthermore, it is of importance to note that enteric glia
cells, specialized macrophages in close proximity to neurons,
outnumber neurons by 4- to 10-fold (Figure 2) (143). The pivotal
role of glial cells in neuro-immune interactions was observed
after ablation of enteric glia cells that led to fulminant jejuno-
ileitis in mice (144). Enteric glial cells express a broad pattern
of neurotransmitters and thereby protect neurons and regulate
their activity (145). Enteric glial cells show abnormal behavior in
IBD in humans but their role in its pathophysiology has to be
further clarified.

Ileus
Postoperative Ileus is a serious concern in the surgical
setting because patients fail to rapidly recover from an
operative intervention and remain with symptoms such as
nausea, vomiting, and constipation. Following a surgical
procedure, postoperative ileus formation is characterized by an
over-activation of inhibitory neuronal pathways that triggers
inflammation beyond the distant untouched areas and leads to
generalized impairment of gastrointestinal motility (146). In fact,
low-grade inflammation due to macrophages residing in the
intestinal muscularis is key in the induction of postoperative
and endotoxin-induced ileus formation (147, 148). Activation
of these macrophages mediated the influx of leucocytes at 3–4
days after surgery whereas the inflammatory response impaired
normal propulsive neuromuscular function and consequently
digestion (146). There is an urgent need to uncover novel
pharmacologic targets in the early event of microscopic
inflammation that may help to reduce ileus formation. Studies
show that ileus onset can be reduced by modulating the
cholinergic anti-inflammatory tone (149–151). Interestingly,
vagal stimulation reduced surgery-induced inflammation and
ameliorated postoperative ileus formation in a STAT3 dependent
manner mediated by intestinal macrophages (149). Supportive
literature showed that modulation of cholinergic neurons
via α7nAChR agonists improved gastrointestinal transit time
through inhibition of low-grade inflammation on the basis of
macrophages (150, 151).

Sepsis
The cholinergic anti-inflammatory function via dampening of
TNF synthesis has been shown in LPS-induced endotoxemia,

whereas stimulation of the vagus nerve protected from
the development of shock (11) (Figure 4B). Interestingly,
splenectomy abolished the anti-inflammatory effect of the
vagal nerve suggesting a pivotal role of the spleen in
inflammatory reactions. This observation may explain why
the organism is prone to the often fatal overwhelming post-
splenectomy syndrome (OPSI) that may serve as an alternative
hypothesis to the current thinking that OPSI is a result of
impaired clearance of encapsulated bacteria (152). Advances
in the mechanistic understanding of this observed phenotype
exposed that acetylcholine signals via the α7 subunit of the
acetylcholine receptor expressed on macrophages that controlled
systemic TNF release (153). Since nerve fibers in the spleen
lack the enzymatic machinery for acetylcholine production,
systemic inflammation recruits vagus-primed T cells from
the intestine to the spleen, which produce acetylcholine and
mount the innate immune response (154). Other data suggest
that the anti-inflammatory properties of cholinergic neurons
also attenuate inflammation and injury during experimental
pancreatitis and hepatitis (155, 156). In a mouse model of
pancreatitis, pretreatment with the nicotinic receptor antagonist
mecamylamine resulted in more severe pancreatitis increasing
edema, plasma hydrolases, and IL-6 levels. Conversely pre-
treatment with the selective α7nAChR agonist anabaseine
strongly decreased the severity of pancreatitis suggesting that
there may be a therapeutic role of the “cholinergic anti-
inflammatory pathway” in the treatment of acute pancreatitis in
order to attenuate inflammation and injury (155). As a matter of
fact that cholinergic neurons have a systemic anti-inflammatory
effect, vagotomy increased mortality in mice upon Fas-induced
hepatitis whereas pretreatment with nicotine or α7nAChR
agonist, inhibited this detrimental effect of vagotomy and rescued
the mice (156).

Rheumatoid Arthritis
Rheumatoid arthritis is the most common inflammatory arthritis
and affects up to 1.25% of the entire population (157).
The pathogenesis is multidimensional and includes a genetic
predisposition in addition to environmental challenges leading
to synovial inflammation and eventually resulting in bone
erosions, cartilage damage and eventually joint deformities and
disabilities (158). Recent advances in the understanding of
autoimmune diseases such as rheumatoid arthritis uncovered
a pivotal role of the autonomous nervous system in disease
pathogenesis (159). It has been shown that treatment with
α7nAChR agonist improved arthritis scores in animal models of
rheumatoid arthritis whereas α7nAChR knock-out mice showed
worse disease outcome suggesting its therapeutic potential
(Figure 4B) (160, 161). In fact, work provided by Koopmann and
colleagues showed that electric stimulation via an implantable
vagus nerve-stimulating device inhibits the production of TNF,
IL-1β, and IL-6 and improved clinical scores of rheumatoid
arthritis in patients (9). Together with similar data obtained in
asthmatic patients, this study provides a proof-of-concept that
treatment via activation of the cholinergic anti-inflammatory
pathway is effective and may translate into the regular
clinical setting.
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SUMMARY AND FUTURE PERSPECTIVE

Preclinical studies targeting neuro-immune interactions
upon stimulation of the vagus nerve, application of
acetylcholine agonist, and β2 adrenoreceptor agonists
have emerged the potential successful treatment in
inflammatory diseases (155, 162, 163). Of note, the site
specific control of immune functions by the nervous system
via neurotransmitters/neuropeptides suggest that the nervous
system can exert a rapid and local control of immune cells.
Unlike the systemic effects of cytokines, neuronal regulation of
immune responses allows for the selective and spatiotemporal
control of immune functions without affecting the activity of
distant cells. Based on this assumption, targeting neuro-immne
interactions might allow for specific and targeted therapy at a
cellular and compartmental level. The therapeutic potential of
neuronal modulation of inflammation in humans was already
demonstrated by stimulating the vagal nerve with electronic
devices that has been successfully used for the treatment of
rheumatoid arthritis and asthma (9, 164). Of note, some patients
did no longer respond to a conventional anti-inflammatory
treatment but developed disease improvement upon vagal
nerve stimulation (9). Another pilot study showed the efficacy
of vagal nerve stimulation in patients with Crohn’s disease
whereas its stimulation improved inflammatory parameters
and clinical symptoms (141). This work provides a rationale
for the potential of modulating neuro-immune interactions
and shows promising results reflecting that vagal-nerve
stimulation may be an alternative to pharmacological therapies.
This observation is further supported by a clinical study
that has shown asthma improvement during non-invasive
vagal nerve stimulation (164). Current study enrolments of
patients with a broad variety of diseases highlight the particular
interest in neuro-immune interactions [Post-surgery Systemic

Inflammation and Neuro-immune Interactions (POSINI)
NCT03055325, Vagal Nerve Stimulation for Gastroparesis
(VNS) NCT0312 NCT03908073, Transcutaneous VNS
to Treat Pediatric IBD (STIMIBD) NCT03863704]. The
increase of chronic inflammatory diseases in Western societies
with a significant amount of non-responders to current
treatment strategies underlines the need to uncover novel
strategies/medications. Therefore, it is crucial to improve our
understanding of how neurons interact with immune cells.
Recent technical advances, such as the RiboTag system, imaging
tools, genetic mouse models built the rationale to mechanistically
understand neuronal-immune circuits in more detail and
further uncover signaling pathways that could be therapeutically
harnessed (165–168).
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Innate lymphoid cells (ILCs), including ILC1s, ILC2s, and ILC3s, play critical roles in
regulating immunity, inflammation, and tissue homeostasis. However, limited attention
is focused on the unique phenotype of ILCs in the heart tissue. In this study, we
analyzed the ILC subsets in the heart by flow cytometry and found that ILC2s were
the dominant population of ILCs, while a lower proportion of type 1 ILCs (including
ILC1 and NK cells) and merely no ILC3s in the heart tissue of mice. Our results show
that ILC2 development kinetically peaked in heart ILC2s at the age of 4 weeks after
birth and later than lung ILC2s. By conducting parabiosis experiment, we show that
heart ILC2s are tissue resident cells and minimally replaced by circulating cells. Notably,
heart ILC2s have unique phenotypes, such as lower expression of ICOS, CD25 (IL-
2Rα), and Ki-67, higher expression of Sca-1 and GATA3, and stronger ability to produce
IL-4 and IL-13. In doxorubicin-induced myocardial necroptosis model of mouse heart
tissue, IL-33 mRNA expression level and ILC2s were remarkably increased. In addition,
IL-4 production by heart ILC2s, but not lung ILC2s, was also dramatically increased
after doxorubicin treatment. Our results demonstrate that heart-resident ILC2s showed
tissue-specific phenotypes and rapidly responded to heart injury. Thus, further studies
are warranted to explore the potential for IL-33-elicited ILC2s response as therapeutics
for attenuating heart damage.

Keywords: innate lymphoid cells, heart, ILC2s, IL-4, IL-33

INTRODUCTION

Innate lymphoid cells (ILCs), which are widely distributed in the body and lack the type of
diversified antigen receptors, are the innate counterparts of T lymphocytes (1, 2). It is well accepted
that ILCs are identified as lineage-negative (Lin−) and interleukin-7 (IL-7) receptor α-positive
(CD127+) (3), emerging into three populations (ILC1s, ILC2s, and ILC3s) based on the signature
transcription factors and effector cytokines. ILC1s require the transcription factor T-bet and
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produce interferon-gamma (IFN-γ), ILC2s express the
transcription factor GATA3 and produce the type 2 cytokines
IL-4, IL-5, and IL-13, while ILC3s express the transcription factor
RAR-related orphan receptor gamma t (RORγt) and have the
ability to produce IL-22 and/or IL-17 (4, 5).

Growing evidence suggest that ILC subsets are involved in
development of specific tissue tropisms, including the skin,
intestine, liver and lung (1). For example, ILC1s are the dominant
ILC population in intestinal intraepithelial layer (IEL) and
liver, whereas ILC2s are the dominant population in the lung
and skin. ILC3s are found in significant numbers in intestinal
lamina propria layer (6–10). To date, the ILC subsets are poorly
characterized in tissue homeostasis and tissue-specific response
after injury in heart tissue. Most recently, a group of non-
cytotoxic cardiac ILC progenitor was found in the heart tissue,
suggesting that ILCs with specific-feature may also exist (11).

Here, we found that ILC2s are the dominant population of
ILCs, while ILC1s are also present with a lower proportion
and there are no ILC3s in the mice heart tissue. Compared
with lung ILC2s, heart ILC2s have unique phenotypes in the
identified markers and the ability of IL-13 and IL-4 cytokines
secretion. Furthermore, ILC2s rapidly expanded and secreted
IL-4 in response to myocardial necroptosis.

MATERIALS AND METHODS

Animals
Male or female C57BL/6 mice [vary from embryonic day
(E) 18.5-8 weeks old] were maintained under specific
pathogen free conditions, which were acclimatized at 22–
25◦C, 50 ± 10% relative humidity and had 12 h light/dark
cycles, periodic air changes, and free access to water and
food in the Experimental Animal Center of the Army
Military Medical University (Chongqing, China). Congenic
C57BL/6 CD45.1 mice strains were obtained from The Jackson
Laboratory (Sacramento, CA, United States). All animal
procedures and protocols were approved by the Animal
Ethics Committee of the Army Medical University, and
followed the guidelines of the Institutional Animal Care and
Use Committees of the Army Military Medical University
(Chongqing, China).

Parabiosis
Parabiosis were performed as previously described in the
literature (12, 13). Briefly, mice were anesthetized by isoflurane
vaporizer (4–5% v/v). Then skin incisions were made on the
flanks of age-, sex- and weight-matched CD45.2+ (C57BL/6),
besides CD45.1+ (C57BL/6) mice followed by gently detaching
the skin from the subcutaneous fascia. The knee joints of
two mice are clearly distinguishable, connected and then the
incisions were joined with a continuous absorbable suture.
0.5 ml of 0.9% NaCl was administrated subcutaneously to
each mouse to prevent dehydration and post-operatively. Mice
received pain medication and antibiotics for the first week
after parabiosis.

Doxorubicin (DOX)-Induced Myocardial
Necroptosis
Eight weeks old C57BL/6 mice were injected with either DOX
(20 mg/kg, i.p., Med Chem Express LLC, Shanghai, China) or
saline, according to a previous study (14). Heart tissues were
collected and single-cell suspensions were prepared by enzymatic
digestion after 24 h or 96 h of DOX treatment.

Single-Cell Suspensions Preparation
Liver tissues were grinded and passed through a 70-µm stainless
steel mesh. Then, cells were resuspended in 35% Percoll (GE
Healthcare, Pittsburgh, PA, United States) and pellets were
collected after centrifugation (450 × g, room temperature,
10 min). The liver mono-nuclear cells were separated from the
pellets through lysing erythrocytes (15). For heart and lung
lymphocyte isolation, the fresh mouse heart was perfused with
cold PBS to remove peripheral blood cells. Briefly, mice were
anesthetized by isoflurane vaporizer (4–5% v/v). The heart was
slowly perfused with cold PBS from left ventricle by a 10 ml-
syringe until the fluid was clear. Then heart and lung tissues were
cut into pieces and then digested for 45 min at 37◦C in Hank’s
solution containing 10% FBS and 1 mg/ml collagenase I (Sigma-
Aldrich, St Louis, MO, United States), 1 mg/ml collagenase II
(Gibco, Waltham, MA, United States) and 25 µg/ml DNase I
(Sigma-Aldrich, St Louis, MO, United States). After digestion, the
cells were then resuspended in 20% percoll in PBS (pH 7.4, Sigma-
Aldrich, St Louis, MO, United States) and pellets were collected
after centrifugation (450 × g, room temperature, 10 min) (16).
For small intestines lamina propria layer lymphocyte isolation,
luminal contents were flushed and peyer’s patches were removed.
Then the intestines were opened lengthwise and gently agitated
for 20 min at 37◦C in D-hank’s solution (pH 7.4) containing
10 mM HEPES, 5 mM EDTA and 1 mM DTT. Tissues were
then rinsed with Hank’s solution prior to digestion with 1 mg/ml
collagenase II for 40 min at 37◦C under agitation. The collected
digests were filtered through 100 micron mesh and subjected to
centrifugation (450 × g, room temperature, 10 min) using 25%
percoll solutions (17).

Antibodies and Flow Cytometry
Antibodies used for flow cytometry were commercially purchased
and are listed in Table 1. We confirmed the species reactivity for
all antibodies according to the official directions and performed
preliminary experiments to determine the appropriate dilution
for all antibodies. Standard protocols were followed for flow
cytometry (18, 19). Briefly, single-cell suspensions were obtained
from the heart, lung, liver and intestinal lamina propria tissue
of mice. For surface markers, 2 × 106 cells were stained
with anti-CD16/CD32 antibodies (eBioscience, San Diego, CA,
United States) 15 min at room temperature, in the dark with
staining buffer (phosphate-bufferd saline (PBS) containing 2%
mouse serum, 2% horse serum, and anti-CD16/CD32 blocking
antibodies). For intracellular IL-4, IL-5, and IL-13 staining,
2× 106 cells were stimulated with IL-33 (eBioscience, San Diego,
CA, United States) or PMA/ionomycin (BD Biosciences, San
Diego, CA, United States) plus BD Golgi Plug protein transport
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TABLE 1 | Antibodies used for flow cytometry.

Antibodies Clone Source Dilution

Anti-mouse CD45 30-F11 BioLegend 1/200

Anti-mouse CD3e 145-2C11 BioLegend 1/200

Anti-mouse CD19 6D5 BioLegend 1/200

Anti-mouse B220 RA3-6B2 BioLegend 1/200

Anti-mouse Gr-1 RB6-8C5 BioLegend 1/200

Anti-mouse CD127 A7R34 BioLegend 1/100

Anti-mouse CD90.2 30-H12 BioLegend 1/100

Anti-mouse NK1.1 PK136 BioLegend 1/100

Anti-mouse NKp46 29A1.4 BioLegend 1/100

Anti-mouse CD49b DX5 BioLegend 1/100

Anti-mouse KLRG1 2F1 BioLegend 1/100

Anti-mouse GATA3 16E10A23 BioLegend 1/20

Anti-mouse ICOS 15F9 BioLegend 1/100

Anti-mouse Sca-1 D7 BioLegend 1/100

Anti-mouse CD25 3C7 BioLegend 1/100

Anti-mouse F4/80 BM8 BioLegend 1/100

Anti-mouse CD11b M1/70 BioLegend 1/100

Anti-mouse CD11c N418 BioLegend 1/100

Anti-mouse MHC II M5/114.15.2 BioLegend 1/100

Anti-mouse IL-4 11B11 BioLegend 1/50

Anti-mouse IgG2a RTK2758 BioLegend 1/100

Anti-mouse IgG2b RTK4530 BioLegend 1/100

Anti-mouse IgG SHG-1 BioLegend 1/100

Anti-mouse IgG2a RTK2758 BioLegend 1/100

Anti-mouse IgG2b MPC-11 BioLegend 1/100

Anti-mouse CD49a Ha31/8 BD Biosciences 1/100

Anti-mouse ST2 U29-93 BD Biosciences 1/100

Anti-mouse RORγt Q31-378 BD Biosciences 1/100

Anti-mouse CD16/CD32 2.4G2 BD Biosciences 1/100

Anti-mouse CD4 RM4-5 BD Biosciences 1/100

Anti-mouse CD8a 53-6.7 BD Biosciences 1/100

Anti-mouse Ki-67 B56 BD Biosciences 1/66

Anti-mouse CD45.1 A20 BD Biosciences 1/100

Anti-mouse CD45.2 104 BD Biosciences 1/100

Anti-mouse IL-13 eBio13A eBioscience 1/50

Anti-mouse IL-5 TRFK5 eBioscience 1/50

inhibitor (BD Biosciences, San Diego, CA, United States)
for 4 h, then cells were fixed with Fixation/Permeabilization
Solution Kit (BD Biosciences, San Diego, CA, United States)
following the manufacturer’s instructions. RORγt, GATA3 and
Ki67 were stained as recommended by the manufacturer using
Foxp3/Transcription Factor Staining Buffer Set Kit (eBioscience,
San Diego, CA, United States). Lineage (Lin) markers included
CD3e, CD19, B220 and Gr-1. Isotype-matched control antibodies
were all purchased from Biolegend (Biolegend, San Diego, CA,
United States) and BD (BD bioscience, CA, United States) and
used at the same concentration as test antibodies. All flow
cytometry experiments were carried out on a BD FACS Verse or
BD FACS Canto (BD Biosciences, San Diego, CA, United States);
500,000 – 1,000,000 events were assessed per condition within
1 h. Data were analyzed with FlowJo software (version 10.0,
FlowJo LLC, Ashland, OR, United States). The lines indicate
median values for each group.

Histological Analysis
Histological structures of heart were determined by standard
hematoxylin-eosin (HE) staining. Briefly, resected specimens
were fixed in 10% neutral buffered formalin for at least 24 h,
embedded in paraffin, and 4 µm-thick sections were cut. After
processing the sections according to standard protocols, they
were stained with hematoxylin and eosin. The coverslips were
visualized under a Leica confocal laser-scanning microscope
(Leica, Wetzlar, Germany). The investigators were blinded for
acquiring the images.

RNA Isolation and qRT-PCR Analysis
To quantify the expression of mRNA, qRT-PCR was performed
according to standard protocols as previously described (20).
Total RNA was extracted from heart tissue using Trizol
(Invitrogen, Waltham, MA, United States) and total RNA
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(1 µg) was then reverse-transcribed into cDNA using a First
Stand cDNA Synthesis Kit (DBI Bioscience, Ludwigshafen,
Germany). Real-time PCR reactions were carried out with
Bestar SYBR Green qPCR master mix (DBI Bioscience, San
Diego, CA, United States) using an ABI Prism 7700 Sequence
Detector. The cycle threshold (Ct) values were normalized by
the internal control β-actin. Primer sequences for qRT-PCR,
obtained from reported literatures or designed by Pubmed
Primer-BLAST. The primer pairs used were as follows: IL-
33 forward, 5′- CCCTGGTCCCGCCTTGCAAAA-3′; IL-33
reverse, 3′- AGTTCTCTTCATGCTTGGTACCCGA-5′; IL-25
forward, 5′-ACAGGGACTTGAATCGGGTC-3′; IL-25 reverse,
3’- TGGTAAAGTGGGACGGAGTTG-5′; β-actin forward, 5′-
GCCAACCGTGAAAAGATGAC-3′; and β-actin reverse, 3′-
CATCACAATGCCTGTGGTAC -5′ (21).

Statistical Analysis
All quantitative data were transferred to Excel and the statistical
analyses were computed with SPSS software for Windows
(Version 21, SPSS Inc., Chicago, IL, United States). Data
are expressed as means ± S.E.M. For comparison between
two independent experimental groups, an unpaired two-tailed
Student’s t-test when data were normally distributed. When
three or more independent groups were compared, one-way
ANOVA followed by Tukey’s test was performed. A p-value less
than 0.05 was considered to be statistically significant. In each
analysis, there were n = 3–11 replicates per group and results
were representative of at least two independent experiments.
Sample size for each experiment is described in the corresponding
figure legend. All graphs were produced by GraphPad Prism
5.0 for windows software (GraphPad Software Inc., La Jolla,
CA, United States).

RESULTS

ILC2s Are the Predominant Subset
Among ILCs in Mouse Heart Tissue
In order to investigate the subsets of ILCs in heart tissue, we
collected heart lymphocyte mixture by lymphocyte separation
from 8 weeks old mouse heart. Percoll-enriched pellets were
resuspended and stained with surface and/or intracellular
antibodies. Gate strategy of heart ILC subsets was shown in
Figure 1A. We identified a population of lineage negative
(Lin−) and CD127 positive cells in the CD45+ cells. Type I
ILCs were identified by CD45+Lin−CD127+NK1.1+NKp46+
(including ILC1 and NK cells), ILC2s were identified by
CD45+Lin−CD127+CD90.2+ST2+ and ILC3s were recognized
by CD45+Lin−CD127+RORγt+ (8, 15, 22). We found that
ILC2s were divided into KLRG1+ ILC2s and KLRG1− ILC2s
(Figure 1B). Among CD45+cells, Type I ILCs accounted for
about 0.2% (∼100 cells/per heart) and ILC2s accounted for about
1.7% (∼500 cells/per heart) (Figures 1C,D). Whereas, there were
merely no ILC3s (∼18 cells/per heart) based on gate strategy
used in the intestinal LPL ILC3s (Figure 1E). The ratios of ILC2s
among CD45+ cells were higher in the heart tissue in compared
with lung ILC2s of 8 weeks old mice (∼1.7-fold) (Figure 1F).

As some studies reported that some ILC1 subsets, such as liver
ILC1s and salivary ILC1s (23, 24), did not express CD127, we
also used CD45+Lin−NK1.1+NKp46+CD49a+CD49b− to gate
ILC1s. and CD45+Lin−NK1.1+NKp46+CD49a+CD49b− ILC1s
accounted for about 0.4% of CD45+cells, which suggested that
part of ILC1s also did not express CD127 in murine heart tissue.
Besides, conventional NK cells accounted for about 3.0% of
CD45+cells in the mouse heart (Figure 1G). Together, these data
demonstrated that ILC2s were the most predominant subset of
ILCs in mouse heart tissue, even greater than in lung tissue.

Heart ILC2s Peak at the Age of 4 Weeks
After Birth
All ILCs initially generate in E13.5 fetal liver and seed tissues
during fetal development (25). To explore the kinetics of
heart ILC2s during development, we determined the ratios of
total and each subset of ILC2s at the age of 1, 2, 4, 6, and
8 weeks in both heart and lung tissue. The data revealed
that the frequencies of heart total and each subset of ILC2s
(including KLRG1+ILC2 and KLRG1−ILC2) peaked at the age
of 4 weeks after birth (Figures 2A,B), while the frequencies
of lung ILC2s and subsets peaked at the age of 2 weeks after
birth (Figures 2C,D). We also determined the ratio of Type
I ILCs, ILC2s and ILC3s in mouse heart at E18.5 and post-
birth day 1. The results showed that ILC2s existed, while there
were very few type 1 ILCs (including ILC1 and NK cells) and
no ILC3s, in mouse heart at both E18.5 and post-birth day 1
(Supplementary Figure S1).

Heart ILC2s Have Unique Phenotypes
Compared With Lung ILC2s
Next, we investigated whether heart ILC2s were different from
lung ILC2s in terms of surface markers, transcription factor,
proliferation and ability of cytokines secretion. Specifically,
we gated CD45+Lin−CD127+CD90.2+ST2+ for ILC2s in
the heart and lung to measure the expression levels of
KLRG1, ICOS, CD25, Sca-1, GATA3, and Ki-67. Besides, we
gated CD45+Lin−CD25+GATA3+ for ILC2s to measure the
expression levels of CD127, CD90.2, and ST2. Our finding
clearly implied that the protein levels of CD127 (IL-7R), CD90.2
(Thy1.2), ST2 (IL-33R), and KLRG1 in heart ILC2s were similar
to lung ILC2s, whereas the protein levels of ICOS and CD25
(IL-2Rα) were lower in heart ILC2s than these in lung ILC2s
(Figures 3A,B). In contrast, the protein level of Sca-1 in heart
ILC2s was higher as compared with that in lung ILC2s (∼2.2-
fold). A significant increasing of GATA3 was found in heart
ILC2s compared with lung ILC2s (∼1.6-fold) (Figure 3C). As
seen in the Figure 3D, heart ILC2s had a weaker proliferation
ability than lung ILC2s, indicated by Ki-67 positive cells
(∼0.33-fold).

In respond to the cytokines IL-25, TSLP, and IL-33,
and ILC2s are the potent sources to produce IL-4, IL-5,
and IL-13. Both IL-4 and IL-13 could induce smooth-
muscle contraction and wound repairing after infections
(26, 27). We therefore stimulated isolated mouse heart and
lung lymphocytes with IL-33, following determined the
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FIGURE 1 | Subsets of ILCs in mouse heart tissue. (A) Gate strategy of ILCs in the heart of mice. Lineage (Lin) markers included CD3e, CD19, B220, and Gr-1. The
number inside of gate indicates cell events. (B) Expression of KLRG1 in heart ILC2s of 8 weeks old mice. (C,D) Cumulative frequencies (C) and enumeration (D) of
Type I ILCs (including ILC1s and NK cells), ILC2s and ILC3s in CD45+ lymphocyte in the heart of 8 weeks old mice. (E) Cumulative frequencies of ILC3s in CD45+

lymphocyte in heart and LPL of 8 weeks old mice. The number inside of gate indicates cell events. (F) Cumulative frequencies of ILC2s among CD45+ lymphocyte in
the heart and lung tissue of 8 weeks old mice. (G) Another gate strategy of ILC1s irrespective of CD127 expression and cumulative frequencies of ILC1s
(CD45+Lin−NK1.1+NKp46+CD49a+CD49b−) and NK cells (CD45+Lin−NK1.1+NKp46+CD49a−CD49b+) in heart and liver of 8 weeks old mice. Each dot
represents one mouse; error bars represent SEM; *p < 0.05, **p < 0.01, ***p < 0.001. Unpaired two-tailed Student’s t-test (B,E–G). One-way ANOVA (C,D).
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FIGURE 2 | Kinetics of heart ILC2s development after birth. (A,C) Flow cytometric analysis of ILC2, KLRG1+ ILC2 and KLRG1− ILC2 in the heart (A) and lung (C),
respectively, of mice at the indicated age after birth. (B,D) Cumulative frequencies of ILC2s in the heart (B) and in the lung (D) of mice at the indicated age after birth.
Each dot represents one mouse; error bars represent SEM; *p < 0.05, **p < 0.01, ***p < 0.001. One-way ANOVA (B,D).
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production of IL-4, IL-5, and IL-13 by ILC2s. Compared
with lung ILC2s, heart ILC2s had a stronger ability to
produce IL-4 and IL-13 (∼2.4-fold and ∼6.8-fold in IL-
33 stimulation, respectively) (Figure 3E). Heart ILC2s and
lung ILC2s had the similar ability to produce IL-5 (∼0.92-
fold) (Figure 3E). Besides, compared with lung ILC2s,
heart ILC2s also had a stronger ability to produce IL-4 in
response to PMA/ionomycin (Figure 3F). These results
suggest that heart ILC2s had unique phenotypes in terms
of surface marker, transcription factor, proliferation and
cytokine production.

