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Editorial on the Research Topic

In silicoMethods for Drug Design and Discovery

Computer-aided drug design (CADD) methodologies are playing an ever-increasing role in drug
discovery that are critical in the cost-effective identification of promising drug candidates. These
computational methods are relevant in limiting the use of animal models in pharmacological
research, for aiding the rational design of novel and safe drug candidates, and for repositioning
marketed drugs, supporting medicinal chemists and pharmacologists during the drug discovery
trajectory. Within this field of research, we launched a Research Topic in Frontiers in Chemistry in
March 2019 entitled “In silico Methods for Drug Design and Discovery,” which involved two sections
of the journal: Medicinal and Pharmaceutical Chemistry and Theoretical and Computational
Chemistry. For the reasons mentioned, this Research Topic attracted the attention of scientists
and received a large number of submitted manuscripts. Among them 27 Original Research articles,
five Review articles, and two Perspective articles have been published within the Research Topic.
The Original Research articles cover most of the topics in CADD, reporting advanced in silico
methods in drug discovery, while the Review articles offer a point of view of some computer-driven
techniques applied to drug research. Finally, the Perspective articles provide a vision of specific
computational approaches with an outlook in the modern era of CADD.

Regarding the Original Research articles, two of them are related to innovative approaches
concerning ADMET properties of the molecules. In particular, de Bruyn Kops et al. reported
the development and validation of GLORY, an innovative tool for predicting the metabolism of
molecules, identifying chemical structures of metabolites formed by cytochrome P450 enzyme
family (CYPs). The mentioned software combines two main ideas: a literature-based pool of CYP-
mediated reaction rules and the site of metabolism (SoM) prediction. This approach is relevant
since a tool for the in silico prediction of the metabolism of xenobiotic compounds can offer
key information for developing novel chemical entities with improved metabolic stability (i.e.,
cosmetics, drugs, agrochemicals). The GLORY web-server version is accessible at https://acm.
zbh.uni-hamburg.de/glory/ (de Bruyn Kops et al.). Montanari et al. described a computational
approach for predicting potential toxicity of molecules taking into account transporter proteins.
These latter proteins, expressed in the liver, are crucial in drug pharmacokinetics and are important
constituents of the physiological bile flow and their inhibition could be relevant to the drug-
induced liver toxicity. Using a comprehensive analysis of the publicly available data, a set of
classification models was developed for predicting the inhibition of the transport for a set of liver
transporters deemed relevant by different regulatory agencies. The models were computationally

6
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validated demonstrating an ability to predict the interaction
profile of small molecules with liver transporters. These
computational tools can assist medicinal chemists and
toxicologists in prioritizing compounds at the initial steps of the
development of drug candidates. The models are freely available
as a web-service at https://livertox.univie.ac.at (Montanari
et al.). Another work, regarding the pharmacological profiles of
molecules, was presented by Sidorov et al.. They investigated the
possibility to predict synergism of cancer drug combinations
using NCI-ALMANAC data. This topic is of extreme interest
since drug combinations could represent a promising strategy
for treating cancer. The authors described an in silico approach
to investigate drug combination synergy by exploiting the
largest available dataset reporting synergism of anticancer drugs
(NCI-ALMANAC, with over 290,000 synergy determinations).
Two machine learning (ML) procedures, Random Forest (RF),
and Extreme Gradient Boosting (XGBoost), were employed on
the selected dataset. The assessment of these computational tools
indicated that the prediction of the synergy of undisclosed drug
combinations is a feasible task. Accordingly, by using these kind
of models it will be possible to significantly reduce the number
of in vitro tests, by evaluating in silico which of the selected
combinations are expected to be synergistic (Sidorov et al.).

A relevant number of papers are focused on different
ligand- and structure-based approaches or on a combination
thereof to identify promising molecules for a given target.
Accordingly, Velázquez-Libera et al. described a combined
structure- and ligand-based approach for investigating the
structural requirements governing the affinity of a series of
molecules for the human Sigma1 receptor (S1R). This receptor
represents a valuable drug target for treating neuropsychological
disorders. The authors discovered an effective S1R agonist
namely RC-33 as a promising neuroprotective agent. In
the paper presented in this Research Topic, the authors
computationally investigated the interactions of RC-33 and
its novel derivatives within the S1R active site. To this end,
different in silico techniques [docking, interaction fingerprints,
and receptor-guided alignment three-dimensional quantitative
structure-activity relationship (3D-QSAR)] were applied
for investigating a potential mechanism of action of the
developed compounds. The presented data could be useful
for designing novel S1R modulators (Velázquez-Libera
et al.). Wu et al. also described a combination of different
computational procedures (de novo protein structure prediction
and ligand-protein interaction simulation) to investigate the
structural requirements of compounds governing the affinity
for the hSK2/calmodulin complex. The authors developed
a homology model of SK2/calmodulin in order to predict
potential binding sites. The ligand-protein interaction, using a
series of computational procedures, was then investigated. The
obtained results confirmed that the combination of different
in silico techniques could facilitate the drug discovery process
(Wu et al.). Furthermore, some computational approaches,
including 3D-QSAR, molecular docking, virtual screening
(VS), ADME prediction, and molecular dynamics (MD), were
used by Chen et al. to identify some HIV-1 non-nucleoside
reverse transcriptase (RT) inhibitors (NNRTIs). Starting from

a novel series of dihydrofuro[3,4-d]pyrimidine (DHPY) related
compounds, endowed with antiviral activity, a computational
investigation was performed employing 52 DHPYs. By applying
sequential in silico methods, nine promising compounds were
identified. These hit compounds could represent novel potential
HIV-1 NNRTIs. Chen et al.. For identifying novel BCL-2
inhibitors from the Specs -SC- database, Tutumlu et al. employed
multistep screening and filtering methods combining structure-
and ligand-based techniques. The mentioned database was
screened using a computational tool called “cancer-QSAR” and
26 toxicity QSAR models. The resulting non-toxic compounds
were selected for two different target-driven approaches: (a) a
molecular docking approach was applied to rank compounds
considering their docking scores. Top-ranked compounds
were employed in extensive MD simulations (100 ns) and
biological assays; (b) the retrieved top-docking poses of each
compound, derived from the subset selected by QSAR studies,
were submitted to short MD simulations (1 ns), calculating their
binding energies using the molecular mechanics generalized
Born surface area (MM/GBSA) technique. By following this
scheme, seven molecules were tested against different cancer
cell lines. Four molecules were found to be able to reduce
the proliferation of cancer cells, behaving as pro-apoptotic
agents (Tutumlu et al.). The study performed by do Carmo
et al. was also focused on BCL-2 and potential ligands based
on a phenothiazine scaffold. The authors investigated some
phenothiazines derivatives for their pro-apoptotic profile,
performing an in silico study to relate their structures with their
biological activities. By employing molecular docking simulation
coupled to MD, the main interactions between compounds and
the active site of the selected protein were highlighted. Notably,
through these computational studies, the inhibition of BCL-2 by
phenothiazines allowed for rationalizing the apoptosis-inducing
effect on tumor cells (do Carmo et al.).

Naveja and Medina-Franco described a computational
approach for selecting lead compounds from large datasets
of chemical entities, acquired by high-throughput screening
(HTS). They introduced the Constellation Plots as a general
method for merging diverse and complementary molecular
representations, to enhance the info contained in a visual
representation and analysis of chemical space. This approach
combines a sub-structure-based representation and classification
of molecules with a “classical” coordinate-based representation
of chemical space. A characteristic result of the mentioned
technique is that organizing the molecules in analog series
leads to the formation of groups of compounds, also known
as “constellations,” in chemical space. Notably, this proposed
method is useful in identifying, for example, insightful and
“bright” Structure-Activity Relationships (StARs) in chemical
space that are simple to interpret. The authors applied the
developed method on two datasets of DNA methyltransferases
(DNMTs) and AKT1 inhibitors (Naveja and Medina-Franco).
Alberca et al. reported a computational approach that allowed
for the repurposing of old drugs as antimalarial agents. The
authors developed and experimentally validated a collection
of ligand-based models that are able to identify falcipain-2
inhibitors. These models were used in a VS campaign, using
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two different databases (DrugBank and Sweetlead). The authors
identified four potential hits to submit for biological evaluation.
Among them, two drugs (odanacatib and methacycline) were
confirmed as falcipain-2 inhibitors. Methacycline was found
to be a non-competitive inhibitor of falcipain-2. Furthermore,
the effects of both drugs on falcipain-2 hemoglobinase activity
and on the growth of P. falciparum have been investigated
(Alberca et al.). Baillif et al. reported a computational study,
using a public dataset of compound-induced transcriptomic,
for predicting the potential activity of compounds against 69
drug targets. The authors investigated the performances of the
ML models constructed with transcriptomics data, with the
computational tools generated by Morgan fingerprints. Active
molecules against a given target could display comparable
signatures in one or multiple cell lines, independent of the
similarity in chemical structure, among the selected active
chemical entities. For 25% of the tasks, RF computational
tools employing transcriptomics signatures showed similar or
better performances than those created by Morgan fingerprints.
Compound-induced transcriptomic data offers a good chance
for predicting targets based on cell response similarity, allowing
to overcome the chemical space limitation of QSAR models
(Baillif et al.). Shi et al. computationally investigated the SAR
of some inhibitors of the dimerization process of PD-L1 by
elucidating their potential binding and unbinding mechanism,
using classical MD and metadynamics simulations. The contact
analysis, R-group based QSAR analysis, and molecular docking
provided additional insights about the SAR of these compounds.
Accordingly, the outcomes of this research can be useful for
optimizing compounds targeting PD-L1 (Shi et al.). Liu et al.
introduced two methods for improving the selection of active
molecules by using similarity information of all compounds. One
technique ranks a molecule considering its highest z-score as an
alternative of its highest Tanimoto index, while the other method
ranks compounds by calculating an aggregated score taking into
account their Tanimoto similarity related to all identified active
and inactive molecules. These evaluations, performed using
datasets available from PubChem, belonging to over 20 HTS
studies, suggested that both approaches accomplished a ∼10%
higher Boltzmann-enhanced discrimination of receiver operating
characteristic (BEDROC) score, compared to the classical
approaches. Interestingly, the presented methods could offer an
enhancement in early recognition of lead compounds during VS
campaigns (Liu et al.). Lima et al. presented a computational
approach for finding multi-kinase inhibitors against Plasmodium
falciparum calcium-dependent protein kinases 1/ 4 (CDPK1 and
CDPK4, respectively) and protein kinase 6 (PK6), in order to
select novel multi-target compounds as antimalarials. By using
shape-based and ML models, employing chemical databases of
drug-like compounds, the authors identified 10 hit compounds
to submit for biological evaluation. Among them, LabMol-
171, LabMol-172, and LabMol-181 behaved as nanomolar
antiplasmodial agents. Furthermore, LabMol-171 and LabMol-
181 also inhibited P. berghei ookinete development, representing
novel transmission-blocking agents (Lima et al.). Bühlmann and
Reymond reported an approach to address the limitation of
the GDB17 database (166.4 billion molecules), which contains

numerous molecules that are too complex to synthesize. To
this end, the authors developed the GDBChEMBL database, a
small set of GDB17, which consists of 10 million molecules
identified by means of the calculation of their ChEMBL-likeness
score (CLscore). This subset contains compounds with higher
synthetic accessibility, maintaining a comprehensive coverage of
chemical space distinctive of the GDB17 database. GDBChEMBL
is downloadable from http://gdb.unibe.ch; interactive chemical
space map: http://faerun.gdb.tools (Bühlmann and Reymond).

Sirous et al. developed and experimentally validated an in
silico procedure useful for hit-to-lead optimization. In particular,
frommicromolar HIV integrase (HIV IN) inhibitors, the authors
described a computational workflow based on an in silico
structure-based combinatorial library designing technique. The
mentioned methodology is useful for combining the design of
a combinatorial library and side-chain hopping with Quantum
Polarized Ligand Docking (QPLD) and MD simulations. This
method indicated the most valuable decorations for a promising
scaffold. From this final set of optimized molecules, three
representative compounds were synthesized and evaluated by
in vitro tests. Among them, one compound was found to be
an effective inhibitor of HIV IN in the low nanomolar range.
Moreover, the biological characterization of the molecule showed
that this compound is able to inhibit HIV-1 replication and HIV-
1 IN strand transfer activity, with potency comparable to that
found for Raltegravir (Sirous et al.). Ferreira et al. presented an
article describing the development of cyclic imides as inhibitors
of cruzain, a validated drug target of Trypanosoma cruzi. By using
a micromolar-range cruzain inhibitor, the in silico optimization
scheme led to the development of a non-toxic inhibitor of
T. cruzi intracellular amastigotes in the nanomolar-range. By
following the mentioned procedure, the authors identified a
protocol useful for the rational design of novel trypanocidal
agents targeting the cruzain enzyme (Ferreira et al.). Pallante
et al. proposed a computational approach based on different in
silico techniques such as homology modeling, molecular docking,
and MD for investigating the interactions between several novel
colchicine derivatives and tubulin isotype βIII. These derivatives
were screened and ranked considering their binding affinity
and conformational stability in the colchicine binding site.
This study could be extremely relevant for rationally designing
novel colchicine-based compounds as effective anticancer agents
(Pallante et al.). Pavlin et al. focused their research article on
the application and experimental validation of a VS protocol to
identify small molecules that are able to target a particular variant
of estrogen receptor alpha (ERα Y357S) that confers endocrine
resistance, disease relapse, and increased mortality rates in
patients affected by ER-positive breast cancer. By applying a
VS procedure for screening different commercial databases, the
authors identified five compounds active on recurrent Y537S ERα

polymorphism in MCF7, and MDA-MB-231 breast cancer cell
lines. Among the identified compounds, one of them showed
selectivity for Y537S ERα, exhibiting no toxicity against breast
cells. Remarkably, 4.5 µs of biased and unbiased MD was
used for investigating the structural, thermodynamics, and the
kinetics of these active ligands against wild type and diverse ERα

variants (Y537S, Y537N, D538G). The information provided by
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the mentioned study could be relevant for discovering mutant
specific drug-candidates for improving breast cancer therapies
(Pavlin et al.). Quan et al. investigated novel quinoline derivatives
as P-glycoprotein (P-gp) inhibitors useful for counteracting the
multidrug resistance, which represents a significant cause of
cancer treatment failure. Among the mentioned derivatives, YS-
7a was proposed as the most promising P-gp inhibitor. YS-
7a blocked the P-gp transport without influencing the P-gp
expression. Furthermore, YS-7a promoted the ATPase activity
of P-gp in a dose-dependent manner. This compound could
represent a valid starting point for developing novel derivatives
that are able to treat multidrug resistant cancers (Quan et al.).

Michel et al., using different web-servers (DoGSite, FTMap,
and CryptoSite) and a commercial tool (Schrödinger’s SiteMap),
comprehensively predicted ligand binding cavities, druggability
scores, and conformationally active regions of the nucleoside
diphosphates attached to the sequence-x (NUDIX) hydrolase
protein family. Subsequently, a molecular docking study,
employing Glide software, was carried out to assess the affinity
of a subset of the ZINC FragNow database for the identified
potential binding sites. This preliminary dual ranking, of
druggable sites within the NUDIX protein family, was then
compared with experimental hit rates acquired from biological
studies. The detected correlation indicated that the described
workflow could represent a valuable protocol for prioritizing
targets and for excluding them in VS approaches (Michel
et al.). Michel et al. presented a sequence-to-structure-based
methodology for predicting drug resistance. The developed
workflow produced and compared Molecular Interaction Fields
(MIF), mapping the areas of energetically favorable interactions,
between numerous chemical probes and the target active site. The
technique appears to be appropriate for understanding changes
of the three-dimensional structures and the physicochemical
environment caused by mutations affecting the target active site.
This approach was applied to four datasets of known HIV-
1 protease sequences, displaying that it is able to correctly
classify resistant and susceptible sequences given as the input.
The described study is a novel step for interpreting the
influence of genetic variability on the response to HIV 1
treatments (Alves et al.). Sánchez-Tejeda et al. proposed a
vector analysis formeasuring and defining “multitargeticity.” The
research on multi-target drugs could be relevant for identifying
therapeutic agents to treat multifaceted diseases. The authors,
considering the order and force of a ligand, described two
“multi-target” indexes namely, 1 and 2. By combining the
mentioned indexes, it is possible to discriminate multi-target
drugs. These indexes were used for screening a chemical library
of potential ligands that possess an affinity for diverse targets
involved in multiple sclerosis. The application of the protocol
allowed the identification of 10 molecules that could represent
potential lead compounds for developing multi-target drugs
(Sanchez-Tejeda et al.). Bissaro et al. applied the SuMD technique
to ribonucleotide targets of pharmacological interest. SuMD is a
modifiedMD protocol for accelerating the sampling of molecular
recognition steps on a nanosecond timescale. Interestingly, they
demonstrated the methodological ability of SuMD to reproduce
the binding mode of viral or prokaryotic ribonucleic complexes

and artificially engineered aptamers with a remarkable accuracy
(Bissaro et al.).

Cavasotto and Aucar proposed a new approach for
scoring results obtained from high-throughput docking
(HTD) approaches. For better characterizing protein-ligand
interactions, the authors proposed a quantum mechanical
(QM)-based docking scoring function in order to obtain more
accurate HTD results. This novel technique was investigated
using 10 different drug targets belonging to various families with
diverse binding site features. The output clearly demonstrated
that the application of the QM scoring function could improve
the performance of HTD methods (Cavasotto and Aucar). Pinto
et al. presented a novel screening software, namely, CaverDock.
In particular, the authors focused their studies on protein tunnels
and channels that could represent promising drug targets. In
fact, compounds able to hinder the entrance of substrates or
release of products could be considered effective modulators of
the biological activity. To this end, the influence of rigid and
flexible side-chains on various substrates and inhibitors of seven
unrelated drug targets was assessed. The accuracy of the software
was evaluated by comparing the data found by CaverDock
with experimental results obtained for the heat shock protein
90α. As a final point, CaverDock was used in a VS campaign
employing anti-inflammatory and anticancer FDA-approved
drugs against two drug targets [CYP450-17A1; leukotriene-A4
hydrolase (LTA4H)/aminopeptidase (AP)]. The analysis of the
potential energies of binding and unbinding trajectories allowed
for identifying functional tunnels. Accordingly, the presented
software is a valuable computational resource useful in VS
campaigns. CaverDock is accessible from https://loschmidt.
chemi.muni.cz/caverdock/; web https://loschmidt.chemi.muni.
cz/caverweb/ (Pinto et al.). Yuan et al. presented LigBuilder-
V3, a software for de novo multi-target drug design. This
computational tool can be useful for rationally designing and
optimizing molecules with multi-target profiles. For validating
the computational approach, LigBuilder-V3 was employed to
design inhibitors that are able to target HIV protease andHIVRT,
employing three different approaches. The resulting molecules,
assessed by MM/GBSA, behaved as potential inhibitors for the
selected drug targets. The software can be found at http://www.
pkumdl.cn/ligbuilder3/ (Yuan et al.).

In this Research Topic two Perspective articles have been
published. In the first article, Rastelli and Pinzi focused the
attention on the need to obtain a valid post-docking analysis
in VS campaigns. In fact, nowadays, HTD is a valuable in
silico methodology extremely useful for rapidly identifying
hit compounds for a given target. Unfortunately, HTD has
some weaknesses (i.e., approximated scoring functions, limited
sampling of ligand-target complexes), making docking outputs
inevitably approximate. So, post-docking analyses are required
to overcome these mentioned issues. The authors proposed
a comprehensive method for the post-docking analysis in
VS approaches, developing BEAR (Binding Estimation After
Refinement), a post-docking resource this is able to refine
docking poses employing MD, and re-scores ligands using
(MM/PB(GB)SA). The article provides a rational perspective
about the introduction of more accurate refinement and
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rescoring approaches in VS to provide more reliable results
(Rastelli and Pinzi). In the second Perspective article, Vásquez
and González Barrios investigated the ligand efficiency (LE)
metrics and how to improve it for an efficient and reliable hit
identification in CADD. LE is still employed as a decision-
making criteria in CADD. Furthermore, in fragment-based
drug discovery (FBDD), LE metrics are extremely efficient in
selecting promising “core” fragments for optimization. The
authors presented a relative group contribution (RGC) model
for improving FBDD. Accordingly, this approach could be
useful in virtual fragment-based screening studies (Vásquez and
González Barrios).

Finally, five Review articles reported a critical discussion about
different computational approaches in various CADD fields.
Santos et al. discussed the use of Molecular Mechanics (MM)
for describing protein-ligand interactions. The authors reported
a case study on the halogen bonds (XBs). Although less efficient
than hydrogen bonds (HB), XBs were found to be relevant in
CADD. XBs are able to improve the affinity and selectivity of a
molecule against a potential drug target. Due to the limited ability
of MM techniques to describe XBs, the authors indicated that a
parametrization of the force-fields equations could be considered
for improving the definition of XBs. This review highlighted
some suggestions for parametrizing force-fields to accomplish
reliable outcomes of complex non-covalent interactions (Santos
et al.). Gagic et al. reviewed the in silico approaches employed
for designing compounds behaving as kinase inhibitors. Kinases
are pivotal in designing anticancer agents. They discussed
and compared, considering some representative case studies,
different methods such as pharmacophore modeling, MD,
VS, and molecular docking for the rational design of kinase
inhibitors (Gagic et al.). de Souza Neto et al. proposed a
Review article for outlining the FBDD strategies exploring
numerous computational strategies to apply for fragment-to-
lead optimization. They considered potential fragment expansion
strategies such as hot spot analysis, druggability prediction,
SAR, application of ML/deep learning (DL) models for VS and
some de novo approaches for suggesting synthesizable novel
molecules. Moreover, the authors highlighted some recent case
studies in FBDD, and how computational approaches were
successfully used for developing lead compounds (de Souza
Neto et al.). Maia et al. presented a Review article which
reported a comprehensive outlook on the tasks in CADD for
performing structure-based VS (SBVS). The authors compared

methods and tools for SBVS employed in the modern drug
development trajectory (Maia et al.). Thafar et al. discussed
some established techniques using artificial intelligence (AI),
ML, and DL approaches for identifying drug-target interactions
(DTIs) and for predicting drug-target binding affinities (DTBA).
This Review article reported an inclusive summary about
the computational approaches for predicting DTBA. Notably,
this review performed the first inclusive comparison analysis
of in silico tools focused on DTBA related to AI/ML/DL
(Thafar et al.).

In summary, as Guest Editors, we would like to thank all
the authors and co-authors for their important contributions to
this Research Topic, all the reviewers for their valuable work
in evaluating the submitted manuscripts, and the editorial staff
of Frontiers for their kind continued assistance. Taken together
all these combined efforts allowed for the great success of
this Research Topic. We expect this topic to contribute to the
advancement of drug design and discovery and believe it serves
as a valuable source of information and inspiration to scientists
and students. The Research Topic is freely accessible through
the following link https://www.frontiersin.org/research-topics/
10032/in-silico-methods-for-drug-design-and-discovery.
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Computational prediction of xenobiotic metabolism can provide valuable information to

guide the development of drugs, cosmetics, agrochemicals, and other chemical entities.

We have previously developed FAME 2, an effective tool for predicting sites of metabolism

(SoMs). In this work, we focus on the prediction of the chemical structures of metabolites,

in particular metabolites of xenobiotics. To this end, we have developed a new tool,

GLORY, which combines SoM prediction with FAME 2 and a new collection of rules for

metabolic reactions mediated by the cytochrome P450 enzyme family. GLORY has two

modes: MaxEfficiency and MaxCoverage. For MaxEfficiency mode, the use of predicted

SoMs to restrict the locations in the molecule at which the reaction rules could be

applied was explored. For MaxCoverage mode, the predicted SoM probabilities were

instead used to develop a new scoring approach for the predicted metabolites. With

this scoring approach, GLORY achieves a recall of 0.83 and can predict at least one

known metabolite within the top three ranked positions for 76% of the molecules of a

new, manually curated test set. GLORY is freely available as a web server at https://

acm.zbh.uni-hamburg.de/glory/, and the datasets and reaction rules are provided in

the Supplementary Material.

Keywords: metabolism prediction, metabolite structure prediction, rule-based approach, sites of metabolism,

xenobiotic metabolism, cytochrome P450, metabolites

INTRODUCTION

Metabolism is responsible for creating metabolites with different physicochemical and
pharmacological properties compared to those of the original parent molecule. Xenobiotic
metabolism in particular is directly relevant for humans, especially as it relates to, for example,
the development of drugs, cosmetics, and agrochemicals. In fact, it is supposed that metabolism
is the main clearance pathway for the vast majority of all xenobiotics (Kirchmair et al., 2015).
However, metabolism can also result in pharmacologically active metabolites as well as toxic
metabolites (Testa et al., 2012).
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The cytochrome P450 (CYP) family of enzymes plays an
important role in the metabolism of xenobiotics, especially in the
formation of first-generation metabolites, of which roughly 60%
are formed by CYPs (Testa et al., 2012). The importance of CYPs
to drug discovery is clear from the observation that many drugs
are metabolized by CYPs; common estimates range from 50%
(Di, 2014) to 80% (Testa et al., 2012). A detailed meta-analysis
of the metabolites of over 1,000 different xenobiotic substrates
carried out by Testa et al., showed that 40% of all metabolites are
formed by CYPs, including a substantial proportion of all toxic
or highly reactive metabolites (Testa et al., 2012).

There are 57 known human CYP enzymes, the majority
of which are primarily involved in endogenous metabolism.
The CYP2 and CYP3 subfamilies are mainly responsible for
metabolizing xenobiotics (Testa et al., 2012), and the key CYP
isozymes for drug metabolism are CYP3A4, 3A5, 2D6, 2C8, 2C9,
2C19, 1A1, 2B6, and 2E1 (Di, 2014). Among the xenobiotic-
metabolizing CYP isozymes, the binding pockets vary greatly;
in some cases the binding pocket of a single isozyme is highly
flexible and can accommodate a broad range of substrates with
widely varying sizes (Kirchmair et al., 2015).

Computational methods can make a significant contribution
to predicting xenobiotic metabolism, because they can be used to
quickly make predictions that can focus the experimental aspects
of the drug development process. Such a focusing effect is both
cost-effective and time-effective (Kirchmair et al., 2015).

One relatively well-developed aspect of the computational
prediction of xenobiotic metabolism is the identification of
the metabolically labile atom positions, also known as sites of
metabolism (SoMs) (Kirchmair et al., 2012). Being able to predict
SoMs is important because knowing an atom position in a
molecule at which a metabolizing reaction is likely to occur
usually provides a chemist with a good idea of the ensuing
metabolite structure. Besides a range of commercial offerings,
several freely available tools, such as SMARTCyp (Olsen et al.,
2019), SOMP (Rudik et al., 2015), Xenosite (Zaretzki et al., 2013),
and FAME 2 (Šícho et al., 2017), are able to predict SoMs with
high accuracy (Tyzack and Kirchmair, 2018). FAME 2, which
is used in the present work for SoM prediction, is a machine
learning-based tool developed recently in our group. The extra
trees classifier models of FAME 2, which are based on a set of
2D circular descriptors, were developed specifically to predict
SoMs of metabolic reactions catalyzed by the CYP family of
enzymes in humans. FAME 2 is highly accurate, achieving, on
an independent test set, a Matthews correlation coefficient of
0.57 and an area under the receiver operating characteristic curve
(AUC) of 0.91.

In contrast to in silico SoM prediction, computational
prediction of the structures of metabolites lags behind with
respect to prediction accuracy. In general, existing methods for
predicting metabolite structures for xenobiotics are dominated
by rule-based approaches. There are a number of well-established
commercial tools for metabolite structure prediction, including
Meteor Nexus (Lhasa Ltd.), a rule-based metabolite prediction

Abbreviations: AUC, area under the receiver operating characteristic curve; CYP,

cytochrome P450; ROC, receiver operating characteristic; SoM, site of metabolism.

software (Marchant et al., 2008). Meteor Nexus offers three
different reasoning methods to prioritize the plethora of
generated metabolites. The current default reasoning method
is SoM scoring, which compares the SoM identified by the
reaction rule to experimental data in order to assign scores to
the predicted metabolites1. Other rule-based computational tools
include TIMES (LMC; Mekenyan et al., 2004), which uses a
heuristic algorithm to generate possible metabolic maps, and
MetabolExpert (CompuDrug; Darvas, 1987).

In addition to commercial metabolite structure prediction
tools, there is an increasing number of freely available options.
Again, many of the available options rely primarily on a set
of reaction rules to generate structures of possible metabolites.
One well-known approach that has been around for some time
is SyGMa (Ridder and Wagener, 2008), which in this work
is used as a reference method. SyGMa predicts metabolites
using knowledge-based reaction rules, some of which were
derived from common knowledge of metabolism reactions and
some of which were developed using the Metabolite Database
(MDL Metabolite Database, Elsevier, 2001), for a total of 144
reaction rules covering both phase I and phase II metabolism.
The predicted metabolites are ranked by empirical probability
scores calculated based on the fraction of predicted metabolites
produced by the particular reaction rule that match reported
metabolites in the database. Using all 144 phase I and phase II
reaction rules in up to three successive reaction steps, SyGMa
was able to predict 68% of all known metabolites in the test
set. In terms of ranking, SyGMa ranked 45% of the known
metabolites in the test set in the top 10. The authors additionally
examined SyGMa’s potential usefulness for predicting CYP-
mediated metabolism by evaluating its performance on a set
of 127 single-step CYP-mediated reactions. Using only the 118
phase I reaction rules, which include but are not specific to
CYP-mediated reactions, SyMGa was able to predict 84% of all
known CYP-formed metabolites and predict 66% of the known
metabolites within the top three ranked predicted metabolites.
However, the proprietary nature of the dataset that was used
to derive SyGMa’s reaction rules and validate the method, not
to mention the current unavailability of the dataset, hinders the
reproducibility of the results as well as further use of the models
derived from the data.

A recent, free software designed to predict metabolites
from multiple sources and enzyme families is BioTransformer
(Djoumbou-Feunang et al., 2019), which in this work is
used as the second reference method. BioTransformer is
a comprehensive metabolite prediction tool that contains
a CYP metabolite prediction module (in addition to four
other metabolite prediction modules). BioTransformer predicts
CYP-formed metabolites using a knowledge-based approach
combined with built-in CYP selectivity prediction by CypReact
(Tian et al., 2018), a machine learning-based tool, as a precursor
to metabolite prediction. Aside from the initial CYP isoform-
specificity prediction, the basis of BioTransformer’s CYP450
metabolite prediction module is a rule-based method whose

1Meteor Reasoning Methodologies, Lhasa Limited, https://www.lhasalimited.org/

products/meteor-reasoning-methodologies.htm
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reaction rules are derived partly from the metabolic reactions in
MetXBioDB (Djoumbou-Feunang et al., 2019), a freely available
database of metabolism reactions that was established in the
context of developing BioTransformer. In the current version
of BioTransformer, the predicted metabolites are not ranked.
BioTransformer also offers an option for identifying metabolites
based on masses from mass spectrometry data. On a test
dataset of 60 parent molecules with a total of 180 known
metabolites, BioTransformer’s CYP450 metabolite prediction
module achieved a recall of 0.90 and a precision of 0.46.

Another freely available metabolite prediction tool is MetaTox
(Rudik et al., 2017), which encompasses both phase I and phase II
metabolism and combines the prediction of the reaction class and
the reacting atom in order to predict metabolites. Additionally,
the open-source software Toxtree (Patlewicz et al., 2008)
contains a metabolism prediction module called “SMARTCyp—
Cytochrome P450-Mediated Drug Metabolism” that predicts
SoMs using SMARTCyp (Rydberg et al., 2010) and then applies
a small set of reaction rules to the predicted SoMs in order to
predict metabolites.

Common to all modern approaches for metabolite prediction
is that they remain challenged by the combinatorial explosion
of predictions, in particular when looking at several generations
of metabolites (Judson, 2014). It is not unusual for metabolite
structure predictors to produce several pages full of predicted
metabolites, a fact which is often and not without reason
criticized, particularly by experts in metabolism. The key to
tackling this problem lies in the development of approaches for
the accurate ranking of metabolites according to their relevance
in terms of metabolic rates and biological properties. A number
of methods attempt to get a handle on the immense number of
predicted metabolites by ranking their predictions according to
various approaches.

Another option, which has primarily been implemented
in commercial tools to date, is to use SoM prediction as a
preliminary step to reduce the number of generated metabolites.
Commercial tools formetabolite prediction that incorporate SoM
prediction include ADMET Predictor (SimulationsPlus)2, which
predicts SoMs and the corresponding metabolite structures for
nine CYP isoforms, and StarDrop (Optibrium; Tyzack et al.,
2016), whose “P450 metabolism” module predicts SoMs using
quantum mechanical simulations and displays the structures
of the metabolites corresponding to the predicted SoMs. In
addition, META Ultra (MultiCASE Inc.; Klopman et al., 1994)
predicts SoMs and metabolites, and MetaSite (Cruciani et al.,
2005) was a SoM and CYP isoform selectivity prediction software
that now also predicts metabolite structures3.

Few freely available metabolite prediction methods combine
information on predicted SoMs with a rule set. MetaTox
predicts reaction classes and reacting atoms (i.e., SoMs, in
principle) separately for each parent molecule, then combines
the predictions to generate metabolites. The probability that
the metabolite is formed is calculated based on the predicted

2ADMET Predictor Metabolism Module, SimulationsPlus, https://www.

simulations-plus.com/software/admetpredictor/metabolism/
3MetaSite, https://www.moldiscovery.com/software/metasite/

probabilities of the reaction class and of the SoM predicted with
the SOMP method (Rudik et al., 2015). However, the validation
of MetaTox considers the performance of the reaction class
prediction and the reacting atom prediction separately, without
evaluating the prediction of the metabolite structures themselves,
and it is unclear how exactly the reaction class and reacting
atom predictions are combined to generate a metabolite structure
(Rudik et al., 2017). On the other hand, it is clear that SoM
prediction is used directly as a prefilter before applying reaction
rules in the SMARTCyp Toxtree module. However, a validation
of this method has not been published.

In terms of the availability of rule sets for metabolite structure
prediction, there are a few existing freely available collections
of reaction rules described in an easily accessible, computer-
readable format such as SMIRKS4, a reaction transform language
within the Daylight system. One source of CYP reaction rules is
the SMARTCyp Toxtree module, which uses 16 reaction rules
and makes the SMIRKS freely available as part of the source
code. A larger selection of reaction rules is provided in the
freely available SyGMA Python package. The reaction rules are
clearly separated into phase I and phase II rules; however, there
is no indication of which of the 118 phase I reaction rules
specifically describe CYP-mediated reactions. In addition, these
rules were derived from a proprietary and no longer distributed
dataset. BioTransformer offers a large number of CYP-specific
biotransformation rules in SMIRKS format as well as additional
constraint(s) for each rule as part of its Reaction Knowledgebase.

In this work, we present a multipronged approach to the
prediction of metabolites formed by the CYP enzyme family in
humans. In reference to FAME, we name this approach GLORY.
One fundamental aspect of GLORY is a new, easily interpretable
rule base for CYP metabolism that was developed solely from
the scientific literature and basic chemistry knowledge, without
relying on any dataset of metabolic reactions. In addition,
we have examined the effect of using SoM prediction as a
preliminary filter for the positions at which reaction rules are
allowed to be applied and also as part of a new approach
to ranking the predicted metabolites. GLORY therefore has
two modes: MaxCoverage, which focuses solely on recall, and
MaxEfficiency, which focuses more on precision. Further, we
have validated GLORY on a new, high quality, manually curated
dataset that is provided in the Supplementary Material.

RESULTS AND DISCUSSION

Two key aspects are at the core of GLORY, which aims to
predict metabolites within the context of human, CYP-mediated
metabolism: reaction rules and predicted SoMs. In terms of
the rule-based aspect, GLORY uses reaction rules to convert
parent molecules into their possible metabolites. To this end, we
developed a collection of rules based entirely on the scientific
literature to ensure that the rule set was not biased by any
particular metabolism dataset. The information on the CYP-
mediated reactions from the literature was combined with

4SMIRKS—A Reaction Transform Language, Daylight, http://www.daylight.com/

dayhtml/doc/theory/theory.smirks.html
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basic chemistry knowledge to develop SMIRKS to describe
each reaction type. In some cases, such as for O-dearylation,
multiple SMIRKS were required for a single reaction type,
resulting in a total of 73 SMIRKS for the 61 reaction
types present in our collection (Supplementary Table 1). We
additionally use a simple binary distinction between common
and uncommon reaction types, which were thoroughly discussed
and distinguished from each other in Guengerich (2001),
and which distinction we were able to extrapolate to the
CYP-mediated reactions found elsewhere in the literature (see
Methods for details). We do not use occurrence ratios calculated
based on a given dataset in order to rank the predicted
metabolites, due to the limited size, quality, and accessibility of
existing datasets. Out of our collection of 61 CYP reaction types,
22 have been designated as common.

The second key aspect of GLORY is its use of the SoM
probabilities predicted by FAME 2 for each heavy atom in a
molecule to (i) reduce the false-positive prediction rate while
maintaining an acceptable recovery rate and (ii) augment the
ranking of predicted metabolites. In order to reduce the false-
positive prediction rate, the possibility of utilizing a hard cutoff
based on SoM probabilities was explored. This cutoff was used
to determine at which atom positions the rules were allowed
to be applied. In the context of GLORY, we have called this
approach, in which SoM prediction is used as a preliminary filter,
MaxEfficiency mode. In contrast, we designate the approach in
which SoM probabilities are used for ranking metabolites derived
for all positions in a molecule regardless of SoM probability the
MaxCoverage mode. The difference in workflow between the two
modes is illustrated in Figure 1.

Datasets
To choose a SoM probability cutoff for the MaxEfficiency mode
and develop a priority score to rank predicted metabolites, a
large reference dataset was generated by combining the CYP
metabolism data extracted from DrugBank (Wishart et al.,

2018) and MetXBioDB. MetXBioDB is a recently published
database of metabolic reactions, whose substrates are mainly
comprised of xenobiotics and also include a few sterol lipids and
mammalian primary metabolites, and whose reaction data came
from the scientific literature as well as publicly available databases
(Djoumbou-Feunang et al., 2019). In addition, a manually
curated, high-quality dataset was compiled from the scientific
literature for the validation of GLORY. This test dataset contains
29 parent molecules and a total of 81 metabolites, resulting in
2.79 metabolites per parent molecule on average. Importantly,
any parent compounds that are in the test dataset were removed
from the reference dataset before any analysis occurred. In total,
the reference dataset contains 848 parent molecules and a total of
1,588 metabolites, for an average of 1.87 metabolites per parent
molecule. Predictions could be made for 847 of 848 molecules
in the reference dataset (one molecule could not be processed
successfully with FAME 2; see Methods for details).

MaxEfficiency Mode: Selection of a Cutoff
for Metabolite Structure Generation Based
on SoM Probability
In order to determine the effect of a SoM prediction-based
prefilter on predicting preferably only the most relevant
metabolites and reducing the number of false positive
predictions, we tried several different cutoffs for the SoM
probability that must be achieved by at least one atom involved
in the reaction (as defined by the reaction’s SMIRKS). For
each heavy atom in a molecule, FAME 2 reports a probability
between 0 and 1, corresponding to the fraction of trees of
the extra trees classifier that predict that a particular atom
is a SoM. The decision threshold in FAME 2 for whether or
not an atom is considered likely enough to be a SoM to be
designated as such was determined by the trained model to be
0.4 (Šícho et al., 2017).

We examined the effect of different SoM probability cutoffs
using the reference dataset and selected the cutoff to be used

FIGURE 1 | Workflow for GLORY indicating the difference between MaxCoverage mode and MaxEfficiency mode.
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in MaxEfficiency mode based on these results. In particular, we
inspected the effect of the SoM probability cutoffs on precision
and recall, which are defined as follows:

Recall = TP / ( TP + FN)

Precision = TP / (TP + FP)

where TP is the number of true positive predictions, FP is
the number of (putative) false positive predictions, and FN
is the number of false negative predictions. In other words,
recall measures the portion of known metabolites that were
reproduced by the method and precision measures the fraction
of all predicted metabolites that are represented in the dataset.

Here it is worth noting that the number of false positives,
and the designation of a prediction as false positive, is especially
dependent on the dataset that is being used for comparison.
Many metabolites that are formed in humans have not yet
been discovered, or their structures have not yet been exactly
elucidated. Since even the highest-quality dataset is limited by
the available experimental data, the reality is that the distinction
between a real false positive prediction and the true positive
prediction of an as yet unknown or unconformed metabolite
may not be possible. Nevertheless, with this caveat, we evaluate
our method based on the available data, including the putative
false positives.

The purpose of the MaxEfficiency mode is to use the SoM
probability cutoff to predict metabolites with increased precision
compared to no cutoff (i.e., MaxCoverage mode). At the same
time, however, we did not want to sacrifice too much in terms
of recall, as it is still important to predict a molecule’s actual
metabolites even while reducing the number of putative false
positive predictions.

For the purpose of metabolite prediction, we found that
using FAME 2’s decision threshold of 0.4 as the cutoff for SoM
probability resulted in a relatively low recall of 0.65 (especially
when compared to the recall of 0.83 achieved in MaxCoverage
mode, as will be discussed later in this work). Hence, despite
the increased precision afforded by a cutoff of 0.4, it was
determined that this cutoff too greatly reduced the achieved
recall. We therefore additionally tested lower SoM probability
cutoffs (Table 1). Observing the trade-off between precision and
recall with cutoffs ranging from 0.4 to 0.1 and comparing them
to MaxCoverage mode, we determined that a SoM probability
cutoff of 0.2, which resulted in a precision of 0.19 and a still-high
recall of 0.75, offered the best compromise. A SoM probability
cutoff of 0.2 for MaxEfficiency mode was therefore fixed based
on the results shown in this section. Note that although all of
the precision values shown in Table 1 are quite low, the precision
of GLORY using a SoM probability cutoff is comparable to the
precision of existing methods for metabolite structure prediction
(see below for the results on the test dataset).

Development of a Priority Score to Rank
Predicted Metabolites for MaxCoverage
Mode
In order to rank the predicted metabolites for a particular
molecule, we developed a priority score for each predicted

TABLE 1 | Effect of different SoM probability cutoffs on precision and recall over

the entire reference dataset.

SoM Probability Cutoffa 0.4 0.3 0.2 0.1 None

Precision 0.24 0.22 0.19 0.13 0.07

Recall 0.65 0.71 0.75 0.80 0.83

aNote that 0.4 is the default decision threshold in FAME 2, a cutoff of none corresponds

to MaxCoverage mode, and a cutoff of 0.2 was chosen for MaxEfficiency mode.

metabolite based on the SoM probability of the atoms involved
in the transformation and whether the reaction type is common
or not. Specifically, the SoM probability calculated by FAME 2 for
all atoms in the parent molecule that are involved in a reaction as
defined by the SMIRKS is considered, and the maximum SoM
probability among these atoms is then incorporated into the
score, as illustrated in Figure 2. The priority score was calculated
using a simple formula:

scorepredictedmetabolite = P×F

where P is the maximum SoM probability out of the atoms in the
parentmolecule that werematched by the applied transformation
and F is the factor according to whether the reaction type
was designated as common or uncommon. In case the same
predicted metabolite resulted from multiple transformations,
the maximum priority score over all transformations leading to
that prediction was used. A higher priority score is intended
to indicate a higher likelihood of the prediction being true.
For all uncommon reaction types, F = 1. The factor F for
common reaction types affects the early enrichment of the
predictions. Specifically, the early enrichment improves when
common reaction types are given more weight in the score than
uncommon reaction types, i.e. Fcommon > 1 (Figure 3). Based on
an analysis of the receiver operating characteristic (ROC) curves
and area under the ROC curves (AUC) for varying Fcommon,
shown in Figure 3, a factor of 5, resulting in an AUC of 0.90, was
chosen. All subsequent results based on ranking the predicted
metabolites therefore used Fcommon = 5 in the calculation of
the priority score, and the priority score can therefore range
from 0 to 5.

Comparison of Performance on a New,
Manually Curated Test Set
The performance of the MaxEfficiency and MaxCoverage modes
of GLORY was evaluated on the curated test set of 29 parent
molecules with a total of 81 metabolites. This evaluation includes
a comparison with BioTransformer and SyGMa as well as an
analysis of how well the scoring and ranking aspects of the
different approaches work. Specifically, we employed the CYP450
module of BioTransformer and the phase I metabolism reactions
of SyGMa (SyGMa does not feature a dedicated module for CYP
metabolism, but phase I metabolism is carried out to a significant
extent by CYP enzymes) for the comparison.

Analysis of MaxEfficiency Mode
GLORY’s MaxEfficiency mode was designed to address the
problem of low precision caused by a high number of putative
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FIGURE 2 | Illustration of the determination of the maximum SoM probability of all heavy atoms in the parent molecule that are matched by the reaction rule, using the

N-dealkylation reaction rule (common reaction type; factor F = 5) as an example. This maximum probability is used to calculate the priority score of the product.

FIGURE 3 | Receiver operating characteristic (ROC) curves over the entire

reference dataset of 848 compounds with 1,588 known metabolites, with

varying values of the factor used for common reaction types when calculating

the priority score for each metabolite. Note that a factor of 1 means that only

the SoM probability (i.e., the maximum SoM probability for all atoms that are

matched by the SMIRKS) affects the priority score of the predicted metabolite,

regardless of the reaction type. Note also that a ROC curve can be calculated

despite there being no “true negative” predictions overall (all predicted

metabolites are “positive” predictions). To generate the ROC curve, the false

positive rate (FPR) is calculated at each score threshold. At each point,

predictions with scores below the threshold are considered “negative”

predictions and predictions with scores above the threshold are considered

“positive” predictions. Hence the number of “true negative” predictions and

therefore the FPR can be calculated for each point of the ROC curve.

false positive metabolite predictions. This general problem of
an excess of predictions is well-documented for metabolite
prediction tools (Judson, 2014). However, as mentioned above,
it is important to note that the designation of predictions as false
positive is particularly dataset-dependent.

As described previously, the MaxEfficiency mode uses a cutoff
based on the SoM probabilities that FAME 2 predicts for each
heavy atom in order to restrict the locations in the molecule at
which the reaction rules are allowed to be applied. This SoM

FIGURE 4 | Precision (portion of predictions that are true positives) and recall

(portion of known metabolites that are predicted) vary according to the cutoff

for FAME 2’s predicted SoM probability. A SoM probability cutoff of 0.4

corresponds to the decision threshold used in FAME 2. The SoM probability

cutoff chosen for the MaxEfficiency mode of GLORY was 0.2.

probability cutoff was set to 0.2 based on the analysis on the
reference dataset; however, we also examine the effect of different
SoM probability cutoffs using the high-quality test dataset in
order to get a more complete picture of how much can be gained
by a cutoff-based approach.

As expected, using SoM predictions to confine the application
of reaction rules to certain positions does involve a trade-off
between precision and recall (Figure 4). Recall measures the
portion of known metabolites that the method was able to
reproduce, and precision measures the fraction of all predicted
metabolites that are actually known metabolites (see previous
section for definitions). The larger the SoM probability required
to be present among the atoms involved in the transformation,
the lower the recall but the higher the precision as measured
across the entire test dataset. In addition, the larger the SoM
probability cutoff, the more parent molecules there are for which
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FIGURE 5 | Histograms of the recovery rate of known metabolites broken down by parent compound: (A) GLORY in MaxCoverage mode, (B) GLORY in

MaxEfficiency mode, (C) SyGMa, (D) BioTransformer. For example, a recovery rate of 0.5 indicates that for x% of all parent molecules, at least half of all recorded

metabolites from the test dataset were predicted.

no metabolite predictions can be made. Without any such cutoff
and even up to a SoM probability cutoff of 0.2, metabolites
can be predicted for all parent molecules in the test dataset.
However, with a SoM probability cutoff of 0.3, no metabolites are
predicted for two parent molecules, and this number increases to
three for a cutoff of 0.4 (Supplementary Table 2). The number
of molecules affected is small in this case, yet is approximately
10% of the size of the test dataset. Overall, as the cutoff increases,
the total number of predicted metabolites decreases drastically
(Supplementary Table 2).

Unfortunately, as Figure 4 shows, there is a large decrease
in recall for a small increase in precision when using SoM
probability cutoffs of 0.1 or greater. Looking more closely at
the recovery rates per parent molecule, we see that GLORY’s
MaxEfficiency mode (using the selected cutoff of 0.2 as described
above) can predict at least half of the known metabolites for 72%
of the parent molecules in the test dataset, as opposed to 83%
for SyGMa and 79% for BioTransformer (Figure 5). GLORY’s
MaxEfficiency mode can predict all known metabolites for 41%
of the parent molecules in the test dataset, as opposed to 45%
for SyGMa and 38% for BioTransformer. On the other hand, the

number of putative false positives per parent molecule is brought
to within the same range as was measured for SyGMa and
BioTransformer (Figure 6). Using MaxEfficiency mode, most
parent molecules have fewer than 10 putative false positives,
which is also the case for BioTransformer but not quite the case
for SyGMa (however, as mentioned above, SyGMa’s rule base also
includes rules for non-CYP-mediated phase I reactions).

Based on these results, it appears that using FAME 2’s
predicted SoM probabilities as a hard cutoff for metabolite
prediction may not be sufficient for many use cases. However,
the SoM predictions are useful for more than just as a hard cutoff,
namely to rank the predicted metabolites, as will be shown in the
next section.

Comparison of MaxCoverage Mode to SyGMa and

BioTransformer
Neither SyGMa nor BioTransformer uses regioselectivity
prediction as a prefilter before applying reaction rules. The
same is true of MaxCoverage mode, which only uses SoM
prediction in order to score and rank the predicted metabolites.
Hence, we compared SyGMa and BioTransformer to GLORY’s
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FIGURE 6 | Histograms of the number of putative false positive predictions: (A) GLORY in MaxCoverage mode, (B) GLORY in MaxEfficiency mode, (C) SyGMa, (D)

BioTransformer. These histograms use right-closed intervals.

MaxCoverage mode in terms of recall, precision, and ability to
rank the predicted metabolites.

A high recall is important for any use case of a metabolite
structure predictor, but even more so for applications in which
it is of utmost importance to not miss any physically existing
metabolites, such as, for example, when attempting to identify
metabolites based on MS data. GLORY’s MaxCoverage mode
performs well in terms of recall, with a recall of 0.83 compared
to 0.74 and 0.72 for SyGMa and BioTransformer, respectively,
across the entire test dataset (Table 2). A closer look at recall
broken down to the level of the recovery rate of known
metabolites for each parent molecule shows that GLORY is able
to predict all known metabolites for 62% of the parent molecules,
whereas SyGMa and BioTransformer achieve only 45% and 38%,
respectively, in this regard (Figure 5). The number of parent
molecules for which GLORY is able to predict at least half of the
knownmetabolites is 90%, compared to 83% for SyGMa and 79%
for BioTransformer (Figure 5).

Precision can be a useful metric for measuring how well a
method is able to keep the number of putative false positive
predictions under control. Precision was low across the board for
metabolite prediction on the test dataset, with BioTransformer
reaching the highest precision of the three tools at 0.17. SyGMa
was close behind at 0.15, and GLORY’s MaxCoverage mode

lagged further behind at a precision of only 0.08 (Table 2). Again
breaking this down to a slightly more detailed overview, we
see that BioTransformer and SyGMa both always produce fewer
than 25 putative false positives per parent molecule and, for
the majority of parent molecules, fewer than 15 putative false
positives or even, in the case of BioTransformer, fewer than 10
(Figure 6). GLORY in MaxCoverage mode, on the other hand,
often produces so many predictions per parent molecule that
there are up to 53 putative false positives per parent molecule
in the test dataset and on average a relatively high number of
putative false positive predictions compared to the other two
tools (Figure 6).

In the case of the low precision observed for SyGMa, it is
important to note that SyGMa’s rule set is not specific to CYP-
mediated metabolism but rather covers phase I metabolism in
general. This could indicate that SyGMa might achieve higher
precision if only the CYP-specific rules were used.

BioTransformer’s CYP450 prediction module, which has the
highest precision of all three methods, uses isoform prediction as
a preliminary filter. Only the relevant reactions for the predicted
metabolizing CYP isoform(s) are applied to the parent molecule,
which could contribute to the observed precision.

Although the precision of MaxCoverage mode (as well as
SyGMa and BioTransformer) was found to be low and high rates
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TABLE 2 | Evaluation results for SyGMa, BioTransformer, and GLORY’s MaxCoverage and MaxEfficiency modes on the manually curated test dataset.

SyGMa BioTransformer GLORY,

MaxCoverage

mode

GLORY,

MaxEfficiency

modeb

Precision 0.15 0.17 0.08 0.16

Recall 0.74 0.72 0.83 0.64

Total number of predicted

metabolites

406 344 793 327

Number of successfully

predicted reported metabolitesa
60 58 67 52

Top-1 0% N/A 68.97% 68.97%

Top-2 48.28% N/A 72.41% 72.41%

Top-3 68.97% N/A 75.86% 75.86%

aThe total number of reported metabolites in the dataset was 81.
bThe SoM probability cutoff used for MaxEfficiency mode is 0.2, chosen based on the results of the analysis on the reference dataset. Data on the performance of MaxEfficiency mode

with different SoM probability cutoffs are reported in Supplementary Table 2.

of false positive predictions are problematic in general, in the
case of metabolite structure predictors a low precision is only
problematic if there is no way to distinguish between the true
positive and putative false positive predicted metabolites. This
distinction can be achieved with a well-working ranking of the
predicted metabolites, which circumvents the need to reduce the
total number of predicted metabolites. Hence it is important that
a metabolite prediction tool can rank the predicted metabolites
in terms of likelihood of occurrence.

GLORY scores its predicted metabolites based partly on the
maximum SoM probability of all the atoms involved in the
reaction and also takes the type of reaction into account (see
above for a more detailed description of the priority score).
SyGMa uses empirical probability scores calculated based on
the percentage of all predictions for each reaction rule that
are found in the training dataset. SyGMa’s scoring system
thereby relies entirely on the discontinued Metabolite dataset.
The scores generated by GLORY or by SyGMa can be used to
rank the predicted metabolites for a given parent compound
in terms of their likelihood of occurring. The current version
of BioTransformer, on the other hand, does not score or rank
its predictions.

We compared the ranking capability of GLORY’s
MaxCoverage mode with that of SyGMa. SyGMa was able
to predict a known metabolite within the top three ranked
positions for 69% of the parent molecules in the test dataset,
whereas GLORY’s MaxCoverage mode predicted a known
metabolite within the top three predictions for 76% of the parent
molecules (Table 2).

To look at the overall quality of the scoring as well as the
ranking ability of SyGMa compared to GLORY, we generated
ROC curves for each method using the score of each predicted
metabolite as well as the rank of each predicted metabolite for
a given molecule. The rank-based analysis corresponds better to
the actual use case, in which it is desired to prioritize the predicted
metabolites for a particular parent molecule, as opposed to over
an entire dataset [note that SyGMa was originally only evaluated
in terms of ranking per parent molecule (Ridder and Wagener,

2008)]. However, we additionally used the score-based ROC
curve to visualize the performance of GLORY’s priority score
across the whole test dataset. To better allow for comparison of
the ROC curves, false negatives were included in the ROC curves
and thereby in the calculated AUCs by adding those molecules to
the set of data points and artificially assigning them a score of 0
or rank of 1,000, as applicable, for the purpose of this evaluation.

Though the AUC values are low, due in part to the inclusion
of false negative data points in the ROC curves, the ROC curves
show a much better earlier enrichment for GLORY than for
SyGMa (Figure 7). SyGMa does not rank a known metabolite
in the best-ranked position for any parent molecule in the test
dataset (Table 2), which is reflected in the ROC curve. This
decent early enrichment with GLORY, which is corroborated by
the top-3 value, is a highly encouraging result indicating that the
most likely predictions are closer to the top of the ranked list than
the putative false positive predictions are.

One possible explanation for why SyGMa performs poorly
in terms of scoring could be that its scoring scheme was
derived from occurrence ratios in the Metabolite database
and therefore optimized to predict the metabolites in that
particular dataset. Although the Metabolite database was large,
the authors of SyGMa report that the database was nevertheless
biased toward compounds with one known metabolite and
postulate that many of the metabolite profiles were incomplete
(Ridder and Wagener, 2008). Our manually curated test dataset
consists of parent molecules with metabolites that have been
published since 2014, while SyGMa was developed using the
2001 version of Metabolite, so we assume that the overlap, if
any, between SyGMa’s training dataset and our test dataset is
low. Without access to the dataset that was used to develop
SyGMa’s scoring methodology, it remains unclear how well the
types of the reactions that lead to the metabolites in the test
dataset were represented in their training dataset. Related to
that, an additional downside of SyGMa’s approach of basing
their scoring approach on a database of metabolic reactions is
that, since reaction rules can only be included if the database
contains enough examples of a specific reaction type to calculate
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FIGURE 7 | ROC curves over the entire test dataset comparing the (A) scoring and (B) ranking approaches of SyGMa to GLORY’s MaxCoverage mode. For a better

comparison of the two methods, false negatives were included in the ROC curve by assigning those data points a score of 0 or rank of 1,000, as applicable.

a probability score, more unusual reaction types or reaction types
that are for some reason not well enough represented in the
database may be missing from SyGMa’s rule base (Ridder and
Wagener, 2008).

There are several other differences in methodology between
GLORY and SyGMa that could contribute to the difference in
performance. Firstly, SyGMa does not specifically predict CYP-
mediated metabolism but rather phase I metabolism in general,
meaning that it could predict other phase I metabolites that are
simply not present in the test dataset because they are not formed
by CYPs. Second, in the current Python package implementation
that was used for this validation, SyGMa does not appear to
require its predicted metabolites to have a certain minimum size.
Unlike GLORY, which does not output a potential metabolite if it
has fewer than three heavy atoms, SyGMa predicts a handful of
metabolites (across the whole test dataset) with only one or two
heavy atoms.

Computation Time
The run time for GLORY was measured on a workstation
equipped with eight Intel(R) Core(TM) i7-4790 CPUs, 32 GB of
main memory, and a Linux operating system. For the test dataset,
the total run time (using eight cores) was 4.6min inMaxCoverage
mode and 4.3min in MaxEfficiency mode (averaged over three
runs). On average, the computation time per molecule required
to predict metabolites was 10.9 s for MaxCoverage mode and 10.3
for MaxEfficiency mode (averaged over three runs).

METHODS

Development of a Collection of
Transformations
A collection of transformations, defined by SMIRKS and
representing reaction types, was assembled based on
known CYP-mediated reactions found in the literature (see
Supplementary Material for details). The SMIRKS were defined
to be as general as possible while being restricted to reasonable
reaction chemistry, as indicated by the literature and common
chemical knowledge. Therefore, if a reaction was found in the

literature but it was not clear how the reaction would apply
to other molecules besides the provided example, the reaction
was excluded from the collection. This was the case for most
reactions involving large ring systems as well as ring fusions and
ring contractions. Specifically, the following types of reactions
were excluded from our collection: reactions that appeared to
be singleton reactions, reactions involving more than two fused
rings that are not part of a steroid backbone, ring fusions, ring
contractions, reactions in which the substrate or product is a
radical, and reactions specifically indicated to have been found
only in the case of plant CYP isozymes.

A few of the SMIRKS used to describe the transformations
were taken from the Toxtree SMARTCyp module5. Most of the
SMIRKS, however, were newly developed specifically for GLORY.
When developing the SMIRKS expressions, care was taken to
include as few atoms as possible in the explicit mapping, since
SoM probabilities were considered for all atoms in the mapping.

Each reaction type was designated as either “common”
or “uncommon.” Whenever possible, this label was assigned
according to the reaction’s classification by Guengerich in his
2001 review of CYP-mediated reactions (Guengerich, 2001),
which explicitly divided the reactions into these two categories.
If the reaction type was not described in that publication,
a “common” or “uncommon” label was chosen based on
extrapolation (on the basis of empirical similarity to reaction
types present in the publication).

Our collection of CYP reaction rules consists of 61 reaction
types. In some cases, multiple transformations were required
to describe the same reaction type, leading to a total of 73
transformations in the collection of defined reactions. A full
list of the reaction types and their SMIRKS can be found in
Supplementary Table 1.

Metabolite Prediction Program
Predicting the structures of the metabolites involves applying the
reaction rules at all relevant positions. The relevant positions

5Toxtree Module: SMARTCyp—Cytochrome P450-Mediated Drug Metabolism,

http://toxtree.sourceforge.net/smartcyp.html
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are determined by the reaction rule itself and, in the case of the
MaxEfficiency mode, by the SoM probability predicted for each
heavy atom. In MaxCoverage mode, the SoM probabilities are
also used to score the predicted metabolites.

SoM Prediction With FAME 2
The SoM predictions were carried out using the FAME 2
software (Šícho et al., 2017), which included preprocessing of
the molecules. The circCDK_ATF_6 trained model, which had
the best average performance during the independent test set
validation in Šícho et al. (2017), was used for the SoM prediction
within GLORY.

Application of Transformations
The transformations of parent molecules into predicted
metabolites based on the defined SMIRKS strings were
performed using Ambit-SMIRKS [Kochev et al., 2018; Ambit-
SMARTS Java Library, version 3.1.0. http://ambit.sourceforge.
net/smirks.html (accessed Oct 4, 2017)]. Some transformations
may result in multiple products. Products that contain fewer
than three heavy atoms are not included in the set of predicted
metabolites generated by GLORY.

When SoM prediction is used as a preliminary filter, a
transformation rule is only applied at a particular location in the
parent molecule if one of the heavy atoms involved is predicted to
be a SoM with a probability over a certain threshold (see Results
for more information on this threshold).

Scoring of Predicted Metabolites
The scoring of the predicted metabolites was based on SoM
probability predictions and whether the reaction type was
designated as common or uncommon. Each atom in the parent
molecule was assigned a likelihood of being a SoM by FAME 2.
When applying the transformations defined by SMIRKS, Ambit-
SMIRKSmaps the reactant portion of the defined transformation
to any matching set of atoms in the parent molecule. Within
this mapping, the maximum SoM probability was calculated and
used to score the predicted metabolite that resulted from this
particular transformation and mapping.

For each predicted metabolite, the priority score is calculated
by multiplying the maximum SoM probability within the
mapping with a factor F depending on whether the reaction
type was classified as “common” or “uncommon.” Priority scores
for the predicted metabolites therefore range from 0 to Fcommon.
The higher the score, the more likely the predicted metabolite is
considered to be. See Results for further details on the selection
of values for F.

If multiple transformations of a given parent molecule lead
to the same metabolite structure, the priority score is calculated
separately in each case and the highest score is retained. To
calculate top-k values and rank-based ROC curves, it was
necessary to rank the predicted metabolites for each parent
molecule based on their priority scores. If different metabolites
of the same parent compound have the same priority score, then
they receive the same rank. In the case of a tie, one or more rank
numbers, according to the number of tied predictions, following
the tied rank are skipped. For example, if the highest score is

2.5 and two predicted metabolites both have this score, then
both of these metabolites are assigned a rank of 1, no predicted
metabolite is assigned a rank of 2, and the predicted metabolite(s)
with the next highest score are assigned the rank of 3.

Program Output
The predicted metabolites are provided as an SD file with the
following information for each predicted metabolite: rank (out
of all predicted metabolites for a particular parent molecule),
priority score, reaction name, and the InChI, SMILES, and ID
of the parent molecule. If multiple transformations led to the
same product, the highest priority score and the corresponding
reaction name are reported. If the input consists of multiple
molecules, the ID of a parent molecule is set to the molecule’s
position in the ordered list of input molecules (i.e., its position in
the input file).

Creation of the Reference Dataset
The reference dataset was made by combining the CYP
metabolism data from DrugBank and MetXBioDB. The total size
of the combined reference dataset, not including any metabolism
information for any of the parent molecules contained in the
manually curated test dataset, is 848 parent molecules and 1588
metabolites (an average of 1.87 metabolites per parent molecule).

DrugBank Dataset
The DrugBank database (DrugBank, version 5.1.2. https://www.
drugbank.ca/ [accessed Jan 14, 2019]) was downloaded from
the website. In addition to the database in XML format, the
structures of all of the molecules, both parents and metabolites,
were downloaded in SD format from the website (drug group
“All” for the parent molecules).

Any parent or metabolite molecule without an available
structure was ignored. One parent compound (DrugBank ID:
DB09327) was ignored because its SMILES had two components
of which the main component could not be unambiguously
identified. All available generations of metabolism reactions were
considered, as long as the reaction was annotated as mediated by
one or more CYP isozymes. The enzymes for the reactions listed
in DrugBank do not have any apparent species information, so all
were assumed to be human and thereby relevant for this dataset.

For all CYP-mediated reactions, the reactant was considered
to be the parent molecule and the product was considered to be
a first-generation metabolite of that particular parent molecule.
Any metabolite with the same InChI, ignoring stereochemistry
information, as its parent molecule was removed from the set
of metabolites for that parent molecule. Only those parent
molecules with at least one valid metabolite were included in the
final dataset.

Finally, the six parent molecules that are also present in the
manually curated test dataset were removed from the DrugBank
dataset prior to any evaluation, along with their corresponding
metabolism information. These parent compounds were
bupropion, ticlopidine, imipramine, ifosfamide, bosentan,
and olanzapine.

After preprocessing, including removal of the overlap with the
manually curated test dataset, the DrugBank dataset contained
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364 parent molecules and 702 metabolites in total, with an
average of 1.93 metabolites per parent molecule in the dataset.

MetXBioDB Dataset
The human, CYP-mediated reactions were extracted from
the MetXBioDB dataset (MetXBioDB, version 1.0. https://
bitbucket.org/djoumbou/biotransformerjar/src/master/
database/ [accessed Jan 11, 2019]). As the only structural
information provided in the MetXBioDB is in the form of InChIs
and InChIKeys, any substrate or product without a reported
InChI could not be considered. A lacking InChI was only
the case for one out of 1468 CYP-mediated, human reactions
in MetXBioDB.

Stereochemistry information was removed by generating
InChIs without a stereochemistry layer, resulting in 751 CYP,
human parent compounds in total. Of these, 259 are also
present in the DrugBank dataset. For these overlapping parent
compounds, 512 of 569 DrugBank metabolites are also in
MetXBioDB, and MetXBioDB has an additional 93 metabolites
for these overlapping parent compounds.

Eight parent compounds (olanzapine, bupropion,
metoclopramide, bosentan, imipramine, ticlopidine, ifosfamide,
and atomoxetine) from the manually curated test dataset were
also present in the MetXBioDB dataset, only two of which
(metoclopramide and atomoxetine) were not also present
in the DrugBank dataset. These parent compounds and the
corresponding metabolism data were removed from the
MetXBioDB dataset.

After preprocessing, including removal of the overlap with the
manually curated test dataset, the MetXBioDB dataset contained
743 parent molecules and 1385 metabolites in total, with an
average of 1.86 metabolites per parent molecule in the dataset.

Merger of the DrugBank and MetXBioDB Datasets
The DrugBank dataset and the MetXBioDB dataset were
combined to form the reference dataset via a straightforward
consolidation of the parent and metabolite information. All
molecule comparisons occurred using InChIs generated without
stereochemistry information. For any parent molecule that was
present in both the DrugBank and the MetXBioDB datasets,
which was the case for 259 parent molecules, the sets of
metabolites from both datasets were combined, disregarding
stereochemistry, to yield the final set of metabolites for that
parent molecule in the reference dataset.

Creation of the Manually Curated Test
Dataset
A new dataset for testing GLORY was manually assembled
from the scientific literature. The data were extracted from
publications on metabolism that were found in two journals:
Xenobiotica and Drug Metabolism and Disposition. The time
frame considered was from January 2014 to June 2018 for
Xenobiotica and from January 2014 to June 2017 for Drug
Metabolism and Disposition.

Publications were chosen and the metabolism information
they contain included in the dataset if the following criteria
were fulfilled:

1. The publication must contain a figure that depicts the
metabolism scheme and includes the chemical structures of
the parent compound and the first-generation metabolites.

2. The metabolism data must have been experimentally
determined from a human source (i.e., either humans, human
cells, or recombinant human CYP enzymes). If some but not
all of the data were from humans, any non-humanmetabolites
in the metabolism scheme were excluded from the dataset.

3. For at least 75% of all of the first-generation human
metabolites depicted in the metabolism scheme (note that any
metabolite that is depicted as merely being an intermediate is
not considered), the following two criteria must be satisfied.
First, the identity of the enzyme(s) responsible for the
formation of the metabolite must be known. For this purpose,
it is sufficient to knowwhether or not this metabolite is formed
by CYPs. Second, the exact chemical structure, including the
connectivity of all atoms, of the metabolite must be known.
There is one exception to this rule: If the metabolite is known
to not be CYP-formed, then the exact structure is not relevant
and the metabolite is counted anyway.

Based on these criteria, 29 metabolism schemes containing at
least one human, CYP-formed first-generation metabolite with
a fully defined structure were found and included in the dataset.
For these 29 parent molecules, there are 81 metabolites in total
that fulfill the criteria (first-generation, human, CYP, fully defined
structure) for inclusion in the dataset. Note that only first-
generation metabolites are included in the dataset. Note also
that intermediates, as depicted in the metabolism scheme, are
not included in the dataset. Instead, the first non-intermediate
metabolite in the pathway is used.

The SMILES for the metabolites were generated using
ChemSpider (ChemSpider. http://www.chemspider.com/
[accessed Feb 13, 2019]). Consistency of stereochemistry
information between parents and their metabolites
was maintained.

Validation of Metabolite Structure
Predictors
Predictedmetabolites were compared to knownmetabolites from
the reference and test datasets using their InChIs. The InChIs
used for this comparison were generated without stereochemistry
information using CDK (Willighagen et al., 2017; Chemistry
Development Kit, version 2.0. https://cdk.github.io/ [accessed
Nov 3, 2017]).

During the validation, a predicted aldehyde metabolite was
considered equivalent to the corresponding carboxylic acid,
because there is evidence that some percentage of an aldehyde
metabolite acts as an intermediate that is further oxidized to
a carboxylic acid without leaving the CYP enzyme active site
(Bell-Parikh and Guengerich, 1999).

In the case of one parent molecule in the reference dataset, no
predictions could be made because the parent molecule contains
boron. FAME 2 is unable to make predictions for molecules
containing boron because no boron-containing molecules were
present in the dataset used to train the model.
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The SyGMa predictions were carried out in Python using
the SyGMa Python package (SyGMa, version 1.1.0), and RDKit
(RDKit: Open-Source Cheminformatics, version 2017_03_01,
2017). Only the phase I reaction rule set was used and one
reaction cycle was applied.

The BioTransformer predictions were performed using the
CYP450 mode of the BioTransformer (BioTransformer, version
1.0.8. https://bitbucket.org/djoumbou/biotransformerjar/
src/master/ [accessed Feb 5, 2019]) command line tool.
BioTransformer was run individually for each parent compound
using single SMILES input.

The ROC curves were generated using the ROCR R package
(Sing et al., 2005; ROCR, version 1.0-7, 2015). When false
negative data points were added to the curve, these data points
were assigned a score of 0 or a rank of 1,000, respectively,
depending on whether the ROC curve represented scores
or ranks.

CONCLUSIONS

We have developed GLORY, a new tool for predicting the
structures of human metabolites formed by CYPs. GLORY
incorporates two key ideas: a literature-based collection of CYP-
mediated reaction rules and SoM prediction, which was used
particularly auspiciously to develop a new scoring approach for
the predicted metabolites.

For GLORY, we developed a new collection of 73 reaction
rules, describing 61 reaction types, for CYP-mediated
metabolism. In developing this collection, we prioritized
the reproducibility of our rule set and therefore based the rules
on the scientific literature rather than on any dataset. In addition
to the rules themselves, each reaction type was designated as
either common or uncommon, again based on the scientific
literature rather than on any dataset.

In addition, we have devised a priority score for predicted
metabolites based on predicted SoM probabilities and the
simple, literature-based distinction between common and
uncommon reaction types. Hence neither our rule set nor
our scoring approach is directly based on any dataset of
metabolic reactions, setting our approach apart from other
tools, for example SyGMa, which uses reaction rules and
occurrence ratios derived from a proprietary dataset, and
BioTransformer, whose rules were to some extent based on a
freely available dataset.

GLORY has two modes: MaxEfficiency, which uses SoM
prediction as a prefilter for the positions in a molecule at
which reactions are allowed to occur, and MaxCoverage, which
does not use a prefilter and instead focuses on high recall and
an accurate ranking of the predicted metabolites. Using SoM
prediction as a preliminary filter, i.e., in MaxEfficiency mode,
does not work as well as might be expected in terms of reducing
the number of putative false positive predictions while still
keeping a high rate of recovery of reported metabolites. However,
by developing a priority score for the predicted metabolites
using SoM prediction combined with a simple binary distinction
between common and uncommon reaction types, we are able

to rank the metabolites predicted by MaxCoverage mode to the
extent that GLORY can predict at least one known metabolite
within the top three ranked positions for 76% of the molecules
in the independent test set while achieving a recall of 0.83.
GLORY’s MaxCoverage mode outperforms both SyGMa and
BioTransformer in terms of recall and outperforms SyGMa
in terms of ranking (BioTransformer does not currently rank
its metabolite predictions). One use case for the MaxCoverage
mode could be, for example, identifying metabolites from mass
spectrometry data.

Along with the collection of reaction rules, we provide a new,
manually curated test dataset for free use as a benchmark dataset.
In addition, GLORY is freely available as a web server at https://
acm.zbh.uni-hamburg.de/glory/.

Importantly, the concept of GLORY is such that it can
be extended to predict metabolites formed by enzymes not
belonging to the CYP family. The enzymes that this approach
can be expanded to is limited, in principle, only by the extent
of the available data and the coverage of the relevant metabolic
reactions by SoM prediction tools.
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The human Sigma1 receptor (S1R), which has been identified as a target with an

important role in neuropsychological disorders, was first crystallized 3 years ago. Since

S1R structure has no relation with another previous crystallized structures, the presence

of the new crystal is an important hallmark for the design of agonists and antagonists

against this important target. Some years ago, our group identified RC-33, a potent

and selective S1R agonist, endowed with neuroprotective properties. In this work,

drawing on new structural information, we studied the interactions of RC-33 and its

analogs with the S1R binding site by using computational methods such as docking,

interaction fingerprints, and receptor-guided alignment three dimensional quantitative

structure–activity relationship (3D-QSAR). We found that RC-33 and its analogs adopted

similar orientations within S1R binding site, with high similitude with orientations of the

crystallized ligands; such information was used for identifying the residues involved in

chemical interactions with ligands. Furthermore, the structure-activity relationship of the

studied ligands was adequately described considering classical QSAR tests. All relevant

aspects of the interactions between the studied compounds and S1Rwere covered here,

through descriptions of orientations, binding interactions, and features that influence

differential affinities. In this sense, the present results could be useful in the future design

of novel S1R modulators.

Keywords: sigma1 receptor ligands, RC-33, arylalkylamine derivates, docking, quantitative structure–activity
relationships, interaction fingerprints

INTRODUCTION

The Sigma receptors (SR) have attracted the interest of the scientific community thoroughly in
the last decades owing to their potential role in cell survival and function modulation (Walker
et al., 1990; Chu and Ruoho, 2016). They were originally misclassified as a subtype of opioid
receptors (Martin et al., 1976), but they were later classified as unique class of intracellular proteins,
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distinct from other receptors such as GPCRs (G protein-coupled
receptors). Sigma receptors (SRs), comprise two subtypes σ1 and
σ2 receptors (S1R and S2R, respectively) associated with aging-
and mitochondria-associated disorders (Tesei et al., 2018). Both
subtypes are highly expressed in the central nervous system, but
they are derived from completely different genes. S1R was cloned
in 1996 (Hanner et al., 1996) and was crystallized for the first
time 3 years ago, in 2016 (Schmidt et al., 2016), whereas S2R was
cloned only very recently, in 2017, by Alon et al. (2017).

S1R is an intracellular modulator between the endoplasmic
reticulum and the mitochondria, the cell nuclei, the membrane,
and it also modulates intracellular signaling. It plays a key role
in neuropsychological disorders such as depression, enhances
the glutamatergic neurotransmission (DeCoster et al., 1995;
Meyer et al., 2002), and modulates second messenger systems,
such as the phospholipase C/protein kinase C/inositol 1,4,5-
trisphosphate system (Morin-Surun et al., 1999). Multiple
biological roles of S1R have been identified, which made this
protein a relevant target for the future treatment of epilepsy,
schizophrenia, sclerosis, Alzheimer, and Parkinson’s diseases,
cancer, etc. (Mishina et al., 2005; Hashimoto, 2009; Furuse and
Hashimoto, 2010; Mavlyutov et al., 2015; Vavers et al., 2017; Tesei
et al., 2018). Moreover, S1R agonists enhanced neuroplasticity,
and may be effective in amyotrophic lateral sclerosis (Peviani
et al., 2014) and multiple sclerosis (Collina et al., 2017b).

Not less important, preclinical studies carried out on different
models of memory impairment have revealed that S1R ligands
could be promising drugs to treat cognitive dysfunctions
(Hayashi and Su, 2004; Monnet and Maurice, 2006; Yagasaki
et al., 2006; Collina et al., 2017a). Therefore, the identification
of potent and selective S1R modulators is of great interest
to develop novel therapeutic strategies focused mainly in the
treatment of central nervous system disorders. The list of
S1R ligands in the last years includes thioxanthene-derived
compounds (Glennon et al., 2004), fenpropimorph-derived
analogs (Hajipour et al., 2010), 2(3H)-benzothiazolones (Yous
et al., 2005), cyclopropylmethylamines (Prezzavento et al., 2007),
benzo[d]oxazol-2(3H)-one derivatives (Zampieri et al., 2009),
etc. All these compounds were developed when the three-
dimensional (3D) structure of S1R was unknown. Despite this,
the pharmacophoric features of S1R were identified and these
compounds comply with the general accepted pharmacophoric
pattern. It was demonstrated that at least one N positively
charged atom is important for binding at sigma receptors
and this atom must be flanked by two hydrophobic regions
of different sizes (Ablordeppey et al., 2000; Glennon, 2005;
Caballero et al., 2012).

In the last years, we designed and synthesized compounds that
comply with the proposed pharmacophore model and evaluated
them as S1R ligands (Collina et al., 2007; Urbano et al., 2007;
Rossi et al., 2010, 2011), leading to the finding of compound
RC-33 as a potent and selective S1R agonist (Rossi et al., 2013a;
Marra et al., 2016). The structure-activity relationship (SAR) of
the majority of these compounds was previously described by
us by using 2D-QSAR methodologies (Quesada-Romero et al.,
2015). With the recent report of the S1R 3D structure (Schmidt
et al., 2016), structure-based molecular modeling methods could

be used to investigate S1R ligands with a new glance. With this
in mind, we propose in this work the analysis of the SAR of
RC-33 and its analogs (in total there were 80 compounds) by
combining docking and a 3D-QSAR methodology. This is the
first study focused on describing the SAR of S1R ligands by using
structure-based molecular modeling methods, after the report of
the crystallographic structure of this important biological target.

MATERIALS AND METHODS

Dataset Preparation
The studied compounds were extracted from references (Collina
et al., 2007; Urbano et al., 2007; Rossi et al., 2010, 2011,
2015, 2017; Rui et al., 2016). This dataset yielded a total of 80
compounds with reported activities as Ki ranging from 0.00069
to 1µM. Ki values were converted into logarithmic pKi values
prior 3D-QSAR models’ elaboration. The compound chemical
structures and their pKi values are depicted in Table 1. The
molecular structures were sketched using Maestro’s molecular
editor (Maestro 10.2.011, Schrödinger LLC). Thereafter, the 3D
structures were obtained with the help of the LigPrep module
(LigPrep, Maestro 10.2.011, Schrödinger LLC); ionization states
were generated at pH 7.0 ± 2.0 using Epik (Shelley et al., 2007).
For compounds containing two possible enantiomers which
are reported in racemic form, the R enantiomer was chosen
for QSAR experiments because it was determined that both
RC-33 enantiomers showed similar affinities for the S1R and
they are almost equally effective as S1R agonists (Rossi et al.,
2013b). However, both enantiomers were chosen for docking
experiments to explore the interactions in the S1R binding site.

Molecular Docking
The ligand-receptor molecular docking experiments of RC-
33 analogs into the active site of S1R were performed
by using the software Glide from the Schrödinger suite
(Friesner et al., 2004). Glide is one of the most effective
docking programs at this moment with many successful
applications relating to rational design of novel drugs
and investigation of protein-ligand interactions. Such
applications encompass in silico search of novel drugs
(Osguthorpe et al., 2012; Amaning et al., 2013), analysis
of the SAR of congeneric series of compounds (Almerico
et al., 2012; Quesada-Romero and Caballero, 2014; Quesada-
Romero et al., 2014; Mena-Ulecia et al., 2015), evaluation of
enzymatic reaction pathways (Wu et al., 2011; Batra et al.,
2013), etc.

Protein coordinates were extracted from the crystal structure
of S1R bound to the selective antagonist PD144418 (code 5HK1
in Protein Data Bank) (Schmidt et al., 2016). A grid box of
20 × 20 × 20Å was centered on the center of mass of the
ligand in this crystal structure covering the binding site of
S1R. Glide standard (SP) and extra-precision (XP) modes were
employed with the same protocol and parameters that were used
by us in previous works (Quesada-Romero and Caballero, 2014;
Quesada-Romero et al., 2014; Mena-Ulecia et al., 2015). Glide
SP was used to evaluate the capability of the Glide method to
obtain poses that fit the known pharmacophore of S1R ligands,
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TABLE 1 | Structures of RC-33 analogs as S1R ligands.

ID Structure Experimental
pKib

Predicted
pKib

References

1 (RC-33) 9.16 9.37 Rossi et al., 2011

2 7.60 7.54 Collina et al., 2007

3 7.41 7.49 Rossi et al., 2010

4 6.99 6.96 Collina et al., 2007

5 7.70 7.62 Collina et al., 2007

6 7.67 7.44 Collina et al., 2007

7 8.85 8.73 Rossi et al., 2011

8a 6.00 6.79 Rossi et al., 2011

9 6.09 6.23 Rossi et al., 2011

10 6.00 6.14 Rossi et al., 2011

(Continued)
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TABLE 1 | Continued

ID Structure Experimental
pKib

Predicted
pKib

References

11 7.33 7.11 Collina et al., 2007

12a 8.71 7.99 Collina et al., 2007

13 7.72 7.65 Collina et al., 2007

14 8.64 8.41 Collina et al., 2007

15 8.99 9.05 Collina et al., 2007

16 8.22 8.10 Rossi et al., 2010

17 8.62 8.26 Rossi et al., 2010

18 8.10 8.09 Collina et al., 2007

19 8.20 8.29 Collina et al., 2007

(Continued)
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TABLE 1 | Continued

ID Structure Experimental
pKib

Predicted
pKib

References

20 7.86 8.22 Rossi et al., 2010

21 7.04 7.06 Collina et al., 2007

22 8.28 8.11 Collina et al., 2007

23a 8.27 8.96 Collina et al., 2007

24 8.24 8.30 Collina et al., 2007

25 8.64 8.52 Rossi et al., 2010

26 7.98 8.01 Rossi et al., 2010

27 9.01 8.79 Rossi et al., 2011

28 9.07 9.22 Rossi et al., 2011

(Continued)
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TABLE 1 | Continued

ID Structure Experimental
pKib

Predicted
pKib

References

29a 6.34 6.23 Rossi et al., 2011

30 7.85 7.67 Rossi et al., 2011

31 7.04 7.10 Rossi et al., 2011

32 8.36 8.62 Rossi et al., 2010

33 8.89 8.99 Rossi et al., 2010

34a 7.64 7.65 Rossi et al., 2011

35 8.15 8.20 Rossi et al., 2011

36a 8.97 8.56 Rossi et al., 2011

37a 8.38 8.28 Rossi et al., 2011

38a 8.11 7.40 Rossi et al., 2011

(Continued)
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TABLE 1 | Continued

ID Structure Experimental
pKib

Predicted
pKib

References

39 8.02 8.04 Rossi et al., 2011

40 7.94 7.83 Rossi et al., 2011

41 6.00 6.38 Rossi et al., 2011

42 6.00 5.98 Rossi et al., 2011

43a 6.00 7.29 Urbano et al., 2007

44 6.00 6.03 Urbano et al., 2007

45 6.00 6.16 Urbano et al., 2007

46 6.00 5.78 Urbano et al., 2007

47a 6.00 6.36 Urbano et al., 2007

(Continued)
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TABLE 1 | Continued

ID Structure Experimental
pKib

Predicted
pKib

References

48 6.00 5.89 Urbano et al., 2007

49 6.00 5.75 Urbano et al., 2007

50 7.41 7.52 Rossi et al., 2015

51 8.33 8.37 Rossi et al., 2015

52 6.69 6.81 Rossi et al., 2015

53 7.20 7.40 Rossi et al., 2015

54a 7.29 7.44 Rossi et al., 2015

55 7.60 7.90 Rossi et al., 2015

56 8.82 8.57 Rossi et al., 2017

(Continued)
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TABLE 1 | Continued

ID Structure Experimental
pKib

Predicted
pKib

References

57 8.22 8.29 Rossi et al., 2017

58 8.16 8.14 Rossi et al., 2017

59 8.27 8.20 Rossi et al., 2017

60 6.94 6.91 Rossi et al., 2017

61 7.70 7.68 Rossi et al., 2017

62 8.46 8.37 Rossi et al., 2017

63 7.12 7.20 Rossi et al., 2017

64 6.62 6.75 Rossi et al., 2017

65a 7.44 6.42 Rossi et al., 2017

66 8.54 8.56 Rossi et al., 2017

(Continued)
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TABLE 1 | Continued

ID Structure Experimental
pKib

Predicted
pKib

References

67a 6.86 7.25 Rossi et al., 2017

68 6.37 6.35 Rossi et al., 2017

69 7.34 7.37 Rossi et al., 2017

70a 8.54 8.62 Rossi et al., 2017

71 8.52 8.45 Rossi et al., 2017

72a 7.07 6.56 Rossi et al., 2017

73 8.00 8.01 Rui et al., 2016

74 7.96 7.92 Rui et al., 2016

75 7.57 7.73 Rui et al., 2016

76 7.40 7.45 Rui et al., 2016

(Continued)
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TABLE 1 | Continued

ID Structure Experimental
pKib

Predicted
pKib

References

77 7.15 7.09 Rui et al., 2016

78 7.21 7.18 Rui et al., 2016

79 7.46 7.42 Rui et al., 2016

80a 7.89 7.19 Rui et al., 2016

aTest set compounds.
bExperimental and predicted pKi values using Model SE.

and the more precise Glide XP was used for finding the final
docking poses.

After several poses were found for each compound, the ones
that showed the best scoring energies were considered. The
information of PD144418, 4-IBP, haloperidol, NE-100, and (+)-
pentazocine in the crystallographic structures recently reported
(Schmidt et al., 2016, 2018) was considered for the selection of
the best solutions; these compounds show how the previously
reported pharmacophoric pattern (Glennon, 2005) is oriented
inside the S1R binding site. The essential chemical interactions
described for analog ligands (ECIDALs) (Muñoz-Gutierrez et al.,
2016; Ramírez and Caballero, 2018) defined for S1R ligands were
identified using this information. The most obvious essential
chemical interaction is that charged amino group of the ligands
must be close to the side chain carboxylate group of the residue
Glu172, forming an electrostatic interaction. Therefore, the
best docking solution for each compound was the pose that
had the best scoring energy and complies with this essential
chemical interaction.

The “Interaction Fingerprints Panel” of Maestro (Maestro
10.2.011, Schrödinger LLC) was used for deriving the Interaction
fingerprints (IFPs) as described in Singh et al. reports (Deng
et al., 2004; Singh et al., 2006). The method accounts for the
presence of different types of chemical interactions between
ligands and the binding site residues of the target receptor
by using bits. For this purpose, distance cutoffs are defined
for the binding site, and the interacting set encompasses
the residues that contain atoms within the specified cutoff
distance from ligand atoms. An interaction matrix is constructed
including the bits with relevant information of the defined
chemical interactions.

QSAR Modeling
After docking experiments, 3D-QSAR models were performed
to explain the SAR of the RC-33 analogs. Their bioactive
conformations predicted by using docking were used as the
alignment rule for deriving the models. The structural features
that affect their activities against the S1R were identified by
describing steric and electrostatic fields.

The 80 compounds dataset was randomly partitioned into
training (64 compounds) and external (16 compounds) sets. A
homogenous distribution of the activities was granted in both
training and test sets. 3D-QSAR models were generated using
Open3DQSAR (Tosco and Balle, 2011), an open access tool
with all the capacities to construct 3D-QSAR models. Steric
and electrostatic fields were computed according to classical
molecular mechanics equations using theMerckMolecular Force
Field (Halgren, 1996).

The field variables were calculated by describing the
interaction energies between probe atoms (sp3 carbon atoms
with a charge +1) and structures in a 1.0 Å step size grid box
surrounding the whole set. Variables were processed as follows:
(i) high energies adopted the top value of 30 kcal/mol, (ii) energy
values very close to zero (below 0.05 kcal/mol) were set to zero
in order to reduce noise, (iii) variables which only assumed a
few different values (n-level variables) were removed. Thereafter,
variables were scaled using the Block Unscaled Weighting
procedure (Kastenholz et al., 2000; Boháč et al., 2002) and the
predictive power of the models was improved by using the Smart
Region Definition algorithm (Pastor et al., 1997).

Partial Least Square (PLS) regression was used to construct
3D-QSAR models, including from one to five Principal
Components (PCs) and different combinations of fields. Models
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were derived by using one field and by combining them; the best
model was selected by considering the higher value of the internal
leave-one-out (LOO) cross-validation Q2.

RESULTS AND DISCUSSION

Docking Predictions
We have a structural information of the binding poses of
S1R ligands such as PD144418, 4-IBP, haloperidol, and NE-
100 that similar in shape to RC-33. This information was used
for evaluating the quality of the obtained docking results for
RC-33 and its analogs. It is known that S1R ligands contain
a charged nitrogen central atom flanked by two hydrophobic
regions of different size (Glennon, 2005). The above mentioned
S1R ligands form electrostatic interactions between the ligand
charged nitrogen atoms and the side chain carboxylate of Glu172.
In addition, their larger hydrophobic groups locate near the
residues Val84, Met93, Leu95, Leu105, Tyr206, Ile178, Leu182,
and Tyr103 (primary hydrophobic site), and their smaller
hydrophobic groups locate near the residues Phe107, Trp164,
His154, and Ile124 (secondary hydrophobic site). It is expected
that the studied compounds establish such interactions.

Docking orientations of RC-33 and its analogs are represented
in Figure 1. The best docking pose obtained for RC-33 was
compared with the orientations of PD144418, 4-IBP, haloperidol,
NE-100, and (+)-pentazocine in the reference crystallographic
structures 5HK1, 5HK2, 6DJZ, 6DK0, and 6DK1, respectively.
(+)-Pentazocine is an agonist as RC-33, but it is shorter than
RC-33 and the other crystallized ligands; therefore, it is the
least suitable ligand for the structural comparison between the
crystallized ligands and the docked RC-33 analogs. Figure 1A
shows that the docked structure of RC-33 was similarly oriented
as the other crystallized ligands. On the other hand, Figure 1B
shows that suitable binding modes of the ligands were found
for all the RC-33 analogs. All of them form the conserved salt
bridge between the charged N atom of the ligands and the residue
Glu172 of the S1R. They also oriented their large hydrophobic
groups to the primary hydrophobic site, and oriented their
small hydrophobic groups to the secondary hydrophobic site.
Representations in Figure 1 show that our docking poses are
similar to the S1R-ligand X-ray structures reported to date.

We calculated RMSD values for the studied compounds
with respect to the docking result of RC-33 inside the S1R
by using an in-house script (Velázquez-Libera et al., 2018).
These calculations show the similarity in orientations between
RC-33 and its analogs in an easy way. Since the RC-33
derivatives are different from the reference compound, RMSD
values were calculated by considering only the common graphs
between molecules. %RefMatch and %MolMatch values were
defined, where %RefMatch refers to the percent of common
graphs between the docked compound and RC-33 regarding
the total number of atoms of RC-33; meanwhile, %MolMatch
refers to the percent of common graphs between the docked
compound, and RC-33 regarding the total number of atoms
of the docked compound. These values allow identifying the
maximal similitude between the docked compound and RC-33;
therefore, an RMSD value with high%RefMatch and%MolMatch

FIGURE 1 | Docking results for RC-33 and its analogs. (A) Docking pose

obtained for RC-33 (stick representation in green) and comparison with X-ray

crystallographic structures of the antagonist PD144418 (thin stick

representation in purple, PDB code 5HK1), the ambiguous ligand 4-IBP (thin

stick representation in light blue, PDB code 5HK2), the antagonist haloperidol

(thin stick representation in lilac, PDB code 6DJZ), the antagonist NE-100 (thin

stick representation in teal, PDB code 6DK0), and the agonist (+)-pentazocine

(thin stick representation in cyan, PDB code 6DK1). N positively charged atom

for each compound is represented by a blue sphere. (B) (top) Docking of

RC-33 (in sticks representation) and comparison with its analogs (in lines

representation); for each compound large hydrophobic group is in green at the

left, small hydrophobic group is in purple at the right, and N positively charged

atom is a sphere in blue. (bottom) Pharmacophoric model for S1R ligands: N

positively charged atom (blue) flanked by large hydrophobic (green) and small

hydrophobic (purple) regions.

values reflects that the compound under analysis bears a strong
resemblance with RC-33.

The majority of the compounds under study have the 1-
(3-phenylbutyl)piperidine or parts of this group in common
with RC-33. Their RMSD values are reported in Table 2. In
general, RMSD values reflect that the majority of compounds had
the 1-(3-phenylbutyl)piperidine (or part of this group) similarly
oriented with respect to RC-33 (RMSD < 2 Å). However,
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TABLE 2 | RMSD values of the obtained docking pose common fragments for the studied compounds with respect to the docking result of RC-33 inside the S1R.

ID RMSD (Å)a %RefMatchb %MolMatchc RMSD (Å)a,d %RefMatchb,d %MolMatchc,d

1 (RC-33) 0.86 100 100

2 1.70 50 61 2.30 50 61

3 1.40 50 55 1.82 50 55

4 2.61 36 47

5 2.20 36 47

6 1.42 36 42

7 0.46 64 74

8 2.94 36 62

9 1.67 36 53

10 2.50 36 53

11 2.80 50 65 2.89 50 65

12 2.05 50 65 2.16 50 65

13 2.21 50 61 1.50 50 61

14 1.43 50 58 1.46 50 58

15 0.43 77 89 0.86 77 89

16 1.45 50 42 1.07 50 42

17 0.97 77 65 0.69 77 65

18 1.58 36 35

19 0.42 64 56

20 1.29 36 32

21 2.85 36 42

22 0.38 36 38

23 2.09 50 48 1.94 50 48

24 0.94 77 68 0.83 77 68

25 1.22 50 44 0.82 50 44

26 1.23 73 70 1.98 73 70

27 1.38 36 40

28 0.59 64 64

29 2.24 36 50

30 0.85 36 44

31 1.15 36 44

32 1.11 36 36

33 2.15 73 73 1.78 73 73

34 2.14 36 30

35 0.45 64 48

36 3.70 36 35

37 4.17 36 32

38 2.41 36 32

39 1.16 36 40

40 0.63 64 64

41 0.77 36 44

42 0.72 36 44

43 2.10 32 26

44 1.10 32 28

45 1.66 32 24

46 0.67 59 57

47 1.05 32 37

48 2.28 32 35

49 2.23 32 39

50 0.96 100 96

51 0.64 100 96

(Continued)
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TABLE 2 | Continued

ID RMSD (Å)a %RefMatchb %MolMatchc RMSD (Å)a,d %RefMatchb,d %MolMatchc,d

52 1.50 50 61

53 1.87 50 61

54 1.48 50 55

55 1.07 50 55

56 2.19 73 80 1.96 73 80

57 2.63 73 59

58 2.22 73 59

59 1.95e 91 100 1.98e 91 100

60 1.80 50 73 2.54 50 73

61 2.63 73 89 1.52 73 89

62 3.02 73 64 6.97 73 64

63 2.38e 82 100 2.51e 82 100

64 2.11 50 73 2.58 50 73

65 2.45 73 89 1.01 73 89

66 2.68 73 64 4.26 73 64

67 2.19e 82 100 1.98e 82 100

68 0.63 50 85 2.96 50 85

69 2.65 73 100 2.73 73 100

70 3.87 73 70

71 6.66 73 70

72 2.58e 73 100 1.49e 73 100

73 2.29 73 57

74 2.20 73 57

75 4.65 73 67

76 4.39 73 67

77 2.72 73 55

78 2.34 73 55

79 1.74 73 57

80 2.08 73 57

aRMSD values considering only the common chemical fragments between the docked compound and the reference compound RC-33.
b%RefMatch refers to the percent of common graphs between the docked and reference compound RC-33 concerning the total number of atoms of the reference compound RC-33.
c%MolMatch refers to the percent of common graphs between the docked and reference compound RC-33 regarding the total number of atoms of the docked compound.
dRMSD, %RefMatch, and %MolMatch values for the S enantiomer of the compounds reported as racemic pairs.
e In this case, difference in ring heavy atoms were not considered between the docked compound and the reference compound RC-33.

Table 2 reports compounds with RMSD > 2.5 Å (for instance,
compounds 11 (R and S), 57, 60 (S), and 77). The 1-(3-
phenylbutyl)piperidine group of these compounds is displaced
toward the helices α4 and α5; however, their amine groups
keep the salt bridge interaction with the residue Glu172. In
addition, we found in Table 2 compounds with RMSD > 4 Å
(for instance, compounds 37, 62 (S), 66 (S), 75, and 76). The 1-
(3-phenylbutyl)piperidine group of these compounds is oriented
to the reverse with respect to this group in RC-33; their amine
groups also keep the salt bridge interaction with the residue
Glu172. These compounds have larger hydrophobic substituents
at position 4 of the piperidine, increasing the size of this group.
The changed groups fit better inside the bigger hydrophobic
cavity close to the helices α4 and α5 when their orientations
are opposed to the orientation of the 1-(3-phenylbutyl)piperidine
group in RC-33. In this way, these compounds are also adapted
to the previous described pharmacophore pattern for S1R ligands

(Ablordeppey et al., 2000; Glennon, 2005; Caballero et al., 2012)
(the N positively charged atom flanked by two hydrophobic
groups of different sizes), where the charged atom is salt-bridged
to Glu172, the bigger hydrophobic group is placed near the
helices α4 and α5 at the membrane proximal, and the smaller
hydrophobic group is placed near the narrow end of the cupin
barrel that is further from the membrane.

The chemical interactions between the RC-33 analogs and
the residues at the S1R binding site can be described in
detail by using IFPs. This method has been commonly used
for identifying the relevant residues involved in protein-ligand
affinities (Caballero et al., 2018; Navarro-Retamal and Caballero,
2018; Velázquez-Libera et al., 2018). IFPs capture and label the
chemical contacts between a target protein and a set of its ligands
as a whole. The chemotypes are identified with the following
labels: P (polar groups), H (hydrophobic groups), A (hydrogen
bonds where the residue is the acceptor), D (hydrogen bonds
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where the residue is the donor), Ar (aromatic groups), and
Ch (electrostatic interactions with charged groups). IFPs also
differentiate between contacts with backbone and contacts with
side-chain functional groups. We calculated IFPs by considering
the S1R-ligand complexes formed by our docked structures.

The calculated IFPs are reported in Figure 2. The IFP
analysis applied to the complexes between S1R and the RC-33
analogs obtained by docking revealed that 29 S1R residues had
contacts with ligands. These residues and their positions in the
S1R secondary structure are depicted in Figure 2A. The S1R
binding site is mainly hydrophobic; in fact, the vast majority
of the observed interactions are hydrophobic or aromatic when

analyzing the occurrence of chemical contacts in the studied
structures (Figure 2C).

The residues with polar interactions were identified in the
plots of percent of occurrence obtained from IFP calculations
(Figure 2). The residue E172 at the sheet β10 has polar
contributions in 100% of the total structures, forming a salt-
bridge and it also acts as HB acceptor in 80% of the studied
structures. The residue D126 at the sheet β5 was identified with
polar contributions in more than 50% of the studied structures.
The residue T181 at the helix α4 has polar contributions in
more than 80% of the studied structures. Finally, the residues
S117 (backbone and side chain), H154 (side chain), and T202

FIGURE 2 | Occurrence of interaction types at the S1R–ligand binding interface. (A) Residues with observed interactions, their position in the S1R sequence. (B)
Percentages of occurrence of contacts C, interactions with the backbone of the residue B, and interactions with the side chain of the residue S. (C) Percentages of

occurrence of chemical interactions: contacts C, polar P, hydrophobic H, HBs where the residue is acceptor A, HBs where the residue is donor D, aromatic Ar, and

electrostatic with charged groups Ch. The S1R–ligand structures obtained by docking were used for calculations of the percentages of occurrence represented here.
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TABLE 3 | Statistical information of the 3D-QSAR models.

Fields NC R2 S Q2 SLOO R2
test Stest %S %E

S 8 0.98 0.13 0.64 0.54 0.34 0.81 1

E 4 0.81 0.39 0.54 0.62 0.59 0.63 – 1

SE 7 0.97 0.15 0.70 0.50 0.61 0.62 0.88 0.12

NC is the number of components; S is the standard deviation of the fitted activity of the

training set; R2, Q2, and R2test are the coefficients of correlation of the training set, LOO

cross validation, and test set, respectively; SLOO is the standard deviation of the LOO

cross validation, and Stest is the standard deviation of the test predictions. %S and %E

are the relative contributions of the steric (S) and the electrostatic (E) fields, respectively.

FIGURE 3 | Scatter plot of the experimental activities vs. predicted activities

for the model SE: (•) training set predictions, (◦) LOO cross-validation

predictions, and (×) test set predictions.

(backbone and side chain) have polar contributions in around
30% of the studied structures.

Several residues with aromatic interactions were also
identified in the plots of percent of occurrence obtained from IFP
calculations (Figure 2). The residues with aromatic interactions
were important for the shape of the S1R binding site because
they restrict the space of the pockets. Four aromatic residues
located at the center of the binding site (W89, Y103, F107, and
Y120) were identified by the IFP calculations with percent of
occurrence values above 80%. These residues cause a bottleneck
just in front of the residue E172; therefore they could help to
orient the positively charged N of the ligands to form the salt
bridge. At the same time, they could stabilize the presence of the
positive charge by means of π-cation interactions. The aromatic
residues F133 at the sheet β6 and W164 the sheet β9, located
close to the narrower end of the cupin β-barrel, have percent
of occurrence values of 50 and 70%, respectively. On the other

hand, the residue Y206, located at the helix α5, has a percent of
occurrence value of 70%.

The remaining residues with hydrophobic interactions were
also identified in the plots of percent of occurrence obtained
from IFP calculations (Figure 2). The residues identified with
percent of occurrence above 75% M93 (at β2), L105 (at β3), and
L182/A185 (at α4) are located at the bigger hydrophobic pocket.
The residues V84 (at β1), L95 (at β2), and I178 (at the loop
between β10 and α4) are also located at the bigger hydrophobic
pocket and were identified by IFP calculations with lower percent
of occurrences, and the residue I124 at β5, located at the smaller
hydrophobic pocket, had a percent of occurrence below 40%.

In general, the reported IFPs identify the most important
S1R residues which establish chemical interactions with RC-33
analogs. Furthermore, it could be useful for the understanding of
the interactions between S1R and its ligands.

3D-QSAR Results
We constructed the 3D-QSAR models based on docking
alignment; therefore, the docked structures were included in
a box for creating the relevant fields, since they are models
of the ligand conformations inside the S1R binding site. The
docking-based or receptor-guided alignment 3D-QSAR is a well-
documented method in literature (Guasch et al., 2012; Navarro-
Retamal and Caballero, 2016; Muñoz-Gutiérrez et al., 2017).
Three 3D-QSAR models were trained using the steric field
(Model S), the electrostatic field (Model E), and the combination
of both fields (Model SE). The most reliable models were selected
by measuring the LOO cross-validation performance (Q2

> 0.5)
and the test set predictions (R2

test > 0.5).
Table 3 lists the description and statistical information of

the best 3D-QSAR models. This report proved that model S
has better (LOO) cross-validation Q2 than model E. However,
when both steric and electrostatic fields are tied together
in the more complex model SE, the Q2 value increases;
therefore, this model, which had a Q2

= 0.70 including seven
components, containing a major contribution of the steric
field (88%), was identified as the model best describing the
structure-activity relationship of the studied RC-33 analogs.
These results reflect that the steric features are mandatory for
modulating the agonistic activities of the studied compounds.
This is reasonable considering that the S1R binding site is
mostly hydrophobic.

The model SE explains 97% of the variance and has a low
standard deviation (S = 0.15). The predictions of pKi values
for the 64 RC-33 analogs in the training set using the model
SE are reported in Table 1 and the correlations between the
predicted and experimental pKi values (from training and LOO
cross validation) are shown in Figure 3. It is possible to observe
that the selected model fitted adequately the whole dataset; it is
noteworthy that the more potent compounds had an outstanding
performance. When the model SE was used to predict the
pKi values of the test set compounds, well results were also
found, reflected by the value of R2test = 0.61. The predicted pKi
values for the test set are listed in Table 1, and the correlation
between the calculated and experimental pKi values are plotted
in Figure 3.
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FIGURE 4 | 3D-QSAR contour maps for the RC-33 analogs (model SE). The steric field is represented by green and yellow isopleths: the green ones indicate regions

where bulky groups enhance the activity, and the yellow ones indicate regions where bulky groups disfavor the activity. The electrostatic field is represented by blue

and red isopleths: the blue ones indicate regions where an increase of positive charge enhances the activity and the red ones indicate regions where an increase of

negative charge enhances the activity. RC-33 is shown inside the fields.

Figure 4 shows contour plots of the steric and electrostatic
fields projected onto the docked structure of RC-33 for
association between the fields, the compounds of the whole
set, and the residues at the S1R binding site. In this figure,
green and yellow contours represent regions with positive and
negative steric components, respectively. It is noted that positive
steric components have a major role. A great green contour in
front of the 3-phenylbutylamine, and near the residues V84,
W89, F107, and A185, indicates that bulk groups are desired in
this region. It is noteworthy that the most active compounds
such as RC-33, 7, 15, 27, 28, and 33 has the methyl group of
the 3-phenylbutylamine in this region, but the majority of the
less active compounds such as 8, 29, 41, 64, and 67 have this
group deeper into the bigger hydrophobic pocket. Another three
green contours are located near the piperidine of RC-33 and
the residues Y120, S117, and W164 indicating that this group
or another bulky group in this region is needed. In general,
compounds with a dimethylamine in this region (compounds
2–15) are less active than similar compounds that contain
piperidine. Another green contour near the residues Y103 and
E172 reflects that several active compounds contain the methyl
group of the 3-phenylbutylamine in this region. Another green
contours are located at the bigger hydrophobic pocket near the
residues Y103, Y206, and T202, indicating the preference of a
bulky group in this region. For instance, the biphenyl group in
compound 7 is preferred instead the phenyl group in compound
8 because the former group fills the entire space of the bigger
hydrophobic pocket. Several yellow contours were identified near
the residues W164, L105, F107, and T202. All of them are close
to the green contours both in the bigger and smaller pockets,
and reflect the complexity of the steric field inside the S1R
binding site.

In Figure 4, blue and red contours represent regions with
positive and negative electrostatic components, respectively;
all of them are small and are located inside the bigger
hydrophobic pocket. The blue contours are near the residues
T181, A185, L182, and the backbone of Y206, and the red
contours are near the residues A92, L95, L105, L182, and
T202. The blue contours are located in regions where ligands
placed hydroxyl groups and their pKi values are between 7
and 7.8 (moderate activities). For instance, compounds 13

and 77 have hydroxyl close to the backbone of Y206, 75,

and 76 have hydroxyl close to A185, and 53, 55, and 78

have hydroxyl close to T181. The red contours are located in
regions where ligands placed OMe groups and the activity is
increased. For instance, compounds 22 and 30 that contain
OMe have better activities than compounds 21 and 29 without
this group.

The docking-based 3D-QSAR methodology allows
establishing a comparison between the chemical features
that describe the structure-activity relationship of bioactive
ligands and the protein binding site (Alzate-Morales and
Caballero, 2010; Caballero et al., 2011; Quesada-Romero et al.,
2014; Mena-Ulecia et al., 2015; Muñoz-Gutiérrez et al., 2017).
The contour plots in receptor-based 3D-QSAR are not receptor
maps, but they solve another key point of the description of the
differential activities: different potency in activities is connected
with different chemical environments and interactions. The
docking and 3D-QSAR methods applied to the study of RC-33
analogs give more information about the structure of S1R-ligand
complexes, and identify important chemical features to take into
account in the future design of potent S1R ligands. We feel that
another similar studies on other series of compounds will be
reported during next years.
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CONCLUSION

This is the first structure-based molecular modeling investigation
a few years after the elucidation of the S1R crystallographic
structure; therefore, details of the binding poses and the
chemical interactions in the binding site are described. Binding
orientations and structure-activity relationship of RC-33 analogs
as S1R agonists were studied by using molecular docking and
3D-QSAR methods.

Docking poses obtained for the studied compounds inside the
S1R binding site explain the interactions between the well-known
theoretical pharmacophore model reported for these compounds
(elucidated before the knowledge of the S1R 3D structure) and
the residues located at the binding site. They also reproduced
structural features reported for complexes between S1R and
PD144418, 4-IBP, and other active ligands. The docking analysis,
including the IFP calculations, confirmed the preponderant role
of E172 forming a salt bridge with the positively charged N of
the ligands. Furthermore, docking experiments also identified the
importance role of the aromatic residues delimiting the shape
of the S1R binding site: specifically, W89, Y103, F107, and Y120
which are at the center of the binding site, F133 andW164 which
are close to the narrower end of the cupin β-barrel, and Y206
which is close to the helix α5.

A receptor-guided alignment 3D-QSAR model with adequate
statistical significance and acceptable prediction power was
obtained. Steric and electrostatic features had contributions to
the differential potency of the agonists, with a major role of the
steric ones. The 3D-QSAR model demonstrated that an implicit

correlation is found in the data under analysis between the
chemical features of the compounds in their active conformations
and their interactions in the pockets of the S1R binding site.

Overall, the information reported here, derived from the
recently reported S1R structure, will be useful for the future
research in the design of novel S1R ligands.
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High-throughput docking is an established computational screening approach in

drug design. This methodology enables a rapid identification of biologically active

hit compounds, providing an efficient and cost-effective complement or alternative

to experimental high-throughput screenings. However, limitations inherent to the

methodology make docking results inevitably approximate. Two major Achille’s heels

include the use of approximated scoring functions and the limited sampling of the

ligand-target complexes. Therefore, docking results require careful evaluation and further

post-docking analyses. In this article, we will overview our approach to post-docking

analysis in virtual screenings. BEAR (Binding Estimation After Refinement) was developed

as a post-docking processing tool that refines docking poses by means of molecular

dynamics (MD) and then rescores the ligands based on more accurate scoring functions

(MM-PB(GB)SA). The tool has been validated and used prospectively in drug discovery

applications. Future directions regarding refinement and rescoring in virtual screening

are discussed.

Keywords: docking, post-docking, virtual screening, molecular dynamics, BEAR, binding free energy

INTRODUCTION

High-throughput screening (HTS) is a widely used method for the discovery of biologically active
hits. However, the high costs and the low hit rates characterizing such experiments often make
HTS not affordable for academic labs or small companies (Sliwoski et al., 2014). As a consequence,
high-throughput docking screenings represent an attractive alternative (Irwin and Shoichet,
2016). Structure-based virtual screenings (SBVSs) require the knowledge of the three-dimensional
structure of the target of interest, as well as the access to large libraries of small molecules available
in public databases (Kar and Roy, 2013; Rastelli, 2013). Docking programs generate binding poses
of compounds in the active site of a target and evaluate the ligand binding strength by means of
scoring functions (Lengauer and Rarey, 1996; Kitchen et al., 2004). Several docking software relying
on different algorithms have been developed for virtual screening so far (Rarey et al., 1996; Morris
et al., 1998; Friesner et al., 2004; Sánchez-Linares et al., 2012). However, although remarkable
improvements have been obtained along the years, several drawbacks and limitations still exist
(Huang and Zou, 2010; Rastelli, 2013). First of all, sampling the conformational space accessible
to ligand-target complexes in an induced-fit context is a difficult and target-dependent task. To
help overcoming such limitations, several in silico strategies including molecular dynamics or
induced fit strategies have been introduced (Sherman et al., 2006; Nabuurs et al., 2007; Caporuscio
and Rastelli, 2016). Secondly, docking scores and experimental binding affinities usually do not
correlate, because screening large numbers of compounds in a reasonable time requires the
use of approximate scoring functions. Together, the two effects imply that a variable number
of false-positive and false-negative hits populate the ranked lists, which then require careful
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evaluation and further post-docking analyses. Hence, it has
become general opinion that docking results should be
improved by means of more rigorous post-docking processing
strategies. Several post-processing strategies have been developed
to overcome docking limitations over the past decades. In
particular, methods based on binding free energy estimations
have demonstrated to provide higher hit rates and to be more
suitable for ranking cognate ligands in virtual screening (Hou
et al., 2011; Genheden and Ryde, 2015; Pu et al., 2017), the
predicted binding free energy usually correlating better with
experimental data (Brandsdal et al., 2003). One of the first
reported energy-based methods is MM-PB(GB)SA, which was
developed to more accurately assess the relative free energy
of binding for a given macromolecular system from molecular
dynamics simulations (Kollman et al., 2000). This method
represented a remarkable step forward to the obtainment of in
silico predicted binding affinities that are in good agreement
with experiments. In fact, it was extensively used to evaluate
the free energy of binding for a number of complexes in the
last years (Gohlke et al., 2003; Hou and Yu, 2007; Ferri et al.,
2009; Yang et al., 2012). For example, it was successfully used
for identifying residue hot-spots outside the binding interface
of the Ras–Raf and Ras–RalGDS protein-protein complexes,
discussing also their implications for an allosteric activation of
the proteins (Gohlke et al., 2003). More recently, this method was
also employed for predicting binding affinities of few inhibitors
of HIV-1 protease and to help rationalize drug resistance caused
by the mutations on the enzyme binding site (Hou and Yu,
2007). However, it should also be noted that MM-PB(GB)SA
results are dependent on the employed parameters and receptor
structures used in the calculations (Xu et al., 2013; Sun et al.,
2014, 2018; Genheden and Ryde, 2015). More accurate free
energy-based methods have also been reported (Brandsdal et al.,
2003; Jorgensen and Thomas, 2008; Parenti and Rastelli, 2012;
Limongelli et al., 2013; De Vivo et al., 2016). Among them, it is
worth mentioning the Free Energy Perturbation (FEP) method,
which allows to estimate the free energy of binding of a ligand
to a protein by decomposing the system through a series of
“alchemical transformations” (Jorgensen and Thomas, 2008; De
Vivo et al., 2016). More recently, funnel-metadynamics (FM)
methods that use a funnel-shaped potential limiting the sampling
space available for a ligand to bind/unbind to a protein have been
proposed (Limongelli et al., 2013; De Vivo et al., 2016). However,
although these methods demonstrated to accurately estimate
ligand binding, they are time-consuming and therefore not
suitable for virtual screening rescoring of large databases. With
the aim of improving ligand-binding estimations of docking
complexes at reasonable computational costs, we developed
Binding Estimation After Refinement (BEAR) (Rastelli et al.,
2009). BEAR is an automated post-docking tool based on
conformational refinement of docking poses with molecular
dynamics followed by a more accurate prediction of binding free
energies performed with MM-PBSA and MM-GBSA, which take
into account desolvation energies (Kuhn et al., 2005; Lyne et al.,
2006; Rastelli et al., 2010; Genheden and Ryde, 2015). As it allows
accurately rescoring docking poses in reasonable times, BEAR
can be considered an efficient tool that could be routinely used for

virtual screening. In this article, we will briefly describe the BEAR
tool, providing an overview of the validation studies performed
so far. Finally, we will describe its prospective applications in
drug discovery campaigns and comment on future directions of
refinement and rescoring methods.

THE BEAR TOOL

The BEAR workflow (Figure 1; Rastelli et al., 2009) consists of an
initial pre-processing step in which hydrogen atoms are added
to the protein, atomic charges (AM1-BCC) are calculated for
the docked molecules, and missing force-field parameters are
assigned. Then, topologies for the ligand, the protein, and the
ligand-protein complex are built. In particular, ligand atom types
are assigned according to the Generalized Amber Force Field
(GAFF) (Wang et al., 2004), while, the atom types and charges of
amino acids are assigned according to the Amber ff03 force field
(Duan et al., 2003). The following iterative three steps procedure
is based on molecular mechanics (MM) and molecular dynamics
(MD) cycles. In particular, an initial MM energy minimization
of the whole protein–ligand complex is performed, followed by a
short MD simulation where the ligand is allowed to move, and a
final re-minimization of the entire complex. All the minimization
tasks are performed through 2000 steps without restraints, and
with a distance-dependent dielectric constant ε = 4r and a cutoff
of 12 Å. The MD simulation is performed at 300K for 100 ps,
with the SHAKE parameter turned on and a time-step of 2.0 fs.
This protocol allows evaluating the reliability of the predicted
docking complex and to establish potential additional ligand-
protein interactions resulting from the structural refinement
of the complex, thus obtaining more accurate binding energy
predictions. After refinement of the complex, the free energy of
binding of the ligand is calculated with the MM-PBSA and MM-
GBSA methods. These operations are implemented with the use
of AMBER modules (Case et al., 2018). Further details about the
BEAR tool are described in Rastelli et al. (2009).

BENCHMARKING STUDIES

The post-docking tool BEAR has been extensively validated in
various test cases. First of all, the MM/MD protocol described
above was investigated on a series of aldose reductase inhibitors
with notable chemical diversity. Remarkably, the calculated free
energies of binding after refinement of ligand-protein complexes
resulted to be highly correlated with experimental affinities. This
study demonstrated that different classes of aldose reductase
inhibitors could be accurately rescored with our procedure
(Ferrari et al., 2007). Extensive validations were also made
on Plasmodium falciparium dihydrofolate reductase (PfDHFR).
These simulations aimed at evaluating the performance of BEAR
in virtual screening settings of different size and complexity.
Firstly, BEAR performed well in discriminating 14 known
inhibitors of PfDHFR from the 1,720 compounds included in
the National Cancer Institute diversity database (Rastelli et al.,
2009). The achieved performances were clearly superior to those
of AutoDock (Morris et al., 1998), demonstrating that rescoring
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FIGURE 1 | Computational workflow applied in BEAR.

of the predicted docking poses with BEAR heavily improved
SBVS results. In a second experiment, enrichment factors (EFs)
obtained with BEAR were evaluated by seeding 201 known
inhibitors with 7,150 decoys as contained in the DHFR data set of
the Directory of Useful Decoys database (Mysinger et al., 2012).
Moreover, the same set of ligands was also seeded into the 1.5
million compounds belonging to the lead-like subset of the ZINC
database (Irwin et al., 2012), this latter benchmark reflecting a
typical virtual screening setting. In both cases, BEAR refinement
and rescoring yielded significantly higher EFs compared to
docking (Degliesposti et al., 2011). This was also an opportunity
for fine-tuning the BEAR parameters, and thus achieving good
performances at reasonable computational costs.

The BEAR performance was also assessed on biological targets
characterized by flexible binding sites and/or containing water
molecules in the binding pocket. Such targets are particularly
challenging for SBVS (Elokely and Doerksen, 2013). In fact,
certain ligand chemotypes could fit with favorable scores into
certain protein conformations but not in others, thus hampering
their identification in a virtual screening. To evaluate whether
docking intomultiple protein conformations (ensemble docking)
instead of using a single representative structure would improve
BEAR predictions for “difficult” targets (Sgobba et al., 2012), we
investigated targets of different families (adenosine deaminase,

factor Xa, estrogen receptor, thymidine kinase, aldose reductase,
and enoyl ACP reductase). Interestingly, a comparative analysis
of the EFs obtained for different proteins and multiple protein
conformations revealed that the application of BEAR was able in
several cases to yield higher EFs compared to docking. However,
in challenging targets such as adenosine deaminase and enoyl
ACP reductase, all scoring functions failed in yielding high EFs.
This effect was attributed to difficulties in predicting correct
ligand binding modes in these two targets. In particular, when
the docked pose was completely wrong, for example head-to-
tail with respect to the correct binding mode, the MM/MD
refinement stage was not enough to turn the binding mode into
the correct one. Therefore, the advantage of using MM-PBSA
and MM-GBSA in prioritizing active compounds is dependent
on the obtainment of correct binding modes, which makes the
refinement and rescoring procedures intimately connected.

More recently, BEAR was also applied to screen ligands
of G-protein coupled receptors (GPCRs) with known crystal
structure, namely β2-adrenergic (β2), adenosine A2A (A2A),
dopamine D3 (D3), and histamine H1 (H1) receptors (Anighoro
and Rastelli, 2013). Results were analyzed in terms of the
ability to recognize known antagonists from decoys, as well
as to predict correct binding modes. In all cases except
for A2A, significant or dramatic improvements of EFs were
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obtained after the application of BEAR. A2A was challenging
because antagonists participated to an extended water-mediated
hydrogen bond network. Interestingly, explicit consideration
of a suitable number of these structural waters significantly
improved the predictions. This finding is in line with the fact
that MM-PB(GB)SA calculations do not explicitly consider water
molecules mediating ligand-protein interactions, and binding
mode predictions heavily depend on the presence of bridging
water molecules participating to hydrogen bond networks. For
all GPCRs, a more accurate account of desolvation effects, such
as the one performed by MM-PBSA, is important to accurately
predict the affinity of the protonated biogenic amines. We also
found that five known H1 and D3 receptor antagonists were top-
scored and ranked well in each of the two target screenings,
prospecting for the first time the utility of post-docking tools
in multi-target drug design (Anighoro et al., 2014). Indeed, as
the free energy of binding calculated by BEAR allows to more
accurately predicting the affinity of ligands for their target(s)
with a reasonable computer time investment, we envision that
in silico strategies embedding this tool can be useful to allow the
identification of ligands with the desired multi-target profiles.

PROSPECTIVE VALIDATIONS

The BEAR workflow has also been implemented in the
computing GRID infrastructure EGEE, as part of the WISDOM
(Wide in silico DOcking on Malaria) initiative against malaria
(Kasam et al., 2009). Then, it was deployed to perform virtual
screenings against antimalarial drug targets. One massive data
challenge was performed on Plasmepsin II, an aspartic protease
involved in the metabolism of P. falciparum (Degliesposti et al.,
2009). In this work, BEAR was used to refine and rescore
the 5,000 top-scoring compounds docked with FlexX (Rarey
et al., 1996). Then, the final step of candidates’ selection was
performed on the top 200 compounds resulting from both MM-
PBSA and MM-GBSA ranked lists. Interestingly, an analysis
of the BEAR ranked lists, together with an inspection of the
protein-ligand complexes and a similarity-based clustering of the
ligands allowed selecting 30 compounds belonging to 5 different
chemotypes as potential Plasmepsin II inhibitors. Remarkably,
26 of them were active, resulting in an impressive hit rate
of 87%, and some of the compounds displayed nanomolar
inhibitory activity.

More recently, BEAR was successfully applied in a virtual
screening campaign that allowed the identification of the first-
in-class allosteric inhibitors of CDK2 (Rastelli et al., 2014). In
this work, around 600.000 commercially available compounds
were screened against a crystal structure of CDK2 with an open
type III allosteric pocket, by using AutoDock for docking and
BEAR for post-docking analyses. The adopted virtual screening
protocol led to the identification of 7 allosteric ligands of
CDK2, providing a hit rate of 20%. Interestingly, the most
potent compound was able to selectively inhibit CDK2-mediated
Retinoblastoma phosphorylation, confirming that its mechanism
of action is fully compatible with a selective inhibition of
CDK2 phosphorylation in cells. Moreover, some of these ligands
inhibited the proliferation of MDA-MB231 and ZR-75-1 breast

cancer cells with IC50 values in the low micromolar range
(Rastelli et al., 2014).

FINAL REMARKS

Although many progresses have been made in molecular
docking, limitations deriving from the use of rigid protein
conformations and of approximate scoring functions often
impair virtual screening results. Therefore, docking results
require careful evaluation and further post-docking analyses.
BEAR is a post-processing tool that performs binding free
energy estimations after MM and MD refinement of docking
complexes. Our previous studies demonstrated that BEAR
performed well in a number of benchmarking investigations,
as well as in discovering biologically active hits in different
prospective virtual screening campaigns. Moreover, as it not
computationally demanding as other free energy-based methods,
it constitutes a reasonable compromise to obtain accurate
rescoring of ligands at reasonable computational costs. One
might argue that the application of more accurate workflows
would require longer computing times with respect to docking.
This is especially true considering the recent contributions
provided by high performance computing systems to molecular
docking, which enable the screening of millions of compounds
in a reasonable time (Perez-Sanchez andWenzel, 2011; Guerrero
et al., 2012; Dong et al., 2018). However, future advances in
hardware and software will help circumventing such limitation
(De Vivo et al., 2016; Wang et al., 2018). Moreover, further
advances in our ability to correctly estimate entropies of
binding, which are usually not considered in the calculations,
will certainly improve post-docking tools, and binding free
energy predictions in general. The implementation of enhanced
sampling MD protocols in post-docking protocols is another
possibility that may enable a more efficient sampling of
ligand-protein complexes. Because free energy predictions are
heavily dependent on correct binding modes, this may have
dramatic consequences on our ability to predict active ligands
in virtual screenings. Another interesting question is how to
further increase hit rates while enabling post-docking tools
to identify significantly vs. moderately active hits. This is
an important aspect that would make the subsequent hit-to-
lead optimization much easier. Exponential consensus ranking
approaches such as the one developed by Palacio-Rodríguez
et al. (2019) could be of help, for example to favorably
exploit both MM-PBSA and MM-GBSA ranked lists, which
generally differ.
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Drug combinations are of great interest for cancer treatment. Unfortunately, the discovery

of synergistic combinations by purely experimental means is only feasible on small sets

of drugs. In silico modeling methods can substantially widen this search by providing

tools able to predict which of all possible combinations in a large compound library

are synergistic. Here we investigate to which extent drug combination synergy can be

predicted by exploiting the largest available dataset to date (NCI-ALMANAC, with over

290,000 synergy determinations). Each cell line is modeled using primarily two machine

learning techniques, Random Forest (RF) and Extreme Gradient Boosting (XGBoost),

on the datasets provided by NCI-ALMANAC. This large-scale predictive modeling study

comprises more than 5,000 pair-wise drug combinations, 60 cell lines, 4 types of models,

and 5 types of chemical features. The application of a powerful, yet uncommonly used,

RF-specific technique for reliability prediction is also investigated. The evaluation of these

models shows that it is possible to predict the synergy of unseen drug combinations

with high accuracy (Pearson correlations between 0.43 and 0.86 depending on the

considered cell line, with XGBoost providing slightly better predictions than RF). We

have also found that restricting to the most reliable synergy predictions results in at

least 2-fold error decrease with respect to employing the best learning algorithm without

any reliability estimation. Alkylating agents, tyrosine kinase inhibitors and topoisomerase

inhibitors are the drugs whose synergy with other partner drugs are better predicted

by the models. Despite its leading size, NCI-ALMANAC comprises an extremely small

part of all conceivable combinations. Given their accuracy and reliability estimation, the

developed models should drastically reduce the number of required in vitro tests by

predicting in silico which of the considered combinations are likely to be synergistic.

Keywords: chemoinformatics, drug synergy, machine learning, QSAR (qualitative structure-activity relationships),
predictive (QSPR) models

INTRODUCTION

Drug combinations are a well-established form of cancer treatment (Bayat Mokhtari et al., 2017).
Administeringmore than one drug can providemany benefits: higher efficacy, lower toxicity, and at
least delayed onset of acquired drug resistance (Sugahara et al., 2010; Holohan et al., 2013; Crystal
et al., 2014). Serendipitous discovery in the clinic has been a traditional source of effective drug
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combinations (Zoli et al., 2001; Kurtz et al., 2015). Yet systematic
large-scale efforts to identify them have only recently been
pursued, with a growing number of preclinical experimental
efforts to identify synergistic combinations (Zoli et al., 2001;
Budman et al., 2012; Lieu et al., 2013; Kashif et al., 2015;
Yu et al., 2015; Kischkel et al., 2017) being reported in
literature. The sheer number of available and possible drug-like
molecules (Polishchuk et al., 2013) and an exponential number
of their combinations, however, make the process of finding
new therapeutic combinations by purely experimental means
highly inefficient.

An efficient way of discovering molecules with previously
unknown activity on a given target is using in silico prediction
methods. Quantitative Structure-Activity Relationship (QSAR)
models establish a mathematical relationship between the
chemical structure of a molecule, encoded as a set of structural
and/or physico-chemical features (descriptors), and its biological
activity on a target. Such methods have been successfully used
in a wide variety of pharmacology and drug design projects
(Cherkasov et al., 2014), including cancer research (Chen et al.,
2007; Mullen et al., 2011; Ali and Aittokallio, 2018). QSAR
models are traditionally built using simple linear models (Sabet
et al., 2010; Pick et al., 2011; Speck-Planche et al., 2011,
2012) to predict the activity of individual molecules against
a molecular target. In the last 15 years, non-linear machine
learning methods, such as Neural Network (NN) (González-
Díaz et al., 2007), Support Vector Machine (SVM) (Doucet
et al., 2007) or Random Forest (RF) (Singh et al., 2015), have
also been employed to build QSAR models. More recently,
QSAR modeling has also achieved accurate prediction of
compound activity on non-molecular targets such as cancer cell
lines (Kumar et al., 2014).

To extend QSAR modeling beyond individual molecules, the
set of features from each molecule in the combination must be
integrated. Various ways exist to encode two or more molecules
as a feature vector, e.g., SIRMS descriptors (Kuz’min et al., 2008)
for properties of combinations or the CGR approach for chemical
reactions (de Luca et al., 2012). Rigorous validation strategies
for the resulting models have been developed too (Muratov
et al., 2012). The most common representation of a drug pair
is, however, the concatenation of features from both molecules
(Bulusu et al., 2016). On the other hand, modeling drug
combinations requires the quantification of their synergy. Several
metrics exist to quantify synergy (Foucquier and Guedj, 2015)
(e.g., Bliss independence Bliss, 1939, Loewe additivity Chou and
Talalay, 1984, Highest single agent approach Greco et al., 1995
or Chou-Talalay Method Chou, 2010). These are implemented
in various commercial and publicly available software kits
for the analysis of combination data, e.g., Combenefit (Di
Veroli et al., 2016), CompuSyn (http://www.combosyn.com) or
CalcuSyn (http://www.biosoft.com/w/calcusyn.htm).

One major roadblock in drug synergy modeling has been
the lack of homogeneous data (i.e., datasets generated with the
same assay, experimental conditions and synergy quantification).
This has been, however, alleviated by the recent availability
of large datasets from High-Throughput Screening (HTS) of
drug combinations on cancer cell lines. For instance, Merck has

released an HTS synergy dataset (O’Neil et al., 2016), covering
combinations of 38 drugs and their activity against 39 cancer cell
lines (more than 20,000 measured synergies). This dataset has
been used to build predictive regression and classification models
using multiple machine learning methods (Preuer et al., 2018).
AstraZeneca carried out a screening study, spanning 910 drug
combinations over 85 cancer cell lines (over 11,000 measured
synergy scores), which was subsequently used for a DREAM
challenge (Li et al., 2018; Menden et al., 2019). Very recently,
the largest publicly available cancer drug combination dataset
has been provided by the US National Cancer Institute (NCI).
This NCI-ALMANAC (Holbeck et al., 2017) tested over 5,000
combinations of 104 investigational and approved drugs, with
synergies measured against 60 cancer cell lines, leading to more
than 290,000 synergy scores (ComboScores).

NCI-ALMANAC datasets have recently been modeled to
predict the best growth inhibition of a given drug combination—
cell line tuple (Xia et al., 2018). However, the question remains of
howwell ComboScores can be predicted on eachNCI-60 cell line,
which is important given that ComboScore-based screening has
led to the identification of novel synergistic drug combinations
in vivo (Holbeck et al., 2017). Here we present a large-scale study
addressing this question. We build an individual model for each
cell line using the popular RF algorithm (Breiman, 2001). We
also build a second model per cell line using XGBoost (XGB
for short) (Chen and Guestrin, 2016), a recent machine learning
method that has helped to win numerous Kaggle competitions
(Chen and Guestrin, 2016) as well as to generate highly predictive
QSAR models (Sheridan et al., 2016). We validate these models
for commonly-encountered prediction scenarios: e.g., unseen
drug combination or unseen drug partner. We also introduce
and validate reliability estimation techniques to further improve
prediction of drug combination synergy. Lastly, we assess the
suitability of NCI-ALMANAC datasets for predictive modeling
depending on the screening center where they were generated.

METHODS

Data
NCI-ALMANAC is the largest-to-date phenotypic drug
combination HTS. It contains the synergy measurements of
pairwise combinations of 104 FDA approved drugs on the 60
cancer cell lines forming the NCI-60 panel (Shoemaker, 2006).
The drugs include a wide array of small organic compound
families, as well as several inorganic molecules (cisplatin and
related platinum-organic compounds, arsenic trioxide). A
similarity clustering dendrogram (Figure 1) shows the high
diversity of the drugs in NCI-ALMANAC. Indeed, only 3
clusters comprising 8 drugs are formed with a Tanimoto
score threshold of 0.8 (Vinblastine with Vincristine, Sirolimus
and Everolimus, and Daunorubicin-Doxorubicin-Idarubicin-
Epirubicin clusters), while the remaining 96 drugs have smaller
similarity among them.

NCI-ALMANAC aggregates synergy data from three
screening centers: NCI’s Frederick National laboratory for
Cancer Research (screening center code 1A, 11,259 synergy
determinations), SRI International (FF, 146,147 determinations),
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FIGURE 1 | Sketch of the workflow for drug combination modeling. Training data comes from NCI-ALMANAC, which comprises over 290,000 synergy measurements

from pairs of 104 drugs tested on the 60 cell lines. Structural and physico-chemical features are calculated for each drug from its chemical structure. Similarity

clustering diagram for 104 NCI-ALMANAC drugs is on the left. Each drug is characterized by MFPC features complemented with physico-chemical features, using the

Tanimoto score on these features as the similarity metric. Hierarchical agglomerative clustering was carried out (ward.D2 algorithm in the R hclust function). Closely

related compounds form tight clusters (e.g., doxorubicin and its analogs, analogs of paclitaxel, etc). By contrast, naturally inorganic compounds such as cisplatin and

arsenic trioxide appear as outliers (the highest similarity coefficient to other drugs being 0.156 and 0.125, respectively). The concatenated vectors of the two drugs are

the features utilized to build and test predictive models with machine learning techniques. The predictive accuracies of the models are determined by multiple

cross-validation experiments.

and University of Pittsburgh (FG, 136,129 determinations). The
synergy of drug pairs is measured in these screening centers
against the NCI-60 panel, which includes cell lines from nine
cancer types: leukemia, melanoma, non-small-cell lung, colon,
central nervous system, ovarian, renal, prostate, and breast. In
total, synergy is measured for 293,565 drug combination—cell
line tuples, which represents a matrix completeness of 91.35%.
Each center follows its own protocol, and some drugs are absent
from the combination pool depending on the screening center.
Since there is no overlap between drug combination—cell line
tuples between the three centers, it is not possible to estimate
inter-center batch effects, and therefore we must use data from
different screening centers separately.

The combination benefit is quantified in NCI-ALMANAC
by the so-called ComboScore (a modified version of the Bliss
independence model). From the entire dose-response matrix of
the considered drug combination and cell line tuple, the gain
(or loss) of the effect achieved by the combination over the
theoretically expected value if the effect was additive is calculated.
Positive values of ComboScore indicate a synergistic effect of the
combination, whereas the negative correspond to an antagonistic
effect (those purely additive obtain a zero ComboScore).

Further description of NCI-ALMANAC data is available at
Supplementary Information.

Features
For the use in machine learning, the structures of compounds
must be encoded as vectors of numerical features known in
chemoinformatics as molecular descriptors (Todeschini and
Consonni, 2000). Several types of chemical structure features
have been considered in this work: (1) Morgan FingerPrints
(MFP) are topological descriptors describing the connectivity of
the molecular structure, which take values 0 or 1, depending on
whether the pattern is present in the molecule or not (Rogers
and Hahn, 2010). They have been calculated with RDKit library
(Lamdrum, 2015) using the following parameters—length is 256
bits, radius is 2. (2) Morgan FingerPrint Counts (MFPC) are a
non-binary version of MFP that takes integer values equal to the
number of times the pattern is detected in the molecule (256
features per drug, also calculated with RDKit). (3) MACCS keys
encode presence or absence of 166 predetermined substructural
fragments as binary vectors (calculated with RDKit). (4) ISIDA
fragments encode structure as a vector of numbers of occurrences
of substructural fragments of given nature and topology in
the molecule (Varnek et al., 2005), which are calculated with
ISIDA/Fragmentor (Ruggiu et al., 2015). Only one type of
fragments is considered here: sequences of atoms and bonds
of length 2 to 6 (1,325 features per drug in total). (5) SIRMS
fragments are the number of occurrences of 4-atom fragments
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FIGURE 2 | Performance gain across cell lines for each introduced modeling choice during the exploratory analysis of FG data. Each boxplot represents the

distribution of the cell line models’ test set performances (Rp) at any given step. Analysis steps are carried out sequentially: I—RF, 1,000 trees with all n features tried

to split a node, 80% training set, 20% test set, MACCS (Molecular ACCess System) keys as features; II—MFPC (Morgan fingerprint counts) are used as features

instead; III—physico-chemical features are added for each drug; IV—training set rows are duplicated with the reverse order of drugs (data augmentation); V-−90%

training set, 10% test set are used instead of the initial 80/20 partition; VI—RF with 250 trees with n/3 features tried to split a node; VII—XGB models with

recommended settings; VIII—tuned XGB models. Note that I-V employ RF with same values for its hyperparameters (RF tuned in VI) and V–VIII use the same training

and test sets. Modeling choices introducing the largest improvements are the choice of molecular features and the data augmentation strategies.

of varying topology in a molecule, including bonded and non-
bonded atoms (Kuz’min et al., 2008). Calculated with SiRMS
python library (github.com/DrrDom/sirms), it led to 1,454
features per drug. In addition to these sets, 7 physico-chemical
features are calculated by RDkit: total polar surface area (TPSA),
molecular weight, logP, number of aliphatic and aromatic rings,
H-bond donors and acceptors.

Machine Learning (ML) Workflow
Models are built using two ML algorithms: Random Forest
(RF) (Svetnik et al., 2003) and Extreme Gradient Boosting
(XGBoost; XGB for short) (Sheridan et al., 2016). The
entire modeling workflow is sketched in Figure 1. Further
details about how ML models were built are available at the
Supplementary Information.

Predictive Performance Metrics
To evaluate the performance of a model, the following
metrics are calculated from observed yobs and predicted ypred
ComboScore values:

Root Mean Squared Error (RMSE)

RMSE =

√

∑

N

(

yi, obs − yi, pred
)2

N

Coefficient of determination (R2) (Leach and Gillet, 2007)

R2 = 1−

∑

N

(

yi, obs − yi, pred
)2

∑

N

(

yi, obs − yobs
)2

= 1−
RMSE2

Var
(

yobs
) ;

yobs =

1

N

N
∑

i=1

yi,obs

Pearson’s correlation coefficient (Rp)

Rp =

∑

N (yi, obs − y obs)(yi, pred − y pred)
√

∑

N (yi, obs − y obs)
2
√

∑

N (yi, pred − y pred)
2

Spearman’s rank-order correlation coefficient (Rs)

Rs = Rp(rank yobs, rank ypred)

We use Rp between observed and predicted values of
ComboScore of a dataset not used to train the model as a
primary metric of its accuracy. For proper estimation of the
generalization error, these metrics are always calculated here on
a test set not used to train or select the model.

RESULTS

Exploratory Modeling of NCI-ALMANAC
Data
First, we perform an exploratory modeling on the FG datasets
in order to determine optimal settings for synergy prediction by
assessing various types of features, data augmentation schemes
and machine learning methods. The summary of performance
improvements is shown on Figure 2. The best median Rp across
cell lines for RF was obtained with 250 trees, a third of the
features evaluated at each tree node, training data augmentation
and MFPC fingerprints complemented by physico-chemical
properties (256 and 7 features per drug, respectively). The gain
of performance with RF is substantial: the median Rp increases
from 0.530 (I) to 0.634 (VI).

XGB models are generated with the same features and data
set partitions. Changing the machine learning algorithm from
RF to XGB does not improve the median test set Rp, although
both minimum and maximum Rp are higher with XGB (boxplots
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FIGURE 3 | Observed vs. predicted ComboScore for all the drug combinations in the test set. This is presented for the best- and worst-performing models with both

ML methods, RF, and XGB (these models correspond hence to the extremes of Figure 2’s boxplots VI and VIII, respectively). On the left column, the best-performing

cell line models from each method. On the right side, the worst-performing cell line models. All performance metrics are shown. Each point represents a drug

combination in that test set.

VI and VII in Figure 2, respectively). After tuning of XGB
hyperparameters per cell line, a small gain in overall performance
is obtained: the median Rp of tuned XGB rises to 0.641 (boxplot
VIII). In comparison, Y-randomization (Tropsha et al., 2003)
tests using the same learning algorithm did only obtain a median
Rp of−0.016 (−0.024 when using RF). Figure 3 shows the degree
of accuracy achieved by each algorithm for the best and the
worst predicted cell line. The cell lines with the worst predictions
(OVCAR-8 for RF and SF295 for XGB) have substantially smaller
variance in observed ComboScore than those with the best
predictions (SK-MEL-5 for both algorithms).

Estimating the Reliability of Drug Synergy
Predictions
For prospective use of models, it is paramount to calculate not
only predicted drug combination synergies, but also how reliable
these predictions are (Mathea et al., 2016). With this purpose,
we have applied a RF-specific reliability prediction approach,
where the degree of agreement between the diverse trees in the
forest serves as a reliability score. This is quantified here as the
standard deviation (SD) of the RF tree predictions (250 per drug
combination and cell line) and referred to as tree_SD. tree_SD

has been pointed out as one of themost powerful metrics to assess
the reliability of predictions in regression problems (Mathea
et al., 2016). We thus assemble test subsets with the 25% most
reliable ComboScore predictions per cell line (i.e., combinations
with the 25% lowest tree_SD scores). Likewise, we assemble test
subsets with 25% least reliable predictions per cell line.

Figure 4 presents the test set performances of each cell line
model on the three scenarios: 25% most reliable predictions,
all predictions regardless of estimated reliability and 25% least
reliable predictions. The top and bottom 25% predictions in
terms of reliability obtain the lowest and highest RMSE in every
cell line, which demonstrates the accuracy and generality of
tree_SD as a reliability score for drug synergy predictions. Test
set RMSE varies greatly across cell lines, e.g., models built on
leukemia cell lines obtain in general higher error. This, however,
comes from the higher range of ComboScores observed in these
cell lines. Indeed, the larger this range, the higher the range of
predicted ComboScores is, which combined tend to make RMSE
larger. Similar RMSE is only obtained on the K-562 leukemia
cell line, which is consistent with the fact that it has the lowest
range among leukemia cell lines and similar to that of other
cancer types.
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FIGURE 4 | Ten percent test set RMSE of RF cell line models trained on 90% of the FG data. Gray squares represent the model’s RMSE on all the test combinations

(RF predictions as usual). Black triangles mark the RMSE of the 25% least reliable (highest tree_SD) combos, whereas white inverted triangles correspond to the

RMSE of the 25% most reliable (lowest tree_SD). In each cell line, the reliability score tracks test RMSE and hence it can be used to identify a priori the most accurate

predictions. Each cell line name in the horizontal axis is preceded by its cancer type ID: breast (BR), central nervous system (CNS), colon (CO), non-small-cell lung

(LC), leukemia (LE), melanoma (ME), ovarian (OV), prostate (PR), and renal (RE).

Reliability estimation is evaluated in terms of RMSE rather
than Rp. While RMSE is not as intuitive as correlation,
correlations may be misleading when comparing performances
of models across test sets with distinct variances. Figure 5

illustrates this issue with the test performances of HL-60 models,
which benefit the most from reliability estimation. The test set
with the most reliable combinations is predicted with half the
RMSE of the entire test set (RMSE of 41 vs. 80) and a third
of the least reliable combinations (RMSE of 41 vs. 117). This
more accurate prediction can be visually observed too, but the
other metrics (R2, Rp, and Rs) do not capture this increase
in accuracy due to substantially different ComboScore variance
between the compared test sets. Importantly, RF with reliability
prediction provides a much larger reduction in RMSE than that
introduced by XGB (bottom right), both with respect to RF

without reliability prediction (bottom left). These results strongly
suggest that, in cases where it is not necessary to test all positive
predictions (here synergistic drug combinations), selecting the
most reliable predictions is more effective than using the most
suitable ML algorithm.

Performance in Predicting Synergies With
Drugs Not Included in NCI-ALMANAC
The random data splits that we have used so far may overestimate
the model’s performance in the case of drug combinations.
This would be due to the presence of the two drugs in the
combination in both training and test sets, albeit with other
partners (Muratov et al., 2012). In order to assess to which extent
this is the case, we also carry out Leave-One-Drug-Out (LODO)

Frontiers in Chemistry | www.frontiersin.org 6 July 2019 | Volume 7 | Article 50957

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Sidorov et al. Predicting Synergism of Cancer Drugs

FIGURE 5 | Observed vs. Predicted ComboScore plots for HL-60 leukemia cell line test set (10% of data). Models are built on 90% of FG dataset corresponding to

this cell line using RF and XGB methods, both tuned. Each circle is now a drug combination from the entire test set, with its shade of gray indicating one of the three

scenarios (as in Figure 4). All performance metrics are displayed in each plot. The subset with the most reliable ComboScore RF predictions (top left plot) achieves

half the RMSE of the entire test set (bottom right). Importantly, this is a much larger reduction in RMSE than that introduced by XGB (bottom right) with respect to RF

(bottom left). Furthermore, the most reliable predicted ComboScores (top right) obtain a third of the RMSE of the least reliable predictions (top left).

cross-validation experiments for each cell line. In LODO cross-
validation, every combination containing the considered left-
out drug is placed in its test set, and the model is built on the
remaining combinations tested on that cell line. Thus, there are as
many folds as drugs in the dataset. In this way, the LODO cross-
validation simulates the model’s behavior when presented with a
new chemical entity outside of the model’s scope, as if it was not
included in the dataset.

Figure 6 shows the outcome of LODO cross-validation
for XGB per cell line. We henceforth use XGB with the
recommended values for hyperparameters, as tuning them for
each LODO cross-validation fold and cell line is prohibitive and
would only provide marginal gains (see Figure 2). LODO results
show that combinations associated with 75% of the left-out drugs
can be predicted with an accuracy of at least Rp = 0.3 against any
cell line. This accuracy raises to at least Rp = 0.5 for 50% of the
left-out drugs. The latter is not much worse than the median Rp

across cell lines when using 90/10 data partitions (Rp = 0.641 as
shown in Figure 2’s boxplot VIII). k-fold cross-validation results
are available for comparison in Supplementary Figure 3.

Figure 7 shows the analysis for LODO cross-validations in
terms of RMSE. About 75% of models demonstrate at least
moderate accuracy (RMSE < 50). The exceptions are mostly
leukemia cell line models, which obtain higher RMSE due to
having the highest variances in ComboScores among cancer
types. An important result is that using RF models restricted
to the most reliable predictions allows us to reduce the error
of prediction further in every cell line (RMSE < 40), in full
agreement with the findings from random 90/10 partitions
(see Figure 4) and also outperforming the best models without
reliability prediction.

Analyzing LODO results per left-out drug instead of per cell
line reveals that synergy prediction is much worse for certain
left-out drugs in each cancer type. LODO performance of each
drug across cell lines is shown in Supplementary Figure 4. This
figure shows that models for arsenic trioxide, highly dissimilar
to other drugs, have the lowest performance across cell lines
and partner drugs (median Rp of models concerning this drug
is −0.28). Conversely, partners of tyrosine kinase inhibitors,
well-represented in these datasets (e.g., Imatinib, Nilotinib or
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FIGURE 6 | LODO cross-validation results using XGB with the recommended values for their hyperparameters on the FG dataset. Distribution of models’

performances is shown by cancer type (color code). Each colored zone represents 25% of models per cell line: from dense zone—top performing 25%; to light

zone—bottom quartile. The method performs with at least moderate accuracy (Rp > 0.30) in 75% of left-out drugs (the top 3 quartiles) across cell lines. Left-out

drugs within the top quartile, darkest shade among the four employed per cell line, are predicted with a Rp ranging from 0.471 (HCT-116) to 0.986 (SK-MEL-5).

Although there are no large differences in how well different cancer types are predicted, left-out drugs on melanoma (ME, in red) and leukemia (LE, in green) cell lines

obtain slightly higher average performance (median Rp of drug-out models for corresponding cell lines are 0.554 and 0.524, respectively).

FIGURE 7 | Median RMSE in LODO cross-validation for XGB with the recommended values for their hyperparameters (gray squares) and RF top 25% most reliable

predictions (white inverted triangles) for each cell line (grouped by cancer type). As the plot shows, combinations with one left-out drug can be predicted with at least

moderate accuracy across cell lines (RMSE < 50 for XGB, RMSE < 40 for RF with reliability estimation; both being approximate thresholds).

Lapatinib), are predicted with high accuracy (e.g., models for
imatinib have median Rp = 0.82). Topoisomerase inhibitors
(Teniposide and Etoposide) are also among the best-predicted
left-out drugs. These in silico models could be used to anticipate
how the synergies of a drug in combination with its partner
drugs would vary across NCI-60 cell lines. However, since
high accuracy is only obtained on those left-out drugs well-
represented in NCI-ALMANAC, such selectivity predictions
should only be accurate for drugs with similar chemical structure
to those in NCI-ALMANAC. As models predicting drug-induced
cell line response have been shown to improve by integrating

drug features with multi-omics cell features (Menden et al., 2013;
Xia et al., 2018), we expect that predicting drug synergy across
cell lines will also improve by following such multi-task learning
approach on this closely related problem.

Comparing Predictive Models Built With
Data From Different Screening Centers
So far we have exclusively employed data from the FG screening
center, which represents about half of NCI-ALMANAC data.
Practically all the remaining ComboScores come from the FF
screening center and are also determined with a 3 × 3 grid of
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FIGURE 8 | RF model performance comparison for FG and FF datasets. Models are built following the final setup in the exploratory analysis (a 90/10 data partition is

employed for each cell line); MFPC with physico-chemical features as well as data augmentation are also used). On the left, boxplots for cell line models test set Rp’s

(top row) and RMSE (bottom row) for both centers data. On the right, Rp (top row) and RMSE (bottom row) of models trained on FG dataset against models trained on

FF dataset, each point shows the two model performances for the cell line. FF models obtain consistently lower performance than FG models. As the same modeling

workflow was used, this strongly suggests that FF data is less predictive than FG data.

non-zero concentrations. Thus, we evaluate here the predictive
potential of FF datasets. We start by building RF models
from FF data using the same 90/10 partitions as with FG.
Surprisingly, FF-based models obtained worse performance in
every cell line (Figure 8) and thus were objectively worse at
predicting ComboScores.

In trying to understand this unexpected result, we started by
investigating whether this was due to modeling differences, but
this was not the case. First, FF training sets are slightly larger than
FG datasets (see Supplementary Table 1), which theoretically
favors better performance on FF. Furthermore, using tuned XGB
models led to essentially the same result (median Rp of 0.641 for
FG vs. 0.368 for FF) as shown in Figure 8 with RF. In addition
to these non-linear methods, we also used Elastic Net (EN), but
FF models were still substantially less predictive than FG models
(median Rp of 0.37 for FG vs. 0.23 for FF). When we carried
out LODO cross-validations instead of 90/10 partitions, the
same trend was observed (Supplementary Figures 5, 6 also show
worse performance of FF-based LODO than that of FG-based
LODO in Figure 6).

To shed light into this issue, we looked at the only factor that
we can compare between these screening centers: the relative

growth inhibition (PERCENTGROWTH) induced by a given
concentration of a drug tested individually. Interestingly, by
counting the different test dates, we observed that FG had on
average tested a non-combined drug 3.77 times per cell line,
whereas FF almost doubled this number (7.13 times per cell
line). A higher number of tests is not in itself worrisome if
the growth inhibition of the drug-concentration-cell line tuple
is similar between dates. However, if the measurements from
these tests are substantially different, this is a problem because
the set of ComboScores determined with variable measurements
from the same tuple will be inconsistent as well. Consequently,
synergy differences between such combinations will not only
come from their intrinsic properties, but also from unrelated
experimental variability.

To show that higher growth inhibition variability in FF
data results in less predictive models, we analyzed five drugs
(Thioguanine, Chlorambucil, Altretamine, Fluorouracil, and
Melphalan) with a high number of different test dates in both
centers. We first consider the drugs on a cell line were only
FG models obtain high average accuracy in predicting synergy
(NCI/ADR-RES) and subsequently on another where both FF
and FGmodels are on average predictive (NCI-H322M). On each
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FIGURE 9 | RF model performance comparison for FG and FF datasets. Models are built following the final setup in the exploratory analysis (i.e., a 90/10 data

partition is employed for each cell line; MFPC with physico-chemical features as well as data augmentation are also used). We analyzed five drugs (Thioguanine,

Chlorambucil, Altretamine, Fluorouracil, and Melphalan) with a high number of different test dates in both centers. On the left, the results with the cell line that is worst

predicted by RF with FF data (NCI/ADR-RES with Rp = 0.14 in 90/10 partition), which is much better predicted with FG (Rp = 0.65, using the same partition). This

plot shows the standard deviation of the values of each set from FG against those from FF.

cell line, each drug has a set of growth inhibition replicates per
concentration and screening center (i.e., 15 sets per screening
center). The performance on NCI/ADR-RES using FF data is
indeed poor (Rp = 0.14 in 90/10 partition by RF), but it
is much better predicted using FG data (Rp = 0.65, using
the same partition and method). Fourteen of the fifteen sets
have higher standard deviation of growth inhibition with FF
data (Figure 9), which is consistent with the lower accuracy
in predicting synergy obtained with this dataset. Conversely,
we repeated this operation with NCI-H322M where synergy
is well-predicted by RF with both FF (Rp = 0.61 in 90/10
partition) and FG data (Rp = 0.66, on the same partition). The
standard deviations from both screening centers are now similar
(Figure 9). Taken together, these experiments suggest that the
reason why FF data results in less predictive models is the noise
introduced in ComboScore determination by larger variability of
growth inhibition measurements.

DISCUSSION

NCI-ALMANAC is an extremely valuable resource for the
discovery of novel synergistic drug combinations on NCI-
60 cell lines. First, it is by far the largest-to-date HTS of
drug combinations, therefore allowing in silico models with
much higher accuracy and broader domain of applicability in
predicting the synergy of other combinations. Second, some of
the synergistic drug combinations discovered in vitro by NCI-
ALMANAC were subsequently tested on human tumor mouse
xenografts of the same cell line. 48% of them were also synergistic
in at least one of these in vivo models (Holbeck et al., 2017),
which led to the launch of two clinical trials so far (NCT02211755
and NCT02379416).

In this study, we have found that it is possible to predict the
synergy of unseen drug combinations against NCI-60 panel cell
lines with high accuracy by exploiting NCI-ALMANAC data.

We have established a general ML workflow (types of structural
features, data preprocessing strategy, ML method) to generate
such models. When trained on FG data, predicted synergies from
these models match observable synergies with Rp correlations
comprised between 0.43 and 0.86 depending on the considered
cell line. Incidentally, these regression problems must be highly
non-linear, as EN leads to substantially less predictive models
than XGB or RF.

Some cell lines and drug combinations can be predicted
with higher accuracy than others. For example, models for the
SK-MEL-5 cell line perform best with any method (Figure 6).
However, if we use RMSE instead of Rp to reduce the influence of
the ComboScore range, models for the NCI-ARD-RES are now
best (gray squares in Figure 7). Another explanatory factor for
this variability is the adequacy of the employed ML technique
to the problem instance to solve (each cell line constitutes here
a different problem instance). Even if training set size, features
and classifier are the same, the modeled relationship between
drug synergy and features depend on training set composition
and cell line properties (implicitly). It is well-established that the
performance of supervised learning algorithms varies depending
on the problem instance in ways that cannot be anticipated
without doing the actual numerical experiments (Fernández-
Delgado et al., 2014). LODO cross-validation also revealed both
best and worst partner drugs. These differences are mainly due to
the number of similar partner drugs. For example, it is difficult
to predict synergy of combinations containing arsenic trioxide
because its 103 partner drugs are highly dissimilar in terms
of chemical structure and physico-chemical properties. Indeed,
machine learning from dissimilar data instances tend to be less
accurate, although here the dissimilarity can be partial as arsenic
trioxide’s partner can be similar to other NCI-ALMANAC drugs.
On the other hand, combinations containing some other drugs
are better represented in NCI-ALMANAC and hence tend to
be predicted with higher accuracy. This is the case of various
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alkylating agents, tyrosine kinase inhibitors and topoisomerase
inhibitors (Supplementary Figure 4).

Recent QSAR and drug combination modeling studies
have evaluated the application of the latest machine learning
algorithms (e.g., XGBoost, Deep Neural Network). These studies
have found that these algorithms provide better performance on
average across targets than RF. However, these gains are small
and hence do not always justify the much greater resources
required for hyperparameter tuning (Sheridan et al., 2016; Preuer
et al., 2018). Performance gains have also been found small
here with NCI-ALMANAC data, as the average test set Rp of
XGBoost across the 60 cell lines is just +0.007 larger than with
RF. An important result is that restricting to the most reliable RF
predictions provides much greater predictive accuracy than that
introduced by amore suitable learning algorithm (e.g., XGBoost).
It is surprising that this powerful technique is so uncommonly
used, as has already been pointed out (Sheridan, 2013; Mathea
et al., 2016). In fact, we are not aware of any other previous
study applying reliability estimation to the prediction of drug
synergy on cancer cell lines. Here reliability prediction permitted
to reduce the RMSE by up to 50% depending on the cell line.
This is particularly exciting for virtual screening problems, where
only a small subset of the predictions can be tested in vitro. In
this scenario, it is useful to identify those combinations that are
not only predicted to be synergistic, but also reliable because
this should provide higher hit rates. Lastly, highly synergistic
combinations predicted with low reliability should also be tested,
as the corresponding measurements would be those broadening
the applicability domain of future models the most.