Circulating Cells Minimally Replace
Heart ILC2s
Consideration of affluent bloodstream in the heart, we tested
directly whether hematogenous precursors continuously
replenished the pool of heart ILC2s in 8 weeks old mice.
For this reason, we generated parabiotic mice model, which
widely used for the verification of tissue-resident cells in
non-lymphoid tissues (13, 28). After 2 months of parabiosis,
we analyzed the percentages of various lymphocyte subsets
that derived from the donor or host parabiont. Our results
clearly show that about 46.8% of CD4+ T and 47.4% CD8+
T cells in the peripheral blood (pBL) versus about 45.8%
of CD4+ T and 46.3% CD8+ T cells in the spleen (SP)
belonged to the parabiont donor (Figure 4A), suggesting that
the circulatory system was balanced between the parabiotic
mice. Besides, about 47.7% of CD4+ T and 44.0% CD8+ T
cells in the heart tissue and about 44.6% of CD4+ T and
45.4% CD8+ T cells in the lung tissue derived from parabiont
donor, which demonstrated that circulating T cells infiltrated
adequately in local tissues (Figure 4B). Remarkably, very
few heart ILC2s (∼2.0%) were derived from the blood, the
same as lung ILC2s (∼1.1%) (Figure 4C). This indicates
that heart ILC2s are initially generated and seed tissues
during fetal development and regenerate predominantly
through local renewal.

Heart ILC2s Rapidly Expand and Secrete
IL-4 During Myocardial Necroptosis
Necroptosis and apoptosis are crucially involved in severe
cardiac pathological conditions, including myocardial
infarction, ischemia-reperfusion injury and heart failure
(14). To investigate whether ILC2s may participate in this
process, we established a mouse model of oxidative stress-
induced myocardial necroptosis (14). We used the DOX,
a well-evaluated chemotherapeutic agent, to establish the
irreversible cardiac toxicity, including massive cardiomyocytes
loss, cardiomyopathy and heart failure (29, 30). DOX-induced
heart injury was firstly confirmed by hematoxylin-eosin
(HE) staining. Compared to untreated mice, the DOX-
treated mice had significant myocardium necrosis along
with nuclear enlargement and swollen of cardiomyocytes
(Figure 5A). Meanwhile, we found that the frequency
and number of ILC2s were significant higher in DOX-
treated mouse (17.68 ± 4.46) than that in untreated mouse

(8.51 ± 1.87) after 24 h treatment (Figure 5B) as well as
after 96 h treatment (Figure 5C). The frequency of Ki-67+
ILC2s was increased in DOX-treated mice (16.5 ± 1.8),
compared with that in untreated mice (7.1 ± 1.4) after
24 h treatment (Figure 5D). Interestingly, the frequency
and proliferation activity of lung ILC2s were not changed
after 24 h DOX treatment (Figures 5E,F). In addition,
we also found that the frequencies of total macrophages
(CD11b+F4/80+cells) and type 1 conventional dendritc cells
(cDC1s) (CD11b−CD11c+MHCII+), which were involved in
heart injury (31, 32), were not noticeable changed after 24 h
DOX treatment (Supplementary Figures S2A,B).

Because IL-33 and IL-25 are reported to promote ILC2s
proliferation and activation (33, 34), we measured the IL-
33 and IL-25 mRNA expression in the heart tissue. IL-33
but not IL-25 mRNA expression level increased after DOX
treatment (∼3.5-fold and ∼0.87-fold, respectively) (Figure 5G).
Compared with control mice, heart ILC2s produced more
IL-4, but not IL-5 and IL-13 (∼2.6-fold, ∼1.1-fold and
∼1.2-fold, respectively) (Figure 5H). We also measured the
CD3+T cells and IL-4+T cells and both of them were not
significant changed after 24 h DOX treatment (Supplementary
Figure S2C). Thus, the obtained data proposes that rapid
IL-33 production resulted in ILC2s expansion and IL-4
secretion prior to other immune cells during DOX-induced
myocardial necroptosis.

DISCUSSION

In this report, we present the detailed analysis of various
subsets of ILCs and phenotypes in the heart tissue. The
findings of this study demonstrates the predominant heart
ILC2s subset, even greater than lung ILC2s. Our results
illustrated that ILC2s at the age of 4 weeks after birth can
confidential as heart tissue of mouse. Notably, the heart ILC2s
were characterized by lower expression of ICOS, CD25 (IL-
2Rα), Ki-67, as well as higher expression of IL-4, IL-13, Sca-1
and GATA3. Our results highlighted that heart-resident ILC2s
showed tissue-specific phenotypes and rapidly responded to
DOX-induced cardiotoxicity.

Almost all subsets of ILCs and ILC precursors express
IL-7R (CD127) and response to IL-7 stimulation (3). We
found that CD45+Lin−CD127+ CD90.2+ST2+ ILC2s, defined
in lung tissue (8), was the most dominant ILC subset
in mouse heart, while CD45+Lin− CD127+NK1.1+NKp46+
Type I ILCs (15), and CD45+Lin−CD127+RORγt+ILC3s
(22) was merely found in mouse heart. ILC2s were the
predominant part of ILCs in human and mouse heart
tissue (11), although the authors and we used different
gating strategy. The authors identified that ILC2s (identified
as CD45+Lin−CD90+RORγt−T-bet−ST2+KLRG1+) accounted
for about 20% of CD45+ Lin−CD90+ cells in the mice heart
tissue, however, our data showed that ILC2s accounted for about
40% of CD45+ Lin−CD90+ CD127+ cells. This might because
that a part of CD45+Lin−CD90+ cells did not express CD127
(Data not shown).
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FIGURE 3 | Phenotype differences between heart and lung ILC2s. (A) Histograms of cell surface expression and the mean fluorescence intensity (MFI) of KLRG1,
ICOS, CD25 and Sca-1 in heart and lung ILC2s (identification as CD45+Lin−CD127+CD90.2+ST2+cells) of 8 weeks old mice. (B) CD127, CD90.2 and ST2 in heart
and lung ILC2s (identification as CD45+Lin−CD127+CD25+GATA3+cells) of 8 weeks old mice. (C) The relative expression of GATA3 in heart and lung ILC2s,
respectively, of 8 weeks old mice. (D) Flow cytometric analysis and cumulative frequencies of Ki-67-expressing ILC2s in heart and lung, respectively, of 8 weeks old
mice. (E) Flow cytometric analysis and cumulative frequencies of IL-4 (upper), IL-5 (middle) and IL-13 (lower) by heart and lung ILC2s, respectively, following
stimulation with IL-33 in the presence of Golgi Plug for 4 h of 8 weeks old mice. (F) Flow cytometric analysis and cumulative frequencies of IL-13 by heart and lung
ILC2s, respectively, following stimulation with PMA/ionomycin in the presence of Golgi Plug for 4 h of 8 weeks old mice. Each dot represents one mouse; error bars
represent SEM; *p < 0.05, **p < 0.01, ***p < 0.001. Unpaired two-tailed Student’s t-test (A–F).
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FIGURE 4 | Circulating cells minimally contribute to heart ILC2s renew. (A,B) Flow cytometric analysis and cumulative frequencies of CD4+ T cells and CD8+ T cells
in peripheral blood (pBL) and spleen (SP) (A) as well as heart and lung (B) of parabiotic mice after 2 months of parabiosis between 8 weeks old WT CD45.1 and WT
CD45.2 C57BL/6 mice. (C) Flow cytometric analysis and cumulative frequencies of ILC2s in heart and lung of parabiotic mice after 2 months of parabiosis between
WT CD45.1 and WT CD45.2 C57BL/6 mice. Each dot represents one mouse; error bars represent SEM; ***p < 0.001. Unpaired two-tailed Student’s t-test (A–C).
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FIGURE 5 | Heart ILC2s expansion and cytokine secretion in response to Doxorubicin treatment. (A) Hematoxylin-eosin (HE) staining and representative pictures
from heart of 8 weeks old mice after 24 h DOX treatment. The arrow direction indicates representative changes. (B,C) Flow cytometric analysis, cumulative
frequencies and enumeration of ILC2s in the heart of 8 weeks old mice after 24 h (B) and 96 h (C) DOX treatment. (D) Flow cytometric analysis and cumulative
frequency of Ki-67-expressing ILC2s in heart of 8 weeks old mice after 24 h DOX treatment. (E) Flow cytometric analysis and cumulative frequency of ILC2s in the
lung of 8 weeks old mice after 24 h DOX treatment. (F) Flow cytometric analysis and cumulative frequency of Ki67-expressing ILC2s in lung of 8 weeks old mice
after 24 h DOX treatment. (G) The relative mRNA expression of IL-33 and IL-25 in the heart tissue of 8 weeks old mice after 24 h DOX treatment. (H) Flow cytometric
analysis and cumulative frequencies of IL-4-producing (upper), IL-5-producing (middle) and IL-13-producing ILC2s (lower) in the heart tissue of mice after 24 h DOX
treatment, n = 4–11. Error bars represent SEM; *p < 0.05, **p < 0.01, ***p < 0.001. Unpaired two-tailed Student’s t-test (B–H).
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All ILCs generate and seed tissues during fetal development
and the perinatal period is a critical window for the
distribution of innate tissue-resident immune cells within
developing organs (25, 35). Unlike tissue macrophages,
a majority of peripheral ILC2 pools are generated de
novo during the postnatal window (5, 8), by display little
hematogenous redistribution to other tissues (28). Although
a minor contribution from circulating precursors can
contribute to tissue pools, ILCs regenerate predominantly
through local renewal after birth in the resting state (5).
Our study also suggested that circulating cells minimally
replace heart ILC2s under physiological status. However,
whether circulating ILC2s or interorgan migration of
tissue-resident ILC2s contributes to heart ILC2s under
pathophysiological status are still unknown. This is because
a recent study reported that a population of inflammatory
ILC2s (iILC2s), which are circulating cells and derived
from intestinal ILC2s, could migrate to the lung after IL-25
stimulation or helminth infection (36). Thus, although we
found obvious proliferation of ILC2s in heart tissue after
DOX treatment, we still could not exclude the possibility
that ILC2s migrate to heart from other organs when the
heart damage occurs.

During the alveolar phase of lung development, the increasing
production of IL-33 accumulates ILC2 cells and the frequency
of ILC2s in the mouse lung reached the peak at the age of
2 weeks after birth (8). But, heart resident ILC2s peaks at
the age of 4 weeks, which may be due to the lower IL-33
production by cardiac fibroblasts during heart development
(37) or less antigens exposure delays the development of
ILC2s in the heart (35). In our study, increased IL-33
expression are parallel with increased Ki-67+ ILC2s after DOX
treatment indicated that IL-33 signal pathway in the heart is
important for maintenance of ILC2s. In addition, previous study
indicated that IL-4 can activate STAT6 and then induce the
expression of GATA3, which forms a positive feedback loop to
reinforce Th2 differentiation (38, 39). Thus, we assumed that
this IL-4/STAT6/GATA3 axis maybe also take effect in heart
ILC2s development.

Compared with lung ILC2s in the lung, heart ILC2s have
unique features in the terms of surface marker, such as lower
expression level of ICOS and CD25 and higher expression
level of Sca-1. ICOS is an important molecule in T cell signal
transduction (40) and deficiency of ICOS showed decreased
ratio of ILC2s and cytokine production (41, 42). CD25 is a
key receptor of IL-2 signaling, which regulates cells survival
(43). Besides, Sca-1 is surface molecule stem cell antigen-
1, representing the differentiation potential (44). Consistent
with these, heart ILC2s showed lower expression of Ki-67. As
compared with lung tissue, heart ILC2s might be with a lower
proliferation capacity and a more immature phenotype, which
might because of the relative sterile micro-environment. Lung
ILC2s must maintain a higher proliferative level to expand
rapidly in response to various stimulations, such as antigens,
virus and worm (8, 45). Interestingly, compared to lung ILC2s
(46), heart ILC2s have a stronger ability to produce IL-4 and
IL-13 in response to IL-33 or PMA/ionomycin stimulation.

Previous study have demonstrated that GATA3 together with
STAT6 promotes the expression of IL-4 and IL-13 (47–49).
So, these evidence suggest that higher GATA3 expression level
of heart ILC2s might be responsible for the higher capacity
of IL-4 and IL-13 production. These difference between heart
ILC2s and lung ILC2s further demonstrates that the local
tissue microenvironment had a profound influence on cells
phenotype and function.

Myocardial damage causes sterile inflammation, by
recruitment and activation of innate and adaptive immune
system cells (31, 50). In this study, we found that ILC2s expanded
and produced IL-4 immediately after DOX-induced myocardial
necroptosis prior to macrophage, dendrtic cells and IL-4+T
activation. IL-4 is well-known to regulate a variety of immune
responses, including T-cell differentiation and macrophage M2
polarization (51, 52). Previous studies showed that IL-4 serves
as an early endogenous neuroprotective mechanism soon after
stroke onset and is important in the acute stages of stroke
(53, 54). Thus, we speculate that in response to myocardial
damage, heart ILC2s act as the first line of responder and
produce IL-4 to promote the response during inflammation
and cardiac tissue repair. However, production of IL-4 by ILC2s
and T cells persistent in the end of recovery stage may also
promote myocardial fibrosis (55). In the line with previous
study, IL-4 could upregulated the expression of procollagen
genes and stimulates collagen production in mouse cardiac
fibroblasts (56).

Overall, ILC2s with unique phenotypes are the major subset
of ILCs in the heart and different from lung ILC2s in
mouse model. Importantly, ILC2s could expand and activate
immediately in response to heart damage. Our finding raises the
potential for IL-33-elicited ILC2s response as therapeutics for
attenuating heart damage.

LIMITATION

A tissue-specific knock-out mouse model of ILCs and
acquirement enough amount of ILCs to transplant are some
significant limitations in the current work. Undoubtedly,
future well-accepted studies would be needed to provide the
localization of ILC2s within the heart and more direct evidence of
a functional requirement for ILC2s in this cardiac injury model.
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FIGURE S1 | Heart ILC2s exist before birth. Flow cytometric analysis as
described in Figure 1A and cumulative frequencies of type I ILCs (including ILC1
and NK cells), ILC2s and ILC3s in the heart of mice at the E18.5 and post-birth

day 1. The number inside of gate indicates cell events. Each dot represents one
mouse; error bars represent SEM; ∗∗p < 0.01, ∗∗∗p < 0.001. One-way ANOVA.

FIGURE S2 | Macrophages, dendritic cells (DCs) and IL-4+ CD4+ T cells in the
heart are not increased after 24 h of DOX treatment. (A,B) Flow cytometric
analysis and cumulative frequencies of macrophages (CD11b+F4/80+ cells) (A)
and type 1 conventional dendritc cells (cDC1s) (CD11b−CD11c+ MHCII+ cells)
(B) in the heart of mice after 24 h DOX treatment. (C) Flow cytometric analysis and
cumulative frequencies of CD3+ T and IL-4+ CD4+ T cells in the heart following
stimulation with PMA/ionomycin in the presence of Golgi Plug for 4 h of mice after
24 h DOX treatment, n = 3–4. Error bars represent SEM. Unpaired two-tailed
Student’s t-test (A–C).
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Cell survival and function critically relies on the fine-tuned balance of protein synthesis and
degradation. In the steady state, the standard proteasome is sufficient to maintain this
proteostasis. However, upon inflammation, the sharp increase in protein production requires
additional mechanisms to limit protein-associated cellular stress. Under inflammatory
conditions and the release of interferons, the immunoproteasome (IP) is induced to support
protein processing and recycling. In antigen-presenting cells constitutively expressing IPs,
inflammation-related mechanisms contribute to the formation of MHC class I/II-peptide
complexes, which are required for the induction of T cell responses. The control of
Toxoplasma gondii infection relies on Interferon-g (IFNg)-related T cell responses. Whether
and how the IP affects the course of anti-parasitic T cell responses along the infection as well
as inflammation of the central nervous system is still unknown. To answer this question we
used triple knockout (TKO) mice lacking the 3 catalytic subunits of the immunoproteasome
(b1i/LMP2, b2i/MECL-1 and b5i/LMP7). Here we show that the numbers of dendritic cells,
monocytes and CD8+ T cells were reduced in Toxoplasma gondii-infected TKO mice.
Furthermore, impaired IFNg, TNF and iNOS production was accompanied by dysregulated
chemokine expression and altered immune cell recruitment to the brain. T cell differentiation
was altered, apoptosis rates of microglia and monocytes were elevated and STAT3
downstream signaling was diminished. Consequently, anti-parasitic immune responses
were impaired in TKO mice leading to elevated T. gondii burden and prolonged
neuroinflammation. In summary we provide evidence for a critical role of the IP subunits
b1i/LMP2, b2i/MECL-1 and b5i/LMP7 for the control of cerebral Toxoplasma gondii infection
and subsequent neuroinflammation.
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INTRODUCTION

Toxoplasma gondii (T. gondii) is a highly successful intracellular
parasite capable of infecting all mammals including around 30-
70% of all humans (1). In humans, T. gondii infection is usually
asymptomatic and resolves with minimal pathology. However, if
infected individuals acquire an immunodeficiency with impaired
T cell function later in life, they are at risk for reactivation of
latent toxoplasmosis (2). Early control of T. gondii is dominated
by innate immune cells such as macrophages, dendritic cells
(DCs) and circulating monocytes as well as their secreted
proinflammatory cytokines, e.g. tumor necrosis factor (TNF)
and interleukin (IL)-12 (3–5). Interferon-g (IFNg) is essential for
the cell-mediated control of T. gondii. Its production by natural
killer (NK) cells and T cells is induced by TNF and IL-12 (6).
Moreoever, two major mechanisms involved in parasite control
are the IFNg-induced activation of myeloid cells and cytotoxic
activity of CD8+ T cells (7). IFNg induces inducible nitric oxide
synthase (iNOS) expression by myeloid cells which in turn
promotes the production of nitric oxide (NO) thereby
inhibiting parasite growth (8). CD8+ T cells are known to be
crucial for long-term control and containment of T. gondii. They
prevent the transformation of cyst-forming bradyzoites into fast-
replicating tachyzoites thereby achieving both, a restriction of
parasite burden as well as the establishment of chronic infection
(9, 10). CD8+ T cell-derived IFNg is crucial for long term disease
control and relies on CD4+ T cell help to facilitate antigen-
presentation and upregulate co-stimulatory molecule expression
on antigen-presenting cells (APCs). In order to maintain a stable
anti-parasite CD8+ T cell response, APCs must present parasite-
derived peptides via major histocompatibility complex class I
(MHC I) (11, 12). This requires intracellular processing of
parasite proteins, a mechanism which is mainly mediated by the
immunoproteasome (IP), a proteolytic protein complex which is
induced upon inflammation, e.g. by IFNg (7, 13).

Upon IFNg stimulation, standard proteasomes are replaced by
de-novo synthesized IPs, harboring the three catalytically active
subunits b1i/LMP2, b2i/MECL-1 and b5i/LMP7 instead of b1/
delta, b2/zeta and b5/MB1. In cells of hematopoietic origin IPs are
constitutively expressed (14). In APCs IP expression results in the
generation of an altered peptide repertoire and increased number
of MHC I ligands due to enhanced protein substrate turnover and
changed cleavage specificities (15–17). Whether and how the
simultaneous absence of the inducible catalytic subunits b1i/
LMP2 (Psmb8), b2i/MECL-1 (Psmb9) and b5i/LMP7 (Psmb10)
alters the course of infections remains unclarified.

Research exploring IP function in inflammatory diseases of
the central nervous system (CNS) has largely focused on stroke
and Alzheimer’s disease (18, 19), where a marked upregulation of
IP in reactive glia has been described. The IP is also associated
with an increase in phagocytosis and iNOS production in
microglia, a common feature of many neurodegenerative
diseases (20–22). To better understand how the IP functions in
the CNS and especially during neuroinflammation, infection
models are sorely needed. Upon LCMV infection in the CNS,
LMP7 was vital for the CD8+ T cell-induced pathogenesis of
LCMV-induced meningitis as LMP7-/- mice exhibited a reduced
Frontiers in Immunology | www.frontiersin.org 2122
and delayed disease outcome with fewer infiltrating immune cells
(23). Interestingly, this seemed to be LMP7 specific, as LMP2-/-

and MECL-1-/- mice had no change in disease compared to
WT mice.

In regards to the IP’s role during T. gondii infection, previous
work from Tu et al., described that mice absent of the single
subunits LMP2 or LMP7 were more susceptible to acute T. gondii
infection (24). Primarily investigating the effect of the IP on the
induction of a Th1 immune response, they observed that the
acute stage of the infection with fast replicating tachyzoites
strongly upregulated the expression of both IP subunits, LMP2
and LMP7, in APCs collected from peritoneal exudate cells
(PEC). Further, LMP7-/- mice exhibited strong DC dysfunction
as their ability to present immunogenic peptides was impaired
and the subseqeunt CD8+ T cell IFNg and Granzyme B response
was significanlty reduced compared to WT counterparts. Of
note, there was little observable change in these cell types in
LMP2-/- mice in the periphery, however, these mice were still
susceptible to T. gondii infection.

In order to investigate the role of the IP through the course of
CNS infection-induced inflammation, we assessed how the
absence of all three catalytic IP subunits in TKO mice affects
the course of infection-induced inflammation using the
neurotropic parasite T. gondii. Hereby, we investigated IP
deficiency over the course of T. gondii infection, focusing on
its role in the chronic phase of infection, where the encysted
parasite resides primarily in the CNS. This study shows for the
first time a prolonged neuroinflammation that is maintained by
perturbed cytokine release due to chronic T. gondii infection. In
addition, we demonstrate increased production of iNOS in
microglia and myeloid subsets in brain tissue of infected TKO
animals as well as reduced numbers of regulatory T cells, reduced
STAT3 phosphorylation but increased induction of apoptosis in
myeloid cells. This study demonstrates that IP deficiency results
in a lack of parasite control by ultimately increasing susceptibility
of these animals to T. gondii, highlighting the importance of the
IP in terms of induction, maintenance and resolution of T.
gondii-induced neuroinflammation.
METHODS

Animals
Conventional immunoproteasome Triple KO (TKO) mice
C57BL/6J-LMP2/Psmb9-/-MECL-1/Psmb10-/-LMP7/Psmb8-/-

were kindly provided by Prof. Kenneth L. Rock and Regeneron
Pharmaceuticals, Inc. (VG MAID number VG1230 + Psmb10)
(15). 8 to 12 week-old C57BL/6J mice were bred in the same
animal facility. Mice were age and sex matched between the wild
type (WT) and deficient mice. All mice were group-housed in
12-h day/night cycles at 22 °C with free access to food and water.
All animal experiments were approved by local authorities
according to German and European legislation.

Toxoplasma gondii Infection
T. gondii cysts of type II strain ME49 were harvested from brains
of female NMRI mice chronically infected with T. gondii cysts
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6-10 months earlier, as described previously (25). In short,
isolated brains were mechanically homogenized in 1 ml sterile
phosphate-buffered saline (PBS), and the number of cysts in the
homogenate was determined using a light microscope. Mice were
infected with two cysts via oral gavage.

Organ Collection
First, mice were deeply anaesthetized by isoflurane inhalation
(Baxter). Subsequently, mice were transcardially perfused with
60 ml sterile PBS. Single-cell suspension of mesenteric lymph
nodes and spleen were generated by mechanically passing tissue
through a 40 mm strainer in PBS complemented with 2% fetal
calf serum (FCS). Brains were removed and stored in RPMI
medium (life technologies) or RNAlater (Qiagen) for additional
analysis. Samples stored in RNAlater were kept at 4 °C overnight
and then transferred to -20°C. Samples in RPMI medium were
stored on ice until further experimental procedures.

Cell Isolation
To isolate brain immune cells, brains were homogenized in a
buffer containing 1 M HEPES (pH 7.3) and 45 % glucose and
then filtered through a 70 µm strainer. Leukocytes were
separated via Percoll density gradient centrifugation (GE
Healthcare) as we described previously (26). Living cells were
counted using a Neubauer counting chamber and trypan
blue staining.

Flow Cytometric Analysis
Single cell suspensions were incubated with an anti-FcgIII/II
receptor antibody (clone 93, eBioscience) to block unspecific
binding and Zombie NIR™ (BioLegend), a fixable viability dye.
Thereafter, cells were stained with fluorochrome-conjugated
antibodies against cell surface markers: CD45 (30-F11), CD11b
(M1/70), Ly6C (HK1.4), CD45.2 (104), CD40 (3/23), MHCI (28-
14-8) and MHCII (M5/114.15.2) all purchased from eBioscience;
CD3 (17A2), CD4 (RM4-5), CD8a (53-6.7), CD80 (16-10A1),
CD44 (IM7), CD62-L (MEL-14), PD-1 (29F.1A12) and NK1.1
(PK136) all purchased from BioLegend; and Ly6G (1A8)
purchased from BD Biosciences in FACS buffer (with 2% FBS,
0.1% NaN3) at 4 °C for 30 min and then fixed in 4%
paraformaldehyde (PFA, Affymetrix) for 15 min. Matched
FMO controls were used to assess the level of background
fluorescence in the respective detection channel.

Intracellular staining was performed on 5x105 cells/well after ex
vivo stimulation with Toxoplasma lysate antigen (200 µg/mL) in the
presence of brefeldin A (10 µg/mL, BioLegend) and monensin (10
µg/mL, BioLegend) at 37 °C for 6 h. Afterwards, cells were incubated
with anti-FcgIII/II receptor antibody (clone 93, eBioscience) and
Zombie NIR™ (BioLegend). Surface epitopes were then stained
with CD45 (30-F11), CD11b (M1/70), Ly6C (HK1.4), Ly6G (1A8),
CD3 (17A2), CD4 (RM4-5) and CD8a (53-6.7) for 30min at 4 °C.
Stained cells were fixed in 4% PFA and permeabilized using Perm/
Wash Buffer (BioLegend). To measure cytokine expression, cells
were stained with the flourochrome-conjugated antibodies against
intracellular proteins TNF (MP6-XT22), FoxP3 (FJK.16s) and IL-
12p40 (C17.8) purchased from eBioscience; iNOS (clone 6, BD
Biosciences), Granzyme B (QA16AO2, BioLegend), and IFNg
Frontiers in Immunology | www.frontiersin.org 3123
(XMG1.2, BioLegend) in permeabilization buffer (Invitrogen) for
45 min. Matched isotype controls were used to assess the level of
non-specific binding. Flow cytometric analysis was performed on
BD LSRFortessa (BD Bioscience) and on Attune NxT Flow
Cytometer (Thermo Fisher) and analyzed with FlowJo (version
10, Flowjo LLC).

Calculation of absolute cell count was performed by
multiplying the viable population frequencies derived from
flow cytometry analysis with the hemocytometer cell count of
the respective sample.

Apoptosis Assay
Cellular apoptosis was quantified using a FITC Annexin V
Apoptosis Detection Kit with 7-AAD (BioLegend) following
the manufacturer’s instructions. 5x105 splenocytes were
isolated, as described above, rinsed with staining buffer and
resuspended in Annexin V Binding Buffer (BioLegend). The
cells were then incubated with 5 µL of FITC Annexin V and
10 µL of 7-AAD solution for 20 min at room temperature light
protected. Fluorescence was measured on Attune NxT Flow
Cytometer (Thermo Fisher) and analyzed with FlowJo (version
10, Flowjo LLC).

Transwell CD8+ T Cell Migration Assay
Naïve CD8+ T cells were purified using CD8a T Cell Isolation
Kit mouse (Miltenyi Biotec) following the manufacturer’s
instruction. Chemokines CXCL12 and CCL21 (Peprotech)
were used at 250 ng/mL each in 500 mL of Assay Medium
containing RPMI 1640, 10mM HEPES and 0.1% BSA
(Applichem). Migration assay was performed by seeding 2x106

cells in 200 µL Assay Medium into the upper chamber of 48-well
transwell plates (Corning) with a pore size of 5 µm. Strainer was
pre-coated with poly-L-lysine (1:100 in PBS) for 20 min at 37 °C
prior to the experiment. Following 2.5 h of incubation at 37 °C
and 5% CO2, cells were collected from the lower chamber and
analyzed using MACSQuant® Analyzer (Miltenyi Biotec). Total
migrated cells of control mice were set to 100% and relative
migration of CD8+ T cells from TKO mice was calculated.

Western Blot
Proteins of whole brain lysates were analyzed by immunoblotting
against b1i/LMP2 gp, b5i/LMP7 rb (both custom-generated),
b2i/MECL-1 [K65 rb; (27)] and b-Actin (#A1978,
Sigma-Aldrich).