We have also found that using FG datasets leads to
substantially more predictive models than FF datasets. This result
is robust in that it is observed with various types of models
(XGB, RF, EN). Moreover, it occurs in spite of the availability
of slightly more training data. Further investigation revealed
that there are many more measurements of growth inhibition
and with greater variability in FF than in FG. This in turn
introduces more noise into ComboScore determinations in FF,
thus impairing its modeling. Inconsistencies between centers
measuring the response of cancer cell lines to drugs have been
observed before (Haibe-Kains et al., 2013). There has been
intense controversy about the extent, sources and impact of
these inconsistencies (Stransky et al., 2015; Geeleher et al., 2016;
Safikhani et al., 2016, 2017). In any case, it is clear that data
permits the development of predictive models regardless of the
screening center (Ammad-ud-din et al., 2014; Covell, 2015; Fang
et al., 2015; Naulaerts et al., 2017), as it has also been the case here
with NCI-ALMANAC. Owing to this controversy on datasets
from multiple screening centers, a better understanding of their

limitations and the identification of protocols to generate them
with improved consistency has emerged (Haverty et al., 2016).
These protocols will ultimately permit thatmerging datasets from
different screening centers result in further predictive accuracy.

CONCLUSION

While NCI-ALMANAC measured the synergies of over 5,000
combinations per cell line, this still represents a minuscule
part of all conceivable combinations. Even if we restricted
ourselves to the set of 12,000 drug molecules estimated to have
reached clinical development or undergone significant preclinical
profiling (Janes et al., 2018), almost 72 million combinations
per cell line would have to be tested in vitro to identify the
most synergistic among them. Therefore, the developed in silico
models are of great importance because these can drastically
reduce the number of required in vitro tests by predicting which
of the considered combinations are likely to be synergistic.
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Herein we introduce the constellation plots as a general approach that merges different

and complementary molecular representations to enhance the information contained

in a visual representation and analysis of chemical space. The method is based on a

combination of a sub-structure based representation and classification of compounds

with a “classical” coordinate-based representation of chemical space. A distinctive

outcome of the method is that organizing the compounds in analog series leads to

the formation of groups of molecules, aka “constellations” in chemical space. The novel

approach is general and can be used to rapidly identify, for instance, insightful and “bright”

Structure-Activity Relationships (StARs) in chemical space that are easy to interpret. This

kind of analysis is expected to be especially useful for lead identification in large datasets

of unannotated molecules, such as those obtained through high-throughput screening.

We demonstrate the application of the method using two datasets of focused inhibitors

designed against DNMTs and AKT1.

Keywords: analog series, data visualization, descriptor, scaffold, structure-property relationships

INTRODUCTION

The concept of chemical space is broadly used in drug discovery because of its multiple
potential applications; for instance, in library design, compound or dataset classification,
compound selection, exploration of structure-activity relationships (SAR), and navigation though
structure-property relationships (SPR) in general. However, a precise unique definition of
chemical space is not simple. An even more challenging task is the visual representation of this
subjective concept.

Chemical space is usually defined as the set of all possible organic compounds (Lipinski and
Hopkins, 2004). It is widely recognized that the virtual chemical space is more than astronomically
large, as not even all atoms in the universe would suffice to synthesize a single molecule from each of
all the 1063 possible organic compounds of a size up to 30 atoms (Clayden et al., 2012). Nevertheless,
massive efforts have been undertaken to enumerate billions of hypothetical organic compounds,
thus allowing large virtual screening campaigns to take place (Reymond, 2015; Lyu et al., 2019).

Along with the increasing size of the mapped chemical space, the interest of applying
cartographic methods to visualize the space has expanded (Oprea and Gottfries, 2001). As a
result, numerous visualization and conceptualization approaches into chemical space have emerged
(Larsson et al., 2007; Osolodkin et al., 2015; Naveja and Medina-Franco, 2017). A cornerstone
and key aspect of all proposed methods is the molecular representation and parameters used to
define the space where the compounds will reside. Chemical space visualizations have to reduce
the dimensionality of the problem of comparing molecular structures, which can be done through
algorithms such as principal components analysis and t-distributed stochastic neighbor embedding
(see Osolodkin et al., 2015).
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In most chemical space approaches, it is desirable that
chemical analogs are closer to each other than unrelated and
dissimilar molecules since this allows machine learning methods
to identify clusters of structurally-related molecules (Medina-
Franco et al., 2008; Naveja and Medina-Franco, 2015; Naveja
et al., 2016, 2018a). In addition, clustering analog series would
allow, at least in principle, to map SAR/SPR into that space.
However, due to the vast amplitude of the chemical space and
the inevitable loss of information with an initially large space
projected into lower dimensions, it is expected that non-analog
compounds will end up in the same cluster. Also, when many
points in the chemical space are considered at once, visualizations
become harder to interpret. To address this issue, approaches
such as virtual reality have emerged (Probst and Reymond, 2018).

In parallel to such chemical space approaches based
on coordinates, scaffold analysis is a more consistent and
chemically-intuitive approach for exploring and identifying
collections of analogs (Hu et al., 2011). Ever since the pioneering
work by Bemis and Murcko (1996), computational identification
of chemical scaffolds has been refined. In this line, Stumpfe
et al. (2016) recently introduced the analog series-based scaffold
(ASBS), a revolutionary scaffold concept that is more flexible
and chemically sound than its predecessors. In fact, the ASBS
has proven to yield more biologically meaningful structure-
activity/property relationships (SA/PR) than other scaffold
definitions (Dimova et al., 2016; Kunimoto et al., 2017; Bajorath,
2018; Dimova and Bajorath, 2018).

Although the chemical space of single analog series can
be effectively explored and used, for instance, to guide lead
optimization programmes (Vogt et al., 2018), methods for
analyzing the relationship among scaffolds of different analog
series remain to be explored. Of note, a difficulty in this
regard emerges as analog-series based scaffolds tend not to
be as consistent as Bemis-Murcko scaffolds, since they result
from the retrospective analysis of analog series (Bajorath, 2018).
Accordingly, a core framework inspired in the design of the ASBS
avoids the shortcoming of inconsistency by allowing molecules
to be annotated with more than one putative core (Naveja
et al., Submitted). Hence, large libraries containing analogs can
be condensed into fewer cores. In this way, SA/PR can be
preferentially analyzed for the most explored regions of the
chemical space: analog series.

Herein, we present a general methodology for applying
the putative core framework to produce more concise and
meaningful representations of the chemical space. To our
understanding, this is the first method designed for charting
multiple analog series into a coordinate-based chemical space,
thus combining in a single plot two general and useful approaches
of molecular representation and mapping. Of note, since within
this framework cores may share analogs (i.e., analog series are
allowed to share compounds), such cores can be connected,
thus resembling constellations in the chemical space. Therefore,
we termed the resulting graphics “constellation plots.” As it
will be discussed, activity data (or any property of interest)
can be mapped into the constellation plot allowing to explore
SA/PRs in the space and quickly identify interesting regions in
the space. The rest of this methodological paper is organized

as follows: first, the concept scheme is presented and the
formalism explained through a toy example; thereafter, two case
studies using exemplary datasets are presented; finally, we discuss
the conclusions and perspectives of this novel approach for
combining the scaffold and the chemical space concepts.

METHODS

Datasets Used in the Examples
For illustrating the application of constellation plots in
two different context of analysis, we used two benchmark
datasets that have been previously explored with other analysis
approaches. One set was a group of 827 AKT1 inhibitors
extracted and curated from ChEMBL (Gaulton et al., 2017;
Naveja et al., 2018b). The second dataset was a collection
of 286 compounds tested as inhibitors of DNMT (DNA
methyltransferases). This second data set was integrated from
multiple sources of information as described in Naveja and
Medina-Franco (2018). Since this dataset integrates qualitative
(such as those containing crystallographic data) and quantitative
databases (such as those containing experimental determination
of inhibition curves), for this dataset, we use a categorical
classification of activity in “active” or “inactive.” The files of the
two datasets are included as Supplementary Information.

Chemical Space and Analog Series
As mentioned above, constellation plots fuse two ligand-based
concepts: chemical space and core analysis. Standard chemical
space analysis is carried out by computing descriptors for a
collection of molecules (e.g., physicochemical properties and/or
structural features) and then applying dimensionality reduction
approaches (Rosén et al., 2009; Osolodkin et al., 2015; González-
Medina et al., 2016; Prieto-Martínez et al., 2016; Naveja and
Medina-Franco, 2017; Borrel et al., 2018). As a result, every data
point represents a single molecule (see Figure 1). This can render
many visualizations hard to read and analyze by the naked eye.
Furthermore, the numerous descriptors used are combined, such
that every axis in the visualization turns out to have a quite
abstract meaning. Herein, for the purpose of charting chemical
space, t-distributed stochastic neighbor embedding (t-SNE) is
used. This methodology reduces the number of data points in
the center of the map as compared to other approaches and has
been used successfully in chemical space charting (Maaten and
Hinton, 2008; Lewis et al., 2015). However, other coordinate-
based representations of chemical space can be used in this
general approach.

In contrast to chemical space, standard scaffold and analog
series analysis aims toward a clear and consistent picture of the
relationships among compounds. For instance, a scaffold is a
substructure shared by all compounds annotated with it. A state-
of-the-art approach for defining analog series-based scaffolds
was proposed by Stumpfe et al. (2016). They have reasoned
that for a scaffold to be relevant in medicinal chemistry, it
should not only be a substructure of a molecule, but it also
has to comply with three additional criteria: (i) be a major
component of the whole molecule, (ii) be derived from the
molecule through retrosynthetic rules, and (iii) summarize an
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FIGURE 1 | A hypothetical example of a typical chemical space representation based on coordinates. The axes represent the chemical space and have abstract

meanings regarding a combination of descriptors. In this case, t-SNE using Morgan fingerprints was applied. Every dot represents a single molecule. In activity

landscape modeling, color is used to indicate a property (potency in a particular biological endpoint).

analog series in a particular dataset. A number of computational
approaches for obtaining ASBS have been proposed (Dimova
et al., 2016; Stumpfe et al., 2016; Bajorath, 2018; Naveja et al.,
2019). Within these approaches, an analog series is defined as
a subnetwork connected by matched molecular pairs (MMPs)
(Griffen et al., 2011).

Chemical space analysis of individual analog series has
been carried out to measure progression in lead optimization
and saturation of analog series (Kunimoto et al., 2018; Vogt
et al., 2018; Yonchev et al., 2018). Nevertheless, the fact that
assumption (iii) makes analog series inconsistent in as much as
the scaffold definition is dependent on the dataset used (Bajorath,
2018) is a limitation for the exploration of chemical space of
multiple analog series at once. In a recent study (Naveja et al.,
Submitted), we discussed that by removing assumption (iii) two
effects take place: first, every molecule is allowed to be annotated
to more than a single core (equivalent to the term “scaffold”); and
second, complete consistency is achieved as no core annotations
are ever omitted for any molecule (see Figure 2). It is within this
general core framework that we propose using constellation plots.

Summarizing Analog Series Information in

a Dataset Within the General Core

Framework
Since the general core framework can assign multiple cores
to single molecules, a useful step prior to mapping cores in
the chemical space would be summarizing analog series in the
smallest number of cores possible. As illustrated in Figure 3, in
some instances it is possible to summarize a whole analog series
in a single core structure, while in other cases this cannot be done
without loss of information. Hence, for avoiding such situations,
we did not discard cores unless only one compound mapped to
it. Furthermore, if two or more cores mapped to exactly the same
compounds, then only the largest core was kept and the others
were disregarded from the analysis.

Constellation Plots
After processing a collection of compounds under the general
core framework, information is obtained in multiple regards,
namely: (a) the chemical structure of every core; (b) the sets of
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molecules mapping to each core; (c) the molecules annotated
to multiple cores; and (d) the analog series to which each
compound and core are annotated. We propose a visualization

FIGURE 2 | Two examples of putative cores computed for two molecules.

Note that in this approach the same chemical structure can be its own core

(structures at the bottom). After RECAP fragmentation, hydrogens are added

to the core structure to avoid invalid valence (marked in red).

methodology summarizing these four dimensions in a single
graphic: the constellation plot that is schematically illustrated
in Figure 4.

Essentially, in a constellation plot, the chemical structure of
representative cores in a database (for example, those annotated
with a predefined minimum number of compounds) is used
to find descriptors and map them into a chemical space as
if they were single molecules. The size of the circles is used
to represent the relative number of compounds annotated to
each core. Cores sharing compounds are connected by lines
forming “constellations” in the chemical space. Every circle is
labeled with an identifier for the analog series to which each

core belongs. Additionally, a color scale can be used to represent

an average of a given property or activity of the compounds
annotated with each core, thereby turning constellation plots

useful for activity landscape modeling (Waddell and Medina-
Franco, 2012). Of note, the activity can be, for instance, measured

for a single molecular target. However, the property could also be
a representative measure of the selectivity or promiscuity profile

of all the compounds sharing a core across multiple biological
endpoints (see section Conclusions and Perspectives).

Figure 4, as opposed to Figure 1, is able to summarize a
larger number of compounds than points depicted and contains
information about actual analogs. For instance, analog series I,
J, and L form separate clusters, but the cluster top right has
multiple chemotypes of distinct analog series. This could not be
inferred from clustering algorithms applied to the chemical space
information only.

FIGURE 3 | Examples of two analog series with multiple compounds and cores. (A) Analog series that can be summarized in a single core; (B) Analog series formed

by multiple cores. In case (B) a single core is not enough for summarizing all information in an analog series.
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FIGURE 4 | Schematic representation of a general form of a constellation plot. Every circle in the plot represents a core; the axes comprise the coordinates of the

chemical structure of the core projected into a 2D representation of the chemical space as computed by any of the standard approaches (e.g., generated using

continuous properties or molecular fingerprints and applying t-SNE or principal components analysis); the size of the circles indicates the “n” number of compounds

annotated to a given core; connected circles are cores sharing compounds; the labels indicate the analog series every point belongs to; the color scale represents the

average of a property/activity of the compounds mapping to the core.

Implementation
All scripts required for producing the data herein reported
use free Python code and are made freely available in
Supplementary Information. RDkit was used for computing
fingerprints and manipulation of chemical structures (http://
www.rdkit.org). Scikit-learn was used for computing t-SNE
(Pedregosa et al., 2011).

RESULTS AND DISCUSSION

The construction of constellations plots and exemplary
applications are illustrated with two case studies of general

interest in drug discovery. As mentioned in the section
Methods, the first example consists of a dataset of 827 AKT1
inhibitors obtained from ChEMBL (Gaulton et al., 2017)
and cheminformatically described in Naveja et al. (2018b). The
second example employs a data set of 286DNAmethyltransferase
(DNMT) inhibitors obtained from the integration of several
databases as described in Naveja and Medina-Franco (2018).

Case Study 1: AKT1 Inhibitors
Analogs in this library could be summarized in 144 cores as
discussed in the section Methods. The cores were organized in
79 analog series and contained 440 compounds (about half of the
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FIGURE 5 | General constellation plot for a dataset of AKT1 inhibitors. It is possible to navigate this map, as observed in Figure 6, where the constellation framed

within dashed lines is further explored.

initial dataset). Figure 5 is the constellation plot for these data,
where it becomes apparent that chemical space and chemical
substructure information play simultaneous roles in describing
the SAR. For instance, although some inactive cores are close to
active cores in chemical space, they are not usually contained in
the same analog series. Therefore, these could be categorized as
“scaffold cliffs” rather than simple activity cliffs conceptualized
as two small molecules with similar structures and very different
activities (Maggiora, 2006). In this case, collections of molecules,
rather than single molecules, are being compared.

Figure 6 is a zoomed-in picture into a single “bright” (or
predominantly active) constellation comprising five analog series
and 55 compounds. As it is readily observed, analog series close
in the chemical space have only slight dissimilarities within
their scaffolds; in this case, they all share a naphthyridine or
naphthyridinone scaffold. Constellation plots allow for a more

precise visual SAR analysis and generation of hypotheses. For
instance, the core associated to analog series 62 has only a
different position for the nitrogens in the rings as well as
where substitutions occur. Structural studies could then be
conducted to elucidate which are the most relevant features
for this kind of scaffolds to be active against AKT1. In this
regard, a recent publication co-crystallizing 1,6-naphthyridinone
derivatives similar to those in analog series 20 has shown that
this scaffold is relevant in forming a π-π stacking interaction
with the side chain of Trp80 of the PH-domain (Uhlenbrock
et al., 2019). Nonetheless, variation of the position of nitrogen
atoms in the scaffold were not considered in the cited study.
Indeed, previous SAR studies of these analogs have found
the position of the nitrogen atoms in these scaffolds to
be critical for the activity against AKT (Zhao et al., 2005;
Bilodeau et al., 2008).
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FIGURE 6 | “Zoom-in” into the constellation plot for AKT1 inhibitors selected from Figure 5. The core in analog series 62 is not as active as the nearby cores in

analog series 2 and 12. Few structural differences can be noted for the compounds in this constellation.

Case Study 2: DNMT Inhibitors
Analogs in this library could be summarized in 23 cores following
the procedure discussed in the section Methods. The cores were
organized in 13 analog series and contained 46 compounds
(about 16% of the initial dataset). Compounds in this library have
annotated activity with DNMT1, DNMT3A, and/or DNMT3B.
Figure 7 shows three constellations plots, where chemical space
is the same and colors change to represent the activities against
each DNMT. As elaborated on the section Methods, each circle
in the plot represents a core in which coordinates in the 2D graph
is given by similarity measurements computed from Morgan
fingerprints using t-SNE for dimensionality reduction. Labels
indicate the analog series to which cores belong. The color
represents the percentage of active compounds sharing that
core using a continuous color scale from red (less active cores)
to yellow (more active cores). For this example of use of the
constellation plots, the definition of “active” was determined from
integrating qualitative and quantitative data sources as described
in Naveja and Medina-Franco (2018). Circles in gray indicate
cores with no reported activity for that particular DNMT. The
size of the circle indicates the number of compounds sharing the
core. Connected circles are cores sharing compounds. Figure 7
also shows the chemical structures of representative cores.

The constellation plots for DNMT inhibitors in Figure 7

allow for rapidly getting several interesting insights of the SAR.
For instance, cores at the top left part of the plot from analog
series “A” are a bright constellation against DNMT1, i.e., a region
in chemical space with active analogs. However, these analogs
have not been tested against the other DNMT isoenzymes,
which would help determine whether these inhibitors
are selective.

Of note, there is a “dark” (or predominantly inactive)
constellation in the chemical space of DNMT1 formed by six
cores from analog series “D.” This dark constellation, however,
is more active overall against DNMT3A and appears to be active
against DNMT3B. Furthermore, not all cores in this constellation
have been tested against DNMT3A and DNMT3B, where they
have greater chances of being active.

The plot also reveals a constellation of nucleoside analogs
from series “B” at the bottom-right region of the plot that
is, overall, selective toward DNMT3B vs. DNMT1. This series
has not been tested against DNMT3A yet. Moreover, most of
the cores have been tested in DNMT1 only, thus hindering
discussions on selectivity. In this regard, analysis of constellation
plots is visually helpful in guiding multitarget drug discovery
campaigns and in finding opportunities for selectivity.

Frontiers in Chemistry | www.frontiersin.org 7 July 2019 | Volume 7 | Article 51071

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Naveja and Medina-Franco Finding Constellations in Chemical Space

FIGURE 7 | Constellation plots for a dataset of DNA methyltransferase (DNMT) inhibitors tested with DNMT1, DNMT3A, and DNMT3B.

CONCLUSIONS AND PERSPECTIVES

We introduced a novel approach for combining chemical space
and analog series methodologies into a single descriptive analysis
that can be summarized in a constellation plot. Adding the analog
series concept into the chemical space facilitates discussions of

regions in the space, as every point summarizes a collection of
analogs. A so-called “constellation in chemical space” can be

conceptualized as those regions in chemical space formed by
core scaffolds with similar structure (as defined by a coordinate-

based projection). Mapping activity on the plot readily uncovers
active and inactive zones, e.g., bright or dark regions, in chemical
space. Of note, constellation plots would be useful for exploring
virtually any chemical property, such as biological activity (as
demonstrated with two case studies), but also physicochemical
properties, complexity or selectivity statistics. In this regard,
constellation plots are a flexible approach with multiple potential

applications in academia and industry, aiding in the quest
of finding potential leads from large collections of screening
data (e.g., such as that produced by high-throughput screening
campaigns). One of the next steps of this work is the application
of the constellations plots to navigate through cell selectivity data
of a comprehensive screening dataset. Results will be disclosed in
due course.
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Malaria is among the leading causes of death worldwide. The emergence of Plasmodium

falciparum resistant strains with reduced sensitivity to the first line combination therapy

and suboptimal responses to insecticides used for Anopheles vector management

have led to renewed interest in novel therapeutic options. Here, we report the

development and validation of an ensemble of ligand-based computational models

capable of identifying falcipain-2 inhibitors, and their subsequent application in the virtual

screening of DrugBank and Sweetlead libraries. Among four hits submitted to enzymatic

assays, two (odanacatib, an abandoned investigational treatment for osteoporosis

and bone metastasis, and the antibiotic methacycline) confirmed inhibitory effects on

falcipain-2, with Ki of 98.2 nM and 84.4µM. Interestingly, Methacycline proved to be a

non-competitive inhibitor (α = 1.42) of falcipain-2. The effects of both hits on falcipain-2

hemoglobinase activity and on the development of P. falciparum were also studied.

Keywords: malaria, Plasmodium falciparum, falcipain-2, drug repositioning, virtual screening, drug rescue,
odanacatib, methacycline

INTRODUCTION

Despite decades of successful interventions aimed at reducing its incidence and mortality, malaria
continues being one of global leading causes of death, being the main global cause globally in
the 5- to 14-year-old population and the third cause among children below five (World Health
Organization (WHO), 2017; Ritchie and Roser, 2018). The most recent estimates from the World
HealthOrganization (WHO) report around 216million cases and 445,000 related deaths worldwide
in 2016 (Ritchie and Roser, 2018). The emergence of Plasmodium falciparum drug-resistant strains
with reduced sensitivity to the first line artemisinin combination therapy and suboptimal response
to insecticides used for vector management pose a threat to control interventions (Satimai et al.,
2012; Ajayi and Ukwaja, 2013; Kisinza et al., 2017). Accordingly, novel therapeutic options are
urgently required.
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Falcipains are P. falciparum cysteine proteases involved in
different processes of the erythrocytic cycle of the parasite,
including hydrolysis of host hemoglobin and erythrocyte
invasion and rupture. Four falcipains have so far been
identified, with falcipain-2 and falcipain-3 constituting
promising targets in the search for novel therapies due to their
significant hemoglobinase capacity (Marco and Coterón, 2012;
Bekono et al., 2018).

Drug repurposing involves finding novel medical uses for
existing drugs, including approved, investigational, discontinued,
and shelved therapeutics. Repurposing a drug has several
advantages in comparison to de novo drug discovery, since
the new therapeutic indication is built on already available
pharmacokinetic, toxicological, and manufacturing data, thus
leading to therapeutic solutions in a expedite manner (Ferreira
and Andricopulo, 2016; Corsello et al., 2017). While the
best-known examples of successful repurposing have been
serendipitous or arose from intelligent exploitation of side
effects (Corsello et al., 2017; Talevi, 2018), the drug discovery
community has recently focused on systematic, large-scale
repurposing efforts, including the use of genomic tools, and
in silico and high-throughput screening (Jin and Wong, 2015;
Talevi, 2018; Yella et al., 2018). The Virtual lock-and-key
approach (Lauria et al., 2011, 2014; Tutone et al., 2017) and the
BIOlogical Target Assignation method (Lauria et al., 2014) can
be mentioned among many other interesting examples of the use
of computational resources to deepen the rational basis of drug
repurposing programs.

Here, we have implemented a computer-aided drug
repurposing campaign to discover new inhibitors of falcipain-2.
Four hits were acquired and tested against the enzyme, with
two of them confirming inhibitory activity. The abandoned
drug odanacatib displayed competitive inhibition, while the
antibiotic methacycline also showed inhibitory effects through
non-competitive inhibition.

MATERIALS AND METHODS

Dataset Collection
P. falciparum falcipain-2 inhibitors were compiled from
literature. A total of 515 compounds previously assayed against
falcipain-2 were collected from over 20 original articles,
conforming the dataset used for model calibration and validation
(Domínguez et al., 1997; Chiyanzu et al., 2003; Shenai et al.,
2003; Desai et al., 2004, 2006; Greenbaum et al., 2004; Fujii et al.,
2005; Goud et al., 2005; Micale et al., 2006; Valente et al., 2006;
Biot et al., 2007; Chipeleme et al., 2007; Li et al., 2009; Hans et al.,
2010; Praveen Kumar et al., 2011; Shah et al., 2011; Huang et al.,
2012; Luo et al., 2012; Conroy et al., 2014; Ettari et al., 2014; Jin
et al., 2014; Wang et al., 2014; Weldon et al., 2014; Bertoldo et al.,
2015; Mundra and Radhakrishnan, 2015a,b; Sharma et al., 2015;
Singh et al., 2015; Schmidt et al., 2016). Such compounds were
labeled as ACTIVE or INACTIVE according to their reported
inhibitory data. The ACTIVE category included compounds
with IC50 ≤ 5µM, plus compounds with a percentage of
inhibition ≥ 50% against the enzyme at 10µM or ≥ 80% at
20µM (when a single-point inhibition assay was reported).

When none of the previous conditions were met, the compound
was labeled as INACTIVE. Considering such criteria, the dataset
includes 122 active compounds and 393 inactive compounds.
Such dataset was curated using the standardization tool available
in Instant JCHEM v. 17.2.6.0 (Chemaxon). The molecular
diversity of the whole dataset and within each category can be
appreciated in the heatmap displayed in Figure 1, which shows,
for every compound pair, the Tanimoto distance computed
using ECFP_4 molecular fingerprints. The heatmap was built
using Gitools v. 2.3.1 (Perez-Llamas and Lopez-Bigas, 2011)
and Tanimoto distances were calculated using ScreenMD—
Molecular Descriptor Screening v. 5.5.0.1 (ChemAxon). The
dataset is included as Supplementary Data Sheet 1.

Dataset Partition
It has been observed that rational/representative splitting of
datasets into training and test sets tends to produce models with
better predictivity (Golbraikh et al., 2003; Leonard and Roy,
2006; Martin et al., 2012). In the present study, a representative
sampling procedure was thus used to divide the datasets into: (a)
a training set, that was used to calibrate the models and; (b) a
test set, that was used to independently assess model predictivity.
Such representative partition of the dataset resulted from a
serial combination of two clustering procedures. First, we have
used the hierarchical clustering method included in LibraryMCS
software (version 17.2.13.0–ChemAxon), which relies on the
Maximum Common Substructure (MCS). A compound from
each of the resulting cluster was randomly chosen and used as a
seed to perform a non-hierarchical clustering using the k-means
algorithm, as implemented in Statistica 10 Cluster Analysis
module (Statsoft). Hierarchical clustering allowed deciding on
an initial partition of n molecules into k groups, and this

FIGURE 1 | Dissimilarity heatmap of the whole dataset. Light areas indicate

high similarity between the compared compounds while dark blue areas

indicate low similarity between the compared compounds.
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preliminary clustering was then optimized through the non-
hierarchical procedure, as suggested by Everitt et al. (2011). We
have previously used this combined approach for representative
dataset partitioning, with good results (Alberca et al., 2016, 2018;
Gantner et al., 2017). The clustering procedure was performed
separately for the ACTIVE and INACTIVE categories.

75% of the compounds in each cluster of the ACTIVE category
were kept for the training set (making a total of 91 compounds);
an equal number of compounds were taken from the INACTIVE
category clusters (23% of each INACTIVE cluster). We have
under-sampled the INACTIVE category, so that a balanced
training sample (comprising an identical proportion of active
and inactive examples) was obtained and model bias toward
predicting the larger category was avoided. The remaining 31
active and 302 inactive compounds were assigned to test set (333
compounds in total), which was later used for external validation
of the models.

Molecular Descriptor Calculation and
Modeling Procedure
3,668 conformation-independent descriptors were computed
with Dragon 6.0 software. A random subspace-based method
was applied to obtain 1,000 descriptor subsets of 200 potential
independent variables each. In the random subspace approach,
the molecular descriptors are randomly sampled, and eachmodel
is trained on one subset of the feature space (Yu et al., 2012; El
Habib Daho and Chikh, 2015); as a result, individual models do
not over-focus on features that display high explanatory power in
the training set.

A dummy variable (class label) was used as dependent
variable. It was assigned observed values of 1 for compounds
within the ACTIVE category and observed values of 0 for
compounds in the INACTIVE one. Using a Forward Stepwise
procedure and a semi-correlation approach (Toropova and
Toropov, 2017), 1,000 linear classifiers were obtained, one from
each of the random subsets of features. In order to avoid
overfitting, only one molecular descriptor every 12 training
instances was allowed into each model, with no more than
12 independent variables per model. Also, a maximal Variance
Inflation Factor of 2 was tolerated. No descriptor with regression
coefficient with p-value above 0.05 was allowed into the model.
R language and environment was used for all data analysis. The
R package data table (https://cran.r-project.org/package=data.
table) was used to handle datasets.

The robustness and predictive ability of the models were
initially estimated through randomization and Leave-Group-Out
cross-validation tests. In the case of randomization, the class label
was randomized across the compounds in the training set. The
training set with the randomized dependent variable was then
used to train new models from the descriptor selection step.
Such procedure was repeated 10 times within each descriptor
subset and the 95% confidence interval was built around the
mean accuracy of the randomized models. It is expected that the
randomized models will perform poorly compared to the real
ones. Regarding the Leave-Group-Out cross-validation, random
stratified subsets comprising 10 active compounds and 10

inactive compounds were removed from the training set in each
cross-validation round, and the model was regenerated using the
remaining compounds as training examples. The resulting model
was used to predict the class label for the 20 removed compounds.
The procedure was repeated 10 times, with each of the training set
compounds removed at least once. The results were informed as
the average percentage of good classifications (accuracy) across
the folds, and this was compared to the accuracy of the model
for the original training set and also, as advised by Gramatica
(2013), to the No-Model error rate or risk (NOMER%), i.e., the
error provided in absence of model:

NOMER% =

(n − nm)

n
× 100

where n is the total number of objects and nm is the number of
objects of the most represented class.

Finally, the predictivity of each individual model was assessed
through external validation, using the 333-compound test set that
was already described in sectionDataset Collection. A diversity of
statistical parameters commonly used to assess the performance
of classificatory models (Roy and Mitra, 2011; Gramatica, 2013)
were estimated for both the training and test sets: sensitivity (Se,
i.e., true positive rate), specificity (Sp, i.e., true negative rate),
accuracy (Acc, i.e., overall percentage of good classifications),
positive and negative predictivity and the F-measure, which is
defined as follows (Roy and Mitra, 2011):

F −measure =
2× Se× (1− Sp)

Se + (1− Sp)

Ensemble Learning
Classifier ensembles are known to provide better generalization
and accuracy than single model classifiers (El Habib Daho and
Chikh, 2015; Carbonneau et al., 2016; Min, 2016). Here, we have
used two retrospective virtual screening campaigns to assess the
performance of individual classifiers and classifier ensembles. As
described in the next subsection, the first retrospective virtual
screen allowed assessing the performance of individual classifiers
and provided the basis to decide which individual models would
be selectively combined in the model ensemble and how they
would be combined. The second retrospective virtual screen
served to the sole purpose of assessing the performance of the
chosen model ensemble.

The best individual classifiers were selected and combined
using the area under the ROC curve metric (AUC ROC) in the
first retrospective screen as criterion of performance. To choose
the ideal number of models to be included in the ensemble,
systematic combinations of the 2 to 100 best performing
classifiers were analyzed (the two best-performing models were
combined, then the three best-performing models, the four best-
performing models, and so on up to a total of 100 models
included in the ensemble). Four combination schemes were
applied to obtain a combined score:MIN operator (which returns
the minimum score among the individual scores of the combined
models); Average Score; Average Ranking and; Average Voting.
Voting was computed according to the equation previously used
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by Zhang andMuegge (2006). AUCROCs were obtained with the
pROC package (Robin et al., 2011); the Delong method was used
to statistically compare the AUC ROCs. BEDROC and RIE (1%)
were also computed (Truchon and Bayly, 2007). For that purpose,
we resorted to the R package enrichvs (enrichment assessment
of virtual screening approaches; Yabuuchi et al., 2011) and the
online tool ROCKER (Lätti et al., 2016).

Retrospective Screening Campaigns
Through simulated ranking experiments, Truchon and Bayly
(2007) demonstrated that the AUC ROC metric is dependent
on the ratio of active compounds/inactive compounds, and the
standard deviation of the metric converges to a constant value
when small yields of actives (Ya) of the screened library are used
(Ya below 0.05 seem to provide more robust results). Reasonably
small Ya also ensures that the saturation effect is constant or
absent. A high number of decoys (around 1,000 or higher) and a
small Ya contribute to a controlled statistical behavior (Truchon
and Bayly, 2007). Accordingly, to estimate the enrichment
performance of our models and model ensembles in a real virtual
screening scenario, we have performed retrospective virtual
screening experiments. For that purpose, we have seeded known
active compounds among a large number of decoys obtained with
the help of the Directory of Useful Decoys Enhanced (DUD-E;
Mysinger et al., 2012), a widely used benchmarking tool which
allows the obtention of putative inactive compounds paired to
known active compounds by physicochemical properties (e.g.,
molecular weight, logP, number of rotatable bonds, among
others), but topologically dissimilar to such active compounds.
In this way, two chemical libraries for such pilot screens were
obtained. The first one, that we will call DUDE-A, was compiled
by using the active compounds from the test set as queries
in the DUD-E website. Such active compounds were later
dispersed among the so-obtained paired decoys (putative inactive
compounds). As a result, DUDE-A contained 31 known active
compounds dispersed among 1500 DUD-E decoys and displayed
a Ya of 0.020. DUDE-A was used to estimate the performance
of the individual models in a virtual screening experiment and
to choose the best individual models that would be included in
the ensemble (i.e., to train the ensembles). It was also applied to
choose which score threshold would be applied in prospective
virtual screening campaigns. A second library, called DUDE-
B, was obtained to validate the ensemble that showed the best
performance in the DUDE-A screen. For that purpose, we
compiled from literature 33 recently reported active compounds
against FP-2 (IC50 ≤ 5µM; Nizi et al., 2018; Stoye et al., 2019).
The DUDE-B library was generated by merging these 33 active
compounds with 4,337 decoys from the DUD-E website. The
calculated Ya for DUDE-B is about 0.007.

Building Positivity Predictive Value
Surfaces and Choosing an Adequate Score
Threshold Value
A practical concern when implementing in silico screens involves
estimating the actual probability that a predicted hit will confirm
its activity when submitted to experimental testing (Positive

Predictive Value, PPV). Estimation of such probability is however
precluded due to its dependency on the Ya of the screened library,
which is not known a priori:

PPV =

Se Ya

Se Ya+
(

1− Sp
)

(1− Ya)

where Se represents the sensitivity associated to a given score
cutoff value and Sp represents the specificity. The former
equation was applied to build PPV surfaces. In order to choose an
optimal cutoff value to select predicted hits in prospective virtual
screening experiments, 3D plots showing the interplay between
PPV, the Se/Sp ratio and Ya were built for each individual model
and for each model ensemble. This approach has recently been
reported by our group (Alberca et al., 2018). Using DUDE-A
(described in previous subsection), Se and Sp were computed in
all the range of possible cutoff score values. Though there is no
guarantee that the Se and Sp associated to each score value for
DUDE-A will be the same when applying the classifiers to other
libraries, e.g., in the prospective virtual screening campaign,
since controlled statistical behavior is observed for database
sizes of 1,000 compounds or more and Ya below 0.05, we can
reasonably assume that the ROC curve and derived metrics
will be similar when applying the models to classify other large
chemical databases with low Ya. Taking into consideration that
in real virtual screening applications Ya is ignored a priori but
invariably low, Ya was varied between 0.001 and 0.010. The
R package plotly (https://cran.r-project.org/package=plotly) was
used to obtain all the PPV graphs. Visual analysis of the resulting
PPV surfaces allowed us to select a score threshold value with a
desired range of PPV.

Prospective Virtual Screening
Based on visual inspection of the resulting of PPV graphs,
we have applied in a prospective virtual screen an 11-model
ensemble using the MIN operator to combine individual
classifiers. Based on PPV surface analysis, we chose a score
threshold that provides a PPV ≥ 20% at Ya= 0.01.

We have used the 11-model ensemble to screen two databases:
(a) DrugBank 4.0, an online database containing extensive
information about the US Food and Drug Administration
(FDA) approved, experimental, illicit and investigational drugs
(Law et al., 2014); (b) SWEETLEAD, a curated database of
drugs approved by other international regulatory agencies,
plus compounds isolated from traditional medicinal herbs
and regulated chemicals (Novick et al., 2013). Both databases
were curated using Standardizer 16.10.10.0 (ChemAxon).
The following actions were applied to obtain homogeneous
representations of the molecular structure for the subsequent
virtual screen: (1) Strip salts; (2) Remove Solvents; (3)
Clear Stereo; (4) Remove Absolute Stereo; (5) Aromatize; (6)
Neutralize; (7) Add Explicit Hydrogens; and (8) Clean 2D.
Duplicated structures were removed using Instant JCHEM v.
17.2.6.0. Four hits were selected for experimental evaluation,
using the following criteria: (a) no previous report of falcipain-
2 inhibition; (b) availability through local suppliers; (c)
cost. Methacycline, benzthiazide, and bendroflumethiazide were
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acquired from Sigma-Aldrich. Odanacatib (99% HPLC) was
acquired from AK Scientific (Y0388).

Molecular Docking
To gain insight into the possible mode of action of the active
hits, we studied their possible interactions with falcipain-2
by docking simulations. The structure of the enzyme was
obtained from the Protein data bank. We retrieved the available
experimental structure of the target in complex with an
inhibitor, the epoxysuccinate E64, that shows 2.9 Å of resolution
(PDB code: 3BPF; Kerr et al., 2009). Among the four chains
crystalized, we selected the B chain for the simulations. We
used AutoDockTools4 software to remove the inhibitor and the
crystallographic water molecules off the pdb file, and to add the
hydrogen atoms of the protein.

Autodock4 was used for docking simulations. The docking
software and conditions were selected based on the previous
investigation by Mugumbate et al. (2013). The authors showed
the capacity of this software to replicate the experimental pose
of E64 in the re-docking experiment and to identify known
inhibitors from non-inhibitors through the docking scores. Our
own results of the re-docking E64 into the binding site of FP-
2 were similar to such previous investigations, since Autodock4
was able to reproduce the experimental pose with a RMSD value
of 1.84 Å.

Odanacatib was docked into the active site of the enzyme.
Calculations were conducted with a grid of 40X40X40 grid
points, centered on the experimental ligand E64 (coordinates:
−36.75, 31.05, −47.07 in x, y, and z, respectively) and
with a spacing between grid point of 0.39 Å. We used the
default Autodock4 parameters for a population of 150, 50
genetic algorithm runs, 2.5 × 106 evaluations and 27,000
maximum generations.

Regarding non-competitive inhibitor methacycline, we first
used DoGSiteScore server (Volkamer et al., 2012) to detect
possible binding pockets in the protein. The server proposed
two regions of binding, besides the known catalytic binding
site of the enzyme. Methacycline was docked in both regions
and the best results were achieved in the area delimited by
CYS39, SER41, TRP43, GLU67, GLN68, LEU70, VAL71, ASP72,
CYS73, SER74, PHE75, ASN77, TYR78, GLY79, CYS80, TYR106,
VAL107, SER108, ASP109, ALA110, PRO111, ASN112. The
simulation was conducted in the conditions described before for
odanacatib and E64, except for the position of the grid, which was
centered on the side chain on VAL71, specifically in the carbon
atom defined as CG1.

Falcipain-2 Expression and Refolding
Falcipain-2 (MEROPS ID: C01.046) was expressed as inclusion
bodies in BL21(DE3) Escherichia coli strain, purified by IMAC
under denaturing conditions (final purity: 91%) and refolded to
active enzyme as previously described (Pradines et al., 2001).

Falcipain-2 Kinetic Assay
Falcipain-2 activity was assayed fluorometrically with Z-
LR↓AMC (Bachem) as substrate in 100mM acetate buffer pH
5.5 containing 5mM DTT and 0.01% Triton X-100, as this is

expected to increase enzyme stability and reduce the number
of false positives (Jadhav et al., 2010). Assays (final reaction
volume ∼80 µL) were performed at 30◦C in solid black 384-
well plates (Corning) at fixed enzyme concentration (3.3 nM).
Except stated otherwise, fluorogenic substrate was added at
final concentration of 5µM (∼1 x KM) to match balanced
assay conditions (Copeland, 2005). The release of 7-amino-4-
methylcoumarin was monitored continuously for 60min with a
FilterMax F5 Multimode Microplate Reader (Molecular Devices)
using standard 360 nm excitation and 465 nm emission filter set.
Enzyme activity was estimated as the slope of the linear region
of the resultant progress curves. Under the described conditions,
falcipain-2 activity showed no significant changes in the presence
of DMSO (0–8%) and the Selwyn test (Selwyn, 1965) indicated
that enzyme remained stable during the assay.

Falcipain-2 Inhibition Assay
1 µL of each compound (2.5mM in DMSO), N-(trans-
epoxysuccinyl)-l-leucine 4-guanidinobutylamide (E-64, Sigma-
Aldrich) (10µM in DMSO) or DMSO were dispensed into
each well. Then, 40 µL of activity buffer containing falcipain-
2 (6.6 nM) were added to each well, plates were homogenized
(30 seg, orbital, medium intensity) and each well subjected to
a single autofluorescence read (exc/ems = 360/465 nm). Plates
were incubated in darkness for 15min at 30◦C and then 40 µL
of Z-LR-AMC (10µM in assay buffer) were added to each well to
start the reaction. After homogenization (30 seg, orbital, medium
intensity), the fluorescence of AMC (exc/ems = 360/465 nm)
was acquired kinetically for each well (12 read cycles, one cycle
every 300 s). Fluorescence measurements were used to determine
the slope (dF/dt) of progress curves by linear regression and
inhibition percentage (%Inh) was calculated for each compound
according to:

%Inh = 100 · [1− (dF/dtWELL
− µC−)/(µC+

− µC−)]

where dF/dtWELL represents the slope of each compoundwell and
µC+ andµC− the average of falcipain-2+DMSO (no-inhibition)
and substrate (no-enzyme) controls, respectively.

Compounds were re-tested in a dose-response manner (final
concentration ranging from 375µM to 44.7 pM) using identical
assay conditions. 6 µL of compounds stock (10mM in DMSO),
E-64 (10µM in DMSO), and DMSO were added to the first
wells (column 1), followed by addition of 34 µL of activity
buffer. After addition of 20 µL of buffer to subsequent wells,
24 serial 2-fold dilutions were made horizontally. Then, 40 µL
of activity buffer containing falcipain-2 (6.6 nM) were added
to each well, except for those corresponding to C-; completed
with 40 µL of activity buffer. After homogenization, incubation,
and autofluorescence measurement, 20 µL of Z-LR-AMC
substrate (20µM in activity buffer) were added. Data collection
and processing were performed exactly as described above.
At the concentration tested, no significant autofluorescence
(360/465 nm) was apparent for the investigated compounds.
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Percentage of falcipain-2 residual activity was calculated for
each condition according to:

%Res.Act = 100 ·

[

(dF/dtWELL
− µC−)

(µC+
− µC−)

]

Half-maximal inhibitory concentration (IC50) and Hill slope
parameters were estimated by fitting experimental data from
dose-response curves to the four-parameter Hill equation by
using GraphPad Prism program (version 5.03).

Determining Reversibility, Mode of
Inhibition, and Ki
Reversibility and time dependence of falcipain-2 inhibition by
investigational compounds was assayed as previously described
(Morrison, 1969). In brief, odanacatib (15µM) and falcipain-
2 (330 nM) were incubated at 30 ◦C for 60min in activity
buffer. Two microliters of the mix were rapidly added to 200
µL of Z-LR-AMC (5µM in activity buffer) pre-incubated at the
same temperature. Immediately after mixing, AMC fluorescence
(λexc/ems = 355/460 nm, sensitivity = 550V) was continuously
monitored every second using a thermostated (30◦C) Aminco
Bowman Series 2 spectrofluorometer (Thermo Spectronic). In
the case of the methacycline, the final inhibitor concentration
in the mixture with falcipain-2 was 330µM. For falcipain-
2 control, the equivalent volume of DMSO vehicle was pre-
incubated with the enzyme. To determine the kinetics of
inhibition onset, falcipain-2 (3.3 nM final concentration) was
added to 200 µL of reaction mix (previously tempered at 30◦C)
containing activity buffer, odanacatib (0.15µM) and Z-LR-AMC
(5µM). Immediately after mixing, AMC release was monitored
as indicated above. For methacycline (33µM final concentration
in the reaction mix), the experiment was exactly the same.

The identification of the mode of inhibition was performed
as indicated previously. For odanacatib, falcipain-2 activity was
determined for at least six different substrate concentrations
(ranging from 62.5 to 1.95µM) in the absence and presence of
three fixed doses of inhibitor: 0.15, 0.5, and 2.5µM. Data were
re-arranged to estimate percentage of falcipain-2 residual activity
for each condition and the values for IC50 and Hill slope were
estimated by fitting experimental data to the four-parameter Hill
equation by using GraphPad Prism. To estimate Ki, kinetic data
were arranged in the form of Michaelis curves (dF/dt vs. [Z-LR-
AMC]0) and globally fitted to the competitive inhibition equation
present in GraphPad Prism (version 5.03). Finally, to estimate
Ki by using the tight-binding inhibition approach (Morrison,
1969), data were transformed to fractional velocity vs. inhibitor
concentration and re-analyzed by global fitting to the Morrison
equation by using GraphPad Prism (version 5.03).

To identify the mode of inhibition of methacycline, dose-
response curves (0–625µM) were performed as described above
at six different substrate concentrations (ranging from 1 to
50µM) and fitted as indicated above to estimate the values of
IC50 and Hill slope. Finally, kinetic data were arranged in the
form of Michaelis curves (dF/dt vs. [Z-LR-AMC]0) and globally
fitted to the mixed inhibition equation present in GraphPad
Prism (version 5.03) for the simultaneous estimation of α and Ki.

Determining the Sensitivity of
Methacycline Inhibition to RedOx Potential
The inhibitory activity of decreasing concentrations (375
µM−91.6 pM) of methacycline were determined in activity
buffer containing DTT (0.1–10mM) or L-cysteine (0.1–10mM)
as indicated above. Resultant dose-response curves were fitted as
previously indicated to estimate the values of IC50 and Hill slope.

Densitometric Estimation of the Inhibition
of Falcipain-2 Hemoglobinase Activity
Increasing concentrations of methacycline (200µM, 500µM,
and 1mM) and odanacatib (0.5, 5, and 50µM) were
preincubated with falcipain-2 (132 nM) for 30min at 37◦C
in buffer 100mM NaAc, 10mM DTT pH 5.5. Then, human
hemoglobin (H7379, Sigma-Aldrich) was added to a final
concentration of 100µg/mL to initiate reaction (final assay
volume = 50 µL). E64 (10µM) and DMSO were used as
negative and positive controls, respectively. Also, a blank
(no falcipain-2) control was included. In all cases, the final
concentration of DMSO was 10%. Mixes were incubated without
agitation for 3 h at 37◦C to allow the enzymatic reaction to
proceed. Then, reactions were stopped by addition of 15 µL
of 5xSDS–PAGE sample buffer + 7.5 µL of DTT (1M) and
boiled for 5min. Samples (22.5 µL, equivalent to 1.5 µg of
hHb) were electrophoretically resolved by SDS-PAGE on a
15% acrylamide gel and Coomassie stained. The amount of
undegraded hHb, observed as a doublet of around 15 kDa, was
estimated densitometrically by using ImageJ 1.38d software
(Nation al Institutes of Health, USA).

Evaluation of Antiparasitic Activity
Human erythrocytes were obtained from volunteer donors
with a procedure approved by CEIC (Committee for Ethics
on Clinical Investigation, Facultad de Farmacia y Bioquímica,
Universidad de Buenos Aires EXP-UBA: 0048676/2017). Human
erythrocytes infected with the NF54 strain of P. falciparum
were cultivated in RPMI 1640 medium supplemented with
0.5% albumax II (Invitrogen), 22mM glucose, 25mM HEPES,
0.65mM hypoxanthine, and 50 mg/mL gentamicin. Cultures
were maintained at 37◦C by routine passage at 5% hematocrit
with a maximum parasitemia of 5% in a 90% N2/5% O2/5% CO2

atmosphere as previously described (Alvarez et al., 2014).
When needed, ring-stage parasites were synchronized by

using sorbitol treatment (Aley et al., 1986). After 24 h
synchronization, cultures of infected erythrocytes at trofozoite-
stage were treated with various concentrations of odanacatib,
methacycline and E-64 for 48 h. Briefly, 100 µL of synchronous
trophozoite-stage infected erythrocytes cultures were plated
in 96-well at 4% hematocrit and 1% parasitemia. 100µL of
odanacatib (200, 20, or 2µM), methacycline (1,000, 100, or
20µM), E-64 (50, 10, or 2µM), DMSO (vehicle control), or
RPMI 1640 medium (control) were dispensed into each well
to achieve final hematocrit of 2%, 0.5% parasitemia and the
final concentration of each compound tested in a final volume
of 200 µL. Parasitemia was evaluated by light microscopy
counting infected forms of the parasite (ring, trophozoite, and
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schizont-stages) in a thick blood smear stained with Giemsa.
A total of ∼1,500 erythrocytes distributed in at least 15
random microscopic fields were evaluated of each smear and
the parasitemia was calculated as (infected erythrocytes / total
erythrocytes)∗100. Then, each treatment was normalized to
control parasitemia and expressed as percentage.

Significance was determined using one-way Analysis of
Variance followed by a Tukey Multiple Comparison Test.
Computations were carried out using PRISM statistical software
(GraphPad Software, Inc., version 6). A p-value < 0.05 was
considered significant. The number of determinations (n) for
independent preparations (N) are indicated.

RESULTS

A ligand-based virtual screening approach was used to discover
falcipain-2 inhibitors. 1,000 individual linear classifiers were
obtained by applying a random subspace approximation on a
pool of more than 3,000 Dragon molecular descriptors. The
individual models were internally and externally validated.

Results of the internal validation are shown in Table 1.
Regarding the Leave-Group-Out, results for each individual
classifier are informed as the average accuracy across the folds,
which is in all cases above 80% and close to the correspondent
accuracy on the training set, suggesting the models are robust.
Since the proportions of the active and inactive compounds in
the training set are identical (as are in each of the Leave-Group-
Out folds) the correspondent NOMER% (associated to random
classification) is 50%, well below the behavior of the models in
the cross-validation.

Regarding the randomization results, Table 1 shows the 95%
confidence interval around the mean accuracy of the randomized
models. As expected, the accuracy of the randomized models is in
all cases much below the accuracy of the true (non-randomized)
models, and very close to the NOMER%, suggesting a low
probability of chance correlations for the true models.

External validation was performed using the 333-compound
independent test set. The results are summarized in Table 2.

TABLE 1 | Results of the internal validation procedures for the best 11 individual

classifiers.

Model Training set LGO Randomization

Acc (%) Average Acc (%) Confidence interval 95%

594 84.615 83.740 53.882 61.283

516 88.462 86.712 56.623 63.267

477 84.615 83.835 56.158 64.501

975 87.363 86.374 53.309 62.844

244 90.110 88.712 55.312 62.160

504 85.714 83.765 55.978 61.824

870 86.264 82.753 56.962 65.126

154 86.813 85.168 54.677 62.246

764 84.615 83.080 53.273 62.112

564 85.714 82.636 54.814 62.000

80 86.264 85.378 56.980 61.921

In general, the individual classifiers show an acceptable
performance. Due to the unbalanced nature of the test set (31
active compounds and 302 inactive ones) in comparison to the
test set (91 active and 91 inactive compounds) some of the
differences in the statistical parameters of the training and test
sets are to be expected (i.e., decreased sensitivity in the test set,
sharp drop in the positive predictivity and concomitant increase
in the negative predictivity).

The best individual model included the following features:
Model 594
Class = −0.48333 + 0.38415∗SM08_AEA(bo) -

6.50601∗SpPosA_A - 0.12786∗C-005 + 0.35800∗B05[N-
N] + 0.13459∗nR=Cs + 0.21576∗CATS2D_02_DD +

0.25881∗nS(=O)2 - 0.33510∗B03[O-S] - 0.07816∗N-072
+ 0.16832∗B06[C-S]

Wilks’ Lambda:.45705 approx. F(10, 171) = 20.314 p < 0.0000.
Dragon’s nomenclature for the molecular descriptors has been
kept in the previous expression. SM08_AEA(bo) corresponds
to the spectral moment of order 8 from augmented edge
adjacency matrix weighted by bond order; SpPosA_A is the

TABLE 2 | Statistical parameters of the best individual classifiers, for both the

training and test sets.

Training set

Model Se Sp Acc F-measure Positive
predictivity

Negative
predictivity

Model 594 0.88 0.81 0.85 0.31 0.82 0.87

Model 516 0.89 0.88 0.88 0.21 0.88 0.89

Model 477 0.86 0.84 0.85 0.28 0.84 0.85

Model 975 0.89 0.86 0.87 0.25 0.86 0.89

Model 244 0.92 0.88 0.90 0.21 0.88 0.92

Model 504 0.87 0.85 0.86 0.26 0.85 0.87

Model 870 0.89 0.84 0.86 0.28 0.84 0.88

Model 154 0.88 0.86 0.87 0.25 0.86 0.88

Model 764 0.84 0.86 0.85 0.24 0.85 0.84

Model 564 0.85 0.87 0.86 0.23 0.87 0.85

Model 80 0.89 0.84 0.86 0.28 0.84 0.88

Test set

Model 594 0.84 0.80 0.80 0.32 0.30 0.98

Model 516 0.77 0.82 0.82 0.29 0.31 0.97

Model 477 0.71 0.84 0.83 0.26 0.31 0.97

Model 975 0.87 0.80 0.81 0.32 0.31 0.98

Model 244 0.84 0.77 0.78 0.36 0.28 0.98

Model 504 0.81 0.81 0.81 0.30 0.31 0.98

Model 870 0.81 0.81 0.81 0.31 0.30 0.98

Model 154 0.71 0.82 0.81 0.29 0.29 0.96

Model 764 0.74 0.83 0.83 0.27 0.32 0.97

Model 564 0.77 0.84 0.83 0.27 0.33 0.97

Model 80 0.81 0.75 0.76 0.38 0.25 0.97

The default score cutoff value (0.5) was used to discriminate between active and inactive

compounds and estimate the parameters. Note that this score has been later optimized

to obtain improved Se/Sp relationships.

Frontiers in Chemistry | www.frontiersin.org 7 August 2019 | Volume 7 | Article 53481

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Alberca et al. In silico Discovery of Falcipain Inhibitors

normalized spectral positive sum from adjacency matrix; C-
005 refers to the frequency of CH3X groups where X indicates
an electronegative atom (O, N, S, P, Se, halogens); B05[N-
N] indicates the presence/absence of the N – N pair at
topological distance 5; nR=Cs refers to the number of aliphatic
secondary C(sp2); CATS2D_02_DD is the CATS2D Donor-
Donor at lag 02; nS(=O)2 symbolizes the number of sulfones;
B03[O-S] indicates the presence/absence of O – S pair at
topological distance 3; N-072 refers to frequency of the atom-
centered fragment RCO-N< / >N-X=X; B06[C-S] denotes
the presence/absence of a C – S pair at topological distance
6. The molecular descriptors associated to presence/absence
or frequency of a given feature indicate differences in the
frequencies at which such features appear in the active and
inactive class of the training set. Those descriptors associated
in the model to a positive weighting coefficient (B05[N-
N], nR=Cs, nS(=O)2, and B06[C-S]) show that such feature
is more frequent in the active compounds than in the
inactive ones. In contrast, the descriptors associated to a
negative coefficient (SpPosA_A, C-005, and N-072) indicate
that such features appear more frequently in the compounds
of the inactive class than in the ones of the active class.
CATS2D_02_DD is a two-dimensional Chemically Advanced
Template Search descriptor similar to a pharmacophore pair
(Reutlinger et al., 2013), but considering topological distances
between the pharmacophore points instead of geometrical
distances. Here, the descriptor suggests that two H-bond donors
at a topological distance of two are a desirable feature in falcipain-
2 inhibitors.

The physicochemical interpretation of the two descriptors
associated to spectral moments of a topological matrix
(SM08_AEA(bo) and SpPosA_A) is less immediate.

An augmented edge adjacency matrix aE(w) is a symmetric
square matrix that can be derived from an edge-weighted
molecular graph, for any weighting scheme w. The elements
from such matrix [aEw]ij take values of 1 if i and j are adjacent
edges/bonds, values wi if i equals j (that is, for the elements in
the diagonal) and values of 0 otherwise (i.e., for non-diagonal
elements corresponding to non-adjacent edges; Liu et al., 2018).
The kth spectral order µk of a topological matrix M can be
defined as:

µk = tr(Mk)

where k is the power of the matrix and tr is its trace, i.e.,
the sum of the diagonal elements (Estrada, 1996). The kth
spectral moment of the edge adjacency matrix has a simple
graph theoretical interpretation (Estrada, 1996): it is the sum
of all self-returning walks of length k in the line graph of the
molecular graph, beginning and ending with the same vertex. It
may then be appreciated that the value of such descriptor would
be highly influenced by the presence of ring systems and the
nature of such cycles (e.g., fused rings). Since the considered
augmented edge matrix is weighted by the bond order, the
presence of double and triple bonds and aromatic systems will
tend to increase the value of the descriptor. Generally speaking,

active examples in our training set tend to display higher values
of SM08_AEA(bo).

Regarding SpPosA_A, it denotes the normalized sum of
positive eigenvalues of the adjacency matrix. Its value diminishes
with increase branching, with greater emphasis in terminal rather
than in central branching (Balaban et al., 1991).

The 11 best individual models and a brief description
of the descriptors included in them have been listed as
Supplementary Data Sheet 2.

For a more challenging and realistic simulation, the
enrichment behavior of the individual models was studied
through a retrospective virtual screen on DUDE-A library, where
a small proportion of active compounds (31) was dispersed
among a high number (1500) of putative decoys. Initially, we
compute the area under the Receiver Operating Characteristic
curve (AUC ROC) to assess the classificatory performance of the
models. 100, 93.4 and 3.1% of the individual classifiers displayed
AUC ROCs above 0.8 for the training set, the test set and the
DUD-A library, in that order. 85.8% of the individual models
achieved an AUC ROC > 0.90 for the training set, whereas only
one of the models (named model 975) got an AUC ROC above
0.9 for the test set, none of the models achieved an AUC ROC
above 0.9 for the DUDE-A library. This suggests that our random
subspace approach has been successful in finding individual
classifiers with good explanatory and predictive power, but also
that some degree of overfitting may also be present. Results also
suggests that the retrospective screening experiment on DUDE-
A is the more challenging tasks for the classifiers. Table 3 shows
the 11 individual classifiers that showed the best performance on
the DUDE-A library, along with their AUC ROC, BEDROC, and
RIE values.

Whereas, the performance of the best individual classifiers
was quite satisfactory, we explored ensemble learning approaches
to obtain meta-classifiers with improved accuracy and a more
robust behavior. Figure 2 shows the AUC ROC values (DUDE-
A) obtained when systematically combining between the 2 and

TABLE 3 | Values of the AUC ROC, BEDROC, and RIE metrics for the 11

individual classifiers that displayed the best performance on the DUDE-A library.

Model AUC ROC BEDROC
(α = 20)

RIE 1%

Training
set

Test
set

DUDE-A DUDE-A DUDE-A

594 0.9162 0.8819 0.8529 0.2565 0.0000

516 0.9396 0.8819 0.8508 0.3150 0.0000

477 0.9123 0.8910 0.8419 0.2647 3.2258

975 0.9475 0.9105 0.8355 0.2191 3.2258

244 0.9492 0.8599 0.8343 0.2597 3.2258

504 0.9343 0.8812 0.8314 0.2355 0.0000

870 0.9291 0.8776 0.8294 0.2195 0.0000

154 0.9275 0.8730 0.8283 0.2769 3.2258

764 0.9195 0.8810 0.8268 0.2361 0.0000

564 0.9271 0.8992 0.8205 0.1673 0.0000

80 0.9233 0.8478 0.8198 0.1969 0.0000
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100 individual models that displayed the best performance on the
DUDE-A library, using four combination schemes: Minimum
score (MIN), average score (AVE), average ranking (RANK), and
average voting (VOT). The expectations on the ensembles were
confirmed statistically: two combination schemes (minimum of
the best 11 models and average ranking of the 4 best models)
statistically outperformed the individual models in the DUDE-
A database (p = 0.0003 and p = 0.0132, in that order). The
MIN operator consistently outperformed the other combination
schemes. When considering the influence of the number of
models combined by the MIN operator on the AUC ROCmetric,
it was observed that above 11 models the AUC ROC did not
improve substantially but poorer statistical behavior in terms of
the standard deviation of the mean estimation was observed. The
enrichment metrics for the best ensembles are shown in Table 4.
Note that when applied in the screening of the DUDE-B database,
the enrichment metrics for the 11-model combination based
on the MIN operator (MIN-11) are similar (or in some cases,
even better) than when screening DUDE-A database, validating
the enrichment power of the best model combination. It may
also be observed that best ensemble achieved good to excellent
enrichment metrics. For instance, in the DUDE-A library, the
RIE metric indicates that among the top 15 ranked compounds,
10 are known active ones.

Based on the previous results, we chose to move to
the prospective (real) virtual screening campaign with the
combination scheme based on the MIN operator (MIN-11).
In our experience, this model combination scheme leads to
high-specific model combinations (i.e., small false positive rate),
which is a particularly convenient approach in our context (a
small academic group from a low- to mid-income country,
with limited resources to invest in hit validation); we thus
often prefer to reduce the false positive rate even if this means
losing sensitivity and sacrificing some active scaffolds. We
have chosen to refine the former criteria (prioritizing Sp) by
resorting to PPV surface analysis (Alberca et al., 2018). With
the help of PPV surfaces, the evolution of the most relevant
metric for our purposes, the PPV, i.e., the actual probability
that a predicted hit will confirm activity when submitted to
experimental testing, can be visually optimized as a function of
the (Se/Sp) ratio across a range of Ya values. For this analysis,
we have considered that the association between the Se/Sp and
the score values of the MIN-11 model ensemble (observed in
the retrospective screening campaign on DUDE-A) will hold
when performing screens on other libraries (e.g., in a prospective
virtual screening application). This is a strong assumption that
of course is not necessarily true. However, since the AUC ROC
values obtained for the DUDE-A library are unmistakably high
(above 0.9 for the best model ensemble) while on the other
hand the DUDE-A database Ya ratio (0.02) and size (>1,000
compounds) speak of a controlled statistical behavior (Truchon
and Bayly, 2007), we believe it is a reasonable assumption in the
present setting.

Using PPV surfaces (Figure 3), we chose 0.58 as score
threshold to be used in our prospective virtual screening
campaign; such score is associated to a Se/Sp ratio of 0.561 for
MIN-11, and to a PPV value ≥ 20% for a Ya of 0.01. This means

that if Ya in the real virtual screen was 0.01, we would have
to submit about five predicted hits to experimental testing in
order to find one confirmed hit. The virtual screen using the
previous score cutoff value resulted in 157 hits, with 72 of them
corresponding to approved drugs. Based on the previous analysis
and our funding availability, we acquired and submitted four hits
(Figure 4) to experimental testing: the antibiotic methacycline,
the antihypertensives benzthiazide and bendroflumethiazide, and
the abandoned drug odanacatib (an inhibitor of the cysteine
protease cathepsin K that was pursued as a treatment for
osteoporosis and bone metastasis but whose development was
abandoned at Phase III long-term clinical trials due to safety
issues; Drake et al., 2017).

To evaluate the ability of the selected hits to inhibit falcipain-2,
we performed a two-round screening strategy. First, compounds
were assayed in single dose (31.25µM) to discard inactive
molecules. Given that all of them were able to reduce to some
extent (6–85%) the activity of falcipain-2 in comparison with
the DMSO vehicle; we decided to evaluate the four hits in
a dose-response manner (375 µM−0.45 pM) under balanced
assay conditions to equalize the chances to detect competitive,
non-competitive and uncompetitive inhibitors (Copeland, 2003;
Yang et al., 2009). At the excitation/emission wavelengths
used for AMC recording, compounds showed no significant
autofluorescence in the concentration range tested. Prior to
the analysis of the complete data, we explored the correlations
between inhibition percentages in the primary (31.25 µM) and
secondary (23.4 µM) screenings.

Compounds showed consistent results in both
screenings (correlation coefficient r2 = 0.98; slope =

0.9732; Supplementary Data Sheet 3), with odanacatib and
methacycline being the most active. These compounds showed
typical progression (Supplementary Data Sheet 3) and dose-
response curves (Figure 5), with measurable IC50 and Hill
slope values of 0.186µM and −1.079 for odanacatib, and
106.4µM and −0.9294 for methacycline. In the same range of
concentrations, benzthiazide and bendroflumethiazide showed
no dose-dependent inhibition.

We further characterized odanacatib and methacycline in
terms of the reversibility and time-dependence of falcipain-2
inhibition. Reversible interaction with falcipain-2 was verified
for both compounds by the recovery of enzyme activity after
rapid addition of substrate (100-fold dilution) to the pre-
incubated mix of enzyme and inhibitor (Figures 6A,B). In
this experiment, methacycline displayed a linear progress curve
(Figure 6A) with a stable inhibition value, indicative of rapid
onset of steady state (i.e., rapid dissociation of EI complex). In
the presence of odanacatib, however, the enzyme took several
minutes to recover full activity and to show a permanent
inhibition value (concave progress curve), suggesting slow
dissociation of inhibitor from the complex with falcipain-2
(Figure 6B). Similarly, both inhibitors displayed different kinetic
behavior when enzyme was added to a reaction mix previously
containing inhibitor and substrate (Figures 6C,D). Methacycline
displayed a typical linear progress curve (Figure 6C), showing
a defined (stable) value of inhibition during the whole
assay. In contrast, odanacatib showed non-linear kinetics
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FIGURE 2 | AUC ROC metric vs. the number of combined models in the DUD-E database. (A) Minimum score; (B) Average score; (C) Average ranking; (D) Average
voting.

FIGURE 3 | PPV surface for the best 11-model ensemble on the DUDE-A

library. The Se/Sp ratio correspondent to the chosen score cut-off value and

the associated PPVs within the Ya 0.001–0.010 range are signaled.

(Figure 6D) with inhibition progressively increasing over time
(time-dependent inhibition). As stable inhibition was observed
only after ∼15min, all subsequent kinetic experiments for
odanacatib included preincubation (≥ 30min at 30◦C) with
the enzyme.

To investigate the mode of inhibition of odanacatib, we
first evaluated the impact of substrate concentration on the
apparent IC50 value over a wide range (0.4–13.2xKM) of substrate

TABLE 4 | Values of the AUC ROC, BEDROC, and RIE metrics for the best model

combination (DUDE-A library).

AUC ROC BEDROC (α = 20) RIE (1%)

Model DUDE A DUDE B DUDE A DUDE B DUDE A DUDE B

MIN-11 0.9214** 0.8991** 0.6414 0.4252 29.6322 9.0289

M-594 0.8529 0.7415 0.2565 0.2710 0.0000 0.0000

For comparison purposes, the results of the best individual model (M-594) are also

presented, as well as the enrichment metrics for the MIN-11 ensemble on the DUDE-

B library. **Statistically significant differences in comparison with the best individual model

(p < 0.01).

saturation levels. For this, we used a reduced set of three
odanacatib concentrations selected to: (i) include IC50 value at
each substrate condition and (ii) cover the wider inhibition range
(∼15–80%) in the central stretch of the dose-response curves.
As observed in Figures 7A,B, apparent IC50 values increased
linearly with the increment of substrate concentration, indicating
a competitive mode of inhibition for odanacatib on the activity
of falcipain-2. The global fitting of all the Michaelis curves to
the equation of competitive inhibition (Figure 7C) allowed us to
estimate a Ki value of 98.2± 10.2 nM. As this estimation is in the
limit of tight-binding inhibition (Ki≤ 10−7 M), kinetic data were
transformed to fractional velocity vs. inhibitor concentration
and re-analyzed by global fitting to the Morrison equation32. Ki
value for odanacatib determined from this approach (Figure 7D)
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was 99.88 ± 8.28 nM, very similar to our previous (more
approximate) estimation.

For methacycline, which initially showed potency in the
high micromolar range, we constructed complete dose-response
curves at six fixed substrate concentrations, ranging from 0.2
to 10xKM. Although substrate concentration was increased
50-fold, only a slight increase (1.42-fold) was observed in
the apparent IC50 value, suggesting no competition between
methacycline and the small peptidic substrate Z-LR-AMC.
To directly estimate Ki and α values, Michaelis plots were
globally fitted to the model for mixed inhibition. This approach
confirmed that methacycline inhibits falcipain-2 activity non-
competitively with a Ki value of 84.4 ± 6.5µM and α =1.42 ±

0.15 (Figure 8).
Given that cysteine peptidases require that its catalytic

sulfhydryl group be in reduced state to show their maximal
enzymatic activity, they are prone to undergo RedOx
interferences caused by several classes of thiol-reactive
compounds able to simulate genuine inhibition (Thorne
et al., 2010). In many cases, this artifactual inhibition can be
significantly relieved by simply changing the reduction potential
of the activity buffer, thus providing a diagnostic test to detect
false-positive RedOx compounds. To establish if this could be
the case for methacycline, we further investigated the effect
of the strength and concentration of reducing agents (DTT, a
strong reducing agent, and cysteine, a weak reducing agent) on
the inhibition of falcipain-2 by this molecule. Dose-response
curves were very similar regardless of the final concentration of
the reducing agent (100-fold range) present in the assay buffer
(Supplementary Data Sheet 3). These results rule out common
types of RedOx interference and suggest that methacycline
genuinely inhibits falcipain-2.

Once established that odanacatib and methacycline inhibit
the peptidolytic activity of falcipain-2, we assayed whether
these molecules could also modulate falcipain-2 proteolytic
activity on its natural substrate, human hemoglobin (hHb).
To this end, we pre-incubated the enzyme with increasing
concentrations of both inhibitors and then added the hHb
substrate. E-64, a specific and highly potent irreversible inhibitor
of C1A cysteine peptidases, was used as a positive control.
After incubation at 37◦C for 3 h, reaction mixes were resolved
electrophoretically by SDS-PAGE on a 15% acrylamide gel
and Coomassie stained. The amount of undegraded hHb,
observed as a doublet of around 15 kDa, was estimated
densitometrically. As shown in Supplementary Data Sheet 3,
odanacatib inhibited the hemoglobinase activity of FP2 in
a dose-response manner. For methacycline, however, no
inhibition was observed in this assay, even at the highest
concentration tested (1mM). Of note, the effective inhibitory
concentrations of odanacatib in this assay were in the low-to-
middle micromolar range, a significant shift in comparison to the
sub-micromolar potency previously observed in the inhibition
of Z-LR-AMC hydrolysis. Overall, these observations suggest
that (i) the existing differences between the surrogate (peptidic)
and the natural (macromolecular) falcipain-2 substrates are
somehow important for the inhibitory efficiency of both
inhibitory molecules and that, at least, (ii) low-to-middle

micromolar compound concentrations would be required to
assess their efficacy in a more physiological context (i.e.,
cellular culture).

To analyze the influence of odanacatib and methacycline
in the intraerythrocytic cycle of P. falciparum, a synchronized
culture of RBCs infected (trophozoite stage) was treated with
increasing concentrations of odanacatib (1, 10, or 100µM) and
methacycline (10, 50, or 500µM). E-64 (1, 5, or 25µM)was again
used as a positive control. After 48 h, the number of infected
erythrocytes was evaluated by light microscopy in stained
blood smears. Odanacatib (100µM) significantly reduced the
parasitemia (Figure 9), with no apparent reduction in the other
two concentrations tested.Methacycline significantly reduced the
parasitemia at 500 and 50µM, but not at 10µM. As expected, E-
64 significantly reduced the parasitemia at 5 and 25µM, but no
at 1µM. Almost no erythrocytes infected at schizont-stage were
observed in the treatments (Supplementary Data Sheet 3). It is
important to mention that at the highest concentrations assayed,
methacycline (500µM) and odanacatib (100µM) induced
cytotoxic effects on RBC, as observed in the hemolysis assay
(Supplementary Data Sheet 3).

Molecular docking results were in good agreement with
the experimental observations. Figure 10 shows the best result
of the docking simulation for odanacatib in the catalytic
binding site, that is, the pose that showed lower value of the
scoring function. Two hydrogen bonding interactions were
found between the compound and GLN36 and ASN173.
The docking score was −6.94 kcal/mol, which is lower
than the score achieved for E64 in the same conditions
(−4.91 kcal/mol). Regarding methacycline, we detected
hydrogen bonding interactions between methacycline and
the residues of the proposed (non-catalytic) binding pocket.
Residues like ASP72, ASN112, PRO111, and ALA110 could be
implicated in the stabilization of the complex (docking score
of−5.65 kcal/mol). More studies will be performed to evaluate
these predictions.

DISCUSSION AND CONCLUSIONS

Using an ensemble learning approximation, we have performed
a ligand-based virtual screening campaign to identify new
falcipain-2 inhibitors as potential new treatments against malaria.
There are some previous reports on the development of
ligand-based models to predict the activity of P. falciparum
cysteine proteases. The approaches used in such studies show
considerable differences with the one reported here: they
used conformation-dependent descriptors (3D QSAR) to infer
regression models; in almost all cases, congeneric series of
comparatively narrow chemical diversity have been used to
train the models, thus limiting their applicability domain and;
the reported models have mostly been used for explanatory
rather than predictive purposes. Xue and coworkers realized
CoMFA and CoMSIA 3D-QSAR studies on a series of 93
alkoxylated and hydroxylated chalcones (Xue et al., 2004).
Potshangbam and coworkers also carried out CoMSIA and
CoMFA studies on a series of 54 2-pyrimidinecarbonitrile
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FIGURE 4 | Molecular structures of the hits selected in the prospective virtual screening campaign that were submitted to experimental confirmation. (A)
methacycline; (B) benzthiazide; (C) bendroflumethiazide; (D) odanacatib.

FIGURE 5 | Dose-response curves of identified falcipain-2 inhibitors (open circles). For each compound, dotted line represents the best fit of experimental data to the

four-parameter Hill equation. (A) E-64. (B) Odanacatib. (C) Methacycline. (D) Benzthiazide. (E) Bendroflumethiazide. For those compounds achieving data

convergence, the resultant values for the parameters IC50, Hillslope and R2 are indicated. In all cases, equivalent volumes of DMSO vehicle were assayed in parallel

(closed circles).

analog inhibitors of falcipain-3 (Potshangbam et al., 2011).
Using the same approximations, Wang et al. performed a 3D
QSAR study of 247 2-pyrimidinecarbonitrile analog inhibitors

of falcipain-3 (Wang et al., 2013). Teixeira and colleagues
did a CoMFA and CoMSIA analysis of a series of 39
peptidyl vinyl sulfone derivatives as potential cysteine protease
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FIGURE 6 | Reversibility and time dependence of the inhibition of falcipain-2 by methacycline and odanacatib. Top panel: Product progress curves for the dissociation

of E-I complex by rapid dilution (100-fold) of enzyme-inhibitor mix into substrate solution. (A) Methacycline. (B) Odanacatib. Bottom Panel: Product progress curves

for the formation of E-I complex by rapid addition of enzyme to a substrate-inhibitor mix. (C) Methacycline. (D) Odanacatib.

inhibitors (Teixeira et al., 2011). Very recently, Allangba et al.
derived complexation QSAR models and pharmacophores from
a training set of 15 lactone–chalcone and isatin–chalcone
hybrid inhibitors with falcipain-2 inhibitory activity (Allangba
et al., 2019). The most similar study to our own is possibly
the one by Mugumbate and coworkers, who as a part of
and hybrid ligand- and structure-based approach, obtained
ligand-based models based on Pentacle alignment-independent
descriptors, using a training set of nine non-peptide inhibitors
of falcipain-2 (Mugumbate et al., 2013). They performed a
retrospective pilot screen before using their protocol to explore
the ZINC database, retrieving falcipain-2 inhibitors in the low
µM range. All in all, the enrichment metrics they computed
in their retrospective screen are similar to the ones we
obtained here.

Our most predictive model combination was chosen (i.e.,
trained) based on a retrospective virtual screening campaign
(DUDE-A library). The enhanced ability of the selected model-
ensemble to retrieve falcipain-2 inhibitors in comparison to
our best individual models was checked using a second
retrospective virtual screening experiment (DUDE-B library).
Four of the hits emerging from our prospective virtual
screening experiment were acquired and assayed against the
enzyme. Two of them, odanacatib (previously investigated
as treatment against osteoporosis and bone metastasis) and
methacycline (an antibiotic) confirmed our predictions, reducing
the peptidolytic activity of the enzyme. Interestingly, our
observed PPV (50%, corresponding to two experimentally
confirmed hits out of four assayed compounds) exceeded

our theoretic expectations based on PPV surfaces analysis,
which suggested a PPV of at least 20% for the chosen score
threshold, for a hypothetic yielding of active compounds
of 1%.

Both hits displayed different inhibition mechanisms. In
agreement with previous reports for the interaction with
other Papain-like C1A (Clan CA family) human cathepsins
(Gauthier et al., 2008), odanacatib inhibits falcipain-2 in a
reversible, competitive and tight-binding (sub-micromomlar)
mode. For human cathepsin K, odanacatib inhibition occurs
throughout the formation of a covalent but yet reversible
thioimidate adduct between the -SH in the catalytic Cys
residue and the nitrile warhead (Oballa et al., 2007). This
covalent association mechanism results in on- and off-
rates of 5.3 × 106 M and 0.0008 s−1 (t1/2 ∼14min),
respectively (Gauthier et al., 2008). These observations are
in line with the slow association and dissociation kinetics
observed by us for falcipain-2 inhibition, suggesting that a
similar chemical inhibition mechanism could be occurring.
Other compounds bearing the N-(1-cyanocyclopropyl)-amide
inhibitory scaffold present in odanacatib, have been reported
as potent (Ki ∼1–2 nM) and selective (>15-fold over human
cathepsins) falcipain-2 inhibitors (Ang et al., 2011; Nizi et al.,
2018).

On the other hand, methacycline acts as a reversible, non-
competitive and sub-milimolar inhibitor of falcipain-2. Based on
our observations (reproducible, reversible and dose-dependent
reduction of enzyme activity, rapid equilibrium onset, Hill slopes
∼ −1, inhibitory activity insensitive to the RedOx potential
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FIGURE 7 | (A) Dose-response curves for odanacatib at fixed substrate concentrations. Dotted lines represent the best fit of experimental data to the four-parameter

Hill equation. (B) Effect of substrate concentration on the IC50 values of falcipain-2 inhibition by odanacatib. IC50 values increase linearly (>9-fold) with substrate

concentration in the range 1.95–62.5µM. Dotted line represents the best fit of data to linear equation. Y-axis intercept accounts for the Ki value. (C) Global fitting of

kinetic data to the competitive inhibition model equation. (D) Global fit ting of kinetic data to the Morrison equation.

FIGURE 8 | Methacycline is a non-competitive, sub-millimolar inhibitor of falcipain-2. (A) Dose-response curves for methacycline at fixed substrate concentrations.

Dotted lines represent the best fit of experimental data to the four-parameter Hill equation. (B) Half maximal inhibitory concentration of methacycline increases slightly

(1.42-fold) with substrate concentration in the range: 1–50µM. (C) Global fitting of kinetic data to the equation of mixed inhibition model.

and no signs of common compound-specific assay interferences
such as autofluorescence or aggregate formation), methacycline
inhibition seems to occur throughout a genuinemechanism. This
may lead to rational optimization efforts to improve affinity.
Further studies should be performed to confirm the putative
binding pocket suggested by our docking experiments, to move
in that direction. To date, only few non-competitive falcipain-2
inhibitors have been reported; including suramin analogs
(Marques et al., 2013), heme analogs (Marques et al., 2015),

and (E)-chalcones (Bertoldo et al., 2015) reported. Suramin,
heme, and their analogs inhibit falcipain-2 with IC50 values
in the nanomolar range and seem to share a common “non-
competitive like” inhibition mechanism that occurs through
the formation of a ternary enzyme:inhibitor:substrate complex
of stoichiometry 1:1:2. In both cases, the authors argued that
the binding of the inhibitor to falcipain-2 reveals a novel
regulatory substrate binding site in the enzyme, which allows
the subsequent allosteric binding of a second substrate molecule,
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FIGURE 9 | Effect of odanacatib and methacycline on the development of P.

falciparum under culture. Cultures of erythrocytes infected (trophozoite stage)

at 2% hematocrit and 0.5% parasitemia were incubated with increasing

concentrations of odanacatib (ODA; 1, 10, or 100µM) and methacycline

(METHA; 10, 50, or 500µM). E-64 (1, 5, or 25µM) was used as positive

control of falcipain-2 inhibition. DMSO was used as a vehicle control (V) and

RPMI 1640 medium as a control (C). After 48 h, the number of infected

erythrocytes (ring, trophozoite, and schizont-stages) was evaluated by light

microscopy in stained blood smears. Data are the means ± SD of one

experiment performed by triplicate. (*) p < 0.05 represents the differences

between control and the treatments.

resulting in falcipain-2 inhibition (Marques et al., 2013, 2015).
Very similar to what we have found for methacycline, (E)-
chalcones 48 (Ki =45µM, α < 1) and 66 (Ki =7µM, α

= 1) display a classical non-competitive inhibition profile for
falcipain-2 with no evidence of substrate inhibition (Bertoldo
et al., 2015). None of these inhibitors appear to bind falcipain-
2 active site, thus anticipating new routes to overcome the critical
issue of selectivity over human cathepsins. In this regard, the
identification and targeting of non-active (i.e., allosteric) binding
sites within the falcipain-2 molecule seems to be an attractive and
effective alternative to traditional active site-directed inhibitors,
as recently showed by Pant and coworkers (Pant et al., 2018).
Two compounds, rationally designed to target an allosteric site
present in the pro-mature domain interface of falcipains-2/-3,
were able to bind both pro-enzymes with nanomolar affinities
and arrest P. falciparum growth, clearly illustrating the potential
of this approach.

Of interest, odanacatib inhibits the peptidolytic activity
of falcipain-2 much more efficiently than its hemoglobinase
activity. Although displaying comparable affinities for the
enzyme [KhHb

D =3.3µM (Hogg et al., 2006); KZ−LR−AMC
M =

4.8µM], there are important differences between Z-LR-AMC
and hHb as falcipain-2 substrates, regarding both their binding
modes and their catalytic heterogeneity. In the first case, the
small peptidic substrate Z-LR-AMC accommodates completely
within falcipain-2 active site and the enzyme-substrate complex
relies entirely on active site interactions for its stabilization
and catalytic transformation. In addition, Z-LR-AMC substrate
comprise a single cleavage site per molecule. These facts seem

to make it somehow more vulnerable to the competitive binding
of odanacatib to the active site and to the catalytic impairment
promoted by the binding of methacycline to a presumptive
allosteric site, like the one proposed here. In the case of
hHb, it has been shown that interaction with the enzyme
depends almost exclusively on a unique falcipain-2 structural
motif (the “arm”), located >25 Å away from the active site
(Pandey et al., 2005; Wang et al., 2006). In fact, a falcipain-
2 mutant lacking most of the arm loop showed no activity
or affinity against hHb, although remained fully active against
a number of generic peptide and protein substrates (Pandey
et al., 2005). Additionally, hHb was able to bind to falcipain-
2 molecules with the active site blocked by the irreversible
inhibitor E-64, clearly indicating that the recognition of intact
hHb is mostly independent of the active site. Considering all
these observations, we can hypothesize that the binding of
odanacatib to falcipain-2 active site would not be likely to perturb
substantially the binding affinity of intact hHb to its exosite and
vice versa. Thus, with the ability to bind both enzyme forms
(falcipain-2 and the falcipain-2-hHb complex) with comparable
affinity, odanacatib would probably behave as a non-competitive
inhibitor against an exosite-binding substrate such as intact
hHb. This has been previously reported for small active site-
directed inhibitors of proteases and kinases when acting on
their natural macromolecular substrates (Krishnaswamy and
Betz, 1997; Pedicord et al., 2004; Blat, 2010). The change in the
inhibition modality of odanacatib, however, seems insufficient
to explain, per se, the magnitude of the drop in its inhibitory
potency against the falcipain-2/hHb system. A second line of
argument came from the observation that hHb molecule is
a catalytically heterogeneous substrate, comprising numerous
independent falcipain-2 cleavage sites and whose digestion seems
to be a non-ordered process (Subramanian et al., 2009). The
occurrence of multiple cleavage events at different sites along the
protein sequence leads to the formation of numerous digestion
products of lower molecular weight. These digestion products
also contain functional falcipain-2 cleavage sites and become new
substrates that, after a new round of proteolysis, may generate
additional substrate peptides. As the reaction proceeds, this
iterative process leads to an increase in the number and the
global concentration of peptidyl substrates able to compete for
the binding to falcipain-2 active site. This might eventually lead
to a partial relief of inhibition by competitive, active site-directed
inhibitors, as would be the case of odanacatib.

Considering that falcipain-2 and−3 are the major cysteine
proteases required for the intraerythrocytic development of P.
falciparum, we evaluated the antiparasitic effect of odanacatib
and methacycline. The inhibitors of cysteine proteases block the
hydrolysis of hemoglobin, causing the development of enlarged,
hemoglobin-filled food vacuoles in trophozoites and failure of
parasites to complete their development (Marco and Coterón,
2012). The two drugs showed a clear inhibition in a dose-
depend manner on the intraerythrocytic cycle of P. falciparum.
The effective concentrations of odanacatib in P. falciparum
cultures were in the low-to-middle micromolar range, similar
to those observed in the inhibition assay of hemoglobinase
activity. This finding is compatible with a hypothetical mode
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FIGURE 10 | Best poses from the molecular docking experiments for odanacatib (Left) and methacycline (Right). Interacting residues are shown in sticks.

of action trough inhibition of falcipain functions within the
food vacuole. Although the inhibition of diverse proteases by
tetracycline derivatives has previously been reported (Morrison,
1969; Zucker et al., 1985; Sanchez Mejia et al., 2001; Chi
et al., 2011), to the best of our knowledge, this is the first
report of the inhibition of a C1A cysteine peptidase from a
protozoa parasite by an antibiotic of the tetracycline family.
The molecular targets for the action of tetracyclines against
Plasmodium parasites have not been fully elucidated. However,
their mode of action seems to include the inhibition of protein
synthesis at mitochondrial, plastid and nuclear ribosomes by
the association with ribosomal components (Gaillard et al.,
2015). Additional mechanisms, such as reduction in de novo
pyrimidine synthesis and a decrease in the transcription rates of
mitochondrial and apicoplast genes, have also been postulated
(Briolant et al., 2008; Gaillard et al., 2015). The inclusion of
falcipain-2 among the potential targets of tetracycline derivatives
adds new possibilities for the development of “two-edged swords”
candidate drugs for P. falciparum, with potential benefits in
terms of potency and delay of resistance appearance (Agarwal
et al., 2017). The contribution of this mechanism to the
global antimalarial activities of these antibiotics remains to be
established in future investigations.

It should also be underlined that odanacatib underwent long-
term clinical trials as a treatment of postmenopausal osteoporosis
(Bone et al., 2015), which were early stopped due to robust
efficacy and a favorable benefit/risk profile. However, its clinical
development was dropped due to an increased risk of stroke
in the postmenopausal patients on odanacatib vs. a placebo
group. Accordingly, our findings on the potential use of the
drug against malaria could be considered a drug rescue example,
i.e., a proposal on a new medical used of and abandoned or
discontinued drug. Do the safety issues of odanacatib pose
an inevitable impediment for their potential development as
antimalarial treatment? Not necessarily. Although they are
indeed a concern, it should be considered that the odanacatib
augmented risk of stroke was observed in long-term studies,
whereas the drug could possibly be administered in a short-
term manner as malaria treatment (for instance, artemisinin-
based combination therapies only require a 3-day course
to achieve efficacy in cases of uncomplicated P. falciparum
malaria). Accordingly, the long-term risks of odanacatib use

may not have a negative impact on its use as antimalarial.
There are well-known examples of drug rescue of discontinued
drugs with severe safety issues, that can be re-introduced
in a new therapeutic setting with the pertinent precautions.
For instance, thalidomide was largely abandoned due to its
teratogenic effects, but has been recently relaunched to the
market for the treatment of leprosy and multiple myeloma
(Teo et al., 2002; Mercurio et al., 2017).

Pharmacokinetics studies reveal that after multiple-dose
administration of odanacatib 50mg (once weekly for 4
weeks), average maximal plasma concentrations of around
400 nM are observed (Chen et al., 2018), although a high
fraction of plasma protein bound drug has also been reported
(Kassahun et al., 2014). Accordingly, further studies are
required to evaluate the dose-compatibility between the
previously investigated therapeutic use and the possible
antimalarial indication.
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We describe herein the development and experimental validation of a computational

protocol for optimizing a series of 3-hydroxy-pyran-4-one derivatives as HIV integrase

inhibitors (HIV INIs). Starting from a previously developed micromolar inhibitors of

HIV integrase (HIV IN), we performed an in-depth investigation based on an in silico

structure-based combinatorial library designing approach. This method allowed us

to combine a combinatorial library design and side chain hopping with Quantum

Polarized Ligand Docking (QPLD) studies and Molecular Dynamics (MD) simulation.

The combinatorial library design allowed the identification of the best decorations for

our promising scaffold. The resulting compounds were assessed by the mentioned

QPLD methodology using a homology model of full-length binary HIV IN/DNA for

retrieving the best performing compounds acting as HIV INIs. Along with the prediction

of physico-chemical properties, we were able to select a limited number of drug-like

compounds potentially displaying potent HIV IN inhibition. From this final set, based on

the synthetic accessibility, we further shortlisted three representative compounds for the

synthesis. The compounds were experimentally assessed in vitro for evaluating overall

HIV-1 IN inhibition, HIV-1 IN strand transfer activity inhibition, HIV-1 activity inhibition and

cellular toxicity. Gratifyingly, all of them showed relevant inhibitory activity in the in vitro

tests along with no toxicity. Among them HPCAR-28 represents the most promising

compound as potential anti-HIV agent, showing inhibitory activity against HIV IN in the
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low nanomolar range, comparable to that found for Raltegravir, and relevant potency in

inhibiting HIV-1 replication and HIV-1 IN strand transfer activity. In summary, our results

outline HPCAR-28 as a useful optimized hit for the potential treatment of HIV-1 infection

by targeting HIV IN.

Keywords: 3-hydroxy-pyran-4-one, HIV-1 integrase inhibitors (HIV-1 INIs), in silico combinatorial library design,
side chain hopping, hit compounds optimization

INTRODUCTION

HIV-1 integrase (IN) represents an attractive target in anti-HIV
drug design mainly due to its specificity. Accordingly, HIV-1
IN does not have a functional equivalent in humans and plays
a unique role in establishing irreversible and productive viral
infections (Debyser et al., 2002; Delelis et al., 2008). This viral
key enzyme catalyzes the insertion of proviral DNA, derived from
reverse transcription of HIV-1 RNA, into the genome of the
host-infected cells. The insertion is achieved through a two-step
enzymatic process which starts with endonucleolytic cleavage of a
terminal dinucleotide (GT) from each 3′-end of the proviral DNA
(termed “3′-processing”), followed by a second reaction, known
as “strand transfer” (ST), involving a concerted nucleophilic
attack, by the reactive 3′-OH ends of the viral processed DNA to
the host chromosomal DNA. As a result, a the covalent joining
of the two DNA strands is observed (Chiu and Davies, 2004;
Pommier et al., 2005). Both reactions are accomplished by the
catalytic core domain of HIV-1 IN which contains two divalent
metal ion cofactors (Mg2+). These metal ions are coordinated
by three catalytic carboxylate residues: Asp64, Asp116, and Glu152
(DDE triad) within the enzyme active site (Dyda et al., 1994;
Neamati et al., 2002).

Targeting the metal cofactors within the active site of a
viral metal-activated enzyme like HIV-1 IN has emerged as
an attractive and validated strategy for the development of
novel anti-HIV agents (Rogolino et al., 2012). With this aim,
a metal binding pharmacophore model has been exploited
for the design of diverse HIV-1 integrase inhibitors (HIV-
1 INIs) as depicted in Figure 1A. This model is represented
by two distinctive structural features: (1) a planar metal
binding group (MBG), able to interact with the metal centers
within the IN active site, and (2) a pendent aromatic or
hetero-aromatic hydrophobic moiety located in close proximity
of the MBG (Kawasuji et al., 2006a,b; Johns and Svolto,
2008). Continuous efforts in exploiting this pharmacophore
model have culminated in the design and subsequent FDA
approval of three INIs for clinical use as effective anti-HIV
drugs: Raltegravir (RLT), Elvitegravir (EVG), and Dolutegravir
(DTG) in 2007, 2012, and 2013, respectively (Figure 1B;
Rowley, 2008; Sato et al., 2009; Katlama and Murphy, 2012).

A variety of MBGs have been extensively studied to design
innovative and effective INIs (Liao et al., 2010; Di Santo, 2014).
Recently, we were particularly interested in taking advantage of
the 3-hydroxy-4-pyranone (HP) scaffold for the development of
novel HIV-1 INIs due to its application as MBG in the design
of several inhibitors of numerous Zn2+, Mg2+, Mn2+, and Cu2+

dependent proteins. Accordingly, HP derivatives represent an
impressive class of heterocyclic ligands with strong bidentate
chelating capacity toward metal ions (Santos et al., 2012; Rostami
et al., 2015; Sirous et al., 2015). As a first example of the potential
of this structural template in HIV-IN inhibition, a series of HP
compounds featuring a unique C-2 carboxamide moiety, namely
3-hydroxyl-pyran-4-one-2-carboxamide derivatives (HPCARs),
were rationally designed and recently reported by us (Figure 2;
Sirous et al., 2019). The proposed chemotypes were characterized
by a chelating triad motif effectively coordinating the two metals
according to the pharmacophore shared by INIs. Moreover,
an aromatic backbone attached to the amide portion through
a linker (substituted benzyl and phenylethyl moieties) was
considered for providing the essential interactions with the
hydrophobic pocket of the enzyme. Most of these HPCAR
analogs offered favorable inhibitory potencies in both enzymatic
and cell-based antiviral assays with low micromolar IC50 values.
In particular, the substitution at the para position of the
aromatic phenyl ring led to the identification of two halo-
benzyl derivatives HPb and HPd (Figure 2) as promising lead
HIV-1 IN inhibitors with IC50 values of 0.37 and 0.7µM,
respectively (Sirous et al., 2019).

In our quest for the search of innovative and effective
INIs and considering the above-mentioned findings, we decided
to design novel optimized derivatives exploiting the HPCAR
chemotype. In this study, we performed the replacement of the
pendant aromatic portion with other heterocyclic moieties in
order to maintain the strong hydrophobic interactions within
the HIV-1 IN binding site, with the possibility to explore
additional functional groups for maximizing the contacts that
could further stabilize the binding mode of the novel derivatives,
leading to compounds with improved activity against HIV-1
IN. Accordingly, in the present study, an in silico protocol
combining a combinatorial library design procedure coupled
to extensive molecular docking studies and physico-chemical
properties prediction was developed in a step-filtering approach
to identify novel INIs with improved potency with respect
to the HPCAR derivatives. The employed screening workflow
for designing new HIV-1 INIs with suitable potency and
satisfactory physico-chemical properties is illustrated in Figure 3.
Considering the importance of the aromatic portion of INIs
for their binding to both the viral DNA bases, and the
hydrophobic pocket within the catalytic core of IN enzyme
(Kawasuji et al., 2006b), many efforts were made for replacing
the hydrophobic aromatic side chains (substituted benzyl and
phenylethyl moieties) to generate a virtual combinatorial library
of HP-based core derivatives. Accordingly, using side chain
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FIGURE 1 | (A) Graphical depiction of the pharmacophore model for HIV-1 INIs. (B) Chemical structure of the FDA approved HIV-1 INIs. Atoms in blue are part of

MBG of the molecules able to chelate the two metal ions. The hydrophobic aromatic moiety of each compound is highlighted in red.

FIGURE 2 | General structure of 3-hydroxy-4-pyranone (HP) based inhibitors previously designed in our laboratory and two halogenated derivatives identified as lead

compounds. The proposed chemotype satisfies minimal pharmacophore features for HIV-1 IN inhibition: the metal chelating triad (blue) and terminal hydrophobic

benzyl group (red). The most promising HP compounds are shown with the IC50 and EC50 values for IN inhibitory and anti-HIV activities.

hopping strategy, various cyclic and heterocyclic fragments were
attached to the defined position of theHP core in order to find the
ideal sidechains with the highest predicted binding affinity for the
IN active site. Finally, for validating the computational approach
three representative hit candidates identified from this screening

workflow were selected, further studied by molecular dynamics
(MD) simulations in order to gain additional information about
their mechanism of action as INIs, synthesized and submitted to
biological evaluation for their HIV-1 IN inhibitory and anti-HIV-
1 activities.
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FIGURE 3 | Screening workflow employed in the present study for the in silico rational design of new HPCAR derivatives. The core of HPCAR was marked in a blue

box. The hydrophobic fragment, AR group, is depicted as a red circle. During combinatorial library screening, diverse sets of fragments were provided from reagent file

libraries and attached to the main core at the defined attach positions. The attach position in the scaffold structure is indicated as a yellow vector.

MATERIALS AND METHODS

Computational Details
Ligand Preparation
The 3D structure of the two investigated HPCAR
derivatives (substituted with benzyl and phenylethyl moieties)
were built by the 3D-sketcher module in Maestro suite (Maestro,
version 9.2; Schrödinger, LLC, New York, NY, 2011). Molecular
energy minimization of the structures was performed in
MacroModel environment using the OPLS-AA 2005 as force
field (Jorgensen et al., 1996; Kaminski et al., 2001). GB/SA
model was utilized in order to simulate the solvent effects
applying “no cut-off” for non-bonded interactions (Still et al.,
1990). PRCG method with 1,000 maximum iterations and
0.001 gradient convergence threshold was employed. The
same protocol was applied to the novel designed compounds
obtained by the combinatorial screening (144 molecules) before
submitting them to QPLD procedure. Furthermore, all the
compounds were accurately prepared with LigPrep application
implemented in Maestro suite (Gasser et al., 2015). Finally the
most probable ionization state of the compounds was retrieved
by Chemicalize (https://chemicalize.com/) as already reported
by us (Brogi et al., 2018).

Protein Preparation
Computational studies were conducted using our recently
described theoretical model of full-length HIV-1 IN in complex
with viral DNA and Mg2+ cofactors (Sirous et al., 2019).
The model was subjected to Protein Preparation Wizard
protocol implemented in Maestro. This protocol allowed us
to obtain a reasonable starting structure of the protein for
molecular modeling calculations by a series of computational
steps as described (Cappelli et al., 2013; Brogi et al., 2017a,b).
Finally, the refined HIV-1 IN model was used for further
computational studies.

Generation of Combinatorial Hits
“Combinatorial library enumeration” option available in
CombiGlide (CombiGlide, version 2.7; Schrödinger, LLC: New
York, 2011), a combinatorial screening software distributed by
Schrödinger, was used to carry out structure-based combinatorial
library design studies. This software provides the tools for
accelerating the lead optimization process, helping in the
generation of libraries of optimized derivatives to be selected
for the further synthesis. In this direction, two HPCAR
derivatives containing methylene and ethylene linkers between
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the chelating region and the aromatic moiety, identified from
our previous studies (Sirous et al., 2019), were selected as
main cores. For each investigated compound, a side chain
hopping strategy was successfully applied for replacing the
hydrophobic side chain, of the selected main cores, with
different aromatic or heteroaromatic fragments as shown in
Figure 3. This method employs the reagent files, chosen by the
operator, as a source of fragments with various structures. The
following steps are used to generate a new combinatorial library
of ligands.

Reagents Preparation
In this step of CombiGlide workflow, a library of reagents
containing diverse sets of fragments was built. The elements
of this library can be selected from the available databases or
generated by the operator. In fact, in the presented work, in
addition to the reagent libraries provided by Maestro software,
other reagent libraries with different aromatic groups were
downloaded from Zinc fragment database (Irwin and Shoichet,
2005; Irwin et al., 2012) as SDF file format and submitted to
the reagent preparation facility in the CombiGlide environment.
Then the tasks in the reagent preparation process are: (i) the
selection of the source of reagent structures; (ii) the selection of
a reagent type (a functional group), and finally (iii) the structural
conversion from the 2D structure to the 3D one. The selection
of a reagent type was done considering the bond that will be
replaced in accordance to the functional group formed when
the reagent is added to the core. In this context, primary amine
set was selected as reagent type. The detailed description of this
reagent type is provided in Table 1. Concerning this reagent type,
R represents the part of reagent that was kept in the process of
combinatorial library generation. The bond that was broken to
attach the reagent to the core was marked with a line crossing the
bond. After running reagent preparation job, the output structure
file in .bld format, containing properly prepared reagents, was
used in the combinatorial screening process by CombiGlide.

Defining the Core and Attachments
The core is the structural element that is maintained throughout
the combinatorial experiment. The attachment positions for each
core were defined and the previously prepared reagents file was
associated with each attachment point. The attachment point
comprises bonds from the core structure that will be replaced in
the build process. Considered the role of the hydrophobic side
chain of the investigated HPCAR derivatives in binding both
the viral DNA and the hydrophobic pocket within IN active site
(Sirous et al., 2019), the replacement of benzyl and phenethyl

TABLE 1 | Detailed description of predefined functional group type selected in the

reagents preparation step of combinatorial library design.

Structure of
reagent type

Name of reagent
type

Definition of R

Amine_Primary_

General_N_H

R can be alkyl, aryl. R cannot have a

carbonyl carbon attached to the

nitrogen of the amine.

amine moieties with different amine fragments from the reagents
file, with other hydrophobic moieties, was performed.

Setting Up CombiGlide Docking Calculations
The docking step represents the main step of the combinatorial
screening process in which a series of docking calculations are
performed to screen out molecules that do not have satisfactory
docking scores. In fact, on a core with a constant structure,
CombiGlide attaches sidechains at defined positions of the core,
and performs a docking calculation of the resulting compounds
into the active site of HIV-1 IN, to assess the potential affinity
of the new compounds. The grid box for the docking calculation
was centered on the centroid between the two Mg2+ ions which
roughly represents the center of the active site. The cubic grid box
was adjusted based on a size capable of accommodating ligands
with a length 15 Å. As part of grid generation procedure, metal
constraints for the receptor grids were also applied. The other
options and parameters in this step were set as default and then
docking of the librarymembers into the homologymodeled HIV-
1 IN active site was performed using the extra precision method
(XP) in CombiGlide docking. At the end of the process a focused
combinatorial library of more than 37,000 compounds was
obtained for each studied core-containing molecule. The total
structures obtained from combinatorial screening were sorted on
the basis of their GlideScore (Glide, Version 5.7, Schrödinger,
LLC, New York, NY, 2011; Friesner et al., 2004). The compounds
with the better XPGlide scores compared with the corresponding
core-containing molecules were selected for further studies. The
interactions of these compounds, into HIV-1 IN active site, were
assessed by using ligand-interaction diagram implemented in
Maestro suite and visualized by PyMOL (PyMOL Molecular
Graphics System, Version 1.6-alpha, Schrödinger, LLC, New
York, NY, 2013).

Molecular Properties Prediction
The molecules selected from in silico combinatorial screening
were evaluated using a series of filtering criteria for drug-like
properties. In this regard, QikProp application (QikProp, version
3.4, Schrödinger, LLC, New York, NY, 2011) implemented in
the Maestro suite was used for ADME-T properties predictions
(Rostami et al., 2015; Zaccagnini et al., 2017). This step
was performed to select compounds from each library with
appropriate physico-chemical properties using the range values
recommended by QikProp. Especially, Lipinski’s rules of five,
membrane permeability, lipophilicity, cardiotoxicity, or potential
interaction with hERG K+ channel were considered as important
criteria and investigated for filtering (Lipinski et al., 2001).
Default settings were employed for these calculations. The
compounds derived from the above-mentioned calculation were
evaluated for their potential capability to behave as “Pan
Assay Interference Compounds” (PAINS). This calculation was
performed by means of FAFDrugs4.0 (http://fafdrugs4.mti.univ-
paris-diderot.fr/) (Lagorce et al., 2008, 2011; Vallone et al.,
2018; Brindisi et al., 2019). PAINS compounds are chemical
compounds that tend to display activity against a wide range
of targets by nonspecific interactions or by altering the results
of the biological tests. The compounds containing this kind of
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moieties, that are often present in PAINS compounds, could be
false positive hits and in general should be removed from the
designed series (Baell and Holloway, 2010).

Quantum Polarized Ligand Docking (QPLD)
In order to narrow down the number of the potential INIs
and for improving the reliability of the protocol, the quantum
polarized ligand docking (QPLD) calculations were performed
for the resulting compounds with satisfactory physico-chemical
properties. These compounds were docked into the modeled
HIV-1 IN using QPLD protocol implemented in Schrödinger
2011 (Schrödinger Suite 2011: QM-Polarized Ligand Docking
protocol; Glide, Version 5.7, Schrödinger, LLC, New York, NY,
2011; Jaguar, version 7.8, Schrödinger LLC, New York, NY, 2011;
QSite version 5.7, Schrödinger LLC, New York, NY, 2011) (Irwin
et al., 2012). This step was added to improve the accuracy of
classical docking calculation. In fact, this procedure aims to
improve the partial charges on ligand atoms by replacing them
with charges derived from quantum mechanical calculations on
the ligand in the field of the receptor (Paolino et al., 2018).
Within the QPLD framework, the ligand atoms are treated at
the Quantum Mechanical (QM) level, whereas the IN enzyme
including the Mg2+ ions as Molecular Mechanical (MM) region
are described using the OPLS force field parameters. In this
way, the same grid file previously employed in the CombiGlide
step was used. The best docked compounds obtained from
the previous CombiGlide docking calculations followed by the
evaluation of the physico-chemical properties, were selected in
the ligand option. In the first step of the QPLD calculation,
compounds were initially docked into the active site of IN
enzyme. The initial docking calculations were carried out using
Glide standard precision (SP) docking protocol, generating 5
poses per docked molecule. In the second step, the polarizable
ligand charges induced by the protein field were calculated
with QSite software which is coupled with Jaguar quantum
mechanics engine (Jaguar, version 7.8, Schrödinger LLC, New
York, NY, 2011). In this regard, the QM charge calculations of
the best scoring poses for each ligand were carried out using
density functional theory (DFT) method with the B3LYP/6-
31G∗/LACVP∗ basis set within the protein environment defined
by the OPLS-2005 force field. Finally, the ligands with modified
partial charges were redocked into the IN active site using Glide
XP mode of docking considering 10 poses for each ligand. The
potential inhibitors were selected based on the lower values of
XP GlideScore and the key interactions between the ligand and
HIV-1 IN active site.

Ligand Binding Energy Calculations
The best docked pose of ligands selected from previous QPLD
calculations were subjected to a subsequent analysis with MM-
GBSA process implemented in Prime software (Prime, version
3.0, Schrödinger LLC, New York, NY, 2011) (Brindisi et al.,
2015). This method was employed to predict binding affinity
and relative free-binding energy (1Gbind) between ligands and
HIV-1 IN with further accuracy. The MM-GBSA approach
combines MM energies with a continuum solvent generalized

Born (GB) model for polar solvation and with a solvent-
accessible surface area (SASA) for non-polar solvation term.
In this way, the best ligand poses were subjected to energy
minimization by local optimization feature in the Prime. During
this process, the ligand strain energy was also considered. Ligand
binding energies were calculated using the OPLS-2005 force field
and generalized-Born/surface area continuum solvent model as
previously reported by us (Brindisi et al., 2015, 2016; Maquiaveli
et al., 2016; Brogi et al., 2017a; Vallone et al., 2018).

Molecular Dynamics Simulation
MD simulations studies were performed by means of Desmond
4.8 academic version, provided by D. E. Shaw Research
(“DESRES”), using Maestro as graphical interface (Desmond
Molecular Dynamics System, version 4.8, D. E. Shaw Research,
New York, NY, 2016. Maestro-Desmond Interoperability Tools,
version 4.8, Schrödinger, New York, NY, 2016). The calculation
was performed using the Compute Unified Device Architecture
(CUDA) API (Nickolls et al., 2008) employing two NVIDIA
GPU (Brindisi et al., 2019). The calculation was performed
on a system comprising 72 Intel Xeon E5-2695 v4@2.10 GHz
processors and two NVIDIA GeForce 1070 GTX GPU. The
complexesHPCAR-28/IN,HPCAR-89/IN, andHPCAR-142/IN
were prepared by Protein Preparation Wizard protocol. The
complexes were positioned into an orthorhombic box filled
with water (TIP3P model). OPLS_2005 force field was used in
MD calculation. The physiological concentration of monovalent
ions (0.15M) was simulated by adding Na+ and Cl− ions.
Constant temperature (300K) and pressure (1.01325 bar) were
employed with NPT (constant number of particles, pressure, and
temperature) as ensemble class. RESPA integrator (Humphreys
et al., 1994) was used in order to integrate the equations of
motion, with an inner time step of 2.0 fs for bonded interactions
and nonbonded interactions within the short-range cut-off.
Nose-Hoover thermostats (Hoover, 1985) were used to maintain
the constant simulation temperature, and the Martyna-Tobias-
Klein method (Martyna et al., 1994) was used to control the
pressure. Long-range electrostatic interactions were evaluated
adopting particle-mesh Ewaldmethod (PME). The cut-off for van
der Waals and short-range electrostatic interactions was set at
9.0 Å. The equilibration of the systems was performed with the
default protocol provided in Desmond, which consists of a series
of restrained minimizations and MD simulations used to slowly
relax the system. By following this protocol, a single trajectory of
100 ns was obtained. We performed five independent MD runs
for each mentioned complex with an aggregate simulation time
of 0.5µs to provide more reliable results. The trajectory files were
investigated by simulation interaction diagram tools, simulation
quality analysis and simulation event. The described applications
were used to generate all plots regardingMD simulations analysis
included in the manuscript as reported in the Results and
Discussion section.

Chemistry
All reactants and reagents were purchased from Alfa Aesar and
Sigma–Aldrich as “synthesis grade.” Chemical reactions were
monitored by analytical thin-layer chromatography (TLC) using
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several solvent systems with different polarity onMerck Silica Gel
60 F254 (0.040–0.063mm) with detection by UV.Merck Silica Gel
60 (0.040–0.063mm) was used for column chromatography. 1H
NMR and 13C NMR spectra were recorded on a Varian 300 MHz
(USA) spectrometer using the residual signal of the deuterated
solvent as internal standard. Splitting patterns of signals are
indicated as singlet (s), doublet (d), triplet (t), multiplet (m),
broad (br), and doublet of doublet (dd). The values of chemical
shifts (δ) are reported in ppm and coupling constants (J) in
hertz (Hz). Electrospray ionization-mass spectrometric (ESI-MS)
were acquired with an Agilent 1100 series LC/MSD spectrometer
equipped with a multimode ion source and by using methanol
as solvent.

3-(Benzyloxy)-6-Methyl-4-oxo-4H-Pyran-2-

Carboxylic Acid, BPCA
This key carboxylic acid intermediate was prepared according to
a previously reported procedure (Sirous et al., 2019).

Procedures for the Synthesis of Amine Fragments

AM (1–3)
With the aim of synthesizing the representative hit candidates,
three kinds of different amine fragments were applied for
amide coupling with the carboxylic acid functional group of
intermediate BPCA. The required amine compounds were
synthesized using the following methods.

Procedure for the Preparation of

(3-Fluoro-5-(pyridin-2-yl)phenyl)methanamine (AM-1)

3-Fluoro-5-(pyridin-2-yl)benzonitrile (3)
Starting from 2-bromopyridine 1, a Suzuki coupling with (3-
cyano-5-fluorophenyl)boronic acid 2 catalyzed by tetrakis (tri-
phenylphosphine) palladium (0) provided the phenyl-pyridine
derivative 3. In this reaction tetrakis was generated in situ
from palladium (II) acetate and triphenylphosphine (Tan et al.,
2014). To a vigorously stirred yellowish solution of palladium
(II) acetate (0.28 g, 1.26 mmol, 0.2 eq) and triphenylphosphine
(1.66 g, 6.33 mmol, 1 eq) in 4mL dioxane/water (3:1), a premixed
solution of 2-bromopyridine 1 (1.00 g, 6.33 mmol, 1 eq) in
dioxane (50mL), and a solution of potassium carbonate (2.62 g,
19 mmol, 3 eq) in water (28mL) was added. The reaction
mixture was allowed to stir for 15min under N2. This step was
followed by the drop-wise addition of a solution of (3-cyano-5-
fluorophenyl)boronic acid 2 (1.15 g, 6.96 mmol, 1.1 eq) in 8mL
dioxane/water (4:1) via a syringe. After the final addition, the
reaction mixture was refluxed at 100◦C in an oil bath under
N2. The progression of the reaction was monitored by TLC. The
reactionwas completed after 24 h. After that, the reactionmixture
was cooled down to the room temperature and subsequently
filtered through a short Celite pad. The filter cake was washed
with dichloromethane (25mL). The filtrate solution was diluted
with water and extracted with dichloromethane (3 × 100mL).
The organic layers were combined, dried over sodium sulfate,
filtered and then evaporated in vacuo to yield a crude product.
The crude product was purified by flash chromatography on silica
gel, eluting with 9:1 petroleum ether: ethyl acetate, to give 3 as a
white solid (Tan et al., 2014). Yield: 64%, 1H NMR (300 MHz,

CDCl3) δ (ppm): 8.75 (1H, d, J = 6.25Hz, C6′-H), 8.42 (1H, d, J
= 6.00Hz, C4-H), 7.80 (2H, s, C6-H, and C2-H), 7.62–7.72 (1H,
m, C4′-H), 7.22–7.40 (2H, m, C3′-H and C5′-H).

(3-Fluoro-5-(pyridin-2-yl)phenyl)methanamine (AM-1)
Dry NiCl2 was prepared from hydrated NiCl2. In this way,
NiCl2•6H2O was used after drying in an oven at 250◦C until
its color turned from green to golden yellow. Then, it was
powdered and stored in a vacuum desiccator for reaction. In
a typical procedure (Caddick et al., 2003), nitrile compound
3 (0.2 g, 1.00 mmol, 1 eq) and anhydrous nickel (II) chloride
(0.13 g, 1 mmol, 1 eq) were dissolved in dry ethanol (8mL).
Then, sodium borohydride (0.11 g, 3 mmol, 3 eq) was cautiously
added in three portions to the vigorously stirred reaction mixture
at room temperature. A black precipitate appeared during the
addition of NaBH4. When the addition of NaBH4 was completed,
stirring was continued and the progress of the reaction was
monitored by TLC. After the complete disappearance of the
nitrile compound in almost 15min, the reaction mixture was
filtered through a Celite pad. The filtered nickel boride precipitate
was washed with ethanol (10mL). The filtrate was collected,
diluted with water (30mL), and extracted with ethyl acetate
(3 × 30mL). The organic phase was combined, dried over
sodium sulfate, filtered and concentrated on a rotary vacuum
evaporator to afford a crude product. The crude product
was purified by flash chromatography on silica gel, eluting
with 4:1 chloroform:methanol to give the corresponding amine
compound AM-1 as a white solid (Caddick et al., 2003). Yield:
65%, 1HNMR (300MHz, DMSO-d6) δ (ppm): 8.66 (2H, s, NH2),
8.12 (1H, d, J = 6Hz, C6′-H), 7.69–7.98 (3H, m, Ar), 7.59–7.70
(1H, br, C4′-H), 7.20–7.40 (2H, m, C3′-H and C5′-H), 4.76 (2H,
s, CH2NH2).

Procedure for the Preparation of

(3-(2-methyl-1H-imidazol-4-yl)phenyl)methanamine

(AM-2)

4,5-Dibromo-2-methyl-1H-imidazole (5)
2-Methyl-1H-imidazole 4 (10 g, 0.122mol) was dissolved in
300mL chloroform and cooled to the temperature between 0
and −5◦C using salty ice bath. 48.66 g (15.60mL, 0.305mol)
bromine was added to the reaction mixture drop-wise via a
dropping funnel over 20min. The reaction mixture was allowed
to stir at room temperature. The progression of the reaction
was monitored by TLC. The reaction was completed after
20 h. During this time, the reaction product precipitated as an
orange solid. In the next step, the reaction mixture was cooled
to 0◦C in a salty ice bath and 250mL of NaOH (2N) was
added drop-wise to the reaction mixture in order to quench
unreacted bromine. The orange precipitate was filtered off and
washed with water, dried in vacuo at 40◦C for 12 h to give the
yellow solid of 5 (Alonso-Alija et al., 2003). Yield: 43%, 1H
NMR (300 MHz, DMSO-d6) δ (ppm): 8.68 (1H, brs, NH), 2.39
(3H, s, CH3).

4-Bromo-2-methyl-1H-imidazole (6)
4,5-Dibromo-2-methyl-1H-imidazole 5 (5.0 g, 20.84 mmol) was
suspended with sodium sulfite (80 g, 635 mmol) in 200mL water
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and 100mL ethanol. The suspension was refluxed at 100◦C in
an oil bath. The progression of the reaction was monitored by
TLC. The reaction was completed after 48 h and the reaction
mixture was extracted with ethyl acetate (3 × 100mL). The
organic phases were collected, dried over sodium sulfate, filtered
and then evaporated in vacuo to yield a white solid as pure
product 6 (Alonso-Alija et al., 2003). Yield: 75%, 1H NMR (300
MHz, DMSO-d6) δ (ppm): 12.00 (1H, brs, NH), 7.05 (1H, d, J =
1.80Hz, C5-H), 2.21 (3H, s, CH3).

3-(2-Methyl-1H-imidazol-4-yl)benzonitrile (8)
Nitrile compound 8 was synthesized according to same Suzuki
procedure described for the preparation of compound 3 (Tan
et al., 2014). Briefly, starting from a solution of palladium
(II) acetate (0.42 g, 1.86 mmol, 0.2 eq) and triphenylphosphine
(2.44 g, 9.32 mmol, 1 eq) in 6mL dioxane/water (5:1), a
solution of bromo-imidazole derivative 6 (1.5 g, 9.32 mmol,
1 eq) in dioxane (70mL), a solution of potassium carbonate
(3.87 g, 28 mmol, 3 eq) in water (40mL) and a solution of (3-
cyanophenyl) boronic acid 7 (1.51 g, 10.252 mmol, 1.1 eq) in
10mL dioxane/water (5:1) were used in Sequence. Crude product
was purified by flash chromatography on silica gel using 3:1
petroleum ether: ethyl acetate as the eluent to yield 8 as a white
solid (Tan et al., 2014). Yield: 70%, 1H NMR (300 MHz, DMSO-
d6) δ (ppm): 11.95 (1H, brs, NH), 8.10 (1H, s, C2′-H), 8.00 (1H,
d, J = 9.40Hz, C6′-H), 7.45–7.68 (3H, m, C5-H, C4′-H, C5′-H),
2.20 (3H, s, CH3). ESI-MS (+) m/z (%): 183.9 [M+H]+ (100).

(3-(2-Methyl-1H-imidazol-4-yl)phenyl)methanamine

(AM-2)
Amine compound AM-2 was synthesized according to the
same procedure described for reduction of nitrile 3 to the
corresponding primary amine AM-1 (Caddick et al., 2003). In
this way, starting from nitrile compound 8 (0.5 g, 2.73 mmol,
1 eq), 0.353 gr (2.73 mmol, 1 eq) of anhydrous nickel (II)
chloride, and 0.31 g (8.19 mmol, 3 eq) sodium borohydride were
used. The purification was performed via silica flash column
chromatography using 4:1 chloroform: methanol as the eluent
to yield the corresponding amine product AM-2 as a white
solid (Caddick et al., 2003). Yield: 61%, 1H NMR (300 MHz,
DMSO-d6) δ (ppm): 11.72 (1H, brs, NH), 7.70–8.50 (5H, m, C5-
H, C2′-H, C4′-H, C5′-H and C6′-H), 3.70 (2H, s, CH2NH2),
2.25 (3H, s, CH3).

Procedure for the Preparation of

(3-(1H-pyrrol-1-yl)phenyl)methanamine (AM-3)

3-(1H-Pyrrol-1-yl)benzonitrile (11)
Phenylpyrrole 11 was synthesized through a Clauson–Kaas
reaction with 3-aminobenzonitrile 9 (Chatzopoulou et al., 2013).
To a solution of 3-aminobenzonitrile 9 (1.00 g, 8.46 mmol, 1
eq) in 15.0mL of 1,4-dioxane, 2,5-dimethoxytetrahydrofuran 10

(1.23 g, 9.306 mmol, 1.1 eq) dissolved in 7.0mL of 1,4-dioxane
were added. The reaction mixture was refluxed for 5min, and
then 3mL of hydrochloric acid 5N was added drop-wise. The
reaction mixture was refluxed for 25min until the reaction was
completed. After cooling to room temperature, water was added
to the reaction mixture. The reaction mixture was extracted with

dichloromethane (3 × 50mL). The organic layer was dried over
anhydrous sodium sulfate, filtered, and concentrated in vacuo.
Flash chromatography on silica gel, eluting with 4:1 petroleum
ether: ethyl acetate, afforded compound 11 as an amorphous
white solid (Chatzopoulou et al., 2013). Yield: 82%, 1HNMR (300
MHz, CDCl3) δ (ppm): 7.48–7.52 (4H, m, Ar), 7.08 (2H, t, J =
3.00Hz, C2′-H, C5′-H), 6.79 (2H, t, J = 3.00Hz, C3′-H, C4′-H).

(3-(1H-Pyrrol-1-yl)phenyl)methanamine (AM-3)
Amine compound AM-3 was synthesized according to the
same procedure described for the reduction of nitrile 3 to the
corresponding primary amine AM-1 (Caddick et al., 2003). In
this way, starting from nitrile 11 (0.5 g, 2.97 mmol, 1 eq),
0.385 g (2.97 mmol, 1 eq) of anhydrous nickel (II) chloride, and
0.337 g (8.91 mmol, 3 eq) sodium borohydride were used. The
purification was performed via silica column chromatography
using 4:1 chloroform: methanol as the eluent to yield the
corresponding amine AM-3 as a white solid (Caddick et al.,
2003). Yield: 75%, 1H NMR (300 MHz, DMSO-d6) δ (ppm): 7.52
(1H, s, C2-H), 7.27–7.42 (4H, m, 3H: C3-H, C4-H and C5-H;
1H: C2′-H), 7.18 (1H, d, J = 4.40Hz, C5′-H), 6.24 (2H, s, C3′-H,
C4′-H), 3.77 (2H, s, CH2NH2).

General Procedure for the Synthesis of

3-(benzyloxy)-6-methyl-N-(Substituted

benzyl)-4-oxo-4H-pyran-2-carboxamide Derivatives,

BPCAR
To a vigorously stirred suspension of intermediate BPCA

(100mg, 0.38 mmol, 1 eq) in dry dichloromethane (8mL),
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
(EDCI) (72.5mg, 0.38 mmol, 1 eq) was added and the mixture
was stirred for 30min under N2 to provide a clear yellow solution.
Then, N-hydroxysuccinimide (NHS) (43.7mg, 0.38 mmol, 1 eq)
was added to the stirring solution and the mixture was allowed
to stir for 3 h under N2 to produce the activated ester 12 as
reported in the Chemistry details in the Result and Discussion
section. After this step and complete consumption of the starting
material BPCA, desired prepared amine fragment (1.5 eq) was
added to the reaction mixture. The reaction was stirred at
room temperature for 3 days under N2. During this time, the
progression of the reaction was monitored by TLC. Then, the
reaction mixture was poured into a separatory funnel and the
dichloromethane layer was washed with water (2 × 20mL).
The organic phase was collected, dried over anhydrous sodium
sulfate, filtered, and concentrated in vacuo to yield a crude
solid. The obtained solid was purified via silica flash column
chromatography to give the desired carboxamide product as a
pure substance (Sheehan et al., 1965; Sirous et al., 2019).

3-(Benzyloxy)-N-(3-fluoro-5-(pyridin-2-yl)benzyl)-6-

methyl-4-oxo-4H-pyran-2-carboxamide

(BPCAR-28)
Carboxamide derivative BPCAR-28 was prepared according to
the general procedure, using amine compound AM-1 (115mg,
0.57 mmol, 1.5 eq). The purification of the crude product using
silica flash column chromatography, eluting with 1:1 petroleum
ether: ethyl acetate solution, afforded the carboxamide product
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BPCAR-28 as a white solid. Yield: 44%, 1H NMR (300 MHz,
CDCl3) δ (ppm): 8.74 (1H, d, J = 5.5Hz, C6′-H), 8.18(1H, brs,
NHCH2), 7.88 (1H, d, J = 5.5Hz, Ar: C4-H), 7.76 (2H, s, Ar: C2-
H and C6-H), 7.18–7.40 (6H, m, 5H: OCH2C6H5; 1H: C4′-H),
7.02–7.16 (2H, m, C3′-H and C5′-H), 6.24 (1H, s, C5-H), 5.36
(2H, s, OCH2-C6H5), 4.44 (2H, d, J = 8.00Hz, NHCH2-C6H4),
2.38 (3H, s, 6-CH3).

3-(Benzyloxy)-6-methyl-N-(3-(2-methyl-1H-imidazol-

4-yl)benzyl)-4-oxo-4H-pyran-2-carboxamide

(BPCAR-89)
Carboxamide derivative BPCAR-89 was prepared according to
the general procedure, using amine compound AM-2 (0.107 g,
0.57 mmol, 1.5 eq). The purification of the crude product using
silica flash column chromatography, eluting with 1:1 petroleum
ether: ethyl acetate solution, afforded the carboxamide product
BPCAR-89 as a white solid. Yield: 38%, 1H NMR (300 MHz,
Acetone-d6) δ (ppm): 8.41 (1H, brs, NHCH2), 7.82 (1H, s,
C2′-H), 7.70 (1H, d, J = 12.00Hz, C4′-H),7.23–7.40 (7H, m,
5H:OCH2-C6H5; 2H: C5′-H and C6′-H), 7.18 (1H, d, J =

12.00Hz, C5
′′

-H), 6.28 (1H, s, C5-H), 5.30 (2H, s, OCH2-C6H5),
4.50 (2H, d, J = 6.00Hz, NHCH2-C6H4), 2.40 (3H, s, CH3), 2.24
(3H, s, CH3).

N-(3-(1H-Pyrrol-1-yl)benzyl)-3-(benzyloxy)-6-methyl-

4-oxo-4H-pyran-2-carboxamide

(BPCAR-142)
Carboxamide derivative BPCAR-142 was prepared according to
the general procedure, using amine compound AM-3 (98.2mg,
0.57 mmol, 1.5 eq). The purification of the crude product using
silica flash column chromatography, eluting with 1:1 petroleum
ether: ethyl acetate solution, afforded the carboxamide product
BPCAR-142 as a white solid. Yield: 48%, 1H NMR (300 MHz,
CDCl3) δ (ppm): 8.12 (1H, t, J = 8.00Hz, NHCH2), 7.16–
7.38 (8H, m, 5H: OCH2C6H5; 3H: C2′-H, C4′-H and C5′-H),
7.01–7.08 (3H, m, 2H: C2

′′

-H, C5
′′

-H; 1H: C6′-H), 6.36 (2H,
t, J = 3.00Hz, C3

′′

-H, C4
′′

-H), 6.25 (1H, S, C5-H), 5.32 (2H,
s, OCH2C6H5), 4.46 (2H, d, J = 8.30Hz, NHCH2C6H4), 2.35
(3H, s, 6-CH3).

General Procedure for the Synthesis of

3-hydroxy-6-methyl-N-(substituted

benzyl)-4-oxo-4H-pyran-2-carboxamide derivatives,

HPCAR
40mg of each of the desired BPCAR derivatives was dissolved
in dry dichloromethane (3mL) and flushed with nitrogen. Then,
the reaction mixture was cooled to the temperature between
0 and −5◦C in salty ice bath and the 1M solution of boron
tribromide in dichloromethane (3 eq) was slowly added drop-
wise via a syringe. The reaction mixture was allowed to stir at
room temperature and the reaction progress was monitored by
TLC. The reaction was completed after almost 3 h. The excess
BBr3 was eliminated at the end of the reaction by the addition
of cold methanol (5mL) to the reaction mixture at 0◦C and
left to stir for half an hour. The mixture was concentrated to
dryness in vacuum and the residue was dissolved several times
in methanol and evaporated. This residue was purified by flash

column chromatography to afford the final pure product (Ma and
Hider, 2015; Sirous et al., 2019).

N-(3-Fluoro-5-(pyridin-2-yl)benzyl)-3-hydroxy-6-

methyl-4-oxo-4H-pyran-2-carboxamide

(HPCAR-28)
Compound HPCAR-28 was prepared according to the general
debenzylation procedure, starting from compound BPCAR-28

(40mg, 0.09mmol, 1 eq) and 1M solution of boron tribromide in
CH2Cl2 (46µL, 0.27mmol, 3 eq). Purification using flash column
chromatography (eluent: dichloromethane: methanol; 80:20 v/v)
afforded a white solid as final product HPCAR-28. Yield: 71%,
1HNMR (300 MHz, DMSO-d6) δ (ppm): 8.60 (1H, d, J = 5.5Hz,
C6′-H), 8.12 (1H, brs, NHCH2), 7.74 (1H, d, J = 5.5Hz, Ar:
C4-H), 7.62 (2H, s, Ar: C2-H and C6-H), 7.12–7.34 (1H, br,
C4′-H), 7.00–7.13 (2H, m, C3′-H and C5′-H), 6.22 (1H, s, C5-
H), 4.34 (2H, d, J = 8.00Hz, NHCH2-C6H4), 2.34 (3H, s, 6-
CH3).

13C NMR (DMSO-d6) δ (ppm): 173.55 (4-C=O), 164.84
(CONH), 162.72 (C-3), 162.48 (Ar: C3′-F, d,

1JC−F: 220.4Hz),
152.15 (Ar), 147.39 (Ar), 144.05 (C-2), 143.86 (Ar), 136.14 (C-6),
132.32 (Ar), 132.12 (Ar), 124.00 (Ar), 123.09 (Ar), 122.28 (Ar),
116.60 (Ar), 114.11 (Ar), 108.63 (C-5), 42.04 (NHCH2), 19.31
(6-CH3). ESI-MS (+) m/z (%): 355.3 [M+H]+ (100).

3-Hydroxy-6-methyl-N-(3-(2-methyl-1H-imidazol-4-

yl)benzyl)-4-oxo-4H-pyran-2 carboxamide

(HPCAR-89)
Compound HPCAR-89 was prepared according to the general
procedure described above, starting from compound BPCAR-89

(40mg, 0.09mmol, 1 eq) and 1M solution of boron tribromide in
CH2Cl2 (46µL, 0.27mmol, 3 eq). Purification using flash column
chromatography (eluent: dichloromethane: methanol; 80:20 v/v)
afforded a white solid as final product HPCAR-89. Yield: 82%,
1H NMR (300 MHz, DMSO-d6) δ (ppm): 11.80 (1H, brs, NH
of imidazole ring), 10.63 (1H, brs, NHCH2),7.60 (1H, s, C2′-
H), 7.58 (1H, d, J = 12.00Hz, C4′-H), 7.38 (1H, s, C5"-H),
7.20 (1H, t, J = 12.00Hz, C5′-H), 7.05 (1H, d, J = 12.00Hz,
C6′-H), 6.20 (1H, s, C5-H), 4.40 (2H, d, J = 6.00Hz, NHCH2-
C6H4), 2.24 (6H, s, CH3-a and CH3-b).

13C NMR (DMSO-d6)
δ (ppm): 173.53 (4-C=O), 164.78 (CONH), 162.72 (C-3), 156.60
(C3H4N2: C2), 151.02 (C3H4N2: C5), 147.44 (C-2), 142.54 (Ar),
136.14 (C-6), 134.64 (Ar), 129.47 (Ar), 128.30 (Ar), 125.52 (Ar),
123.14 (C3H4N2: C4), 117.21 (Ar), 112.65 (C-5), 41.53 (NHCH2),
19.30 (6-CH3), 16.60 (CH3-C3H4N2). ESI-MS (+) m/z (%): 340.1
[M+H]+ (100).

N-(3-(1H-Pyrrol-1-yl)benzyl)-3-hydroxy-6-methyl-4-

oxo-4H-pyran-2-carboxamide

(HPCAR-142)
Compound HPCAR-142 was prepared according to the general
procedure, starting from compound BPCAR-142 (40mg, 0.096
mmol, 1 eq) and 1M solution of boron tribromide in CH2Cl2
(49 µL, 0.288 mmol, 3 eq). Purification using flash column
chromatography (eluent: dichloromethane: methanol; 80:20 v/v)
afforded a white solid as final product HPCAR-142. Yield:
86%, 1H NMR (300 MHz, DMSO-d6) δ (ppm): 10.30 (1H, brs,
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NHCH2), 7.2–7.56 (4H, m, C2′-H, C4′-H, C5′-H, C6′-H), 7.0–
7.20 (2H, m, C2′′-H, C5′′-H), 6.23 (2H, d, J = 7.50Hz, C3′′-H,
C4′′-H), 6.18 (1H, s, C5-H), 4.50 (2H, d, J = 7.00Hz, NHCH2),
2.30 (3H, s, 6-CH3).

13C NMR (DMSO-d6) δ (ppm): 173.55
(4-C=O), 164.79 (CONH), 162.72 (C-3), 147.51 (C-2), 142.52
(Ar), 136.19 (C-6), 135.31 (Ar), 128.90 (Ar), 124.37 (Ar), 120.05
(C4H4N: C2, C5), 119.30 (Ar), 117.43 (Ar), 112.67 (C-5), 108.77
(C4H4N: C3, C4), 41.96 (NHCH2), 20.65 (6-CH3). ESI-MS (+)
m/z (%): 324.9 [M+H]+ (30), 346.7 [M+Na]+ (100).

Biological Evaluation
Integrase Assays
The enzymatic integration reactions were carried out as
previously described with minor modifications (Debyser et al.,
2001; Christ et al., 2011). To determine the susceptibility of the
HIV-1 IN enzyme to different compounds, an enzyme-linked
immunosorbent assay (ELISA) adapted from Hwang et al. was
used (Hwang et al., 2000). The overall integration assay uses
an oligonucleotide substrate for which one oligonucleotide (5′-
ACTGCTAGAGATTTTCCACACTGACTAAAAGGGTC-3′) is
labeled with biotin at the 3′ end and the other oligonucleotide
(5′-GACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGT-
3′) is labeled with digoxigenin at the 5′ end. For the strand
transfer assay, a pre-cleaved oligonucleotide substrate (the
second oligonucleotide lacks GT [underlined] at the 3′ end)
was used. The IN enzyme was diluted in 750mM NaCl, 10mM
Tris (pH: 7.6), 10% glycerol, and 1mM β-mercaptoethanol. To
perform the reaction, 4 µL of diluted IN (corresponding to a
concentration of 1.6µM) and 4 µL of annealed oligonucleotides
(7 nM) were added in a final reaction volume of 40µL containing
10mM MgCl2, 5mM dithiothreitol, 20mM HEPES (pH 7.5),
5% polyethylene glycol, and 15% dimethyl sulfoxide. As such,
the final concentration of IN in this assay was 160 nM. The
reaction was carried out for 1 h at 37◦C. Reaction products were
denatured with 30mM NaOH and detected by ELISA on avidin-
coated plates. For determining the effect of compounds on the
3′-processing activity a classical cleavage assay with detection
of products by denaturing gel electrophoresis was performed as
described previously (Debyser et al., 2001; Christ et al., 2011).
Briefly, 0.2 pmol of the radioactive labeled oligonucleotide
substrate (INT1, 32P-5′ TGTGGAAAATCTCTAGCAGT3′;
INT2, 5′ACTGCTAGAGATTTTCCACA 3′) and 10 nmol IN
in a final volume of 10 µL was incubated for 1 h at 37◦C.
The final reaction mixture contained 20mM HEPES (pH
7.5), 5mM dithiothreitol (DTT), 10mM MgCl2, 0.5% (v/v)
polyethylene glycol 8000, 15% DMSO. IN was diluted previously
in 750mM NaCl, 10mM Tris (pH 7.6), 10% glycerol and
1mM β-mercaptoethanol. The reactions were stopped by the
addition of formamide loading buffer (95% formamide, 0.1%
xylene cyanol, 0.1% xylene cyanol, 0.1% bromophenol blue,
and 0.1% sodium dodecyl sulfate). Samples were loaded on
a 15% denaturing polyacrylamide/ureum gel. The extent of
3′-processing or DNA strand transfer was based on measuring
the respective amounts of −2 bands or strand transfer products
relative to the intensity of the total radioactivity present in
the lane. These data were determined using the OptiQuant

Acquisition and Analysis software (Perkin Elmer Corporate,
Fremont, CA).

In vitro Anti-HIV and Drug Susceptibility Assays
The inhibitory effect of antiviral drugs on the HIV-induced
cytopathic effect (CPE) in human lymphocyte MT-4 cell culture
was determined by the MT-4/MTT-assay (Pauwels et al., 1988).
This assay is based on the reduction of the yellow colored 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
by mitochondrial dehydrogenase of metabolically active cells
to a blue formazan derivative, which can be measured
spectrophotometrically. The 50% cell culture infective dose of
the HIV strains was determined by titration of the virus stock
using MT-4 cells. For the drug susceptibility assays, MT-4 cells
were infected with 100–300 50% cell culture infective doses of
the HIV strains in the presence of 5-fold serial dilutions of the
antiviral drugs. The concentration of the compound achieving
50% protection against the CPE of HIV, which is defined as the
50% effective concentration (EC50), was determined. In parallel,
the concentration of the compound destroying 50% of the MT-4
cells, which is defined as the 50% cytotoxic concentration (CC50),
was determined as well.

RESULTS AND DISCUSSION

The main purpose of the present study is to identify novel
chemical entities derived from HPCARs scaffold as new
and useful hit compounds as HIV-1 INIs. Accordingly, an
integrated computational protocol based on combinatorial
library design protocol, physico-chemical properties prediction,
molecular docking calculations, and MD simulation was
developed in a stepwise filtering approach (Figure 3). The
identified hit compounds were synthesized and submitted to
biological evaluation in order to validate the proposed in
silico strategy.

Generation of Combinatorial Hits Using
CombiGlide
As the first step of the developed in silico protocol, HPCAR
derivatives with n = 1 or 2 (Figures 2, 3) were submitted to
CombiGlide software as a combinatorial docking tool. In each
case, combinatorial virtual screening was applied in order to
replace the aromatic groups of the original core, applying side-
chain hopping method. The prepared sets of amine fragments,
available in the library of reagents, were used to replace the
original substituents at each defined attachment point (Figure 3).
Variation in aromatic group resulted in the generation of a
combinatorial library of more than 37,000 hit compounds for
each studied core-containing molecule. The compounds from
each new combinatorial library were sorted by GlideScore values.
Only derivatives with score values lower than −6.0 kcal/mol
were considered. The selected molecules were further analyzed
by visual inspection to find compounds with an appropriate
binding mode according to the key interactions found for HIV-1
INIs. From this first filter, 1,803 combinatorial compounds were
chosen for the next step.
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Molecular Properties Prediction
One of the major goals in drug discovery is the identification
of innovative small molecular scaffolds exhibiting high
efficacy and selectivity against the desired target along with
a satisfactory ADME-T profile. Thus, the second filter in the
screening workflow consisted in the prediction of the ADME-T
properties and drug-like behavior of the above-mentioned 1,803
compounds using QikProp software. This step was performed
to select molecules possessing satisfactory predicted membrane
permeability (QPPCaco-2 and QPPMDCK models > 100),
appropriate lipophilicity (QPlogP) including capability to
cross the blood brain barrier and drug-likeness properties in
accordance with Lipinski’s rule of five. The potential interaction
with hERG K+ channel (QPlog-HERG) was another key
parameter considered in this step of filtering. 146 out of 1,803
compounds were predicted to have pharmacokinetic properties
in the appropriate range. Moreover, the resulting compounds
were filtered for behaving as PAINS using FAF-Drugs4 tool.
Among 146 compounds, only two molecules contain sub-
structural features that marked them as “frequent hitters” in high
throughput screens. Finally, 144 candidates passed this step of
screening and were chosen for the next step. A list of these top
candidates with improved ADMET properties was provided in
the Table S1.

Quantum Polarized Ligand Docking
Simulation
The resulting 144 potential hit molecules were further
computationally analyzed using QPLD calculations for
guaranteeing a better prediction of their binding mode into
HIV-1 IN active site. This docking protocol could provide a
more accurate treatment of electronic interactions especially
within metalloproteins active site, leading to the improvement of
the accuracy of the docking results (Cho et al., 2005; Illingworth
et al., 2008; Paolino et al., 2018). In this step, the potential
inhibitors were selected based on their lower XP GlideScore
and on the ability to engage in critical interactions in the HIV-1
IN active site. At the end, a total of 76 hit candidates with the
favorable XP GlideScore values were identified (Table S2). As
reported in Table S2, the 76 selected hit molecules showed XP
GlideScore values < −6 kcal/mol (the values of the cut-off filters
for the in silico studies were chosen taking into consideration
the values found for the reference compounds RLT, EVG, and
DTG). The detailed analysis of QPLD results indicated that
these compounds adopt a reasonable interfacial binding mode
similar to that found for the approved HIV-1 INIs, namely RLT,
EVG, and DTG (Rostami et al., 2015; Sirous et al., 2015, 2019).
Consistent with docking models of HP derivatives previously
reported (Sirous et al., 2019), the same interaction pattern was
found for the best docked pose of all the selected hit molecules
within HIV-1 IN active site. In this context, combinatorial hits
perfectly occupied the DNA/IN interface with donor oxygen
triad of MBG interacting with both Mg2+ ions through a
bis-bidentate mode of chelation. This orientation enables the
aromatic side chain of the molecule to sit in a hydrophobic
pocket close to the active site generated by the displacement

of the terminal adenosine on the 3′-end of the viral DNA. As
a result, the terminal aromatic moiety of ligands participates
in π-π stacking interactions with the viral DNA nucleosides,
DC16 and DG4, and favorable hydrophobic contacts with the
amino acids residues of the catalytic loop, Pro145, Gln146, and
Gly149. Particularly, Pro145 and Gln146 are directly involved in
separation of the viral DNA strands upon the ST reaction. This
can reduce the catalytic loopmobility and thus physically hamper
the binding of the host DNA (Dirac and Kjems, 2001; Dolan
et al., 2009). In some cases, further stabilization of the ligand in
the active site was mediated by H-bonds with Asn117, Pro145,
Gln146, and Glu152 as well as nucleoside residues DG4, DC16, and
DA17. For example, HPCAR-40 was involved in hydrogen bond
interactions with Asn117 and Glu152 and HPCAR-144 formed
hydrogen bonds with Gln146 and Glu152. Furthermore, in most
of the docking models, the position of 4-pyran core of ligands
was suitably located to establish strong hydrophobic interactions
such as a π-π stacking with 3′-deoxyadenosine A17 (Table S2).

Prioritization of Hit Compounds Based on
Relative Ligand Binding Energy
Although it is well established that docking calculations are
highly successful in offering reliable ligand poses within the
protein binding site, they often fail to rank compounds with
respect to their binding affinities. This poor correlation may be
due to severe approximations and simplifications employed by
scoring functions of various docking tools. The scoring functions
like GlideScore do not consider some essential thermodynamics
factors in the ligand binding energy calculations such as protein
and ligand solvation energy terms (Pearlman and Charifson,
2001; Taylor et al., 2002). Thus in the subsequent step of
our computational workflow, relative ligand binding energy
calculations using MM-GBSA rescoring method were carried
out on the best docked pose of the ligands obtained from the
previously described docking simulation. This approach may
offer more reliable measuring criteria to prioritize screened HIV-
1 INIs hits for chemical synthesis and biological evaluations as
HIV-1 INIs (Huang et al., 2006). Rescoring using MM-GBSA
leads to minor changes of the ligand conformations within
receptor site. These changes result from minimization of the
ligand in receptor’s environment and consequent stabilization
of receptor-ligand complex. The estimated binding energy
values < −25 kcal/mol were considered to retrieve final set
of combinatorial hits. Final ranking of the ligands in this
step of screening workflow resulted in the identification of 40
top hit compounds as novel HIV-1 INIs, possessing relevant
binding affinities for HIV-1 IN active site. The structures of
these compounds are shown in Table 2. The calculated 1Gbind

of the final selected hits along with their contributions to
total binding energy from various energy components are
provided in Table S3.

Since the screened hit molecules share the same MBG, the
main differences in ligand binding energies values between
these inhibitors could be directly attributed to the hydrophobic
aromatic moieties characterized by significant chemical diversity,
including bicyclic and tricyclic structures. Inspection of energy
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TABLE 2 | Chemical structures of 40 top combinatorial hits identified at the end of computational screening workflow applied in the present study.

Cmpd R1 Cmpd R1 Cmpd R1

HPCAR-1 HPCAR-33 HPCAR-89

HPCAR-2 HPCAR-35 HPCAR-90

HPCAR-6 HPCAR-37 HPCAR-91

HPCAR-7 HPCAR-41 HPCAR-92

HPCAR-8 HPCAR-44 HPCAR-108

HPCAR-14 HPCAR-45 HPCAR-111

HPCAR-15 HPCAR-46 HPCAR-114

HPCAR-22 HPCAR-52 HPCAR-123

HPCAR-23 HPCAR-54 HPCAR-126

HPCAR-25 HPCAR-55 HPCAR-130

(Continued)
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TABLE 2 | Continued

Cmpd R1 Cmpd R1 Cmpd R1

HPCAR-26 HPCAR-56 HPCAR-140

HPCAR-28 HPCAR-66 HPCAR-142

HPCAR-29 HPCAR-69 HPCAR-144

HPCAR-30

Three hit compounds (HPCAR-28, HPCAR-89 and HPCAR-142) were selected from this final set for synthesis and biological assessment.

terms in Table S3 revealed that all selected ligands showed high
values of van der Waals interaction energy (1GbindVdW values),
contributing to the ligand binding energy which emphasizes
critical importance of hydrophobic interactions in the stability of
the ligand–protein complexes.

Validation of Computational Screening
Workflow
In order to validate the developed computational protocol,
three compounds (HPCAR-28, HPCAR-89, and HPCAR-142

in Table 2) from final set of 40 hit candidates were selected
and synthesized. The selection was performed considering the
favorable computational scores, the bindingmodes, the structural
differences and synthetic accessibility. The best docked poses
along with the detailed interaction into the HIV-1 IN active site
of these representative compounds are depicted in Figure 4.

The compounds were able to establish a bis-bidentate
chelation of the Mg2+ ions, strong hydrophobic interactions (π-
π stackings) with the nucleotide DC16 and Pro145. Interestingly,
compounds HPCAR-28 and HPCAR-89 were able to form H-
bonds with DG4 that can further stabilize the binding mode
compared to HPCAR-142. Moreover, the fluorine atom of
HPCAR-28 can guarantee additional interactions within the
binding site with Pro145 and the sidechains of Glu152. This
slightly different pattern of interactions is also highlighted
by the differences in docking scores and 1Gbind values
(HPCAR-28 GlideScore −7.980 kcal/mol and 1Gbind −34.102
kcal/mol; HPCAR-89 GlideScore −6.648 kcal/mol and 1Gbind

−26.777 kcal/mol; HPCAR-142 −6.622 kcal/mol and 1Gbind

−25.759 kcal/mol; as reported in Tables S2, S3). Overall,
the in silico analysis showed that HPCAR-28 and HPCAR-

89 can better interact with the active site of HIV IN with
respect toHPCAR-142.

Regarding the investigation of the binding modes of our
derivatives, in our previous study (Sirous et al., 2019), we
discussed about the mutation of Tyr143 that confers resistance to

RLT. In particular, RLT established interactions with Tyr143 by

its oxadiazole moiety in both binary PFV-IN and modeled HIV-
1 IN complexes. Interestingly, our most promising derivatives

do not possess a moiety that can establish interactions with
this residue (i.e., oxadiazole in RLT). Furthermore, in this study
we investigated also two additional mutations that could confer
resistance to drugs including RLT and DTG, Gln148His and
Gly140Ser. The in silico analysis reported in Figure S1 showed the
superposition of the binding mode of RLT, DTG, and HPCAR-

28 into HIV-1 IN active site. Notably, the only binding mode
that can be strongly influenced by these residues (Tyr143, Gln148,
and Gly140) is the one of RLT. DTG can marginally interact with
the mentioned residues, whileHPCAR-28 is largely distant from
the residues that are responsible of the resistance (distance from
Me of HPCAR-28 to Tyr143 over 5 Å, to Gln148 over 9 Å, to
Gly140 over 10 Å; measured by the measurement tool available
in PyMOL). Remarkably, our HPCAR derivatives (HPCAR-28

and HPCAR-89) can additionally target the nucleotide DC16
and DG4 (Figure 4). This analysis is in perfect agreement with
the experimental data showing a dramatic decrease of affinity of
RLT for mutant HIV-1 IN and a lower decrease of affinity of
DTG. Consequently, it was assumed that the possible mutations
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FIGURE 4 | (Left) Binding modes of HPCAR-28 (purple sticks, A), HPCAR-89 (cyan sticks, B), and HPCAR-142 (yellow sticks, C) in the active site of the modeled

HIV-1 IN, as found by QPLD method. The solid ribbon model shows the backbone of the modeled HIV-IN, and the key amino acids of the binding site are shown as

lines. Two Mg2+ ions are displayed as violet spheres, while the viral DNA strands are depicted in orange. Hydrogen and metal coordination bonds are represented by

dashed lines. These figures were prepared using PyMOL. (Right) Ligand interaction diagrams for the selected compounds. These figures were prepared using Maestro.

of residues Tyr143, Gln148, and Gly140 could not influence the
binding of the HPCAR derivatives to IN.

Molecular Dynamics Simulation Studies
In order to better understand the behavior of the representative
compounds into HIV-IN enzyme for providing more reliable
results about the interactions of HPCAR-28, HPCAR-89, and
HPCAR-142 with HIV-IN, we performed MD simulations
starting from the docked poses reported in Figure 5 (see
Experimental Section for further details).

The three INIs reached an overall stability about after 20
ns. We observed that the pattern of interaction indicated by
the docking calculations are generally maintained during the
MD, confirming HPCAR-28 and HPCAR-89 as more potent
potential INIs with respect to the compound HPCAR-142.
Accordingly, the three compounds maintained the coordination

bond with the Mg2+ ions during the simulation as well as the
hydrophobic interactions with DC16 andDA17. We also observed
that HPCAR-28 and HPCAR-89 were able to establish and
maintain further contacts into the binding site with respect to
the compound HPCAR-142. In fact, the presence of a nitrogen
in the R1 group as in of HPCAR-28 and HPCAR-89 allowed
to the molecules to stabilize their binding mode by forming
further H-bonds with DNA during the simulations. Briefly,
the analysis of the computational studies allowed to propose
HPCAR-28 and HPCAR-89 as more potent INIs with respect to
the compoundHPCAR-142.

In summary, combining different computational techniques
for evaluating the affinity of the compounds for HIV IN binding
site we provided a more comprehensive in silico protocol
improving the probability to identify and select compounds
with relevant affinity for the selected binding site (Brogi et al.,
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FIGURE 5 | RMSD of the complexes HPCAR-28/HIV IN (A), HPCAR-89/HIV IN (B), HPCAR-142/HIV IN (C) (RMSD of the protein in a line formed by blue circles;

RMSD of the ligand in a line formed by red circles). RMSD were calculated between the final conformation and the starting conformation through the 100 ns of

the MD simulation.

2009). Accordingly, the presented screening workflow allowed to
select novel potential HIV-1 INIs based on HPCAR scaffold with
improved predicted pharmacological profile. Taking into account
also the synthetic feasibility three representative hit candidates
were then chosen for the synthesis and then biologically
evaluated for validating the applied computational approach.

Chemistry
In this study, 3-(benzyloxy)-6-methyl-4-oxo-4H-pyran-2-
carboxylic acid, BPCA was used as a key intermediate material
for the preparation of the three selected hit compounds.
Thus, this intermediate was first synthesized starting from
commercially available Kojic acid according to a synthetic
procedure previously employed in our laboratory (Sirous et al.,
2019). On the other hand, three different synthetic routes were
developed for the preparation of the amine fragments needed
for appending desired hydrophobic backbone to BPCA. The
methodologies adopted for the synthesis of amine compounds
AM-(1-3) are outlined in Figures 6–9, respectively.

As described in Figure 6, the synthesis of the amine fragment
AM-1 started using an efficient Suzuki–Miyaura cross-coupling
(SMC) (Tan et al., 2014) by reacting 2-bromopyridine 1 with
phenyl-boronic acid derivative 2 in the presence of tetrakis (tri-
phenylphosphine) palladium (0) as the catalyst, affording the
phenyl-pyridine derivative 3. Subsequently the nitrile group of
resulting compound 3was reduced to the corresponding primary
amine AM-1 by treatment with sodium borohydride and dry
nickel (II) chloride (Khurana and Gogia, 1997; Khurana and
Kukreja, 2002; Caddick et al., 2003).

A four-step synthetic procedure was employed for the
synthesis of the amine fragment AM-2 starting from 2-methyl-
imidazole 4 (Figure 7). The first step of the protocol consisted
of the double bromination of the imidazole ring which afforded
the dibromo-imidazole derivative 5 in a moderate yield. The
selective debromination of the vicinal dibromide 5 employing
sodium sulfite as the reducing agent in aqueous ethanol at
reflux temperature effectively provided product 6 (yield: 75%)
(Khurana and Gogia, 1997; Alonso-Alija et al., 2003). Bromo-
imidazole 6 underwent a classical SM coupling reaction with
phenyl-boronic acid 7, providing phenyl-imidazole derivative
8. Amine fragment AM-2 was finally obtained by reduction of
phenyl-imidazole derivative 8 using sodium borohydride and dry
nickel (II) chloride as described for AM-1 (Caddick et al., 2003).

The amine fragment AM-3 was prepared from commercially
available 3-aminobenzonitrile 9, following Figure 8. A
Clauson–Kaas reaction of 3-aminobenzonitrile 9 with
dimethoxytetrahydrofuran 10 catalyzed by hydrochloric
acid afforded the corresponding 1-phenylpyrrole derivative
11 in a good yield (82%) (Chatzopoulou et al., 2013).
The nitrile functionality of the resulting product was then
reduced in the presence of sodium borohydride and dry
nickel (II) chloride to furnish the desired amine compound
AM-3 (Caddick et al., 2003).

Finally, the representative hit compounds were prepared
by introduction of amine backbones to the benzyl-protected
pyranone BPCA under standard amide coupling conditions
(Sheehan et al., 1965; Sirous et al., 2019). The general
procedure employed for the synthesis of the final compounds
is summarized in Figure 9. The activation of carboxylic acid
group of BPCA as the corresponding derivative 12 using
EDCI and NHS as coupling reagents followed by treatment
with the desired amines led to 2-amido substituted pyranone
analogs BPCAR. The removal of the benzyl protecting group
of the obtained amide derivatives was then accomplished
by reaction with boron tribromide in dichloromethane at
room temperature to obtain three final target products,
HPCAR-28, HPCAR-89, and HPCAR-142, in 71–86% yield
(Kosak et al., 2015; Sirous et al., 2019).

Biological Activity Evaluation
For validating the computational protocol herein presented,
three representative compounds (HPCAR-28, HPCAR-89, and
HPCAR-142) were synthesized and biologically assessed for
HIV-1 IN catalytic inhibitory activity based on an in vitro
enzymatic assay. Given that most HIV-1 INIs such as RLT target
the ST step of the integration reaction, the inhibition of the ST
activity of HIV-1 IN was examined in these assays in addition to
overall HIV-1 IN inhibition. Moreover, assessment of the anti-
HIV-1 potential in MT-4 cells was performed in a multiple round
cell-based antiviral assay. Cytotoxicity of the selected compounds
for the target host cell was also evaluated and their therapeutic
indices were calculated. In these experiments, RLTwas employed
as a reference HIV-1 INI. The results for biological activities of
these hits were summarized in Table 3.

As reported in Table 3, biological evaluation confirmed the
favorable anti-HIV profile for the three newly synthesized
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FIGURE 6 | Procedure applied for the synthesis of the amine fragment AM-1. Reagents and conditions: (a) Pd(OAc)2, PPh3, K2CO3, dioxane/water, 24 h reflux; (b)

NaBH4, NiCl2 (dry), dry ethanol, 25◦C.

FIGURE 7 | Procedure applied for the synthesis of the amine fragment AM-2. Reagents and conditions: (a) Br2, chloroform, 0–25◦C; (b) Na2SO3, ethanol/water, 48 h

reflux; (c) Pd(OAc)2, PPh3, K2CO3, dioxane/water, 24 h reflux (d) NaBH4, NiCl2 (dry), dry ethanol, 25◦C.

FIGURE 8 | Procedure applied for the synthesis of the amine fragment AM-3. Reagents and conditions: (a) 5N HCl, dioxane, 30min reflux; (b) NaBH4, NiCl2 (dry), dry

ethanol, 25◦C.

FIGURE 9 | General procedure applied for the final synthesis of three representative hit compounds based on HPCAR scaffold. Reagents and conditions: (a) NHS,

EDCI, Dichloromethane (dry), 25◦C, 3 h; (b) AR-CH2NH2 (amine compounds used for HPCAR-28, HPCAR-89, and HPCAR-142 are AM-1, AM-2, and AM-3,
respectively), 25◦C, 3 days; (c) BBr3, Dichloromethane (dry), 0–25◦C.
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TABLE 3 | Results for anti-HIV activity, inhibitory potential of HIV-1 IN and cytotoxicity of the synthesized compounds and RLT.

Entry Overall HIV-1 IN activity
inhibition IC50 (µM)a

HIV-1 IN strand transfer
activity inhibition IC50 (µM)b

HIV-1 activity
inhibition EC50 (µM)c

Cellular toxicity
CC50 (µM)d

TIe

HPCAR-28 0.065 ± 0.01 3.37 ± 0.38 0.23 ± 0.18 >250 >1,087

HPCAR-89 0.27 ± 0.1 4.0 ± 0.34 2.34 ± 0.46 >125 >53.4

HPCAR-142 1.97 ± 1.06 17.49 ± 0.13 4.21 ± 0.52 >85.4 >20.3

HPb 0.37 ± 0.17 1.405 ± 0.01 1.72 ± 0.99 >250 >145

HPd 0.7 ± 0.31 1.54 ± 0.2 1.95 ± 0.93 195.5 ± 4.4 100.3

RLT 0.01 0.04 0.013 ± 0.008 >18.329 >1410

a,bConcentration required to inhibit 50% of the in vitro overall and strand transfer integrase activities, respectively.
cEffective concentration in which 50% inhibition is observed.
dCytotoxic concentration in which 50% of the cells are killed.
eTherapeutic index: defined by CC50/EC50 ratio.

entities, which demonstrated the ability to inhibit the catalytic
activities of HIV-1 IN in the low micromolar range and
highlighting the validity of the developed computational protocol
for optimizing the previous developed compound. The positive
influence of hydrophobic moiety modification of HPCAR
derivatives on the inhibitory activity was particularly evident
with phenyl-pyridine substituted derivative HPCAR-28. This
compound emerged as the most potent inhibitor among three
tested compounds with low nanomolar activity against HIV-1
IN (IC50 = 65 nM) as highlighted by the computational studies,
and a 6-fold improvement in anti-IN potency compared to
HPb (Figure 2 and Table 3; IC50 = 0.37µM) (Sirous et al.,
2019). Compounds HPCAR-89 and HPCAR-142 also showed
promising anti-IN activities in the low micromolar range. In
this regard, the incorporation of phenyl-imidazole moiety at
the carboxamide sidechain (compound HPCAR-89) proved to
be also advantageous since it led to a slight enhancement in
HIV-1 IN inhibitory activity (IC50 = 0.27µM) compared to

the respective para-fluorobenzyl amide analog. Although hit
compound HPCAR-142 bearing phenyl-pyrrole fragment was

less active than two other hits in HIV-1 IN inhibition (IC50

= 1.97µM), it is still a promising candidate compound for
further structural optimization. It was also found that synthesized
compounds have the capacity to inhibit the ST step of the HIV-
1 IN in the low micromolar range. These observations were
in agreement with the in silico analysis done, highlighting the
fundamental validity of the developed computational protocol
for optimizing the previous developed compound. Examination
of anti-HIV-1 activity of representative compounds based on cell-
based assay indicated that benzyl group replacement with desired
hydrophobic moieties was well tolerated for the inhibition of
HIV-1 replication as well. According to these results, antiviral
activities are reasonably correlated with HIV-1 IN inhibition
potencies thus confirming the mechanism of action of these anti-
HIV-1 agents. Accordingly, HPCAR-28 showed the best anti-IN
activity and it is the most active hit against HIV-1 infected cells
with an EC50 value of 0.23 µM.

The cytotoxicity assay also showed that the tested compounds
are safe and possess anti-HIV activity at non-cytotoxic
concentrations (CC50 values ranging from 85.4 to >250µM),
thus resulting in favorable therapeutic indices for the investigated

compounds. In particular, the most promising hit compound
(HPCAR-28) revealed an appreciable therapeutic index (TI >

1,087) comparable to that found for RLT (TI > 1,410). On the
contrary, the limited toxicity (>85.4µM) showed by HPCAR-

142 is potentially ascribable to the presence of the pyrrole moiety
that often presents some toxicity.

Overall, these results confirmed that three representative
hit compounds are able to achieve the desired level of
biological activities in terms of reduced toxicity and optimum
inhibitory activities against HIV-1 IN and HIV-1 in cell culture.
Furthermore, it was clearly verified that modification of the
hydrophobic aromatic moiety within the HPCAR derivatives can
lead to differences in HIV-1 IN inhibitory profiles. Moreover, this
research clearly confirms the key role of the in silico drug design
in medicinal chemistry to optimize compounds for a selected
binding site. Remarkably the presented protocol could be easily
translated to different targets in order to find suitable decoration
for optimizing promising hit compounds.

CONCLUSION

In the present study, we have reported the development of
a computational protocol for identifying novel analogs based
on recently disclosed 3-hydroxyl-pyran-4-one-2-carboxamides
(HPCAR) scaffold (Sirous et al., 2019) with improved activity
against HIV-1 IN. In particular, the in silico protocol allowed
us to replace the aromatic hydrophobic moiety of HPCAR with
appropriate hydrophobic aromatic/hetero-aromatic fragments.
To this end, we used a combinatorial side chain hopping
strategy. The resulting compounds (>37,000) were filtered
using different computational methodologies. Filtering criteria
included: appropriate calculated physico-chemical properties,
satisfactory docking score values, visual inspection, lower ligand
binding energies and proper behaviors into the HIV IN binding
site assessed by MD. By using these subsequent filtering tools, we
reduced the number of compounds from 1,803 to 40. Among
the 40 top hit compounds, three HPCAR derivatives were
chosen according to the relevant computational outputs coupled
to a synthetic accessibility. After the synthesis of HPCAR-28,
HPCAR-89, and HPCAR-142, the compounds underwent to
biological evaluation in order to validate the described in silico
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protocol. Gratifyingly, the results of pharmacological studies
showed that the representative hit compounds inhibited HIV-
1 IN in the low micromolar range. Among them, compound
HPCAR-28 showed the best inhibitory activity against HIV-1 IN
as well as the best inhibitory activity against HIV-1 replication
and HIV-1 IN strand transfer process along with a notable
therapeutic index and no appreciable cell toxicity.

These promising and encouraging results provide further solid
support for the potential exploitation of HPCAR scaffold in
the development of anti-retroviral drugs, paving the way to the
discovery of a new class of drugs against HIV-1 IN for treating
HIV infection.
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Pushing the Ligand Efficiency
Metrics: Relative Group Contribution
(RGC) Model as a Helpful Strategy to
Promote a Fragment “Rescue” Effect
Andrés Felipe Vásquez 1,2 and Andrés González Barrios 1*

1Grupo de Diseño de Productos y Procesos (GDPP), School of Chemical Engineering, Universidad de los Andes, Bogotá,

Colombia, 2 Laboratorio de Fisiología Molecular, Instituto Nacional de Salud, Bogotá, Colombia

The ligand efficiency (LE) indexes have long been used as decision-making criteria in drug

discovery and development. However, in the context of fragment-based drug design

(FBDD), these metrics often exhibit a strong emphasis toward the selection of highly

efficient “core” fragments for potential optimization, which are not usually considered

as parts of a larger molecule with a size typical for a drug. In this study, we present a

relative group contribution (RGC) model intended to predict the efficiency of a drug-sized

compound in terms of its component fragments. This model could be useful not only in

rapidly predicting all the possible combinations of promising fragments from an earlier

hit discovery stage, but also in enabling a relatively low-LE fragment to become part of

a drug-sized compound as long as it is “rescued” by other high-LE fragments.

Keywords: ligand efficiency metrics, fragment-based screening, property-based design, drug discovery, protein-
ligand interactions, structure-activity relationship, fragment library

INTRODUCTION

Ligand efficiency metrics have been applied as a decision-making strategy nearly universally
accepted during the last two decades (Hopkins et al., 2014). They are intended to compare
the quality of hits and leads during hit to lead and lead optimization phases of drug
discovery (Cavalluzzi et al., 2017). Among these metrics, the ligand efficiency (LE), firstly
described by Hopkins et al. (2004), continues to be the most widely used index to discriminate
between promising molecules and those which are not (Reynolds, 2015). LE is defined by the
following formula:

LE =

1G

N
(1)

where 1G = –RTInKd, N (also known as HAC or heavy atom count) represents the number of
heavy, non-hydrogen atoms, and Kd corresponds to the equilibrium dissociation constant.

As shown in Equation (1), LE normalizes the potency by size, specifically representing the
average contribution 1G (Gibbs free energy) per heavy atom. LE is typically used in FBDD as
cut-off criterion to retrieve just high-LE fragments in a screening process (Murray and Verdonk,
2006; Schultes et al., 2010). Intriguingly, because LE usually considers fragments as independent
chemical entities, some other metrics have emerged to consider the change in affinity as a
fragment is developed into a larger, high-affinity drug-sized compound. One prime example is
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the group efficiency (GE), described in 2008 (Verdonk and Rees,
2008), which allows measuring the contribution to the binding
efficiency of a particular group of atoms added to an existing
lead molecule:

GE =

11G

1N
(2)

where 11G = 1G(B)-1G(A) and 1N = (N(B)-N(A); in other
words, 11G is equal to the difference between the Gibbs free
energy of the existing molecule (or fragment) “A” and the new
combined molecule “B” and 1N corresponds to the difference
between the number of non-hydrogen atoms of molecules “A”
and “B.” However, GE is based on a pairwise comparison of
structurally closely related compounds and, hence, it is frequently
applied for optimization of a high-efficient fragment (Hopkins
et al., 2014). Therefore, a rapid and simple method for comparing
efficiency of different fragments as part of a whole, including
if they are dissimilar to each other (or if they occupy different
pockets in the target molecule), needs to be developed.

Several independent studies in the past two decades have
indicated an overemphasis on potency by the pharmaceutical
industry (Albert et al., 2007; Hopkins et al., 2014). Still,
other factors such as chemical novelty (Medina-Franco et al.,
2014), selectivity fine-tuning (Costantino and Barlocco, 2018),
structural alerts avoidance (Jasial et al., 2017), and synthetic
accessibility (Fukunishi et al., 2014) are increasingly playing a key
role in drug design. Considering these non-mutually exclusive
events, we hypothesize that fragments that not necessarily exhibit
a high efficiency level during a screening procedure, either virtual
or experimental, would still have the possibility of taking part in
a complete drug-sized compound.

In this study, we propose that a relative group contribution
(RGC) model based on the efficiency of its component fragments
may estimate the efficiency of a drug-sized compound. This
model calculates the minimum efficiency required for unknown
fragments by considering the efficiency of those already known,
which facilitates a rapid elucidation of the best combinations of
fragments. Likewise, this model facilitates that fragments with
a relatively low efficiency may not necessarily be eliminated at
an early stage of the screening process and, consequently, may
become eventually represented as chemical moieties within the
final candidate compound -a phenomenon herein referred to as
fragment “rescue” effect.

THEORETICAL FRAMEWORK OF THE RGC
MODEL

The proposed model is based on three main assumptions:

1. The efficiency of an entire molecule may be estimated as the
weighted root mean square (WMRS) of the efficiency of its
component fragments. The rational for using this type ofmean
is intended to (1) cope with the negative values of 1G and
(2) consider effectively the potentially different number of
non-hydrogen atoms (N) for each component fragment.

2. The efficiency of each fragment (regarded as the entire ratio
and not just the quotient) is, in principle, dependent on each

other, excepting in cases of two fragments when theN for them
is equal to each other (and then their weight is equivalent), or
in cases when three or more fragments are involved.

3. The efficiency of each fragment is directly calculated from the
1G resulting in its direct interaction with a specific location
(i.e., binding site or pocket) in a particular receptor.

Our hypothesis assumes, according to its first principle, that
the WRMS of the LEs of the fragments composing an entire
molecule (LEq) corresponds to the actual LE of this latter
(LET) (A comprehensive list of mathematical terms is shown in
Supplementary Material). Because this mean is intended to be
proportionally similar to the real, total LE of an entire molecule
(LET), we refer herein to it as the apparent total LE (LE

app
T ):

LEq = LE
app
T ≈ LET (3)

For clarity of the RGC concept, we consider first the LE
app
T as a

simple arithmetic mean:

LE
app
T =

1

x
(LE1 + LE2 + LE3 + . . . + LEx) (4)

where LEi corresponds to the LE of the component fragments
(LE1, LE2, etc.), and x refers to the number of fragments
composing the molecule. Therefore, once LE is expressed in
terms of the Equation (1):

LE
app
T =

1

x

(

1G1

N1
+

1G2

N2
+

1G3

N3
+ . . . +

1Gx

Nx

)

∼
=

1GT

xNT
(5)

where1Gi is the change in Gibbs free energy for each composing
fragment (1G1, 1G2, etc.) up to a maximum number of
fragments x and Ni correspond to the number of non-hydrogen
atoms of each fragment. Similarly, 1GT and NT represent the
change in Gibbs free energy and number of non-hydrogen atoms
for the entire molecule, respectively. Should be remembered that
(5) is based on an arithmetic mean and hence it assumes that N
is equal among all composing fragments, so that it would just be
applicable in this specific scenario.

If we consider the Equation (5) for a molecule composed by a
single fragment:

LE
app
T =

1

x

x
∑

i=1

(

1G

N

)

i

= LE1 (6)

we can observe that LE
app
T correspond to the LE value of the

unique component fragment, namely LE1, which supports a
scenario where the component fragment is also the entire “final”
molecule. However, expressing (5) for a molecule composed by
two fragments:

LE
app
T =

1

x

x
∑

i=1

(

1G

N

)

i

=

1

2

2
∑

i=1

(

1G

N

)

i

=

1

2
(LE1 + LE2) (7)

we could notice that, in contrast to the one-fragment case, the
existence of more than one compound allows for the solution of
the equation in terms of a particular fragment:

LE2 = 2LE
app
T − LE1 (8)
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The last equation poses a simple but important principle:
Starting from an “ideal” LE

app
T , a particular low-LE fragment

can be successfully chosen or “rescued” by one or more high-LE
fragments. Now, if we consider a three-fragment case:

LE
app
T =

1

x

x
∑

i=1

(

1G

N

)

i

=

1

3

3
∑

i=1

(

1G

N

)

i

=

1

3
(LE1 + LE2 + LE3)(9)

Interestingly, for this case, even if we assume in this example that
we know LE1, it is still possible to consider a LE value for the
unknown fragments LE2 and LE3 grouping them together into a
single term:

LE
app
T =

1

3
(LE1 + 2LEδ) (10)

where the LE delta (LEδ) corresponds to a transient, “ideal” value
intended to be equal for all the fragments which individual LE is
still unknown. Therefore, as we will discuss below, this value will
be modified as long as new LE values are known for fragments,
independently of their position.

Likewise, assuming also that we just know LE1, we could
express LE

app
T for the two-fragment case:

LE
app
T =

1

2
(LE1 + LEδ) (11)

which would indicate that:

LEδ = LE2 (12)

This result suggests, as we also discuss below, that a LEδ is
expected to equal the LE value of a last fragment to be known
(LEu), independently of the number of fragments and their
position. This behavior corresponds to a subtractive average
(SA). Remarkably, although the nature of LEδ is somewhat
similar to the cumulative average (CA) or moving average (MA),
the number of fragments with unknown LE is continuously
decreasing and LEδ does not “run” within a predetermined
window size.

Finally, assuming also that we just know LE1, we could express
LE

app
T for the one-fragment case:

LE
app
T = [ LE1+0 (LEδ)]=LE1 (13)

indicating that LEδ can only be calculated if there are at least two
starting fragments and, more importantly, it is especially useful
in cases of three or more of them.

At this point, think of the LE
app
T as a whole for an

undetermined series of fragments:

LE
app
T =

1

x
(LE1+. . .+LEx) (14)

If we assume again that we just know LE1, it is possible to
rearrange LE

app
T using LEδ:

LE
app
T =

1

x
[LE1 + (x− 1) LEδ] (15)

where (x-1) corresponds to the coefficient of the LEδ value
independently of the number of starting fragments as shown in
Equations (10, 11, 13). Hence, if we resolve for LEδ:

LEδ=
1

x− 1
(xLE

app
T - LE

1
) (16)

Now, if we take into account that the number 1 in this equation
actually corresponds to the number of known LE values of
fragments or a, we can observe that:

if (x - a)→ 1, then LEδ→ LEu (17)

What means that the more (x-a) tends to 1, the more LEδ tends
to LEu, just as we saw previously in Equation (12). Finally,
considering the formula for LEδ in terms of an undetermined
number of fragments with different known and unknown
LE values:

LEδ=
1

x - a





x
∑

i=1

(

1G

N

)

i

−

a
∑

j=0

(

1G

N

)

j



 (18)

if and only if



















1 ≤ x < ∞

x ∈ N

0 ≤ a < x

a ∈ Z
+

0

where the first summation term indicates the “ideal” sum of LE
values for the existing fragments (LEi) as if they would have the
same value, and the second summation term refers to the “real”
sum of all fragments which LE value is already known (LEj). On
the other hand, if a = o, LE0 would not proceed as a real value
(and by extension the second summation term). Therefore, in this
specific case a consequence would be that:

LEδ=LE
app
T (19)

Now, after having explained the basic concepts of RGC and LEδ,
we could express LE

app
T in terms of the WMRS according to

our hypothesis:

LE
app
T =

√

√

√

√

x
∑

i=1

LE2i wi/

x
∑

i=1

wi=

√

√

√

√

x
∑

i=1

(

1G

N

)2

i

wi/

x
∑

i=1

wi (20)

where LEi corresponds to the LE of each component fragment,
wi refers to the weight of each fragment (depending on the N of
each one) and x refers to the number of fragments.

Likewise, our formula for LEδ would be:

LEδ=
1

√

wδ(x - a)





√

√

√

√

x
∑

i=1

(

1G

N

)2

i

wi−

a
∑

j=0

(

1G

N

)2

j

wj



 (21)

if and only if
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The additional term in this equation, namely Wδ, corresponds to
the “ideal” weight of all fragments with unknown LE value, as if
they would have the same value. Just as with LEδ, this parameter is
expected to change with every new LE value of fragment known,
until the value (weight) corresponding to the last fragment with
unknown LE value is adopted.

FRAGMENT SELECTION AND LET
PREDICTION BY THE RGC MODEL

As presented in a hypothetical example (Figure 1), three central
premises may be elucidated for the RGC model by selecting hit
compounds, starting from a cut-off LE value:

1. A low-efficiency fragment (i.e., with a LE < LE
app
T ) can be

rescued IF there exists high-efficiency fragments (i.e., with a
LE > LE

app
T ) in ALL the other positions (i.e., binding sites

or pockets) of the target molecule, usually a protein. If this
condition is not satisfied, the fragment could be automatically
rejected from the set of possible combinations of fragments for
an entire molecule.

2. If there are no high-efficiency fragments in all the other
positions simultaneously, a molecular fragment with low-
efficiency fragment can still be rescued IF at least one fragment
in any other position with an efficiency high enough to
reach exists, in average with the first, the LE

app
T . This implies,

therefore, that once a fragment is rescued by one or more
high-efficiency fragments in other positions, any fragment
in subsequent unexplored positions is just required to have
a mid-efficiency (with a LE ∼

= LEδ ideal) as a minimum.
Additionally, each time LEδ changes, a differential “pushing”
over the LE of unknown fragments occurs in terms of 1G
and/or N, which could be potentially modified to achieve an
acceptable LE value and could therefore be selected.

3. Even if a low-efficiency fragment is not rescued after
implementing the strategies stated in Equation (1, 2), a
potential rescue could still take place exploring a more diverse
library sample of fragments, assuming that (1) you are dealing
with a number of fragments well-below under the maximum
theoretical chemical space for them (a population of about 107

molecules) and (2) the fragment is not an outlier compared to
other fragments intended to combine.

FIGURE 1 | Application of RGC model to a hypothetical fragment-based drug design (FBDD) campaign. (Upper) In the “standard” or classical screening approach, a

fragment is selected (i.e., can be part of a final drug-size compound) depending exclusively upon their own LE. If this parameter is not equal or greater than a

pre-established cut-off value, the fragment is rejected. (Lower) According to the RGC model, a fragment is selected depending on the fragments on the other

positions. Based on the presence of high-LE fragments in alternative positions (illustrated by yellow boxes), a low-LE fragment may become either rescued or rapidly

discarded (using the dynamic LEδ value in both cases).
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In addition, and according to our preliminary results, we found
that LE

app
T values predicted by this model were consistent

with the LET values calculated experimentally from a set
of 16 drug-sized molecules taken from scientific literature
(Figure 2, Table 1S).

DISCUSSION

The present study pretends to propose the RGC model as
an innovative and effective approach to apply in drug design.
This model and, especially, the fragment “rescue” effect that
is conceptually implicit, offer an alternative for the long-
standing FBDD paradigm of designing compounds merely based
on the intrinsic binding energy of fragments, facilitating the
introduction of other decision–making criteria that are becoming
increasingly common.

If the principles of the RGC model are considered together,
it is possible to elucidate two major advantages. First, we count
on a limited amount of data and in order to more clearly
reveal any trends, LE

app
T appears to increase as much as the

LET, and there appears to be no dramatic shift toward higher
efficiencies for particular fragments or protein targets. Secondly,
since a particular fragment could be directly rejected early in
the process and there are many fragments by pocket in a

typical FBDD campaign, this model might dramatically reduce
the computational and synthetic costs, respectively (which is
especially true in cases of three or more pockets).

The RGC model is, however, not free of inherent
shortcomings. As a LE-derived metric, all fragments are
assumed to maintain equal orientations both individually and as
part of a larger chemical compound (Zartler and Shapiro, 2008),
and phenomena such as hot spots (Zerbe et al., 2012; Rathi
et al., 2017) or synergy (also called “super-additivity”) (Hebeisen
et al., 2008; Nazaré et al., 2012) are not directly considered.
Likewise, because its average-based nature, 1G of each fragment
is normalized not only at the number of non-hydrogen atoms
but also on the number of component fragments. Therefore,
the less accurate (or more extreme) 1G values for fragments in
each position are, the greater the difference expected between the
LE

app
T and the LET. However, we believe that the impact of these

hurdles could be minimized, improving the confidence of any

potential fragment “rescue,” if additional energy terms derived
from rigid body barrier (1Grigid), linker binding (1Gbinding)

or strain (1Gstrain) (Murray and Verdonk, 2006; Cherry and
Mitchell, 2008) are included and the 1G values are both accurate
and above a reasonable cut-off value.

A final examination about the implications of this work

leads us to assert that the fragment “rescue” phenomenon is
far from being new: it has already occurred and continues to

FIGURE 2 | Preliminary comparison between LE
app
T and LET for a set of 16 drug-sized literature compounds developed during FBDD studies. All compounds were

elaborated using a linking strategy (on two fragments) for 10 different protein targets [ / LDHA Replication Protein A (RPA) / Blood coagulation factor Xa

Bcl-2 DOT1L Hsp90 / Pantothenate synthetase (PtS) Blood coagulation factor XIa CK2 BACE1 Endothiapepsin (Epn) Bcl-xL PKM2].
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occur, but usually during a lead optimization instead an earlier
hit discovery phase. The rationale for this statement lies in
two central facts. First, we currently know that the LE value
of a compound tends to decrease during optimization process
(Bembenek et al., 2009), while both its lipophilicity and its MW
(and, hence, the number of non-hydrogen atoms -N) tends
to increase (Ferenczy and Keseru, 2016). Second, the energy
of supramolecular interactions is widely known to be largely
different depending on the chemical moiety involved and, thus,
ionic and hydrogen bonds are expected to account for a larger
part of the drug-receptor binding energy (i.e., its 1G) compared
with hydrophobic interactions (Ermondi and Caron, 2006).
Therefore, it is decidedly inviting to believe that, in many drug
discovery initiatives, both the increase in LE and the decrease in
MW and lipophilicity observed during lead optimization-could
be explained by the addition of large and hydrophobic chemical
moieties such as those cyclic aliphatic, which have a much
smaller 1G/N ratio compared to other fragments. Interestingly,
these aliphatic moieties have been recently suggested by some
authors to be more “developable” compared its aromatic
analogs, which could be an additional factor behind this
phenomenon (Lovering et al., 2009).

The RGC model presented in this study is based on the
assumption that the LE of a drug-sized molecule may be
estimated using the relative contribution of each component
fragment. We believe this model could serve as a complementary
benchmark for medicinal chemists in experimental or virtual
fragment-based screening campaigns. Likewise, we consider
that the RGC model could be implemented with other
metrics based on either LE or a potency/size ratio and
could be eventually adjusted to consider not only “linking”
but also “growing” or “merging” as alternative fragment
elaboration strategies.

DATA AVAILABILITY

The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

AUTHOR CONTRIBUTIONS

AV planned and performed the entire in silico work presented
in this study, contributed to the analysis and interpretation
of data, and assisted the writing, editing, and submission of
this manuscript. AG made substantial contributions to the data
analysis, critical revision for important intellectual content, and
document editing. All authors have read and approved the
final manuscript.

FUNDING

We acknowledge funds from the Colombian Department of
Science, Technology and Innovation COLCIENCIAS Grant
No. 727.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Professor Marco de Vivo
from Istituto Italiano di Tecnologia (IIT), in Genoa (Italy) for
helpful discussions and recommendations.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fchem.
2019.00564/full#supplementary-material

REFERENCES

Albert, J. S., Blomberg, N., Breeze, A., Brown, A., Burrows, J., Edwards, P., et al.

(2007). An integrated approach to fragment-based lead generation: philosophy,

strategy and case studies from AstraZeneca’s Drug Discovery Programmes.

Curr. Top. Med. Chem. 7, 1600–1629. doi: 10.2174/1568026077823

41091

Bembenek, S. D., Tounge, B. A., and Reynolds, C. H. (2009). Ligand efficiency

and fragment-based drug discovery. Drug Discov. Today 14, 278–283.

doi: 10.1016/j.drudis.2008.11.007

Cavalluzzi, M. M., Mangiatordi, G. F., Nicolotti, O., and Lentini, G.

(2017). Ligand efficiency metrics in drug discovery: the pros and cons

from a practical perspective. Expert Opin. Drug Discov. 12, 1087–1104.

doi: 10.1080/17460441.2017.1365056

Cherry, M., and Mitchell, T. (2008). “Introduction to fragment-based drug

discovery,” in Fragment-Based Drug Discovery, eds E. R. Zartler and M. J.

Shapiro, 1–32. doi: 10.1002/9780470721551.ch1

Costantino, L., and Barlocco, D. (2018). “Designing Approaches to

Multitarget Drugs,” in Drug Selectivity: An Evolving Concept in Medicinal

Chemistry, 161–205.

Ermondi, G., and Caron, G. (2006). Recognition forces in ligand-protein

complexes: blending information from different sources. Biochem. Pharmacol.

72, 1633–1645. doi: 10.1016/j.bcp.2006.05.022

Ferenczy, G. G., and Keseru, G. M. (2016). “Ligand efficiency metrics and their

use in fragment optimizations,” in Fragment-Based Drug Discovery Lessons and

Outlook, eds D. A. Erlanson and W. Jahnke (Wiley-VCH Verlag GmbH & Co.

KGaA), 75–98. doi: 10.1002/9783527683604.ch04

Fukunishi, Y., Kurosawa, T., Mikami, Y., and Nakamura, H. (2014). Prediction of

synthetic accessibility based on commercially available compound databases. J.

Chem. Inf. Model. 54, 3259–3267. doi: 10.1021/ci500568d

Hebeisen, P., Kuhn, B., Kohler, P., Gubler, M., Huber, W., Kitas, E., et al.

(2008). Allosteric FBPase inhibitors gain 10(5) times in potency when

simultaneously binding two neighboring AMP sites. Bioorganic Med. Chem.

Lett. 18, 4708–4712. doi: 10.1016/j.bmcl.2008.06.103

Hopkins, A. L., Groom, C. R., and Alex, A. (2004). Ligand efficiency:

a useful metric for lead selection. Drug Discov. Today 9, 430–431.

doi: 10.1016/S1359-6446(04)03069-7

Hopkins, A. L., Keser,ü, G. M., Leeson, P. D., Rees, D. C., and Reynolds, C. H.

(2014). The role of ligand efficiency metrics in drug discovery. Nat. Rev. Drug

Discov. 13, 105–121. doi: 10.1038/nrd4163

Jasial, S., Hu, Y., and Bajorath, J. (2017). How frequently are pan-assay interference

compounds active? Large-scale analysis of screening data reveals diverse

activity profiles, low global hit frequency, and many consistently inactive

compounds. J. Med. Chem. 60, 3879–3886. doi: 10.1021/acs.jmedchem.7b00154

Lovering, F., Bikker, J., and Humblet, C. (2009). Escape from flatland: increasing

saturation as an approach to improving clinical success. J. Med. Chem. 52,

6752–6756. doi: 10.1021/jm901241e

Medina-Franco, J. L., Martinez-Mayorga, K., and Meurice, N. (2014). Balancing

novelty with confined chemical space in modern drug discovery. Expert Opin.

Drug Discov. 9, 151–165. doi: 10.1517/17460441.2014.872624

Frontiers in Chemistry | www.frontiersin.org 6 August 2019 | Volume 7 | Article 564120

https://www.frontiersin.org/articles/10.3389/fchem.2019.00564/full#supplementary-material
https://doi.org/10.2174/156802607782341091
https://doi.org/10.1016/j.drudis.2008.11.007
https://doi.org/10.1080/17460441.2017.1365056
https://doi.org/10.1002/9780470721551.ch1
https://doi.org/10.1016/j.bcp.2006.05.022
https://doi.org/10.1002/9783527683604.ch04
https://doi.org/10.1021/ci500568d
https://doi.org/10.1016/j.bmcl.2008.06.103
https://doi.org/10.1016/S1359-6446(04)03069-7
https://doi.org/10.1038/nrd4163
https://doi.org/10.1021/acs.jmedchem.7b00154
https://doi.org/10.1021/jm901241e
https://doi.org/10.1517/17460441.2014.872624
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Vásquez and González Barrios RGC Model for Ligand-Efficient Compounds

Murray, C. W., and Verdonk, M. L. (2006). “Entropic consequences of linking

ligands,” in Fragment-Based Approaches in Drug Discovery, eds R. Mannhold,

H. Kubinyi, G. Folkers, W. Jahnke, and D. A. Erlanson (Weinheim:Wiley-VCG

Verlag GmbH & Co. KGaA), 55–66. doi: 10.1002/3527608761.ch3

Nazaré, M., Matter, H., Will, D. W., Wagner, M., Urmann, M., Czech, J., et al.

(2012). Fragment deconstruction of small, potent factor xa inhibitors: exploring

the superadditivity energetics of fragment linking in protein-ligand complexes.

Angew. Chemie Int. Ed. 51, 905–911. doi: 10.1002/anie.201107091

Rathi, P. C., Ludlow, R. F., Hall, R. J., Murray, C. W., Mortenson, P. N., and

Verdonk, M. L. (2017). Predicting “Hot” and “Warm” Spots for Fragment

Binding. J. Med. Chem. 60, 4036–4046. doi: 10.1021/acs.jmedchem.7b00366

Reynolds, C. H. (2015). Ligand efficiency metrics: why all the fuss? Future Med.

Chem. 7, 1363–1365. doi: 10.4155/fmc.15.70

Schultes, S., De Graaf, C., Haaksma, E. E. J., De Esch, I. J. P., Leurs,

R., and Krämer, O. (2010). Ligand efficiency as a guide in fragment

hit selection and optimization. Drug Discov. Today Technol. 7, 157–162.

doi: 10.1016/j.ddtec.2010.11.003

Verdonk, M. L., and Rees, D. C. (2008). Group efficiency: a guideline

for hits-to-leads chemistry. Chem. Med. Chem. 3, 1179–1180.

doi: 10.1002/cmdc.200800132

Zartler, E. R., and Shapiro, M. J. (eds.). (2008). “Designing a fragment

process to fit your needs,” in Fragment-Based Drug Discovery

(John Wiley & Sons, Ltd.), 15–37. doi: 10.1002/97804707215

51.ch2

Zerbe, B. S., Hall, D. R., Vajda, S., Whitty, A., and Kozakov, D. (2012).

Relationship between hot spot residues and ligand binding hot spots in protein-

protein interfaces. J. Chem. Inf. Model. 52, 2236–2244. doi: 10.1021/ci30

0175u

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Vásquez and González Barrios. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Chemistry | www.frontiersin.org 7 August 2019 | Volume 7 | Article 564121

https://doi.org/10.1002/3527608761.ch3
https://doi.org/10.1002/anie.201107091
https://doi.org/10.1021/acs.jmedchem.7b00366
https://doi.org/10.4155/fmc.15.70
https://doi.org/10.1016/j.ddtec.2010.11.003
https://doi.org/10.1002/cmdc.200800132
https://doi.org/10.1002/9780470721551.ch2
https://doi.org/10.1021/ci300175u
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


ORIGINAL RESEARCH
published: 04 September 2019

doi: 10.3389/fchem.2019.00602

Frontiers in Chemistry | www.frontiersin.org 1 September 2019 | Volume 7 | Article 602

Edited by:

Simone Brogi,

Department of Pharmacy, University of

Pisa, Italy

Reviewed by:

Marcus Scotti,

Federal University of Paraíba, Brazil

Vincent Zoete,

Swiss Institute of Bioinformatics

(SIB), Switzerland

Ahmed H. E. Hassan,

Kyung Hee University, South Korea

Stevan Armakovic,

University of Novi Sad, Serbia

*Correspondence:

Sebastiano Andò

sebastiano.ando@unical.it

Alessandra Magistrato

alessandra.magistrato@sissa.it

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Medicinal and Pharmaceutical

Chemistry,

a section of the journal

Frontiers in Chemistry

Received: 24 June 2019

Accepted: 15 August 2019

Published: 04 September 2019

Citation:

Pavlin M, Gelsomino L, Barone I,

Spinello A, Catalano S, Andò S and

Magistrato A (2019) Structural,

Thermodynamic, and Kinetic Traits of

Antiestrogen-Compounds Selectively

Targeting the Y537S Mutant Estrogen

Receptor α Transcriptional Activity in

Breast Cancer Cell Lines.

Front. Chem. 7:602.

doi: 10.3389/fchem.2019.00602

Structural, Thermodynamic, and
Kinetic Traits of
Antiestrogen-Compounds Selectively
Targeting the Y537S Mutant Estrogen
Receptor α Transcriptional Activity in
Breast Cancer Cell Lines
Matic Pavlin 1†, Luca Gelsomino 2†, Ines Barone 2, Angelo Spinello 1, Stefania Catalano 2,
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1National Research Council – Institute of Materials (IOM) at International School for Advanced Studies (ISAS), Scuola
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Themost frequently diagnosed cancers in women are the estrogen receptor (ER)-positive

breast cancer subtypes, which are characterized by estrogen dependency for their

growth. The mainstay of clinical treatment for this tumor relies on the modulation of

ERα action or on the suppression of estrogen biosynthesis via the administration of

Selective ERα Modulators/Down-regulators (SERMs/SERDs) or aromatase inhibitors,

respectively. Nevertheless, de novo and acquired resistance to these therapies frequently

occurs and represents a major clinical concern for patient survival. Recently, somatic

mutations affecting the hormone-binding domain of ERα (i.e., Y537S, Y537N, D538G)

have been associated with endocrine resistance, disease relapse and increased mortality

rates. Hence, devising novel therapies against these ERα isoforms represents a

daunting challenge. Here, we identified five molecules active on recurrent Y537S ERα

polymorphism by employing in silico virtual screening on commercial databases of

molecules, complemented by ER-transactivation and MTT assays in MCF7 and MDA-

MB-231 breast cancer cells expressing wild type or mutated ERα. Among them, one

molecule selectively targets Y537S ERα without inducing any cytotoxicity in breast cell

lines. Multi-microseconds (4.5 µs) of biased and unbiased molecular dynamics provided

an atomic-level picture of the structural, thermodynamics (i.e., binding free energies) and

the kinetic (i.e., dissociation free energy barriers) of these active ligands as compared to

clinically used SERM/SERDs upon binding to wild type and distinct ERα variants (Y537S,

Y537N, D538G). This study contributes to a dissection of the key molecular traits needed

by drug-candidates to hamper the agonist (active)-like conformation of ERα, normally

selected by those polymorphic variants. This information can be useful to discover mutant

specific drug-candidates, enabling to move a step forward toward tailored approaches

for breast cancer treatment.

Keywords: estrogen receptor, breast cancer, SERM, SERD, molecular dynamics, Y537S, resistant breast cancers
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INTRODUCTION

Breast Cancer (BC) is the most frequent cancer type and the
second leading cause of death in women, representing 25% of all
cancers. In ∼70% of the BC cases detected after the menopause,
cellular proliferation is mediated by estrogens (1; Figure 1)
binding to their specific nuclear hormone receptor [Estrogen
Receptor α (ERα, ESR1)] (Fanning and Greene, 2019).

This latter is a ligand-activated transcription factor, which
upon estrogen binding, decreases apoptosis and/or promotes
cell proliferation, ultimately playing a pro-oncogenic role.
Hence, in the most diffused BC type cell proliferation relies
on the expression of ERα, and on the presence of blood
circulating estrogens, being hence classified as ER sensitive
(ER+). Gold standard endocrine treatments against ER+
BC consist in suppressing estrogen biosynthesis, via the
administration of aromatase inhibitors, or in counteracting
ERα pro-oncogenic action via the drugging of selective ERα

modulators (SERMs) or downregulators (SERDs). Namely,
SERMs [tamoxifen and its most abundant metabolite endoxifen
(END)] act as antagonists, occupying the estrogen binding
site and inducing a conformational change of ERα toward
an inactive conformation. SERDs [fulvestrant (FULV)],
instead, also foster ERα ubiquitination and degradation
(Fanning et al., 2016; Pavlin et al., 2018).

Similarly to other nuclear receptors, ERα presents a puzzling

tridimensional structure which atomic-level organization

remains controversial (Huang et al., 2018). This is composed out

FIGURE 1 | Structures of 17β-estradiol (1), tamoxifen (2), endoxifen (3), fulvestrant (4), AZD-9496 (5), and compounds 9, 13, 19, 20, 21 which are the identified

drug-candidates active against Y537S ERα.

of five distinct functional domains (Supplementary Figure 1),
among which only the structures of the DNA-binding domain
and the ligand-binding domain (LBD) have been characterized.
The LBD is active as a homodimer with each monomer hosting
a ligand binding cavity (LBC). The LBD crystal structures
(Supplementary Figure 2) revealed that upon binding of
an agonist or an antagonist molecule, helix 12 (H12) can
undergo a conformational switch between the active and
inactive form, respectively (Joseph et al., 2016). In the agonist
(active) state, H12 faces helices H3, H5/6, and H11, closing
the LBC (Supplementary Figure 2A; Robinson et al., 2013).
Conversely, in the antagonist (inactive) form, H12 rearranges,
as a consequence of SERM/SERD-binding, moving toward the
groove lined by H3 and H5 (Supplementary Figure 2B; van
Kruchten et al., 2015; Joseph et al., 2016).

In the last decades, SERMs have been proved to be highly
beneficial, substantially decreasing the mortality rates of woman
affected by BC cancer type by 25–30 %. The most effective ERα

antagonists in clinical use are: (i) tamoxifen (2; Figure 1), a
SERM, which in spite of its beneficial action in breast tissues, is
plagued by agonistic effects in peripheral ones (endometrium),
and is active through its metabolite, endoxifen (3; Figure 1), and
(ii) FULV (4; Figure 1), a potent SERD (Nilsson and Gustafsson,
2011; van Kruchten et al., 2015) characterized, however, by poor
solubility. This makes its administration arduous and therefore
probably limiting its efficacy. These adjuvant therapies are
administered over extended time frame (5–10 years) to control
tumor growth, or, even, to prevent disease in case of BC-prone
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genetic profiles. Nevertheless, after prolonged exposure to these
therapies, tumors evolve by adapting to the pharmacological
pressure. Distinct studies highlighted a stunningly complex,
composite, and multifactorial genomic landscape as responsible
of tumor refractoriness to treatments (Spinello et al., 2019b). This
has mostly been associated to an alteration of mitogen activated
kinase pathway (MAPK) or of a deregulated estrogen receptor
transcriptional activity (Razavi et al., 2018). This latter takes place
when ERα acquires new structural traits, eventually leading to
resistance and relapse to therapies. Scaringly, almost 50 % of
all ER+ BC patients, initially benefiting from first-line therapy,
will eventually develop resistance after prolonged treatments
(acquired resistance). This ultimately results in a shortening of
their survival time.

It is nowadays well-established (Merenbakh-Lamin et al.,
2013; Robinson et al., 2013; Toy et al., 2013; Jeselsohn et al.,
2014) that distinct ERα polymorphisms (mERαs), located in
the vicinity of LBC (i.e., E380Q), between H9 and H10, or
in the loop connecting H11 and H12 (i.e., L536Q, L536R,
Y537C, Y537N, Y537S, and D538G), are recurrently observed
in metastatic BC patients relapsing after extended treatments
regimens. The most abundant ERα polymorphisms observed in
LBD are D538G (occurrence of 21–36 % of cases (Jeselsohn et al.,
2014; Chandarlapaty et al., 2016; Toy et al., 2017), Y537N (5–33
%) (Jeselsohn et al., 2014; Toy et al., 2017), and Y537S (13–22
%) (Jeselsohn et al., 2014; Chandarlapaty et al., 2016; Toy et al.,
2017). This latter remains the most aggressive isoform (survival
rate of 20 months as compared to 26 of D538G) (Chandarlapaty
et al., 2016). Most of these mutations are insensitive to tamoxifen,
while still responding to FULV. As such, tumors proliferation
still depends on ERα expression, underlying the still unmet
oncological need of a complete inhibition/abrogation of its
signaling pathway (Busonero et al., 2019).

Targeted therapy counteracting mERα is a current object of
intense preclinical and early clinical interest, as also evidenced
by the significant number of studies aiming at identifying orally
bioavailable SERDs, eventually able to overcome resistance (De
Savi et al., 2015; Fanning et al., 2018; Hamilton et al., 2018;
Sharma et al., 2018; Kahraman et al., 2019; Scott et al., 2019).
Among these GDC-810, AZD9496 (5; Figure 1) (hereafter AZD,
a drug in preclinical use as oral SERD, for which a first clinical
study have been recently accomplished) (Weir et al., 2016;
Hamilton et al., 2018), and LSZ102 have been identified (Scott
et al., 2019).

Aiming at selectively targeting specific and aggressive ERα

variants, we have recently meticulously annotated the structural
and dynamical alterations induced to ERα structure by each
recurrent polymorphism, disclosing that each of them triggers
the acquisition of a different agonist-like (intrinsically active)
conformation of H12. As a result, tumors bearing these
isoforms proliferate irrespectively of estrogen production, with
SERMs and aromatase inhibitors’ efficacy being lost after their
appearance (Spinello et al., 2019b). Since these ER+ BC cells
are sensitive to FULV and AZD, we also performed extensive
MD simulations typifying the structural features responsible
of distinct efficacy of FULV and AZD on mutant (m)ERα, as
opposite to END.

Stunningly, our computational assays disclosed that the
FULV and AZD’s elongated shape, owing to their aliphatic
and carboxylic moiety, respectively, was the key structural
determinant counteracting the acquisition of an H12 agonist-
like conformation (Fanning et al., 2016; Pavlin et al., 2018).
Understanding the structural signature needed by drugs able
to effectively fight metastatic and refractory BC types was a
necessary prerequisite for the rational discovery of mutant-
specific SERMs/SERDs. Building on this knowledge, here, we
performed virtual screenings on existing database of molecules,
and we tested their efficacy on MCF7 and MDA-MB-231 cell
lines harboring Wild Type (WT) and Y537S, D538G, and Y537N
ERα variants. As a result, we identified five molecules able to
counteract the enhanced transcriptional activity of Y537S ERα

isoform, with one being non-cytotoxic and preferentially active
toward the Y537S variant. The structural and dynamical impact
of the five active molecules, as well as their thermodynamic
and kinetic properties (of the best molecule) were also explored
via biased and unbiased classical Molecular Dynamics (MD)
simulations, and compared with those of END, AZD, and FULV
in order to dissect the source of their distinct efficacy profiles.
These outcomes may lead toward the discovery of isoform-
selective drug-candidates, providing a therapeutic option for
the specific genomic profile of ER+ BC patients relapsing
mainstay therapies.

MATERIALS AND METHODS

In silico Screening
The NCI (https://cactus.nci.nih.gov/download/nci/) library
Release 4 Files Series—May 2012 (containing 265,242 structures)
was used for virtual screening (VS) studies. Compounds
were filtered using the Schrodinger Suite 2017-1 Ligfilter
tool (2017). In order to eliminate molecules possessing poor
absorption and permeation we applied Lipinski’s rule of
five (Lipinski et al., 2001). Further, filtering was applied to
compounds bearing more than 10 rotatable bonds, since
high ligand flexibility implies higher entropic contributions
and reduces oral availability (Veber et al., 2002). Next,
QikProp (2017) was employed to predict LogP values of
the compounds to assess information on their solubility
in water.

After ligand preparation in silico screening of the library was
performed on different mERα structures. Namely, in order to
account for receptor’s flexibility in the screening we considered
five different ERα conformations as target structures (Pavlin et al.,
2018). These were selected from the populated cluster extracted
from 500 ns-long classical MD simulations trajectories of AZD
and FULV in complex with the Y537S, Y537N, and D538G
isoforms obtained in our previous study (Pavlin et al., 2018). In
this respect, we employed two conformations for Y537S ERα (in
complex with AZD and FULV), one for Y537N (in complex with
FULV, since conformation of this mutant complex with AZD
was similar to that of Y537S), and two structures for D538G
(in complex with AZD and FULV). A van der Waals (vdW)
radius scaling factor of 0.80 Å for protein and ligands atoms
having a partial charge < 0.15 was used to account for protein
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flexibility. Size of the box for in silico screenings was determined
by considering the residues interacting with different antagonists
placed inside the binding site and those residues pinpointed as
critical for antagonizing ERα activation in our previous work
(Pavlin et al., 2018).

In order to obtain a set of promising ligands for experimental
testing, we followed two protocols of VS. First, a workflow
based on three subsequent steps of docking with increasing
level of accuracy for each ERα conformation, was adopted by
using the Glide program (Friesner et al., 2004). Namely, (i)
a fast high-throughput virtual screening (HTVS) was initially
performed in order to efficiently select promising ligands among
∼220,000 of compounds from the pre-filtered NCI library;
(ii) 10 % of the best ranked ligands (∼22,000 structures per
each ERα conformation) were retained and a single precision
(SP) docking calculation was done; (iii) the top 10 % of
the resulting compounds (∼2,200 structures per each ERα

conformation) were screened using the extra precision (XP)
protocol. This latter should eliminate false positives by using a
more extensive sampling and more accurate scoring functions.
END, AZD, and FULV were also docked to assess the quality
of our results as reported in Supplementary Table 1. The
molecules resulting from the screening were sorted according
to GlideScore scoring function. The selection criterion for
further investigation was that the screened compounds had
docking score lower than −8.5 kcal/mol and that displayed
favorable interactions with at least one of the five mERαs
target structures (i.e., two structures extracted from the MD
trajectory of Y537S ERα in complex with AZD and FULV,
one for Y537N in complex with FULV, and two structures
for D538G in complex with AZD and FULV). This was done
in order to find a good compromise between the number of
molecules selected for experimental screening and the quality
of the docking score. Moreover, our reference molecules FULV
and AZD exhibit on the target structure the same range of
docking score values.

In the second protocol, we initially performed ligand-based
screening using the CANVAS program (Duan et al., 2010; Sastry
et al., 2010). Here the searching criteria were based on the
scaffold that antagonist should possess. The latter was defined
considering the common structural features that an effective
SERD should have according to our previous study (Pavlin
et al., 2018), more precisely, selected ligand should have scaffold
based either on the END scaffold or on the tri-membered ring
scaffold of AZD in order to stabilize ligand inside LBC, together
with a polar tail that is able to form hydrogen bonds (H-
bonds) with the H11-12 loop. The 415 selected ligands were
then screened to all five mERαs conformations by using XP
protocol. In this second case, the cut-off docking score for
selection of ligands was −7.5 kcal/mol, and the ligands were
selected only when displaying favorable interactions with at least
two distinct mERα structures among the five target structures
used and at least one was within the cut-off range. These
molecules were available as donation of the National Cancer
Institute USA. Other known activities of the five molecules
observed to be active on Y537S in this study are reported in
Supplementary Table 7.

Reagents, Antibodies, and Plasmids
17β-estradiol was purchased from Sigma (St. Louis, MO,
USA). Antibodies against ERα and GAPDH were from
Santa Cruz Biotechnology (Santa Cruz, CA, USA). Yellow
fluorescent protein (YFP)-tagged expression constructs, YFP-
WT, YFP-Y537S, YFP-Y537N and YFP-D538G ERα were
generated as previously described (Gelsomino et al., 2016,
2018) XETL plasmid, containing an estrogen-responsive
element, was provided by Dr. Picard (University of Geneva,
Geneva, Switzerland).

Cell Cultures
Human MCF-7 and MDA-MB-231 BC cells were acquired
in 2015 from American Type Culture Collection, stored
and cultured according to supplier’s instructions. Cells were
used within six-months after frozen-aliquot resuscitations and
regularly tested for Mycoplasma-negativity (MycoAlert, Lonza,
Basilea, Switzerland).

Immunoblot Analysis
Equal amounts of proteins were resolved on 10% SDS-PAGE
as previously described (Giordano et al., 2016). The antigen-
antibody complex was revealed using the ECL System (Bio-rad,
Hercules, CA, USA). Images were acquired using Odissey FC
from Licor (Lincoln, Nebraska, USA). Blots are representative of
three independent experiments.

ERα Transactivation Assay
ERα transactivation assay was performed as previously reported
(Barone et al., 2011). Briefly, MCF-7 and MDA-MB-231 cells
(50,000/well) were plated in phenol red-free with 5 % charcoal-
stripped FBS in 24-well plates. After 24 h, cells were co-
transfected with 0.5 µg of reporter plasmid XETL plus 0.1
µg of YFP-tagged expression constructs and 20 ng of TK
Renilla luciferase plasmid as an internal control. Transfection
was performed using the Lipofectamine 2000 reagent (Life
Technologies, Carlsbad, CA, USA) as recommended by the
manufacturer. Six hours after transfection, the medium was
changed and the cells were treated as indicated for 24 h.
Firefly and Renilla luciferase activities were measured using
a Dual Luciferase kit (Promega, Madison, WI, USA). The
firefly luciferase data for each sample were normalized on the
basis of transfection efficiency measured by Renilla luciferase
activity (Rizza et al., 2014). Data represent three independent
experiments, carried out in triplicate.

MTT Cell Viability Assay
1,000 cells were plated into 96-well plates in phenol red-
free medium containing 5 % charcoal-stripped FBS. After
24 h, cells were exposed to the different treatments as
indicated. One day later, cell viability was assessed by (3-
(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium-Bromide)
(MTT, Sigma-Aldrich) as described (Covington et al., 2013).
Results are expressed as fold change relative to vehicle-treated
cells. Data represent three-independent experiments, performed
in triplicate.
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Real-Time RT-PCR Assays
Total RNA was extracted from cells using TRIzol reagent
(Life Technologies). Purity and integrity of the RNA were
confirmed spectroscopically and by gel electrophoresis before
use. One microgram of total RNA was reverse transcribed
in a final volume of 20 µL using the RETROscript kit (Life
Technologies) and cDNA was diluted 1:3 in nuclease-free water.
The evaluation of TFF1, CTSD, CCND1 and MYC mRNA
expression was performed by real-time RT-PCR, using SYBR
Green Universal PCR Master Mix (Bio-rad). The relative gene
expression levels were calculated using the 11Ct method
as described (Catalano et al., 2015). Primers are listed in
Supplementary Table 2.

Statistical Analysis of Experimental Data
Data were analyzed for statistical significance using two-tailed
student’s Test using GraphPad-Prism5 (GraphPad Software, Inc.,
San Diego, CA). Standard deviations (S. D.) are shown.

Classical MD Simulations
Of the 17 tested molecules (Figure 1, Supplementary Figure 3)
obtained by both protocols of VS (four from the structure-based
strategy and the rest by the ligand-based strategy as reported
in Supplementary Table 1) five resulted to be active in the in
vitro tests. These latter were also docked to the WT ERα using

the XP protocol. All active molecules were subjected to MD
simulations in complex with the WT and Y537S ERα variants.
Additionally, compound 19, showing the most promising results
in experimental tests, was also docked and simulated in complex
with Y537N and D538G ERα.

Physiological protonation states of ERα were already
determined previously (Pavlin et al., 2018) using the webserver
H++ (Anandakrishnan et al., 2012). Parm99SB AMBER force
field (FF) with ILDN modification was employed for the protein
(Wickstrom et al., 2009; Lindorff-Larsen et al., 2010), and the
general Amber FF (GAFF) (Wang et al., 2004) was used for
ligands. ESP charges (Bayly et al., 1993) were calculated by
performing geometry optimizations of the ligands at Hartree-
Fock level of theory using a 6-31G∗ basis set with the Gaussian
09 software (Frisch et al., 2016) and were later transformed in
RESP charges with the Antechamber module of Ambertools16
(Wang et al., 2006). Since the dockings were performed on
monomers, while the LBD in physiological conditions is a dimer,
we built each dimer by superimposing the monomer on each of
the two dimers of the corresponding mERα conformation from
our previous work (Pavlin et al., 2018).

Each systemwas solvated using TIP3P waters (Jorgensen et al.,

1983) in a truncated octahedron box with minimum distance
of 12 Å between solute and the edge of the box, leading to a
total of ∼95,000 atoms. MD simulations were performed with

FIGURE 2 | Inhibition of Y537S ERα activation exerted by the compound 19 in MDA-MB-231 breast cancer cells. (A) Immunoblotting showing exogenous ERα

protein expression in ERα-negative MDA-MB-231 breast cancer cells transiently transfected with an empty vector (e. v.), YFP-WT or YFP-Y537S ERα expression

vectors. GAPDH was used as a control for equal loading and transfer. (B) ERα-transactivation assay in MDA-MB-231 cells transiently transfected with YFP-WT or

YFP-Y537S ERα expressing vectors plus an ERE-luciferase reporter (XETL), and treated with vehicle (-) or the different compounds (6-22), as indicated. Data are

reported as fold change relative to WT-ERα expressing cells. (C) MTT cell viability assay in MDA-MB-231 cells treated with vehicle (-) or the different compounds (9,
13, 19, 20, 21, 100µM), as indicated for 24 h. Results are expressed as fold change relative to vehicle-treated cells. The values represent the mean ± S. D. of three

different experiments, each performed in triplicate. n. s., non-significant; *P < 0.05; **P < 0.005; ***P < 0.0005; ****P < 0.00005.
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GROMACS 5.0.4 (Abraham et al., 2015). An integration time
step of 2 fs was used and all covalent bonds involving hydrogen
atoms constrained with the LINCS algorithm (Hess et al.,
1997). Particle Mesh Ewald algorithm (Darden et al., 1993) was
used in order to account electrostatic interactions. Simulations
were performed in the isothermal-isobaric NPT ensemble, at
a temperature of 310K, under control of a velocity-rescaling
thermostat (Bussi et al., 2007). Preliminary energy minimization
was done with the steepest descend algorithm. Next, all systems
were heated to the final temperature of 310K using 40 steps of
simulated annealing (0-90K in steps of 5 K/25 ps; 90-310K in
steps of 10 K/25 ps). WT ERα models underwent 300 ns long
classical MD simulations (last 200 ns were used for analysis),
while mERα ones underwent 400 ns long simulations and last
300 ns were used for further analysis.

Metadynamics
In order to further refine the binding poses and better dissect
the impact of the kinetic properties on efficacy and selectivity,
we performed FF-based Metadynamics (MTD) simulations of
AZD and 19. In particular, MTD runs of 60–130 ns were done
to refine the binding pose and study ligand dissociation with
GROMACS 5.0.4 using the PLUMED 2.0 plugin (Tribello et al.,

2014). Two collective variables (CVs) were used: the first CV
(CV1) describes the number of either hydrogen bonds (AZD)
or hydrophobic contacts (19) between the ligands and the LBC,
computed as a coordination number; the second CV (CV2)
corresponds to the distance between the center of masses (COM)
of the protein and the ligand. Gaussian hills having a height of
0.6 kJ/mol in all systems, while the widths of 0.06 and 0.015
(AZD), 0.40 and 0.025 (19), were added, respectively, for CV1
and CV2 every 4 ps of MD. A harmonic wall was used to
restrain the exploration of the FES on CV2 at the value of 3.5 nm.
Three replicas of the MTD simulations were performed, starting
from different frames as extracted from the equilibrated MD
trajectory and the uncertainty of the dissociation free energy
barriers (1G#

b
) were estimated from the standard deviation of the

barriers obtained out of the three replicas, following a protocol
adopted in previous studies (Bisha et al., 2013; Sgrignani and
Magistrato, 2015; Spinello et al., 2018, 2019a).

Simulation Analysis
Cluster analysis and root mean square deviation (RMSD) of
the MD trajectories were done with the g_cluster tool, based
on the Daura et al algorithm (Daura et al., 1999), and g_rms,
as implemented in the GROMACS 5.0.4 program (Abraham

FIGURE 3 | Impact of compound 19 on activation of WT, Y537N, and D538G ERα in MDA-MB-231 breast cancer cells. (A) Immunoblotting showing exogenous ERα

protein expression in ERα-negative MDA-MB-231 breast cancer cells transiently transfected with an empty vector (e. v.), YFP-WT, YFP-Y537N, YFP-Y537S, or

YFP-D538G ERα expressing vectors. GAPDH was used as a control for equal loading and transfer. (B) ERα-transactivation assay in MDA-MB-231 cells transiently

transfected with YFP-Y537N, YFP-Y537S, or YFP-D538G ERα expressing vectors plus an ERE-luciferase reporter (XETL), and treated with vehicle (-) or the

compound 19 at 100µM. Data are reported as fold change relative to WT-ERα expressing cells. (C) ERα-transactivation assay in MDA-MB-231 cells transiently

transfected with YFP-WT plus XETL plasmid, and treated with vehicle (-) or the compound 19 (100µM) in the presence or not of 17β-estradiol (E2, 10 nM). Data are

reported as fold change relative to vehicle (-)-treated cells. The values represent the mean ± S. D. of three different experiments, each performed in triplicate. n. s.,

non-significant; **P < 0.005; ***P < 0.0005. (D) Immunoblotting showing ERα protein expression in MDA-MB-231 breast cancer cells transiently transfected with

YFP-Y537S ERα expressing vector and treated with the compound 19 (100µM) at the indicated time. GAPDH was used as a control for equal loading and transfer.
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et al., 2015). Molecular Mechanics Generalized Born Surface
Area (MM-GBSA) free energy calculation were performed with
the MM_PBSA.py tool of Amber 18 program, following a
procedure successfully applied in previous studies (Spinello et al.,
2019a,c). Visualization of the MD trajectories was done with the
VMD program (Humphrey et al., 1996), while the images were
prepared using UCSF Chimera1.12 visualization tool (Pettersen
et al., 2004).

Correlation Analysis
The covariance matrices were constructed from the atoms
position vectors upon an RMS-fit to the starting configuration
of the MD run as to remove the rotational and translational
motions. Each element in the covariance matrix is the covariance
between atoms i and j, defining the i, j position of the matrix. The
covariance Cij is defined as

Cij=
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where −→r i and −→r j are the position vectors of atoms i and
j, and the brackets denote an average over the sampled time
period. The diagonalization of the covariance matrix leads to

a set of orthogonal collective eigenvectors, each associated to
a corresponding eigenvalue. The eigenvalues denote how much
each eigenvector is representative of the system dynamics.

The cross-correlation matrices (or normalized covariance
matrices) based on the Pearson’s correlation coefficients (CCij)
were calculated with the cpptraj module of Ambertools 18 from
the calculated covariance matrices. Each element of the cross-
correlation matrix in the i,j position corresponds to a Pearson’s
CCij, i.e., the normalized covariance between atoms i and j
calculated with the formula:
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here the normalization factor is the product between the
standard deviations of the two position vectors. As a result,
CCij range from a value of −1, for a totally negatively
correlated motion between two atoms, and a value of +1, which
instead means a positively correlated lockstep motion. Here
we have also calculated the correlation scores (CSs) between
each LBD helix and all the others, dividing each as depicted

FIGURE 4 | Effects of compound 19 on WT and Y537S ERα activation in MCF-7 breast cancer cells. (A) Immunoblotting showing exogenous and endogenous ERα

protein expression in ERα-positive MCF-7 breast cancer cells transiently transfected with YFP-WT or YFP-Y537S ERα expressing vectors. GAPDH was used as a

control for equal loading and transfer. (B) ERα-transactivation assay in MCF-7 cells transiently transfected with YFP-WT or YFP-Y537S ERα expressing vectors plus

an ERE-luciferase reporter (XETL), and treated with vehicle (-) or the compound 19 at 100µM, as indicated. Data are reported as fold change relative to WT-ERα

expressing cells. (C) ERα-transactivation assay in MCF-7 cells transiently transfected with YFP-WT plus XETL plasmid, and treated with vehicle (-) or the compound

19 (100µM) in the presence or not of 17β-estradiol (E2, 10 nM). Data are reported as fold change relative to vehicle (-)-treated cells. The values represent the mean ±

S. D. of three different experiments, each performed in triplicate. n. s., non-significant; *P < 0.05; ***P < 0.0005.
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in Supplementary Figure 2 (Pavlin et al., 2018). Then, we
calculated the sum of CCij between the residues i belonging to the
helix I and the residues j belonging to the helix J. Importantly,
the values −0.6 < CCij < +0.6 were discarded in order to
eliminate the noise due to uncorrelated motions (Palermo et al.,
2016; Casalino et al., 2018) and the sum of the cross-correlation
score was divided by the product of the number of residues
contributing to the score as a correlation density.

RESULTS

In silico Screening and in vitro Studies
Building on our previous classification of structural traits
of drugs effectively targeting mERα (Pavlin et al., 2018),
we performed in silico screening on the structures obtained
from MD simulations of Y357S, Y537N, and D538G mutants
hosting AZD and FULV in the LBC. A detailed list of the
molecules tested as well as their docking score on each specific
target structure is reported in Supplementary Figure 3 and
Supplementary Table 1, respectively. Remarkably our newly
developed VS strategy allows not only to account for the distinct
conformations that the receptor can adopt at finite temperature,
as in the ensemble docking, but it also encompasses the induced
fit effects exerted by the binding of efficacious drugs to distinct
ERα isoforms (Spinello et al., 2019a). The best-ranked 17
compounds (6-22), that were binding to more than one ERα

isoform in VS, were then experimentally tested.
Namely, their effect on the transcriptional activity of the

mutant Y537S ERα was investigated in cell-based assays,
using a standard genomic transcriptional output method (i.e.,
the estrogen response element (ERE) - luciferase-based gene
transactivation system) for assessing their ability to bind ERα

and, subsequently, transactivate an ERE-mediated transcription,
allowing an assessment of the transcriptional responses of each
receptor separately. Thus, human ERα-negative MDA-MB-231
BC cells were cotransfected with either YFP-WT or YFP-Y537S
ERα expression vectors along with an ERE-luciferase reporter
plasmid (XETL) and treated with the vehicle or the selected
compounds (6-22). As shown in Figure 2A, cells expressed
similar levels of the 96 kDa protein representing the exogenously
added WT or Y537S mutant receptor tagged with YFP. In
line with previous results (Toy et al., 2013), reporter gene
transactivation assays showed that control basal activity of
Y537S ERα was more elevated than that of WT (Figure 2B).
Importantly, the tested compounds exerted different effects on
Y537S ERα transcriptional activity, with 9, 13, 19, 20, and
21 showing the highest efficacy in reducing the activity of
the Y537S mutant (76–57 % decrease) when used at 100µM
concentration. Hence, these were chosen to evaluate their
potential toxicity in MDA-MB-231 cells by using MTT cell
survival assay (Figure 2C). As a result, compounds 9, 13, 20,
and 21 markedly reduced cell viability even in MDA-MB-231
cells, whereas the compound 19 did not provoke any significant
effects at the dose tested. Thus, among these compounds, 19
represents the best-candidate for further studies. Among these
compounds, 9, 19, 20, and 21 share the same chemo-type of the
parent compounds AZD.

MDA-MB-231 BC cells transfected with Y537S-ERα vectors
and treated with compound 19 at increasing doses (from 1 nM
to 100µM) displayed a dose-dependent decrease of Y537S-ERα

transactivation, with the highest inhibition registered at 100µM
concentration (65 ± 10 % inhibition as compared to vehicle)
(Supplementary Figure 4).

To better clarify the activity of compound 19, we also
evaluated its ability to affect ERα transactivation in cells
expressing other two frequently-occurring mutations:
YFP-Y537N and YFP-D538G ERα mutations (Figure 3A).
Surprisingly, 19 has a smaller effect in hampering the
transactivation of these mutants (Figure 3B), stunningly
pinpointing its selectivity in antagonizing preferentially the
transcriptional activity of the Y537S ERα isoform.

Next, we inspected its effects on YFP-WT ERα expressing cells
in the presence/absence of 17β-estradiol (E2), the endogenous
ERα ligand (Figure 3C). As expected, E2 treatment was able
to trigger luciferase expression through the ERE interaction.
Notably its treatment with compound 19, while not significantly
altering WT-ERα transactivation, was associated with a drastic
reduction in E2-mediated effects. This suggests that ligand 19

may compete with E2 for the LBC. Interestingly, treatment with
19was not associated with a down-regulation of Y537S ERα levels
(Figure 3D).

To expand our investigation, the potency of the compound
19 in affecting Y537S ERα activity was also tested in ER+
MCF-7 BC cells bearing the YFP-WT and YFP-Y537S receptor.
These expressed a 66 kDa endogenous ERα, along with a 96
kDa receptor represent the exogenously added WT and mERα

tagged with YFP (Figure 4A). As previously shown for MDA-
MB-231 BC cells, we found a significant increase of YFP-
Y537S receptor transcriptional activity as compared to that of
YFP-WT ERα and this induction was reduced upon exposure
to compound 19 (Figure 4B). In addition, 19 antagonized

FIGURE 5 | Effects of compound 19 on ERα target genes in YFP-Y537S ERα

expressing MDA-MB-231 breast cancer cells. Real time RT-PCR assay for

Trefoil Factor 1 (TTF1), cathepsin D (CTSD), cyclin D1 (CCND1) and c-Myc

(MYC) mRNA expression. The values represent the mean ± S. D. of three

different experiments, each performed in triplicate. n. s., non-significant; *P <

0.05; **P < 0.005; ***P < 0.0005.

Frontiers in Chemistry | www.frontiersin.org 8 September 2019 | Volume 7 | Article 602129

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Pavlin et al. Compounds Selectively Targeting Mutant ERα

E2-mediated effects also in YFP-WT ERα MCF-7 expressing
cells, without exerting any action on basal WT ERα activity
(Figure 4C).

At a molecular level, ERα activation and association with
the ERE result in an enhanced expression profiles of a number
of downstream target genes, including those for trefoil factor
1/pS2, cathepsin D, cyclin D1, and c-Myc (Barone et al.,
2010). The biological correlation of the inhibition of Y537S
ERα transactivation induced by 19 is the down-regulation of
the classical estrogen-regulated genes in MDA-MB-231 cells
(Figure 5), confirming the binding of this antagonist to ERα,
well-fitting with in silico predictions.

Atomic-Level Understanding of Drugs
Efficacy
In order to identify the structural and dynamics features
responsible of the efficacy and the selectivity of compound 19

toward Y537S ERα, while being inefficacious and/or displaying
limited efficacy on WT, D538G and Y357N, we performed
extensive MD simulations of the five active molecules in complex
with the WT and Y537S ERα isoforms, starting from binding
poses obtained from docking simulations.

MD simulations revealed two important and common
structural traits among the inspected compounds, also shared
by AZD and FULV. All molecules occupy the binding cavity

FIGURE 6 | Binding of the five active molecules to Y537S ERα as compared with END, AZD, and FULV. (A) END; (B) AZD; (C) FULV; (D) compound 19; (E) 9; (F) 13;
(G) 20; (H) 21. Top panels show their placement in the ligand binding cavity, while bottom panels display a close view of E380 H-bond network induced by each

ligand. Inhibitors are shown in licorice with carbon atoms in purple color, while oxygen and nitrogen are shown in red and blue, respectively. Protein is depicted in gray

new cartoons for END, AZD, FULV, and blue, green, light green purple orange new cartoons for 19, 9, 13, 20, 21, respectively.

Frontiers in Chemistry | www.frontiersin.org 9 September 2019 | Volume 7 | Article 602130

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Pavlin et al. Compounds Selectively Targeting Mutant ERα

protruding toward the H11-12 loop, which hosts the Y537S
variant (Figure 6). Three of them (9, 19, 20) establish π-π
interactions with W386 in WT (Supplementary Figure 5). Due
to their different shapes, each ligand engages distinct H-bonds
patterns (Supplementary Table 3). This network in compounds
13 and 20 involves residues G521, M528, and C530, while 9

and 21 persistently H-bond either to L346, similarly to AZD, or
to E419 and G420 (Supplementary Table 3). These results show
that the selected compounds can either bind in LBC (9 and 21)
or interact with H11-12 loop (13 and 20).

Conversely, 19 is the only ligand firmly anchored to E419
and L346 (Supplementary Table 3), at tract H-bonding to K529,
similarly to AZD in complex with to Y537S (Figure 6). This
H-bonding motif in our previous paper was indicated as an
essential signature of drug-efficacy. Nevertheless, 19 forms a
set of low-persistent H-bonds, underlying its high mobility
and the need for further optimization in order to improve its
efficacy. Surprisingly, compound 19 establishes a well-defined
and stable H-bond network only in one LBCs of WT ERα

(Supplementary Table 3).

FIGURE 7 | Binding of compound 19 to Y537N and D538G ERα as compared with END, AZD and FULV. Binding to Y537N: (A) END; (B) AZD; (C) FULV; (D)
Compound 19. Binding to D538G: (E) END; (F) AZD; (G) FULV; (H) Compound 19. Top panels show their placement in the ligand binding cavity, while bottom panels

display a close view of E380 H-bond network induced by each ligand. Inhibitors are shown in licorice with carbon atoms in purple color, while oxygen and nitrogen in

red and blue, respectively. Protein is shown in gray new cartoons for END, AZD, FULV, and in blue new cartoons for 19, respectively.
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Next, we inspected how the active drugs counteract the H-
bond network responsible of the ERα agonist-like conformation
induced by mERα (Supplementary Table 4, Figure 6). A
decrease of the E380-Y537S interaction, previously indicated as
structural signature of an intrinsic ERα activation, occurs with
all ligands, even if this is less effective than upon FULV or AZD
binding. What is more, E380, which strongly H-bonds to S537 in
the aggressive Y537S ERα variant, upon binding of 9, 19, and 21,

rearranges and engages persistent H-bond to L536. Additionally,
in the presence of 19, there is significant change in the H-bond
network of L536 backbone. While this latter strongly interacts
with backbone of L539 in the presence of all other compounds,
19 weakens it and, as a result, L536 H-bonds to the backbone
of L540 (Supplementary Table 4). Remarkably, 19 triggers
formation of these H-bonds only in Y537S, but not in WT ERα.

In both Y537N and D538G variants 19 establishes a H-bond
network in the binding cavity and in the H11-12 loop region
similarly to Y537S (Supplementary Tables 3, 4, and Figure 7).
Hence, 19 exclusively H-bonds to E419 in all mutants, while only
in Y537S can establish week H-bond to K529, similarly to AZD.

We have also calculated the binding free energy (1Gb)

(Table 1) of the five active compounds to WT, Y537S and, for

compound 19, also to the Y537N, D538G variants. Stunningly,

19 dissociates from one monomer of WT ERα due to the lack
of H-bonds, rationalizing its preference toward the pathogenic
variants. Instead, its 1Gb is similar in all tested mutants. All
other active ligands, but 20, display a slightly higher affinity
for WT ERα, and their 1Gb is slightly larger than that of
19 toward Y537S, most probably because of their larger size.
Nonetheless, the tested ligands do not strongly bind to the LBC,
as shown by a comparison of the calculated 1Gb compared to
that AZD. Thus, even small differences in the position of their
H-bonding moieties may result in the different binding poses

observed for 20 and 13. To monitor the impact of the distinct
ligands size on 1Gb, we also computed the ligand efficiency
(LE, Supplementary Table 5), calculated as 1Gb divided by the
number of non-hydrogen atoms. LE differences among ligands
are smaller than that of 1Gbs. 19 presents comparable LE for all
mutants tested. Interestingly, compounds 9, 20, 21 have a slightly
larger LE for Y537S than 19, suggesting that other features,
besides LE or 1Gb, may be important for ligand selectivity
toward the distinct ERα isoforms.

Structural Signatures of (m)ERα

Activation/Inactivation
The cross-correlation matrix calculated on the basis of the
Pearson correlation coefficients (CCij) was computed to
qualitatively identify the linearly coupled motions between
couples of residues along the MD trajectory. A simplified
version of this matrix, based on the sum of the of correlation
scores (CSs) between each structural elements of (m)ERα

(Supplementary Figure 2), has been calculated to decrypt the
correlation pattern in complex systems (Casalino et al., 2018),
among which ERα (Pavlin et al., 2018). In this analysis, a
positive/negative score corresponds to a positively (correlated) /
negatively (anti-correlated) motion.

In our previous study, the presence of a positive correlation
score between H12 and H3-H5 was taken as a structural
signature of Y537S ERα intrinsic activation. This was persistent
upon END binding, while only FULV and, partially, AZD
were able to remove it, in line with the proved activity of
these SERDs on the Y537S mutant (Fanning et al., 2016).
Hence, we also inspected if the ligands differently affect the
internal cross-correlation map. All compounds binding to
Y537S remove the contacts between H12 and H3, reducing,
in most cases, the cross-correlation score in both monomers

TABLE 1 | Binding free energies (1Gb, kcal/mol) of the ligands 9, 13, 19, 20, and 21.

WT Y537S Y537N D538G

A B A B A B A B

Endoxifen −51.7 ± 3.6 −46.9 ± 3.3 −45.6 ± 3.5 −45.2 ± 3.5 −43.8 ± 3.3 −49.9 ± 4.3 −47.1 ± 3.4 −50.5 ± 3.6

AZD−9496 −45.2 ± 3.6 −43.9 ± 3.7 −42.9 ± 3.7 −53.7 ± 7.7 −45.1 ± 4.1 −42.9 ± 3.9 −45.1 ± 4.0 −43.7 ± 4.3

Fulvestrant −69.0 ± 6.4 −66.9 ± 6.2 −65.1 ± 5.1 −76.0 ± 5.6 −68.2 ± 6.1 −66.6 ± 5.7 −63.5 ± 6.0 −69.7 ± 6.0

9 −42.7 ± 4.2 −36.7 ± 4.4 −36.9 ± 5.7 −37.3 ± 4.6 / / / /

13 −44.8 ± 4.3 −42.6 ± 3.3 −41.4 ± 3.2 −45.2 ± 4.6 / / / /

19 −21.3 ± 7.2* −40.9 ± 8.1 −32.3 ± 5.8 −32.3 ± 6.2 −32.9 ± 3.6 −43.0 ± 6.7 −30.8 ± 5.7 −46.8 ± 6.0

20 −38.6 ± 3.3 −35.1 ± 2.6 −40.0 ± 2.9 −38.9 ± 5.0 / / / /

21 −45.4 ± 3.3 −42.5 ± 3.8 −43.6 ± 3.2 −39.2 ± 3.0 / / / /

Absolute values of molecular mechanics Generalized bond surface are (MM-GBSA).‡

‡Number of atoms/heavy atoms in each ligand:

Endoxifen – 55/28.

AZD-9496 – 57/32.

Fulvestrant – 88/41.

9 – 56/29.

13 – 51/30.

19 – 46/25.

20 – 47/27.

21 – 50/26.
*Ligand exits from the binding pocket.
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(Supplementary Figure 6). Moreover, compound 19 decreases
these contacts also when binding to Y537N and, to a minor
extent, to D538G (Supplementary Figures 7, 8). Conversely, in
WT ERα a smaller positive correlation among H5 and H12
can be observed only for (20 and 21; Supplementary Figure 9).

In order to capture more quantitatively the relative differences
among the activity exerted by these ligands we also analyzed
how H12 correlates with all other ERα structural elements in
the presence of the distinct active compounds. This analysis
clearly shows that ligands 9 and 20 present a cross-correlation

FIGURE 8 | Sum of per-residue cross-correlation coefficients. Left and right columns refer to monomers A and B, respectively. From top to bottom: WT (in complex

with END, AZD, FULV, and 19), WT (with 9, 13, 20, and 21), Y537S (with END, AZD, FULV, and 19), Y537S (with 9, 13, 20, and 21), Y537N, and D538G (in complex

with END, AZD, FULV, and 19). END, AZD, FULV, and compounds 9, 13, 19, 20, 21 are shown as black, red, green, blue, orange, purple, cyan, and brown lines,

respectively.

Frontiers in Chemistry | www.frontiersin.org 12 September 2019 | Volume 7 | Article 602133

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Pavlin et al. Compounds Selectively Targeting Mutant ERα

coupling between H12 and H4-H5 higher or similar to END at
least in one Y537S ERα monomer, while 19 effectively reduces
this positive correlation in both monomers. This correlation
coupling is completely abolished in Y537N and reduced even in
D538G (Figure 8), pointing to an activity of 19 also against these
mutants, even if to a minor extent.

As a result, 19 appears to reduce the transcriptional activity of
Y537S cells thanks to its capability of binding in the LBC of both
LBDmonomers only in the mERαs, where it establishes H-bonds
with E415, L346 and K529, similarly to AZD.

Kinetic Characterization of Active
Compounds
Since increasing evidences pinpoint the dissociation free energy
barriers (1G#

d
) of a ligand from its binding cavity to be strongly

entwined with the residence time and, thus, with drugs’ efficacy
(Magistrato et al., 2017), the observed preferential activity of
19 toward Y537S ERα fostered the investigations of its kinetic
properties as compared to those of AZD.

The free energy surface (FES) obtained from MTD
simulations inducing the dissociation of AZD from the
LBC of Y537S ERα shows a wide minimum at Center of Mass
(COM) distance between ligand and protein at ∼1.2 nm, which,
instead, spans the coordination number (CN) 0.2-0.4. A second,
narrower, minimum appears at CN around 0 and COM distance
≥ 2.5 nm. By inspecting two-dimensional FES plots of both
CVs one can estimate a 1G#

d
of 14.1 ± 2.0 kcal/mol for AZD

dissociation (Figure 9A, Supplementary Figures 10, 11, and
Supplementary Table 6). The main barrier observed for AZD
dissociation is due to the breaking of its H-bond interactions
between the carboxylic group of AZD with K529 and C530.
These, therefore, appear as pivotal residues for increasing the
residence time of this drug in the LBC and possibly its efficacy.

On the other hand, FES for the dissociation of 19 reveals a
rather wide minimum at CN = 0.2–0.4, lying at higher distance
(COM) between ligand and the LBC as compared to AZD (1.5–
1.7 nm) (Figure 9B). The second minimum is located in a similar
position to that of AZD. In this case, however, the 1G#

d
is rather

small (3.7 ± 1.9 kcal/mol) (Supplementary Figures 10, 11 and

Supplementary Table 6) and it is associated to the breaking of
the H-bond between the hydroxyl group of the ligand and the
E418 residue. This latter, therefore, appears to be a distinctive
feature of this ligand.

These simulations pinpoint the most important substituents
of the ligand that may contribute to improve the kinetic
properties of the drugs, and the residues of the LBC that must
be engaged in specific interactions for the discovery of mutant-
specific anti-estrogen compounds.

DISCUSSION

Breast cancer remains the most diagnosed (1 over 8) and the
second leading cause of cancer induced mortality in women. The
majority (70 %) of BC is hormone dependent and its proliferation
relies on the presence of ERα, which has a pro-oncogenic
effect in the presence of estrogens. The gold standard treatment
in this type of BC is the hormone adjuvant therapy, which
either suppresses estrogen production (aromatase inhibitors) or
modulates/degrades the ERα (SERMs/SERDs). The prolonged
exposure to these therapies, usually administered consecutively
for 5–10 years’ time-frame, leads to resistance in half of all
luminal BCs after 5 years, in spite of the ERα expression (Toy
et al., 2017; Fanning et al., 2018; Busonero et al., 2019; Spinello
et al., 2019b).

While the genomic profile of inherited and somatic alterations
characterizing each type of BC is well-established, the evolution
of the BC’s genomic landscape under the evolutionary pressure
of systemic therapies is not clearly understood. As well as how
this landscape impacts on the clinical outcome of endocrine
therapies remains poorly characterized and is currently object of
intense research efforts. Resistance onset is, in fact, responsible
of refractory BCs and of an increased mortality rate. In this
worrisome scenario, the therapeutic options to intervene with
personalized treatments based on the patients’ evolution of the
genomic profiles remains a daunting challenge. This has spurred
substantial efforts to characterize the phenotype responsible of
drug resistance and propose innovative therapeutic options.

FIGURE 9 | Free energy surface maps from metadynamics simulations for the dissociation of AZD (A) and compound 19 (B) from the ligand binding cavity. On x axis

is coordination number (H-bond for AZD and hydrophobic interactions for 19) and on y axis is COM distance between ligand and receptor. Color scale represents free

energy values in kJ/mol. In black squares are encircled structures corresponding to the ligand bound state (ground state), the transition state.
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Distinct studies indicated that frequent mutations present
in the loop connecting H11 and H12 of the LBD trigger
the acquisition of an intrinsically active (agonist-like) ERα

conformation, even in the absence of E2. This conformation
remains even in the presence of SERMs (Fanning et al.,
2016; Pavlin et al., 2018). Our recent computational attempt
to identify the key common structural traits that drugs
should possess in order to effectively fight resistant BCs
was the grounding knowledge for the present study. Indeed,
here we carried out in silico screening on the structural
scaffolds of the Y537S, Y537N, and D538G mutants
adapted to known mERα degraders (AZD and FULV),
seeking for the structural elements able to protrude toward
loop connecting H11-H12. This should allow the ligand
to counteract the intrinsic and mutant dependent ERα

activation (Pavlin et al., 2018).
From a consensus docking study, we selected 17 molecules

(Supplementary Figure 3) effectively binding in at least two
mutants, among which five resulted to be active on BC cell
lines. Some of them were known to be active also on other
targets and diseases (Supplementary Table 7). Among these
compounds, 19 was selective exclusively toward those expressing
Y537S (and to aminor extent to Y537N,D538G) ERα (Figures 2–
4). In spite of its ability to block the transcriptional activity
of the receptor only in the high µM range, thus requiring
further optimization, the structural scaffold of compound 19

encompasses all the motifs required by an active and mutant-
specific drug-candidate. Namely, 19 forms number of H-
bonds in the ligand binding cavity (L346 and E419) and
with K529. Conversely, E380, a key residue involved in the
structural transition toward an agonist-like state of the receptor,
persistently H-bonds to H377. This is a previously annotated
structural feature able to impede the pro-oncogenic effect of
resistant phenotypes. Indeed, compound 19, to the best of
our knowledge, is the only mutant specific modulator of ERα

transcriptional activity identified so far. However, its 1Gb and
1G#

d
are remarkably smaller than the parent AZD compound. A

detailed comparison among the residues, which optimize these
thermodynamics and kinetic properties of the 19 with respect
to those of AZD is informative for future knowledge-based
drug-design efforts aimed at discovering drug-candidates with
superior efficacy.

Since ESR1 mutations are potential clinical biomarkers to
guide therapeutic decisions, identification of small molecules
able to block proliferation of metastatic tumors expressing
one prevalent mERα resistant phenotypes may result in
counteracting, preventing and/or delaying their occurrence in
early disease stage. In this scenario, our study contributes to
move a step forward toward precision and personalized medicine
tailored against metastatic and resistant ER+ BCs.
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High throughput screening (HTS) is an important component of lead discovery, with virtual

screening playing an increasingly important role. Both methods typically suffer from lack

of sensitivity and specificity against their true biological targets. With ever-increasing

screening libraries and virtual compound collections, it is now feasible to conduct

follow-up experimental testing on only a small fraction of hits. In this context, advances in

virtual screening that achieve enrichment of true actives among top-ranked compounds

(“early recognition”) and, hence, reduce the number of hits to test, are highly desirable.

The standard ligand-based virtual screening method for large compound libraries uses a

molecular similarity search method that ranks the likelihood of a compound to be active

against a drug target by its highest Tanimoto similarity to known active compounds.

This approach assumes that the distributions of Tanimoto similarity values to all active

compounds are identical (i.e., same mean and standard deviation)—an assumption

shown to be invalid (Baldi and Nasr, 2010). Here, we introduce twomethods that improve

early recognition of actives by exploiting similarity information of all molecules. The first

method ranks a compound by its highest z-score instead of its highest Tanimoto similarity,

and the second by an aggregated score calculated from its Tanimoto similarity values to

all known actives and inactives (or a large number of structurally diverse molecules when

information on inactives is unavailable). Our evaluations, which use datasets of over 20

HTS campaigns downloaded fromPubChem, indicate that compared to the conventional

approach, both methods achieve a ∼10% higher Boltzmann-enhanced discrimination of

receiver operating characteristic (BEDROC) score—a metric of early recognition. Given

the increasing use of virtual screening in early lead discovery, these methods provide

straightforward means to enhance early recognition.

Keywords: lead discovery, virtual screening, early recognition, Tanimoto similarity, z-score, BEDROC, ROCS
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INTRODUCTION

Lead discovery by high throughput screening (HTS) is often
described as a process akin to finding a needle in a haystack
(Aherne et al., 2002). Given the significant achievements in
automation, major pharmaceutical companies now routinely
screen hundreds of thousands of samples to identify compounds
that are active against specific drug targets. However, the number
of chemicals available for bioactivity testing has increased
exponentially over the past decade. For instance, as of 2015, the
number of structurally unique chemicals registered in PubChem
was more than 60 million (Kim et al., 2016), and in 2018, the
total number of organic and inorganic substances disclosed in
the literature was estimated to be 154 million1. Thus, despite
the increased screening capacity, it remains impractical to assay
a significant fraction of all available chemicals. Consequently,
virtual screening is becoming increasingly important to prioritize
and select compounds (Kar and Roy, 2013). The most widely
used virtual screening methods are based on molecular similarity
searches (Kristensen et al., 2013). These approaches typically
rank molecules in a chemical library based on their structural
similarity to a set of molecules known to be active against a
desired target. Chemicals ranked high on the list can then be
acquired and tested for the desired activity or property.

The most commonly used metric to compare the performance
of different virtual screening methods is the area under the
receiver operating characteristic curve (ROC_AUC) (Triballeau
et al., 2005). This is useful for comparing overall performance of
methods for ranking a database (Truchon and Bayly, 2007; Zhao
et al., 2009). However, the ROC_AUC is inappropriate for virtual
screening when the goal is to create a smaller subset enriched
with themaximum number of actives (Truchon and Bayly, 2007).
The distinction is critical, especially when the chemical libraries
are large and only a small fraction of compounds can be tested.
Truchon and Bayly (2007) illustrated the difference using three
basic cases: (1) half of the actives ranked at the top of a rank-
ordered list and the other half at the bottom; (2) all actives
randomly distributed across ranks; and (3) all actives ranked in
themiddle of the list. In all three cases, the ROC_AUC value is 0.5
and, therefore, according to this metric, all three virtual screening
methods that generated the three rank-ordered lists perform
equally. However, because only a small fraction of chemicals in
a large library can be tested, “early recognition” of actives is
practically important. That is, case 1 is preferable to case 2 or 3,
and case 2 could be considered more desirable than case 3.

Many metrics have been proposed to address early
recognition. Examples include the partial area under the
ROC curve (McClish, 1989), enrichment factor (Halgren et al.,
2004), area under the accumulation curve (Kairys et al., 2006),
robust initial enhancement (Sheridan et al., 2001), Boltzmann-
enhanced discrimination of the receiver operating characteristic
(BEDROC) (Truchon and Bayly, 2007), and predictiveness
curve (Empereur-Mot et al., 2015). Although no metric is
perfect, perhaps the most frequently adopted is BEDROC, which
employs an adjustable parameter, α, to define “early detection.”

1https://www.cas.org/about/cas-content (accessed July 5, 2019).

Truchon and Bayly suggest setting this parameter to 20.0, which
dictates that 80% of the maximum contribution to BEDROC
comes from the top 8% of the ranked list. A comparatively higher
BEDROC score between two virtual screening methods indicates
an enhanced ability to enrich the list of top-ranking compounds
with active molecules.

Using both AUC_ROC and BEDROC, Nasr et al. (2009)
carried out a large-scale study of the performance of 14 similarity
search methods, including eight parameter-free methods (no
parameters to be learned from training data) and six with one
or two parameters to be learned from training data. Consistent
with previous results, they found that the best parameter-free
method is the Max-Sim method, which ranks molecules based
on their maximum Tanimoto coefficient (TC, also commonly
referred to as Tanimoto similarity) to the active query molecules.
Among the six methods that require parameters to be fit to
the data, the exponential Tanimoto discriminant (ETD) method
was the best performer overall. This method is defined by the
following equations.

S (B) =

∑m
i=1 S(Ai, B)

∑n
j=1 S(Ij, B)

(1)

S (A,B) =

[

λTCAB (1− λ)1−TCAB

]
1
k

(2)

TCAB =

A ∩ B

A ∪ B
(3)

Here, S(B) denotes the aggregated score for molecule B, m,
and n, respectively denote the numbers of active and inactive
query molecules, Ai denotes the ith active query molecule, Ij
denotes the jth inactive molecule, TCAB denotes the TC between
molecules A and B, λ, and k denote parameters to be learned
from the data. The higher the aggregated score, the more likely
it is that molecule B is active. Nasr et al. (2009) provided neither
recommended default parameter values for λ and k, nor values
learned from any of their datasets.

In this article, we introduce two parameter-free similarity
search methods that improve the early recognition of actives
over the Max-Sim method. Using HTS data, we demonstrate
that, on average, the BEDROC values derived from both methods
are about 10% higher than those derived from the Max-Sim
scoring method.

METHODS AND MATERIALS

Rank by Z-Scores
In a Max-Sim similarity search, we first calculate all TCs between
the compounds in a chemical library and active query molecules.
The library compounds are then ranked based on their highest
TCs. The underlying assumption is that the higher the TC, the
more likely a compound is to be active. This assumption is valid
for searches with a single active query molecule, and for searches
with multiple active query molecules if the distributions of TCs
are identical (i.e., have the same mean and standard deviation
irrespective of the query molecules). Although it has been
standard practice for many years to conduct Max-Sim similarity
searches, no study had examined the statistical distribution of
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TCs until 2010, when Baldi and Nasr (2010) investigated in detail
the significance of Tanimoto similarity. They showed that the
statistical distribution of TCs is not invariant, but depends on the
number of fingerprint features present in a query molecule. This
finding and its implications, however, are largely overlooked by
the cheminformatics community, perhaps due to the reasonably
good performance of the Max-Sim method and the extremely
low mean TCs for any query molecule. As an example, Figure 1
shows the means and standard deviations of the TCs of 10,000
chemicals randomly selected from the U.S. National Cancer
Institute (NCI) chemical library calculated with respect to each of
three drugs approved by the U.S. Food and Drug Administration.
All of the means and standard deviations are close to zero,
suggesting that most NCI compounds do not have the same
activity as that of the approved drugs. The small mean TCs may
obscure an important fact—that the values are not identical and
could be significantly different. For instance, the mean TC of
scopolamine is 43% higher than that of pemirolast. To appreciate
the implications of the difference, let us assume that a molecule
has TCs of 0.80 and 0.70 calculated with respect to scopolamine
and pemirolast, respectively. Based on the Max-Sim method,
one would expect the molecule to have activities more similar
to those of scopolamine. However, because of the difference in
the means and standard deviations, the z-scores of the molecule
calculated with respect to scopolamine and pemirolast are 17.3
and 22.8, respectively, suggesting that the molecule is more likely
to have activities similar to those of pemirolast than to those of
scopolamine. If we consider that there are differences in mean
TCs and standard deviations, then ranking molecules by the
maximum z-score is statistically preferable in a similarity search.
Accordingly, we designate this approach as the maxZ method.

Rank by Aggregated Similarity
In the past two decades, HTS has contributed to the discovery
of numerous structurally novel active compounds against many
important drug targets. As these compounds are identified from
large experimentally tested screening libraries, they are classified
as either active or inactive based on predefined activity criteria.
In follow-up studies based on virtual screening by similarity
search methods, only active compounds are used as queries.
As noted in the Introduction, Nasr et al. (2009) developed
the ETD method, which exploits information of both active
and inactive compounds. They found that ETD performed
best among 14 parameterized and non-parameterized TC-based
similarity searchmethods. An undesirable feature of this method,
however, is that it requires two parameters that may not be
universally applicable, but still need to be fit for each individual
dataset. Here, we propose an aggregated similarity (AS) method
that does not require any parameter fitting based on individual
datasets. We define the AS method by the following equation:

AS (X) =

∑m
i=1 e

−

1−TC(Ai ,X)
α+TC(Ai ,X)

∑n
j=1 e

−

1−TC(Ij ,X)

α+TC(Ij ,X)

(4)

where, X denotes a compound in a chemical library, m and n,
respectively denote the number of active and inactive molecules,

TC(Ai,X) denotes the TC between the ith active molecule and
X, TC(Ij,X) denotes the TC between the jth inactive molecule
and X, and α is set to 10−6—a small number to avoid division
by zero when TC equals zero. Possible AS(X) values range from
zero to infinity, where zero indicates that molecule X shares no
fingerprint features with any of the active query molecules, i.e.,
all TC (Ai,X) = 0, and infinity indicates that molecule X shares
no fingerprint features with any of the inactive query molecules.
In reality, because the number of inactive molecules is large (i.e.,
a positive is like a needle in a haystack and, therefore, most
molecules can be classified as inactives), the probability of X
sharing no fingerprint features with any of the inactive query
molecules is zero, unless a very small number of inactive query
molecules is used (even though a large number of them should
be available).

One problem with using information on inactive compounds
is that the results of large-scale screening campaigns are not
equally reliable for active and inactive compounds. This is
because such campaigns are typically executed in multiple
confirmatory steps focusing on active compounds. The first
step involves an initial primary screening of a large number
of samples at a single concentration with few or no replicates.
Samples deemed to meet the primary activity criteria are then
selected and retested in multiple replicates, usually with counter-
assays to affirm activity. Samples that satisfy the retesting criteria
may be further tested at multiple concentrations to determine
potency. One consequence of this screening protocol is that the
activities of a positive compound are more reliable because they
are reassessed in multiple tests, whereas compounds fail to meet
primary active criteria are not retested to confirm inactivity. As
a result, the set of inactive molecules is likely to contain false
negatives. A more obvious problem with the AS method is that
it cannot be applied to cases where information on inactives is
unavailable. As a means to overcome this challenge, we suggest
that a set of structurally diverse compounds can be used as
putative inactive compounds. This is because compounds that
are truly active against the most valuable drug targets are rare
(i.e., needles in a haystack). Therefore, within a structurally
diverse set of compounds, the number of compounds that are
active against a drug target should be small. Here, we tested the
validity of this hypothesis by using 10,000 structurally diverse
compounds as putative inactives. We selected these compounds
by clustering ∼275,000 compounds of the NCI virtual screening
library (Shiryaev et al., 2011) into 10,000 clusters based on
the TC (a measure of molecular similarity), and selecting the
cluster centers as structurally diverse compounds to represent
coverage of the chemical space of the full dataset. In doing so,
we considered a singleton as a cluster of size one.

Datasets
We evaluated the performance of the similarity search methods
using HTS data generated from the National Center for
Advancing Translational Sciences of the National Institutes of
Health. We downloaded the data in two batches. The first batch
consisted of the results of ∼8,000 samples screened against
10 toxicity-related targets using 12 different assays, with two
different assays deployed for two of the 10 targets. Thus, roughly
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FIGURE 1 | Examples of means and standard deviations (STD) of the Tanimoto coefficients (TCs) of 10,000 compounds randomly selected from the National Cancer

Institute’s virtual screening library calculated with respect to three drugs approved by the Food and Drug Administration.

the same 8,000 samples were tested in 12 assays, generating
12 molecular activity datasets. As these datasets were used in
the Tox21 Data Challenge for molecular activity predictions
(Huang and Xia, 2017), we downloaded them from Tox21
Data Challenge web site2. Because the datasets were relatively
small (consisting of ∼7,000 structurally unique compounds), we
used them to evaluate maxZ scoring methods based on two-
dimensional (2-D) molecular fingerprints and three-dimensional
(3-D) molecular shapes.

A library consisting of 8,000 samples can hardly be considered
a “large” library for HTS. Therefore, we used a second batch of
data that consisted of results for a few thousand to a few hundred
thousand samples screened against 12 different molecular targets.
We downloaded these data from the PubChem web site (https://
pubchem.ncbi.nlm.nih.gov/) using their assay IDs as queries.
Table 1 shows the assay IDs of these datasets together with the
Tox21 Challenge datasets. Details of the datasets, including the
molecular targets, specific assays, number of samples screened,
and number of samples deemed active, can be found from
PubChem using the respective assay IDs as queries.

Because some samples were prepared from the same parent
chemicals, we first cleaned the data before using them to
evaluate the performance of the similarity search methods.
We first removed counter-ions in salts and retained the
largest component in samples consisting of non-bonded (i.e.,
disconnected) components. We then standardized the structures
by neutralizing acids and bases (protonating acids and de-
protonating bases) and generating a canonical SMILES from
the standardized structure for each sample. For the results of
each dataset, we applied a first-pass filter on canonical SMILES
and retained only the first sample entry of a structurally unique
parent compound. Table 1 summarizes the resulting number of
structurally unique parent compounds tested and the number of
structurally unique actives from each assay.

In addition to the 24 HTS datasets, we also evaluated
performance of the methods on 40 datasets in the Directory of

2https://tripod.nih.gov/tox21/challenge/data.jsp (accessed July 5, 2019).

Useful Decoys (DUD) (Huang et al., 2006) and an enhanced
version of DUD consisting of 102 datasets called DUDE
datasets (Mysinger et al., 2012). Each of these datasets consists
of compounds known active on a protein target and many
compounds of similar physicochemical properties as the actives
but of very different molecular structures as the actives. These
datasets are designed for evaluating the performance of docking-
based virtual screening methods. We expect them to be less
challenging than the HTS datasets for 2-D molecular similarity
search methods, because in these datasets the actives and decoys
are well-separated in molecular structure space and, therefore,
any fingerprint-based similarity search methods are expected to
perform well on these datasets.

Evaluation Protocol
To evaluate the performance of the methods, for each dataset
we randomly selected 100 actives as the queries, and combined
the other actives with the other compounds tested. We then
calculated the maximum TC for each of these compounds with
respect to the queries, as well as the maximum z-score and AS
score. For these calculations, we used the extended connectivity
fingerprint (Rogers and Hahn, 2010) with a maximum diameter
of four chemical bonds (ECFP_4) and a fixed fingerprint length
of 2,048 bits. We calculated ROC_AUC and BEDROC values
for the Max-Sim, maxZ, and AS methods. For all BEDROC
calculations, we used the default parameter setting of α = 20.0,
i.e., corresponding to 80% of the maximum contribution to
BEDROC coming from the top 8% of the list of rankedmolecules.
To ensure statistical significance of the findings, we repeated the
calculations nine times, using 100 randomly selected actives as
queries each time.We compared the performance of the methods
based on the resulting mean ROC_AUC and BEDROC values.

RESULTS

Performance of the maxZ Method
Table 2 shows a summary of the mean ROC_AUC and BEDROC
values derived from the Max-Sim and maxZ methods for the 24
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TABLE 1 | PubChem datasets used in this study to evaluate performance of similarity search methods.

Dataseta PubChem Assay IDb Samplesc Unique structuresd Unique activese

AHR 743122 8169 6318 723

AR 743040 9362 7009 290

ARE 743219 7167 5643 889

AR-lbd 743053 8599 6524 233

Aromatase 743139 7226 5601 273

ATAD5 720516 9091 6825 253

ER 743079 7697 5993 716

ER-lbd 743077 8753 6727 324

HSE 743228 8150 6253 337

MMP 720637 7320 5625 885

P53 720552 8634 6544 410

PPARg 743140 8184 6232 174

4-MU 589 59070 58199 6146

ALDH1A1 1030 220365 215450 15847

BRCA1 624202 377534 373883 3938

DNApb 485314 337903 333082 4466

ERK 1454 133383 130623 532

GCN5L2 504327 387577 379179 741

hERG 588834 5363 4568 553

Lucif 411 72335 70939 1558

MiRNAs 2289 336623 332205 3265

Mitoch 485298 322909 320471 734

NPC1 485313 321376 319001 7532

PR901 1347036 9523 7177 111

aAll datasets are derived from quantitative high throughput screening conducted at the National Center for Advancing Translational Sciences to ascertain chemical activities against

different molecular targets. The first 12 datasets were used in the 2014 Tox21 Data Challenge.
bThe datasets can be accessed from the PubChem website using the assay IDs as queries.
cTotal number of samples screened in each dataset.
dNumber of structurally unique parent molecules (non-salts, non-mixtures) derived from retaining the largest chemical structure in each sample and performing structure standardization.
eNumber of structurally unique active parent molecules.

Dataset names: AHR, activators of aryl hydrocarbon receptor; AR, activators of androgen receptor; AR-lbd, activators of androgen receptor ligand binding domain; Aromatase, aromatase

inhibitors; ER, estrogen receptor activators; ER-lbd, activators of estrogen receptor ligand binding domain; PPARg, activators of peroxisome proliferator-activated receptor gamma;

ARE, activators of antioxidant response element; ATAD5, ATPase family AAA domain-containing protein 5; HSE, activators of heat shock response signaling pathway; MMP, disruptors

of mitochondrial membrane potential; p53, activators of p53 signaling pathway; hERG, blockers of hERG potassium channel; PR901, agonists of progesterone receptor; 4-MU,

spectroscopic response at the 4-methylumbelliferone region as a counter assay for fluorescence detection; Lucif, inhibitors of Luciferase; ERK, inhibitors of mitogen-activated protein

kinase 1; ALDH1A1, inhibitors of aldehyde dehydrogenase 1 family, member A1; NPC1, promoters of Niemann-Pick C1 protein precursor; Mitoch, inhibitors of mitochondrial division;

MiRNAs, modulators of miRNAs; DNApb, inhibitors of DNA polymerase beta; BRCA1, activators of BRCA1 expression; GCN5L2, inhibitors of histone acetyltransferase KAT2A.

datasets. The mean ROC_AUC values derived from the Max-
Sim method and those derived from the maxZ method were
similar, with the latter only 3.7% higher than the former. In
contrast, the mean difference in BEDROC values between the
maxZ and Max-Sim methods was as high as 15%. However, the
result for one dataset, NPC1, was an outlier, as the difference
was as high as 170%, and the mean difference in BEDROC
values decreased to 8.7% when it was excluded. Nonetheless,
the maxZ method still outperformed the Max-Sim method, as
the ROC_AUC and BEDROC values derived from maxZ were
smaller than those derived from Max-Sim in only two of the
24 datasets. Although the differences between the maxZ and
Max-Sim results were small for some datasets, for those showing
a considerable difference, maxZ performed significantly better.
For instance, the ROC_AUC values derived from maxZ were
at least 5% higher than those derived from Max-Sim in 8 of

the 24 datasets, whereas Max-Sim performed better than maxZ
by 5% or more in only two datasets. This difference was even
more pronounced for BEDROC values, as maxZ outperformed
Max-Sim by 5% or more in 15 of the 24 datasets, whereas the
opposite was true in only one dataset. Overall, the ROC_AUC
values show that the maxZ method performs only slightly better
than the Max-Sim method for ranking all samples in the dataset,
whereas the BEDROC values indicate that the maxZ method
performs markedly better than the Max-Sim method in the early
recognition of active compounds.

A popular 3-D equivalent of 2-D fingerprint-based molecular
similarity search is the Rapid Overlay of Chemical Structures
(ROCS) method (OpenEye Scientific Software, Santa Fe, NM)
(Fontaine et al., 2007), which calculates the Tanimoto similarity
between 3-D molecular shapes and pharmacophore features.
Because of the similarity between 2-D fingerprint-based and
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TABLE 2 | Mean and standard deviation of ROC_AUC and BEDROC values derived from a similarity search using the rank by maximum similarity (Max-Sim) and

maximum z-score (maxZ) approaches over 10 runs, each with 100 randomly selected actives as queries.

ROC_AUC BEDROC

Max-Sim maxZ Max-Sim maxZ

Dataset Mean Std Mean Std %Diffa Mean Std Mean Std %Diffb

AHR 0.754 0.011 0.759 0.012 0.7 0.402 0.016 0.365 0.019 −9.3

AR 0.740 0.009 0.748 0.009 1.0 0.482 0.019 0.509 0.014 5.6

ARE 0.539 0.008 0.544 0.009 1.0 0.225 0.014 0.266 0.018 17.9

AR-lbd 0.815 0.011 0.811 0.011 −0.5 0.607 0.023 0.610 0.028 0.6

Aromatase 0.662 0.017 0.686 0.016 3.6 0.263 0.026 0.291 0.019 10.7

ATAD5 0.713 0.022 0.724 0.018 1.6 0.303 0.025 0.313 0.020 3.4

ER 0.665 0.005 0.667 0.009 0.4 0.380 0.009 0.395 0.012 3.8

ER-lbd 0.715 0.011 0.726 0.010 1.5 0.381 0.026 0.382 0.025 0.0

HSE 0.579 0.027 0.595 0.027 2.8 0.186 0.020 0.205 0.023 10.3

MMP 0.694 0.009 0.704 0.018 1.4 0.414 0.024 0.469 0.025 13.2

P53 0.611 0.013 0.649 0.013 6.1 0.251 0.016 0.265 0.012 5.8

PPARg 0.681 0.018 0.686 0.027 0.7 0.274 0.031 0.277 0.030 1.0

4-MU 0.565 0.007 0.604 0.007 7.0 0.272 0.010 0.316 0.009 16.1

ALDH1A1 0.506 0.004 0.513 0.009 1.3 0.104 0.007 0.111 0.007 6.8

BRCA1 0.667 0.006 0.694 0.004 4.2 0.147 0.006 0.155 0.006 5.5

DNApb 0.591 0.011 0.633 0.012 7.1 0.137 0.006 0.163 0.012 18.9

ERK 0.647 0.021 0.698 0.017 8.0 0.235 0.017 0.250 0.016 6.3

GCN5L2 0.541 0.014 0.651 0.016 20.5 0.179 0.015 0.245 0.015 36.9

hERG 0.745 0.009 0.732 0.013 −1.8 0.460 0.009 0.447 0.012 −2.7

Lucif 0.707 0.008 0.737 0.010 4.1 0.255 0.010 0.268 0.012 4.9

MiRNAs 0.574 0.004 0.609 0.010 6.1 0.128 0.004 0.144 0.008 12.0

Mitoch 0.510 0.006 0.546 0.007 7.0 0.079 0.007 0.101 0.006 28.9

NPC1 0.653 0.007 0.696 0.007 6.5 0.079 0.007 0.213 0.006 170.0

PR901 0.931 0.013 0.945 0.013 1.5 0.800 0.025 0.822 0.022 2.8

Mean 3.8 15.4

aPercent difference between mean ROC_AUC values for Max-Sim and maxZ methods.
bPercent difference between mean BEDROC values for Max-Sim and maxZ methods.

3-D ROCS-based similarity searches, we hypothesized that the
maxZ method would also improve early recognition for ROCS-
based 3-D similarity searches. To test this hypothesis, we
generated up to 15 low-energy conformers for each molecule
in the 12 datasets used in the 2014 Tox21 Data Challenge,
using Omega version 3.0.1.2 (OpenEye Scientific Software) with
default parameters (Hawkins et al., 2010). We then conducted
ROCS-based similarity searches for each dataset using randomly
selected 10% actives as active queries. Each query molecule was
represented by up to 15 of its lowest-energy conformers. We
calculated the Tanimoto combo similarity (commonly called
the combo score, which is the sum of the shape TC and
color force field TCs) pairwise between the conformers of each
active query and each conformer of the other compounds using
ROCS version 3.2.2.2 with default parameters. The maximum
Tanimoto combo score between a query molecule and a non-
query molecule is designated as the Tanimoto combo score of
the non-query molecule. We then calculated the ROC_AUC
and BEDROC values using the maximum Tanimoto combo
scores and the maximum z-scores calculated from the Tanimoto

combo scores. We repeated this calculation nine more times,
each with 10% of the actives randomly selected as active query
molecules. Table 3 shows the means and standard deviations of
the ROC_AUC and BEDROC values. The results were similar
to those of 2-D fingerprint-based similarity searches, i.e., the
ROC_AUC values derived from the maxZ method were a few
percentage points higher than those derived from the Max-
Sim method, but the difference between BEDROC values was
12,6% on average. Thus, sorting the samples by the maximum
z-values of the combo scores led to a substantial improvement in
early recognition.

We evaluated the maxZ method for 3-D similarity search
of the Tox21 Challenge datasets only, because the datasets
were small (7,009 structurally unique compounds in the largest)
and the computations could be completed within a reasonable
amount of time. Most of the other datasets are much larger, with
up to a few hundred thousand structurally unique compounds.
We did not evaluate the performance of the maxZ method
on these datasets, because the ROCS calculations would have
required substantially more computing resources.
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TABLE 3 | Mean and standard deviation of ROC_AUC and BEDROC values derived from a ROCS-based 3-D molecular similarity search using the rank by maximum

similarity (Max-Sim) and maximum z-score (maxZ) methods.

ROC_AUC BEDROC

Max-Sim maxZ Max-Sim maxZ

Dataset Mean Std Mean Std %Diffa Mean Std Mean Std %Diffb

AHR 0.588 0.004 0.603 0.004 2.5 0.112 0.003 0.126 0.003 12.7

AR 0.729 0.007 0.749 0.015 2.7 0.201 0.010 0.234 0.013 16.2

ARE 0.547 0.004 0.560 0.005 2.5 0.090 0.003 0.101 0.002 12.6

AR-lbd 0.645 0.020 0.661 0.023 2.4 0.168 0.014 0.208 0.012 23.3

Aromatase 0.562 0.011 0.579 0.013 3.1 0.068 0.005 0.080 0.004 17.2

ATAD5 0.663 0.010 0.686 0.012 3.5 0.164 0.009 0.183 0.009 11.5

ER 0.685 0.007 0.703 0.009 2.6 0.168 0.007 0.184 0.005 10.1

ER-lbd 0.679 0.007 0.697 0.008 2.8 0.181 0.006 0.201 0.006 11.0

HSE 0.526 0.011 0.538 0.012 2.3 0.078 0.005 0.085 0.005 8.7

MMP 0.553 0.002 0.568 0.003 2.6 0.119 0.003 0.127 0.001 7.0

P53 0.575 0.009 0.590 0.011 2.5 0.091 0.006 0.101 0.004 11.2

PPARg 0.569 0.016 0.592 0.020 3.9 0.104 0.010 0.114 0.008 9.7

Mean 2.8 12.6

aPercent difference between mean ROC_AUC values for Max-Sim and maxZ methods.
bPercent difference between mean BEDROC values for Max-Sim and maxZ methods.

Performance of the AS Method
Table 4 shows the ROC_AUC and BEDROC values calculated
from the Max-Sim and AS methods for the 12 Tox21 Challenges
datasets. We calculated the AS score using a negative set
(inactives) of 1,000 randomly selected compounds from the set
of all screening negatives. We used the rest of the actives and
inactives in each dataset as test data to evaluate the performance
of each similarity search method. Both ROC_AUC and BEDROC
values calculated from AS scores were significantly higher than
the corresponding values obtained using the Max-Sim method,
confirming that exploiting the available information on inactives
improves the performance of both virtual screening methods.
Note that the improvement of BEDROC values is significantly
greater than that of ROC_AUC values, suggesting that the
performance gains are mainly due to early recognition of actives
in the AS method.

As noted in section Rank by Aggregated Similarity, because
drug discovery involves rigorous confirmation of the activities of
actives, but rarely any investments in efforts to confirm inactivity,
information on inactive compounds is usually less reliable than
that on active compounds. In addition, for some projects, active
queries are not derived from screening of chemical libraries and,
hence, there is no information on inactive compounds. However,
because the number of compounds that are active against any
drug target can be assumed to be miniscule compared to the
number of all available compounds, we hypothesized that a large
number of structurally diverse compounds should be able to
serve as putative inactive compounds for the AS method. To test
this hypothesis, we repeated the evaluation above, using 10,000
structurally diverse compounds selected from the NCI library.
Table 5 shows that the replacement of inactive compounds by
structurally diverse compounds led to a significant performance
deterioration of the ASmethod, especially in terms of ROC_AUC

values, which were only 2.6% higher on average than those
of the Max-Sim method. However, the overall mean BEDROC
value was still 14.6% higher than that of the Max-Sim method,
indicating that early recognition improved even when inactive
compounds from screening were unavailable.

To assess the validity of the findings on the 12 Tox21
Challenge datasets for a wider range of datasets with the
number of chemicals ranging from a few thousand to few
hundred thousand, we conducted virtual screening using the
AS method and the same 10,000 structurally diverse NCI
compounds as putative inactive compounds. The results were
comparable to those obtained from the Tox21 Challenge datasets,
indicating that the method is applicable to a wide range of HTS
datasets (Table 6).

Performance of the maxZ and AS Methods
on the DUD and DUDE Datasets
Because most DUD and DUDE datasets contain <100
actives, we performed evaluations on these datasets by
randomly selecting 10% of the actives as queries. We used
the remaining actives and all decoys as test sets to evaluate
the performance of the methods. As these datasets do not
contain any experimentally determined inactives, we used
the same set of 10,000 structurally diverse NCI compounds
as putative inactives in testing the performance of the AS
method. Table S1 shows detailed results obtained from the
40 DUD and 102 DUDE datasets and Table 7 summarizes
these results.

The most obvious difference between the summary results in
Table 7 and the results in Table 2 was that the ROC_AUC and
BEDROC values of the HTS datasets derived from the Max-
Sim method were significantly lower than the corresponding
values of the DUD and DUDE datasets. The mean ROC_AUC
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TABLE 4 | Mean and standard deviation of ROC_AUC and BEDROC values derived from a fingerprint-based similarity search using the rank by maximum similarity

(Max-Sim) and rank by aggregated score (AS) methods.

ROC_AUC BEDROC

Max-Sim AS Max-Sim AS

Dataset Mean Std Mean Std %Diffa Mean Std Mean Std %Diffb

AHR 0.734 0.010 0.829 0.010 13.0 0.385 0.016 0.534 0.018 38.6

AR 0.749 0.013 0.809 0.013 8.0 0.443 0.020 0.618 0.019 39.7

ARE 0.537 0.008 0.650 0.011 21.0 0.264 0.021 0.404 0.015 53.2

AR-lbd 0.795 0.017 0.823 0.014 3.5 0.574 0.026 0.605 0.022 5.5

Aromatase 0.615 0.016 0.727 0.021 18.2 0.219 0.029 0.323 0.019 47.3

ATAD5 0.652 0.018 0.717 0.018 9.9 0.273 0.023 0.303 0.024 11.0

ER 0.602 0.024 0.683 0.024 13.6 0.234 0.016 0.439 0.039 87.7

ER-lbd 0.689 0.014 0.713 0.011 3.6 0.374 0.027 0.386 0.017 3.3

HSE 0.557 0.009 0.650 0.012 16.8 0.122 0.010 0.210 0.024 71.8

MMP 0.663 0.011 0.760 0.007 14.6 0.398 0.030 0.565 0.026 41.9

P53 0.588 0.020 0.723 0.013 23.0 0.224 0.017 0.262 0.020 16.9

PPARg 0.678 0.029 0.744 0.025 9.7 0.262 0.036 0.279 0.036 6.3

Mean 12.9 35.3

aPercent difference between mean ROC_AUC values for Max-Sim and AS methods.
bPercent difference between mean BEDROC values for Max-Sim and AS methods.

TABLE 5 | Mean and standard deviation of ROC_AUC and BEDROC values derived from a fingerprint-based similarity search using the rank by maximum similarity

(Max-Sim) and rank by aggregated score (AS) methods, using 10,000 structurally diverse compounds as inactive compounds.

ROC_AUC BEDROC

Max-Sim AS Max-Sim AS

Dataset Mean Std Mean Std %Diffa Mean Std Mean Std %Diffb

AHR 0.730 0.010 0.758 0.009 3.8 0.337 0.023 0.407 0.017 20.8

AR 0.754 0.012 0.768 0.011 1.9 0.436 0.024 0.596 0.017 36.8

ARE 0.535 0.007 0.549 0.009 2.6 0.224 0.021 0.258 0.024 15.2

AR-lbd 0.790 0.018 0.807 0.021 2.2 0.550 0.020 0.614 0.030 11.6

Aromatase 0.621 0.024 0.663 0.023 6.7 0.202 0.040 0.289 0.036 43.2

ATAD5 0.653 0.024 0.666 0.025 2.0 0.268 0.021 0.281 0.023 4.9

ER 0.600 0.009 0.567 0.014 −5.5 0.197 0.010 0.136 0.021 −30.8

ER-lbd 0.683 0.018 0.712 0.017 4.2 0.366 0.030 0.461 0.019 25.8

HSE 0.553 0.013 0.576 0.016 4.2 0.118 0.018 0.147 0.026 24.4

MMP 0.651 0.016 0.689 0.012 5.9 0.336 0.029 0.454 0.019 35.0

P53 0.573 0.018 0.594 0.020 3.6 0.203 0.026 0.202 0.020 −0.2

PPARg 0.689 0.023 0.689 0.022 0.0 0.278 0.024 0.245 0.043 −12.0

Mean 2.6 14.6

aPercent difference between mean ROC_AUC values for the Max-Sim and AS methods.
bPercent difference between mean BEDROC values for the Max-Sim and AS methods.

values of the DUD and DUDE datasets were 0.90 and 0.96,
respectively, and the corresponding mean BEDROC values were
0.76 and 0.90. These values were significantly higher than the
corresponding mean ROC_AUC and BEDROC values of 0.66
and 0.29 for the 24 HTS datasets. These results corroborate
our expectation that, because the actives and decoys are well-
separated in molecular structure space, the DUD and DUDE
datasets present much less of a challenge than do the HTS

datasets for similarity search methods. Because the Max-Sim
method achieved near perfect performance for these datasets,
as indicated by an average ROC_AUC value of 0.96 and an
average BEDROC value of 0.90 for the DUDE datasets, any
improvement beyond the Max-Sim results will necessarily be
small given the little room left for improvement. Indeed, Table 7
shows that on average, the ROC_AUC or BEDROC values
derived from the maxZ or AS method were only about 1%
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TABLE 6 | Mean and standard deviation of ROC_AUC and BEDROC values derived from a fingerprint-based similarity search using the rank by maximum similarity

(Max-Sim) and rank by aggregated score (AS) methods, using 10,000 structurally diverse compounds as inactive compounds.

ROC_AUC BEDROC

Max-Sim AS Max-Sim AS

Dataset Mean Std Mean Std %Diffa Mean Std Mean Std %Diffb

4-MU 0.513 0.007 0.525 0.016 2.3 0.143 0.012 0.175 0.014 22.1

ALDH1A1 0.510 0.004 0.519 0.004 1.8 0.142 0.004 0.144 0.003 1.0

BRCA1 0.643 0.008 0.657 0.008 2.3 0.143 0.008 0.146 0.009 2.1

DNApb 0.527 0.010 0.588 0.009 11.7 0.111 0.007 0.173 0.007 55.5

ERK 0.624 0.011 0.672 0.008 7.6 0.247 0.014 0.299 0.011 21.3

GCN5L2 0.542 0.015 0.542 0.017 −0.1 0.132 0.009 0.133 0.012 0.9

hERG 0.725 0.011 0.794 0.006 9.6 0.411 0.032 0.522 0.024 27.2

Lucif 0.735 0.009 0.782 0.006 6.3 0.285 0.015 0.335 0.010 17.5

MiRNAs 0.613 0.006 0.635 0.006 3.6 0.143 0.006 0.153 0.007 7.0

Mitoch 0.512 0.008 0.513 0.007 0.1 0.082 0.008 0.097 0.008 18.4

NPC1 0.681 0.005 0.705 0.007 3.6 0.222 0.005 0.242 0.008 9.0

PR901 0.896 0.019 0.901 0.020 0.5 0.718 0.030 0.757 0.037 5.5

Mean 4.1 15.6

aPercent difference between mean ROC_AUC values for the Max-Sim and AS methods.
bPercent difference between mean BEDROC values for the Max-Sim and AS methods.

TABLE 7 | Summary of the performance of similarity search methods on 40 DUDa and 102 DUDEb datasets.

Metric Mean Max-Sim valuec Mean%diffd Diff ≥ 0%e Diff < 0%f Diff ≥ 1%g Diff < −1%h

MaxZ vs. Max-Sim method on 40 DUD datasets

ROC_AUC 0.91 1.0 30 10 13 0

BEDROC 0.79 1.7 30 10 16 1

AS vs. Max-Sim method on 40 DUD datasets

ROC_AUC 0.90 1.2 28 12 15 3

BEDROC 0.76 1.1 25 15 16 10

MaxZ vs. Max-Sim method on 102 DUDE datasets

ROC_AUC 0.96 0.5 90 12 18 0

BEDROC 0.90 0.7 87 15 28 2

AS vs. Max-Sim method on 102 DUD datasets

ROC_AUC 0.96 0.2 55 47 13 3

BEDROC 0.90 0.2 58 44 27 20

aDUD: Directory of Useful Decoys, http://dud.docking.org/.
bDUDE: Database of Useful Decoys: Enhanced, http://dude.docking.org/.
cMean ROC_AUC or BEDROC value calculated from the Max-Sim method over 40 DUD or 102 DUDE datasets.
dMean percentage difference between ROC_AUC or BEDROC values derived from the maxZ or AS methods and the Max-Sim method.
eNumber of datasets for which ROC_AUC or BEDROC values calculated from the maxZ or AS methods were higher than or equal to the corresponding values calculated from the

Max-Sim method, i.e., the number of datasets on which the maxZ or AS method performed comparable to or better than the Max-Sim method did.
fNumber of datasets for which ROC_AUC or BEDROC values calculated from the maxZ or AS methods were lower than the corresponding values calculated from the Max-Sim method,

i.e., the number of datasets on which the maxZ or AS method performed worse than the Max-Sim method.
gNumber of datasets for which ROC_AUC or BEDROC values calculated from the maxZ or AS methods were at least 1% higher than the corresponding values calculated from the

Max-Sim method.
hNumber of datasets for which ROC_AUC or BEDROC values calculated from the Max-Sim method was more than 1% higher than the corresponding values calculated from the maxZ

or AS methods.

higher and <1% higher than the corresponding values of the
Max-Sim method for the DUD and DUDE datasets, respectively.
Nevertheless, Table 7 shows that the number of datasets for
which the maxZ and AS methods performed better than the
Max-Sim method by more than 1% was significantly higher than
that for which the Max-Sim method performed better by more
than 1%. Thus, for these datasets, the maxS and AS methods still
outperformed the Max-Sim method (albeit with a smaller effect

size) even though the Max-Sim method already achieved near
perfect performance.

DISCUSSION

Fingerprint-based molecular similarity search is one of the
most important tools for virtual screening of large chemical
libraries. Over the years, many similarity search methods have
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been investigated, but the simple, parameter-free, rank-by-
maximum Tanimoto similarity approach remains a popular
method. It achieves robust performance based on the Tanimoto
similarity of each compound in a compound library to its
closest query molecule and disregarding its similarity to all
other query molecules. In addition, it compares the values of
Tanimoto similarity to different query molecules directly. This is
theoretically correct only if the distribution of similarity values
to all other query molecules is identical, an assumption that has
been shown to be invalid (Baldi and Nasr, 2010).

In this study, we proposed and evaluated two parameter-
free similarity search methods. The AS method considers
information on the similarity to all query molecules, whereas
the maxZ method converts the Tanimoto similarity into a z-
score for a statistically sound, direct comparison. The results
of our evaluations using over 20 HTS datasets indicated that
neither method achieved significantly higher ROC_AUC values
over the standard Max-Sim method. However, BEDROC values
derived from both methods were ∼10% higher than those of
the Max-Sim method. Thus, although our methods perform
comparably to the standard similarity search method when
judged by ranking all compounds in a screening library, they
perform better on early recognition by placing more actives at
the top of a ranked list. This is an important trait for virtual
screening of large chemical libraries, considering that follow-
up experimental testing is feasible for only a small fraction
of chemicals.

A conventional similarity search calculates TCs between all
query molecules and all library molecules, and these values are
sufficient for converting TCs to z-scores. As such, the additional
computational cost to perform a similarity search using the
maxZ method is minimal. Conversely, the AS method is notably
slower than the Max-Sim method. However, with the ever-
increasing power and decreasing cost of computing hardware,
the method can become competitive based on its performance.
Thus, when early recognition is among the objectives of virtual

screening, the two methods provide alternatives to the standard
Max-Sim method.
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Protein tunnels and channels are attractive targets for drug design. Drug molecules

that block the access of substrates or release of products can be efficient modulators

of biological activity. Here, we demonstrate the applicability of a newly developed

software tool CaverDock for screening databases of drugs against pharmacologically

relevant targets. First, we evaluated the effect of rigid and flexible side chains on

sets of substrates and inhibitors of seven different proteins. In order to assess the

accuracy of our software, we compared the results obtained from CaverDock calculation

with experimental data previously collected with heat shock protein 90α. Finally, we

tested the virtual screening capabilities of CaverDock with a set of oncological and

anti-inflammatory FDA-approved drugs with two molecular targets—cytochrome P450

17A1 and leukotriene A4 hydrolase/aminopeptidase. Calculation of rigid trajectories

using four processors took on average 53min per molecule with 90% successfully

calculated cases. The screening identified functional tunnels based on the profile of

potential energies of binding and unbinding trajectories. We concluded that CaverDock is

a sufficiently fast, robust, and accurate tool for screening binding/unbinding processes of

pharmacologically important targets with buried functional sites. The standalone version

of CaverDock is available freely at https://loschmidt.chemi.muni.cz/caverdock/ and the

web version at https://loschmidt.chemi.muni.cz/caverweb/.

Keywords: binding, docking, channel, unbinding, virtual screening, inhibitors, substrates, tunnel

INTRODUCTION

Until the beginning of the new millennium, drug design mostly relied on experimental high-
throughput screening (Kansy et al., 1998; Zhang et al., 1999; Bleicher et al., 2003). These techniques
evolved rapidly up to the beginning of the nineties. However, although at that time they seemed
promising and the best techniques for drug design and discovery, they were expensive in both
time and labor (Bajorath, 2002; Bielska et al., 2014). More cost-effective methods emerged with
the introduction of docking algorithms and thorough analysis of protein-ligand interactions.
This boom in docking approaches led to the development of over 60 software tools for docking
(Sousa et al., 2010; Pagadala et al., 2017). At the beginning of the new millennium, a new
technique for drug design called “virtual screening” started to gain recognition (Clark, 2008;
Ripphausen et al., 2010).
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Virtual screening is now a well-established technique for drug
design (Bottegoni et al., 2016), both in academic research and
the pharmaceutical industry (Mangoni et al., 1999; Clark, 2008;
Huang et al., 2008; Totrov and Abagyan, 2008; Cheng et al.,
2012; Kaczor et al., 2016). Many docking programs are available
for virtual screening and several comparisons and benchmarks
have been published (Cummings et al., 2005; Cross et al., 2009;
Lavecchia and Di Giovanni, 2013; Bielska et al., 2014; Chaput
et al., 2016; Kim et al., 2016). These programs help in the first
step of the drug design process and follow a general protocol
of screening a large database of small compounds on a chosen
target (receptor). After selecting a target, a library of ligands is
chosen. The ligands can be taken from many publically available
or commercial libraries. Of these, ZINC (http://zinc15.docking.
org/) (Sterling and Irwin, 2015), ChEMBL (https://www.ebi.ac.
uk/chembl/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/)
are among the most widely used and largest ligand libraries.
However, other databases with fewer compounds may be useful
when searching for compounds with specific characteristics. An
example is Drugbank (https://www.drugbank.ca/) (Law et al.,
2014), which is a database of drugs approved by the FDA and
Canadian Agency for Drugs and Technologies in Health. It also
enables selection of experimental, investigational and illicit drugs.

The success of virtual screening boosted the development of
techniques used for drug design and in recent years, binding
kinetics has gained increased momentum in the drug design
community. A research program supported by the European
Innovative Medicine Initiative has, for the last 6 years, focused
on understanding target binding kinetics (Laverty et al., 2012;
Goldman et al., 2013; Kush and Goldman, 2014). Although there
has been a steep rise in the development of methods for drug
design, there is still space for further improvements.

The binding of a substrate and release of the products
of an enzymatic reaction have been studied using different
computational approaches (Straatsma and McCammon, 1992;
Kollman, 1993; Lamb and Jorgensen, 1997). Classical and
accelerated molecular dynamics simulations have been used to
calculate ligand binding affinities. These methods use the free
energy perturbation approach to calculate the relative binding
free energy between a receptor and two ligands based on the
thermodynamic cycle (Kruse et al., 2012; Tomić et al., 2015).
However, such methods are computationally demanding and
not suitable for screening large libraries. Development of new
approaches for analysis of ligand binding and unbinding is
clearly needed.

Several computational tools have been developed for
searching the best binding positions in the active site pocket of
a target molecule and then binding positions with increasing
distance from the active site. PELE is a web server that
incorporates a wide range of different types of calculation,
including protein local motions (Lucas and Guallar, 2012). PELE
also enables ligand binding refinement, binding site searches
and ligand migration. The latter three scripts yield multiple-pose
docking results through all protein free space, which cannot
be achieved with simple docking algorithms (Guallar et al.,
2009; Hernández-Ortega et al., 2011; Espona-Fiedler et al.,
2012; Madadkar-Sobhani and Guallar, 2013). MOMA-LigPath
(Devaurs et al., 2013) has a robotics algorithm for space search,

not only in the active site pocket but also along an unbinding
trajectory. However, as the tool does not output information
on the energy of conformations, it is not possible to prioritize
individual pathways. SLITHER (Lee et al., 2009) is a web
server built to generate conformations of substrates while
traveling through membrane channels. It is based on both the
AUTODOCK (Morris et al., 2009) and MEDock (Chang et al.,
2005) docking algorithms. Energetic information is available
from these calculations. However, docking trajectories are
often sparse.

We have developed a fast method based on analysis of protein
tunnels (Marques et al., 2017) combined with molecular docking
in a single implementation—called CaverDock—and used it to
address important biochemical problems. Protein tunnels are
structural features connecting the buried active site cavities with
the protein surface. First, tunnels in proteins are identified using
the specialized software Caver (Chovancova et al., 2012). Then,
an extensively optimised version of AutoDock Vina (Trott and
Olson, 2010) is used to dock a ligand along the tunnel to produce
a continuous trajectory. Algorithms implemented in CaverDock
(Filipovic et al., 2019; Vavra et al., 2019) can be used to run a
virtual screening protocol for binding a library of ligands into
and from the active site. This procedure identifies energetically
favorable binding sites located outside the active site, providing a
profile of potential energies. The goal of CaverDock, in current
implementation, is not the calculation of the free energy of
binding. Instead of obtaining several trajectories to calculate
the free energy (Jarzynski, 1997; Fernández, 2014), CaverDock
calculates the binding energy along the several, predetermined,
points along the tunnel.

We have utilized the new CaverDock tool in three
applications. The first examined differences between substrates
and inhibitors and selection of flexible side chains along
tunnels bottlenecks, which serve as potential hot spots for
mutagenesis. The datasets used for testing of the flexible
simulations consisted of seven proteins with six tunnels and
one channel: (i) cytochrome P450 17A1, (ii) leukotriene A4
hydrolase/aminopeptidase, (iii) acetylcholinesterase (AChE),
(iv) human plasma cholesteryl ester transfer protein (CETP),
(v) inducible nitric oxide synthase (iNOS), (vi) UDP-3-O-
N-acetylglucosamine deacetylase (LpxC), and (vii) matrix
metalloproteinase-13 (MMP-13). Trajectories were calculated
for both the natural substrates and inhibitors. The second
application was the study of human N-terminal domain of heat
shock protein 90α (N-HSP90), an important pharmaceutical
cancer target, with a diverse set of inhibitors. The dataset was
obtained from previously published study (Kokh et al., 2018).
We compared the resulting conformations from CaverDock with
positions of inhibitor molecules found in the crystal structures.
Furthermore, we analyzed the correlations between CaverDock
energies and measured experimental values (Kokh et al., 2018).
The third application was the screening of potential inhibitors
and identification of the access pathways through simulation of
binding processes. The applicability of CaverDock for virtual
screening pharmaceutically important molecules was validated
with cytochrome P450 17A1 and a dataset of oncological
drugs from the NIH.gov website and with leukotriene A4
hydrolase/aminopeptidase and a dataset of anti-inflammatory
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drugs from the drugbank.ca website. The presented results
demonstrate that CaverDock is a ready-to-use tool that should
be of broad interest to biochemists, protein engineers, and
medicinal chemists.

METHODS

Protein Targets
Cytochrome P450 17A1 and leukotriene A4
hydrolase/aminopeptidase were selected for flexibility testing
as well as the model systems to validate the applicability of
CaverDock for the virtual screening of ligand libraries. Seven
protein targets were considered, as described below. The
description of the structure and function of Acetylcholinesterase
(AChE), Cholesteryl ester transfer protein (CETP), Nitric oxide
synthase (iNOS), Metal-dependent deacetylase (LpxC), and
Matrix metalloproteinase-13 (MMP-13) is provided in the
Supplementary Information.

Cytochrome P450 17A1 functions as a drug-processing enzyme
and was selected as the target protein for both application
studies. The starting structure for this work was the crystal
structure taken from the Protein Data Bank (Berman et al., 2000)
with PDB-ID 3RUK (DeVore and Scott, 2012). The structure
comprised an agglomerate of 4 cytochromes P450 17A1, from
which we only used chain A. The structure also contained the
inhibitor Abiraterone, which blocked access to the active site and
was deleted prior to CaverDock screening.

Leukotriene A4 hydrolase/aminopeptidase, with crystal
structure PDB-ID 4L2L (Stsiapanava et al., 2014), was selected as
the second target for both application studies. Leukotrienes are
a family of lipid mediators that play important roles in a variety
of allergic and inflammatory reactions (Haeggström et al., 1990;
Funk, 2001; Haeggström, 2004; Szul et al., 2016). Leukotriene
A4 hydrolase/aminopeptidase (EC 3.3.2.6) is a bifunctional
zinc metalloenzyme that catalyzes formation of the chemotactic
agent LTB4, a key lipid mediator in the immune response. This
enzyme, had an inhibitor, 4-(4-benzylphenyl) thiazol-2-amine,
bound to the crystal structure, which had to be removed prior to
screening. LTA4H possesses two known activities, both of which
are exerted via distinct but overlapping active sites and depend
on a catalytic zinc atom. The catalytic zinc atom is bound to the
signature HEXXH, known also for other M1 metallopeptidases
(Gomis-Rüth et al., 2012; Zhang et al., 2015).

Heat shock protein 90α (HSP90) is a chaperone protein that
assists the folding of client proteins. The HSP90 consists of three
domains. The highly conserved N-terminal domain with ATP-
binding cleft which is responsible for the catalytic activity. The
middle domain contains a large hydrophobic surface needed for
the folding of client proteins. The C-terminal domain is involved
in the dimerization of HSP90 (Li et al., 2012). The function
of HSP90 is linked to hydrolysis of ATP and the dimerization.
A number of the HSP90 client proteins are part of cancer
cell-associated signaling pathways, therefore the HSP90 is an
important target in drug design. The function of HSP90 can be
blocked by small molecules. This inhibition leads to degradation
of the client proteins and impacts tumor growth (Kabakov et al.,
2010). In this study, we analyzed the bound (HOLO) crystal

structures with several small inhibitors inside the ATP-binding
pocket. Furthermore, we conducted CaverDock simulations with
a larger set of inhibitors using the unbound (APO) crystal
structure of N-HSP90 (Kokh et al., 2018).

Structural Analysis of N-HSP90 HOLO

Complexes
We studied the ability of CaverDock to find protein-ligand
conformations similar to the crystal structures using the set
of previously published complexes (Kokh et al., 2018). We
analyzed the 34 crystal complexes of the N-HSP90 with
different co-crystallized inhibitors. The list of the PDB IDs is in
Supplementary Table S1. The crystal structures were aligned by
DeepAlign (Wang et al., 2013) to simplify the following analyses.
The tunnels for CaverDock runs were calculated by Caver 3.02
(Chovancova et al., 2012) in each inhibitor-free structure starting
from the catalytic residues 93 and 138 with the probe radius, shell
radius and shell depth set to 1.5, 20, and 20 Å, respectively. The
tunnel leading through the main opening of the ATP-binding
cleft to the active site was selected, discretized with 0.3 Å steps
and extended by 20 Å to ensure complete unbinding of the tested
inhibitor molecules. The receptor and ligand PDBQT files for
CaverDock were prepared by MGLtools (Morris et al., 2009).

Energy Analysis of N-HSP90 HOLO and

APO Complexes
Based on the previously published kinetic data (Kokh et al.,
2018), we prepared two datasets. The first dataset consists of a
subset of 32 inhibitors and HOLO structures from the HOLO
structure analysis dataset described above. The kinetic data
for two inhibitors (compound_01 and compound_04) was not
complete in the original publication. The second dataset was
created to check the findings from the HOLO dataset. It consists
of 68 inhibitors. In this case, we ran the CaverDock calculations
with the APO structure of N-HSP90 (PDB ID 3T0H). The
CaverDock calculations were carried out in the same manner as
described above for the structural analysis.

Libraries of Small Ligands
Several approaches can be used to choose libraries for virtual
screening. For instance, screening as many ligands as possible
from a broad dataset of molecules, such as the ZINC database.
Another approach is to screen for drug-like compounds with
specific biological activities. Virtual screening may also be
performed using cognate ligands belonging to a group of
compounds that the enzyme naturally binds and/or catalyzes. In
the present study, we conducted a virtual screening campaign on
a group of drug-like molecules possessing predefined biological
activities. The chosen ligands were converted to the AutoDock
Vina-compatible PDBQT format using MGLTools v1-5-7rc1
(Morris et al., 2009). We used the inhibitors complexed in the
structures for validation of flexible side chains (inhibitor dataset).
We built the substrates in Avogadro and minimized them with
the UFF forcefield (Hanwell et al., 2012) for the natural substrates
(substrate dataset).

A dataset of 133 cancer drugs was downloaded from the
NIH.gov website for the cytochrome P450 17A1. The drugs were
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all FDA-approved and have been used against different types of
cancer. Of the 133 drugs, 105 were used for the screening and
28 were excluded due to being salts or having unconventional
atoms that could not be properly handled by AutoDock Vina.
Among the 28 excluded drugs, 22 had two ligand molecules
in the same file. The other six drugs had some atoms (one
with arsenic, three with platinum and two with boron) for
which there were no parameters available in the force field of
AutoDock Vina. A dataset of 56 anti-inflammatory drugs was
downloaded from the drugbank.ca website for leukotriene A4
hydrolase/aminopeptidase. Out of these 56 drugs, 54 were used
and 2 were excluded from the screening. One excluded drug
contained a gold atom, for which AutoDock Vina had no defined
parameters. The other drug was a silicate mineral with two
molecules in the same file.

CaverDock Calculation
The software tool CaverDock is available free of charge at
the website https://loschmidt.chemi.muni.cz/caverdock/. The
CaverDock protocol (Figure 1) starts with finding the tunnels
by using Caver (Chovancova et al., 2012). Caver can be used
as a standalone program or as a Pymol plugin. The active site
is selected as a starting point for the Caver calculation. For all
seven proteins, the location of ligand binding in the active site
was known (Gerber et al., 1997; Funk, 2001; Thunnissen et al.,
2001; Epps and Vosters, 2002; Rudberg et al., 2002; Haeggström
et al., 2007; Gattis et al., 2010; Singh and Konwar, 2012; Clayton
et al., 2013; Khatri et al., 2014; Yoshimoto and Auchus, 2015).
All the other settings were fixed at default values. This step of the
protocol yields several tunnels for each protein. The numbering
of the tunnels is given by a parameter called priority, which is
the ratio between (i) bottleneck radius, (ii) tunnel length and (iii)
curvature of the tunnel. The tunnels were represented as a series
of sequential spheres.

We only used tunnels with priority 1 for the flexible
simulations. These tunnels had the inhibitor already inside,
although we removed it before the Caver calculation since we did
not relax the protein in any way. Hence, there was an implicit
bias for these tunnels. The flexibility in CaverDock arises from
the already implemented flexibility capabilities of AutodockVina.
Flexibility on side chains was introduced in three iterations. In
the default mode, CaverDock adds flexibility to two residues
in each iteration, up to three iterations. These values may be
changed by the user to better fit their needs. For each tunnel in the
substrate and inhibitor datasets, two flexible bottleneck residues
were added in each iteration. These flexible residues were not
necessarily the same for the substrate and inhibitor simulations.
Since substrates and inhibitors may differ in length and volume,
the bottlenecks that they encounter along a tunnelmay also differ.

For cytochrome P450 17A1, we used three tunnels for our
virtual screening study. The first two tunnels found by Caver
were also described in the literature, whereas the third tunnel
was ranked as #5 by Caver. By individually inspecting every
tunnel, we noted that tunnels ranked #3 and #4 by Caver were
too long and narrow to be feasible as a ligand access pathway. For
leukotriene A4 hydrolase/aminopeptidase, we used two tunnels
ranked #1 and #2 by Caver. The results obtained were consistent

FIGURE 1 | Workflow of virtual screening using CaverDock. (1) Receptor and

(2) ligand specification follow established protocols of the software tool

AutoDock (Morris et al., 2009). (3) Identification of protein tunnels using Caver

(Chovancova et al., 2012). (4) Tunnel discretization and sequential ligand

binding study using CaverDock (Filipovic et al., 2019; Vavra et al., 2019). (5)

Analysis of docking trajectories and energy profiles, extraction of energy

barriers and protein-ligand complexes possessing the lowest energies.

with the literature (Cui et al., 2015), confirming that these two
tunnels were used by the protein to transport ligands/drugs
in and products out. Since the active site in leukotriene A4
hydrolase/aminopeptidase is inserted deeper into the protein and
the protein itself is packed closer together than in cytochrome
P450 17A1, only six tunnels were described for this protein vs. 15
tunnels described for cytochrome P450 17A1. A literature search
showed that the tunnels ranked highest by Caver were indeed
tunnels used by the natural substrate and inhibitors (Yu et al.,
2013; Stsiapanava et al., 2014).

After selecting the tunnels to study, the next step in
a CaverDock protocol is to discretize the tunnels. Tunnel
discretization divides each tunnel into a set of discs. The ligand
is glued to a disc by one of its atoms and as the disc moves
through the tunnel, the software defines a ligand path coordinate.
After discretization, we extended the tunnels by two Ångströms.
This step ensured that the tunnels were long enough to enable
identification of the local binding minima at the tunnel mouth.
Having prepared the tunnels, we used MGL tools to set the
AutoDock atom types and Gasteiger charges for the receptor and
ligands. MGL tools provide scripts that convert pdb and mol2
files into pdbqt file format. Having prepared the receptors and
ligands, we next prepared a CaverDock file to run the docking
step. This file was equivalent to the one used by AutoDock
Vina but with the path to the file containing tunnel information
instead of the receptor (Trott and Olson, 2010). We then
added information about the studied tunnel from Caver to the
configuration file. This new information allowed the “docking”
conformation to be searched along the tunnel on each disc. One
configuration file needs to be created for each ligand. Figure 2
shows a representation of a ligand bound along a tunnel taken
from several snapshots of a CaverDock calculation.
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FIGURE 2 | Analysis of an inhibitor passing through a tunnel using CaverDock. Left: structure of cytochrome P450 17A1 and tunnel #3 with seven (7/254) snapshots

of a ligand bound along the tunnel. The minimum binding energy conformation is shown in green, whereas the maximum binding energy is shown in brown, in a

ball-and-stick representation. Right: energy profile obtained from the CaverDock calculation for cytochrome P450 17A1 and its tunnel #3 with the ligand.

An AutoDock Vina virtual screening was also performed with
the same targets as the CaverDock virtual screening. To ensure
that AutoDock Vina yielded the best result possible within a
reasonable time, we used an exhaustiveness setting of 30. The
center of the matrix grid was the same as that used for the
CaverDock calculation and the box was 27 Å on each side.

RESULTS

Simulations With Flexible Side Chains
CaverDock allows flexibility of residue side chains along a tunnel.
We tested the intrinsic flexibility of AutoDock Vina implemented
in CaverDock with the substrate and inhibitor datasets. We
introduced flexibility in three iterations by adding two flexible
bottleneck residues in each iteration. Thus, iteration 1, 2, and
3 had two, four and six flexible side chains, respectively. The
energetic barrier for the substrate and inhibitor to travel from
the inside to outside of cytochrome P450 17A1 or leukotriene A4
hydrolase/aminopeptidase was lowered when we added flexible
side chains (Figure 3). For cytochrome P450 17A1, the binding
energy was lowered with each iteration for both the inhibitor
and substrate. In the case of the substrate of leukotriene A4
hydrolase/aminopeptidase, the energetic barrier was stabilized
with only two flexible side chains and addition of further flexible
side chains gave no apparent change in the energetic barrier
along the trajectory of the substrate. On the other hand, the
inhibitor of leukotriene A4 hydrolase/aminopeptidase had a
lower energetic barrier with each iteration. As expected, the
inhibitor had a similar or more stable binding energy when
compared to the substrate.

We showed that the flexible simulations were able to open
parts of the tunnel with high barriers with the substrate and
inhibitor datasets (electronic SI). Significant energetic barriers
were lost in the iteration with six flexible residues. In this

scenario, the ligand was able to leave without any spatial or
energetic hindrance. The flexible side chains moved out of the
way to let the ligand escape, but the new conformations of side
chains were close to the rest of the protein structure. Adding
flexible residues did not affect the energetic barrier in iNOS,
which showed a similar profile through all iterations in the ligand
simulations (electronic SI). In these cases, the tunnel radius was
already large enough for unrestricted ligand exchange with no
obvious bottleneck.

The usage of the intrinsic AutoDock Vina flexibility in
CaverDock is still under development and new algorithms are
being tested for obtaining better results.With the current version,
users are advised to use both rigid and flexible simulations with
four or less flexible side chains. We can get more information
about the tunnel with the flexible side chains, e.g., to identify
which residues need to be flexible to open the tunnel for ligand
passage since these residues are natural hot-spots for potential
mutagenesis. However, there is an obvious computational price
to pay when using flexible simulations, as shown in Table 1.
In particular, adding flexible residues leads to longer simulation
times. We advise running CaverDock simulations with lower
bound trajectories only when running in a rigid mode because
rigid trajectories may yield unrealistic high barriers when
running upper bound simulations (discussed below).

Comparison of Calculated and

Experimental Results
Structural Analysis of HOLO Structures
We calculated the RMSD between the positions of bound
inhibitors and the lower-bound CaverDock snapshots. We
report the lowest RMSDs and the RMSDs for the lowest
energy conformations in Supplementary Table S1. Validation of
CaverDock in terms of reproducibility of experimental structures
of enzyme-inhibitor complexes revealed that the tool identified
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FIGURE 3 | Plots of the binding energies of cytochrome P450 17A1 (left) and leukotriene A4 hydrolase/aminopeptidase (right) obtained from CaverDock with and

without flexibility. Binding energies between substrate and inhibitor with tunnel radius present (top). Binding energies from substrate simulations with flexibility, rigid

simulation, and tunnel radius on the background (middle). Binding energies from all inhibitor simulations with flexibility, rigid simulation and tunnel radius on the

background (bottom).
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TABLE 1 | Summary of calculation times for lower bound calculations with rigid and flexible simulations and indication of the flexible residues added on each iteration.

Cytochrome P450 17A1 Leukotriene A4 hydrolase/aminopeptidase

Inhibitors Substrates Inhibitors Substrates

Rigid Time 47min 48 s 48min 13 s 205min 32 s 24min 39 s

1st Iteration Time 110min 35 s 66min 18 s 338min 41 s 50min 32 s

Flexible

Residues

Ile205,

Tyr201

Ile205,

Ile246

Val381,

Val367

Val367,

Phe362

2nd Iteration Time 252min 28 s 168min 3 s 854min 20 s 112min 56 s

Flexible

Residues

Arg239,

His235

Tyr201,

His235

Lys364,

Phe362

His360,

Lys364

3rd Iteration Time 436min 20 s 332min 22 s 1,994min 1 s 156min 11 s

Flexible

Residues

Ile198,

Leu242

Leu243,

Arg239

His360,

Lys385

Gln136,

Ile372

Residues are chosen automatically to lower potential energy at bottlenecks.

FIGURE 4 | Structural comparison of CaverDock binding poses and X-ray structures. (A) Compound_14 correctly predicted by CaverDock (green) with low RMSD

compared to the original crystal structure (red). (B) Compound_70 wrongly fitted in the pocket by CaverDock (green) with the original size of the tunnel. The overall

position is similar, but orientation of the compound is incorrect. (C) Compound_70 correctly fitted in the pocket with the increased size of the tunnel. CaverDock

(green) predicted a pose in equivalent position to the original crystal structure (red).

proper location and configuration in a vast majority (29 out of
34) cases. We show the example of correct fit in Figure 4A. In
the case of compound_11, compound_19, compound_38, and
compound_70 the correct pose was found by CaverDock but was
not correctly identified. A different pose with the lowest energy
was picked. In the case of the compound_18, CaverDock failed
to find the correct conformation both for the closest and the
lowest energy case. The high RMSDs may be caused by incorrect
orientation of the ligand and also by the location of the inhibitor.
The conformations of inhibitors which are deeper in the protein
structure and are out of the tunnel may become unreachable
for CaverDock since the ligand is always spatially constrained to
the disks.

We experimented with the settings of CaverDock and
recalculated the trajectories for the five problematic cases.
We found out that by extending the radius of discretized
tunnel discs by 10 Å, CaverDock is able to explore deeper
parts of the cavity since the ligand has more freedom
for movement. The resulting changes of RMSD are shown
in Supplementary Table S2. The RMSDs were lowered and
the binding poses were improved tremendously in case
of compound_18, compound_19, and compound_70. This
improvement in geometry for the compound_70 is shown in

Figures 4B,C. The lowest energy pose for the compound_38
was still not identified correctly. Based on these findings,
we decided to implement the tunnel extension for our
future CaverDock calculations since the improvements were
substantially beneficial.

Energy Analysis of N-HSP90 HOLO and APO Forms
CaverDock was used to analyze the unbinding of inhibitors
from corresponding HOLO structures. We studied 32 cases
with available kinetic data (Kokh et al., 2018). Selected energy
values were extracted from the energy profiles: the energy
minimum close to the start of the trajectory corresponding
with the ligand-bound in the active site (EBound) and the
energy at the tunnel mouth—the last disk of the original
tunnel—related with the surface-bound ligand (ESurface). In this
specific case, there were no visible barriers as shown in the
energy profiles Supplementary Figure S1. Therefore, we had
to use the difference between bound and surface state, the
1EBS as possible energy barrier which needs to be overcome
during the process of unbinding. We calculated the correlation
between 1EBS and the experimentally measured values for
kon, KD, and koff. We found a significant correlation of
0.53 for 1EBS with log(koff). Comparison of our results with
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FIGURE 5 | Structure of cytochrome P450 17A1 with tunnels calculated using Caver and binding poses obtained by CaverDock. (A) Global view of tunnels—tunnel 1

(blue), tunnel 2A (red), tunnel 3 (green). (B) View of tunnels with no protein visualized. Each tunnel has the ligand bound in the minimum obtained from the CaverDock

continuous trajectory calculation. (C) Tunnel 1 and minimum binding energy pose obtained from CaverDock (blue) and AutoDock Vina (black). (D) Tunnel 2A and

minimum binding energy pose obtained by CaverDock (red) and AutoDock Vina (black). (E) Tunnel 3 and minimum binding energy pose obtained by CaverDock

(green) and AutoDock Vina (black).

the previously published correlation 0.63 for the computed
relative residence times from molecular dynamics simulations,
tcomp, with the measured residence times texpt (texpt = 1/koff),
we confirmed that CaverDock is able to predict koff rates
when HOLO structures are used with only a fraction of the
computational effort.

We checked the previous findings from the HOLO dataset by
simulating the complete set of inhibitors with the APO structure.
We did not find any correlation in this case. This, together with
no visible barriers in the CaverDock profiles and slow kinetic
rates suggests conformational changes in the protein during
the binding and unbinding of the inhibitor molecules. Essential
conformational change is missing in the APO structure forcing
the molecules to bind differently when simulated by CaverDock.
Development of the new version of CaverDock that will be taking
into account protein backbone dynamics is currently on-going in
our laboratory.

Screening of Inhibitors
The purpose of this analysis was to test whether CaverDock
(Filipovic et al., 2019; Vavra et al., 2019) could be used for
virtual screening. After deciding on the targets and libraries of
compounds to use, we analyzed the tunnels for both targets.
First, we choose the tunnels according to their ranking given
by Caver and information from the literature and then used

CaverDock to move the ligands from the outside of the proteins
to the active site. Next, we performed virtual screening with
the same libraries and targets using AutoDock Vina. It is worth
noting that there was a large difference in the exhaustiveness
used between the two programs: an exhaustiveness of thirty
was used with Autodock Vina, whereas an exhaustiveness of
one was used with CaverDock to keep the run time as short
as possible. We showed that CaverDock provided new insights
into the receptor ligand affinity. We also showed that CaverDock
was a computationally cheap method with low run times.
We studied 5 tunnels in the two proteins: three tunnels in
cytochrome P450 17A1 (Figure 5) and two tunnels in leukotriene
A4 hydrolase/aminopeptidase (Figure 6). Tunnel 1 was much
shorter than the other two tunnels studied in cytochrome P450
17A1 (Table 2). It also had a narrow mouth when compared
to the rest of the tunnel, but it was still wider than tunnel
3. Tunnel 2A was the most sinuous tunnel of the three, with
more twists than the other two tunnels. However, they were not
as sharp as the turn in tunnel 3. Tunnel 3 had a sharp turn
halfway through the tunnel. It was narrow at the entrance of the
protein, but after the turn widened sufficiently to allow a bulky
inhibitor like Abiraterone to bind to the heme-group, as in the
crystal structure.

The tunnels are modeled with the drug Temozolomide in
both the CaverDock (Supplementary Video) and AutoDock
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FIGURE 6 | Structure of protein leukotriene A4 hydrolase/aminopeptidase with tunnels calculated using Caver and binding poses obtained by CaverDock. (A) Global

view with tunnels LTA4 (blue) and PGP (red). (B) Tunnel LTA4 and minimum binding energy pose represented by balls and sticks obtained from CaverDock (blue) and

AutoDock Vina (black). (C) Tunnel PGP and minimum binding energy pose represented by balls and sticks obtained from CaverDock (red) and AutoDock Vina (black).

TABLE 2 | Summary of data for tunnels in the target proteins.

Cytochrome P450 17A1 Leukotriene A4 hydrolase/aminopeptidase

Tunnel 1 Tunnel 2A Tunnel 3 Tunnel LTA4 Tunnel PGP

Size of library 105 105 105 54 54

Continuous 41 (39.0%) 42 (40.0%) 42 (40.0%) 20 (37.0%) 21 (38.9%)

Lower bound 100 (95.2%) 91 (86.7%) 93 (88.6%) 48 (88.8%) 50 (92.6%)

Only lower bound 49 (46.7%) 59 (56.2%) 51 (48.6%) 28 (51.8%) 29 (53.7%)

Stopped at bottleneck 5 (4.8%) 14 (13.3%) 11 (10.5%) 6 (11.1%) 4 (7.4%)

Time average 41min 50 s 68min 59 s 52min 11 s 36min 17 s 22min 23 s

Highest time 272min 42 s 136min 4 s 269min 38 s 73min 13 s 47min 6 s

Lowest time 4min 1 s 14min 10 s 5min 22 s 2min 59 s 1min 20 s

Length (Å) 15.1 24.9 28.2 20.4 25.4

Curvature (Å) 1.2 1.4 1.4 1.3 1.2

Maximum bottleneck (Å) 1.4 1.3 1.3 1.9 1.7

Average ligand RMSD lower bound docking (Å) 3.0 5.3 1. 9 5.4 2.8

Average ligand RMSD continuous docking (Å) 6.8 10.8 10.5 11.2 6.8

Vina virtual screening (Figure 5). CaverDock yielded aminimum
binding energy for a conformation inside the tunnel, rather
than close to the heme group indicated by the AutoDock Vina
calculation. The distance to the heme group was 10.3 Å with
CaverDock for tunnel 3 and 2.6 Å with AutoDock Vina. Similar
trends were observed for the other two tunnels. For tunnels 1
and 2A, CaverDock gave a minimum binding energy at 8.1 and
7.5 Å from the heme group, respectively. It should be noted that
CaverDock was still able to bind the ligand to the heme group
but at a higher energy than the conformations presented here.

This result clearly demonstrates the value of the analysis of ligand
binding and unbinding using CaverDock. Whereas, AutoDock
Vina performs docking in amatrix box set by the user, CaverDock
considers a continuous motion from the entrance of the tunnel
to the active site, restrained to the tunnel found by Caver. It
is also apparent in Figure 5, that tunnel 2A was deprecated by
AutoDock Vina. Whereas, the closest nitrogen was bound to the
heme group, the rest of the molecule was in a common area
overlapping both tunnel 1 and tunnel 3. At the same time, the
ligand was positioned away from tunnel 2A, with only a few
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atoms in the common space where all three tunnels overlapped.
Despite these differences in the docking calculations, the minima
binding energy obtained from CaverDock and binding affinity
obtained from AutoDock Vina showed no significant differences
for the case presented here. A complete data table comparing the
AutoDock Vina and CaverDock virtual screening is presented in
the Supporting Information.