Tibias and femurs of 10-14 weeks-old WT and TKO mice
were aseptically removed, and bone marrow cells were flushed
out with sterile PBS and centrifuged at 150 ×g for 10 min. Cells
were resuspended in RPMI medium containing 10% FCS
(Capricorn), recombinant murine granulocyte-macrophage
colony-stimulating factor (2 ng/ml; Cell Signaling Technology)
and 50 mM mercaptoethanol (Sigma-Aldrich) and cultivated for
at least 10 days at 37 °C and 5% CO2. Twenty-four hours prior to
experiments, cells were harvested by scraping and seeded into 6-
well plates. For investigation of signaling events cells were treated
for the depicted time points with 30 µg/ml Toxoplasma lysate
Antigen (TLA) and harvested using Trizol reagent (Invitrogen).
Proteins were quantified via Bradford assay and subsequently
April 2021 | Volume 12 | Article 619465

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


French et al. Immunoproteasomes in Toxoplasma gondii Induced Neuroinflammation
analyzed by immunoblotting against pStat3 (Tyr705) (D3A7;
XP® Rabbit mAb #9145 CST), Stat3, pMEK (Ser217/221) (41G9;
Rabbit mAb #9154 CST), pErk (Thr202/Tyr204) (20G11; Rabbit
mAb #4376 CST), Erk and GAPDH (all Cell Signaling
Technology) antibodies.

DNA and RNA Isolation
Samples stored in RNAlater were homogenized in BashingBeads
tubes (Zymo Research, Freiburg, Germany). AllPrep DNA/RNA
Mini Kit (Qiagen) was used to isolate DNA and the peqGOLD
total RNA kit (Peqlab, Erlangen, Germany) was used to isolate
t o t a l RNA f rom the homogena t e f o l l ow in g th e
manufacturer’s instructions.

Semiquantitative RT-qPCR
T. gondii burden was determined using the FastStart Essential
DNA Green Master kit (Roche). The target T. gondii gene used
was Tgb1, andMm. Asl (TIBMolbiol, Berlin, Germany) was used
as a reference gene. The stage of parasite burden was quantified
using the Power SYBR® Green RNA-to-CT™ 1-Step Kit
(Thermo Fisher) for bradyzoite-specific Bag1 and tachyzoite-
specific Sag1 using Gapdh as reference gene. All genes were
purchased from TIBMolbiol, Berlin, Germany.

Relative gene expression was determined similar to previous
descriptions (28, 29) using the TaqMan® RNA-to-CT™ 1-Step Kit
(life technologies). TaqMan® Gene Expression Assays (life
technologies) were used for mRNA amplification of Psmb8 (Mm00
440207_m1), Psmb9 (Mm00479004_m1), Psmb10 (Mm00
479052_g1), Ccl2 (Mm00441242_m1), Ccl3 (Mm00441259_g1),
Cxcl2 (Mm00436450_m1), Cxcl10 (Mm00445235_m1), Ifng
(Mm00801778_m1), Tnf (Mm00443258_m1), Il12a (Mm00
434165_m1), Nos2 (Mm00440485_m1). Expression of Hprt (Mm01
545399_m1) was chosen as reference and target/reference ratios were
calculated with the LightCycler® 96 software version 1.1 (Roche). All
results were further normalized to the mean of the WT
infected group.

Cytokine and Chemokine Assessment
Cytokine and chemokine profile was characterized using the
LEGENDplex™ system (BioLegend). A more detailed protocol is
published (30). Briefly, we used the Mouse Inflammation Panel
(13-plex) system. Serum from WT and TKO mice was collected
and incubated with fluorescence-encoded capture beads to
cytokine and chemokine targets including CCL2, TNF and
IFNg. The fluorescent signals of analyte-specific bead regions
were quantified using flow cytometry, and the concentrations of
particular analytes were determined using provided data analysis
software (BioLegend, LegendPlex™ software v8.0).

Statistical Analysis
Datasets were analyzed statistically using GraphPad Prism 7.02
(Graphpad software). To test for significance, we used a Mann-
Whitney test for comparing two groups and a 2way ANOVA
with uncorrected Fischer’s LSD test for multiple comparisons.
Owing to the small sample sizes, unequal variances were
assumed in all t-tests. The significance level was set to P < 0.05
for all statistical comparisons. Symbols represent individual
Frontiers in Immunology | www.frontiersin.org 4124
animals, columns represent mean values and error bars
represent ± SEM.
RESULTS

TKO Mice Show Increased Susceptibility
to T. gondii Infection
The 20S catalytic core particle of the IP consists of multiple
subunits, three subunits harbor the six active sites that differ
from those in the standard proteasomes. The relative
contribution of immunoproteasomes to immune responses
against T. gondii is unclear. To determine the relative
expression of the three IP catalytic-subunits LMP2 (Psmb9),
LMP7 (Psmb8) and MECL-1 (Psmb10) during the acute and
chronic neuroinflammatory stage of infection, mRNA and
protein was isolated from brain homogenates of T. gondii
infected wild type (WT) mice at day 28 post-infection (p.i.). As
compared to uninfected controls, the expression of all three IP
subunits LMP2 (Psmb9), LMP7 (Psmb8) and MECL-1 (Psmb10)
was significantly increased in T. gondii infectedWTmice both on
the RNA and protein level (Figure 1A and Supplementary
Figure 1). To investigate the functional significance of these IP
subunits we used mice with a combined deficiency of LMP2,
MECL-1 and LMP7. These triple-knockout (TKO) mice and WT
controls were infected with T. gondii orally (p.o.) and body
weight was monitored daily throughout the course of the
infection (Figure 1B). During the acute phase of infection,
from day 10 to 14 p.i., WT mice showed a higher weight loss
when compared to TKO mice. Starting around day 13 p.i.,
however, this effect was reversed and bodyweight loss was
significantly more pronounced in TKO mice from day 21 to 28
p.i. Parasite burden was significantly increased in the spleen of
TKO mice already at day 10 p.i., an effect that was not observed
at day 28 p.i. (Figure 1C). This might be due to the fact that
T. gondii invades deeper tissues including the brain to evade the
hosts’ immune system (31).

Consequently, we analyzed parasite burden in the brain. To
assess differences in stage conversion of the fast replicating
tachyzoite and slow replicating bradyzoite stages of T. gondii,
we utilized T. gondii-specific genes (TgSAG1 and TgBAG1,
respectively). We detected a reduced mRNA expression of both
tachyzoites and bradyzoites genes in brains of infected TKOmice
in the acute phase of infection (Figure 1D), but increased mRNA
expression in the chronic phase of infection (Figure 1E). Hence,
altered tissue distribution of T. gondii in TKO mice argues for
impaired peripheral immune responses in the absence of a
functional IP.

Reduced/Delayed Type 1 Immune Response
to T. gondii in TKO Mice
Early immune responses against T. gondii strongly depend on the
pathogen-associated molecular pattern (PAMP)-dependent
activation of APCs. They produce TNF and IL-12, promote the
activation of NK and T cells, which produce anti-parasitic IFNg
(6). To determine if the IP affects early parasite recognition in the
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periphery, splenic Ly6Chi inflammatory monocytes and DCs
from WT and TKO mice were analyzed in the acute phase of
infection. As shown in Figures 2A–C, numbers and MHC I
levels of Ly6Chi inflammatory monocytes and DCs were
significantly reduced in the spleen of infected TKO compared
to WT mice. In contrast, MHC II expression proved to be
independent of the IP which is consistent with previously
published data (15).

Next, we investigated whether IP deficiency affects IL-12 and
TNF production by Ly6Chi monocytes and DCs. Upon ex vivo
restimulation with Toxoplasma lysate antigen (TLA), we
observed a significantly higher percentage of Ly6Chi monocytes
producing TNF with increased TNF production and non-
significant change in frequencies of TNF producing DCs
(Figure 3A, A’) in TKO mice in the acute phase. We detected
no difference in the percentage of IL-12-producing DCs and
Ly6Chi monocytes or in the IL-12 produced (Figure 3B, B’). TNF
and IL-12 production lead to the expression of IFNg, a key
molecule for T. gondii elimination (4, 6). IFNg induces cell-
autonomous immune responses (32), such as induction of
inducible nitric oxide synthase (iNOS) which produces nitric
Frontiers in Immunology | www.frontiersin.org 5125
oxide (NO) thereby promoting parasite clearance (33, 34). As
shown in Figure 3C, C’, iNOS production by DCs and Ly6Chi

monocytes was also indistinguishable between infected WT and
TKO animals. These results indicate that the IP has only a minor
impact on early innate immune responses against the parasite but
may be required for IFNg-related adaptive immune responses.

IFNg produced in the course of T. gondii infection facilitates
IL-12 production by DCs and monocytes (35). With an increased
parasite burden in spleens of TKO mice, one would expect
increased expression of IL-12. However, we detected no change
in IL-12 production (Figure 3B, B’). In order to characterize
IFNg production by immune cells, CD8+ and CD4+ T cells,
NK1.1+ cells and neutrophils were restimulated with TLA ex vivo
and analyzed by flow cytometry. Fewer CD8+ T cells were
isolated from the spleens of infected TKO animals compared
to WT mice during the acute phase of infection (Figure 4A).
This, together with the observed reduced MHC I expression on
APCs (Figure 2) is in line with previously reported results (15,
24, 36) describing reduced CD8+ T cell numbers when MHC I/
peptide presentation is impaired (24). In addition, we observed
slightly elevated numbers of CD4+ T cells in spleens of infected
A

C D E

B

FIGURE 1 | Increased susceptibility of TKO mice in the chronic, but not acute, phase of T. gondii infection. Wild type (WT) mice were orally infected with a low dose (2
cysts) of T. gondii (ME49) for 28 days. Brains were collected from WT non-infected (non.inf., n ≥ 4) and T. gondii infected (Tg, n ≥ 4) animals on day 28 p.i. and following
homogenization, mRNA was extracted for RT-qPCR analysis. (A) mRNA expression of the immunoproteasome subunits (LMP7/Psmb8, LMP2/Psmb9, MECL-1/
Psmb10) were normalized to the non-infected group. Data is representative of four independent experiments. (B) WT mice and triple-knocked out (TKO) for the
immunoproteasome subunits (LMP7/Psmb8-/-LMP2/Psmb9-/-MECL-1/Psmb10-/-) mice were orally infected with a low dose (2 cysts) of T. gondii and weighed daily. Day
10 and 28 p.i. were chosen as time points for the acute and chronic immune response. The spleens and brains were taken from acute (d10 p.i.) and chronic (d28 p.i.)
T. gondii-infected WT (WT Tg, n=4) and triple-knockout (TKO Tg, n=4) mice. Organs were homogenized and DNA/RNA was isolated from each for qPCR and RT-qPCR
analysis. (C) qPCR analysis from DNA extracted from spleens of T. gondii infected WT and TKO mice. Relative quantification of T. gondii gene TgB1 in spleen from acute
(d10 p.i.) and chronic (d28 p.i.) T. gondii infected WT and TKO mice. TgB1 gene expression was normalized to the gene expression of the reference gene Mm.Asl.
(D, E) RT-qPCR analysis from RNA extracted from brain homogenates of mice from the acute (d10 p.i.) and chronic (d28 p.i.) phase of infection. Relative mRNA levels
were normalized to the mean expression of the infected WT group. Data shown in (A) represents three independent experiments and data shown in (B–E) represent four
independent experiments. In (A, C–E) symbols represent individual animals, columns represent mean values and error bars represent ± SEM. In (B), data points
represent mean values and error bars represent ± SEM. In (A), a Mann-Whitney test for two groups and in (B–E) a 2way ANOVA following Fisher’s LSD test was used
for statistical analysis. *P < 0.05, **P < 0.01, ***P < 0.001.
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TKO mice, a finding that was already visible in naïve TKO mice
(Figure 4B and Supplementary Figures 2A–C, E, F). Consistent
with previous findings (37), significantly reduced frequencies in
the IFNg+CD4+ T cells were detected in spleens of infected TKO
mice, whereas steady state analyses revealed no difference in the
circulating IFNg in WT and TKO mice (Figure 4B and
Supplementary Figure 2D). Neither numbers, nor frequencies
of IFNg producing NK1.1+ cells or neutrophils (Ly6G+) differed
significantly between TKO and WT mice (Figures 4C, D).

Parasite Dissemination Into the Brain of WT and
TKO Mice in the Acute Phase of T. gondii Infection
To establish the chronic phase of infection in the CNS, T. gondii
has to cross the blood-brain barrier (BBB) and enter the brain.
When T. gondii infects DCs or monocytes, they induce a
hypermotility phenotype and enhanced transmigration
Frontiers in Immunology | www.frontiersin.org 6126
capacity, effectively shuttling the parasite into the brain,
thereby functioning as a Trojan horse to cross the BBB (38). In
TKO animals, we observed an increased parasite burden in the
periphery but the opposite in the brain on d10 p.i. (Figure 1).
This is also associated with a dysregulated DC and CD8+ T cell
recruitment to the spleen (Figures 2 and 4). To investigate
whether and how impaired immune pressure in the periphery
corresponds to altered immune cell composition in the brain, we
analyzed different immune cell populations in brains of T. gondii
infected mice on day 10 p.i. Using flow cytometry analysis, we
assessed recruited myeloid and lymphoid cells into the CNS
along with the resident microglia (Figure 5A). We observed
fewer numbers of myeloid cells recruited into the brain of TKO
mice, though not significant (Figure 5B). Interestingly, these
myeloid cells exhibited a similar phenotype to the peripheral cells
(Figures 2B, C and 3A) as they had reduced MHC I expression
A

B

C

FIGURE 2 | Reduced numbers of Ly6Chi monocytes and DCs in spleen of infected TKO mice. Immune cells were isolated from the spleens of T. gondii infected WT
(WT Tg, n=5) and TKO (TKO Tg, n ≥ 4) mice on day 10 p.i. and analyzed by flow cytometry. Following viability staining and the basic FSC/SSC gating, viable single
cells were chosen for further characterization. (A) Splenocytes were first gated based on surface expression of CD45, a hematopoietic marker, and CD11b, a
myeloid cell marker (left plot). CD11b+CD45+ cells were further gated for CD11c and CD11c+ cells identified as dendritic cells (DCs) (center plot). CD11c- cells were
further divided into inflammatory monocytes (Ly6G-Ly6Chi) and neutrophils (Ly6G+) (right plot). The total number of living cells and surface expression of MHC I and
MHC II were assessed for Ly6Chi monocytes (B) and DCs (C). Expression of MHC I and MHC II was quantified using the mean fluorescence intensity (MFI) of their
respective fluorochrome. Data shown in (A) is a representative of three independent experiments. Data shown in (B, C) represent three independent experiments;
symbols represent individual animals, columns represent mean values and error bars represent ± SEM. A Mann-Whitney test was used for statistical analysis.
**P < 0.01, ***P < 0.001.
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and normal TNF production (Figures 5B, 2B, C, and 3A).
Nonetheless, myeloid cells in the TKO-brain displayed slightly
reduced MHC II expression (Figure 5B), which is expected to be
due to the reduced presence of parasites in the brain in the acute
phase of infection and was not observed on Ly6Chi inflammatory
monocytes and DCs obtained from the spleens of TKO mice
(Figures 2B, C).

T. gondii activates resident microglia, which induces the
recruitment of immune cells into the brain (39). In infected
TKO mice, MHC I and TNF expression by microglia was
significantly reduced compared to WT mice (Figure 5C). In
contrast, circulating TNF was not altered in non-infected TKO
mice (Supplementary Figure 2D). Furthermore, in the brain of
infected TKOmice the size of CD8+ T cell pool and availability to
produce IFNg were slightly reduced (Figure 5D). The number
and IFNg production of brain CD4+ T cells was unchanged
whereas the number of NK1.1+ cells as well as IFNg production,
were slightly increased in acutely infected TKO mice (Figures
5E, F). To directly assess the ability of CD8+ T cells to migrate to
sites of T. gondii infection, we used a transwell migration assay.
CD8+ T cells were isolated from T. gondii-infected WT and TKO
Frontiers in Immunology | www.frontiersin.org 7127
mice and stimulated using CCL21 or CXCL12. Interestingly,
CD8+ T cells from spleens of infected TKO mice showed
significantly reduced migration upon both CCL21 and
CXCL12 ex vivo stimulation compared to WT mice
(Supplementary Figure 3A). This indicates that CD8+ T cells
from TKO mice possess a reduced capacity to migrate to the site
of infection in the acute phase that suggests a failure of the
immune system to limit infection by inducing tachyzoite
differentiation into bradyzoites.

An alternative explanation for the reduced pathogen burden in
brains of acutely infected TKO mice could be reduced parasite
shuttling by myeloid cells, a process which is CCL2-dependent (3,
39). In the serum of infected TKO mice CCL2 levels were slightly,
(albeit non-significantly) reduced (Supplementary Figure 3B)
which aligns with the number of myeloid cells in the brain
(Figure 5B). Correspondingly, mRNA levels of CCL2 and other
myeloid-associated chemokines such as CCL3, CXCL2 and
CXCL10 were reduced in brains of infected TKO mice at day 10
p.i. (Supplementary Figure 3C). This was also the case for IFNg
(Supplementary Figure 3D), which is known to induce
chemokine gene activity (40). Overall, an absent IP correlates
A B C

A’ B’ C’

FIGURE 3 | Cytokine production by APCs in spleens of T. gondii infected mice. Immune cells were isolated from the spleens of T. gondii infected WT (WT Tg, n=5)
and TKO (TKO Tg, n=4) mice on day 10 p.i. Isolated cells were then restimulated with T. gondii-lysate antigen (TLA) for 6 hours, stained and analyzed by flow
cytometry. (A–C) Histograms of Ly6Chi monocytes and DCs intracellular production of (A) TNF (B) IL-12 and (C) iNOS and their resulting MFI expression (A’–C’).
The histogram values (right side) represent the average percentage of positively expressing cells (determined by isotype control; in gray) for each respective immune
marker and group (WT in black; TKO in red outline). The bar (A–C) outlines where positive expression begins for each respective cell and marker. Data shown in
(A–C) are representatives of three individual experiments. Data shown in (A’–C’) represent three independent experiments; symbols represent individual animals,
columns represent mean values and error bars represent ± SEM. 2way ANOVA following Fisher’s LSD test was used for statistical analysis. *P < 0.05.
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with impaired early induction of adaptive immune responses,
leading to a loss of parasite control in the acute phase of infection,
subsequently resulting in an increased peripheral parasite burden.

WT and TKO Mice During Chronic T. gondii Infection
Parasite control during chronic neuroinflammation requires
persistent, basal levels of inflammation involving resident
microglia and recruited immune cells such as monocytes and
T cells. Upon chronic infection, we observed an increased
parasite burden in combination with a more severe weight loss
in TKO compared to WT mice (Figure 1E) that resembled
reactivated toxoplasmosis. To further investigate this phenotype,
immune cells were isolated from brains of chronically infected
mice and analyzed via flow cytometry. Ly6Chi inflammatory
monocytes and DCs exhibited comparable total numbers in the
brains of infected TKO mice (Figure 6A). Next, we determined
the influence of the IP on the functional capacity of resident
microglia and recruited immune cells in chronic inflammation.
Again, expression of MHC I continued to be impaired as all cell
types exhibited significant reduced expression (Figure 6B).
Microglia showed a slight increased expression of MHC II in
the chronic stage of infection, which is expected with an
increased parasite burden (Figure 6C). To investigate the
effector function of these cells in the chronic stage of infection,
we then analyzed their production of TNF, IL-12 and iNOS.
Frontiers in Immunology | www.frontiersin.org 8128
Ly6Chi monocytes recruited into the brains of TKO mice showed
a trend of increased TNF expression whereas significantly fewer
microglia were producing TNF when compared to WT mice
(Figure 6D,D’). Fewer DCs produced IL-12 while no differences
in producing microglia or Ly6Chi monocytes could be detected
between WT and TKO mice in the chronic stage of infection
(Figure 6E, E’). Interestingly, when assessing iNOS expression in
these cell types, they all, especially microglia, showed
significantly increased iNOS production in brains of TKO
compared to WT mice (Figure 6F, F’). These results show that
in the chronic stage of infection, TKO mice are able to induce
IFNg-driven anti-parasitic immune responses such as the
expression of iNOS. Although in TKO mice expression of cell
autonomous anti-parasitic effector molecules was induced, they
regardless were not able to sufficiently control parasite
proliferation in the brain. It is crucial to have T. gondii specific
T cells that can recognize active, ongoing parasite infection and
then prime the local cells to adequately defend and prevent
further parasite spread. Thus, we hypothesized that T cells are
responsible for the lack of parasite control in the chronic stage of
infection and we analyzed T cell responses in chronic
inflammation in more detail.

When assessing CD4+ and CD8+ T cell recruitment into the
brain, TKO mice compared to WT mice showed comparable
CD4+ T cell numbers, but a trend for fewer CD8+ T cells
A B
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FIGURE 4 | Reduced CD8+ T cell numbers and impaired Th1 responses in T. gondii infected TKO mice. Immune cells were isolated from the spleens of T. gondii
infected WT (WT Tg, n=5) and TKO (TKO Tg, n=5) mice on day 10 p.i. and analyzed by flow cytometry. Following viability staining and the basic FSC/SSC gating,
viable single cells were determined by first removing CD11b+ and CD3- immune cells. CD3+CD4+ and CD3+CD8+ T cells were identified for further analysis.
CD45+NK1.1+ cells were determined after gating out CD3+, CD8+, Ly6C+ and Ly6G+ cells. The total cell number of (A) CD8+ T cells, (B) CD4+ T cells, (C) NK1.1+

cells and (D) neutrophils, the percentage of IFNg producing cells and their respective IFNg production were measured. Data shown represents three independent
experiments; symbols represent individual animals, columns represent mean values and error bars represent ± SEM. A Mann-Whitney test was used for statistical
analysis. *P < 0.05.
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(Figure 7A). To further assess T cell functionality in response to
T. gondii, we analyzed IFNg and TNF production of CD4+ T cells
as well as IFNg and Granzyme B secretion by CD8+ T cells
following ex vivo TLA stimulation. Granzyme B is a cytotoxic
protein contained in granules of cytotoxic CD8+ T cells that is
able to induce apoptosis in neighboring infected cells after
release. Interestingly, we observed significantly increased
frequencies of IFNg and TNF secreting CD4+ T cells in TKO
mice compared toWTmice (Figure 7B) which is in concordance
with our finding that in whole TKO-brains significantly
enhanced TNF and non-significantly increased IFNg mRNA
levels can be found (Supplementary Figure 3E). Similar to the
immune response in the acute phase of infection, TKO mice
compared to WT mice showed a lower frequency of IFNg
producing CD8+ T cells (Figure 7C). Surprisingly, no
differences of granzyme B containing CD8+ T cells could be
detected between TKO and WT mice in brain tissue in the
chronic stage of infection (Figure 7C). Since it is described that
regulatory T cells (Tregs) mediate T cell suppression during the
acute phase of T. gondii infection, we next analyzed whether
TKO mice have changes in the recruitment of Tregs into the
CNS. And indeed, we found significantly reduced frequencies of
Frontiers in Immunology | www.frontiersin.org 9129
CD4+ Tregs in brains of TKO mice compared to WT mice in the
chronic phase of infection (Figures 7D, E). These results show
that the absence of the IP leads to reduced Treg frequencies in the
T. gondii infection model and subsequent reduced T cell
suppression, resulting in increased cytokine production by
CD4+ T cells (Figure 7B).

The immunoproteasome is crucial to induce T cell
maturation (41). Thus, we further analyzed different T cells
subtypes in respect to their surface expression of CD62L and
CD44, allowing us to distinguish between naïve (CD44-CD62L+),
central memory (CD44+CD62L+) and effector memory
(CD44+CD62L-) T cells. First, we investigated the number of T
cell subtypes recruited into the CNS and observed a significant
reduction of CD8+ T effector memory (Tem) cells but not CD4

+

T effector cells in brains of TKO mice in the chronic phase of
infection (Figures 7F, F’). To assess if this significant difference
in T cell differentiation is restricted to the chronic infection, we
investigated different T cell subtypes of splenocytes in uninfected
mice as well as infected mice in the acute and chronic phase of
infection (Figures 7G, H). Already uninfected TKO mice
showed a significant reduction of naïve CD8+ T cells and vice
versa a significant increase of naïve CD4+ T cells in spleen tissue
A

C D E F

B

FIGURE 5 | Impaired recruitment and IFNg-dependent activation of proinflammatory myeloid cells in TKO mice. Immune cells were isolated from brains of T. gondii
infected WT (WT Tg, n=5) and TKO (TKO Tg, n ≥ 4) mice on day 10 p.i. For the measurement of TNF and IFNg, brain cells were restimulated with TLA for 6 hours
and then stained and analyzed by flow cytometry. Following viability staining and the basic FSC/SSC gating, single cells were chosen for further characterization.
(A) Representative gating strategy using CD45 and CD11b to distinguish between microglia, myeloid cells and lymphoid cells (left plot) and representative plots from
from brain tissue of infected WT (center panel) and TKO (right plot) mice. CD11b+CD45int cells were identified as microglia and CD11b+CD45hi were identified as
recruited myeloid cells then divided into Ly6G- monocytes as depicted in Fig 2A. CD45+CD11b- cells were divided into CD3+CD8+ and CD3+CD4+ T cells.
CD45+NK1.1+ cells were determined after removing CD3+, CD8+, Ly6C+ and Ly6G+ cells. Total number of cells was assessed for recruited (B) myeloid cells,
(D) CD8+ T cells, (E) CD4+ T cells and (F) NK1.1+ cells. Recruited (B) myeloid cells and (C) microglia were measured for their surface expression of MHC I and
MHC II as well as their production of TNF. Recruited (D) CD8+, (E) CD4+ and (F) NK1.1+ cells had their IFNg production quantified. The expression or production of
each immune marker was quantified using the MFI of their respective fluorochromes. Data shown in A is a representative of three independent experiments. Data
shown in (B–F) represents three independent experiments; symbols represent individual animals, columns represent mean values and error bars represent ± SEM.
A Mann-Whitney test for comparing two groups and a 2way ANOVA followed by Fisher’s LSD test for comparing multiple groups was used for statistical analysis.
*P < 0.05; ***P < 0.001.
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compared to WT mice (Figures 7G’, H’ and Supplementary
Figures 2B, C), which is consistent with previous findings (15).
We found that TKO mice compared to WT mice had
significantly increased numbers of naïve CD4+ T cells as well
as comparable numbers of central memory T cells (Tcm) and Tem

cells throughout the infection (Figure 7G, G’’, G’’’).
Splenocytes of TKO mice compared to WT mice possessed

significantly fewer naïve CD8+ T cells in uninfected mice (Figure
7H’). However, during the course of infection WT and TKO
mice had comparable numbers of naïve CD8+ T cells (Figure
7H’’, H’’’), but TKO mice exhibited reduced Tem cells in the
chronic stage of infection (Figure 7H’’’). These data describe that
the absence of the IP hampers the ability to induce effector T cells
and affect CD8+ T cell differentiation into memory/effector T
Frontiers in Immunology | www.frontiersin.org 10130
cells, since an increased proportion of T cells were differentiated
into central memory cells (Figure 7H).