Results for leukotriene A4 hydrolase/aminopeptidase are
shown in Figure 6. Comparing tunnel LTA4 (blue) with tunnel
PGP (red), only slight differences were discerned in the sizes of
the tunnels. Tunnel PGP had a sharp turn, whereas tunnel LTA4
did not. Tunnel LTA4 had a higher overall curvature than tunnel
PGP. Both tunnels are presented with the minimum binding
energy pose obtained from CaverDock with the drug Ketorolac.
Ketorolac was not bound to the zinc atom in the active site for
both studied cases. AutoDock Vina yielded a conformation with
the drug molecule at a distance of 4.8 Å from the zinc atom
and clearly docked in the tunnel PGP, with only one ring in
the common area overlapping both tunnels (Figure 6). Using
CaverDock, the minima were even farther away from the zinc
in the active site: the distance in tunnel PGP was 8.8 Å and in
tunnel LTA4 11.8 Å. When the drug molecule is bound in tunnel
LTA4, higher energetic barriers were obtained. It is known that
pro-inflammatory mediator biosynthesis occurs through tunnel
LTA4 and that the inhibitor Pro-Gly-Pro enters and exerts its
effects through a different tunnel (Sanson et al., 2011; Čolović
et al., 2013).

One of the main objectives of this study was to assess the
computational costs of a project with the novel computational
tool. In total, 105 drugs were docked to the three tunnels in
cytochrome P450 17A1 (Table 2). From these, CaverDock was
able to finish a continuous (upper bound) trajectory calculation
for 39.7% of the drugs and a discontinuous (lower bound)
trajectory for 90.2%. On average, the drugs were not able to
overcome the bottlenecks 9.8% of the time. This result does not
mean that the calculation failed but that the ligand was not able
to pass through the rigid receptor. Values were also similar for
leukotriene A4 hydrolase/aminopeptidase. The length of the five
tunnels studied ranged from 15.1 to 28.2 Å, the curvature of
the tunnels ranged from 1.2 to 1.4 Å and bottlenecks ranged
from 1.3 to 1.9 Å. These differences in length, curvature and
bottlenecks yielded very different tunnels and tunnel shapes, as
evident in Figures 5, 6. The approach presented here constitutes
a computationally low-cost method for virtual screening with
a run time average of 2,660 s (∼44min). Moreover, when the
upper bound calculation was turned off, the lower bound results
could be completed within several minutes using a computer
with 4 processors. Note that each calculation runs independently,
allowing users with sufficient computing power to perform a
virtual screening protocol on a full library in a parallel manner.

Using data obtained from a virtual screening campaign, it is
possible to analyze a functionally important tunnel for a given
target and set of drugs. Although it is not always easy to select
a preferred tunnel, it may be possible to identify tunnels that
are not favored. We found that in the case of cytochrome P450
17A1, the jobs finished successfully with a continuous trajectory
and tunnel 2A had higher barriers than the other two tunnels

FIGURE 7 | Box and Whiskers plot representing the maxima (energy barriers)

for each continuous (up) and lower bound (down) trajectories obtained for

cytochrome P450 17A1. Outlying values are indicated by circles.

(Figure 7), therefore it is not preferred. However, we could
not determine which of the two remaining tunnels 1 and 3
would be better to consider in a drug design project since there
was no statistically significant difference in the energy barriers.
Possibly both tunnels can be explored by ligands during their
(un)binding. The results were more conclusive for leukotriene
A4 hydrolase/aminopeptidase, as shown by the differences in
energy barriers (Figures 7, 8). In the case of the continuous
(upper-bound) calculation, the drug molecule was taken through
one smooth trajectory with the possibility of backtracking if it
encountered a bottleneck. Backtracking allowed the drug to find a
more favorable conformation to overcome the bottleneck. In the
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FIGURE 8 | Box and Whiskers plot representing the maxima (energy barriers)

for continuous (up) and lower bound (down) trajectories obtained for

leukotriene A4 hydrolase/aminopeptidase. Outlying values are indicated by

circles.

case of the lower-bound calculation, once the drug encountered
a bottleneck, it was allowed to flip in order to find a more
suitable conformation on the other side of the bottleneck, while
the point being dragged through the discs of the tunnel was kept
constant (Figure 8). This trajectory always yielded a lower energy
value for the barrier because, by definition, the bottleneck was
easier to overcome. On the other hand, lower time demands and
similar results make the lower bound calculation very powerful
for virtual screening.

CONCLUSIONS

Our results demonstrate that CaverDock is applicable for
screening of large libraries of potential inhibitors. It provides
information on binding and unbinding processes. The tool
estimates a profile of potential energies and calculates respective

trajectories without the need for time-demanding molecular
dynamics simulations. Setting up a calculation using CaverDock
is simple and comprises five steps: (i) definition of a receptor,
(ii) definition of the ligands, (iii) calculation of tunnels using
Caver, (iv) screening of un/binding trajectories, and (v) data
analysis. The tool is accompanied by a user manual that explains
the setting up of calculations as well as troubleshooting. A
standalone version of CaverDock with detailed documentation
is available at https://loschmidt.chemi.muni.cz/caverdock/.
The automated version of CaverDock is available via the
web https://loschmidt.chemi.muni.cz/caverweb/.

The dynamics of side chains lining the protein tunnels and
channels can be described to a certain level with the current
implementation of CaverDock. Making residue side chains
flexible increases calculation times but ultimately considers
protein dynamics. We concluded that simulations employing a
large number (>4) of flexible amino acid residues may cause
undesirable steric clashes. Thus, we advise that results obtained
with flexible residues should be interpreted carefully using
biochemical intuition when analyzing calculated trajectories and
energy profiles. Implementation of a more thorough protocol
to address protein flexibility is on-going in our laboratory.
CaverDock calculations can be extended to ensembles of protein
structures. Particularly challenging is the trade-off between
rigorous description of flexible systems and time demands
connected with such calculations. Structural comparison of
complexes obtained by CaverDock with those determined
by crystallographic analysis revealed that we were able to
predict the correct poses for a vast majority of inhibitors.
The comparison of our profile of potential energies with
the rates obtained by kinetic results yields a correlation of
0.53 whereas the more computational expensive molecular
dynamics simulation had a correlation of 0.63. Prediction
accuracy can be potentially improved by proper treatment of
backbone flexibility.

Our study demonstrates that CaverDock is sufficiently fast
to screen even large libraries of ligands. Calculation of rigid
trajectories using 4 processors took on average 53min per
molecule with 90% successfully calculated cases. Bulky or
very flexible ligands take more time, but some of these
large ligands may not be able to access the active site
via the studied access tunnels. Although it takes longer to
perform a CaverDock calculation than a pure virtual screening
of ligand binding to the active site with AutoDock Vina,
CaverDock provides more data, which may be useful in rational
drug design projects. Information on the bottlenecks and
energy required for ligands to pass through these narrowed
parts of the access tunnel could be useful for medicinal
chemists. CaverDock was able to correctly identify tunnels
in the proteins explored by the inhibitors included in our
screening campaigns.

In summary, we have shown that CaverDock is a
robust and ready-to-use software that can be employed
in screening campaigns of important pharmacological
targets. CaverDock analysis may be a useful complement
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to virtual screening campaigns carried out using traditional
docking tools.
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Recently, small-molecule compounds have been reported to block the PD-1/PD-L1

interaction by inducing the dimerization of PD-L1. All these inhibitors had a common

scaffold and interacted with the cavity formed by two PD-L1 monomers. This special

interactive mode provided clues for the structure-based drug design, however, also

showed limitations for the discovery of small-molecule inhibitors with new scaffolds. In

this study, we revealed the structure-activity relationship of the current small-molecule

inhibitors targeting dimerization of PD-L1 by predicting their binding and unbinding

mechanism via conventional molecular dynamics and metadynamics simulation. During

the binding process, the representative inhibitors (BMS-8 and BMS-1166) tended to

have a more stable binding mode with one PD-L1 monomer than the other and the

small-molecule inducing PD-L1 dimerization was further stabilized by the non-polar

interaction of Ile54, Tyr56, Met115, Ala121, and Tyr123 on both monomers and the

water bridges involved in ALys124. The unbinding process prediction showed that the

PD-L1 dimerization kept stable upon the dissociation of ligands. It’s indicated that the

formation and stability of the small-molecule inducing PD-L1 dimerization was the key

factor for the inhibitory activities of these ligands. The contact analysis, R-group based

quantitative structure-activity relationship (QSAR) analysis and molecular docking further

suggested that each attachment point on the core scaffold of ligands had a specific

preference for pharmacophore elements when improving the inhibitory activities by

structural modifications. Taken together, the results in this study could guide the structural

optimization and the further discovery of novel small-molecule inhibitors targeting PD-L1.

Keywords: PD-L1, small-molecule inhibitors, molecular dynamics simulation, metadynamics simulation, R-group
QSAR
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INTRODUCTION

The blockage of the protein-protein interaction (PPI) between
programmed cell death protein 1 (PD-1) and programmed cell
death 1 ligand 1 (PD-L1) can reactivate the effector functions
of T cell and eliminate tumor phenotypes with significant PD-
L1 expression (Gatalica et al., 2014; Patel and Kurzrock, 2015;
Sharma and Allison, 2015a,b). The crystal structures of PD-
1/PD-L1 complex revealed the interface and hot-spot domains
for both proteins (Zak et al., 2015; Pascolutti et al., 2016),
which provided the structural basis for drug design. Ligands
such as monoclonal antibodies (mAbs) (Lee et al., 2016, 2017;
Liu K. et al., 2016; Tan et al., 2017; Zhang et al., 2017a,b),
peptides (Chang et al., 2015; Magiera-Mularz et al., 2017),
and small-molecule compounds (Abdel-Magid, 2015; Zak et al.,
2016; Skalniak et al., 2017) had been discovered to interact
with the PPI interface of PD-1 or PD-L1, showed obvious
inhibitory activities against PD-1/PD-L1 signaling pathways.
As the small-molecule inhibitors have better characteristic on
aspects like production cost, drug-like property, immunogenic
side effects, and half-life period (Liu K. et al., 2016) than peptides
and monoclonal antibodies, the development of small-molecule
inhibitor tended to be more promising. The crystal structures
of small-molecule complex provided a good chance for the drug
design of anti-cancer immunotherapy targeting on PD-1/PD-L1
immune checkpoint.

According the patents by Bristol-Myers Squibb
(BMS) company, the compounds with (2-methyl-3-
biphenylyl)methanol scaffold were privileged for inducing
the dimerization of PD-L1 and interacted with the hydrophobic
tunnel formed by two PD-L1 monomers (Zak et al., 2016;
Guzik et al., 2017). Previously, George F. Gao’s group resolved
a dimeric interface of PD-L1 formed by B, C′′, D, and E strands
on each monomer, which was proved to be either a functional
unit in immunological synapse formation or a revolution relics
of B7 family (Tan et al., 2016). The crystal lattice analysis by
Zak et al. also didn’t suggest the spontaneous dimerization
of PD-L1 (Zak et al., 2015), indicating that the interfacial
interaction between two PD-L1 monomers was quite weak for
dimerization process. As for the small molecule intervening
PD-L1 dimerization, the interacting interface analysis showed
that these ligands interacted with the G, F, C, C′ strands of PD-L1
in a competitive manner vs. PD-1 like mAbs or peptide inhibitors
(Sharpe et al., 2011; Liu A. et al., 2016). Specially, the dimerized
crystal structures tend to be a common pharmacodynamic
characteristics for BMS small-molecule analogs despite of
inhibitory activity difference from millimole to nanomole level
(Abdel-Magid, 2015; Zak et al., 2016; Skalniak et al., 2017; Perry
et al., 2019). Considering the potential relationship between the
inhibitory activities of BMS small-molecule inhibitors and the
stabilities of the dimerized complex systems, the dimerization
process and the structure-activity relationship of small-molecule
inhibitors need to be further elucidated. Besides, the broad,

scattered and hydrophobic interface on PD-L1 makes it difficult
for the discovery of novel small molecule ligands and also

results in the strong hydrophobicity of BMS small-molecule

inhibitors (Zarganes-Tzitzikas et al., 2016). Therefore, an

TABLE 1 | The details of conventional molecular dynamics simulations.

Dimer systems Monomer systems

PD-L1 dimer PD-L1
(Conformation A)

PD-L1
(Conformation B)

BMS-8 150 ns 150 ns × 2 150 ns × 2

BMS-1166 150 ns 150 ns × 2 150 ns × 2

understanding of the inhibitory mechanism of small-molecule
ligands targeting PD-L1 such as key residues at the binding
site, effect of the solvation and binding or unbinding process
of small molecule inhibitors would help in the discovery
of novel inhibitors and structural optimization of reported
small-molecule inhibitors.

In this study, we aimed to reveal the detailed molecular
mechanism of BMS small-molecule inhibitors from the
formation and disassociation of PD-L1 dimers by multiple
molecular modeling methods. Two representative compounds
(BMS-8 and BMS-1166) with known inhibitory activities
and complex crystal structures were selected to perform
molecular dynamics simulations. During the formation process,
both monomer and dimer systems of PD-L1 in complex
with small-molecule ligands were applied to evaluate the
stabilities of binding modes between ligands and PD-L1. The
binding free energy calculation by MM-PBSA and MM-GBSA
(Genheden and Ryde, 2015; Chen et al., 2018; Sun et al.,
2018) were also used to analyze the energy contribution of the
interfacial residues on PD-L1 dimers. During the disassociation
process, metadynamics simulations (Bernardi et al., 2015)
with specific collective variables (CVs) were performed to
explore the key transition states along unbinding pathways.
Based on the results of molecular modeling, an interplay
mechanism of BMS small-molecule ligands with PD-L1 was
proposed. Finally, R-group based QSAR analysis (Holliday
et al., 2003; Hirons et al., 2005) and molecular docking were
constructed on the reported BMS small-molecule inhibitors.
The results of this study would provide a good guidance
for the discovery of novel small-molecule inhibitors and
structural modification of BMS small-molecule inhibitors
targeting PD-L1.

METHODS AND MATERIALS

The Conventional Molecular Dynamics
Simulations
The complex crystal structures of BMS-8 and BMS-1166 were
used to perform conventional molecular dynamics simulations.
The Cartesian coordinates of the heavy atoms of PD-L1
(sequence 18–132) and small-molecule ligands were derived from
the PDB database with accession number of 5J8O (Zak et al.,
2016) and 5NIX (Skalniak et al., 2017). In order to eliminate
the electrostatic effect of terminal residues, both monomers were
capped with ACE and NME at two ends. The simulation details
of the monomer systems and dimer systems were shown in
Table 1. All the complex systems were firstly prepared through
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structural inspection and optimization in Schrödinger 2015
software suite (Schrödinger, LLC: New York, NY, 2015). Then,
the complex proteins were solvated in a rectangular box of
TIP3P waters and neutralized with Na+ ions. The periodic
boundary conditions were setup with all the solvents at least
10 Å away from the complex. Then, the solvated systems were
parameterized using the AMBER FF14SB force field (Case et al.,
2014). The molecular dynamics simulations were performed
in four steps. Firstly, energy minimization was performed to
remove the local atomic collision in the systems. The energy
minimization was conducted by both descent steepest method
and conjugated gradient method with 5,000 steps. Then, the
temperature of each system was gradually upgraded from 0
to 300K in the NVT ensemble with all the solute atoms
constrained with a force constant of 2.0 kcal mol−1

·Å−2. After
that, each system was equilibrated with the force constant
decreasing from 2.0 to 0 kcal mol−1

·Å−2 in a period of 1

ns. Finally, a production run of 150 ns was performed for
each system in the NPT ensemble at 300K and 1.0 atm
condition. The snapshots for all the trajectories were saved
every 2 ps.

The Binding Free Energy Calculation
For dimer systems of BMS-8 and BMS1166, two PD-L1
monomers were selected as the receptor, while small-molecule
inhibitors were selected as the ligand. Both MM-PBSA and MM-
GBSA methods were performed to calculate the binding free
energy of BMS inhibitors according to the equation below:

1G =< GComplex − GReceptor − GLigand > (1)

Where < > represents the average value for all the snapshots
used for MM-PBSA andMM-GBSA calculation. Different energy

FIGURE 1 | The structural information of BMS-8 and BMS-1166. (A,B) The chemical formulas of BMS-8 and BMS-1166. The core scaffold is colored in red. (C,D)
The conformational superposition of BMS-8 and BMS-1166 interacting with the monomer conformation A, B of PD-L1. (E,F) The surface of PD-L1 (A) and PD-L1 (B)

interacting with BMS-8 and BMS-1166. The binding pockets formed by I54, V55, Y56, M115, I116, S117, A121, D122, and Y123 were colored in red.
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terms can be estimated as follows:

1G = 1H − T1S (2)

1H = 1Egas + 1Esol = 1Epolar + 1Enonpolar (3)

1Egas = 1Eint + 1Eele + 1EvdW (4)

1Hsol = 1Eele, sol + 1Enonpl,sol (5)

1Enonpl,sol = γ ∗1SASA (6)

500 snapshots were extracted from the last 20 ns trajectories
and used for MM-PBSA and MM-GBSA calculation. The
parameter settings duringMM-PBSA andMM-GBSA calculation
were referred to the previous works published by our group
(Xue et al., 2013). Then, the per-residue based decomposition
was performed to identify the key residues in both dimer

systems. Finally, the contribution of entropy change (–T1S) was
calculated by 100 snapshots from the last 20 ns trajectory.

The Calculation of Water Occupancies
The water molecules on the surface affected the conformational
stability of proteins (Bellissent-Funel et al., 2016). By calculating
the water occupancies on the surface of protein complex, water
sites with a higher probability of finding a water molecule
could be identified (Gauto et al., 2013). The water molecules at
those sites were involved in the water bridges between protein
and ligand and could enhance the stability of protein complex
thermodynamically (Romero et al., 2016). To evaluate the effects
of the water-mediated complex stability upon the binding of
BMS inhibitors, the water occupancies and the water bridges
were calculated over the last 20 ns trajectories for each dimer
system using the “cpptraj” module of the AMBER14. All the

FIGURE 2 | The stability evaluation of the monomer systems. The RMSDs of the heavy atoms of PD-L1 monomer, ligands (BMS-8, BMS-1166) and the core scaffold

of the ligand are shown in red, blue, and cyan lines, respectively. The representative conformations of three clusters for every monomer system was shown below the

corresponding system. PD-L1 is shown in gray cartoon while the initial conformation of ligand is shown in orange sticks and the dynamics conformations of ligand is

shown in green sticks.
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trajectories were first imaged and fit to the first frame by the
root mean square deviation (RMSD) of the heavy atoms of PD-
L1 dimers. Then, the water occupancies were calculated using the
“grid” command with a 0.5 Å ∗0.5 Å ∗ 0.5 Å spacing over the
whole box. And the water occupancies for both dimer systems
were represented in the Chimera software (Pettersen et al., 2004).

Metadynamics Simulations
Metadynamics simulations have been widely used to predict the

unbinding pathways and dissociation energy barrier of ligands

for ligand-target systems (Cavalli et al., 2015). The sampling

process of metadynamics simulations had an advantage of not
requiring an initial estimate of the energy landscape to explore
by periodically adding history-dependent biasing potential on
selected collective variables (CVs) (Masetti et al., 2009; Barducci
et al., 2011; Casasnovas et al., 2017; Sun et al., 2017). In this
study, CV1 was selected as the distance between the mass
center of the heavy atoms on ligand and the mass center of
heavy atoms on key residues including Ile54, Tyr56, Met115,
Ala121, Tyr123 in both chains; CV2 was selected as the angle
between the Cα atom of Tyr56 and two carbon atoms that
were the furthest away from each other on the core scaffold.

The metadynamics simulations were performed for both dimer
systems. The prepared topology files and coordinate files by
AMBER ff14SB force field were further applied in the NAMD2.9
software (Kalé et al., 1999) implemented by PLUMED code
(Bonomi et al., 2009). The initial structures were minimized for
5,000 steps with all the atoms on protein and ligand restrained
with 5 kcal mol−1

·Å−2 and all restraints released therewith.
Then the temperature of systems were upgraded to 300K in
30,000 steps. Afterward, all the systems were submitted to two
short time NVT simulations (100,000 steps) to equilibrate the
systems with restraining force constant of 5 kcal mol−1

·Å−2

and all restraints released therewith. Finally, the equilibrated
structures restarted from the NVT simulation were used for
metadynamics simulations.
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∑
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W
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kτ
)

exp(−

d
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FIGURE 3 | The RMSDs and RMSFs of the heavy atoms in dimer systems. (A) RMSD of complex, (B) RMSD of PD-L1 at conformation A, (C) RMSD of PD-L1 at

conformation B, (D) RMSF of residues on PD-L1 at conformation A, B, (E) RMSD of the ligand, and (F) RMSD of the core scaffold.
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Metadynamics could reconstruct the free-energy surface as a
function of specific collective variables (CVs). The general
formalism of history-dependent Gaussian potential was shown
as Equation (7). V represents the sum of the history-dependent
Gaussian potential along the specific reactive coordinate (si)
during time span (kτ ). In this study, the deposition time
(τ ) was set as 1 ps to give enough dissociation time for
ligands without adding biasing potential on the dissociation
boundary. The Gaussian width (σ ) of CV1 and CV2 were set
to 0.8 Å and 0.02 rad, respectively. As for the well-tempered
metadynamics, the height of the Gaussian potential (W) is
affected by a parameter 1T as Equation (8). The initial hill
height (W0) of Gaussian potential was set to 0.6 kcal/mol·ps
and the bias-factor (γ ) was set to 10 with a temperature (T)
of 300K to control the decrease rate of the biasing potential as
Equation (9).

R-Group QSAR Model and Molecular
Docking of BMS Small-Molecule Inhibitors
The pharma R-group quantitative structure-activity relationship
(RQSAR) models tended to be an effective approach for the
SAR evaluation of the congeneric series of compounds (Adhikari
et al., 2015). It was more suggestive than other approaches
for the structural modification of small-molecule inhibitors
by identifying the core scaffold and evaluating the effective
pharma element at different attachment points (Kolarevic
et al., 2018; Ts Mavrova et al., 2018). A total of 110 BMS
small-molecule inhibitors with 2-methyl-3-(phenoxymethyl)-
1,1’-biphenyl scaffold were collected from the patents of

TABLE 2 | The binding free energies of BMS-8 and BMS-1166 evaluated by

MM-PBSA, MM-GBSA, and metadynamics simulations.

Contributiona BMS-8 BMS-1166 11E
(1EBMS−1166 – 1EBMS−8)

1Eele,gas −29.29 ± 6.14 −72.23 ± 12.05 −42.94 ± 13.52

1Evdw,gas −63.45 ± 2.77 −81.60 ± 3.72 −18.15 ± 4.64

1Enonpl,sol −6.62 ± 0.18 −9.17 ± 0.19 −2.55 ± 0.26

1Epolar,sol,PB 49.89 ± 7.19 105.28 ± 10.16 55.39 ± 12.45

1Esol,PB 43.27 ± 7.07 96.11 ± 10.11 52.84 ± 12.34

1Epolar,sol,GB 45.04 ± 5.85 93.32 ± 9.91 48.28 ± 11.51

1Esol,GB 38.42 ± 5.75 84.15 ± 9.88 45.73 ± 11.43

1HPB −49.49 ± 3.71 −57.72 ± 4.64 −8.23 ± 5.94

1HGB −54.32 ± 3.14 −69.69 ± 3.32 −15.37 ± 4.57

–T1S 24.72 ± 5.75 27.02 ± 5.89 2.30 ± 8.23

1GPB −24.77 ± 6.84 −30.70 ± 7.50 −5.93 ± 10.15

1GGB −29.60 ± 6.55 −42.67 ± 6.76 −13.07 ± 9.41

1ECV1
b

−16.23 −28.79 −12.56

1ECV2
c

−15.51 −27.89 −12.38

1Eexp
d

−9.32 −12.07 −2.75

aThe unit for the free energy contributions are shown in kcal/mol.
b,c1ECV1 and1ECV2 were estimated by the history-dependent free energy surfaces along

CV1 and CV2.
dThe experimental affinities for BMS-8 and BMS-1166 were extracted from the reference

and calculated by using the equation as follows: 1G = −RT ln (1/IC50 ) at 298.15 K.

BMS company (Abdel-Magid, 2015; Table S1). All these small
molecules had seven attachment points and diverse substitution
groups, which were suitable to perform R-group QSAR analysis
in the Canvas software of Schrödinger Suite (Duan et al.,
2010; Sastry et al., 2010). The linear relationship between the
substitutions and the activities (–log IC50) was analyzed and
the importance of six key pharmacophore elements including
hydrogen bond acceptor (A), hydrogen bond donor (D),
hydrophobic group (H), negative ionic group (N), positive
ionic group (P), and aromatic ring (A) were evaluated at
each attachment point. During the process, the error and the
importance were both set as 0.30. Eight representative small-
molecule inhibitors (NO. of compound:4, 101, 102, 103, 104, 108,
109, 110) with substitutions on R1, R2, or R3 were selected to
perform molecular docking to further study the binding modes.
In order the compare the effect of R-groups, the core scaffold
atoms with SMILES of “cOCc(c1C)cccc1c” were constrained with
RMSD of 0.5 angstrom while other atoms were selected flexible.
The standard precision (SP) docking score was used to evaluate
the binding poses. The molecular docking was performed in
Schrödinger 2015 software suite (Schrödinger, LLC: New York,
NY, 2015).

Residue-Ligand Contact Analysis
In this study, we performed residue-ligand contact analysis to
detect the surrounding residues around different substituent
groups of BMS-8 and BMS-1166. It is assumed that the contacts
exist between two groups as long as their distance was below a
cutoff of 3.5 Å. The occupancy of each contact was calculated
by the existence frequency in the 5,000 snapshots of the last 50
ns trajectories.

RESULTS AND DISCUSSION

The Conformational Stabilities Between
PD-L1 Monomer and BMS Small-Molecule
Inhibitors
In order to explore the interactive process of BMS small-molecule
inhibitors, we constructed two kinds of ligand-bound PD-L1
monomer systems as shown in Figure 1 and used molecular
dynamics simulations to evaluate the stabilities of both binding
modes by two replicas. As shown in Figure 2, the stabilities of
both binding modes were evaluated by the RMSD of the heavy
atoms of receptor, ligand and the core scaffold of ligands in two
replicas. The core scaffold of BMS-8 tended to have a more stable
contact with the conformation B than conformation A of PD-
L1 according to the comparison of RMSD and the representative
conformations of both binding modes. The detailed docking
interactions diagram in Figures S1, S2 showed that the π-π
stacking interaction between the biphenyl moiety and ATyr56
tended to be easily affected by the conformation of ATyr56 and
unstable among three clusters, while the hydrophobic interaction
between biphenyl moiety and residues on conformation B of PD-
L1 tended to be stable among all three clusters. As for BMS-1166,
both binding modes seemed to be quite stable, which probably
accounting for the best inhibitory activities of BMS-1166 among
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FIGURE 4 | The residue energy decomposition of the key residues for BMS-8 (A,C,E) and BMS-1166 (B,D,F) dimer systems. (A,B) The energy contribution of

sidechain and backbone, (C,D) the energy contribution of polar and non-polar interaction, (E,F) the total energy contribution for each residue. The cutoff value of the

energy contribution for key residues were set as −1 kcal/mol.

TABLE 3 | The hydrogen bond analysis of the BMS-8 and BMS-1166 dimer systems.

Acceptor DonorH Donor Occupancya (%) Distance (Å)b Angle (◦)c

BGln66@OE1 BMS-8@H1 BMS-8@N1 57.21 2.90 162.74

AAsp122@OD2 BMS-1166@H1 BMS-1116@O5 63.54 2.71 161.10

AAsp122@OD1 BMS-1166@H1 BMS-1116@O5 47.58 2.93 151.41

AAsp122@OD1 BMS-1166@H20 BMS-1116@N2 41.43 2.93 144.20

AAsp122@OD2 BMS-1166@H20 BMS-1116@N2 29.74 3.01 140.98

AAsp122@OD1 BMS-1166@H19 BMS-1116@N2 21.02 2.90 139.00

BMS-1166@N1 AArg125@H AArg125@N 81.70 3.08 149.17

BMS-1166@O5 AThr20@HG1 AThr20@OG1 36.64 2.95 154.22

aThe occupancy of hydrogen bonds were analyzed through the last 20 ns trajectories and only hydrogen bonds with an occupancy more than 0.20 were extracted and shown.
b,cThe hydrogen bonds were determined by an acceptor-donor atom distance of <3.5 Å and acceptor H-donor angle of >120◦.
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FIGURE 5 | The binding modes and water occupancies in dimer systems. (A,B) The binding modes of BMS-8 and BMS-1166. The key residues were shown in green

and cyan sticks and the ligand was shown in orange sticks. The hydrogen bonds were shown in red dash. (C,D) The water occupancies in BMS-8 and BMS-1166

dimer systems. The PD-L1 dimer is shown in cyan cartoon and the residues involved in water bridges are shown in green sticks. The water distributions are shown in

red solid surface and the small molecule ligands are shown in orange sticks.

TABLE 4 | The water bridge with occupancies higher than 20.00% in the BMS-8

and BMS-1166 dimer systems.

Residues involving in water bridge BMS-8 (%) BMS-1166 (%)

AThr20 – 32.42

AAsp122 25.04 –

ALys124 91.57 94.15

AArg125 – 22.63

BGln66 58.62 32.93

BLys75 – 22.58

BVal76 – 50.13

BAsp122 – 29.66

APhe19, AAla121, AAsp122 – 23.52

AAsp122, ATyr123, ALys124 38.90 65.18

the small-molecule inhibitors of BMS. The detailed docking
interactions diagram in Figures S3, S4 showed that the biphenyl
moiety had less conformational fluctuation and more stable
hydrophobic interactions among the clusters of conformation A
and B of PD-L1. The stabilities of the monomer complex of PD-
L1 and ligand was affected by the hydrophobic interactions and
turned out to be associated with the inhibitory activities of BMS
small-molecule inhibitors.

The Interaction Stabilities Between PD-L1
Dimer and BMS Small-Molecule Inhibitors
The conformational stabilities of the dimer systems were
evaluated by root mean square deviation (RMSD) and mean
square root fluctuation (RMSF) as shown in Figure 3. The
RMSDs of the complex, two PD-L1 monomers in complex
systems showed that both dimer and monomers of PD-L1
had strong structural stabilities upon ligand binding. The
conformational fluctuation of PD-L1 indicated that PD-L1
showed more flexibilities upon BMS-8 binding than BMS-1166.
The comparison of the RMSDs of the core scaffold of two
ligands showed that BMS-1166 had a more stable binding modes
than BMS-8. The binding free energies were also calculated to
evaluate the affinities of dimer systems. As shown in Table 2, the
energy items of 11GPB, 11GGB, and 11Eexp by MM-PBSA
and MM-GBSA methods could properly evaluate the difference
of affinities of BMS-8 and BMS-1166, which showed the fact
that the affinities between small-molecule inhibitors and PD-L1
dimer could reflect the inhibitory activities relatively. BMS-1166
had a stronger enthalpy contribution (11HPB, 11HGB) and a
worse entropy contribution (–T11S) than BMS-8, which were
consistent with the stability difference of BMS-8 and BMS-1166
dimer complex.

The key residues on two PD-L1 monomers interacting with
ligands were recognized by per-residue energy decomposition.
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The energy contribution for each residue were decomposed
into the sidechain part and the backbone part, the non-
polar part and the polar part as shown in Figures 4A–D. It
could be seen that BMS-8 and BMS-1166 mainly formed non-
polar interactions with the sidechain of the residues on PD-
L1. With a cutoff value of −1.0 kcal/mol, the key residues
in BMS-8 dimer system included ATyr56, AMet115, AAla121,

ATyr123 and BIle54, BTyr56, BGln66, BMet115, BAla121 as
shown in Figure 4E, while the key residues in BMS-1166 dimer
system included AIle54, ATyr56, AMet115, AAla121, AAsp122,

ATyr123, AArg125 and BIle54, BTyr56, BVal76, BMet115,

BAla121, BAsp122 as shown in Figure 4F. Taken together,
the interaction residues on conformation A and conformation
B of PD-L1 were symmetrical both including Ile54, Tyr56,
Met115, Ala121, and Tyr123. The hydrogen bond analysis
in Table 3, Figures 5A,B showed that the protonated tertiary
ammonium in BMS-8 formed a hydrogen bond with the
side-chain oxygen of BGln66 with an occupancy of 57.21%,
while the BMS-1166 dimer system also formed hydrogen bond
between the ammonium group on BMS-1166 and the carboxyl
group of AAsp122. The binding mode analysis of substitute
groups on BMS-8 and BMS-1166 with the interfacial residues

FIGURE 6 | The energy change during the unbinding process. (A,B) The free energy landscapes for the unbinding process of BMS-8 and BMS-1166. (C–F) The
convergence of sampling process during the unbinding process of BMS-8 and BMS-1166. The history-dependent free energy surfaces along CV1 (C,D) and CV2

(E,F) are estimated by a segmented accumulation of simulation time. The unit for the free energy is kcal/mol.
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on PD-L1 indicated that the interaction with the peripheral
residues including AIle54, AArg125, BVal76, and BAsp122 could
significantly enhance the inhibitory activities of BMS small-
molecule inhibitors.

In order to analyze the effect of solvent on PD-L1 dimer
complex, water occupancies and water bridges involved in
receptor-ligand interaction were both calculated. As shown
in Table 4, the residues or residue pairs involved in water
bridges with an occupancy higher than 20% were extracted
from both dimer systems. It can be seen in Figure 5

that three water bridges involved in AAsp122, ATyr123,

ALys124, and BGln66 were stable in both dimer systems.

Both ligands formed a strong water bridge with ALys124
with an occupancy higher than 90%, which indicated that

ALys124 had a significant effect on the stabilities of the
ligand conformations.

The Disassociation Process of BMS
Small-Molecule Inhibitors
The free energy landscape of the unbinding processes of both
BMS small-molecule inhibitors were constructed by CV1 and
CV2. The distribution of minima in the landscapes showed
that the most stable conformational state in the unbinding

FIGURE 7 | The conformational change during the unbinding process. (A,B) The key transition conformational states of BMS-8 and BMS-1166 during the unbinding

process with CV1 value of 12.54 Å and 10.95 Å, respectively. The chain A and chain B of PD-L1 dimers are shown in green and cyan surface, respectively. The key

residues (green or cyan) and ligands (orange) are shown in sticks. (C,D) The distance between Ile54, Tyr56, Met115, Ala121, and Tyr123 on conformation A and

conformation B of PD-L1 during the unbinding process of BMS-8 and BMS-1166. (E,F) The extracted conformational state (green cartoon) of each complex with the

largest distance between two PD-L1 monomers was overlapped with the original crystal structures (magenta cartoon).
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FIGURE 8 | The complete binding and unbinding mechanism of BMS

small-molecule inhibitors. The conformation A and conformation B of PD-L1

monomer, the small-molecule ligand are represented by green, light blue,

orange objects, respectively.

process was corresponding to the conformational states of the
initial crystal structures as shown in Figures 6A,B. During the
unbinding process, there were four different transition states
for BMS-8 and three transition states for BMS-1166. In order
to test the convergence of unbinding process, the free energies
along both CVs were estimated. It can be seen that the free
energy surface of CV1 (Figures 6C,D) and CV2 (Figures 6E,F)
gradually came to a convergence along with the accumulation of
time. As CV1 represented the distance between the ligand and
the binding site of PD-L1 dimer and depicted the unbinding
process better than CV2, the corresponding minimum points
along CV1 were extracted from the unbinding trajectories.
In BMS-8 complex systems, the minima along CV1 were
6.75 Å (−16.34 kcal/mol), 12.54 Å (−10.12 kcal/mol), and
14.97 Å (−7.31 kcal/mol). In BMS-1166 complex systems, the
minima along CV1 were 5.67 Å (−28.79 kcal/mol), 10.95 Å
(−8.50 kcal/mol), and 13.46 Å (−9.74 kcal/mol). The ultimate
unbinding energy barriers of both small-molecule ligands
estimated by CV1 and CV2 were shown in Table 1 and Figure 6,
which were in good consistency with the inhibitory activities.
Considering the difference between the binding free energies
predicted by different methods, MM-PBSA and MM-GBSA
calculated the binding free energies using implicit water models
while metadynamics simulation considered the explicit water
interaction between protein and ligand. Therefore, the results
from metadynamics simulation tended to be more approximate
to the experimental results.

From the free energy estimation of different conformational
states, it can be seen that the conformational states of the
crystal structures were much more stable than the other
transition conformational states along the unbinding process.
Therefore, the dissociation of small-molecule ligands of the
initial conformational states tended to be the most important
intermediate process for the unbinding of small-molecule
ligands, which were corresponding to the minima of CV1 at
12.54 Å in BMS-8 dimer systems and the minima of CV1
at 10.95 Å in BMS-202 dimer systems. The corresponding
transition states were extracted from the trajectories as shown
in Figures 7A,B. The binding poses of BMS small-molecule
ligands at the transition states were quite distinct from each
other, which was probably owing to the difference of substituent
groups. A common feature for both systems was that the
ligands at transition states significantly lost the interaction
with the chain A while the interaction with chain B were still
compact and involved with a series of residues especially in
BMS-1166 dimer systems. During the unbinding process, the
core scaffold of ligands gradually divorced from the location
of ATyr56 and got away from the pocket formed by PD-
L1 dimer. In order to monitor the conformational change of
the pocket formed by PD-L1 monomers, the distance between
chain A and chain B were calculated by the distance between
Ile54, Tyr56, Met115, Ala121, Tyr123 on each chain as shown
in Figures 7C–F. The conformational fluctuation of PD-L1
monomers was reflected by the conformational change of the
F-G loops on both PD-L1 monomers. It can be seen that the
pockets in BMS-8 and BMS-1166 complex systems were quite
stable with occasionally occurring conformational fluctuations.
According to unbinding processes of BMS ligands, it can be seen
that the dimer of PD-L1 had a large tendency to keep stable
although accompanied with subtle conformational fluctuation of
PD-L1 dimer.

Taken together, the most possible deduction for the
interaction mechanism of BMS small-molecule inhibitors
with PD-L1 was depicted as shown in Figure 8. Firstly, all BMS
small-molecule inhibitors with different activities tended to
interacted with a monomer conformation B of PD-L1. As the
PD-L1 dimer complex had strong conformational stability,
the PD-L1 monomer complex further interacted with the
other monomer of PD-L1 to form PD-L1 dimer complex.
According to the results of metadynamics simulation, a complete
dissociation for BMS inhibitors would probably be like that
the small-molecule ligand was firstly unbound from the PD-L1
dimer and the rest receptor part was further depolymerized
into monomer.

The R-Group QSAR Model of BMS
Small-Molecule Inhibitors
110 BMS small-molecule inhibitors with 2-methyl-3-
(phenoxymethyl)-1,1′-biphenyl scaffolds were tested with
diverse inhibitory activities with IC50 ranging from 9.492µM
to 1.4 nM. As shown in Figure 9A, there were 7 different of
attachment points from R1 to R7 and the substituent groups
of R6 and R7 had a relatively larger proportion than other
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FIGURE 9 | The R-group based QSAR for BMS small-molecule inhibitors. (A) The number of substituent groups at seven attachment points of BMS small molecule

inhibitors. (B) The correlation validation between the predicted pIC50 and experimental pIC50. (C) R-group QSAR model for the BMS small molecule inhibitors. The

case-insensitive alphabets A(a), D(d), H(h), N(n), P(p), and R(r), respectively represent the hydrogen bond acceptor, the hydrogen bond donor, the hydrophobic, the

negative ionic, the positive ionic, aromatic ring. The significantly increase effect is colored in red while the significantly decrease effect is colored in blue. (D,E) The
interacting residues of different substituent groups of BMS-8 and BMS-1166. The occupancies of the contact between each residues and substituent group were

listed along with the black solid.

attachment points. As shown in Figure 9B, the correlation
coefficient between the predicted pIC50 and the experimental
pIC50 was 0.7729. According to the evaluation of six key
pharmacophore elements in Figure 9C, the substituent groups
at R2, R4, R6, and R7 had obvious effect on the affinity of
BMS small-molecule inhibitors. The substituent groups at R2,
R4, R6, R7 of BMS-8 and BMS-116 as well as the interaction
residues were recognized by the contact analysis as shown
in Figures 9D,E. The contact analysis of BMS-1166 showed
that the 1,4-benzodioxinyl group at R2 mainly was involved
in the interaction with AIle54, ATyr56, BAsp122, BTyr123.

The hydrogen bond acceptor and hydrophobic groups at R2
were favorable for BMS inhibitors such as the 2, 3-dihydro-1,
4-benzodioxinyl group on BMS-114, BMS-200, BMS-1001, and
BMS-1166. The analysis of effect of solvent in dimer systems
showed that the substituent groups at R4, R5, R6, and R7 were
exposed to solvent environment. The hydrophobic groups at R4
were favorable for BMS inhibitors, which corresponded to the
fact that the bromine atom on BMS-8 and the chlorine atom
on BMS-1166 had a close contact with BIle54. The hydrophobic
group at R6 was adverse while the negative ionic group was
favorable. The substituent group at R6 of BMS-8 mainly
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interacted with BTyr56 and BGln66, however, that of BMS-1166
mainly interacted with AThr20 and AAsp122. Nevertheless, the
substituent group at R6 of BMS-8 and BMS-1166 both formed
hydrogen bonding with PD-L1. The positive ionic at R7 was
adverse while the hydrogen bond acceptor and aromatic ring
were favorable. The substituent group at R7 of BMS-1166 formed
interaction with AAsp122, ATyr123, ALys124, AArg125, BTyr56,
and BGln63. The comparison of the contact residues between
BMS-8 and BMS-1166 indicated that the substituent group
at R2 and R7 strongly strengthened the interactions with the
conformation A of PD-L1, which was consistent with the stability
of the monomer complex of conformation A and BMS-1166.

The further molecular docking study of eight representative
small-molecule inhibitors showed that the docking scores had a
good linear correlation with the experimental inhibitory activities
(Figure S5). The further residue contribution comparison
(Figure S6) and conformational analysis (Figure S7) of the
residues within 5 angstroms showed that the residues interacting
with R-group substituents had an obvious effect on the docking
scores including BAsp122 (interacting with R1 to R3) and

AAsp122, ALys124, BTyr56, BGln66 (interacting with R4 to R7).
The binding mode analysis of novel series of [1,2,4]triazolo[4,3-
a]pyridines designed by Qin et al. also revealed the retaining
hydrophobic interaction with Tyr56, Met115, and Ala121 on
both chain of PD-L1 and extra π-π stacking with the BTyr56
and π-anion interactions with AAsp122 (Qin et al., 2019). These
interacting modes of [1,2,4]triazolo[4,3-a]pyridines inhibitors
were consistent with the binding mode analysis of eight
representative small-molecule inhibitors. It’s suggested that the
structure-activity relationship analysis of BMS small-molecule
inhibitors was applicable for the further structure modifications.

CONCLUSIONS

In this study, we used multiple molecular modeling methods
to study the detailed molecular mechanism of the interaction
between BMS small-molecule inhibitors and PD-L1. A detailed
mechanism of the interaction process between small-molecule
inhibitors and PD-L1 was proposed and validated by molecular
dynamics simulations.

The BMS small-molecule inhibitors tended to interact with
one PD-L1 monomer first and further formed dimer with the
other monomer for an advantage of stability. The results of
binding free energy and water occupancy calculation revealed the
key stability factors for ligand-induced PD-L1 dimers including
the hydrophobic contribution of Ile54, Tyr56, Met115, Ala121,
and Tyr123 on both monomers and the water bridges involved
in ALys124. The unbinding pathway prediction also indicated
that the tunnel formed by PD-L1 dimers tended to be stable
upon the getting away of BMS-inhibitors. The R-group QSAR
model suggested that the substituents at R2, R4, R6, and R7 had a
significant effect on the inhibition activities of BMS inhibitors.
The structural modification with these substituent positions

tended to be an effective way to improve the inhibition activities
of BMS inhibitors. Taken together, this study would provide a
comprehensive view of the inhibition mechanism for BMS small-
molecule inhibitors and guide the further development of more
potential small-molecule inhibitors targeting PD-L1.
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Figure S1 | The interactions diagrams between the monomer conformation A of

PD-L1 (the initial crystal structure and three respective dynamics structures) and

BMS-8 in the monomer system of replica 2.

Figure S2 | The interaction diagrams between the monomer conformation B of

PD-L1 (the initial crystal structure and three respective dynamics structures) and

BMS-8 in the monomer system of replica 2.

Figure S3 | The interaction diagrams between the monomer conformation A of

PD-L1 (the initial crystal structure and three respective dynamics structures) and

BMS-1166 in the monomer system of replica 2.

Figure S4 | The interaction diagrams between the monomer conformation B of

PD-L1 (the initial crystal structure and three respective dynamics structures) and

BMS-1166 in the monomer system of replica 2.

Figure S5 | The linear correlation between experimental pIC50 and the absolute

values of the docking scores.

Figure S6 | The distance and residue contribution analysis of the binding poses of

eight representative small-molecule inhibitors. (A) The respective and average

distance between the small-molecule inhibitor and the residues on PD-L1 dimer.

(B) The respective energy contribution of residues on PD-L1 dimer when

interacting with the small-molecule inhibitor.

Figure S7 | The binding pose analysis of eight representative small-molecule

inhibitors. (A) The surrounding residues of the substituent groups at R1 to R3 for

eight representative small-molecule inhibitors. (B–I) The surrounding residues of

the substituent groups at R4 to R7 for small-molecule inhibitor with NO. of 4, 101,

102, 103, 104, 108, 119, 110, respectively.

Table S1 | The detailed structural and activity information for 110 BMS

small-molecule inhibitors.

Frontiers in Chemistry | www.frontiersin.org 13 November 2019 | Volume 7 | Article 764175

https://www.frontiersin.org/articles/10.3389/fchem.2019.00764/full#supplementary-material
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Shi et al. Computational Insight of PD-L1 Dimerization

REFERENCES

Abdel-Magid, A. F. (2015). Inhibitors of the PD-1/PD-L1 pathway can

mobilize the immune system: an innovative potential therapy for

cancer and chronic infections. ACS Med. Chem. Lett. 6, 489–490.

doi: 10.1021/acsmedchemlett.5b00148

Adhikari, N., Halder, A. K., Saha, A., Das Saha, K., and Jha, T. (2015). Structural

findings of phenylindoles as cytotoxic antimitotic agents in human breast

cancer cell lines through multiple validated QSAR studies. Toxicol. In Vitro 29,

1392–1404. doi: 10.1016/j.tiv.2015.05.017

Barducci, A., Bonomi, M., and Parrinello, M. (2011). Metadynamics. Wiley

Interdiscip. Rev. Comput. Mol. 1, 826–843. doi: 10.1002/wcms.31

Bellissent-Funel, M. C., Hassanali, A., Havenith, M., Henchman, R., Pohl, P.,

Sterpone, F., et al. (2016). Water determines the structure and dynamics of

proteins. Chem. Rev. 116, 7673–7697. doi: 10.1021/acs.chemrev.5b00664

Bernardi, R. C., Melo, M. C., and Schulten, K. (2015). Enhanced sampling

techniques in molecular dynamics simulations of biological systems. Biochim.

Biophys. Acta. Gen. Sub. 1850, 872–877. doi: 10.1016/j.bbagen.2014.10.019

Bonomi, M., Branduardi, D., Bussi, G., Camilloni, C., Provasi, D., Raiteri,

P., et al. (2009). PLUMED: a portable plugin for free-energy calculations

with molecular dynamics. Comput. Phys. Commun. 180, 1961–1972.

doi: 10.1016/j.cpc.2009.05.011

Casasnovas, R., Limongelli, V., Tiwary, P., Carloni, P., and Parrinello, M. (2017).

Unbinding kinetics of a p38 MAP kinase type II inhibitor from metadynamics

simulations. J. Am. Chem. Soc. 139, 4780–4788. doi: 10.1021/jacs.6b12950

Case, D., Babin, V., Berryman, J., Betz, R., Cai, Q., Cerutti, D., et al. (2014).AMBER

14. San Francisco, CA: University of California.

Cavalli, A., Spitaleri, A., Saladino, G., and Gervasio, F. L. (2015). Investigating

drug-target association and dissociation mechanisms using metadynamics-

based algorithms. Acc. Chem. Res. 48, 277–285. doi: 10.1021/ar500356n

Chang, H. N., Liu, B. Y., Qi, Y. K., Zhou, Y., Chen, Y. P., Pan, K. M., et al.

(2015). Blocking of the PD-1/PD-L1 interaction by a D-peptide antagonist

for cancer immunotherapy. Angew. Chem. Int. Edit. 54, 11760–11764.

doi: 10.1002/anie.201506225

Chen, F., Sun, H., Wang, J., Zhu, F., Liu, H., Wang, Z., et al. (2018). Assessing

the performance of MM/PBSA and MM/GBSA methods. 8. Predicting binding

free energies and poses of protein-RNA complexes. RNA 24, 1183–1194.

doi: 10.1261/rna.065896.118

Duan, J., Dixon, S. L., Lowrie, J. F., and Sherman, W. (2010). Analysis and

comparison of 2D fingerprints: insights into database screening performance

using eight fingerprint methods. J. Mol. Graph. Model. 29, 157–170.

doi: 10.1016/j.jmgm.2010.05.008

Gatalica, Z., Snyder, C., Maney, T., Ghazalpour, A., Holterman, D. A., Xiao, N.,

et al. (2014). Programmed cell death 1 (PD-1) and its ligand (PD-L1) in

common cancers and their correlation with molecular cancer type. Cancer

Epidem. Biomar. 23, 2965–2970. doi: 10.1158/1055-9965.EPI-14-0654

Gauto, D. F., Petruk, A. A., Modenutti, C. P., Blanco, J. I., Di Lella, S., and

Marti, M. A. (2013). Solvent structure improves docking prediction in lectin-

carbohydrate complexes.Glycobiology 23, 241–258. doi: 10.1093/glycob/cws147

Genheden, S., and Ryde, U. (2015). The MM/PBSA and MM/GBSA methods

to estimate ligand-binding affinities. Expert Opin. Drug Discov. 10, 449–461.

doi: 10.1517/17460441.2015.1032936

Guzik, K., Zak, K. M., Grudnik, P., Magiera, K., Musielak, B., Törner, R.,

et al. (2017). Small-molecule inhibitors of the Programmed Cell Death-

1/Programmed Death-ligand 1 (PD-1/PD-L1) interaction via transiently-

induced protein states and dimerization of PD-L1. J. Med. Chem. 60,

5857–5867. doi: 10.1021/acs.jmedchem.7b00293

Hirons, L., Holliday, J. D., Jelfs, S. P., Willett, P., and Gedeck, P. (2005). Use of the

R-group descriptor for alignment-free QSAR. QSAR Comb. Sci. 24, 611–619.

doi: 10.1002/qsar.200510102

Holliday, J., Jelfs, S., Willett, P., and Gedeck, P. (2003). Calculation of

intersubstituent similarity using R-group descriptors. J. Chem. Inf. Comput. Sci.

43, 406–411. doi: 10.1021/ci025589v

Kalé, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., et al.

(1999). NAMD2: greater scalability for parallel molecular dynamics. J. Comput.

Phys. 151, 283–312. doi: 10.1006/jcph.1999.6201

Kolarevic, A., Ilic, B. S., Anastassova, N., Mavrova, A. T., Yancheva, D.,

Kocic, G., et al. (2018). Benzimidazoles as novel deoxyribonuclease

I inhibitors. J. Cell. Biochem. 119, 8937–8948. doi: 10.1002/jcb.

27147

Lee, H. T., Lee, J. Y., Lim, H., Lee, S. H., Moon, Y. J., Pyo, H.

J., et al. (2017). Molecular mechanism of PD-1/PD-L1 blockade via

anti-PD-L1 antibodies atezolizumab and durvalumab. Sci. Rep. 7:5532.

doi: 10.1038/s41598-017-06002-8

Lee, J. Y., Lee, H. T., Shin, W., Chae, J., Choi, J., Kim, S. H., et al. (2016).

Structural basis of checkpoint blockade by monoclonal antibodies in cancer

immunotherapy. Nat. Commun. 7:13354. doi: 10.1038/ncomms13354

Liu, A., Dong, L., Wei, X. L., Yang, X. H., Xiao, J. H., and Liu, Z. Q. (2016).

Development of amino- and dimethylcarbamate-substituted resorcinol as

programmed cell death-1 (PD-1) inhibitor. Eur. J. Pharm. Sci. 88, 50–58.

doi: 10.1016/j.ejps.2016.03.023

Liu, K., Tan, S., Chai, Y., Chen, D., Song, H., Zhang, C. W., et al. (2016). Structural

basis of anti-PD-L1monoclonal antibody avelumab for tumor therapy.Cell Res.

27, 151–153. doi: 10.1038/cr.2016.102

Magiera-Mularz, K., Skalniak, L., Zak, K. M., Musielak, B., Rudzinska-Szostak,

E., Berlicki, Ł., et al. (2017). Bioactive macrocyclic inhibitors of the PD-

1/PD-L1 immune checkpoint. Angew. Chem. Int. Ed. 129, 13920–13923.

doi: 10.1002/ange.201707707

Masetti, M., Cavalli, A., Recanatini, M., and Gervasio, F. L. (2009). Exploring

complex protein–ligand recognition mechanisms with coarse metadynamics.

J. Phys. Chem. B 113, 4807–4816. doi: 10.1021/jp803936q

Pascolutti, R., Sun, X., Kao, J., Maute, R. L., Ring, A. M., Bowman, G. R., et al.

(2016). Structure and dynamics of PD-L1 and an ultra-high-affinity PD-1

receptor mutant. Structure 24, 1719–1728. doi: 10.1016/j.str.2016.06.026

Patel, S. P., and Kurzrock, R. (2015). PD-L1 expression as a predictive

biomarker in cancer immunotherapy. Mol. Cancer Ther. 14, 847–856.

doi: 10.1158/1535-7163.MCT-14-0983

Perry, E., Mills, J. J., Zhao, B., Wang, F., Sun, Q., Christov, P. P., et al. (2019).

Fragment-based screening of programmed death ligand 1 (PD-L1). Bioorg.

Med. Chem. Lett. 29, 786–790. doi: 10.1016/j.bmcl.2019.01.028

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt,

D. M., Meng, E. C., et al. (2004). UCSF chimera—a visualization system

for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.

doi: 10.1002/jcc.20084

Qin, M., Cao, Q., Zheng, S., Tian, Y., Zhang, H., Xie, J., et al. (2019). Discovery of

[1,2,4]Triazolo[4,3-a]pyridines as potent inhibitors targeting the programmed

cell death-1/programmed cell death-ligand 1 interaction. J. Med. Chem. 62,

4703–4715. doi: 10.1021/acs.jmedchem.9b00312

Romero, J. M., Trujillo, M., Estrin, D. A., Rabinovich, G. A., and Di Lella,

S. (2016). Impact of human galectin-1 binding to saccharide ligands

on dimer dissociation kinetics and structure. Glycobiology 26, 1317–1327.

doi: 10.1093/glycob/cww052

Sastry, M., Lowrie, J. F., Dixon, S. L., and Sherman, W. (2010). Large-

scale systematic analysis of 2D fingerprint methods and parameters to

improve virtual screening enrichments. J. Chem. Inf. Model. 50, 771–784.

doi: 10.1021/ci100062n

Sharma, P., and Allison, J. P. (2015a). The future of immune checkpoint therapy.

Science 348, 56–61. doi: 10.1126/science.aaa8172

Sharma, P., and Allison, J. P. (2015b). Immune checkpoint targeting in cancer

therapy: toward combination strategies with curative potential. Cell 161,

205–214. doi: 10.1016/j.cell.2015.03.030

Sharpe, A. H., Butte, M. J., and Oyama, S. (2011).Modulators of Immunoinhibitory

Receptor pd-1, and Methods of Use Thereof. U.S. Patent Application.

Skalniak, L., Zak, K. M., Guzik, K., Magiera, K., Musielak, B., Pachota, M.,

et al. (2017). Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint

alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget 8, 72167–72181.

doi: 10.18632/oncotarget.20050

Sun, H., Duan, L., Chen, F., Liu, H., Wang, Z., Pan, P., et al. (2018). Assessing

the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on

the performance of end-point binding free energy calculation approaches. Phys.

Chem. Chem. Phys. 20, 14450-14460. doi: 10.1039/c7cp07623a

Sun, H., Li, Y., Shen, M., Li, D., Kang, Y., and Hou, T. (2017). Characterizing drug-

target residence time with metadynamics: how to achieve dissociation

rate efficiently without losing accuracy against time-consuming

approaches. J. Chem. Inf. Model. 57, 1895–1906. doi: 10.1021/acs.jcim.7b

00075

Frontiers in Chemistry | www.frontiersin.org 14 November 2019 | Volume 7 | Article 764176

https://doi.org/10.1021/acsmedchemlett.5b00148
https://doi.org/10.1016/j.tiv.2015.05.017
https://doi.org/10.1002/wcms.31
https://doi.org/10.1021/acs.chemrev.5b00664
https://doi.org/10.1016/j.bbagen.2014.10.019
https://doi.org/10.1016/j.cpc.2009.05.011
https://doi.org/10.1021/jacs.6b12950
https://doi.org/10.1021/ar500356n
https://doi.org/10.1002/anie.201506225
https://doi.org/10.1261/rna.065896.118
https://doi.org/10.1016/j.jmgm.2010.05.008
https://doi.org/10.1158/1055-9965.EPI-14-0654
https://doi.org/10.1093/glycob/cws147
https://doi.org/10.1517/17460441.2015.1032936
https://doi.org/10.1021/acs.jmedchem.7b00293
https://doi.org/10.1002/qsar.200510102
https://doi.org/10.1021/ci025589v
https://doi.org/10.1006/jcph.1999.6201
https://doi.org/10.1002/jcb.27147
https://doi.org/10.1038/s41598-017-06002-8
https://doi.org/10.1038/ncomms13354
https://doi.org/10.1016/j.ejps.2016.03.023
https://doi.org/10.1038/cr.2016.102
https://doi.org/10.1002/ange.201707707
https://doi.org/10.1021/jp803936q
https://doi.org/10.1016/j.str.2016.06.026
https://doi.org/10.1158/1535-7163.MCT-14-0983
https://doi.org/10.1016/j.bmcl.2019.01.028
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1021/acs.jmedchem.9b00312
https://doi.org/10.1093/glycob/cww052
https://doi.org/10.1021/ci100062n
https://doi.org/10.1126/science.aaa8172
https://doi.org/10.1016/j.cell.2015.03.030
https://doi.org/10.18632/oncotarget.20050
https://doi.org/10.1039/c7cp07623a
https://doi.org/10.1021/acs.jcim.7b00075
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Shi et al. Computational Insight of PD-L1 Dimerization

Tan, S., Chen, D., Liu, K., He, M., Song, H., Shi, Y., et al. (2016). Crystal

clear: visualizing the intervention mechanism of the PD-1/PD-L1 interaction

by two cancer therapeutic monoclonal antibodies. Protein Cell 7, 866–877.

doi: 10.1007/s13238-016-0337-7

Tan, S., Liu, K., Chai, Y., Zhang, C. W., Gao, S., Gao, G. F., et al. (2017).

Distinct PD-L1 binding characteristics of therapeutic monoclonal antibody

durvalumab. Protein Cell 9, 135–139. doi: 10.1007/s13238-017-0412-8

Ts Mavrova, A., Dimov, S., Yancheva, D., Kolarevic, A., Ilic, B. S., Kocic, G.,

et al. (2018). Synthesis and DNase I inhibitory properties of some 5,6,7,8-

tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines. Bioorg. Chem. 80, 693–705.

doi: 10.1016/j.bioorg.2018.07.009

Xue, W., Jin, X., Ning, L., Wang, M., Liu, H., and Yao, X. (2013). Exploring the

molecular mechanism of cross-resistance to HIV-1 integrase strand transfer

inhibitors by molecular dynamics simulation and residue interaction network

analysis. J. Chem. Inf. Model. 53, 210–222. doi: 10.1021/ci300541c

Zak, K. M., Grudnik, P., Guzik, K., Zieba, B. J., Musielak, B., Dömling, A.,

et al. (2016). Structural basis for small molecule targeting of the programmed

death ligand 1 (PD-L1). Oncotarget 7, 30323–30335. doi: 10.18632/oncotarg

et.8730

Zak, K. M., Kitel, R., Przetocka, S., Golik, P., Guzik, K., Musielak, B., et al. (2015).

Structure of the complex of human programmed death 1, PD-1, and its ligand

PD-L1. Structure 23, 2341–2348. doi: 10.1016/j.str.2015.09.010

Zarganes-Tzitzikas, T., Konstantinidou, M., Gao, Y., Krzemien, D., Zak, K.,

Dubin, G., et al. (2016). Inhibitors of programmed cell death 1 (PD-

1): a patent review (2010-2015). Expert Opin. Ther. Pat. 26, 973–977.

doi: 10.1080/13543776.2016.1206527

Zhang, F., Qi, X., Wang, X., Wei, D., Wu, J., Feng, L., et al. (2017a). Structural

basis of the therapeutic anti-PD-L1 antibody atezolizumab. Oncotarget 8,

90215–90224. doi: 10.18632/oncotarget.21652

Zhang, F., Wei, H., Wang, X., Bai, Y., Wang, P., Wu, J., et al. (2017b). Structural

basis of a novel PD-L1 nanobody for immune checkpoint blockade. Cancer

Discov. 3:17004. doi: 10.1038/celldisc.2017.4

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Shi, An, Bai, Bing, Zhou, Liu and Yao. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Chemistry | www.frontiersin.org 15 November 2019 | Volume 7 | Article 764177

https://doi.org/10.1007/s13238-016-0337-7
https://doi.org/10.1007/s13238-017-0412-8
https://doi.org/10.1016/j.bioorg.2018.07.009
https://doi.org/10.1021/ci300541c
https://doi.org/10.18632/oncotarget.8730
https://doi.org/10.1016/j.str.2015.09.010
https://doi.org/10.1080/13543776.2016.1206527
https://doi.org/10.18632/oncotarget.21652
https://doi.org/10.1038/celldisc.2017.4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


REVIEW
published: 20 November 2019

doi: 10.3389/fchem.2019.00782

Frontiers in Chemistry | www.frontiersin.org 1 November 2019 | Volume 7 | Article 782

Edited by:

Jose L. Medina-Franco,

National Autonomous University of

Mexico, Mexico

Reviewed by:

Julio Caballero,

University of Talca, Chile

Humbert Gonzalez-Diaz,

University of the Basque

Country, Spain

Simone Brogi,

University of Pisa, Italy

Giulia Chemi,

University of Siena, Siena, Italy, in

collaboration with reviewer SB

*Correspondence:

Vladimir B. Bajic

vladimir.bajic@kaust.edu.sa

Magbubah Essack

magbubah.essack@kaust.edu.sa

Specialty section:

This article was submitted to

Medicinal and Pharmaceutical

Chemistry,

a section of the journal

Frontiers in Chemistry

Received: 09 August 2019

Accepted: 30 October 2019

Published: 20 November 2019

Citation:

Thafar M, Raies AB, Albaradei S,

Essack M and Bajic VB (2019)

Comparison Study of Computational

Prediction Tools for Drug-Target

Binding Affinities. Front. Chem. 7:782.

doi: 10.3389/fchem.2019.00782

Comparison Study of Computational
Prediction Tools for Drug-Target
Binding Affinities

Maha Thafar 1,2, Arwa Bin Raies 1, Somayah Albaradei 1,3, Magbubah Essack 1* and

Vladimir B. Bajic 1*

1Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Computational Bioscience Research

Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, 2College of Computers

and Information Technology, Taif University, Taif, Saudi Arabia, 3 Faculty of Computing and Information Technology, King

Abdulaziz University, Jeddah, Saudi Arabia

The drug development is generally arduous, costly, and success rates are low. Thus,

the identification of drug-target interactions (DTIs) has become a crucial step in early

stages of drug discovery. Consequently, developing computational approaches capable

of identifying potential DTIs with minimum error rate are increasingly being pursued.

These computational approaches aim to narrow down the search space for novel DTIs

and shed light on drug functioning context. Most methods developed to date use binary

classification to predict if the interaction between a drug and its target exists or not.

However, it is more informative but also more challenging to predict the strength of the

binding between a drug and its target. If that strength is not sufficiently strong, such

DTI may not be useful. Therefore, the methods developed to predict drug-target binding

affinities (DTBA) are of great value. In this study, we provide a comprehensive overview of

the existing methods that predict DTBA. We focus on the methods developed using

artificial intelligence (AI), machine learning (ML), and deep learning (DL) approaches,

as well as related benchmark datasets and databases. Furthermore, guidance and

recommendations are provided that cover the gaps and directions of the upcoming

work in this research area. To the best of our knowledge, this is the first comprehensive

comparison analysis of tools focused on DTBA with reference to AI/ML/DL.

Keywords: drug repurposing, drug-target interaction, drug-target binding affinity, artificial intelligence, machine

learning, deep learning, information integration, bioinformatics

INTRODUCTION

Experimental confirmation of new drug-target interactions (DTIs) is not an easy task, as in vitro
experiments are laborious and time-consuming. Even if a confirmed DTI has been used for
developing a new drug (in this review compounds that are not approved drugs are also referred
to as drugs), the approval for human use of such new drugs can take many years and estimated
cost may run over a billion US dollars (Dimasi et al., 2003). Moreover, although huge investments
are required for the development of novel drugs, they are often met with failure. In fact, of the
108 new and repurposed drugs reported as Phase II failures between 2008 and 2010, 51% was
due to insufficient efficacy as per a Thomson Reuters Life Science Consulting report (Arrowsmith,
2011). This observation highlighted the need for: (1) new, more appropriate drug targets, and (2)
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in silico methods that can improve the efficiency of the drug
discovery and screen a large number of drugs in the very initial
phase of drug discovery process, thus guiding toward those
drugs that may exhibit better efficacy. In this regard, methods
that predict DTIs and specifically, drug-target binding affinities
(DTBA) are of great interest.

Over the last three decades, several methods that predict
DTIs have been developed ranging from ligand/receptor-based
methods (Cheng et al., 2007; Wang et al., 2013) to gene ontology-
based (Mutowo et al., 2016), text-mining-based methods (Zhu
et al., 2005), and reverse virtual screening techniques (reverse-
docking) (Lee et al., 2016; Vallone et al., 2018; Wang et al.,
2019). Development of such methods is still ongoing as each
method suffers from different types of limitations. For example,
docking simulation is often used in the receptor-based methods;
also, docking simulation requires the 3D structures of the target
proteins that are not always readily available. Furthermore, this
is an expensive process. On the other hand, the ligand-based
approaches suffer from low performance when the number of
known ligands of target proteins is small, as this approach
predicts DTIs based on the similarity between candidate ligands
and the known ligands of the target proteins. The limitations
associated with gene ontology-based and text-mining-based
approaches are the same, their major limitation appears to be
what is reported in the text. This also becomes more complicated
due to the frequent use of redundant names for drugs and target
proteins. Moreover, with the text-mining approach being limited
to the current knowledge (i.e., published material), making
discovery of new knowledge is not easy.

Other methods such as deep learning (DL), machine learning
(ML), and artificial intelligence (AI) in general, avoid these
limitations by using models that learn the features of known
drugs and their targets to predict new DTIs. Understanding
that ML methods are just a subset of AI methods, does not
always makes it clear what would be strictly an ML method and
what an AI method. This particularly becomes apparent when
graph, network, and search analyses methods are combined with
conventional (shallow) ML approaches. The situation for DL is
clearer, as these methods are a subset of ML approaches based on
transformation of the original input data representation across
multiple information processing layers, thus distinguishing them
from the shallow ML approaches. More recent approaches
introduced AI, network analysis, and graph mining (Emig et al.,
2013; Ba-Alawi et al., 2016; Luo et al., 2017; Olayan et al.,

Abbreviations: AI, artificial intelligence; ML, machine learning; DL, deep

learning; Sim, similarity; aaseq, amino-acid sequence; SPS, structural property

sequence; PSC, protein sequence composition; PDM, protein domain and motif;

ECFP, extended-connectivity fingerprint; LMCS, ligand maximum common

substructure; KronRLS, Kronecker regularized least square; CNN, convolutional

neural network; GCNN, graph convolution neural network; FNN, feedforward

neural network; ANN, artificial neural network; RNN, recurrent neural network;

RBNN, radial basis function neural network;MNN,modular neural network;MLP,

multilayer perceptron; RNN, recurrent neural network; FC, fully connected; ReLU,

rectified linear unit; CV, cross validation; LDO, leave one drug out; LTO, leave one

target out; MSE, mean square error; RMSE, root square of mean square error; CI,

concordance index; PCC, Pearson correlation coefficient; NR, nuclear receptors;

GPCR, G protein-coupled receptors; IC, ion channels; E, enzymes; KIBA, kinase

inhibitor bioactivity.

2018), and ML and DL techniques (Liu Y. et al., 2016; Rayhan
et al., 2017; Zong et al., 2017; Tsubaki et al., 2019) to develop
prediction models for DTI problem. AI/ML-based methods (we
will frequently refer to them in this study as ML methods)
are generally feature-based or similarity-based (see DTBA ML-
based methods section). Feature-based AI/ML methods can
be integrated with other approaches constructing “Ensemble
system” as presented in Ezzat et al. (2016), Jiang et al. (2017), and
Rayhan et al. (2019). Thus, several comprehensive recent reviews
summarized the different studies that predict DTIs using various
techniques covering structure-based, similarity-based, network-
based, and AI/ML-based methods as presented in Liu Y. et al.
(2016), Ezzat et al. (2017, 2018, 2019), Rayhan et al. (2017),
Trosset and Cavé (2019), and Wan et al. (2019). Other reviews
focused on one aspect which are similarity-based methods (Ding
et al., 2014; Kurgan and Wang, 2018) or feature-based methods
(Gupta, 2017). Most of the approaches mentioned above address
DTI prediction as a simple binary on-off relationship. That is,
they simply predict whether the drug and target could interact or
not. This approach suffers from two major limitations including:
(1) the inability to differentiate between true negative interactions
and instances where the lack of information or missing values
impede predicting an interaction, and (2) it does not reflect
how tightly the drug binds to the target which reflects the
potential efficacy of the drug. To overcome these limitations,
approaches that focus onDTBApredictions have been developed.
We compile this study with the focus on DTBA, which has not
been addressed well in the past, but is more critical for estimating
usefulness of DTI in early stages of drug development.

DRUG-TARGET BINDING AFFINITY (DTBA)

DTBA indicates the strength of the interaction or binding
between a drug and its target (MaW. et al., 2018). The advantage
of formulating drug-target prediction as a binding affinity
regression task, is that it can be transformed from regression
to either binary classification by setting specific thresholds or
to ranking problem (He et al., 2017). This enables different
generalization options.

Most in silico DTBA prediction methods developed to
date use 3D structural information (see Figure 1), which was
demonstrated to successfully contribute to the drug design
(Leach et al., 2006). Some of these methods provide free analysis
software as reported by Agrawal et al. (2018). The 3D structure
information of proteins is used in the molecular docking analysis
and followed by applying search algorithms or scoring functions
to assist with the binding affinity predictions (Scarpino et al.,
2018; Sledz and Caflisch, 2018). This whole process is used in the
structured-based virtual screening (Li and Shah, 2017).

In DTBA predictions, the concept of scoring function (SF)
is frequently used. SF reflects the strength of binding affinity
between ligand and protein interaction (Abel et al., 2018).
When SFs have a prearranged functional form that mimics the
relationship between structural features and binding affinity, it
is called classical SF. Classical SFs are categorized as Empirical
SFs (Guedes et al., 2018), Force field SFs (Huang and Zou, 2006),
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FIGURE 1 | An overview of the different types of computational methods developed to predict drug-target interactions (DTIs) and drug-target binding affinity (DTBA)

categories.

and Knowledge-based SFs (Huang and Zou, 2006; Liu et al.,
2013). SFs have been used to predict protein-ligand interaction
in molecular docking such as with the Binding Estimation After
Refinement (BEAR) SF (Degliesposti et al., 2011) which is a
post docking tool that uses molecular dynamics to accurately
predict protein binding free energies using SF. Several of these
classical SFs are summarized in a recent review (Li J. et al., 2019).
A specific form of the SF called target-specific SF, is based on
energy calculations of interacting compound (i.e., free energy
calculations; Ganotra and Wade, 2018; Sun et al., 2018). Other
SFs were also developed that do not follow a predetermined
functional form. These SFs use ML techniques to infer functional
form from training data (Deng et al., 2004; Vert and Jacob,
2008; Kundu et al., 2018). Thus, the ML-based SFs methods are
data-driven models that capture the non-linearity relationship

in data making the SF more general and more accurate. DL
is an emerging research area in different cheminformatic fields
including drug design (Jain, 2017; Andricopulo and Ferreira,
2019). SFs that use DL in structure-based methods focused on
binding affinity prediction have been developed (Ashtawy and
Mahapatra, 2018; Jiménez et al., 2018; Antunes et al., 2019). As
all DL models, these DL-based SFs methods learn the features
to predict binding affinity without requirement for feature
engineering as may be the case in the ML methods. Several
reviews have been made covering virtual screening structure-
based binding affinity prediction methods including docking
techniques, before applying SFs (Kontoyianni, 2017; Li and Shah,
2017), classical SFs (Guedes et al., 2018), or ML-derived SFs (Ain
et al., 2015; Heck et al., 2017; Colwell, 2018; Kundu et al., 2018).
The main limitations of the structure-based methods are the
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requirement for the 3D structure data (including compound and
protein) that are scarce. This is compounded by the problem of
low-quality structure predicted from docking, which cannot be
tested and scaled to large-scale data applications (Karimi et al.,
2019). Several publications have discussed the major limitations
of structured-based virtual screening (Sotriffer and Matter, 2011;
Hutter, 2018).

Non-structure-based methods, overcome most of these
limitations since there is no need for the docking process or
3D structural data. Despite the enormous amount of effort
and research devoted to binding affinity prediction, there are
only a few publications that address the DTBA problem as
a non-structure-based approach. This remains a critical and
challenging task that requires the development of significantly
improved algorithms.

Here, we review methods developed for prediction of DTIs
based on binding affinities. Specifically, we focus on the
novel methods that utilize non-structure-based binding affinity
prediction (shown in bold font in Figure 1), which does
not require or use 3D structural data. The study provides a
comparative analysis of the current DTBA prediction methods.
It covers: (a) definitions and calculations associated with
binding affinity, (b) the benchmark datasets that are used in
DTBA regression problem, (c) computational methods used, (d)
evaluation and performance comparison of DTBA prediction
methods, and (e) recommendations of areas for improvement
and directions in binding affinity prediction research.

MEASURING BINDING AFFINITY

Each ligand/protein has a unique binding affinity constant for
specific receptor system which can be used to identify distinct
receptors (Weiland and Molinoff, 1981; Bulusu et al., 2016). The
equilibrium reaction below describes how a protein (P) binds to
its ligand (L) to create the protein-ligand complex (PL) (Du et al.,
2016):

P+L
Kα
⇔ PL (1)

Ka is the equilibrium association constant (also called binding
affinity constant). A high value of Ka indicates a strong binding
capacity between the drug/ligand and the receptor/protein
(Weiland and Molinoff, 1981; Bulusu et al., 2016). The inverse of
the above reaction is when the protein-ligand complex dissociates
into its components of a protein and a ligand as explained in the
equilibrium reaction below (Du et al., 2016):

PL
Kd
⇔ P+L (2)

Kd is the equilibrium dissociation constant, and it is used more
often than Ka. Small values of Kd indicate higher affinity (Ma
W. et al., 2018). Kd is the inverse of the Ka as illustrated in the
equation below (Du et al., 2016):

Kd =
1

Ka
(3)

Binding Curve
Figure 2 shows a hypothetical example of a binding curve for
two ligands: Ligand 1 and Ligand 2. The x-axis represents
the concentration of the ligand, and the y-axis represents the
percentage of available binding sites (2) in a protein that is
occupied by the ligand. The values of 2 range from 0 to 1
(corresponding to the range from 0 to 100% in Figure 2). For
example, if 2 is 0.5, this means that 50% of the available binding
sites are occupied by the ligand. The binding curves help in
determining graphically which ligand binds more strongly to the
protein at a specific concentration of the ligand (Stefan and Le
Novère, 2013). For example, in Figure 2, if the concentration of
the ligands is 3 µM, Ligand 1 binds to 75% of the binding sites
of the protein, while Ligand 2 binds to only 50% of the binding
sites. Therefore, Ligand 1 binds more strongly to the protein than
Ligand 2. Figure 2 depicts an example of cooperative binding (if
the concentration of the ligand increases, the number of binding
sites the ligand occupies increases non-linearly). Cooperative
binding is positive if binding of the ligand increases the affinity
of the protein and increases the chance of another ligand binding
to the protein; otherwise, the cooperative binding is negative (i.e.,
binding of the ligand to the protein decreases the affinity of the
protein and reduces the chance of another ligand binding to the
protein; Stefan and Le Novère, 2013).

The equation below shows the relationship between 2 for a
protein to which the ligand binds, and Kd of the equilibrium
reaction at a given concentration of the ligand [L] (Salahudeen
and Nishtala, 2017):

θ =

[L]

Kd+[L]
(4)

FIGURE 2 | A hypothetical example of a binding curve for ligand 1 and ligand

2. The x-axis shows the concentration of the ligand, and the y-axis shows the

percentage of available binding sites (2) in a protein that is occupied by the

ligand.
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Ki and IC50 Constants
The inhibitor constant (Ki) is an indicator of the potency
of an inhibitor (Bachmann and Lewis, 2005). Inhibitors are
compounds (e.g., drugs) that can reduce the activity of enzymes.
Enzymes that exhibit overactivity are potential targets for drugs
to treat specific diseases, as well as inhibitors of a cascade
of events in a pathway. Several drugs act by inhibiting these
specific enzymes (Chou and Talalay, 1984; Tang et al., 2017).
IC50 is the concentration required to produce half-maximum
inhibition (Bachmann and Lewis, 2005). Ki is calculated using
IC50 values, which are the concentration required to produce 50%
inhibition (Burlingham and Widlanski, 2003). Figure 3 provides
a hypothetical example of IC50 values, with the concentration
of the inhibitor represented on the x-axis, and the percentage
of enzyme activity represented on the y-axis. The hypothetical
example (in Figure 3) shows 50% of enzyme activity can be
inhibited when the concentration of the inhibitor is 2 µM.

IC50 is not an indicator of affinity, but rather indicates the
functional strength of the inhibitor. On the other hand, Ki

constant reflects the binding affinity of the inhibitor. Lower
values of Ki indicate higher affinity. The relationship between
IC50 and Ki is explained by the equation below (Hulme and
Trevethick, 2010):

Ki =
IC50

1+ [S]
Km

(5)

where Km is the substrate concentration (in the absence of
inhibitor) at which the velocity of the reaction is half-maximal,
and [S] is the concentration of substrate. More details about Km

can be found in Hulme and Trevethick (2010).

BENCHMARK DATASETS AND SOURCES

Benchmark datasets are used to train models and evaluate their
performance on the standardized data. Using these datasets
also allow the performance of the newly developed method

FIGURE 3 | Relationship between concentration of inhibitors and enzymes

activity.

to be compared to the state-of-the-art methods to establish
the best performance. Only a few benchmark datasets have
been used to develop in silico DTBA prediction methods.
When predicting DTIs, the Yamanishi datasets (Yamanishi et al.,
2008) are the most popular benchmark datasets. There are
four Yamanishi datasets based on family of target proteins,
including: (1) nuclear receptors (NR), (2) G protein-coupled
receptors (GPCR), (3) ion channels (IC), and (4) enzymes (E).
Each dataset contains binary labels to indicate the interacting
or non-interacting drug-target pairs (Yamanishi et al., 2008).
However, these datasets cannot be used for DTI regression-
based models, because the datasets do not indicate the actual
binding affinities between known interacting drug-target pairs.
That is, actual binding affinity scores are needed to train the
models to predict the continuous values that indicate the binding
strength between drugs and their targets. Three large-scale
benchmark datasets that we name Davis dataset, Metz dataset,
and Kinase Inhibitor BioActivity (KIBA) dataset, which provide
these binding affinities for interaction strength were used to
evaluate DTBA prediction in Davis et al. (2011), Metz et al.
(2011), and Tang et al. (2014), respectively. All three datasets are
large scale biochemical selectivity assays of the kinase inhibitors.
The kinase protein family is used for the reason that this
protein family has increased biological activity and is involved
in mediating critical pathway signals in cancer cells (Tatar and
Taskin Tok, 2019).

In Davis dataset, the Kd value is provided as a measure of
binding affinity. The Metz dataset provides the Ki as a measure
of binding affinity. When the value of Kd or Ki is small, this
indicates strong binding affinity between a drug and its target.
KIBA dataset integrates different bioactivities and combines Kd,
Ki, and IC50 measurements. KIBA score represents a continuous
value of the binding affinity that was calculated utilizing Kd, Ki,
and IC50 scores. The higher KIBA score indicates a lower binding
affinity between a drug and its target.

Recently, Feng (2019) also used ToxCast (Judson, 2012) as
a benchmark dataset for binding affinity. This dataset is much
larger than the other three benchmark datasets. It contains
data about different proteins that can help in evaluating the
model robustness and scalability. ToxCast contains toxicology
data obtained from in vitro high-throughput screening of drugs
(i.e., chemicals). Several companies have done ToxCast curation
with 61 different measurements of binding affinity scores. Other
details of this dataset and the method are explained later
in section Computational Prediction of Drug-Target Binding
Affinities. Table 1 summarizes the statistics for these four
benchmark datasets.

TABLE 1 | Binding affinity benchmark datasets statistics.

Datasets No. of drugs No. of proteins Known DTIs

Davis 68 442 30,056

Metz 1,421 156 35,259

Kiba 2,116 229 118,254

ToxCast 7,675 335 530,605
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Other benchmark binding affinity datasets provided 3D
structure information used to evaluate and validate structure-
based methods via scoring functions and docking techniques.
These benchmark datasets provide all the binding affinity
information for the interactions. We listed these datasets without
mentioning any further details since their use is beyond the scope
of this study. Most of these datasets have more than one version
since they are updated each year by adding more experimental,
validated data. These datasets/data sources are: PDBbind (Wang
et al., 2004, 2005), BindingDB (Chen et al., 2001; Liu et al.,
2007; Gilson et al., 2016), BindingMOAD—(the Mother Of All
Databases; Hu et al., 2005; Benson et al., 2007; Ahmed et al.,
2015; Smith et al., 2019), CSAR (Smith et al., 2011; Dunbar et al.,
2013), AffinDB (Block et al., 2006), Ligand Protein DataBase
(LPDB) (Roche et al., 2001), and Protein-Ligand Database (PLD)
(Puvanendrampillai and Mitchell, 2003). These datasets are
integrated with protein 3D structure information provided in
Protein Data Bank (PDB) (Berman et al., 2000; Westbrook et al.,
2003) adding more information. All these resources are publicly
available, and some of them have associated web-tools aiming to
facilitate accessing and searching information.

COMPUTATIONAL PREDICTION OF
DRUG-TARGET BINDING AFFINITIES

There are few cheminformatics methods developed to predict
continuous DTBA that do not use the 3D structure data. These
methods are data-driven and use AI/ML/DL techniques for
regression task rather than classification. To our knowledge, there
are only six state-of-art methods developed for DTBA prediction.
These we describe in what follows.

Artificial Intelligence and Machine
Learning-Based Methods
AI/ML and statistical analysis approaches have been applied
across different stages of the drug development and design
pipelines (Lima et al., 2016) including target discovery (Ferrero
et al., 2017), drug discovery (Hutter, 2009; Raschka et al.,
2018; Vamathevan et al., 2019), multi-target drug combination
prediction (Tang et al., 2014; Vakil and Trappe, 2019), and
drug safety assessment (Raies and Bajic, 2016, 2018; Lu et al.,
2018). AI/ML approaches are generally either feature-based
or similarity-based. The feature-based approaches use known
DTIs chemical descriptors for drugs and the descriptors for the
targets to generate feature vectors. On the other hand, similarity-
based AI/ML approaches use the “guilt by association” rule.
Using this rule is based on the assumptions that similar drugs
tend to interact with similar targets and similar targets are
targeted by similar drugs. Such AI/ML approaches that predict
binding affinity of DTIs were used to develop state-of-the-art
DTBA prediction methods, KronRLS (Pahikkala et al., 2015) and
SimBoost (He et al., 2017).

KronRLS
Regularized least-square (RLS) is an efficient model used in
different types of applications (Pahikkala et al., 2012a,b). Van

Laarhoven et al. (2011) used RLS for the binary prediction of
DTIs and achieved outstanding performance. Later, the RLS
model was amended to develop a method that is suitable for
DTBA prediction named, Kronecker-Regularized Least Squares
(KronRLS) (Pahikkala et al., 2015). This method is a similarity-
based method that used different types of drug-drug similarity
and protein-protein similarity score matrices as features. The
problem is formulated as regression or rank prediction problem
as follows: a set D of drugs {d1, d2,..., di} and a set T of protein
targets {t1, t2,..., ti} are given with the training data X= {x1, x2,...,
xn} that is a subset from all possible generated drug-target pairs
X ⊂ {di×tj}. Each row of X (i.e., feature vector) is associated with
the label yi, yi ǫ Yn, where Yn is the label vector that represents a
binding affinity. To learn the prediction function f, a minimizer
of the following objective function J is defined as:

J(f ) =

m
∑

i = 1

( yi − f (xi))
2
+ λ ‖ f ‖2k (6)

Here ||f ||k is the norm of f, λ > 0 is regularization parameter
defined by the user, and K is the kernel function (i.e., similarity)
that is associated with the norm. The objective function to be
minimized during optimization process is defined as:

f (x) =

m
∑

i=1

aiK(x, xi) (7)

The kernel function K in the equation above is the symmetric
similarity matrix n × n for all possible drug-target pairs.
This kernel function is the Kronecker product of two other
similarity matrices: K = Kd ⊗ Kt , where Kd is the drug
chemical structure similarity matrix computed using the
PubChem structure clustering tool, and Kt is the protein
sequence similarity matrix computed using both original and
normalized versions of the Smith-Waterman (SW) algorithm
(Yamanishi et al., 2008; Ding et al., 2014). There are two
scenarios of the training data. If the training set X =

{di× tj} contains all possible pairs, the parameter vector a
in Equation (7) can be obtained by solving the system of
linear equations:

(K + I) a= y (8)

where I is the identity matrix. For the second scenario, if only a
subset of {di× tj} is used as the training data, such as X ⊂ {di×
tj}, the vector y has missing values for binding affinity and for
determining the parameter a, conjugate gradient with Kronecker
algebraic optimization is needed to solve the system of linear
Equation (8).

SimBoost
SimBoost (He et al., 2017) is a novel non-linear method that
has been developed to predict DTBA as a regression task
using gradient boosting regression trees. This method uses both
similarity matrices and constructed features. The definition of the
training data is similar to the KronRLS method. Thus, SimBoost
requires a set of, (1) drugs (D), (2) targets (T), (3) drug-target
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pairs (that are associated with user-defined features), and (4)
binding affinity such that yi ǫ Yn (where Yn is the binding affinity
vector). SimBoost is used to generate features for each drug,
target, and drug-target pair. There are three types of features:

Type-1 features are object-based features for every single
drug and target. This type of features reflects the statistics and
similarity information such as score, histogram, a frequency for
every single object (drug or target).

Type-2 features are similar to network-based features. Here,
two networks are built, one network for drug-drug similarity,
and the other network for target-target similarity. For the drug-
drug similarity network, each drug is a graph node, and the
nodes connected through edges. Edges are determined using the
similarity score that is higher than the user-defined threshold.
The construction of the second target-target similarity network
is similar to the drug-drug network. For each network, we extract
features. These features include statistics of node neighbors, page
rank, betweenness, and eigencentrality (introduced in Newman,
2018).

Type-3 features are heterogeneous network-based features
from the drug-target network, where drugs and targets are
connected based on binding affinity continuous value.We extract
other features from this network such as the latent vectors using
matrix factorization (Liu Y. et al., 2016), and the normal ones,
including betweenness, closeness, and eigencentrality.

A feature vector is constructed for each (drug, target) pair by
concatenating type-1 and type-2 feature vector for each di and
tj and type-3 feature vector for each pair (di, tj). After finishing
feature engineering, the feature vector is feed to the gradient
boosting regression trees. In this model, the predicted score ŷi
for each input data xi that is represented by its feature vector, is
computed using the following:

ŷi = φ(xi) =

K
∑

k=1

fk(xi), fk ∈ F (9)

Here, B is the number of regression trees, {fk} is the set of trees,
and F represents the space of all possible trees. The following is
the regularized objective function L used to learn the fk:

L(φ) =

∑

i

l(ŷi, yi) +

∑

k

�(fk ) (10)

Here, l is a differentiable loss function that evaluates the
prediction error. The � function measures the model complexity
to avoid overfitting. The model is trained additively, at each
iteration t, F is searched to find a new tree ft . This new tree ft
optimizes the following objective function:

L(t) =

n
∑

i =1

l(yi, ŷ
(t)
i )+

t
∑

i =1

�(fi)=

t
∑

i =1

l(yi, ŷ
(t−1)
i + ft(xi))

+

t
∑

i =1

�(fi) (11)

A gradient boosting algorithm iteratively adds trees that optimize
the approximate objective at specific step for several user-defined

iterations. SimBoost used similarity matrices are the same as
KronRLS and are obtained using drug-drug similarity (generated
by PubChem clustering based on the chemical structure) and
target-target similarity (generated using the SW algorithm based
on protein sequences).

Deep Learning-Based Methods
Recently and in this big data era, DL approaches have
been successfully used to address diverse problems in
bioinformatics/cheminformatics applications (Ekins, 2016;
Kalkatawi et al., 2019; Li Y. et al., 2019) and more specifically in
drug discovery as discussed in detail in Chen et al. (2018), Jing
et al. (2018), and Ekins et al. (2019). DL algorithms developed
to predict DTBA sometimes show superior performance when
compared to conventional ML algorithms (Öztürk et al., 2018,
2019; Karimi et al., 2019). These DL-based algorithms developed
to predict DTBA differ from each other in two main aspects. The
first is concerning the representation of input data. For example,
Simplified Molecular Input Line Entry System (SMILES),
Ligand Maximum Common Substructure (LMCS) Extended
Connectivity Fingerprint (ECFP), or a combination of these
features can be used as drug features (see Table 4). The second is
concerning the DL system architecture that is developed based
on different neural network (NN) types (Krig, 2016) elaborated
on below. The NN types differ in their structure that in some
cases include the number of layers, hidden units, filter sizes,
or the incorporated activation function. Each type of NN has
its inherent unique strengths that make them more suitable
for specific kinds of applications. The most popular NN types
include the Feedforward Neural Network (FNN), Radial Basis
Function Neural Network (RBNN), Multilayer Perceptron
(MLP), Recurrent Neural Network (RNN), Convolutional
Neural Network (CNN), and Modular Neural Network (MNN)
(Schmidhuber, 2015; Liu et al., 2017). FNN and CNN have been
used in algorithms discussed below to predict DTBA.

FNN, also known as a front propagated wave, is the simplest
type of artificial NN (ANN) (Michelucci, 2018). In this type, the
information only moves in one direction, from the input nodes
to the output nodes, unlike more complex kinds of NN that
have backpropagation. Nonetheless, it is not restricted to having
a single layer, as it may have multiple hidden layers. Like all
NN, FNN also incorporates an activation function. Activation
function (Wu, 2009) is represented by a node which is added
to the output layer or between two layers of any NN. Activation
function node decides what output a neuron should produce, e.g.,
should it be activated or not. The form of the activation function
is the non-linear transformation of the input signal to an output
signal that serves as the input of a subsequent layer or the final
output. Example of activation functions includes sigmoid, tanh,
Rectified Linear Unit (ReLU), and variants of them.

On the other hand, CNN uses a variation of multilayer
perceptron. Its architecture incorporates convolution layers
which apply k filters on the input to systematically capture
the presence of some discriminative features and create feature
maps (Liu et al., 2017). Those filters are automatically learned
based on the desired output, which maximizes the algorithms
ability to identify true positive cases. This is achieved through a
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loss layer (loss function) which penalizes predictions based on
their deviations from the training set. When many convolutional
layers are stacked, more abstracted features are automatically
detected. Usually, a pooling layer follows a convolution layer to
limit the dimension and keep only the essential elements. The
common types of pooling are average pooling and max pooling.
Average pooling finds the average value for each patch on the
feature map. Max pooling finds the maximum value for each
patch of the feature map. The pooling layer produces a down-
sampled feature map which reduces the computational cost.
After features extraction and features selection automatically
performed by the convolutional layers and pooling layers, fully
connected layers are usually used to perform the final prediction.

The general design used for the prediction of DTBA start with
the representation of the input data for the drug and target, then
different NN types with various structures are applied to learn
features (i.e., embedding). Subsequently, the features of each
drug-target pair are concatenated to create feature vectors for all
drug-target pairs. The fully connected (FC) layers are fed with
these feature vectors for the prediction task. Figure 4 provides a
step-by-step depiction of this general framework.

DeepDTA
DeepDTA, introduced in Öztürk et al. (2018), is the first DL
approach developed to predict DTBA, and it does not incorporate
3D structural data for prediction, i.e., it is non-structure-
based method. DeepDTA uses SMILES, the one-dimensional
representation of the drug chemical structure (Weininger, 1988,
1990), as representation of the drug input data for drugs,
while the amino acid sequences are used to represent the
input data for proteins. Integer/label encoding was used to
encode drug SMILES. For example, the [1 3 63 1 63 5] label

FIGURE 4 | Flowchart of the general framework of deep learning (DL) models

used for drug-target binding affinity (DTBA) prediction.

encodes the “CN=C=O” SMILES. The protein sequences are
similarly encoded. More details about data preprocessing and
representation are explained in Öztürk et al. (2018). A CNN
(Liu et al., 2017) that contains three 1D convolutional layers
following by max-pooling function (called the first CNN block)
was applied on the drug embedding to learn latent features for
each drug. All three 1D convolution layers in each CNN block
consists of 32, 64, and 96 filters, respectively. An identical CNN
block was constructed and applied on protein embedding as well.
Subsequently, the feature vectors for each drug-target pair are
concatenated and fed into the three FC layers coined DeepDTA.
First two FC layers contain a similar number of hidden nodes
equal to 1,024, and a dropout layer follows each one of them to
avoid overfitting as a regularization technique, as introduced in
Srivastava et al. (2014). The last FC layer has a smaller number
of nodes equal to 512 that is followed by the output layer. ReLU
(Nair and Hinton, 2010) layer is implements J(x) = max(0, x)
that was used as the activation function (explained above). This
model is following the general architecture that is illustrated in
Figure 2, but with a different structure. Also, DeepDTA tunes
several hyper-parameters such as the number of filters, filter
length of the drug, filter length of the protein, hidden neurons
number, batch size, dropout, optimizer, and learning rate in
the validation step. The goal of this model is to minimize the
difference between the predicted binding affinity value and the
real binding affinity value in the training session. The goal of
this model is to minimize the difference between the predicted
binding affinity value and the real binding affinity value in the
training session. DeepDTA performance significantly increased
when using two CNN-blocks to learn feature representations of
drugs and proteins. This study showed that performance is lower
when using CNN to learn protein representation from the amino-
acid sequence compared to other studies that are using CNN in
their algorithms. This poor performance suggests CNN could
not handle the order relationship in the amino-acid sequence,
captured in the structural data. Öztürk et al. (2018), suggests
avoiding this limitation by using an architecture more suitable
for learning from long sequences of proteins, such as Long-Short
Term Memory (LSTM).

WideDTA
To overcome the difficulty of modeling proteins using their
sequences, the authors of DeepDTA attempted to improve the
performance of DTBA prediction by developing a new method
names WideDTA (made available through the e-print archives,
arXiv) (Öztürk et al., 2019). WideDTA uses input data such
as Ligand SMILES (LS) and amino acid sequences for protein
sequences (PS), along with two other text-based information
sources Ligand Maximum Common Substructure (LMCS) for
drugs and Protein Domains and Motifs (PDM) based on
PROSITE. Unlike DeepDTA, WideDTA represents PS and LS as
a set of words instead of their full-length sequences. A word in PS
is three-residues in the sequence, and a word in LS is 8-residues
in the sequence. They claim, shorter lengths of residues that
represent the features of the protein, are not detected using the
full-length sequences due to the low signal to noise ratio. Thus,
they proposed the word-basedmodel instead of a character-based
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model. WideDTA is a CNN DL model that uses as input all
four text-based information sources (PS, LS, LMCS, PDM) and
predict binding affinity. It first uses the Keras Embedding layer
(Erickson et al., 2017) to represent words with 128-dimensional
dense vectors to fed integer encode inputs. Then, it sequentially
applies two 1D-CNN layers with 32 and 64 filters, followed by a
max-pooling layer by the activation function layer, ReLU:

Features<− ReLU(pool(conv2(conv1(input))))

Four models with the same architecture are used to extract
features from each of the text-based information sources (PS, LS,
LMCS, PDM). The output features from each model are then
concatenated and fed to three fully connected (FC) layers (with
two drop out layers to avoid overfitting problems) that predict
the binding affinity.

PADME
PADME (Protein And Drug Molecule interaction prEdiction;
Feng, 2019), is another DL-based method that applies drug-
target features and fingerprints to different deep neural network
architectures, to predict the binding affinity values. There are two
versions of PADME. The first one called PADME-ECFP, uses the
Extended-Connectivity Fingerprint (Rogers and Hahn, 2010) as
input features that represent drugs. The second version called
PADME-GraphConv integrates Molecular Graph Convolution
(MGC) (Liu et al., 2019) into the model. This is done by adding
one more Graph Convolution Neural Network (GCNN) layer
(which is a generalization of CNN), which is used to learn
the latent features of drugs from SMILES (i.e., from graphical
representation). Both PADME versions use Protein Sequence
Composition (PSC) (Michael Gromiha, 2011) descriptors, which
contain rich information to represent the target proteins. After
generating the feature vectors for each drug and target protein, a
feature vector for each drug-target pair is fed into a simple FNN
to predict the DTBA. Techniques used for regularization in the
FNN includes dropout, early stopping, and batch normalization.
The ReLU activation functions are used for the FC layers. The
cross-validation (CV) process revealed the best hyperparameter
(such as batch size, dropout rate, etc.) or combination thereof that
is fixed and used to evaluate the test data.

DeepAffinity
DeepAffinity (Karimi et al., 2019) is a novel interpretable DL
model for DTBA prediction, which relies only on using the
SMILES representation of drugs and the structural property
sequence (SPS) representation that annotates the sequence with
structural information to represent the proteins. The SPS is better
than other protein representations because it gives structural
details and higher resolution of sequences (specifically among
proteins in the same family), that benefits regression task. The
SPS being better than other protein representations may also
be as a consequence of the SPS sequence being shorter than
other sequences. Both drug SMILES and protein SPS are encoded
into embedding representations using a recurrent neural network
(RNN) (Ghatak, 2019). RNN model named seq2seq (Shen and
Huang, 2018) is used widely and successfully in natural language
processing. The seq2seq model is an auto-encoder model that

consists of a recurrent unit called “encoder” that maps sequence
(i.e., SMILES/SPS) to a fixed dimensional vector, and other
recurrent unit called “decoder” that map back the fixed-length
vector into the original sequence (i.e., SMILES/SPS). These
representation vectors that have been learned in an unsupervised
fashion capture the non-linear mutual dependencies among
compound atoms or protein residues. Subsequently, the RNN
encoders and its attention mechanisms which are introduced
to interpret the predictions, are coupled with a CNN model to
develop feature vectors for the drugs and targets separately. The
CNN model consists of a 1D convolution layer followed by a
max-pooling layer. The output representation of the CNNs for
both the drugs and targets are then concatenated and fed into FC
layers to output the final results, DTBA values. The entire unified
RNN-CNN pipeline, including data representation, embedding
learning (unsupervised learning), and joint supervised learning
trained from end to end, achieved very high accuracy results
compared to ML models that use the same dataset (Karimi et al.,
2019).

EVALUATION OF THE STATE-OF-THE-ART
METHODS

Since KronRLS, SimBoost, DeepDTA, DeepAffinity, WideDTA,
and PADME are the only computational non-structure-based
methods developed for prediction of DTBA to-date, we consider
them the baseline methods. Here, we compare the performance
of KronRLS, SimBoost, DeepDTA, WideDTA, and PADME,
using the same benchmark datasets for evaluation. We excluded
DeepAffinity from this comparison since it used different datasets
which are based on BindingDB database (Liu et al., 2007). Also,
when methods have more than one version, the comparison only
includes the version that performs the best, based on identical
evaluation metrics published for each method.

Evaluation Metrics
The evaluation of the performance in these regression-based
models uses five metrics:

• Concordance Index (CI), first introduced by Gönen and Heller
(2005), and was used first for evaluation in the development
of KronRLS. CI is a ranking metric for continuous values that
measure whether the predicted binding affinity values of two
random drug-target pairs were predicted in the same order as
their actual values were:

CI =
1

Z

∑

si>sj

h(bi−bj) (12)

where bi is the prediction value for the larger affinity si, bj is the
prediction value for the smaller affinity sj, Z is a normalization
constant, and h(x) is the Heaviside step function (Davies, 2012),
which is a discontinuous function defined as:

h(x)=







1, x>0

0.5, x=0

0, x<0
&
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where its value is either equal to zero when the input is negative
or equal to one when the input is positive.

• Mean Square Error (MSE) (Wackerly et al., 2014) is commonly
used as a loss function (i.e., error function) in regression task
to measure how close the fitted line, that is represented by
connecting the estimated values, is to the actual data points.
The following formula defines theMSE, in which P denotes the
prediction vector, Y denotes the vector of the actual outputs,
and n is the number of samples. The square is used to ensure
the negative values do not cancel the positive values. The value
ofMSE is close to zero, thus the smaller theMSE, the better the
performance of the regressor (i.e., estimator):

MSE=

n
∑

i=1

(Pi−Yi) (13)

• Root Mean Squared Error (RMSE) (Wackerly et al., 2014) is
another metric to evaluate the regressor where it is the square
root ofMSE.

RMSE=

2
√

MSE (14)

RMSE is the distance, on average, of data points from the
fitted line.

• Pearson correlation coefficient (PCC) (also known as Person’sR;
Kullback and Leibler, 1951) measures the difference between
the actual values and the predicted values by measuring the
linear correlation (association) between these two variables.
The range of PCC is between +1 and −1, where +1 is a
total positive linear correlation, −1 is a total negative linear
correlation, and 0 is a non-linear correlation which indicates
that there is no relationship between the actual values and the
predicted values. The formula of PCC is defined as follows:

PCC =

cov
(

p,y
)

std
(

p
)

std
(

y
) (15)

where cov denotes the covariance between original values y
and predicted values, and std denotes the standard deviation.
The disadvantage is, PCC is only informative when used
with variables that have linear correlation, as PCC results are
misleading when used with non-linearly associated variables (Liu
J. et al., 2016).

• R-squared (R2) (Kassambara, 2018) is the proportion of
variation in the outcome that is explained by the predictor
variables. The R2 corresponds to the squared correlation
between the actual values and the predicted values in multiple
regression models. The higher the R-squared, the better
the model.

CI and RMSE are the only evaluation metrics reported by all
the baseline methods; other metrics are reported but not by all
the methods compared in this section. Also, RMSE and MSE
represent the error function of the same type of error (i.e., mean
square error) so reporting one of them is enough.

Validation Settings
The performance of the methods in different prediction tasks
is evaluated using various CV settings. The chosen setting can
affect accuracy and make the evaluation results less realistic.
KronRLS (Pahikkala et al., 2015) reported using three different
CV settings that make the performance evaluation more accurate
and realistic. One can split the input data (that is, how the set of
drug-target pairs and their affinity labels, are split into training
and testing dataset) in various ways, and this splitting of data
defines the validation settings used. There are three main ways
used to split input data:

• Setting 1 (S1): Random drug-target pair which correspond to
regular k-fold CV that split the data into k-folds randomly, and
keeps one of these folds for testing. That is, the training phase
includes a significant portion of all the drug-target pairs, while
the testing phase includes the remaining random pairs.

• Setting 2 (S2): New drug, which means the drug is missing
from the training data corresponding to leave one drug out
validation (LDO).

• Setting 3 (S3): New target, which means the target is missing
from the training data corresponding to leave one target out
validation (LTO).

KronRLS and PADME methods used these settings to evaluate
subsequently developed DTI and DTBA prediction methods.

Method Comparison
Tables 2, 3 summarize the performance of the baseline methods
using all CV settings based on RMSE and CI, respectively.
SimBoost and PADME reported RMSE in their respective
publications. However, DeepDTA and WideDTA reported only
MSE, so we calculated RMSE by taking the square root of
their reported MSE values as defined by Equation (13). The
KronRLS method did not report RMSE or MSE. However, the
SimBoost paper calculated and reported RMSE for the KronRLS
method (included in Table 2). Some of these baseline methods
were only evaluated based on select datasets, while others only
applied specific settings. All three dataset (Davis, Metz, and
KIBA) were used to evaluate the performances of the SimBoost
and PADME methods (based on self-reported results). The
performance of PADME was also assessed using the ToxCast
dataset. PADME is the first to use the ToxCast dataset. Moreover,
PADME performances are reported using each dataset with
the three settings (S1, S2, and S3) described above. However,
SimBoost only provides its performance using one setting (S1)
for each dataset.

Thus, we added performance results at specific settings not
found in the original manuscripts, as calculated and reported in
studies published later, to compare differences in performance
(these are denoted by stars ∗, see Tables 2, 3 legend). In some
instances, the results reported by other methods differ from the
self-reported results. There are two reasons the results difference.
The first is using different statistics of the datasets. For example,
some methods, such as PADME, filter the KIBA dataset as well as
adjusts the thresholds of other settings. The authors of PADME
explained in their study, “Because of the limitations of SimBoost
and KronRLS, we filtered the datasets. . . Considering the huge
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TABLE 2 | RMSE calculated using multiple settings for all baseline methods.

Dataset Setting Method/reference of results

KronRLS SimBoost DeepDTA PADME-EFP PADME-GC WideDTA

Davis

(Kd )

s1 0.608***

0.61562**

0.57294*

0.247

0.53103**

0.48197*

0.5109 0.43219 0.43225 0.5119

s2 0.84048* N/A N/A 0.78535 0.80644 N/A

s3 0.65964* N/A N/A 0.56005 0.57840 N/A

Metz

(Ki )

s1 0.562***

0.78128*

0.1660

0.58154*

N/A 0.55293 0.59926 N/A

s2 0.78429* N/A N/A 0.71170 0.74292 N/A

s3 0.89889* N/A N/A 0.79154 0.81893 N/A

KIBA s1 0.620***

0.64109**

0.65664*

0.204

0.47117**

0.46888*

0.4405 0.43214 0.418691 0.42308

s2 0.70243* N/A N/A 0.60201 0.62029 N/A

s3 0.68111* N/A N/A 0.61677 0.62345 N/A

ToxCast s1 N/A N/A N/A 0.40563 0.40779 N/A

s2 N/A N/A N/A 0.4485 0.44502 N/A

s3 N/A N/A N/A 0.48698 0.49439 N/A

The star symbols denote results that are not self-reported, i.e., the single star * indicates that PADME reported the other methods results, double stars ** indicates that DeepDTA reported

the other methods results, and the triple stars *** indicates that SimBoost reported the other methods results. Missing data are indicated with N/A. The best values for each setting are

indicated in bold font.

compound similarity matrix required and the time-consuming
matrix factorization used in SimBoost, it would be infeasible to
work directly on the original KIBA dataset. Thus, we had to filter
it rather aggressively so that the size becomes more manageable.”
Therefore, the authors of PADME reported different values for
the RMSE scores of KronRLS and SimBoost, as shown in Table 2.
The second reason is related to the CV settings such as the
number of folds, the random seeds to split the data into training
and testing, and the number of repeated experiments. The best
values for each setting are indicated in bold font in Table 2.

Tables 2, 3 show that the SimBoost, DeepDTA, andWideDTA
methods cannot handle the new drug and target settings
(indicated by the missing data). From the methods that provide
performances for all settings, we observe better performances
using S1 setting (random pairs) compared to both S2 and S3
settings. The better performances acquired using S1 setting is
expected for all methods and all datasets since it is the most
informative. Better performances were also observed for S3
setting as compared to S2 setting, suggesting that the prediction
of DTBA for new targets is more straightforward than the
prediction of DTBA for new drugs (Pahikkala et al., 2015).
However, we observe better performances for S2 setting than
S3 setting when the number of targets is much lower than the
number of drugs, as is the case for theMetz and ToxCast datasets.

From Tables 2, 3, we further conclude that overall, the DL-
based methods outperform AI/ML-based methods in predicting
DTBA. However, SimBoost error rate is smaller than other
methods for specific datasets indicating that there are some
characteristics of SimBoost and KronRLS that can improve
prediction performance. In Table 4, we provide a comparison
of all methods to summarize the characteristics of the methods

shedding light on the differences that may be contributing to
improved performance. The two AI/ML methods are similarity-
based (SimBoost combines similarity and features), while the
DL methods are features-based. These features were obtained
automatically from the raw data using DL without doing any
handcrafted feature engineering as in ML. Thus, developing DL-
based methods for DTBA prediction eliminates the limitation
of the ML methods associated with manual alteration of data.
Different representations for both drugs and targets also present
advantages discussed separately with each method above, and
we provide recommendations concerning the use of different
representation in the last section below.

The comparison table also shows all DL-based methods
reported up to now, used CNN to learn the features for both
drugs and targets. The robust feature of CNN is its ability
to capture local dependencies for both sequence and structure
data. CNN is additionally computationally efficient since it
uses unique convolution and pooling operations and performs
parameter sharing (Defferrard et al., 2016). All DL methods use
the same activation function, ReLU, which is themost widely used
activation function for many reasons (Gupta, 2017). First, ReLU
is non-linear function so it can easily backpropagate an error.
Second, ReLU can have multiple layers of neurons, but it does not
activate all these neurons at the same time. The last advantage of
ReLU function is that it converts negative values of the input to
zero values, and the neurons are not activated, so the network will
be sparse which means easy and efficient of computation.

We can also observe from Table 4, that KronRLS, SimBoost,
and PADME methods are suitable for both classification and
regression problems. It is better to generalize the model to work
on more than one application by making it suitable for both
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TABLE 3 | CI across multiple datasets of all baseline methods.

Dataset Setting Method/reference of results

KronRLS SimBoost DeepDTA PADME-ECFP PADME-GC WideDTA

Davis

(Kd )

s1 0.8830

0.8710**

0.87578*

0.8840

0.872**

0.8871*

0.8780 0.90388 0.90389 0.8860

s2 0.7480

0.69245*

N/A N/A 0.71630 0.72001 N/A

s3 0.8610

0.80751*

N/A N/A 0.85503 0.84483 N/A

Metz

(Ki )

s1 0.7930

0.748522*

0.8510

0.79439*

N/A 0.80756 0.79400 N/A

s2 0.7360

0.70916*

N/A N/A 0.74240 0.74104 N/A

s3 0.6660

0.647*

N/A N/A 0.69830 0.70796 N/A

KIBA s1 0.782**

0.7831*

0.8470

0.836**

0.84046*

0.8630 0.85745 0.86370 0.8750

s2 0.6890* N/A N/A 0.77310 0.75450 N/A

s3 0.7122* N/A N/A 0.77167 0.76790 N/A

ToxCast s1 N/A N/A N/A 0.79655 0.79871 N/A

s2 N/A N/A N/A 0.72057 0.7286 N/A

s3 N/A N/A N/A 0.68481 0.69050 N/A

The star symbols denote results that are not self-reported, i.e., the single star * indicates that PADME reported the other methods results, and the double stars ** indicates that DeepDTA

reported the other methods results. Missing data are indicated with N/A. The best values for each setting are indicated in bold font.

DTBA and DTIs predictions using the appropriate benchmark
datasets and correct evaluation metrics.

LIMITATIONS OF AI/ML/DL-BASED
METHODS

AI/ML/DL-based computational models developed for
DTBA prediction show promising results. However, all
such models suffer from limitations that if avoided, may
improve performance.

AI/ML-Based Methods
Similarity-based approaches used by these methods usually do
not take into considerations the heterogeneous information
defined in the relationship network. Avoiding this limitation
requires integrating a feature-based approaches with the
similarity-based approaches. Another limitation is that
AI/ML-based models require extensive training, and each
application requires specific training for the application-specific
purpose. Moreover, shallow network-based methods with
sequence data usually do not learn well some of the crucial
features (such as distance correlation) that may be needed for
accurate prediction.

DL-Based Methods
The use of these methods is currently trending despite DL
models creating “black boxes” that are difficult to interpret due
to the learning features integrated into the data for modeling.

Limitations faced with the use of DL models involve the
requirement of the large amount of high-quality data, which are
frequently kept private and is very expensive to generate. Not
using a sufficiently large volume of high-quality data affects the
reliability and performance of DL models. The other limitation
is that the engineered features (generated automatically), are
not intuitive, and the DL-based models developed lack rational
interpretation of the biological/chemical aspects of the problem
in question.

DISCUSSION

Here we attempt to extract useful insights from the
characteristics of the methods developed for DTBA prediction,
suggest possible future avenues to improve predictions, and
highlight the existing problems that need a solution. Our
recommendations are grouped under several sub-sections
to focus on different aspects of improvements of prediction
performance of DTBA.

Using More Comprehensive Information
Integrating information from different sources of drug and
target data can improve the prediction performance. These
sources can include but are not limited to drug side-
effects, drug-disease association, and drug interactions. For
targets, examples of other sources of information are protein-
protein interaction, protein-diseases association, and genotype-
phenotype association. To the best of our knowledge, no
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TABLE 4 | Baseline methods features.

Characteristics Methods

1. KronRLS 2. SimBoost 3. DeepDTA 4. WideDTA 5. PADME

Datasets Davis, Metz Davis, Metz, Kiba Davis, Kiba Davis, Kiba Davis, Metz, Kiba,

ToxCast

ML/DL AI/ML AI/ML DL DL DL

Similarity (OR) Feature

based method

Similarity-based Similarity and

feature based

Feature-based Feature-based Feature-based

Drug representation (or

features)

PubChem Sim

Chemical kernels

PubChem Sim +

statistical and

network features

SMILES SMILES + LMCS SMILES / ECFP

Protein representation (or

features)

SW sim score,

Normalized SW

sim score

SW sim score aaseq aaseq + PDM PSC

NN type for features learning CNN two 1D-CNN GCNN

NN type for prediction 3 FC layers FC layer Feedforward NN

Regressor/OR/activation

function

KronRLS model Gradient boosting

model

ReLU ReLU ReLU

Validation setting S1, S2, S3 S1 S1 S1 S1, S2, S3

Cross Validation Repeated 10-folds

CV, Nested CV,

LDO-CV, LTO-CV

10 times 5 folds

CV, LDO-CV,

LTO-CV

5 folds CV 6 folds CV 5 folds CV,

LDO-CV, LTO-CV

Performance metrics CI, MSE CI, RMSE CI, MSE, PCC CI, MSE, PCC CI, RMSE, R2

Classification/Regression Both Both Regression Regression Both

Year 2014 2017 2018 2019 2018

ML, Machine Learning; DL, Deep Learning; Sim, Similarity; aaseq, amino-acid sequence; SPS, structural property sequence; PSC, protein sequence composition; PDM, protein domain

and motif; ECFP, extended-connectivity fingerprint; LMCS, ligand maximum common substructure; KronRLS, Kronecker Regularized Least Square; CNN, convolutional neural network;

GCNN, graph convolution neural network; RNN, recurrent neural network; FC, fully connected; ReLU, rectified linear unit; CV, cross validation; LDO, leave one drug out; LTO, leave one

target out; MSE, Mean Square Error; RMSE, root square of mean square error; CI, concordance index; PCC, Pearson correlation coefficient.

method uses such information for DTBA prediction except
KronRLS, which integrates some other sources of information
in the form of similarity matrices. However, there are different
DTIs prediction works that integrate different sources of
information, which help in boosting the prediction performance.
For example, some studies predicted DTIs by integrating drug
side-effects information (Campillos et al., 2008; Mizutani et al.,
2012), or drug-diseases interaction (Wang W. et al., 2014;
Luo et al., 2017). Other studies used public gene expression
data (Sirota et al., 2011), gene ontology (Tao et al., 2015),
transcriptional response data (Iorio et al., 2010), or have
integrated several of these resources (Alshahrani and Hoehndorf,
2018). DTBA prediction methods can benefit from these
previous studies through integration of these different sources
of information.

Input Data Representation
Different representations can be used for both drugs and
targets (see Table 4). For example, SMILES, max common
substructure, and different kinds of fingerprints can be used
to represent drugs. These representations significantly affect
the prediction performance. Thus, it is essential to start
with appropriate representations by deciding which features
from these representations are intended to obtain. Each
representation has its own advantages as discussed above when
comparing methods.

Similarity Calculation, Selection, and
Information Fusion
There are several types of similarities that can be calculated
using different sources of information, such as the multiple drug-
drug similarities based on the chemical structures or based on
side-effects. There are also other drug-drug similarities based
on specific SMILES embeddings. The same goes for the target-
target similarities, which can use other sources of information
such as amino-acid sequence, nucleotide sequences, or protein-
protein interaction network. Choosing suitable drug-drug and
target-target similarities also contribute significantly to the
prediction performance under different settings (either for DTBA
or DTI prediction). If all similarities are combined, it will lead
to introducing some noise as well as the most informative
similarities will be affected by the less informative similarities.
Thus, it is essential to apply a similarity selectionmethod in order
to select the most informative and robust subset of similarities
among all similarities as introduced in Olayan et al. (2018).
Integrating multiple similarities (i.e., a subset of similarities)
has the advantage of complementary information for different
similarities as well as avoiding dealing with a different scale.
One could use the Similarity Network Fusion (SNF) (Wang
B. et al., 2014) algorithm for data integration in a non-linear
fashion to predict DTBA with multiple similarities. There are
other integration algorithms or functions such as SUM, AVG, and
MAX functions. Also, multi-view graph autoencoder algorithm
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(GAE) (Baskaran and Panchavarnam, 2019) proved its efficiency
in integrating drug similarities (Ma T. et al., 2018).

Integration of Computational Methods
Future in silico methods for DTBA prediction will benefit from
the integration of diverse methods and approaches. Methods can
be developed using different techniques, such as network analysis
(Zong et al., 2019), matrix factorization (Ezzat et al., 2017),
graph embeddings (Crichton et al., 2018), and more. Feature-
based models and similarity-based models can be combined as
well, as has been done in the SimBoost method. Furthermore,
AI/ML/DL methods can be combined in different ways, (1) by
combining some essential hand-crafted features from AI/ML and
auto-generated features from DL, (2) using AI/ML for feature
engineering and DL for prediction.

Network Analysis and Graph Mining
Techniques
Since graph mining and graph embedding approaches are very
successful in the prediction of DTIs (Luo et al., 2017; Olayan
et al., 2018), we can apply some of these techniques to DTBA.
To apply this technique to DTBA we can formulate a weighted
undirected heterogeneous graph G(V, E), where V is the set
of vertices (i.e., drugs and targets), and E is the set of edges
that represent the binding strength values. Multiple target-target
similarities and drug-drug similarities can be integrated into
the DTBA graph to construct a complete interaction network.
After that, graph mining techniques such as Daspfind (Ba-Alawi
et al., 2016) that calculate simple path scores between drug and
target can be applied. Also, graph embedding techniques such as
DeepWalk (Perozzi et al., 2014), node2vec (Grover and Leskovec,
2016), metapath2vec (Dong et al., 2017; Zhu et al., 2018), or
Line (Tang et al., 2015) can be applied to the DTBA graph to
obtain useful features for prediction. There are different graph
embedding techniques that can be used for features learning and
representation as summarized by Cai et al. (2018) and Goyal and
Ferrara (2018a,b). To the best of our knowledge no published
DTBA prediction method formulate the problem as a weighted
graph and apply such techniques.

Deep Learning
For the computational prediction of DTIs and DTBA, DL
and features learning (i.e., embedding) are currently the most
popular techniques since they are efficient in generating features
and addressing scalability for large-scale data. DL techniques
are capable of learning features of the drugs, targets, and the
interaction network. Furthermore, when using heterogeneous
information sources for drugs and targets, DL techniques can
be applied to obtain additional useful features. DL techniques
including different types of NN can extract useful features
not just from the sequence-based representation of drug (i.e.,
SMILES) and protein (i.e., amino acid) as done by Öztürk et al.
(2018, 2019), but also from the graph-based representation. For
example, CNN, or GCNN can be applied on SMILES (that
are considered graphs) to capture the structural information
of the molecules (i.e., drugs). It is highly recommended to

attempt to apply DL and feature learning techniques on graph-
based techniques as well as a heterogeneous graph that combine
different information about drugs and targets to enhance
the DTBA predictive model. Several steps should be applied
to develop a robust DL model: starting with selecting the
suitable data representation, deciding about NN type and DL
structures, then choosing the optimal hyperparameter set. The
decisive advantage of the DL techniques worth mentioning is to
implement the running of code on the Graphics Processing Unit
(GPU). In terms of time complexity, DL-based methods that run
on GPUs, drastically decrease computational time compared to
running the method on a CPU. Guidelines to accelerate drug
discovery applications using GPU as well as a comparison of
recent GPU and CPU implementations are provided in Gawehn
et al. (2018).

Multi-Output Regression Methods
Given that DTBA can be measured using several output
properties (e.g., IC50 and Ki,), it is a laborious task to develop
one model to predict each property individually. Therefore, it
is much more efficient to generate a model that can predict
several output properties, such asmulti-output regressionmodels
(also known as multi-target regression), which aims at predicting
several continuous values (Borchani et al., 2015). Multi-output
regression differs from multi-label classification, which aims
at predicting several binary labels (e.g., positive or negative;
Gibaja and Ventura, 2014). Multi-output regression methods
take into consideration correlations between output properties
in addition to input conditions (e.g. organism and cell line).
Borchani et al. (2015) recently wrote a review that covers
more in-depth details regarding the multi-output regression
methods. Moreover, Mei and Zhang (2019) demonstrated how
multi-label classification methods could be applied for DTI
prediction. In this study, each drug is considered a class label,
and target genes are considered input data for training. To the
best of our knowledge, multi-output regression methods have
not been applied for DTBA prediction. The main challenge
in applying multi-output regression to DTBA is missing data.
Output properties (and sometimes input conditions) may not be
available for all drug-target pairs in the dataset. However, several
multi-label classification methods have been applied for handling
missing data in multi-output datasets (Wu et al., 2014; Xu et al.,
2014; Yu et al., 2014; Jain et al., 2016).

Validation Settings
Overall, the methods further show that three settings for the CV
are used to evaluate the prediction model. However, there are
still many studies that only use the typical CV setting of random
pair for evaluation (S1 setting), which leads to overoptimistic
prediction results. Thus, models should be evaluated using all
three settings. Models can also be evaluated using (a rarely
used) fourth setting wherein both the drug and target are new
(Pahikkala et al., 2015; Cichonska et al., 2017), and it is even
better to evaluate the model under this setting as well, to see
how good it is in predicting DTI when both the drug and the
target are new. Evaluating the model under the four settings will
avoid over-optimistic results. The CV is essential for adjusting
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the hyperparameters for both AI/ML and DL models. It is also
essential to handle the overfitting problem. Overfitting happens
when a model learns many details, including noise from the
training data and fits the training data very well but cannot fit
the test data well (Domingos, 2012). Overfitting can be evaluated
by assessing how good the model is fitted to training data using
some strategies that were recommended in Scior et al. (2009)
and Raies and Bajic (2016) using two statistical parameters: S,
standard error of estimation (Cronin and Schultz, 2003), and R2,
coefficient of multiple determination (Gramatica, 2013), which
will not be discussed in detail in this review.

Evaluation Metrics
The choice of the suitable measure to evaluate DTBA prediction
model is very important. Since DTBA prediction is a regression
model, the evaluation metrics commonly used is CI and RMSE,
as explained above. Nonetheless, other metrics (such as R and
PCC) are partially used in assessment of DTBA prediction
models. Using several metrics is essential as every metric carries
disadvantages, which forces researchers to consider multiple
evaluation metrics (Bajić, 2000) in performance evaluation to
assess the model effectiveness in an accurate manner and from
different perspectives. For example, MSE and RMSE are more
sensitive to outliers (Chai and Draxler, 2014). RMSE is not a
good indicator of average model performance and is a misleading
indicator of average error. Thus, Mean Absolute Error (MAE)
would be a better metric, as suggested by Willmott et al.
(2009). So, it is better to have multiple evaluation metrics to get
benefit from each one’s strengths and evaluate the model from a
different perspective.

CONCLUSION

Both DTIs and DTBA predictions play a crucial role in the early
stages of drug development and drug repurposing. However, it
is more meaningful and informative to predict DTBA rather
than predicting just on/off interaction between drug and target.

An overview of the computational methods developed for
DTBA prediction are summarized, but we specifically focused
with more details on the recent AI/ML/DL-based methods
developed to predict DTBA without the limitations imposed
by 3D structural data. The available datasets for DTBA are
summarized, and the benchmark datasets are discussed with
details including definitions, sources, and statistics. For future
research, computational prediction of DTBA remains an open
problem. There is a lot of space to improve the existing
computational methods from different angles as discussed in the
recommendations. As the data is growing so fast, it is important
to keep updating the prediction and updating evaluation datasets
as well. After updating the data, it is necessary to customize,
refine, and scale the current DTBA models, and to develop more
efficient models as well.
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Malaria is a tropical infectious disease that affects over 219 million people worldwide.

Due to the constant emergence of parasitic resistance to the current antimalarial

drugs, the discovery of new antimalarial drugs is a global health priority. Multi-target

drug discovery is a promising and innovative strategy for drug discovery and it is

currently regarded as one of the best strategies to face drug resistance. Aiming to

identify new multi-target antimalarial drug candidates, we developed an integrative

computational approach to select multi-kinase inhibitors for Plasmodium falciparum

calcium-dependent protein kinases 1 and 4 (CDPK1 and CDPK4) and protein kinase

6 (PK6). For this purpose, we developed and validated shape-based and machine

learning models to prioritize compounds for experimental evaluation. Then, we applied

the best models for virtual screening of a large commercial database of drug-like

molecules. Ten computational hits were experimentally evaluated against asexual blood

stages of both sensitive and multi-drug resistant P. falciparum strains. Among them,

LabMol-171, LabMol-172, and LabMol-181 showed potent antiplasmodial activity at

nanomolar concentrations (EC50 ≤ 700 nM) and selectivity indices >15 folds. In addition,

LabMol-171 and LabMol-181 showed good in vitro inhibition of P. berghei ookinete

formation and therefore represent promising transmission-blocking scaffolds. Finally,

docking studies with protein kinases CDPK1, CDPK4, and PK6 showed structural

insights for further hit-to-lead optimization studies.

Keywords: malaria, shape-based, machine learning, virtual screening, Plasmodium falciparum, multi-target

INTRODUCTION

Malaria is a serious infectious disease that affects 219 million people worldwide and kills
over 435,000 patients annually, especially pregnant women and children in Sub-Saharan Africa
(WHO, 2018). The disease is transmitted to humans through the bites of infected female
Anopheles mosquitoes and caused by Plasmodium genus parasites (Ashley et al., 2018). Among
them, P. falciparum is the most devastating species responsible for severe form of malaria and
deaths (WHO, 2017).
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Current control and eradication demands a combination
of drugs with different mechanisms of action. Despite of
compelling investment for controlling and eliminating this
infectious disease, resistant parasite strains have been reported
to all major antimalarial drugs (Wu et al., 1996; Triglia
et al., 1998; Srivastava et al., 1999; Wellems and Plowe, 2001),
including front-line artemisinin-based combination therapies
(Rogers et al., 2009; Witkowski et al., 2013; Ashley et al., 2014).
All these aspects highlight the urgent need for the discovery
of new antimalarial drugs by identifying molecules with novel
mechanisms of action and efficient against resistant parasite
strains (Burrows et al., 2017).

The complete genome sequencing of P. falciparum (Gardner
et al., 2002) has provided new and valuable information on its
biological pathways, identifying potentially relevant biological
targets for therapeutic intervention. In this context, protein
kinases have been investigated because of their importance in
several essential signaling pathways, e.g., homeostasis, apoptosis
and cell division (Lucet et al., 2012; Bullard et al., 2013).
Kinases catalyze the transfer of phosphate groups from ATP
to specific substrates. These enzymes share a high degree of
sequence and structural homology between the ATP binding
sites, making them potential targets to be grouped and inhibited
simultaneously by a single molecule. This mechanism, known
as multi-kinase inhibition (MKI), provides a synergistic effect
responsible for increasing the effectiveness of the kinase
inhibitors, and consequently preventing the emergence of
parasite resistance (Garuti et al., 2015). On the other hand,
promiscuity is the main challenge in parasitic MKI design, which
requires selective inhibitors unable to interact with host protein
(Davies et al., 2000; Bain et al., 2003, 2007). However, the
vast phylogenetic distance between Apicomplexans and humans
(Ward et al., 2004) makes possible the development of multi-
target and selective antimalarial candidates.

Calcium-Dependent Protein Kinases (CDPKs), a kinase
family of plants and some alveolates, absent in metazoans, have
been considered as one of the main effectors of calcium signaling,
demonstrating a pronounced importance in apicomplexans,
controlling a range of events in the parasite life cycle (Nagamune
et al., 2008). PfCDPK1 is expressed in all Plasmodium life
stages (Sebastian et al., 2012), being essential for the sexual
stage of the parasite (Jebiwott et al., 2013; Bansal et al., 2018).
Meanwhile, PfCDPK4 regulates cell cycle progression in the
male gametocyte (Billker et al., 2004) and, together with Protein
Kinase G, is activated during hepatocytes invasion by sporozoite
(Govindasamy et al., 2016). Protein Kinase 6 of P. falciparum
(PfPK6), classified as Cyclin-Dependent Kinase (Chakrabarti
et al., 1993), appears to be located in the cytoplasm and nucleus,
mainly expressed in trophozoite, schizonts and segmenters stages
(Bracchi-Ricard et al., 2000). The low identity between PfPK6

Abbreviations:MKI, multi-kinase inhibitors; CDPK1, calcium-dependent protein

kinases 1; CDPK4, calcium-dependent protein kinases 4; PK6, protein kinase 6;

ML, machine learning; ROC, receiver operating characteristic curve; AUC, area

under the ROC curve, BEDROC, Boltzmann-enhanced discrimination of ROC;

EF, enrichment factor; SE, sensitivity; SP, specificity; VS, virtual screening; CCR,

correct classification rate; PPV, positive predictive value; NPV, negative predictive

value; and SI, selectivity index.

and human Cyclin-Dependent Kinase 2 brings out PK6 as a
potential antimalarial target. Its numerous variations in the active
site amino acids can be exploited to design selective plasmodial
inhibitors (Waters and Geyer, 2003). Therefore, the structural
dissimilarities between human kinases and Plasmodium-specific
kinases, such as CDPK1 and CDPK4 and PK6, turn these
enzymes attractive targets for development of new multi-target
antimalarial therapies (Lucet et al., 2012; Crowther et al.,
2016). Recently, Crowther and colleagues (Crowther et al.,
2016) reported an experimental screening of ∼14,000 cell-
active compounds against PfCDPK1 and PfCDPK4, mitogen-
associated protein kinase 2, PK6, and protein kinase 7. They
found potent inhibitors (IC50 <1µM) for multiple kinases
simultaneously, with low cytotoxicity to human, bypassing the
challenging of MKI promiscuity. Thus, the availability of the
whole dataset of compounds with data for kinase inhibition
allowed us to generate and validate robust and predictive shape-
based models, that were integrated with machine learning (ML)
models for a virtual screening workflow aiming to prioritize
compounds to be experimentally evaluated in vitro against
asexual blood stages of both sensitive and multi-drug resistant
P. falciparum, and against sexual stages of P. berghei, as well as in
mammalian cells. This integrative analysis allowed us to identify
new potential and selective antiplasmodial hits.

MATERIALS AND METHODS

The overall study design is shown in Figure 1. Briefly, we
followed the successive steps: (I) dataset collection, curation, and
integration of compounds with activity against CDPK1, CDPK4,
PK6, and asexual-blood stages of P. falciparum; (II) development
of shape-based models for CDPK1, CDPK4, and PK6, and
machine learning models for P. falciparum; (III) virtual screening
of ChemBridge database (∼1 million compounds); and (IV)
experimental validation of prioritized compounds against asexual
blood stage of P. falciparum (sensitive and multi-drug resistant
strains), sexual blood stages of P. berghei and cytotoxicity in
mammalian cells.

Computational
The whole project was built envisioning best practices of ML
modeling (Tropsha, 2010; Cherkasov et al., 2014).

Data Integration and Curation
In this study, five datasets extracted from the PubChem Bioassay
database (Wang et al., 2012) were explored to build shape-based
models and ML models. All datasets were carefully standardized
according to the protocol described by Fourches et al. (2010,
2015, 2016). Thus, explicit hydrogens were added; counter
ions, inorganic salts, polymers, mixtures, and organometallic
compounds were removed; and specific chemotypes (aromatic,
nitro groups and others) were normalized using ChemAxon
Standardizer (v. 6.1, ChemAxon, Budapest, Hungary, www.
chemaxon.com). Then, a go/no-go criteria of 1µM for the
progression of P. falciparum kinase inhibitors and antiplasmodial
hits (Katsuno et al., 2015) was used as activity threshold to
distinguish active vs. inactive compounds. Furthermore, we
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FIGURE 1 | Overall pipeline designed for the identification of new antiplasmodial compounds.

performed the analysis and exclusion of duplicates as follows: (a)
if the reported outcomes of the duplicates were the same, one
entry was retained in the dataset and the other excluded, and
(b) if duplicates presented discordance in biological activity, both
entries were excluded from dataset. A brief description of the
datasets is presented below.

• CDPK1: 181 active compounds with IC50 ≤1µM and 13,270
inactive compounds with IC50 >1µM (National Center for
Biotechnology Information, 2016a);

• CDPK4: 55 active compounds with IC50 ≤1µM and 13,396
inactive compounds with IC50 >1µM (National Center for
Biotechnology Information, 2016b);

• PK6: 65 active compounds with IC50 ≤1µM and 13,386
inactive compounds with IC50 >1µM (National Center for
Biotechnology Information, 2016c);

• P. falciparum 3D7 (drug-susceptible) strain: 3,497 active
compounds with EC50 ≤1µM and 4,376 inactive compounds
with EC50 >1µM (National Center for Biotechnology
Information, 2009a, 2010a, 2011a, 2013);

• P. falciparum W2 (drug-resistant) strain: 3,637 active
compounds with EC50 ≤1µM and 3,766 inactive compounds
with EC50 >1µM (National Center for Biotechnology
Information, 2009b, 2010b, 2011b, 2012).

The inhibitory activity against each kinase was considered
proportional to ATP consumed, as determined from
measurements of residual [ATP] with the luciferase-based
assay. So, all active compounds used to build shape-based models
are inhibitors of ATP binding site (Crowther et al., 2016). All

datasets generated for this study are included in the manuscript
and the Supplementary Files.

Shape-Based Models
The shape-based models were built to distinguish active vs.
inactive compounds for P. falciparum CDPK1, CDPK4, and
PK6. Initially, the curated datasets were balanced by linear
under-sampling method obeying a proportion of 1:36, aiming
to reproduce the chemical space of an HTS, which contain
more non-inhibitors. Then, 200 conformations were generated
for each compound using OMEGA v.2.5.1.4 software (OMEGA
2.5.1.4: OpenEye Scientific Software, Santa Fe, NM. http://www.
eyesopen.com) (Hawkins et al., 2010), while the protonation
states at neutral pH and AM1-BCC charges (Jakalian et al.,
2002) were estimated using QUACPAC v.1.7.0.2 (QUACPAC
1.7.0.2: OpenEye Scientific Software, Santa Fe, NM. http://
www.eyesopen.com). To create the shape-based models, the
most potent compounds against each kinase (see details in
Table S1) were loaded into ROCS software v.3.2.2.2 (ROCS
3.2.2.2: OpenEye Scientific Software, Santa Fe, NM. http://
www.eyesopen.com) (Hawkins et al., 2007) and used as query
compound. Then, the output conformations of active and
inactive compounds were aligned by a solid-body optimization
process that maximizes the overlap volume with queries, and
ranked according to Reference Tversky Combo scoring function
(Hawkins et al., 2007). Finally, the predictive performance of the
shape-based models was assessed using the following metrics:
Receiver Operating Characteristic (ROC) curve, Area Under
the ROC Curve (AUC), Boltzmann-Enhanced Discrimination of
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ROC (BEDROC) and Enrichment Factor (EF). These statistic
metrics are calculated by the following equations:

AUC =

∑

i

[(SEi+1) (SPi+1 − SPi )] (1)

BEDROC = RIE ×

Rasinh
(

α
2

)

cosh
(

α
2

)

− cosh
(

α
2 − αRa

)

+

1

1− eα(1−Ra)
≈

RIE

α

+

1

1− eα
, if αRa ≪ 1 and α 6= 0 (2)

EFx% =

Hitsx%
selected

/Nx%
selected

Hitstotal/Ntotal
(3)

Here, SE denotes sensitivity and SP specificity, RIE robust initial
enhancement, Ra ratio of actives in the list.

The ROC curve provides a graphical representation of a
predictor’s behavior by plotting the true (Braga and Andrade,
2013; Neves et al., 2016) positive rate [sensitivity (SE)]
against the 1 minus false positive rate [1—Specificity (SP)].
See SE e SP equations in ML section. The ideal predictive
model would yield a point in the upper left corner of
the ROC plot, representing 100% SE and SP. The AUC is
the probability that a model will rank an active compound
higher than a randomly chosen inactive. The EF shows
how many times the shape-based models retrieved active
compounds when compared with random selection (Braga and
Andrade, 2013). Lastly, BEDROC uses an exponential decay
function to favor models that pile up active compounds near
the top of the rank-ordered list from the virtual screening
(Huang and Wong, 2016).

Machine Learning Models
Binary ML models were built to distinguish active vs.
inactive compounds for P. falciparum. The curated datasets
for P. falciparum 3D7 and W2 strains were balanced in a
proportion of 1 active:1 inactive. For this, the original chemical
space of each library was maintained through linear under-
sampling method based on k-nearest neighbors distances of
each inactive to all active. ML models were built using an
in-house workflow, implemented in KNIME (Berthold et al.,
2009) including many modules as multiple machine learning
methods, performance metrics, applicability domain, and Y-
randomization test. Five molecular fingerprints implemented in
RDKit (v.2.4.0) (http://www.rdkit.org) were used: (i) Morgan
and (ii) FeatMorgan fingerprints, generated using radius of
2 and bit vector of 1,024 bits (Morgan, 1965; Rogers and
Hahn, 2010); (iii) Molecular ACCess System (MACCS) structural
keys (Dill et al., 1981; Anderson, 1984; Durant et al., 2002);
(iv) AtomPair fingerprint with bit vector of 1,024 bits and
path length ranging between 1 and 10 (Carhart et al., 1985);
and (v) Avalon fingerprint with bit vector of 1,024 bits
(Gedeck et al., 2006). The Random Forest method was the
chosen algorithm to generate the models and to produce the
final prediction based on combination of each decision tree
(Breiman, 2001; Svetnik et al., 2003).

Moreover, for ML models’ robustness estimation, 5-fold
external cross-validation was performed. In this method, each
dataset is randomly and equally divided into five subsets. Then,
one of them is outwardly maintained as external set and the
remaining four establish the modeling set. This procedure is
repeated five times, allowing each subset to be used once as
external validation set. The performance and robustness of ML
models were assessed through statistic metrics such as: sensitivity
(SE), specificity (SP), Correct Classification Rate (CCR), Positive
Predictive Value (PPV), and Negative Predictive Value (NPV).
These statistic metrics are calculated by the following equations:

SE =

TP

TP + FN
(4)

SP =

TN

TN + FP
(5)

CCR =

SE+ SP

2
(6)

PPV =

TP

TP + FP
(7)

NPV =

TN

TN + FN
(8)

Here, TP and TN correspond respectively to the number of true
positives and true negatives. FP and FN represent, respectively,
the number of false positives and false negatives.

In addition, 10 rounds of Y-randomization were conducted to
evaluate whether the correlation between structure and activity
occurred by chance. To measure the reliability of developed ML
models, the Applicability Domain (AD) was estimated using
Euclidean distances between each external compound, obtained
by 5-fold cross-validation procedure, and their respective nearest
neighbor in modeling set. These distances were related to the
pre-defined AD threshold level. Toward a pre-defined distance
threshold, the distance superior to this threshold were considered
unreliable (Zhang et al., 2006).

In this study, we defined AD as:

DT = y+ Zσ (9)

Here, DT is a distance threshold, y is the average Euclidean
distance of the k nearest neighbors of each compound of the
training set, σ represents the standard deviation of the Euclidean
distances and Z is an arbitrary parameter to control the level of
significance. We set the default value of 0.5 for Z.

Consensus modeling was done combining the best MLmodels
of each fingerprint type with Random Forest machine learning
method. This approach was adopted with the aim to capture
the different chemical information provided by each fingerprint,
enriching the prediction during virtual screening and minimize
individual model’s error. Each individual model was applied to
predict the activity of selected compounds after passing through
shape-based screening filter. For this purpose, five models for
3D7 strain and five models for W2 strain were employed in
separate runs. This way, when a model predicted a compound as
active, a value of 0.2 was given, thus the final value of probability
to be active was ranging from 0 to 1. Only compounds inside AD

Frontiers in Chemistry | www.frontiersin.org 4 November 2019 | Volume 7 | Article 773200

http://www.rdkit.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Lima et al. Multi-Kinase Approach for Antiplasmodial Hits

and predicted as active at least in three models (probability≥ 0.6)
of both strains were picked up.

Virtual Screening
Developed shape-based andMLmodels were used for VS of∼1.1
million compounds available on ChemBridge database (http://
www.chembridge.com/) aiming to identify new potential kinases
inhibitors with antiplasmodial activity. Prior to screening,
the database was filtered using Veber (Veber et al., 2002)
and Lipinski’s rules (Lipinski et al., 2001) to prioritize drug-
like molecules, using FILTER (OMEGA 2.5.1.4: OpenEye
Scientific Software, Santa Fe, NM. http://www.eyesopen.com).
Subsequently, molecules were filtered by shape-based models
developed for CDPK1, CDPK4, and PK6. Then, the common
compounds between the top 10% of each kinase list had
their antiplasmodial activity predicted by consensus ML models
developed for 3D7 and W2 strains. The compounds prediction
were recognized if it were found within the AD of more than
50% of all models used in consensus prediction. Finally, the
selected virtual hits were purchased and submitted to in vitro
experimental evaluation.

Homology Modeling
The amino acid sequence of P. falciparum CDPK1 and PK6 were
not available on the Protein Data Bank at the time this work
was conducted. Consequently, homology models were built by
comparing the P. falciparum primary sequences with sequences
of homolog proteins (templates) whose 3D structures were
publicly available. Initially, the sequences of P. falciparum kinases
were extracted from the UniProt database (Apweiler, 2004) and
used as target for homology modeling in the SWISS-MODEL
webserver (Bordoli et al., 2009; Biasini et al., 2014). Then,
the tailored models were structurally optimized in GalaxyWEB
server (Ko et al., 2012). Finally, overall stereochemical and
geometrical quality of refined models were investigated using
MolProbity server (Chen et al., 2010).

Docking
Chemical structures of antiplasmodial hits were imported to
Maestro v. 10.7.015 (Schrödinger, LLC, New York, NY, 2016)
and prepared using LigPrep (Schrödinger, LLC). In parallel, the
3D structures of P. falciparum CDPK1, CDPK4, and PK6 were
prepared using the Protein Preparation Wizard available on
Maestro workspace (Schrödinger LLC) as follows: bond orders
and formal charges were adjusted; hydrogen atoms were added
to the proteins; and protonation state of polar amino acids
were predicted by PROPKA (Schrödinger, LLC) (Søndergaard
et al., 2011) at neutral pHs. Before docking studies, grids were
established to each protein ruled by a box space of 10 × 10 ×

10 Å3, and fixing the box on the geometrical center of ATP-
binding site using the receptor grid generation panel of the Glide
(Schrödinger, LLC) (Friesner et al., 2004). Finally, molecular
docking calculations were carried out using Glide Extra Precision
(XP) mode and constraints into hinge region. The docking poses
of each virtual hit were submitted to Prime (Schrödinger, LLC)
for rescoring using the Molecular Mechanics/Generalized Born
Surface Area (MMGBSA) approach with default conditions.

Experimental
Plasmodium Culture
Parasite cultures (3D7 and Dd2 strains) were maintained in O+

human erythrocytes in RPMI 1640 medium supplemented with
0.05 mg/mL gentamycin, 38.4mM HEPES, 0.2% sodium
bicarbonate, and 10% O+ human serum as described
before (Trager and Jensen, 1976). To achieve a synchronic
culture in the ring stage, two consecutive treatments at
48 h intervals with a 5% solution of D-sorbitol were done
(Lambros and Vanderberg, 1979).

Determination of Plasmodium Growth Inhibition by

SYBR Green I
Synchronized ring-stage (> 90%) infected erythrocytes were
dispensed in duplicate into 96-well plates (0.5% parasitemia, 1%
hematocrit) and incubated in dose response format with test
compounds for 72 h. Chloroquine was used as an antimalarial
control and uninfected erythrocytes as negative control. Then,
in vitro susceptibility of parasite to tested drug was measured
by SYBR Green (Hartwig et al., 2013). Following incubation,
the plates were frozen and thawed, and 100 µL of the culture
were transferred to a new black 96-well plate containing 100
µL of lysis buffer (20mM Tris, 5mM EDTA, 0.008% wt/vol
saponin, 0.08% vol/vol Triton X-100, and 0.4 µL/mL of SYBR
Green). After 1 h, the fluorescence was measured at 490 nm
excitation and 540 nm emission (CLARIOstar, Labtech BMG).
The results were compared with control cultures with no drugs.
The EC50 was calculated by plotting the Log doses vs. Inhibition
(expressed as a percentage relative to the control) in Prism 6
(GraphPad Software Inc.). Each test was performed at least three
independent experiments.

Cytotoxicity Assay
The cytotoxicity was evaluated using two different lineages of
mammalian cells: fibroblast-like cell lines derived from monkey
kidney tissue (COS7 cells) and human hepatoma cell line
(HEPG2). The cells were grown in 75 cm2 flasks containing
DMEM medium supplemented with 10% fetal bovine serum
and 0.05 mg/mL gentamicin under a 5% CO2 atmosphere at
37◦C. After harvest of cells, 100 µL aliquots were distributed
in 96-well plates (1 x 104 cells per well) and incubated until
adhesion (∼12 h). The compounds at various concentrations
(100−0.048µM) were placed in the wells in duplicate and
incubated for 72 h. The cell viability analysis were done
by the MMT reduction method (3-[4,5-dimethyl-thiazol-2-yl]-
2,5-diphenyltetrazolium chloride), after the incubation period
(Mosmann, 1983). The optical density was determined at
570 nm (CLARIOstar, Labtech BMG) and the 50% cytotoxicity
concentrations (CC50) were expressed as the percent viability
relative to the control (untreated cells). The selectivity index of
the compounds was determined through the ratio of the CC50 of
both cytotoxicity results (COS7 and HEPG2 cells) and EC50 3D7,
separately. Experiments were performed at least three times.

Inhibition of P. berghei Sexual Stage Progression
Balb/c mice were infected intraperitoneally with the P. berghei
Ookluc line (Calit et al., 2018). Four to five days after infection,
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TABLE 1 | Validation of shape-based models using different queries.

Kinase Model AUC TOP 1% TOP 5% TOP 10%

EF BEDROC EF BEDROC EF BEDROC

CDPK1 I* 0.81 22.10 0.63 10.06 0.50 5.41 0.52

II 0.83 20.99 0.58 7.40 0.41 4.74 0.45

III 0.69 0.55 0.02 2.20 0.09 2.21 0.16

CDPK4 IV* 0.77 3.64 0.13 3.64 0.17 3.27 0.24

V 0.72 3.64 0.13 3.15 0.15 3.27 0.23

VI 0.74 3.64 0.13 3.39 0.15 3.27 0.23

PK6 VII* 0.95 26.15 0.77 13.64 0.68 8.46 0.74

VIII 0.94 26.15 0.75 13.54 0.66 8.62 0.72

IX 0.93 24.62 0.65 13.54 0.64 8.31 0.72

AUC, area under the ROC curve; EF, Enrichmenent Factor; BEDROC, Boltzmann-Enhanced Discrimination of ROC. *Selected model.

the infected blood was collected by cardiac puncture and 4
µL were seeded to a volume of 80 µL of ookinete medium
(Blagborough et al., 2013), at 21◦C, containing 10µM of
compounds or DMSO vehicle control. After 24h incubation
at 21◦C, the nLuc substrate (Nano-Glo, Promega) was added
to each well 1:1 (v:v) and incubated for 5min at 37◦C. The
luciferase activity was measured using a plate luminometer
SpectraMax i3; Molecular Devices and the % of conversion
inhibition were calculated relative to the luciferase activity in
the control assays. This assay was approved by the Ethics
Committee (protocol number 132/2014-CEUA) of the Institute
of Biomedical Sciences—University of São Paulo.

RESULTS AND DISCUSSION

Shape-Based Models
Shape-based models were built to distinguish active vs. inactive
compounds for P. falciparum CDPK1, CDPK4, and PK6.
Initially, the chemical structures of most potent inhibitors of
each protein kinase were used as queries to develop shape-
based models (Table S1). Molecular conformations of queries
were selected according to energy minimization. Subsequently,
the ability of the models to differentiate between the active
and inactive compounds was inspected. Details of model
performance are shown in Table 1. As observed, all models led
to AUC values ranging between 0.69 and 0.95.

Model I showed the best statistical performance for CDPK1,
with EF values of 22.10, 10.06, and 5.41; and BEDROC values
of 0.63, 0.50, and 0.52 at the top 1, 5, and 10% of the ranked
database, respectively. The model IV showed the best statistical
performance for CDPK4, with EF values of 3.64, 3.64, and 3.27;
and BEDROC values of 0.13, 0.17, and 0.24 at the top 1, 5,
and 10% of the ranked database, respectively. Finally, the model
VII showed the best statistical performance for PK6, with EF
values of 26.15, 13.64, and 8.46; and BEDROC values of 0.77,
0.68, and 0.74 at the top 1, 5, and 10% of the ranked database,
respectively. These results indicated that our shape-based models
were statistically robust and therefore would be considered for a
subsequent virtual screening study.

TABLE 2 | Summarized statistical characteristics of ML models accessed by

5-fold cross validation.

Model CCR SE SP PPV NPV Coverage

P. falciparum 3D7 strain

Avalon 0.75 0.72 0.78 0.76 0.73 0.99

MACCS 0.74 0.73 0.75 0.74 0.73 1.00

Morgan 0.75 0.69 0.80 0.78 0.72 0.99

FeatMorgan 0.75 0.71 0.79 0.77 0.73 0.99

AtomPair 0.73 0.70 0.77 0.75 0.72 0.99

Consensus 0.76 0.71 0.80 0.78 0.73 1.00

Consensus rigor 0.76 0.72 0.80 0.78 0.74 0.98

P. falciparum W2 strain

Avalon 0.71 0.67 0.75 0.73 0.70 0.99

MACCS 0.70 0.70 0.70 0.70 0.70 1.00

Morgan 0.71 0.66 0.76 0.73 0.69 0.99

FeatMorgan 0.71 0.68 0.74 0.72 0.70 0.99

AtomPair 0.70 0.69 0.71 0.70 0.69 0.99

Consensus 0.72 0.68 0.76 0.74 0.70 1.00

Consensus rigor 0.72 0.68 0.76 0.74 0.70 0.98

CCR, Correct Classification Rate; SE, Sensitivity; SP, Specificity; PPV, Positive Predictive

Value; NPV, Negative Predictive Value.

ML Models
ML models were built to distinguish active vs. inactive
compounds for P. falciparum sensitive (3D7) and resistant
strains (W2). According to the statistical results of the 5-
fold external cross-validation procedure, the combination of
Avalon, MACCS, Morgan, FeatMorgan, AtomPair fingerprints
with Random Forest algorithm led to predictive MLmodels, with
CCR values ranging between 0.70 and 0.76. Table 2 shows the
detailed performances of the binary ML models.

The model built using Avalon (CCR = 0.75, SE = 0.72, SP
= 0.78, PPV = 0.76, and NPV = 0.73) and Morgan (CCR =

0.75, SE = 0.69, SP = 0.80, PPV = 0.78, and NPV = 0.72)
demonstrated the best performances among all other models
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FIGURE 2 | General workflow of the virtual screening campaign.

developed for P. falciparum 3D7 strain. On the other hand, the
best model developed for prediction activity against W2 strain
was built using Avalon (CCR = 0.71, SE = 0.67, SP = 0.75, PPV
= 0.73, NPV = 0.70), Morgan (CCR = 0.71, SE = 0.66, SP =

0.76, PPV = 0.73, NPV = 0.69), and FeatMorgan (CCR = 0.71,
SE = 0.68, SP = 0.74, PPV = 0.72, NPV = 0.70). Subsequently,
10 rounds of Y-randomization were performed for each data set
(Table S2). The results from this analysis (CCR, SE, SP values
around 0.50) indicate that predictivity of our models was not due
to chance correlation.

Virtual Screening
The virtual screening (VS) was carried out following the
workflow presented in Figure 2. Initially, 1,091,088 compounds
available on ChemBridge database were downloaded. Then,
747,566 molecules with probable oral bioavailability were
prioritized using a drug-likeness filter. Then, conformers and
AM1-BCC charges were generated for each molecule. The
best shape-based models were used to prioritize potential P.
falciparum multi-kinase inhibitors. Subsequently, the 14,878
common structures in top 10% scored list by shape-based filters
were submitted to developed ML models for prediction of
antiplasmodial activity against sensitive and resistant strains. In
addition, the AD was determined in order to set “reliable” and
“unreliable” predictions (Netzeva et al., 2005; Gadaleta et al.,
2016). The predictions were considered reliable when the virtual

hits are within the chemical space of compounds used to trainML
models. At the end of this process, ten putative hits were selected
for biological evaluation.

Experimental
The ten virtual hits were evaluated in vitro against asexual
blood stages of P. falciparum sensitive (3D7), and multi-drug-
resistant (Dd2) strains. The EC50 for each compound (Table 3)
indicate that three compounds (LabMol-171, LabMol-172 and
LabMol-181) were potent at inhibiting the parasite growth
showing activities in nanomolar range against both 3D7 and
Dd2 strains. These results corroborate with go/no-go criteria
established for the progression of P. falciparum kinase inhibitors
and antiplasmodial hits in VS, since the three compounds showed
EC50 < 1µM. The compound LabMol-181 (EC50 = 0.39 and
0.40µM for 3D7 and Dd2, respectively) showed the most potent
activity, when compared with reference drugs, chloroquine (EC50

= 0.02 and 0.15µM for 3D7 and Dd2, respectively). Moreover,
the three most active compounds (LabMol-171, LabMol-172
and LabMol-181) also have a common scaffold (quinazoline),
varying groups at the R1 and R2 positions (Figure 3). In contrast,
LabMol-175 (EC50 3D7 > 5µM) and LabMol-176 (EC50 3D7
= 1.15µM), which also display quinazoline scaffold, shown
reduced inhibition activity against chloroquine-sensitive strain.
This fact can be explained mainly by the presence of hydrophobic
substituents in position R2 for both compounds, and an electron
withdrawing group (Cl) attached to ring B in LabMol-175.
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TABLE 3 | In vitro evaluation of selected virtual hits against asexual blood stage of P. falciparum 3D7 e Dd2 strains, cytotoxicity on mammalian cells (COS7, HEPG2),

selectivity index and inhibition of ookinete formation of P. berghei.

Structure EC50 3D7
(µM)

EC50 Dd2
(µM)

CC50 COS7
(µM)

CC50 HEPG2
(µM)

SI* SI** % ookinete
conversion

inhibition (10 µM)

8.77 ± 2.20 3.40 ± 1.68 44.60 ± 3.73 19.95 ± 2.26 5.09 2.27 8.58 ± 7.62

LabMol-169

1.14 ± 0.20 2.02 ± 0.36 7.59 ± 4.09 5.43 ± 2.39 6.66 4.76 11.24 ± 19.47

LabMol-170

0.35 ± 0.08 0.70 ± 0.41 48.39 ± 14.04 19.31 ± 3.69 138.26 55.17 70.02 ± 22.16

LabMol-171

0.43 ± 0.08 0.48 ± 0.17 12.11 ± 1.44 10.21 ± 5.53 28.16 23.74 8.59 ± 13.01

LabMol-172

>5 – – – – – 0.00 ± 0.00

LabMol-173

>5 – – – – – 21.41 ± 36.67

LabMol-174

>5 – – – – – 12.87 ± 22.29

LabMol-175

1.15 ± 0.26 1.71 ± 0.40 34.88 ± 4.06 5.63 ± 1.51 30.33 4.90 20.51 ± 19.45

LabMol-176

>5 – – – – – 8.76 ± 15.18

LabMol-177

(Continued)
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TABLE 3 | Continued

Structure EC50 3D7
(µM)

EC50 Dd2
(µM)

CC50 COS7
(µM)

CC50 HEPG2
(µM)

SI* SI** % ookinete
conversion

inhibition (10 µM)

0.39 ± 0.06 0.40 ± 0.10 18.29 ± 1.92 6.13 ± 2.05 46.90 15.72 51.81 ± 23.16

LabMol-181

Chloroquine 0.02 ± 0.01 0.15 ± 0.04 – – – – –

EC50 3D7, half maximal effective concentration in 3D7 strain; EC50 Dd2, half maximal effective concentration in Dd2 strain; CC50 COS7, half maximal cytotoxic concentration on COS7

cell; CC50 HEPG2, half maximal cytotoxic concentration on HEPG2 cell; SI*, selectivity index calculated between CC50 COS7 and EC50 3D7 strain; SI**, selectivity index calculated

between CC50 HEPG2 and EC50 3D7 strain. The data are expressed as mean ± SD of three independent assays.

FIGURE 3 | Common quinazoline scaffold between the discovered hits. The dashed green, blue and red lines indicate the substituents in R1, R2, and R3

positions, respectively.

The selected compounds were also evaluated for their
cytotoxicity against fibroblast-like cell lines derived from
monkey kidney (COS-7 cells) and human hepatocytes
(HEPG2 cells). With respect to selectivity, LabMol-171
and LabMol-172 showed the most promising results, since
they showed selectivity index (SI) ranging between 23.74
and 138.26 (Table 3). It is worth noting that no compound
showed cross-resistance with multi-drug resistant strain (Dd2
EC50/3D7 EC50 ≤ 2 for all compounds), thus suggesting
a different mechanism of action from clinically established
antimalarial drugs.