IP Deficiency Affects Apoptosis and Signaling via
STAT3 in TKO Mice in Chronic T. gondii Infection
Since T. gondii is known to infect APCs, DCs in particular, as
well as the IP primarily seems to affect CD8+ T cell numbers by
altered MHC I/peptide presentation, this suggests an important
role for APCs in the brain in the chronic stage of infection. To
further investigate this hypothesis, we determined the
frequencies of apoptotic APCs in brain (Figure 8A) and spleen
(Figure 8B) tissue of WT and TKO mice in the chronic stage of
infection. Using Annexin V and 7AAD, we assessed early and
late apoptotic APCs in infected animals in the chronic stage of
A B C

D E F

D’ E’ F’

FIGURE 6 | Increased anti-parasitic immune response in brains of TKO mice in chronic stage of infection. Immune cells were isolated from brain homogenate of
T. gondii infected WT (WT Tg, n=4) and TKO (TKO Tg, n=4) mice on day 28 p.i. For the measurement of TNF, IL-12 and iNOS brain cells were restimulated with TLA
for 6 hours, stained and analyzed by flow cytometry. Following viability staining and the basic FSC/SSC gating, single cells were chosen for further characterization.
Using the same gating strategy as described for Fig 2A and 5A, CD11b+CD45int microglia (MG), CD11b+CD45hiLy6G-Ly6Chi inflammatory monocytes and
CD11b+CD45+CD11c+ DCs were analyzed. (A) Total cell numbers were calculated as a percentage of live cells found in the brain for Ly6Chi monocytes and DCs.
The surface expression of (B) MHC I and (C) MHC II expression was determined on MG, DCs and Ly6Chi monocytes. Histograms of the intracellular production of
(D) TNF, (E) IL-12 and (F) iNOS and their resulting MFI (D’–F’). The histogram values (right side) represent the percentage of positively expressing cells (determined
by isotype control; in gray) for each respective immune marker and group (WT in black; TKO in red outline). The bar (D–F) outlines where positive expression begins
for each respective cell and marker. Data shown represent four independent experiments; symbols represent individual animals, columns represent mean values and
error bars represent ± SEM. 2way ANOVA followed by Fisher’s LSD test was performed for statistical analysis. *P < 0.05, ***P < 0.001.
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infection. First analyzing CD11b+ cells (to include microglia) in
brains from infected animals on day 28 p.i., we detected
comparable early apoptotic, but significantly increased
frequencies of late apoptotic cells in TKO mice compared to
WT mice (Figure 8A). Splenocytes were isolated from infected
animals on day 28 p.i. and all CD11b+ splenocytes were further
divided into Ly6Chi and Ly6Clo cells. We observed significantly
increased frequencies of early apoptotic Ly6Clo cells, whereas
significantly increased frequencies of late apoptotic Ly6Chi and
Ly6Clo cells were found (Figure 8B). Thus, with the absence of
the IP, APCs in brain and spleen tissue of chronically infected
animals have increased rates of apoptosis (Figures 8A, B). It is
conceivable that this is a potential mechanism, explaining the
observed reduced numbers of CD8+ Tem cells in brains of TKO
mice (Figures 7F’).

During inflammation, the IP is a crucial component needed
for cell signaling and protein degradation. Studies have
hypothesized that the IP plays a role in regulating pro-
Frontiers in Immunology | www.frontiersin.org 11131
inflammatory cytokines (42, 43). Thus, we aimed to determine
if deficiency of the IP affects any major cytokine signaling
pathways found in APCs such as MAPK/NF-kB or STAT
pathways. These signaling pathways are known to be
essentially involved in T. gondii containment (35, 44, 45) and
further can be manipulated by the parasite itself thereby using
them to evade the host immune system (46, 47). Bone marrow
derived macrophages (BMDMs) were stimulated with TLA ex
vivo and protein expression was analyzed via immunoblot
(Figures 8C). We analyzed different key proteins from
different stages of the MAPK/NF-kB pathway. No differences
in the phosphorylation of MEK and ERK could be detected
between WT and TKO mice following stimulation. We further
analyzed STAT3 and its phosphorylated variant (pSTAT3) as a
key component of the STAT pathway. BMDMs of TKO mice
compared to WT mice showed a marked reduction in STAT3
phosphorylation. It is described that STAT3, and subsequent
pSTAT3, are crucial components for cell survival and IL-6/10/12
A

F G G’ G’’ G’’’

F’ H H’ H’’ H’’’

B C D E

FIGURE 7 | Altered T cell differentiation in infected TKO mice. Immune cells were isolated from brain homogenate of T. gondii infected WT (WT Tg, n=4) and TKO
(TKO Tg, n=4) mice on day 28 p.i. For the measurement of IFNg, TNF and Granzyme B, cells were restimulated with TLA for 6 hours, stained and analyzed by flow
cytometry. (A) Total number of CD4+ and CD8+ T cells recruited to the brain. (B, C) Intracellular production of proteins in T cells was characterized by the
percentage of cells positive for IFNg, Granzyme B or TNF. (D) Representative gating for regulatory T cells after selecting CD11b-CD3+ cells. Tregs were determined
by gating for CD4+FoxP3+ cells. (E) The frequency of recruited FoxP3+ cells was calculated as a percentage of CD4+ T cells in the brain. Using CD62L and CD44,
CD4+ and CD8+ T cells were divided into naïve (CD62L+CD44-), T central memory (Tcm, CD62L

+CD44+) and T effector memory (Teff, CD62L
-CD44+) populations.

Total number of differentiated (F) CD4+ and (F’) CD8+ T cells from the brains of WT and TKO mice from day 28 p.i. (G, H) Immune cells were isolated from spleens
at steady state, day 10 p.i. (acute) and day 28 p.i. (chronic) from WT and TKO mice and analyzed by flow cytometry. (G, H) Representative gating strategies of these
T cell subpopulations for both CD4+ and CD8+ T cells (acute stage shown). The absolute number of CD4+ and CD8+ T cells for the respective subpopulations from
WT and TKO mice (G’, H’) non-infected, (G’’, H’’) acute stage infection, (G’’’, H’’’) chronic stage infection. Data shown in D, G & H are representatives of three
independent experiments. Data shown in A–C, E, F, F’, G’-G’’’ and H’–H’’’ represent four independent experiments; symbols represent individual animals, columns
represent mean values and error bars represent ± SEM. In C&E a Mann-Whitney test for comparing two groups and in A, B, F, F’, G–G’’’ and H–H’’’ a 2way
ANOVA followed by Fisher’s LSD test were used for statistical analysis. *P < 0.05; **P < 0.01, ***P < 0.001.
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signaling (48–50). This finding fits to our observation of
increased apoptosis in brains of TKO mice in the chronic stage
of infection. These data highlight that the absence of the
IP impairs STAT3 signaling via dysregulated phosphorylation
(Figure 8C and Supplementary Figures 5A, B), correlating with
the observed reduced myeloid cell survival (Figures 8A, B) and
altered T cell differentiation (Figures 7F, F’) in infected TKO
mice in the chronic stage of infection.
DISCUSSION

The results presented in the current study demonstrate that the
IP is a crucial component of the immune system for the
transition between innate and adaptive immune responses
against T. gondii. The absence of the IP subunits LMP2,
MECL-1 and LMP7 indirectly showed a reduced ability of
APCs to present peptides to T cells by displaying decreased
MHC I cell surface level, thereby reducing the pool of the
available CD8+ T cells, all crucial steps for T. gondii
containment and clearance. Furthermore, these APCs were
Frontiers in Immunology | www.frontiersin.org 12132
more prone to apoptosis and lacked STAT3 phosphorylation.
Ultimately, this impaired immune response lead to an inability of
TKO mice to control parasite proliferation, causing reactivation
of toxoplasmosis resulting in an increased susceptibility of TKO
mice in a T. gondii infection model.

TKO mice showed an increased weight loss during the
chronic course of T. gondii infection that is often associated
with an enhanced immune response. And in fact, brain tissue of
chronically infected TKO mice showed increased TNF and IFNg
as well as increased production of these cytokines released by
CD4+ T cells in the chronic phase of infection. Nevertheless, T.
gondii infected TKO mice showed an inability to control the
parasite burden, particularly, in the acute phase but also in the
chronic phase of infection. This inability for early parasite
containment is presumably caused by a delayed antigen
presentation by APCs. Dysregulated antigen presentation by
APCs can delay parasite specific T cell activation and
proliferation thereby delaying expression of IFNg induced anti-
parasitic effector molecules. This mechanism aligns with other
infection models using TKO animals. Infection with Brucella
abortus in TKO mice led to an increased bacterial burden. This
was associated with an impaired MHC I presentation of CD11c+

cells and a reduced percentage of both CD4+ and CD8+ IFNg
A B

C

FIGURE 8 | Altered STAT3 signaling in TKO APCs. Immune cells were isolated from the brain and spleen tissue of T. gondii-infected WT (WT Tg, n=5) and TKO
(TKO Tg, n=5) mice on day 28 p.i. and analyzed by flow cytometry. (A, B) Isolated cells were stained with Annexin V and 7AAD to determine early apoptotic (7AAD-

AnnexinV+) and late apoptotic (7AAD+AnnexinV+) cells. (A) Percentage of early and late apoptotic CD11b+ cells isolated from brain tissue. (B) Percentage of early
and late apoptotic Ly6Chi and Ly6Clo mononuclear cells isolated from spleen. (C) Bone marrow derived macrophages from WT and TKO mice were treated with
30mg/ml toxoplasma lysate for the depicted time. Proteins were isolated and quantified via Bradford assay and immunoblotted using pMEK (Ser217/221), Erk, pErk
(Thr202/Tyr204), Stat3, pStat3 (Tyr705) and GAPDH antibodies. For apoptosis assay, n=5. Data shown in (A, B) represent three independent experiments; symbols
represent individual animals, columns represent mean values and error bars represent ± SEM. Data shown in (C) represents a representative of three independent
experiments. 2way ANOVA followed by Fisher’s LSD test was used for statistical analysis. *P < 0.05, **P < 0.01.
April 2021 | Volume 12 | Article 619465

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


French et al. Immunoproteasomes in Toxoplasma gondii Induced Neuroinflammation
producing T cells as well as fewer Granzyme B producing CD8+

T cells (37). Similarly, infection with the protozaon Trypanosoma
cruzi in TKO mice resulted in reduced MHC I expression and
altered CD8+ effector T cell function, in both quantity
and quality as there were fewer overall CD8+ effector cells and
fewer IFNg producers (36). However, depending on the pathogen
type, its organ specificity and impaired IP subunit expression as
well as the duration of the challenge, the IP’s contribution varies.

In a Leishmania major infection model, the absence of the
subunit LMP7 had no effect on the ability of DCs to stimulate CD8+

T cells in bothWT and LMP7-/- mice, as well as the authors showed
similar IFNg production and T cell proliferation (51). The role of
LMP7 was further highlighted in a malaria infection model, since
the absence of LMP7 resulted in lower parasite growth, reduced
parasite burden but an enhanced immune response with increased
phagocytosis activity (52). LMP7-/- mice displayed reduced MHC I
expression on APCs (53) and infected LMP2-/- mice showed a
strong reduction (~70%) of CD8+ lymphocytes compared to WT
mice (54). In addition, MECL-1-/- mice similar to LMP2-/- mice,
showed a reduction of CD8+ T cells in the spleen compared to WT
mice (55), at which MECL-1 contributes to T cell homeostatic
expansion (56). Notably, using the LCMV infection model,
Nussbaum et al., observed that although LMP2-/- or LMP7-/- mice
had fewer CD8+ T cells, these animals were able to mount strong
CD8+ anti-viral immune responses demonstrated by similar kinetics
of viral clearance compared toWTmice (57). In addition, analyzing
the role of mouse adenovirus type 1 infection in pathogenesis of
TKOmice the authors detected age-dependent differing effects (58).
All these studies demonstrate that the role of the IP during infection
is multifaceted and most likely pathogen specific.

DCs and Ly6Chi monocytes in spleens of acutely infected TKO
mice possessed a slightly increased production of TNF but not IL-
12, indicating that parasite detection was still intact. However,
Ly6Chi monocytes and DCs from TKO mice showed reduced cell
numbers with impaired MHC I expression in spleen and brain
tissue during both the acute and the chronic stage of infection. This
reduced recruitment of APCs to the sites of infection not only delays
IFNg induced T cell priming, but also leads to a delayed initiation of
the adaptive immune response as fewer APCs are able to present
parasite specific antigens. Thus, in the acute phase of infection an
attenuated inflammation can be detected which is similar to the
phenotype observed in models of autoimmune-related myocarditis
and experimental autoimmune encephalomyelitis due to
immunoproteasome inhibition (59, 60). In contrast, an opposite
scenario could be observed during the chronic stage of infection
where Ly6Chi monocytes and DCs could be found in the brain of
TKO mice which released higher levels of TNF and iNOS. In
addition, proinflammatory cytokines were increased in whole brain
homogenates of chronically infected TKO mice. These results
indicate a dysregulated immune response to T. gondii. In the
absence of the immunoproteasome, an efficient immune response
cannot be initiated during the acute phase of infection. Further, the
resulting excessive inflammatory response in the chronic phase is
insufficient to efficiently control the infection. This is in
concordance with previously published data showing that IP-
formation is crucial for protection from virus-induced
Frontiers in Immunology | www.frontiersin.org 13133
inflammatory tissue damage as observed in coxsackievirus B3
myocarditis (27). Notably, enhanced NF-kB activity and TNF
production can be mediated even in the absence of
immunoproteasomes as observed in our study e.g. by increasing
the degradation of the NF-kB inhibitor IkBa through 20S
proteasome complexes associated with the proteasome activator
PA28 that is constitutively expressed in various tissues (61, 62).

An impaired MHC I-antigen peptide activation of CD8+ T
cells is in line with previous results illustrating the pivotal role of
the IP subunit LMP7 during T. gondii infection in regard to
induction of DC driven activation of cytotoxic CD8+ T cells (24).
Furthermore, mice deficient for the single IP subunits LMP2 or
LMP7 showed increased susceptibility to T. gondii infection and
displayed less IFNg-secreting CD8+ T cells following infection
although they had similar numbers of activated CD8+ T cells
compared toWTmice (24). It should be noted that in our study a
lower dose of T. gondii as well as a different infection route was
used, thus reducing inflammation that resulted in reduced
susceptibility of TKO mice compared to single subunit knock
out mice in T. gondii infection (24).

As described above, T. gondii infected TKO mice showed a
clearly reduced capability of APCs for antigen presentation, further
suggesting a delayed induction of a Th1 adaptive immune response
to T. gondii in TKO mice. And in indeed, we observed reduced
numbers of CD8+ T cells as well as IFNg producing CD4+ T cells in
spleens of infected TKO mice in the acute phase of T. gondii
infection, whereby parasite proliferation is not restricted properly.
In addition, we detected increased numbers of NK1.1+ cells in
brains of infected TKO mice which could possibly compensate for
the absence of activated CD8+ T cells.

Similar to the NK1.1+ cells in brains of TKO mice in the acute
phase of infection, it seems that CD4+ T cells in the brain of TKO
mice in the chronic phase of infection could compensate for the
reduced CD8+ T cell response. We found significantly more IFNg
and TNF producing CD4+ T cells in brains of infected TKOmice in
the chronic stage of infection. This correlates with an increase in
iNOS production inmononuclear cells. Given the fact that iNOS is a
crucial anti-parasitic effector molecule during chronic infection (63),
it could compensate in part for the lack of CD8-mediated
intracellular parasite clearance in the brain. In contrast, TKO
mice exhibited reduced CD8+ Tem cells in the chronic stage of
infection suggesting that the absence of the IP hampers the ability to
induce effector T cells timely after infectious challenge.

Regulatory T cells (Tregs), as a subpopulation of T cells, are
important to suppress T cell function to regulate self-tolerance
thereby preventing autoimmunity (64). We hypothesized that fewer
Tregs would affect the contraction phase of the T cell response.
Usually, the contraction phase begins once the pathogen has been
cleared. This in turn leads to the upregulation of exhaustionmarkers
resulting in apoptosis (65–67). Although parasites are still present, it
is possible that the reduced MHC I/TCR signaling leads to reduced
CD8+ T cell interaction with their associated antigen, thus behaving
as if there is no pathogen present, ultimately starting exhaustion
earlier than anticipated. Infected TKO mice, however, showed
comparable expression of T cell exhaustion and apoptosis
markers in CD8+ and CD4+ T cells (Supplementary Figure 4).
April 2021 | Volume 12 | Article 619465

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


French et al. Immunoproteasomes in Toxoplasma gondii Induced Neuroinflammation
Further, we found increased numbers of apoptotic monocytes in
spleens of TKOmice in the chronic phase of infection. This could be
explained by the inability of TKO derived myeloid cells to induce
STAT3-signaling by its phosphorylation, a mechanism which has
also been described in Th17 cells after IP inhibition (68). Consistent
with this finding, STAT3-deficiency in B lymphocytes has been
shown to induce apoptosis in a model of experimental autoimmune
uveitis (69). However, it still has to be investigated whether the
observed apoptosis is caused by direct parasite invasion or by the
absence of the IP itself.

In summary, our results established the importance of the IP in
infection-induced neuroinflammation with T. gondii. Without the
IP, animals were impeded in developing an efficientT. gondii specific
Th1 immune response. With reduced MHC I expression, CD8+

T cell numbers and IFNg in the acute phase, TKO mice were not
able to control parasite proliferation, especially by their inability to
promote the transition of the acute phase to an efficient long lasting
immune response during the chronic stage of T. gondii infection.

We described an enhanced compensatory CD4+ T cell effector
function in TKOmice with increased IFNg release during the course
of infection. In addition, we detected increased production of iNOS
in microglia and myeloid subsets and overall enhanced TNF level in
brain tissue of chronically infected TKO animals as well as reduced
numbers of regulatory T cells, reduced STAT3 phosphorylation but
increased induction of apoptosis in myeloid cells. This study
demonstrates that IP deficiency leads to impaired parasite control
and thus increased susceptibility of these animals to T. gondii,
highlighting the importance of the IP in terms of induction and
maintenance of T. gondii-induced neuroinflammation.
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Tissue-resident immune cells reside in distinct niches across organs, where they
contribute to tissue homeostasis and rapidly respond to perturbations in the local
microenvironment. Innate lymphoid cells (ILCs) are a family of innate immune cells that
regulate immune and tissue homeostasis. Across anatomical locations throughout the
body, ILCs adopt tissue-specific fates, differing from circulating ILC populations.
Adaptations of ILCs to microenvironmental changes have been documented in several
inflammatory contexts, including obesity, asthma, and inflammatory bowel disease. While
our understanding of ILC functions within tissues have predominantly been based on
mouse studies, development of advanced single cell platforms to study tissue-resident
ILCs in humans and emerging patient-based data is providing new insights into this
lymphocyte family. Within this review, we discuss current concepts of ILC fate and
function, exploring tissue-specific functions of ILCs and their contribution to health and
disease across organ systems.

Keywords: innate lymphoid cell (ILC), NK cell, tissue-resident immune cells, tissue homeostasis, autoimmunity,
inflammation, immune tolerance
INTRODUCTION

Innate lymphoid cells (ILCs) orchestrate immune responses to signals such as cytokines, alarmins,
neuropeptides and hormones, interacting with hematopoietic and non-hematopoietic cells alike.
ILCs lack rearranged antigen receptors and while predominantly tissue-resident, are also observed
in circulation and secondary lymphoid tissues where they exhibit distinct spatial and temporal
functions (1). Outside of roles in immunity, ILCs have key roles in maintaining tissue homeostasis,
promoting tissue repair, and regulating inflammation. Via crosstalk with parenchymal cells, ILCs
are also involved in processes previously thought to lack immune system influence, such as thermal
regulation, neuronal signal transduction, circadian rhythms, and tissue remodeling (2–6). The
regulation of both immune functions and tissue-specific processes by ILCs highlights the
importance of understanding how they respond and function within tissue niches, and
conversely how ILC biology is controlled by the microenvironment in which they reside.

Development of ILCs in non-lymphoid tissues occurs when circulating ILC progenitors seed tissue
niches, and requires the expression of local survival factors including IL-7 and thymic stromal
lymphopoietin (TSLP) (7, 8). Differentiated ILCs express signature cytokines and transcription
factors that parallel CD4+ and CD8+ T cells in both humans and mice (Figure 1) (6, 8), and can be
org March 2022 | Volume 13 | Article 8369991137
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broadly categorizedas cytotoxic (NKcells) ornon-cytotoxic ‘helper’
ILCs. Human NK cells express TBET and Eomesodermin
(EOMES), release IFN-g and TNF-a and are grouped into
CD56dimCD16+ or CD56brightCD16- NK cells. CD56dimCD16+

NK cells express killer cell immunoglobulin-like receptors (KIRs)
and exhibit profound cytotoxic potential (6, 8). CD56brightCD16-

NK cells lack KIR expression but are superior producers of IFN-g
and TNF-a (9, 10). NK cells discriminate between self and non-self
or altered-self and function in anti-viral and anti-tumor immunity
similar to CD8+ cytotoxic T cells (6, 8). ‘Helper’ ILC (hILCs) are
non-cytotoxic and are classified based on function and
development into Group 1 (ILC1s), Group 2 (ILC2s), Group 3
(ILC3s) as well as Lymphoid Tissue inducer LTi cells (6). ILC1s
produce IFN-g in a TBET-dependent but EOMES-independent
manner (6). ILC2s express GATA-3 and RORa and secrete
interleukin (IL)-4, IL-5, IL-9, IL-13 and Amphiregulin (AREG),
aiding in anti-parasite immunity or the promotion of allergic
responses (6). ILC3s rely on the transcription factor RORC and
produce IL-22, IL-17, and GM-CSF (6). ILC3s include subsets
which express natural cytotoxicity receptors (NCRs) NKp44
(human) and NKp46 (mouse and human). LTi cells express
ILC3-associated transcription factors and cytokines but also
express surface Lymphotoxin (sLT) (11). Further, ILCs with
immunosuppressive activity have been identified in cancer,
intestinal inflammation, allergy, autoimmunity and ischemia
reperfusion injury (12–18). These include both NK-like ILCs, IL-
10producing ILC2s (ILC210) and ID3

+ regulatory ILCs [reviewed in
Jegatheeswaran et al. (19)]. Despite growing appreciation of ILCs
with regulatory functions, their development and function are
poorly characterized, particularly in humans.

Mouse studies identified central roles for ILCs in regulating
tissue homeostasis, repair and remodeling, transforming our
understanding of cellular interactions between immune cells and
the tissues in which they reside. Across tissue microenvironments,
ILCs adapt and acquire distinct phenotypes and functional
properties (Figure 2). While ILC subsets have important
functions within these tissues, dysregulation of ILC numbers and
functions is associated with diverse human pathologies including
arthritis, diabetes, psoriasis, asthma, and inflammatory bowel
disease [reviewed in (20)], highlighting the need to identify how
local tissue factors promote or inhibit inflammatory ILC responses.
Within this review, we explore NK cell and hILC biology across
different tissues in health and disease, highlighting evidence of
similarities between human and mouse ILC function where data is
available. We summarize current understanding of organ-specific
functions of ILCs, focusing on their contributions to tissue
homeostasis, host-defense, and inflammatory disease progression
across the body.
ILCS IN THE NERVOUS SYSTEM

While the central nervous system (CNS) is considered an immune-
privileged site with minimal immune infiltrate, ILCs have been
identified in the CNS of healthy humans and mice, accounting for
~2.5% of leukocytes by sequencing (21–25). CNS-resident NK cells
are present in low proportions in the naïve mouse brain and
Frontiers in Immunology | www.frontiersin.org 2138
enriched in a IL-2R+ CD27+ CD62Lhigh subset, suggesting a more
mature phenotype compared to infiltrating NK cells (22). CNS
ILC2s accumulate with age and reside in the healthy murine
meninges, localizing within dural sinuses and surrounding blood
vessels (23–25). Interestingly, the transcriptional profile of
meningeal ILC2s showed downregulation of genes related to
metabolism, signal transduction, and inflammation compared to
lung-derived ILC2s, suggesting a tissue-specific quiescent
adaptation to the CNS environment (23). Upon spinal cord
injury in mice, ILC2s migrate to the injured site independently of
IL-33 and upregulate Calca (CGRP) and its receptor Ramp3,
associated with nerve regeneration (23), yet the regenerative
activity of ILC2s in the spinal cord remains to be
demonstrated experimentally.

ILCs in Multiple Sclerosis
Multiple sclerosis (MS) is a demyelinating and neurodegenerative
autoimmune disease that is one of the most common neurological
disabilities in young adults (26). NK cells mediate several
treatment-related effects in MS patients (Figure 3A). For
example, Daclizumab targets the high affinity IL-2 receptor
(CD25), inhibiting activated T cells and resulting in greater
availability of IL-2, which expands CD56bright NK cells
expressing high levels of the medium-affinity IL-2 receptor chain
(CD122) (18, 27). This expansion of CD56bright NK cells or
elevated baseline expression of CD122 in patients correlated
with lower inflammation and fewer inflammatory lesions (18,
28). While T cells are only modestly depleted by Daclizumab
directly, induction of T cell apoptosis by CD56bright NK cells is
supported by findings of Granzyme K+ NK cell co-localization
with T cells in active MS lesions (18, 29, 30). Takahashi et al.
further found that during the remission phase of MS, CD95
expression increased on NK cells alongside decreased response
of memory T cells, suggesting that CD95+ NK cells regulate
autoimmune memory T cell responses during remission (31). In
autologous hematopoietic stem cell transplantation, another MS
treatment modality, NK cells reconstitute faster than CD4+ T cells
and regulate disease-promoting Th17 cells via NKG2D-mediated
cytotoxicity, preventing lesion formation and relapse (32).

A higher ratio of CD56bright to CD56dim NK cells is observed
in the cerebrospinal fluid of patients with MS compared to those
with other inflammatory and non-inflammatory neurological
diseases, suggesting an MS-specific alteration in resident NK
cells with controversial effects on the abundance of NK cells in
circulation (30, 33, 34). Despite conflicting findings regarding
abundance, circulating CD56bright NK cells from MS patients
have reduced IFN-g production in response to IL-12 and an
impaired ability to regulate autologous CD4+ T cells compared to
healthy controls (33, 35). This impaired regulatory capacity was
due to HLA-E upregulation on autologous T cells engaging the
inhibitory receptor NKG2A on NK cells (35). Further, DNAM-1
and 2B4 were reduced on NK cells alongside reduced expression
of the DNAM-1 ligand CD155 on CD4+ T cells, while
Daclizumab treatment induced CD155 upregulation on T cells
to partially rescue the impaired ability of NK cells to regulate
autologous T cells (30). A genome-wide association study of MS
patients demonstrated lower expression of TBX21 and EOMES in
March 2022 | Volume 13 | Article 836999
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NK cells, supporting that impairment of NK cells may be a driver
of MS (36).

Using the experimental autoimmune encephalomyelitis (EAE)
model ofMS, Hao et al. demonstrated the importance of CX3CR1-
mediated recruitment in generating disease-ameliorating CNS-
resident mouse NK cells (37). Transmigration of NK cells into the
CNS partially depends on VLA-4 binding to endothelial VCAM-1,
as antibody blockade of VLA-4 reduces NK cell recruitment by 40-
70% (30, 38). Absence from or blocked transmigration results in
excessive proliferation of myelin-reactive CD4+ T helper 17
(Th17) cells, indicating that NK cells must be within the CNS to
limit myelin-specific T cell activity and disease progression (37).
Mouse NK cell-mediated disease amelioration required an NCR-
and perforin-dependent lysis of microglia to abrogate Th17
expansion (37). The tight proximity of microglia and NK cells
requires reciprocal chemoattraction through secretion of MIP-1a
and MCP-1 by NK cells and microglia, respectively (37, 39).
Frontiers in Immunology | www.frontiersin.org 3139
Additionally, NK cells dampen EAE pathogenesis by directly
modulating infiltrating CCR2+Ly6Chi monocytes in an
acetylcholine-dependent fashion. Adoptive-transfer of choline
acetyltransferase (ChAT)-expressing NK cells into the CNS of
Cx3cr1-/- mice reduced the abundance of infiltrating monocytes
(40). ChAT+ NK cells dampened TNF-a, IL-1b, IL-12 and Qa-1
expression by monocytes through engaging the a7-nicotinic
acetylcholine receptor, rendering myeloid cells more susceptible
to lysis (40). ChAT+ NK cells preferentially localize to active
demyelinated lesions in the human brain, suggesting this
mechanism of microglial regulation may translate to human MS
as well (40). While dampening myeloid and T cell activity reduces
disease severity, murine NK cells negatively impact regeneration
through lysis of Qa-1low neuronal stem cells in the sub-ventricular
zone, altering neuronal repair and impairing recovery in later
disease (41). Of note, NK cell activation via NKG2D triggered
motor neuron destruction in models of amyotrophic lateral
FIGURE 1 | Common phenotypic markers of mice (top) and human (bottom) ILCs and their common cytokine expression profiles. Cytotoxic Natural Killer cells can
be subdivided into two major subsets based on surface marker expression in both mice and humans. In mice, NK cells are subdivided into two subsets based on
CD27 and CD11b expression: CD27highCD11b- immature NK cells and mature CD27lowCD11b+ NK cells. In humans, CD56brightCD16- and CD56dimCD16+ are
generally used to identify immature and mature NK cells in blood. However, tissue NK cells often display a CD56brightCD16- phenotype. ILC1s, ILC2s, and ILC3s are
classified based on surface marker and transcription factor expression profiles that parallel CD4+ T helper subsets. ILC3s are further subdivided into natural
cytotoxicity receptor (NCR)+ and NCR- subsets. Created with Biorender.org.
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sclerosis, suggesting pathological NK cell-mediated lysis of
neurons is not specific to MS/EAE (42).

Other ILCs have been identified in MS too, although
inconsistent phenotyping has hindered identification of these
ILCs. A sizable fraction of CD3- IL-17+ RORgt+ cells associate
with newly formed meningeal lymphoid follicles of MS patients,
suggestive of ILC3 involvement (43). In mice, CD3-RORgt+
Frontiers in Immunology | www.frontiersin.org 4140
populations in the cerebellum after EAE induction were
predominantly CD4-, consistent with ILC3 identity (44).
Hatfield et al. reported both NCR+ and NCR- ILC3s and CD4+

CD3- LTi-like ILC3s within the meninges of healthy mice which
proliferated and accumulated downstream of c-kit signaling
during EAE induction (45). Meningeal ILC3s produce IL-17
and GM-CSF, and express co-stimulatory molecules OX40L
FIGURE 2 | Body-wide distribution and surface phenotypes of human ILCs. Surface marker expression of CD56dim NK cells (teal), CD56brightNK cells (dark blue),
ILC1s (purple), ILC2s (green), NCR- ILC3s (red) and NCR+ ILC3s (pink) in nervous system, lung, heart, liver, kidney, gut, reproductive system, adipose tissue, and
skin. ILC subsets that have not yet been identified during steady state visualized in lighter color. Represented selection of ILC markers is based on the consistent use
of these markers across multiple independent studies. Created with Biorender.org.
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and CD30L. They accumulated near Th17 cells and antigen
presenting cells (APCs) and facilitated T cell activation and entry
into the brain parenchyma in a T-bet-dependent fashion,
h i gh l i gh t ing a ro l e f o r ILC3s in e s t ab l i sh ing a
microenvironment that sustains Th17 responses in EAE (45, 46).

Helper ILCs (hILCs) are also affected by Daclizumab treatment
and appear to play a sex-biased role in MS/EAE. Untreated MS
patients presenting with elevated white blood cell counts displayed
higher levels of RORgt+ ILCs in their cerebrospinal fluid (47).
Daclizumab treatment lowered CXCL13 levels and the abundance
of Lin-c-kit+RORgt+ ILCs, suggesting that ILC3 inhibition may be
another beneficial effect of Daclizumab treatment (48). In vitro
differentiation of c-kit+ ILC precursors and CD34+ hematopoietic
progenitor cells under high IL-2 conditions favored the
Frontiers in Immunology | www.frontiersin.org 5141
development of CD56bright NK cells and restrained ILC3
differentiation, implying that greater in vivo IL-2 availability
affects the development of ILCs by altering subset composition
(48). MS has a higher prevalence in females and is correlated with
reduced accumulation of ILC2s in EAE models (49). Interestingly,
male mice that have reduced c-kit signaling (KitW/Wv) failed to
accumulate ILC2s and adopted a female disease phenotype
suggesting a sex-dependent role for ILC2s in protection from
EAE pathogenesis (49). Il33 expression is only upregulated in male
mice after myelin peptide immunization, and IL-33
administration in female mice expands ILC2s and provides
protection from EAE, while anti-IL-33 treatment abrogates
protection in male mice, further supporting sex effects on ILC2
function, dependent on differential IL-33 availability (50).
B

C

A

FIGURE 3 | ILCs in the nervous system. Limited information exists on human ILCs in the nervous system at steady state due to challenges in obtaining samples,
however, several studies focus on ILC activity in multiple sclerosis or stroke. (A) Daclizumab-driven inhibition of T cells resulted in the expansion of NK cells and the
elevated lysis of T cells. Daclizumab treatment lowers the abundance of Lin-c-kit+RORC2+ ILCs and dampens Th17-associated inflammation by lowering IL-17 and
GM-CSF. ChAT+ NK cells preferentially localize to demyelinated lesions in the human brain to dampen monocyte-driven inflammation via the a7-nicotinic
acetylcholine receptor (a7nAChR), rendering myeloid cells more susceptible to lysis at early stages of MS. Conversely, NK cell-mediated lysis negatively impacts
regeneration during later stages of MS by targeting, Qa-1low neuronal stem cells. NK cell activation may be impaired by NKG2A/HLA-E interactions with autologous
CD4+ T cells. (B) After a stroke, CX3CL1 from hypoxic neurons recruits NK cells, while local IL-15 levels facilitate NK cell enrichment and promote high NKG2D
expression and neuronal lysis. (C) ILC2s impact neurological functions in murine brain and are supported by exogenous IL-33 to suppress T cell inflammation and
enhance neurogenesis. Created with Biorender.org.
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ILCs in Cerebral Ischemia (Stroke)
After a stroke, human peripheral blood NK cells are reduced
early (< 72h) and the degree of reduction as well as expression of
activation markers positively correlates with infarct volume (51,
52). Within 12 hours of intracerebral hemorrhage,
CD69+Perforin+ NK cells become the dominant immune cell
type in perihematomal regions (21). 24h following a stroke,
CD69+NKp46+ cell numbers peaked in the brain and remained
elevated (52). In mice, the accumulation of NK cells during the
acute phase of stroke is mediated by the release of CX3CL1 by
hypoxic neurons (53). Recruited NK cells accumulate in an IL-
15-rich environment, adopt an activated phenotype, and mediate
neuronal lysis through missing-self activation (Figure 3B) (53).
Ischemia-reperfusion injury (IRI) induces IL-15 production by
neurons, astrocytes and microglia, blockade of which reduced
IFN-g+ NK cells in the murine brain (54). Liu et al. reported that
cholinergic signaling in the brain and catecholaminergic
signaling in the periphery suppressed NK cell function after
cerebral ischemia, contributing to post-stroke susceptibility to
infection (52). While adrenergic activation suppressed NK cell
abundance and function in the periphery, cholinergic signaling
reduces Runx3 expression in CNS NK cells, leading to a decline
in NK cell responsiveness and demonstrating the involvement of
distinct neural pathways in regulating the spatial activation of
NK cells in mice and humans (52). In humans, the microRNA
(miRNA) profile of peripheral NK cells is altered after stroke and
inhibition of miRNA-451a and miRNA-122-5p partially restored
CD69 and NKG2D expression, suggesting that targeting
miRNAs may alleviate immunosuppression observed after a
stroke (51). Although data supporting a role for helper ILCs in
response to stroke is scarce, early after an acute cerebral
infarction circulating ILC1s increased and ILC2s decreased,
correlating to serum ox-LDL levels, suggesting lipid-mediated
regulation of ILC1 and ILC2 abundance (55).

ILCs in Neurological Function
Murine studies support a role for ILCs in regulating neurological
function. Depletion of NK cells using anti-NK1.1 improved
cognitive function, enhanced neurogenesis, and reduced
microglial inflammation but did not affect b-amyloid
concentration in a mouse model of Alzheimer’s disease (56).
NK cells exhibited altered expression profiles in the disease
model, with higher expression of Icam1, Ctsb, Ctsc, Ccl3 and
Ccl4 (56). Following NK cell depletion, microglia exhibited a
return to homeostatic morphology, reduced proliferation, and
reduced expression of pro-inflammatory mediators including
Il18, Il1a, Il1b and Tnf, suggesting that NK cells and type I
immunity contribute to cognitive decline by promoting
microglial inflammation (56). In line with these findings,
choroid plexus ILC2s accumulated and displayed a quiescent
state in the aged brain, which was reversed with IL-33
stimulation (57). In comparison to meningeal ILC2s, choroid
plexus ILC2s were resistant to senescence and exhibited higher
expression of Arg1 and genes associated with glycolysis that may
underlie their enhanced proliferative and cytokine-producing
capacity, and suggest niche-specific functionality (57).
Frontiers in Immunology | www.frontiersin.org 6142
Intriguingly, activation of ILC2s in aged mice or transfer of
activated ILC2s to the aged brain increased cognitive function,
potentially through IL-5-mediated suppression of T cell
inflammation leading to enhanced neurogenesis (Figure 3C)
(57). After traumatic brain injury, ILCs are increased in
frequency in human meninges and cerebrospinal fluid, and
treatment with AMPK-activating metformin in a murine
model specifically enhanced IL-10-producing ILC2s and
improved neurological outcomes (58). Together, this suggests
that ILC2s support neurological function and resolution of
inflammation while NK cells exacerbate cognitive decline.

ILCs in Peripheral Nervous System
Nervous system signaling in the periphery is also impacted by
ILC activity. Specialized pro-resolving mediators (SPMs) such as
PCTR1 are important for resolving inflammation and promoting
tissue repair (59). Acetylcholine promotes the enzymatic activity
of ILC3-derived 15-LOX-1, the initiating enzyme in PCTR1
biosynthesis (60). Production of SPMs is regulated by the
vagus nerve, and loss of vagus nerve signaling reduced
peritoneal ILC3s in mice resulting in poor resolution of
Escherichia coli infection (60). The circuit between ILC3s,
SPMs, and macrophages is key for resolving infection and
inflammation in the peritoneum (60).
ILCS IN THE LUNG

NK cells account for 10-20% of all lymphocytes in human and
murine lungs (61–63). Lung NK cells are marked by higher
CD57 and KIR expression, and lower CD27, indicative of a
mature phenotype (64). Despite their high KIR expression,
human lung CD56dimCD16+ NK cells are hypofunctional and
some CD56bright subsets are characterized by the expression of
markers associated with tissue-residency (e.g., CD69, ITGA1
(CD49a), ITGAE (CD103), and CXCR6) (61, 64). A review by
Hervier et al. nicely summarizes the development and function of
NK cell subsets in the human lung (65). In addition to NK cells,
all other helper ILC subsets have been observed in human lung,
albeit with conflicting reports on the relative abundance of
ILC1s, ILC2s and ILC3s that may reflect small sample sizes,
sampling location, or inter-donor heterogeneity (66, 67).

Recruitment as well as local proliferation of ILC precursors in
the lung during development shape the pool of tissue-resident
ILC subsets (Figure 4A). Oherle et al. identified that murine
pulmonary ILC3s develop from a local precursor pool sustained
by insulin-like growth factor 1 provided by alveolar fibroblasts
(68). Early-life seeding of ILC3s was protective against
pneumonia in a CCR4-dependent fashion, driven by a gut
commensal microbiota – dendritic cell (DC) axis (69). Similar
interactions between adventitial stromal cells and mouse ILC2s
were reported to sustain and regulate ILC2s homeostasis and
function (24, 70). Adventitial stromal cells release TSLP,
promoting basal IL-13 release by ILC2s, which in turn
activates adventitial stromal cells to produce IL-33 in a
homeostatic circuit (24). Interestingly, ILC2s localize around
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FIGURE 4 | ILCs in the lung. At homeostasis (A), IL-22 producing ILC3s are required for protection against pneumonia and require commensal gut bacteria for their
recruitment to the lungs. Once in the lung, ILC3s are sustained locally through insulin-like growth factor 1 (IGF1) from alveolar fibroblasts. In the steady state,
Adventitial stromal cell-derived TSLP promotes IL-13 production by ILC2s that drives stromal cells to produce IL-33. (B) During pulmonary tuberculosis (PTB), ILC3
accumulation in the lung is regulated by pathogen-derived AhR-ligands that in turn promote phagocyte function, formation of tertiary lymphoid structures and
enhanced protection. Similarly, infection by influenza virus triggers NKp46-dependent activation of NK cells resulting in IL-12 and type 1 interferon secretion by DCs
that promote NK cell activation. The release of CCL8 and IL-33 during respiratory viral infection facilitated ILC2 activation and AREG-dependent epithelial repair.
(C) In allergic lung inflammation, IL-13 from ILC2s induced Th2 cell differentiation by promoting migration of activated DCs to the draining lymph nodes. In mice,
administration of the CRTH2 ligand, prostaglandin D2, promotes ILC2 accumulation. Nociceptor Nav1.8+ sensory neurons activated lung ILC2s through vasoactive
intestinal peptide (VIP), while pulmonary neuroendocrine cells produced calcitonin gene related-peptide (CGRP) collectively promoting allergic inflammation in the
murine lung. Nasal polyps accumulate ILC2s in chronic rhinosinusitis, which supports eosinophils and promotes chronic airway inflammation. (D) IL-17A+IL-22+ ILCs
and NCR- ILC3s are increased in COPD. The lungs of COPD patients and smokers contain Neuropilin 1 (NRP1)-expressing ILC3s surrounding high endothelial
venules. NK cells may contribute to COPD, with higher CD57 expression, IL-15-dependent activation, and greater cytotoxicity against lung epithelial cells. Smoke
exposure may lead to a sustained loss of ST2 expression on ILC2s, reducing their responsiveness to IL-33 while paradoxically promoting ST2 expression on NK
cells that supports a type 1 response. Created with Biorender.org.
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the peribronchial and perivascular adventitial cuff regions
independent of microbial signals, IL-25, IL-33 or TSLP,
indicating that additional unknown signals regulate pulmonary
ILC2 development and recruitment (24, 70, 71). Whether
pulmonary ILC2s in mice and humans originate from other
tissues at steady state remains unclear, however mouse intestinal
ILC2s were demonstrated to traffic to the lungs in an S1P-
dependent manner after intraperitoneal IL-25 administration or
helminth infection, demonstrating coordination between tissue
sites to resolve multi-organ infections (72). Additional niche-
signals may be delivered through the ICOS : ICOSL axis that has
been demonstrated to sustain the pool of pulmonary ILC2s by
elevating anti-apoptotic genes and IL-2 responsiveness (73).
Intriguingly, ILC2s express both ICOS and ICOS-L, suggesting
that both self-sustaining and helper cell-dependent interactions
promote ILC2 homeostasis (73).

ILCs in Airway Infections
Airborne pathogens are a constant challenge within the lung, and
ILCs have a key role in anti-bacterial and anti-viral host defense
(Figure 4B). Helper ILCs accumulate in the lungs of patients
with pulmonary tuberculosis (PTB), while circulating ILCs are
reduced (74), suggesting trafficking of ILCs to the lung. ILC3s are
critical for host defense in PTB, as specific deletion of ILC3s
(Ahrfl/flRorgtCre) increased mycobacterial burden, and impaired
the accumulation of alveolar macrophages and formation of
protective lymphoid follicles in granulomas (74). Mycobacterial
pigments serve as ligands for Aryl hydrocarbon receptor (AhR),
a key transcription factor for ILC3 development and function,
suggesting an alternative mechanism of ILC3 activation in
tuberculosis infection (75). In addition, ILC3s recruited to
murine lungs produced IL-17A and IL-22 to enhance
protection and support phagocytic functions of inflammatory
monocytes to mediate clearance of bacterial infections (76, 77).

NK cells are critical in controlling viral infections in the lung.
Indeed, influenza infection is lethal in Ncr1-/- mice (78).
However, adoptive transfer and antibody-depletion
experiments showed that NK cells exacerbated influenza
morbidity and mortality in a manner dependent on virus titer
(79). Differences in mouse genetic backgrounds, influenza
strains, and infectious dosage complicate the interpretation and
translation of these findings. In humans, viral hemagglutinin on
infected cells triggered NKp46-dependent activation of NK cells,
and upregulation of the NKG2D ligand ULBP on infected DCs
and elevated secretion of IL-12 and type 1 interferon facilitated
NK cell activation and cytolysis in response to influenza (80, 81).
In a human lung tissue explant model, CD56brightCD49a+ NK
cells robustly responded to influenza A infection, hinting at an
NK cell subset-specific memory response (82). Dou et al. found
that seasonal influenza vaccination induced a short-term (6
month) memory response in NK cells, correlating with
downregulation of surface NKp46 and a concomitant increase
in intracellular NKp46 expression (83). This memory response to
re-challenge was not strain-specific, suggesting broader
protection to influenza after seasonal strain-specific vaccination
(83). While the role of ILC1s separate from NK cells is less clear,
murine ILC1s promote antiviral defense and DC maturation,
Frontiers in Immunology | www.frontiersin.org 8144
potentially through the glucocorticoid-induced TNFR-related
protein (GITR):GITR-L axis (84). GITR upregulation on ILC1s
resulted in stronger IFN-g and TNF-a responses to influenza A,
supporting host defense against alveolar viral infections (84).

ILC2s have conflicting roles in influenza infection response,
promoting airway hyperreactivity in an IL-13-dependent
manner while supporting epithelial cell integrity and tissue
repair via the secretion of AREG following viral infections (85,
86). In response to CCL8, IL-33-activated ILC2s produce more
IL-5 and IL-13, and exhibit ameboid-like movements to traffic to
peribronchial and perivascular sites in mice, particularly at
locations of increased collagen-I deposition (71). Human ILC2s
also exhibited a chemotactic response to CCL8, suggesting
shared lung recruitment responses across species (71).
Infections with respiratory syncytial virus (RSV) leads to a
viral titer-independent increase in respiratory disease severity
in young infants driven by elevated ILC2 cytokine release (87,
88). Interestingly, patients older than 3 months had fewer ILC2s
in their lungs, greater IFN-g levels and experienced less severe
disease, suggesting that the immunological changes occurring
with age and development confer protection to RSV infections by
balancing type 1 and type 2 immunity (88). The plasticity of
ILC2s may also play a role in promoting type 1 immunity to viral
infections. Silver et al. found that adoptively transferred murine
ILC2s trans-differentiate into ILC1s near IL-12- and IL-18-
expressing myeloid cells during influenza A infection (89).
Overall, this suggests that age and plasticity shape ILC2
responses to viral infections.
ILCs in Asthma and Allergic
Airway Inflammation
Asthma is a chronic inflammatory disease of the airways marked
by elevated type 2 inflammation (90, 91). ILC2 activity is
implicated in airway inflammatory diseases (Figure 4C). ILC2-
derived IL-13 is critical for inducing Th2 cell differentiation in
response to allergic lung inflammation by promoting the
migration of activated DCs to the draining lymph nodes,
supporting the development of allergic adaptive immune
responses (92). Circulating ILC2s from asthmatic patients
produced more IL-5 and IL-13 in response to IL-25 and IL-33
stimulation relative to controls, and administration of
prostaglandin D2, the ligand for CRTh2, promoted ILC2
accumulation in murine lungs (93, 94). A single nucleotide
polymorphism resulting in elevated CRTh2 expression
positively associates with asthma development in humans,
although whether this corresponds directly to increased ILC2
presence is unknown (95). Interestingly, the prevalence of
asthma is lower in adult males versus females, indicating sex-
specific differences in type 2 immunity (96). Several animal
studies recapitulated these sex-dependent changes in
abundance, phenotype, and responsiveness of ILC2s and
implicated the role of sex-hormones in facilitating sex-specific
responses to alveolar diseases (96–100). For example, androgen-
receptor signaling negatively regulated ILC2 cytokine secretion
and differentiation and reduced IL-33-dependent lung
inflammation in male mice (97, 100, 101).
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Strikingly, neuronal and neuroendocrine-driven stimulation
of ILC2s promotes allergic lung inflammation (102, 103). IL-5-
stimulated nociceptor Nav1.8+ sensory neurons activated ILC2s
through vasoactive intestinal peptide (VIP), while pulmonary
neuroendocrine cells trigger ILC2s through the calcitonin gene-
related peptide (CGRP) to promote allergic inflammation in the
murine lung (102, 103). CGRP-secreting pulmonary
neuroendocrine cells were increased in asthmatic patients
suggesting that this mechanism could also support ILC2-
mediated allergic inflammation in humans, inspiring several
pathways of therapeutic interventions (103). Constitutive
activation of ILC2s may lead to long-lasting alterations in the
lung as found in other pulmonary diseases. For example, ILC2s
are enriched in nasal polyps of chronic rhinosinusitis patients
along with elevated IL5 and IL13 transcripts, suggesting an ILC2-
dependent contribution to the disease-associated eosinophilia
and chronic airway inflammation (104, 105). Polyp tissues
identified with eosinophilia revealed a co-localization of ILC2s
and eosinophils, indicating a possible cross-talk between IL-5-
producing ILC2s and IL-4-producing eosinophils to support
reciprocal activation and survival (106).

Complicating our understanding of ILC2s in allergic responses
are recent findings from Golebsky and colleagues that ILC210s are
reduced in abundance in allergic individuals relative to non-
allergic controls, while sublingual immunotherapy for grass
pollen allergy restores this IL-10-producing subset which may
confer protection and restoration of epithelial barrier integrity
(16). Interestingly, murine lung ICOS+ST2+ ILC2s exhibit
memory in response to allergen challenge dependent on ICOS
and IL-33, marked by transcriptional and epigenetic programs
involving the scaffold protein Four And A Half LIM Domains 2
(FHL2) (107). Further, adoptive transfer of FHL2+CRTh2+ human
ILC2s induced airway hyperreactivity in mice and were partially
steroid resistant, suggesting memory ILC2s may be relevant to
steroid-resistant asthma (107).

Similar to ILC2s, ILC3s have been linked to asthma pathology.
IL-17 levels and IL-17+ ILC3s were elevated in bronchial alveolar
lavage fluid of asthmatic patients, especially in patients with severe
disease (108, 109). An ILC3 gene signature was upregulated in
nasal brushings of adult-onset severe asthma patients, while
bronchial brushings revealed elevated type 2 related gene
profiles, supporting the idea of an anatomic preference of
distinct ILC responses that may selectively contribute to site-
specific characteristics of disease (110).

ILCs also contribute to chronic pulmonary inflammation
through regulation of adaptive immune cells. CD40L
expression by human and murine T helper cells induces an IgE
response by B cells, contributing to airway hyper-responsiveness
(111, 112). CD40L expression on T cells is induced by cAMP
only in the presence of CD56+CD16+ NK cells through a contact-
dependent manner to drive asthmatic IgE responses (112). In
patients with severe asthma, NK cells expressed higher levels of
CD69 and NKG2D in line with an activated phenotype. Despite
higher activation status, NK cell ability to induce eosinophil
apoptosis was impaired (113). IL-13 production by ILC2s was
attenuated and NK cell-induced eosinophil apoptosis was greatly
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increased by lipoxin A4 (LXA4), a pro-resolving mediator
negatively affected during severe allergic asthma (113, 114).
Lacking efficiency in resolution of eosinophilic inflammation
due to a lack of LXA4 production in severe asthma suggests
another axis of interaction promoting pulmonary dysfunction of
NK cell and ILC2 responses to inflammation (113). Collectively,
multiple layers of regulation affect the localized activity and
accumulation of ILCs in asthma, emphasizing the need to
understand tissue signals that control ILCs to develop more
targeted therapies.

ILCs in COPD
Chronic obstructive pulmonary disease (COPD) is an
inflammatory condition characterized by permanent and
progressive loss of lung function, associated with smoking and
exposure to noxious stimuli (115). ILC1s are increased in
abundance in COPD patient lungs, correlating with smoking
status and symptom severity (116). All helper ILC subsets
localized with lymphoid aggregates in COPD lungs (116). IL-
17 upregulation in end-stage COPD is implicated in lymphoid
follicle neogenesis, and De Grove et al. found trends of elevated
abundance of NCR- ILC3s and IL-17A+ and IL-22+ ILCs in the
lungs of COPD patients (66, 117). While this seems to support
the involvement of ILC3s in COPD, data supporting a specific
role for ILC3-derived IL-17 is lacking. Co-culture of expanded
human lung ILC3s with mesenchymal stromal cells induced
upregulation of ICAM-1 and VCAM-1, suggestive of LTi
activity, contrasting with observations in Rorc-/- and Id2-/- mice
that develop lung lymphoid follicles even in the absence of
ILC3s/LTis (118, 119). Interestingly, a subset of Neuropilin1+

ILC3s were recruited to high endothelial venules in lung tissues
of smokers and COPD patients in a VEGF-A-dependent
manner, although the specific role for ILC3s in COPD
development and pathogenesis remains unresolved (118).

Circulating NK cells from smokers and COPD patients express
higher levels of CD57 and have greater cytotoxicity against
autologous lung epithelium than non-smokers or smokers
without COPD (120, 121). The increase in cytotoxicity was
mirrored in a murine COPD model after cigarette smoke
exposure, demonstrating that trans-presentation of IL-15Ra by
lung DCs was required to prime high NK cell cytotoxicity against
autologous epithelial cells (120). Interestingly, cigarette smoke
exposure induces a sustained loss of ST2 expression on ILC2s,
dramatically reducing their responsiveness to IL-33, despite
increased IL-33 production in severe COPD (122). Conversely,
smoke induces an upregulation of ST2 on NK cells, leading to IL-
33-mediated activation of NK cells instead of ILC2s, explaining the
increase in type 1 immunity despite elevation of the type 2-
activating cytokine IL-33 (122). Paralleling this, elevation of
circulating ILC1s with a strong inverse correlation to ILC2
abundance was observed in COPD patients, further suggesting a
misguided immune activation and cytokine-driven ILC plasticity,
similar to mechanisms observed in the response to murine
influenza infections (89, 106). Stimulation of human blood-
derived ILC2s with IL-12 promoted their trans-differentiation
into ILC1-like cells accompanied by the downregulation of
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GATA3 and an upregulation of T-BET, increasing IFN-g release
while dampening IL-4 and IL-13 production (89, 106). These
results collectively demonstrate that persistent lung inflammation
and exposure to smoke leads to changes in the local ILC
composition and function (Figure 4D).
ILCS IN THE SKIN

The skin is a barrier organ that employs immunological,
microbial, and physiochemical mechanisms to protect the body
from pathogens and harmful environmental factors. The skin is
composed of three distinct layers: the epidermis (mainly
comprised of keratinocytes), the underlying dermis, and the
innermost subcutis. Tissue-resident and long-lived ILC subsets
have been identified in mice and humans with varying
proportions identified across studies (123–127). A more
granular analysis of skin by layer revealed a predominant
accumulation of ILC3s in the epidermis, ILC2s in the subcutis
and comparable abundance of both subsets within the dermis in
mice (128). This distribution has been attributed to the localized
release of IL-7 and TSLP by either hair follicle keratinocytes or
epithelial cells (128, 129). Mirroring murine models, human skin
ILC2s can be activated by IL-25, IL-33, and TSLP, with high
expression of IL-33 and TSLP during chronic skin inflammation
(130–132).

ILCs regulate essential homeostatic functions of the skin
(Figure 5A). For example, murine TNF+LTa1b+

2 CCR6
+ ILC3s

negatively regulate the size of the lipid-secreting sebaceous
glands, while the differentiation, proliferation, and expression
of antimicrobial proteins by keratinocytes depends on IL-22
stimulation from ILC3s or epidermal T cells (128, 133). These
interactions regulate the skin microbiome which can alter
susceptibility to inflammatory disorders, impact repair
pathways and influence host defense (128, 133, 134).

ILCs in Wound Healing
ILCs directly influence skin repair after damage. Murine skin-
resident ILC2s activated by IL-33 from injured epithelial cells
proliferate at sites of injury while anti-CD90 depletion of ILC2s
in Rag1-/- mice delays wound healing (135). CD4+NKp46low/-

ILC3s are recruited by damage-induced CXCL13 and CCL20 and
promote wound closure via IL-17A, IL-17F and IL-22 and
indirectly through CCL3-mediated macrophage recruitment
(136). Comparable findings were observed in IL-22-/- mice,
where deficiency in IL-22 impaired keratinocyte proliferation,
impeding repair (137). These results support a role for ILC2s and
ILC3s in regenerative remodeling of the skin, yet research is
needed to translate animal findings to humans and to define the
differential impacts of ILCs and T helper cells (138).

ILCs in Psoriasis
Psoriasis is a chronic inflammatory skin disease that manifests as
red scaly plaques caused by hyperproliferation of keratinocytes
downstream of excessive repair pathways (139). Elevated IL-17
levels and Th17-associated gene expression signatures are found in
psoriatic lesions andmousemodels, implicating IL-17 and IL-22 in
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pathogenesis (140–142). IL-22- and IL-17-producing NCR+ ILC3s
and CD56+RORgt+ ILC3s are enriched in inflamed and non-
inflamed skin of psoriasis patients (Figure 5B) (123, 124, 126).
ILC3s in inflamed lesions express higher NKG2D, which likely
interacts with elevated MICA on keratinocytes (143). Anti-TNF
treatment reduced circulating ILC3s in patients, corresponding
with a decrease in inflammatory lesions (124). Further, ILC3-
derived IL-22 induces an upregulation of MHC-II on
keratinocytes, which promotes T cell polarization and skin
inflammation, demonstrating a key circuit mediating skin
inflammation (144). Skin ILC2s are also capable of driving T cell
activation directly by presenting lipid antigens in a CD1a-
dependent manner, leading to local activation of T cells in
response to dermal bacteria (145).