Previous reports have demonstrated that CDPK1 e CDPK4
have critical rule for parasite gametogenesis, displaying a
potential target for development of transmission-blocking
drugs (Billker et al., 2004; Bansal et al., 2018). Since CDPK1
and CDPK4 compose the present multi-target approach,
we decided to evaluate the potential of these compounds
in inhibiting the formation of ookinetes in vitro, using a
recently described in vitro luciferase assay (Calit et al., 2018).
LabMol-171 and LabMol-181, promising selected compounds

in terms of selectivity and inhibition growing of asexual
blood stages, also showed considerable inhibition at 10µM
(70.02 and 51.81%, respectively) during ookinete formation
in comparison to control. These results demonstrate that
these compounds are active against multiple parasite stages,
comprising human treatment and transmission blocking
to mosquitoes.

Rationalizing Anti-plasmodial Activity
Understanding the interaction pattern between the ligand and
the protein target is essential for designing more potent and
selective analogs. Here, molecular docking studies allowed us to
rationalize the interaction the most potent hit with its associated
protein targets.

As a crystal structure for docking execution was available
only for PfCDPK4 (PDB ID: 4QOX), the 3D structures of
PfCDPK1 and PfPK6 were obtained by homology modeling
process. The modeled and refined proteins were validated using
MolProbity webserver (Table S3). This webserver encompass the
metric clashscore (number of serious clashes per 1,000 atoms),
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FIGURE 4 | Molecular interactions of LabMol-171 with (A) CDPK1(cyan), (B) CDPK4 (purple), and (C) PK6 (orange) obtained by docking. In 3D representation (left),

hydrogen bonds are presented as yellow dashed lines, and the color code of oxygen, nitrogen and hydrogen atoms are red, blue, and white, respectively. The carbon

atoms of LabMol-171 colored as gray. In 2D interaction diagrams (right) hydrogen bond are presented as magenta arrows.
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which analyses steric overlap ≥0.4Å between non-bonded
atoms that bring energy penalty; poor/favored rotamers, which
evaluate the sidechain geometry conformation; outlier/favored
Ramachandran, which evaluate protein backbone conformation
by phi and psi backbone dihedrals; Molprobity score, which
is represented by a number resulting from the combination
of the clashscore, percentage of Ramanchandran not favored
and percentage of bad side-chain rotamers, which reflects
on a crystallographic resolution value; among others (Chen
et al., 2010). After our investigation, we could conclude that
clashscore andMolprobity score were within the desirable values,
and 96.70–99.30% of the rotamers were in a favored state.
Analyzes made for the values of Ramachandran pointed out
that 97.25–98.30% of residues are within the favored region
against 0.21–0.34% are classified as outliers. Thus, the overall
stereochemistry and atoms conformation analysis displayed
good quality of modeled kinases, approving them to use in
docking studies.

The most promising compound, LabMol-171 (EC50 =

0.35µM against 3D7 and SI = 138.26 on COS7 cell) was docked
into the three protein kinases (PfCDPK1, PfCDPK4, and PfPK6)
to shed some light into the interaction pattern between the ligand
and the proteins. A MM-GBSA calculation was performed in
order to calculate the free energy of binding. Figure 4 displays
the interaction between the protein kinases and LabMol-171, the
most promising experimental hit, Glide score and MMGBSA-
1G values.

As we can see on Figure 4, the best free energy between
LabMol-171 and protein kinases was obtained for calcium-
dependent kinases. LabMol-171 could interact with CDPK4
(MM-GBSA-1G = −51.93 Kcal/mol) by hydrogen bonds
at hinge region (Asp148, Tyr150) and the catalytic loop
(Lys195). In relation to CDPK1 (MM-GBSA-1G = −47.32
Kcal/mol), hydrogen bonds were established with Lys85
and with residues belonging to the hinge region (Glu146,
Tyr148), DFG motif (Asp212), catalytic loop (Asn196),
and G-loop (Ala66). Aher and Roy (Aher and Roy, 2017)
have showed the importance of some residues of CDPK1,
including Val211, Tyr148, and Phe147 for PfCDPK1
inhibitory activity.

For the docking results with PK6, a Cyclin-Dependent Kinase,
LabMol-171 presented a lower Glide score (−4.45 Kcal/mol),
showing high affinity with good values for free energy of binding
(MM-GBSA-1G=−45.08 Kcal/mol). This kinase interacts with
ligand in the hinge (Cys102) and catalytic loop regions (Glu147).
Besides that, LabMol-171 was able to interact with Asp 105 and
Asn108 of PK6.

Through our docking analysis, we could indicate that
LabMol-171 could be a potential multi-kinase inhibitor, being
able to interact mainly with hinge and catalytic loop region
of these protein kinases. Besides that, previous studies have
showed quinazoline scaffold inhibiting other molecular targets,
as dihydrofolate reductase (Patel et al., 2019a,b) and prolyl-tRNA
synthetase (Jain et al., 2017), besides kinases. So, prospective
experimental target-fishing assays must be performed to
understand the mechanism of action of quinazoline compounds
in Plasmodium.

CONCLUSION

In this work, we developed robust and predictive shape-
based and machine learning models, able to prioritize 10
promising hits as antimalarial candidates. Three compounds,
LabMol-171, LabMol-172 and LabMol-181, reached activity
in nanomolar concentration against P. falciparum strains,
besides low cytotoxicity on mammalian cells. Moreover,
these compounds did not show cross resistance with multi-
drug resistant strain, suggesting a different mechanism of
action. Besides that, LabMol-171 and LabMol-181 also showed
considerable inhibition of ookinete formation in P. berghei
standing out as powerful transmission blockers. Furthermore,
a docking study shed some light into LabMol-171 interactions
with CDPK1, CDPK4, and PK6 and suggests that this
could be a potential MKI, being able to bind with hinge
and catalytic loop regions of proposed kinases. In future
studies, we aim to perform enzymatic assays against CDPK1,
CDPK4 and PK6, and hit-to-lead optimization studies in
order to reach new MKI antimalarial drugs, with transmission
blocking activity.
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Chagas disease causes ∼10,000 deaths each year, mainly in Latin America, where it is

endemic. The currently available chemotherapeutic agents are ineffective in the chronic

stage of the disease, and the lack of pharmaceutical innovation for Chagas disease

highlights the urgent need for the development of new drugs. The enzyme cruzain,

the main cysteine protease of Trypanosoma cruzi, has been explored as a validated

molecular target for drug discovery. Herein, the design, molecular modeling studies,

synthesis, and biological evaluation of cyclic imides as cruzain inhibitors are described.

Starting with a micromolar-range cruzain inhibitor (3a, IC50 = 2.2µM), this molecular

optimization strategy resulted in the nanomolar-range inhibitor 10j (IC50 = 0.6µM), which

is highly active against T. cruzi intracellular amastigotes (IC50 = 1.0µM). Moreover, most

compounds were selective toward T. cruzi over human fibroblasts, which were used

as host cells, and are less toxic to hepatic cells than the marketed drug benznidazole.

This study enabled the discovery of novel chemical diversity and established robust

structure-activity relationships to guide the design of optimized cruzain inhibitors as new

trypanocidal agents.

Keywords: Chagas disease, Trypanosoma cruzi, cruzain, SAR, medicinal chemistry, synthesis, inhibitors,
molecular docking

INTRODUCTION

Caused by the protozoan Trypanosoma cruzi and endemic in 21 countries in Latin America,
Chagas disease kills ∼10,000 people each year1. This neglected tropical disease has reached non-
endemic regions, affecting 8 million people worldwide and putting another 25 million at risk of
infection1. The USA shows the greatest burden among non-endemic countries, with ∼300,000
people estimated to be infected with T. cruzi (Pérez-Molina andMolina, 2018). In addition, Chagas
disease is a major cause of infectious cardiomyopathy worldwide, contributing substantially to
the global burden of cardiovascular disease (Bern, 2015; Cucunubá et al., 2016). Mortality and a

1https://www.who.int/chagas/en/
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reduction in productivity of the affected populations significantly
impact the economies of the endemic regions. These economic
and social burdens can be translated in numbers that estimate
losses of more than US $7.2 billion per year and ∼243,600
disability-adjusted life years (DALYs) due to Chagas disease
(GBD DALYs and HALE Collaborators, 2016; Arnal et al., 2019).

Even more than a century after the discovery of Chagas
disease by Brazilian physician Carlos Chagas in 1909,
current chemotherapy for this condition relies on two
drugs only—benznidazole (BZ) and nifurtimox (Dias et al.,
2014). These nitroheterocyclic compounds, which were
identified between the mid-1960s and 1970s, are effective
only when administered during the acute stage of the
disease, a limitation that leaves millions of chronic chagasic
patients without appropriate treatment (Molina et al.,
2015). Moreover, benznidazole and nifurtimox cause severe
adverse effects in up to 40% of patients, leading to poor
adherence to treatment (Pérez-Molina and Molina, 2018). These
drawbacks highlight the urgent need for the development of
effective and safe drugs for the therapy of Chagas disease
(Olivera et al., 2015; Ferreira and Andricopulo,
2019).

The enzyme cruzain (EC 3.4.22.51) is the main cysteine
protease of T. cruzi and has been explored as a validated
molecular target in Chagas disease drug discovery (McKerrow,
1999; Jose Cazzulo et al., 2001). It is expressed throughout
the life cycle of T. cruzi and is involved in critical biological
processes such as the interaction with host cells, parasite
reproduction and evasion from the host immunologic system
(Engel et al., 1998; Ferreira and Andricopulo, 2017). Cruzain
has been validated as a molecular target for Chagas disease

drug discovery based on genetic studies of T. cruzi and the
ability of cruzain inhibitors to decrease parasite burden in
vivo (Doyle et al., 2011; Ndao et al., 2014). These studies

have recently supported the design and identification of several
classes of cruzain inhibitors, including vinyl sulfones, triazoles,
pyrimidines, thiosemicarbazones, chalcones, nitroalkenes, and
benzimidazoles (Rogers et al., 2012; Ferreira et al., 2014;
Avelar et al., 2015; Espíndola et al., 2015; Neitz et al.,
2015; Latorre et al., 2016). The vinyl sulfone K777, which
is a covalent cruzain inhibitor, showed promising results in
preclinical efficacy tests; however, toxicity-related drawbacks
prevented the compound from progressing into advanced clinical
development (Ndao et al., 2014). The poor safety profile of
K777 was associated with the irreversible mode of action of
the compound. Following the failure of K777, the pursuit of
novel cruzain inhibitors has recently focused on the design
of reversible ligands. These investigations, along with the
available structural data of cruzain bound with small molecule
ligands, have been key to promoting the discovery of novel
classes of inhibitors with improved safety profiles. Moreover,
these data have enabled the integration of experimental and
computational approaches into robust structure-based drug
design (SBDD) campaigns that have been key to identifying
novel chemical diversity to be explored in Chagas disease
drug discovery.

MATERIALS AND METHODS

Molecular Docking
The three-dimensional structures of the designed cruzain
inhibitors were constructed using the standard geometric
parameters of SYBYL-X 2.1 (Certara, Princeton, NJ). Each
compound was energetically minimized using the Tripos force
field (Clark et al., 1989) and Powell conjugate gradient algorithm
(Powell, 1977) with a convergence criterion of 0.05 kcal/mol.Å
and Gasteiger-Hückel charges (Gasteiger and Marsili, 1980). The
designed imide derivatives were docked into the cruzain catalytic
site using GOLD 5.3 (Cambridge Crystallographic Data Centre,
Cambridge, UK) (Jones et al., 1997). The X-ray structure of
cruzain (PDB 3KKU, 1.28 Å) (Ferreira et al., 2010) was prepared
by removing the water molecules and adding hydrogen atoms.
The active site residues Cys25 and His162 were maintained
as negatively charged and protonated, respectively. A sphere
with a 10 Å radius centered on the sulfur atom of Cys25 was
settled as the binding site. Compounds were docked by applying
the GoldScore scoring function with a search efficiency of
200%. Visual analysis of the molecular docking-derived binding
conformations was carried out with PyMOL 1.3 (Schrödinger,
New York, NY) (Lill and Danielson, 2011).

Pro-Cruzain Expression, Activation, and
Purification
Cruzain was expressed and purified using a modified version of a
previously published protocol (Ferreira et al., 2014). Escherichia
coli (M15) was preinoculated in Luria Bertani (LB) medium
with ampicillin (100µg/mL) and kanamycin (50µg/mL) and
kept overnight (37◦C, 200 rpm). The preinoculum was diluted
10-fold in fresh LB medium (1 L) supplemented with 0.5M
NaCl, 0.2% glucose, 1mM betaine, 0.5M sorbitol, 100µg/mL
ampicillin and 50µg/mL kanamycin, and incubated (37◦C, 200
rpm). When the optical density (OD600) reached 0.9, the culture
was incubated at 47◦C for 20min to induce the expression of
chaperones. Next, cruzain expression was induced by adding
0.2mM isopropyl β-D-thiogalactopyranoside (IPTG), and the
culture was kept overnight at 20◦C. The cells were harvested
by centrifugation (5,000 rpm, 30min, 4◦C) and suspended in
50mL of lysis buffer (300mMNaCl, 50mMTris-HCl, 1.6 mg/mL
lysozyme, pH 8.0). The cells were then lysed by sonication
(12 cycles of 30 s), and the suspension was centrifuged (9,000
rpm, 30min, 4◦C). The supernatant was collected, cruzain was
precipitated by the addition of 35% ammonium sulfate (2 h),
and this suspension was centrifuged (9,000 rpm, 30min, 4◦C).
The precipitate was resuspended in lysis buffer and dialyzed to
remove the ammonium sulfate. The soluble fraction of cruzain
was purified by metal affinity chromatography using a Ni–
NTA resin (Qiagen, Hilden, Germany). Contaminant proteins
were removed using a washing buffer (300mM NaCl, 50mM
Tris-HCl, 10mM imidazole, pH 8.0). Next, cruzain was eluted
with an increasing gradient of imidazole (25, 50, 75, 100, and
250mM). The fractions containing cruzain were dialyzed in
0.1M acetate buffer (1.5 L, pH 5.5) and concentrated to 0.5
mg/mL for subsequent activation.
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Pro-cruzain was incubated in activation buffer (100mM
sodium acetate, 10mM EDTA, 5mM DTT, and 1M NaCl, pH
5.5) at 37◦C (Mott et al., 2010). The activation process was
monitored at 30min intervals by the cleavage of the substrate Z-
Phe-Arg-AMC and confirmed by SDS-PAGE. Next, the mature
enzyme was diluted 20-fold in binding buffer (20mM sodium
phosphate, 150mM NaCl, pH 7.2) and incubated overnight with
thiopropyl Sepharose 6B resin (GE Healthcare Life Sciences,
Pittsburgh, PA) at 4◦C. Cruzain was eluted using binding
buffer supplemented with 20mM DTT. Fractions containing the
enzyme were stored at−80◦C in 0.1M sodium acetate (pH 5.5).

Cruzain Inhibition Assays
The catalytic activity of cruzain was monitored by cleavage
of the fluorogenic substrate Z-Phe-Arg-aminomethyl coumarin
(Z-Phe-Arg-AMC) as previously described (Ferreira et al., 2014).
The enzyme kinetics assays were performed in 0.1M sodium
acetate buffer (pH 5.5) with 5mM dithiothreitol (DTT) and
0.01% Triton X-100. The final concentrations of cruzain and
substrate (Km = 1.6µM) were 1.5 nM and 5.0µM, respectively,
except in the tests for the mechanism of inhibition, in which
different substrate concentrations were used. The enzyme
reaction was monitored for 5min at 30◦C in 96-well black flat
bottom plates, and the activity was calculated based on the
initial rates compared with a control (DMSO). Wavelengths
of 355 nm for excitation and 460 nm for emission were used.
IC50 values were independently determined by determining
rate measurements for at least six inhibitor concentrations,
each evaluated in triplicate. To determine the mechanism of
inhibition, eight substrate concentrations and four inhibitor
concentrations were used, each in triplicate. The mechanism of
inhibition was determined by Lineweaver-Burk plots. SigmaPlot
10.0 (Systat Software Inc., Erkrath, Germany) was used to
determine the IC50 values.

T. cruzi Intracellular Amastigote Assays
In vitro assays against T. cruzi were performed as described
previously (Ferreira et al., 2014). The T. cruzi Tulahuen strain,
which expresses the E. coli β-galactosidase gene lacZ (Buckner
et al., 1996), was provided by Frederick S. Buckner (University
of Washington, Seattle, WA). Stock solutions of the synthesized
compounds were prepared in 100% DMSO. Epimastigotes were
grown in liver infusion tryptone (LIT) supplemented with 10%
fetal calf serum (FCS), penicillin and streptomycin (28◦C).
Metacyclogenesis from epimastigotes to trypomastigotes was
induced by incubation of the epimastigotes in Grace’s insect
medium (Sigma-Aldrich, St. Louis, MO) supplemented with
10% FCS (28◦C). HFF-1 human fibroblasts were seeded at 2 ×

103/well (80 µL) in 96-well tissue culture plates in RPMI 1640
without phenol red supplemented with 10% FCS and incubated
overnight (37◦C, 5% CO2). Next, trypomastigotes were added at
1.0 × 104/well (20 µL), and the plates were incubated (37◦C, 5%
CO2). After 24 h, 3-fold serial dilutions (50µL) of the synthesized
compounds were added at concentrations ranging from 0.1 to
100µM, and the plates were incubated (37◦C, 5% CO2). Each
compound concentration was evaluated in triplicate. All plates
included BZ (Sigma-Aldrich) as a positive control and untreated

wells (100% growth) as a negative control. After 120 h, 50
µL of chlorophenol red β-D-galactopyranoside (CPRG, Sigma-
Aldrich) and IGEPAL CA-630 (Sigma-Aldrich) (0.1%) was added
to each well. The absorbance was measured at 570 nm in an
automated microplate reader, and the data were transferred to
SigmaPlot 10.0 (Systat Software Inc.) for IC50 value calculation.

Cytotoxicity in HFF-1 and HepG2 Cell Lines
The cytotoxicities of the compounds against HFF-1 fibroblasts
and HepG2 hepatocytes were evaluated using the MTS
tetrazolium assay (Promega, Madison,WI) (Barltrop et al., 1991).
HFF-1 fibroblasts were seeded at 2 × 103/well in 96-well culture
plates in RPMI 1640 without phenol red supplemented with
10% FCS and incubated overnight (37◦C, 5% CO2). HepG2
hepatocytes were seeded at 6 × 103/well in 96-well culture plates
in DMEM (Cultilab, Campinas SP) supplemented with 10% FCS
and incubated overnight (37◦C, 5% CO2). The compounds were
added in 3-fold serial dilutions, and the plates were incubated at
37◦Cwith 5%CO2. Each compound concentration was evaluated
in triplicate. All plates included doxorubicin (Sigma-Aldrich, St.
Louis, MO) as a positive control and untreated wells (100%
growth) as a negative control. After 72 h, 20 µL of MTS was
added, and the plates were incubated for 4 h. The absorbance
was measured at 490 nm in an automated microplate reader, and
the data were transferred to SigmaPlot 10.0 (Systat Software Inc.,
Erkrath, Germany) for IC50 value calculation. The percent of
nonviable cells was determined and compared to the negative
control wells (100% growth).

Chemistry
All reactions were performed under an argon atmosphere with
dry solvents and magnetic stirring unless stated otherwise.
Dichloromethane (DCM) and triethylamine (Et3N) were
distilled from CaH2. Tetrahydrofuran (THF) was distilled
from sodium/benzophenone. Dimethyl formamide (DMF)
was purchased from Sigma-Aldrich (anhydrous) and used
without further purification. Yields refer to homogeneous
materials obtained after purification of the reaction products
by flash column chromatography using silica gel (200–400
mesh) or recrystallization. Analytical thin-layer chromatography
was performed on silica-gel 60 and GF (5–40µm thickness)
plates, and visualization was accomplished using UV light,
basic potassium permanganate staining or ninhydrin solution
followed by heating. 1H and proton-decoupled 13C NMR spectra
were acquired in CDCl3, CD3OD, or d6-DMSO at 250 MHz (1H)
and 62.5 MHz (13C) (Bruker DPX250), at 400 MHz (1H) and 100
MHz (13C) (Bruker Avance 400), at 500 MHz (1H) and 125 MHz
(13C) (Varian Inova 500), or at 600 MHz (1H) and 150 MHz
(13C) (Bruker Avance 600). Chemical shifts (δ) are reported in
ppm using residual undeuterated solvent as an internal standard
(CDCl3 at 7.26 ppm, CD3OD at 3.31 ppm, d6-DMSO at 2.50
ppm, and TMS at 0.00 ppm for 1H NMR spectra and CDCl3 at
77.16 ppm, CD3OD at 49.0 ppm, d6-DMSO at 39.52 ppm for
13C NMR spectra). Multiplicity data are reported as follows: s
= singlet, d = doublet, t = triplet, q = quartet, br s = broad
singlet, dd = doublet of doublets, dt = doublet of triplets,
ddd = doublet of doublet of doublets and m = multiplet. The
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multiplicity is followed by the coupling constant(s) in Hz and
integration. High-resolution mass spectrometry (HRMS) was
measured using electrospray ionization (ESI) (Waters Xevo
Q-TOF, Thermo LTQ-FT Ultra, or Thermo Q-Exactive) or
electron ionization (EI) (GCT Premier, Waters).

General Procedures for the Preparation of
Alcohols 2a-m
Method A: The aniline derivative containing the appropriate
substituents was dissolved in dry dichloromethane (DCM) under
an argon atmosphere with magnetic stirring. The solution was
cooled to 0◦C followed by the slow addition of acetoxyacetyl
chloride (1.1 equivalents). The mixture was stirred for 5min
before the addition of zinc mesh 20 (0.1 equivalents) and
removal of the ice bath, allowing the reaction to reach room
temperature. The reaction mixture was monitored by thin
layer chromatography (TLC), and after 30min, total conversion
was observed. Half of the initial volume of DCM was added
to dilute the reaction mixture, and the zinc was removed
by filtration. The supernatant was washed with an aqueous
sodium bicarbonate solution. The organic phase was dried over
magnesium sulfate (MgSO4) and concentrated to dryness under
vacuum. The product was purified by column chromatography
on silica gel using a mixture of ethyl acetate/hexanes (50%) as
the eluent. The obtained ester was dissolved in methanol at
room temperature followed by the addition of solid potassium
carbonate (K2CO3). The reaction mixture was stirred for 1 h and
then quenched by the addition of ethyl acetate. The mixture was
washed with aqueous saturated ammonium chloride (NH4Cl)
solution and brine. The resulting organic phase was dried over
MgSO4 and concentrated under reduced pressure. Purification
was performed by column chromatography on silica gel using a
mixture of ethyl acetate/hexanes (50%) as the eluent.

Method B: The aniline derivative containing the appropriate
substituents was dissolved in dry DCM under an argon
atmosphere with magnetic stirring. To the resulting solution, dry
triethylamine (1.1 equivalents) and acetoxyacetyl chloride (1.1
equivalents) were added and stirring was maintained for 2 h to
monitor the conversion by TLC. The mixture was then washed
with saturated aqueous NH4Cl solution and brine solution. The
organic phase was dried overMgSO4 and concentrated to dryness
under vacuum. The obtained ester was dissolved in methanol at
room temperature followed by the addition of solid potassium
carbonate (K2CO3). The reaction mixture was stirred for 1 h and
then quenched by the addition of ethyl acetate. The mixture was
washed with aqueous saturated ammonium chloride (NH4Cl)
solution and brine. The resulting organic phase was dried over
MgSO4 and concentrated under reduced pressure. Purification
was performed by column chromatography on silica gel using a
mixture of ethyl acetate/hexanes (50%) as the eluent.

General Procedures for Production of
Carboxylic Acids 1 and 9a-n
Method C: The appropriate cyclic anhydride and amino acid (1.1
equivalents) were dissolved in glacial acetic acid under an argon
atmosphere. The mixture was magnetically stirred overnight
followed by 4 h of reflux periodically monitored by TLC. After
consumption of the cyclic anhydride, the reaction pot was cooled

to room temperature. Acetic acid was removed in a rotary
evaporator, and ice-cold water was added to the resulting slurry
to generate a precipitate. Concentrated hydrochloric acid (HCl)
was added, and the solid was collected by filtration, followed by
high vacuum drying.

Method D: The appropriate cyclic anhydride and amino
acid (1.1 equivalents) were added to a reaction flask containing
toluene. To this suspension, TEA (0.1 equivalents) was added and
a Dean-Stark apparatus was coupled to the system. The mixture
refluxed for 4 h and cooled to room temperature. Toluene was
removed in a rotary evaporator, and the residue was dissolved
in ethyl acetate and washed twice with 1M HCl. The organic
phase was extracted with saturated aqueous sodium bicarbonate
solution. The aqueous phase was acidified with HCl solution to
pH 5.0 and extracted with ethyl acetate. The combined organic
phases were dried over MgSO4, concentrated under vacuum and
used in the following step without further purification.

Method E: Leucine was dissolved in a 1:1 mixture of
hydrobromic acid and water in an ice bath. Sodium nitrite
(6.5M aqueous solution) was added dropwise. The ice bath
was removed, and the solution stirred at room temperature for
2.5 h. The acidic residues were removed under reduced pressure,
and the remaining solution was extracted with diethyl ether 3
times. The combined organic phases were dried over MgSO4 and
concentrated under vacuum.

The residue was dissolved in DCM under an argon
atmosphere. The solution was cooled in an ice bath
and benzyl alcohol (1.1 equivalents), 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide (EDC) (1.1 equivalents)
and 4-dimethylaminopyridine (DMAP) (0.1 equivalents) were
added. The ice bath was removed, and the mixture stirred for
5 h. Then, the reaction mixture was washed with saturated
aqueous NH4Cl solution and brine. The organic phase was dried
over MgSO4 and concentrated under vacuum. The product was
purified by column chromatography on silica gel using a mixture
of ethyl acetate/hexanes (50%) as the eluent.

A solution of the pure ester was prepared in acetonitrile
under an argon atmosphere, and the appropriate cyclic amine
was added (2.0 equivalents). To the resulting solution, cesium
carbonate (1.1 equivalents) was added followed by stirring for
2 h. The solids were removed by filtration, and the solvent was
removed under reduced pressure followed by redissolution in
DCM and washing with water. The organic phase was dried over
MgSO4 and concentrated to dryness under vacuum. The product
was purified by column chromatography on silica gel using a
gradient from 0 to 4% methanol in DCM as the eluent.

The ester was dissolved in methanol, and 10% Pd/C was added
(0.1 equivalents). The mixture stirred at room temperature under
a hydrogen atmosphere (1 atm) for 30min. The catalyst was
removed by filtration over Celite R©, and the solvent removed
under reduced pressure to generate the pure carboxylic acid.

General Procedure for the Preparation of
Compounds 3a-m and 10a-n
Method F: A solution of carboxylic acid in dry DCM was
prepared, and the alcohol was added (1.1 equivalents). The
solution was cooled in an ice bath followed by the addition
of EDC (1.2 equivalents) and DMAP (0.1 equivalents). The
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solution was allowed to warm to room temperature and stirred
for 4 h while monitoring periodically by TLC. The reaction
mixture was washed with saturated aqueous NH4Cl solution
and brine. The organic phase was dried over MgSO4 and
concentrated under reduced pressure. The product was purified
by column chromatography on silica gel using a mixture of ethyl
acetate/hexanes (50%) as the eluent.

2-((3-chloro-4-methoxyphenyl)amino)-2-oxoethyl

(2S)-2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-

isoindol-2-yl)-4-methylpentanoate (3a)
Methods A and C followed by F

Very viscous liquid, 90% 1H NMR (500 MHz, CDCl3) δ 8.26
(sl, 1H); 7.83 (d, J = 2.5Hz, 1H); 7.68 (dd, J = 9.0, 2.5Hz, 1H);
6.90 (d, J = 9.0Hz, 1H); 5.90 (m, 2H); 5.04 (d, J = 15.6Hz,
1H); 4.88 (dd, J = 11.0, 4.4Hz, 1H); 4.40 (d, J = 15.6Hz, 1H);
3.89 (s, 3H); 3.23 (m, 2H); 2.65 (m, 2H); 2.27 (m, 2H); 2.08 (m,
1H); 1.94 (m, 1H); 1.41 (m, 1H); 0.93 (d, J = 6.6Hz, 6H), 13C
NMR (125MHz, CDCl3) δ 180.4; 180.3; 168.1; 164.7; 151.9; 131.1;
127.8; 127.7; 122.3; 122.2; 119.4; 112.1; 63.4; 56.3; 51.0; 39.3; 39.2;
37.2; 24.7; 23.5; 23.4; 23.0; 20.9.

HRMS (ESI-Orbitrap): [M+H]+ Calculated for
C23H27O6N2Cl 463.1617; found 463.1636.

2-((4-methoxyphenyl)amino)-2-oxoethyl

(2S)-2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-

isoindol-2-yl)-4-methylpentanoate (3b)
Methods B and C followed by F

Very viscous liquid, 88% 1H NMR (250 MHz, DMSO) δ 9.78
(sl, 1H); 7.46 (d, J = 9.0Hz, 1H); 6.89 (d, J = 9.0Hz, 1H); 5.85
(m, 1H); 4.79 (dd, J = 11.1, 4.4Hz, 1H); 4.63 (m, 2H); 3.72 (s,
3H); 3.24 (m, 2H); 2.39 (m, 2H); 2.20 (m, 2H); 1.99 (m, 1H);
1.77 (m, 1H); 1.34 (m, 1H); 0.84 (m, 6H), 13C NMR (62.5 MHz,
DMSO) δ 179.6; 179.5; 168.5; 164.3; 155.5; 131.3; 127.4; 120.4;
113.9; 63.4; 55.2; 50.2; 36.0; 24.1; 23.2; 23.0; 20.7.

HRMS (ESI-Orbitrap): [M+H]+ Calculated for C23H28O6N2

429.2026; found 429.2039.

2-((3-chlorophenyl)amino)-2-oxoethyl

(2S)-2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-

isoindol-2-yl)-4-methylpentanoate (3c)
Methods B and C followed by F

Very viscous liquid, 91% 1HNMR (250 MHz, DMSO) δ 10.15
(m, 1H); 7.77 (m, 1H); 7.44 (m, 1H); 7.33 (m, 1H); 7.11 (m, 1H);
5.84 (m, 2H); 5.03 (m, 1H); 4.67 (m, 2H); 3,59 (m, 2H); 3.23 (m,
1H); 2.43 (m, 3H); 2.19 (m, 2H); 1.97 (m, 1H); 1.75 (m, 1H); 1.34
(m, 1H); 0.83 (m, 6H). 13C NMR (62.5 MHz, DMSO) δ 179.6;
179.5; 179.4; 173.3; 173.2; 172.4; 169.2; 168.6; 165.7; 165.2; 139.8;
139.7; 133.2; 130.5; 127.5; 127.4; 125.0; 124.9; 123.4; 123.3; 118.8;
117.7; 63.4; 62.7; 52.3; 51.6; 51.5; 50.3; 50.2; 38.4; 36.1; 36.0; 25.3;
24.2; 24.1; 23.2; 23.1; 23.0; 20.7.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C22H25O5N2ClNa 455.1350; found 455.1362.

2-oxo-2-(phenylamino)ethyl

(2S)-2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-

isoindol-2-yl)-4-methylpentanoate (3d)
Methods B and C followed by F

Very viscous liquid, 78% 1H NMR (400 MHz, DMSO) δ 9.97
(s, 1H); 7.55 (m, 2H); 7.32 (m, 2H); 7.07 (m, 1H); 5.85 (m,2H);
4.79 (dd, J = 11.2, 4.4Hz, 1H); 4.67 (m, 2H); 3.25 (m, 2H);
2.39 (m, 2H); 2.20 (dd, J = 14.9, 7.2Hz, 2H); 2.03 (m, 1H); 1.77
(ddd, J = 14.2, 10.1, 4.5Hz, 1H); 1.35 (m, 1H); 0.84 (dd, J = 7.6,
6.6Hz, 6H). 13C NMR (100 MHz, DMSO) δ 179.6; 168.5; 164.8;
138.2; 128.8; 127.4; 123.7; 119.3; 63.4; 50.2; 38.4; 36.0; 24.1; 23.2;
23.0; 20.7.

2-((4-fluorophenyl)amino)-2-oxoethyl

(2S)-2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-

isoindol-2-yl)-4-methylpentanoate (3e)
Methods B and C followed by F

Very viscous liquid, 82% 1HNMR (250 MHz, DMSO) δ 10.02
(s, 1H); 7.56 (dd, J = 8.6, 5.0Hz, 2H); 7.15 (t, J = 8.6Hz, 2H);
5.84 (m, 2H); 4.79 (dd, J = 10.9, 4.3Hz, 1H); 4.65 (m, 2H); 3.24
(m, 2H); 2.43 (m, 2H); 2.20 (m, 2H); 2.02 (m, 1H); 1.76 (m, 1H);
1.35 (m, 1H); 0.84 (m, 6H).

HRMS (ESI-Orbitrap): [M+H]+ Calculated for
C22H25O5N2F 417.1826; found 417.1817.

2-((4-bromophenyl)amino)-2-oxoethyl

(2S)-2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-

isoindol-2-yl)-4-methylpentanoate (3f)
Methods B and C followed by F

Very viscous liquid, 84% 1HNMR (250 MHz, DMSO) δ 10.13
(s, 1H); 7.53 (m, 4H); 5.84 (m, 2H); 4.78 (dd, J= 11.1, 4.5Hz, 1H);
4.66 (m, 2H); 3.27 (m, 2H); 2.39 (m, 2H); 2.19 (m, 2H); 2.02 (m,
1H); 1.76 (m, 1H); 1.33 (m, 1H); 0.83 (m, 6H). 13C NMR (62.5
MHz, DMSO) δ 179.7; 179.6; 168.6; 165.0; 137.7; 131.7; 127.6;
127.5; 121.3; 115.4; 63.4; 50.3; 36.0; 24.1; 23.2; 23.1; 20.8.

HRMS (ESI-Orbitrap): [M+K]+ Calculated for
C22H25O5N2BrK 515.0577; found 515.0584.

2-((4-chlorophenyl)amino)-2-oxoethyl

(2S)-2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-

isoindol-2-yl)-4-methylpentanoate (3g)
Methods B and C followed by F

Very viscous liquid, 75% 1H NMR (500 MHz, DMSO) δ

10.13 (s, 1H); 7.59 (m, 2H); 7.37 (m, 2H); 5.84 (m, 2H); 4.79
(dd, J = 11.2, 4.5Hz, 1H); 4.67 (m, 2H); 3.24 (m, 2H); 2.39 (m,
2H); 2.20 (dd, J = 14.9, 7.4Hz, 2H); 2.02 (m, 1H); 1.76 (ddd, J
= 14.2, 10.1, 4.5Hz, 1H); 1.35 (m, 1H); 0.84 (dd, J = 9.8, 6.7Hz,
6H). 13C NMR (125 MHz, DMSO) δ 179.6; 179.5; 168.5; 165.0;
137.2; 128.8; 127.5; 127.4; 127.3; 120.9; 63.4; 50.2; 38.5; 36.0; 24.1;
23.2; 23.0; 20.7.

HRMS (ESI-Orbitrap): [M+H]+ Calculated for
C22H26O5N2Cl 433.1530; found 433.1507.

2-((4-hydroxyphenyl)amino)-2-oxoethyl

(2S)-2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-

isoindol-2-yl)-4-methylpentanoate (3h)
Methods B and C followed by F
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Very viscous liquid, 84% 1HNMR (250 MHz, DMSO) δ 10.05
(s, 1H); 7.57 (d, J = 8.8Hz, 1H); 6.98 (d, J = 8.8Hz, 1H); 5.80
(m, 2H); 4.88 (m, 1H); 4.66 (m, 1H); 3.24 (m, 1H); 2.40 (m,
2H); 2.19 (m, 2H); 1.98 (m, 1H); 1.77 (m, 1H); 1.35 (m, 1H);
0.85 (m, 6H).

2-(naphthalen-2-ylamino)-2-oxoethyl

(2S)-2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-

isoindol-2-yl)-4-methylpentanoate (3i)
Methods B and C followed by F

Very viscous liquid, 68% 1H NMR (250 MHz, DMSO) δ 8.43
(s, 2H); 7.80 (m, 4H); 7.45 (m, 2H); 5.91 (m, 2H); 5.13 (d, J =
15.5Hz, 1H); 4.92 (dd, J = 10.8, 4.5Hz, 1H); 4.47 (d, J = 15.5Hz,
1H); 3.23 (m, 2H); 2.68 (m, 2H); 2.22 (m, 3H); 1.97 (m, 1H); 0.95
(d, J = 6.5Hz, 6H).

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C26H28O5N2Na 471.18959; found 471.18888.

2-((4-fluoro-3-nitrophenyl)amino)-2-oxoethyl

(2S)-2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-

isoindol-2-yl)-4-methylpentanoate (3j)
Methods A and C followed by F

Very viscous liquid, 84% 1H NMR (400 MHz, CDCl3) δ 8.72
(sl, 1H); 8.56 (dd, J = 6.6, 2.7Hz, 1H); 8.20 (m, 1H); 7.27 (m, 1H);
5.92 (m, 2H); 5.07 (d, J = 15.8Hz, 1H); 4.90 (dd, J = 10.7, 4.6Hz,
1H); 4.46 (d, J = 15.7Hz, 1H); 3.26 (m, 2H); 2.67 (m, 2H); 2.31
(m, 2H); 1.99 (m, 2H); 1.41 (m, 1H); 0.93 (d, J = 6.4Hz, 6H),
13C NMR (100 MHz, CDCl3) δ 180.7; 180.5; 153.1; 150.5; 137.1;
137.0; 134.3; 134.2; 127.8; 127.6; 126.7; 126.6; 118.7; 118.5; 117.00;
116.97; 63.3; 51.1; 39.4; 39.3; 37.4; 29.6; 24.7; 23.6; 23.5; 23.0; 21.0.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C22H24O7N3FNa 484.14095; found 484.14483.

2-((4-((tert-

butoxycarbonyl)(methyl)amino)phenyl)amino)-2-

oxoethyl

(2S)-2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-

isoindol-2-yl)-4-methylpentanoate (3k)
Methods A and C followed by F

Very viscous liquid, 90% 1H NMR (500 MHz, CDCl3) δ 7.74
(d, J = 8.5Hz, 2H); 7.21 (d, J = 8.5Hz); 5.90 (m, 2H); 5.05 (d, J =
15.9Hz, 1H); 4.88 (dd, J = 11.0, 4.3Hz, 1H); 4.41 (d, J = 15.3Hz,
1H); 3.24 (s, 3H); 2.65 (m, 2H); 2.27 (m, 2H); 2.10 (m, 1H); 1.95
(m, 1H); 1.45 (s, 9H); 0.92 (d, J = 6.71Hz, 6H), 13C NMR (125
MHz, CDCl3) δ 180.4; 180.3; 168.1; 164.8; 154.8; 140.2; 134.7;
127.72; 127.68; 125.9; 120.1; 80.2; 63.4; 51.0; 39.3; 39.2; 37.3; 37.2;
28.3; 24.7; 23.6; 23.5; 23.0; 20.9.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C28H37O7N3Na 550.25237; found 550.25177.

2-((4-nitrophenyl)amino)-2-oxoethyl

(2S)-2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-

isoindol-2-yl)-4-methylpentanoate (3l)
Methods A and C followed by F

Very viscous liquid, 89% 1H NMR (600 MHz, CDCl3) δ 8.72
(sl, 1H); 8.24 (m, 2H); 8.03 (m, 2H); 5.91 (m, 2H); 5.10 (d, J =
15.8Hz, 1H); 4.90 (dd, J = 11.0, 4.4Hz, 1H); 3.25 (m, 2H); 2.66

(m, 2H); 2.29 (m, 2H); 2.06 (m, 1H); 1.96 (m, 1H); 1.41 (m, 1H);
0.93 (d, J = 6.6Hz, 6H), 13C NMR (150 MHz, CDCl3) δ 180.6;
180.5; 168.1; 165.7; 143.9; 143.4; 127.8; 127.7; 124.9; 119.6; 63.4;
51.1; 39.37; 39.35; 37.4; 24.7; 23.6; 23.5; 23.0; 21.0.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C22H25O7N3Na 466.15902; found 466.15749.

2-((4-methoxy-2-nitrophenyl)amino)-2-oxoethyl

(2S)-2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-

isoindol-2-yl)-4-methylpentanoate (3m)
Methods A and C followed by F

Very viscous liquid, 98% 1H NMR (500 MHz, CDCl3) δ 10.51
(sl, 1H); 8.57 (d, J = 9.15Hz, 1H); 7.66 (d, J = 2.9Hz, 1H); 7.24
(dd, J = 9.3, 3.0Hz, 1H); 5.92 (m, 2H); 4.95 (dd, J = 11.3, 4.4Hz,
1H); 4.77 (m, 2H); 3.87 (s, 3H); 3.31 (m, 1H); 3.18 (m, 1H); 2.62
(m, 2H); 2.26 (m, 2H); 2.16 (m, 1H); 1.97 (m, 1H); 1.39 (m, 1H);
0.93 (dd, J = 6.6, 4.5Hz, 6H), 13C NMR (125 MHz, CDCl3) δ

179.5; 179.43; 168.0; 165.0; 155.5; 137.7; 127.7; 127.6; 126.6; 124.0;
122.8; 108.8; 64.0; 55.8; 50.9; 39.2; 38.9; 36.7; 24.6; 23.6; 23.4;
23.0; 20.77.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C23H28O8N3 474.19045; found 474.19131.

2-((3-chloro-4-methoxyphenyl)amino)-2-oxoethyl (S)-

2-(1,3-dioxoisoindolin-2-yl)-4-methylpentanoate (10a)
Methods A and C followed by F

Very viscous liquid, 82% 1HNMR (250 MHz, DMSO) δ 10.04
(sl, 1H); 7.92 (m, 4H); 7.69 (d, J = 2.4Hz, 1H); 7.37 (dd, J = 8.9,
2.4Hz, 1H); 7.10 (d, J = 9.0Hz, 1H); 5.04 (dd, J = 11.2, 4.4Hz,
1H); 4.72 (m, 2H); 3.81 (s, 3H); 2.24 (m, 1H); 1.93 (ddd, J = 14.0,
9.9, 4.5Hz, 1H); 1.49 (m, 1H); 0.89 (m, 6H). 13CNMR (62.5MHz,
DMSO) δ 169.1; 167.2; 164.6; 150.7; 135.0; 131.9; 131.0; 123.5;
121.0; 120.6; 119.2; 112.9; 63.4; 56.1; 49.9; 36.6; 24.5; 22.9; 20.8.

HRMS (ESI-Orbitrap): [M+H]+ Calculated for
C23H24O6N2Cl 459.1323; found 459.1355.

2-((3-chloro-4-methoxyphenyl)amino)-2-oxoethyl

(2S)-2-(1,3-dioxooctahydro-2H-isoindol-2-yl)-4-

methylpentanoate (10b)
Methods A and C followed by F

Very viscous liquid, 91% 1H NMR (500 MHz, CDCl3) δ 8.32
(sl, 1H); 7.83 (d, J = 2.5Hz, 1H); 7.68 (dd, J = 8.9, 2.6Hz,
1H); 6.90 (d, J = 8.9Hz, 1H); 5.08 (d, J = 15.6Hz, 1H); 4.90
(dd, J = 10.9, 4.3Hz, 1H); 4.45 (d, J = 15.6Hz, 1H); 3.89 (s, 3H);
2.12 (ddd, J = 14.5, 10.7, 4.3Hz, 1H); 1.98 (m, 2H); 1.85 (m,
2H); 1.77 (m, 1H); 1.47 (m, 4H); 1.36 (m, 1H); 0.96 (m, 6H).
13C NMR (100 MHz, CDCl3) δ 180.3; 179.4; 168.4; 164.7; 152.0;
131.1; 122.3; 119.5; 112.1; 63.5; 56.3; 50.5; 40.0; 39.8; 37.4; 25.0;
24.0; 23.3; 23.1; 21.6; 21.1.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C23H29O6N2ClNa 487.19118; found 487.16025.

2-((3-chloro-4-methoxyphenyl)amino)-2-oxoethyl

(S)-2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-4-

methylpentanoate (10c)
Methods A and D followed by F
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Very viscous liquid, 46% 1H NMR (400 MHz, CDCl3) δ 8.12
(sl, 1H); 7.76 (d, J = 2.6Hz, 1H); 7.62 (dd, J = 8.9, 2.6Hz, 1H);
6.90 (d, J = 8.9Hz, 1H); 6.84 (s, 2H); 5.04 (d, J = 15.5Hz, 1H);
4.91 (dd, J = 11.4, 4.4Hz, 1H); 4.47 (d, J = 15.5Hz, 1H); 3.89 (s,
3H); 2.18 (ddd, J = 14.3, 11.2, 4.3Hz, 1H); 1.98 (ddd, J = 14.3,
10.0, 4.3Hz, 1H); 1.47 (m, 1H); 0.96 (dd, J = 6.6, 1.2Hz, 6H).
13C NMR (100 MHz, CDCl3) δ 170.4; 168.4; 164.6; 152.1; 134.6;
130.9; 122.5; 122.4; 63.6; 56.3; 50.4; 38.0; 24.9; 23.0; 21.0.

2-((3-chloro-4-methoxyphenyl)amino)-2-oxoethyl

(S)-2-(2,5-dioxopyrrolidin-1-yl)-4-

methylpentanoate (10d)
Methods A and D followed by F

Very viscous liquid, 72% 1H NMR (400 MHz, CDCl3) δ 8.30
(sl, 1H); 7.79 (d, J = 2.6Hz, 1H); 7.62 (dd, J = 8.9, 2.7Hz, 1H);
6.89 (d, J = 8.9Hz, 1H); 5.01 (d, J = 15.4Hz, 1H); 4.94 (dd, J =
10.5, 4.8Hz, 1H); 4.49 (d, J = 15.5Hz, 1H); 3.88 (s, 3H); 2.86 (m,
4H); 2.05 (m, 2H); 1.45 (m, 1H); 0.96 (dd, J = 6.7, 4.6Hz, 6H),
13C NMR (100 MHz, CDCl3) δ 177.2; 168.2; 164.7; 152.0; 131.0;
122.3; 119.6; 112.1; 63.4; 56.3; 50.9; 37.3; 28.2; 24.9; 22.9; 21.1.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C19H23O6N2ClNa 433.11423; found 433.11424.

2-((3-chloro-4-methoxyphenyl)amino)-2-oxoethyl

(S)-4-methyl-2-(3-methyl-2,5-dioxo-2,5-dihydro-1H-

pyrrol-1-yl)pentanoate (10e)
Methods A and D followed by F

Very viscous liquid, 88% 1H NMR (500 MHz, CDCl3) δ 8.19
(sl, 1H); 7.78 (d, J = 2.5Hz, 1H); 7.65 (dd, J = 8.9, 2.6Hz, 1H);
6.90 (d, J = 9.0Hz, 1H); 6.46 (d, J = 1.9Hz, 1H); 5.04 (d, J =
15.6Hz, 1H); 4.89 (dd, J = 11.4, 4.3Hz, 1H); 4.45 (d, J = 15.6Hz,
1H); 3.89 (s, 3H); 2.17 (m, 4H); 1.96 (m, 1H); 1.47 (m, 1H); 0.95
(dd, J = 6.7, 1.7Hz, 6H), 13C NMR (125 MHz, CDCl3) δ 171.6;
170.5; 168.6; 164.6; 152.0; 146.3; 130.9; 127.8; 122.4; 122.3; 119.5;
112.1; 63.5; 56.3; 50.5; 38.1; 24.9; 23.0; 20.9; 11.2.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C20H23O6N2ClNa 445.11369; found 445.11261.

2-((3-chloro-4-methoxyphenyl)amino)-2-oxoethyl

(S)-2-(3,4-dichloro-2,5-dioxo-2,5-dihydro-1H-pyrrol-

1-yl)-4-methylpentanoate (10f)
Methods A and D followed by F

Very viscous liquid, 27% 1H NMR (500 MHz, CDCl3) δ 7.85
(sl, 1H); 7.74 (d, J = 2.5Hz, 1H); 7.59 (dd, J = 9.0, 2.5Hz, 1H);
6.91 (d, J = 9.0Hz, 1H); 5.02 (d, J = 15.4, 1H); 4.98 (dd, J = 11.4,
4.5Hz, 1H); 4.52 (d, J = 15.4Hz, 1H); 3.90 (s, 3H); 2.21 (m, 1H);
2.00 (m, 1H); 1.51 (m, 1H); 0.97 (dd, J = 6.5, 4.3Hz, 6H), 13C
NMR (125MHz, CDCl3) δ 167.6; 164.1; 163.0; 152.3; 133.9; 130.6;
122.6; 122.4; 119.6; 112.2; 63.9; 56.4; 51.9; 37.9; 25.0; 23.0; 20.9.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C19H19O6N2Cl3Na 499.02009; found 499.02014.

2-((3-chloro-4-methoxyphenyl)amino)-2-oxoethyl

2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-isoindol-2-

yl)acetate (10g)
Methods A and C followed by F

Very viscous liquid, 80% 1HNMR (500 MHz, DMSO) δ 12.40
(sl, 1H); 9.89 (s, 1H); 7.75 (d, J = 2.6Hz, 1H); 7.43 (dd, J = 8.9,
2.6Hz, 1H); 7.11 (d, J = 9.0Hz, 1H); 5.64 (m, 2H); 4.62 (m, 2H);
3.82 (s, 3H); 3.07 (m, 2H); 2.46 (m, 2H); 2.33 (m, 2H), 13C NMR
(125 MHz, DMSO) δ 174.6; 172.6; 165.3; 150.7; 132.0; 125.3;
124.9; 121.1; 120.6; 119.3; 112.9; 62.5; 56.2; 38.8; 38.6; 25.6; 25.2.

2-((3-chloro-4-methoxyphenyl)amino)-2-oxoethyl

(2S)-2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-

isoindol-2-yl)-3-phenylpropanoate (10h)
Methods A and D followed by F

Very viscous liquid, 87% 1H NMR (250 MHz, CDCl3) δ 8.26
(sl, 1H); 7.83 (d, J = 2.7Hz, 1H); 7.71 (dd, J = 8.9, 2.6Hz, 1H);
7.22 (m, 5H); 6.92 (d, J = 8.8Hz, 1H); 5.70 (m, 2H); 5.12 (m, 2H);
4.42 (d, J = 15.5Hz, 1H); 3.90 (s, 3H); 3.56 (m, 1H); 3.36 (dd, J =
14.3, 11.3Hz, 1H); 2.99 (m, 2H); 2.48 (ddd, J = 15.8, 6.0, 2.9Hz,
1H); 2.22 (m, 3H).

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C26H25O6N2ClNa 519.12988; found 519.12918.

[α]20D −24,0 (1, MeOH).
HPLC flow 3.5 mL/min, polarity hexane:ethyl acetate (60:40).

Rt 16.76min, area 97.10%; Rt 20.09min, area 2.90%.

2-((3-chloro-4-methoxyphenyl)amino)-2-oxoethyl

2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-isoindol-2-

yl)-3-phenylpropanoate (10hrac)
Methods A and D followed by F

Very viscous liquid, 81% 1H NMR (500 MHz, CDCl3) δ 8.29
(sl, 1H); 7.84 (d, J = 2.2Hz, 1H); 7.69 (dd, J = 8.8, 2.4Hz, 1H);
7.24 (m, 3H); 7.13 (d, J = 7.1Hz, 2H); 6.92 (d, J = 9.0Hz, 1H);
5.70 (m, 2H); 5.12 (m, 2H); 4.43 (d, J = 15.6Hz, 1H); 3.90 (s, 3H);
3.56 (dd, J = 14.3, 5.2Hz, 1H); 3.35 (dd, J = 14.2, 11.5Hz, 1H);
3.04 (m, 1H); 2.93 (m, 1H); 2.48 (ddd, J = 15.7, 6.05, 2.6Hz, 1H);
2.29 (ddd, J = 15.8, 5.9, 3.0Hz, 1H); 2.17 (m, 2H), 13CNMR (125
MHz, CDCl3) δ 180.2; 179.8; 167.3; 164.6; 152.0; 135.3; 131.0;
129.0; 128.6; 127.4; 127.21; 127.17; 122.33; 122.28; 119.5; 112.1;
63.4; 56.3; 53.2; 39.0; 38.9; 34.3; 23.11; 23.07.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C26H25O6N2ClNa 519.12988; found 519.12965.

[α]20D 0 (1, MeOH).
HPLC flow 3.5 mL/min, polarity hexane:ethyl acetate (60:40).

Rt 17.16min, area 50.19%; Rt 20.49min, area 49.81%.

2-((3-chloro-4-methoxyphenyl)amino)-2-oxoethyl

(2R)-2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-

isoindol-2-yl)-3-(naphthalen-2-yl)propanoate (10i)
Methods A and D followed by F

Very viscous liquid, 43% (for 2 steps) 1H NMR (400 MHz,
CDCl3) δ 8.29 (sl, 1H); 7.85 (d, J = 2.7Hz, 1H); 7.77 (m, 3H);
7.71 (dd, J = 8.9, 2.6Hz, 1H); 7.54 (m, 1H); 7.46 (m, 2H); 7.29
(dd, J = 8.4, 1.8Hz, 1H); 6.93 (d, J = 8.9Hz, 1H); 5.48 (m, 2H);
5.26 (dd, J = 11.4, 5.4Hz, 1H); 5.14 (d, J = 15.4Hz, 1H); 4.44
(d, J = 15.4Hz, 1H); 3.72 (dd, J = 14.3, 5.3Hz, 1H); 3.54 (dd,
J = 14.4, 11.4Hz, 1H); 3.00 (ddd, J = 9.0, 7.6, 3.0Hz, 1H); 2.87
(ddd, J = 9.0, 7.8; 2.7Hz, 1H); 2.46 (ddd, J = 15.8, 6.4, 2.6Hz,
1H); 2.22 (ddd, J = 15.8, 6.4, 3.0Hz, 1H); 2.08 (m, 2H), 13C
NMR (100MHz, CDCl3) δ 180.2; 180.0; 167.4; 164.7; 152.1; 133.3;
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132.8; 132.5; 131.1; 128.5; 128.1; 127.7; 127.4; 127.2; 127.0; 126.6;
126.3; 125.9; 122.5; 122.4; 119.6; 112.2; 63.5; 56.4; 53.2; 39.0; 38.9;
34.6; 23.1.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C30H27O6N2ClNa 569.14553; found 569.14428.

2-((3-chloro-4-methoxyphenyl)amino)-2-oxoethyl

(S)-2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-3-

phenylpropanoate (10j)
Methods A and D followed by F

Very viscous liquid, 23% 1H NMR (500 MHz, CDCl3) δ 8.17
(sl, 1H); 7.76 (d, J = 2.6Hz, 1H); 7.66 (dd, J = 8.9, 2.6Hz, 1H);
7.25 (m, 3H); 7.13 (m, 2H); 6.92 (d, J = 8.9Hz, 1H); 6.69 (s, 2H);
5.10 (m, 2H); 4.50 (d, J = 15.4Hz, 1H); 3.90 (s, 3H); 3.57 (dd, J =
14.2, 5.2Hz, 1H); 3.38 (dd, J = 14.2, 11.2Hz, 1H), 13C NMR (125
MHz, CDCl3) δ 170.1; 167.6; 164.5; 152.2; 135.5; 134.3; 130.9;
128.9; 128.8; 127.4; 122.5; 119.7; 112.2; 63.7; 56.4; 53.2; 35.4.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C22H19O6N2ClNa 465.08239; found 465.08244.

2-((3-chloro-4-methoxyphenyl)amino)-2-oxoethyl

(S)-4-methyl-2-(pyrrolidin-1-yl)pentanoate (10k)
Methods A and E followed by F

Very viscous liquid, 93% 1H NMR (500 MHz, MeOD) δ 8.66
(sl, 1H); 7.57 (d, J = 2.7Hz, 1H); 7.46 (dd, J = 8.8, 2.5Hz, 1H);
6.88 (d, J = 9.0Hz, 1H); 4.73 (m, 2H); 3.88 (s, 1H); 3.35 (dd, J =
9.9, 4.6Hz, 1H); 2.73 (m, 2H); 2.63 (m, 2H); 1.80 (m, 5H); 1.58
(m, 2H); 0.96 (dd, J = 8.5, 6.1Hz, 6H), 13C NMR (125 MHz,
MeOD) δ 171.3; 165.3; 152.2; 130.6; 122.7; 122.4; 120.0; 112.1;
65.1; 62.7; 56.3; 50.6; 39.0; 25.4; 23.4; 23.3; 21.9.

2-((3-chloro-4-methoxyphenyl)amino)-2-oxoethyl

(S)-4-methyl-2-(piperidin-1-yl)pentanoate (10l)
Methods A and E followed by F

Very viscous liquid, 87% 1H NMR (500 MHz, CDCl3) δ 8.05
(sl, 1H); 7.56 (d, J = 2.7Hz, 1H); 7.42 (dd, J = 8.9, 2.6Hz, 1H);
6.90 (d, J = 8.8Hz, 1H); 4.83 (d, J = 15.6Hz, 1H); 4.63 (d, J =
15.6Hz, 1H); 3.82 (s, 3H); 3.37 (dd, J = 8.8, 5.7Hz, 1H); 2.59 (m,
4H); 1.60 (m, 7H); 1.44 (m, 2H); 0.94 (dd, J = 9.1, 6.3Hz, 6H),
13C NMR (125 MHz, CDCl3) δ 170.8; 165.3; 152.4; 130.2; 123.0;
122.6; 120.1; 112.2; 66.5; 62.4; 56.4; 50.9; 36.6; 26.4; 25.3; 24.4;
22.8; 22.4.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C20H29O4N2ClNa 419.17081; found 419.17050.

2-((3-chloro-4-methoxyphenyl)amino)-2-oxoethyl

(S)-4-methyl-2-morpholinopentanoate (10m)
Methods A and E followed by F

Very viscous liquid, 75% 1H NMR (500 MHz, CDCl3) δ 7.96
(sl, 1H); 7.56 (d, J = 2.6Hz, 1H); 7.38 (dd, J = 8.8, 2.6Hz, 1H);
6.89 (d, J = 8.9Hz, 1H); 4.76 (d, J = 15.3Hz, 1H); 4.68 (d, J =
15.3Hz, 1H); 3.88 (s, 3H); 3.68 (m, 4H); 3.40 (t, J = 7.3Hz, 1H);
2.67 (m, 4H); 1.65 (m, 3H); 0.96 (dd, J = 8.9, 6.1Hz, 6H), 13C
NMR (125MHz, CDCl3) δ 170.8; 165.0; 152.4; 130.1; 122.8; 122.6;
120.0; 112.2; 67.2; 65.8; 62.6; 56.3; 49.8; 36.8; 25.0; 22.6; 22.4.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C19H27O5N2ClNa 421.15007; found 421.14966.

tert-butyl (S)-4-(1-(2-((3-chloro-4-

methoxyphenyl)amino)-2-oxoethoxy)-4-methyl-1-

oxopentan-2-yl)piperazine-1-carboxylate (10n)
Methods A and E followed by F

Very viscous liquid, 69% 1H NMR (500 MHz, CDCl3) δ 7.86
(sl, 1H); 7.56 (d, J = 2.4Hz, 1H); 7.37 (dd, J = 8.9, 2.4Hz, 1H);
6.89 (d, J = 9.0Hz, 1H); 4.74 (d, J = 15.3Hz, 1H); 4.67 (d, J =
15.3Hz, 1H); 3.89 (s, 3H); 3.43 (m, 5H); 2.62 (m, 4H); 1.65 (m,
3H); 1.44 (s, 9H); 0.95 (dd, J = 12.3, 5.9Hz, 6H), 13C NMR (125
MHz, CDCl3) δ 170.7; 164.9; 154.3; 152.4; 130.1; 122.8; 122.7;
120.0; 112.3; 79.8; 65.5; 62.6; 56.4; 49.3; 37.1; 28.4; 25.0; 22.5.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C24H36O6N3ClNa 520.21848; found 520.21832.

General Procedure for the Preparation of
Compounds 3k’ and 10o
The esters, obtained through methods A and D or E followed by
F, were dissolved in dry DCM, and a large excess of HCl (4M
solution in dioxane) was added. The resulting solution was stirred
at room temperature for 4 h. The solvent mixture was removed
under reduced pressure, and the residue was dissolved in DCM
followed by crystallization from hexane.

2-((4-(methylamino)phenyl)amino)-2-oxoethyl

2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-isoindol-2-

yl)-4-methylpentanoate (3k’)
Very viscous liquid, 75% 1H NMR (500 MHz, CDCl3) δ 8.04 (sl,
1H); 7.53 (d, J =8.8Hz, 2H); 6.60 (d, J = 8.8Hz, 2H); 5.89 (m,
2H); 5.02 (d, J = 15.3Hz, 1H); 4.87 (dd, J = 11.1, 4.3Hz, 1H);
4.40 (d, J = 15.4Hz, 1H); 3.72 (sl, 1H); 3.20 (m, 2H); 2.83 (s, 3H);
2.64 (m, 2H); 2.25 (m, 2H); 2.11 (m, 1H); 1.94 (m, 1H); 1.40 (m,
1H); 0.92 (d, J = 6.6Hz, 6H), 13C NMR (125 MHz, CDCl3) δ

180.3; 180.1; 168.0; 164.3; 146.6; 127.7; 121.7; 112.5; 63.5; 51.1;
39.2; 37.1; 31.0; 24.8; 23.55; 23.48; 23.0; 20.9.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C23H29O5N3FNa 450.19994; found 450.19913.

2-((3-chloro-4-methoxyphenyl)amino)-2-oxoethyl

(S)-4-methyl-2-(piperazin-1-yl)pentanoate

hydrochloride (10o)
Amorphous solid, 96% 1H NMR (500 MHz, MeOD) δ 7.67 (m,
1H); 7.38 (m, 1H); 7.02 (m, 1H); 4.83 (m, 2H); 3.98 (m, 1H); 3.85
(s, 3H); 3.78 (m, 1H); 3.46 (m, 6H); 3.27 (m, 1H); 1.82 (m, 3H);
1.00 (dd, J = 11.1, 6.2Hz, 6H), 13C NMR (125 MHz, CDCl3) δ

172.3; 170.5; 167.3; 167.2; 156.2; 153.9; 132.7; 123.9; 123.4; 121.4;
114.1; 74.4; 68.3; 66.9; 64.5; 64.4; 57.2; 47.8; 44.5; 44.0; 41.0; 38.2;
26.4; 26.1; 23.4; 23.1; 22.4; 22.2.

HRMS (ESI-Orbitrap): [M+H]+ Calculated for
C19H28O4N3Cl 398.18466; found 398.18384.

General Procedure for the Preparation of
Compounds 3l’ and 3m’
The esters, obtained through methods A and D followed by
F, were dissolved in methanol, followed by the addition of the
catalyst Pd/C (10 wt%, 0.1 equivalents). The mixture stirred at
room temperature under a hydrogen atmosphere (1 atm) for 4 h
and then filtered through Celite R©. The filtrate was concentrated
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in vacuum. The product was purified by column chromatography
on silica gel using a mixture of ethyl acetate/hexanes (50%) as
the eluent.

2-((4-aminophenyl)amino)-2-oxoethyl

2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-isoindol-2-

yl)-4-methylpentanoate (3l’)
Pale amorphous solid, 92% 1H NMR (500 MHz, CDCl3) δ 8.06
(sl, 1H); 7.51 (d, J = 8.7Hz, 2H); 6.67 (d, J = 8.7Hz, 2H); 5.89
(m, 2H); 5.03 (d, J = 15.4Hz, 1H) 4.87 (dd, J = 11.0, 4.3Hz, 1H);
4.40 (d, J= 15.4Hz, 1H); 3.65 (sl, 2H); 3.20 (m, 2H); 2.64 (m, 2H);
2.26 (m, 2H); 2.10 (m, 1H); 1.94 (m, 1H); 1.40 (m, 1H); 0.92 (d, J
= 6.6Hz, 6H). 13CNMR (125MHz, CDCl3) δ 180.4; 180.2; 168.1;
164.4; 143.4; 128.9; 127.7; 121.7; 115.3; 63.5; 51.1; 39.3; 37.1; 24.8;
23.58; 23.50; 23.1; 21.0.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C22H27O5N3Na 436.18484; found 436.18421.

2-((2-amino-4-methoxyphenyl)amino)-2-oxoethyl

2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-isoindol-2-

yl)-4-methylpentanoate (3m’)
Light brown amorphous solid, 94% 1H NMR (500 MHz, CDCl3)
δ 7.90 (sl, 1H); 7.08 (d, J = 8.5Hz, 1H); 6.34 (m, 2H); 5.90 (m,
2H); 4.98 (d, J = 15.6Hz, 1H); 4.87 (dd, J = 11.0, 4.3Hz, 1H);
4.54 (d J = 15.4Hz, 1H); 3.75 (s, 3H); 3.18 (m, 2H); 2.61 (m,
2H); 2.23 (m, 2H); 2.07 (m, 1H); 1.93 (m, 1H); 1.37 (m, 1H); 0.91
(dd, J = 6.6, 3.4Hz, 6H). 13C NMR (125 MHz, CDCl3) δ 180.12;
180.09; 168.5; 165.6; 159.3; 142.8; 127.71; 127.71; 127.26; 115.5;
104.5; 102.6; 63.8; 55.3; 51.0; 39.21; 39.15; 37.1; 24.7; 23.50; 23.48;
23.0; 20.9.

HRMS (ESI-Orbitrap): [M+Na]+ Calculated for
C23H30O6N3 444.21627; found 444.21738.

Procedure for the Preparation of
N-(2-((3-chloro-4-methoxyphenyl)amino)-2-
oxoethyl)-2-(1,3-dioxo-1,3,3a,4,7,7a-
hexahydro-2H-isoindol-2-yl)-4-
methylpentanamide (5)
2-(1,3-Dioxo-1,3,3a,4,7,7a-hexahydro-2H-isoindol-2-yl)-4-
methylpentanoic acid (1) was dissolved in dichloromethane
at room temperature. Oxalyl chloride (1.5 equivalents) and
0.1mL of dimethyl formamide (DMF) were added to this
solution as the catalyst. After 2 h, the solvent was removed under
vacuum. The residue was dissolved in dichloromethane, and
glycine (1.0 equivalents) was added, followed by the addition of
triethylamine (2.2 equivalents).

The isolated product from the previous step was dissolved
in dichloromethane at room temperature. Oxalyl chloride (1.5
equivalents) and 0.1mL dimethyl formamide (DMF) were added
to this solution as the catalyst. After 2 h, the solvent was removed
under vacuum. The residue was dissolved in dichloromethane,
and 3-chloro-4-methoxyaniline (1.0 equivalents) was added,
followed by the addition of triethylamine (2.2 equivalents). The
reaction stirred for an additional 2 h. The reaction mixture
was washed with water and saturated aqueous NH4Cl solution.
The organic phase was dried over MgSO4 and the solvent was

removed under reduced pressure. The product was purified by
column chromatography on silica gel using a mixture of ethyl
acetate/hexanes (50%) as the eluent.

Amorphous solid, 78% 1HNMR (250MHz, DMSO) δ 9.68 (sl,
1H); 7.64 (d, J = 2.4Hz, 1H); 7.39 (dd, J = 8.9, 2.4Hz, 1H); 7.09
(d, J = 9.0Hz, 1H); 5.86 (m, 2H) 4.65 (dd, J = 11.3, 4.3Hz, 1H);
3.81 (sl, 3H); 3.18 (m, 2H); 2.39 (m, 2H); 2.11 (m, 3H); 1.79 (m,
1H); 1.29 (m, 1H); 0.83 (m, 6H). 13C NMR (62.5 MHz, DMSO) δ

180.1; 179.8; 166.8; 150.8; 132.1; 127.7; 127.6; 122.0; 120.4; 120.2;
112.7; 56.2; 52.4; 36.2; 24.3; 23.4; 23.3; 23.1; 20.6.

Procedure for the Preparation of
2-((3-chloro-4-methoxyphenyl)amino)ethyl
2-(1,3-dioxo-1,3,3a,4,7,7a-hexahydro-2H-
isoindol-2-yl)-4-methylpentanoate (7)
A solution of compound 1 in dry DCM was prepared, and
alcohol 6 was added (1.1 equivalents). The solution was cooled
in an ice bath followed by the addition of EDC (1.2 equivalents)
and DMAP (0.1 equivalents). The solution was allowed to
warm to room temperature and stirred for 4 h while monitoring
periodically by TLC. The reaction mixture was washed with
saturated aqueous NH4Cl solution and brine. The organic phase
was dried overMgSO4 and concentrated under reduced pressure.
The product was purified by column chromatography on silica
gel using a mixture of ethyl acetate/hexanes (50%) as the eluent.

Pale oil, 62% 1H NMR (500 MHz, CDCl3) δ 6.82 (d, J =

8.7Hz, 1H); 6.70 (d, J = 2.8Hz, 1H); 6.51 (dd, J = 8.8, 2.8Hz,
1H); 5.89 (m, 1H); 5.82 (m, 1H); 4.76 (dd, J = 11.3, 4.3Hz, 1H);
4.43 (ddd, J = 11.1, 7.1, 3.9Hz, 1H); 4.18 (m, 1H); 3.82 (m,
3H); 3.30 (m, 2H); 3.10 (m, 2H); 2.60 (m, 2H); 2.23 (m, 2H);
2.09 (m, 1H); 1.84 (m, 1H); 1.35 (m, 1H); 0.89 (dd, J = 8.8,
6.5Hz, 6H). 13CNMR (125MHz, CDCl3) δ 179.64; 179.61; 169.1;
147.6; 142.5; 127.7; 127.6; 123.4; 115.2; 114.2; 112.1; 64.0; 57.0;
51.2; 43.1; 39.0; 38.9; 36.7; 24.8; 23.43; 23.42; 23.1; 21.0. HRMS
(ESI-Orbitrap) m/z [M + Na] calculated for C23H29O5N2ClNa
471.16572; found 471.16522.

RESULTS AND DISCUSSION

In this work, we report the discovery of a series of reversible
cruzain inhibitors showing promising trypanocidal activity and
low toxicity. The imide derivative 3a (Figure 1A), a reversible
cruzain inhibitor that was previously identified from a virtual
high-throughput screening (HTS) combined approach (Ferreira
et al., 2010), was taken as the initial hit for molecular
optimization. The SBDD strategy relied on the molecular
docking-predicted binding mode of 3a within the catalytic
site of cruzain (Figure 1B). The enzyme-inhibitor interactions
rely mainly on a hydrogen bonding network. The secondary
amide oxygen fills the S3 subsite and interacts with the main
chain nitrogen of Gly66. The secondary amide nitrogen in
turn forms a hydrogen bond with the main chain carbonyl
of Asp161, which lies at the interface between the S2 and
S1’ subsites. The ester carbonyl projects into the S1 subsite
where it engages in a hydrogen bond with the side chain
nitrogen of Gln19. One of the imide carbonyl oxygens forms
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FIGURE 1 | (A) Compound 3a was used as the initial hit for the design of imide derivatives as novel cruzain inhibitors with anti-T. cruzi activity. (B) Molecular

docking-predicted binding conformation of compound 3a within the active site of cruzain. Cruzain (PDB 3KKU, 1.28 Å) is depicted in cartoon and surface

representations. Binding site residues (carbon in gray) and compound 3a (carbon in green) are shown as sticks. Hydrogen bonds are shown as dashed lines. Cruzain

subsites are labeled as S1, S1’, S2, and S3.

a hydrogen bond with the side chain nitrogen of Gln19 at the
S1 subsite. The 3-chloro-4-methoxyphenyl ring projects into
the S2 subsite and the isobutyl fragment lies in S1’. Based on
these findings, compound 3a was divided into five fragments
that underwent the molecular modifications that eventually
led to the series of cruzain inhibitors described herein. The
data gathered from the designed analogs were used to further
improve the potency against both cruzain and T. cruzi and
disclose the structure-activity relationships (SAR) enclosed in
this dataset.

Synthesis of Imide Derivatives
The synthesis of the initial hit (3a) and analogs with
modifications to the aromatic moiety is outlined in
Scheme 1. The aromatic ring was manipulated by
introducing electron withdrawing and donating groups
and hydrogen bond donors and acceptors. Carboxylic
acid 1 was coupled under Steglich-like conditions (Pande
et al., 2014) with alcohols 2a-m furnishing the intended
esters 3a-m. Ester 3k’ was obtained through deprotection

of 3k under acidic conditions, and compounds 3l’

and 3m’ were generated from the reduction of 3l and
3m, respectively.

Considering the low stability of the ester group in acidic
and basic media, we synthesized a more stable analog
with an amide group, as illustrated in Scheme 2. Initially,
carboxylic acid intermediate 1 was transformed into an
acyl chloride via reaction with oxalyl chloride. The acyl
chloride was further used in a coupling reaction with glycine,
producing intermediate 4. Intermediate 4 was converted
into an acyl chloride, using the same conditions previously
mentioned, and coupled with 3-chloro-4-methoxyaniline to
generate the target compound 5 (Scheme 2A). Compound 7

(Scheme 2B) was synthesized from 3-chloro-4-methoxyaniline
with ethyl carbonate catalyzed by molecular sieves (Kinage
et al., 2011) to produce 6, followed by coupling with 1 using
Steglich conditions.

Further analogs of compound 3a were designed to explore
modifications to the imide nucleus and the hydrophobic isobutyl
region (R1). The synthesis was performed according to Scheme 3
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SCHEME 1 | Synthesis of initial hit 3a and analogs with modifications to the aromatic ring. Reagents and conditions: (a) CH2Cl2, 1, EDC, DMAP (cat), rt, 4 h; (b)

CH2Cl2, HCl (4M in 1,4-dioxane), rt, 4 h; (c) MeOH, H2 1 atm, 10% Pd/C, rt, 30 min.

SCHEME 2 | Synthesis of analogs of the initial hit 3a with modifications to the ester and amide functional groups. (A) Synthesis of compound 5 by coupling

intermediate 4 with 3-chloro-4-methoxyaniline. (B) Synthesis of compound 7 by coupling compoud 6 with 1. Reagents and conditions: (a) CH2Cl2, oxalyl chloride,

DMF (cat), rt, 2 h; (b) CH2Cl2, glycine, Et3N, rt, 2 h; (c) CH2Cl2, 3-chloro-4-methoxyaniline, Et3N, rt, 2 h; (d) DMF, ethylene carbonate, molecular sieve 4 Å (cat), 150◦C,

4 d; (e) CH2Cl2, 1, EDC, DMAP (cat), rt, 4 h.

to evaluate the effects of changing the stereochemical and
electronic features on the biological activity of the target
compounds. Intermediates 9a-c and 9g were prepared according
to a previously described procedure (Faghihi, 2008). A mixture
of readily available L-amino acids and the corresponding
cyclic anhydride in acetic acid stirred overnight, followed by
4 h of reflux to obtain carboxylic acids 9a-c and 9g. The
synthesis of compounds 9d-f and 9h-j was carried out by
refluxing in toluene with triethylamine as the catalyst. The
stereocenter of the carboxylic acids was observed to have
the absolute configuration of R (Pande et al., 2014). The

amino acid side chains gave rise to hydrophobic fragments.
Diazotization of L-leucine (Badiola et al., 2014) followed by
bromoacid formation and subsequent nucleophilic substitution
with the appropriate amines generated the amine nucleus in
intermediates 9k-n, presumably with an inverted configuration
of the stereogenic center (S) due to inversion during the
nucleophilic substitution reaction. Intermediates 9a-n were
coupled under Steglich conditions (Neises and Steglich, 1978)
to produce the intended esters 10a-n. Compound 10o was
produced by deprotection of the N-Boc analog (10n) under
acidic conditions.
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SCHEME 3 | Synthesis of analogs of compound 3a with changes to the imide and isobutyl moieties. Reagents and conditions: (a) (for compounds 9a-c and 9g)
AcOH, cyclic anhydride (correspondent to Het), rt, o.n., then reflux, 4 h; (b) (for compounds 9d-f, 9h-j) toluene, cyclic anhydride (corresponding to Het), Et3N (cat),

reflux, 3 h; (c) (for compounds 9k-n) H2O, HBr (48% v/v in H2O), NaNO2, 0
◦C to rt, 3 h; (d) CH2Cl2, BnOH, EDC, DMAP (cat), rt, 4 h; (e) MeCN, amine (corresponding

to Het), Cs2CO3, rt – 60◦C, 30min – o.n.; (f) MeOH, H2 1 atm, 10% Pd/C, rt, 30min; (g) CH2Cl2, 2a, EDC, DMAP (cat), rt, 4 h; (h) CH2Cl2, HCl (4M in 1,4-dioxane),

rt, 4 h.

Identification of Imide Derivatives as
Cruzain Inhibitors
The activities of inhibitor 3a (IC50 = 2.2µM) and its analogs
having modifications to the imide moiety against cruzain are
shown in Figure 2. The incorporation of an aromatic ring
into the imide ring to form an isoindoline-1,3-dione core in
compound 10a reduced the percent inhibition from 88 to 39%
at an inhibitor concentration of 100µM. In fact, compound 10a

assumes a completely different binding conformation, with the
imide projecting into the S2 subsite. This causes the loss of
key interactions with the enzyme as predicted by the molecular
docking simulations (Figure S1A). The coupling of a saturated
ring to the imide resulted in a 2-fold decrease in the potency
of compound 10b (IC50 = 4.2µM) over 3a. The addition
of unsaturation to the unsubstituted imide yielded compound
10c (IC50 = 2.3µM), which was equipotent with respect to
inhibitor 3a. In fact, compound 10c preserves the enzyme-
inhibitor interactions observed for 3a, however, the imide
carbonyl oxygen is predicted to interact with the side chain
nitrogen of Trp184 instead of Gln19. The predicted binding
modes of analogs 10b and 10c are shown in Figures S1B,C,
respectively). Withdrawing the unsaturation of the imide

produced compound 10d (IC50 = 12.0µM), which was 6-fold
less active than 3a.

Following the positive result observed for compound 10c,
we designed compounds 10e and 10f, which have the imide
nucleus incorporating an unsaturation but with two different
substitution patterns. Compound 10e, with a methyl substituent,
was equipotent (IC50 = 2.5µM) relative to 10c, whereas
compound 10f, featuring two chlorine atoms as substituents,
resulted in a 6-fold increase in potency (IC50 = 0.60µM).
Replacing the imide core with an amine (10k, 10l, 10m, 10n,
and 10o) led to a significant drop in the activity of the
compounds, highlighting the essentiality of the carbonyl groups.

In fact, Figure 1B shows a hydrogen bond between one of the

carbonyl groups and the side chain nitrogen of Gln19 at the
S1 subsite. Replacing the imide group with other ring systems,

such as pyrrolidine, piperidine, and morpholine, abrogated
the biological activity of this series. The predicted binding
conformations of 10k and 10l (pyrrolidine and piperidine
derivatives, respectively) show that the lack of the imide
carbonyl groups changes the binding pattern of these compounds
compared to that observed for the active analogs. As shown in
Figure S2, the isobutyl and cyclic amines do not interact with
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FIGURE 2 | Activity of the series of analogs featuring modifications in the imide nucleus against cruzain. aPercent inhibition against cruzain at 100µM corresponding

to the mean of three measurements. b IC50 values against cruzain, which were independently determined by obtaining rate measurements in triplicate for at least six

inhibitor concentrations. The IC50 values represent the mean ± SD of three individual experiments. ND, IC50 not determined.

the S1’ and S1 subsites as expected, and become exposed to
the solvent.

The molecular optimization strategy also involved
modifications to the hydrophobic (isobutyl) fragment of

compound 3a (Figure 3A). Removing the isobutyl group to
obtain a methylene as the linker between the ester and the
imide rendered the resulting compound inactive (10g). Bulky
hydrophobic groups proved to be essential for interaction with
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FIGURE 3 | (A) Results for modifications of the isobutyl fragment. aPercent inhibition against cruzain at 100µM corresponding to the mean of three measurements.
b IC50 values against cruzain, which were independently determined by obtaining rate measurements in triplicate for at least six inhibitor concentrations. The IC50

values correspond to the mean ± SD of three individual experiments. ND, IC50 not determined. (B) Superposition of the molecular docking-predicted binding

conformation of compounds 3a (carbon in green) and compound 10 h (carbon in salmon). Cruzain (PDB 3KKU, 1.28 Å) is depicted in surface representation.

Inhibitors 3a and 10 h are shown as sticks. Cruzain subsites are labeled as S1, S1’, S2, and S3.

the S1’ subsite. Replacing the isobutyl with a methylene led to
a completely different binding pattern from that observed for
the active compounds. The docking algorithm was unable to
place the imide into S1 and the aromatic ring into S2, which
rendered compound 10g inactive (Figure S3A). Replacement of
the isobutyl by the bulkier and planar benzyl group increased the
potency by 2-fold (10h, IC50 = 1.4µM) compared to compound
3a. This activity improvement can be reasoned to be a result
of the better complementarity of the benzyl group with the S1’
subsite of the enzyme (Figure 3B). Replacing the benzyl with
the bulkier methylene naphthyl moiety led to compound 10i,
which was significantly less active, suggesting the ideal volume

of a benzyl ring to occupy the S1’ subsite. In fact, the naphthyl
group of analog 10i projects into the S2 subsite, which can be the
driving force for the percent inhibition value (58%) determined
for this compound since S2 usually accommodates bulky
hydrophobic groups (Figure S3B). However, this modification
caused the imide to lose its interaction with S1, which is a key
driving force for the activity of this series.

To probe the relevance of the ester and amide groups
for the activity of cruzain inhibitors, compounds 5 and 7

were prepared (Figure 4A). Replacing the ester with an amide,
resulting in compound 5, caused a reduction in the percent
inhibition from 88 to 38%. Converting the amide carbonyl
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FIGURE 4 | (A) Results for the modifications to the ester and secondary amide functions. aPercent inhibition against cruzain at 100µM corresponding to the mean of

three measurements. b IC50 values against cruzain, which were independently determined by obtaining rate measurements in triplicate for at least six inhibitor

concentrations. The IC50 values correspond to the mean ± SD of three individual experiments. ND: IC50 not determined. (B) Molecular docking predicted binding

mode of compound 5. (C) Predicted binding mode of compound 7. Cruzain (PDB 3KKU, 1.28 Å) is depicted in surface representation. Binding site residues (carbon in

gray) and inhibitors (carbon in green) are shown as sticks. Hydrogen bonds are shown as dashed lines. Cruzain subsites are labeled as S1, S1’, S2, and S3.

into a methylene decreased the biological activity even further,
as observed for compound 7 (11% inhibition). As illustrated
in Figure 1B, the amide oxygen of compound 3a is predicted
to form a hydrogen bond with the main chain nitrogen of
Gly66 and the ester carbonyl interacts with Gln19. The loss of
these interactions may be one of the reasons for the significant
activity drop observed for compound 7. In fact, modifying
the ester and amide groups significantly changed the binding
mode of both compounds 5 and 7 (Figures 4B,C, respectively)
compared to that of the active analogs. Compound 5, which
had the two carbonyl groups preserved, forms a hydrogen
bond with Gly66 at S3, which can be reasoned as the cause
of its higher percent inhibition value (38%) compared to
that of analog 7 (11%). Notwithstanding, the imide of both
compounds is exposed to the solvent and no interaction with
S1’ is observed, which are critical detrimental features of analogs
5 and 7.

The leverage of the 3-chloro-4-methoxyphenyl moiety on
cruzain activity was assessed by modifying the substitution
pattern of the aromatic ring (Figure 5). Removing either chlorine
or methoxyphenyl led to the less active compounds 3b (IC50 =

13.9 µM) and 3c (IC50 = 40.1 µM), respectively. Compound
3b retains the key polar interactions with the enzyme, however,
the lack of the chlorine prevents an optimal interaction with
the S2 pocket, which is known to be essential for potent
cruzain inhibition as reported previously (Ferreira et al., 2014)
(Figure S4A). The effect of removing the methoxy group from
the S2-interacting aromatic ring proved to be more detrimental
to activity than the removal of the chlorine. In fact, compound
3c was predicted to lose most of the key polar interactions
with the enzyme (Figure S4B), which resulted in a poorly
active compound (IC50 = 40.1 µM). The unsubstituted phenyl
derivative (3d) was 8-fold less active (IC50 = 16.7µM) than the
parent 3-chloro-4-methoxyphenyl compound (3a). Additional
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FIGURE 5 | Results for the modifications to the aromatic ring. aPercent inhibition against cruzain at 100µM corresponding to the mean of three measurements. b IC50

values against cruzain, which were independently determined by obtaining rate measurements in triplicate for at least six inhibitor concentrations. The IC50 values

correspond to the mean ± SD of three individual experiments. ND, IC50 not determined.

manipulations, such as introducing hydrogen bond donors and
acceptors and replacing the chlorine or changing its position, led
to poorly active or inactive compounds (3e-h, 3k, 3k’, 3l, 3l’,
3j, 3m, and 3m’). Figures S4 and S5 show that a suboptimal
interaction between the aromatic ring and the S2 subsite lead
to the loss of most, if not all, polar contacts that proved to be
important for activity. The exception was compound 3i, with
naphthyl replacing the phenyl as the S2-interacting aromatic
system (Figure S5D). This is consistent with the binding mode
of these compounds, which shows that the aromatic moiety
interacts with the S2 subsite (Figure 1B). The S2 subsite, which is

mostly composed of hydrophobic amino acids, can accommodate
bulky groups, as shown in our previous work on benzimidazole
derivatives (Ferreira et al., 2014). Such groups can therefore
promote an optimum interaction with the S2 subsite, leading to
more potent cruzain inhibitors.

Since all compounds described so far were obtained from
enantiopure amino acids, we next evaluated how the absolute
configuration influences the activity against cruzain. To this
end, the racemic form of compound 10h was prepared
(10hrac). The synthesis of 10hrac was achieved by the same
procedure presented in Scheme 3, using DL-phenylalanine
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instead of L-phenylalanine. Chiral column HPLC and optical
rotation analyses confirmed that all reactions did not lead
to racemization when L-phenylalanine was used as the
starting material. These analyses also confirmed that the

FIGURE 6 | (A) Modifications to the imide nucleus and hydrophobic fragment.
aPercent inhibition against cruzain at 100µM corresponding to the mean of

three measurements. b IC50 values against cruzain, which were independently

determined by obtaining rate measurements in triplicate for at least six inhibitor

concentrations. The IC50 values correspond to the mean ± SD of three

individual experiments. ND, IC50 not determined. (B) Molecular docking

predicted binding mode of compound 10j. Cruzain (PDB 3KKU, 1.28 Å) is

depicted in surface representation. Binding site residues (carbon in gray) and

inhibitors (carbon in green) are shown as sticks. Hydrogen bonds are shown

as dashed lines. Cruzain subsites are labeled as S1, S1’, S2, and S3.

racemic compound was obtained when DL-phenylalanine
was used as the starting material. The racemate (10hrac)
exhibited an IC50 value of 1.16µM against cruzain, while
compound 10h had an IC50 of 1.4µM. The very close IC50

values obtained for both the racemate and the enantiopure
compound demonstrated that the absolute configuration of
the stereocenter is not relevant to the activity of this series
of compounds.

In the next molecular optimization step, we combined the
best fragments from all five regions of initial hit 3a. This
strategy produced the most active compound (10j, IC50 =

0.6µM) among the synthesized analogs, which was 4-fold more
active than compound 3a (Figure 6A). Compound 10j conserves
the same binding mode of the other active compounds in
this series, forming the key intermolecular interactions with
the S1, S1’, S2, and S3 subsites. The S1’ and S2 subsites are
optimally filled with the benzyl and 3-chloro-4-methoxyphenyl
rings, respectively. A hydrogen bond is formed between the
amide oxygen and Gly66, and the imide carbonyl interacts with
Gln19 (Figure 6B).

The aim of this study was to identify new imide derivatives
as competitive cruzain inhibitors. Considering the competitive
nature of hit compound 3a, the synthesized analogs were
expected to follow the same behavior. Hence, we conducted
further studies to establish the mechanism of inhibition
of compounds 10h and 3i. The competitive mechanism
of these compounds was corroborated by the Lineweaver–
Burk plots shown in Figure 7. As expected for competitive
inhibitors, the maximum velocity (1/Vmax, intersections with
the y-axis) remained unchanged with increasing inhibitor
concentrations [I], while the apparent Michaelis–Menten
constant (K

app
M = – 1/KM, intersections with the x-axis) increased

with escalating [I].

Discovery of Novel Trypanocidal Agents
The biological activity of 22 compounds was evaluated against
T. cruzi intracellular amastigotes along with BZ (Tables 1–3).
Several compounds showed trypanocidal activity similar to or
superior to that of BZ (IC50 = 3.0µM). The data in Table 1

show that the hit compound 3a, despite being a potent cruzain

FIGURE 7 | Double reciprocal Lineweaver-Burk plots for compounds 10 h (A) and 3i (B). Each curve denotes to a different inhibitor concentration.
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TABLE 1 | Cruzain inhibition and trypanocidal activity of compounds with

modifications to the imide nucleus.

Compound Structure IC50 cruzain
(µM)a

IC50 T. cruzi

(µM)b

Initial hit (3a) 2.2 ± 0.4 >100

10b 4.2 ± 1.5 >100

10c 2.3 ± 1.0 0.9 ± 0.3

10d 12.0 ± 1.0 18.5 ± 3.1

10e 2.5 ± 0.6 1.2 ± 0.3

10f 0.6 ± 0.1 2.0 ± 0.7

10k ND >100

10l ND 11.6 ± 2.4

10m ND 1.8 ± 0.4

10n ND 1.6 ± 0.5

10o ND 1.7 ± 0.5

BZ - ND 3.0 ± 0.6

a IC50 values against cruzain were independently determined by obtaining rate

measurements in triplicate for at least six inhibitor concentrations. The values represent

the mean ± SD of three individual experiments. b IC50 values against T. cruzi represent the

mean ± SD of two individual experiments. ND, not determined.

inhibitor, was not active against the parasite. The same behavior
was observed for compound 10b, which differs from 3a only
by the absence of a double bond in the ring coupled to the
imide. Compounds having the imide with unsaturation and
without the coupled six-membered ring showed promising
trypanocidal activity (10c, 10e, and 10f, IC50 values of 0.9, 1.2
and 2µM, respectively).

Compounds lacking the imide carbonyl groups (10l-10o),
although inactive against cruzain, were active against T. cruzi.
Compound 10k, in which the imide was replaced with a
pyrrolidine, was inactive against both cruzain and T. cruzi.
Replacing pyrrolidine with piperidine, a larger heterocycle,
resulted in compound 10l, which was moderately active against
the parasite (IC50 = 11.6µM). Introducing an additional
heteroatom in the 6-membered cycle, whether nitrogen or
oxygen, generated remarkably active compounds (10m, 10n, and
10o, IC50 values of 1.8, 1.6, and 1.7, respectively). These results
indicate that these cyclic amines exert their trypanocidal activity
by modulating a molecular target other than cruzain.

TABLE 2 | Cruzain inhibition and trypanocidal activity of compounds with

modifications to the hydrophobic fragment and the amide function.

Compound Structure IC50 cruzain
(µM)a

IC50 T. cruzi

(µM)b

10h 1.4 ± 0.8 >100

10j 0.6 ± 0.1 1.0 ± 0.3

7 ND 1.5 ± 0.4

a IC50 values against cruzain were independently determined by obtaining rate

measurements in triplicate for at least six inhibitor concentrations. The values represent

the mean± SD of three individual experiments. b IC50 values against T. cruzi represent the

mean ± SD of two individual experiments. ND, not determined.

TABLE 3 | Cruzain inhibition and trypanocidal activity of compounds with

modifications to the aromatic ring.

Compound Structure IC50 cruzain (µM)a IC50 T. cruzi (µM)b

3k ND 3.9 ± 0.9

3k’ 75.0 ± 1.0 >100

3l ND >100

3l’ 75.5 ± 2.5 >100

3m’ 32.8 ± 8.0 >100

3d 16.7 ± 1.3 >100

3e 20.5 ± 1.3 >100

3i 2.1 ± 1.3 32.8 ± 4.9

a IC50 values against cruzain were independently determined by obtaining rate

measurements in triplicate for at least six inhibitor concentrations. The values represent

the mean± SD of three individual experiments. b IC50 values against T. cruzi represent the

mean ± SD of two individual experiments. ND, not determined.

Table 2 shows the data for compounds modified on the
hydrophobic fragment and the amide group. Replacing the
isobutyl with a benzyl group resulted in compound 10h,
which, although active against cruzain, was inactive against the
parasite. Notwithstanding, the benzyl group in compound 10j

combinedwith themaleimide fragment generated themost active
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compound against both T. cruzi (IC50 = 1.0µM) and cruzain
(IC50 = 0.6µM). Compound 7, in which the amide carbonyl was
removed, displayed the opposite behavior to that of compound
10h, i.e., 7 was active against T. cruzi but inactive on cruzain.

As shown in Table 3, except for compounds 3k and 3i,
modifications to the aromatic ring were unfavorable for activity
against both T. cruzi and cruzain.

Figure 8 illustrates an SAR scheme for the synthesized imide
derivatives. Following our initial approach, compound 3a was
divided into five fragments, and the most relevant SARs were
identified. In short, the imide function, although required
for cruzain inhibition, is not essential for activity against T.
cruzi. Benzyl is the ideal hydrophobic fragment for activity
against cruzain and is tolerable regarding the activity against T.
cruzi. Replacement of the 3-chloro-4-methoxyphenyl fragment
is, in general, unfavorable for activity against T. cruzi and
cruzain. Removal of the ester group is unfavorable for activity
against cruzain, while the replacement of the secondary amide
proved to be tolerable regarding the trypanocidal activity. The
gathered data showed a lack of a direct correlation between
the phenotypic and target-based results for some compounds;
this was expected to some degree given the complexity of the
intracellular environment and issues related to transport across
membranes. For other compounds, however, the target-based
and phenotypic data are clearly correlated. Compounds 10c,
10e, 10f, and 10g, for instance, besides being active against the
enzyme, proved to be potent trypanocidal agents.

In vitro Toxicity and Selectivity
The cytotoxicity of the synthesized analogs was assessed using
HFF-1 human fibroblasts and HepG2 human hepatocytes
(Table 4). The selectivity index (SI) was calculated as the ratio
between the CC50 values for the human cells and the IC50 values

for T. cruzi. In general, the designed compounds demonstrated
no significant toxicity against HFF-1 and HepG2 cells. Three
compounds showed SI values for HFF-1 fibroblasts comparable
or superior to that of BZ (SI >33): 10m (SI >55), 7 (SI >66)
and 3k (SI >25). It is worth noting that these compounds were
active against T. cruzi. Another aspect worth mentioning is that
the most cytotoxic compounds (10c, 10e, and 10j) are Michael
acceptors, which is a possible reason for their cytotoxicity.
With respect to cytotoxicity to HepG2 cells, most compounds
produced higher SI values than that of BZ, particularly those that
are highly active against T. cruzi: 10c (SI = 36.6), 10f (SI >32),
10m (SI >35), 10o (SI= 30.6), 10j (SI= 67), and 7 (SI= 42).

CONCLUSION

The SBDD strategy applied herein, comprising synthetic organic
chemistry, molecular docking, enzyme kinetics and phenotypic
assays, resulted in the discovery of potent, reversible and non-
peptidic cruzain inhibitors with remarkable trypanocidal activity.
The success of this experimental-computational molecular
optimization approach can be illustrated by compound 10j,
the most potent cruzain inhibitor (IC50 = 0.6µM), which is
significantly more active than initial hit 3a (IC50 = 2.2µM).
One of the most potent cruzain inhibitors reported to date,
compound 10j represents a new chemical class among the known
inhibitors of this enzyme. Furthermore, compound 10j shows
trypanocidal activity (IC50 = 1.0µM) that is 3-fold higher than
that of the clinically used drug BZ (IC50 = 3.0µM). Other
promising compounds are 10c, 10f, 10m, 10n, 10o, 10j, 7 and
3k, which showed trypanocidal activity comparable to that of BZ
and SI values (HFF-1/T. cruzi) >10.

FIGURE 8 | SAR scheme for both cruzain and T. cruzi. Compound 3a was used as the reference structure.
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TABLE 4 | Comparison of the trypanocidal activity with cytotoxicity data obtained for HFF-1 and HepG2 cells.

Compound IC50 T. cruzi

(µM)a
CC50 HFF-1
(µM)b

SI
HFF-1/T. cruzic

CC50 HepG2
(µM)b

SI
HepG2/T. cruzic

BZ 3.0 ± 0.6 >100 >33 >64 >21

10c 0.9 ± 0.3 12 ± 1 13.3 33 ± 5 36.6

10d 18.5 ± 3.1 >100 >5 >64 >3

10e 1.2 ± 0.3 4.8 ± 0.5 4 5 ± 1 4.2

10f 2.0 ± 0.7 33 ± 9 16.5 >64 >32

10l 11.6 ± 2.4 >100 >8 >64 >5

10m 1.8 ± 0.4 > 100 >55 >64 >35

10n 1.6 ± 0.5 32 ± 5 20 27 ± 2 16.9

10o 1.7 ± 0.5 32 ± 3 18.8 52 ± 7 30.6

10j 1.0 ± 0.3 15.7 ± 0.8 15.7 67 ± 8 67

7 1.5 ± 0.4 >100 >66 63 ± 8 42

3k 3.9 ± 0.9 >100 >25 >64 >16

3i 32.8 ± 4.9 >100 >3 45 ± 8 1.4

Doxorubicin – 0.21 ± 0.09 – 0.4 ± 0.1 –

aT. cruzi intracellular amastigote assay. Data represent the mean ± SD of two independent assays. bCytotoxicity assay. Data represent the mean ± SD of two independent assays.
cSelectivity index (SI), CC50/IC50.

The target-based results enabled the identification of relevant
SARs, which allowed the uncovering of pivotal structural aspects
that drive the enzyme-inhibitor molecular recognition and the
activity of the investigated compounds. Moreover, these findings
provide substantial insights into the design of reversible cruzain
inhibitors, which can be useful to surmount the drawbacks
associated with irreversible ligands. An important aspect to
remark is the in vitro toxicity profile of some compounds, which
indicates that they may be safer than the drugs currently available
for the treatment of Chagas disease. In a context characterized by
a lack of therapeutic innovation and serious safety and efficacy
issues, the cruzain inhibitors described herein can be explored
as novel chemical matter in forthcoming Chagas disease drug
discovery campaigns.
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Essential to understanding life, the biomolecular phenomena have been an important

subject in science, therefore a necessary path to be covered to make progress in human

knowledge. To fully comprehend these processes, the non-covalent interactions are the

key. In this review, we discuss how specific protein-ligand interactions can be efficiently

described by low computational cost methods, such as Molecular Mechanics (MM). We

have taken as example the case of the halogen bonds (XB). Albeit generally weaker

than the hydrogen bonds (HB), the XBs play a key role to drug design, enhancing the

affinity and selectivity toward the biological target. Along with the attraction between

two electronegative atoms in XBs explained by the σ-hole model, important orbital

interactions, as well as relief of Pauli repulsion take place. Nonetheless, such electronic

effects can be only well-described by accurate quantum chemical methods that have

strong limitations dealing with supramolecular systems due to their high computational

cost. To go beyond the poor description of XBs by MM methods, reparametrizing

the force-fields equations can be a way to keep the balance between accuracy

and computational cost. Thus, we have shown the steps to be considered when

parametrizing force-fields to achieve reliable results of complex non-covalent interactions

at MM level for In Silico drug design methods.

Keywords: halogen bonds, force-fields, molecular dynamics, non-covalent interactions, drug design

INTRODUCTION

Biological systems are huge, they change in time and they are very sensitive to in vivo conditions
like temperature and environment (Ramalho et al., 2009; Freitas et al., 2014; Nair and Miners,
2014; Jurinovich et al., 2015). These facts are remembered every day by drug designers, structural
biologists, biophysicists and many other professionals that need to study these systems (Nair and
Miners, 2014). In order to overcome these barriers, many scientists opt tomodel their systems using
the classical atomistic Molecular Dynamics (MD) simulation method.

The classical MD is a computational method based on Molecular Mechanics (MM) physics and
its first simulation was performed by Alder and Wainright (Alder and Wainwright, 1959) in the
late ‘50s. In this pioneering work, the authors discussed the difficulties to treat the many-body
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problem and proposed a numerical scheme to deal with multiple
interactions of particles by solving Newton’s motion equations.
Although Alder and Wainright gave the first spark for the
beginning of classical MD, the first realistic MD simulation
was performed just in 1969 (Allen et al., 1969). In this work,
by the implementation of Lennard-Jones potentials (essential
to describe van der Waals interactions), Dr. Rahman and co-
authors successfully modeled 864 atoms of liquid argon. Over
the last decades, MD modeling was refined, and many different
codes have been launched. Nowadays, drug design is one of the
areas that most benefits from the enormous development that
the atomistic MD has acquired over the years. However, the
mindset that it is difficult, unnecessary or too time-consuming
to parameterize new molecules may turn to final works that
mislead the real interactions. Unphysical models or catastrophic
geometries with very inaccurate interaction energies can be found
along with an MD simulation, especially if the modeled molecule
has too many chemical functions or π-conjugations (Davis and
Patel, 2010; Prandi et al., 2016; Aytenfisu et al., 2017).

Despite the great effort being made by scientific programmers
to enhance the quality of classical molecular simulation
techniques, much more can be done by the user to improve inter-
and intramolecular interactions outcomes. It should be kept in
mind that intramolecular interactions are the driving force of
most biomolecular phenomena (Martins et al., 2003; Adesokan
et al., 2004; Ramalho et al., 2009; Poater et al., 2011; Ben-
Naim, 2012; Hongo et al., 2013; Poznanski and Shugar, 2013).
They are known to be quantum chemical phenomena that go
beyond the classical description of matter and, in particular cases,
they cannot be understood by simple electrostatic or dispersion
schemes (Ramalho and da Cunha, 2011; Esrafili and Ahmadi,
2012; Wolters et al., 2014). This is one of the greatest challenges
to force-field modeling since there is no classical analog to the
quantum behavior of electrons.

That is the case of halogen bonds (XB), a real and relevant
tool for rational drug design (Auffinger et al., 2004; Lu et al.,
2009, 2010, 2012; Wilcken et al., 2013; Mendez et al., 2017). The
XBs are non-covalent interactions between an acceptor (A), often
Lewis base, and a halogenated molecule acting as a donor (D)
(Figure 1). On one hand, some researchers address the origin
of the XBs to the existence of a positive electrostatic potential
region on the halogen atom (X) bond called σ-hole (Clark et al.,
2007; Politzer et al., 2007, 2013; Kolár et al., 2014). On the other
hand, the literature also highlights the importance of the orbital
interactions, revealing the covalency part of XB (Wolters and
Bickelhaupt, 2012; Wang et al., 2014; Novák et al., 2015; Wolters
et al., 2015; Dominikowska et al., 2016; Bora et al., 2017; Santos
et al., 2017). In contrast to molecular mechanics approaches, the
XB are purely quantum chemical phenomena, whose strength
grows with the size of the halogens, making chlorine, bromine,
and iodine promising alternatives to promote secondary side-
chain interactions inside protein cavities (Lu et al., 2010; Cavallo
et al., 2016; Santos et al., 2017).

Once many compounds with biological activity have halogen
atoms in their composition, the accurate description of XBs by
molecular mechanics is crucial. Now, the main questions we
pursue to answer are: what can we do to solve this problem?; what

FIGURE 1 | General halogen-bond scheme. The donor (D) is bonded to a

halogen atom (X) that interacts with the acceptor (A) in a distance r.

are the alternatives we have?; what is the best approach to build
up accurate techniques to describe these interactions?

FORCE-FIELDS: AN OVERVIEW

Quantum Mechanics (QM) considers the electronic effects in
molecules. On the other hand, Molecular Mechanics (MM) is
based just on the interaction among classical charged particles,
neglecting direct electronic effects.

Since the electronic environment around an atom changes
accordingly to its neighborhood, we need an artifice to describe
atoms with the same atomic numbers, but chemically different.
For example, we need to distinguish the sp3 from sp2 carbons. To
recover most of the electronic effects in MM based simulations
different atom types should be employed. The atom types are
atomic labels used to indicate chemically different atoms. In the
example cited, different atom types should describe the carbons
in ethanol.

After the atom types are set, the classical MD software
associates each bonded or non-bonded molecular interaction to a
set of parameters. In more detail, the MD software calculates the
total potential (VTOT) that acts in each particle.

VTOT = VS + VA + VD + Vvdw + VC (1)

The Equation (1) shows a generic form of a total potential: VS,
VA, and VD are the bonded terms, the stretching, angular, and
dihedral potentials, respectively; and the last two terms are the
non-bonded terms, in which accounts for the van der Waals
interactions described by the Lennard-Jones potential (Vvdw)
and Coulomb potential (VC) that simulates the electrostatic
interactions. It is important noticing that the terms in the total
potential equation may vary depending on its implementation
in the MD software. For instance, in Equation (1.1) we see
the parameters kSµ, rµ, and r0µ, that are the stretching force
constant, the length of the bond and equilibrium distance,
respectively; In Equation (1.2), kθ

µ, θµ, and θ0µ are the angular
force constant, the angle, and equilibrium angle, respectively;
The term ASD

jµ
in Equation (1.3) is the dihedral torsional barrier,

n
µ
j is the periodicity or the number of minima in the cosine

function, δµ is the dihedral angle and γ
µ
j is a phase angle that

represents the displacement of the dihedral angle (or torsional
displacement); in Equation (1.4), εij, σij, and rij are the depth
of the potential well, the distance at which Vvdw is a minimum
and the distance between two particles, respectively; and finally
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q and ǫ0 in Equation (1.5) are the charge and the electrostatic
constant, respectively. The description of each term in Equation
(1) depends on these parameters and a complete set of equations
together is named force-field (FF).

VS =

No¯ bonds
∑

µ

kSµ(rµ − r0µ)
2

(1.1)

VA =

No¯ angles
∑

µ

kθ
µ (θµ − θ0µ)

2
(1.2)

VD =

1

2

No¯ Sdihedrals
∑

µ

No¯ cosµ
∑

j=1

ASD
jµ

[

1+ cos
(

n
µ
j δµ − γ

µ
j

)]

(1.3)

Vvdw =

No¯ vdw interactions
∑

i

No¯ vdw interactions
∑

i<j

4εij

[

(

σij

rij

)12

−

(

σij

rij

)6
]

(1.4)

VC =

No¯Coul. interac.
∑

i

No¯Coul. interac.
∑

i<j

qiqj

4πǫ0rij
(1.5)

In the last decades, the use of MD has been expanded to different
areas, being necessary the creation of parameters to describe a
huge set of molecular interactions at the same time or, at least,
those more relevant to a certain purpose. Thus, large groups
of transferable parameters have been created aiming to describe
chemically similar molecules. Nowadays, there are many sets
of specialized parameters for the description of many different
molecular groups like polymers, proteins, solvents, small organic
molecules, etc. (Jorgensen et al., 1996; Schuler et al., 2001; Wang
et al., 2004; Vanommeslaeghe et al., 2010; Dickson et al., 2014).

Due to the wide use of classical MD for protein modeling,
here we may highlight two of the most used sets of parameters
for biomodelling: AMBER (Assisted Model Building with Energy
Refinement) (Case et al., 2014), created by Peter Kollman and his
group at the University of California, and CHARMM (Chemistry
at Harvard using Molecular Mechanics) (Vanommeslaeghe
et al., 2010), initially developed by Martin Karplus and co-
workers at Harvard University. Over the years, CHARMM has
expanded and gained new specific parameters for the modeling
of smaller molecules.

Other diffused family of parameters for biomolecular systems
are OPLS and GROMOS. The OPLS (Optimized Potentials
for Liquid Simulations) (Jorgensen et al., 1996) force-field
was developed by Jorgensen’s group to simulate proteins
in solution. In 1976, GROMOS (GROningen MOlecular
Simulation) (Schuler et al., 2001) started to be developed at the
University of Groningen. Originally created for biomolecules
modeling, until today it is constantly updated for many different
classes of molecules.

Another example of a set of parameters specially designed for
small and medium-sized organic molecules is the MMn (n = 1,
2, 3, 4) family of parameters developed by Allinger and coauthors
(Allinger et al., 1971, 1989, 1996; Allinger, 1977; Lii and Allinger,

1989a,b; Nevins et al., 1996; Langley et al., 2001; Langley and
Allinger, 2002).

With the expansion of the use of MD simulations in the
pharmaceutical field, the development of a set of parameters
for drug design research was urgent. Thus, in 2004, the GAFF
(General AMBER Force Field) (Wang et al., 2004) family of
parameters was specifically created and tested for pharmaceutical
purposes. In order to guarantee a great transferability, many
GAFF equilibrium parameters were extracted from the average
of X-ray and ab initio calculations of different molecules. Besides,
pure GAFF is not yet able to model the major part of metallic
interactions in complexes and can poorly describe halogen bonds
(Rendine et al., 2011; Li and Merz, 2017).

PARAMETERIZATION: THE KEY TO
REALISTIC RESULTS

In the last decade, the US Food and Drug Administration (FDA)1

approved more than 230 New Molecular Entity (NME) drugs.
Almost 42% of the new non-biological approved drugs contain
halogen atoms, and more than 3% are metallic complexes (see
data in Figure 2). These data show the importance of a specific
parameterization for new drugs since most general FFs are not
able to describe with high accuracy those bonds for molecular
dynamics simulations (Santos et al., 2014, 2017).

Unfortunately, specificity and transferability usually have
an inversely proportional relationship. Due to their good
transferability, GAFF and other general force-fields are ideal to
describe molecules that are indirectly involved in the studies that
we would like to do. However, for very specific cases, sets of
general parameters are not enough to model physical structures
or interactions and we need to remodel them.

Then, theoretical scientists have realized that molecular
models need to be accurate to perform a realistic simulation.
For this reason, many tools were developed aiming more
straightforward paths to parameterization. The greatest part
of methodologies is based on the extraction of equilibrium
distances, angles and dihedrals from a QM optimized structure
and the force constants are derived from the diagonalization
of the Hessian matrix (extracted from a QM calculation).
Some examples of tools that help computational scientists to
parameterize their molecules are the following: Automated
Topology Builder (ATB) (Malde et al., 2011), Paratool (Mayne
et al., 2013), and Joyce (Barone et al., 2013).

More specifically, ATB is much more than an on-line tool
to build biomolecular force-fields for MD or Monte Carlo
simulations, it can also calculate free energies and predict
hydration free enthalpies. This website is very user-friendly, does
not require any installation procedure and sends an e-mail to the
user when the parameters are ready.

Paratool is a plugin of the software Visual Molecular
Dynamics (VMD) (Humphrey et al., 1996). It was specifically
developed to build parameters in CHARMM or AMBER format.

1US Food and Drug Administration (FDA). Available online at: https://www.fda.

gov/ (accessed November 4, 2017).
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FIGURE 2 | New Molecular Entity (NME) approved by the US Food and Drug Administration (FDA) in the last 10 years. All data are taken from https://www.fda.gov.

FIGURE 3 | (A) Front and (B) side view of the electrostatic potential surfaces (at 0.02 a.u.) from −0.3 (red) to 0.3 (blue) a.u. of CH3X (X = F, Cl, Br, I) molecules.

Computed at B3LYP-D3(BJ)/def2-TZVP, using Gaussian 09 (Frisch et al., 2009).

It is not as automated as ATB, but it is very user-friendly since it
is linked to the VMD graphical interface.

Joyce is a software specially developed to assist the
derivation of parameters in GROMACS (GROningen MAchine
for Chemical Simulations) (van der Spoel et al., 2005) or Moscito
(Paschek and Geiger, 2002) format forMD atomistic simulations.
It is also a very versatile and flexible program, in which the
user can symmetrizemolecular groups, set dependencies between
parameters and even impose specific values to the parameters.

The three aforementioned tools are just some examples of how
a specific set of parameters can be derived. They were cited in
ascendant order of time-consuming and effort to create a new
specific FF. The choice of modeling amolecule with an FF created
in a very automated way or a much more fitted one depends
on the molecule, the required accuracy and how dependent
the studied property is from the molecular geometry. However,

another issue that cannot be neglected is the more complex
intermolecular interactions, such as the halogen bonds. The
difficulties ofmodeling intramolecular parameters are beyond the
simple extraction and fitting of the parameters: they are also led
by the MD software limitations.

SomeMD software like AMBER do not distinguish intra from
intermolecular parameters for van der Waals and Coulombic
charges. Although MD simulations may give good results for
many physical and macro properties of a large number of
different systems, many times specific micro-interactions are not
modeled in a refined way. This is the case of some vibrational
modes: even if a very precise parameterization is done, coupled
vibrational modes in very conjugated molecules are extremely
hard to describe (Prandi et al., 2016; Andreussi et al., 2017). The
difficulty of an accurate description is mirrored in the fact that
most MD simulation programs do not couple molecular motions
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like a stretching mode with an angular bending or the stretching
modes of two adjacent atom pairs (Andreussi et al., 2017; Cerezo
et al., 2018). More precisely, all mentioned terms in Equation (1)
are expressed as sums of contributions, each one depending on a
single internal coordinate. In this way, the off-diagonal terms (or
hybrid terms) of the Hessian are not explicitly taken into account.
Here, it is important to emphasize that it is mathematically and
physically possible to derive parameters considering the cited
couplings (Cerezo et al., 2018), but the implementation of a
force-field functional form that describes the coupled terms can
still not be done in many MD software.

It is evident that neither the best set of parameters can
completely recover the electronic effects of a given molecule
along an MD trajectory. Although some MD simulation
programs are starting to be more flexible in terms of a force-
field functional implementation, like GROMACS and Moscito
(Cerezo et al., 2018). There is a still long path to achieve the
full force-field functional form flexibility. Indeed, the maximum
refinement that a normal user of mostly MD programs can do is
to construct his own set of parameters. However, diving into very
specific cases simple parameterizations can still be not enough.

BEYOND THE LIMITS

As defined in the introduction, the halogen bonds (XB) are non-
covalent interactions between the halogen bond donor (D) and
the halogen-bond acceptor (A) (Figure 1). Thus, the force-fields
will describe these phenomena through the van der Waals term
(Equation 1.4) and by the Coulombic term (Equation 1.5).

Many researchers address the origin of the XBs to the σ-hole,
classifying them as σ-hole interactions (Clark et al., 2007; Politzer
et al., 2008). The σ-hole is a positive region on the electrostatic
potential surface (ESP), that arises from a charge anisotropy effect
along with the D–X bond (Clark et al., 2007; Politzer et al.,
2013). In other words, the electron density polarizes toward
the D–X, generating an electron depletion in the back of the
halogen (X) toward the D–X bond axis (see the blue regions over
the halogens in Figure 3, in which D = CH3) (Politzer et al.,
2012). For the σ-hole model, the strength of the XBs, which
increases along X = F < Cl < Br < I, is directly correlated to
the increase of the positive electrostatic potential on the halogen.
In this sense, to perform a classical FF description of the XBs, the
attraction between A and X should be rigorously described by the
Coulomb potential. However, here we have at least two barriers to
overcome: firstly, the XB cannot be seen as the attraction of two
points charges as described by Equation (1.5), but the interaction
of two densities; secondly, even using the point charge scheme,
halogen atoms often have negative charges that would cause an
electrostatic repulsion between X and A, not allowing the XB to
happen. The fact is, something totally different from the usual
parameterization must be done.

The first attempt to describe the XB through molecular
mechanics was suggested by Ibrahimwho introduced the Explicit
σ-hole (ESH) theory (Ibrahim, 2011, 2012; Kolár et al., 2013). The
ESH is a way to model the σ-hole as a massless positive point
charge bonded to the halogen atom at a certain distance (rESH)

FIGURE 4 | The explicit σ-hole (ESH) scheme to model halogen bonds via the

molecular mechanics approach.

(Figure 4). In general, there are two parameters to be fitted: the
charge of the massless point and its distance to X (rESH).

The ESH strategy has promoted huge advances for the
modeling of XB in a biological environment predicting energy
minima points in halogen-bonded systems along the potential
energy surfaces. However, it is totally based on the classical
electrostatic point of view of chemical interactions, that is, the
electrostatic attraction between two point charges.

In fact, the XBs are a mix of attractive dispersion, electrostatics
and orbital interactions in balance with repulsive orbital
interactions (Pauli repulsion) and should not be described
neglecting either one of them (Huber et al., 2013; Wolters
et al., 2014; Santos et al., 2017). Figure 5 shows a simplified
scheme of the halogen-bonding mechanism by Wolters and
Bickelhaupt in the sight of Kohn-Sham density functional
molecular orbital theory (Wolters and Bickelhaupt, 2012). An
occupied molecular orbital of the acceptor, described by np
orbitals of the halides, interacts with an unoccupied molecular
orbital of the halogenatedmolecule (DX) to promote an attractive
orbital interaction. Here, the doubly occupied orbital can be
further extrapolated to any doubly occupied MO. See that the
unoccupied molecular orbital of the DX molecule will have a
strong sigma anti-bonding orbital (σ∗D−X) character. The Pauli
repulsion originates from the interaction between the doubly
occupied orbitals.

In practice, the σ-hole model often seems to work, but just by
coincidence. In previous work, we have shown that themaximum
ESP values on σ-hole (Vmax) and the unoccupied orbital which
contains the contribution of σ∗D−X may have a similar origin
(Santos et al., 2017). In other words, by increasing the value of
Vmax, the σ∗D−X will be stabilized and the interaction energy will
become more stable.

Once the XBs have an important contribution of non-classical
interactions, they cannot be described only by the Coulomb
potential to get the ideal parameterization. In the traditional
FF equation (Equation 1), the other alternative is to look at
the van der Waals term. The Equation (2) is the Lennard-
Jones 12-6 potential (Lennard-Jones, 1931) written in a different
way than in Equation (1.4). Here, the positive part is the
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repulsion term and the negative part is the attractive term. The
parameters are reduced to ε, the potential energy depth, and re,
the equilibrium distance.

Vvdw = VLJ 12−6 = ε

{

( re

r

)12
− 2

( re

r

)6
}

(2)

In theory, the repulsive part of Equation (2) would account for
the Pauli repulsion, which is decently described by the traditional
FF being the result of the steric hindrance between two atoms.
The attractive term would account for the dispersive and orbital
interactions. The first is also quite well-parametrized but the
same cannot be said for the orbital interactions (Wu et al., 2012;
Santos et al., 2014). The main problem of neglecting the orbital
interactions in molecular mechanics is to get overestimated
destabilizing energies at low range distances (Santos et al., 2014,
2017). At this interaction bond length, the Pauli repulsion and
charge transfer are exponentially intensified.

One way to minimize this problem is to use the LJ 10-6
potential (Equation 3). With a lower exponential factor in the
repulsion term, the interaction energies at low range distances
are less destabilized (Du et al., 2013; Santos et al., 2014, 2017).
However, the LJ 10-6 does not bring geometric improvements in
comparison with the LJ 12-6, mainly in the cases that the non-
covalent interactions are extremely directional, as the halogen
bonds. The Lennard-Jones potential can model if a Lewis base
will approximate toward the σD−X bond axis or not and how it
would affect the interaction energy (Soteras Gutiérrez et al., 2016;
Bernardes and Canongia Lopes, 2017).

Vvdw = VLJ 10−6 = ε

{

( re

r

)10
− 2

( re

r

)6
}

(3)

CHANGING THE POTENTIAL EQUATIONS

If the actual model does not work for a specific system, we
must reformulate it. So, why not do the same for FF equations?
Nevertheless, it is not necessary to build an equation from
scratch. Wiser is to modify a well-known model. In the case
of reformulating new non-bonded force-field terms, subtly
modifications into the VC or VLJ have been done to get more
accurate functions.

The directional dependence of halogen bonds can be
understood by looking at the σ-hole and MO theories together.
The interaction angle θ must be close to 180◦ to lead the
interaction toward the D–X bond axis (Figure 1). This is the
geometry configuration that would maximize the electrostatic
and orbital interactions for both σ-hole and MO theories (Riley
et al., 2009, 2013; Esrafili and Ahmadi, 2012; Santos et al.,
2017). The angle ϕ depends on the electronic structure of the
acceptor (A) in order to maximize the attractive donor-acceptor
orbital overlaps (see Figure 5). For instance, having an sp2 oxygen
as acceptor, ϕ would be around 120◦ to provide the frontal
overlap between the lone pair of the oxygen (LPO) and the
σ∗D−X orbital. By the same perspective, for an sp nitrogen as
acceptor, ϕ would be around 180◦ and, for π acceptors, ϕ would
be around 90◦ (Cavallo et al., 2016; Nziko and Scheiner, 2016;
Santos et al., 2017).

In a very clever way, Carter and co-workers (Carter et al., 2012;
Scholfield et al., 2015; Koebel et al., 2016) have introduced the
angular dependence into the LJ 12-6 and Coulombic potentials
to describe bromine bonds, which was later extended to chlorine
and iodine. The Equations (4) and (5) are the ffBXB functions
to describe the non-bonding terms of XBs. The effective halogen
charge (Zx) is defined by the amplitude (A) and the baseline (B)
of the cosine function, which has the period ν and α = 180 − θ.
In VLJ,

〈

rvdw(X)
〉

is now the average radius of the bromine at the
energy minimum.

VC =

ZXZAe
2

Drn
; ZX = A cos (να) + B (4)

VLJ =

√

εXεA







(

rvdw(A) +
〈

rvdw(X)
〉

− 1rX cos (να)

r

)12

− 2

(

rvdw(A) +
〈

rvdw(X)
〉

r

)6






(5)

Parameterized to predict the halogen bonds in DNA junctions,
the variation in the interaction energies were ∼0.06 to ∼0.7
kcal.mol−1 in comparison to the experimental data. The ffBXB
functions also give good values of θ, from∼146 to∼122◦.

Du et al. have introduced new polarizable non-bonded
functions to the force-field equations in order to reproduce the
XBs, the PEffmodel (Du et al., 2013). The electrostatic potential is
defined by (6), in whichQ is a constant, α, β, and ζ are parameters
from ab initio electrostatic potential, r1 is a coordinate in the
equatorial area, R is the distance from the halogen atom toward
the D–X axis and r is the halogen-bond length.

Velst(r1,R, r) = Q ·

[

exp (−αr1 − βR) − exp (ζr)
]

/r (6)

The Lennard-Jones potential was used to simulate the repulsion
and dispersion interactions (7), in which re is a function of θ, re,T
is the transverse distance, re,L is the longitudinal distance and λ is
a steepness parameter manually set to 1.26.

Vrd = 4ε

{

(

re(θ)

r

)10

−

(

re(θ)

r

)6
}

;

re (θ) = re,Tsin
2 (λθ)+ re,Lcos

2 (λθ) (7)

The third and last term is the polarization energy (8), in which E
is the electronic field, Etot incorporates the induce dipole effects
and α is the isotropic polarizability of the halogen.

Vpol = −

1

2
αE · Etot exp

(

1.0−

(

r

rmin

)2
)

(8)

The PEff functions have demonstrated a good performance in
comparison with MP2 methods to predict the binding energies
for chlorine, bromine, and iodine. Applied to well-known crystal
structures, the deviation of the halogen-bond lengths was <0.1 Å
and giving bond angles close to 180◦.

Both ffBXB and PEff are complete force-field and already
functional, albeit some tests with molecular dynamics must be
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FIGURE 5 | Simplified molecular orbital perspective of halogen-halide bonds. Main attractive interactions (blue) and repulsive interactions (red) are highlighted. X, D, A

= F, Cl, Br, I.

carried out. Moreover, they only consider Cl, Br, and I as donors
and Lewis basis with available electron lone pairs (i.e., A = S, O,
N) as acceptors. Nonetheless, molecules with π orbitals can also
act as halogen bond acceptors andmust be considered since there
are several aromatic structures in the biological environment. In
this sight, a new LJ 10-6 function has been proposed that takes
into account the halogen-bond acceptor nature and also includes
the fluorine in the XB donor, the Emod (Equation 10) (Santos
et al., 2017). Indeed, at certain conditions regarding the electronic
structure of the whole donor molecule, the fluorine atom can
form strong halogen-bonded complexes, sometimes as strong as
the chlorine bonds (Wolters and Bickelhaupt, 2012; Santos et al.,
2017).

VLJ = Emod = ε

{

( re+ δcos2
6

r

)10

− 2

(

re

r + γ

)6
}

(9)

The Emod empirical potential (10) has two new parameters: δ

and γ (11). The parameter δ accounts for the attractive orbital
interactions regarding the angular dependence to minimize the
repulsion term, based on the synergy between Vmax and the
σ∗D−X energies, as aforementioned. TheVmax is calculated by QM
methods, α is the van der Waals radius of the halogen atom and
β is a constant, in which β = 2.5 for lone pair acceptors and β =

0.432 for aromatic acceptors. The parameter γ is a function of δ

to rebalance the potential.

δ =

βVmax

4πα3
; γ =

[

22−δ (1− δ)

25r

]

(10)

The Emod was designed to use the re already parameterized by any
force-field without halogen-bond corrections. In practice, Vmax

should be obtained by a QM calculation and used to fully define
the parameters in Equation (11). Also, the Emod could be used the
general VLJ function of the FF, since when Vmax is not given (i.e.,
equal to zero), the parameters δ and γ will tend to zero, and this

function will behave like a traditional LJ 10-6 potential. However,
Emod has not been tested with a complete force-field equation and
there are no parameters for iodine.

Performing subtle modifications in the traditional empirical
potentials is a good strategy to improve force-field equations.
There are many other examples of modified potentials fitted to
obtain reliable results of complex properties at the molecular
mechanics level (Bernardes and Canongia Lopes, 2017; Franchini
et al., 2018; Lin and MacKerell, 2018; Nunes et al., 2018). This
approach eases the implementation of these functions by not
requiring a huge effort to build a code from the beginning but
using an already existing open-access and well-working code.

The use parameters obtained from previous quantum
mechanical calculations can surely improve the results of
a molecular dynamics simulation, but the next step is to
rework the potentials in Equation (1) to further decrease
the level of empiricism. That is where we find the ab initio
force-fields (McDaniel et al., 2016; Xu et al., 2018; Pérez-
Conesa et al., 2019). In principle, it would be possible to
properly describe any non-covalent interactions with ab initio
derived potentials, considering their specific properties, with a
manageable computational cost.

SUMMARY AND OUTLOOK

Through the last decades, computational methods have been
employed in the investigations around chemical properties
of the matter. The evolution of technology has allowed us
to go deeper into the atomic level to retrieve information
about chemical bonds and non-covalent interactions. However,
the computational cost has been the border of how further
our knowledge could go. To overcome these borders, cheap
computational approaches based on classical mechanics
have emerged.

In this review, we have discussed how cheap approaches,
like molecular dynamics (MD) and molecular mechanics
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(MM) calculations, can be improved. Toward this goal, the
parameterization of their force field (FF) equations is the
key. Most of the parameters can be obtained by quantum
mechanical (QM) calculations together with specific tools to
modify and generate more accurate FF. Nevertheless, we have
further explored one case that only setting up better parameters
is not enough to retrieve the real information from a non-
covalent interaction.

Being purely quantum chemical phenomena, the halogen
bonds (XBs) have required the replacement of some FF
potentials, since simple classical equations could not describe the
properties of systems they are involved in. This replacement has
been wisely done by modifying and introducing new parameters
to well-known potentials. The new potentials to describe XBs
were fit to high-level QM calculations, showing good agreement
with crystal structure data. Thus, we strongly believe that the
classical mechanical approaches will evolve by introducing new

potentials based on ab initio calculations. The scope of this review
is to highlight the relevance of ab initio parameterizations if the
recovering of quantum chemical effects, lost by MM simulations,
is wanted.
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Multidrug resistance is a serious problem and a common cause of cancer treatment

failure, leading to patient death. Although numerous reversal resistance inhibitors have

been evaluated in preclinical or clinical trials, efficient and low-toxicity reversal agents have

not been identified. In this study, a series of novel quinoline compound derivatives from

NSC23925 were designed to inhibit P-glycoprotein (P-gp). Among them, YS-7a showed

a stronger inhibitory effect against P-gp than verapamil, as a positive control, when

co-incubated with chemotherapy drugs at minimally cytotoxic concentrations. YS-7a

suppressed the P-gp transport function without affecting the expression of P-gp but

stimulated the ATPase activity of P-gp in a dose-dependent manner. Next, molecular

docking was used to predict the six most probable binding sites, namely, SER270,

VAL273, VAL274, ILE354, VAL357, and PHE390. Moreover, YS-7a had no effect on

cytochrome P450 3A4 activity and showed little toxicity to normal cells. In addition,

combined treatment of YS-7a with vincristine showed a better inhibitory effect than the

positive control verapamil in vivo without a negative effect on mouse weight. Overall,

our results showed that YS-7a could reverse cancer multidrug resistance through the

inhibition of P-gp transport function in vitro and in vivo, suggesting that YS-7a may be a

novel therapeutic agent.

Keywords: molecular docking, multidrug resistance (MDR), P-glycoprotein (P-gp), quinoline, reversal cancer

resistance

INTRODUCTION

Cancer multidrug resistance (MDR) is a major cause of chemotherapy failure leading to patient
death. MDR cancer cells often show pleiotropic cross-resistance to a wide range of chemotherapy
drugs. Mechanisms of MDR can be classified into non-cellular-based and cellular-based resistance
mechanisms (Krishna and Mayer, 2000). Numerous potential mechanisms of MDR have been
reported involving the ABC transporter family, DNA damage and repair, cancer stem cell
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regulation, microRNA regulation, and epigenetic regulation (Wu
et al., 2014). Among these, the ABC transporter families play
an important role in cellular-based resistance mechanisms by
facilitating exocytosis of chemotherapy drugs (Choi and Yu,
2014; Wu et al., 2014). These transporters are universally
expressed across MDR cancer cells, especially P-glycoprotein (P-
gp; encoded by MDR1), which is functionally equivalent to an
efflux pump that translocate substrates or chemotherapy drugs
from the intracellular to the extracellular environment (Fojo
et al., 1987; Konstantinos, 2015). Studies have confirmed that
P-gp is highly expressed or overactivated in a large number
of patients with failed chemotherapy (Alfarouk et al., 2015).
Therefore, P-gp is a potential target for reversing drug resistance.

P-gp inhibitors, also known as MDR modulators, have been
used to reverse MDR and block P-gp function in combination
with chemotherapy drugs (Coley, 2010; Kumar and Jaitak, 2019).
Several pharmacological P-gp inhibitors have been developed,
including verapamil (VP), PSC-833, and tariquidar. VP was the
first to be identified, and is commonly used as a P-gp inhibitor
for its low affinity and other pharmacological activities, but
has many side effects (Bellamy et al., 1988; Yusa and Tsuruo,
1989). Dexverapamil (Pirker et al., 1995; Thürlimann et al.,
1995) and PSC-833 (Boesch et al., 1991; Kusunoki et al., 2010)
lack the pharmacological activities of VP and cyclosporin A,
but inhibit cytochrome P450 (CYP) 3A4 activity. This leads to
complicated drug–drug interactions and limits their application
(Chico et al., 2001; Labrie et al., 2006). Meanwhile, tariquidar
(XR9576) (Federica et al., 2004; Fox and Bates, 2007), LY335979
(Dantzig et al., 1999; Shepard et al., 2003), and HM30181 (Cha
et al., 2013; Köhler andWiese, 2015) show more specific affinities
to P-gp with fewer side effects. Several clinical trials are underway
that are expected to address clinical drug resistance. Oraxol,
the oral preparation consisting of paclitaxel and HM30181A,
showed a strong trend in progression-free survival (p =

0.077), favoring oral paclitaxel over intravenous paclitaxel and
a strong trend in overall survival (p = 0.11) (https://ir.athenex.
com/, ClinicalTrials.gov Identifier: NCT02594371). However,
improved novel inhibitors are required to make P-gp a reliable
target for reversing resistance.

NSC23925 was identified from 2,000 small molecule
compounds using a high-throughput cell-based screening assay,
and can specifically inhibit P-gp and reverse MDR with no effect
on P-gp expression (Duan et al., 2009). NSC23925 was shown to
prevent the emergence of MDR in ovarian cancer both in vitro
and in vivo (Yang et al., 2015) and in osteosarcoma (Yang et al.,
2014) without affecting P-gp expression. NSC23925 also reversed
MDR in cancer cells (Duan et al., 2012).

In this study, we designed and synthesized a series
of NSC23925 analogs with improved potency through two
mechanisms (Figures 1B,C). Owing to their new structure
and superior activity, these compounds were granted a patent
(CN 108017615A, CN 107973781A). Among the synthesized
compounds, YS-7a and YS-7b showed better P-gp inhibition than
the positive control VP and the parent compound NSC23925.
Our findings demonstrated that substituting -OH with -OMe
increased the intracellular accumulation of Rhodamine 123
(Rho123); therefore, YS-7a was selected for further evaluation

of its potent reversal effect. Next, the target of YS-7a was
confirmed using small interfering (si)RNA. YS-7a had no effect
on mRNA and protein expression of P-gp but inhibited its efflux
pumping effect and stimulating P-gp ATPase instead, supporting
its direct effect on P-gp. The binding sites were predicted through
molecular docking. There was no significant effect on CYP3A4
activity and almost no toxicity toward normal cells. Finally, YS-7a
improved the anti-tumor effect of chemotherapy drugs, showing
better reversal of drug resistance than VP when combined with
vincristine (VCR) in vivo. Overall, our study showed that YS-7a
inhibited P-gp with high efficiency and low toxicity both in vitro
and in vivo. Therefore, YS-7a is a novel P-gp inhibitor that may
be used for the treatment of MDR cancers.

MATERIALS AND METHODS

General Chemistry
All the reagents were obtained from commercial sources and
used without further purification unless otherwise indicated.
All organic solvents were dried and freshly distilled before use
by standard methods. The reactions were monitored by thin
layer chromatography (TLC) on GF254 silica gel coated plates
and visualized by UV light (254 and 365 nm). Purification
by column and flash chromatography was carried out using
silica gel (200–300 mesh). Melting points were taken on a
X-4B melting-point apparatus and were uncorrected. 1H and
13C NMR spectra were recorded in DMSO-d6 or CDCl3 on
a Bruker Avance/600 (1H: 600 MHz, 13C: 150 MHz at 25◦C)
or Bruker Avance/400 (1H: 400 MHz, 13C: 100 MHz at 25◦C,
Bruker Instruments, Inc., Billerica, MA, USA) Chemical shifts
are expressed in values (ppm) relative to tetramethylsilane as an
internal standard, and coupling constants (J values) were given
in hertz (Hz). Abbreviations are represented as follows: br, broad;
s, singlet; d, doublet; dd, double doublet; t, triplet; q, quartet; m,
multiplet. HRMS analysis was performed on a mass spectrometer
using electrospray ionization (ESI-oa-TOF), and the purity of all
samples used for HRMS (>95%) was confirmed by 1H and 13C
NMR spectroscopic analyses. HPLC was performed on Agilent
Technologies 1200 LCColumn 250× 4.6 nm and usingH2O (95–
5%)/MeOH (5–95%) during 22min as the mobile phase. Flow
rate was1.0 mL/min (all solvents were HPLC grade). The HPLC
system was monitored at 254 nm.

Biology
Cell Lines and Cell Culture
Human leukemia cell line K562, human oral squamous
carcinoma KB cells, human hepatocellular carcinoma cell line
HepG2 and Human umbilical vein endothelial cells (HUVEC)
were obtained from the Cell Bank of the Institute of Biochemistry
and Cell Biology, Chinese Academy of Sciences (Shanghai,
China).The MDR1-overexpressed cell lines, 3µM adriamycin
(ADR)-selected (Dalian Meilun Biotech Co., Ltd., China)
multidrug resistance cell K562/ADR and 0.1µM vincristine
(VCR)-selected (Lingnan Pharmaceutical Co., China) multidrug
resistance cell KB/VCR were obtained from Nanjing Shenghe
Pharmaceutical Ltd (Nanjing, China). All the cells were cultured
in RPMI-1640 medium (Gibco) supplemented with 10% (v/v)
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FIGURE 1 | (A) Synthesis of compounds II-7a, II-7a′, II-7b, II-7b′, II-7c, II-7c′, II-7d, and II-7d′; (B) synthesis of compounds YS-7a, YS-7a′, and YS-7b. Reagents and

conditions (A): (i) 1-(4-3-methoxyphenyl)ethanone, KOH, EtOH, 85◦C, 24 h; (ii) concentrated H2SO4, MeOH, 65◦C reflux overnight; (iii) 1-Boc-pyrrole (1 equiv),

sec-BuLi (1.3 equiv) tetramethylethylenediamine 1.7mL, −78◦C, 2 h, dropping compound, stirring 2 h at room temperature, dry tetrahydrofuran; (iv) NaBH4 (9 equiv),

EtOH, 0◦C, 0.75–1 h. (v) 2M HCl, 30◦C, 48 h. (B): (i) 2-bromopyridine, n-BuLi, Et2O/tetrahydrofuran, −78◦C, 2 h; (ii) 7 NaBH4, EtOH, 0
◦C, 1 h; (iii) dry

N,N-dimethylformamide, NaCl, N2, 0
◦C, 10min, methyl iodide, stirring 1 h at 25◦C; (iv) platinum dioxide, HCl, MeOH, H2; (v) triethylamine, di-tert-butyl decarbonate

dissolved in tetrahydrofuran at 0◦C, stirring at room temperature overnight; (vi) 2M HCl, 30◦C, 48 h. (C) Design of target compounds. (D) Structure of compounds

II-7a, II-7a′, II-7b, II-7b′, II-7c, II-7c′, II-7d, II-7d′, YS-7a, YS-7a′, and YS-7b (a–d).
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heat-inactivated fetal bovine serum (FBS, HyClone) at 37◦C and
5% CO2.

Antibodies and Reagents
The antibodies and reagents included β-actin (AC026, ABclonal),
MDR1 (22336-1-AP, proteintech), Anti-rabbit IgG (H+L)
(Biotinylated Antibody #14708, Cell Signaling Technology),
Anti-mouse IgG (H+L) (Biotinylated Antibody #14709, Cell
Signaling Technology).

Rhodamine-123 (Rho-123) Accumulation
Intracellular fluorescence intensity was measured by Flow
Cytometry (Wang et al., 2000). Cells in the exponential growth
phase were seeded in 12-well plates, with about 104 cells per
well. After a 24 h incubation at 37◦C in a 5% CO2, cells were
treated with various concentrations of candidate compounds
and verapamil (VP) for 4 h. Then 1µg/mL Rhodamine-123
(Rho-123) was added directly to the cells. Additional incubation
for 1 h at 37◦C protected from light, the cells were harvested
and immediately detected by flow cytometric (BD) at an
excitation wavelength of 488 nm and emission wavelength
of 530 nm. The results were calculated by GraphPad Prism
6.0 software.

Cell Proliferation Assays in vitro
The inhibition of the compounds on the growth of cancer
cells KB/VCR and KB or human leukemia cell line K562/ADR
and K562 cells were estimated by the 3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT).
Cells were plated in 96-well-plates, with about 1–2 × 103

cells per well. After 24 h, cells were incubated with various
concentrations of compounds and verapamil (VP) for 72 h.
MTT was added directly to the cells, and incubated for a
further 4 h at 37◦C protected from light. Finally, the absorbance
at 490 nm was read on a microplate reader (Thermo Fisher
Scientific). Experiments were conducted in triplicate at least
and repeated three times independently. The inhibition rate
was calculated as follows (Wei et al., 2019): inhibition rate
(%) = (1– absorbance of the treated group/absorbance of
the control group) × 100%. The reversing tumor resistance
fold (RF) in resistance cancer cells = IC50 (concentration
at half-maximum inhibition) of single chemotherapeutic
drug/IC50 of chemotherapeutic drug combined
with YS-7a.

siRNA Treatment
All siRNA fragments were synthesized by GenePharma
(Shanghai, China). Cells in the logarithmic growth phase
were seeded in 6-well-plates, with about 5–6 × 105 cells per
well. Once the cells attached (often 8 h later), the medium
with 10% FBS was replaced by fresh serum-free medium
containing different siRNA for 6–8 h. The sequence of siRNA are
as follows:

Negative Control 5′-UUCUCCGAACGUGUCACGUTT-3′

5′-ACGUGACACGUUCGGAGAATT-3′

MDR1-homo-824 5′-GACCAGGUAUGCCUAUUAUTT-3′

5′-AUAAUAGGCAUACCUGGUCTT-3′

MDR1-homo-2187 5′-GCGAAGCAGUGGUUCAGGUTT-3′

5′-ACCUGAACCACUGCUUCGCTT-3′

MDR1-homo-3323 5′-CACCCAGGCAAUGAUGUAUTT-3′

5′-AUACAUCAUUGCCUGGGUGTT-3′.

The medium should then be changed to fresh medium with
10% FBS for a further 24 h. Cells were used to evaluate the
effectiveness of knockdown and the cytotoxicity effects; methods
were the same as cell proliferation assays in vitro. The reversing
tumor resistance fold (RF) in P-gp knockdown cancer cells =

IC50 of single chemotherapeutic drug in P-gp knockdown cancer
cells/IC50 of chemotherapeutic drug combined with YS-7a in
P-gp knockdown cancer cells.

RT-qPCR Assays
The expression of the relative genes of cells was detected by RT-
qPCR as reported (Hou et al., 2018b). The total RNA was isolated
with the TRIzol R© Reagent (Vazyme) and then reverse transcribed
with the HiScriptTM QRT SuperMix for qPCR (Vazyme). The
mRNA level was measured using the SYBR Green master mix
(Vazyme). The β-actin mRNA served as the control. Primer
sequences used for qRT-PCR were as follows:

β-actin 5′-GGACTTCGAGCAAGAGATGG-3′ (forward)
5′- AGCACTGTGTTGGCGTACAG-3′ (reverse)

MDR1 5′-GGAGCCTACTTGGTGGCACATAA-3′(forward)
5′-TGGCATAGTCAGGAGCAAATGAAC-3′ (reverse).

Western Blot
The expression of the MDR1 protein was analyzed by Western
Blot assays. After being treated with compounds, cells were
harvested and lysed, the total protein concentrations were
consistent according to the BCA kit (Beyotime Biotechnology,
China). Protein lysates (20–30 µg protein per lane) were
separated by 8% SDS-PAGE, and then the PVDF membranes
were incubated with primary antibodies and second antibodies.
The results were quantified by image analyzer (Bio-Rad, USA).
The expression of β-actin was used as the control.

P-gp ATPase Activity Assays
The P-gp ATPase activity was tested by Pgp-GloTM Assay Systems
(Promega). The impact of candidate compounds on P-gp ATPase
activity were examined by comparing untreated samples and
samples treated with Na3VO4 (sodium orthovanadate). The
compounds could be assessed as stimulating, inhibiting, or
having no effect on basal P-gp ATPase activity.

Molecular Docking
Schrödinger was used for the molecular modeling studies as we
have used before (Hou et al., 2018a). The crystal structure of the
P-gp (PDB ID: 3WME) was prepared using Protein Preparation
Wizard. The structure of compounds YS-7a were prepared
using ChemBioDraw Ultra 13.0. The calculation was performed
based on the force field OPLS (optimized potentials for liquid
simulations) 2005 selecting water as the solvent. The following
structure was obtained from the result of 1,000 calculation cycles.

CYP3A4 Activity Assays
The effect of the candidate compounds against CYP3A4 activity
was performed by P450-GloTM CYP3A4 Assay (Luciferin-
IPA) Cell-Based/Biochemical Assay (Promega). The expression
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of the CYP3A4 gene of HepG2 cells could be induced by
25µM rifampicin. Cells were typically exposed for 24–72 h.
The cells were then treated with various concentrations of test
compounds for 72 h. Ketoconazole was used as the positive
group. Finally, the P450-GloTM CYP3A4 Assay (Luciferin-IPA)
Cell-Based/Biochemical Assay (Promega) was added to pyrolysis,
the treated HepG2 cells, and the fluorescence was detected
by SoftMax Pro 6.1 (Beckman counter). The relative CYP3A4
activity was estimated as the formula: (the fluorescence of
YS-7a treated/YS-7a treated HepG2 cells)/(the fluorescence of
control/control HepG2 cells).

In vivo Experiments
Female BALB/c mice aged 4–6 weeks and weighing 18–20 g were
purchased by the Model Animal Research Center of Nanjing
University (Nanjing, China). KB/VCR cells (2 × 106) were
transplanted to establish the subcutaneous xenograft model.
Intraperitoneal administration once the tumor volume (TV)
reached 100 mm3, all the mice could be divided into six groups:
the normal group (saline, 0.2 ml/kg), single chemotherapy drug
group (VCR 0.5 mg/kg), positive drug single group (VP 10
mg/kg), single YS-7a group (YS-7a 10 mg/kg), positive drug
group (VP 10 mg/kg+ VCR 0.5 mg/kg), and the combination
YS-7a group (YS-7a 10 mg/kg + VCR 0.5 mg/kg). All the drugs
were given by intraperitoneal injection every 3 days. After 24
days, all the animals were sacrificed and the final tumor obtained
to calculate the relative tumor volume (RTV). TV and RTV
were calculated as follows: TV (mm3) = ½ × A × B2, where
A represents the longest diameter of tumor, B represents the
shortest diameter. RTV = V24/V0, V24 represents the TV of day
24, and V0 represents the TV of day 0. Additionally, all of the
final tumors were weighted, and the weight loss ratio counted.
The weight loss ratio (%) = M24(drugtreated)/M24∗

(control)
100%. In

this study, animal administration was guided by the Animal Care
and Control Committee of the China Pharmaceutical University.

Statistical Analysis
All results are shown as the mean± S.D of triplicate experiments.
One-way ANOVA or the student’s t-test was performed for the
statistical analysis using the GraphPad Prism 5.0 software as
previously reported (Du et al., 2018). All comparisons are made
relative to the untreated controls. ∗P < 0.05 was considered
statistically significant; ∗∗P < 0.01 and ∗∗∗P < 0.001 was
considered very statistically significant.

RESULTS

Design Novel Derivatives With Potent

Reversal Activity
The natural compound NSC23925 contains a quinoline structure
with one benzene ring and two chiral carbons in the side
chain (Figure 1A). Based on the structural mode, we designed
and obtained some derivatives II-7a-a′, II-7b-b′, II-7c-c′, II-
7d-d′, YS-7a-a′, and YS-7b by changing the substituent on
benzene ring in the side chain and replacing piperidine with
tetrahydropyrrole (compound II-7) or replacing -OHwith -OMe
(compound YS-7) (Figure 1A). Each compound was purified

by column chromatography and the purity of compounds
was evaluated using high-performance liquid chromatography
(HPLC) (Table S1, Figures S1–S11).

The general procedure for the synthesis of the compounds
shown in Figures 1B,C is as follows: 2-(4-R-Phenyl)quinoline-4-
carboxylic acid (II-3) was prepared from 4-R-1-phenyl ethenone
(II-1) and indoline-2,3-dione (II-2) (yield: 80–82%), and was
then esterified to afford methyl-2-(4-R-phenyl)quinoline-4-
carboxylate (II-4 or YS-1) (yield: 80–88%). Using n-BuLi
as a base, 2-bromopyrrole or 2-bromopyridine was reacted
with (II-4 or YS-1) to give (2-(4-R-phenyl)quinolin-4-
yl)(pyrrole-2-yl)-methanone (II-5) (yield: 20–25%) and
(2-(4-R-phenyl)quinolin-4-yl)(pyridin-2-yl)-methanone (YS-
2) (yield: 80–85%). Subsequent reduction of II-5 or YS-2

by NaBH4 afforded 2-(4-R-phenyl) (quinolin-4-yl)(pyridin-
2-yl)methanol (II-6) (yield: 87–96%) and 2-(4-R-phenyl)
(quinolin-4-yl)(pyridin-2-yl)methanol (YS-3) (yield: 90–98%).
II-6 was separated by column chromatography to obtain a
pair of diastereomers II-6 (a, a′-d, d′) that could be separated
based on polarity; the less polar compound was named II-6

(a-d) and the more polar was named II-6 (a′-d′). Methyl iodide
was used as a methyl donor to produce methyl-2-(4-R-phenyl)
(quinolin-4-yl)(pyridin-2-yl)methyl ether (YS-4) (yield: 85%).
We then performed a reduction reaction of YS-4 by hydrogen
to produce 2-(hydroxy(2-(4-R-phenyl) quinolin-4-yl) methyl)
piperidine-1-carboxylic acid tert-butyl ester (YS-5) (yield: 95%).
A triethylamine and di-tert-butyl decarbonate reaction with
YS-5 was used to produce YS-6, after which YS-6 was separated
by column chromatography to obtain a pair of diastereomers that
could be separated based on polarity; the less polar compound
was named YS-6 (a or b) and the more polar was named YS-6

(a′ or b′) (yield: 75%). The deprotection reaction of II-6 or YS-6
was performed and finally solid washed with dichloromethane
to yield the corresponding diastereomer II-7 (a, a′-d, d′) and
YS-7 (a, a′ or b).

Based on a previous study of the Erythro/Threo configuration
of phenyl 2-piperidylcarbinols by NMR, after knowing its
absolute configuration (Lapidus and Fauley, 1971; Solladié-
Cavallo et al., 2003), the 3J-erythro and 3J-threo in the CH(OH)-
CH(NH) systems were different, always showing 3J-erythro(RS,
SR) <

3J-threo(RR, SS). Therefore, 1H NMR was applied to
determine the structure of these compounds. By analyzing
these data, we found that the low polarity compounds (II-
7a,7b,7c) could belong to etythro (RS, SR) isomer, and the
highly polar compounds (II-7a’,7b’,7c’) belong to threo (RR,
SS) isomer. Therefore, we inferred that YS-7a and YS-7b (the
lower polarity) belongs to etythro (RS, SR) isomer compounds,
and YS-7a’ belongs to the threo (RR, SS) isomer compound
(Figure 1D). All NMR spectra of these compounds are provided
in Figures S12–S55. After obtaining these 11 compounds, the
reversal activities were measured.

Screening of Novel P-gp Inhibitors in MDR

Cells
We evaluated the cancer MDR reversal activities of the candidate
compounds. First, quantitative reverse transcription PCR and
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Western blotting were performed to characterize the resistance
of the KB/VCR and K562/ADR cell lines (Figures 2A–F). P-
gp expression was increased at both the mRNA and protein
levels. MDR of KB/VCR and K562/ADR cells was detected
based on the half-maximal inhibitory concentration (IC50) using
the MTT assay. KB/VCR cells (IC50 = 0.8294 ± 0.241µM)
showed a 46.8-fold greater resistance to VCR than KB cells
(IC50 = 0.01770 ± 0.094µM), whereas K562/ADR cells (IC50 =

6.919 ± 0.01992µM) showed a 347.3-fold greater resistance to
adriamycin (ADR) than K562 cells (IC50 = 0.01992± 0.008µM).
Because the resistance of cancer cells decreased in the absence
of chemotherapy drugs, compounds at a dose below the 20%
inhibition concentration (0.1µM VCR in KB/VCR cells; 3µM
ADR in K562/ADR cells) were co-incubated during the entire
process. These findings supported the use of KB/VCR and
K562/ADR cells for subsequent experimentation.

After confirming the overexpression of P-gp in MDR cancer
cells, we detected the intracellular accumulation of Rho123 to
screen for potential novel P-gp inhibitors and to assess P-gp
inhibition. Rho123 was added to KB and KB/VCR cells at a
final concentration of 5µM for 1 h; 10µM VP in KB/VCR cells
were used as the positive control. The intracellular concentration
of Rho123 decreased significantly in KB/VCR cells, which was
reversed by VP (Figure 2G). Subsequently, II-7a, II-7a′, II-
7b, II-7b′, II-7c, II-7c′, II-7d, II-7d′, YS-7a, YS-7a′, and YS-7b
were evaluated by flow cytometry for their capacity to inhibit
Rho123 efflux. Among the candidate compounds, the low-
polarity compounds YS-7a (fold change= 82.19± 17.79) and YS-
7b (65.85 ± 10.04) showed the greatest degree of Rho123 efflux
inhibition, compared to VP (9.79 ± 0.70) and NSC23925 (40.53
± 0.49) (Figure 2H), suggesting that they can potently reverse
MDR. Further characterization was performed to measure their
reversal efficiency in vitro.

Structure–Activity Relationship
Next, we investigated the structure–activity relationship (SAR) of
the candidate compounds (Table 1). The low-polarity compound
II-7b, which substituted piperidine for tetrahydropyrrole,
showed significantly decreased activity compared to the parent
compound. Changing the substituent on the benzene ring in the
side chain with an electron-donating or electron-withdrawing
group resulted in compounds II-7a-a′ (R1: -Me), II-7c-c′ (R1: -
CF3), and II-7d-d′ (R1: -F); these compounds did not improve
the efflux of intracellular Rho123. Among these eight compounds
(i.e., II-7a-a′ to d-d′), higher polarity damaged the activity.

Based on these results, we focused on the replacement of -
OH with -OMe in the chiral carbons. The addition of a methoxy
group in chiral carbons (YS-7b) promoted the activity, suggesting
that reducing the polarity of the molecule and hydrogen bonding
are beneficial to its activity. Interestingly, YS-7a, with an
electron-donating methyl substitution, was more potent (fold
change = 82.19 ± 17.79) than NSC23925, whereas the high-
polarity compound YS-7a′ (38.42 ± 25.09) showed no obvious
improvement in activity. Considering the bioactivity and polarity
of the compounds, we selected compounds YS-7a and YS-7b for
further characterization.

In vitro Drug Resistance Reversal Effects

of YS-7a and YS-7b
As potential P-gp inhibitors, YS-7a and YS-7b may reverse
the resistance to chemotherapy drugs. Before testing YS-
7a and YS-7b in combination with chemotherapy drugs,
the antiproliferation effects of YS-7a and YS-7b were
measured using the MTT assay. A concentration with
low antiproliferation effects (<20% inhibition) was used
to evaluate their MDR reversal effects (Figures 3A,B).
In both KB/VCR and K562/ADR cells, 10µM YS-7a,
2.5µM YS-7b, and 2.5µM VP were selected as the
low-toxicity dose.

The drug resistance reversal effects of YS-7a and YS-7b were
measured in combination with chemotherapy drugs based on
cytotoxicity. Series concentrations of the chemotherapy drugs
VCR and doxorubicin (ADR) were applied individually to
explore the reversal effects of YS-7a and YS-7b. YS-7a exerted
powerful reversal activity compared to the classical P-gp inhibitor
VP in both KB/VCR and K562/ADR cells (Figures 3C,D).
The IC50 values of the combined YS-7a + chemotherapy
drug in drug-resistant KB/VCR and K562/ADR cells were
0.0376 ± 0.0116µM and 0.268 ± 0.053µM, respectively,
whereas the IC50 values of the chemotherapy drugs in drug-
sensitive KB and K562 cells were 0.435 ± 0.286µM and
6.571 ± 1.758µM, respectively; therefore, YS-7a showed a
10.11 ± 3.51 and 30.59 ± 5.83 reversal of drug resistance
in KB/VCR and K562/ADR cells, respectively. Meanwhile, the
IC50 values of the combined YS-7b + chemotherapy drug
in drug-resistant KB/VCR and K562/ADR cells were 0.0561
± 0.0390µM and 0.616 ± 0.185µM, respectively, whereas
the IC50 values of the chemotherapy drugs in drug-sensitive
KB and K562 cells were 0.375 ± 0.246µM and 6.571 ±

1.758µM, respectively; therefore, YS-7b showed a 6.92 ± 0.55
and 10.79 ± 0.87 reversal of drug resistance in KB/VCR
and K562/ADR cells, respectively. Overall, YS-7a showed a
significantly better drug resistance reversal effect in MDR
cells and was selected for further experimentation of its
reversal capabilities.

P-gp May Be a Target of YS-7a
Although YS-7a was screened for its potent reversal effect in
MDR cancer cells, it remained unclear whether it targeted
P-gp. To clarify this, knockdown of P-gp was implemented
by three siMDR1 fragments. siMDR1-2 and siMDR1-3 were
chosen for further experiments, both of which downregulated
P-gp mRNA and protein levels in KB/VCR and K562/ADR
cells (Figures 4A–D). Knockdown by siMDR1-2 and siMDR1-
3 decreased P-gp transporter function (Figures 4E,F). After
knockdown of P-gp, the drug resistance reversal potency of YS-
7a decreased from 16.12- to 1.57-fold (siMDR1-2) and 1.63-
fold (siMDR1-3) in KB/VCR cells, whereas that of VP decreased
from 6.26- to 1.56-fold (siMDR1-2) and 1.63-fold (siMDR1-3)
(Figure 4G). In other words, the reversal effect of YS-7a almost
entirely disappeared after P-gp knockdown. Altogether, these
results show that the drug resistance reversal effect of YS-7a relies
on P-gp.
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FIGURE 2 | Drug resistance of the KB/VCR and K562/ADR cell lines and screening for novel P-gp inhibitors. (A,B) Expression of P-gp mRNA in KB, KB/VCR, K562,

and K562/ADR cells. (C,D) Expression of P-gp protein in KB, KB/VCR, K562, and K562/ADR cells. (E,F) The IC50 was determined after exposure to a series

concentration of chemotherapy drugs (VCR or ADR) in KB, KB/VCR, K562, and K562/ADR cells for 72 h, and were measured using the MTT assay. (G) Intracellular

content of Rho123 in KB cells, KB/VCR cells, and KB/VCR cells exposed to 10µM VP for 4 h. (H) Flow cytometry was used to screen compounds that exhibited

strong P-gp inhibition after incubation for 4 h; YS-7a and YS-7b resulted in more than 50 times accumulation of Rho123, and were chosen for further study. All

experiments were repeated at least three times. **P < 0.01 and ***P < 0.001.

YS-7a Does Not Affect P-gp Expression

but Directly Inhibits Transport Function
MDR cells often exhibit overactivated or overexpressed P-gp
and abnormal P-gp ATPase activity. To explore the specific
mechanisms of YS-7a, flow cytometry was performed to monitor
the function of P-gp transporters via Rho123 efflux. Treatment of

KB/VCR cells with 10µMYS-7a resulted in a significant increase
compared to the group treated with 2.5µMVP (positive control)

(Figure 5A). Consistent results were obtained in K562/ADR cells

(Figure 5B). However, YS-7a did not affect P-gp mRNA and
protein levels in KB/VCR and K562/ADR cells (Figures 5C–E).