There is limited and sometimes conflicting evidence for the role
of NK cells in psoriasis. Studies have indicated that circulating NK
cells are reduced in psoriasis patients (146, 147), or that no change
was observed compared to healthy controls (148, 149). Within
psoriatic plaques, Ottaviani et al. observed CD56+CD16- NK cells
that co-expressed CD161, NKG2A, and CD69 (150). Supernatants
from culturing these NK cells activated keratinocytes, increasing
MHC-I, ICAM-1 and HLA-DR expression, along with CXCL10
andCCL5 secretion (150). These chemokines inducedmigration of
skin-derivedNKcells, supportingNKcell-keratinocyte cross-talk in
psoriatic inflammation (150). NK cells appear to be hypofunctional
in psoriasis, with reduced degranulation and IFN-g potential (146,
149). The role of helper type 1 ILCs is even less defined, however
expansion of ILC1s was observed in psoriatic lesions (126).

ILCs in Atopic Dermatitis
Atopic dermatitis (AD) is a common inflammatory skin disorder
characterized by high levels of IL-4, IL-5 and IL-13 (151, 152).
AD skin lesions are enriched for skin-resident ILC2s, which are
activated by TSLP or IL-33, promoting type 2 inflammation (132,
153, 154). This is supported by murine models where anti-CD90
and anti-CD25 depletion of skin ILC2s in T and B cell deficient
Rag1-/ - mice attenuated dermatitis symptoms (153).
Interestingly, KLRG1 ligation by E-cadherin reduces IL-5 and
IL-13 production by human ILC2s, implicating dysregulation of
parenchymal-ILC interactions in AD where E-cadherin levels are
canonically downregulated on keratinocytes and ILC2s have
elevated KLRG1 expression (132).

ILC3s have also been implicated in the pathogenesis of AD.
Circulating ILC2s and ILC3s are elevated in AD patients, and
increased IL-17 levels are apparent during acute disease (154,
155). Using several AD models, Kim et al. demonstrated AD
lesions had increased numbers of IL17A+ ILC3s, which induced
IL-33 release by keratinocytes and fibroblasts, promoting type 2
responses and exacerbating disease in mice (154). Further
supporting a role for ILC3s in AD, ILC2s and ILC3s were
elevated in AD lesions, with AHR+ ILC3s representing the
most abundant subset. ILC3s in AD lesions were frequently
surrounded by T cells, suggesting cellular interactions between
ILC3s and T cells in AD (126).

NK cells are also altered in AD and are prone to apoptosis via a
CD14+ monocyte-driven, contact-dependent mechanism, aligning
with observed reductions in peripheral NK cell abundance in AD
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(146, 152, 156). Mack et al. found particularly reduced levels of
circulatingmatureCD56dimCD16+NKcellswithhigh expressionof
KIRs and CD57 in patients with moderate-to-severe AD (152). A
regulatory circuit betweenNKcells and ILC2s is supported by three
lines of evidence: NK cell recovery occurring after IL-4 blockade;
ILC2accumulation inAD lesions ofNKcell-deficientmice; andNK
cell recovery and activation after IL-15 superagonist treatment
leading to reduced ILC2 levels and disease scores in an AD model
(152). Thus, cross-talk between ILC subsets may underlie the
development and severity of AD (Figure 5B).
ILCS IN THE INTESTINE

The intestine is the largest mucosal surface in the human body
and faces unique challenges. As a barrier surface, immune
function in the intestine must balance tolerance and control of
Frontiers in Immunology | www.frontiersin.org 11147
commensal microbes with protection from pathogens. Among
immune residents of the intestine, ILCs have key roles in
sustaining gut barrier integrity, repair, immune homeostasis,
and host defense (Figure 6A). ILC distribution along the
human intestine was reported by Simoni et al. and Yudanin
et al. (67, 127). In line with observations made in mice, both
groups demonstrated the presence of NK cells, ILC1s, ILC2s, and
ILC3s across the intestinal tract, with predominance of ILC1s
and ILC3s (67, 127, 157). NK cells are low in abundance and
mainly CD56bright with distinct surface marker expression (64)
(Figure 2). Intestinal ILC1s are heterogeneous, including a
population of CD103+ ILC1s located in the epithelium, and
CD127+ ILC1s residing in the lamina propria (LP) (158, 159).
ILC3 subsets also localize within distinct microanatomic
compartments of the gut epithelium/isolated lymphoid follicles
(ILFs)/LP, but it remains to be shown if a similar distribution
applies to humans (160, 161).
B

A

FIGURE 5 | ILCs in the skin. At homeostasis (A), ILCs are retained by IL-7 and TSLP released by hair follicle keratinocytes or epithelial skin cells. TNF-a+LTa1b2+CCR6+

ILC3s negatively regulate lipid-secreting sebaceous glands, regulating the skin microbiome, which can alter susceptibility to inflammatory conditions or affect tissue repair
pathways. Upon tissue damage, injured epithelial cells release IL-33, inducing proliferation of skin-resident ILC2s. In mice, anti-CD90 depletion in Rag1-/- mice delays
wound healing, suggesting a role for ILC2s in promoting epithelial repair via AREG. The epithelium also produces TNF-a downstream of damage-induced Notch signaling
in keratinocytes, recruiting CD4+NKp46low/- ILC3s that participate in wound closure. TNF-a driven release of CCL20 and CXCL13 by keratinocytes recruit ILC3s which
facilitates the recruitment of F4/80+ reparative macrophages. In disease (B), psoriatic lesions in mice accumulate IL-17+ IL-22+ NCR+ ILC3s which is mirrored by the
increase of CD56+RORgt+ ILC3s in both inflamed and non-inflamed skin of psoriasis patients. ILC2s promote atopic dermatitis (AD) when activated by epithelial-derived
TSLP and IL-33 in inflammatory lesions. Dermal NK cells are decreased in AD and prone to apoptosis through contact with CD14+ monocytes. NK cells are proposed to
regulate ILC2 abundance in AD, as therapeutic expansion of NK cells lowers ILC2 counts and improves disease scores in an AD mouse model. Created with Biorender.org.
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B
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A

FIGURE 6 | ILCs in the intestines. ILCs have important roles in maintaining intestinal homeostasis (A). ILC2s can be activated by both IL-25-producing tuft cells or
IL-33 and TSLP-secreting stromal cells to promote anti-parasitic immunity in the intestines. ILC2s secrete IL-5 and IL-13 to promote host defense through parasite
expulsion. Similarly, microbiota-sensing CX3CR1+ macrophages position IL-22-secreting CXCR6+ NCR+ ILC3s in the lamina propria via CXCL16. IL-22 supports
anti-microbial gene expression in Paneth cells and promotes stem cell turnover, crypt proliferation, and DNA damage repair. Interaction of ILC3/LTi surface LTa1b2
and LTBR on mesenchymal cells leads to the upregulation of VCAM-1 and ICAM-1, resulting in the formation of cryptopatches and ILF. These tertiary lymphoid
structures support the differentiation of IgA-producing plasma cells to promote barrier defense and host-microbiota mutualism. Clock genes and circadian cycles,
modulated through feeding and the microbiota drive important homeostatic neuro-immune interactions in the gut. Disruption of circadian regulation alters ILC3
function, abundance, and trafficking into the intestines while negatively regulating ILC2s through adrenergic signaling. Glucocorticoids or vasoactive intestinal peptide
further control ILC1 and ILC2 responses. (B) In chronic inflammatory disease such as intestinal bowel disease (IBD), the inflamed gut induced TGF-b and Matrix
metalloproteinase 9 production by ILC1s leading to the expansion of epithelial crypt cells and extracellular matrix deposition by fibroblasts, exacerbating fibrosis. In
contrast, pro-tolerogenic ILC3 functions including the release of GM-CSF, IL-2 or the expression of MHC-II are impaired in IBD patients, suggesting an anti-
inflammatory role for ILC3s. IL-10 producing regulatory ILC2s or ILCregs may also suppress intestinal inflammation. (C) Enteric infection by Rotavirus induces
epithelial-derived IL-1a to promote ILC3 production of IL-22, which synergizes with epithelial IFN-l to promote the induction of antiviral responses in intestinal
epithelial cells. Created with Biorender.org.
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Intestinal ILCs promote host immunity against pathogenic
and commensal microbes through interactions with sentinel
immune and tissue cells. For example, murine ILC2s activated
by IL-25-producing tuft cells or IL-33- or TSLP-secreting
stromal cells promote anti-parasitic immunity, while DC-
derived IL-33 promotes regulatory T cell (Treg) responses,
suppressing anti-parasitic immunity (4, 24, 162–164). Myeloid
cells, especially CXCL16-producing CX3CR1+ macrophages are
critical for sustaining lamina propria-resident CXCR6+ NCR+

ILC3s as a major source of IL-22 in the intestinal LP (160). These
ILC3s support IL-22-dependent intestinal epithelial anti-
microbial gene expression, stem cell turnover, crypt
proliferation, and DNA damage repair (160, 165–168).

While ILC3-derived IL-22 protects the intestinal epithelium
against genotoxic stress, risk-associated single nucleotide
polymorphisms have been identified within Il22 and the IL-23
signaling pathways as a driver of colorectal cancer in patients
(165, 169, 170). Nevertheless, ILC3-derived IL-22 and LTa
positively alter the glycosylation activity of epithelial cells,
supporting glycan-scavenging intestinal commensal microbes
and balanced host-microbe interactions and providing
protection from infection (171, 172). sLT, expressed by human
and mouse LTis, is essential to initiate the development of
cryptopatches (CPs) and ILFs in the gut (11, 173). These
tertiary lymphoid tissues support the differentiation of IgA-
producing plasma cells to promote barrier defense (174, 175).
Mouse CP and ILFs contain a unique subset of DCs that require
LTbR signaling for their development. These DCs released IL-22
binding protein, which in turn alter intestinal epithelial IL-22R
signaling and lipid transport (176).

Tregs have key functions in inducing tolerance to luminal
antigens (177). IL-2 and GM-CSF-producing ILC3s directly and
indirectly support the generation of Tregs in the healthy murine
gastrointestinal tract, upon stimulation by microbiota-sensing IL-
1b-producing macrophages. The cooperation and reciprocal
crosstalk between macrophages, DCs, and ILC3s supports Treg
homeostasis and T cell immunity against orally ingested antigens
(177–179). MHC-II expression on murine ILC3s has been
demonstrated to regulate T cell responses to microbial antigens
via a mechanism analogous to negative selection in the thymus
(180, 181). Lehmann et al. reported organ-specific expression
levels of MHC-II on murine ILC3s and demonstrate that
microbiota-induced IL-23 stimulation of ILC3s reversibly
downregulated their MHC-II expression (182). Noteworthy, Rao
et al. reported an accumulation of HLA-DR+ ILC3s in T cell-rich
areas of colorectal cancers suggesting antigen-presenting capacity
of ILC3s in humans as well (183). Together, this suggests that
ILC3s both positively and negatively regulate T cell immunity
dependent on microenvironmental signals.

Several environmental factors regulate murine intestinal ILC
abundance. The metabolite-sensing Ahr is highly expressed by
ILCs in the gut, with an important role in sustaining ILC3s and
promoting IL-22 production (165, 184, 185). In contrast to
ILC3s, gut ILC2 function is suppressed by Ahr signaling,
suggesting a role for Ahr ligands in regulating the balance of
intestinal ILC subset abundance (186). A similar divergent
Frontiers in Immunology | www.frontiersin.org 13149
stimulation between ILC2s and ILC3s has been reported for
other dietary components (187, 188). Microbial short chain fatty
acids (SCFAs) differentially affect mouse ILCs in a subset- and
location-specific manner, generally promoting ILC3
proliferation and IL-22 production while inhibiting ILC2
expansion (189–191). Free Fatty Acid Receptor 2 (Ffar2) acts
as a SCFA receptor, and agonism leads to ILC2 proliferation, yet
SCFA feeding leads to contraction of ILC2 abundance,
suggesting the involvement of several receptors in coordinating
the response to microbial fermentation products (191). This
along with reports of age and body-mass index-associated
alterations in the abundance of ILC subsets suggests age and
metabolism-dependent regulation of intestinal ILCs in
humans (67).

Cholinergic neurons in the gut and lung of mice produce
neuromedin U in response to helminth challenge, which
stimulates ILC2 proliferation and production of IL-4 and IL-13
in an IL-33-independent manner (192). The neuromedin U
receptor does not appear to be expressed by other
hematopoietic cells besides ILC2s at significant levels (192). In
humans, the NMUR1 transcript was detected in intestinal ILC2s,
yet direct evidence for this ILC2-neuronal interaction in humans
is lacking (192). Other modalities where the nervous system
regulates ILCs includes negative regulation of ILC2s by
adrenergic signaling, glucocorticoid dampening of ILC1 and
ILC2 responses, VIP stimulation of ILC2s, and ILC3 co-
localization with neurons in enteric CPs, as detailed in a
review by Klose and Artis (3). Interestingly, circadian light-
dark cycles regulated neuron-immune interactions and
intestinal ILC3-specific gene expression through diurnal
oscillations of Rorc, Il17a, and Il22, while disruption of ILC3
circadian regulation altered their function, abundance, and
trafficking in the murine intestine (2, 193–195). Interestingly,
the gut microbiota contributed to control of this circuit, as
antibiotic treatment partially restored ILC3 abundance and
constrained cytokine production in circadian-disrupted mice
(195). In mice, VIP promotes ILC3 intestinal recruitment and
maintains expression of gut-homing receptor CCR9 (196).
Talbot et al. reported a feeding-induced inhibition of ILC3s by
VIPergic neurons, regulating mucosal immunity by dampening
IL-22-induced antimicrobial peptide production in exchange for
enhanced absorptive capacity of the intestinal epitheliummarked
by increased fatty acid transporter (Fabp2) expression (197).
This contrasts with findings by Seillet et al. that VIP stimulation
increased IL-22 production by enteric ILC3s, although the reason
for these conflicting results is unclear, suggesting complex signals
regulate intestinal ILC3 activity (198). Together, intestinal ILC3s
are regulated by a complex circadian network involving light-
dark cycles, microbial signals, and nutrient-driven neuronal
regulation. Of note, the production of IL-5 by murine ILC2s
was also circadian regulated (198).

Chronic Inflammatory Diseases
Chronic inflammation of the intestinal tract is a hallmark of
inflammatory bowel disease (IBD) and fosters a local cytokine
milieu that promotes differentiation of ILC1s (199). ILC1
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expansion in inflamed intestinal tissue is location-specific, with
greater expansion of LP-resident CD127+ ILC1s versus
intraepithelial ILC1s in Crohn’s disease (CD) patients (158,
159, 200, 201). Specific expansion of CD127+CD94+

Granulysin+ ILC1s is observed in the inflamed LP of CD
patients (202). With elevated secretion of TGF-b and MMP9,
mouse ILC1s facilitate the expansion of CD44+ epithelial crypt
cells and extracellular matrix deposition by fibroblasts,
collectively supporting matrix remodeling and epithelial
proliferation that may exacerbate inflammation-associated
fibrosis (Figure 6B) (203). In contrast, ILC3 abundance and
homeostatic functions in circadian oscillation, production of IL-
2, and expression of MHC-II were critically impaired in IBD
patients, supporting anti-inflammatory contribution of ILC3s
(178, 180, 193, 195). ILC3 secretion of IL-22 is enhanced by G
Protein-Coupled Receptor 34 (GPR34) recognition of
lysophosphatidylserine from apoptotic neutrophils, further
supporting a role of ILC3s in sensing intestinal injury and
initiating repair responses (204). However, ILC3s may
contribute to intestinal inflammation under permissive
circumstances (205). Further, destabilizing RORgt expression
promoted the differentiation of ILC3s into ILC1/ex-ILC3 in
mice and humans and correlated with intestinal IBD-like
inflammation (206, 207). Interestingly, this differentiation was
not static, but was regulated by the myeloid cytokine milieu in
the intestinal tract (159). Counterbalancing the elevated type 1
and type 3 immunity reported in IBD, ILC2-derived AREG was
sufficient to reduce DSS-induced damage in mice by promoting
epithelial integrity and mucus production (162). Bando et al.
further identified murine ILC2s as a dominant source of IL-10 in
the intestine, while Wang et al. identified a distinct subset of IL-
10-producing regulatory ILCs in humans and mice, supporting
that IL-10 producing ILC2s or ILCregs may suppress intestinal
inflammation (Figure 6B) (13, 17). Targeting ILC3-to-ILC1
plasticity, ILC1 activation, and ILC3 abundance may be a
promising approach to restore intestinal immune homeostasis
under chronic inflammatory conditions (208–211).

Gastrointestinal Infection
ILCs play a critical role in the response to intestinal pathogens in
humans, highlighted by cases of deficiency in RORC resulting in
severe mucosal fungal and bacterial infections (212). Along this
line, susceptibility to infections by enteric extracellular pathogens
are increased in the absence of IL-22 or GM-CSF, highlighting a
critical role for ILC3-associated cytokines in barrier defense
(213–216). Mouse ILC3s and ILC1s/ex-ILC3s promote
antimicrobial responses via surface lymphotoxin-mediated
differentiation of goblet cells and IFN-g-induced production of
mucins, further emphasizing the synergistic actions of ILC1s and
ILC3s that require underlying microbial recognition and
activation by myeloid cells (207, 217–219). Whether this
permits discrimination of commensal and pathogenic microbes
requires further investigation (219). In response to mouse enteric
rotavirus infections, epithelial IL-1a induced ILC3-derived IL-22
which synergized with epithelial IFN-l, promoting the induction
of antiviral gene expression in intestinal epithelial cells, limiting
viral replication and tissue damage (Figure 6C) (220). While
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ILC3s can promote antiviral immunity, they experience
cytokine-dependent depletion in the intestinal tract of HIV+

human and SIV+ non-human primates, altering epithelial
permeability and homeostasis (221–223). Collectively, ILCs
promote intestinal barrier defense against enteric bacterial,
fungal, and viral infections by exerting cytokine or cell contact-
dependent effects on intestinal epithelial cells.

Enteric parasites and worms constitute a major global health
burden. Murine NK cell recruitment to the intestine early after
helminth infection does not affect parasite burden but limits the
tissue damage induced by infection (224). Experimental models
of worm infections revealed the importance of ILC2s and ILC2-
derived cytokines in intestinal host defense in mice (225–227).
For example, IL-13 from murine ILC2s promoted tuft and goblet
cell differentiation from crypt progenitors, contributing to
epithelial remodeling and worm expulsion in the characteristic
“weep and sweep” response (4, 228). ILC2s actively promoted
Th2 cell responses via MHC-II and co-stimulatory molecules,
partially acquired through trogocytosis, while T cell-derived IL-2
activated ILC2s for efficient helminth expulsion in mice (229).
Further, ILC2s are activated by acetylcholine and upregulate
ChAT to produce acetylcholine in response to helminth
infection, supporting efficient helminth expulsion through a
potential autocrine signaling mechanism (230). The activation
of ILC2s following worm infection could be blunted through
parasite-derived, bio-active components interfering with the IL-
33-ST2 axis (231). Intriguingly, helminth infection changed the
global distribution and activation of murine ILC2s through the
induction of S1PR1-dependent egress of gut ILC2s and
accumulation in the lungs, suggesting a coordinated response
to protect distal body sites targeted by helminth infection
(72, 232).

While the fetal and adult human intestine hosts a population of
ILC2s capable of releasing type 2 cytokines following stimulation
with IL-2, IL-25, and IL-33, their role during human parasitic
infections has not been well detailed (104). Lack of sample
availability has hampered investigation of intestinal ILC
abundance and function of worm infected patients (233). To
date only two studies analyzed ILCs in worm infected patients.
Nausch et al. observed a reduced frequency of ILC2s in children
infected with Schistosoma, while Boyd et al. observed an increase
in circulating c-kit+ ILCs and elevated IL-13 secretion in adult
patients with filarial infections, suggesting heterogeneity in ILC
responses dependent on age and/or helminth species (234, 235).

Collectively, intestinal ILCs support host immunity, barrier
defense and tissue repair during infection and homeostasis, but
also may perpetuate inflammation under permissive
microenvironmental conditions.
ILCS IN THE LIVER

The liver is critical for metabolism and blood detoxification.
Constant exposure to an array of antigens and microbial
products within liver sinusoids promotes tolerance to
predominantly harmless antigens (236, 237). The liver contains
a large proportion of innate immune cells such as Kupffer cells
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(specialized macrophages), inflammatory and non-inflammatory
macrophages, NKT cells, NK cells and ILCs (238–240). These
innate lymphocytes influence the activation and function of the
various adaptive immune populations that include ab T cells, gd
T cells and B cells, as well as parenchymal cells within the
liver niche.

In humans, CD56brightCD16- NK cells comprise 50% of all
liver NK cells (241). These NK cells express CD69, CCR5 and
CXCR6, but not SELL or CCR7, and are localized to sinusoids by
CCL3, CCL5, and CXCL16 produced by Kupffer cells, T and NK
cells, and endothelial cells, respectively (241, 242). NK cells in
healthy liver of deceased donors highly express EOMES, CD7,
KLRD1(CD94), GZMK, NCR1(NKp46) and NCAM1(CD56),
and lowly express FCGR3A(CD16) and ITGA1(CD49a) (240).
Although CD49a+ NK cells akin to murine liver-resident NK
cells have been identified in humans, they represent only a small
subset of human liver-resident NK cells, while lack of CD49e
protein expression differentiated human liver-resident NK cells
from conventional (cNK) cells (243, 244). CD49a+CD16− NK
cells in liver have a transcriptional program consistent with
cytotoxic activity and exhibited antigen-specific killing of
autologous targets presenting viral or metal antigens (245).
Notably, a donor-derived EOMEShi tissue-resident NK cell
population persisted in the liver up to 13 years post-transplant
in a study of HLA-mismatched liver transplants (246). This NK
cell population had a phenotype consistent with those reported
in transcriptomic studies of healthy human liver (240–243).

While group 1 ILCs are the most abundant hILC population
in human liver, NCR+ and NCR- ILC3s and ILC2s are also
present (247). Liver ILC2s are CRTH2+CD161+CD69+ and
highly express fibronectin-binding VLA-5, laminin-binding
VLA-6, and the chemokine receptor CCR6 (247). In contrast
to mice, only 10% of intrahepatic human ILC2s express the IL-33
receptor ST2, and primarily produce IL-13 and AREG, with very
little IL-5 (247).

ILCs in Viral Hepatitis
NK cells are implicated in both Hepatitis C (HCV) and Hepatitis
B (HBV) infections, which are major causes of liver
inflammation and cirrhosis, leading to development of
hepatocellular carcinoma (248) (Figure 7A). Peripheral NK
cell abundance is reduced in both HCV- and HBV-infected
patients, with reduced IFN-g and TNF-a potential particularly
in HBV, suggesting functional dysregulation (249). Cytotoxic
impairment is associated with chronic infection establishment,
while acute HCV infection induces NK cell activation, including
increased NKG2D expression and greater capacity for
cytotoxicity and IFN-g production (250). Despite shared
dysregulation, NK cell phenotype differs between chronic HBV
and HCV; an enrichment of NKG2C+ NK cells are observed in
HBV, whereas increased CD69 expression and decreased
inhibitory KIR expression are observed in HCV (249).
Differences in NK cell KIR and HLA allele expression may
differentiate infections that are self-limited versus those that
become chronic; KIR2DL3 and HLA-C1 expression is reported
to be protective in HCV infection (251, 252). Weaker inhibitory
signals by HLA-C1 may allow for increased NK cell activation
Frontiers in Immunology | www.frontiersin.org 15151
and viral clearance (251, 252). In agreement, degranulation
marker CD107a was increased on NK cells with KIR2DL2/3
and was highest in those with self-limiting infections (250).
Engagement of HLA-E with elevated NKG2A and CD94
receptors on NK cells of HCV-infected individuals results in
TGF-b and IL-10 production and impaired ability to activate
DCs for virus-specific T cell responses, in line with findings that
hepatocyte and Kupffer cell HLA-E expression correlates with
HCV severity (253, 254). Of note, intrahepatic CD56brightCD16-

NK cell abundance correlates with better liver function and lower
disease scores in HCV-positive patients undergoing liver
transplantation (255).

In chronic HBV, circulating and intrahepatic NK cells highly
express TRAIL and CD69, especially the CD56bright subset (256).
Elevated IFN-a and IL-8 upregulate TRAIL expression on NK
cells and TRAILR-2 expression on hepatocytes, respectively,
suggesting TRAIL-dependent targeting of hepatocytes by
CD56bright NK cells mediates damage during chronic HBV
flares (256). Notably, HBV-specific T cells also have high
expression of TRAIL-R2 and are susceptible to targeting by
NK cells, supporting a role for NK cells in regulating anti-HBV
T cell responses (257).

Comparatively little is known about the role of human hILCs
in hepatitis infections. Increased hILCs were reported in the
circulation of patients with chronic HBV (258, 259). HBV-
related cirrhosis progression correlated with IL-17A and IL-22
production by ILC3s, suggesting ILC3 promotion of fibrosis,
likely in part due to IL-22-mediated suppression of anti-fibrotic
IFN-g (Figure 7A) (259). While HCV/HBV do not infect mice,
other viral hepatitis models provide some context into ILC viral
responses in the liver more generally. Hepatic ILC3s produce IL-
17A/F alongside gdT cells to promote antiviral T cell responses
and inflammation early after infection (260). At later timepoints
post-infection, ILC2s induce immunosuppressive neutrophils via
IL-13 to limit T cell damage (261). This suggests that hepatic
ILCs may have time-dependent roles to balance viral clearance
and tissue protection.

ILCs in Liver Fibrosis
Liver disease is characterized by fibrogenesis of the liver, driven
by type 2 immunity, with an implication for ILC2 activity
(Figure 7B) (262). Hepatic stellate cells become activated and
transdifferentiate into myofibroblasts that produce copious
extracellular matrix proteins, driving fibrosis and loss of
function resulting in cirrhosis (263). Patients with cirrhosis
have elevated serum IL-33 and increased intrahepatic ILC2s,
correlating with disease severity (247, 264, 265). Expansion of
ILC2s and activation by IL-33 from damaged parenchymal cells
results in IL-13 production driving fibrotic gene expression in
hepatic stellate cells in fibrosis models, or IL-5 production with
resultant hepatic inflammation and eosinophilia in immune-
mediated hepatitis models (265, 266). While both effects are IL-
13-dependent, additional signals which influence IL-5 versus IL-
13 dominant responses by ILC2s are unknown. Interestingly,
liver ILC2s present antigen to CD4+ T cells which produce IL-2
to sustain ILC2 expansion (267). High levels of IL-6, linked to
liver regeneration, were produced by IL-33-activated liver ILC2s,
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FIGURE 7 | ILCs in the liver. The liver is occupied by a variety of ILCs that play diverse roles in viral hepatitis, liver disease, liver cirrhosis, and liver regeneration and
repair. (A) Hepatitis C (HCV) and Hepatitis B (HBV) are key inducers of liver inflammation and cirrhosis and lead to the development of hepatocellular carcinoma. The
abundance of NK cells in the blood of both HBV/HCV infected patients is reduced, suggesting elevated homing to the liver where functional deficiencies like impaired
IFN-g and TNF-a production are reported. NK cells in chronic HBV and HCV infected patients adopt distinct phenotypes that manifest in an enrichment of NKG2C-
expressing NK cells or altered CD69 and inhibitory KIR expression. In contrast, acute HCV infection promotes elevated NKG2D and IFN-g expression while IFN-g is
reduced in chronic infections. HCV-infected hepatocytes and Kupffer cells express higher levels of HLA-E that boost TGF-B and IL-10 production by NK cells
through NKG2A and CD94. CD56bright NK cells in chronic HBV infection facilitate TRAIL-dependent hepatocyte death. ILC3s separately support hepatic stellate
expansion and counteract IFN-g. (B) In liver disease, ILC2s are increased and activated, driving liver fibrosis via AREG and IL-13. Similarly, in immune-mediated
hepatitis, ILC2s were expanded and produced high levels of IL-5, recruiting eosinophils, and driving inflammation. (C) In liver cirrhosis, crosstalk between NK cells
and gd T cells through the CD137-CD137L axis enhanced cytotoxicity of NK cells against HSCs. Alcohol exacerbates fibrosis chronically, but also attenuates NK-
mediated cell killing, and reduced NKG2D, TRAIL and IFN-g expression on NK cells. (D) NK cells upregulate TIGIT while hepatocytes upregulated the ligand PVR/
CD155, attenuating IFN-g production and promoting liver regeneration. Finally, extracellular ATP is elevated after liver injury and regulates regeneration in the liver via
NKp46+ NK cells. Created with Biorender.org.
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indicating that ILC2s may have a dual roles in immune-mediated
liver disease (267).

Intrahepatic human CD49a+ NK cells are expanded in
cirrhotic livers (268). CD49a+CD25+ NK cells positively
correlate with serum alanine aminotransferase, linking
CD49a+CD25+ NK cells to liver inflammation (268).
Conversely, liver NK cells dampen fibrosis by killing activated
hepatic stellate cells in an NKG2D- and TRAIL-dependent
manner, while IFN-g reduces hepatic stellate cell activation and
matrix protein deposition (269, 270). CD137-CD137L crosstalk
between NK cells and gd T cells enhances NK cell cytotoxicity
(Figure 7C) (271). Chronic alcohol consumption exacerbates
fibrosis, and ethanol attenuates NK cell cytotoxicity towards
hepatic stellate cells by reducing NKG2D, TRAIL, and IFN-g
expression, suggesting immunological and environmental
mechanisms of NK cell regulation (272).

ILCs in Non-Alcoholic Liver Disease
Non-alcoholic fatty liver disease (NAFLD) is the most common
non-infectious chronic liver disease and can develop into non-
alcoholic steatohepatitis (NASH) and progress to cirrhosis (273).
NK cells are elevated in liver biopsies of NAFLD and NASH
patients, with greater than two times increased NK cell
abundance in NASH compared to NAFLD (274). NKG2D and
TRAIL-DR5 transcript levels also have higher expression in
NASH (274). Upregulation of MIC-A/B positively correlates
with disease score and degree of fibrosis, suggesting NK cell
engagement with MIC-A/B stress ligands could be a key factor in
NASH development (274). In agreement, circulating NK cells
from NASH patients had higher NKG2D expression (275).
Depletion of IFN-g-producing NKp46+DX5+ NK cells in a
NASH mouse model altered macrophage phenotype,
suggesting that IFN-g from NK cells reduces fibrosis by
polarizing macrophages away from a TGF-b+ pro-fibrotic
phenotype (276). Additional studies are required to delineate
the mechanisms that control whether NK cells limit or
promote fibrosis.

While fewer studies have focused on hILCs, ILC3s appear to
mitigate NAFLD. High fat diet increases ILC3 abundance in
mice, while deficiency of ILC3s leads to liver fibrosis and an
increase of pro-inflammatory gene expression with concomitant
accumulation of saturated fatty acids (277).

ILCs in Liver Regeneration and Repair
The liver is uniquely capable of self-regeneration, including
regenerating entire lobes after resection. Group 1 ILCs interact
with injured tissue and influence regenerative capacity
(Figure 7D). In models where NK cells are pre-activated by
viral infection or TLR3 agonism to produce higher levels of
IFN-g, as well as in aged livers that have elevated IFN-g signaling,
regeneration is impaired (278, 279). NK cells upregulate T cell
immunoreceptor with Ig and ITIM domains (TIGIT) while
hepatocytes upregulate the ligand PVR/CD155, attenuating
IFN-g production and promoting liver regeneration (280).
Mouse NKp46+ cells co-localized with F4/80+ cells in liver
sinusoids, and NKG2D blockade abrogated regeneration,
suggesting NKG2D-mediated crosstalk with Kupffer cells
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regulates regeneration (281). Extracellular ATP is elevated after
injury and regulates liver regeneration (281, 282). ATP limits NK
cell cytotoxicity while antagonism of ATP-receptor P2X1
reduces IL-22 production by group 1 ILCs in a murine liver
resection model, resulting in dampened hepatocyte proliferation
and elevated hepatocellular injury and stress (281, 283). Taken
together, extracellular ATP released after resection may dampen
NK cell cytotoxicity and promote IL-22 production to modulate
time-dependent group 1 ILC functions supporting liver
regeneration. Future studies that characterize marker
expression in greater detail may clarify whether the cells
identified were also inclusive of CD56+ ILC3s or were NK cells
or ILC1s that converted to ILC3s.
ILCS IN THE KIDNEY

Kidneys perform essential functions of filtering blood, excreting
waste, and regulating the body’s fluid and electrolyte balance.
ILCs have been found to contribute to acute and chronic kidney
diseases, with protective (Figure 8A) and pathological
(Figure 8B) functions in IRI, kidney disease, and lupus
nephritis, however, their role in the steady state remains
poorly described.

ILCs in Chronic Kidney Disease
End-stage renal disease (ESRD) is associated with high morbidity
and mortality, often associated with infections (284). Circulating
ILC2 abundance, proliferation, and IL-5/IL-13 production is
higher in patients with ESRD versus healthy controls, pointing
to ILC responsiveness to the altered environment (285). The IL-2
rich ESRD plasma promotes STAT5 phosphorylation of ILC2s
leading to expansion and activation (285). An inverse correlation
between circulating ILC2 abundance and infectious
complications, as well as elevated IL-33 suggest ILC2 activation
as a protective mechanism in ESRD (286). These findings are
supported by increased protection from chronic kidney disease
by IL-33-induced ILC2 expansion and elevated eosinophil
recruitment (287). In contrast, CD56bright NK cells are
positively correlated with loss of kidney function in chronic
kidney disease and were more abundant in fibrotic biopsies,
co-localizing with proximal tubular epithelial cells at sites
of tubulointerstitial injury (288). In fibrotic samples,
NKp46+CD117+CD56bright NK cells were the dominant source
of IFN-g and upregulated CD69, implying a role in renal injury
and fibrosis (288).

ILCs in Ischemia-Reperfusion Injury
IRI occurs when temporary disruptions in blood flow cause
hypoxic stress and injury to the kidney. Several lines of evidence
suggest that ILCs influence IRI severity. Anti-asialo-GM1 and
anti-NK1.1 depletion, or NKG2D blockade ameliorated IRI and
prevented killing of Rae-1-expressing tubular epithelial cells by
NK cells in mice (289, 290). Interactions between co-stimulatory
receptor 4-1BB on NK cells and its activating ligand 4-1BBL on
epithelial cells activate NK cells and recruit neutrophils via
epithelial cell-derived CXCL1 and CXCL2 (291). Together,
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these results support a role for NK cell-epithelial cell interactions
in aggravating IRI.

IL-25 and IL-33 administration expands ILC2s in mice,
attenuating IRI and promoting recovery post ischemic injury
(292, 293). ILC2 depletion using anti-CD90 treated Rag1-/- mice
abolished the protective effect of IL-33 administration (293).
Further, adoptive transfer of either murine (into C57BL/6) or
human ILC2s (into NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ)
mice) conferred protection from IRI, while AREG-deficient
ILC2s failed to abrogate IRI (293). In contrast, Liang et al.
reported IL-33 treatment worsened disease scores and fibrosis
in mice post-IRI (294). The timing and duration of IL-33
administration and experimental endpoints may account for
differences in results, specifically that prolonged IL-33
administration may be detrimental, underscoring the
importance of balance between tissue repair and fibrosis
processes required to achieve tissue homeostasis.

Despite evidence that expansion or adoptive transfer of ILC2s
is beneficial, depletion of ILC2s did not negatively impact IRI, as
mice with reduced (Rorafl/+Il7rcre/+), depleted (Icosdtr/+ Cd4cre/+),
or deficient for ILC2s (Rorafl/flIl7rcre/+), had no effect on IRI,
Frontiers in Immunology | www.frontiersin.org 18154
suggesting ILC2 functions can be compensated for by other cell
types (295). A regulatory ILC population (Lin- CD127+ CD25+

IL-10+) was identified in mice that limited ILC1s and pro-
inflammatory macrophages in an IL-10- and TGF-b-dependent
manner (15). Reduced tissue damage was noted in experimental
IRI when these cells were expanded in Rag-/- mice (15). Notably,
endogenous ILCregs in IRI produced less IL-10 than expanded
ILCregs, suggesting that endogenous ILCreg function is impaired
in IRI. While the human counterpart of this regulatory ILC
subset was identified, confirmation of their function is
needed (15).

ILCs in Lupus Nephritis
ILCs have been linked to kidney autoimmune pathologies such as
lupus nephritis (LN), a manifestation of systemic lupus
erythematosus (SLE). Arazi et al. identified two distinct NK cell
populations within LN kidney tissue by scRNAseq, annotated as
CD56dimCD16+ NK cells and tissue-resident CD56brightCD16- NK
cells (296). CD56+ NK cells from SLE patients show an impaired
antibody-dependent cellular cytotoxicity due to reduced CD3z
signaling upon NCR engagement (297). Altered abundance of
B

A

FIGURE 8 | ILCs in the kidney. (A) Mouse and human studies support ILC2s may limit kidney injury. Administration of IL-25 and IL-33 in a humanized mice model
attenuates IRI, and in conventional mouse models promotes a Th2 response and M2 macrophage polarization resulting in decreased tissue damage post ischemic
injury. ILC2s may also be protective in end-stage renal disease (ESRD), where circulating ILC2 abundance, proliferation, and cytokine release increases. IL-2 is
proposed to facilitate this ILC2 expansion via STAT5 and protect against infections through eosinophil support. (B) CD56bright NK cells are more abundant in fibrotic
kidney tissue where they upregulate CD69 and co-express NKp46 and CD117, producing the majority of IFN-g, implying a role in driving inflammation and fibrosis. In
lupus nephritis (LN), scRNAseq revealed two distinct NK cell subsets – a CD56dimCD16+ blood-derived and tissue-resident CD56brightCD16- population. Both NK
cells showed impaired antibody-dependent cell cytotoxicity because of dampened signaling efficiency by NKp30 and NKp46. LN patients further displayed elevated
ILC1s and decreased ILC2s, while patients with moderate to severe disease showed an additional decrease in ILC3s. Created with Biorender.org.
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circulating ILCs in LN is associated with disease severity, with
increased ILC1s across disease scores and decreased ILC3s in
moderate to severe disease scores (298, 299). Further, reduced
cytokine production and increased PD-1 expression suggest an
exhausted ILC state in active disease (299). Specifically, CD117+

ILCs, likely ILC progenitors, were markedly decreased in LN and
preferentially differentiated into ILC1s when cultured in LN
plasma. Blockade of IL-1R reversed this effect, suggesting IL-1b-
mediated regulation of the ILC progenitor pool (299). In a murine
model of LN, renal ILC3s were the dominant source of IL-22 and
were increased in abundance, while IL-22 deficiency ameliorated
disease, supporting a pathogenic role for ILC3s in LN, yet whether
an analogous mechanism applies to humans is unknown (300).
These studies collectively support dysregulation of ILCs in SLE
and LN.
ILCS IN THE FEMALE
REPRODUCTIVE SYSTEM

ILCs have established roles within the reproductive system and
influence pregnancy outcomes (Figure 9A). While group 1 and
group 3 ILCs are abundant in uterine tissue and participate in the
dynamic regulation of reproductive health, little is known about
the role of low abundance ILC2s (301).
ILCs in Pregnancy
Pregnancy is a unique case where non-self is protected from
immune-mediated rejection. Dynamic changes occur in both
maternal and fetal tissues as pregnancy progresses. The uterine
mucosa undergoes cyclic remodeling, termed decidualization, in
which the endometrium thickens in preparation for implantation
(302). For implantation and placentation to occur, the decidua
must be invaded by fetal tissue (trophoblast cells) (303). Together,
maternal and fetal tissue interactions promote successful
implantation, placentation, and arterial spiralization to facilitate
blood and nutrient supply to the developing fetus (303).

Uterine NK (uNK) cells are important cellular regulators of
fetal implantation and protect against maternal rejection of the
fetus. These uNK cells are the most abundant leukocytes present
in the uterine mucosa and exhibit differential functions and
limited cytotoxicity compared to cNK cells (304). Despite the
discovery of uNK cells in the early 1990’s, the function of uNK
cells in healthy and abnormal pregnancy is still the subject of
intense research. Uterine NK cells contribute to placental
remodeling, striking a balance between excessive trophoblast
infiltration and defective placentation, regulated by KIR and
MHC-I interactions (305). In general, activating receptor ligation
improves reproductive success by promoting trophoblast
invasion and vascular transformation (306). Human chorionic
gonadotropin (hCG) released by the implanting fetal trophoblast
induces uNK cell proliferation through hCG N-linked
carbohydrate recognition by CD206 (mannose receptor) on
uNK cells, establishing a pathway of uNK cell regulation by the
implanting embryo (307).
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ScRNAseq defined three distinct subsets of decidual NK cells
(dNK cells) in humans. All subsets expressed CD49A and CD9,
dNK1 cells expressed CD39, CYP26A1 and B4GALNT1, dNK2
cells expressed ANXA1 and ITGB2, and dNK3 cells expressed
ITGB2, CD160, KLRB1 and CD103 (308). In particular, the
highly granular and metabolically active dNK1 cells are
hypothesized to interact with extravillous trophoblast cells
because of high-level expression of KIRs and other HLA-
molecule receptors (308). Unlike dNK2 and dNK3 cells, dNK1
cells were mostly IFN-g- in response to stimulation (309).
Computational predictions suggest the mechanism behind the
prevention of an inflammatory immune response relies on
immune-tissue crosstalk (308). Decidual stromal cells highly
express LGALS9 and CLEC2D, pointing to potential NK cell
inhibition via interaction with TIM-3 and KLRB1 (308). In line
with the scRNAseq findings, Huhn et al. confirmed three subsets
of dNK cells by mass cytometry with differential expression of
the transcription factors TBET and EOMES (309). NK cells in
the uterus or decidua acquire KIRs and CD39 along a
developmental trajectory, corresponding to increased
immunomodulatory and angiogenic function (310). With KIR
acquisition, dNK cell expression of LILRB1, Ki-67, NKp30, and
Granzyme B increased while NKG2D, CD161, and TBET
decreased, unlike the relatively stable expression of these
markers on cNK cells (309). Once acquired, the expression of
KIRs remain remarkably stable for successive menstruation
cycles (311). In another departure from cNK cells, granules
were ~3 times larger in dNK cells and as KIR expression
increased, degranulation and cytokine production decreased,
supporting that dNK cells are phenotypically and functionally
unique (309).

High NKG2C marks uNK cells that have acquired memory,
or “trained immunity”, contributing to improved reproductive
success in subsequent pregnancies by improving vascularization
and placentation (312, 313). Greater abundance of uNK cells and
aberrant function resulting in higher expression of angiogenic
factors in the endometrium coincides with thickening of the
spiral artery walls, suggesting alteration of uNK-mediated
vascular remodelling as cause for recurring miscarriage (314,
315). However, lower abundance of uNK cells is also associated
with recurrent pregnancy losses through reduced decidual-uNK
cell interactions. Chronic senescence of decidual cells leads to
tissue dysfunction not conducive to successful pregnancies and
uNK cells selectively eliminate senescent decidual cells via
NKG2D, while differentiating decidual cells support and
recruit uNK cells with CXCL14, IL-15 and TIMP3 (316, 317).
Indeed, endometrial biopsies from patients with recurrent
pregnancy loss exhibit excessive decidual senescence and
reduced uNK cell abundance, indicating that a balanced co-
operation between decidual cells and uNK cells promotes healthy
pregnancies (316).

dNK cells also protect against pregnancy loss from
trophoblast bacterial infection. Here, rather than forming a
cytotoxic synapse, dNK cells transfer granulysin to infected
trophoblasts using nanotube connections, killing the
intracellular bacteria without killing the trophoblast (318).
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This pathway could account for NK-mediated host defense in a
setting that aims to avoid excessive tissue damage.

Other ILCs also have defined roles in pregnancy and
reproductive conditions. Vacca et al. reported ILC3s in human
decidua express PD-1 and TIM-3, which regulate ILC3 cytokine
production, most notably IL-22 (319). Since trophoblast cells are
PD-L1high, ILC3-trophoblast interactions may promote fetal
Frontiers in Immunology | www.frontiersin.org 20156
tolerance during the first trimester (319). In support of this,
PD-L1 levels were much lower or nonexistent in the trophoblast
cells of spontaneous abortions compared to healthy terminated
pregnancies (319). Subsets of CD127hiCD117hiAhRhiCD94-

CD56+/-NKp44+/- decidual ILC3s were capable of producing
GM-CSF, XCL1 and low levels of IFN-g upon stimulation
(309). NCR+ILC3s correlate with neutrophil abundance in the
B

C

A

FIGURE 9 | ILCs in the reproductive system. Most ILC data focuses on the female reproductive tract, where NK cells have established roles in pregnancy (A).
uNK cells are regulated by human chorionic gonadotropin (hCG) released by fetal trophoblasts, signaling through CD206 (mannose receptor) to facilitate placental
remodeling. Women with recurrent pregnancy losses show an increase in uNK cells in the endometrium, coinciding with thickened spiral artery walls and the
resulting vascular remodeling affecting the blood flow to the fetus. In support of this, uNK cells from women with recurrent miscarriages also produced more
angiogenic factors, fibroblast growth factors, and vascular endothelial growth factors. A special subset of memory uNK cells expressing higher levels of NKG2C
contribute to improved reproductive success and lower incidence of pregnancy complications in subsequent pregnancies. In the human decidua, ILC3s express
PD-1 and TIM-3, regulating ILC3 cytokine production, in particular IL-33. ILC3-trophoblast interactions may promote fetal tolerance during the first trimester via PD-1:
PDL-1 interactions, supported by lower PD-L1 levels in trophoblasts of spontaneous abortions compared to healthy terminated pregnancies. (B) Reduced stem cell
factor leads to a higher proportion of immature uNK cells in endometriosis, potentially contributing to infertility associated with endometriosis. (C) In a model of
PCOS, microbial dysregulation led to reduced bile acids needed to support ILC3 function. The reduced ILC3 abundance and IL-22 production led to cystic follicle
development and insulin resistance. Created with Biorender.org.
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human decidua and produce GM-CSF and CXCL8, supporting
neutrophil recruitment and survival (320). Based on lower
decidual neutrophil numbers in patients with miscarriages,
Croxatto et al. hypothesize that the ILC3-neutrophil axis is
beneficial, particularly in early stages of pregnancy (320).

ILCs in Endometriosis
Pathological functions of uNK cells are linked to endometriosis, a
condition affecting ~10% of women where endometrial tissue
grows outside of the uterus, resulting in debilitating pain and
infertility. Patients with endometriosis have increased immature
uNK cell counts and lower levels of stem cell factor (SCF) in the
endometrial tissue, associated with infertility (Figure 9B) (321).
Supplementing cultures of immature uNK cells with SCF
supports uNK cell maturation (321). Endometrial stromal cells
express high levels of SCF, suggesting stromal-uNK cell
interactions influence fertility outcomes in endometriosis. SCF
receptor expression is also found on helper ILCs, however, their
role in endometriosis requires further investigation (322–324).
While many questions remain, these reports support a critical
role for uNK cell homeostasis in fertility.

Notably, IL-33 elevation is implicated in endometriosis and
exogenous IL-33 exacerbates lesion severity and fibrosis
dependent on ILC2s in a murine endometriosis model (325).
Yet, in endometrial tissue of patients with endometriosis, ILC2s
and ILC3s are reduced in abundance relative to non-
endometriosis controls (326). Further work will be needed to
clarify the role of hILCs in endometriosis.

ILCs in Polycystic Ovary Syndrome
Separate from protective roles in pregnancy, reduced ILC3 activity
is associated with polycystic ovary syndrome (PCOS). PCOS
encompasses mixed metabolic and reproductive pathologies,
such as irregular ovulation, infertility, hyperandrogenism, insulin
resistance, and adipose tissue inflammation associated with a
complex etiology including hormonal dysregulation and
heritability (327). Reductions in bile acids due to microbial
dysregulation decreased IL-22 production by ILC3s and
promoted insulin resistance and cystic follicle development in a
murine PCOS model (328). This was reversed by supplementing
missing bile acids or IL-22, supporting a link between the gut and
fertility (328). However, hormonal imbalances impact ILC
function in PCOS. For example, progesterone driven IL-15, IL-
18 and CXCL10 expression promote uNK cell recruitment and
proliferation, and are altered in PCOS endometrial tissue
(Figure 9C) (329). These findings indicate that tissue-ILC and
microbiota-ILC interactions critically regulate reproductive
homeostasis on multiple levels.
ILCS IN THE HEART

In mice, NK cells account for ~3% of cardiac immune cells,
ILC2s for ~1.7%, and ILC1s for 0.2%, while ILC3 abundance is
negligible (330). Compared to lung ILC2s, murine cardiac ILC2s
had lower expression of ICOS, CD25, and Ki-67, and higher
expression of Sca-1 and GATA3 (330). Only 2% of cardiac ILC2s
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in mouse were donor-derived after 2 months of parabiosis,
indicating that ILC2s are a stable tissue-resident population in
the heart (330). Cardiac-resident ILC2s respond to IL-33 but not
IL-25, and a committed cardiac ILC2 precursor (ILC2p) in mice
and humans exists in a quiescent state with the capability to
differentiate into ILC2s in response to myocardial infarct or
myocarditis (331). The existence of undifferentiated ILC2p
within tissues has been observed before and suggests a role for
this pool of precursors as a reservoir for ILCs to protect from
tissue damage (332). Cardiac ILC activity has been implicated in
several disease models (Figure 10).

ILCs in Atherosclerosis and Coronary
Artery Disease
Conflicting findings on ILC subset functions in atherosclerosis
and coronary artery disease (CAD) have been reported.
Selathurai et al. found murine NK cells were detrimental to
atherosclerotic disease, increasing lesion size in a Perforin- and
Granzyme B-dependent manner, while Nour-Eldine et al. found
no effect of NK cells on lesion development using a distinct
genetic depletion model, likely accounting for divergent findings
(333, 334).

In humans, a study of acute ST-segment elevation myocardial
infarction (STEMI) found elevated circulating ILC1s within 12
hours of symptom onset which produced more IL-12, IL-18, IFN-
g, and TNF-a, and were associated with a higher risk of major
adverse cardiovascular events (335). In contrast, NK cells were
reduced and have lower cytotoxicity in CAD patients, both in the
case of stable angina and incidence of myocardial infarction or
unstable disease (336–338). During follow-up, patients who failed
to reconstitute their peripheral NK cells post myocardial infarction
had higher levels of serum IL-6 and exhibited characteristics of
metabolic syndrome, suggesting poor NK cell recovery
corresponds with low-grade inflammation (336). Recovery of
NK cells in CAD patients is potentially self-regulated, as
apoptotic NK cells both respond to and produce FasL, which is
elevated in serum and correlates with NK cell levels and apoptotic
susceptibility (339). Increased proportions of CD56bright NK cells
were identified in carotid plaques compared to autologous
peripheral blood, and greater NK cell infiltration corresponded
with symptomatic versus asymptomatic CAD patients (340).
Soluble B7-H6 levels of 250 pg/ml were detected in symptomatic
patients but not in asymptomatic patients or healthy controls
(340). Notably, B7-H6 can interact with NKp30, yet further studies
are needed to directly assess B7-H6 andNK cell interactions in this
context. Circulating NK cells from atherosclerotic patients had
higher TIM-3 expression than healthy controls, with the greatest
levels in those with unstable plaques (341). TIM-3 blockade
reduced the death of NK cells cultured in TNF-a, suggesting
that TIM-3 promotes cytokine-induced NK cell apoptosis in
atherosclerosis (341). Whether NK cells are preferentially
recruited to unstable carotid plaques, or functionally contribute
to plaque destabilization requires additional study (340).

ILC2s appear to have cardioprotective functions based on
mouse models. ILC2s protect from cardiac fibrosis and are
enhanced by exogenous IL-33, producing AREG and BMP-7 to
support cardioprotective responses to injury (342). Expansion of
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ILC2s reduces atherosclerosis severity and lesion size, while
genetic ablation (Staggerer/RoraFlox-CD127Cre) exacerbates
disease (343, 344). Notably, protection is IL-5 and IL-13-
dependent, recruiting eosinophils and polarizing macrophages
towards an anti-inflammatory phenotype (342, 343). Further,
pericardial and cardiac ILC2s expand early post-experimental
myocardial infarction, peaking at day 3 before returning to
homeostatic levels, while the absence of ILC2s impairs cardiac
remodeling and results in larger areas of scarring (345).
Together, this supports a role for cardiac-resident ILC2s in
directing repair pathways in response to injury.

ILCs in Cardiac Inflammation
ILC expansion has been observed in patients with pericarditis
(346). In contrast to cardioprotective findings above, ILC2s have
been implicated in pericarditis pathology. Exogenous IL-33
expanded murine pericardial ILC2s, driving cardiac fibroblasts
to secrete CCL11/eotaxin-1 and recruit eosinophils, initiating
pericarditis (346). Pericardial fluid from humans revealed an
elevated frequency of CD127+ ILCs in patients with cardiac
disease versus controls, indicating that ILCs are also involved
in human pericardial pathology (346). In an opposing role, NK
cell depletion led to greater inflammation and fibrosis of the
heart, dependent on NK cell-mediated prevention of eosinophilic
Frontiers in Immunology | www.frontiersin.org 22158
infiltration (347). A possible cross-regulation of NK cells and
ILC2s during cardiac inflammation should be investigated.

Sex differences in mortality and morbidity of Coxsackievirus
B3 (CVB3) viral myocarditis may also reflect sex-based
regulation of NK cell function. Male mice experience greater
morbidity and mortality from myocarditis following CVB3
infection, with increased IFN-g+ NK cell infiltration in cardiac
tissue (348). Ovariectomized or sexually immature female mice
show similar susceptibility to infection-triggered myocarditis
when compared to male mice, while estrogen-treated male
mice had ameliorated myocarditis (348). CVB3-stimulated NK
cells cultured with estrogen down-regulated T-bet expression
and consequently had reduced IFN-g production, indicating that
regulation of T-bet expression by estrogen might underlie the
decreased IFN-g+ NK cell infiltration in female mice and
contribute to sex differences in myocarditis, in line with prior
reports of hormonal regulation of other ILC subsets (100, 348).
ADIPOSE ILCS

Adipocytes are critical regulators of energy and glucose
homeostasis. They are a heterogeneous population of cells,
comprising energy-storing white adipocytes, thermogenic
FIGURE 10 | ILCs in the heart. Limited studies have examined ILCs in the heart. In mice, IL-33 administration or CD27+Sca-1+ fibroblast-derived IL-33 expands
ILC2s in the pericardium, driving cardiac fibroblasts to secrete CCL-11/eotaxin, leading to the accumulation of eosinophils. In humans, CD127+ ILCs increase in the
pericardial fluid during in cardiac disease, particularly during pericarditis. Separately, the expansion of ILC2s by IL-33 was cardioprotective after injury, reducing
fibrosis. Within 12 hours of acute ST-segment elevation myocardial infraction (STEMI), ILC1 elevation peaks. Higher ILC1-associated IL-12, IL-18, IFN-g, and TNF-a
levels lead to a higher risk of major adverse cardiovascular events. Created with Biorender.org.
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brown adipocytes that express uncoupling protein-1 (UCP-1) to
dissipate energy as heat, as well as beige adipocytes that reside
within white adipose tissue (WAT) and upregulate UCP-1 in
response to environmental cues (349). Beige adipocyte
accumulation protects from insulin resistance, and regulation
of the beiging process has become an attractive therapeutic target
for metabolic dysregulation and type 2 diabetes (350).