These results showed that YS-7a inhibited P-gp function, but
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TABLE 1 | SAR study of novel quinoline compounds.

Structure tR(min) /HPLC Fold change of

intracellular

Rho123 (FC)

Compound -R1 -R2 -R3

NSC23925 -OMe -OH 36.50 ± 5.20

II-7a -Me -OH Etythro (RS, SR) isomer tR = 19.23min

96.61%

31.35 ± 16.05

II-7a′ Threo (RR, SS) isomer tR = 19.718min

95.66%

12.94 ± 8.72

II-7b -OMe Etythro (RS, SR) isomer tR = 19.068min

96.17%

23 ± 6.13

II-7b′ Threo (RR, SS) isomer tR = 19.488min

95.10%

9.16 ± 4.66

II-7c -CF3 Etythro (RS, SR) isomer tR = 10.917min

97.35%

4.15 ± 1.96

II-7c′ Threo (RR, SS) isomer tR = 13.772min

95.03%

1.04 ± 0.01

II-7d -F Etythro (RS, SR) isomer tR = 9.931min

95.70%

23.79 ± 11.86

II-7d′ Threo (RR, SS) isomer tR = 12.429min

95.00%

4.63 ± 3.57

YS-7a -Me -OMe Etythro (RS, SR) isomer tR = 18.222min

96.33%

86.43 ± 22.92

YS-7-a′ Threo (RR, SS) isomer tR = 19.923min

96.93%

38.42 ± 25.09

YS-7b -OMe Etythro (RS, SR) isomer tR = 19.409min

97.22%

65.85 ± 10.04

not expression. We further measured P-gp ATPase activity in

the presence of YS-7a using the Pgp-Glo
TM

Assay Systems Kit

(Promega; Madison, WI, USA), and found that YS-7a stimulated

P-gp ATPase activity in a dose-dependent manner (Figure 5F).
These results demonstrate that YS-7a may inhibit the P-gp
substrate binding site in a similar manner as VP.

To explore the involvement of P-gp as a therapeutic target

of YS-7a, we performed molecular docking experiments of YS-

7a with P-gp (PDB: 3WME). The binding energies for all YS-

7a poses were −11.3 kcal/mol, indicating that YS-7a could
strongly bind to P-gp. Our results also showed that YS-7a
formed six hydrophobic interactions with residues SER270,
VAL273, VAL274, ILE354, VAL357, and PHE390 (Figure 5G).
Based on these observations, YS-7a can directly bind to the

functional domains of P-gp. Altogether, YS-7a may suppress
the P-gp transport function without affecting its expression, by
stimulating the ATPase activity of P-gp by directly binding to the
six probable sites instead.

YS-7a Has No Effect on CYP3A4 Activity

and Little Toxicity Toward Normal Cells
P-gp inhibitors, such as PSC-833 (Boesch et al., 1991; Kusunoki
et al., 2010), can inhibit CYP3A4 activity, resulting in
complicated drug–drug interactions and unexpected side effects;
the ensuing toxicity can lead to failure of the final inhibitor
clinical trial. To explore the potential for drug–drug interactions,
we measured CYP3A4 activity after treatment with YS-7a. The
results showed that YS-7a had no effect on CYP3A4 activity, even
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FIGURE 3 | Cytotoxicity and reversal effect of the candidate compounds YS-7a and YS-7b in KB/VCR and K562/ADR cells. The compounds were diluted to four

concentrations, 1, 2.5, 5, and 10µM, and cytotoxicity was evaluated after 72 h using the MTT assay in (A) KB/VCR and (B) K562/ADR cells. (C) Combined treatment

of 10µM YS-7a and 2.5µM YS-7b with a series of VCR concentrations in KB/VCR cells for 72 h. (D) Combined treatment of 10µM YS-7a and 2.5µM YS-7b with a

series of ADR concentrations in K562/ADR cells for 72 h. The data shown represent the mean ± SD of three independent experiments.

at high doses (100µM) (Figure 6A). Thus, YS-7a may not have
drug metabolism interactions.

Drugs can also show toxicity to vascular endothelial cells
after entering the blood circulation (Cao et al., 2017). Thus, we
evaluated the potential toxicity of YS-7a in human umbilical vein
endothelial cells (HUVECs). The IC50 of YS-7a in HUVECs was
45.33 ± 2.55µM (Figure 6B), suggesting that YS-7a (10µM)
has low potential for toxicity at concentrations used to reverse
drug resistance. These results support the application of YS-7a
as a novel potent P-gp inhibitor that can inhibit its transporter
functions without undesirable side effects on CYP3A4 activity or
endothelial cell toxicity.

In vivo Drug Resistance Reversal Effect of

YS-7a
The mechanism and potential toxicity of YS-7a was confirmed in
vitro. However, whether YS-7a reverses MDR in vivo remained
unclear. Thus, we performed an in vivo xenograft experiment to
evaluate the reversal effect of YS-7a (Figure 7). When combined
with 0.5 mg/kg VCR, YS-7a at a dose of 10 mg/kg showed
tumor growth inhibition of approximately 50.11%, while the
single 10 mg/kg YS-7a group and single VCR group showed
poor inhibition rates. Simultaneously, no YS-7a groups showed
a decrease in mouse weight, indicating that YS-7a may have

minimal toxicity in vivo. These findings indicate that YS-7a can
reverse MDR in vivo with minimal potential toxicity.

DISCUSSION

To combat MDR cancer, the development of novel P-gp

inhibitors is important, and most P-gp inhibitors are in
preclinical or clinical trials. In this study, we synthesized 11 novel

quinoline compounds, which could be divided into low-polarity

(II-7a, II-7b, II-7c, II-7d, YS-7a, and YS-7b) and high-polarity

(II-7a′, II-7b′, II-7c′, II-7d′, and YS-7a′) groups based on HPLC.
Among these, YS-7a had the best MDR reversal effect in vitro,
showing a reversal effect of over 10-fold in KB/VCR cells and over
30-fold in K562/ADR cells at low-toxicity concentrations.

We confirmed that YS-7a directly inhibited the transporter

function of P-gp without affecting its expression, stimulating
P-gp ATPase activity in a dose-dependent manner instead.

Furthermore, YS-7a did not inhibit CYP3A4 activity and showed

little cytotoxicity toward HUVECs at a concentration of 10µM.
In the KB/VCR xenograft model, 10 mg/kg YS-7a combined

with 0.5 mg/kg VCR showed significant differences in tumor
volumes compared to the control, with an average tumor growth
inhibition exceeding 50%. These findings support YS-7a as a
novel P-gp inhibitor, and can provide a reference for the design
and development of additional P-gp inhibitors.
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FIGURE 4 | Confirmation of the target of YS-7a in MDR cells. The expression of P-45 gp mRNA and protein in MDR1 knockdown (A,C) KB/VCR cells and (B,D)

K562/ADR cells. Changes in P-gp transporter function in MDR1 knockdown (E) KB/VCR cells and (F) K562/ADR cells. (G) The target of YS-7a was verified through

the fold change in drug resistance reversal in KB/VCR cells using the MTT assay after MDR1 knockdown. All results were repeated at least three times. *P < 0.05,

**P < 0.01, and ***P < 0.001.

P-gp inhibitors are generally classified based on their
inhibition mechanism: inhibiting the substrate binding site,
interfering with ATP hydrolysis, or altering the integrity or
fluidity of cell membrane lipids, which inhibits P-gp structural
transformation (Shapiro and Ling, 1997; Varma et al., 2003; Drori
et al., 2010). Most P-gp inhibitors inhibit the substrate binding
site. Based on these reports, we screened P-gp inhibitors by
performing Rho123 efflux experiments (Figure 3). Furthermore,
MDR cancer cells show overexpression or excessive activation of

P-gp, and P-gp inhibitors may inhibit the expression or function

of P-gp (Silva et al., 2015). Therefore, the effects of YS-7a on
P-gp function and expression were measured (Figure 5). Our

results showed that YS-7a suppressed P-gp transport function
without affecting its expression. In addition, P-gp ATPase activity
is affected by various drug resistance regulators, such as VP
(Sharom et al., 1995). The YS-7a inhibition effect of P-gp ATPase
was reflected by ATP consumption measurement using the P-gp-

Glo
TM

Assay Systems Kit (Figure 5F). Our results suggest that
YS-7a inhibits the P-gp substrate binding site, similar to VP;
however, further studies are required to verify its mechanism
of action.

P-gp and CYP3A4 play important roles in reducing
intracellular concentrations of xenobiotics and drug absorption
through their respective roles in xenobiotic excretion and
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FIGURE 5 | Mechanism of P-gp inhibition by YS-7a. Intracellular accumulation of Rho123 in (A) KB/VCR and (B) K562/ADR cells after exposure to YS-7a. Effect of

YS-7a on the expression of P-gp (C,D) mRNA and (E) protein in KB/VCR and K562/ADR cells. (F) Effect of YS-7a on P-gp ATPase activity after different drug

concentrations were incubated with recombinant P-gp protein; VP was used as the positive control and basal activity as the negative control. (G) Molecular docking of

YS-7a with P-gp (3WME); the yellow amino acid residues represent a distance of 1 angstrom or less, ***P < 0.001.
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FIGURE 6 | Potential toxicity of YS-7a in vitro. (A) Effect of different concentrations of YS-7a on CYP3A4 activity. (B) The 72-h cytotoxicity of YS-7a in HUVECs

measured using the MTT assay. All experiments were repeated at least three times. *P < 0.05, **P < 0.01, and ***P < 0.001.

FIGURE 7 | In vivo drug resistance reversal effect of YS-7a in KB/VCR xenograft nude mice. (A) The weight of KB/VCR xenograft nude mice in all groups after

treatment for 24 days. (B) The relative tumor volume of KB/VCR xenograft nude mice in all treatment groups after 24 days. (C) Images of tumors from the KB/VCR

xenograft nude mice in every treatment group. (D) Tumor inhibition rate in every treatment group after 24 days, *P < 0.05.
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metabolism. P-gp and CYP3A4 work in coordination,
given their co-localization in intestinal epithelial tissue and
similarly overlapping substrates (Watkins, 1997; Katoh et al.,
2001; Oliver et al., 2004). Several studies have reported
that P-gp inhibitors inhibit CYP3A4, leading to unexpected
toxicity (Wacher et al., 1998; Mathias et al., 2015). To
predict potential drug–drug interactions, we measured the
inhibitory effects of YS-7a on CYP3A4 activity (Figure 6). Our
results suggested that YS-7a did not inhibit CYP3A4 activity.
Therefore, YS-7a may have fewer side effects than PSC-833
and dexverapamil.

As shown in vitro (Figures 3–6), the novel P-gp inhibitor YS-
7a showed superior reversal effects compared to VP by binding
directly to P-gp. However, confirming whether YS-7a binds at
the sites predicted by molecular docking, requires further study.
Various methods, such as mutating the corresponding sites or
radioisotope tracing (Hrycyna et al., 1999; Tsujimura et al., 2008),
could be applied. In vivo, the drug resistance reversal effect
of YS-7a was relatively low (about 50%). However, YS-7a at a
dose of 10 mg/kg did not significantly decrease mouse body
weight, suggestive of little-to-no toxicity or side effects. Thus,
YS-7a may exhibit better reversal effects at higher doses. Many
reports (Krepler et al., 2016; Vaidhyanathan et al., 2016) have
shown that the patient-derived xenograft (PDX) model is ideal to
evaluate the efficiency and toxicity of small-molecule inhibitors
in vivo. Therefore, future studies should apply the PDX model
to confirm the drug resistance reversal effect of YS-7a. Moreover,
the pharmacokinetics of YS-7a should be explored to investigate
its potential therapeutic mechanism in future studies.

CONCLUSIONS

We obtained a novel potent quinoline P-gp inhibitor derived
from NSC23925, which showed a cancer MDR reversal effect
both in vitro and in vivo. First, 11 novel quinoline compounds
were synthesized, and potential P-gp inhibitors were screened
using the classic screening model. YS-7a showed a significant

inhibition effect against cellular Rho123 efflux. TheMDR reversal
effect and potential mechanisms of YS-7a were verified in

vitro. YS-7a suppressed the P-gp transport function without
affecting its expression, by stimulating the ATPase activity of P-
gp in a dose-dependent manner instead. In addition, potential

binding sites were predicted based on molecular docking.
Finally, in vitro experiments support the low toxicity of YS-
7a and the MDR reversal effect of YS-7a was verified in a
KB/VCR cancer xenograft model with minimal toxicity. Overall,
these results suggest that YS-7a may be a potential candidate
compound for the development for new agents to reverse
cancer MDR.
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Rational drug design implies usage of molecular modeling techniques such as

pharmacophore modeling, molecular dynamics, virtual screening, andmolecular docking

to explain the activity of biomolecules, define molecular determinants for interaction with

the drug target, and design more efficient drug candidates. Kinases play an essential role

in cell function and therefore are extensively studied targets in drug design and discovery.

Kinase inhibitors are clinically very important and widely used antineoplastic drugs. In

this review, computational methods used in rational drug design of kinase inhibitors are

discussed and compared, considering some representative case studies.

Keywords: kinase inhibitors, rational drug design, molecular modeling, drug discovery, pharmacophore

KINASES AS TARGETS FOR DEVELOPING ANTICANCER DRUGS

Kinases belong to a large family of enzymes that catalyze transfer of high energy phosphate
group from adenosine triphosphate (ATP) to substrates, such as proteins (the protein-tyrosine
kinases, the serine-threonine specific kinases), lipids (phosphatidylinositol kinases, sphingosine
kinases), carbohydrates, and nucleic acids (Duong-Ly and Peterson, 2013). Phosphorylation of
the substrate modulates its activity and/or interaction with other molecules leading to different
physiological responses. It is estimated that 50% of all proteins are constantly undergoing reversible
phosphorylation and dephosphorylation, which emphasizes the role of protein kinases in almost
all aspects of cell function, including proliferation, cell growth, apoptosis, and signal transduction
(Graves and Krebs, 1999; Manning et al., 2002).

Dysregulated, overexpressed, or mutated protein kinases are found in many diseases, including
cancer, and over the past two decades they became extensively examined targets for the
development of new antineoplastic drugs (Blume-Jensen and Hunter, 2001; Cohen, 2002). There
are 53 kinase inhibitors (KIs) currently approved by the FDA (FDA, 2019), while over 200 potential
inhibitors are in different phases of clinical trials worldwide (Carles et al., 2018). Majority of the
approved drugs are orally active and effective against various malignancies (Table 1; Roskoski,
2019a,b).

Structures of the selected KIs commonly used for treatment of cancer are shown in Figure 1.
These drugs target different protein kinases that are frequently upregulated in cancer cells. The
epidermal growth factor receptor (EGFR) is a member of the ErbB family of tyrosine kinase
receptors that is overexpressed or mutated in non-small cell lung cancer and represents the primary
target for drugs such erlotinib and gefitinib (Bethune et al., 2010). Lapatinib and neratinib bind
to intracellular domain of the human epidermal growth factor receptor 2 (HER2/neu), another
member of the ErbB tyrosine kinases, which elevated levels are found in approximately 20–30%
of breast cancers (Collins et al., 2019). Imatinib possesses activity against non-receptor breakpoint
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cluster region (Bcr)-Abelson leukemia virus (Abl) tyrosine kinase
that is formed as a result of a chromosome rearrangement
and has been implicated in the pathogenesis of nearly all cases
of chronic myeloid leukemia (CML) and acute lymphoblastic
leukemia with the Philadelphia chromosome (Iqbal and Iqbal,
2014). Although imatinib is a relatively specific Bcr-Abl inhibitor,
it also inhibits the CD117 tyrosine kinase associated with
gastrointestinal stromal tumors and has consequently been
approved for this indication (Buchdunger et al., 2000). The
vascular endothelial growth factor family of receptors (VEGFR)
contains a tyrosine kinase domain which activation can lead to
induction of signaling pathways that regulate cell proliferation,
survival, and promotion of tumor angiogenesis (Morabito et al.,
2006). Agents that target VEGFR, including lenvatinib, sorafenib
and vandetanib, are frequently used for treatment of thyroid
cancers. Vemurafenib, dabrafenib, and encorafenib target BRAF,
a serine/threonine protein kinase which mutation is expressed

TABLE 1 | Therapeutic indications of selected FDA-approved protein kinase

inhibitors.

Therapeutic indication Drug

Breast cancer Everolimus, lapatinib, neratinib, palbociclib, ribociclib

Non-small cell lung cancer Afatinib, alectinib, brigatinib, ceritinib, crizotinib,

dabrafenib, dacomitinib, erlotinib, gefitinib, lorlatinib,

osimertinib

Leukemia Bosutinib, dasatinib, gilteritinib, ibrutinib, imatinib,

midostaurin, nilotinib, ponatinib

Melanoma Binimetinib, cobimetinib, dabrafenib, encorafenib,

trametinib, vemurafenib

Thyroid cancer Cabozantinib, lenvatinib, vandetanib

Renal cancer Axitinib, pazopanib, sorafenib, temsirolimus

Gastrointestinal cancer Regorafenib, sunitinib

FIGURE 1 | Structures of selected protein kinase inhibitors that have been approved for clinical use.

at about 50–60% of cutaneous melanomas where it leads
to continuous activation of mitogen-activated protein kinase
(MAPK) pathway and uncontrolled proliferation of cancer cells
(Yu et al., 2019).

Structure of Protein Kinases
The human genome encodes at least 518 protein kinases
(Manning et al., 2002). Out of them, 478 share highly conserved
catalytic domains. The remaining 40 do not share the sequence
similarity, but their folding is similar to the folding of “typical”
PKs (Caballero and Alzate-Morales, 2012). In 1991, Knighton
solved the X-ray structure of cyclic AMP-dependent PK and
described its structure for the first time. This description can
apply to all currently known protein kinases. The characteristic
architecture of the catalytic domain of PK consists of a small,
amino-terminal N-lobe and a large α-helical carboxy-terminal C-
lobe which are connected with a small hinge region (Figure 2;
Knighton et al., 1991). The N-terminal lobe is dominated by
five β-strands (β1–β5) and one conserved α-helix (helix C) that
occurs in active (αC-in) or inactive (αC-out) orientations. The
C-lobe consists of eight α-helices and four short conserved β-
strands (β6–β9) which include residues that participate in the
phosphorylation of protein substrates. The small and large lobes
form a catalytic cleft where ATP binds (Knighton et al., 1991;
Roskoski, 2019a). The hydrophobic residues of the cleft form a
binding pocket for ATP. The charged residues in the active site
bind and position the γ -phosphate of ATP and divalent cation
and take part in the catalysis (Knight et al., 2007).

Conserved residues play crucial roles in positioning
ATP, stabilizing the active-conformation and in the catalytic
mechanism, and they are mostly found in and around the active
site but also in other parts of the protein kinase domain (Knight
et al., 2007). Almost all protein kinases possess a conserved
K/E/D/D (Lys/Glu/Asp/Asp) signature that is important for the
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FIGURE 2 | The crystal structure of imatinib-bound form of the Abl kinase

(PDB accession code: 2HYY), colored as rainbow from N-lobe (blue) to C-lobe

(red). Imatinib is represented as ball and stick.

catalysis. Lysine and glutamic acid residues belong to the N-lobe,
and the two aspartic acid residues are found in the C-lobe. Lysine
residue binds to the α- and β-phosphates of ATP. Formation of
the salt bridge between the carboxylate group of aspartic acid
and the amino group of lysine stabilizes its interactions with the
α- and β-phosphates, and it is required for kinase activation
(Roskoski, 2015, 2019a,b).

The N-lobe contains a conserved flexible glycine-rich
GxGxxG motif (also called P-loop) between β1 and β2 that folds
over the nucleotide and places the γ -phosphate of ATP during
the catalysis (Taylor and Kornev, 2011). As mentioned above,
lysine from the β3-strand forms a salt bridge with the conserved
glutamate near the center of the protein-kinase αC-helix which
is necessary for the formation of the active enzyme, and this
structure corresponds to the “αC-in” conformation (Roskoski,
2015, 2019a,b).

The C-lobe is important for both the protein-substrate
binding as well as nucleotide binding (Roskoski, 2015). The C-
lobe contains a mobile activation loop of 20–30 residues which
can take open or closed conformation. The activation loop begins
with the DFG motif (Asp-Phe-Gly) and extends up to an APE
motif (Ala-Pro-Glu) (Modi and Dunbrack, 2019). In the active
conformation a divalent metal ion, Mg2+ (or sometimes Mn2+),
interacts with a highly conserved aspartic acid residue from the
DFG motif. It coordinates with the α and γ phosphates of ATP
and facilitates the phosphorylation and coordinates the ATP
binding (Adams, 2001). At the other end, glutamic acid fromAPE
motif is fixed by the formation of a salt bridge with arginine from
the C-lobe (Roskoski, 2015, 2019b). In addition to these, another
motif on the C-lobe is highly conserved suggesting it plays an
important role in the catalysis—HRD (rarely YRD) motif. The
aspartate residue of this motif is required for the orientation of
the hydroxyl group of the substrate peptide at the P-site and the

transfer of the phosphoryl group. Arginine residue interacts with
the phosphorylated activation segment thereby contributing to
its correct orientation. Histidine (or in rare cases tyrosine) is
considered to be involved in the maintenance of the conserved
rigid organization of the catalytic core (La Sala et al., 2016).

The main differences between tyrosine kinases and
serine/threonine kinases are found in the protein-substrate
binding site. In serine/threonine kinases, the phosphorylatable
serine or threonine of the protein substrate interacts with
backbone residues near the end of the activation segment. Basic
residues of the protein-substrate N-terminal interact with surface
acidic residues of the C-lobe. Additionally, peptide substrate is
fixed by serine in the glycine rich loop and lysine in the catalytic
loop and also to threonine in the P+1 loop. These three residues
are highly conserved in the majority of protein-serine/threonine
kinases, and they are positioning the target hydroxyl group of
a substrate in the catalytic cleft (near the γ -phosphate of ATP)
where the phosphotransfer reaction happens (P-site). Since
both serine and threonine hydroxyls are linked to the β-carbon,
they have similar mechanisms of the catalysis. On the other
hand, in tyrosine kinases, after DFG motif, there is a very stable
region that contains the three tyrosine phosphorylation sites.
The protein substrate chain positions in a manner that one
of the tyrosines is oriented with its hydroxyl group lying in
phosphorylation site P-site. The following tyrosine residue lies
in the P+1 site. Proline residue interacts with the tyrosyl residue
of the protein-substrate and is responsible for positioning the
P-site tyrosine in the phosphotransfer site. The tyrosine ring is
also positioned by Arg (Hubbard et al., 1994; Taylor et al., 1995;
Roskoski, 2015).

Moreover, many protein kinases are regulated by different
mechanisms such as dimerization, binding of allosteric effectors,
or other modifications important for subcellular localization
that can modulate their activity. Binding of an allosteric
modulator leads to conformational changes that mostly involve
structural reorganization of the activation loop, making it a
primary end point of allosteric regulation. Effectors or regulatory
subunits bind outside the catalytic site, causing the changes in
loop conformation through conformational changes of other
substructural elements. In most of the cases, regulators bind the
αC helix at different locations, allowing control of catalysis from
distal regions (Shi et al., 2006). Nevertheless, the αC helix is
not the only allosteric binding site, in fact, they are very diverse
(Figure 3; Ohren et al., 2004; Vanderpool et al., 2009; Jahnke
et al., 2010;Martin et al., 2012; Park et al., 2015; Rettenmaier et al.,
2015; Ung et al., 2018). Therefore, understanding the diversity of
allosteric regulatory sites among the kinase superfamily gives a
unique opportunity for the creation of novel selective allosteric
kinase antagonists (Lamba and Ghosh, 2012).

Active/Inactive States
Basically, protein kinases reside in one active state and
multiple inactive states (Figure 4). In active kinase conformation,
activation loop forms a cleft that binds the substrate. When the
substrate peptide binds, it interacts with the HRD motif (His-
Arg-Asp). Asp from the DFG motif binds a magnesium ion that
interacts directly with an oxygen atom of the β phosphate of
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FIGURE 3 | Diversity of allosteric binding pockets in different protein kinases. (A) ABL kinase in complex with fragment FRAG1 (PDB: 3MS9) (Jahnke et al., 2010); (B)

CDK2 in complex with 2 molecules of 8-anilino-1-naphthalene sulfonic acid (PBD: 4EZ7) (Martin et al., 2012); (C) CHK1 bound to allosteric inhibitor

(1S)-1-(1H-benzimidazol-2-yl)ethyl (3,4-dichlorophenyl)carbamate (PDB: 3JVR) (Vanderpool et al., 2009); (D) EGFR in complex with Mig6 protein (PDB: 4R3P) (Park

et al., 2015); (E) PDK1 with PIF pocket inhibitor RF4 (Rettenmaier et al., 2015); (F) MEK1 in complex with

5-bromo-N-(2,3-dihydroxyprpoxy)-3,4-difluoro-2-[(2fluoro-4-iodophenyl)amino]benzamide (PDB: 1S9J) (Ohren et al., 2004); (G) Sequence alignment of these kinases

showing which amino acids are involved in the binding of allosteric modulators.

ATP. This is followed by formation of a salt bridge between the
Glu from the C-helix with a Lys residue in the β3 strand. When
the salt bridge is formed, the lysine side chain forms hydrogen
bonds with oxygen atoms of α and β phosphates of ATP. The
Glycine-rich Loop of the N-lobe stabilizes the phosphates of the
bound ATP molecule during catalysis (Taylor and Kornev, 2011;
Modi and Dunbrack, 2019). In an inactive conformation, usually
the activation loop is blocking the substrate binding, and DFG
motif is incompatible with the binding ATP and magnesium ion

required for catalysis. Many attempts have been made in order
to achieve classification for these conformations and to study
interaction of inhibitors in different states (Mobitz, 2015; Ung
et al., 2018; Modi and Dunbrack, 2019), and they are all based
on the position of highly conserved DFG motif.

The most recent classification was published by Modi and
Dunbrack. They have divided kinase structures into three clusters
based on the spatial position of the DFG-Phe side chain into
DFG-in, DFG-out, andDFG-inter (intermediate) conformations.
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FIGURE 4 | Examples of inactive and active conformations of epidermal growth factor receptor (EGFR) kinase (PDB accession codes: 4HJO and 2GS6, respectively),

and their superimposition. The activation loop of inactive conformation (purple) is closed therefore blocking the substrate to enter catalytic loop, while activation loop in

active conformation (turquoise) is opened allowing the ATP to bind.

Each of these three clusters was further divided based on the
dihedral angles required to place the Phe side chain, resulting
in total of eight clusters: six for DFG-in and one cluster each
for the DFG-out and DFG-inter groups. DFG-in represents the
DFG motif orientations where DFG-Phe is packed against or
under the C-helix. It containsmany conformations, among all the
typical DFG-in active conformation belongs to this group. DFG-
out represents the structures where DFG-Phe is moved into the
ATP binding pocket. DFG-inter represents the conformations in
which the DFG-Phe side chain is out of the C-helix pocket but
has not moved completely to a DFG-out conformation. Usually
in this conformation DFG-Phe is pointing upward toward the β-
sheets while dividing the active site into two halves (Modi and
Dunbrack, 2019). This classification offers insight into active and
inactive kinase conformations which are of great importance in
structure-based design of kinase inhibitors.

Types of Kinase Inhibitors
Many reviewers have categorized KIs based on their binding
modes into three classes, labeled as types I, II, and III
kinase inhibitors (Roskoski, 2016; Bhullar et al., 2018). Type
I inhibitors, such as gefitinib, bind to the active DFG-in
conformation of a kinase in the phosphorylated ATP catalytic
site, and they usually contain a heterocycle that mimic the
purine ring of ATP. Considering that the ATP active site is
highly conserved among different protein kinases, these ATP-
competitive inhibitors display low selectivity profile which may
lead to off-target side effects. While the physiological relevance
of many off-target effects is still unclear, it was demonstrated
that the lack of selectivity is connected with preclinical and
clinical cardiotoxicity of kinase inhibitors (Force and Kolaja,
2011; Yang and Papoian, 2012). Possible mechanism behind
the KI induced cardiotoxicity lies in binding of these drugs to
colony-stimulating factor 1 receptor (CSF1R) (Hasinoff, 2010).
Type II inhibitors, such as imatinib, bind to the inactive (DFG-
out) conformation of a kinase in the unphosphorylated ATP

catalytic site (Dar and Shokat, 2011). Zuccotto introduced
type I½ inhibitors as compounds that bind to active ATP
catalytic site as type I inhibitors but elongate into the back
cavity of the ATP site giving rise to interactions specific
for type II pharmacophore. These inhibitors represented by
dasatinib, lapatinib, and vemurafenib, display higher selectivity
profile as compared to Type I KIs (Zuccotto et al., 2010).
Types III and IV are allosteric inhibitors that bind outside
the ATP-binding site. Type III includes trametinib that binds
to the allosteric site close to the ATP pocket, whereas Type
IV inhibitors bind to a pocket distant from the ATP-binding
site. Bivalent inhibitor spanning two regions of the protein
kinase is termed as Type V (Wong et al., 2017), while KIs
that form an irreversible covalent bond with the catalytic
site represent Type VI inhibitors (afatinib and ibrutinib)
(Roskoski, 2016).

Developing and Overcoming Resistance to

Kinase Inhibitors
Despite the significant advances achieved by the use of
protein kinase inhibitors, drug resistance remains one of the
greatest challenges toward successful cancer treatment. Various
mechanisms can underpin the development of resistance to
KIs, including alterations in protein kinases, aberration of
downstream pathways, or bypass mechanism that activates
parallel signaling pathways (Holohan et al., 2013). Mutations
of Bcr-Abl kinase domain were found in over 90% of patients
with CML who relapsed after an initial response to imatinib.
These mutations include different amino acid substitutions at
the active site residues or changes in the kinase flexibility that
impair its ability to adopt the inactive conformation required
for optimal imatinib binding (Shah et al., 2002). Dasatinib
is a novel Abl kinase inhibitor that can bind to both the
active (mutated) and inactive (normal) conformations of Bcr-
Abl, and its activity has been demonstrated in all imatinib-
resistant CML patients, with the exception of those with the

Frontiers in Chemistry | www.frontiersin.org 5 January 2020 | Volume 7 | Article 873261

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Gagic et al. Molecular Modeling of Kinase Inhibitors

T315I mutation that prevents formation of critical hydrogen
bond (Shah et al., 2004; Burgess et al., 2005). Docking of
dasatinib to three Bcr-Abl conformations (active, inactive, and
intermediate inactive) showed that dasatinib binds preferentially
to an active conformation, and that binding affinity significantly
decreases when the kinase adopts inactive conformation (Laurini
et al., 2013). Drug combinations targeting different upstream and
downstream components within a single pathway, or targeting
parallel kinase pathways, have been proved in clinical trials as
an efficient method to overcame or delay therapeutic resistance.
For instance, treatment with dabrafenib, a selective BRAF
inhibitor, and trametinib, a selective MAPK kinase inhibitor,
significantly improved progression-free survival of melanoma
patients (Flaherty et al., 2012).

IN SILICO METHODS USED IN DRUG

DESIGN

Since the approval of imatinib in 2001, protein kinases have
received significant attention from academic and pharmaceutical
companies, reflected in a large number of publications, solved
crystal structures, and identified small molecule inhibitors for
about one-fifth of the human kinome (Wu et al., 2015b).
Considerable progress in this field is much owed to the use
of computational methods that were able to provide valuable
information on structural characteristic of both the kinase and
the ligand that are important for favorable interaction and
desired inhibitory activity (Agafonov et al., 2015). To design
inhibitors for protein kinases it is necessary to understand the
structure and dynamics of these enzymes, substrate recognition,
and reaction of phosphorylation, product release as well as
differences between active and inactive conformations.

There are two main approaches within the framework of
computer-aided drug design (CADD): structure-based drug
design (SBDD), and ligand-based drug design (LBDD). SBDD
is based on structural information gathered from biological
targets and includes in silico methods such as molecular
docking, structure-based virtual screening (SBVS), andmolecular
dynamics (MD). In contrast, in the absence of information
on targets, LBDD relies on the knowledge of ligands that
interact with a specific target, and these methods include
ligand-based virtual screening (LBVS), similarity searching,
quantitative structure-activity relationship (QSAR) modeling,
and pharmacophore generation (Ferreira et al., 2015). Over the
last years, a large number of studies have reported successful
use of CADD in design and discovery of new drugs (Lu
et al., 2018b). In this study we provide the comprehensive
review of computational tools that led to discovery, design and
optimization of KIs as anticancer drugs.

Ligand-Based Methods in Drug Design
QSAR modeling involves the formation of a mathematical
relationship between experimentally determined biological
activity and quantitatively defined chemical characteristics that
describe the analyzed molecule (descriptors) within a set of
structurally similar compounds. The QSAR concept originated

in the 1860s, when Crum-Brown and Fraser proposed the idea
that the physiological action of a compound in a particular
biological system is a function of its chemical constituent, while
the modern era of QSAR modeling is associated with the work
of Hansch et al. in the early 1960s (Hansch et al., 1962). The
aim of the QSAR modeling is to utilize the information on
structure and activity obtained from a relatively small series of
data to ensure that the best lead compounds enter further studies,
minimizing the time and the expense of drug development
process (Cherkasov et al., 2014).

Classical 2D-QSAR models correlate physicochemical
parameters, such as electronic, hydrophobic or steric
characteristics of compounds, to biological activity, while
the more advanced 3D-QSAR modeling adds quantum chemical
parameters. One of the first approaches used in deriving
3D-QSAR models was CoMFA (comparative molecular field
analysis). With this analysis, molecules were described with
electrostatic and steric fields, which were correlated to biological
activity by means of partial least squares regression (PLS)
(Cramer et al., 1988). In addition to the steric and electrostatic
descriptors, another approach used in deriving 3D-QSAR
models was Comparative Molecular Similarity Index Analysis
(CoMSIA). CoMSIA approach additionally uses three novel
fields comparing to CoMFA, describing the ligand’s hydrophobic
properties, the presence of the hydrogen bond donors (HBD),
and the presence of hydrogen bond acceptors (HBA) (Klebe
et al., 1994). The main limitation of the CoMFA/CoMSIA
methods is that they are largely dependent on the alignment of
3D-molecular structures which is often a slow process prone
to subjectivity. Recently, modern QSAR programs that use
new generation of 3D-descriptors, so-called grid-independent
(GRIND) descriptors, have been developed and used for
multivariate analyses and 3D-QSAR modeling (Pastor et al.,
2000; Duran et al., 2009; Smajić et al., 2015; Gagic et al., 2016b).

Recent cases of reported QSAR studies aimed at providing
useful information to guide the discovery of new potent KIs are
listed in Table 2. Some of them will be discussed in this chapter.

Koneru et al. have used QSAR combined with molecular
dynamics to redesign second-generation Src kinase inhibitor
RL-45 in order to withstand the gatekeeper residue mutation

TABLE 2 | Selected studies that have used QSAR in the design of kinase

inhibitors.

Target kinase QSAR

method

Software package References

Mer 3D Pentacle Shiri et al., 2016

Lyn 2D JMP Naboulsi et al., 2018

HER2, EGFR 3D SYBYL de Angelo et al., 2018

EGFR 2D and 3D SYBYL Simeon et al., 2019

IKK-β 2D and 3D Discovery studio;

Schrödinger suite

Wang et al., 2019a

EGFR 3D SYBYL Zhao et al., 2019a

Src 3D Vlife MDS Koneru et al., 2019

VEGFR-2 3D MOE Mohamed et al., 2019

PKMYT1 2D MOE Najjar et al., 2019
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and enhance binding affinity. They integrated fragment-based
drug discovery (FBDD) technique with QSAR and molecular
dynamics to assess novel Src kinase inhibitors. Newly designed
compounds were assumed to be able to mitigate mutation-
related Src kinase resistance and to bind more efficiently to
the kinase active site and were proposed for further synthesis
(Koneru et al., 2019). Wang et al. applied QSAR studies on a
series of 2-acylamino-3-aminothienopyridine analogs in order
to design new IKK-β inhibitors (Wang et al., 2019a). Obtained
information on physicochemical, structural, electrostatic, and
steric properties revealed that bulky aryl substituents at position
C3 on the piperidine ring have favorable effect on activity, which
led to the design of an in-house library. Compounds with best
predicted activities were further subjected to docking studies.
Based on these results two new compounds B01 and B02 were
identified as potential IKK-β inhibitors, with predicted pIC50

activities of 7.18 and 7.17, and binding affinities of 41.6 and 40.1
kcal/mol, respectively.

Comparative 2D- and 3D-QSAR studies, followed by
molecular docking were conducted on a series of quinazoline
derivatives acting as EGFR inhibitors (Noolvi and Patel,
2013). According to the 2D-QSAR multiple linear regression
(MLR) model, anticancer activity of quinazoline derivatives
was influenced by lipophilicity and number of hydrogen bond
donors. Presence of short chain ethers such as methoxy-, ethoxy-
at C-6 and C-7 positions of quinazoline was found favorable for
the activity, while N-containing groups should not be directly
attached to the quinazoline ring. 3D-QSAR kNN-MFA (k-nearest
neighbor molecular field analysis) revealed that the presence of
electronegative groups on the anilino moiety site, electropositive
groups at position C7, and a bulky aromatic substituent at C4
increases the EGFR kinase inhibitory activity.

Virtual screening (VS) refers to a group of in silico methods
widely used in drug discovery to search large-scale compound
databases in order to select a more manageable number of
candidates with the highest probability of displaying the desired
biological activity (Gagic et al., 2016a; Oluic et al., 2017; Vucicevic
et al., 2017; Banegas-Luna et al., 2018). This method has been
very popular among pharmaceutical companies since it enables
developing drugs in time and cost-effective manner and increases
the chance of selected candidates to reach clinical studies.
Considering the constant improvement of computational power,
it is expected that in the near future VS will be a reasonable
alternative to high throughput screening (HTS) (Kumar et al.,
2015). There are generally two approaches to screen molecular
libraries: LBVS that will be discussed in this section and SBVS.

LBVS is often applied when there are known active
compounds, but the target of action is not known, or the
crystallographic structure of the protein is not available. These
active compounds are then used as ligands to screen molecular
libraries based on the similar property principle, which states
that structurally similar compounds should possess similar
biochemical properties (Nikolic et al., 2015; Bajorath, 2017).
For each compound from the virtual library, the similarity with
the known active is calculated. Many different strategies for
measuring similarity have been developed, including Cosine
coefficient, Euclidean distance, Soergel distance, and Tanimoto

coefficient (Bajusz et al., 2015). Compounds are ranked based on
the similarity score and those at the top are selected as virtual
hit molecules for further optimization and synthesis. Modern VS
protocols include additional filtering steps in order to exclude
compounds that e.g., have low similarity score, do not fall within
the Lipinski’s rule of five, are not feasible for synthesis or are not
available for purchase (Neves et al., 2018).

Besides similarity searches, pharmacophore search is one
of the most commonly used LBVS techniques. Given a list
of known actives, pharmacophore model can be derived to
define the minimum structural requirements that molecule
must possess in order to exhibit good activity profile (Vittorio
et al., 2019). It is then possible to search large databases,
such as PubChem (Kim et al., 2019), ChEMBL (Mendez et al.,
2019), and DrugBank (Wishart et al., 2018), for identification
of lead compounds that fit to the pharmacophore structure
(Bacilieri and Moro, 2006). Several studies that describe the
use of LBVS methodology in discovery of potential kinase
inhibitors have been listed in Table 3. Pharmacophore-based
VS model was employed to search for new tumor progression
locus-2 (Tpl2) inhibitors (Teli and Rajanikant, 2012). Tpl2 is
a serine/threonine kinase in the MAPK signaling pathway that
regulates cell proliferation, survival, and death and participates
in many processes of tumor development (Lee et al., 2015).
For this purpose, Asinex database was screened using PHASE
3.0 module of the Schrodinger molecular modeling software
which resulted in six potential Tpl2 kinase inhibitors. A
3D QSAR pharmacophore model was developed from the
structures of known inhibitors of MAPK1 (ERK2) and used
for virtual screening of ZINC database (Irwin et al., 2012) that
contains over 750 million compounds, DrugBank with 13,443
drugs (Wishart et al., 2018), NCI (https://cactus.nci.nih.gov/
ncidb2.2/) with 250,250 structures, Maybridge (https://www.
maybridge.com) with over 53,000 compounds and Chembank
database (Seiler et al., 2008). Top screened compounds were
then subjected to molecular docking that identified new
scaffolds with high potency and selectivity against ERK2
(Larif et al., 2014).

It can be concluded that VS strategies, especially
Pharmacophore-based VS and combined use of VS and
molecular docking, can be a reliable tool for future discovery of
new KIs and have a potential to replace a HTS that is costly and
time consuming process.

TABLE 3 | Selected studies that have used LBVS in the design of kinase inhibitors.

Target kinase Software package References

EGFR PHASE Sudha et al., 2015

CDK2 SYBYL Zhang and Ren, 2018

ERK-1/2 QSAR-Co Halder et al., 2019

VEGFR 2 Discovery studio Sobhy et al., 2019

ALK PHASE James et al., 2019

CDK9/Cyclin T1 LigandScout Hussain and Verma, 2019

FGFR1 Discovery studio Liu et al., 2020
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Case Studies

Application of quantitative structure-activity relationship in

structure elucidation of Lyn kinase inhibitors
The generalized linear model (GLM) and the artificial neural
network (ANN) QSAR models were combined with structural
analysis in order to define pharmacophore of Lyn kinase
inhibitors (Naboulsi et al., 2018). Lyn kinase is a member of the
Src family of tyrosine kinases that was found to be correlated
with chemotherapeutic resistance of cancer cells in patients
with CML (Chakraborty et al., 2013; Aira et al., 2018). Derived
pharmacophore for the inhibition of Lyn kinase suggested the
presence of planar heterocyclic ring that contains HBD and
HBA, a spacer that allows free bond rotation and central
hydrophobic area that is linked to the aromatic ring substituted
with lipophilic groups. These structural futures can be found in
nilotinib and dasatinib that are approved for treatment of CML
(Figure 1). Pyrimidine moiety of nilotinib has the role of the
hydrogen bonding region; the attached amino group serves as
a spacer that is linked to hydrophobic benzyl group connected
with another aromatic ring that is substituted with lipophilic
trifluoromethyl group and methylimidazole. Aminopyrimidine
moiety is also present in dasatinib that is indicated in CML
patients that developed resistance to nilotinib (Okabe et al.,
2011). Dasatinib, instead of central hydrophobic benzene ring,
contains thiazole connected to an aromatic ring with lipophilic
substituents. Results of these QSAR studies can be of great help
in future design and lead to optimization of new, more potent
Lyn kinase inhibitors for treatment of patients with imatinib and
nilotinib-resistant CML.

Quantum mechanical based quantitative structure-activity

relationship of N-phenylquinazolin-4-amine derivatives as

epidermal growth factor receptor inhibitors
Recently, Simeon at al. applied several 2D- and 3D-QSAR
methodologies on a series of EGFR inhibitors, derivatives of
N-phenylquinazolin-4-amine (Simeon et al., 2019). 2D QSAR
models were created using physico-chemical descriptors, e-state
indices and molecular fingerprints, while 3D-QSAR models were
developed using CoMFA, CoMSIA, and quantum mechanical
(QM)methods. Based on the calculated statistical parameters, the
QM-QSAR model displayed better predictive power compared
to the other models. Development of this model started with
docking of N-phenylquinazolin-4-amine analogs to the EGFR
active site and calculation of pairwise interaction energies
between each inhibitor and amino acid residues using quantum
mechanics. Distances that hold information about the position of
the quinazoline ring and the aniline pharmacophores within the
active site of the EGFR were extracted and used as descriptors
for the QM-QSAR model. Combined 2D- physico-chemical and
QM-QSAR model showed even better predictivity and provided
more precise information about structural characteristics that
are important for EGFR inhibitory activity. Based on the
results of this study, it can be concluded that a combination
of classical and more advanced quantum mechanical QSAR
methodologies represents a good concept for future design of new
EGFR inhibitors.

Discovery of potential FGFR1 inhibitors using

pharmacophore-based virtual screening
Pharmacophore-based VS protocol was developed in Maestro
9.0 software package (https://www.schrodinger.com/) and used
to screen SPECS database (http://www.specs.net) for potential
FGFR1 inhibitors (Zhou et al., 2015). Database was previously
filtered to extract only compounds with drug-like properties that
comply with the Lipinski’s rule of 5. Activities of top ranked
compounds were predicted with constructed atom-based 3D-
QSAR model, and those with highest activities were purchased
for experimental enzyme assay. Nineteen hits exhibited moderate
inhibitory activity with more than 50% FGFR1 inhibition at
50µM concentration and IC50 values of most active compounds
were 7.9 and 55.5µM. It should be mentioned that the identified
compounds had low structural similarity with previously
reported FGFR1 inhibitors and offered novel chemical scaffolds
for future optimization of FGFR1 inhibitors.

Structure based methods in drug design
Recent progresses in the field of X-ray crystallography, Nuclear
Magnetic Resonance (NMR) techniques, and cryo-electron
microscopy (CEM) caused a significant increase in the number of
known 3D structures of proteins (Sun et al., 2011). With known
3D structures of proteins, docking became a method of choice in
drug design.

Molecular docking predicts the most probable orientation of
one molecule toward another (Lengauer and Rarey, 1996). It can
be performed between a small molecule and a target protein
(ligand-protein docking) or between two proteins (protein-
protein docking). In ligand-protein docking, which will be
discussed here, the samples of conformations of small molecules–
ligands are placed into the binding sites of protein, where scoring
functions are used to calculate which of these conformations best
fits the target protein binding site (Sousa et al., 2006; Warren
et al., 2006). Overall, docking protocols include search algorithm
and a scoring function. Initially, the search algorithm is used to
orient small molecules in the target binding site (Taylor et al.,
2002). Sampling of conformational space has to be carried out
with acceptable accuracy to determine the conformation that
best fits the binding site, but fast enough to evaluate a large
number of docked ligands. With today’s computer power it
would be impossible to explore all the degrees of freedom for
ligand and protein complex. Therefore, there are different ways
to overcome this problem. Search algorithms can be systematic
and stochastic and deterministic (Novič et al., 2016). Systematic
search algorithms sample the search space at predefined intervals
while stochastic make random changes until a user-defined
termination criterion is met, and because of that outcome
can vary (Morris and Lim-Wilby, 2008). Search algorithm is
then followed by scoring function that estimates the affinity of
ligand through the assessment of interactions between ligands
and potential targets (Kitchen et al., 2004). Scoring functions
can be physics-based, empirical, knowledge-based, and machine
learning-based (Liu and Wang, 2015; Li et al., 2019). The physic-
based scoring function computes the free energy of binding by
summing up the van der Waals and electrostatic interactions
between the protein–ligand (enthalpy), and adding the torsion
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entropy of ligand as well as the solvation/desolvation effect
described by explicit and implicit solvent models (Huang et al.,
2006; Liu andWang, 2015). Empirical scoring function estimates
the binding affinity of a complex by accumulating significant
energetic factors for protein–ligand binding (hydrogen bonds,
hydrophobic effects, steric clashes, etc.). It uses a training set
with known binding affinities of protein–ligand complex and
optimizes the weights of the energetic factors by the means of
regression analysis (Eldridge et al., 1997; Liu and Wang, 2015).
The knowledge-based scoring functions also uses structural
information of large set of known protein–ligand complexes and
converts it into distance-dependent Helmholtz free interaction
energies (Muegge and Martin, 1999; Li et al., 2019). Machine-
learning based scoring functions for docking are getting more
interests nowadays. These methods combine QSAR analysis
and protein–ligand interaction evaluation. They combine QSAR
analysis and protein–ligand interaction evaluation. The training
set of protein–ligand complexes with known structures and
binding affinities is required for a model calculation. Structural
interaction fingerprints between a protein and a ligand are coded
with certain descriptors (electrostatic interactions, hydrogen
bonds, or aromatic stacking, surface or shape properties,
molecular weight, number of rotatable single bonds, etc.). Then,
different machine-learning algorithms are employed for variable
selection (Deng et al., 2004; Zhang et al., 2006).

Molecular docking can be employed in many parts of
drug discovery process, such as structure–activity studies, lead
optimization, structure based virtual screening, binding modes
defining, chemical mechanism studies, etc. (Nikolic et al., 2013;
Bautista-Aguilera et al., 2014; Oluic et al., 2017; Albert et al.,
2019). Most popular docking programs are DOCK (Kuntz
et al., 1982), Autodock (Morris et al., 2009), AD Vina (Trott
and Olson, 2010), GOLD (Verdonk et al., 2003), GLIDE from
Schrödinger suite (Halgren et al., 2004), and they mostly differ
in search algorithms and scoring functions they use. It is always
recommendable to explore several different docking programs
and then decide on the best one for the specific protein-
ligand complexes.

For the last decade, molecular docking has been widely
used in design of protein kinase inhibitors (Table 4). Tsou
et al. designed 4-(phenylaminomethylene) isoquinoline-1, 3(2H,
4H)-dione derivatives, an original class of potent inhibitors
that selectively inhibit CDK4 over CDK2 and CDK1 activities.
They used SAR and docking to identify interactions between
the ligands and residues of the protein’s ATP binding pocket
and to find interactions with amino acids unique to CDK4
(His82, Val83, and Asp84) and to optimize compounds with
improved activity and selectivity toward CDK4 (Tsou et al.,
2008). Gopalsamy et al. identified a compound as B-Raf
inhibitor from high throughput screening (HTS) and used
docking into the crystal structure of B-Raf-Sorafenib complex
(1UWH) (Wan et al., 2004) to identify important protein–ligand
interactions (two hydrogen bonds with Glu500 and Asp593,
and hydrophobic interactions with Ile462, Trp530, Phe582, Ile
512, His 573, and Ile 571) and to optimize the scaffold to
obtain compound with improved potency (Gopalsamy et al.,
2009). In 2018, Amr et al. synthetized a series of macrocyclic

TABLE 4 | Selected studies that have used docking in the design of kinase

inhibitors.

Target kinase Software package References

EGFR Maestro Hu et al., 2017

VEGFR-2, CDK-2 and PDGFRβ MOE Amr et al., 2018

Bcr-Abl Autodock Kale and Sonwane, 2018

PKMYT1 GOLD Platzer et al., 2018

EGFR, PDGFR-β GOLD Fischer et al., 2018

Pim-1 MOE Mohareb et al., 2019

PAK4 Glide Gao et al., 2019

Bcr-Abl Discovery studio Melge et al., 2019

EGFR Glide Debnath et al., 2019

PI3K AutoDock Wang et al., 2019b

Pim-1 AutoDock Hazhazi et al., 2019

VEGFR-2 GOLD Zhao et al., 2019b

PKC Glide Wang et al., 2019c

EGFR MOE Khodair et al., 2019

pyrido-pentapeptide candidates, and identified their activity
in vitro on several kinases. Following docking study of the best
compound into VEGFR-2, EGFR, PDGFR, provided information
of the binding mode and important protein-ligand interactions
which can be further used as a guideline for future design
(Amr et al., 2018). In their efforts to design 2-phenazinamine
derivatives as Bcr-Abl tyrosine kinase inhibitors, Kale and
Sonwane combined molecular docking studies with G-QSAR
(Group-Based QSAR). Their in silico studies predicted better
activity for the thiazolidones and benzenesulfonyl derivatives of
phenazinamines than doxorubicin. However, in vitro cytotoxic
activity was good, though still less than of doxorubicin (Kale and
Sonwane, 2018).

Molecular dynamics (MD) is a simulation technique for
studying time dependent evolution of molecular system. Relying
on principles of classical mechanics, in MD simulations,
positions, and velocities of atoms are computed by classical
(Newtonian) laws of motion (Klepeis et al., 2009). The forces
acting on these atoms are computed using potential energy
functions known as force fields. All common force fields
express potential energy through bonded terms (covalent bond-
stretching, angle-bending, torsion potential, improper torsions)
and non-bonded terms (Lenard Jones repulsion and dispersion
and Coulomb electrostatics) (Vanommeslaeghe et al., 2014).
Several force fields were found to provide quite accurate
representations of the structure and dynamics of a number
of small globular proteins on the sub-microsecond timescale
(Beauchamp et al., 2012). Most commonly used force fields today
are CHARMM (Yin and MacKerell, 1998), AMBER (Weiner
et al., 1984; Cornell et al., 1995), GROMOS (Oostenbrink et al.,
2004), OPLS (Jorgensen et al., 1996), and COMPASS (Sun, 1998)
force fields since they include various chemical groups present in
macromolecules and drug-like entities.

Recent algorithmic advances and increase in computational
power have enabled simulation studies of protein systems
on biophysically-relevant timescales. Combined with modern
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improvements in the quality of force field parameters, protein
structure prediction and modeling has advanced impressively
(Beauchamp et al., 2012; Raval et al., 2012; Piana et al., 2014).
Providing structural and dynamical insight into the studied
molecular system difficult to obtain experimentally, as well
as thermodynamics and kinetic understanding of the system,
MD simulations are usually referred to as “computational
microscopes” (Dror et al., 2012). In this review, we discuss the
usefulness of MD and MD-based methods in the discovery of
kinase inhibitors through different case studies presented below.

Structure-based virtual screening (SBVS) is based on the
knowledge of the 3D structure of the target protein, obtained
by X-ray crystallography, NMR, cryo-EM or homology modeling
(Lionta et al., 2014). Nowadays, the SBVS methods are enabled
thanks to a large number of 3D structural information deposited
in the PDB. As described above, by using the 3D structural
information of the protein target, we are now able to investigate
the basic molecular interactions involved in ligand-protein
binding and understand experimental results up to atomic levels.
In SBVS, large libraries of commercially available drug-like
compounds that are computationally screened against proteins of
known structure and those that are predicted to bind well can be
experimentally tested (Benod et al., 2013; Vucicevic et al., 2016;
Oluic et al., 2017).

Case Studies

Structure-based design of imidazo

[4,5-b]pyridin-2-one-based p38 mitogen-activated protein

kinase inhibitors
Using structure-based drug design, Kaieda et al. have identified a
series of potent p38 mitogen-activated protein kinase inhibitors.
First they identified the lead compound with moderate inhibitory
activity toward p38 MAP kinase by means of high-throughput
screening. The lead compound was then crystalized with the
MAP kinase. The X-ray crystallographic results showed that
carbonyl group of the compound forms two hydrogen bonds
with the backbone amide of Met109 and Gly110 of the enzyme

(Figure 5A). The hinge backbone conformation of their crystal
structure was different from that typically seen in protein kinases.
Namely, usually the backbone amide and carbonyl group of
Met109 are directed toward the ATP binding site and accessible
for creation of hydrogen bonding with ligand. In the obtained
crystal structure a flip of the peptide bond between Met109 and
Gly110 was noticed which led to a switching of the hydrogen-
bond acceptor and donor distribution around the peptide plane,
instead. It was assumed that this flip could be responsible for
the high kinase selectivity. After switching the scaffold of the
carbonylpiperidine group while maintaining this binding mode,
a series of synthetized imidazo[4,5-b]pyridin-2-one derivatives
were identified as potent inhibitors of the p38 MAP kinase
(Figure 5B; Kaieda et al., 2019).

Discovery of novel Pim-1 kinase inhibitors by support vector

machine, pharmacophore modeling and molecular docking
In 2011 Ren et al. reported the discovery of novel potent
Pim-1 inhibitors by combining ligand- and structure-based
filtering methods. In order to find new molecules, a pipeline
was created that consisted of support vector machine-based
VS (SVM-based VS), pharmacophore-based VS (PB-VS), and
docking-based VS (DB-VS) and screened approximately 20
million molecules. Protocol was evaluated by using the
library which contained 203 known Pim-1 inhibitors and
around 117,000 generated decoys. For validation of the
performance of VS, the percentage of predicted compounds in
known inhibitors, percentage of known inhibitors in predicted
compounds, as well as enrichment factor were calculated. The
combined protocol showed much better performance than
solely SB-VS, PB-VS, and DB-VS. Finally, 47 compounds
were selected for further in vitro Pim-1 kinase inhibitory
assay for an inhibitor concentration of 10µM, and 15
compounds showed nanomolar level or low micromolar
inhibition potency against Pim-1. In conclusion, new scaffolds
with the potential for the future chemical development were
found (Ren et al., 2011).

FIGURE 5 | Crystal structures of p38 mitrogen-activated protein (MAP) kinase with imidazo[4,5-b]pyridin-2-one derivatives. (A) Lead compound found by HTS (PDB:

6M95). (B) Potent p38 MAP kinase inhibitor designed using structure-based drug design (SBDD) approach (PDB: 6M9L).
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Discovery of pazopanib, vascular endothelial growth factor

family of receptor inhibitor
In 2008 Harris et al. published a paper explaining their discovery
of pazopanib. That was a good example of usage of homology
modeling and SBDD in the discovery of a drug that is today
on the market. Since the crystal structure of VEGFR2 was not
available at that time, a homology model of the VEGFR2 enzyme
based on FGFR crystal structures was created to predict the
binding mode of dimethoxyquinazoline analogs. It was noticed
that the pyrimidine and the quinazoline bound similarly in the
ATP binding site, making the hydrogen bonds with the Cys919
of the backbone (Figure 6). Crystallization of these compounds
with VEGFR2 confirmed in silico results (PDB: 1Y6A, 1Y6B).
Finally a series of new analogs was designed, synthetized, and
tested in vitro, which led to the discovery of pazopanib (Harris
et al., 2005, 2008).

Rational discovery of dual-indication multitarget

phosphodiesterase/ kinase inhibitor
One of the latest studies published this year by Lim et al.
combined molecular docking with other bioinformatics tools,
with the goal of finding multi-target-multi-indication drugs (Lim
et al., 2019). They have used structural and chemical genomics
data and combined tools from bioinformatics, chemoinformatics,
protein-ligand docking, and machine learning to create a
novel structural systems pharmacology platform−3D-REMAP.
It used four networks as input: 1. protein–ligand association,
2. off-target, 3. ligand–ligand similarity, and 4. protein–protein
similarity. The protein–ligand associations were obtained from
ChEMBL, DrugBank, and from other publications about kinome
assays (Christmann-Franck et al., 2016; Drewry et al., 2017;
Klaeger et al., 2017; Merget et al., 2017) and protein structure-
based off-target prediction from binding pocket similarity
search and protein–ligand docking. Ligand–ligand similarity was
calculated in MadFast software from ChemAxon, and protein–
protein similarity was run through BLAST. Moreover, to validate
and show advantages of their platform, they searched for
marketed drugs that could be dual-indication agents. In their

study, they focused on drugs that could reduce the cardiotoxicity
of anti-cancer therapy. They predicted that levosimendan, a
phosphodiesterase (PDE) inhibitor which is used for heart
failure, also inhibits serine/threonine-protein kinase RIO kinase
1 (RIOK1) and several other kinases [Ca2+/calmodulin-
dependent protein kinase II (CAMK2), FMS-like tyrosine kinase
3 (FLT3), RIOK3, etc.]. To validate their results they tested anti-
cancer activity of levosimendan for more than 200 cancer cell
lines. Their experimental results showed that levosimendan is
active against several cancers, particularly lymphoma, through
the inhibition of RIOK1 and its RNA processing pathway (Lim
et al., 2019). Since this study is brand new, the time will tell
whether levosimendan will be a candidate for clinical research.

Fragment-based drug design of kinase inhibitors
Discovery of kinase inhibitors is a highly competitive process
wherein teams of experienced researchers, both from academia
and industry, use all the previous knowledge and new ideas
to provide more effective therapies for patients. Depending on
the available methodologies, one research group may start their
drug discovery project with a high-throughput screening (HTS)
campaign and search for the bioactive (HIT) compounds against
the studied kinase. Selected HIT molecules usually possess drug-
like properties and should be further optimized with the aid of
lead optimization techniques. Contrary to drug-like molecules,
fragments have a smaller number of heavy atoms (HA) and they
should comply with Rule of Three (RO3), in which molecular
weight is <300 Da, number of hydrogen bond donors and
acceptors should be ≤3 and clogP is ≤3 (Congreve et al., 2003).

Fragment molecules tend to show high micromolar to
millimolar affinities for a certain biological target. The advantages
of using fragments in drug design studies of novel kinase
inhibitors are numerous:

- Fragments displaying affinity to the examined biological
target can overcome the entropy barrier and their
binding is related to the favorable enthalpy contribution
(Murray and Verdonk, 2002);

FIGURE 6 | Crystal structures of initial screening hits for inhibitors of the vascular endothelial growth factor (VEGF) that lead to the discovery of pazopanib. (A) PDB:

1Y6A, (B) PDB: 1Y6B.
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- Comparing to drug-sized molecules, pharmacokinetic and
physicochemical properties of fragments could be more
efficiently optimized (Leach and Hann, 2011);

- Drug-sized molecules may suffer from a potential loss
of complementarity with the studied targets, whereas the
fragments seldom possess functional groups that establish
ligand–protein intermolecular clashes (Hann et al., 2001);

- Given all the above, FBDD projects can lead to increased
HIT rates and discovery of novel fragments interesting from
different points of view (binding affinity, synthetic accessibility,
intellectual property).

Historically, first FBDD projects were applied by a technique
named “SAR by NMR” (structure-activity relationship by
nuclear magnetic resonance) (Shuker et al., 1996). In this
paper, authors successfully developed a potent compound
with nanomolar affinity to FK506 binding protein (FKBP)
by merging two building blocks. Except for NMR, protein-
fragment interacting patterns are characterized by other
biophysical methods such as X-ray crystallography, surface
plasmon resonance (SRC), high concentration screening (HCS)
assays, isothermal titration calorimetry (ITC), fluorescence
correlation spectroscopy and many more (Sun et al.,
2011). The choice of a particular method depends on the
previous experience in FBDD projects and also the size of
fragment libraries.

Until now, fragment-based drug discovery (FBDD) method
resulted in FDA approval of three kinase inhibitors—
vemurafenib (Bollag et al., 2012), venetoclax (Deeks, 2016),
and erdafitinib (Markham, 2019). These excellent textbook
examples of FBDD are developed by different biophysical
methods; nevertheless, the present review focuses on various
in silico techniques frequently used in fragment identification
and optimization.

In recent years, experimental screening procedures may
be replaced by computational methods to reduce the costs
and time for early stages of FBDD project (Alves Avelar
et al., 2019; Ruzic et al., 2019). It appears that in silico studies
may support kinase drug discovery at almost every stage of
fragment-based drug design projects. Various ligand-based
virtual screening (Giordanetto et al., 2011), structure-based
(Warner et al., 2006; Zhao et al., 2012), and quantum mechanical
(Machrouhi et al., 2010) techniques have been proved as
successful in novel fragment identification. Before running
any virtual screening protocol, computational chemists
must pay attention to the valid preparation of fragment
library database. The fragment library databases should
obey the aforementioned Rule of 3 (RO3); additionally,
their chemical properties are filtered through certain
software which removes possible toxicophores and pan-
assay interference compounds (PAINS) (Baell and Walters,
2014). Nowadays, computational chemists may use kinase
fragment libraries which may assist faster identification of novel
hinge binding motifs. Moreover, fragments that target distal
pockets from the ATP binding pocket could be scanned by
allosteric kinase library, such as Enamine Allosteric Kinase
Library (https://enamine.net).

Case Studies

Identification of PI3K p110β selective fragment
Intracellular lipid kinases that transfer a phosphate group
from ATP to certain cell membrane’s phospholipids
(Phosphoinositide-4,5-biphosphate, PIP2) belong to the family
of phosphoinositide 3-kinases (PI3K). These enzymes regulate
important cellular events and present interesting drug targets in
anticancer drug discovery. Giordanetto et al. (2011) successfully
identified fragments that showed selective p110β inhibition. At
the time this study was performed, the crystal structure of p110β
isoform was not available. Consequently, the homology model
was built in MODELLER (Webb and Sali, 2016) by using the
crystal structure of p110γ isoform. In this study, authors used
AstraZeneca’s virtual fragment database and subjected 183,330
fragments to a molecular docking study in GLIDE software
(Schrödinger, New York). The poses and orientation of the
fragments in the ATP binding pocket were inspected, as well
as hydrogen bonding interactions with amino acid residues in
the hinge region, affinity and selectivity pocket. The authors
reported five chemical classes of fragments (Figure 7A) based on
the different heterocyclic rings interacting with the hinge region
in p110β and their in vitro enzymatic profiles against four human
PI3K isoforms (p110α, p110β, p110γ, and p110δ). Overall, the
hit rate achieved from this screening was 8.57%, indicating good
performance of the molecular docking-based search for novel
and chemically interesting fragments as PI3K hinge binders. The
authors continued this study with the morpholine derivative,
compound (1) (Figure 7B), which showed moderate potency
against p110β (IC50 = 34µM), but its inhibition of the other
p110 isoforms was not determined at the tested concentrations.

In the following study, authors aimed to improve the affinity
of the compound (1) by substituting the dimethylamino group
with a more voluminous 2-(benzylamino) moiety (Giordanetto
et al., 2012). The novel compound (2) showed improved potency
(IC50 = 1.9µM) and efficiency (LE = 0.37 and LLE = 4.52)
toward p110β. The rationale for this chemical modification relies
on the observation that the bulkier substituents might target
amino acid residues M804 and W812 in the proximal selectivity
pocket. Finally, compound (3) was synthesized by introducing
the naphthyl group, which in turn attributed to the nanomolar
potency (IC50 = 0.093µM) and improved p110β selectivity
profile of compound (3).

Identification of mitogen-activated protein

kinase-interacting kinase 1 inhibitors
Mitogen-activated protein (MAP) kinase interacting kinases 1
and 2 (MNK1 and MNK2) carry out phosphorylation reaction
of eukaryotic translation initiation factor 4E (eIF4E) on serine
209 (Wendel et al., 2007). This translation factor is involved
in different cellular pathways, such as Ras/Raf/MEK/ERK and
PI3-kinase/protein kinase B (Akt) signaling pathways (Proud,
2015). The overexpression of phosphorylated eIF4E leads to
several malignant diseases, such as lymphomas, breast cancer,
and glioblastoma (Astanehe et al., 2012). The significance of
MNK1/2 enzymes in malignant transformation of the cell has led
to high demand for drug design of MNK1/2 inhibitors.
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FIGURE 7 | (A) Presentation of the identified scaffolds by in vitro biochemical screening as PI3K inhibitors (hinge interacting moieties are labeled in red), Ar—presents

carbocyclic or heterocyclic aromatic rings; (B) the scheme of lead optimization of the selected morpholine derivatives.

One remarkable study was performed in 2010, where
Oyarzabal et al. identified a highly potent and efficient fragment
entirely by in silico modeling. In this comprehensive study,
authors combined different virtual screening techniques to
identify pharmacological tools for MNK1 inhibition. Initially,
the Centro Nacional de Investigaciones Oncológicas (CNIO)
database was filtered according to the molecular weight
(<300 Da) and calculated solubility values (threshold −4
mol/L). By performing this prefiltering procedure, the authors
extracted 42,168 fragment-like compounds for virtual screenings
(Oyarzabal et al., 2010).

Availability of the crystal structure of MNK2 complexed
with staurosporine (PDB: 2HW7) enabled creating minimal
substructure, required for crucial interactions with MNK2
(Figure 8). The GOLD software (Jones et al., 1997) used
in this study was able to reproduce the binding mode of
staurosporine in MNK2. The virtual substructure was docked
in the crystal structure of MNK1 (PDB: 2HW6) to similarly
elucidate crucial amino acid interactions in the ATP binding
pocket. MNK1 pharmacophore prepared in this way was used for
pharmacophore fitting study, as a molecular docking alternative
and 92 compounds were extracted according to their goodness of
fit with the pre-defined substructure.

Structure-based virtual screening protocols were combined
with ligand-based virtual screenings of CNIO database and

external virtual database of compounds collected by the
authors who performed this study. These strategies involved
2D-substructural searches, 2D Tanimoto structural similarity,
Feature Trees similarity, and three-dimensional shape and
electrostatic similarities based on two reported MNK1 inhibitors.
Finally, the authors selected 1,236 compounds for biochemical
MNK1 assay and 26 of them were active. The hit ratio
of this screening was 2.10% and 10 different scaffolds were
represented. Interestingly, one compound (Figure 8, compound
29) demonstrated nanomolar MNK1 (IC50 = 646 nM) and
MNK2 (IC50 = 575 nM) inhibition. Additionally, at the cellular
level, compound 29 showed an antiproliferative effect against
acute myeloid leukemia cell line (MV4:11, EC50 = 17µM) with
dose-dependent decrease in phosphorylation on serine 209 in
eIF4E. In conclusion, this study identified 26 hit molecules as
MNK1 inhibitors, with 19 of them as fragments with high ligand
efficiency values. Among the 26 identified hits, there were 10
diverse chemotypes represented for further drug design studies.

Researchers from A-STAR were particularly interested in
imidazopyridazine scaffold (chemotype III in the study of
Oyarzabal et al.) as a starting fragment for lead optimization of
MNK1/2 inhibitors (Yang et al., 2018). Extensive SAR study of
imidazopyridazine derivatives was based on in silico conclusions
defined in their previous computational study (Kannan et al.,
2017). Concisely, researchers in this study aimed to modify the
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FIGURE 8 | (A) Crystal structure of MNK-2 complexed with staurosporine (PDB: 2HW7); the atoms of the substructure used in the study of pharmacophore fitting

screening are labeled in green; (B) the lead optimization strategies starting from fragment ET-38766 to clinical candidate ETC-206.

heterocyclic core in positions 3 and 6, with later modification
of the imidazopyridazine scaffold (swapping cores strategy). All
the derivatives synthesized in this study were firstly examined
by molecular docking studies in Glide 2017-3 software (www.
schrodinger.com). By detailed computational analysis of the
important amino acid residues in the ATP pocket of MNK1/2
kinases, researchers performed initial lead optimization of the
fragment (compound ET-38766) to compound 27 (Figure 8B).
Novel compound 27 bears imidazopyrazine scaffold, with
improved potency against MNK-1 and MNK-2, cell permeability
and improved pharmacokinetic properties. After finding optimal
substituents in positions 3 and 6, the final step of lead
optimization was focused on detailed DFT study to select the
final heterocyclic core of MNK1/2 inhibitors. Initially, it was
unclear from molecular dynamics (MD) simulations whether
the imidazopyrazine N-7 contributes favorably to the binding
affinity of MNK inhibitors. To examine this, the authors
performed DFT study and demonstrated that N-7 is mostly
solvent exposed, thus the final selected heterocyclic core was
imidazopyridine. The most promising compound 48 (Figure 8B)

later designated as ETC-206, was presented as superior compared
to other derivatives in the study. This compound was investigated
for the synergism with dasatinib in vivo and currently is
in phase I clinical trial for the blast crisis chronic myeloid
leukemia (BC-CML).

Computational approaches in rational discovery of allosteric

kinase inhibitors
Although targeting of highly conserved ATP-binding site by Type
I and Type II inhibitors provides limited selectivity, inhibiting
multiple kinases with a single small-molecule inhibitor was
proven to be a useful strategy for therapeutic intervention.
However, development of highly selective small-molecule kinase
inhibitors remains a pressing concern where targeting of
allosteric sites emerged as a promising approach (Wu et al.,
2015a). Some of the advantages of targeting allosteric sites include
increased selectivity and low toxicity of such inhibitors due
to low evolutional conservation of allosteric sites compared to
orthosteric (ATP-binding) sites (Fang et al., 2013). Additionally,
overcoming of point mutation-associated drug resistance,

Frontiers in Chemistry | www.frontiersin.org 14 January 2020 | Volume 7 | Article 873270

www.schrodinger.com
www.schrodinger.com
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Gagic et al. Molecular Modeling of Kinase Inhibitors

especially for mutations in the ATP-binding site reported for
almost all of ATP-competitive inhibitors, could be another
advantage of developing allosteric kinase inhibitors (Gibbons
et al., 2012).

While exploitation of allosteric sites represents a very
promising strategy, it remains challenging from the aspect of
rational drug discovery. Some of the major obstacles include
identification of allosteric binding sites, which are usually
hidden in less populated higher energy conformations of
the proteins. Those conformations are poorly accessible to
current experimental methods of structural biology (Lu et al.,
2018a). Additionally, allosteric effectors are susceptible to “mode
switching,” where minor chemical modification of ligand induces
critical change in activity (Wenthur et al., 2014). Although known
CADD workflows for discovery of drugs directed to orthosteric
binding sites are being used in allosteric inhibitors discovery
(Rastelli et al., 2014; Schoepfer et al., 2018), they provide limited
utility rising the need for development of more spatialized tools
and workflows (Greener and Sternberg, 2018).

Identification of allosteric pockets is a crucial first step in
rational discovery of allosteric inhibitors. As will discussed
below, a plethora of computationally inexpensive methodologies
have been developed for this purpose and many of them are even
implemented as web servers. While these methodologies provide
fast and inexpensive highway in the discovery of druggable
allosteric pockets, proper understanding of the allosteric
mechanism is impossible without considering underlying
conformational landscape and free-energy profiles where
more computationally demanding molecular dynamics based
approaches have a predominant role. In this review, we discuss
few examples of computational methodologies used for direct
discovery of novel allosteric sites and/or allosteric kinase
inhibitors. For detailed description of recent breakthroughs
in computational methodologies used for allosteric inhibitors
discovery in general, the interested reader is referred to the
recent reviews (Wagner et al., 2016; Lu et al., 2019).

Automatic Computational Tools/Web Servers to

Investigate Allostery
Structure-based computational tools AlloSite and recently
advanced descendant AllositePro (http://mdl.shsmu.edu.cn/
AST/) are intended for fast detection of allosteric site in input
PDB structures. Initial detection of allosteric sites is based on
Fpocket, a fast open source protein pocket detection software
package based on Voronoi tessellation (Le Guilloux et al.,
2009). While Allosite uses a machine-learning model to re-
rank detected pockets in terms of their allosteric character,
AllositePro additionally implements normal-mode analysis
(NMA) perturbation with elastic network models to account
for protein flexibility. NMA is a technique developed for
investigation of the vibrational motion of a harmonic oscillating
system in the immediate vicinity of its equilibrium. Under
assumption that the potential energy landscape in the vicinity of
a minimized atomic structure is approximately harmonic, NMA
eliminates the need to integrate the equations of motion and
makes NMA much less computationally demanding compared
to MD (Bahar and Rader, 2005). Zhang et al. demonstrated

utility of AllositePro in identification of novel allosteric site
on CDK2 kinase. Existence of novel site was validated in
mutagenic analysis (Song et al., 2017). Recently, the same group
developed AlloFinder, integrated allosterome mapping, and
virtual screening workflow implemented as web server (http://
mdl.shsmu.edu.cn/ALF/). AlloFinder relies on AllositePro
algorithm for detection of allosteric sites, Allolike filter for
pre-filtering of ligand library to enrich allosteric-like compounds
(Wang et al., 2012), AutoDock Vina algorithm for docking (Trott
and Olson, 2010), and Alloscore empirical scoring function for
scoring allosteric modulator-protein complexes (Li et al., 2016).
In the final step, alosterome mapping is used to detect highly
similar allosteric sites among known human allosteric sites and
to rule out selective ligands. This approach was retrospectively
validated on several kinase targets (Huang et al., 2018).

CavityPlus (http://www.pkumdl.cn:8000/cavityplus/index.
php) is another web server for detection of potential allosteric
sites that works on similar principle (Xu et al., 2018). CavityPlus
is aimed to detect potential binding sites on the surface of a given
protein and rank them based on ligandability and druggability
scores. This server integrates several functionalities: CAVITY
for detection and scoring of potential binding sites (Yuan
et al., 2013); CavPharmer for generation of receptor-based
pharmacophores (Chen et al., 2014); CorrSite for prediction of
allostery based on NMA motion correlation analysis between
allosteric and orthosteric sites (Ma et al., 2016); CivCys for
detection of binding sites for covalent inhibitors (Zhang et al.,
2017). Functionalities of CavityPlus were successfully used for
identification of allosteric binding site on Polo-like kinase 1
(Plk1). Subsequent molecular-docking-based virtual screening
on allosteric site resulted in identification of few potent Plk1
inhibitors (Yun et al., 2016).

Another successful implementation of web server based tools
for allosteric drug discovery is Kinase Atlas (https://kinase-
atlas.bu.edu/) (Yueh et al., 2019). Kinase Atlas is systematic
collection of mostly unexplored allosteric sites (binding hot
spots) calculated for 4,910 PDB structures of 376 distinct
kinases. The hot spots are identified by FTMap. This method
places molecular probes (small organic molecules) on a dense
grid around the protein and finds favorable positions using
an empirical energy function and CHARMM potential. After
clustering of obtained positions for each probe, regions that
bind several probe clusters are marked as hot spots (Kozakov
et al., 2015). Authors of the study identified novel allosteric
site on CDK2 and screened library of 1,280 molecules using
disulphide-based fragment screening. Two potent and novel
allosteric inhibitors were described.

Molecular Dynamics-Based Approaches to

Investigate Allostery
Molecular dynamics-based approaches in rational discovery of
allosteric kinase inhibitors have potential to provide exclusive
insight in atomic-level dynamical mechanism of allostery,
to explore conformational landscape and capture kinase
conformational states inaccessible to current experimental
methodologies. Therefore, molecular-dynamics-based
approaches, even though being computationally intensive,
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could detect previously unknown conformations and hidden
allosteric binding pockets (Guo and Zhou, 2016; Lu et al., 2018a).

Combination of conventional MD simulations with other
standard SBDD approaches resulted in identification of novel
allosteric sites and discovery of novel allosteric ligands in several
cases. For example, Perez et al. identified novel inhibitory
allosteric site and inhibitors of p38α by using MD simulations
starting from the X-ray structure of binary complex of p38α
and its interacting partner MAPK-activated protein kinase 2
(MK2). MD simulations permitted definition of pharmacophoric
features of small peptide inhibitors derived from sequence of
MK2. Subsequent virtual screening study resulted in first small
molecule allosteric inhibitor for identified binding site (Gomez-
Gutierrez et al., 2016). Cournia et al. verified existence of
allosteric site on human PI3Kα previously described in murine
PI3Kα using combination of FTMap, MD, and in vitro assays.
Intriguingly, MD simulations revealed different binding mode of
studied allosteric inhibitor in murine, WT, and mutant forms of
PI3Kα and consequent differences in propagation of allosteric
signal to orthosteric ATP-binding site (Gkeka et al., 2015).

Computational costs of insufficient conformational sampling
often limit application of conventional MD simulations in
investigating allostery phenomena. Currently, there is a large
gap between the time scale which can be reached in MD
simulations and that observed in experiments. Several strategies
for enhancing the sampling of MD simulations have been
proposed (Aci-Seche et al., 2016; Yang et al., 2019). Two
recently reported studies demonstrating full power of enhanced
sampling methods (Markov-state modeling based adaptive
sampling and parallel tempering in the well-tempered ensemble)
are discussed below with special reference to atomic-level
description of allosteric communication and discovery of cryptic
allosteric pockets.

Pande et al. investigated activation pathway of c-Src
kinase using massively distributed MD simulations (550 µs)
on Folding@HOME (Shirts and Pande, 2000) Markov-state
modeling (MSM) and adaptive sampling algorithms in order
to provide description of factors underlying thermodynamics
and kinetics of c-Src activation and to identify key structural
intermediates (Shukla et al., 2014). Briefly, MSM models
represent kinetical description of a system’s underlying free-
energy landscape, useful for characterization of probability of
dynamical transitions between conformational states identified
in many independent MD simulations and for extrapolation of
long time system’s behavior (Sengupta and Strodel, 2018). In
this study intermediate conformational state which could be
stabilized to block the c-Src activation pathway, was described
through MSM analysis for the first time. Further analysis on
identified c-Src conformational state revealed the existence
of allosteric pocket and surprisingly high structural similarity
to known complex of CDK2 bound to allosteric inhibitor—
ANS (Betzi et al., 2011). Further simulations confirmed
binding of ANS to the novel allosteric site of c-Src and
blockage of activation process by stabilization of intermediate
states. Additionally, the long-range residues coupling analysis
identified myristate-binding pocket as another potential target
for development of allosteric modulators of c-Src. Taken together,

results of this study highlighted large-scale MD coupled with
MSM modeling as an indispensable tool for identification of
novel conformational states, potential allosteric pockets, and
study of mechanisms of allostery in kinases.

In another example, authors explored the possibility of
bidirectional communication between allosteric so-called PIF-
pocket and ATP-binding site in PDK1 protein kinase using
a combination of experimental techniques and enhanced-
sampling simulations [parallel tempering simulations in the
well-tempered ensemble (PT-WTE)] (Schulze et al., 2016).
Results of PT-WTE MD revealed bidirectional mechanisms of
communication between the ATP-binding site and allosteric site.
Interestingly, this study for the first time demonstrated how
different ligands which bind to the ATP-binding site differently
modulate responses of allosteric site in interaction with a partner
protein (e.g., enhance or inhibit interaction). Providing computer
platform for rational design of allosteric modulators, the authors
of this study opened an exciting avenue for future discovery of
novel class of kinase inhibitors with less on-target side effects and
more specific modulation of signaling pathways.

Case Study

Rational design of clinical candidate Asciminib—allosteric

Bcr-Abl1 inhibitor
Asciminib belongs to a class of drugs designed to inhibit Bcr-
Abl by binding to an allosteric pocket known as myristate-
binding pocket. Rational development of Asciminib started
with fragment-based screening using NMR assay (Schoepfer
et al., 2018). Although determined NMR-based dissociation
constants (Kd) for fragment hits were satisfactory, none of
the fragments were active in biochemical and cellular assays.
Subsequent X-ray studies revealed inability of fragment hits
to induce assembled inactive state by bending of helix I,
previously reported as conformational change important or
autoinhibition of Abl by myristoilation (Nagar et al., 2003).
Following this finding, the authors established another screening
assay, the NMR-based conformational assay, which monitors
the conformational state of C-terminal helix I (Jahnke et al.,
2010). NMR-based conformational assay was used to investigate
identified fragments and series of known allosteric modulators—
derivatives of GNF-2 (Adrian et al., 2006; Figure 9). Results of
the study revealed that compounds which bind to myristoyl
pocket and do not induce helix I bending were actually
functional activators of Abl1 (by interfering with autoinhibition
mechanism of Abl1). Critical bending of helix I was found
to be induced by the presence of CF3O– group from GNF-2.
Based on these findings, CADD techniques (molecular docking,
similarity and pharmacophore searches) were used to design
compound X in respect to X-ray structure with bent helix I
conformation. Subsequent introduction of CF3O– group finally
led to the first active allosteric inhibitor. Molecular modeling
techniques were used in combination with X-ray crystallography
in order to optimize potency and drug-like properties of the
compound. Although only standard CADD techniques were
reported in the discovery of Asciminib, recent application of
molecular dynamics-based approaches demonstrated utility of
such techniques in examination of mechanisms of resistance
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FIGURE 9 | Discovery of Asciminib (Schoepfer et al., 2018). (A) Representation of initial hypothesis regarding bending of helix I (orange). Assembled inactive state of

ABL1 kinase in complex with myristic acid (orange sticks) (PDB: 1OPL, SH3, and SH2 domains omitted for clarity) is superimposed on ABL1 in complex with fragment

2 (green sticks) (PDB: 3MS9). Steric clash between isoleucin I521 (orange sticks) on helix I and fragment 2 prevents full bending of helix I and formation of assembled

inactive state of ABL1. Helix I is not visible in the PDB: 3MS9. (B) Medicinal chemistry progression from fragment 2 to fragment derived hit 4, first active hit–compound

5 and finally clinical candidate—Asciminib.

and effects of dual targeting of ATP-binding and allosteric site
providing rationale for development of novel drugs (El Rashedy
et al., 2018; Meng et al., 2018; Zhan et al., 2019).

Machine learning methods to predict kinase-compound

interactions
Nowadays, we are seeing the widespread use of machine learning
in many areas, including pharmaceutical industry, especially
in drug design. Popular computational methods initially
used in pharmaceutical research were quantitative structure
activity relationships (QSAR) and quantitative structure property
relationship (QSPR), which were adequate for small datasets.
However, with the rapid growth of databases (thanks to
methods such as high-throughput in vitro screening and X-
ray crystallography), it became inevitable to develop different
in silico tools that can manage bigger data (Ekins, 2016).
Today, many different machine learning methods such as
support vector machines (SVM), k-Nearest Neighbors, Artificial
Neural Networks (ANN), Deep Learning (DL), etc. are used
in pharmaceutical research and they can be applied in various
processes of drug design from virtual screening to de novo drug
design (Buchwald et al., 2011; Drewry et al., 2017; Konze et al.,
2019; Kuthuru et al., 2019; Lee et al., 2019; Zhavoronkov et al.,
2019).

Many different machine learning models were created for
the prediction of drug–target interactions (DTI), and many
DTI methods have been applied to the protein kinases family
(Kuthuru et al., 2019). Unlike LB and SB methods, DTI
prediction uses the information from both protein and ligand
and these methods can be similarity based or descriptor-based.
One of the first similarity-based methods for identification
of drug–target interactions was introduced by Yamanishi
et al. in 2008. It used the known drug structure, protein
sequence and drug–target interaction network to determine
unknown ligand–target interactions. The main hypothesis is
that two compounds that have high structure similarity might
probably interact with similar target proteins, and vice versa
two proteins with high sequence similarity might probably
interact with similar drugs (Yamanishi et al., 2008). On the
other hand, descriptor-based models use feature vectors from
known drug structures and protein sequences, as inputs for
machine learning methods, such SVM, AAN, DL, etc. In
2011, Buchwald et al. used SVM to prepare the model for
prediction of protein kinases–ligand interactions. They used
a set of binding data obtained from 113 different protein
kinases and 20 inhibitors obtained through ATP site-dependent
binding competition assays. They focused on vector features
that describe the structure of molecules that are connected with
certain chemical environment–protein active site sequence and
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created a SVM model with good predictivity (Buchwald et al.,
2011).

Recently, the use of ANN, especially deep learning methods
saw a significant increase in the process of drug design (Ekins,
2016; Merk et al., 2018; Putin et al., 2018; Konze et al.,
2019). Deep generative models are utilizing neural networks to
generate new objects (drugs) with desired properties (for example
activity, Ki, IC50). These methods should be able to produce
chemically correct structures without the need for including
fragment libraries and/or rules for their combination (Merk
et al., 2018). The ability to produce novel chemical structures
with certain properties makes deep generative models suitable
for the discovery of novel possible therapeutics (Zhavoronkov
et al., 2019). In 2018, Merk et al. applied generative models
to come up with novel bioactive, synthesizable drugs. They
trained the model with more than 500,000 SMILES of bioactive
compounds with their activity properties extracted from the
ChEMBL (KD, Ki, IC/EC50 values <1µM). Additionally, the
model was fine-tuned to enable the de novo generation of target-
specific ligands on retinoid X receptors (RXR) and/or peroxisome
proliferator-activated receptors (PPAR). Finally, none of the
generated compounds was identical to compounds from the
training sets, and they were residing within the RXR/PPAR region
of the fine-tuning set (Merk et al., 2018).

Case Studies

Predictive proteochemometric models for kinases derived

from 3D protein field-based descriptors
Subramanian et al. described the development of
proteochemometric models for 1,572 inhibitors and 95
kinases obtained from Kinase SARfari (https://chembl.gitbook.
io/chembl-interface-documentation/legacy-resources#kinase-
sarfari) and CHEMBL database, using 3D structure of proteins
and active and inactive ligands. Proteins were described
with molecular interaction fields derived from Schrödinger’s
WaterMaps, while different 1D, 2D, and 3D descriptors were
used to describe the ligands. Separate training sets were created
for the ligands and targets. Different methods were used for
preparation of the proteochemometric models: support vector
machines (SVM) and random forests (RF). The ligand prediction
model was trained on the ligand training set and was used
for ligand prediction model and target training set for target
predicting model. In the end, they validated all the models using
internal and external validation. This approach allows creation
of not only predictive proteochemometrics model for protein
kinases, but also preparation of visually interpretable models.
This allows interpretation of kinase–ligand interactions, which
can be used, for example, for optimization of ligand in order
to achieve optimal activity and/or selectivity. Having visually
interpretable models is the advantage compared to classical DTI
methods that use only 2D information (Subramanian et al., 2013,
2016).

Deep learning model for identification of potent discoidin

domain receptor 1 kinase inhibitors
Recently, Zhavoronkov et al. created a deep generative model
for de novo small-molecule design—GENTRL (GENerative

Tensorial Reinforcement Learning). Besides the effectiveness of
a compound against a given biological target, GENTRL also
takes into account its dissimilarity from other molecules in the
literature and patent space, as well as its synthetic feasibility.
For the proof-of-concept GENTRL was used to design potential
Discoidin domain receptor 1 (DDR1) kinase inhibitors. Data
was collected from different data sets: ZINC data set, known
DDR1 kinase inhibitors data set, common kinase inhibitors,
molecules with activity on non-kinase targets, patent data, and
used to train the model. The model was generated by combining
reinforcement learning with a reward, variational inference,
and tensor decompositions. Finally the randomly elected six
compounds that have not been previously published or patented
were designed, synthesized, and experimentally tested. The whole
process lasted only 46 days, which suggests that the application of
drug design methods such as this will reduce the time and cost of
drug discovery process (Zhavoronkov et al., 2019).

CONCLUDING REMARKS

In silico approaches are viable, usually cheaper and faster
alternative to experimental drug discovery techniques. This
review summarizes the most important computational tools
that have led to the discovery of kinase inhibitors, many of
which are in clinical use today as promising anticancer drugs.
Computational approaches, such as QSAR modeling, ligand-
based and structure-based virtual screening, molecular docking,
molecular dynamics, quantum mechanics, fragment-based drug
design, and machine learning methods, provide unique insight in
the conformational landscape of kinases, structural requirements
for inhibitory activity, binding modes and atomistic mechanisms
of allostery, which represent indispensable information for
rational de novo design. One of the main advantages of
computational approaches is the possibility of introduction of
new groups on the known scaffolds and in silico prediction
of activities and binding affinities. Known scaffolds of the
approved KIs include pyrimidine (imatinib, dasatinib, nilotinib),
quinazoline (erlotinib, gefitinib, afatinib, vandetanib), pyridine
(sorafenib), pirrolopyridine (vemurafenib), pyrazolopyridine
(ibrutinib) etc. In silico modification of these scaffolds resulted
in the design of many kinase inhibitors with enhanced
predicted activities and binding affinities which can serve
as lead compounds for further synthesis and preclinical
testing. New chemical scaffolds that possess kinase inhibitory
activity (imidazopyridazine, imidazopyridine, isoquinoline,
phenazinamine, etc.) have also been proposed by computational
approach and represent a good starting point for discovery
of new kinase inhibitors. Due to increases in computational
power, algorithmic improvements and increased accuracy, in
silico approaches are yet expected to radically shape the era of
kinase inhibitor discovery. Of note is to emphasize that not
all drug discovery projects could be initiated and guided only
with computational studies. The computational chemist must
be aware of the structural biology of the studied targets, their
dynamical changes influenced upon fragment/ligand binding.
Whenever possible, it is advised to start CADD studies with
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experimental data and continue in silico optimization with
combined modeling approaches, as much as possible. This
review highlights the recent advances in discovery of kinase
inhibitors by in silico approaches and can be useful for future
design and synthesis of new kinase inhibitors as anticancer drugs.
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Transporters expressed in the liver play a major role in drug pharmacokinetics and are

a key component of the physiological bile flow. Inhibition of these transporters may

lead to drug-drug interactions or even drug-induced liver injury. Therefore, predicting

the interaction profile of small molecules with transporters expressed in the liver may

help medicinal chemists and toxicologists to prioritize compounds in an early phase

of the drug development process. Based on a comprehensive analysis of the data

available in the public domain, we developed a set of classification models which

allow to predict—for a small molecule—the inhibition of and transport by a set of liver

transporters considered to be relevant by FDA, EMA, and the Japanese regulatory

agency. The models were validated by cross-validation and external test sets and

comprise cross validated balanced accuracies in the range of 0.64–0.88. Finally, models

were implemented as an easy to use web-service which is freely available at https://

livertox.univie.ac.at.

Keywords: Vienna LiverTox Workspace, web service, machine learning, ABC-transporter, OATP-transporter,

toxicity, classification models

INTRODUCTION

Membrane transporters expressed in the liver play different, but interconnected roles: on the one
hand, basolateral transporters pick up xenobiotics, and endogenous molecules from the portal vein
to the liver, or excrete their substrates into the blood. Apical transporters, on the other hand, take
care of the flux toward the bile duct network (Figure 1). Three main types of substrates are of
interest with respect to liver toxicity: drugs, which enter the hepatocytes at the first hepatic pass or
at the elimination stage; bilirubin, a product of the degradation of the heme; and bile salts, which
circulate between the gastro-intestinal tract, and the liver.

Additionally, to the enzyme family of cytochromes, also the transporters expressed in the
liver are crucial for a fully functional organ. Some of them are e.g., involved in the bilirubin
cycle: OATP1B1 and OATP1B3 uptake bilirubin into the hepatocytes (Briz et al., 2003), where
glucuronidation takes place. MRP2 then excretes the bilirubin conjugate to the bile (Kamisako
et al., 1999). At the basolateral membrane, MRP3 might also excrete it back to the sinusoidal
blood (Keppler, 2014). As a result, inhibition of the uptake OATP transporters or of MRP2 may
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FIGURE 1 | Main hepatic transporters. In blue, transporters for which

predictive models (inhibition and/or transport) are available in the Vienna

LiverTox Workspace.

lead to the accumulation of bilirubin (conjugated or not) in the
blood, which is referred to as hyperbilirubinemia. Conjugated
hyperbilirubinemia is a marker of hepatobiliary injury (Dufour
et al., 2000; Ozer et al., 2008; Padda et al., 2011), and predicting it
may allow to flag compounds that could cause liver injury.

Bile acids are synthesized in the liver by catabolism of
cholesterol and then excreted to the bile by the active bile salt
export pump (BSEP) and by the multidrug resistance-associated
protein 2 (MRP2) (Meier and Stieger, 2002). Bile salts have
a pronounced detergent effect, which explains their toxicity
when they accumulate in the liver (Attili et al., 1986). For
their transport in the bile duct, bile salts form mixed micelles
with phospholipids of the outer leaflet of the membrane. The
multidrug resistance protein 3 (MDR3) allows lipid flopping
at the apical membrane of the hepatocyte, and its function is
necessary to avoid bile duct toxicity (Nicolaou et al., 2012). After
reaching the intestine via the bile flow, bile acids are reabsorbed
into the portal vein, and taken up again into the hepatocytes
by the sodium taurocholate co-transporting polypeptide (NTCP)
(Stieger, 2011). Impairment of bile flow leading to a toxic
accumulation of bile salts in the hepatocytes might lead to drug-
induced cholestasis, which is one of the main causes of drug-
induced liver injury (DILI) (Padda et al., 2011).

Apart from playing a role in proper bile flow and bilirubin
elimination, liver transporters also transport drugs that will
then be metabolized and excreted. At this stage, drugs can
inhibit different transporters and cause drug-drug interactions
(König et al., 2013) (in case of co-administered inhibitor and
substrate) or liver injury (by disrupting the bile flow for
example). This is why predicting the inhibition and the substrate
profile for liver transporters might be useful in identifying
potentially problematic compounds. In addition, the Food and
Drugs administration recommends experimental testing of the

Abbreviations: ADME-Tox, absorption distribution metabolism excretion

toxicity; BCRP, breast cancer resistance protein; BSEP, bile salt export pump;

DILI, drug-induced liver injury; ECFP, extended connectivity fingerprint, MDR1,

multidrug resistance protein 1; MDR3, multidrug resistance protein 3; MRP2,

multidrug resistance-associated protein 2; MRP3, multidrug resistance-associated

protein 3; MRP4, multidrug resistance-associated protein 4; NTCP, sodium

taurocholate co-transporting polypeptide; OATP1B1, organic anion transporting

polypeptide 1B1; OATP1B3, organic anion transporting polypeptide 1B3; P-gp,

P-glycoprotein; SMILES, simplified molecular input line entry system.

interactions between drugs and transporters (especially P-gp,
BCRP, OATP1B1, and OATP1B3) to identify potential drug-
drug interactions (U.S. Department of Health Human Services
Food Drug Administration Center for Drug Evaluation Research,
2012). Thus, it definitely would be of value to have a suite
of computational models available which allow the fast and
easy assessment of compounds for their interaction profile with
transporters expressed in the liver.

Here, we present the Vienna LiverTox Workspace, a web
server for the prediction of interactions with liver transporters
as well as selected liver toxicity endpoints. To the best of our
knowledge, it is the first time that such an ensemble of predictive
models for hepatotoxicity and liver transport is made available
to the public. The predictions are made by individual machine
learning models built on publicly available data for each target
of interest.

METHODS

Data Curation
The datasets for the training and testing of the models
were collected from different sources (online tools as well as
publications). The data were cleaned by using an in-house
system combining the molecular operating environment (MOE
2014.09) (Molecular Operating Environment, 2014) wash option
and the Atkinson Standardiser (https://github.com/flatkinson/
standardiser). This approach was used for some of the datasets
and for others the cleaning procedure of already published papers
were used (Pinto et al., 2012; Kotsampasakou et al., 2015). In
general, duplicates were removed from the dataset, including
pairs of stereoisomers. Further, if these compounds share the
same class label, one of the compounds was kept. A detailed
list of references as well as the number of compounds revealed
after the preprocessing of the data is given in Table S1. In
the sections Transporter Models and Hepatotoxicity Models,
the data curation as well as the model generation for the
specific endpoints is given. The datasets are available in the
Supplementary Material (Data Sheet 2).

Transporter Models
The web service allows for the prediction of interactions between
a small molecule and eight different liver transporters (Figure 1,
transporters marked in blue). The lack of publicly available data
for the other transporters explains the absence of respective
models in the Vienna LiverTox Workspace.

All the models predicting whether a compound will be
a substrate of a transporter (BCRP, P-gp, BSEP, MRP2, and
MRP3) were built upon a dataset correlating expression levels
of 47 ABC-transporters with drug toxicity, which can then
be used to infer transported vs. non-transported compounds
(Szakács et al., 2004). For the transport inhibition models
(BCRP, P-gp, BSEP, MRP3, MRP4, OATP1B1, and OATP1B3) the
datasets were collected from literature and, if necessary, manually
aggregated. In both cases, the models predict a binary outcome:
the query compound is a substrate or not, or an inhibitor
or not.

For chemistry encoding of the compounds, we used circular
fingerprints or 2D molecular descriptors as implemented in
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TABLE 1 | Overview of the parameters used for the models.

Descriptors Trainings set Algorithm

INHIBITION

P-gp (MDR1) ECFP8-like fingerprints Broccatelli et al., 2011 SVM

BSEP Molecular descriptors Warner et al., 2012

Dawson et al., 2012

Morgan et al., 2010

Naïve bayes

BCRP ECFP8-like fingerprints Montanari and Ecker, 2014 Logistic regression

MRP3 Molecular descriptors Köck et al., 2014 BayesNet

MRP4 Molecular descriptors Köck et al., 2014 AdaBoost (MetaCost)

OATP1B1 Molecular descriptors De Bruyn et al., 2013 BayesNet

OATP1B3 Molecular descriptors De Bruyn et al., 2013 BayesNet

TRANSPORT

P-gp (MDR1) Molecular descriptors Szakács et al., 2004 Rotation Forest (MetaCost)

BSEP SVM (MetaCost)

BCRP k-nearest neighbors (MetaCost)

MRP2

MRP3

TOXICITY

Hyperbilirubinemia ECFP8-like fingerprints Liu et al., 2011 SVM (MetaCost)

Cholestasis Molecular descriptors SIDER v2 database (Kuhn et al., 2010, 2016) Tree model (MetaCost)

Drug-induced liver injury (DILI) Molecular descriptors Various sources* Random Forest

*see https://livertox.univie.ac.at/ for a detailed list.

RDKit version 2015.03.1 (https://www.rdkit.org/). Different
machine learning algorithms were applied and the one giving the
best cross-validation results was kept as final model. Especially
for the transport prediction, a heavy class imbalancy (most
of the drugs in the training set were non-substrates) was
noted, which was handled by MetaCost (Domingos, 1999). The
exact methodology and cross-validation performance for each
individual transporter model is described in the documentation
available at https://livertox.univie.ac.at, and an overview is given
in Table 1. In some cases, external test sets were collected from
Metrabase (Mak et al., 2015) or from recent publications (time-
split evaluation).

Hepatotoxicity Models
Three models in the web service can be used to assess
human liver damage potentially caused by a test compound:
hyperbilirubinemia, cholestasis, and drug-induced liver
injury (DILI).

For hyperbilirubinemia, 835 compounds were taken from
Kotsampasakou et al. (2017a) and the modeling methodology
was kept as in Kotsampasakou et al. (2017b): ECFP-like
fingerprints were computed with RDKit (https://www.rdkit.
org/), then a combination of feature selection, MetaCost, and
support vector machines with RBF kernel was used for learning.
The cholestasis model uses data from Kotsampasakou and Ecker
(2017) and a combination of MetaCost and a tree algorithm to
predict whether a compound is likely to cause cholestasis or not.
Finally, the DILI model is based on a 966-compound dataset
carefully compiled from literature (Kotsampasakou et al., 2017c).
RDKit molecular descriptors and a random forest of 500 trees are
used for modeling.

Web Service Implementation
The Vienna LiverTox Workspace has been implemented as
Python/php based web service. It consists of two parts, namely
the backend and the frontend. The backend consists of a docker
image which runs the machine learning models on an input SD-
File. It consists of a Python Flask server (https://palletsprojects.
com/p/flask/) which processes the requests from the frontend.
Each request consists of one or more input molecules and a list of
models to run the predictions on. The frontend, also a docker
image, is based on the CakePHP framework (https://cakephp.
org/) and is responsible for the user interface (UI), which sends
the request to the backend and displays the results. The web
service provides, after a login, the possibility to upload a SD-
File of 10 compounds. The service can also be used without
logging in but then it is only possible to draw and predict a single
molecule. JSME (Bienfait and Ertl, 2013) is used as drawing tool.
The web service runs on an Ubuntu Linux based server with two
twelve-core Intel Xeon 64bit processors and 128 GB RAM, and is
hosted at the University of Vienna by the Pharmacoinformatics
Research Group.

The models use the RDKit library (https://www.rdkit.org/)

(version 2015.03.1) for computing the descriptors and handling

the chemistry aspects, while the Weka (Hall et al., 2009) (version

3.7.11) and scikit-learn (Pedregosa et al., 2011) (version 0.14.1)
libraries are used to train and run the predictive models. The
models also include a compound cleaning step, implemented
with the Atkinson Standardiser (https://github.com/flatkinson/
standardiser) (Figure 2).

The steps performed during model building and a test
compound prediction are shown in Figure 2. In both cases, the
compound is standardized and the molecular descriptors are
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calculated. In the case of the model generation, this allows the
training of the model and its development (left workflow). For
the prediction of a test compound, the descriptors are passed to
the available model to predict its class affiliation (right workflow).

In general, the output of the model gives, in addition to
the class prediction, the actual score. This score is a numerical
value between 0 and 1, and roughly corresponds to a probability
of being active (inhibitor, substrate, or toxic compound).
Therefore, a value close to 1 indicates substrate/inhibitor/toxic
properties, a value close to 0 annotates for non-substrates/non-
inhibitors/non-toxic.

Applicability Domain
The Applicability Domain (AD) is used to validate the
reliability of a given prediction model. It defines whether

FIGURE 2 | General steps to build a model (left workflow, dotted line) or

predict a property for a test compound (right workflow, solid line). Figure

adapted from Carrió et al. (2015) published in Journal of Cheminformatics is

licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

a dataset of interest is in or out of domain, meaning if
it falls within the chemical space of the model or not.
If it is out of Domain, the prediction cannot be regarded
as reliable.

In our study, an Applicability Domain model, using the
approach of Sahigara et al. (2013), was created for each
transporter with the respective training set. RDKit descriptors
were used as molecule representation. This approach combines
the classical, widely used k-Nearest Neighbor (k-NN) method
with a probability density function estimation. It uses three
stages to determine the reliable space of a prediction model.
First, a set of thresholds is defined depending on the diverse
densities of the training set by considering the 15 k-nearest
neighbors using Euclidean distances. This allows the AD to
consider a dense and sparse training region (The threshold
defines if a test sample can be reliable predicted). In a
next step a decision rule is derived to filter out outlier
molecules. Finally, the reliability of the AD is tested by looking
at the model statistics and prediction errors. This feature
is not yet implemented in the Web service, but will be
available soon.

RESULTS

Model Results
The performance of the models was estimated by calculating
statistical performance metrics using a 10-fold cross-validation.
The results are provided in Table 2. The overall accuracy,
corresponding to the rate of correct predictions, ranges from
0.59 to 0.87. Also, the sensitivity of the models was calculated
(0.57–0.85). This parameter gives the number of actual positives
that are correctly identified and is expressed by the number of
true positives divided by the number of positive predictions.
Further, the number of actual negatives was determined by the

TABLE 2 | Performance metrics of the transporter models.

Accuracy Sensitivity Specificity Balanced accuracy MCC ROC AUC

INHIBITION

P-gp (MDR1) 0.87 0.85 0.90 0.88 0.76 0.94

BSEP 0.85 0.77 0.87 0.82 0.60 0.91

BCRP 0.83 0.77 0.87 0.82 0.64 0.90

MRP3 0.82 0.75 0.87 0.81 0.62 0.86

MRP4 0.73 0.86 0.65 0.76 0.49 0.74

OATP1B1 0.77 0.71 0.78 0.75 0.34 0.80

OATP1B3 0.81 0.78 0.81 0.80 0.35 0.81

TRANSPORT

P-gp (MDR1) 0.81 0.81 0.81 0.81 0.44 0.85

BSEP 0.71 0.65 0.72 0.69 0.28 0.69

BCRP 0.73 0.57 0.75 0.66 0.20 0.71

MRP2 0.70 0.60 0.72 0.66 0.27 0.73

MRP3 0.72 0.60 0.74 0.67 0.28 0.72

TOXICITY

Hyperbilirubinemia 0.67 0.64 0.67 0.66 0.20 0.69

Cholestasis 0.59 0.72 0.56 0.64 0.22 0.64

Drug-induced liver injury (DILI) 0.65 0.72 0.58 0.65 0.30 0.70
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FIGURE 3 | Overview of the web service interface. On the left side, test compound is drawn and desired models are selected. On the right side, results table with the

predictions and model scores.

number of true negatives divided by the number of negative

predictions. The so-called specificity ranges from 0.56 to 0.90.

To estimate a metric for the quality of the models, the Matthews

correlation coefficient (MCC) and the Area under the Receiver

Operating Characteristics curve (ROC AUC) were determined.
The MCC is a number between −1 and 1 where 0 indicates a
prediction equal to a random prediction and 1 indicates a perfect
prediction, whereas −1 is a complete miss. The scores for our

models are in the range of 0.20–0.76. The ROC AUC measures
the ability of the model to distinguish between negatives and

positives, while a higher value indicates a better performance.
In the models provided on the Vienna LiverTox Workspace
the ROC AUC ranges from 0.64 to 0.94. Furthermore, if data
was available, the models were also validated with one or more
external test sets. For more details see the documentation on
the website.

Use Case: Prediction of Liver Interaction
for a Propafenone Analog
In this section, we briefly detail how predictions can be generated
for a given compound using the LiverTox web service. In first
instance, the compound is drawn or its SMILES string is pasted
in the Molecule Editor (Bienfait and Ertl, 2013). Then the models
can be selected on the left panel, either one by one or all at the
same time (Figure 3, left side).

By clicking on the SUBMIT button, the data is sent to

the backend server where the predictions are running. Upon
completion of the calculations, a table listing the different models
and corresponding outputs will appear (Figure 3, right side). The
second column in the results table corresponds to the binary
classification, while the third column “Score” gives the actual
output of the model, which corresponds to a probability of
being active. For example, for BCRP inhibition and transport

Frontiers in Chemistry | www.frontiersin.org 5 January 2020 | Volume 7 | Article 899286

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Montanari et al. Vienna LiverTox Workspace

TABLE 3 | Comparison of existing free online tools to predict ADME-Tox properties of compounds.

Web service Transporters predictions CYP450

predictions

Hepatotox.

predictions

Batch

prediction

Run time for 1

compound

ProTox-II (Drwal et al., 2014) No No No Yes (max. 100) <5 s

BioZyne (Levatić et al., 2013) P-gp No No Not for free ∼5 s

QSAR DB (http://qsar.food.dtu.dk/) No Yes No Yes N.A.

pkCSM (Pires et al., 2015) P-gp Yes Yes Yes (max. 100) <5 s for 30 models

Lazar (Maunz et al., 2013) No No No No ∼10 s for 6 models

Vienna LiverTox Workspace P-gp, BSEP, BCRP, MRP2, MRP3,

MRP4, OATP1B1, OATP1B3

No Yes Not for free ∼30 s for 15 models

and for DILI, the output score is close to 0.5 (which is the
threshold used to separate predicted actives from predicted
inactives), which indicates an uncertainty of these three models
for the particular query compound. Propafenone derivatives are
frequently reported as inhibitors of P-gp, and indeed the P-gp
inhibition model predicts this particular one to be an inhibitor
with a high score (0.93).

DISCUSSION

Many systems already exist to predict in silico activities or
properties of small molecules. Table 3 compares freely available
ones with our own web service in terms of model offer,
submission and run time. For example, ProTox-II predicts
oral drug toxicity in rodents (lethal dose LD50 and a category
of toxicity between 1 and 6) using similarity to compounds
with known LD50 and recognition of toxic fragments (Drwal
et al., 2014). BioZyne proposes exclusively one model for
P-gp transport prediction based on the same dataset as
ours (Szakács et al., 2004; Levatić et al., 2013). It uses a
Support Vector Machine classifier for the prediction of P-gp
substrates. The Danish (Q)SAR Database contains pre-calculated
properties combined from more than 200 models from both
commercial and free tools (http://qsar.food.dtu.dk/). Predictions
for environmental toxicity, blood-brain barrier permeation,
cytochrome interactions, or human genotoxicity are available.
Unfortunately, new predictions for compounds that are not part
of the database cannot be made. PkCSM is another web service
for predicting pharmacokinetics properties of compounds (Pires
et al., 2015). Models such as P-gp inhibition and transport, blood-
brain barrier permeation, interaction with cytochromes, renal
clearance, or even liver toxicity are available.

In general, our models for the inhibitors show a better
performance especially when looking at the correct prediction of
the positives. The prediction of true negatives is for the inhibitor
and transporter models quite similar which can be explained by
the availability of more negatives if the training set is unbalanced.
This is especially the case for the substrate models. The quality
of the prediction (MCC) is higher for the inhibition models
of P-gp, BSEP, BCRP, and MRP3 since the available dataset is
more balanced. In comparison, the three toxicity models show a
poorer performance due to the complexity of these endpoints and
especially for hyperbilirubinemia and cholestasis which shows
also a lack of positives.

The Transporters selected for this web service were chosen
based on their importance for regulatory agencies such
as FDA, EMA and the Japanese regulatory agency. They
recommend or in some cases request these proteins to
be routinely tested in inhibition—and substrate studies of
new drugs.

CONCLUSION

We have presented the Vienna LiverTox Workspace, a web
service dedicated to the prediction of liver toxicity and
interactions between small molecules and liver transporters. It
is easy to use, fast, web browser agnostic, and well-documented.
Thanks to its modular system, it will be easy to integrate new
models in the future, as well as re-implement existing models
in case new training data becomes available. We hope that
our models will help researchers to flag potentially dangerous
compounds and shed light on the relationships between liver
transporters and toxicity.
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The generated database GDB17 enumerates 166.4 billion molecules up to 17 atoms

of C, N, O, S and halogens following simple rules of chemical stability and synthetic

feasibility. However, most molecules in GDB17 are too complex to be considered for

chemical synthesis. To address this limitation, we report GDBChEMBL as a subset

of GDB17 featuring 10 million molecules selected according to a ChEMBL-likeness

score (CLscore) calculated from the frequency of occurrence of circular substructures

in ChEMBL, followed by uniform sampling across molecular size, stereocenters and

heteroatoms. Compared to the previously reported subsets FDB17 and GDBMedChem

selected from GDB17 by fragment-likeness, respectively, medicinal chemistry criteria,

our new subset features molecules with higher synthetic accessibility and possibly

bioactivity yet retains a broad and continuous coverage of chemical space typical of

the entire GDB17. GDBChEMBL is accessible at http://gdb.unibe.ch for download and

for browsing using an interactive chemical space map at http://faerun.gdb.tools.

Keywords: chemical space exploration, molecular database, enumeration algorithm, chemical space mapping,

virtual screening

INTRODUCTION

Innovation at the level of chemical structures is an essential part of drug discovery. Novelty often
results from chemical intuition however this approach is increasingly difficult as the number of
known molecules increases. Novelty is similarly limited in virtual combinatorial libraries (Leach
and Hann, 2000; Hu et al., 2011; van Hilten et al., 2019) and generative models trained with
known molecules (Chen et al., 2018; Elton et al., 2019) because these systems mostly shuffle known
patterns, which produces many technically new but often not fundamentally innovative molecules.
To circumvent this limitation, we have initiated the exhaustive enumeration of all possible organic
molecules following simple rules of chemical stability and synthetic feasibility, and reported large
databases enumerating molecules up to 11 (Fink et al., 2005; Fink and Reymond, 2007), 13 (Blum
and Reymond, 2009), and 17 atoms (Ruddigkeit et al., 2012, 2013), as well as of possible ring systems
up to 30 atoms (Visini et al., 2017a). Analyzing the resulting generated databases (GDBs) shows that
there are many orders of magnitude more possible molecules spanning a much broader structural
diversity than already known ones (Reymond, 2015; Awale et al., 2017b).

One of the defining features of the GDB databases is the exponential increase in the number
of possible molecules as function of increasing molecular size and complexity elements, such as
stereocenters and heteroatoms, implying that most possible molecules are in fact far too complex
to be considered as realistic synthetic targets. To address this problem we have designed subsets
of our largest database GDB17 by limiting complexity elements using simplification criteria,
such as fragment-likeness (Congreve et al., 2003), producing the fragment database FDB17, and
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medicinal chemistry rules for functional groups and
complexity (Mignani et al., 2018), producing the
medicinal chemistry aware database GDBMedChem
(Visini et al., 2017b; Awale et al., 2019). These approaches
however also constrain the diversity of GDB molecules,
which partly defeats the purpose of exploring chemical
space broadly.

Herein we report an alternative approach to create subsets of
GDB17 based on the frequency of occurrence of substructures
from known molecules independent of the overall molecular
structure (Figure 1A). We define a “ChEMBL-likeness” score
(CLscore) by considering which substructures in a molecule
also occur in molecules from the public database ChEMBL
(Gaulton et al., 2017), using a subset of molecules with
reported high confidence datapoint of activity on single protein
targets, a type of ChEMBL subset which we have used
previously for target prediction (Awale and Reymond, 2019;
Poirier et al., 2019). We then filter the entire GDB17 with a
cut-off value for CLscore, followed by uniform sampling of
the resulting subset across molecular size, stereocenters and
heteroatoms as done previously with FDB17 andGDBMedChem,
to obtain a ChEMBL-like subset of 10 million molecules forming
the database GDBChEMBL. This database covers chemical
space as broadly as but more continuously than FDB17 and
GDBMedChem yet features a much higher synthetic accessibility
as judged by a calculated synthetic accessibility score (Ertl and
Schuffenhauer, 2009), might contain molecules with a higher
probability of bioactivity, and in any case provides a very
different starting point to serve as a source of inspiration for
molecular design.

RESULTS AND DISCUSSION

ChEMBL-Likeness Score
Our definition of CLscore is related to the synthetic accessibility
score (SAscore) (Ertl and Schuffenhauer, 2009) and natural
product likeness score (NPscore) (Jayaseelan et al., 2012) of a
molecule, which are calculated from the occurrence frequencies
of its substructures in PubChem and fragments from natural
products, respectively, combined with additional functional
group rules. Here we focus on 457,139 compounds recorded in
ChEMBL24 as being active on single protein targets (IC50 or
EC50 ≤ 10µM) with high confidence datapoints (Awale and
Reymond, 2019; Poirier et al., 2019). To design our CLscore
we consider circular substructures, called molecular shingles,
because they form the basis formolecular fingerprints ECFP4 and
MHFP6 which perform best in benchmarking studies (Riniker
and Landrum, 2013; Probst and Reymond, 2018).

The frequency of occurrence of the 636,979molecular shingles
up to a diameter of six bonds found in our ChEMBL subset
follows a power law distribution (Figure 1C). To compute the
CLscore of a molecule, we assign to each of its shingles (S) a
shingle value calculated from the logarithm of its frequency of
occurrence fS in our ChEMBL subset, considering only shingles
occurring at least 100 times in this subset (141,261 shingles,
22.2% of the total). We then sum all shingle values and divide the
sum by the total number of shingles in the molecule (Equation 1).

CLscore =

∑m
i=1 log10

(

fS
)

i

N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

CLscore : = ChEMBL− likeness score

S : = shingleinmolecular structure

fS : = abundanceofmolecularshinglein ChEMBL

N : = totalnumberofshinglesinmolecular structure

m : = numberofshinglessharedwith ChEMBL

The histogram of CLscore for the 457,139 ChEMBL reference
molecules is approximately Gaussian with a peak at CLscore =
3.9 (Figure 1B). DrugBank (Law et al., 2014) and particularly
ZINC (Sterling and Irwin, 2015) peak at a similar CLscore,
showing that these three databases consist of molecules built
from the same type of substructures. By contrast GDB17 and its
subsets FDB17 and GDBMedChem have a much lower CLscore
distribution peaking at CLscore = 2.7, reflecting the fact that
GDB molecules are very different from ChEMBL molecules.
CLscore values correlate with SAscore values, reflecting the
similar principles underlying both scores, and suggesting that
molecules with high CLscore should also be synthetically
accessible (Figure 1D).

GDBChEMBL Database
Calculating CLscores on the entire GDB17 (166.4 billion
SMILES) and keeping molecules with CLscore ≥ 3.3, a cut-off
value which retains 78.3% of our ChEMBL subset, eliminates
84.3% of GDB17. The remaining 26.2 billion molecules are then
binned in triplet value bins considering heavy atom count (HAC
1-17), stereocenter count (0–4, ≥ 5) and heteroatom count (0–
8, ≥ 8). There are 538 different triplet value bins, which are
occupied by 1 to 1.6 × 109 molecules. Uniform sampling finally
yields a final set of 10 million molecules evenly distributed across
molecular size, stereochemical complexity and polarity, forming
the database GDBChEMBL (Figure 1E).

As a consequence of uniform sampling, the heavy atom count
(HAC) profile of GDBChEMBL resembles that of FDB17 and
GDBMedChem and is relatively flat compared to the very steep
peak at HAC = 17 in the parent database GDB17 (Figure 2A).
Uniform sampling also explains the rotatable bond count (RBC)
profile in GDB subsets compared to GDB17 (Figure 2B), as well
as the fact that the profiles of the three GDB subsets across these
parameters are generally more similar to the profile of molecules
up to 17 atoms in ChEMBL (ChEMBL17) and to natural products
(UNPD17) (Banerjee et al., 2015) than to the profile of GDB17.

GDBChEMBL displays a very broad distribution in terms of
hydrogen bond donor atoms (HBD, Figure 2C), hydrogen bond
acceptor atoms (HBA, Figure 2D) and nitrogen plus oxygen
atom count (N+O, Figure 2E) due to the absence of heteroatom
capping criteria in selecting GDBChEMBL compared to FDB17
and GDBMedChem, for which fragment-likeness criteria,
respectively, caps on the number of functional groups were
applied. Similar differences are visible in topological polar
surface area (TPSA, Figure 2F) and calculated octanol/water
partition coefficient (alogP, Figure 2G). The broader distribution
of polarity parameters in GDGChEMBL compared to GDB17
results from uniform sampling since the procedure gives
relatively more importance to molecules with extreme size and
polarity values.

Synthetic accessibility is better (lower SAscore) in
GDBChEMBL than for GDB17, FDB17, or GDBMedChem,
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FIGURE 1 | (A) Generation process of GDBChEMBL. (B) CLscore distributions for GDB17, its subsets FDB17 and GDBMedChem, and public databases ChEMBL,

ZINC, and DrugBank. (C) Frequency distribution of molecular shingles up to a diameter of 6 bonds in ChEMBL. (D) SAscore vs. CLscore in various databases. A

lower SAscore indicates higher synthetic accessibility, and a higher CLscore indicates higher similarity to ChEMBL molecules. (E) Occupancy of triplet value bins

(HAC, stereocenters, heteroatoms) in all GDB17 cpds with CLscore ≥3.3 (black line) and after uniform sampling forming GDBChEMBL (red line).

reflecting the correlation between CLscore and SAscore noted
above (Figure 2H). Similar to GDB17 and its other subsets,
GDBChEMBL displays a much higher fraction of sp3 atoms than
ChEMBL (fsp3, Figure 2I). As a consequence GDB molecules
are closer to natural products, which is reflected in the NPscore
profile (Figure 2J). Despite of these differences and similarities
in SAscore and NPscore, it must be noted that GDB17 and its
subsets stand out by the fact that they contain fewer aromatic
and more heterocyclic molecules than ChEMBL and natural
products (Figure 2K).

Visualization and Similarity Searching
To gain an overview of GDBChEMBL we computed Molecular
Quantum Number (MQN) fingerprint values (Nguyen et al.,
2009), performed a principal component analysis (Rosén et al.,
2009), and visualized the resulting 3D-map in the interactive
web-based application faerun (Probst et al., 2018). In this 3D-
map accessible at http://faerun.gdb.tools, each point represents
one or more molecules present at the corresponding position and
can be color-coded according to a molecular property selected
from the faerun menu.

Comparing MQN maps of GDBChEMBL, FDB17 and
GDBMedChem shows that each of the three GDB17 subset cover
a similar range of properties, however coverage by GDBChEMBL
is more continuous, as is well visible in the vertical stripe at
right containing all acyclic molecules (Figures 3A–C). Note that
CLscore values are not correlated with MQN properties, which
is not surprising considering that ChEMBL substructure span
a broad range of properties (Figure 3D). Color-coding by the
calculated logP value (alogP, Figure 3E) and by rotatable bond
count (RBC, Figure 3F) illustrate the distribution of molecules in
the MQNmap.

The fact that molecules in GDBChEMBL are substantially
different from those in the other subsets FDB17 and
GDBMedChem can be shown by retrieving 1,000 MQN-nearest
neighbors of nicotine from each database, and representing
each dataset in a similarity map (Medina-Franco et al., 2007;
Raghavendra and Maggiora, 2007; Awale and Reymond, 2015)
using the molecular shape and pharmacophore fingerprint
Xfp (Awale and Reymond, 2014), computed with the web-
based application WebMolCS (Awale et al., 2017a). This
visualization shows that each database provides different types
of nicotine analogs (Figure 3G) with a good number of high
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FIGURE 2 | (A) Heavy atom count (HAC), (B) rotatable bonds (ROTB), (C) hydrogen bond donors (HBD), (D) hydrogen bond acceptors (HBA), (E) nitrogen plus

oxygen count (N+O), (F) topological polar surface area (TPSA), (G) computed partition coefficient (aLogP), (H) synthetic accessibility score (SAscore), (I) Fraction of

sp3 hybridized atoms (fsp3), (J) natural product likeness score (NPscore), and (K) fraction of structures by ring class. Property histograms for GDB17 (black),

GDBMedChem (orange), FDB17 (yellow), GDBChEMBL (red), ChEMBL (cpds with HAC ≤ 17, blue) and natural products (cpds with HAC ≤ 17, purple).

similarity analogs (Figure 3H). To facilitate similarity searches
in GDBChEMBL, we have implemented a similarity search
portal by which nearest neighbor searches of any molecule
can be performed in GDBChEMBL using MQN, ECFP4, or a
combined MQN-MHFP6 similarity, as described previously for
GDBMedChem (Awale et al., 2019).

CONCLUSION

The data above demonstrate a substructure-based approach
to select molecules from the generated database GDB17.
As selection criterion we defined a ChEMBL-likeness
score (CLscore) from the frequency occurrence of circular

substructures, called molecular shingles, in a subset of the
database ChEMBL consisting of compounds active on single
protein targets with high confidence datapoints. This selection
reduced GDB17 by 84.3%, leaving 26.2 billion molecules, which
we sampled uniformly across molecular size, stereochemistry
and heteroatoms to form GDBChEMBL comprising 10
million molecules.

Property profiles, chemical space maps and similarity searches

show that GDBChEMBL is very different from our earlier

GDB subsets FDB17 and GDBMedChem and spans chemical

space more continuously. At the same time, the correlation

between CLscore and the synthetic accessibility score (SAscore)

implies that GDBChEMBL molecules will be on average easier
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FIGURE 3 | Chemical space maps of GDBChEMBL, FDB17, and GDBMedChem. (A) PCA 3D-map of GDBChEMBL in MQN-space, color coded by heavy atom

count; (B) same as a for FDB17; (C) same as a for GDBMedChem; (D) GDBChEMBL color-coded by CLscore value; (E) GDBChEMBL color-coded by calculated

octanol/water partition coefficient alogP; (F) GDBChEMBL color-coded by rotatable bond count; (G) similarity map of MQN-nearest neighbors of nicotine from

GDBChEMBL (red), FDB17 (cyan), and GDBMedChem (blue). Points in green and yellow indicate molecules shared by two databases. (H) Same as g color-coded by

Xfp-similarity to nicotine. MQN maps a to f are accessible at http://faerun.gdb.tools. The similarity map of nicotine analogs g and h is accessible at: http://gdbtools.

unibe.ch:8080/webMolCS/.

to synthesize than molecules from FDB17 and GDBMedChem,
which have significantly lower CLscore and higher SAscores. We
anticipate that the requirements for GDBChEMBL molecules
to share a minimum number of substructures with molecules
of known bioactivities from ChEMBL will also facilitate target
prediction and the selection of interesting GDB molecules for
synthesis and testing.

METHODS

Preparative Steps
ChEMBL Shingle Extraction
The ChEMBL (v 24.1) database was downloaded from https://

www.ebi.ac.uk/chembl/. Data points for extraction of molecular

shingles were selected by applying the same restrictions that were
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used for extraction of training data for our Polypharmacology
Browser PPB2 (Visini et al., 2017b). Structures were normalized
to their major protonation state at pH 7.4 using ChemAxon
cxcalc (v. 18.23.0). Molecular shingles for radii 1–3 were created
using RDkit (2019.03.4) and converted to rooted, canonical,
aromatic SMILES strings without retaining stereochemistry
information. In association with abundancy in the ChEMBL, the
SMILES substructures were stored as pickled python dictionary.
Molecular substructures that were found <100 times were
not stored.

CLscore Calculation
Scoring of GDB17 molecular structures was achieved by
decomposition to molecular shingles in the exact same way
as described for ChEMBL reference shingle extraction. For a
specific query structure, all shingles are uniquely counted, then
looked up in the ChEMBL reference database and upon match,
logarithmic abundancy is summed up. The final CLscore is given
by the ratio of total logarithmic abundancies of matched unique
shingles to total unique shingles in the query structure. All
respective scripts are accessible at: https://github.com/reymond-
group/GDBChEMBL.

GDBChEMBL Generation
All 166.4 billion molecular structures of GDB17 were
decomposed to unique substructures in the same way as
described for ChEMBL reference molecules. Only structures
with CLscore ≥3.3 were stored. The final GDBChEMBL was
obtained by distribution of all filtered 26.2 billion structures
to 538 property triplet bins (heavy atom, heteroatom and
stereocenter count). Property information was gathered using
RDKit. Bins with 5+ hetero atoms and/or 8+ chiral atoms were
merged. The actual even sampling was performed by sorting
all property bins by size and defining target structure count as
10 million. Iteratively, remaining target count was divided by
count of remaining bins, keeping all bins of size smaller than
the current number to sample randomly. For each step, number
of previously selected structures was subtracted from target
count until random sample per remaining bins was lower than
bin size. At this point, sample size was kept constant for all
further bins.

Visualizing GDBChEMBL in Faerun
Property color coded 3D maps for GDBChEMBL, FDB17, and
GDBMedChem were generated using FUn (doc.gdb.tools/fun),
an in-house developed framework for interactive visualization of
chemical spaces on the web. Datasets were given as plain text,
consisting of the four columns (space-separated): SMILES-string,
numeric ID, 42 MQN descriptors (semicolon-separated) and
further molecular properties used for map coloring (semicolon-
separated). Next, the preprocessing toolchain was used to project
the 42-dimensional MQN-space to 3D by applying Principal
Component Analysis (PCA) and to generate all further files
needed for visualization. Finally, the Underdark server was run
using docker with Faerun visualization containers mapped.

Similarity Searching in GDBChEMBL
For better accessibility, GDBChEMBL is provided as a web-
based interactive similarity search tool. The implementation uses
HTML, Bootstrap, JavaScript, and the python Flask framework.
Search times were reduced using Annoy trees (Approximate
Nearest Neighbors Oh Yeah, https://github.com/spotify/annoy)
which were created for the 42-dimensional MQN property space,
as well as for 256-bit ECfp4. A third search option, MQN-
MHFP6, initially searches using the MQN Annoy tree followed
by resorting after Jaccard distance to query molecule in the
MHFP6 fingerprint space (https://github.com/reymond-group/
mhfp). The search tool is available at: gdb.unibe.ch/tools.
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Speeding up the drug discovery process is of great significance. To achieve that,

high-efficiency methods should be exploited. The conventional wet-bench methods

hardly meet the high-speed demand due to time-consuming experiments. Conversely,

in silico approaches are much more efficient for drug discovery and design. However,

in silico approaches usually serve as a supportive role in research processes. To fully

exert the strength of computational methods, we propose a protocol which integrates

various in silico approaches, from de novo protein structure prediction to ligand-protein

interaction simulation. As a proof of concept, human SK2/calmodulin complex was used

as a target for validation. First, we obtained a predicted structure of SK2/calmodulin

and predicted binding sites which were consistent with the literature data. Then we

investigated the ligand-protein interaction via virtual mutagenesis, flexible docking, and

binding affinity calculation. As a result, the binding energies of mutants have similar trends

compared with the EC50 values (R= 0.6 for NS309 in V481mutants). The results indicate

that our protocol can be applied to the drug design of structure unknown proteins. Our

study also demonstrates that the integration of in silico approaches is feasible and it

facilitates the acceleration of new drug discovery.

Keywords: ligand-protein docking, molecular dynamics simulation, computational drug discovery, SK2, structural

prediction, binding site prediction, virtual mutation, pharmaceutical industry

1. INTRODUCTION

To discover a new drug is an urgent but time-consuming process (Zhou et al., 2016; Gómez-
Bombarelli et al., 2018). In the process of new drug development, in silico approaches have been
successfully exploited to perform multiple simulations, such as selecting drug candidates from
a database via high throughput virtual screening (Aparna et al., 2014; de Ruyck et al., 2016;
Vilar et al., 2016; Imam and Gilani, 2017). The application of in silico approaches not only
speeds up new drug discovery, but also collects related information, reveals the mechanisms and
proposes new hypotheses. Compared to bench research, computational experiments perform high-
efficiency simulations which considerably reduce the research time and the cost of experiments
(Abel et al., 2017). However, in most cases, in silico approaches played an assisting role in the
process. In this study, we propose an all-computational protocol integrating multiple in silico
approaches to simulate the entire drug discovery process from de novo protein structure prediction
to drug-protein interaction disclosure.
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Up to now, reliable in silico approaches, such as molecular
dynamics simulation (MD simulation) and machine learning
(Durrant and McCammon, 2011; Lavecchia, 2015; Mortier
et al., 2015), have been increasingly developed and applied
in finding new drugs and optimizing them for treatment of
diseases. However, most research projects only use one single in
silico approach. For instance, the homology models of CIB2, a
calcium- and integrin- binding protein, were constructed based
on CIB1 structures using SWISS-MODEL server (Waterhouse
et al., 2018). Based on the models, the way how the point
mutations affect the affinities of calcium- and integrin-binding
were predicted and then validated by in vitro experiments
(Riazuddin et al., 2012). Besides, the results of ligand-protein
docking were used to test the substrate specificity of OCT-1
and OCT-2 (organic cation transporter) to guide the following
in vivo experimental validation (Papaluca and Ramotar, 2016).
These works simply employed the in silico approaches as
supportive methods, which did not sufficiently leverage the high-
speed advantages of computational methods. Integrating the
established in silico researches into an all-computation pipeline
and producing validated good results is a milestone in the
“omics” era.

Human small conductance calcium-activated (SK2) ion
channels, consisted of SK2 subunits and calmodulin molecule,
have been proved to be therapeutic targets for treatment of
neuronal diseases, such as Parkinson’s and amyotrophic lateral
sclerosis (ALS) (Bond et al., 2005; Lu et al., 2009). The crystalized
structures of human SK2 bound with Riluzole, an approved drug
for ALS (Romano et al., 2015), and an analog [pdb (Berman
et al., 2003) ligand ID: 658] of the SK2 activator CyPPA, an anti-
ataxic agent (Herrik et al., 2012), have been released recently. It
was also reported that ligands of two different chemical classes,
Riluzole and its analog NS309, and CyPPA and its analogs, all
bind to the same binding site where the interface of SK2 and
calmodulin is. In addition, two key residues in the binding
site were mutated to investigate how different mutations affect
the potency of two ligands (Cho et al., 2018). As a proof of
concept, we chose SK2 as the target to examine the protocol
we proposed. Hence, in this study, we basically repeated the
entire procedure of the previous study of Cho et al. (2018)
with consecutive in silico approaches and compared our results
with those of the bench experiments. We first constructed the
human SK2/calmodulin model (PSK2) using SWISS-MODEL
server and docked the ligands Riluzole and CyPPA analog 1 (PDB
ligand ID: 658, see section 2.1), onto the predicted binding site.
The predicted site is consistent with the reported results (Cho
et al., 2018). Then the residues V481 and A477 in the binding
pocket were virtually mutated and the mutation effects were
assessed via binding energies (MM-GBSA 1GBind) calculation.
The results show that the binding energies of mutants have
similar trends compared with the EC50 (the concentration of a
drug that gives half-maximal response) values (R= 0.6 for NS309
in V481 mutants). Overall, our results suggest that this protocol
of in silico approach can provide a systematic prediction on the
unknown structures of proteins and potential drugs, and they
also demonstrate the ability of in silico approaches to speed up
the new drug design process.

2. MATERIALS AND METHODS

2.1. Protein Structure Preparation
Having a determined or predicted structure of the drug target
protein is the first prerequisite of structure-based drug design.
To prove the all-computational protocol is valid, we started our
process from structure prediction. To predict the structure of
SK2 and calmodulin fromHomo sapiens, its amino acid sequence
was obtained from the UniProt website (uniprot ID: Q9H2S1).
Then we uploaded the sequence onto the SWISS-MODEL server,
the most widely-used and reliable structure prediction server, to
build a structure model (Bienert et al., 2016; Waterhouse et al.,
2018) and selected the 3-D complex structure ofRattus norvegicus
SK2 ion channels with NS309 (PDB ID: 4J9Z) (Zhang et al., 2013)
as the template of structure prediction. 4J9Z was downloaded
from RCSB’s Protein Data Bank (Berman et al., 2003), and the
predicted structure of SK2 and calmodulin were combined in
Maestro (11.5 version, Schrodinger). To test the accuracy of
modeling, we uploaded the predicted protein structure and the
crystalized complex structure of human SK2 and calmodulin
with Riluzole (PDB ID: 5V02) onto Zhang’s web server (Zhang
and Skolnick, 2005) to calculate the TM-align score. 5V02 was
downloaded from RCSB’s Protein Data Bank. In addition, site-
directed mutants were constructed using the Mutate Residue
function of Maestro.

A PDB structure of the target protein cannot be directly
used in molecular docking without preprocessing. In most
of the cases, a PDB file does not include the information
of hydrogens, the (potential) charges of atoms, or the bond
orders between any two atoms. In addition, the protein
structures may be determined with a missing fragment(s), a
low resolution or alternate positions, or under an unnatural
condition, for example, low or high pH values. To make sure
molecular docking can simulate the binding between ligands
and the target protein correctly and precisely, the protein and
ligand preparation is necessary. The wild-type and mutant
(predicted) protein structures to be used for docking were
processed by protein preparation wizard in Maestro (Sastry
et al., 2013). The workflow of protein preparation contains
three steps as follows: (1) Preprocess: assigning bond orders,
adding hydrogens, creating zero-order bonds to metals, creating
disulfide, filling in missing side chains using Prime, deleting
waters beyond 5.00 Å from het groups (to keep the water
molecules which may form hydrogen-bond bridges between
the protein and the ligand and remove those cannot form
hydrogen-bond bridges) and generating het states using Epik
(pH = 7.0± 2.0) (Shelley et al., 2007); (2) Optimization: setting
pH = 7.0 and performing optimization; (3) Minimization: this
step was performed using the OPLS3 force field (Harder et al.,
2015). The converge heavy atoms to root-mean-square deviation
(RMSD) is 0.30 Å.

2.2. Ligand Preparation
The 3-D molecular structures of Riluzole and NS309 were
obtained from the PubChem database (Kim et al., 2018). The
3-D molecular structures of CyPPA analog 1 ((4-chloro-phenyl)-
[2-(3,5-dimethyl-pyrazol-1-yl)-pyrimidin-4-yl]-amine) and
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analog 2 (4-chloro-phenyl)-[2-(3,5-dimethyl-pyrazol-1-yl)-6-
methyl-pyrimidin-4-yl]-amine) were built in Maestro (11.5
version, Schrodinger) based on a previous study (Cho et al.,
2018). All the compounds were prepared using OPLS3 force
field in Ligprep panel in Maestro (Sastry et al., 2013; Harder
et al., 2015). The preparation process included converting 2D
structures to 3D ones, adding hydrogens, computing correct
partial charges, and optimizing the structures.

2.3. Binding Site Prediction
Knowing the potential ligand binding site(s) is also an important
prerequisite prior to molecular docking. There are many well-
developed binding site prediction methods and servers (Xie and
Hwang, 2015); however, the predictions produced by different
methods may disagree with each other. Therefore, researchers
usually compare the prediction results produced by different
methods to find the consensus among all predictions. In our
study, binding site prediction process was completed using the
LISE web server (http://lise.ibms.sinica.edu.tw/applet/) (Xie and
Hwang, 2012), which is reported to have the highest accuracy
(80–90% for a soluble protein), and the binding site prediction
tool, Sitemap, in Maestro, which we used in the docking
procedure after this step. The SK2 predicted structure was
uploaded onto the LISE web server for binding site prediction.
The top three predictions from LISE were then downloaded
and imported into Maestro. Meanwhile, in Maestro, SiteMap
(Halgren, 2007, 2009) predicted five ligand binding sites. After
comparing the results obtained using two predictionmethods, we
used the consensus region to define the docking grid box.

2.4. Ligand-Protein Docking
In order to predict the details of the interaction between ligands
and the target protein and to estimate their binding affinities (see
section 2.5), ligand docking was conducted the extra-precision
(XP) mode in Maestro. Maestro has three precision options for
docking including high throughput virtual screening (HTVS),
standard precision (SP), and extra precision (XP). Users can
choose an option based on their need or the computational
load. After the ligands and the target proteins were processed
using Ligprep and protein preparation, respectively, a receptor
grid box was generated according to the results of binding site
prediction. The size of the receptor grid box was set as default.
To investigate the interaction of the protein and ligands, Induced
Fit Docking (IFD) (Farid et al., 2006; Sherman et al., 2006a,b;
Clark et al., 2016) was performed in Maestro. Using the IFD, the
Ligprep outputs were imported and docked to the target protein.
The standard protocol was applied to generate up to 20 poses.
The force field was OPLS3. Under the prime refinement tab, the
conformations of binding site residues within 5 Å (default value)
of the ligand were refined. In the Glide redocking process, the
energy of each protein/ligand complex structure and the number
of top structures were set as the default settings. The XP mode
was used for all IFD process.

2.5. MM-GBSA Calculation
The binding energy (1GBind) between a protein and a ligand
reflects how stable they bind to each other and how a point

mutation affects the ligand binding. Therefore, we examined if
our model can correctly predict the trend of binding affinity
changes of the mutations on the target protein. In this study,
1GBind were estimated using the Prime MM-GBSA module in
Maestro (Greenidge et al., 2012). In MM-GBSA panel, the pose
viewer files of docked complex were uploaded. The solvation
model was VSGB and the force field was OPLS3 (Li et al., 2011).
Prime MM-GBSA 1GBind was calculated using this equation:

1GBind = Ecomplex(minimized)− [Eligand(minimized)

+ Ereceptor(minimized)] (1)

Where 1GBind is binding free energy and Ecomplex(minimized),
Eligand(minimized), and Ereceptor(minimized) are minimized
energies of receptor-ligand complex, ligand and
receptor, respectively.

2.6. Virtual Mutation
Based on the literature, valine 481 (V481) of SK2 is a crucial
residue which forms the hydrophobic core between SK2 and
calmodulin (Cho et al., 2018). To investigate the impacts of
V481 mutations in the binding pocket using in silico approaches,
we first implemented the site-directed mutagenesis in Maestro.
The V481 was virtually mutated to alanine, serine, threonine,
aspartate, or phenylalanine. Then NS309 and CyPPA analog 2
were docked onto the mutated binding site of PSK2 using IFD
and the binding free energies were calculated using MM-GBSA
to reveal the effects of mutated residues.

Alanine 477 (A477) is another vital residue in the binding
pocket (Cho et al., 2018). We exploited the same method
mentioned above to virtually mutate A477 to isoleucine, leucine,
valine, serine, threonine, arginine, and aspartate, docked NS309
and CyPPA analog 2 onto the mutated binding site of PSK2 and
calculated the binding free energies using MM-GBSA.

2.7. Molecular Dynamics Simulation
The molecular dynamics (MD) simulations were performed
using GROMACS version 2018.1 and CHARMM36 all-atom
force field (March 2019) (Vanommeslaeghe et al., 2010, 2012;
Vanommeslaeghe and MacKerell, 2012; Yu et al., 2012; Gutiérrez
et al., 2016). The starting coordinates of each protein-ligand
complex were obtained from docking experiments. Then we
defined a dodecahedral unit cell and filled it with watermolecules.
After adding ions, the complex was minimized for 50,000
steps of steepest descent minimization. Next, the complex was
equilibrated using an NVT ensemble (constant Number of
particles, Volume, and Temperature) and NPT ensemble (the
Number of particles, Pressure, and Temperature). The target
temperature for equilibration was 300 K. At last, the simulations
were performed for 30 ns. After the MD simulations, we
calculated the RMSD of the residues which were mentioned in
the previous research in four trajectories (Cho et al., 2018). Then,
we selected four time points of two residues: I100 on protein-
NS309 complex (15,000, 18,000, 24,000, and 30,000 ps) and D64
on protein-CyPPA analog 1 (2,610, 6,000, 15,000, and 21,000 ps).
Finally, four conformations of both residues were converted into
PDB files and were superposed using PyMol.

Frontiers in Chemistry | www.frontiersin.org 3 February 2020 | Volume 8 | Article 81299

http://lise.ibms.sinica.edu.tw/applet/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Wu et al. All-Computational Drug Design Protocol

3. RESULTS

3.1. Structure Prediction of Human
SK2/Calmodulin Complex
The structure of human SK2/calmodulin was generated using
template-based modeling on the SWISS-MODEL server
(Figure 1A). Based on the structure of SK2/calmodulin from
Rattus norvegicus (PDB ID: 4J9Z), the structure models were
predicted using the amino acid sequences of human SK2 and
calmodulin. Additionally, the loop (residue A403 to residue
D413, the “intrinsically disordered fragment”—IDF), which had
not been determined in structure of human SK2/calmodulin
complex (PDB: 5V02), was obtained in the predicted model
(Figure 1A). It suggests that the predicted structure can be used
to supplement the crystallized structure.

To test the accuracy of the predicted model, we used TM-
align server to calculate the TM-align score (Zhang and Skolnick,
2005). The predicted models were aligned with 5V02, and
the TM-align scores of SK2 and calmodulin are 0.99124 and
0.89215. These TM-align scores show that the structure of human
SK2/calmodulin complex has been accurately predicted.

3.2. Binding Site Prediction
To determine the binding pocket in SK2/calmodulin complex,
the Sitemap and LISE were exploited to predict binding sites
(Halgren, 2007, 2009; Xie and Hwang, 2012). The top three
predicted results from LISE were overlapped with the results of

FIGURE 1 | Overlapped structures of the predicted model of human SK2 ion

channels and 5V02. (A) The predicted structure of human SK2 ion channels

(PSK2) in blue overlapped with its crystallized structure (5V02) in red. The

structure of a missing loop (IDF) near the ligand binding pocket in 5V02/5V03

has also been predicted. The green compound was Riluzole, which was the

ligand in 5V02. (B) The predicted binding sites (Blue dots represent the results

from Sitemap; red dots represent the results from LISE) overlapped with the

Riluzole binding site in 5V02.

Sitemap. After the comparison, we found that there was only
one consensus. Then we selected this binding site to generate
receptor grid for docking. To verify the accuracy of binding site
prediction, we also overlapped the predicted binding site with
that of 5V02 (Figure 1B). Notably, the predicted binding site is
the same binding site of Riluzole in 5V02, which suggests that
this binding site is the potential binding site for the ligands.
Hence, the in silico approaches successfully predict the accurate
binding site.

3.3. Molecular Docking
Based on the previous study (Cho et al., 2018), the interface
of SK2 and calmodulin can be bound by Riluzole, NS309,
CyPPA analog 1, and analog 2. To investigate whether we can
obtain the same results using in silico approaches, we first
docked Riluzole and CyPPA analog 1 onto the predicted model
(PSK2) via IFD (Induced Fit Docking) in Maestro, and redocked
these ligands onto the determined structures (5V02 and 5V03)
and calculated the binding energies as the control. Then we
calculated the binding energies using MM-GBSA to estimate
the binding affinities (Greenidge et al., 2012). As a result, the
MM-GBSA 1GBind of PSK2 with Riluzole and CyPPA analog
1 are −40.19 and −56.11 kcal/mol, respectively. As indicated
in Table 1, those results of PSK2 are compatible to the results
of 5V02 and 5V03, which demonstrate that accurate results
can be obtained using in silico approaches. Additionally, the
docking pose of PSK2 with Riluzole is almost identical with that
in 5V02 (Figure 2A, the RMSD between the ligand of crystal
structure and docking poses on 5V02 or PSK2 is 0.43 or 0.72 Å),
which indicates that the simulated result from IFD can obtain
accurate data in comparison with the results of crystallization.
In Figure 2B, the coordinates of docked and native ligands are
almost the same even though the poses of two ligands are
not completely overlapped (the RMSD between the ligand of
crystal structure and docking poses on 5V03 or PSK2 is 1.59
or 0.87 Å). Analyzing the docking results, Riluzole and CyPPA
analog 1 interact with residues in both SK2 and calmodulin
(Figure 3). The interacting residues in the binding site are mostly
hydrophobic residues. As CyPPA analogs are larger molecules,
they interact with more residues. Compared the list of interacting
residues (Table S1), our results are almost identical to those of
the previous study (Cho et al., 2018). The discrepancy may be
because Maestro analyzes the interactions between ligands and
the protein based on the interaction energy and the previous

TABLE 1 | MM-GBSA 1GBind of ligands bound to crystallized structures and

predicted structures.

Protein Ligand MM-GBSA 1GBind (kcal/mol)

5V02 Riluzole −40.83

5V03 CyPPA analog 1 −62.72

PSK2 Riluzole −40.19

PSK2 NS309 −49.97

PSK2 CyPPA analog 1 −56.11

PSK2 CyPPA analog 2 −64.84
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FIGURE 2 | Comparison of the docked poses and the native structures.

(A) Comparison of the docking results on the PSK2 in blue color, the docking

results on 5V02 in green color, and determined structures 5V02 in red color;

The blue-colored Riluzole is the docked pose on the PSK2, the green-colored

Riluzole is the docked pose on 5V02, and the red-colored Riluzole is the

determined structure in 5V02; (B) Comparison of the docking results on the

PSK2 in blue color, the docking results on 5V03 in green color, and determined

structure 5V03 in red color; The blue-colored CyPPA analog 1 is the docked

pose on the PSK2, the green-colored CyPPA analog 1 is the docked pose on

5V03 and the red-colored CyPPA analog 1 is the determined structure in 5v03.

study (Cho et al., 2018) simply lists the residues within 5 Å of
either ligand. According to the docking results of PSK2 with
Riluzole and CyPPA analog 1, we docked NS309 and CyPPA
analog 2 on the same binding site using the same methods
mentioned above (Figure 4 and Figure S1). The binding affinities
MM-GBSA 1GBind are showed in Table 1. The MM-GBSA
1GBind values of CyPPA analog 1 and CyPPA analog 2 on the
PSK2 are more negative than those of the other ligands, which
suggests that CyPPA analog 1 and CyPPA analog 2 are promising
drug candidates.

To verify the ligand-induced perturbations, NMR spectrum
was used to identify residues with significant chemical shifts in
previous experiments (Cho et al., 2018). With computational
approaches, we ran MD simulations for each protein-ligand
complex to simulate the conformational changes after the
binding of ligands. A previous research reports that the residues
on EF hands of calmodulin had conformational changes due to
the ligand binding (Cho et al., 2018). Therefore, we calculated

FIGURE 3 | 2D ligand-protein interaction of Riluzole (A) and CyPPA analog 1

(B) at PSK2 binding site. The pink arrow is referred to hydrogen bond. The red

line is referred to Pi-cation interaction.
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FIGURE 4 | Docking poses of SK2 predicted structure with NS309 (A) and

CyPPA analog 2 (B).

RMSD for those residues. According to the results of RMSD, we
compared four trajectories of each residue and superposed their
different poses at different time points. As a result, we found I100,
on the complex of NS309, had obvious perturbations on four
time points (Figure 5 and Figure S2). In addition, D64 which was
a critical residue for calcium sensing, also showed dramatically
conformational changing on the complex structure of PSK2 and
CyPPA analog 1 (Figure 6 and Figure S3). Hence, the different
poses of those residues demonstrated that the ligand could induce
the perturbations of the calmodulin, which was consistent with
the conclusion in the previous research (Cho et al., 2018).

3.4. Virtual Mutations at V481 and A477 in
the Binding Pocket
The results of a previous study (Cho et al., 2018) show that
the site-directed mutations on the key residues V481 and A477
in the binding site result in changes in the binding affinities.
To validate that the in silico approach can simulate and predict
the impacts of these mutations, we performed the virtual
mutation experiments, docked the ligands on all mutants, and
calculated the corresponding binding energies of each mutant.
The MM-GBSA 1GBind of V481 mutants are shown in Table 2.
To verify the accuracy of in silico approaches, the Pearson’s

correlation coefficients between MM-GBSA 1GBind and EC50

were calculated (R = 0.6 for NS309 in V481 mutants). Table 2
indicates that substitutions with small side chains (V481S) or a
charged amino acid (V481D) significantly decrease the binding
affinities of NS309. Conversely, the binding affinity of NS309 in
PSK2 V481F is close to that in wild-type. The results above are
consistent with the conclusion in literature, that is, this position
requires a non-charged residue with a bigger side chain (Cho
et al., 2018).

Similarly, we find that CyPPA analog 2 in PSK2 V481Fmutant
with large aromatic side chains also shows a close binding affinity
compared to that in PSK2 WT (Table 2), which demonstrates
a good correlation between calculated binding affinities and
EC50. The mutants with small side chains (V481A and V481S)
or a charged amino acid (V481D) also shows the relatively
lower binding affinities of CyPPA analog 2. Those results
demonstrate that the simulation results are compatible with the
data from biological experiments. The consistent conclusion has
successfully proved that the all-computational protocol can be
widely applied in future biomedical research.

In Table 3, all PSK2 A477 mutants have slightly lower NS309
potency than that of PSK2 WT and the predicted binding
affinities MM-GBSA 1GBind have similar results. According to
the results in literature (Cho et al., 2018), CyPPA analog 2
should exhibit shifted potencies at PSK2 A477L, PSK2 A477V,
PSK2 A477S, PSK2 A477T, PSK2 A477R, and PSK2 A477D,
but not at PSK2 A477I. However, in Table 3, the MM-GBSA
1GBind of PSK2 A477I is not different from those of other
mutants. As an isoleucine has a long side chain, different
rotamers may largely change the estimated binding affinities.
Performing an MD simulation may be a good solution to
optimize the structures of mutants and improve the docked poses
and estimated binding energies.

4. DISCUSSION

In the field of new drug discovery, research efficiency is
particularly essential. On one hand, the speed of new drug
development is of great importance to patients, especially the
ones with fatal diseases such as cancers or acute infectious
diseases (Shi et al., 2015). Statistics show that there will be
around 1.7 million new cancer cases and 600 thousands cancer
deaths in the United States in 2019 (Siegel et al., 2019).
This race against time has always been a huge challenge for
the researchers in this field. On the other hand, to bring a new
drug to the market from compound identification to final FDA
approval usually costs up to billions of dollars (Cleary et al.,
2018). Therefore, the time and cost-efficient virtual process of
drug development will benefit many pharmaceutical companies
and our society. In silico approaches which can save considerable
amount of research time and cost should be applied to drug
design. With the rapid development of computer science and
engineering, the availability and accuracy of in silico approaches
have been constantly improving. Although many progresses
have been made in utilizing in silico approaches to simulate
certain biological experiments, the whole experimental processes
completed in the virtual way from protein structure simulation
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FIGURE 5 | Superposition of four conformations of I100 at four time points on the simulation trajectory of the complex of PSK2 and NS309.

FIGURE 6 | Superposition of four conformations of D64 at four time points on the simulation trajectory of the complex of PSK2 and CyPPA analog 1.

TABLE 2 | EC50 and MM-GBSA 1GBind of NS309 and CyPPA analog 2 bound to

the V481 mutants.

Protein

NS309 CyPPA analog 2

EC50 (µM) MM-GBSA

1GBind

(kcal/mol)

EC50 (µM) MM-GBSA

1GBind

(kcal/mol)

WT 1.1 −49.97 2.5 −64.84

V481A 4.3 −54.28 >250 −29.05

V481S 5.1 −32.65 >250 −49.94

V481T 1.2 −32.77 46.6 −49.97

V481D 7.4 −25.97 >250 −46.75

V481F 0.8 −57.77 3.3 −64.09

to protein-drug interaction characterization has never been
achieved before.

In this study, we proposed a protocol of integration of in
silico approaches to simulate the process from protein structure

TABLE 3 | EC50 and MM-GBSA 1GBind of NS309 and CyPPA analog 2 bound to

the A477 mutants.

Protein

NS309 CyPPA analog 2

EC50 (µM) MM-GBSA

1GBind

(kcal/mol)

EC50 (µM) MM-GBSA

1GBind

(kcal/mol)

WT 1.1 −49.97 2.5 −67.14

A477I 2.0 −37.26 2.0 −47.89

A477L 1.7 −24.71 99.0 −37.60

A477V 2.0 −39.67 >250 −45.63

A477S 3.0 −36.65 >250 −46.05

A477T 2.0 −23.36 >250 −51.04

A477R 2.1 −31.24 >250 −51.50

A477D 3.9 −30.94 >250 −49.71

determination to key residues mutagenesis and characterization.
To validate this strategy, we selected the human SK2 ion channels
as our target protein. With successful prediction, we obtained

Frontiers in Chemistry | www.frontiersin.org 7 February 2020 | Volume 8 | Article 81303

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Wu et al. All-Computational Drug Design Protocol

accurate protein structures (TM-align score >0.5) and the same
binding site as the crystallized structure. Furthermore, the
docking poses of Riluzole and CyPPA analog 1 are consistent with
the ligand bound conformations in the crystallized structures.
We also successfully reproduced similar effects of site-directed
mutagenesis on the ligand binding, which demonstrated great
potential of the integration of in silico approaches. However,
the purpose of integrating in silico approaches is not to
completely replace biological experiments but to speed up the
drug discovery process with the continuous and automatic
computational process.

A possible reason why an all-computation protocol of drug
design has not been proposed and implemented is the inaccuracy
or uncertainty of prediction results might accumulate in the
sequential computational pipeline. However, the state-of-the-art
bioinformatics algorithms, software or servers have been highly
accurate in many cases so that it is time to integrate them
into a fully computational process or even a fully automatic
process. This is the first study to demonstrate the feasibility of
an all-computational protocol in drug design. To achieve the
ultimate goal of “automatic” drug discovery, more online servers
or computational algorithms like PROCHECK (Laskowski et al.,
1993), which can be used to assess or estimate the reliability of
prediction results generated by each in silico approach, need to
be developed. Despite its innovative approach, there are a few
limitations of this study. First, the accuracy of protein structure
prediction relies on the methods and/or templates. In our
research, we selected the SK2/calmodulin from Rattus norvegicus
(PDB ID: 4J9Z) as the template to build protein structure on
SWISS MODEL, whose results are more accurate than the results
from other webservers (data not shown). Hence, a reliable tool or
method is critical to the accuracy of the final simulated results.
Second, the binding affinity changes are hard to be precisely
reproduced, especially those of the mutants, because considering
possible conformational changes on target proteins is still the
biggest challenge of docking. This suggests that MD simulation
which can simulate the conformational changes should be used
to further improve the precision of the predictions.

In conclusion, this work established and demonstrated
an integrated protocol of in silico approaches for the first

time. Its applicability can be potentially extended beyond the
characterizing of SK2 ion channels to investigating other proteins
with unknown structures, such as the Alzheimer’s disease related
proteins (Fitzpatrick et al., 2017; Hatami et al., 2017), which are
also treatment targets of neural degenerative diseases. Although
there are challenges to the in silico approaches, our work still
paves a new way toward an automatic procedure of drug design.
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Fundação Oswaldo Cruz, Rio de Janeiro, Brazil, 5Department of Infection Biology, London School of Hygiene and Tropical
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Fragment-based drug (or lead) discovery (FBDD or FBLD) has developed in the last

two decades to become a successful key technology in the pharmaceutical industry for

early stage drug discovery and development. The FBDD strategy consists of screening

low molecular weight compounds against macromolecular targets (usually proteins)

of clinical relevance. These small molecular fragments can bind at one or more sites

on the target and act as starting points for the development of lead compounds. In

developing the fragments attractive features that can translate into compounds with

favorable physical, pharmacokinetics and toxicity (ADMET—absorption, distribution,

metabolism, excretion, and toxicity) properties can be integrated. Structure-enabled

fragment screening campaigns use a combination of screening by a range of biophysical

techniques, such as differential scanning fluorimetry, surface plasmon resonance,

and thermophoresis, followed by structural characterization of fragment binding using

NMR or X-ray crystallography. Structural characterization is also used in subsequent

analysis for growing fragments of selected screening hits. The latest iteration of

the FBDD workflow employs a high-throughput methodology of massively parallel

screening by X-ray crystallography of individually soaked fragments. In this review

we will outline the FBDD strategies and explore a variety of in silico approaches to

support the follow-up fragment-to-lead optimization of either: growing, linking, and

merging. These fragment expansion strategies include hot spot analysis, druggability

prediction, SAR (structure-activity relationships) by catalog methods, application of

machine learning/deep learning models for virtual screening and several de novo design

methods for proposing synthesizable new compounds. Finally, we will highlight recent

case studies in fragment-based drug discovery where in silicomethods have successfully

contributed to the development of lead compounds.