ILC2s are the dominant hILC subtype identified in adipose
tissue, with phenotypic variation across different murine adipose
compartments: ILC2s in para-aortic adipose tissue have an
inflammatory phenotype defined by IL-25 responsiveness and
high KLRG1 expression, whereas peri-gonadal adipose ILC2s are
IL-33 responsive, expressing ST2 (343, 351). Intriguingly, mouse
ILC2s highly express bone morphogenetic protein (Bmp)2 and
Bmp7, which promote adipocyte differentiation, while ILC-
deficient mice have more CD34+PDGFRa+ precursor
adipocytes, supporting a role for ILCs in adipogenesis (352).
Under homeostatic conditions, ILC2s orchestrate immune
responses in adipose tissues by recruiting eosinophils, promoting
alternative activation of macrophages, and regulating beiging,
glucose catabolism, and insulin sensitivity in adipose tissues
(Figure 11A) (353, 354). In support of this, depletion of IL-5
and IL-13-producing cells (mainly ILC2s) corresponded to a
reduction of eosinophils and Arg-1+ adipose macrophages in
visceral adipose tissue (355). ILC2s also promote Treg responses
through ICOSL and OX40L co-stimulation in adipose tissues,
critical for supporting insulin sensitivity (356–358).

Mouse studies support that ILC2s can directly promote adipose
beiging, supporting homeostasis and preventing obesity (5, 359,
360). ILC2s are sustained by IL-33 from adipose stem and
progenitor cells (ASPCs) (360). Stromal ICAM-1 interactions
with LFA-1 on ILC2s promotes ILC2 activation and
proliferation in adipose tissue, while IL-4/IL-13 expression by
ILC2s induces eotaxin (CCL11) expression in stromal cells,
supporting eosinophil recruitment (361). Peritoneal IL-33
administration expands adipocyte precursors and promotes
beige lineage commitment in an ILC2-dependent manner, as
effects are abolished in the absence of ILC2s and when
adipocyte precursors are not receptive to IL-4/IL-13 signaling
(Il4rafl/flPdgfraCre) (359). An alternative mechanism of ILC2-
dependent beiging of mouse adipose tissue was proposed by
Brestoff et al. who found IL-33-stimulated ILC2s produce
methionine-enkephalin (MetEnk), an endogenous opioid-like
peptide which induces WAT beiging (5). Overall, these studies
demonstrate that ILC2-dependent eosinophil-derived IL-4 and
ILC2-derived IL-13 and/or MetEnk directly promote murine
adipocyte precursor proliferation and beige lineage commitment
(5, 359).

Group 1 ILCs are largely resident in murine adipose tissue (362).
Although their homeostatic role is poorly understood, ILC1s
regulate adipose macrophage homeostasis (363). Alternatively
activated macrophages scavenge potentially cytotoxic molecules
released during adipose tissue remodeling and upregulate stress
ligands (i.e. Rae-1) at steady state, and their selective depletion by
adipose type 1 ILCs prevents stress-induced inflammation in
macrophages during homeostatic tissue remodeling (363).
Frontiers in Immunology | www.frontiersin.org 23159
ILCs in Obesity
Dysregulation of the immune environment associated with obesity
can lead to metabolic dysfunction and insulin resistance, driving
type 2 diabetes (T2D) (364). ILC dysregulation has been
implicated in obesity (Figure 11B). In obese humans and mice,
ILC2s are reduced in WAT, possibly due to reduced IL-33
production by ASPCs in response to high fat diet (5, 360, 365).
High PD-1 expression on ILC2s reduced IL-5 and IL-13
production, an effect partially rescued by macrophage depletion,
suggesting PD-1/PD-L1 interactions between ILC2s and
macrophages dampens ILC2 function in obese conditions in
mice (365). Additionally, adipocyte-derived soluble ST2 is
induced by obesity and interrupts IL-33 signaling, impairing
ILC2 homeostasis (366). Infiltration of IFN-g-producing cells
also contributes to reduced ILC2 abundance and function, as
IFN-g directly represses ILC2s and counteracts IL-33 (357).

Obese mice fed a high fat diet had adipose tissue-specific IL-
12-dependent accumulation of ILC1s with elevated IFN-g
production, resulting in insulin resistance and glucose
intolerance (362, 367). Interestingly, CD56dim CD16– ILCs
accumulating during obesity have reduced cytotoxicity, a
potential secondary mechanism contributing to macrophage
accumulation and glucose intolerance (363). Wensveen et al.
demonstrated NKp46 on adipose-resident mouse NK cells may
regulate this effect (368). High fat diet-induced obesity triggered
the expression of NCR1 ligands on adipocytes which promoted
local NK cell proliferation and production of IFN-g, inducing the
differentiation of pro-inflammatory macrophages and promoting
insulin resistance (368). Wang et al. further found that the ILC1
IFN-g-dependent expansion of pro-inflammatory macrophages
exacerbated adipose fibrosis by promoting TGF-b1 and pro-
fibrotic programs in macrophages, resulting in higher collagen
deposition (367).

In agreement with murine models, circulating and adipose
ILC1s are increased in obese patients, especially those with T2D,
and the abundance of ILC1s positively correlates with measures
of glucose intolerance and insulin resistance (367). A unique
subpopulation of CSF1R+IL6Ra+ NK cells is expanded in human
and murine obesity (369). Selective depletion of this subset
(Csf1r-loxSTOPlox-DTR x NcrCre) resulted in decreased weight gain,
better glucose tolerance, and insulin responsiveness in mice fed a
high fat diet (369). Further, the expression of RORgt,
lymphotoxin and IL-22 all elevated weight gain and adipose
tissue size, paralleling findings that IL-22 from Th17 cells
exacerbates inflammation in obesity (370, 371). The regulation
of metabolism by intestinal ILC3s suggests a gut-adipose axis
that remains to be explored. Overall, ILC2s mediate adipose
homeostasis and are dysregulated in obesity, while ILC1s and
potentially ILC3s have a role in exacerbating inflammation.
CONCLUDING REMARKS

Multiple parallels and differences between murine and human
ILCs exist. Their evolutionarily conserved transcriptional
programs and functional similarity emphasizes their
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importance across multiple distinct phylogenetic branches.
However, a better understanding of homologies and analogies
in their surface receptor expression and function are needed to
inform conserved mechanisms underlying responses to
infections, inflammation and malignancies. This will be of
particular interest to enhance our understanding NK cell
biology, where receptors regulating NK cells responses differ
between mouse and human, but different receptors often
perform similar function.

The distinct living conditions of mice and humans require
conserved and specified adaptations of organs and tissues to
environmental triggers. ILCs as regulators of tissue homeostasis
adapt to these species-specific environments. Shared and
differing microbiota within humans and mice may explain
conserved and distinct functions of ILCs across these
organisms. Gnotobiotic technologies, humanized mice, knock-
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out mouse models or adoptive transfer experiments are suitable
to investigate these differences but bring their own pitfalls.
Beyond these challenges, a key obstacle for the study of ILCs
in situ is the scarcity of ILC-specific models available to tease out
cell-specific or even organ-specific functions. Adding to this,
ILCs typically function in cellular networks to influence the
outcome of a given immune response. To properly understand
their function and tease out any redundancy, more systems-
based approaches are needed, particularly in humans (295,
372, 373).

Other roadblocks in understanding the role of various ILCs in
homeostasis and disease are studies designed only to link the presence
or absence of ILCs with disease outcome. This is especially evident in
reports of NK cell function. Reporting expansion or reduction of NK
cells as having a protective or detrimental effect assumes a
homogeneous function of NK cells. While classically, NK cell
B

A

FIGURE 11 | ILCs in adipose tissue. (A) Using mostly mouse models, ILC2s are linked to adipogenesis, where they maintain homeostasis and prevent obesity by
promoting adipose beiging. ILC2s are sustained by IL-33 from adipose stem and progenitor cells (ASPCs) and required stromal cell interactions via ICAM-1 and LFA-1.
The resulting release of IL-4, IL-13 by ILC2s promotes eosinophil recruitment via stromal cell-derived eotaxin (CCL11). IL-33 stimulates ILC2-produced methionine-
enkephalin (MetEnk), an endogenous opioid-like peptide that promotes adipose beiging. (B) Both obese humans and mice, have reduced ILC2s in the white adipose
tissue due to diet-driven impairment of IL-33 production by ASPCs. The infiltration of IFN-g-producing ILCs actively represses cytokine release by ILC2s and propagates
ILC2 inhibition through via PD-1 and macrophage-expressed PD-L1. A unique subpopulation of CSF1R+IL16Ra+ NK cells and increased ILC1 abundance positively
correlates with glucose intolerance and insulin resistance. Overall, reduction of adipose ILC2s fosters metabolic dysfunction, insulin resistance and obesity. Created with
Biorender.org.
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function has been cytotoxic and inflammatory, NK cells have also
been cast in an immunoregulatory role where they dampen an
immune response (19). Additionally, identifying NK cells as CD3-

CD56+ does not rule out other non-cytotoxic ILC1s and ILC3s that
can share CD56 expression, and does not address the large degree of
heterogeneity within NK cells (374). Untangling the identity and
functional capacity of distinct CD3- CD56+ populations may help to
clarify contradictory findings.

The plasticity of ILCs makes definitively assigning them as
“good” or “bad” quite problematic. Sometimes ILCs with identical
or similar surface phenotype may be functionally distinct (206).
While this may be context dependent, ILC plasticity may be
partially responsible for conflicting reports of their function in
disease. Future studies should consider assessing the functional
role of ILC subsets correlated with ILC transcriptional and
epigenetic profiles to identify mechanisms underlying distinct
ILC functions and whether some level of ‘trained’ immunity
contributes to differing findings. Additionally, it remains unclear
if the tissue-specific functions of ILCs are due in part to the
existence of specific subsets of ILCs that home to their niche, or
instead these different functions are a directly due to
microenvironment signals leading to niche adaptation. It is also
entirely possible that both cases are true and contribute to
establishing tissue-specific ILC functions. Moving forward, the
characterization of tissue-specific networks and niches for ILCs
will transform our understanding of ILC functions and underlying
mechanisms controlling their tissue adaptations.
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254. Araújo RC, Dias FC, Bertol BC, Silva DM, Almeida PH, Teixeira AC, et al.
Liver HLA-E Expression is Associated With Severity of Liver Disease in
Chronic Hepatitis C. J Immunol Res (2018) 2018:2563563. doi: 10.1155/2018/
2563563

255. Doyle EH, Aloman C, El-Shamy A, Eng F, Rahman A, Klepper AL, et al. A
Subset of Liver Resident Natural Killer Cells is Expanded in Hepatitis C-
Infected Patients With Better Liver Function. Sci Rep (2021) 11:1–13.
doi: 10.1038/s41598-020-80819-8

256. Dunn C, Brunetto M, Reynolds G, Christophides T, Kennedy PT,
Lampertico P, et al. Cytokines Induced During Chronic Hepatitis B Virus
Infection Promote a Pathway for NK Cell-Mediated Liver Damage. J Exp
Med (2007) 204:667–80. doi: 10.1084/jem.20061287

257. Peppa D, Gil US, Reynolds G, Easom NJW, Pallett LJ, Schurich A, et al. Up-
Regulationof aDeathReceptorRendersAntiviralTCells Susceptible toNKCell-
Mediated Deletion. J Exp Med (2013) 210:99–114. doi: 10.1084/jem.20121172

258. Yang Z, Tang T, Wei X, Yang S, Tian Z. Type 1 Innate Lymphoid Cells
Contribute to the Pathogenesis of Chronic Hepatitis B. Innate Immun (2015)
21:665–73. doi: 10.1177/1753425915586074

259. Wang S, Li J, Wu S, Cheng L, Shen Y, Ma W, et al. Type 3 Innate Lymphoid
Cell: A New Player in Liver Fibrosis Progression. Clin Sci (2018) 132:2565–
82. doi: 10.1042/CS20180482

260. Jie Z, Liang Y, Hou L, Dong C, Iwakura Y, Soong L, et al. Intrahepatic Innate
Lymphoid Cells Secrete IL-17A and IL-17f That Are Crucial for T Cell
Priming in Viral Infection. J Immunol (2014) 192:3289–300. doi: 10.4049/
jimmunol.1303281

261. Liang Y, Yi P, Yuan DMK, Jie Z, Kwota Z, Soong L, et al. IL-33 Induces
Immunosuppressive Neutrophils via a Type 2 Innate Lymphoid Cell/IL-13/
STAT6 Axis and Protects the Liver Against Injury in LCMV Infection-
Induced Viral Hepatitis. Cell Mol Immunol (2019) 16:126–37. doi: 10.1038/
cmi.2017.147

262. Hart KM, Fabre T, Sciurba JC, Gieseck RL, Borthwick LA, Vannella KM,
et al. Type 2 Immunity Is Protective in Metabolic Disease But Exacerbates
NAFLD Collaboratively With TGF-B. Sci Transl Med (2017) 9:eaal3694.
doi: 10.1126/scitranslmed.aal3694

263. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver Fibrosis and
Repair: Immune Regulation of Wound Healing in a Solid Organ. Nat Rev
Immunol (2014) 14:181–94. doi: 10.1038/nri3623
Frontiers in Immunology | www.frontiersin.org 32168
264. Gonzalez-Polo V, Pucci-Molineris M, Cervera V, Gambaro S, Yantorno SE,
Descalzi V, et al. Group 2 Innate Lymphoid Cells Exhibit Progressively
Higher Levels of Activation During Worsening of Liver Fibrosis. Ann
Hepatol (2019) 18:366–72. doi: 10.1016/j.aohep.2018.12.001

265. Mchedlidze T, Waldner M, Zopf S, Walker J, Rankin AL, Schuchmann M,
et al. Interleukin-33-Dependent Innate Lymphoid Cells Mediate Hepatic
Fibrosis. Immunity (2013) 39:357–71. doi: 10.1016/j.immuni.2013.07.018

266. Neumann K, Karimi K, Meiners J, Voetlause R, Steinmann S, Dammermann
W, et al. A Proinflammatory Role of Type 2 Innate Lymphoid Cells in
Murine Immune-Mediated Hepatitis. J Immunol (2017) 198:128–37.
doi: 10.4049/jimmunol.1600418

267. Steinmann S, Schoedsack M, Heinrich F, Breda PC, Ochel A, Tiegs G, et al.
Hepatic ILC2 Activity Is Regulated by Liver Inflammation-Induced
Cytokines and Effector CD4+ T Cells. Sci Rep (2020) 10:1–13.
doi: 10.1038/s41598-020-57985-w

268. Martrus G, Kautz T, Lunemann S, Richert L, Glau L, Salzberger W, et al.
Proliferative Capacity Exhibited by Human Liver-Resident CD49a+CD25+
NK Cells. PloS One (2017) 12:e0182532. doi: 10.1371/journal.pone.
0182532

269. Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B. Natural Killer Cells
Ameliorate Liver Fibrosis by Killing Activated Stellate Cells in NKG2D-
Dependent and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-
Dependent Manners. Gastroenterology (2006) 130:435–52. doi: 10.1053/
j.gastro.2005.10.055

270. Baroni GS, D’Ambrosio L, Curto P, Casini A, Mancini R, Jezequel AM, et al.
Interferon Gamma Decreases Hepatic Stellate Cell Activation and
Extracellular Matrix Deposition in Rat Liver Fibrosis. Hepatology (1996)
23:1189–99. doi: 10.1053/jhep.1996.v23.pm0008621153

271. Liu M, Hu Y, Yuan Y, Tian Z, Zhang C. gdt Cells Suppress Liver Fibrosis via
Strong Cytolysis and Enhanced NK Cell-Mediated Cytotoxicity Against
Hepatic Stellate Cells. Front Immunol (2019) 10:477. doi: 10.3389/
fimmu.2019.00477

272. JeongW-I, ParkO,GaoB.Abrogationof theAntifibrotic EffectsofNaturalKiller
Cells/Interferon-g Contributes to Alcohol Acceleration of Liver Fibrosis.
Gastroenterology (2008) 134:248–58. doi: 10.1053/j.gastro.2007.09.034

273. Bellentani S. The Epidemiology of Non-Alcoholic Fatty Liver Disease. Liver
Int (2017) 37:81–4. doi: 10.1111/liv.13299

274. Kahraman A, Schlattjan M, Kocabayoglu P, Yildiz-Meziletoglu S, Schlensak
M, Fingas CD, et al. Major Histocompatibility Complex Class I-Related
Chains A and B (MIC A/B): A Novel Role in Nonalcoholic Steatohepatitis.
Hepatology (2010) 51:92–102. doi: 10.1002/hep.23253

275. Stiglund N, Strand K, Cornillet M, Stål P, Thorell A, Zimmer CL, et al.
Retained NK Cell Phenotype and Functionality in Non-Alcoholic Fatty Liver
Disease. Front Immunol (2019) 10:1255. doi: 10.3389/fimmu.2019.01255

276. Tosello-Trampont AC, Krueger P, Narayanan S, Landes SG, Leitinger N,
Hahn YS. NKp46+ Natural Killer Cells Attenuate Metabolism-Induced
Hepatic Fibrosis by Regulating Macrophage Activation in Mice.
Hepatology (2016) 63:799–812. doi: 10.1002/hep.28389

277. Hamaguchi M, Okamura T, Fukuda T, Nishida K, Yoshimura Y, Hashimoto
Y, et al. Group 3 Innate Lymphoid Cells Protect Steatohepatitis From High-
Fat Diet Induced Toxicity. Front Immunol (2021) 12:648754. doi: 10.3389/
fimmu.2021.648754

278. Sun R, Gao B. Negative Regulation of Liver Regeneration by Innate
Immunity (Natural Killer Cells/Interferon-g). Gastroenterology (2004)
127:1525–39. doi: 10.1053/j.gastro.2004.08.055

279. Singh P, Goode T, Dean A, Awad SS, Darlington GJ. Elevated Interferon Gamma
Signaling Contributes to Impaired Regeneration in the Aged Liver. J Gerontol -
Ser A Biol Sci Med Sci (2011) 66:944–56. doi: 10.1093/gerona/glr094

280. Bi J, Zheng X, Chen Y, Wei H, Sun R, Tian Z. TIGIT Safeguards Liver
Regeneration Through Regulating Natural Killer Cell-Hepatocyte Crosstalk.
Hepatology (2014) 60:1389–98. doi: 10.1002/hep.27245

281. Graubardt N, Fahrner R, Trochsler M, Keogh A, Breu K, Furer C, et al.
Promotion of Liver Regeneration by Natural Killer Cells in a Murine Model
Is Dependent on Extracellular Adenosine Triphosphate Phosphohydrolysis.
Hepatology (2013) 57:1969–79. doi: 10.1002/hep.26008

282. Gonzales E, Julien B, Serrière-Lanneau V, Nicou A, Doignon I, Lagoudakis L,
et al. ATP Release After Partial Hepatectomy Regulates Liver Regeneration in
the Rat. J Hepatol (2010) 52:54–62. doi: 10.1016/j.jhep.2009.10.005
March 2022 | Volume 13 | Article 836999

https://doi.org/10.4049/jimmunol.1601424
https://doi.org/10.1371/journal.pone.0188649
https://doi.org/10.3390/ijms20061358
https://doi.org/10.1053/j.gastro.2009.05.047
https://doi.org/10.1053/j.gastro.2010.01.006
https://doi.org/10.1016/j.molimm.2008.01.002
https://doi.org/10.1126/science.1097670
https://doi.org/10.4049/jimmunol.173.10.6072
https://doi.org/10.1155/2018/2563563
https://doi.org/10.1155/2018/2563563
https://doi.org/10.1038/s41598-020-80819-8
https://doi.org/10.1084/jem.20061287
https://doi.org/10.1084/jem.20121172
https://doi.org/10.1177/1753425915586074
https://doi.org/10.1042/CS20180482
https://doi.org/10.4049/jimmunol.1303281
https://doi.org/10.4049/jimmunol.1303281
https://doi.org/10.1038/cmi.2017.147
https://doi.org/10.1038/cmi.2017.147
https://doi.org/10.1126/scitranslmed.aal3694
https://doi.org/10.1038/nri3623
https://doi.org/10.1016/j.aohep.2018.12.001
https://doi.org/10.1016/j.immuni.2013.07.018
https://doi.org/10.4049/jimmunol.1600418
https://doi.org/10.1038/s41598-020-57985-w
https://doi.org/10.1371/journal.pone.0182532
https://doi.org/10.1371/journal.pone.0182532
https://doi.org/10.1053/j.gastro.2005.10.055
https://doi.org/10.1053/j.gastro.2005.10.055
https://doi.org/10.1053/jhep.1996.v23.pm0008621153
https://doi.org/10.3389/fimmu.2019.00477
https://doi.org/10.3389/fimmu.2019.00477
https://doi.org/10.1053/j.gastro.2007.09.034
https://doi.org/10.1111/liv.13299
https://doi.org/10.1002/hep.23253
https://doi.org/10.3389/fimmu.2019.01255
https://doi.org/10.1002/hep.28389
https://doi.org/10.3389/fimmu.2021.648754
https://doi.org/10.3389/fimmu.2021.648754
https://doi.org/10.1053/j.gastro.2004.08.055
https://doi.org/10.1093/gerona/glr094
https://doi.org/10.1002/hep.27245
https://doi.org/10.1002/hep.26008
https://doi.org/10.1016/j.jhep.2009.10.005
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Murphy et al. Tissue-Adapted Functions of ILCs
283. Kudira R, Malinka T, Kohler A, Dosch M, de Agüero MG, Melin N, et al.
P2X1-Regulated IL-22 Secretion by Innate Lymphoid Cells Is Required for
Efficient Liver Regeneration. Hepatology (2016) 63:2004–17. doi: 10.1002/
hep.28492

284. Dalrymple LS, Go AS. Epidemiology of Acute Infections Among Patients
With Chronic Kidney Disease. Clin J Am Soc Nephrol (2008) 3:1487–93.
doi: 10.2215/CJN.01290308

285. Liu G-Y, Deng X-H, Li X, Cao Y-J, Xing Y-F, Zhou P, et al. Expansion of
Group 2 Innate Lymphoid Cells in Patients With End-Stage Renal Disease
and Their Clinical Significance. J Immunol (2020) 205:36–44. doi: 10.4049/
jimmunol.1901095

286. Gungor O, Unal HU, Guclu A, Gezer M, Eyileten T, Guzel FB, et al. IL-33
and ST2 Levels in Chronic Kidney Disease: Associations With Inflammation,
Vascular Abnormalities, Cardiovascular Events, and Survival. PloS One
(2017) 12:1–14. doi: 10.1371/journal.pone.0178939

287. Riedel JH, Becker M, Kopp K, Düster M, Brix SR, Meyer-Schwesinger C,
et al. IL-33-Mediated Expansion of Type 2 Innate Lymphoid Cells Protects
From Progressive Glomerulosclerosis. J Am Soc Nephrol (2017) 28:2068–80.
doi: 10.1681/ASN.2016080877

288. Law BMP, Wilkinson R, Wang X, Kildey K, Lindner M, Rist MJ, et al.
Interferon-g Production by Tubulointerstitial Human CD56bright
Natural Killer Cells Contributes to Renal Fibrosis and Chronic Kidney
Disease Progression. Kidney Int (2017) 92:79–88. doi: 10.1016/
j.kint.2017.02.006

289. Victorino F, Sojka DK, Brodsky KS, McNamee EN, Masterson JC, Homann
D, et al. Tissue-Resident NK Cells Mediate Ischemic Kidney Injury and Are
Not Depleted by Anti–Asialo-GM1 Antibody. J Immunol (2015) 195:4973–
85. doi: 10.4049/jimmunol.1500651

290. Zhang Z-X, Wang S, Huang X, Min W-P, Sun H, Liu W, et al. NK Cells
Induce Apoptosis in Tubular Epithelial Cells and Contribute to Renal
Ischemia-Reperfusion Injury. J Immunol (2008) 181:7489–98. doi: 10.4049/
jimmunol.181.11.7489

291. Kim HJ, Lee JS, Kim JD, Cha HJ, Kim A, Lee SK, et al. Reverse Signaling
Through the Costimulatory Ligand CD137L in Epithelial Cells is Essential
for Natural Killer Cell-Mediated Acute Tissue Inflammation. Proc Natl Acad
Sci USA (2012) 109:13–22. doi: 10.1073/pnas.1112256109

292. Huang Q, Niu Z, Tan J, Yang J, Liu Y, Ma H, et al. IL-25 Elicits Innate
Lymphoid Cells and Multipotent Progenitor Type 2 Cells That Reduce Renal
Ischemic/Reperfusion Injury. J Am Soc Nephrol (2015) 26:2199–211.
doi: 10.1681/ASN.2014050479

293. Cao Q, Wang Y, Niu Z, Wang C, Wang R, Zhang Z, et al. Potentiating
Tissue-Resident Type 2 Innate Lymphoid Cells by IL-33 to Prevent Renal
Ischemia-Reperfusion Injury. J Am Soc Nephrol (2018) 29:961–76.
doi: 10.1681/ASN.2017070774

294. Liang H, Xu F, Wen XJ, Liu HZ, Wang HB, Zhong JY, et al. Interleukin-33
Signaling Contributes to Renal Fibrosis Following Ischemia Reperfusion. Eur
J Pharmacol (2017) 812:18–27. doi: 10.1016/j.ejphar.2017.06.031

295. Cameron GJ, Cautivo KM, Loering S, Jiang SH, Deshpande AV, Foster PS,
et al. Group 2 Innate Lymphoid Cells are Redundant in Experimental Renal
Ischemia-Reperfusion Injury. Front Immunol (2019) 10:826. doi: 10.3389/
fimmu.2019.00826

296. Arazi A, Rao DA, Berthier CC, Davidson A, Liu Y, Hoover PJ, et al. The
Immune Cell Landscape in Kidneys of Patients With Lupus Nephritis. Nat
Immunol (2019) 20:902–14. doi: 10.1038/s41590-019-0398-x
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GLOSSARY

AD Atopic dermatitis
Ahr Aryl hydrocarbon receptor
APC Antigen presenting cell
AREG Amphiregulin
ASPCs Adipose stem and progenitor cells
CAD Coronary artery disease
CD Crohn’s disease
ChAT Choline acetyltransferase
COPD Chronic obstructive pulmonary disease
cNK cells Conventional NK cells
CNS Central nervous system
CP Cryptopatches
CVB3 Coxsackievirus B3
DC Dendritic cell
dNK cells Decidual Natural Killer cells
EAE Experimental autoimmune encephalitis
EOMES Eomesodermin
ESRD End stage renal disease
FasL Fas ligand
Ffar2 Free Fatty Acid Receptor 2
FHL2 Four And A Half LIM Domains 2
GITR Glucocorticoid-induced TNFR-related protein
GPR34 G Protein-Coupled Receptor 34
HBV Hepatitis B virus
hCG Human chorionic gonadotropin
HCV Hepatitis C virus
HDM House dust mite
hILC helper ILC
IBD Inflammatory bowel disease
ID Inhibitor of DNA binding
IFN-g Interferon gamma
IL Interleukin
ILC Innate lymphoid cell
ILC1 Group 1 innate lymphoid cell
ILC2 Group 2 innate lymphoid cell
ILC210 IL-10 producing ILC2
ILC3 Group 3 innate lymphoid cell
ILCreg Regulatory ILC
ILF Isolated lymphoid follicle
IRI Ischemia reperfusion injury
KIR Killer immunoglobulin receptor
KLRG1 Killer cell lectin like receptor G1
LN Lupus nephritis
LP Lamina propria
LTi Lymphoid tissue inducer
LXA4 Lipoxin A4
MHC-I Major histocompatibility complex class I
MHC-II Major histocompatibility complex class II
miRNA MicroRNA
MS Multiple Sclerosis
NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
NCR Natural cytotoxicity receptor
PCOS Polycystic ovary syndrome
RA Retinoic acid
RORA RAR-related orphan receptor A
RORC RAR-related orphan receptor C
RSV Respiratory syncytial virus
SCF Stem cell factor
SCFA Short chain fatty acid
scRNAseq Single cell RNA sequencing
SLE Systemic lupus erythematosus
sLT Surface lymphotoxin
SPM Specialized pro-resolving mediator
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T2D Type 2 diabetes
TBET T-box transcription factor
Tfh T follicular helper
TIGIT T cell immunoreceptor with Ig and ITIM domains
TNF Tumor necrosis factor
Treg Regulatory T cell
TSLP Thymic stromal lymphopoietin
UCP-1 Uncoupling protein 1
uNK cells Uterine Natural Killer cells
VIP Vasoactive intestinal peptide
WAT White adipose tissue
AD Atopic dermatitis
Ahr Aryl hydrocarbon receptor
APC Antigen presenting cell
AREG Amphiregulin
ASPCs Adipose stem and progenitor cells
CAD Coronary artery disease
CD Crohn’s disease
ChAT Choline acetyltransferase
COPD Chronic obstructive pulmonary disease
cNK cells Conventional NK cells
CNS Central nervous system
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