Keywords: fragment-based, drug discovery, lead discovery, in silico methods, machine learning, de novo design,
optimization, hot spot analysis
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INTRODUCTION

Fragment-Based Drug Discovery
Since the inception of fragment-based drug discovery (FBDD)
over 20 years ago it has become an established technology used
in both industry and academia (Hubbard, 2015). FBDD offers an
attractive approach for effectively exploring the chemical space
for binding a target protein. In conventional high-throughput
screening (HTS) campaigns, large libraries of often complex
compounds are screened for activity against a target (Hall
et al., 2014). In contrast, FBDD use relatively small libraries
of low complexity compounds representing fragments of larger
more drug-like compounds. By reducing the complexity of the
chemicals screened more of the potential binding sites of a target
protein can be explored through the binding promiscuity of the
fragments (Thomas et al., 2017). Where fragments do bind, albeit
with lower potency than the drug-like molecules of HTS, they
offer good starting points to design larger higher affinity binders
using knowledge of the protein structure as a template to generate
compounds with greater ligand efficiency (improved per atom
binding energy to the target). This bottom-up approach means
that a greater range of chemical space can be explored, leading
quickly to higher affinity lead compounds with greater specificity
(Patel et al., 2014).

FBDD projects require relatively lower investments in
research and development (R&D) than HTS (Davis and
Roughley, 2017). An example is the discovery of vemurafenib
(ZelborafTM), the first fragment-derived drug, which moved
relatively very quickly (6 years) between the phases of R&D
pipeline before reaching Food and Drug Association (FDA)
approval (Erlanson et al., 2016). Thus, FBDD provides attractive
opportunities for the drug discovery field.

Output of Structure-Enabled Fragment
Screening Campaigns
FBDD workflows are multi-step starting with target selection
and protein isolation and followed by an initial screen of the
fragment library using biophysical techniques such as nuclear
magnetic resonance (NMR), surface plasmon resonance (SPR),
thermal-shift assay, microscale thermophoresis (MST), mass
spectrometry, and others. For fragments which show evidence
of binding, a further step of hit validation and characterization
occurs principally using X-ray crystallography (Verdonk and
Hartshorn, 2004). Using hit characterization, an iterative cycle
of fragment development can occur employing a range of in
silico and experimental techniques. Advances in this protocol
try to compress the process by combining the initial fragment
screen with the hit characterization. This has been implemented
in a high throughput FBDD platform called XChem located
at the United Kingdom’s national synchrotron the Diamond
Light Source (Cox et al., 2016). It uses the ability to produce
and handle a large number of crystals of the target protein
to screen the fragment library by soaking each individual
crystal with a fragment and then using X-ray crystallography
to determine which fragments have bound and where. Though
this high throughput technique often provides multiple hits, care
needs to be taken in interpreting the significance of the hit.

Promiscuous fragments may bind parts of the protein which are
not involved in the protein function and therefore are unlikely
to yield a successful inhibitor. Additionally, as the fragments
are by their very nature weak binders and X-ray crystallography
being a sensitive technique, observed binding events might be
transient and not easily reproducible. It is therefore important to
confirm hits with orthogonal structural (e.g., NMR), biophysical
techniques (SPR, MST, etc.) or in vitro biological assays.

Fragment Libraries
A crucial step in FBDD process is in the development and
choice of the fragment library used in the screening campaign.
Several fragment libraries have been developed that exploit
certain properties or chemistries. An example of a fragment
library is the Diamond-SGC Poised Library (DSPL) (Cox et al.,
2016). This has been developed for use with high-throughput
XChem platform and consists of around 760 fragments that
have been selected to contain at least one functional group
that is open to rapid, cheap follow-up synthesis using robust
well-characterized reactions (poised) and maximizing chemical
diversity. Other fragment libraries optimize other properties such
as solubility, 3D traits or based on subsets of existing drugs and
related molecules such as natural products (Schuffenhauer et al.,
2005). The fragment libraries generally share similar properties
of “Rule of 3” compliant i.e., less than 300 Da molecular
weight, 3 or less hydrogen bond donors, 3 or less hydrogen
bond acceptors and CLogP no more than 3. In addition,
they are soluble in dimethyl sulfoxide (DMSO) or phosphate
buffered saline. Fragment libraries generally tend to be <1,000
fragments, which is significantly less than the many millions
of compounds screened in high-throughput and high content
screening campaigns (Trevizani et al., 2017).

Fragment Expansion Strategies
Once the fragment screen has been completed and hits
characterized, the next step is the challenge of expanding these
fragments to generate larger molecular entities with high binding
affinity and demonstrating inhibition activity. There are several
strategies that can be followed (Lamoree and Hubbard, 2017)
(Figure 1). One option is to use expert medicinal chemistry
advice to design and synthesize larger molecules based on
the protein and the fragment pose. Another approach is to
define vectors along the fragment molecule based on the steric
hindrance of the protein target in which the fragment can be
expanded. The fragment is then searched for within a large library
of synthesizable (or purchasable) molecules which are bigger by
between one and three heavy atoms along the identified vectors.
These expanded fragments can be synthesized and soaked/co-
crystallized and re-screened by X-ray crystallography. Expanded
fragments that show improved binding can be further extended
or structurally modified using the same process, with this cycle
continuing until a larger high-affinity binding entity is reached.

An alternative to this “small steps” approach is to try to get a
larger higher affinity binding molecule in a single step. This can
be achieved by having an in silico method using the fragment in
a substructure search of a large purchasable compound library
(e.g., Zinc15), and to virtually screen the results using the pose
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FIGURE 1 | Multiple routes to expanding fragment to more drug-like molecule with improved binding affinity. (A) Traditional medicinal chemistry route:

knowledge-based design and synthesis. (B) “Small steps” route: successive cycles of extension of the fragment hit by 1–3 heavy atoms through vectors defined by

high-resolution structural characterization methods, such as X-ray crystallography. (C) “Large leaps” or “SAR by catalog” route: from fragment to rule of 5 compliant

molecules using virtual screening of commercial compound libraries. (D) Fragment merging route: bridging two overlapping fragments bound at neighbor sites.

Regardless of the route, expanded fragments should be checked for biological activity using in vitro, ex vivo, or in vivo assays.

of the fragment to dock the molecules and rank them based
on docking parameters (Trevizani et al., 2017). The top-ranking
virtual screening hits can then be co-crystallized and well as
evaluated in vitro and in vivo. A final expansion option is to
link or merge fragments that hit near to each other or within the
same site (Davis and Roughley, 2017). The combined fragments
can then be further expanded using the approaches described
previously. It is vital that as expansion progresses in vitro and in
vivo assays are conducted to asses activity of the new molecules.

In the next section, we will discuss in depth the main
optimization approaches used for a fragment structurally
characterized in a binding site of its target. Further sections will
describe existing software tools or modeling techniques (e.g.,
machine learning) employed for taking a fragment hit thorough
the path for becoming a lead compound—a process known as
fragment-to-lead (F2L)—for drug development and conclude
by presenting case studies where in silico strategies have been
successfully utilized to support the F2L optimization process.

FRAGMENT OPTIMIZATION APPROACHES

After the hit identification in a FBDD campaign, the fragment
moves forward to the optimization phase. This optimization
takes into account the structural characteristics of the ligand
as well as its binding site. The principle in using fragments
relies on the premise that these molecular entities are more
efficient ligands compared to drug-like molecules, and their
structures can be further optimized more efficiently. In fact,
this constitutes one of its many advantages. As small entities,
molecular fragments can be iteratively optimized to show a better
pharmacokinetic profile in the later development stages. Drug-
like molecules may contain functional groups that contribute

poorly to protein binding or, in some cases, can even disrupt the
protein-ligand interaction. On the other hand, fragments often
form high-quality interactions able to more easily bind to the
protein target, translating to a greater number of hits. Figure 2
depicts schematically this concept.

Another advantage of FBDD is the potential for faster hit
progression through the campaign, since the fragments are
usually structurally simple and many follow-up compounds can
be easily purchased from commercial databases (e.g., MolPort,
ZINC15, and ChemBridge) instead of being synthesized. Another
important characteristic often used to defend this approach is
the high hit rates. In this sense, high hit rates means that the
FBDD yields relatively more hits in comparison to the traditional
methods such as HTS (Coutard et al., 2014; Mondal et al.,
2015). This is due the inversely related nature between molecular
complexity and the binding probability (Hann et al., 2001).
Other advantages includes the more efficient chemical space
sampling (Coutard et al., 2014; Mondal et al., 2015) and the
relative low cost to implement the FBDD, as it can be seen
from comparing the usual size of the HTS library (thousands of
compounds) with fragment libraries (hundreds of compounds)
(Macarron et al., 2011).

Assessment of the interactions between the fragment and
its binding site should be carefully performed for further
identification of synthetically accessible vectors on the ligand.
Although x-ray crystallography data is a valuable technique in
fragment optimization, is important to keep in mind that the
observed structural data only represents a snapshot of the system
under investigation. It’s been known that the ligand affinity can be
affected by the structural protein dynamics without changing the

ligand-binding interface (Matias et al., 2000; Seo et al., 2014). This
complex dynamic environment (Henzler-Wildman and Kern,
2007; Boehr et al., 2009) can affect small and weak ligands as
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FIGURE 2 | Discovery and structural-optimization of drug-like molecules (A) and fragments (B) using protein target information. The surface represents the binding

site. The red and gray colors represent the level of complementarity of ligand with the active site. Pockets with low complementarity with ligand are colored in red;

pockets with high complementarity with ligand are highlighted in gray.

fragments. With this in mind, many methods can additionally
be used to guide the fragment identification/optimization either
providing complementary data (e.g., thermodynamic data) or
acting as orthogonal approaches (Ciulli, 2013a). These methods
are mostly biophysical (Shuker et al., 1996; Lo et al., 2004;
Navratilova and Hopkins, 2010; Pedro and Quinn, 2016) and
their use has some advantages such as, direct measurement of
the binding, detection of small ligands with low affinity, and
not needing any prior information about the protein function
(Ciulli, 2013b). Despite the supremacy of biophysical methods,
biochemical approaches are increasingly being used (Godemann
et al., 2009; Boettcher et al., 2010; Mondal et al., 2015) in FBLD.

In addition to orthogonal and complementary methods, the
ligand efficiency (LE) or one of its related metrics should ideally
be used to keep track of the quality of follow-up ligands as they
progress through the iterative optimization cycle. Some of these
parameters are described below.

• Ligand Efficiency (LE) (Hopkins et al., 2004; Nissink, 2009;
Davis and Roughley, 2017)= 1G/HAC A;

• Binding Efficiency Index (BEI) (Abad-Zapatero, 2013) =

pKi/MW B;
• Percentage Efficiency Index (PEI) (Abad-Zapatero, 2017;

Davis and Roughley, 2017)= % inhibition/MW B;
• Surface-binding Efficiency Index (SEI) (Abad-Zapatero, 2013)

= pIC50/(TPSA
C);

• Lipophilic Efficiency (LipE/LLE) (Shultz, 2013) = pIC50–
cLogP;

• Size-Independent Ligand Efficiency (SILE) (Nissink, 2009) =
1G/HAC 1−x;

• Ligand Efficiency-Dependent Lipophlicity (LELP) (Davis and
Roughley, 2017)= logP/LE.

AHeavy Atom Count; BMolecular Weight; CTopological Polar
Surface Area;

For the sake of brevity these metrics will not be further
discussed and we recommend the references above for a deeper
understanding. The structural complexity of the protein makes
larger, more complex and less efficient molecules less likely to
bind. This is one of the main reasons why fragment libraries
often yield more hits when compared to a drug-like molecule
commonly used in HTS (Hann et al., 2001). The use of fragments
is a bottom-up approach, starting from less complex molecules
with greater binding efficiency and ending up with a larger
optimized molecule. As already highlighted, there are three main
strategies that can be employed to optimize a ligand found bound
in its target surface: linking, merging and growing (Figure 3).
The next sections are dedicated to discussing in more depth each
of them.

Growing
Fragment growing (Figure 3A) is the strategy most commonly
employed during FBLD campaigns. As the name suggests, it
consists of modifying the fragments to increase their size.
Conceptually this approach is identical to the traditional
compound modification methods employed in the optimization
of hits from HTS campaigns. This modification occurs through
the addition of groups.

A recent paper published by Strecker et al. (2019) is
an example of how the growing strategy can be used to
improve bind affinity. Using computer-aided drug design
(CADD) and synthesis, the authors explored small structural
modifications in a previously (PDB: 3U0X) identified compound
(1) (Ki = 800 µM).

These studies showed that a modification of a fragment
phenyl moiety to a naphthyl allowed two new simultaneous π-π
interactions, a parallel-displacedwith Trp300 and an edge-to-face
withHis233. Thisminormodification led to a compound (2) with
a 3-fold improved binding affinity (Ki = 271µM) (Figure 4).
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FIGURE 3 | Fragment optimization approaches: fragment growing (A), fragment linking (B), and fragment merging (C). The surface of the binding site is depicted in

gray. The red and gray colors represent the level of complementarity of ligand with the active site. Pockets with low complementarity with ligand are colored in red;

pockets with high complementarity with ligand are highlighted in gray.

FIGURE 4 | Hit to lead progression of an initial fragment (1) to a compound (2)
with improved affinity.

This example highlights the use of optimal growth vectors
to introduce a rigid group, which led to an increased
binding affinity. Alternatively, introduction of a moiety with
increased number of rotatable bonds could impact negatively—
due to the entropic penalty—in the affinity. Although this
optimization approach can be computationally aided without
further structural data, small modifications—as in the case of the
hypothetical flexible moiety addition—can led to great changes in
binding mode. When growing fragments is the chosen approach,
structural data can be decisive to avoid misinterpretation.

Linking
Fragment linking (Figure 3B) describes the process of joining
two non-competitive fragments (i.e., fragments that bind in two
different sub-pockets of the binding site) with a chemical linker

or spacer. Although conceptually simple, linking fragments is
perhaps the most challenging strategy to implement. Although
fragment linking is the most attractive approach in terms of
rapid improvement of potency, the design of a linker with
suitable flexibility while not disturbing the original binding
modes of the fragments, makes it one of the most challenging
optimization approaches.

As previously discussed, the introduction of flexible moieties
affects these compounds properties and an optimal orientation
should always be pursued. In fact, varying the degree of rigidity
of a linker for the purpose of conformational restriction of the
linked product can be used as a strategy for linker optimization,
as it can be seen in Chung and colleagues work (Chung et al.,
2009). This work shows how a conversion of oxime linkers into
monoamine and diamines interferes with the rigidity and its
impact on binding.

Although often neglected, the impact on the ADMET
properties should also be taken in consideration. In the case of the
linker, that usually adds rotatable bonds to the system (Ichihara
et al., 2011; De Fusco et al., 2017), this modification can lead to
poor PK features, like low permeability (Veber et al., 2002).

Merging
This strategy (Figure 3C) can be used in cases where two distinct
fragments partially occupy the same region, or when two binding
sites have regions in common and therefore their ligands are
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partially competitive with respect to the site. In such cases
the overlapping parts form a nucleus where dissimilar parts
come together. In a recent example, a gain of 2 orders of
magnitude in potency was achieved for an inhibitor of flavin-
dependent monooxygenase (EthA) transcriptional repressor
(EthR) (Nikiforov et al., 2016) where the existence of overlapping
groups within fragments bound to EthR allowed the use of
merging as an optimization strategy.

Although not always possible, merging is a simpler strategy
than linking, as there is no need to design a spacer that joins
fragments together (Xu et al., 2017; Miyake et al., 2019). As also
seen in this example, like linking (Davis and Roughley, 2017), this
approach has the drawback of relying on high-quality structural
data to go further in the optimization process.

Therefore, merging is an approach related to the “molecular
hybridization” strategy, a long-consolidated approach in
medicinal chemistry for designing new compounds with
improved potency through the fusion of other active
compound structures.

IN SILICO STRATEGIES FOR F2L
OPTIMIZATION

Hot Spots Analysis and Pocket
Druggability Prediction
Hot spots analysis is an important tool for structure-based F2L
that allows the prediction of the small regions of the binding
sites containing residues mostly contributing to the binding
free energy (Cukuroglu et al., 2014). Once a fragment hit is
experimentally identified, the hot spots analysis can be used to
map the subsites around the fragment hit using small organic
probes, driving the optimization into higher-affinity ligands
(Hall et al., 2012).

One of the most used methods of hot spot analysis is the
FTMap web server (Kozakov et al., 2015). This algorithm places
16 small organic probe molecules of different shape, size, and
polarity on the protein surface to find favorable positions for
each probe. Then, each probe type is clustered and overlapping
clusters of different probes, called consensus sites (CSs), represent
the hot spots. The consensus sites are ranked by the number of
probe clusters, and the main hot spot is, generally, where the
fragment hit binds and secondary hot spots are used to extend
the fragment in the best direction (Hall et al., 2012; Ngan et al.,
2012; Kozakov et al., 2015).

As an example, we used the FTMap server for predicting
the hot spots for the oncogenic B-RAF kinase, the target
of the first marketed drug from fragment-based drug design,
vemurafenib (Bollag et al., 2012). Figure 5A shows the fragment
hit experimentally bound to B-RAF kinase (PDB ID: 2UVX)
(Donald et al., 2007), and the predicted hot spots around this
fragment (shown in yellow dots) using the FTMap server. In
Figures 5B–D, the iterative process of growing the fragment hit
led to the discovery of the drug vemurafenib (PDB ID: 3OG7)
(Bollag et al., 2010) with the hot spots shown in yellow dots.
Although hot spot analysis was not used in the F2L process of

vemurafenib, the results here showed that the predicted hot spots
overlap the grown portions of vemurafenib.

During fragment screening, the fragment hits can bind in
different sites of the protein (Giordanetto et al., 2019). If
the binding site is not well-defined, the researchers can use
the pocket druggability prediction to move forward in F2L
with the most druggable site, capable to accommodate ligands
orally bioavailable (Schmidtke and Barril, 2010; Hussein et al.,
2015). There are many available methods for predicting pocket
druggability and these are well-described and reviewed elsewhere
(Barril, 2013; Abi Hussein et al., 2017).

SAR by Catalog
One fast and cheap way in F2L optimization is the SAR by
catalog approach (Hall et al., 2017). This approach relies on the
search of analogs of in-house or commercial databases that can
be purchased or rapidly accessed for testing (Schulz et al., 2011).
This process can use the fragment hit features for similarity,
ligand-based pharmacophores, shape-based, fingerprints (Rogers
and Hahn, 2010; Riniker and Landrum, 2013; Alvarsson et al.,
2014), and substructure searches to find suitable compounds
(Hubbard and Murray, 2011; Andrade et al., 2018). Some
databases often used for SAR by catalog are ZINC (Sterling
and Irwin, 2015), MolPort (https://www.molport.com), Mcule
(https://mcule.com/), and eMolecules (https://www.emolecules.
com) that contains collections of commercially available
compounds. The databases Enamine (https://enaminestore.
com), ChemDiv (http://www.chemdiv.com/) and ChemBridge
(https://www.chembridge.com) are direct suppliers.

SAR by catalog approach only retrieves similar compounds
or superstructures of the fragment hit. Thus, other filters should
be applied to filter compounds with more optimized properties.
These filters are molecular docking, ADMET, machine learning
models, aqueous solubility, among others, and will be discussed
later in this review.

Molecular Docking
Molecular docking is a computational approach used to predict
the position, orientation, and the binding scores of small
molecules to proteins (Torres et al., 2019). Hence, as the F2L
process is commonly addressed as a combinatorial problem,
molecular docking is a method that can be used in combination
with other approaches to enhance the F2L process, and to
increase the chances to convert a fragment hit into higher
affinity ligands. The SAR by catalog approach in combination
with molecular docking, for example, can be used to select
compounds that maintain the fragment hit binding mode while
the binding energy is optimized. Moreover, the number of
generated optimized fragments can exceed the number that can
be tested experimentally. Thus, applying molecular docking,
large compound datasets are efficiently assessed using SAR by
catalog, and a small subset of most promising compounds can
be selected by binding modes and scores for experimental testing
(Grove et al., 2016).

To overcome the problem that SAR by catalog has the
limitation to cover only the finite chemical space of commercially
available compounds (Hoffer et al., 2018), it is possible to
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FIGURE 5 | Example of a hot spot analysis using FTMap web server of the oncogenic B-RAF kinase, the target of the first marketed drug from fragment-based drug

design, vemurafenib. The surface of the binding site is depicted in gray. (A) (PDB ID: 2UVX) the fragment hit (carbon atoms in purple sticks) and the predicted hot

spots (yellow dots and surface). (B–D) The iterative growing process of vemurafenib (PDB ID: 3OG7) overlapping the predicted hot spots (the carbon atoms of the

fragment hit portion is shown in purple sticks and carbon atoms of the grown portions in yellow sticks).

generate virtual catalogs with analogs to hit fragments that can
be easily synthesized, astronomically increasing the number of
possible compounds. Then, a docking-based virtual screening
can be applied to prioritize compounds for experimental
evaluation (Rodríguez et al., 2016; Männel et al., 2017).

Another scenario in F2L is when the co-crystallization of
a fragment hit commonly fails and no structural information
about the binding mode is available. In these cases, alternative
strategies for F2L process are required where the bindingmode of
a fragment can be predicted usingmolecular docking calculations
(Kumar et al., 2012; Chevillard et al., 2018; Erlanson et al., 2019)
on high-quality three-dimensional structures of the target in apo
form or bound to other ligands. When neither of the latter are
available, a theoretical model of the target protein can be obtained
by homology modeling methods.

However, there are concerns about fragment docking in
the scientific community. The assumption is that fragments,
as low molecular weight compounds, are weak binders and
promiscuous in binding modes, and consequently, the fragment
docking implies in incorrect predictions of the binding modes.
Also, there is a concern that scoring functions of the
docking programs are parameterized to drug-like ligands, being
inaccurate to differentiate native and other low-energy poses
(Chen and Shoichet, 2009; Wang et al., 2015; Grove et al., 2016).
To overcome these concerns, there are studies demonstrating no
significant difference in docking performance between fragments
and drug-like ligands (Verdonk et al., 2011; Joseph-mccarthy
et al., 2013). They showed that molecular weight is not the
principal parameter for docking performance, instead, for high
LE compounds the docking performance fared better for both
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fragments and drug-like ligands (Verdonk et al., 2011; Kumar
et al., 2012).

When available, the use of experimental structural
information data can be used to support and improve docking
performance. These data are used in docking programs including
distance constraints, pharmacophore constraints, shape-based
constraints, similarity or substructure overlap, interaction
fingerprints, hydrogen-bond constraints, and others (Verdonk
et al., 2011; Erlanson et al., 2019; Jacquemard et al., 2019).

Similarly to hot spot analysis, molecular docking can also be
used to discover secondary binding pockets and guide the F2L
process (Männel et al., 2017).

Machine Learning (ML) and Deep Learning
(DL) Models
A large variety of F2L approaches use structure-based methods
to optimize fragments into high-affinity ligands taking into
consideration the steric and electronic constraints within
binding pockets of the target of interest (Schneider and
Fechner, 2005). However, the optimized compounds generated
constantly present drawbacks of poor synthetic feasibility
and/or undesirable biological properties, including absorption,
distribution, metabolism, excretion, and toxicity (ADMET)
properties (Yang et al., 2019b). In the last years, novel ligand-
based methods, including machine learning (ML) models, have
been used for F2L campaigns. ML models are statistical methods
that present the capacity to learn from data without the explicit
programming for this task, and then, make a prediction for new
compounds (Mak and Pichika, 2019). The increase of storage
capacity and the size of the datasets available, coupled to advances
in computer hardware such as graphical processing units (GPUs)
(Gawehn et al., 2018), providedmeans tomove theoretical studies
in ML to practical applications in drug discovery (Vamathevan
et al., 2019).

The ML algorithms are widely used to construct quantitative
structure-activity relationship (QSAR) models, able to find
mathematical correlations between molecular features and
compound activity/property, and this correlation can be
categorical (active, inactive, toxic, nontoxic, etc.) or continuous
(pIC50, pEC50, Ki, and others) by means of classification
or regression techniques (Tropsha, 2010; Cherkasov et al.,
2014). Thus, machine learning-based QSAR models can be
constructed for biological activity, ADMET properties, solubility
and synthetic feasibility, among other endpoints, and applied
after fragment optimization, with aforementioned methods, in
a cascade virtual screening for filtering compounds with the
desired activities and properties (Figure 6) (Braga et al., 2014;
Neves et al., 2018; Pérez-Sianes et al., 2018).

More recently, a subfield of ML called deep learning (DL)
which utilizes artificial neural networks to learn from a large
amount of data have been used to resolve complex problems
(Mak and Pichika, 2019). DL models are not only able to learn
from a dataset and to make predictions for new data but are
also able to generate new data instances through a constructive
process (Schneider, 2018). In this context, there has been a rising

interest in using DL generative and predictive models for F2L
optimization (Olivecrona et al., 2017; Gupta et al., 2018).

For this task, a combination of DL architectures is used
and in many cases, generative DL models based on recurrent
neural networks (RNNs) are trained on the simplified molecular
input line entry system (SMILES) representation of compounds
from large databases (DrugBank, ChEMBL, etc.) to learn the
syntax of SMILES language and the chemical space distribution
(Olivecrona et al., 2017). After training, the models are able
to generate new strings that are new SMILES, corresponding
to new compounds (Segler et al., 2018). Then, the transfer
learning (TL) can be used to fine-tuning the model and generate
compounds related to a fragment hit. As the name suggests, TL
learns and transfers the information from an old source to a
new application (Yang et al., 2019b). The aim of this integrative
approach is to learn general features from a big dataset and,
then, retrain the model focusing on a smaller dataset such as
fragment hits, for F2L purposes (Figure 7) (Gupta et al., 2018;
Segler et al., 2018). Gómez–Bombarelli et al. used variational
autoencoder (VAE) to encode SMILES into a continuous latent-
space, then a separate multilayer perceptron trained to predict
several properties on the latent space was applied to generate new
molecules with the desired properties. After this, a decoder was
used to retrieve the molecules on the latent space into SMILES
(Gómez-Bombarelli et al., 2018). Handling these DL methods
in a multidimensional way, fragment hits can be optimized
automatically taking into consideration several parameters such
as bioactivity, solubility, synthetic feasibility, and ADMET
properties, generating new compounds with optimized values for
these parameters (Figure 7) (Olivecrona et al., 2017; Ramsundar
et al., 2017; Gómez-Bombarelli et al., 2018; Harel and Radinsky,
2018; Li et al., 2018; Merk et al., 2018; Polykovskiy et al.,
2018; Popova et al., 2018; Putin et al., 2018; Awale et al., 2019;
Vamathevan et al., 2019).

De novo Design
The de novo approach looks for new chemical entities from
scratch within a structurally defined binding site (Schneider and
Clark, 2019). These entities are generated out of building blocks,
either by growing from an initial fragment or by linking two
or more non-overlapping fragments (Dey and Caflisch, 2008;
Kumar et al., 2012). Since their arise, in silico methods have
played an important role in FBDD (Kumar et al., 2012).

Software for Building New Compounds Within a

Structurally-Defined Binding Site
De novo design software takes advantage of a known
binding mode of a fragment, described experimentally or
computationally, to propose modified analogs with improved
binding affinities. The LUDI (Bohm, 1992) program was one of
the first programs developed for de novo design. It calculates the
interaction sites, maps the molecular fragments, and connects
them using bridges, using an empirical scoring. Considering the
vast chemical space, evolutionary algorithms are widely used
(Srinivas Reddy et al., 2013). In this context, the programGANDI
(Dey and Caflisch, 2008) connects pre-docked fragments with
linker fragments using a genetic algorithm and a tabu search.
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FIGURE 6 | Cascade virtual screening filtering optimized compounds with the desired activities and properties.

The scoring function is a linear combination of force-field
binding energy and similarity measures. BREED (Pierce et al.,
2004) is a computational method for merging fragments that
is widely used. It aligns the 3D coordinates of two ligands and
recombines the fragments or substructures into the overlapping
bonds to generate new hybrid molecules in a strategy called
fragment shuffling. LigBuilder (Wang et al., 2000; Yuan et al.,
2011) is a program that uses a genetic algorithm to build up the

ligands using a library of organic fragments. It contemplates

the growing and linking approach. The 2.0 version includes

the synthesis accessibility analysis through a chemical reaction
database and retro-synthetic analysis. Autogrow (Durrant et al.,
2009, 2013) is another growing approach algorithm that builds
a fragment upon a “core” scaffold. The fragment is docked
to the receptor. A genetic algorithm evaluates the docking
score to select the best population which forms the subsequent
generation. The last version considers the synthetic accessibility

and the druggability. The program ADAPT (Pegg et al., 2001;
Srinivas Reddy et al., 2013) applies a genetic algorithm which
uses molecular interactions and docking calculations as a
fitness function to reduce the search space. The initial sets of
compounds are iteratively built until it reaches the predefined
target value.

Prediction of ADMET Properties of New Compounds
The ADMET properties and synthetic accessibility (SA)
constitutes the secondary constraints whereas primary
constraints are geometric and chemical constraints derived
from the receptor or target ligand(s) and internal constraints
to the geometry and chemistry of the lead compound being
constructed. Issues with these points result in the majority of
clinical trial failures (Dong et al., 2018). Numerous software
and web platforms were developed to predicted ADMET
parameters but presented limitations due to narrow chemical
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FIGURE 7 | Representation of the integrative approach of generative and predictive deep learning models and transfer learning for fragment-to-lead optimization.

space coverage or expensive prices (Cheng et al., 2012). Recent
works predominantly rely on ML methods, like random forest
(RF), support vector machine (SVM), and tree-based methods
(Ferreira and Andricopulo, 2019). The vNN Web Server for
ADMET predictions (Schyman et al., 2017) is a publicly available
online platform to predict ADMET properties and to build
new models based on the k-nearest neighbor (k-NN), which
rest on the premise that compounds with similar structures
have similar activities. vNN uses all nearest neighbors that are
structurally similar to define the model’s applicability domain.
The similarity distance employed is Tanimoto’s coefficient. The
platform allows running pre-build ADMET models, and to build
and run customized models. Those models assess cytotoxicity,
mutagenicity, cardiotoxicity, drug-drug interactions, microsomal
stability, and likelihood of causing drug-induced liver injury.
Like all machine learning methods, the lack of training data is
a limitation.

Pred-hERG (Braga et al., 2015; Alves et al., 2018) is a web
app that allows users to predict blockers and non-blockers of

the hERG channels, and important drug anti-target associated

with lethal cardiac arrhythmia (Mitcheson et al., 2000). The
current version of the app (v. 4.2) was developed using
ChEMBL (Willighagen et al., 2013) version 23, containing 8,134
compounds with hERG blockage data after curation, using robust
and predictive machine learning models based on RF. This app is
publicly available at http://labmol.com.br/predherg/.

In admetSAR 2.0 (Cheng et al., 2012; Yang et al., 2019a)
tool, the predictive models are built using RF, SVM and kNN

algorithms. It presents 27 endpoints and also includes eco-
toxicity models and an optimization module called ADMETopt
that optimize the query molecule by scaffold hopping based
on ADMET properties. The ADMETlab platform (Dong et al.,
2018) performs its evaluations based on a database of collected
entries and assess drug-likeness evaluation, ADMET prediction,
systematic evaluation and database/similarity searching. It uses
31 endpoints applying RF, SVM, recursive partitioning regression
(RP), naive Bayes (NB), and decision tree (DT).

SwissADME tool (Daina et al., 2017) uses predictive models
for physicochemical properties, lipophilicity and water solubility.
It also analyses pharmacokinetics models as BBB permeability,
gastrointestinal absorption, P-gp binding, skin permeation
(logKp), and CYP450 inhibition. Additionally, the tool presents
five drug-likeness models (Lipinsky, Ghose, Veber, Egan, and
Muegge) and medicinal chemistry alerts. It is integrated with the
SwissDrugDesign workspace. The QikProp (Schrödinger, LLC,
NY, 2019) provides rapid predictions of ADME properties for
molecules with novel scaffolds as for analogs of well-known
drugs and display information about octanol/water and water/gas
logPs, logS, logBBB, overall CNS activity, Caco-2 and MDCK cell
permeabilities, log Kd for human serum albumin binding, and
log IC50 for HERG K+-channel blockage.

Prediction of Synthetic Tractability (Synthesizability)

of New Compounds
Even though large numbers of molecules are generated by
de novo design, many of them are synthetically infeasible

Frontiers in Chemistry | www.frontiersin.org 10 February 2020 | Volume 8 | Article 93315

http://labmol.com.br/predherg/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


de Souza Neto et al. In silico Strategies for F2L Optimization

(Dey and Caflisch, 2008). To address this problem, methods to
calculate the synthetic accessibility (SA) are being developed. SA
can be addressed by estimating the complexity of the molecule
or making a retrosynthetic approach, where the complete
synthetic tree leading to the molecules needs to be processed
(Ertl and Schuffenhauer, 2009). SYLVIA (Boda et al., 2007) is
one of the programs that estimate the synthetic accessibility
of an organic compound. It obtains the SA score by the
addition of five variables as the molecular graph complexity,
ring complexity, stereochemical complexity, starting material
similarity and reaction center substructure, where the first
three are structure-based and the other two utilize information
from starting material catalogs and reaction databases. Ertl
and Schuffenhauer (2009) developed another method that
uses historical synthetic knowledge obtained by analyzing
information from millions of already synthesized chemicals and
also considers molecule complexity. The method is based on a
combination of fragment contributions and a complexity penalty.
Podolyan et al. (2010) presented two approaches to quickly
predict the synthetic accessibility of chemical compounds by
utilizing SVMs operating on molecular descriptors. The first
approach (RSsvm) identifies compounds that can be synthesized
using a specific set of reactions and starting materials and
builds the model by training the compounds identified as
synthetically or otherwise accessible by retrosynthetic analysis
while the second approach (DRSVM) is constructed to generate
a more general assessment. More recently, Fukunishi et al. (2014)
designed a new method of predicting SA based on commercially
available compound databases and molecular descriptors where
the SA is estimated from the probability of the existence of
substructures of the compound, the number of symmetry atoms,
the graph complexity, and the number of the chiral center of
the compound.

Synthesizability-Aware Methods
Given the difficulty of synthesis of most of the leads produced
by de novo approaches, some programs added methods to score
the SA. Lead+Op (Lin et al., 2018) is an example of these
programs that takes an initial fragment, looks for associated
reaction rules, virtually generate the reaction products and select
the best binding conformation. Them it generates conformers
and select one that becomes a reactant for another round. Also,
programs mentioned above as LigBuilder and Autogrow include
SA analysis on their current versions. In the medicinal chemistry
component of SwissADME, a SA score is also included.

Different programs use distinct algorithms for de novo design
compounds in CADD. Table 1 summarizes some programs cited
in this section.

CASE STUDIES IN THE LAST FIVE YEARS

Case 1: FBDD in the Development of New
Anti-mycobacterium Drugs
A successful application of the FBDD techniques have been
applied to early stage drug discovery of new therapeutics
against Mycobacterium sp. and in particular M. tuberculosis
(Mtb) and M. abscessus (Mab) (Thomas et al., 2017). Mtb,

TABLE 1 | FBDD programs with respective approaches.

Program Algorithm FBDD
Approach

SA

AUTOGROW Docking + Genetic

Algorithm

Growing YES (Latest

version)

LUDI Empirical scoring Linking NO

AUTO T and T Transplants fragments into

the lead

Merging NO

LeadOp+R Looks for associated

reaction rules

Growing YES

GANDI Genetic Algorithm Linking NO

LigBuilder 2 Genetic Algorithm Linking and

Growing

YES

ADAPT Genetic Algorithm Growing NO

the causative agent of tuberculosis, has several therapeutic
interventions developed to treat the disease. However, through
their long-term use and misuse, the efficacy of these drugs is
becoming reduced with strains currently circulating that are
mono-resistant, multidrug-resistant, extensively drug-resistant
and totally drug-resistant. Despite this little drug development
activity has been undertaken since the 1960’s. However, relatively
in response to the growing drug-resistant threat many different
approaches are being deployed to developing novel therapeutics,
including FBDD. An example of such an effort is against the meta
cleavage product hydrolase (HsaD) that is involved in cholesterol
catabolism inMtb. Initial screening was conducted on a library of
1,258 fragments using differential scanning fluorimetry, with hits
confirmed by ligand-observed NMR spectroscopy and inhibition
by enzymatic assay. The three confirmed fragment initial hits
were structurally characterized by X-ray crystallography and
fragment soaking. A small series of compounds based on these
hits were further tested for activity both in vitro and ex vivo with
promising results (Ryan et al., 2017).

Another target of Mtb where FBDD has been applied
is the pantothenate synthetase (Pts) where a similar sized
fragment library of 1,250 rule-of-three compliant fragments was
investigated. An initial screen was performed using a thermal
shift assay, followed by a secondary screen using 1-D NMR
spectroscopy with ultimate hit validation by isothermal titration
calorimetry and characterization by X-ray crystallography. Three
distinct fragment binding sites were identified (Silvestre et al.,
2013). Follow-up expansion of one of the fragment sites using
a combination of fragment linking and fragment growing
generated a new series of inhibitors. Though fragment linking
seemed to be an attractive approach, the limitation in the
repertoire of linkers compromised the binding mode. Greater
success came from fragment growth using expert knowledge and
the protein target as a template (Hung et al., 2009).

Targets in other pathogenic Mycobacterium sp. have also
been subject to successful FBDD campaigns. Most notably the
recent development of inhibitors against tRNAmethyltransferase
(TrmD) of M. abscessus (Mab). This multi-drug resistant
pathogen is increasingly problematic in individuals with cystic
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fibrosis and other chronic lung conditions. A library of 960
fragments was screened biophysically using differential scanning
fluorimetry in a similar fashion used for HsaD, with 53 hits
taken to validation and structural characterization using X-ray
crystallography (no NMR based validation was undertaken).
Only 27 fragments could be validated all of which bound within
the substrate binding pocket. A strategy of fragment-merging
centered around the overlap of a 4-methoxyphenyl ring system
with the indole ring system of two fragments that spanned
the adenine and ribose binding pockets. This was explored
successfully with a new combined compound providing a new
aminopyrazole-indole scaffold with both improved affinity (Kd =

110µM, LE of 0.36) and prospects for further elaboration relative
to the parent fragments. It also exhibited inhibition activity in
vitro and ex vivo with promising in vivo activity also against M.
leprae, the causative agent of leprosy (Whitehouse et al., 2019).

These successful FBDD campaigns against a range of targets
in pathogenic Mycobacterium have yielded promising leads with
indications of efficacy in ex vivo and in vivo demonstrating both
the power and efficacy of the approach. The ability of these leads
to work across a range of pathogens is also highly encouraging.
However, work still needs to be done to improve these leads to
progress them into early clinical evaluations and into clinical use.

Case 2: Inhibitors of Dengue Virus
Enzymes
A 2014 paper (Coutard et al., 2014) describes the use of FBLD
in the discovery of inhibitors for an important subunit of
dengue virus (DENV) viral replication complex. In this work,
500 fragments were screened against two subunits of the viral
replication complex: NS3 helicase (Hel) and the NS5 mRNA
methyltransferase (MTase) subunits. DENV Hel, located in the
C-terminal region of the NS3 subunit of the replication complex,
is involved in viral genome replication and RNA capping. The
role of DENV NS5 MTase is related with a double methylation
(N-7 and 2’-O) during the cap formation process in flavivirus
(Dong et al., 2008).

The authors used a combination of Thermal Shift Assay
(TSA), X-ray diffraction crystallography (XRD) and enzymatic
assays in order to screen compounds against NS3 DENVHel and
NS5 DENV MTase subunits. The TSA was used as the primary
screening technique. During the TSA screening, not surprisingly
part of the fragments—used at high concentrations and
with poorly optimized physicochemical properties—presented
solubility problems. This was the reason for the exclusion of
∼4.8% of the screened compounds during this phase. This initial
screening yielded 68 hits, from those, 7 were found bound to the
DENVMTase subunit by XRD.

Using a direct colorimetric ATPase-based assay to identify
inhibitors, from those previous 7 crystallographic hits, 5
fragments (Table 2) were classified as hits with their potency
varying between 180µM and 9 mM.

In themost recent work, the fragments 3 and 4 (Figure 8) were
found bound at the DENV MTase S-Adenosyl-L-methionine
(AdoMet) binding site using XRD. A computer-aided fragment
optimization gave rise to a new series of compounds using these

TABLE 2 | Inhibition and potency data from the final hits (Coutard et al., 2014).

DENV 2’O-Mtase activity
inhibition (%)

DENV 2’O-MTase
activity IC50 (mM)

81 4 3.90 ± 0.16

91 11 2.83 ± 0.18

95 85 0.18 ± 0.01

157 9 9.39 ± 0.90

217 11 3.12 ± 0.27

two fragments. The urea was used as a linker to connect the
fragments. Further modifications yielded compounds 5 and 6

(Figure 8).
During the optimization process, the authors had good

insights about the important features to the molecule binding on
this target. One of these features is the presence of phenyl rings
substituted in meta position and is crucial for favoring binding.

This work yielded two inhibitors (5 and 6) with potency
around 100µM, even though no effect was observed on a cell
assay. Despite this negative result, this work showed the feasibility
of the FBDD approach in getting micromolar inhibitors from
structurally simple fragments.

Case 3: MTH1 Inhibitors for Anticancer
Drug Discovery
The mutT homolog 1 (MTH1) is an enzyme involved in the
prevention of incorporation of deoxynucleoside triphosphates
(dNTPs) oxidized by reactive oxygen species (ROS), e.g.,
8-oxodGTP or 2-OH-dATP, into DNA, which prevents the killing
of the cell. MTH1 is frequently overexpressed in cancer cells and
is non-essential in normal cells, proving to be a druggable target
for cancer treatment (Smits and Gillespie, 2014; Berglund et al.,
2016).

Rudling et al. applied a combination of molecular docking,
SAR by catalog, and experimental testing for discovering and
optimizing MTH1 inhibitors (Rudling et al., 2017). Initially,
a molecular docking-based virtual screening using a crystal
structure of MTH1 was performed using 0.3 million fragments
from the ZINC fragment-like database, all commercially
available. Subsequently, for the 5,000 top-ranked fragments,
allowed the search of analogs representing superstructures of
the fragment or containing similar substructures in the ZINC
database using the chemical structures encoded as circular
fingerprints and the Tversky similarity index (Tversky, 1977).
The criteria used to select analogs from 4.4 million commercially
available compounds in the ZINC database was the following:
(i) Tversky similarity >0.8; (ii) up to six additional heavy
atoms (HAs) compared to the parent fragment; (iii) improved
docking score 80% lower compared to the parent fragment; (iv)
visual inspection of the binding modes. After these analyses,
a set of 22 commercially available fragments with at least five
analogs comprising the above-mentioned criteria were selected
for experimental evaluation. Five of these 22 fragments showing
IC50 values ranging from 5.6 to 79µM were considered hits
and were used for F2L (Table 3). The fragment 7 presented an
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FIGURE 8 | Fragment optimization predecessors and products (Coutard et al., 2014; Benmansour et al., 2017).

IC50 value of 79µM and its most potent analog presented an
IC50 of 170 nM, representing a 470-fold improvement (Table 3).
Although the crystal structure of the fragment 7 in complex with
MTH1 was not obtained, the crystallization of its most potent
analog andMTH1was solved at 1.85 Å resolution, demonstrating
an RMSD of 0.6 Å between the common atoms of the fragment 7
(binding mode predicted by molecular docking) and the analog
(crystal structure). Because of the closely related structures and
binding modes of fragments 8 and 9, its analogs were analyzed
together, but the most potent analog presented an IC50 of only
3.5µM. The most potent analog of fragment 10 presented a 190-
fold increase of the activity, with an IC50 of 120 nM (Table 3). The
crystallization of fragment 10 with MTH1 was also unsuccessful,
but the molecular docking was able to predict the binding mode,
showing an RMSD of 0.9 comparing the overlapping atoms
with the crystal of the most potent analog obtained at 1.50 Å
resolution. The analogs of the fragment 11 were not available
during the study. This work demonstrated that virtual screening
and SAR by catalog can be used to rapidly identify and optimize
fragments into nanomolar inhibitors (Rudling et al., 2017).

Case 4: New Acetylcholinesterase
Inhibitors Against Alzheimer’s Disease
Alzheimer’s disease is a neurodegenerative disorder and
has no cure. The actual treatments are based on drugs
that leverage the transmission of electrical impulses.
Pascoini et al. (2019), computationally developed new
acetylcholinesterase (AChE) inhibitors. AChE is responsible for
decreasing levels of acetylcholine in the synaptic cleft. Their

inhibition enhances the transmission of the electric impulse
(Polinsky, 1998; Talesa, 2001).

For the in silico inhibitor development, they divided the
process into four steps. First, a de novo design was applied
to generate an initial library of compounds. The first library
was then filtered according to ADME properties at the second
step. In the third step, the filtered library was filtered again
using a similarity criterion. Finally, the resulting library was
used in docking studies. The best three complexes were used
for molecular dynamic studies. In this work, they used three
reference drugs for AD treatment: donepezil, galantamine,
and rivastigmine.

For the de novo design, the LigBuilder software was used.
The CAVITY procedure was employed to detect and analyze
ligand-binding sites of the target. It classified the cavities’
druggability, who would be used for docking studies. The
BUILD procedure was used in the exploring and growing/linking
modes. In the explore mode, fragments from the program’s
database were added in the protein site and their interaction
was scored. Then, the fragments with the best scores were
linked. In the growing mode, seeds molecules were put at the
binding site and fragments were added to the seeds. At the
linking mode, the seed was divided into fragments and other
fragments were added to them. After the BUILD procedure,
they got a library of 2.5 million compounds. The resulting
library was filtered according to ADME properties with the
software QUIKPROP where molecules that infringed more than
five properties (physicochemical properties, lipophilicity, water
solubility, pharmacokinetics models) were discarded. A library
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TABLE 3 | Experimental data for the five most potent MTH1 inhibitors (data taken from Rudling et al., 2017).

Fragment ID Fragment 2D structure Fragment IC50 Most potent analog 2D
structure

Analog IC50

7 79µM 0.17 µM

8 24µM 3.5 µM

9 26µM n/a n/a

10 23µM 0.12 µM

11 5.6µM n/a n/a

n/a, not available.

of 6,000 compounds results from this process. After this, the
Tanimoto’s coefficient was applied to measure the similarity
among the molecules. Molecules below 0.85 were excluded and
1,500 molecules were considered for the next step. The final step
consisted of docking studies, carried out with the GLIDE software
and the Induced Fit Docking protocol. Afterward, they selected
the three best complexes from the docking and used them as
input structures for molecular dynamic studies. Finally, they
obtained three compounds with high stability and good binding
energies, some of them even better than the reference drugs.

CONCLUDING REMARKS

FBDD has matured to become a key strategy in modern
pharmaceutical research. With less requirement for large

chemical libraries and the possibility of using a range
of biophysical methods for screening, the easier and
scalable implementation of this strategy has facilitated its
popularization, especially among academic institutions and
smaller pharmaceutical companies.

The main reason for the success of the FBDD strategy is

because it presents a more efficient and consistent route for

optimization of initial screening hits into lead compounds.
As reviewed here, many routes are available for expansion of
fragment hits and in silico methods are key to support or guide
the majority of them.

A variety of in silico methods have been used in F2L
optimization in FBDD, from binding site analysis to de novo
design of new fragment-derived ligands with synthesizability-
aware methods. The case studies highlighted here clearly
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demonstrate how the different in silico methods can be used in
integrated form and combined with experimental approaches to
successfully develop higher affinity ligands from fragments.

Advances in artificial intelligence methods, such as deep
learning, hold a great potential to accelerate the optimization of
fragment hits in lead compounds. Recent examples show that
these hits can be already optimized automatically taking into
consideration several parameters such as bioactivity, solubility,
synthetic feasibility, and ADMET properties.
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The cardinal role of microtubules in cell mitosis makes them interesting drug targets for

many pharmacological treatments, including those against cancer. Moreover, different

expression patterns between cell types for several tubulin isotypes represent a great

opportunity to improve the selectivity and specificity of the employed drugs and to

design novel compounds with higher activity only on cells of interest. In this context,

tubulin isotype βIII represents an excellent target for anti-tumoral therapies since it is

overexpressed in most cancer cells and correlated with drug resistance. Colchicine is

a well-known antimitotic agent, which is able to bind the tubulin dimer and to halt the

mitotic process. However, it shows high toxicity also on normal cells and it is not specific

for isotype βIII. In this context, the search for colchicine derivatives is a matter of great

importance in cancer research. In this study, homology modeling techniques, molecular

docking, and molecular dynamics simulations have been employed to characterize

the interaction between 55 new promising colchicine derivatives and tubulin isotype

βIII. These compounds were screened and ranked based on their binding affinity and

conformational stability in the colchicine binding site of tubulin βIII. Results from this study

point the attention on an amide of 4-chlorine thiocolchicine. This colchicine-derivative

is characterized by a unique mode of interaction with tubulin, compared to all other

compounds considered, which is primarily characterized by the involvement of the α-T5

loop, a key player in the colchicine binding site. Information provided by the present study

may be particularly important in the rational design of colchicine-derivatives targeting

drug resistant cancer phenotypes.

Keywords: molecular modeling, drug discovery, microtubule, cancer, drug resistance, tubulin, colchicine,
colchicine derivatives
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INTRODUCTION

The pivotal role of microtubules (MTs) in the mitotic process
make them important targets for anticancer therapies since
cancerous cells proliferate by unregulated cell division (Gajewski
et al., 2013). By either stabilizing MTs or enhancing their
depolymerization, it is possible to halt the mitotic process and
eventually lead cells to apoptosis (Nettles et al., 2002). Among
antimitotic agents, colchicine is able to block cell division
(Bhattacharyya et al., 2008) by destabilizingMT assembly kinetics
and dynamics. In particular, when colchicine binds in its specific
binding site (located at the interface between tubulin α and β

monomers) the structural conformation of the tubulin dimer is
affected in such a way that tubulin integration into the MT lattice
is hampered.

However, one of the main drawbacks of colchicine is its
general toxicity (Wallace, 1974; Finkelstein et al., 2010). Several
studies in the past have proposed less toxic colchicine derivatives
as an alternative to colchicine (Lu et al., 2012; Wang et al.,
2016; Johnson et al., 2017; Majcher et al., 2018a,b; Klejborowska
et al., 2019). Moreover, these novel colchicine derivatives may be
designed to show high specificity only for tubulin isotypes, which
are over-expressed in cancer, in order to maximize their effect
only on tumor cells and reduce side effects of the drug due to its
toxicity on normal cells (Lu and Luduena, 1994; Luduena et al.,
1995).

Differing in point or restricted sequence variations, several
tubulin isotypes (Leandro-García et al., 2010) are differently
expressed by cells under both physiological and pathological
conditions. For example, tubulin isotype αβIII is considered as
an excellent target for anti-tumoral therapies because it is over-
expressed in tumoral cells and it is less widespread than other
isotypes, such as αβI, αβII and αβIV, in normal cells (Ferlini
et al., 2007; Tseng et al., 2010). Moreover, an over-expression of
tubulin isotype αβIII by cancer cells is considered as one among
several known drug resistance mechanisms (Derry et al., 1997;
Ludueña, 1998; Katsetos et al., 2003; Kamath et al., 2005; Seve,
2005; Ferlini et al., 2007; Sève and Dumontet, 2008; Tseng et al.,
2010). Thereby, it is of primary importance to identify specific
compounds, which selectively target isotype αβIII.

In this context, computational molecular modeling

techniques, such as molecular dynamics (MD) and molecular

docking, represent powerful tools to shed light on the molecular

mechanisms concerning protein functions and their interaction
between different ligands and a specific receptor (Lepre et al.,
2017; Omar et al., 2018; Brogi, 2019; Sirous et al., 2019).
These computational methods can be applied to investigate
the action of different ligands on tubulin dimers (Mitra and
Sept, 2008; Natarajan and Senapati, 2012; Gajewski et al.,
2013; Kumbhar et al., 2016). Computational drug discovery
may help to accelerate and economize the drug discovery
process as a complementary tool for experimental research of
novel inhibitors.

In this work, ensemble molecular docking, molecular
dynamics simulations, and binding energy estimation methods
have been employed to characterize the binding of 55 novel
colchicine derivatives to the βIII tubulin isotype. We have

identified an interesting 4-chlorine thiocolchicine derivative
characterized by similar affinity but a different mode of binding
to tubulin with respect to its parent compound, colchicine.
The main findings of our study indicate this ligand as a
promising candidate to overcome colchicine drawbacks and
provide information for further developments in designing more
selected and specific colchicine derivatives with an intended use
as cancer chemotherapy agents.

MATERIALS AND METHODS

Atomic Models of Investigated Compounds
Several series of novel colchicine derivatives (Majcher et al.,
2018a,b; Klejborowska et al., 2019) were considered in this work.
All 55 compounds have shown in vitro anti-proliferative effects
on normal and cancer cells. In particular, they were tested on
human lung adenocarcinoma, human breast adenocarcinoma,
human colon adenocarcinoma cell lines and a doxorubicin-
resistant subline (Majcher et al., 2018a,b; Klejborowska et al.,
2019).

These compounds can be divided into five classes: 4-Br-
Amides (10 compounds), 4-Cl-Amides (10 compounds),
DT-and-4I-Amides (19 compounds), 4-Cl-Carbamates (8
compounds) and 4-I-Carbamates (8 compounds). The chemical
structures of colchicine (C01) and its derivatives (C02-C56) are
summarized in Figure 1.

The 2D structures of the colchicine derivatives have been
drawn using ChemDraw 12.0, whereas their 3D structure was
designed by AVOGADRO (Hanwell et al., 2012).

Human αβIII Tubulin Modeling and
Conformational Dynamics
The atomic structures of human βIII tubulin isotype were
obtained by homology modeling, starting from the Protein Data
Bank (PDB) entry 4O2B model (Prota et al., 2014) as a template.
This structure was chosen due to its high resolution (2.3 Å) and
a low number of missing residues (Aryapour et al., 2017). First,
from the starting template the information concerning tubulin
αβ, GTP, GDP, Mg2+ ion and colchicine was extracted. Missing
residues in β tubulin (from 276 to 281) were added byMODELER
9.20 (Šali and Blundell, 1993) where the best model was selected
on the basis of the obtained DOPE (Discrete optimized protein
energy) score. Then, the Fasta sequences Q71U36 and Q13509
were selected from the Uniprot website, respectively, for the
α and β subunits. The above-mentioned amino acid sequences
pertain to the isotype αβIII (Gajewski et al., 2013; Kumbhar et al.,
2016). Homology modeling was then employed by MODELER
9.20 to generate a 3D structure of the αβIII sequence using the
4O2B model. The quality and the reliability of the generated
model were evaluated using PROCHECK (Laskowski et al.,
1993), VERIFY3D (Colovos and Yeates, 1993) and ERRAT
(Bowie et al., 1991), as reported in previous literature in this area
(Huzil et al., 2006; Deriu et al., 2007; Mane et al., 2008; Kumbhar
et al., 2016).

Two systems were subsequently considered: (I) tubulin, GTP,
GDP, and Mg2+ ion and (II) tubulin, GTP, GDP, Mg2+ ion and
colchicine bound to tubulin. Information on colchicine binding
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FIGURE 1 | Colchicine and its derivatives considered in this work.

was taken from the 4O2B model. The AMBER ff99SB-ILDN
forcefield (Lindorff-Larsen et al., 2010) was used to describe
protein, water and ion topology. GTP, GDP, and ligands were
described by the General Amber Force Field (GAFF) (Wang et al.,
2004) and AM1-BCC charge method (Jakalian et al., 2002), as
applied in many previous studies (Gajewski et al., 2013; Kumbhar
et al., 2016; Klejborowska et al., 2019; Sahakyan et al., 2019).

Each of the above mentioned protein systems (I and II) was
then inserted in a dodecahedron box filled with TIP3P explicit
water molecules (Mark and Nilsson, 2001), sodium and chlorine
ions (150mM). Particle-mesh Ewald (PME) method (Darden
et al., 1993) was used to treat electrostatics (cut-off = 1.0 nm)
whereas Van der Waals (VdW) interactions were treated by a
plain cut-off at 1 nm (Natarajan and Senapati, 2012; Natarajan
et al., 2013; Bueno et al., 2018). Each system was then energy
minimized by the steepest descent algorithm for 1,000 steps
with a maximum force of 100 kJmol−1nm−1. All systems were
simulated in an NVT and NPT ensemble with position restraints
applied on protein and ligand atoms. In detail, a 100 ps position
restrained MD simulation in the NVT ensemble (Bussi et al.,
2007), was followed by a 300 ps position restrained MD in the
NPT (T = 300K, P = 1 bar) ensemble (Berendsen et al., 1984;
Bussi et al., 2007).

Temperature and pressure were controlled by weak coupling
algorithms (Berendsen et al., 1984; Bussi et al., 2007).

Finally, production MD simulations (without restraints)
were carried out for 100 ns in presence and in absence
of colchicine, respectively. Ten configurations of each system
were extracted as representative of structural equilibrium. The
above-mentioned system configurations were then used for
ensemble docking procedure.

Ensemble Docking and Binding Energy
Refinement
Ensemble docking was performed using AUTODOCK VINA
1.1.2 (Trott and Olson, 2010). The center of the search space was
defined by taking, from the 4O2B model, the relative position
of the colchicine in its binding site. The docking was performed
using a grid space 2 × 2 × 2 nm around the center of the search
space and an exhaustiveness equal to 64 was set. Each compound
was docked to the ten different isotype configurations extracted
from the production MD, as explained above.

Then, for each VINA pose, the binding energy refinement
was performed by running short 1 ns MD simulations on
the ligand-protein complex starting from the VINA best
pose for each considered ligand. Each complex was followed
by solvation, neutralization, energy minimization, position
restrained MD, and short production MD. Simulation set up
was the same as described in the previous section. On the
last 100 ps of MD production the ligand-protein binding
was evaluated using two criteria. Firstly, the binding energy
was quantified by the Molecular Mechanics Generalized Born
Surface Area (MMGBSA) method (Genheden and Ryde, 2015).
The parameters were set according to the previous literature
(Nguyen et al., 2013, 2015; Su et al., 2015). Secondly, the ligand
conformational displacement in the binding site was quantified
by calculating the RootMean Square Deviation (RMSD) of ligand
carbon rings (a common feature of all considered compounds
with colchicine). In particular, for each ligand, the MD protein
trajectory was fitted on a reference structure (the starting
configuration of the colchicine-protein complex). In this way,
the RMSD quantifies the relative deviation of each ligand with
respect to the colchicine starting position throughout the overall
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MD trajectory. Based on the above-mentioned criteria, the best
colchicine derivative and colchicine, both bound to the βIII
isotype, were simulated for 100 ns in order to highlight binding
conformational differences at equilibrium.

All MD simulations were carried out using GROMACS 2018.3
(Abraham et al., 2015). The Visual Molecular Dynamics (VMD)
package was employed for the visual inspection of the simulated
systems (Humphrey et al., 1996). Dedicated GROMACS tools
were used for a quantitative analysis in terms of Root-Mean-
Square Deviation (RMSD), Root-Mean-Square Fluctuation
(RMSF), and clustering, while analysis of the secondary structure
was performed by applying the STRuctural IDEntification
(STRIDE) algorithm (Heinig and Frishman, 2004).

RESULTS

Human αβIII Tubulin Model Development
and Conformational Dynamics
The Ramachandran plot (see also Figure S1) obtained by
PROCHECK highlighted the 95.6% of residues in most
favored regions, 4.2% in additional allowed regions, and 0.1%
in generously allowed regions. No residues were found in
disallowed regions. Since a good quality model is expected to
have at least 90% of the residues in the most favored regions
(Santoshi and Naik, 2014), the built model was considered
reliable. Moreover, the Overall Quality Factor obtained by the
ERRAT tool for the isotype αβIII was 80.29 for the α and
84.73 for the β tubulin monomer model. It is worth mentioning
that the generally accepted range is higher than 50 for a high
quality model (Messaoudi et al., 2013). Finally, the VERIFY3D
confirmed that 98.15% of residues showed an averaged 3D-1D
score higher than 0.2 (Messaoudi et al., 2013).

First, the backbone RMSD was calculated for isotype βIII
both in presence and in absence of colchicine during the overall
MD simulation (100 ns): all the simulated structures reached
structural equilibrium, with values under 0.3 nm (see also
Figure S2). Moreover, the cluster analysis on the last 50 ns of the
simulations highlighted only one cluster using an RMSD cut-off
of 0.15 nm, indicating a strong stability of the simulated systems.
Moreover, the cluster analysis indicated that the colchicine
presence did not modify significantly the conformation of the
interaction site.

Ensemble Docking and Binding Energy
Calculation
The 55 colchicine derivatives were docked to ten different
configurations of βIII tubulin, extracted from the last 50 ns of
the MD simulation described above. Only the best ligand pose
in terms of binding affinity was considered (see also Figure S3).
In order to take into account also the dynamic nature of the
binding process, we have performed a MD simulation of 1 ns
for each ligand-receptor complex. Throughout the quick MD
run, the binding energy was quantified by means of the MM-
GBSA method (Huzil et al., 2010; Gajewski et al., 2013; Kumbhar
et al., 2016). Moreover, the ligand displacement in the binding
site was quantified by the RMSD calculated as described in

Materials and Methods. It is worth mentioning that low RMSD
values indicate a compound which is stable in a spot close
to the starting colchicine position, whereas high RMSD values
identify a compound moving further apart (Figure 2). Most
compounds showed RMSD lower than 0.2 nm, suggesting that
the derivatives investigated here behaves similarly to colchicine
(highly stable in its binding site during the short MD run). The
only exception found is represented by compound C19 which
displays high variation from the colchicine starting position
(RMSD= 0.47 nm).

Our binding energy analysis highlights four specific
compounds (C19, C20, C29, and C48) as possible hits. In
fact, they exhibit similar values of their binding energy for βIII
tubulin compared to colchicine. All binding energy values are
reported in Supporting Information text (see also Figure S4).
In order to better describe differences between investigated
compounds, we have merged RMSD and binding energy
information in a single plot (Figure 3).

Interestingly, compound C19 features a peculiar behavior,
i.e., it exhibits a large deviation from the colchicine starting
position in the binding site (high RMSD value), with a significant
difference to all the other compounds. It is also characterized by
binding energy values comparable to colchicine and higher than
most other derivatives. This result points the attention on the
compound C19 as a promising candidate able to bind strongly to
βIII human tubulin with a different mode of action with respect
to colchicine.

Conformational Dynamics of Colchicine
and C19 Bound to βIII Human Tubulin
Conformational dynamics of the C19-tubulin complex has been
investigated by a 100 ns long MD simulation. For comparison, a
100 ns-long MD was also carried out on the colchicine-tubulin
complex. Systems were replicated to confirm the consistency of
the data (Figures S5, S7).

Structural modifications of the colchicine binding site were
first analyzed by computing the RMSD of the tubulin binding
cleft, i.e., residues within 1 nm from the ligand, from its starting

FIGURE 2 | Representative snapshots of ligand conformational displacements

in the colchicine binding site. Colchicine is represented in green, whereas two

different derivatives with low (A) and high (B) RMSD with respect to the

colchicine starting pose are depicted orange and red, respectively.
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FIGURE 3 | Polar scatter plot representing ligands’ RMSD from the colchicine

starting pose (radial coordinate) in nm and their binding energy (angular

coordinate) in kJ/mol; the diamond marker represents the C19 compound.

position and the secondary structure probability during the
last 50 ns of the simulation (Figure 4). A second replica was
performed to ensure the repeatability of the results (see also
Figure S5). The binding site was characterized by a structural
stability throughout the overall MD, exhibiting low RMSD values
(lower than 0.18 nm) and highly conserved secondary structures.
The only noteworthy difference is represented by the α-T5 loop,
which exhibits tendency to rearrange in a more structured shape
only in the presence of C19.

The binding energy was estimated by the MM-GBSA
approach in order to compare the binding affinities of the
analyzed compounds at the structural equilibrium: again,
compound C19 and colchicine showed similar binding energy for
isotype αβIII, respectively,−229.98± 22.26 kJ/mol and−223.70
± 22.31 kJ/mol (see also Figure S6). Nevertheless, the energy
decomposition over the tubulin binding cleft residues reveals that
the compound C19 shows a higher binding energy compared to
the colchicine for residues 178–180 of the α tubulin, which belong
to the αT5 loop (Figure 5).

In light of these results, the ligands’ behavior in the binding
site and their interaction with the αT5 loop were investigated in
more depth (Figure 6). First, ligand RMSD (used to quantify the
ligand movement in the binding site throughout the simulation)
showed that compound C19 has a more marked tendency than
colchicine to move apart, reaching a more favorable pose for the
interaction with the αT5 loop (Figure 6A and see also Figure S7).
Second, the interaction surface between each ligand and the αT5
loop, which quantifies the available area for their binding, is
higher for C19 than colchicine (Figure 6B). Figures 6C1,C2 and

FIGURE 4 | (A) RMSD of the colchicine binding site from its starting position

when colchicine (black) or compound C19 (gray) are bound to the tubulin

dimer. (B) Secondary structure probability of residues in the colchicine binding

site when colchicine (B1) or compound C19 (B2) are bound to the tubulin

dimer.

6D represent ligand structures and their relative position in the
tubulin binding cleft (see alsoMovies S1, S2).

In conclusion, compound C19 was shown to be stable in
the tubulin binding site with a relative position differing from
the colchicine site. Specifically, C19 is predicted to be mostly
stabilized by its interaction with the αT5 loop.

DISCUSSION

In this study, 55 colchicine derivatives were screened for
their binding properties to tubulin isotype βIII. The research
work was aimed at identifying alternative compounds able
to overcome colchicine’s well-known limitations. After the
docking of all compounds to the target isotype of tubulin, a
molecular dynamics simulation of 1 ns was performed on each
generated receptor-ligand complex. The obtained trajectories
were analyzed considering the deviations of the compounds from
the colchicine’s starting pose, using the RMSD, and the binding
energy evaluated with the MM-GBSA method. All compounds
were characterized by low RMSD values, except for compound
C19, which showed high deviations (RMSD = 0.47 nm). This
evidence suggests a different particular pose for this derivative.
From the affinity analysis we found out that the binding energies
for compounds C19, C20, C29, and C48 are similar to that for
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FIGURE 5 | Binding Energy decomposition over the residues of the colchicine binding site (only residues with the highest energies are reported). Compound C19 has

a significantly higher affinity than colchicine for the αT5 loop.

FIGURE 6 | (A) Ligands’ RMSD from their starting position (colchicine in black, C19 in red). (B) Probability density function of the buried surface between the ligands

and the αT5 loop (colchicine in black, C19 in red), averaged between two replicas during the last 20 ns of simulation. (C) Chemical structures of colchicine (C1) and
compound C19 (C2). (D) representative snapshot of the simulation, which shows that compound C19 (red) is closer to αT5 loop (yellow) than colchicine (green).

colchicine and higher than those found for most other ligands.
These results indicate that C19 is a promising compound to
be further investigated and experimentally validated. Its specific
binding to tubulin is characterized by a different conformational
organization and dynamics in the tubulin binding site with
high affinity. RMSD analysis indicates that C19 is able to be
accommodated in the binding site by moving toward more
favorable poses for interaction with the αT5 loop. This feature
is less pronounced by colchicine. Moreover, the buried surface
between C19 and the tubulin isotype βIII, which measures
the available area for the binding, is greater than the one
exhibited with colchicine, confirming a higher stability of
C19 in the binding site. Finally, the ligand binding to the

αT5 loop may affect its secondary structure toward a more
structured arrangement. Therefore, a compound able to influence
the αT5 loop structure could affect the dynamics of the
entire microtubule.

The above mentioned evidences might be of a significant
interest given that the αT5 loop is a key player region in the
colchicine binding site and for intra-dimer contacts (Ravelli
et al., 2004). Nonetheless, previous literature (Bueno et al., 2018)
already highlighted the importance of the αT5 loop, identified
as relevant for the binding of a promising anti-proliferative
compound (Bueno et al., 2018).

In conclusion, our study clarifies some features characterizing
the βIII tubulin binding mode of a promising novel 4-chlorine
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thiocolchicine derivative, which differs profoundly from that
known for colchicine. The specific interaction of compound
C19 with the αT5 loop is a promising feature that could
be related to an increased destabilizing activity of the ligand
with respect to microtubule dynamics. Moreover, this unique
behavior exhibited in complex with the βIII tubulin isotype
is of primary importance since this isotype is overexpressed
in cancer cells, while very insignificantly represented in most
normal cells and also implicated in drug resistance (Katsetos
et al., 2003; Kamath et al., 2005; Seve, 2005; Sève and Dumontet,
2008; Leandro-García et al., 2010). In light of these results,
C19 or similar compounds, as promising candidates able to
possibly overcome some colchicine’s drawbacks, deserve further
investigations, including biological toxicity assessment and
cancer cell cytotoxicity experiments to prove its specificity and
selectivity for βIII isotype of tubulin.
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Although proteins have represented the molecular target of choice in the development of

new drug candidates, the pharmaceutical importance of ribonucleic acids has gradually

been growing. The increasing availability of structural information has brought to light

the existence of peculiar three-dimensional RNA arrangements, which can, contrary to

initial expectations, be recognized and selectively modulated through small chemical

entities or peptides. The application of classical computational methodologies, such as

molecular docking, for the rational development of RNA-binding candidates is, however,

complicated by the peculiarities characterizing these macromolecules, such as the

marked conformational flexibility, the singular charges distribution, and the relevant role

of solvent molecules. In this work, we have thus validated and extended the applicability

domain of SuMD, an all-atoms molecular dynamics protocol that allows to accelerate the

sampling of molecular recognition events on a nanosecond timescale, to ribonucleotide

targets of pharmaceutical interest. In particular, we have proven themethodological ability

by reproducing the binding mode of viral or prokaryotic ribonucleic complexes, as well

as that of artificially engineered aptamers, with an impressive degree of accuracy.

Keywords: nucleic acids, RNA, SMIRNA, molecular recognition, molecular dynamics (MD), supervised molecular
dynamics (SuMD), structure-based drug design (SBDD)

INTRODUCTION

Ribonucleic acid (RNA) is a polymer whose biological importance has increased progressively
over the last 50 years. Despite the central dogma of molecular biology considering this nucleic
acid simply as a functional messenger between DNA genetic information storage and protein
biosynthesis, RNA has recently been reappraised as an ancestral molecule of primary importance
in the abiogenesis process. At the origin of life, RNA probably encompassed both an informational
role, which progressively evolved toward involving the more stable and easily replicable DNA
polymer, and a catalytic function, which was gradually flanked by more versatile proteins
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(Morris and Mattick, 2014). The complexity hiding behind RNA’s
biological functions is intuitable by taking into consideration the
human organism, which genetic heritage could quite entirely be
transcribed into RNA, despite coding only in a minimal portion
(about 3%) for proteins (Warner et al., 2018). A great majority
of these transcripts therefore remain untranslated, originating
non-coding genomic portions. RNA revolution has thus shed
light on the regulatory activity of this widely different class of
macromolecules that, along with some proteins, cooperate to
control and finely orchestrate the genome expression (Connelly
et al., 2016).

RNA polymer lengths range from small hairpins composed of
a few tens of nucleobases to long non-coding RNAs sequences
(lncRNAs) that can reach up to a few thousands nucleotides
(Connelly et al., 2016). Differently fromDNA, RNA usually exists
as a single-stranded molecule that is not strictly limited by a
Watson-Crick base pairing. In solution, ribonucleic acids explore
a wide landscape of three-dimensional structures, characterizable
by the presence of peculiar functional domains able to specifically
recognize other nucleic acids, polypeptides, glyco-derivates, or
cognates of small organic molecules (Draper, 1995; Cruz and
Westhof, 2009; Salmon et al., 2014; Flynn et al., 2019).

From a topological point of view, the tertiary and quaternary
structures that distinguish ribonucleic acids from their
deoxyribonucleic counterpart make them more similar to
proteins, a consideration that has paved the way for an attempt
to pharmacologically modulate their biological functions
through the discovery of small molecules interacting with RNA
(SMIRNA) (Sucheck and Wong, 2000; Connelly et al., 2016).
Interestingly, in recent research work, it has been estimated
that pharmacologically modulating RNA would allow us to
expanding—by more than an order of magnitude—the universe
of targetable macromolecules, and this would thus considerably
extend the portion of the druggable genome (Ecker and
Griffey, 1999; Warner et al., 2018). Although RNA has been
historically considered as an “undruggable” pharmaceutical
target, the discovery that many drugs of undeniable therapeutic
importance, especially antibiotics, act at this level has attracted
the interest of the scientific community, resulting in greater effort
beingmade toward the development of new tools for this purpose
(Donlic and Hargrove, 2018; Disney, 2019). Furthermore, the
orthogonality characterizing RNA homologous transcripts
belonging to virus, prokaryote, and eukaryote genomes make
RNA an interesting target for the purpose of achieving selectivity,
especially in the field of anti-infectives compound development
(Ecker and Griffey, 1999; Connelly et al., 2016). All these aspects,
therefore, make the discovery of SMIRNAs extremely intriguing.
A first pioneering approach to rationally design new RNA-
targeting compounds, simply starting from the knowledge of the
oligonucleotide sequence of pathological interest, was developed
by the Disney research group and was successfully applied
to a plethora of expanded repeating RNAs that are known to
cause microsatellite disorders (Velagapudi et al., 2014; Disney
et al., 2016). In addition, the quantitative structure-activity
relationship (QSAR) model and chemical similarity search
were initially exploited to in-silico identify or optimize new
chemical probes targeting RNA (Disney et al., 2014). Since X-ray

crystallography, NMR spectroscopy and, recently, Cryo-EM
techniques have unveiled with an atomistic level of detail a
multitude of three-dimensional RNA structures, the scientific
community has begun to evaluate the applicability of structure-
based drug design strategies (SBDD). These approaches, until
now mainly validated on proteins targets, could enhance the
rational design of SMIRNAs. Molecular docking represents one
of the electives of in silico techniques, exploited both in the
academic and industrial world, to accelerate the discovery and
optimization of new drug candidates by evaluating the putative
small molecules’ binding mode and providing a way to perform
a ranking of vast compound libraries. There are however many
peculiarities of ribonucleic acids that affect both performance
and accuracy of docking protocols, and this makes its application
challenging. The polyanionic backbone of RNA determines
a peculiar charge distribution on the polymer surface—quite
different from the one characterizing proteins—to which the
scoring functions were traditionally calibrated (Disney, 2019).
Furthermore, docking protocols do not explicitly consider
the role of solvent during the molecular recognition process,
whereas structural data have highlighted how water molecules
can stabilize RNA-ligand complexes, often mediating hydrogen
bonds networks (Fulle and Gohlke, 2009). However, the aspect
that mostly affects RNA-docking accuracy is the flexibility and
the dynamic behavior characterizing ribonucleic acids, which
are usually neglected by docking algorithms, thus limiting
the discovery of compounds targeting a narrow region of the
conformational space (Hermann, 2002; Fulle and Gohlke, 2009;
Disney et al., 2014). An attempt to overcome these limitations
was conducted by Stelzer et al., who performed a docking-based
virtual screening on an RNA dynamic ensemble constructed by
combining molecular dynamics simulations (MD) with NMR
spectroscopy and reported the discovery of six molecules able
to bind HIV-1 TAR with quite good affinity. MD simulations
would represent a valuable computational tool with which to
investigate different ligand–RNA recognition processes, fully
considering both target flexibility and the solvent presence.
Interestingly, molecular mechanics force fields (FF), such as
AMBER or CHARMM, were revisited and refined during the
last year to improve ribonucleotide simulation accuracy (Pérez
et al., 2007; Denning et al., 2011). Nevertheless, the use of MD is
mostly limited to the fluctuation exploration in the post-docking
procedure since ligand–target associations are rare events that
can be sampled only through long-timescale computationally
expensive simulations. An implementation of classical MD,
called supervised molecular dynamics (SuMD), was recently
developed in our research group. SuMD is able to speed up the
exploration of the ligand–receptor recognition pathways on a
nanosecond timescale through the implementation of a tabu-like
supervision algorithm (Sabbadin and Moro, 2014). The protocol
was so far validated in different scenarios, including ion–protein,
ligand–protein, and peptide–protein bound complexes, proving
that it could reproduce the experimental determined final state
with great geometric accuracy (Cuzzolin et al., 2016; Salmaso
et al., 2017; Bissaro et al., 2019).

In this work, SuMD simulations were applied for the
first time to investigate the recognition mechanism involving
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ribonucleic acid macromolecules with the aim to extend the
methodology applicability domain. This pilot study, which
provided encouraging results, took into account a plethora
of different ribonucleic complexes of pharmaceutical interest,
the three-dimensional structures of which are known and
available on the Protein Data Bank archive (Berman et al.,
2000). SuMD methodology proved its ability in describing,
with a reduced computational effort, the whole process of
ligand–RNA recognition (from the unbound to the bound
state), independently by the target topological complexity. As
far as we know, this represents the first attempt to overcome
methodological limitations within molecular docking when
applied to ribonucleic acids, describing binding events through
an all-atoms MD-based approach. This study confirms the
possible use of SuMD as an innovative computational tool that
can accelerate the discovery of new drug candidates and with
peculiar attention to SMIRNAs.

MATERIALS AND METHODS

Software Overview
MOE suite (Molecular Operating Environment, version
2018.0101) was used to perform most of the general molecular
modeling operations, such as RNA and ligand preparation. All
these operations have been performed on an 8 CPU (Intel R©

Xeon R© CPU E5-1620 3.50 GHz) Linux workstation. Molecular
dynamics (MD) simulations were performed with an ACEMD
engine (Harvey et al., 2009) on a GPU cluster composed of 18
NVIDIA drivers whose models go from GTX 980 to Titan V. For
all the simulations, the ff14SB force field with χ modification
tuned for RNA (χOL3) was adopted to describe ribonucleic
acids, while a general Amber force field (GAFF) was adopted
to parameterize small organic molecules (Wang et al., 2006;
Sprenger et al., 2015; Tan et al., 2018).

Structures Preparation
The three-dimensional coordinates of each RNA–SMIRNA
complex investigated were retrieved from the RCSB PDB
database and prepared for SuMD simulations as herein described
(Cuzzolin et al., 2016). For structures solved by NMR, which
contain multiple conformations of the same complex, the one
with the lowest potential energy (usually the first) was selected
and then used. All complexes were then processed by means of
an MOE protein structure preparation tool: missing atoms in
nucleotide bases were built according to AMBER14 force field
topology. Missing hydrogen atoms were added to X-Ray-derived
complexes, and appropriate ionization states were assigned by
Protonate-3D tool (Labute, 2009). Ligand coordinates (both
small molecules and peptides) were moved at least 30 Å away
from RNA binding cleft, a distance bigger than the electrostatic
cut-off term used in the simulation (9 Å with Amber force field)
to avoid premature interaction during the initial phases of the
SuMD simulations.

Solvated System Setup and Equilibration
Each system investigated by means of SuMD contained an RNA
target macromolecule, and the respective ligand, which was a

SMIRNA or a peptide, moved far away from the binding site
as previously described. The systems were explicitly solvated by
a cubic water box with cell borders placed at least 15 Å away
from any RNA/ligand atom, using TIP3P as a water model. To
neutralize the total charge of each system, Na+/Cl− counterions
were added to a final salt concentration of 0.154M. The systems
were energy minimized by 500 steps with the conjugate-gradient
method, then 500,000 steps (1 ns) of NVT followed by 500,000
steps (1 ns) of NPT simulations were carried out, both using 2
fs as time step and applying harmonic positional constraints on
RNA and ligand heavy atoms by a force constant of 1 kcalmol−1

Å−2, gradually reducing with a scaling factor of 0.1. During this
step, the temperature was maintained at 310K by a Langevin
thermostat with low dumping of 1 ps−1 and the pressure at 1
atm by a Berendsen barostat (Berendsen et al., 1984; Loncharich
et al., 1992). The M-SHAKE algorithm was applied to constrain
the bond lengths involving hydrogen atoms. The particle-mesh
Ewald (PME) method was exploited to calculate electrostatic
interactions with a cubic spline interpolation and 1 Å grid
spacing, and a 9.0 Å cutoff was applied for Lennard–Jones
interactions (Essmann et al., 1995).

Supervised Molecular Dynamics (SuMD)
Simulations
Molecular dynamics simulations represent a well-validated
computational tool that, through the numerical solution of the
Newton equation of motion, makes it possible to describe the
time-dependent evolution of a molecular system. Despite the
impressive temporal resolution characterizing the technique, to
capture pharmaceutically relevant events, such as the molecular
recognition between a drug and its biological target, huge
computational efforts are required. The SuMD protocol instead
improves the efficiency with which a binding event is sampled,
from a microsecond to a nanosecond timescale, by applying
a tabu-like algorithm. In detail, short (600 ps long) unbiased
MD trajectories are collected, and these monitor, during the
entire simulation, the distance between the ligand center
of mass with respect to the ribonucleic acid binding site;
then, those distance points are fitted into a linear function.
Only productive MD steps in which the computed slope is
negative are maintained, thus indicating a ligand approach
toward the RNA binding site. Otherwise, the simulation is
restarted by randomly assigning the atomic velocities from
the previous set of coordinates. The supervision algorithm
controlled the sampling until the distance between the ligand
and the ribonucleic binding site dropped below 5 Å, at which
point it was disabled, and a short classical MD simulation
was performed, allowing the system to relax. For each case
study, up to a maximum of 10 SuMD binding simulations were
collected, of which only the best was thoroughly analyzed and
discussed in the manuscript. A detailed report on SuMD protocol
performance can be found in the Supplementary Material. The
three-dimensional RNA structures investigated in this study,
along with the nucleotides selected for the computation of
the respective binding cleft center of mass, are reported in
Figure 1. In this implementation, the SuMD code is written in

Frontiers in Chemistry | www.frontiersin.org 3 February 2020 | Volume 8 | Article 107334

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Bissaro et al. Exploring RNA Recognition Using SuMD

FIGURE 1 | The case studies selected for the SuMD methodological validation are herein summarized and subdivided into RNA of viral origin, prokaryotic origin, or

artificially engineered aptamers. For each complex investigated, the three-dimensional structure is depicted, representing with a green color the reference ligand,

together with the nucleobases selected to define the binding site position in the SuMD simulations. Finally, the chemical structures of each ligand are reported, along

with the experimental datum of binding affinity. In the case of the peptide, the primary sequence is reported, highlighting the basic residues constituting the arginine

reach motif (ARM) in a blue color.

Python programming languages and exploits the ProDy python
package to perform the geometrical ligand–target supervision
process (Bakan et al., 2011).

SuMD Trajectory Analysis
All the SuMD trajectories collected were analyzed by an in-
house tool written in tcl and python languages, as described
in the original publication (Salmaso et al., 2017). Briefly, the
dimension of each trajectory was reduced, saving MD frames
at a 20 ps interval; each trajectory was then superposed and
aligned on the RNA phosphate atoms of the first frames and
wrapped into an image of the system simulated under periodic
boundary conditions. The geometric performance of SuMD
methodology was evaluated, and it computed the ligand RMSD
(Root mean square deviation) along with the entire simulation
with respect to the experimental resolved three-dimensional
complex. Furthermore, the RMSD of RNA structures were
computed on the P atoms of the backbone and plotted over time,
and these can be viewed in the Supplementary Figures S1–S6A.
A ligand–RNA interaction energy estimation during the
recognition process was calculated using an MMGBSA protocol,
as implemented in AMBER 2014, and it plotted MMGBSA
values over time (Miller et al., 2012). The MMGBSA values

were also arranged according to the distances between ligand
and ribonucleic target mass centers in the Interaction Energy
Landscape plots (Supplementary Figures S1–S6B). Here, the
distances between mass centers are reported on the x-axis, while
the MMGBSA values are plotted on the y-axis, and these are
rendered by a colorimetric scale going from blue to red for
negative to positive energetic values. These graphs allow for the
evaluation of the variation of the interaction energy profile at
different ligand–RNA distances; this helps to individuate meta-
stable binding states during the binding process. Furthermore,
for each target investigated in this work, the nucleotides within
a distance of 4 Å from the respective ligand atoms were
dynamically selected to qualitatively and quantitatively evaluate
the number of contacts during the entire binding process. The
most contacted nucleotides were thus selected, to compute a
per-nucleotide electrostatic and vdW interaction, and energy
contribution, with the ribonucleic target. NAMD was used for
post-processing computation of electrostatic interactions using
an AMBER ff14SB force field. The cumulative electrostatic
interactions were computed for the same target nucleotides by
summing the energy values frame by frame along the trajectory,
and the resulting graphs were reported to the lower-right of
movies provided as Supplementary Videos 1–6. Representations
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of the molecular structures were prepared with VMD software
(Humphrey et al., 1996).

RESULTS AND DISCUSSION

To investigate the SuMD applicability domain and accuracy
in the context of ribonucleic acid molecular recognition, a
retrospective validation approach was selected, and it stressed the
computational methodology ability in geometrically reproducing
experimental binding modes of SMIRNA or small folded
peptides. The three-dimensional structures of six ligand–RNA
complexes solved both through X-Ray and NMR spectroscopy
were retrieved from the RCSB PDB database and prepared for
subsequent SuMD simulations moving ligands far away from the
ribonucleic binding clefts, as accurately described in materials
and methods section. The RNA structures, reported in Figure 1,
were selected to span a vast plethora of pharmaceutically
interesting ribonucleic targets, which vary between being of
viral and bacterial origin, up to artificially engineered aptamers.
Furthermore, the selected structures provide an overview
of different peculiar three-dimensional RNA motifs, from a
small stem-loop to a riboswitch characterized by a complex
architecture. The results collected through SuMD simulations
are then reported herein along with the geometric and
interactives analysis performed. A summary of all the statistics
regarding the simulation performances are reported in the
Supplementary Information.

Targeting Viral RNAs (vRNAs)
The discovery and design of new antiviral compounds targeting
viral proteins are complicated by the enormous variability
affecting these macromolecules, an aspect representing the core
of the drug resistance phenomenon. On the other hand, lncRNA
regions belonging to viral genomes, being less affected by genetic
mutations and having no counterpart in human organisms, are
becoming attractive pharmaceutical targets. Aminoglycosides,
antibacterial drugs known to inhibit protein synthesis acting
at the level of the prokaryotic ribosome, have proven to be
promiscuous molecules that are also able to bind lncRNA
structural elements of viral genomes (Bernacchi et al., 2007).
This experimental evidence has paved the way for the discovery
of drug-like small molecules able to inhibit the replication
for a plethora of pathological viral diseases, such as human
immunodeficiency virus (HIV), hepatitis C virus (HCV), severe
respiratory syndrome coronavirus (SARS CoV), and influenza A
virus (Hermann, 2016).

Influenza a Virus Promoter
Influenza A represents a group of viruses differing from
virulence and pathogenicity profiles that all belong to the
Orthomyxoviridae family. The Influenza A genome comprises
eight negative-sense single-stranded RNA segments (vRNA)
encoding for 13 proteins (Coloma et al., 2009). The 5′-end and 3′-
end terminal portions of each vRNA segment in the physiological
condition fold together in a partial duplex, forming an
arrangement called a promoter, which controls RNA-dependent
RNA polymerase (RdRp) recognition and, thus, genome

transcription and replication (Desselberger et al., 1980). Since
the promoter sequences are highly conserved among Influenza
A viruses and marginally affected by genetic variation that can
enhance the onset of drug resistance, they represent a promising
pharmaceutical target. The Varani research group, exploiting
an NMR-based fragments screening approach, has identified
6,7-dimethoxy-2-(1-piperazinyl)-4-quinazolinamine (DPQ) as a
promising scaffold for antiviral drug development as it is able to
bind the Influenza A promoter region with a low micromolar
affinity (Kd 50.5 ± 9µM) and is also able to inhibit the
virus replication in a comparable range of concentration (Lee
et al., 2014). The SMIRNA binding mode was experimentally
elucidated bymeans of NMR, as depicted in Figure 1, confirming
DPQ recognition within the RNA major groove at the (A-A)-U
internal loop level.

The SuMD algorithm was then applied to this first case
study, in an attempt to investigate the entire DPQ binding
mechanism, stressing at the same time the methodology
accuracy in reproducing the experimental solved complex. A
first interesting aspect is represented by the reduced time
window of 30 ns required to sample a putative molecular
recognition event between DPQ and its ribonucleic target
(Supplementary Video 1). This result is quite impressive,
especially if compared with classical MD simulations, which
otherwise would require extensive computational efforts. At the
end of the simulation, as depicted in the Figure 2 graph, the
SMIRNA has converged both from a geometrical and interactive
point of view toward the NMR structure binding mode. The
low RMSDmin value of 2.6 Å, computed on DPQ heavy atoms,
confirm, also in the case of nucleic acids, SuMD ability in
predicting a reasonable binding hypothesis. This value must not
be evaluated with excessive severity, having been calculated only
with respect to one of the 16 conformations of the complex
deposited on the PDB database. The solution NMR structure
has indeed highlighted an important variability in the DPQ
positioning within the RNA binding site, with an RMSDmax,
computed on ligand-heavy atoms of 1.4 Å. Moreover, this
approach makes it possible to peek at the entire molecular
recognition process and to not focus merely on the final state.
Figure 2C reports a time-dependent analysis performed on the
nucleotides most frequently contacted during the simulation,
reporting their cumulative contribution to binding, which is
defined as the sum of each nucleotide electrostatic and van
der Waals (vdW) interaction energy. It is encouraging to
note how the nucleotides that computationally have shown a
primary role in stabilizing the DPQ complex (A9–A11 and
C21–G24) also correspond to those that have experimentally
experienced the greatest chemical shift perturbations during
NMR experiments. In addition, as reported in Figures 2B,C and
on Supplementary Figure S1, SuMD simulation allows us to
decipher the different role played by aforementioned nucleotides,
some of them (A9–A11) participating only during the early
phases of SMIRNA recognition (until 10 ns) and the other (C21–
G24) stabilizing the complex within the ribonucleic cleft (after
10 ns). These results appear even more interesting if we consider
the high flexibility characterizing the small RNA duplex. Despite
the reduced time window explored by SuMD methodology, the
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FIGURE 2 | This panel summarizes the recognition pathway of the DPQ fragment with the Influenza A promoter region. (A) RMSD of DPQ heavy atoms against the

PDB reference. (B) Superimposition between the experimental NMR complex (PDB ID 2LWK, green-colored DPQ molecule) and the SuMD conformation with lowest

RMSD along the trajectory (orange-colored molecule). The nucleotides surrounding the binding site are reported. (C) Dynamic total interaction energy (electrostatic +

vdW) computed for most contacted RNA nucleobase. (D) RMSD of RNA phosphate atoms belonging to the backbone, computed against the PDB reference.

(E) Flexibility characterizing the RNA structure during DPQ binding event, binding clef dimension was monitored as the distance dynamically occurring between two

key nucleotides (A8 and C21).

structure has indeed shown a relevant RMSDmax of 4.2 Å from
the initial experimental coordinates (Figure 2D). In detail, after
a few ns of simulation, the promoter duplex in the ligand-
free form folds back on itself, and only DPQ binding allows
the structure to return to the experimental linear conformation
(Figure 2E). The same behavior was coherently captured also by
NMR experiments, which previously highlighted how the RNA
helical axis curvature changes upon ligand binding, enlarging the
dimension of the binding cleft (Lee et al., 2014).

HIV-1 Rev-RRE Complex
The human immunodeficiency virus of type 1 (HIV-1) is a
retrovirus belonging to the Lentivirus family, and it is responsible
for acquired immunodeficiency syndrome (AIDS). RNA–protein
interactions play a fundamental role in controlling the HIV
replication cycle and, consequently, virulence profile (Battiste
et al., 1996). HIV-1 Rev, in particular, is a small regulatory protein
that drives the nuclear export of unspliced and partially spliced
viral mRNAs transcripts. Rev protein mediated its function,
recognizing a purine-rich bulge within stem-loop IIb of the
Rev response element (RRE), a highly structured mRNA region
within an env intron (DiMattia et al., 2010). Theminimal binding
domain in the Rev protein is constituted by a short α-helix folded
peptide, which contains an arginine-rich binding motif (ARM),
a domain known to be important also for tat-TAR (trans-acting
region) interactions in HIV. Harada et al., exploiting an in-vivo

strategy, have identified a class of specific RNA-binding peptides
able to target HIV-1 Rev-RRE complex. Specifically, RSG-1.2,
an α-helical peptide of 22 amino acids, was selected among a
combinatorial library and subsequently engineered, providing
a 7-fold increase in binding affinity and a 15-fold increase in
selectivity toward the ribonucleic target, further resulting in
an in vivo ability to completely disrupt the RNA–Rev protein
interaction (Harada et al., 1996, 1997). The solution structure
of an oligonucleotide portion derived from HIV-1 RRE-IIb stem
domain in a complex with an RSG-1.2 peptide was solved
through NMR, providing structural details about vRNA targeting
by means of the small peptide (Gosser et al., 2001). We have
therefore chosen this case study to validate SuMD performance
in one of the most complex methodological scenarios, namely
the molecular recognition between two highly flexible partners:
a small α-helix folded peptide and a portion of ribonucleic
acid. In addition, the predominant electrostatic component
that both characterizes the RNA polyanionic backbone and
the small polycationic peptide, which contain six Arg residues,
makes the prediction of the binding mode even more complex.
Despite the unfavorable premises, a few tens of ns proved to be
sufficient for the SuMD protocol to sample a binding hypothesis
for the RSG-1.2 peptide. During the simulation, as observable
on Supplementary Video 1, the peptide was accommodated
with the correct orientation within the HIV-1 RRE-IIb major
groove reaching, as reported in Figure 3A, an RMSDmin value
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FIGURE 3 | This panel summarizes the recognition pathway of RSG-1.2 peptide with HIV-1 REE. (A) RMSD of RSG-1.2 Cα atoms against the PDB reference. (B)
Superimposition between the experimental NMR complex (PDB ID 1G70, green-colored peptide) and the SuMD conformation with lowest RMSD along the trajectory

(orange-colored peptide). The nucleotides surrounding the binding site, along with R residues belonging to ARM, are reported. (C) Dynamic total interaction energy

(electrostatic + vdW) computed for most contacted RNA nucleobase.

of 4.3 Å, computed on Cα peptide atoms. Although the
geometric accuracy is lower than the previous example, the
SuMD simulation has allowed us to identify the main interactive
hotspots stabilizing the complex. As hypothesized and confirmed
by Figure 3C, the ARM motif plays a fundamental role in
anchoring the RSG-1.2 peptide, with charged residue R 16,
R17, and R18 mediating fork electrostatic interactions with the
phosphate atoms of the ribonucleic backbone, in a coherent
way with the experimentally solved structure. Furthermore, the
analysis performed on the trajectory (Supplementary Figure S2)
has highlighted the peculiar behavior of R14; its guanidinium side
chain is deeply buried within the RNA groove, where, differently
from the other charged residues, it stabilizes the peptide through
a solvent-shielded hydrogen bond and vdW interactions, an
aspect in great agreement with the experimental NMR data
(Gosser et al., 2001).

Targeting Prokaryotic RNAs
In the last decades, the discovery that many aminoglycoside
compounds clinically exploited to treat severe bacterial
infections mediated their action by affecting the ribosome
machinery confirmed the initial hypothesis of considering RNA,
especially prokaryotic ones, as an appetible pharmaceutical
target (Disney, 2019). However, the drugs that target ribosomes
represent an exception, rather than a model: the abundance
of ribosome macromolecules in the cytoplasmic compartment
means, therefore, that even modest drug-binding affinity could
result in acceptable therapeutic efficacy (Warner et al., 2018).
Apart from ribosomes, a putative regulatory role of lncRNAs
in bacterial systems has recently become increasingly clear.
From a mechanistic point of view, it is possible to distinguish
regulatory RNAs acting in trans, either by base-pairing with a
complementary region in the target mRNA or by sequestration
of an RNA-binding protein and regulatory sequences that,
in contrast, are encoded as part of the mRNA for the gene
they regulate, thus acting in cis (Sherwood and Henkin).
Riboswitches, which are structured elements typically found
in the 5′ untranslated regions (UTR) of mRNAs, represent an
interesting example of the latter case (Tucker and Breaker, 2005).
These RNA elements, through an aptameric portion, directly

sense a physiological signal (ions, cofactors, or metabolites) and
transmit the information to the gene expression machinery via
a signal-dependent RNA conformational change (Sherwood
and Henkin, 2016). The discovery that clinically approved
antibacterial Roseflavin exerts part of its therapeutic action by
binding the flavin mononucleotide (FMN) riboswitch, together
with the increasing availability of structural data on riboswitches,
has made these targets very interesting pharmaceutically
(Pedrolli et al., 2012).

S-Adenosylhomocysteine Riboswitch
S-adenosyl-(L)-methionine (SAM) is a fundamental cofactor
that serves as the primary methyl group donor in a large
set of biochemical reactions. In bacteria, SAM homeostasis
is so important to the point that at least six classes of
RNA riboswitch regulatory elements have since now been
characterized (Weinberg et al., 2010). Following SAM-mediated
methylation, the by-product S-adenosyl-(L)-homocysteine
(SAH) that is released, due to its high toxicity, must be readily
degraded by SAH hydrolase (ahcY) enzymes. Recently, a new
type of riboswitch was discovered, and it is able to sense
and be responsible for the intracellular SAH concentration,
upregulating the expression of ahcY enzymes in prokaryotes
(Wang et al., 2008). The aptameric portion of the SAH
riboswitch recognizes its cognate ligand with a quite high
binding affinity of 32 nM and, surprisingly, also provides a
discrete selectivity profile toward the original cofactor SAM
(1,000-fold lower affinity), ensuring a fine regulation of the
SAM/SAH metabolic cycle. The high-resolution crystal structure
of the SAH riboswitch aptameric domain in complex with its
cognate ligand was recently solved, elucidating the molecular
basis for SAH substrate specificity (Edwards et al., 2010). This
case study not only represents a pharmaceutical appealing
prokaryotic RNA target but also provides the opportunity to
stress the SuMD performance in a more complex binding
site recognition, if compared to the simple duplex structures
until now investigated. The SAH molecule indeed binds a
small cleft located in the minor groove of the SAH riboswitch,
which adopts an unusual “LL-type” pseudoknot conformation.
Also, in this case, around 20 ns were sufficient for the SuMD
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FIGURE 4 | This panel summarizes the recognition pathway of the SAH molecule with SAH riboswitch. (A) RMSD of SAH heavy atoms against the PDB reference. (B)
Superimposition between the experimental X-Ray complex (PDB ID 3NPQ, green-colored SAH molecule) and the SuMD conformation with lowest RMSD along the

trajectory (orange-colored molecule). The nucleotides surrounding the binding site are reported. Within the circular window, the SuMD conformation sampled for SAH

tail is compared to a different crystallographic reference (PDB ID 3NPN). (C) Dynamic total interaction energy (electrostatic + vdW) computed for most contacted RNA

nucleobase.

protocol to sample a putative molecular recognition trajectory
(Supplementary Video 3). In detail, as reported in Figure 4,
after only a few nanoseconds, SAH reached the riboswitch
binding cleft reproducing the crystallographic complex with a
notable geometric accuracy (RMSDmin 1.7 Å). Then, the ligand
conformation remained stable until the end of the simulation.
From an interactive point of view, as reported in Figure 4C

and also in Supplementary Figure S3, the SuMD trajectory
analysis correctly highlighted the stabilizing role played by
nucleotide C16 and A29, among which the adenine core of
SAH is intercalated, providing the greatest vdW interactions.
In contrast, the electrostatic contribution to binding analysis
has revealed a divergent situation. Indeed, nucleobase G15,
mediating a hydrogen bond network with an SAH adenine
scaffold, is responsible for a great stabilizing contribution,
whereas nucleotide C46 has shown during the entire simulation
an unexpected repulsive contribution. The reason for this can
be found in the conformation sampled by SuMD for the SAH
homocysteine terminal tail. As depicted by Figure 4B, the
carboxylic moiety of the ligand spatially approaches the C46
pyrimidine carbonyl, whereas in the crystallographic structure
(green representation), through a simple bond rotation, the
interaction is instead mediated by the vicinal amino group.
Curiously, the same research group also deposited on the PDB
database a worst resolution structure of the complex under
investigation (PDB ID 3NPN), reporting the same apparently
energetic unfavored SAH conformation described by the SuMD
protocol (Figure 4B, circular window), thus validating the
goodness of the sampling and the flexibility characterizing the
ligand tail.

Pre-queuosine1 Riboswitch
Pre-queosine1 (PreQ1), or 7-aminomethyl-7-deazaguanine, is a
metabolic intermediate in the synthetic pathway that, starting
from guanosine-5′-triphosphate (GTP) nucleotide, originates
the hypermodified guanine derivate queuosine (Q). Q has
been detected both in eubacteria and eukaryotic organisms
where it occupies the anticodon wobble position of tRNAs
specific for the amino acid asparagine, aspartate, histidine, and

tyrosine (Roth et al., 2007). Q modification has been related
to an improvement in translation fidelity as well as bacterial
pathogenicity. Interestingly, only prokaryotes can synthesize Q
via a multistep reaction, whereas eukaryotes are obliged to
assimilate the nucleoside through the diet (Eichhorn et al., 2014).
In bacteria like Bacillus subtilis (Bs) or Thermoanaerobacter
tengcongenesis (Tt), the expression of genes responsible for
Q biosynthesis is negatively modulated by the intermediate
PreQ1 intracellular concentration. PreQ1, binding to a small
aptameric RNA motif composed of 34 nucleotides determines
the folding of the PreQ1 riboswitch in an “H-type” pseudoknot
structure in which more than half of the nucleobases engage
in triplet or quartet interactions (Rieder et al., 2010; Jenkins
et al., 2011). The three-dimensional structure of the class I PreQ1

riboswitch in complex with its cognate ligand was solved by X-ray
crystallography (PDB ID 3Q50), and this allowed us to speculate
about the quite impressive binding affinity characterizing this
endogenous precursor (Kd = 2 nM) (Edwards et al., 2010). Even
in this case, <40 ns of SuMD simulation proved to be sufficient
in describing a binding event between themetabolic intermediate
PreQ1 and its related riboswitch (Supplementary Video 4). As
observable in Figure 5A, PreQ1 recognition mainly articulates
in three well-distinguishable phases. In the beginning, the
ligand approaches the riboswitch binding site vestibule where
it negotiates for about 15 ns the accommodation in the deep
cleft before converging, with great geometric accuracy (RMSDmin

1.3 Å), toward the solved crystallographic conformation. This
behavior has also been captured by the interaction energy
graph (Supplementary Figure S4B), highlighting the presence
of two major sites visited during the recognition trajectory, i.e.,
the canonical binding cleft and the aforementioned external
vestibular region, located about 10 Å apart. It is interesting to
note the comparable interaction energy characterizing these two
distal sites, which are distinguishable for their different degrees
of solvent exposition. In addition, the dynamic interaction
fingerprint reported in Figure 5C, elucidates the role played
by the binding site nucleotides during recognition in a
coherent way with respect to the results reported on the
original publication.
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FIGURE 5 | This panel summarizes the recognition pathway of the PreQ1 molecule with PreQ1-1 riboswitch. (A) RMSD of PreQ1 heavy atoms against the PDB

reference. (B) Superimposition between the experimental X-Ray complex (PDB ID 3Q50, green-colored PreQ1 molecule) and the SuMD conformation with lowest

RMSD along the trajectory (orange-colored molecule). The nucleotides surrounding the binding site are reported. (C) Dynamic total interaction energy (electrostatic +

vdW) computed for most contacted RNA nucleobase.

FIGURE 6 | This panel summarizes the recognition pathway of HMJ molecule with PreQ1-1 riboswitch. (A) RMSD of HMJ heavy atoms against the PDB reference.

(B) Superimposition between the experimental X-Ray complex (PDB ID 6E1U, green-colored HMJ molecule) and the SuMD conformation with lowest RMSD along the

trajectory (orange-colored molecule). The nucleotides surrounding the binding site are reported. (C) Dynamic total interaction energy (electrostatic + vdW) computed

for most contacted RNA nucleobase.

All the cases considered so far have confirmed the ability of
SuMD to predict reasonable binding hypotheses for different
ligands when exploiting as starting point the experimental
structures of the ribonucleic targets in which each of these
ligands were originally co-crystallized. From a pharmaceutical
and applicative perspective, however, it is often required to
rationalize the binding mode of compounds that are in most
of the cases different from the ones now co-crystallized.
It has thus become crucial to understand how the choice
of the initial RNA target conformation could affect SuMD
performance. The studies performed by the Schneekloth Jr. group
in the attempt to experimentally asses the druggability profile
of PreQ1-I riboswitch through synthetic organic molecules
have then given us an opportunity to further explore this
question. In a recent scientific work, it the discovery of
HMJ was indeed reported; this is a dibenzofuran derivative
that, despite the not obvious chemical similarity with PreQ1,
exhibits a sub-micromolar affinity to the RNA target (Kd =

0.5µM) and the ability to induce premature transcriptional
termination (Connelly et al., 2019). The three-dimensional
structure determination of the complex was, however, quite
difficult and was achieved only by designing a hybrid riboswitch
aptamer sequence in which the nucleobase A14, as well
as the two vicinal ones, were removed (PDB ID 6E1U).

Since this structure lacked a key binding site nucleotides, it
represent a non-optimal starting point for a computational
study; we therefore decided to investigate the HMJ binding
mechanism, exploiting the high-quality riboswitch structure
originally solved in the presence of PreQ1 and then comparing
the accuracy of the prediction with the experimental solved
data. Encouragingly, even for such a system, the SuMD protocol
has succeeded in sampling, in about 30 ns, an extremely
accurate binding hypothesis for HMJ, whose RMSDmin was
computed with respect to reference structure (PDB ID 3Q50)
and has reached the impressive value of 0.5 Å (Figure 6A,
Supplementary Video 5). From the analysis of the trajectory,
it was furthermore possible to confirm how the benzofuran
ligand competes with PreQ1 for the riboswitch binding site. As
depicted by Figure 6C, and as is coherent with experimental
evidence, HMJ makes a strong stabilizing interaction with the
nucleobases G5, G11, and C16, which define the “floor” and
the “ceiling” of the binding cleft where the aromatic core
stacks, and nucleobase U6, C15, and A29, which shape instead
the binding cavity borders. Moreover, the Interaction Energy
Landscape (Supplementary Figure S5B) highlights a binding
profile similar to the one previously described for the cognate
ligand PreQ1, confirming the vestibular region’s role in recruiting
the riboswitch binding partners.
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Targeting Artificial RNA Aptamers
Containing G-Quadruplex Motifs
The discovery, made in 1994, that the green fluorescent protein
(GFP) from the jellyfish Aequorea victoria could be used as a
marker for protein localization and expression has revolutionized
molecular biology to the point that, in 2008, the discovery earned
a Nobel prize (Swaminathan, 2009). However, since a minimal
portion of the human genome is translated into proteins while
most of it is transcribed into RNA, being able to investigate the
dynamic and spatial properties of the human transcriptome has
become essential. As there are no known naturally fluorescent
RNAs, a series of in vitro engineered ribonucleic tags able to
fold into peculiar three-dimensional structures were selected
(Trachman and Ferré-D’Amaré, 2019). These RNAs, through an
aptameric domain, can bind fluorophore molecules, increasing
their spectroscopic signal and hence allowing for the dynamic
monitoring of nucleic acid expression and localization in
cells. Most of the fluorophore RNA binding sites, despite the
different overall architecture, have evolutionarily converged
on G-quadruplex motifs, supporting their important role in
enhancing the fluorescence phenomenon, in a similar way to how
the β-barrel domains characterize GFPs (Warner et al., 2014).

Corn Aptamer
Corn is one recently developed RNA aptamer engineered in
vitro to bind 3,5-difluoro-4-hydroxybenzylidene imidazolinone-
2-oxime (DFHO), a fluorophore analogous of red fluorescent
protein (RFP) (Warner et al., 2017). Corn-DFHO differs
from other similar RNA tags for its limited light-induced
cytotoxicity, its minimal background fluorescence, and its
increased photostability, thus representing a valuable imaging
tool. Corn aptamer is characterized by an atypical three-
dimensional structure elucidated by X-ray crystallography and
biophysical experiments. How it is observable in Figure 1

that two RNA segments join together in a quasi-symmetric
homodimer structure (1:2 chromophore:RNA stoichiometry) at
the interfaces where a single DFHO molecule is tightly bound
(Kd = 70 nM), stacking between two G-quadruplex planes
stabilized by the presence of K+ ions (Warner et al., 2017).

Despite the lack of therapeutic application for this aptamer,
which is instead more suitable for molecular biology studies,
the investigation of such a complex binding site recognition can
be considered as a proof of concept to validate G-quadruplex
motif targeting through an SuMD approach. Nucleotide quartet
structures, which presence have been extensively characterized in
the telomeric terminal portion of eukaryotes chromosomes and
within gene promoter regions, are indeed acquiring increasing
attention, as they could represent promising pharmaceutical
targets (Balasubramanian and Neidle, 2009). As shown in
Supplementary Video 6, SuMD methodology has produced a
putative binding trajectory for DFHO in <30 ns, converging
with an impressive geometrical accuracy toward the experimental
solved complex (RMSDmin 0.34 Å) (Figure 7A). Moreover, the
Dynamic Total Interaction Energy plot reported on Figure 7C,
strongly retraces the interactive pattern already described on
the original scientific work, highlighting the role played by
nucleotide G12, G25 (first protomer), and g25 (second protomer)
in circumscribing the sandwich cavity within which the aromatic
chromophore stacks. Nucleobase A14 (first protomer) and a11
(second protomer) instead mediated a hydrogen bond network
with oxime and imine moieties of the DFHO ligand, respectively.
SuMD simulation has also illuminated how the entire binding
process is not driven by the electrostatic contribution, as
often it happens for SMIRNA, but is instead controlled by
the vdW interactions (Supplementary Figure S6). From this
perspective, Corn aptamer represents an unusual, but potentially
revolutionary case study, as it distorts an old paradigm that has
now since affected the identification of putative RNA binders.
DFHO has indeed demonstrated how even apolar or anionic
molecules can target ribonucleic acids reaching a nanomolar
binding affinity. This provides the opportunity to expand the
chemical space explorable by SMIRNA beside that of the well-
known, but often problematic, polycationic compounds.

CONCLUSION

Over the last decades, among all the biological macromolecules,
proteins have represented the target of choice for the

FIGURE 7 | This panel summarizes the recognition pathway of DFHO molecules with the Corn aptamer. (A) RMSD of DFHO heavy atoms against the PDB reference.

(B) Superimposition between the experimental X-Ray complex (PDB ID 5BJO, green-colored DFHO molecule) and the SuMD conformation with lowest RMSD along

the trajectory (orange-colored molecule). The nucleotides surrounding the binding site are reported. (C) Dynamic total interaction energy (electrostatic + vdW)

computed for most contacted RNA nucleobase.
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development of new drug candidates. Nucleic acids, on
the other hand, have so far represented a less attractive
target due to the difficulty in guaranteeing a selective
recognition mechanism. The recent discovery of peculiar
and physiologically stable three-dimensional conformation
characterizing RNAs oligomers has, however, paved the way
for the investigation of SMIRNA. The increasing availability
of structural data for a wide range of relevant therapeutic
ribonucleic targets has promoted the application of well-
validated SBDD computational approaches, such as molecular
docking, also in this field. However, the remarkable flexibility
and the peculiar electrostatic potential, which distinguish
nucleic acids from proteins, have readily highlighted the
limitation of many of these methodologies. MD simulations
would allow us to overcome some of the aforementioned
problems; however, the computational cost required to capture
rare events such as ligand binding has so far limited their
routine utilization.

In this work, we have investigated the applicability domain of
SuMD in the field of pharmaceutically relevant RNA polymers.
The performances of the protocol were measured as the
geometrical accuracy, expressed in terms of RMSD, with which
an experimentally solved complex is predicted by the SuMD
simulation. Case studies in this research were chosen in such
a way as to span very different ribonucleic secondary, tertiary,
and even quaternary structures, starting from small duplex stem-
loops up to pseudoknot or aptameric homodimers, which contain
G-quadruplex motifs. Furthermore, the recognition of different
ligands was investigated, both small organicmolecules and folded
α-helical peptides.

Although this work must be considered as a preliminary
investigation and the number of examples taken into
consideration cannot guarantee statistical robustness, it is
encouraging to note how, in all the six ribonucleic complexes
simulated, SuMD correctly reproduced the experimentally
solved final state starting from the unbound state in few hours of
simulation. The accuracy of the protocol varies significantly in a
system-dependent manner, but, in all the cases, it was possible
to collect valuable interactive and energetic information about
the nucleotides dynamically involved in the recognition process.
Curiously, the RNA target in which the architecture of the
binding site is not very complex, such as the stem-loop domain
of Influenza A promoter and HIV-1 RRE, are those in which
the computational protocol experienced the poorest geometric
accuracy in reproducing the ligand-binding mode. A separate
consideration must be made for the latter complex (PDB ID
1G70) since the recognition between two extremely flexible
entities, i.e., the small peptide and the RNA duplex, represents
a very challenging case. However, the results obtained, with
an RMSDmin lower than 5 Å, are in line with those previously
described when applying SuMDmethodology to peptide–protein
recognition. Moving toward more complex binding sites, such
as the one that characterizes pseudoknot riboswitch structures
or G-quadruple-shaped clefts, the geometric accuracy of the

method progressively improves, with the best results obtained
in the artificial aptameric structure (RMSDmin 0.34 Å). These
findings are in agreement with a recent perspective work that
assessed how the complexity of an RNA binding site, measured
in terms of information content, could represent a valuable
discriminant to individuate druggable oligonucleotides (Warner
et al., 2018). Indeed, the three-dimensional complexity of a
binding site makes ribonucleic pocket more similar to a protein-
like environment rather than an ordered and repetitive structure
like that characterizing DNA.

Furthermore, the high conformational flexibility that
has characterized all the investigated ribonucleic structures
(RMSD computed on RNA backbone are reported on
Supplementary Material) during SuMD simulations has
evidenced the importance of adopting techniques able to
consider the flexibility of both macromolecules and ligands
to better describe such complex molecular recognition.
In conclusion, we have shown how SuMD can be a valid
computational method to generate binding hypothesis for
ribonucleic targets in a nanosecond timescale, explicitly
considering both the role of the solvent and the flexibility
of the macromolecule. SuMD simulation results could not
only help with the interpretation and investigation of the
complex mechanism of recognition characterizing SMIRNA,
especially when structural information is not available, but they
could also guide the rational discovery and optimization of
these compounds.
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With the rapid development of systems-based pharmacology and poly-pharmacology,

method development for rational design of multi-target drugs has becoming urgent. In

this paper, we present the first de novo multi-target drug design program LigBuilder

V3, which can be used to design ligands to target multiple receptors, multiple binding

sites of one receptor, or various conformations of one receptor. LigBuilder V3 is generally

applicable in de novo multi-target drug design and optimization, especially for the

design of concise ligands for protein targets with large difference in binding sites. To

demonstrate the utility of LigBuilder V3, we have used it to design dual-functional

inhibitors targeting HIV protease and HIV reverse transcriptase with three different

strategy, including multi-target de novo design, multi-target growing, and multi-target

linking. The designed compounds were computational validated by MM/GBSA binding

free energy estimation as highly potential multi-target inhibitors for both HIV protease

and HIV reverse transcriptase. The LigBuilder V3 program can be downloaded at “http://

www.pkumdl.cn/ligbuilder3/”.

Keywords: De novo design, Multi-target drug design (MTDD), multi-target drug optimization, Dual-functional

inhibitors, LigBuilder

INTRODUCTION

For most of the twentieth century, drug discovery process was dominated by a reductionist “one
disease, one target, one molecule” philosophy (Alcaro et al., 2019). Researchers and pharmaceutical
industries around the world have been struggling to develop highly specific regulators against
particular targets, which are generally expected to achieve higher potencies while reducing the risk
of off-target related side effects (Eaton et al., 1995; Morphy and Rankovic, 2009; Hughes et al.,
2011). Although successful drugs have been brought to market with this approach, new drug R&D
aiming novel targets was noticeable slowdown and fewer drugs were approved over the last decades
(Scannell et al., 2012; Ramsay et al., 2018), which implies the limitation and deficiency of previous
single-target drug discovery strategy. Due to the complexity of biological network (Gerstein et al.,
2012), disease usually involves multiple factors and biological pathways, so agents that directly
interfere individual molecular targets often lack effectiveness at treating complex diseases (Brown
and Superti-Furga, 2003; Kamb et al., 2007; Cavalli et al., 2008; He et al., 2016). Moreover, the
upstream components of pathways have to be regulated if only one target is aimed at in a multiple
pathology related disease, which is more likely to cause unexpected side effects. Consequently,
researchers and pharmaceutical industries have been turning their attention to develop therapies
that modulate multiple targets simultaneously (Reddy and Zhang, 2013; Zhang et al., 2017; Kumar
and Sharma, 2018). Combination therapy and multi-target therapy were proposed to address
this problem.
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Combination drugs, which is defined as a concerted
pharmacological intervention of multiple targets with several
compounds, have been used increasingly to treat many types
of diseases, such as viral and bacterial infection, cancer,
hypertension, and atherosclerosis (Giles et al., 2014; Von Hoff
et al., 2014; Blonde et al., 2015; Lu et al., 2018). Although the
combination therapy is proposed to set up a new direction
for drug discovery, it is not a new concept. In fact, using
multi-component mixture extracted from natural products is a
historical therapy in traditional medical treatments. Besides, the
highly active antiretroviral therapy (HAART) (Lu et al., 2018),
which is also known as the “AIDS cocktail,” has been the first-
line anti-AIDS treatment since the end of last century (Bhatti
et al., 2016). Many combination drugs have been launched to
market and proved to be effective therapies for complex diseases,
however, poor patient compliance has been raised especially in
treatment of asymptomatic diseases such as hypertension (Eisen
et al., 1990). An alternative way to simplify drug dosing is to mix
multiple drug components into single co-formulated tablet, but
different PK/PD property of each component may complicate
the formulation and raise the risk of drug-drug interaction, and
increase the risk and cost of such fix dose combinations strategy
(Morphy and Rankovic, 2009).

Multi-target drug, which is defined as single compound
that interacts with multiple targets simultaneously, has been
paid much attention recently. Multi-target therapy is expected
to be new and more effective medications for a variety of
complex diseases even with relatively weak activity (Korcsmaros
et al., 2007; Zimmermann et al., 2007). The uniform chemical
component ofmulti-target drug will introduce lower risk of drug-
drug interaction comparing with multi-components strategy.
Moreover, although the discovery process of multi-target drug
will be more complicated in the design and optimization stage
due to the increased constraints from multiple targets, the
risk and costs for the most expensive clinic trial stage are in
principle similar with traditional single-target drug development.
Consequently, many methods for multi-target ligand discovery
were developed (Morphy et al., 2004; Zhan and Liu, 2009;
Abdolmaleki et al., 2017; Zhang et al., 2017), such as multi-
target QSAR (González-Díaz et al., 2006), fragment linker
strategy (Morphy and Rankovic, 2006), framework combination
(Morphy and Rankovic, 2006; Chen et al., 2011), and common
pharmacophore based virtual screening and cross screening (Wei
et al., 2008). Among them, framework combination and cross
screening are both widely used approaches for discovering of
multi-target lead (Morphy and Rankovic, 2005, 2009, 2010;
Wu et al., 2012; Lepailleur et al., 2014; Bottegoni et al., 2016).
Framework combination approach is based on the integration of
multiple compounds via the fusion of common or similar sub-
structure. Although the combinedmolecule from this approach is
usually much smaller than directly linking two distinct structures
with flexible chain, the median ligand efficiency is typically lower
than general preclinical compounds which may lead to possible
poor oral pharmacokinetics (Morphy and Rankovic, 2007). An
alternative way is to screen multiple targets with the same
compound library and select the consensus hints, namely, cross
screening (Geppert et al., 2010). Although reported compounds

derived by cross screening are better in ligand efficiency than that
of framework combination approach, they are still statistically
less efficient than general preclinical compounds. Considering
the requirement of interacting with distinct binding sites, we are
not surprising in the relative low ligand efficiency of multi-target
compounds designed by the above methods (Morphy and Harris,
2012). Therefore, it is critical for multi-target compounds to be
“highly integrated” that could make the most of each component
group in multiple interactions. Moreover, the optimization of
multi-target lead is far more complicated than that of single-
target lead, because the “optimization landscape” of multi-target
lead is no longer a simple stepwise “group-activity” profile
in single-target lead optimization. The requirement of binding
affinity balance for multiple binding will significantly reduce the
available chemical space of the lead structure, as a result, stepwise
optimization in multi-target optimization easily leads to “the
blind alley,” namely, local minima. The increased dimensions
in “optimization landscape” of multi-target lead optimization
make the stepwise strategy less efficient, and implies that a
more global and extensive structure sampling is necessary in
optimization, which may be difficult to be achieved by manual
work. It also suggests that a “one-step” design rather than routine
“optimizing-bioassay” cycle is more suitable for multi-target
drug discovery process. Therefore, the efficient discovery strategy
of “highly integrated” ligand for unrelated targets remains
challenging and a general strategy of multi-target rational drug
design for dissimilar targets needs to be developed.

We developed an innovative multi-target design method,
called LigBuilder V3, which enables the de novo design and
molecular optimization algorithm to handle multiple targets.
The chemical space exploration algorithm inherited from
LigBuilder V2 (Yuan et al., 2011) has been upgraded to explore
more sophisticated structure space of multi-target ligands. As
we design the multi-target ligands from scratch with the
consideration of multiple interactions of each component group,
high ligand efficiency is expected to be achieved with this de novo
design approach, which is very important for multi-target drugs.
Multi-target lead optimization is also implemented in LigBuilder
V3, which can help researchers to find possible multi-target
optimization solutions. Furthermore, we apply an “ensemble
linking” strategy to promote the efficiency of “fragment linking”
algorithm and make it available in linking fragments for multi-
target design, which is helpful in highly efficient recombination
of known ligands and framework combination.

METHOD AND ALGORITHM

Data Structure and Definition
LigBuilder V3 implements the same genetic algorithm (GA)
(Fraser, 1957; Bremermann, 1958; Holland, 1975; Whitley, 1994)
used in LigBuilder V2. GA is an optimization algorithm inspired
by the process of natural selection, and it mimics the evolution
of a population under selection pressure. LigBuilder V3 uses the
overlapping generation model of GA, that is, new generation
of individuals are evolved from previous population and then
replace their parents with GA iteration. For a typical overlapping
generation model of GA, roulette wheel selection approach
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FIGURE 1 | Sketch map of data structure in LigBuilder V3. (A) The overview structure of GA evolution and GA compound pool. The GA compound pool includes the

ensemble of molecules evolved in GA population. For multi-target design, conformations for each receptor are listed in corresponding column, as a result, each row

could represent a solution of multi-target inhibition, and it could be viewed as the basic unit in multi-target GA population, which has similar status as “molecule” in

single-target GA population. To avoid confusion, we define each row as a “conformation group” instead of “molecule” or “conformation.” (B) The definition of chemical

cluster and conformation cluster. The compound pool is clustered on two levels: (a) all molecules sharing identical chemical structures will be clustered as chemical

cluster, which could be synthesized by same route; (b) conformations with similar protein-ligand interaction will be clustered as conformation cluster, which represent

same interaction mode.

is used to select 10% members from current population as
parent for evolving next generation, and all members in current
population will be discarded. To balance quality and diversity of

population, LigBuilder exempt the top 10% members in current
population from elimination, that is, these top members will be
directly transferred to next generation. So the quality of member
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in offspring generation will be better, at least equal to parent
generation. We define the GA compound pool as the ensemble of
molecules in the newest generation of GA population evolution.
The overview of the data structure used in GA evolution is
described in Figure 1A.

As each molecule produced by multi-target design method
involves multiple proteins, we should consider the multiple
conformations of the molecule that bind to its corresponding
targets. This is different to single target drug design method.
To avoid confusion, we use “Conformation Group” instead of
“Molecule” and “Conformation” to indicate the multiple binding
conformations of multi-target molecule in this manuscript
(Figure 1A).

We also define the “chemical cluster” and “conformation
cluster” to depict the relationship in chemical structure
and binding conformation among multi-target molecules
(Figure 1B). From the perspective of synthesis, molecules with
the same chemical structure could be considered as identical.
But from the perspective of protein-ligand interaction, the
conformations of ligand must be taken into account because the
binding of ligand is based on spatial interaction between atoms
from ligand and protein. Therefore, we cluster all conformations
at two levels: (1) chemical clusters: each conformation of
a chemical cluster shares the same two-dimensional (2D)
structure, and they could be synthesized via the same reactions
estimated by the synthesis-accessibility analysis module
inherited from LigBuilder V2; (2) conformation clusters: all the
conformations in a conformation cluster also share the same 2D
structure, thus the conformation cluster is a subset of chemical
cluster. All conformations in a conformation cluster are similar
with each other, so they could be consider as sharing same
interaction mode. Although all conformations of a conformation
cluster are interchangeable from the perspective of interaction
mode, we have to keep these “duplicates,” because they may
provide necessary local perturbation, for example, the members
in a conformation cluster may have various orientations of
hydrogen atoms. The orientations of hydrogen atoms usually
have little effect on protein-ligand binding except being involved
in hydrogen bond forming, but it is much sensitive in further
evolution of molecules because the hydrogen atom is responsible
for growing site for connecting newly added fragments.

Multi-Target Seed Structure Mapping
Seed structure is the starting point structure for lead
optimization. The preparation of seed structures for single
target lead optimization is straightforward, however, additional
steps are needed for preparation of seed structures for multi-
target design. As each “multi-target seed structure” indicates
a conformation group which is composed by the different
binding conformation of the ligand to each target, therefore
it is necessary to make one-to-one correspondence between
atoms of each member in the conformation group. Because
only hydrogen atoms are possible connection site in the whole
design process, the seed structure mapping is based on the
mapping of hydrogen atoms, namely, hydrogen mapping. Due
to the symmetry of molecule, there may be more than one
possible solution of hydrogen mapping between two structures.

FIGURE 2 | Symmetry in hydrogen mapping. (A) Example for the symmetry of

structure. 2 C2 symmetry axis of 1,4-dichlorobenzene conduce to 4 possible

hydrogen mappings. (B) Example for the symmetry of group. A C3 symmetry

axis of methyl group of acetic acid conduces to three possible hydrogen

mappings. The hydrogen atom colored in red and blue indicates the first

hydrogen and last hydrogen in hydrogen mapping, respectively.

As depicted in Figure 2, two types of symmetry should be
taken into account, i.e., the hydrogen symmetry of molecule
and the hydrogen symmetry of group. The molecular hydrogen
symmetry refers to the rotation symmetry of all hydrogen in the
molecule, and the hydrogen symmetry of group refers to the
rotation symmetry of multiple hydrogen atoms that connected
to one heavy atom. Figure 2A shows two C2 symmetry axises
of 1,4-dichlorobenzene, which conduce to 4 possible hydrogen
mappings. Figure 2B shows a C3 symmetry axis of the methyl
group of acetic acid, which conduces to 3 possible hydrogen
mappings. We should note that although some molecules such
as the acetic acid are not chiral, the potential chirality is taken
into account for the hydrogen mapping in LigBuilder V3,
because the further growing operation may bring in chirality
to the carbon atom. In other words, both 2D topological and
three dimensional (3D) structural information are considered in
hydrogen mapping.

Although all the hydrogen atoms in ligand are possible
fragment growing site, not every hydrogen atom could serve as
growing site because of steric hindrance or user’s preference.
Thus, LigBuilder V3 only reserves the possible hydrogen
mappings with maximal growing sites mapped, named growing
site mapping, which increase the possibility of further growing
operation to the greatest extent. If there is no possible
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FIGURE 3 | Sketch map of the growing operation. (A) The seed structure in the binding site and chosen fragment (dashed box) in the building block library (solid box).

All potential growing sites are colored in blue. (B) The randomly chosen growing site of seed structure and chosen fragment are colored in red. (C) The chosen

fragment is moved and then attached to the seed structure. The favorable conformations are determined by uniformly 3 degree-step sampling of the torsion angle

along the newly formed bond, which is colored in red.

hydrogen mapping or growing sites mapping, the corresponding
conformation group will be ignored. However, if there are more
than one solutions of rational hydrogen mappings, LigBuilder
V3 will regard them as different seed structures and use them
independently in subsequentially design process.

For the case that involves more than two targets, LigBuilder
V3 makes hydrogen mapping between the conformation for
the first target and each of the remaining targets one by one.
As a result, all the rest conformations of the conformation
group are mapped to the first conformation, so it is feasible
to the find the common growing site mappings of the whole
conformation group.

Multi-Target Growing
Lead optimization is the fundamental function of LigBuilder
series. Both LigBuilder V1 and V2 provide the “Growing”
strategy, which generates derivatives based on the lead structure
(i.e., “seed” structure) that has been pre-placed into the binding
pocket. In the present study, we extend the “Growing” strategy to
multi-target growing (multi-target lead optimization).

Figure 3 is the sketch map of single-target growing operation,
which is the basis of multi-target growing operation. The gray
area on the left in Figure 3A represents the binding site of
the target, and the benzene is a representative seed structure.

Molecules in the solid box on the right are privileged fragments,
which could serve as the building blocks for assembling
new structure. Although all hydrogen atoms are feasible for
attaching fragments, only a few of them are potential connection
site without steric hindrance. Taking Figure 3A for example,
hydrogen atoms of benzene face to the vacant region of
binding site are colored in blue, which indicate the potential
growing sites, and the others near to the receptor atoms will
be ignored. Meanwhile, all the hydrogen atoms of building
blocks will be considered as potential connection site by default.
Users can also assign or block certain “growing sites” on
seed structures and building blocks to customize the style of
molecule. As the seed structure and building block library has
been prepared, LigBuilder will randomly choose a fragment
from the building block library (the dashed box in Figure 3A),
and then randomly choose a potential growing site on the
seed structure and the chosen building block, respectively (red
hydrogen atoms in Figure 3B). The building block will be
attached to the seed structure along the direction of selected
hydrogen atoms (red hydrogen in Figure 3B). With uniformly 3
degree-step sampling of the torsion angle along the newly formed
bond (red bond in Figure 3C), several favorable conformations
with local minimal energies will be reserved as candidates
in consideration of the flexibility of molecule. GA is applied
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FIGURE 4 | The sketch map of growing process. The multi-target growing operation could be considered as multiple synchronous single-target growing operation.

The fragments grown in each step are colored in red (Only one conformation group of each generation are showed here as representatives of the compound pool).

to select elites from these candidates, and these elites will
serve as the seed structures for the next growing cycle. This
repeated process for each ligand continues until: (1) the ligand
is fully designed and there is no available space for adding
any new chemical group; (2) the ligand reaches the limitation
of molecular weight, which is 480 Da by default; (3) the GA
generation number reaches a maximal number, which is 15
by default.

Different from single-target design, the lead structure for
multi-target design should be prepared as “seed” conformation
group, which is composed by the binding conformation of the
lead structure to each target. With a simultaneous operation
of growing chemically identical building block on the same
site of each member in the conformation group, compounds
generated by LigBuilder V3 are expected to be capable of
binding to multiple targets. As depicted in Figure 4, multi-
target growing could be considered as multiple synchronous
single-target growing operation. The identical building block and
the same growing site in the growing operation will maintain
the consistency of 2D structures of the conformation group.
Meanwhile, the 3D conformation of ligand is only restrained
by its corresponding targets, that is, the conformation in each
conformation group is optimized and evaluated independently.
Therefore, this strategy could utilize the flexibility of ligand

to improve the capability of multi-target binding. Genetic
Algorithm (GA) is also applied to manipulate the growing cycle
in the same manner as single target growing.

Ensemble Linking
Although assembling several bioactive fragments to generate
potent ligand is very promising, the computational method of
linking proximal fragments covalently is fraught with challenges.
To avoid affecting respective bioactivity, the orientation and
position of fragments should be changeless. Therefore, the
feasibility of linking is severely limited by the rigid restriction of
bond length and bond angle inmolecule. Besides, the unfavorable
energy of torsion may further reduce the feasibility. Although
there may be some solutions existed in huge chemical space, the
low efficiency in finding these solutions narrows the application
of fragments linking. As a result, there are few successful cases of
fragments linking, except using flexible chain as linker. However,
although flexible chain could be used to relax the rigid restriction
of linking, it may increase the amount of accessible conformation
of the structure which brings in unfavorable entropy change
during binding process, thus the linked fragments usually do not
bind as the same degree as the sum of the individual fragments.
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FIGURE 5 | The sketch map of linking and ensemble linking process. The red arrow indicates the growing operation while blue arrow indicates the linking operation. In

accordance with the color of arrows, atoms, and bonds formed in growing and linking operation are colored in red and blue, respectively. For previous linking

algorithm, the aggregation of certain fragments is regarded as a whole “seed,” so the linking process will be constrained by every fragment in the aggregation. Instead,

ensemble linking algorithm applies a more flexible linking strategy, which attempts to derive new structures from each of seed fragments independently and then find

possible way of linking among these structures. The different populations indicated different independent GA threads.

Moreover, the excessive flexibility of structure may reduce the
specificity of ligand.

The ensemble linking algorithm is developed in LigBuilder V3
to improve the efficiency of fragments linking process, which is
expected to make this method more practical. To demonstrate
the details of the new algorithm, the sketch map of the linking
algorithm used in previous versions of LigBuilder series and
ensemble linking algorithm used in LigBuilder V3 are compared
in Figure 5. Previous linking algorithm applies a direct strategy
of linking, which aims to linking certain fragments with many
building blocks. Instead, ensemble linking algorithm applies a
more flexible linking strategy, which attempts to derive new
structures from each of seed fragments independently and then
find possible way of linking among these structures. Although
both algorithms are capable of generating the same final structure
in Figure 5, ensemble linking strategy is expected to be more
efficient. For the general linking algorithm, it is straightforwardly
requiring that all the given fragments should be linked, which is
usually hard especially for multi-target linking. To overcome this
problem, ensemble linking algorithm is based on extra linking
fragments, and automatically find the apportioned combination
of fragments, which would improve the possibility of finding
solution for linking fragments. To be specific, for general
linking algorithm, the number of fragments used for linking

is limited, for example, user poses 3 fragments into the ligand
binding site, and the linking algorithm attempts to find suitable
linkers to connect all these 3 specific fragments. For ensemble
linking, user could pose several thousands of fragments into
the ligand binding site, and the ensemble linking algorithm
attempts to find suitable linkers to connect any 3 fragments
among all available fragments. Obviously, the ensemble linking
algorithm will significantly increase the possibility of finding
suitable solution for linking 3 fragments comparing with general
linking algorithm. Besides, with dissociation of combined seed
fragments in linking algorithm, the whole linking process
would be more robust, it would not be dragged by improper
derivation or conformation of individual fragment. Moreover,
it raises the possibility of comprehensive utilization of more
bioactive fragments without exhaustive combination. As a result,
LigBuilder V3 could be applied to find possible solutions of
linking among hundreds of fragments, which further improves
the success rate of linking.

The ensemble linking algorithm will generate many derivative
candidates based on the linking fragments to enhance the
possibility for finding solution, obviously, although the possibility
of linking increases with the number of candidates, the
computation cost also will increase by the same rate. So it
is important to generate candidates more effective rather than
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FIGURE 6 | The flow chart of linking process in LigBuilder V3. The structures of initial compound pool are randomly selected from the seed pool in the initialization

stage. Then LigBuilder V3 perform the growing and linking operation on each compound pool for producing new generation of compound pools. The growing

operation brings in derivation on molecules in previous compound pool and result in a “Growing pool,” which is colored in red. Then the linking operation will be

performed for finding possible way of linking between these newly formed structures and previous existed structures. The “previous existed structures” in each

generation is denoted with the dashed box. As similar with growing operation, the linking results will be collected into a “Linking pool” which is colored in blue. At last,

the “Growing pool” and “Linking pool” will be merged into a new generation of compound pool.

increase the number of candidates to improve the efficiency.
As all candidates in the GA population have similar molecular
weight because they are generated by GA evolution with same
number of generations, the linking possibility will reach the peak
when candidates in the population occupy about half of the
binding site. But it rapidly falls when candidates in the population
are too large to be integrated in limited space of binding site. In
addition, the linking possibility is also low when the candidates
in the population are too small which may make them far away
from each other for linking. So we applied a stagger strategy
that operating several independent GA threads simultaneously,
meanwhile, the starting of each GA threads are staggered so
as to make them be in various generation of GA process. That
is, ensemble linking algorithm will not only perform “intra-
linking” among candidates in a GA process, but also perform
“inter-linking” among candidates in different GA threads. With
this strategy, the high diversity of molecular weight distribution
among all candidates could bring in higher linking possibility
and efficiency.

As depicted in Figure 6, each generation of ensemble linking
can be decomposed into two steps, i.e., the growing step and the
linking step. LigBuilder V3 performs the growing operation on

all compounds from each compound pool in the growing step,
and then finds possible way of linking between the newly formed
compounds and all previous existed compounds including seed
pool (dashed box in Figure 6) in the linking step. Although
compounds generated in both steps will be collected together into
new generation of compound pools, the compounds generated
in the linking step (linking pools in Figure 6) will have a
certain level of priority in GA process, which make the ensemble
linking algorithm trends to link fragments rather than grow
for derivation. To be specific, the compounds generated in the
linking step indicates a “linking” operation is occurred, on the
contrary, compounds generated in the growing step do not link
with other fragments in this step. So LigBuilder will elevate the
fitness score of compounds from linking step, which encourage
the linking behavior. The structures of initial compound pool are
randomly selected from the seed pool. After the initialization,
LigBuilder V3 will repeat the ensemble linking process for each
ligand until: 1) the ligand is fully designed and there is no
available space for any new chemical group; 2) the ligand reaches
the limitation of molecular weight, which is 480 Da by default; 3)
the GA generation number reaches a maximal number, which is
15 by default.
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FIGURE 7 | The multi-target ensemble linking operation could be considered as multiple synchronous single-target ensemble linking operation. The red arrow

indicates the growing operation while blue arrow indicates the linking operation. In accordance with the color of arrows, atoms, and bonds formed in growing and

linking operation are colored in red and blue, respectively.

Multi-Target Linking
A further challenge lies in designing multi-target ligand is linking
fragments that interacting with multiple targets. Although
many successes occurred in designing single target ligand by
fragments linking strategy, few research focus on multi-target
linking method. Comparing with lead compound, potential
active fragments are much easier to pick by fragment-based
approach, such as NMR, DSF, X-ray crystallography, surface
plasmon resonance and mass spectrometry (Mashalidis et al.,
2013). In addition, computational methods such as fragment
docking (Wang et al., 2015) or CrystalDock (Durrant et al., 2011)
are also effective ways to identify lead-fragments.Moreover, small
fragments are much more likely to interact with multiple targets
due to its lower specificity. Therefore, it is feasible and promising
to design multi-target ligand by integrating several fragments.
So we try to improve our ensemble linking algorithm to handle
multi-target fragments linking in LigBuilder V3.

As with the multi-target growing algorithm, the fragments
for multi-target linking should also be prepared as “seed”
conformation group. Because the ensemble linking algorithm
in LigBuilder V3 handle the fragments independently, users no
longer have to predetermine which fragments will be linked
together in the stage of seed preparation. That is, the procedure
of conformation group preparation for linking is same as that
for growing. The only difference is that at least 2 conformation
groups should be prepared for linking and at least 1 for growing.

Multi-target linking algorithm is based-on the ensemble
linking algorithm described in above section, therefore both the
growing step and linking step which make up the ensemble
linking algorithm will be extended to multiple targets. The

growing step of multi-target ensemble linking is exactly the same
with multi-target growing, while the linking step applies the
same strategy of “multi-target operation” used in multi-target
growing. As described above, multi-target growing operation is a
simultaneously operation of growing chemical identical building
block on the same site of each member in the conformation
group. In a similar way, multi-target linking operation in
linking step is a simultaneously pairwise operation of linking
corresponding members from two conformation groups on the
same linking sites (Figure 7). That is, the first member of
conformation group A will be linked with the first member
of conformation group B. Then the second member of both
conformation group will be linked together on the same linking
sites of the first member. This pairwise process will be repeated
until all members have been linked or any failure occurs due to
steric hindrance or molecular tension. As a result, these linked
structures are expected to be capable of binding to multiple
receptor, while they share identical chemical structures.

Multi-Target de novo Design
LigBuilder V3 inherits the “Chemical Space Exploring
Algorithm” (CSEA) from LigBuilder V2 to create novel
scaffolds and structures. In LigBuilder V2, CSEA works in the
following way: (1) an sp3 carbon with 4 hydrogen atoms will be
randomly posed in the binding site and serve as the starting point
of constructing newmolecules with growing operation; (2) newly
designed molecules will be split into fragments; (3) fragments
with high predicted binding affinity, that is, high contribution
fragments will be selected for updating the “seed structure pool,”
which is used to supply seeds for subsequent design cycles;
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FIGURE 8 | Schema of Chemical Space Exploring Algorithm (CSEA). A randomly positioned sp3 carbon will be taken as starting point of growing operation for

generating the initial compound pool. Then fragments extracted from compound pool will be used to construct a seed structure pool, which contains seed structures

that more favorable than the initial sp3 carbon. As new compound pools could be generated based-on structures in seed structure pool, while fragments extracted

from these newly formed compounds will be used to update the seed structure pool, LigBuilder V3 avoids the dependency of initial structure and be promising in

exploring larger chemical space.

(4) a structure from “seed structure pool” is randomly select as
the starting point of constructing new molecules with growing
operation, then the 2–4 steps will be repeated. For LigBuilder V3,
CSEA is extended to multi-target design purpose by applying
multi-target growing operation instead of single-target growing
operation. Meanwhile, the fragment extraction process of single
conformation will also be replaced by fragment extraction of
“conformation group” (Figure 8). With the self-circulation
seed generating feature, CSEA can help to avoid the limitations
associated with pre-assigned seed structures and explore a
broader chemical space, thus greatly improving the novelty and
efficiency of design.

As the seed structure pool is used to collect and provide initial
fragments of design process, the quality of seed structure pool
may significantly affect the design results. Since CSEA could
provide a mass of potential seed fragments during the design
process, the seed structure pool will be updated to achieve higher
binding affinity while maintain diversity of seeds. Then the CSEA
will have a higher starting point for generating potent structures,
which in turn produce better seed fragments for updating the
seed structure pool. Therefore, the seed structure pool will
keep evolving during the whole design process, which iteratively
optimize the performance of design.

Seed Structure Extraction
The most direct way of extracting component fragments from
chemical structure is splitting the molecule by iterating over all
single bonds. However, the traversal extraction method would
take a lot of computing timewhen handlemillions of compounds,

which is a common order of magnitude in CESA process of
LigBuilder V3. Therefore, we develop a simplified extraction
algorithm for acceleration. To balance the representativeness of
fragments and extraction speed, we only focus on the molecular
scaffold and key interaction group, which are major determinants
of molecular conformation and protein-ligand interaction. As
a result, only five categories of fragments are considered in
CESA: (1) Single atoms; (2) rigid scaffold (rigid chain and
rigid ring system); (3) flexible scaffold (flexible ring system);
(4) interaction group (e.g., carboxyl group); (5) scaffold with
connected interaction group. If a fragment could be classified
into more than one category, it will be put into the category
with smallest category number. With this algorithm, LigBuilder
V3 is also capable of extracting fragments from known ligands
as seed structures, which is convenient for fragments linking or
lead optimization.

For multi-target design, as the seed structure is composed of
multiple conformations (conformation group) instead of single
conformation, seed structures extracted from known ligands of
each targets should be paired to construct conformation groups
first. LigBuilder V3 extracts fragments from all known ligands in
the same way of extracting fragments in single-target design, and
then hydrogen mapping algorithm will be implemented among
these fragments to find all possible combinations. That is, if a
fragment is present in ligand of every targets, it is a common
fragment and LigBuilder will mapping this fragment to construct
multi-target fragments group as seed structures. However, if this
fragment is absent in ligands for any one of the targets, it is not
common fragment and the fragment will be discarded.
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Multi-Target Ligand Efficiency
Ligand efficiency (LE) is frequently used to prioritize hits from
HTS, and it can be regarded as a guide for selecting efficient
fragments for further optimization. It is much more important
for multi-target design because the ligand efficiency is also the
index of “integration degree,” which is a more critical index for
multi-target drugs. There are various definitions of LE but most
widely used approximation is described as the average free energy
of binding per heavy atom or average pIC50 per heavy atom,
which are demonstrated as follows (Hopkins et al., 2004):

LE =

−1G

HAC
or

LE =

− log(IC50)

HAC
(HAC is heavy atom count)

For multi-target ligand, multi-target ligand efficiency (MLE)
could be derived with a similar form of LE. As the multi-
target ligand causes multiple binding free energy, MLE could be
described as the summation of average free energy of binding
per heavy atom or summation of average pIC50 per heavy atom,
which are demonstrated as follows:

MLEN =

∑

−1Gn

HAC
or

MLEN =

∑

− log
(

IC50n

)

HAC
(N is the number of target)

The ligand efficiency is not comparable if the target number
is different, so we use the subscript for MLE to indicate the
condition of rational comparison and make it distinct from LE of
single-target ligands. We should note that the MLE is insufficient
for the performance evaluation of multi-target ligand, because
the uneven activity of targeting individual binding site may be
obscured by summation. However, it is much complicated to
evaluate the efficiency of multi-target ligand, because it depends
on the specific biological network that it is involved in. So the
MLE would be only considered as an index of average efficiency
for selecting potential multi-target lead structures.

Other Functional Modules
The other functional modules implemented in LigBuilder V3 are
directly inherited from LigBuilder V2, including: (1) drug-like
and privileged building blocks; (2) Toxic fragments; (3) Drug-
like rules (for example, Lipinski rule); (4) Ligand-binding site
detection module; (5) Synthesis analysis modules; (6) Scoring
function; (7) LogP module; (8) GA fitness function (composed
of scoring function, MLE, toxic fragments filter, and drug-like
rules). It should be noted that the binding affinity predicted
by scoring function for multi-target ligand is calculated by its
average of binding affinity predicted for each target.

Design HIV-PR/HIV-RT Dual-Functional
Inhibitor
Structural Preparation
The crystal structures of PR and RT used in this study are
downloaded from the RCSB Protein Data Bank (Berman et al.,
2003) (PDB code: 3A2O, Hidaka et al., 2009, and 4G1Q, Kuroda

et al., 2013, respectively), and both structures are complexes
with potent inhibitors solved at high resolution (0.88 and 1.51
Å, respectively). The inhibitor binding sites of PR and RT were
defined by binding site detection program Cavity (Yuan et al.,
2013; Zhang et al., 2015; Xu et al., 2018), which provides the
detailed definition for boundary of “design space.” The drug-like
and privileged building blocks used in this study were inherited
from LigBuilder V2. Then three different design strategies were
used to design dual-function inhibitors for PR and RT.

De novo Design Approach
LigBuilder V3 inherited the seed generation and optimization
algorithm from LigBuilder V2, that is, LigBuilder V3 could
iteratively extract seed structures from designed compounds and
use the extract seed structures for design new compounds. The
GA parameters were set as follows: GA population size of 1,000,
GA parent ratio of 10%, GA generation number of 12. Total 1
million candidate dual-functional compounds were generated by
LigBuilder V3 with de novo design mode.

Growing Approach
Growing approach is for optimization of prepared seed
structures.We collected all protein-ligand binding complex of PR
or RT from the RCSB Protein Data Bank (Berman et al., 2003),
including 323 PR-ligand complexes and 141 RT-ligand complexes
(Listed in Table S1). All the PR-ligand complexes were aligned to
the PR structure complexed with KNI-1689 (PDB code: 3A2O,
Hidaka et al., 2009), and all the RT-ligand complexes were aligned
to the RT structure complexed with Rilpivirine (PDB code:
4G1Q, Kuroda et al., 2013) using Pymol (Schrodinger, 2010),
which could ensure that all ligands in the complexes are also
aligned according to the receptor alignment. With the fragment-
extraction function of LigBuilder V3, fragments with no more
than 20 heavy atoms were extract from these known PR or
RT ligands. As the ligand efficiency is important for the seed
structure, fragments with SLE index <0.1 were removed, and
a total of 2,386 fragments for PR and 1,442 fragments for RT
were obtained at this stage. Then fragments for PR and RT with
the same 2D structure were paired with “hydrogen mapping”
algorithmmentioned above, and a total of 3,506 paired fragments
were prepared. The GA parameters were set as follows: GA
population size of 1,000, GA parent ratio of 10%, GA generation
number of 12. Total 100K candidate dual-functional compounds
were generated by LigBuilder V3 with growing design mode
based on the prepared fragments. As the binding affinity is
usually related to the size of molecule, large seed fragments
are more competitive than small fragments especially for the
genetic algorithm used in LigBuilder. So, each fragment was
independently used as the seed structure with multiple runs of
LigBuilder to avoid bias to large seed fragments.

Linking Approach
Linking approach is for integrating key fragments into new
compounds. The paired fragments used in this approach were
prepared in the same way of growing approach. However, all
paired fragments were used together in linking approach to
maximize the possibility of finding ways for linking fragments.
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It would be intuitive that the more fragments provided, the better
performance would be expected. The GA parameters were set as
follows: GA population size of 10,000, GA parent ratio of 10%,
ensemble population number of 10, GA generation number of 12.
Total 10K candidate dual-functional compounds were generated
by LigBuilder V3 with linking design mode based on the 3,506
prepared fragments.

Post-processing
As multi-target ligand should bind to different proteins with the
same chemical structure, ideally, each moiety of the ligand could

contribute to its binding to all targets, so ligand efficiency would
be important in evaluating a multi-target ligand. In this study,
predicted pKd of all the output compounds are larger than 5.0, so
only MSLE index were used to rank and select top 1,000 results
with best ligand efficiency from multi-target design procedure
for the three approaches. Because LigBuilder V3 only uses a fast
empirical scoring function for estimating protein ligand binding
affinity, in order to improve the accuracy of calculation, the
total 3,000 selected compounds were further subjected to energy
minimization and 100 ps short time molecular dynamic (MD)
simulation by using the Amber package (Case et al., 2012) for

TABLE 1 | Binding free energy predicted by MM/GBSA method.

De novo design Growing approach Linking approach HIV-PR potent

inhibitorb
HIV-PR weak

inhibitorc
HIV-RT potent

inhibitord
HIV-RT weak

inhibitore

Top 10a Top 1 Top 10 Top 1 Top 10 Top 1

PR −28.2 −35 −28.4 −32 −34.9 −35.0 −68.2 −21.9 – –

RT −33.6 −34.9 −34.5 −40.3 −38.0 −38.8 – – −41.5 −22.6

Ave. −30.9 −35.0 −31.5 −36.2 –36.5 –36.9 – – – –

Energy unit is kcal/mol.
aTop 10 indicates the average of best 10 compounds; bFDA approved drug Darunavir with IC50 of 0.15 nM (Shen et al., 2013). Complex structure was from PDB code 4LL3 (KoŽíšek

et al., 2014). cPR weak inhibitor with IC50 of 2.3µM (Jhoti et al., 1994). Complex structure was from PDB code 1HTE (Jhoti et al., 1994). dFDA approved drug Efavirenz with IC50 of

41 nM (King et al., 2002). Complex structure was from PDB code 1FK9 (Ren et al., 2000). eRT weak inhibitor with IC50 of 1.2µM (Chan et al., 2017). Complex structure was from PDB

code 5VQS (Chan et al., 2017). Bold values indicate the best average energy among results from three approaches.

FIGURE 9 | (A) Binding mode of FDA approved PR inhibitor Darunavir. The dimerized PR is showed in green and cyan cartoon style, and the Darunavir is showed in

golden stick style (figure generated by Pymol, Schrodinger, 2010). (B) The 2D interaction figure for Darunavir binding with PR (figure generated by PoseView, Stierand

and Rarey, 2010). (C) Binding mode of FDA approved RT inhibitor Efavirenz. (D) The 2D interaction figure for Efavirenz binding with RT.
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estimating the binding affinity with MM/GBSA method (Rastelli
et al., 2010).

Application of LigBuiler V3 in Multi-Target
Ligand Design
The concept prototype for growingmode algorithm of LigBuilder
V3 has been experimental validated by designing COX2/LTA4H
dual-functional inhibitor, which resulted in a single ligand that
binding to COX2 and LTA4H with IC50 of 7.1 and 7.0µM,
respectively (Shang et al., 2014). Although this work is based
on a developing version of LigBuilder V3, and many manual
interventions were involved due to immature of the algorithm,
the success of this case suggests the feasibility of using LigBuilder
V3 to design multi-target ligand. Moreover, LigBuilder V3 were
further developed based on the knowledge learned from this case.
Besides the improvement of multi-target growing algorithm,
both multi-target de novo design approach and multi-target
linking approach are realized in this version of LigBuilder V3.
In this study, we have tested the LigBuilder V3 by designing
dual-functional inhibitor targeting two well-characterized virus
enzymes, HIV protease (PR) and HIV reverse transcriptase
(RT) with all three design modes. As both PR and RT are
important drug targets of clinical antiretroviral therapy, the
multi-target strategy such as combination of nucleoside reverse
transcriptase inhibitors (NRTI) and protease inhibitor (PI)
shows significant advantage over each single component and
has been broadly used for HIV treatment (Lu et al., 2018).

Consequently, researchers have been interesting in developing
cocktail drug combinations, and pursue multi-target anti-HIV
inhibitors for improving patient compliance. Matsumoto et al.
have reported the strategy of linking PR and RT inhibitor
by spontaneously cleavable linker (Matsumoto et al., 2000).
Furthermore, scaffold merging strategy is successfully applied in
designing multi-target anti-HIV inhibitors in recent years (Song
et al., 2015; Sun et al., 2016). However, both the dependency of
known inhibitors and specific requirement ofmolecular structure
limit the practical applications of structure merging strategy.
Therefore, we present a more universal solution of multi-
target design with the example of designing dual-functional
inhibitors for PR and RT by LigBuilder V3. The detailed
methods and parameters are described in the Method and
Algorithm section.

The top 1,000 compounds from each design modes were
selected and subjected to 100 ps short time molecular dynamic
simulation, then the binding affinity of each compounds were

estimated by MM/GBSA method. The average binding affinity
of the top 10 compounds and top 1 compound for each design

modes were collected in Table 1. Although the designed multi-
target compounds could not compare with the super potent PR
and RT inhibitors with sub-nanomolar level activity, the designed
compounds are predicted to be more potent than micromolar
level inhibitor of both PR and RT, that is, these compounds
are expected to be dual-functional inhibitor for PR and RT at
sub-micromolar level activity for both targets.

FIGURE 10 | Binding mode of the best compound from de novo design approach. (A) Binding mode with PR. (B) 2D interaction with PR. (C) Binding mode with RT.

(D) 2D interaction with RT.
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The binding mode of FDA approved PR inhibitor and RT
inhibitor are depicted in Figure 9. Obviously, they adopt very
distinct protein-ligand interaction modes. The best compound
from de novo design approach is depicted in Figure 10. This
compound forms distinct interaction comparing with known
PR or RT inhibitors. It is highly compact and fully utilized
its polar groups and hydrophobic groups to form interaction
with PR and RT in different manner. The best compound
from fragments growing approach is depicted in Figure 11. This
compound is growing from a benzene ring which is one of
the most common fragments in PR and RT inhibitors. The
best compound from fragments linking approach is depicted
in Figure 12. This compound is much bigger than compounds
from de novo approach and growing approach, which indicates
its relatively lower ligand efficiency. As linking approach is
intensively pursing possible ways for linking provided fragments,
the success of linking is more important than ligand efficiency,

so the algorithm is preferable to allow generating derivates with
much lower ligand efficiency which may enhance the possibility
of linking. Overall, all of these compounds are relatively small,
and groups in these compounds usually contribute to the binding
with different protein in different manner, which is the most need
feature for designing highly compact multi-target ligand.

Essentially, the design process of LigBuilder is a kind of
“random evolution” process implemented by genetic algorithm.
So the quality of design result is expected to be improved along
with the total computational time. As the output result could be
unlimited, it is not realistic to achieve the maximal quality. For
a fair comparison among the results from three strategies, we
used different output number to ensure they consumed roughly
similar computational time. So we designed 1 million, 100K, and
10K compounds for de novo approach, growing approach, and
linking approach, respectively, which is roughly corresponding
to the compound generating efficiency of three approaches in

FIGURE 11 | Binding mode of the best compound from growing approach. (A) Binding mode with PR. (B) 2D interaction with PR. (C) Binding mode with RT. (D) 2D

interaction with RT. (E) Source of fragments in PR inhibitor and RT inhibitor for growing are colored in red.
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FIGURE 12 | Binding mode of the best compound from linking approach. (A) Binding mode with PR. (B) 2D interaction with PR. (C) Binding mode with RT. (D) 2D

interaction with RT. (E) Source of fragments in PR inhibitor and RT inhibitor for linking are colored in red.

this project. Base on the data in Table 1, linking approach is
most effective way of design high affinity ligands, and growing

approach is also more effective than de novo approach. This is
not surprising because known fragments would provide good

starting points for derivation and significantly reduce searching
space. The linking approach uses more known fragments which
further improve its efficiency comparing with growing approach
using only 1 fragment. However, the results from de novo
approach demonstrated that this approach could achieve similar
design performance to growing approach or linking approach
if more computational resource is provided. As the de novo
approach does not reply on known fragments, it would be very
useful for design ligands for new targets or discover novel ligands
for known targets. On the other hand, growing approach and

linking approach also have their unique advantages comparing
with de novo approach. Since compounds designed by growing or
linking approach contain “validated active fragments,” it would
reduce the risk of “false positive,” which is very common in
computer-aided drug discovery. So the three strategies could be
complementary in practical drug discovery projects.

CONCLUSION

In this paper, we present the first de novo multi-target drug
design program LigBuilder V3. In addition, building ligands
from scratch, LigBuilder V3 also provides the feasibility of multi-
target lead optimization and multi-target fragments linking. This
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program is generally applicable in rational and elegant multi-
target drug design and optimization, especially for the design
of concise ligands for proteins targets with large difference in
binding sites. The developing version of LigBuilder V3 was
successfully applied in designing COX2/LTA4H dual-functional
inhibitors withmicromolar level activity. In this study, we further
demonstrated the three design strategies of LigBuilder V3 with
computational evaluation of designing HIV-PR andHIV-RT dual
functional inhibitors. We hope the concept and LigBuilder V3
can be validated by applications from the users in the future.
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The design of multitarget drugs is an essential area of research in Medicinal Chemistry

since they have been proposed as potential therapeutics for the management of

complex diseases. However, defining a multitarget drug is not an easy task. In this

work, we propose a vector analysis for measuring and defining “multitargeticity.” We

developed terms, such as order and force of a ligand, to finally reach two parameters:

multitarget indexes 1 and 2. The combination of these two indexes allows discrimination

of multitarget drugs. Several training sets were constructed to test the usefulness of the

indexes: an experimental training set, with real affinities, a docking training set, within

theoretical values, and an extensive database training set. The indexes proved to be

useful, as they were used independently in silico and experimental data, identifying actual

multitarget compounds and even selective ligands in most of the training sets. We then

applied these indexes to evaluate a virtual library of potential ligands for targets related

to multiple sclerosis, identifying 10 compounds that are likely leads for the development

of multitarget drugs based on their in silico behavior. With this work, a new milestone is

made in the way of defining multitargeticity and in drug design.

Keywords: multitarget drugs, drug discovery, drug-design, multitarget index, multiple sclerosis,

polypharmacology

INTRODUCTION

In the field of polypharmacology, combinatorial therapies and multitarget drugs are the main
alternatives for dealing with complex diseases. The first one consists of a combination of multiple
single-targeted drugs. On the other hand, multitarget drugs are molecules with the ability to act
on different targets at the same time. Designing multitarget drugs is a problematic task; however,
it solves several concerns that are seen in combinatorial therapies, such as complex therapeutic
regimens, difficulty in including numerous drugs in a single formulation and drug interactions
at the different pharmacokinetics levels: absorption, distribution, metabolism, and elimination
(Rosini, 2014). In the last two decades, the number of multitarget drugs on the market has been
rising. From 2015 to 2017, 21% of the drugs approved by the Food and Drug Administration
(FDA) were multitarget drugs (MTD), primarily antineoplastic agents (Ramsay et al., 2018). This
trend may indicate that the number of multitarget drugs will continue to rise since they present
advantages over single-target drugs. For example, MTDs have higher in vivo efficacy, and several
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in silico methods and strategies for designing them are currently
being developed (Zhang et al., 2017). A common strategy is to
combine two pharmacophores in the same molecule or partially
overlap them, allowing binding to two or more targets (Talevi,
2015).

Binding to two or more targets at the same time offers the
possibility of treating multifactorial diseases. Neurodegenerative
diseases are a potential field for multitarget drugs. For
example, ladostigil is a dual cholinesterase–monoamine oxidase-
B (MAO-B) inhibitor currently being researched for the
treatment of Alzheimer’s disease and other neurodegenerative
diseases (van der Schyf, 2011). Cancer is another relatively
emergent field for multitarget drugs, mainly as more druggable
targets are being discovered. The use of multitarget drugs
is promising as it lowers the possibility of the disease to
evolve into a drug-resistant phenotype (Xie and Bourne,
2015). Currently, several anti-cancer drugs are considered
multitarget drugs since they inhibit two or more kinases or
receptors (Lu et al., 2012). Another example is in the field
of microbiology, in which dual ligands can be used to treat
tuberculosis. This dual mechanism of action is useful in treating
multidrug-resistant Mycobacterium tuberculosis (Chiarelli et al.,
2018).

One of the limitations that multitarget drug design faces is
data analysis. In some cases, the number of targets or compounds
being analyzed can be high. In PubChem, 71,303 molecules have
been identified as ligands that have two ormore biological targets,
and more than 30,000 ligands were found to be active against
more than 400 targets (Hu et al., 2014). Quantifying and defining
“multitargeticity” may be useful for analyzing these datasets.
Additionally, multitarget metrics could help multitarget drug
design by providing comparable and workable parameters for
drugs and ligands.

To the best of our knowledge, there is no current
measurement of “multitargeticity,” i.e., how multitargeted a
ligand is. Construction of a multitarget parameter should not
be based only on the simple average of the in silico or
experimental data; for example, highly selective ligands to a
single target would appear as multitarget drugs, since the average
is a measure sensitive to extreme values. With this in mind,
our research group suggested the use of a virtual multitarget
parameter, which consisted of a weighted average of the docking
scores of potential biopesticides (Loza-Mejía et al., 2018). This
analysis proved useful for comparing a ligand’s “multitargeticity.”
However, a more rigid index may help even further in multitarget
drug design.

Originally, this project started with the purpose of designing
dual ligands. We designed 211 ligands, and we wanted a
parameter that could summarize or identify the ligands that
had the most potency toward the two targets (the nature of
the ligands and the targets will be explained later). To analyze
the data, we plotted the docking score of the ligands of one
target against the docking score of the second one. In this
plot (Figure 1), a ligand can be described by the coordinates
or docking scores of both targets. Since they are coordinates,
the ligand describes an arrow or vector, starting from the
origin. The angle described by the vector is the selectivity; in

fact, the formula of the tangent is the formula for selectivity
(Equation 1).

tan α =

Target #2 ligand′s affinity

Target #1 ligand′s affinity
(1)

Moreover, the magnitude of the vector is likely related to how
potent the ligand is. Greater affinities reflect greater magnitudes.
With the graph (Figure 1), there is a sense of what a multitarget
drug would be: one that equally distributes its magnitude
among the two targets. In other words, a ligand that had the
same affinity for both targets. Measuring the multitargeticity
of a dual ligand can be as simple as obtaining the tangent
of the angle (Equation 1). If the tangent equals 1 (α =

45◦), then mathematically, the ligand attacks both targets with
the same “strength.” However, this interpretation was meant
for more targets. In these scenarios, a single parameter for
defining multitargeticity would not suffice because more angles
are involved.

A radial plot was considered to extend the analysis to further
dimensions (Figure 1). The central idea was kept: a multitarget
ligand would equally distribute its strength among all the targets.
In the radial representation, a multitarget drug would appear
as a regular polygon, and the area could be considered the
magnitude or strength of the ligand. Multitargeticity could be
defined by the similarity between the figure described by the
ligand and a regular polygon. We calculated some parameters
that could be used to describe this relationship and therefore
give a quantitative definition of multitargeticity. However, the
area and shape are sensible to the order in which the targets
are analyzed. A different order would give a completely different
value, as shown in Figure 1.

The solution was to treat ligands as vectors and extend the
analysis to further dimensions, even if it cannot be visualized.
With two targets, an ideal multitarget drug is a vector that
makes a perfect square in a 2D plane. In 3 dimensions, a cube
would be the shape of an ideal multitarget ligand. Therefore,
a hypercube is the central analysis of this interpretation. In
contrast, a different distribution of affinities would produce
the shape of a rectangle, rectangular cuboid, or hyperrectangle,
depending on the number of targets analyzed. Measuring the
similarity between the hyperrectangle and a hypercube is, in
fact, a measure of multitargeticity, which is only a mathematical
definition of how much a ligand equally distributes its strength
among all the targets. With this analysis, another step was made
toward defining and measuring multitargeticity.

One of the several complex diseases that can be treated with
a multitarget drug approach is multiple sclerosis (MS). MS is a
disease that affects the central nervous system. Currently, MS is
the neurological disease with the highest incidence; in 2013,∼2.3
million people were estimated to have MS (Browne et al., 2014).
The pathophysiology of the disease is based on the demyelination
of axons, primarily due to the loss of oligodendrocytes, cells
responsible for maintaining the myelin sheaths around them
(Dobson and Giovannoni, 2019). Although the exact origin of
MS is not known, it is well-established that it causes damage to
the myelin sheath. Depending on the type of MS and the damage
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FIGURE 1 | Plotting the ligands’ affinities in a dispersion plot describe vectors in a 2D space. For further targets, in a radial plot, an ideal multitarget would describe a

regular polygon. Measuring the area of these polygons is influenced by the order in which the targets are plotted. A hypercube is not affected by ordering and

therefore makes an ideal representation of what a multitarget ligand would be.

present, the slow transmission of electronic impulses may lead
to axon loss, consequently damaging the optic nerve and leading
to degeneration of vision, weakness, atrophy, and muscular
rigidity, coordination and balance failures, recurrent fatigue,
dysphagia, depression, and anxiety, among other symptoms
(Huang et al., 2017). PAR-1 and KLK-6 are two molecules
of biological interest as possible targets for MS treatment
due to their role in oligodendrogliopathy and autoimmune
response (Burda et al., 2013). PAR-1 is a protease-activated
receptor involved in coagulation, angiogenesis, proinflammatory
responses, oligodendrocyte death, and myelination (Macfarlane
et al., 2001; Yoon et al., 2015; Pan et al., 2016; Lee et al., 2017).
Antagonists of PAR-1 have been shown to reduce the symptoms
of experimental autoimmune encephalomyelitis (EAE), which
is the most studied animal model for MS (Kim et al., 2015).
Kallikrein 6 (KLK-6) is the most abundant serine protease in
the central nervous system (CNS) and has proteolytic activity
against myelin basic protein (MBP) and amyloid precursor
protein, which are part of the myelin sheath and are involved
in myelination (Burda et al., 2013; Yoon and Scarisbrick, 2016).
KLK-6 is also involved in T-cell survival and apoptotic signalizing
(Scarisbrick et al., 2011).

Additionally, recently, a new drug for secondary progressive
MSwas approved by the FDA: siponimod, which is sold under the
trade nameMayzent R©. Siponimod is a dual drug itself: it binds to

sphingosine-1-phosphate receptor 1 and 5 (S1PR1 and S1PR5)
(O’Sullivan et al., 2016). Siponimod reduces oligodendrocyte
death and demyelination, acting as an effective neuroprotective
agent (Behrangi et al., 2019). S1PR1 is involved in regulating
the inflammatory response and therefore is of interest as a third
biological target (Chi and Nicol, 2010).

In this work, we present the construction of multitarget
indexes as parameters that can define multitargeticity, their
evaluation on several datasets, and their use in identifying
potential multitarget ligands for PAR-1, KLK-6, and S1PR1.

MATERIALS AND METHODS

Construction of an Experimental Training
Set: Multi-Kinase Ligands
We selected 10 known FDA-approved drugs labeled multikinase-
directed drugs as models of multitarget drugs (Li et al., 2016).
Additionally, two non-multikinase drugs were included as
negative controls. The binding affinity (defined in terms of Ki)
of each drug to its target was searched in the Binding DB (Gilson
et al., 2016). The targets of each ligand were selected according
to the FDA approved information. For the negative controls,
tyrosine-protein kinase ABL1 was included in the analysis. The
Ki was transformed into pM units and linearized. The objective
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of this analysis was to test if the multitarget index could correctly
classify drugs using experimental values. The analysis was done,
as stated in section Construction of the Multitarget Index.

Construction of a Docking Training Set:
Multi-Kinase Ligands
We selected 10 known FDA-approved drugs labeled multikinase-
directed drugs as models of multitarget drugs (Li et al., 2016).
The full list of the drugs we considered can be found in
the Supplementary Information. Three non-multikinase drugs
were also included as negative controls. The 13 ligands were
docked on the tyrosine-protein kinase KIT (PDB id: 4HVS),
vascular endothelial growth factor receptor 2 (PDB id: 3VO3)
and platelet-derived growth factor receptor beta (PDB id: 1SHA).
The docking studies were carried out in Molegro Virtual
Docker version 6.0 using the standard protocol suggested by the
manufacturer. All waters, cofactors, and non-active ligands were
removed from the workspace. MolDock optimizer was used as
the running algorithm with 25 runs per ligand. A sphere with
a radius of 15 Å was constructed around the active sites of the
three proteins and selected as the search site. The poses with
the lowest MolDock score were used for further analysis. The
objective of this analysis was to determine if the multitarget
index could correctly classify drugs using theoretical values. The
data were processed, as stated in section Construction of the
Multitarget Index.

Construction of an Experimental
Evaluation Set: DUD
We downloaded the database of DUD (Directory of Useful
Decoys; Huang et al., 2006), containing the energy scores of

nearly 98258 molecules against 40 targets; some targets had
a smaller number of calculated energies but were included in
the analysis, as this would challenge the indexes. The package
was cleaned so that only the negative energies of each ligand
were analyzed. The objective of this analysis was to determine
if the multitarget index could filter an extensive database. The
data were processed, as stated in section Construction of the
Multitarget Index.

Virtual Library of Ligands for MS
Selection and Construction of the Virtual Library
For ligand construction, PAR-1 antagonists with demonstrated
activity were searched. Vorapaxar is a commercially available
platelet antiaggregant whose mechanism of action is PAR-
1 antagonism; therefore, it was used as a reference ligand.
F16357 and SCH79797 are molecules whose antagonism has
been previously studied, and thus, they were used as starting
points for the design of multitarget molecules (Manaenko et al.,
2013; Readmond and Wu, 2017). Four possible scaffolds were
selected for PAR-1 (Figure 2), of which scaffolds W and X
were obtained by scaffold hopping from F16357 and vorapaxar,
respectively, with the help of Mcule (Kiss et al., 2012). F16357
was used as scaffold Y, and scaffold Zwas an annularmodification
of SCH79797.

For the selection of KLK-6 ligands, benzamidine isosteres
were designed, because this compound is known to be a serine
protease inhibitor (Silva et al., 2017). The selected benzamidine
isosteres were aminopyridine (A), aminopyridine with carboxylic
acid (B), aminopyridine with alcohol (C), 2-aminopirimidine
aminoquinoline (E), aminoisoquinoline (F), aminoquinazoline
(G), and benzylamine (H) (Figure 3). Currently, there are no

FIGURE 2 | The four scaffolds used for ligand construction.

FIGURE 3 | Proposed isosteres that may interact in the active site of KLK-6.
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commercially available drugs whose mechanism of action is
selective inhibition of KLK-6. However, it was found that
0HM, a benzylamine derivative, was previously determined as a
compound with high binding energy to KLK-6 and thus was used
as a reference ligand for this enzyme (Liang et al., 2012).

Finally, 211 compounds were constructed from a combination
of both types of ligands with the help of Marvin Sketch 16.2.22.0
and saved in ∗.smiles format. The three-dimensional geometry
was optimized with Spartan ’14 (1.1.4) using MMFF and HF
6-31 G∗.

Molecular Docking
The crystalline structures of PAR-1 complexed with vorapaxar
(PDB id: 3VW7), human S1PR1(PDB id: 3V2Y) and human
KLK-6 with 0HM (PDB id: 4D8N) were downloaded (Bernett
et al., 2002; Hanson et al., 2012; Liang et al., 2012; Zhang et al.,
2012). The water molecules and co-crystallized ligands were
removed from the work area. The docking procedure was carried
out in the same manner used for multikinase ligands.

Cheminformatics Analysis
The smiles codes of the 211 ligands were placed in admetSAR
in order to predict some of their pharmacokinetic properties
(Cheng et al., 2012). The following probability scores were
obtained: permeability of the blood-brain barrier (BBB), human
intestinal absorption (HIA), glycoprotein P substrate (PGP-
substrate), carcinogen, acute oral toxicity (AOT) and inhibition
of hERG (human Ether-à-go-go-Related Gene). A coefficient
of +1 was assigned to all values that fulfilled the following
conditions: BBB+, HAI+, PGP-non-substrate, non-carcinogen,
AOT III, or IV and weak hERG inhibitor. Otherwise, a negative
coefficient was assigned in such a way that the desirable
properties were considered positive. With these coefficients, an
average of the chemoinformatic properties was calculated, which
was called Chemoinformatic Score (CIS).

Construction of the Multitarget Index
Vector analysis, mentioned in the introduction, was used as the
mathematical basis for the index construction. Besides, vector
analysis allowed new interpretations of ligands, concepts, and
parameters that may have a significant impact on multitarget
drug design.

Order of a Ligand
The core idea of the index is to interpret ligands as vectors. The
theoretical affinity or score for a target may be interpreted as a
coordinate within this vector. This interpretation treats targets
as independent variables that are orthogonal to each other. The
ligand (L) is then defined as follows:

⇀

L = (a1, a2, . . . , ai) (2)

where ai is the affinity for each target. The usefulness is that the
number of targets is now coded as the number of coordinates
or dimensions. Therefore, the order of a ligand (n) relates to the
number of targets being tested: a multitarget of order n.

Force of a Ligand
This parameter corresponds to the norm of the vector, which is a
metric that combines all the affinities of the ligands into a single
value. It is generally understood as magnitude, meaning that
greater values correspond to ligands whose particular affinities
are large. It is a useful parameter when trying to compare
combined affinities. However, this metric is also sensible to
extreme values. The force of each ligand (F) was calculated in the
following way:

F =

⇀

||L|| =

√

a12 + a22 + . . . + an2 (3)

Plotting the ligand can enhance the interpretation, as seen
in Figure 1. However, for more than three coordinates,
representations must be truncated into a radial web for
better visualization.

Binding Capacity and Total Multitarget Capacity
Because each coordinate is a vector, the cross product of all the
targets will give a new vector. This new vector is an indirect
measure of the binding capacity of a ligand, which geometrically
corresponds to an nth volume (Equation 4). This metric is
more sensible than the force because it is a multiplication of
affinities, and considerable differences between affinities have
greater repercussions. This operation is the same as calculating
the geometric mean. We interpreted the metric as the binding
capacity, a measure of a ligand’s tendency to bind to more
targets. Higher binding capacity means it can bind efficiently to
more targets.

Bc = geometric mean =
n

√

√

√

√

n
∏

i=1

an (4)

The average is interpreted as a ligand’s affinity to all the targets.
The average simulates a drug that has equal affinities for all
the proteins. Therefore, the average (µ) is defined as the total
multitarget capacity of the ligand (MTc) (Equation 5). It is only a
capacity since it is an idealized value.

MTc = µ =

1

n

n
∑

i=n

ai (5)

Finally, the quotient of the binding capacity and the total
multitarget capacity gives a proportion of how much of that
multitarget capacity is being used. If the binding capacity equals
the total multitarget capacity, then the ligand is a true multitarget
ligand. By itself, this quotient is an index of “multitargeticity”
that can be expressed in percentage for easier reading and read
as “used multitarget capacity” (UMTc).

UMTc =
Bc

MTc
(6)

Index Standardization, Definition, and Interpretation
Since the idea behind the index is to compare different ligands,
it is necessary to standardize the index. The following scheme
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was proposed: the ligand should be its own reference for
standardization. This can be achieved through the following
formula, in which the individual contribution of each affinity to
the force is calculated.

L̂s = n





⇀

L

F





2

=

(

n·
[a1

F

]2
, n·
[a2

F

]2
, . . . , n·

[an

F

]2
)

(7)

where n is the number of targets, F is the norm or force of the
ligand, and a is the affinity. This formula also standardizes the
mean, or multitarget capacity (MTc) to 1, independently of the
number of targets or the type of input used. For simplicity, the
new coordinates were renamed “standardized affinities” (̂a).

̂Ls =
(

âa, â2, . . . , ân
)

(8)

This simplifies the standardized, used multitarget capacity
(UMTc) to a simple geometric mean ranging from 0
to 1, effectively making it an index or measurement of
“multitargeticity.” As in linear regression, a quadratic estimator
exacerbates the value, making it ideal for a multitarget index
(Equation 9).

1stMTi =





n

√

√

√

√

n
∏

i=1

ân





2

=

(

n
∏

i=1

ân

)2/n

(9)

The interpretation is the one originally described in the
introduction: how similar the hyperrectangle described by the
ligand is similar to a hypercube. Alternatively, in a less abstract
way, it is an efficiency measurement: how much “multitarget
capacity” is being used.

A Second Multitarget Index
A second parameter was calculated; the standard deviation (σ).
With this, another index was constructed that could measure the
dispersion of the affinities: the bigger the value, the less variation
among the targets. Since the standardized affinities’ mean equals
one, the second multitarget index is defined as follows:

2ndMTi = 1− σ (10)

As in 1stMTi, the value can be expressed as a percentage (%).
This is a more sensitive parameter that ranges from 1 to negative
values. This index also encodes selectivity: smaller values, even
negative, indicate more selectivity.

Defining of a Multitarget Ligand
With the two indexes, we propose the following values for
classifying a ligand as a multitarget:

The ligand is multitarget if 1stMTi ≥ 0.84 and 2ndMTi ≥ 0.60

These values correspond to an ∼20% deviation from the mean
affinity. It is worth mentioning that, although this gives a
quantitative definition of multitargeticity, ligands that do not
fulfill the criteria should not be discarded. These indexes quantify
the dispersion and variation of the affinities and do not indicate
in any way the potency.

Multitarget Potency and Selectivity
Equally low affinities will give high MT indexes values. For this
reason, a final critical parameter was introduced: the multitarget
potency. This value is the product of the force times, both
multitarget indexes (Equation 11), which is the equivalent of
calculating how much of that force is due to the multitargeticity
of the ligand.

PMT =

F
√

n
·
1stMTi · 2ndMTi (11)

We propose the multitarget potency as a metric for drug
design since the highest values of potency represent a possible
multitarget hit or even multitarget lead. In the same line of
thought, the next parameter that we propose is an attempt to
identify selective ligands. The selectivity is calculated as follows:

S =

F
√

n
· (1− 1stMTi)(1− 2ndMTi) (12)

Both parameters maintain the desired properties (higher values
indicate higher potency and selectivity) and are useful for
identifying possible multitarget and selective ligands. These
metrics, as with any other, have their benefits and drawbacks and
will be discussed further on.

RESULTS AND DISCUSSIONS

Performance of the MT Indexes in the
Experimental Training Set
With the criteria set on point 2.5.6, of the 10 approved
multikinase drugs analyzed (imatinib, sunitinib, dasatinib,
afatinib, bosutinib, lapatinib, nintedanib, pazopanib, sorafenib,
vandetanib), only afatanib was not classified as a multitarget
ligand. Although it is biologically active in both of its targets,
the epidermal growth factor receptor (EGFR) and the receptor
tyrosine-protein kinase erbB-2 (HER2 or erbB2), it has a
considerable preference over EGFR (Ki = 0.1 vs. Ki = 5 [nM]).

The two negative controls did not fulfill the criteria to be
cataloged as multitarget drugs. In fact, the epidermal growth
factor receptor (EGFR) is the main and only target for gefitinib
and erlotinib (Wishart et al., 2018). The indexes can reliably
classify and discriminate multitarget molecules in experimental
values, giving strength to the analysis.

The multitarget potency, the critical parameter proposed,
supports the findings, making dasatinib the most potent
multitarget drug of the analyzed set (PMT = 16.4). Sunitinib was
de 2nd most potent multitarget (PMT = 14.6); although it had
better indexes, the total strength was reduced since it had more
targets tested, and the affinities were not as strong as dasatinib
(Figure 4). In contrast, gefitinib was the least potent (PMT =

14.6), but it was also the 2nd most selective ligand of the dataset
(Sgefitinib = 2.7 vs. Sdasatinin = 1.3 and Ssunitinib = 0.2), being
afatinib the first (Safatinib = 2.9).

∗All PMT and S values are dimensionless.
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Performance of the MT Indexes in the
Docking Training Set
With the criteria set on point 2.5.6, of the ten known approved
multikinase drugs tested, only sorafenib was not classified as
a multitarget ligand. By contrast, the three negative controls
were classified as multitarget ligands according to the index. The
apparent discrepancy between these results and the experimental
ones is explained by considering that all the 13 ligands were
docked in the same three targets, indistinctively if they were
active or not, while in the experimental analysis, the preferred
targets were analyzed according to each ligand. Sorafenib had
larger calculated affinities thanmost of the ligands but was further

apart from each other, which lead to it nor being classified
as multitarget. The performance of sunitinib and dasatinib is
observed in Figure 5, and the results agree with the experimental
set. The only difference is that sunitinib is, in this case, the most
potent multitarget ligand.

The analysis still proves useful once the ligands are arranged
in order of highest to lowest multitarget potency, or the force
of each ligand is compared. It is important to emphasize that
the purpose of the index is not to reclassify drugs but instead to
provide useful metrics for analyzing data and aiding in the drug
design process, especially in the design of multitarget drugs. In
this case, seven multitarget ligands would be discovered or tested

FIGURE 4 | Dasatinib had 3 targets (n = 3) tested and greater affinities toward those, while sunitinib had order n = 5 and gefitinib n = 4. That is why, although

sunitinib has better MTi values, dasatinib has more multitarget potency (the number inside the circle). All the values are presented as % (or times 100). The threshold

for considering a ligand multitarget is viewed as a cut in the circles. The inner and outer rings are the 1st and 2nd MT indexes, respectively.

FIGURE 5 | Comparing with Figure 4, the multitarget tendency of sunitinib and dasatinib remains similar. The difference in the calculated affinities gives the change in

the potency. Sorafenib is an example of how the MT indexes affect the strength of the ligand, since that strength is unevenly distributed. The inner circle is the MT

potency. The inner and outer rings are the 1st and 2nd MT index, respectively. The inferior rectangle is the force of the ligand.
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before encountering a non-multitarget drug previously classified
as an MT drug. The multitarget indexes are useful when they are
used with the force of the ligand. The top 7 ligands are indeed
classified as multitarget ligands and are approved by the FDA
as multikinase drugs, and a summary of the performance can be
reviewed in Table 1.

Since this is an in silico evaluation, the scoring is affected
by the computational limitations of the docking procedures.
These limitations should be taken into consideration when
applying the metrics previously described. These are virtual
metrics and are sensible to the in silico scoring functions,
which themselves do not reflect the in vivo effect. Furthermore,
the indexes and metrics should be tested with experimental
values to prove the strength, robustness, and validity of this
classification. As mentioned above, the criteria for classifying

TABLE 1 | Sunitinib, imatinib, and sorafenib are approved multitarget drugs by the

FDA.

Name 4HVS

MolDock

score

3VO3

MolDock

score

1SHA

MolDock

score

F 1stMT

index

(%)

2ndMT

index

(%)

PMT

Sunitinib −166.0 −131.5 −156.6 263.4 96.3 81.4 119.1

Imatinib −193.9 −130.7 −163.2 285.1 90.4 69.1 102.8

Idelalisib −138.7 −104.8 −129.5 216.8 94.7 77.9 92.4

Sorafenib −201.6 −119.8 −154.8 280.9 83.8 58.7 79.8

Letrozole −137.9 −98.4 −114.8 204.6 92.7 72.4 79.3

Sorafenib did classify as a multitarget drug. However, the multitarget potency of sunitinib

and imatinib compared to letrozole and idelasib (negative controls in purple) is greater.

The rest of the molecules can be found in the Supplementary Information. The bold

values indicate the main or critical parameter(s) being evaluated.

a ligand as a multitarget can be modified, but the measure of
multitargeticity persists.

DUD Database
From the 98258 ligands analyzed, 5561 molecules were found to
be multitarget. This corresponds to about 5.7% of all the analyzed
ligands. The orders of the ligands varied widely, ranging from 9 to
40. A total of 912 ligands were found to bemultitarget of order 24.
The distribution can be seen in Graph 1. The multitarget index
filtered the ligands, meaning it does not classify every ligand as
multitarget, and only a subset is eligible according to the criteria.
It is important to notice that the chemical structures in this
dataset were diverse. In these cases, the MT indexes gain strength
as they “clean” the database and facilitating further research.

The most potent multitarget ligands were an unnamed

compound of the ZINC database, which could be further
tested to determine if its potential multitargeticity is only
theoretical. This is the purpose of the indexes, to be useful
in drug design and in identifying potential multitarget ligands.
The selectivity was also used to identify the most selective
ligands. In the DUD database, the third most selective ligand
corresponded to hepsulfam, with the followingMT indexes: 6.6%
(1st) and −272.1% (2nd). A comparison is made in Figure 6. The
selectivity was toward catechol-O-methyltransferase (COMT).
Hepsulfam is an alkylsulfonate alkylating drug-like busulfan used
in cancer therapy. COMT is a modulator of the dopaminergic
and adrenergic response, and it can influence nausea and
vomiting (Gan and Habib, 2016). Hepsulfam binding to COMT
could explain mild nausea and vomiting seen in clinical trials,
contrasting serious nausea present in other types of anticancer
drugs (Ravdin et al., 1991).

Graph 1 | Distribution of how many orders of ligands were among the 5561 ligands identifies as multitarget.
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FIGURE 6 | Multitarget parameters of the most potent multitarget ligand and hepsulfam, the 3rd most selective. The darker circle represents the selectivity, while the

lighter represents de potency. Hepsulfam had a negative MT potency.

Advantages and Limitations of the
Multitarget Indexes
The usefulness of using a multitarget index varies highly
according to the necessities of each research group. As a first
instance, the multitarget indexes give an initial quantitative
and workable definition for what a multitarget drug is. They
define and measure multitargeticity. The primary purpose of
the analysis is in drug design for identification of in silico and
potential in vivomultitarget drugs. In a sense, these indexes could
be useful in identifying multitarget hits and leads in the drug
discovery process. Second, because it is an index, it can be useful
in data analysis when comparing several ligands or targets at the
same time. Moreover, the analysis assumes that the targets are
independent of each other, which provides freedom regarding the
number of studied targets.

The index is also modifiable and perfectible in several ways.
For example, if highlighting a particular target is desired,
then coefficients can be introduced so that the affinities are
weighted.More calculationsmay be performed on the affinities in
previous steps without changing the procedure or interpretation
of the index, such as introducing ligand efficiency metrics. The
multitarget indexes do not only identify multitarget ligands
but are useful when selectivity is desired, making them not
only applicable in multitarget drug design but also in designing
selective single-target drugs and in the drug discovery process in
general. Finally, the analysis can be further perfected with more
statistical rigor, more meaningful parameters, and an in vitro and
in vivo extensions.

Like all other metrics, it has limitations that skew or simplify
the underlyingmechanisms. For example, equal affinitiesmay not
necessarily imply multitarget in vivo effectiveness, since there are
more variables to consider.

Various suppositions are needed in order to treat ligands as
vectors. The most obvious one is that indexes do not consider

how the ligand binds the target or the mechanism of action.
Second, it is assumed the affinities are calculated or measured
under the same conditions. Third, although the coordinates can
be any type of input, the final MT index value changes if the units
of the affinities introduced are different; therefore, MT index
values can only be compared if the data is processed the same
way and is in the same units.

The performance of the MT indexes in all the training
sets shows that they correctly classify drugs using experimental
values, identify potential multitarget ligands in silico, and can
filter an extensive database, making them valuable for the
intended purposes.

MT Indexes in the Virtual Library of
Candidates for MS
With the known limitations and advantages, the MT indexes
were used to analyze the experimental set. The 214 docked
ligands were submitted to the analysis previously described and
ranked in descending order of multitarget potency. Of the 211
designed compounds, 45 were derivatives from scaffold W, 34
from scaffold X, 29 from scaffold Y, and 103 from scaffold Z.
Scaffold Z was present in 9 out of the top 10 most potent
multitarget ligands. Benzamidine isostere A was present in 5 of
them, hinting that an aminopyridine fragment may be ideal for a
multitarget effect.

In most cases, a linker of 1 carbon atom and an ester group
were found in the most potent ligands. More linkers diminished
the MT index value, increasing the selectivity toward KLK-
6, the only exception to this rule was the top, most potent
molecule with four linkers. The reference molecules and their
multitarget parameters can be seen in Table 2. In Table 3, the
top 5 most potent multitarget ligands from the experimental set
are presented.
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In multitarget drug design, the multitarget potency combines
the two indexes and the force. For choosing candidates, the
force against the 2nd MT index can be plotted, and the regions
divided into quadrants. The most favorable zone would be the
upper left since it would group the most potent and most specific
multitarget ligands (Graph 2).

Chemoinformatic Analysis
With the help of the chemoinformatic score (CIS), the
ligands were classified into three arbitrary categories: preferred

TABLE 2 | Summary of the multitarget metrics of the reference ligands.

Name KLK-6

MolDock

Score

PAR-1

MolDock

Score

S1RP1

MolDock

Score

F 1stMT

index

(%)

2ndMT

index

(%)

PMT

Vorapaxar −183.0 −147.7 −128.2 267.9 91.7 70.2 99.6

Siponimod −143.9 −184.2 −155.8 280.9 95.7 78.8 122.3

0HM −185.5 −140.5 −148.2 275.9 94.1 74.5 111.8

The bold values indicate the main or critical parameter(s) being evaluated.

TABLE 3 | Summary of the top 5 ligands which had the highest potency.

Name KLK-6

MolDock

score

PAR-1

MolDock

score

S1RP1

MolDock

score

F 1stMT

index

(%)

2ndMT

index

(%)

PMT

Zb0Ad4 −210.2 −174.8 −177.9 326.2 97.2 82.6 261.9

Zb0C0l1 −193.4 −161.3 −188.9 314.8 97.5 84.8 260.5

Zc0B0l1 −190.1 −160.9 −176.8 305.4 98.2 86.6 259.5

Zd0Ap2 −167.1 −153.4 −165.5 280.8 99.4 92.6 258.5

Zb0Ad1 −202.5 −164.5 −183.8 319.1 97.2 83.2 257.9

(CIS> 0.75), sufficient (0.75> CIS> 0.5) and risky (CIS
<0.5). In total, nine ligands (4.23%) entered the preferred
classification. Of these, eight belonged to scaffold X, and
1 to scaffold Z. Overall, 165 ligands (77.46%) fit into the
sufficient category, and 39 (18.31%) were classified as risky
(see Table 4).

From the 45 scaffold W ligands, 14 (31.11%) were
considered risky, while 31 ligands (68.89%) were considered
sufficient; none reached a CIS> 0.75. From scaffold X,
11 ligands (32.35%) obtained a risky score, 15 ligands
(44.11%) were sufficient, and 8 (23.23%) were preferred.
Scaffold Y had seven ligands (24.14%) classified as risky,
and 22 ligands (75.86%) classified as sufficient. Finally,
seven ligands (6.80%) of scaffold Z were considered risky,
while 95 ligands (92.22%) were considered sufficient, and
only 1 (∼1%) was preferred. These results can be seen
in Table 5.

TABLE 4 | Distribution of the chemoinformatic score among the ligands with the 4

scaffolds.

Preferred

(CIS>0.75)

Sufficient

(0.75>CIS>0.5)

Risky

(CIS<0.5)

Total

Scaffold W - 31 (68.9%) 14 (31.1%) 45

Scaffold X 8 (23.2%) 15 (44.1%) 11 (32.3%) 34

Scaffold Y - 22 (75.8%) 7 (24.1%) 29

Scaffold Z 1 (∼1%) 95 (92.2%) 7 (6.8%) 103

Total 9 163 39 211

Ligands with scaffold X were the most preferred in terms of pharmacokinetics

theoretical properties.

Graph 2 | When plotted, the upper left quadrant is the most valuable or with the most potentially multitarget ligands.
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TABLE 5 | Distribution of the chemoinformatic score among benzamidine

isosteres.

Preferred

(CIS>0.75)

Sufficient

(0.75>CIS>0.5)

Risky

(CIS<0.5)

Total

Isostere A 8 (5.9%) 114 (83.8%) 14 (10.3%) 136

Isostere B - 2 (15.4%) 11(84.6%) 13

Isostere C - 7 (53.8%) 6 (46.1%) 13

Isostere D - 6 (66.6%) 3 (33.3%) 9

Isostere E - 10 (100%) - 10

Isostere F - 9 (100%) - 9

Isostere G 1 (10%) 7 (70%) 2 (20%) 10

Isostere H - 9 (81.8%) 2 (18.2%) 11

A considerable proportion of ligands with isosteres B and C were classified as risky, while

ligands with isostere A had more preferred CIS.

TABLE 6 | Summary of the top 5 ligands which had the highest combined values

of Potency and CIS.

Name F 1st MTi (%) 2ndMTi (%) P CIS Final value

Xb0G0 294.1 96.9 82.7 235.8 0.81 10.5

Zb0As0 314.3 95.8 79.4 239.3 0.78 10.4

Xb0As0 269.4 97.8 85.7 225.9 0.82 10.4

Xb0Am1 273.4 97.2 84.0 223.3 0.82 10.3

Xb0Am0 261.1 98.2 86.9 222.7 0.80 10.1

The bold values indicate the main or critical parameter(s) being evaluated.

These results show that scaffold Z has the most
balanced theoretical pharmacological properties. However,
scaffold X also presented desirable properties in the
CIS; scaffold X is pharmacokinetically desired. It is also
worth mentioning that the aminopyridine derivatives with
carboxylic acids (B) and alcohols (C) presented a risky
CIS in the chemoinformatic analysis. Therefore, ligands
with these isosteres are not considered candidates for
therapeutic applications.

Pharmacokinetic and Pharmacodynamic
Viable Candidates
For determining possible final candidates, the CIS score and
multitarget potency were combined with the geometric mean.
The final table (Table 6) groups the ligands that combine the
highest potency and CIS values, meaning they are the most
likely to have a biological effect while remaining relatively safe.
This is a theoretical approach; therefore, the top molecules are
potential multitarget alternative candidates to treat MS. The
ligands with the highest combined score shared scaffold X in
most of the cases (10 out of the 20 top ligands), with scaffold
Z being the second most shared among the top 20. In 9 out
of the top 10 ligands, isostere A was present in the ligand
structure. It is also noted that a small linker is optimal for
joining these two fragments. From these results, it is assumed that
isostere A, as well as scaffolds X and Z, contribute to theoretical

FIGURE 7 | Ligand Xb0G0 had the highest combined multitarget theoretical

affinity and in silico ADME profile. The parameters of the MT indexes analysis.

The final score is the combination of the MT potency and CIS (in parenthesis).

multitarget effects. However, scaffold X ligands do not have as
much multitargeticity nor force as ligands with scaffold Z but
remain the safest and more pharmacokinetically favorable. The
applied multitarget metrics simplified the analysis and criteria
for determining viable candidates. In Figure 7, the most viable
candidate is presented.

CONCLUSIONS

As multitarget drugs are designed and tested, methods for
effectively comparing and optimizing ligands are required.
We present a new interpretation of ligands as vectors; new
multitarget definitions and metrics, such as order of a ligand,
the force of a ligand, binding capacity and multitarget capacity;
and two multitarget indexes representing multitarget potency
and selectivity, all of which might prove useful in drug design.
The training sets allowed the identification of the advantages
and disadvantages of using these metrics in multitarget drug
discovery. The data analyzed through the MT indexes served
to identify pharmacokinetically and pharmacodynamically viable
multitarget therapeutic candidates for MS. The indexes were also
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useful for identifying selective ligands. The definitions, metrics,
and analysis proposed here may provide a guide toward the
definition of “multitargeticity.”
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A novel series of dihydrofuro[3,4-d]pyrimidine (DHPY) analogs have recently been

recognized as promising HIV-1 non-nucleoside reverse transcriptase (RT) inhibitors

(NNRTIs) with potent antiviral activity. To better understand the pharmacological

essentiality of these DHPYs and design novel NNRTI leads, in this work, a systematic

in silico study was performed on 52 DHPYs using three-dimensional quantitative

structure–activity relationship (3D-QSAR), molecular docking, virtual screening,

absorption-distribution-metabolism-excretion (ADME) prediction, and molecular

dynamics (MD) methods. The generated 3D-QSAR models exhibited satisfactory

parameters of internal validation and well-externally predictive capacity, for instance,

the q2, R2, and rpred
2 of the optimal comparative molecular similarity indices analysis

model were 0.647, 0.970, and 0.751, respectively. The docking results indicated that

residues Lys101, Tyr181, Tyr188, Trp229, and Phe227 played important roles for the

DHPY binding. Nine lead compounds were obtained by the virtual screening based on

the docking and pharmacophore model, and three new compounds with higher docking

scores and better ADME properties were subsequently designed based on the screening

and 3D-QSAR results. The MD simulation studies further demonstrated that the newly

designed compounds could stably bind with the HIV-1 RT. These hit compounds were

supposed to be novel potential anti-HIV-1 inhibitors, and these findings could provide

significant information for designing and developing novel HIV-1 NNRTIs.

Keywords: HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs), dihydrofuro[3,4-d]pyrimidines, virtual

screening, molecular docking, rational drug design

INTRODUCTION

Acquired immune deficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV)
is one of the most widely spread infectious diseases worldwide. There is no effective drug or
vaccine that could cure AIDS absolutely at present. According to the report from the Joint United
Nations Program on HIV/AIDS, there were approximately 36.9 million people living with HIV
worldwide in 2018, and neighboring 1.8 million new cases and 0.94 million AIDS-related deaths
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FIGURE 1 | Chemical structures of diarylpyrimidines (DAPYs).

in 20171. Two main types of HIV (HIV-1 and HIV-2) have
been identified currently. HIV-1 is widely spread throughout the
world, whereas HIV-2 has correspondingly poor transmission
(Vasavi et al., 2019; Wang et al., 2019). In the fight against
HIV-1, highly active antiretroviral therapy (HAART) has been
considered to be a relatively successful and effective therapy in
controlling HIV-1 epidemics (Chen et al., 2011; Wang et al.,
2018).

HIV-1 reverse transcriptase (RT), as one of the most
important enzymes that convert the single-stranded RNAs into
double-stranded DNAs, is vital to restrain HIV-1 replication
and a prime target for antiviral research (Esposito et al., 2012).
Inhibitors of the HIV-1 RT are divided into nucleoside RT
inhibitors (NRTIs) and non-nucleoside RT inhibitors (NNRTIs),
and the latter binds to an allosteric site that is located about 10
Å distance from the polymerizing processing site (Zhan et al.,
2009). NNRTIs have become an indispensable portion of HAART
regimen due to its potent antiviral activity, high specificity, and
low cytotoxicity. However, single mutations such as K103N,
Y181C, V106A, and L100I in the binding site of the HIV-1
RT might result in decreased inhibitory potencies of NNRTIs,
and a double mutation (K103N+Y181C) was more frequently
discovered in the process of treating with NNRTIs (Das et al.,
2008).

Six HIV-1 NNRTIs including nevirapine, delavirdine,
efavirenz, etravirine (ETV), rilpivirine (RPV), and doravirine
have been approved by US Food and Drug Administration
for clinical use to date (Namasivayam et al., 2019). ETV and
RPV (Figure 1), which belong to diarylpyrimidine (DAPY)
derivatives that were recognized as one of the most effective
families of NNRTIs, have attracted considerable attention due
to their excellent potency against HIV-1 wild-type and mutant
strains. However, the low solubility and unsatisfactory oral

1UNAIDS. UNAIDS Data 2018. Available online at: http://www.unaids.org/en/

resources/documents/2018/unaids-data-2018

bioavailability of these analogs restrict their clinical usage in
some respects (Gu et al., 2019). Thus, novel NNRTIs with
improved pharmacokinetic profiles have been urged to design
and discover.

Recently, Kang et al. (2016, 2017) have designed and
synthesized a series of thiophene[3,2-d]pyrimidine derivatives,
among which compounds K-5a2 and 25a (Figure 1) were
two representative HIV-1 NNRTIs, exhibiting more drug-like
pharmacokinetic properties and greater inhibitory activities
compared to nevirapine and efavirenz. Compound 25a also
exhibited better inhibition against HIV-1 mutant strains than
ETV and RPV. However, compound K-5a2 did not display
excellent activity against K103N+Y181C mutant HIV-1 strains
(Kang et al., 2017; Yang et al., 2018). Further structural
modification on K-5a2 and 25a using six alicyclic-fused
pyrimidine rings led to a series of dihydrofuro[3,4-d]pyrimidine
(DHPY) derivatives with potent anti-HIV activity (Table 1)
(Kang et al., 2019).

To date, there are many computer-aided drug design methods

applied in designing and developing novel HIV-1 inhibitors

(Almerico et al., 2007). For example, the three-dimensional

quantitative structure–activity relationship (3D-QSAR) and

pharmacophore models were utilized to learn about structural

characteristics of HIV-1 NNRTIs in our previous studies (Liu
et al., 2018; Wan et al., 2018). The multivariate statistical

procedures, containing principal component and discriminant

analysis, could be as credible methods to predict the activities
of HIV-1 inhibitors by taking advantage of the vast anti-HIV

data (Almerico et al., 2003, 2006). The molecular docking
and molecular dynamics (MD) simulation were often used to
understand the binding conformations of ligands in the active
sites of HIV-1-related proteins. Furthermore, a comparative
analysis with the combination of docking and multivariate
methods was used to study the drug resistance of HIV-
1 inhibitors and to further design new compounds with
appropriate structural features (Almerico et al., 2008).
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TABLE 1 | Chemical structures of DHPYs and their actual and predicted activities as HIV-1 NNRTIs.

CoMFA CoMSIA

No. R EC50 (nM) Actual pEC50 Predicted pEC50 Residual Predicted pEC50 Residual

01b 4-SO2NH2-Ph 2.20 8.658 8.728 0.070 8.672 0.014

02 3-CONH2-Ph 10.3 7.987 8.043 0.056 8.014 0.027

03 4-SO2CH3-Ph 9.98 8.001 7.919 −0.082 7.992 −0.009

04a 4-pyridinyl 31.7 7.499 7.528 0.029 7.392 −0.107

05b 4-SO2NH2-Ph 8.69 8.061 8.046 −0.015 8.076 0.015

06 4-CONH2-Ph 10.4 7.983 8.042 0.059 8.025 0.042

07 3-CONH2-Ph 41.3 7.384 7.360 −0.024 7.365 −0.019

08 4-SO2CH3-Ph 13.9 7.857 7.923 0.066 7.860 0.003

09a 4-pyridinyl 16.0 7.796 7.500 −0.296 7.830 0.034

10 4-SO2NH2-Ph 104 6.983 7.083 0.100 7.004 0.021

11 4-CONH2-Ph 55.7 7.254 7.164 −0.090 7.242 −0.012

12 4-SO2CH3-Ph 50.7 7.295 7.214 −0.081 7.275 −0.020

13b 4-pyridinyl 16.7 7.777 7.843 0.066 7.781 0.004

14 4-SO2NH2-Ph 4.53 8.344 8.251 −0.093 8.335 −0.009

15 4-CONH2-Ph 4.76 8.322 8.317 −0.005 8.304 −0.018

16 3-CONH2-Ph 8.95 8.048 7.954 −0.094 8.053 0.005

17a 4-SO2CH3-Ph 207 6.684 6.860 0.176 7.329 0.645

18b 4-pyridinyl-Ph 2.21 8.656 8.690 0.034 8.680 0.024

19 4-SO2NH2-Ph 4.3 8.367 8.468 0.101 8.467 0.100

20a 4-CONH2-Ph 4.8 8.319 8.490 0.171 8.328 0.009

21 4-SO2CH3-Ph 5.9 8.229 8.197 −0.032 8.238 0.009

22b 4-pyridinyl 2.6 8.585 8.613 0.028 8.637 0.052

23a 4-NO2-Ph 8.0 8.097 8.103 0.006 8.226 0.129

24 3-CONH2-Ph 27.7 7.558 7.500 −0.058 7.547 −0.011

25a 4-SO2NH2-Ph 37.2 7.429 7.494 0.065 7.263 −0.166

26a,b 4-SO2Me-Ph 3.8 8.420 8.406 −0.014 7.714 −0.706

27 4-NO2-Ph 11.5 7.939 7.902 −0.037 7.898 −0.041

28 4-NH2-Ph 8.4 8.076 7.889 −0.187 8.067 −0.009

29 4-NHSO2Me-Ph 11.2 7.951 8.043 0.092 7.987 0.036

30 4-SO2NH2-Ph 2.8 8.553 8.562 0.009 8.543 −0.010

31b 4-CONH2-Ph 1.6 8.796 8.768 −0.028 8.812 0.016

32 4-SO2CH3-Ph 1.9 8.721 8.677 −0.044 8.629 −0.092

33 4-pyridinyl 2.3 8.638 8.701 0.063 8.736 0.098

34 4-NO2-Ph 7.4 8.131 8.075 −0.056 8.178 0.047

35a 3-CONH2-Ph 7.8 8.108 7.971 −0.137 8.238 0.130

36b 4-SO2NH2-Ph 1.1 8.959 8.867 −0.092 8.941 −0.018

37 4-CONH2-Ph 6.1 8.215 8.387 0.172 8.270 0.055

(Continued)
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TABLE 1 | Continued

CoMFA CoMSIA

No. R EC50 (nM) Actual pEC50 Predicted pEC50 Residual Predicted pEC50 Residual

38a 4-SO2CH3-Ph 4.9 8.310 8.603 0.293 8.479 0.169

39 4-pyridinyl 1.8 8.745 8.642 −0.103 8.452 −0.293

40 4-NO2-Ph 14.5 7.839 7.953 0.114 7.858 0.019

41a 3-CONH2-Ph 2.0 8.699 8.060 −0.639 8.437 −0.262

42 4-SO2NH2-Ph 6.0 8.222 8.145 −0.077 8.169 −0.053

43b 4-CONH2-Ph 6.0 8.222 8.182 −0.040 8.218 −0.004

44a 4-SO2CH3-Ph 8.0 8.097 8.278 0.181 8.308 0.211

45 4-pyridinyl 8.6 8.066 8.033 −0.033 8.188 0.122

46 4-NO2-Ph 77.4 7.111 7.330 0.219 7.106 −0.005

47a 3-CONH2-Ph 6.5 8.187 7.792 −0.395 8.369 0.182

48b 4-SO2NH2-Ph 2.7 8.569 8.588 0.019 8.540 −0.029

49 4-CONH2-Ph 3.0 8.523 8.523 0.000 8.434 −0.089

50 4-SO2CH3-Ph 3.9 8.409 8.453 0.044 8.451 0.042

51 4-NO2-Ph 8.6 8.066 8.024 −0.042 8.056 −0.010

52a 3-CONH2-Ph 5.1 8.292 8.087 −0.205 8.429 0.137

aTest set compounds used for 3D-QSAR models.
bThe compounds used for pharmacophore models.

CoMFA, comparative molecular field analysis; CoMSIA, comparative molecular similarity indices analysis; DHPY, dihydrofuro[3,4-d]pyrimidine; NNRTIs, non-nucleoside reverse

transcriptase inhibitors.

To further explore the essential structural and
pharmacological features of the novel DHPYs as HIV-1
NNRTIs in this study, the combination of 3D-QSAR models,
molecular docking, and MD simulation was applied to analyze
the 3D-QSARs of these DHPYs and their binding modes
in the HIV-1 RT. We also utilized the pharmacophore- and
docking-based virtual screening to obtain some hit compounds
from ZINC database and subsequently designed new potential
NNRTIs according to the screening and 3D-QSAR results.
Molecular docking and MD simulations were utilized to identify
the binding of these new NNRTIs and the stabilization of the
protein–ligand complexes.

MATERIALS AND METHODS

Preparation of Small Molecules
A total of 52 DHPY derivatives were collected from the published
literature (Kang et al., 2019) for performing the molecular
modeling study. Their structures, EC50, and corresponding
pEC50 (− logEC50) values were listed in Table 1. All compounds
were stretched by SYBYL-X 2.1 (Tripos Inc., St. Louis, USA)
running on Windows 7 workstation and minimized with
Gasteiger–Hückel charges, the termination of 0.005 kcal/(mol·Å)
and max iterations of 1,000 by Powell method. Other parameters
were set to default values.

Three-Dimensional Quantitative
Structure–Activity Relationship Model
The 3D-QSAR model could help to find a significant correlation
between the biological activities of drug molecules and their
structures (Borisa and Bhatt, 2015). In this study, comparative

molecular field analysis (CoMFA) and comparative molecular
similarity indices analysis (CoMSIA) methods were used to
construct 3D-QSAR models. All compounds were randomly
divided into a training set (39 compounds) to generate CoMFA
and CoMSIA models and a test set (13 compounds) to confirm
the reliability of the generated models (Table 1). The number
of test set compounds should be kept in the range from 1/4
to 1/3 of the total compounds. Compound 36 with the highest
activity was used as a template, and all training set compounds
were superimposed on it by the common skeleton alignment
(Figure 2A).

For generating a reasonable model, the internal predictive

ability was evaluated by partial least squares (PLS) regression

method using the SAMPLS. The leave-one-out (LOO) cross-
validation procedure was applied to determine the optimum
number of components (ONC) and the highest cross-validation
correlation coefficient (Q2) (Bush and Nachbar, 1993), and non-
cross-validated analysis was applied to compute the non-cross-
validated correlation coefficient (R2), standard error of estimate
(SEE), and the Fisher test values (F) (Li et al., 2014). External
validation parameters were also essential for further assessing
the predictive capability of 3D-QSAR models, such as r0

2, k,

r0
′2, and k

′

. r0
2, and k were the corresponding correlation

coefficient and the slope value of linear regression equation,
respectively, for predicted vs. actual activities when the intercept

was set to zero, and r0
′2 and k

′

were for actual vs. predicted

activities, respectively. In addition, rm
2, rm

′2, △rm
2, rm2, and the

root mean square error (RMSE) as traditional data were also
calculated to appraise the predictive ability. A model, which met

the requirements of [(r2−r0
2)/r2] or [(r2−r0

′2)/r2]< 0.1, 0.85≤

k≤1.15 or 0.85≤ k
′

≤ 1.15,△rm
2 < 0.2 and rm2 > 0.5, especially
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FIGURE 2 | The molecular alignment using compound 36 as a template. (A) The alignment results of the training set compounds used for the three-dimensional

quantitative structure–activity relationship (3D-QSAR) models. (B) The chemical structure of compound 36, and the red region represents the common scaffold.

the predictive correlation rpred
2 > 0.6, would be deemed to

possess well-predictive capability and reliability (Caballero, 2010;
Ojha et al., 2011; Roy et al., 2016). The parameters were calculated
according to our previous studies (Wang et al., 2018; Gao et al.,
2019; Liu et al., 2019).

Pharmacophore Model
Ten compounds (Table 1) with high activities and diverse
structures were selected to generate pharmacophore model using
Genetic Algorithm with Linear Assignment of Hypermolecular
Alignment of Database (GALAHAD) module in SYBYL-
X 2.1. GALAHAD method mainly contained two steps.
The ligands are neatly aligned to each other in internal
coordinate space, and then the produced conformations as
rigid bodies are aligned in Cartesian space. In the process
of running GALAHAD, the parameters of population
size, max generation, and molecules required to hit were
automatically set according to the experiment activity
data. Finally, 20 models with diverse parameters including
SPECIFICITY, N_HITS, STERICS, HBOND, and Mol_Qry
were generated.

In order to further validate the ability of the pharmacophore
model, a decoy set method was used for evaluating the generated
model. The decoy set database was comprised of 6,234 inactive
compounds downloaded from the DUD-E database (http://dud.
docking.org/) (Mysinger et al., 2012) and 42 active compounds
from Table 1 except the compounds used for constructing the
pharmacophore model. The enrichment factor (EF) and Güner–
Henry (GH) scores were considered as metrics to assess the
reliability of the pharmacophore models. The GH score took the
percent yield of actives in a hit list (%Y, recall) and the percent
ratio of actives in a database (%A, precision) into account. While

the GH score is ranging 0.6–1, the pharmacophore model would
be regarded as a rational model (Kalva et al., 2014).

%Y = Ha/Ht × 100% (1)

%A = Ha/A × 100% (2)

EF = (Ha/Ht)/(A/D) (3)

GH = (Ha (3A+Ht))/(4AHt)× (1− (Ht −Ha)/(D− A))

(4)

where Ha is the number of active molecules in the hit list, Ht is
the hit compounds from the decoy set database, A is the total
number of active compounds in the database, and D is the sum
of the database.

Molecular Docking
The crystal structures of wild-type HIV-1 RT (PDB ID: 6C0J) and
K103N/Y181C mutant RT (PDB ID: 6C0R) were downloaded
from the Protein Data Bank and were used for the docking
study. While preparing the two proteins, hydrogen atoms
were added after the crystallographic ligands were extracted
and all water molecules except for W936 were removed. In
order to verify the rationality and reliability of the docking
method, the extracted ligands (K-5a2 and 25a) were first
redocked into the corresponding active site using the Surflex-
Dock Geom module of SYBYL-X 2.1 with default parameters.
All compounds were then docked into the binding pocket
as the same pattern. Twenty conformations with different
scores were produced for each docked compound, and the
highest-score conformation of each compound was chosen for
further study.
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Virtual Screening
The selected GALAHAD model was converted into a UNITY
query for virtual screening from ZINC database, and the “Flex
search” was employed to serve as query type. Lipinski’s rule of
five as the primary filter was utilized to further decrease screened
compounds. The QFIT score, whose value was between 0 and
100, reflected how closely the hit compounds matched with
query. In consideration of the time and accuracy of screening,
two ways of molecular docking including Surflex-Dock and
Surflex-Dock Geom were implemented to verify the potential hit
compounds obtained from the pharmacophore-based screening.

ADME Analysis
ADME properties are essential for selecting and evaluating
lead candidates. The online tool Swiss ADME (http://
www.swissadme.ch/index.php) was applied to calculate the
pharmacokinetic properties of new NNRTI candidates, such as
lipophilicity, water solubility, and blood–brain barrier (BBB)
permeability (Daina et al., 2017). The synthetic accessibility was
also predicted by the score from 1 to 10, in which a score of
1 suggested the synthetic route was relatively easy and a score
closer to 10 indicated the compound had complex structure and
was tough to be synthesized.

Molecular Dynamics Simulation
To further explore the dynamics protein–ligand interactions,
10 ns MD simulations were performed on compound 36 and
newly designed inhibitors using GROMACS2016.5 software with
AMBER 99SB force field. Before starting MD simulation, several
important procedures should be performed to generate a steady
environment. First, it was very momentous to generate the

topology file of ligand by a acpype tool, which was on the basis
of Python. Second, a 12 Å × 12 Å × 12 Å cubic box full of water
models (transferable intermolecular potential with 3 points) was
set to create the aqueous environment for the whole system. Nine
chloride ions were added into the box for the sake of keeping
the state of charge neutrality. In order to satisfy a tolerance
of 10 kJ/mol, the steepest descent method for 50,000 steps
was carried out for minimization without constraint to avoid
possible collision between atoms. NVT at 300K using V-rescale
for 100 ps and NPT at 1 atm pressure using Parrine–Rahman
for 100 ps were successively equilibrated to maintain proper
temperature and pressure for the system. At last, the 10 ns MD
simulation was run and the simulation step length was defined
as 2 fs.

RESULTS AND DISCUSSION

Statistical Analysis of the Comparative
Molecular Field Analysis and Comparative
Molecular Similarity Indices Analysis
Models
The classical parameters of the CoMFA and CoMSIA models
were summarized in Table S1. In general, the q2 and R2 should
be more than 0.5 and 0.9, respectively, and the SEE and F-
value should be rational. As for the CoMSIA models, there were
different combinations of five fields as shown in Table S1. The
model generated by the combination of the steric (S), electrostatic
(E), hydrogen-bond acceptor (A), hydrogen-bond donor (D),
and hydrophobic (H) fields was the optimal CoMSIA model
because of its satisfactory q2, R2, SEE, F, and rpred

2 values. The

TABLE 2 | External validation results of the CoMFA and CoMSIA models.

Validation parameters RMSE MAE r2 r0
2 r0

′2 r2−r0
2

r2
k k

′

rm
2 rm

′2
△rm

2 rm2

CoMFA 0.263 1.608 0.750 0.746 0.709 0.006 1.007 0.992 0.700 0.597 0.103 0.648

CoMSIA 0.302 0.549 0.655 0.653 0.533 0.004 0.996 1.003 0.622 0.426 0.196 0.524

CoMFA, comparative molecular field analysis; CoMSIA, comparative molecular similarity indices analysis; RMSE, root mean square error; MAE, mean absolute error.

FIGURE 3 | Plots of actual vs. predicted pEC50 values of all dihydrofuro[3,4-d]pyrimidines (DHPYs) based on the comparative molecular field analysis (CoMFA) (A)

and comparative molecular similarity indices analysis (CoMSIA) (B) models.
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contributions of S, E, A, D, and H fields were 4.1, 19.7, 29, 33.4,
and 13.8%, respectively, indicating that A and D fields played
more important roles. The q2 of the CoMFA andCoMSIAmodels
were 0.647 and 0.735, respectively, which indicated that both
models were rational. The R2 values of the CoMFA and CoMSIA
models were 0.970 and 0.982, respectively, and the rpred

2 values
were 0.751 and 0.672, respectively, suggesting that both models
had excellent predictive abilities. In addition, it was common for
the CoMFA and CoMSIA models that the E field contribution
was more than the S field contribution, which illustrated that the
E field could be more significant than the S field in the effect on
compound activity.

External validation parameters could further confirm the
reasonability of the constructed CoMFA and CoMSIA models.
As shown in Table 2, all external validation results of the CoMFA
and CoMSIA models were in the rational range, for example, the

rm2 values of the CoMFA and CoMSIA model were 0.648 and

0.524, respectively. The statistical results of Table S1 and Table 2

proved that the generated 3D-QSAR models were reliable and
possessed excellent predictive capacity. Figure 3 showed the plots
of actual vs. predicted pEC50 values for all compounds based on
the CoMFA and CoMSIA models. All compounds were evenly
distributed in the two sides of the trend lines, which indicated
that the 3D-QSAR models had excellent abilities to predict the
activities of DHPYs. The predictive capacity of the CoMFAmodel
seems to be better than that of the CoMSIA model.

Contour Maps of the Comparative
Molecular Field Analysis and Comparative
Molecular Similarity Indices Analysis
Models
The contour maps of the CoMFA and CoMSIA models could
visually provide significant information for the QSARs of

FIGURE 4 | Contour maps of steric and electrostatic fields with compound 36 as a reference in the comparative molecular field analysis (CoMFA) (A,B) and

comparative molecular similarity indices analysis (CoMSIA) (C,D) models.
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DHPYs. Compound 36 with the highest activity was utilized
as a reference molecule to analyze the contour maps of both
models. As shown in Figure 2B, the structure of compound
36 consisted of the common scaffold, Tolerant Regions
I and II.

Figure 4 showed the S and E field contourmaps of the CoMFA
and CoMSIA models. In the S field, the green contour indicates
that a bulky substituent at this position is beneficial for the
activity, whereas a yellow block corresponds to a region where
a small group is favorable for the activity. For the E field, a
blue contourmeans that introduction of electropositive groups in
this region may improve the biological activity, whereas the red
contour indicates that electronegative groups may be beneficial
for the activity. As can be seen from Figures 4A,C, the S field
contours of the CoMFA model were consistent with those of
the CoMSIA model. The yellow contour in the Tolerant Region
I indicated that a relatively small group at this region would
be beneficial for enhancing the activity, which might explain
why the actual activities of compounds 30–41 were greater
than those of compounds 25–29. On the other hand, in the
Tolerant Region II, there was a green contour at the terminal,
suggesting that introduction of a bulky groupwasmore favorable,
which was in agreement with the activity orders: 18 (pyridine-
4-yl-Ph) > 14 (4-SO2NH2-Ph) > 17 (4-SO2CH3-Ph), 19 (4-
SO2NH2-Ph) > 21 (4-SO2CH3-Ph) > 23 (4-NO2-Ph), and 42

(4-SO2NH2-Ph) > 44 (4-SO2CH3-Ph) > 46 (4-NO2-Ph). At the
para-position of the benzene ring of Tolerant Region II, two
yellow contours indicated that small substituents here might
be favorable for the activity, for instance, 3 (4-SO2CH3-Ph)
> 2 (3-CONH2-Ph) > 4 (pyridine-4-yl), 8 (4-SO2CH3-Ph) >

9 (pyridine-4-yl), 31 (4-CONH2-Ph) > 33 (pyridine-4-yl). In
Figures 4B,D, it can be clearly observed that a big blue contour
was located at the terminal of Tolerant Region II, indicating that
the positively charged group might be beneficial for the activity,
such as 1 (4-SO2NH2-Ph) > 3 (4-SO2CH3-Ph), 15 (4-CONH2-
Ph) > 17 (4-SO2CH3-Ph), and 19 (4-SO2NH2-Ph) > 21 (4-
SO2CH3-Ph). In addition, a red contour was located at the para-
position of the benzene ring of Tolerant Region II, indicating that

electronegative groups were beneficial for the antiviral activity at
this position.

The H, D, and A field contour maps of the CoMSIA
models were shown in Figure 5. In the H field, yellow contours
represent the favorable zone of hydrophobic groups, whereas
white contours show the unfavorable zone of hydrophobic
groups. As shown in Figure 5A, a huge white near Tolerant
Region I indicated that this place was appropriate to introduce
hydrophobic groups. In addition, there was a white contour
at the benzene ring of Tolerant Region II, which illustrated
that hydrophobic substituents here were beneficial. The H field
results were in good consistency with those of the previous study
(Kang et al., 2019) that DHPYs with hydrophobic groups at
corresponding positions exhibited promising activities. As for
the D field, cyan suggests hydrogen-bond donor groups are
useful for enhancing the activity, whereas purple is opposite.
In Figure 5B, a cyan contour close to the linker atom of the
pyrimidine ring and the right wing showed that the hydrogen-
bond donor might be helpful for the activity at this position.
There was also a cyan contour at the terminal of Tolerant Region
II, indicating that hydrogen-bond donor groups were beneficial
here, for example, 28 (4-NH2-Ph) > 27 (4-NO2-Ph). A purple
contour near the para-position of the benzene ring of Tolerant
Region II manifested that the place might not be suitable for
hydrogen-bond donor groups, such as 1 (4-SO2NH2-Ph) > 2 (3-
CONH2-Ph). In the A field, beneficial and unbeneficial contour
of hydrogen-bond acceptors are colored in magenta and red,
respectively. In Figure 5C, a red contour at the terminal of
Tolerant Region II signified that the hydrogen-bond acceptors
at this position were disadvantageous for the activity, and two
magenta contours at the para-position of the benzene ring of
Tolerant Region II illustrated that the hydrogen-bond acceptor
was advantageous. In short, introduction of hydrogen-bond
acceptors at the para-position of the benzene ring of Tolerant
Region II and hydrogen-bond donors at the terminal of Tolerant
Region II might be advantageous for the inhibitory activity.

In a word, the contour maps of 3D-QSAR models presented
that a small and/or hydrophobic group in Tolerant Region I;

FIGURE 5 | Contour maps of hydrophobic (A), hydrogen-bond donor (B), and hydrogen-bond acceptor (C) fields in the optimal comparative molecular similarity

indices analysis (CoMSIA) model.
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a small, electronegative and/or hydrogen-bond accepter group
at the para-position of the benzene ring of Tolerant Region II;
and/or a bulky, electropositive and/or hydrogen-bond donor
group at the terminal of Tolerant Region II would be favorable
for increasing the activity, respectively.

Pharmacophore Model
The statistical parameters of 20 pharmacophore models
generated by GALAHAD were listed in Table S2. As for
pharmacophore models, it could be served as the query for
a UNITY flex search only if the SPECIFITY value was more
than 5. The identical value of the PARETO column indicated
that all models were statistically equivalent. In general, a good
pharmacophore model should have small ENERGY and high
SPECIFITY, N_HITS, STERICS, and MOL_QRY (Caballero,
2010). Among 20 models, model_20 was regarded as the
optimal model by the comprehensive consideration of the
abovementioned parameters.

The pharmacophore features of the best GALAHAD
Model_20 were displayed in Figure 6, including three
hydrophobic centers (HYs, cyan), four hydrogen-bond acceptor
atoms (AAs, green), and one hydrogen-bond donor atom (DAs,
magenta). All features were located in the left and middle

structures of DHPYs. One of the hydrogen-bond acceptor
atom at the connecting atom of the left ring indicated that
hydrogen-bond acceptor groups might increase the inhibitory
activities at this position, which was consistent with our
previous study (Wan et al., 2018). The other hydrogen-bond
acceptor atoms were located at the nitrogen atoms of the
pyrimidine ring and the cyano group of the left benzene
ring. Moreover, the hydrophobic center of the left phenyl
ring was located at the hydrophobic pocket of the HIV-1
RT, which was also in good consistency with our previous
studies (Wan et al., 2018). The right linker atom was the
hydrogen-bond donor atom, which suggested that the hydrogen-
bond donor atom at this position was likely to improve the
anti-HIV-1 activities, which was in good agreement with the
3D-QSAR results.

For the optimal pharmacophore, there were 70 compounds

screened from the decoy database, and 42 of them were active

molecules. In addition, the calculated values of %Y, %A, EF,

and GH were 60%, 100%, 89.66, and 0.70, respectively, which
met the requirements that the EF value should be more than
1 and the GH value should be in the range from 0.6 and 1.
These statistical results indicated that model_20 had excellent
abilities of recognizing the false positives and distinguishing the

FIGURE 6 | The best pharmacophore model with the alignment of 10 training set compounds. The model includes four hydrogen-bond acceptor atoms (green), three

hydrophobic centers (cyan), and one hydrogen-bond donor atom (magenta).

FIGURE 7 | The redocked results of K-5a2 in the binding pocket of the HIV-1 reverse transcriptase (RT) (PDB: 6C0J). (A) The superimposition of the cognate K-5a2

(yellow) and the redocked K-5a2 (orange). (B) The blue region represents the surface of the binding pocket.

Frontiers in Chemistry | www.frontiersin.org 9 March 2020 | Volume 8 | Article 164384

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Chen et al. Computational Design of Novel HIV-1 NNRTIs

similar structures of active and inactive compounds from the
database. Thus, model_20 could be used for the next virtual
screening studies.

Molecular Docking
Molecular docking was performed to investigate the binding
modes of DHPYs at the active site of the HIV-1 RT. To validate
the reliability of the molecular docking method, the cognate
ligand (K-5a2) was redocked into the binding pocket of the
HIV-1 RT (PDB: 6C0J), and the result was shown in Figure 7A.
The original crystallographic and redocked conformations were
almost superposition, and the root mean square deviation
(RMSD) value between them for all atoms was 0.38 Å, which
suggested that the docking method and used parameters were
reasonable (Khan et al., 2010). As seen from Figure 7A, the
two ligands adopted a similar binding pattern, in which the left
benzene ring was located at the hydrophobic region consisting of
residues Tyr181, Tyr188, Trp229, Phe227, and Val106 and could
form π-π stacking interactions with the aromatic residues of
them. In addition, it was noteworthy that the two ligands not
only formed hydrogen-bond interactions with residues Lys101,
Lys104, and Val106, respectively, but also interacted with residues
Lys103 and Pro236 via a network of hydrogen bonds by a water
molecule (W936). Those results were in good consistency with
previous reports (Yang et al., 2018; Kang et al., 2019). At the same
time, the hydrogen bond formed between the C = O of Lys101
and the NH of the right linker atom indicated that hydrogen-
bond donor atoms were beneficial in the place, which was a
good agreement with the results of pharmacophore and 3D-
QSAR models. As shown in Figure 7B, 52 DHPYs embedded
in the binging pocket by the similar U-shaped conformations,
suggesting the accuracy of the docking method.

Virtual Screening
To discover and design novel HIV-1 NNRTI leads, a multistage-
filtered virtual screening was performed based on the constructed
pharmacophore model and the established molecular docking
method (Figure 8). First, a total of 19,740 compounds were
obtained from ZINC database by the pharmacophore-based
virtual screening and the restriction with Lipinski’s rule of
five. Then, 3,451 compounds were selected on the basis of
the QFIT score of more than 50. In order to enhance the
efficiency and accuracy of docking screening, the preliminary
docking by Surflex-Dock and the second round docking by
Surflex-Dock Geom were performed. The results indicated
that only 20 compounds met the requirements simultaneously.
In view of the predicted ADME properties of the screened
20 compounds, nine compounds were selected to regard as
NNRTI hits, whose structures and docking scores were shown
in Table 3. Furthermore, the interactions between the screened
compounds and the HIV-1 RT were shown in Table S3.
Nine screened compounds formed hydrophobic interactions
with residues Tyr181, Tyr188, Phe227, Trp229, and Val106
and π-π stacking interactions with the aromatic residues of
them. Except for ZINC_91409938, which formed a hydrogen-
bond network with the residues Pro236 and Lys103 by a
water molecule (W936), the screened compounds also formed

FIGURE 8 | Representation of the overall virtual screening process.

hydrogen bonds with the key residues Lys101 and Glu138. The
docking results indicated that nine screened compounds might
be potential NNRTIs.

Newly Designed Non-nucleoside Reverse
Transcriptase Inhibitors
According to the structural characteristics of DHPYs and the
results of the 3D-QSAR models and molecular docking, we
further designed three new compounds (N1, N2, and N3;
Table 4) using ZINC_73709240 as a lead compound. The 3D-
QSAR contour maps indicated that the hydrogen-bond acceptor
at the para-position of the benzene ring of Tolerant Region
II and the hydrogen-bond donor at the terminal of Tolerant
Region II were favorable to the inhibitory activity. Therefore,
we designed compounds N1, N2, and N3 by adding amide or
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TABLE 3 | Chemical structures and docking scores of the screened hit compounds as novel HIV-1 NNRTIs from ZINC database.

Compound No. Structure Docking score

ZINC_57841658 9.43

ZINC_60381334 9.02

ZINC_63070905 9.56

ZINC_69532225 9.12

ZINC_71894576 9.00

ZINC_73709240 9.64

ZINC_89506228 9.29

(Continued)
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TABLE 3 | Continued

Compound No. Structure Docking score

ZINC_91409938 9.30

ZINC_97995063 9.22

NNRTIs, non-nucleoside reverse transcriptase inhibitors.

TABLE 4 | Chemical structures and docking scores of the newly designed HIV-1 NNRTIs.

Compound No. R Docking score

Wild-type HIV-1 RT Mutant HIV-1 RT (K103N+Y181C)

N1 13.83 10.60

N2 12.59 12.03

N3 12.93 12.88

NNRTIs, non-nucleoside reverse transcriptase inhibitors; RT, reverse transcriptase.

carboxyl groups as hydrogen-bond donors or acceptors at these
positions (Table 4).

All designed compounds were then docked into the binding
site of HIV-1 RT by Surflex-Dock Geom method. The docking

scores of compounds N1, N2, and N3 were 13.83, 12.59, and
12.93, respectively, and higher than that of compound 36 (11.86),
suggesting that the interactions between the newly designed
compounds and the protein might be more stable. As shown
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FIGURE 9 | The docked results of compounds 36 (A), N1 (B), N2 (C), and N3 (D) in the binding pocket of wild-type HIV-1 reverse transcriptase (RT) (PDB: 6C0J).

in Figure 9, the binding modes of compounds N1, N2, and N3

with the protein were basically similar to that of compound
36. The left wings of four ligands were all located in the
hydrophobic region and formed π-π stacking interactions with
residues Tyr181, Tyr188, Trp229, and Phe227, and the positive
nitrogen of their right wing formed hydrogen-bond networks
with Lys103 and Pro236 through a water molecule (W936),
which was in good agreement with the docking results. However,
there were some differences for four compounds in terms of
protein–ligand interactions. As for compound 36, it formed three
hydrogen bonds with Lys101 (Lys101-O. . .H-N-, 2.8 Å) and
Val106 (Val106-NH. . .O=C, 3.0 Å; -O. . .H-N-, 2.7 Å), which was
consistent with the redocked results of K-5a2. As can be seen
from Figures 9A,B, compounds N1 and N3 not only formed
hydrogen bonds with Glu138 and Lys103 but also had hydrogen
bonds with Ile234 and/or Tyr318. Another finding was that five
hydrogen bonds were formed between residues Glu138, Lys103,
Lys101, Tyr318, and His235 with compound N2. The docking
results revealed that the four compounds interacted with key
amino acid residues (Lys101 and Glu138), and several new
hydrogen bonds between three newly designed compounds and
residues Lys103, Ile234, Tyr318, and His235 were found. These
results suggested that compounds N1, N2, and N3 might be the
potential inhibitors with improving anti-HIV-1 activities.

To further explore whether the newly designed compounds
could inhibit mutant HIV-1 RT, they were also docked into
the mutant (K103N+Y181C) RT (PDB ID: 6C0R) (Figure S1;
Table 4). The co-crystallizing ligand (25a) of 6C0R as a reference

compound was also redocked into the binding site as displayed
in Figure S1A. Kang et al. (2017) reported that the inhibitory
activity of compound 25a (EC50 = 5.5 ± 0.81 nM) against the
K103N+Y181C mutant RT was better than that of RPV (EC50

= 11 ± 1.9 nM). Our docking results indicated that compound
25a formed four hydrogen bonds with residues Lys101, Val106,
Lys104, and Tyr188, respectively, and the π-π stacking and/or
hydrophobic interactions were also found with residues Trp229,
Phe227, and Tyr188. In addition, the residue Tyr183 played
an important role in the binding site of the mutant RT and
could offset the loss of π-stacking and hydrophobic interactions
between inhibitors and residue Tyr181 as it was mutated to
Cys181 (Das et al., 2008).

The docking scores of three hit compounds were relatively
high (Table 4), especially compoundsN2 andN3, whose docking
scores were higher than 25a (12.02), indicating that the newly
designed molecules might have better inhibitory activity against
the mutant RT. It was observed that the hydrogen bond with
residue Lys101, π-π stacking, and hydrophobic interactions
still existed for three complexes (Figure S1). However, the
difference was that compounds N1, N2, and N3 could form
a direct hydrogen bond with the mutated residue Asn103,
which indicated that these designed molecules could bind well
in the binding pocket with mutations. These docking results
demonstrated that the three hit compounds might have the
ability to inhibit the HIV-1 RT mutant. However, the actual anti-
HIV activities of the three hits are necessary to be identified in
future studies.
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TABLE 5 | Predicted absorption-distribution-metabolism- excretion (ADME) parameters and drug-like properties of compound 36 and the newly designed inhibitors

(N1–3).

Properties Parameters Compounds

36 N1 N2 N3

Physicochemical MWa (g/mol) 532.66 482.58 481.59 482.57

Properties Rotatable bonds 7 11 10 10

HBA 8 8 7 8

HBD 2 3 2 2

TPSAb 142.61 133.91 121.88 116.09

Lipophilicity iLOGP 3.82 3.29 3.38 3.60

XLOGP3 4.17 0.04 0.92 1.57

WLOGP 4.33 0.63 1.72 2.32

MLOGP 2.06 0.44 1.42 1.82

Silicos IT logP 3.51 2.08 3.09 3.33

Consensus logP 3.58 1.30 2.11 2.53

Water Solubility ESOL Class MSc Sd S S

Ali Class PSe S S S

Silicos IT Class PS MS MS MS

Pharmacokinetics GIf absorption low high high high

BBBg permeat No No No No

CYP1A2 inhibitor No No No No

CYP2C19 inhibitor Yes No No No

CYP2C9 inhibitor Yes No No No

CYP2D6 inhibitor Yes No Yes Yes

CYP3A4 inhibitor Yes No Yes Yes

Druglikeness Lipinski violations 1 0 0 0

Ghose violations 2 2 2 2

Egan violations 1 1 0 0

Muegge violations 1 1 0 0

Bioavailability Score 0.55 0.55 0.55 0.56

Medicinal Chemistry PAINSh alerts 0 0 0 0

Brenk alerts 0 1 0 0

Leadlikeness violations 2 2 1 2

Synthetic accessibility 4.68 4.68 4.12 4.10

aMolecular weight.
bTotal polar surface area.
cModerately soluble.
dSoluble.
ePoorly soluble.
fGastrointestinal.
gBlood–brain barrier.
hPan assay interference compounds.

ADME Analysis
ADME prediction studies were carried out for compound 36

and three newly designed NNRTIs (N1, N2, and N3). The
results were depicted in Table 5. In this program, five inhibitors
of cytochrome P450 (CYP) enzymes were predicted. CYPs,
which primarily mediated oxidation of various compounds and
participated in physiological and pathophysiological processes,
were the major phase I drug-metabolizing enzymes and
responsible for metabolism of about 75% of all marketed
drugs (Moroy et al., 2012). In the family of CYP enzymes,
the CYP3A4 was the most important enzyme on account of
metabolizing ∼50% of all drugs by itself, and the CYP2C9

enzyme mainly metabolizes several clinically used drugs such
as celecoxib and diclofenac (Daly et al., 2017). As shown in
Table 5, compounds N1, N2, and N3 could be easier to be
metabolized compared with compound 36. In addition, three
newly designed compounds showed high human gastrointestinal
absorption (HIA), indicating that they might have a high chance
of brain penetration (Li et al., 2019). The topological polar surface
area (TPSA) values of compound N1 and N3 were in the range
from 20 to 130 Å2, which suggested that they possessed good
transport properties in vivo. Notably, the synthetic accessibilities
of designed compounds were lower than 5, suggesting that
they were relatively easy to be synthesized. On the whole, the
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ADME properties of the three newly designed compounds were
superior to that of compound 36, especially in pharmacokinetics,
druglikeness, andmedicinal chemistry properties. Thus, the three
newly designed compounds might be supposed to have good
pharmacokinetics properties.

Molecular Dynamics Simulation
As for newly designed molecules, their stability of protein–ligand
interactions should be taken into account. Thus, 10 ns MD
simulations were performed for four complex systems, 6C0J-
36, 6C0J-N1, 6C0J-N2, and 6C0J-N3, respectively. The RMSD
values of backbone atoms for the four complexes were displayed
in Figure 10A. During the 10 ns MD simulations, the RMSD

values of the four systems were relatively stable and were lower
than 0.3 nm. Figure 10B showed the RMSD values of the four
ligands during 10 ns MD simulations. The four ligands had
similar fluctuations and reached equilibrium at approximately
0.5 ns. The root mean square fluctuation (RMSF) profiles of the
four complexes (Figures 10C,D) also exhibited similar trends
during the MD simulations. It should be pointed out that
the key residues, Lys101 of chain A and Glu138 of chain B,
had relatively lower RMSF values. As shown in Figure 10E,
the radius of gyration (Rg) values, which could explain the
compactness of the protein throughout simulation, basically
maintained at about 3.5 nm, indicated that greater changes of
the conformations of protein did not take place. In addition,

FIGURE 10 | The 10 ns molecular dynamics (MD) results of compounds 36, N1, N2, and N3 in wild-type HIV-1 reverse transcriptase (RT). (A) Root mean square

deviation (RMSD) values of backbone atoms of the protein. (B) RMSD values of the ligands. (C) Root mean square fluctuation (RMSF) values of the chain A. (D) RMSF

values of the chain B. (E) Radius of gyration (Rg) values of backbone atoms. (F) The total number of hydrogen bonds between the ligands and the protein.
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the intermolecular hydrogen bonds could be used to analyze
the protein–ligand interaction. As shown in Figure 10F, the
hydrogen-bond numbers of 6C0J-36, 6C0J-N1, 6C0J-N2, and
6C0J-N3 complexes were 1-2, 1-6, 1-6, and 2-5 over the 10 ns
simulations, respectively, which suggested that all newly designed
compounds might be more stable than compound 36. The MD
simulation results revealed that four protein–ligand complexes
could maintain a relative stability in the dynamic simulation and
three newly designed compounds might have more interactions
with the HIV-1 RT than compound 36. These were in good
consistency with the docking results.

In the same pattern, 10 ns MD simulations were also carried
out for three protein–ligand complexes (6C0R-N1, 6C0R-N2,
and 6C0R-N3) to further study whether they still could remain
stable in the dynamic environment. The results were shown in
Figure S2. The RMSD values of protein backbones of the three
complexes were displayed in Figure S2A, and it can be clearly
seen that they basically reached stability after 5 ns and were below
0.4 nm. The RMSD values of the three ligands were also stable
(Figure S2B). Figures S2C,D were the RMSF plots of chains A
and B, respectively, which showed that the residues of the three
complexes fluctuated in the same trend, indicating that they had
great stability. In addition, the Rg values just slightly floated
within 3.5 nm from Figure S2E, indicating that the proteins had
good compactness. The number of hydrogen bonds was also
essential to verify the stability. As shown in Figure S2F, the
hydrogen-bond numbers of compounds N1, N2, and N3 were
2-4, 1-5, and 2-5 over the 10 ns MD, respectively, suggesting
that the three compounds could tightly bind to the mutant RT.
The abovementioned results revealed that the three complexes
could keep stable during MD simulations and the three designed
compounds could interact well with the mutant HIV-1 RT.
However, the experimental activities of the three new hits against
wild-type and mutant HIV-1 strains remain to be studied.

CONCLUSION

In conclusion, 52 DHPYs were collected to construct the
CoMFA and CoMSIA models, which exhibited rationally
statistical parameters and good predictive ability. These models
well-explained the 3D-QSARs of these DHPY and provided
useful information for designing new HIV-1 NNRTIs. The
optimal pharmacophore model containing eight features was
in agreement with the 3D-QSAR results. The docking results

revealed that Lys101 was the key amino acid residue, and
the hydrophobic and π-π stacking interactions with Tyr181,
Tyr188, Trp229, and Phe227 also played key roles for the
anti-HIV activity of DHPYs. Nine lead compounds were
obtained by the pharmacophore-based and docking-based virtual
screening as well as ADME prediction. Three novel inhibitors
were designed by modifying the structure of the screened
compound ZINC_73709240 according to the 3D-QSAR and
docking results. Three newly designed inhibitors showed good
stability and strong interactions not only in the wild-type
RT but also in the K103N/Y181C RT mutant based on the
docking and MD simulation results. The ADME prediction
indicated that compounds N1, N2, and N3 might possess
desirable drug-like properties. However, further study on
synthesis and anti-HIV activities of the three newly designed
hits is necessary. We expect that the screened and designed
compounds could be served as lead candidates of novel
HIV-1 NNRTIs.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

GL and YC proposed the research idea and designed the
experiment. YC performed the experiment. YC, FW, YT, and YG
analyzed the data. YC, XL, XJ, and GL wrote the manuscript. All
authors revised and approved the manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (No. 21807082), the Hubei Provincial
Natural Science Foundation of China (No. 2017CFB121), and
the Hubei Provincial Department of Education of China
(No. Q20171503).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fchem.
2020.00164/full#supplementary-material

REFERENCES

Almerico, A. M., Lauria, A., Tutone, M., Diana, P., Barraja, P., Montalbano,

A., et al. (2003). A multivariate analysis on non-nucleoside HIV-1 reverse

transcriptase inhibitors and resistance induced by mutation. QSAR Comb. Sci.

22, 984–996. doi: 10.1002/qsar.200330834

Almerico, A. M., Tutone, M., Ippolito, M., and Lauria, A. (2007). Molecular

modelling and QSAR in the discovery of HIV-1 integrase inhibitors.

Curr. Comput. Aid. Drug Des. 3, 214–233. doi: 10.2174/1573409077816

95468

Almerico, A. M., Tutone, M., and Lauria, A. (2008). Docking and multivariate

methods to explore HIV-1 drug-resistance: a comparative analysis. J. Comput.

Aid. Mol. Des. 22, 287–297. doi: 10.1007/s10822-008-9186-7

Almerico, A. M., Tutone, M., Lauria, A., Diana, P., Barraja, P., Montalbano, A.,

et al. (2006). Amultivariate analysis of HIV-1 protease inhibitors and resistance

induced by mutation. J. Chem. Inf. Model. 46, 168–179. doi: 10.1021/ci050139z

Borisa, A., and Bhatt, H. (2015). 3D-QSAR (CoMFA, CoMFA-RG, CoMSIA) and

molecular docking study of thienopyrimidine and thienopyridine derivatives to

explore structural requirements for aurora-B kinase inhibition. Eur. J. Pharm.

Sci. 79, 1–12. doi: 10.1016/j.ejps.2015.08.017

Frontiers in Chemistry | www.frontiersin.org 16 March 2020 | Volume 8 | Article 164391

https://www.frontiersin.org/articles/10.3389/fchem.2020.00164/full#supplementary-material
https://doi.org/10.1002/qsar.200330834
https://doi.org/10.2174/157340907781695468
https://doi.org/10.1007/s10822-008-9186-7
https://doi.org/10.1021/ci050139z
https://doi.org/10.1016/j.ejps.2015.08.017
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Chen et al. Computational Design of Novel HIV-1 NNRTIs

Bush, B. L., and Nachbar, R. B. (1993). Sample-distance partial least squares: PLS

optimized for many variables, with application to CoMFA. J. Comput. Aid. Mol.

Des. 7, 587–619. doi: 10.1007/BF00124364

Caballero, J. (2010). 3D-QSAR (CoMFA and CoMSIA) and pharmacophore

(GALAHAD) studies on the differential inhibition of aldose reductase

by flavonoid compounds. J. Mol. Graph. Model. 29, 363–371.

doi: 10.1016/j.jmgm.2010.08.005

Chen, X. W., Zhan, P., Li, D. Y., Clercq, E. D., and Liu, X. Y. (2011). Recent

advances in DAPYs and related analogues as HIV-1 NNRTIs. Curr. Med. Chem.

18, 329–376. doi: 10.2174/092986711794839142

Daina, A., Michielin, O., and Zoete, V. (2017). SwissADME: a free web tool to

evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness

of small molecules. Sci. Rep. 7:42717. doi: 10.1038/srep42717

Daly, A. K., Rettie, A. E., Fowler, D. M., and Miners, J. O. (2017).

Pharmacogenomics of CYP2C9: functional and clinical considerations. J. Pers.

Med. 8:1. doi: 10.3390/jpm8010001

Das, K., Bauman, J. D., Clark, A. D., Frenkel, Y. V., Lewi, P. J., Shatkin, A. J., et al.

(2008). High-resolution structures of HIV-1 reverse transcriptase/TMC278

complexes: strategic flexibility explains potency against resistance mutations.

PNAS. 105, 1466–1471. doi: 10.1073/pnas.0711209105

Esposito, F., Corona, A., and Tramontano, E. (2012). HIV-1 reverse transcriptase

still remains a new drug target: structure, function, classical inhibitors, and new

inhibitors with innovative mechanisms of actions. Mol. Biol. Int. 2012:586401.

doi: 10.1155/2012/586401

Gao, Y., Chen, Y. M., Tian, Y. F., Zhao, Y. L., Wu, F. S., Luo, X. G., et al.

(2019). In silico study of 3-hydroxypyrimidine-2,4-diones as inhibitors of

HIV RT-associated RNase H using molecular docking, molecular dynamics,

3D-QSAR, and pharmacophore models. New J. Chem. 43, 17004–170017.

doi: 10.1039/C9NJ03353J

Gu, S. X., Xiao, T., Zhu, Y. Y., Liu, G. Y., and Chen, F. E. (2019). Recent progress

in HIV-1 inhibitors targeting the entrance channel of HIV-1 non-nucleoside

reverse transcriptase inhibitor binding pocket. Eur. J. Med. Chem. 174, 277–291.

doi: 10.1016/j.ejmech.2019.04.054

Kalva, S., Azhagiya Singam, E. R., Rajapandian, V., Saleena, L. M.,

and Subramanian, V. (2014). Discovery of potent inhibitor for

matrix metalloproteinase-9 by pharmacophore based modeling and

dynamics simulation studies. J. Mol. Graph. Model. 49, 25–37.

doi: 10.1016/j.jmgm.2013.12.008

Kang, D. W., Fang, Z. J., Huang, B. S., Lu, X. Y., Zhang, H., Xu, H., et al. (2017).

Structure-based optimization of thiophene[3,2-d]pyrimidine derivatives as

potent HIV-1 non-nucleoside reverse transcriptase inhibitors with improved

potency against resistance-associated variants. J. Med. Chem. 60, 4424–4443.

doi: 10.1021/acs.jmedchem.7b00332

Kang, D. W., Fang, Z. J., Li, Z. Y., Huang, B. S., Zhang, H., Lu, X. Y.,

et al. (2016). Design, synthesis, and evaluation of thiophene[3,2-d]pyrimidine

derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors with

significantly improved drug resistance profiles. J. Med. Chem. 59, 7991–8007.

doi: 10.1021/acs.jmedchem.6b00738

Kang, D. W., Zhang, H., Wang, Z., Zhao, T., Ginex, T., Luque, F. J.,

et al. (2019). Identification of dihydrofuro[3,4-d]pyrimidine derivatives as

Novel HIV-1 non-nucleoside reverse transcriptase inhibitors with promising

antiviral activities and desirable physicochemical properties. J. Med. Chem. 62,

1484–1501. doi: 10.1021/acs.jmedchem.8b01656

Khan, K. M., Wadood, A., Ali, M., Zia, U., Ul-Haq, Z., Lodhi, M. A., et al.

(2010). Identification of potent urease inhibitors via ligand- and structure-

based virtual screening and in vitro assays. J. Mol. Graph. Model. 28, 792–798.

doi: 10.1016/j.jmgm.2010.02.004

Li, M., Wei, D., Zhao, H., and Du, Y. (2014). Genotoxicity of quinolones:

substituents contribution and transformation products QSAR

evaluation using 2D and 3D models. Chemosphere 95, 220–226.

doi: 10.1016/j.chemosphere.2013.09.002

Li, Q., Zhang, C., and Ren, Y. (2019). Molecular modeling technology

studies of novel pyrazoylethylbenzamide derivatives as selective

orexin receptor 1 antagonists. J. Taiwan Inst. Chem. Eng. 100, 1–17.

doi: 10.1016/j.jtice.2019.03.018

Liu, G. Y., Wan, Y. L., Wang, W. J., Fang, S., Gu, S. X., and Ju, X. L. (2019).

Docking-based 3D-QSAR and pharmacophore studies on diarylpyrimidines

as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Mol. Divers. 23,

107–121. doi: 10.1007/s11030-018-9860-1

Liu, G. Y., Wang, W. J., Wan, Y. L., Ju, X. L., and Gu, S. X. (2018). Application

of 3D-QSAR, pharmacophore, and molecular docking in the molecular design

of diarylpyrimidine derivatives as HIV-1 nonnucleoside reverse transcriptase

inhibitors. Int. J. Mol. Sci. 19:1436. doi: 10.3390/ijms19051436

Moroy, G., Martiny, V. Y., Vayer, P., Villoutreix, B. O., and Miteva, M. A. (2012).

Toward in silico structure-based ADMET prediction in drug discovery. Drug

Discov. Today. 17, 44–55. doi: 10.1016/j.drudis.2011.10.023

Mysinger, M. M., Carchia, M., Irwin, J. J., and Shoichet, B. K. (2012). Directory

of useful decoys, enhanced (DUD-E): better ligands and decoys for better

benchmarking. J. Med. Chem. 55, 6582–6594. doi: 10.1021/jm300687e

Namasivayam, V., Vanangamudi, M., Kramer, V. G., Kurup, S., Zhan, P., Liu,

X., et al. (2019). The journey of HIV-1 non-nucleoside reverse transcriptase

inhibitors (NNRTIs) from lab to clinic. J. Med. Chem. 62, 4851–4883.

doi: 10.1021/acs.jmedchem.8b00843

Ojha, P. K., Mitra, I., Das, R. N., and Roy, K. (2011). Further exploring r2m
metrics for validation of QSPRmodels.Chemom. Intell. Lab. Syst. 107, 194–205.

doi: 10.1016/j.chemolab.2011.03.011

Roy, K., Das, R. N., Ambure, P., and Aher, R. B. (2016). Be aware of error measures.

Further studies on validation of predictive QSAR models. Chemom. Intell. Lab.

Syst. 152, 18–33. doi: 10.1016/j.chemolab.2016.01.008

Vasavi, C. S., Tamizhselvi, R., and Munusami, P. (2019). Exploring the drug

resistance mechanism of active site, non-active site mutations and their

cooperative effects in CRF01_AE HIV-1 protease: molecular dynamics

simulations and free energy calculations. J. Biomol. Struct. Dyn. 37, 2608–2626.

doi: 10.1080/07391102.2018.1492459

Wan, Y. L., Tian, Y. F., Wang, W. J., Gu, S. X., Ju, X. L., and Liu, G. Y.

(2018). In silico studies of diarylpyridine derivatives as novel HIV-1 NNRTIs

using docking-based 3D-QSAR, molecular dynamics, and pharmacophore

modeling approaches. RSC Adv. 8, 40529–40543. doi: 10.1039/C8RA0

6475J

Wang, R., Xu, K., and Shi, W. (2019). Quinolone derivatives: potential

anti-HIV agent-development and application. Arch. Pharm. 352:e1900045.

doi: 10.1002/ardp.201900045

Wang, W. J., Tian, Y. F., Wan, Y. L., Gu, S. X., Ju, X. L., Luo, X.

G., et al. (2018). Insights into the key structural features of N1-ary-

benzimidazols as HIV-1 NNRTIs using molecular docking, molecular

dynamics, 3D-QSAR, and pharmacophore modeling. Struct. Chem. 30,

385–397. doi: 10.1007/s11224-018-1204-3

Yang, Y., Kang, D. W., Nguyen, L. A., Smithline, Z. B., Pannecouque, C., Zhan,

P., et al. (2018). Structural basis for potent and broad inhibition of HIV-1

RT by thiophene[3,2-d]pyrimidine non-nucleoside inhibitors. Elife 7:e36340.

doi: 10.7554/eLife.36340

Zhan, P., Liu, X. Y., and Li, Z. Y. (2009). Recent advances in the discovery and

development of novel HIV-1 NNRTI platforms: 2006-2008 update. Curr. Med.

Chem. 16, 2876–2889. doi: 10.2174/092986709788803231

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Chen, Tian, Gao, Wu, Luo, Ju and Liu. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Chemistry | www.frontiersin.org 17 March 2020 | Volume 8 | Article 164392

https://doi.org/10.1007/BF00124364
https://doi.org/10.1016/j.jmgm.2010.08.005
https://doi.org/10.2174/092986711794839142
https://doi.org/10.1038/srep42717
https://doi.org/10.3390/jpm8010001
https://doi.org/10.1073/pnas.0711209105
https://doi.org/10.1155/2012/586401
https://doi.org/10.1039/C9NJ03353J
https://doi.org/10.1016/j.ejmech.2019.04.054
https://doi.org/10.1016/j.jmgm.2013.12.008
https://doi.org/10.1021/acs.jmedchem.7b00332
https://doi.org/10.1021/acs.jmedchem.6b00738
https://doi.org/10.1021/acs.jmedchem.8b01656
https://doi.org/10.1016/j.jmgm.2010.02.004
https://doi.org/10.1016/j.chemosphere.2013.09.002
https://doi.org/10.1016/j.jtice.2019.03.018
https://doi.org/10.1007/s11030-018-9860-1
https://doi.org/10.3390/ijms19051436
https://doi.org/10.1016/j.drudis.2011.10.023
https://doi.org/10.1021/jm300687e
https://doi.org/10.1021/acs.jmedchem.8b00843
https://doi.org/10.1016/j.chemolab.2011.03.011
https://doi.org/10.1016/j.chemolab.2016.01.008
https://doi.org/10.1080/07391102.2018.1492459
https://doi.org/10.1039/C8RA06475J
https://doi.org/10.1002/ardp.201900045
https://doi.org/10.1007/s11224-018-1204-3
https://doi.org/10.7554/eLife.36340
https://doi.org/10.2174/092986709788803231
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


ORIGINAL RESEARCH
published: 03 April 2020

doi: 10.3389/fchem.2020.00235

Frontiers in Chemistry | www.frontiersin.org 1 April 2020 | Volume 8 | Article 235

Edited by:

Teodorico Castro Ramalho,

Universidade Federal de Lavras, Brazil

Reviewed by:

Cheng Fang,

Biogen Idec, United States

Daniel Henriques Soares Leal,

Federal University of Itajubá, Brazil

*Correspondence:

Paula Homem-de-Mello

paula.mello@ufabc.edu.br

Kathia Maria Honorio

kmhonorio@usp.br

Specialty section:

This article was submitted to

Theoretical and Computational

Chemistry,

a section of the journal

Frontiers in Chemistry

Received: 27 September 2019

Accepted: 11 March 2020

Published: 03 April 2020

Citation:

do Carmo AL, Bettanin F, Oliveira

Almeida M, Pantaleão SQ,

Rodrigues T, Homem-de-Mello P and

Honorio KM (2020) Competition

Between Phenothiazines and BH3

Peptide for the Binding Site of the

Antiapoptotic BCL-2 Protein.

Front. Chem. 8:235.

doi: 10.3389/fchem.2020.00235

Competition Between
Phenothiazines and BH3 Peptide for
the Binding Site of the Antiapoptotic
BCL-2 Protein
Aline Lagoeiro do Carmo 1, Fernanda Bettanin 2, Michell Oliveira Almeida 3,

Simone Queiroz Pantaleão 1, Tiago Rodrigues 1, Paula Homem-de-Mello 1* and

Kathia Maria Honorio 1,2*

1Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil, 2 Escola de Artes, Ciências e

Humanidades, Universidade de São Paulo (USP), São Paulo, Brazil, 3 Instituto de Química de São Carlos, Universidade de

São Paulo (USP), São Paulo, Brazil

The study of proteins and mechanisms involved in the apoptosis and new knowledge

about cancer’s biology are essential for planning new drugs. Tumor cells develop several

strategies to gain proliferative advantages, including molecular alterations to evade from

apoptosis. Failures in apoptosis could contribute to cancer pathogenesis, since these

defects can cause the accumulation of dividing cells and do not remove genetic variants

that have malignant potential. The apoptosis mechanism is composed by proteins

that are members of BCL-2 and cysteine-protease families. BH3-only peptides are

the “natural” intracellular ligands of BCL-2 family proteins. On the other hand, studies

have proved that phenothiazine compounds influence the induction of cellular death. To

understand the characteristics of phenothiazines and their effects on tumoral cells and

organelles involved in the apoptosis, as well as evaluating their pharmacologic potential,

we have carried out computational simulation with the purpose of relating the structures

of the phenothiazines with their biological activity. Since the tridimensional (3D) structure

of the target protein is known, we have employed the molecular docking approach to

study the interactions between compounds and the protein’s active site. Hereafter, the

molecular dynamics technique was used to verify the temporal evolution of the BCL-2

complexes with phenothiazinic compounds and the BH3 peptide, the stability and the

mobility of these molecules in the BCL-2 binding site. From these results, the calculation

of binding free energy between the compounds and the biological target was carried out.

Thus, it was possible to verify that thioridazine and trifluoperazine tend to increase the

stability of the BCL-2 protein and can compete for the binding site with the BH3 peptide.

Keywords: apoptosis, cancer, BCL-2, BH3, phenothiazines, docking, molecular dynamics, binding free energy

calculations

INTRODUCTION

Apoptosis is a highly regulated form of programmed cell death occurring physiologically in living
organisms. However, alterations and defects in this process are also involved in the pathogenesis
of several diseases, such as cancer, AIDS, Parkinson and Alzheimer diseases, amyotrophic lateral
sclerosis and others (Thompson, 1995). Apoptotic cells exhibit morphological alterations, including
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plasma membrane blebbing, chromatin condensation,
internucleosomal DNA, and formation of apoptotic bodies.
Such features result from the action of complex machinery,
involving the regulation and execution by BCL-2 family
proteins and also by cysteine proteases (initiator or executioner
caspases) (Kalkavan and Green, 2018). Particularly regarding
cancer, the unlimited proliferative capacity of tumor cells is
due to several genetic and molecular alterations, including
mechanisms for evading apoptosis (Brown and Attardi, 2005;
Hanahan and Weinberg, 2011). One of these mechanisms is
the altered expression and function of pro- and antiapoptotic
members of B-cell lymphoma-2 (BCL-2) family proteins, directly
involved with tumorigenesis and tumor progression/malignance
(Coustan-Smith et al., 1996; Gobé et al., 2002). Thus, there are a
plenty of molecular studies and clinical trials in course to target
BCL-2 proteins to cancer therapy (Adams et al., 2019).

The BCL-2 family is currently divided in proapoptotic
members, including BAX and BAK, antiapoptotic members, such
as BCL-2, BCL-xL, and MCL-1, and BH3-only proteins (BIM,
BID, PUMA, NOXA, and others), which are potent activators
of apoptosis (Letai et al., 2002; Youle and Strasser, 2008).
Structural characteristics are defined by sequence homology
analysis, which allowed identifying four domains (BH1-BH4)
involved in protein-protein interactions among members of the
BCL-2 family. A hydrophobic slit is formed by BH1, BH2,
and BH3 domains, which participates in the uptake of the
BH3 domain of pro-apoptotic proteins via heterodimerization;
the BH4 domain is present in antiapoptotic activity. The
BH3-only proteins just possess the BH3 motif. There are
complex interactions among the BCL-2 family members, which
comprise a regulatory mechanism of control of cell fate in
response to different stimuli. The recruitment of proapoptotic
by antiapoptotic proteins occurs through the interaction between

FIGURE 1 | Antiapoptotic BCL-2 protein domains (PDB_ID: 2O22): BH1

(green), BH2 (blue), BH3 (orange), BH4 (red).

the highly conserved helical BH3 domain of the proapoptic
protein and a binding groove in the antiapoptotic protein.
Considering the homology and structural similarities with
the BH3 domain of proapoptotic proteins, BH3-only proteins
interact with the binding groove, releasing the proapoptotic
proteins and neutralizing the antiapoptotic proteins. In this
scenario, BH3-only members have a crucial role in the initiation
of apoptotic cell death, since they can bind to the specific domains
in anti- or proapoptotic BCL-2 proteins (Lomonosova and
Chinnadurai, 2008). It was proposed that BH3-only members
can activate directly proapoptotic BAX and BAK. Also, the
interaction of BH3-only proteins with antiapoptotic BCL-2
members can disrupts their inhibitory interaction with the
proapoptotic members triggering apoptosis (Du et al., 2011;
Shamas-Din et al., 2011). As a result, the comprehension of the
interaction of BH3-only proteins with other BCL-2 members
acting as apoptosis activators resulted in the development of
BH3-only mimetic molecules as a strategy to cancer therapy
(Merino et al., 2018; Ewald et al., 2019).

Currently, chemicals are under development to inhibit the
interactions of pro-apoptotic proteins with the hydrophobic
slit of the antiapoptotic protein BCL-2, enabling the imitation
of the action of pro-apoptotic proteins with the BH3 domain
(Degterev et al., 2001; Delbridge and Strasser, 2015; Zacarías-
Lara et al., 2016). Thus, proposals for small molecule interactions
with BCL-2 proteins have enabled the development of cancer
therapies, including BH3 domain mimetic molecules that bind to
the BH3 binding domain in antiapoptotic BCL-2 members such
as BCL-2 and BCL-xL (Figure 1 PDB ID: 2O22). As example
of these compounds, one may cite ABT-737, navitoclax (ABT-
263), obatoclax mesylate (GX15-070), venetoclax (ABT-199), and
gossypol and its derivatives (the structures of these compounds
are presented in Figures S1A–E) (Oltersdorf et al., 2005; Bajwa
et al., 2012; Souers et al., 2013; Pan et al., 2014; Kalkavan
and Green, 2018). Thus, several studies are being conducted
to identify novel small molecules or peptides able to act as
BH3-only mimetics.

In this regards, a class of substances that has potential
against BCL-2 refers to phenothiazines (Figure 2), as interactions
between these compounds and BCL-2 protein may be favored
due to the presence of a polycyclic ring system and different
substituents modulating the BCL-2 biological activity. The
ability of phenothiazines to interact with hydrophobic slits

FIGURE 2 | Chemical structure of thiazine nucleus.
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FIGURE 3 | Sequence of methods applied to study the interactions of phenothiazines and the BH3 peptide with BCL-2 protein.

was previously shown by the interactions of thioridazine with
putative binding sites of human thioredoxin 1 (Philot et al.,
2016). The interaction between phenothiazines and biological
membranes occurs because there is amphipathic character of the
molecules. The thiazine nucleus is relatively hydrophobic and
its side chain can be hydrophilic and even positively charged
depending on the pH of the environment (Homem-de-Mello
et al., 2005, 2007; Rodrigues et al., 2006; Perussi, 2007; Rodrigues,
2007; Bettanin et al., 2015; de Faria et al., 2015; Nuñez et al., 2015).
Additionally, it has been shown that antipsychotic phenothiazine
derivatives possess potent cytotoxicity against several types of
tumor cells by triggering of apoptosis, with involvement of
mitochondrial permeabilization (de Faria et al., 2015; de Mello
et al., 2016; Wu et al., 2016; Chu et al., 2019).

Thus, considering that drug design methods have been
employed to understand the interactions between small
molecules and biological targets, a study via computational
techniques and experimental data of BCL-2 and antipsychotic
phenothiazine derivatives was developed applying drug design
methods to describe a relationship between chemical structure
and biological activity of the selected compounds to propose new
drug candidates. Bioinformatics tools were used to characterize
possible binding sites and regions for anchoring compounds
to the target protein (BCL-2). Molecular docking was also
employed to identify the interactions of phenothiazines with the
BCL-2 antiapoptotic protein, as well as comparing these results
with the interactions of BCL-2 with the BH3 peptide.

MATERIALS AND METHODS

The workflow used to study the interactions between
phenothiazines (and the BH3 peptide) and BCL-2 protein
is presented in Figure 3.

To study the relationship between chemical structure and
biological activity, as well as evaluating the interactions between
bioactive ligands and biological targets, molecular modeling tools
can be employed to plan new drug candidates (Andricopulo

et al., 2009; Sant’Anna, 2009). The strategy employed in this
work is known as Structure-BasedDrugDesign (SBDD), in which
three-dimensional biological receptor structures (obtained from
experimental techniques such as X-ray diffraction or nuclear
magnetic resonance) are used to propose ligand modifications
to improve target affinity and specificity (Andricopulo et al.,
2009). In this study, the BCL-2 structures obtained from X-
ray and nuclear magnetic resonance (NMR), available in the
PDB database (PDB_ID: 1YSW, 2O2F, 2O21, 2O22, 2W3L,
4AQ3, 4IEH, 4LVT, 4LXD, 4MAN, 5AGW, 5AGX, 5JSN) were
compared to verify significant differences by aligning these
structures (Figure S2). The overlap of the structures (Figure S3)
was performed in the MUSTANG v3.2.2—Multiple Structural
Alignment Algorithm program (Konagurthu et al., 2006).

Given this set of alo-protein structures, multiple alignment
was obtained using the Cα atom spatial information with the
following steps: (I) calculation of root-mean-square deviation
(RMSD) taking into account the distances between the Cα atoms
for all structures to detect similar substructures between two
structures and obtain a quality value for each possible residue-
residue match between the two structures; (II) compute the
scores of the corresponding residue-residue pairs; (III) structural
alignments in pairs; (IV) recalculation of the scores of the
corresponding residue-residue pairs in the context of multiple
structures; (V) progressive alignment by using the Mustang
algorithm (Konagurthu et al., 2006).

Some sequence failures were observed in all BCL-2 structures,
so we have selected the structure obtained via NMR (PDB ID:
2O22) (Bruncko et al., 2007; Rose et al., 2018) because it preserves
the loop region. Moreover, besides it is an uncut structure,
the backbone alignment is similar to the X-ray structures
(Figures S2, S4).

After choosing the more suitable 3D structure, a study was
performed to detect the possible binding sites of human BCL-2,
followed by the characterization of these regions, using FTSite
(Brenke et al., 2009; Ngan et al., 2012; Kozakov et al., 2015)
and FTMap (Brenke et al., 2009; Kozakov et al., 2011, 2015;
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FIGURE 4 | Structure of phenothiazine derivatives analyzed in this study. (A) thioridazine; (B) triflupromazine; (C) chlorpromazine; (D) trifluoperazine, and (E)

fluphenazine.

Bohnuud et al., 2012). FTMap is a server that identifies regions
in the macromolecule that have important contributions to the
ligand-binding free energy (hot spots). For this, the FTMap
algorithm uses 16 probe molecules (Table S1) with different
shapes, sizes and polarities, which run across the entire surface
of the protein looking for the best “positions” for these probes.
FTMap is capable of sampling billions of positions for the probe
molecules, as well as clustering and ranking them according to
an average energy. Consensus sites (CS) are generated, which
can be defined as regions at the macromolecule that bind
clusters containing different probemolecules, suggesting possible
binding hot spots. It is important to highlight that FTMap serves
as basis for other algorithms, for example, FTSite that is used
to identify ligand binding sites. The main idea of FTSite is
ranking the consensus clusters based on the number of non-
bonded interactions between the protein and all probe molecules
contained in the consensus cluster. So, the amino acid residues
interacting with the probe molecules in the top ranked consensus
cluster are considered as a possible binding site.

In addition, to better understand the main protein-
phenothiazine interactions, the protein hydrophobicity surface
was obtained using the UCSF Chimera 1.12 (Pettersen et al.,
2004).

The phenothiazine derivatives studied here include
thioridazine, triflupromazine, chlorpromazine, trifluoperazine,
and fluphenazine (Figure 4), which yield relevant in vitro
cytotoxicity in hepatoma HTC cells (de Faria et al., 2015).

From molecular docking simulations, information on the
interaction mode and physicochemical characteristics that affect
the affinity of the ligand for the macromolecule is obtained
(Wang et al., 2004; Sanchez-Linares et al., 2012). Molecular
docking study was performed targeting BCL-2 protein and

phenothiazine compounds using the AutoDock Vina 1.5.7. For
this, we employed the BCL-2 crystallographic structure (PDB
2O22) with the maximum generation of 10 conformations of
each compound. The following parameters were employed in the
docking simulations: grid center_x = 4.255, center_y = 1.45,
center_z = −5.0, size_x = 25, size_y = 3 and size_z = 34,
and exhaustiveness = 20. To validate the docking procedure,
redocking analyses were performed in order to recover the
original position of the ligand found in the 3D structure of the
biological target (Moraes and de Azevedo, 2010).

Visual inspection of the best ligand poses at the target binding
site was performed using the PyMOL 2.0, also analyzing the
RMSD values calculated by the UCSF Chimera 1.12 and the
representation of interactions provided by the Poseview server. It
is noteworthy that the RMSD value refers to the average deviation
of atoms of an initial structure from the proposed structures and
generally the fit is considered successful if the value is below 2.0
Å (Verdonk et al., 2003).

In addition to the AutoDock Vina program, the Achilles
Blind Docking server was used to verify molecular interactions
in various regions of BCL-2, corroborating the molecular
interactions established by phenothiazines in hot spots, where
ligands can potentially interact (Brenke et al., 2009; Sanchez-
Linares et al., 2012; Kozakov et al., 2015).

For molecular docking and analysis of the interactions
between BCL-2 and the BH3 domain, the GalaxyPepDock server
was used to analyze protein-protein interactions and better
understand cell functions and organization (Lee et al., 2015).
In this approach, one of the proteins (or receptor) refers to the
origin of the fixed grid coordinate system, and the second protein
(or ligand) is defined in a movable grid; interaction energy is
defined as a scoring function (Kozakov et al., 2017). To verify the
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accuracy of the GalaxyPepDock server, redocking analyses with
calculation of RMSD values was performed.

The best poses generated by each docking program were
selected based on the interactions and binding energies that
were generated by the scoring functions, in order to complement
the analysis of interactions obtained from the BINANA 1.2.0.
This one is able to characterize hydrogen bonding, hydrophobic
contact, close contacts, electrostatic interactions, π interactions
and salt bridge between receptor—ligand.

After the molecular docking analyses for the five ligands and
the BH3 peptide interacting with BCL-2, the next step to be
carried out was the preparation of the systems for molecular
dynamics (MD) simulations from the calculation of restrained
electrostatic potential charges (Wang et al., 2000) of each ligand
(from the conformations obtained from molecular docking). For
this, we used the Hartree-Fock methodology (Echenique and
Alonso, 2007), as implemented in Gaussian09 (Frisch et al.,
2009), with 6-31G* basis set (Ditchfield et al., 1971).

Afterwards, the next step related to the preparation of the
systems was the solvent box analysis for the target. In this step,
we aim to establish the most suitable solvent box for the BCL-2
protein, where the visual analysis was performed in Chimera 1.62

(Pettersen et al., 2004) and the chosen parameters were: periodic
octahedral box with a distance of 12 Å between the target and the
walls of the box.

From the obtained solvent parameters, the next steps involved
in the preparation of the six systems for theMD simulations were:
(I) preparation of the topology of the five phenothiazines in the
Antechamber module implemented in Ambertools 12 (Salomon-
Ferrer et al., 2013) using the RESP charges (charges for BH3
peptide were obtained from the force field); (II) insertion of
the FF99SB force field for the coordinates of the six complexes
with the Tleap program; (III) total charge calculation of the six
systems (the total charge obtained for the six complexes was −9,
so 9 sodium ions were inserted to neutralize the system); (IV)
inclusion of TIP3P-type water molecules to fill the simulation
box; (V) preparation of MD scripts: isothermal-isobaric or NPT
ensemble, Langevin thermostat (ntt = 3) and Monte Carlo
barostat (Case et al., 2012).

Simulations were then performed following the following
steps: (i) four minimizations to eliminate very close contacts
between atoms; in the first minimization, the system was kept
fixed (without degrees of freedom); in the second and third
simulations, only ligands and peptide were kept fixed and in

FIGURE 5 | Representation of the BH1-BH4 domains with the presence of the binding sites detected from FTSite and the coupling of probe molecules (in clusters) by

the FTMap server produced in the PyMOL 2.0 program: (A) the three binding sites with their respective probes; (B) Site 1: residues (light pink) with FTSite probes (light

pink mesh) and 001 cluster probes (pink); (C) Site 2: residues (green) with FTSite probes (green mesh) and 002 cluster probes (yellow) and (D) Site 3: residues (blue)

with FTSite probes (blue mesh) and 000 cluster probes (light blue).
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the last minimization, the whole system was free; (ii) heating
(thermal bath) from 0 to 300K, and a time period of 0.5
ns; the purpose of this step was to control the temperature
and adjust the kinetic energy of the system; (iii) 10 ns for

FIGURE 6 | (A) Hydrophobicity surface from Kyte and Doolittle (1982)

(Table S2): hydrophobic orange-red; neutral white; hydrophilic blue, obtained

from UCSF Chimera 1.12 with the crystallographic ligand of protein BCL-2

(PDB_ID: 2O22); (B) Representation of the domains: BH1 (green), BH2 (blue),

BH3 (orange), BH4 (red), and binding site 1 (pink) and site 2 (green) in the

human BCL-2 enzyme - crystallographic structure (PDB_ID: 2O22).

equilibration of the system, and it is finalized with the thermal
equilibrium of the system; (iv) production step to obtain time
subtrajectories. In this final step, the system moves freely and,
in addition to simulating thermodynamic properties, a lower
energy conformation is obtained for each system under study.
This last step was performed over a time period of 100 ns; (v)
subtrajectory RMSD value analysis (trajectory stability analysis);
(vi) analysis of root-mean-square fluctuation (RMSF) values
in order to verify the fluctuations that occur between BCL-2
residues in the presence of the ligands.

Finally, SIE (Solvated Interaction Energy) methodology was
employed to estimate the binding free energy related to the
ligand-receptor complex by applying the boundary element
method (BEM) to solve the Poisson-Boltzmann equation. This
method also uses implicit solvation in the study of protein-ligand
complexes (Naïm et al., 2007; Silva et al., 2016). For this, SIE was
used in this study to estimate the binding free energy between
BCL-2 and the five phenothiazine derivatives, or the BH3 peptide,
from the most stable subtrajectories generated by the MD
simulations. Thus, for the SIE method to be implemented, the
following steps were performed: (I) solvent removal using the
cpptraj program, generating a file without periodic solvation
coordinates (SIE uses implicit solvation); (II) elaboration of the
file containing the initial and final coordinates of the dynamics
trajectory; (III) choice of frame range over start and end frames
(each sub-trajectory of molecular dynamics has 500 frames),

FIGURE 7 | (A) Representation of the BH1-BH4 domains with the presence of the site 2 detected from FTSite and the molecular docking of thioridazine, piperidine

subclass, EC50 = (45.5 ± 1.0) µmol.L−1, performed at AutoDock Vina 1.5.7. Representation of hydrogen bonding (red) from the molecular docking performed in

AutoDock Vina 1.5.7, (B) in the Achilles Blind Docking Server, (C) and the additional interactions and/or confirmed by BINANA 1.2.0.
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from frame 1 to 250; (IV) specify the number of atoms of the
target, the five ligands and the peptide; (V) output file definition
(sie.log), which contains the results obtained; (VI) calculations by
the SIETRAJ program and analysis of the estimated free energy
values for the six complexes (BCL-2+ phenothiazines and BCL-2
+ BH3 peptide).

RESULTS AND DISCUSSION

Structural Analysis of BCL-2 Structure
Three binding site candidates were located on the BCL-2
protein (PDB_ID: 2W3L) using the FTSite and FTMap servers.
The detected sites have the following residues: site 1—Phe101,
Tyr105, Asp108, Phe109, Met112, Leu134, Ala146, Phe147,
Glu149, Phe150; site 2—Leu94, Ala97, Gly98, Asp100, Phe101,
Trp141, Gly142, Ile144, Val145, Phe195, Tyr199; e site 3—Arg10,
Val13, Met14, Trp28, Ala30, Gly31, Asp168, Ala171, Leu172 e
Thr175. Different probe molecules were used to determine which
had the highest affinity for each binding site. The results indicate
that the three sites have affinity for polar molecules, hydrogen
bond donors and acceptors, hydrophobic and aromatic groups.
The representation of the detected binding sites containing the
clusters of probe molecules according to the affinity of the
molecular interaction on the protein is illustrated in Figure 5A.
Some probes may also have small contacts with the protein or be
in small buried sites, but large CSs occur at the binding site hot
spots, also depicted in Figure 5A, where the FTMap probes are
not in place connection sites determined by FTSite. Residues of
the sites 1, 2, and 3 are also shown in Figures 5B–D, respectively.

The hydrophobicity scale of the BCL-2 protein was used
to complement the results obtained from FTMap and FTSite.
Figure 6 indicates that the crystallographic ligand interacts with
the sites 1 and 2 due to its structural size and hydrophobic
characteristics. In order to understand the position and the

FIGURE 8 | Representation of BCL-2 protein residues with BH3 peptide

obtained from molecular docking performed in the GalaxyPepDock server with

additional interactions, confirmed by BINANA 1.2.0.

TABLE 1 | Description on the interactions between the main residues of BCL-2

and phenothiazines.

AutoDock Vina 1.5.7 Achilles blind docking server

Residue Interaction Residue Interaction

Chlorpromazine

Ala97 Hydrogen Bond Ala97 Hydrophobic contact

Asp100 Salt Bridge Asp100 Salt bridge

Phe101 Hydrophobic contact Phe101 Hydrophobic contact

Arg104 Hydrophobic contact Arg104 Hydrophobic contact

Trp141 Hydrophobic contact Trp141 Hydrophobic contact

Val145 Hydrophobic contact Val145 Hydrophobic contact

Phe195 π-stacking Phe195 Hydrophobic contact

Tyr199 Hydrophobic contact

Triflupromazine

Gln96 Hydrophobic contact Leu94 Hydrophobic contact

Ala97 Hydrophobic contact Ala97 Hydrophobic contact

Asp100 Hydrophobic contact Phe101 Hydrophobic contact

Phe101 Hydrophobic contact Trp141 Hydrophobic contact

Arg104 Cation-π Val145 Hydrophobic contact

Val145 Hydrophobic contact Phe195 Cátion-π

Phe195 Hydrophobic contact Tyr199 π-stacking

Tyr199 Hydrogen Bond

Pro201 Hydrophobic contact

Fluphenazine

Ala97 Hydrophobic contact Gln96 Hydrophobic contact

Asp100 Hydrophobic contact Ala97 Hydrophobic contact

Phe101 Hydrophobic contact Asp100 Hydrophobic contact

Arg104 Cátion-π Phe101 Hydrophobic contact

Tyr105 Hydrophobic contact Arg104 Hydrophobic contact

Gly142 Hydrogen Bond Val145 Hydrophobic contact

Phe195 Hydrophobic contact Pro201 Hydrophobic contact

Tyr199 π-stacking Ser202 Hydrogen Bond

Trifluoperazine

Leu94 Hydrogen bond Thr93 Hydrophobic contact

Ala97 Hydrogen bond Leu94 Hydrophobic contact

Asp100 Salt bridge Gln96 Hydrophobic contact

Phe101 Hydrophobic contact Ala97 Hydrophobic contact

Arg104 Hydrophobic contact Phe101 Hydrophobic contact

Trp141 Hydrophobic contact Arg104 Hydrophobic contact

Val145 Hydrophobic contact Trp141 Hydrophobic contact

Phe195 π-stacking Val145 Hydrophobic contact

Tyr199 Hydrogen Bond Phe195 Hydrophobic contact

Tyr199 Hydrophobic contact

Thioridazine

Thr93 Hydrophobic contact Gln96 Hydrophobic contact

Gln96 Hydrophobic contact Ala97 Hydrophobic contact

Ala97 Hydrophobic contact Asp100 Hydrophobic contact

Asp100 Hydrophobic contact Arg104 Hydrophobic contact

Trp141 Hydrophobic contact Val145 Hydrophobic contact

Gly142 Hydrophobic contact Phe195 Hydrophobic contact

Val145 Hydrophobic contact Tyr199 Hydrophobic contact

Phe195 Hydrophobic contact Pro201 Hydrophobic contact

Tyr199 π-stacking and hydrogen Bond
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interactions of phenothiazines with BCL-2, molecular redocking
was required.

Next, the molecular docking procedure was performed
with the maximum number of poses to be generated at the
defined binding site. Thus, the ligand structure found in the
tridimensional structure of BCL-2 was superimposed with the
ligand pose obtained via molecular docking (Figure S5). This
overlap generated a RMSD value of 1.327 Å, indicating that the
parameters used for the redocking analysis reliably reproduce
the experimental conformation of the ligand and can be used
to dock the phenothiazine derivatives. An analysis of the images
generated by the Poseview program shows that the interactions
of the ligand (via redocking) with BCL-2 protein are very similar
to those observed in the experimental structure (Figure S6).

Molecular Docking
Once the parameters were validated from the redocking
analyses, molecular docking studies between BCL-2 and
phenothiazine derivatives were performed. It is noteworthy that,
according to the experimental data (de Faria et al., 2015),
it is possible to establish the following ascending order for
cytotoxicity: chlorpromazine < triflupromazine < fluphenazine
< trifluoperazine < thioridazine.

The interaction of themost cytotoxic phenothiazine derivative
thioridazine with BCL-2 is depicted in Figure 7 (docking
data for the other phenothiazine derivatives are presented
in Figures S7–S10). In addition, considering the possible
competition between a BH3-only peptide and the thioridazine
for BCL-2 binding site, the interaction of BCL-2 and a BH3
domain was evaluated. The docking results considering the
interaction between BCL-2 and the BH3 domain obtained from
the GalaxyPepDock server are presented in Figure 8. Validation
of the docking procedure between BCL-2 and BH3 peptide
resulted in a satisfactory RMSD (root-mean-square deviation)

value of 1.962 Å and preservation of the alpha helix structure
(Figure S11).

From the docking results, it was possible to verify that
phenothiazine derivatives showed similar interactions at BCL-2
protein, since we can see that the thiazine nucleus is located at
the site 2 recognized by the FTSite server, which has favorable
affinities by aromatic and hydrophobic groups.

Both strategies employed to predict the interactions between
phenothiazines and BCL-2 are in reasonable agreement with
regard to energies and interactions, as can be seen in Tables 1, 2.
The ligand-target complexes obtained from the AutoDock Vina
program proved to be adequate and confirmed by the Achilles

TABLE 3 | Description of the interactions between BCL-2 residues and the BH3

peptide.

GalaxyPepDock Server

Residue Interaction

Asp100 Hydrophobic contact

Phe101 Hydrophobic contact

Ser102 Hydrophobic contact

Arg103 Hydrophobic contact

Arg104 Hydrophobic contact

Tyr105 Hydrophobic contact

Arg106 Hydrophobic contact

Arg107 Hydrogen Bond and Salt Bridge

Asp108 Hydrophobic contact

Phe109 Hydrophobic contact

Ala110 Hydrophobic contact

Glu111 Hydrophobic contact

Met112 Hydrophobic contact

Ser114 Hydrophobic contact

Gln115 Hydrophobic contact

TABLE 2 | EC50 values (± 1.0 µmol.L−1 ), interaction energies (kcal.mol−1 ) and number (#) of interactions obtained from AutoDock Vina and Achilles Blind Docking for

phenothiazines and BCL-2.

Chlorpromazine Triflupromazine Fluphenazine Trifluoperazine Thioridazine

EC*
50 125.3 105.9 63.2 56.2 45.5

AutoDock Vina 1.5.7 Interaction energy

(kcal.mol−1 )

−6.4 −6.6 −6.6 −7.1 −6.0

#hydrophobic contacts 4 7 5 4 8

#hydrogen bonds 1 1 1 3 1

# π-stacking 1 0 1 1 1

#other interactions** 1 1 1 1 0

Total #interactions 7 9 8 9 10

Achilles Blind Docking Energy (kcal.mol−1 ) −6.3 −7.1 −7.4 −7.5 −6.8

#hydrophobic contacts 7 5 7 10 8

#hydrogen bonds 0 0 1 0 0

# π-stacking 0 1 0 0 0

# other interactions** 1 1 0 0 0

Total #interactions 8 7 8 10 8

*(de Faria et al., 2015).

**salt bridge or cation- π.
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FIGURE 9 | RMSD values of BCL-2 in the apo form (black), BCL-2 with thioridazine (red) and 3D conformation obtained from the clustering of all structures obtained

from the MD simulation.

FIGURE 10 | RMSD values of BCL-2 in the apo form (black), BCL-2 with the BH3 peptide (red) and 3D conformation obtained from the clustering of all structures

obtained from the MD simulation.

Blind Docking Server, and then, they were used for the molecular
dynamics simulations. Themain interactions between BCL-2 and
the BH3-only peptide are displayed in Table 3, and we can see
that the main interactions observed were hydrophobic contacts.
This simulation was possible only with the GalaxyPepDock
Server, which is specific to identify protein-peptide interactions.

Through the analysis of the bioactive conformations obtained
from both programs, it was observed that the thiazine nucleus
present in the studied ligands showed affinity by BCL-2, possibly
due to the presence of aromatic and hydrophobic groups,
which was also suggested by the FTSite server. In order to
understand dynamic and energetic factors involved in the
interaction between the phenothiazines and BCL-2, molecular
dynamics simulations and calculations of binding free energy
(1G) were performed.

Molecular Dynamics
From the molecular docking between phenothiazines and BCL-
2 (and between the peptide BH3 and BCL-2), the possible
conformations of the phenothiazine derivatives and, additionally
the BH3 peptide to evaluate competition, were chosen to perform
MD simulations. Then, after the end of the simulations, the
RMSD plots were generated from the Cpptraj platform (Amber
12). This analysis was performed to verify the temporal evolution
of the complexes BCL-2 + phenothiazines and BCL-2 + BH3,
as well as the stability and the mobility of the formed systems.
MD simulations were also performed with the apo BCL-2 target
(no ligand at its binding site) and, in addition to the RMSD
plots, the structures observed along 100 ns of MD simulations
were clustered for all complexes and the protein in the form apo
using Chimera 1.13.1. Figures 9, 10 show the RMSD plots for

Frontiers in Chemistry | www.frontiersin.org 9 April 2020 | Volume 8 | Article 235401

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


do Carmo et al. Phenothiazines, BH3 and Antiapoptotic BCL-2

FIGURE 11 | RMSF values of BCL-2 in the presence of (A) thioridazine and (B) BH3-only peptide.

the complexes formed by BCL-2 + thioridazine and BCL-2 +

BH3. The results obtained from theMD simulations for the other
phenothiazines are presented in Figures S12–S15.

From the RMSD plots for the BCL-2 trajectories, the five
phenothiazine compounds and the BH3 peptide, an analysis
of trajectory stability and mobility can be performed. Thus,
Figure 9 shows that thioridazine increases the level of stability
of the complex, because BCL-2 with this molecule coupled at
its binding site exhibits lower RMSD variations. The second
complex with the smallest variations is shown in Figure S12

(Supplementary Material—BCL-2 + trifluoperazine). These
two phenothiazine compounds have the lowest EC50 values
for cytotoxicity against HTC cells (45.5 ± 1.0 and 56.2 ± 1.0
µmol.L−1, respectively) and these results showed that BCL-2 has
greater stability in the presence of these two ligands. Compared
to other phenothiazine compounds (Figures S13–S15),
RMSD results show greater variations, i.e., suggesting that

fluphenazine, trifluopromazine and chlorpromazine decreased
the target stability.

With respect to the peptide BH3, Figure 10 shows that
the receptor exhibits smaller RMSD variations than for the
phenothiazines, suggesting that the peptide BH3 assists in
increasing the target stability. However, Figure 10 also shows that
BH3 is the ligand that exhibits greater variations in RMSD and
this can be explained by the size of this peptide relative to the
phenothiazine compounds.

When these RMSD values are compared with the apo form,
thioridazine and the BH3 peptide cause structural changes in the
BCL-2 target; however, when this receptor has the thioridazine
molecule in its binding site, the complex is more stable. It is also
noted that in all cases the RMSD variations for the receptors are
>4 Å and this can be explained by loops on the BCL-2 chains,
which increase their mobility. These results are corroborated by
the RMSF plots, which are displayed in Figure 11 for thioridazine
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TABLE 4 | Half maximal effective concentration (EC50) number of interactions

obtained with the different softwares (Total #interactions), binding free energy (1G)

and binding free energy divided by the number of interactions (1G/#interactions)

calculated for the six complexes (BCL-2 + phenothiazines and BCL-2 + BH3).

Ligand EC50

(± 1.0

µmol.L−1)*

Total

#interactions

(Vina/Achilles)

1G

(kcal.mol−1)

1G/

#interactions

(kcal.mol−1)

Vina Achilles

Thioridazine 45.5 10/8 −7.00 −0.70 −0.88

Trifluoperazine 56.2 9/10 −6.47 −0.72 −0.65

Fluphenazine 63.2 8/8 −5.51 −0.69 −0.69

Triflupromazine 105.69 9/7 −4.93 −0.55 −0.70

Chlorpromazine 125.3 7/8 −4.05 −0.58 −0.51

BH3 - 16** −12.81 −0.80

*de Faria et al. (2015).

** Obtained from Galaxy PepDock Server.

and the BH3 peptide, respectively. RMSF plots for the other
phenothiazines can be viewed in Figures S16–S19.

RMSF plots were generated in order to verify the flexibility
and the mobility of the backbone atoms at the complexes. The
plots show the different amplitudes of fluctuations in the apo
and holo forms (Figure 11A and Figure S16) and indicate that
the complexes with thioridazine and trifluoperazine have the
smallest fluctuations in the main residues, relative to the other
phenothiazine derivatives. It is also noted that there is a large
fluctuation of residues in the loop regions. For the BH3 peptide
(Figure 11B), the fluctuations of the amino acid residues are
smaller, confirming the RMSD values. Some loop regions of
both BCL-2 and the peptide structure show higher fluctuations,
suggesting that the peptide is more mobile compared to other
compounds because it has a larger number of atoms in its
structure and has side chains and a loop.

Therefore, from the results obtained from MD simulations
(RMSD and RSMF values) it was possible to verify that
thioridazine and trifluoperazine tend to increase the stability
of the BCL-2 protein. From Figure 11, we can also verify the
alignment of the conformations generated after the clustering,
the differences in the fluctuations of the apo-BCL-2 residues and
the complexes (BCL-2 + ligands). Thus, from these results, the
next step of this work involved the calculation of the binding free
energy between BCL-2 and the phenothiazine derivatives or the
BH3-only peptide using the SIE method.

Free Energy Calculation via SIE Method
After choosing the sub-trajectories that presented the smallest
variations (from RMSD values derived from MD simulations),
it was possible to estimate the binding free energy (1G) of BCL-
2 and the molecules under study, using the SIE method. These
simulations were performed in order to analyze the stability
of BCL-2 in relation to the six ligands. Thus, the 1G values
calculated by the SIE method are presented in Table 4.

The EC50 values of phenothiazines were directly proportional
to the binding 1G values. The interaction of BCL-2 with
thioridazine has a 1GSIE value of −7.00 kcal.mol−1, while

chlorpromazine (the highest EC50 value) has the lowest binding
free energy value when interacts with BCL-2 (−4.05 kcal.mol−1).
As expected from its physiological role, the1G value for the BH3
peptide was the highest (−12.81 kcal.mol−1) that corroborates
the RMSD/RSMF analysis and reinforces that BCL-2 presents a
strong interaction with the peptide, increasing its stability.

The results obtained from the SIE method also showed
that thioridazine and trifluoperazine could inhibit the target
BCL-2, just like BH3 peptide, because complexes are favorable
and stable since its 1G values are the most negative. Since
most of the interactions between ligands and protein are
hydrophobic, one can estimate the free energy of interaction
per site (1G/#interactions in Table 4) by combining SIE free
energies and the number of interactions obtained from docking.
This analysis is proposed here since the molecules are smaller
than the peptide, and so are the number of possible interactions.
Then, if one ligand can interact in the same intensity per site
of interaction as BH3 peptide, this ligand can compete for the
binding site. Of course, this is a simplistic analysis because each
interactionmay be stronger or weaker, but it is insightful to verify
that thioridazine and trifluoperazine have interaction energy per
binding site comparable to BH3 peptide.

CONCLUSIONS

From this study on the BCL-2 protein (involved in the
apoptosis process) and some phenothiazine derivatives that
have pharmacological properties, we can concluded that
phenothiazines may compete with pro-apoptotic proteins. These
results were obtained frommolecular docking, RMSD and RMSF
values and binding free energy.

Docking simulations were important to understand the main
interactions between the target (BCL-2) and the phenothiazine
compounds. RMSD results for the complex formed between
BCL-2 and the two most active phenothiazine compounds
(thioridazine and trifluoperazine) suggest that BCL-2 has a
higher stability in the presence of these two ligands. Compared
to other phenothiazine compounds, RMSD results show
greater variations, i.e., the results suggest that fluphenazine,
triflupromazine and chlorpromazine decrease the target
stability. RMSF plots for the trajectories of BCL-2 and the
five phenothiazine compounds showed that thioridazine and
trifluoperazine have the smallest fluctuations considering the
major residues compared to other phenothiazine compounds.

The binding free energy between BCL-2, the phenothiazine
compounds and the BH3 peptide was calculated using the SIE
method and the results obtained indicated that the phenothiazine
compounds with lower EC50 values presented greater affinity
(measured by means of 1G). The net binding energy for BH3
peptide is larger than the net binding energy obtained for the
phenothiazines, since BH3 is a larger compound, with many
different points for interaction with BCL-2. Moreover, BH3 is the
natural ligand of BCL-2, selected evolutionarily to bind. However,
our data indicate that the interactions are quite specific for
the compounds with greater EC50; this interaction can generate
competition in specific situations, including chemotherapy in
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tumor cells, which would induce cell death, and can act as co-
adjuvants by this mechanism. Thus, the results obtained in this
study can help to better understand the mechanisms involved
in the interaction of BCL-2 and phenothiazine compounds
and, consequently, may help the design of new substances
with improved activity against BCL-2. It should be noted
that the inhibition of the antiapoptotic protein BCL-2 by
phenothiazines may help explain its apoptosis-inducing effect
on tumor cells.
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Antiapoptotic members of B-cell leukemia/lymphoma-2 (BCL-2) family proteins are

one of the overexpressed proteins in cancer cells that are oncogenic targets. As

such, targeting of BCL-2 family proteins raises hopes for new therapeutic discoveries.

Thus, we used multistep screening and filtering approaches that combine structure

and ligand-based drug design to identify new, effective BCL-2 inhibitors from a small

molecule database (Specs SC), which includes more than 210,000 compounds. This

database is first filtered based on binary “cancer-QSAR” model constructed with 886

training and 167 test set compounds and common 26 toxicity quantitative structure-

activity relationships (QSAR) models. Predicted non-toxic compounds are considered

for target-driven studies. Here, we applied two different approaches to filter and select

hit compounds for further in vitro biological assays and human cell line experiments.

In the first approach, a molecular docking and filtering approach is used to rank

compounds based on their docking scores and only a few top-ranked molecules are

selected for further long (100-ns) molecular dynamics (MD) simulations and in vitro

tests. While docking algorithms are promising in predicting binding poses, they can

be less prone to precisely predict ranking of compounds leading to decrease in the

success rate of in silico studies. Hence, in the second approach, top-docking poses

of each compound filtered through QSAR studies are subjected to initially short (1

ns) MD simulations and their binding energies are calculated via molecular mechanics

generalized Born surface area (MM/GBSA) method. Then, the compounds are ranked

based on their average MM/GBSA energy values to select hit molecules for further long

MD simulations and in vitro studies. Additionally, we have applied text-mining approaches

to identify molecules that contain “indol” phrase as many of the approved drugs contain
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indole and indol derivatives. Around 2700 compounds are filtered based on

“cancer-QSAR” model and are then docked into BCL-2. Short MD simulations are

performed for the top-docking poses for each compound in complex with BCL-2. The

complexes are again ranked based on their MM/GBSA values to select hit molecules for

further long MD simulations and in vitro studies. In total, seven molecules are subjected

to biological activity tests in various human cancer cell lines as well as Time-Resolved

Fluorescence Resonance Energy Transfer (TR-FRET) assay. Inhibitory concentrations are

evaluated, and biological activities and apoptotic potentials are assessed by cell culture

studies. Four molecules are found to be limiting the proliferation capacity of cancer cells

while increasing the apoptotic cell fractions.

Keywords: BCL-2, molecular docking, MD simulations, virtual screening, text mining, in vitro human cell line
models, TR-FRET assay, binary QSAR models

INTRODUCTION

Finding a cure for cancer is still a challenging task, despite the
understanding ofmolecularmechanisms and causal relationships
participating in the pathology of cancer since the mid-1980s
(Fesik, 2005). As stated by Hanahan and Weinberg, multistage
development of tumors consists of six biological features widely
known as hallmarks of cancer: (i) maintaining proliferative
signaling, (ii) avoiding growth suppressors, (iii) triggering
invasion and metastasis, (iv) empowering replicative perpetuity,
(v) inducing angiogenesis, and (vi) resisting cell death (Hanahan
and Weinberg, 2000, 2011). The ability of cancer cells to escape
from programmed cell death, namely, apoptosis, remains a
critical feature of these six indicators (Mohamad Rosdi et al.,
2018). Apoptosis is a molecular pathway that results with
self-destruction of the cell, either following termination of
physiological function or after a crucial damage to genetic
material (Igney and Krammer, 2002; Reed, 2002; Verma et al.,
2015). The well-defined basic apoptosis pathways, extrinsic and
the intrinsic pathways, are variously stimulated, and they use
determined signaling elements (Kollek et al., 2016). The extrinsic
pathway is activated by outer stimulation of death receptors.
Death receptors are members of the tumor necrosis factor
(TNF) receptor family, which has an intracellular death domain
that is able to accumulate and trigger caspase-8 followed by
operation of effector caspases including caspase-3, -6, or -7
(Youle and Strasser, 2008; Eimon and Ashkenazi, 2010; Wu
et al., 2018). The intrinsic pathway, also called mitochondrial
pathway, is initiated by a variety of cytotoxic damages or
growth signals, some of which are genetic instability, inadequate
developmental stimulation, and invasion by viral pathogens.
B-cell leukemia/lymphoma-2 (BCL-2) family proteins tightly

regulate this process and subsequently leads to the activation of
caspase-9 (Cory et al., 2003; Youle and Strasser, 2008; Eimon and
Ashkenazi, 2010).

All members of BCL-2 protein family have retained sequence

patterns regarded as the BCL-2 homology (BH) domains and

could be divided into threemain classes. The first class of proteins
are made up of the proapoptotic activator BH domain 3 (BH3)
only proteins such as BIM, BID, and PUMA. Immediately upon

their activation, they serve as molecular guardians that connect
outer spurs to the mitochondrial pathway. The following group
contains the proapoptotic effectors, which are multidomain
proteins, such as BAX and BAK, and each of them has three BH
domains. These proteins distort the integrity of mitochondrial
outer membrane, which leads to free movement of cytochrome
C to cytoplasm, initiates downstream caspase activity, and
ultimately to trigger the termination of cells. The last class of
BCL-2 family are the antiapoptotic protein, BCL-XL, BCL-2,
MCL-1, etc. All of these members consist of four BH domains
and keeps cells safe by segregating their proapoptotic peers.
The most important point in promoting apoptosis is to increase
the amount of BH3-only proteins or switch off one of its
antiapoptotic BCL-2 counterparts (Fesik, 2005; Dewson and
Kluck, 2010; Chung, 2018; Mohamad Rosdi et al., 2018). The idea
of BH3 mimetics as promising anticancer drugs is inspired by
the conclusion that a great deal of cancers rely on BCL-2 family
proteins and that the interaction between these proteins occurs
through specific BH domains (Oltersdorf et al., 2005; Soderquist
and Eastman, 2016). A genuine BH3 mimetic is expected to
imitate the BH3 domain of a proapoptotic BCL-2 protein, thus
deactivating the antiapoptotic family members by filling up their
BH3-binding pockets.

Apoptotic cell death is an innate hurdle to growth of
tumor cells; hence, one of the fundamental hallmarks of cancer
cells is the avoidance of apoptosis, which comprises a crucial
process in resistance to chemotherapeutics. This phenomenon
led to peculiar approaches in anticancer therapies focusing
on apoptosis such as suppression of survival factors that
are detected to be overexpressed in numerous malignancies.
In the group of survival factors, BCL-2 proteins are one
of the families that step forward for drug discovery studies
(Lessene et al., 2008; Hanahan and Weinberg, 2011; Billard,
2013). For example, a small molecule, named ABT-737,
was issued as a potential inhibitor of BCL-2 and BCL-
XL, which occupies their BH3-binding domain and further
triggers apoptosis in diversified cancer types (Tse et al., 2008;
Soderquist and Eastman, 2016). Ensuing pharmaceutical trials
guided to clinical studies with ABT-263 (navitoclax), which
had boosted bioavailability and indicated efficacy in leukemia
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and a few other neoplasias. However, they also manifested
toxicities such as neutropenia and thrombocytopenia, leading
to dose limitations (Tse et al., 2008; Gandhi et al., 2011).
The thrombocytopenia was connected to the blockage of
BCL-XL, as BCL-XL is essential for survival of platelets
(Zhang et al., 2007). More recently, ABT-199 (venetoclax)
was designed as a selective BCL-2 inhibitor and it evades
the issue of thrombocytopenia (Souers et al., 2013). However,
it also carries some side effects such as diarrhea, nausea,
low white blood cell counts, high K+ ion concentrations in
the blood, headache, etc. Thus, novel BCL-2 inhibitors with
better pharmacodynamic as well as pharmacokinetic profiles
are needed.

It is well-established, especially in the last years, that taking a
new drug into the market is both a time consuming and costly
process. As a result, computer-aided drug design techniques
have become prominent in drug development process (Lionta
et al., 2014; Yoshino et al., 2015, 2017; Chiba et al., 2017; Halim
et al., 2017; Durdagi et al., 2018a, 2019; Fu et al., 2018; Is
et al., 2018; Mirza et al., 2018; Erol et al., 2019; Zaka et al.,
2019). Different strategies depending on the availability of target
molecules have been developed; structure-based drug design
in which the target structure is known and ligand-based drug
design that could be applied in cases that target structure is
not known. It is also possible to combine both approaches
to increase the possibility of “hit molecule” discovery as has
been done in our previous studies (Durdagi et al., 2018a,b;
Zaka et al., 2018; Kanan et al., 2019; Mollica et al., 2019).
The most widely used technique in target-driven-based drug
design is the molecular docking, and there are various docking
programs as well as many different scoring functions to rank
binding poses. Large molecule libraries can be screened using
high throughput virtual screening, and lead compounds can
be identified for further studies, quickly. By the use of more
sophisticated docking algorithms and scoring functions, binding
modes of compounds to target can also be determined. However,
as expected, each of the docking algorithms and scoring functions
have their own strengths and weaknesses. Numerous studies
have been conducted to evaluate the comparative assessment
of the docking and scoring functions (Bissantz et al., 2000;
Bursulaya et al., 2003; Chen et al., 2006; Warren et al., 2006;
Cross et al., 2009; Li et al., 2014). The latest evaluation study
was conducted by Li et al. for 20 scoring functions on a
diverse set of protein–ligand complexes (Li et al., 2014). Their
comparison of scoring functions was based on four aspects:
“scoring power” (binding affinity prediction), “ranking power”
(relative ranking prediction), “docking power” (binding pose
prediction), and “screening power” (discrimination of true
binders from random molecules). Their results showed that
scoring functions were generally more promising in docking
and screening power tests than scoring and ranking power
tests. In addition, scoring functions that were among top-
ranked in docking power test were also more successful in
screening power test but poor in other two power tests.
This study, which shows that every scoring function has
its own weaknesses, has represented that the ordering of
compounds only by their docking scores may not accomplish

the correct ranking of compounds; hence, if the molecules
will only be selected according to their top docking scores
for further studies such as in vitro tests, this may lead to
false positive results (Rastelli et al., 2009; Rastelli and Pinzi,
2019). Therefore, in this study, we use another approach in
ranking compounds that is based on molecular dynamics (MD)
simulations and molecular mechanics generalized Born surface
area (MM/GBSA) calculations after initial pose prediction by
molecular docking.

In the present study, in order to identify novel BCL-
2 inhibitors, ligand- and target-driven-based techniques were
integrated with text mining approach, and novel hit molecules
were identified with the virtual screening of small molecules
library (Specs SC) that includes more than 212,000 compounds.
In the identification of hits, two different approaches were
considered: (i) Compounds were ranked by their docking scores,
and MD simulations for 100 ns were carried out for the selected
compounds and average MM/GBSA energies were calculated;
(ii) Short (1-ns) MD simulations were applied for top-docking
poses of all selected 342 compounds from binary quantitative
structure-activity relationships (QSAR) models, and average
MM/GBSA scores from short MD simulations were calculated.
The average MM/GBSA scores were considered in the selection
of compounds for longer MD simulations (100 ns) followed by
MM/GBSA calculations. Additionally, it is known that many
currently used Food and Drug Administration (FDA)-approved
chemotherapeutics include indole fragment. To increase the
probability of discovering hit molecules with potential anticancer
properties, we screened Specs-SC database to identify molecules
that contain “indol” groups by using text mining. Around 2700
compounds were screened against BCL-2, and novel hits that
includes “indol” fingerprints were identified.

MATERIALS AND METHODS

Binary QSAR Models
MetaCore/MetaDrug (MC/MD) platform from Clarivate
Analytics provides a comprehensive tool to analyze the
pharmacodynamic and pharmacokinetic profiles for screening
molecules. Using MC/MD, it is possible to calculate “therapeutic
activity values (TAV)” of molecules for 25 common diseases
including cancer by binary QSAR disease models. Additionally,
toxicities of compounds could also be predicted in 26
different toxicity QSAR models using MC/MD. The Tanimoto
Prioritization (TP) feature was applied to detect similarity
between compounds and training and test set molecules
analyzed in QSAR models based on fragments within the
structure. QSAR models in the platform were constructed using
various compounds based on experimental evidence of their
activity/function on a particular protein of interest and then
tested with validation sets. Estimated QSAR values (normalized
between 0 and 1) >0.5 indicate potential therapeutic activity.
The details about QSAR models could be found in the following
reference (Kanan et al., 2019). In the current study, we used
“cancer-QSAR” model, which has the following parameters:
Training set N = 886, Test set N = 167, Sensitivity = 0.89,
Specificity= 0.83, Accuracy= 0.86, MCC= 0.72.

Frontiers in Chemistry | www.frontiersin.org 3 April 2020 | Volume 8 | Article 167408

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Tutumlu et al. Novel Hits Against BCL-2

Ligand Preparation and Protein
Preparation
The compounds screened in this study (212, 520 molecules) were
downloaded from Specs SC database (https://www.specs.net/
index.php). 2D structures were used in binary QSARmodels both
for therapeutic activity prediction and toxicity prediction. After
the target-driven screening and toxicity tests, 250 compounds
were filtered and these molecules were prepared with the
OPLS2005 forcefield using LigPrep module (Schrödinger Release
2015-2, 2015) of Maestro program (Banks et al., 2005). The
possible ionization states at neutral pH 7.4 was determined by
Epik module (Shelley et al., 2007). All possible tautomers as
well as stereoisomers (if any) were generated. At the end, 342
structures were obtained and used in further docking and MD
simulations. Two structures of BCl-2 solved by X-ray diffraction
[Protein Data Bank (PDB) IDs, 4LXD (Souers et al., 2013), and
6GL8 (Casara et al., 2018)] along with two structures solved
by NMR spectroscopy were retrieved from the PDB [1YSW
(Oltersdorf et al., 2005) and 2O2F (Bruncko et al., 2007)]. Here, it
should be mentioned that BCL-2 has a region predicted to adopt
an unstructured and flexible loop, which caused the protein to
be insoluble (Petros et al., 2001; Bruncko et al., 2007). Hence,
in NMR studies, as first suggested by Petros et al., residues 35–
91 were replaced with residues 35–50 from BCL-XL, and the
C-terminal end (residues 208–219) was truncated (Petros et al.,
2001). The resulting chimeric protein was very soluble, while
still retaining its biological activity. Moreover, a 3D structure of
BCL-2 with an intact loop region would be obtained. For crystal
structures, although chimeric protein was used, the unstructured
loop region could not be resolved due to low electron density
and the fact that the loop region was not connected. As this
could cause problems during MD simulations, we took the loop
conformation from the NMR structure (PDB, 1YSW) for our
modeling studies. The numbering of residues was based on the
crystal structure with PDB code 4LXD. The missing atoms of
proteins were added, and the ions, small molecules used to aid
in crystallization, and water molecules not near the cocrystallized
ligand (>5 Å) were removed using the Protein Preparation
module of Maestro (Sastry et al., 2013). PROPKA (Bas et al.,
2008) was employed to adjust protonation states of amino acids
at pH of 7.4, and finally, in order to relax the proteins, the
target protein wasminimized employing the OPLS2005 forcefield
parameters (Banks et al., 2005). The binding pocket of BCL-2
was classified based on cocrystallized ligands, and the residues in
these regions, together with water molecules, were considered in
the construction of grid lattice boxes in molecular docking.

Molecular Docking Simulations
The docking algorithms used in this study include standard
precision (SP) module of Glide (Friesner et al., 2004; Halgren
et al., 2004) and Induced Fit Docking (IFD) module of Maestro
(Sherman et al., 2006a,b) with flexible ligand sampling. The
IFD method consists of three consequent phases, including (i)
docking of the compounds while the receptor is rigid; (ii) refining
the complex residues within 5 Å of the ligand using Prime
module (Jacobson et al., 2004); and finally, (iii) redocking of the
compounds at the refined binding pocket.

Molecular Dynamics (MD) Simulations and
Molecular Mechanics/Generalized Born
Surface Area (MM/GBSA) Calculations
We performed MD simulations for apo form of BCL-2 and
complexes of BCL-2 with hit compounds using Desmond
program (Bowers et al., 2006). Protein–ligand complexes were
placed in the cubic boxes with explicit TIP3P water models
that have 10.0 Å thickness from surfaces of protein. All systems
are neutralized by adding counter ions (Na+ or Cl− depending
on the charge of the systems), and salt solution of 0.15M
NaCl was also used to adjust the concentration of the systems.
The long-range electrostatic interactions were calculated by the
particle mesh Ewald method (Essmann et al., 1995). A cut-
off radius of 9.0 Å was used for both van der Waals and
Coulombic interactions. The temperature was set as 310K
initially, and Nose–Hoover thermostat was used for adjustment
(Nosé, 1984; Hoover, 1985). Martyna–Tobias–Klein protocol was
employed to control the pressure, which was set at 1.01325
bar (Martyna et al., 1994). The time-step was assigned as
2.0 fs. The default values were used for minimization and
equilibration steps, and finally 1-ns (for short MD simulations)
and 100-ns (for long MD simulations) production run was
performed for each simulation. Other details of the simulation
protocols were described in our previous studies (Durdagi et al.,
2016; Salmas et al., 2017; Rodrigues et al., 2018). The Prime
module of Schrodinger (Jacobson et al., 2004) was used in
binding free energy calculations of complexes by MM/GBSA
approach (Bashford and Case, 2000). 100 trajectory frames
from all MD simulation times were considered for short MD
simulations. For longer MD simulations, on the other hand,
100 trajectory frames from the last half of the simulations were
used for MM/GBSA calculations. OPLS3 forcefield (Banks et al.,
2005) and VSGB 2.0 solvation model (Shan et al., 2011) were
utilized during MM/GBSA calculations. All applied procedures
for virtual screening in this study have been summarized in
Figure 1.

Time Resolved Fluorescence Resonance
Energy Transfer (TR-FRET)
The BCL-2 TR-FRET Assay (CISBio, Cat. No: 79601) was used
to measure the inhibition of BCL-2 to bind its ligand in the
presence of BCL-2 inhibitory molecules in a homogeneous 384
well-reaction format. The assay protocol for TR-FRET analysis
was performed based on the suggestions of the manufacturer.
Briefly, a sample containing terbium-labeled donor, dye-labeled
acceptor, BCL-2 protein, peptide ligand, and each inhibitor were
incubated for 2 h. All samples and controls were studied in
triplicate. Tested concentrations for the molecules were 1 nM,
10 nM, 100 nM, 1µM, and 10µM. The fluorescence intensity
was measured using a fluorescence reader (Varioskan LUXTM,
Thermo Fischer). Two sequential measurements were conducted.
First, terbium-donor emission was measured at 620 nm followed
by dye-acceptor emission at 665 nm; each fluorescent read
was excited at 344 nm. Data analysis was performed using
the TR- FRET ratio (665 nm emission/620 nm emission)
value. The percent inhibitory activity of tested molecules was
calculated by:
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FIGURE 1 | The virtual screening workflow applied with two different approaches.

%Activity =
FRETs− FRETneg

FRETp− FRETneg
x100%

where FRETs, FRETneg, and FRETp are sample FRET, negative
control FRET, and positive control FRET, respectively.

Cell Culture Experiments and 3-(4
5-dimethylthiazol-2-yl)-2
5-diphenyltetrazolium bromide
(MTT) Analysis
Various cancer cell lines, such as HCT-116 colon cancer, U87-
MG glial tumor, and MCF7 breast cancer cell lines, were
used for cell culture experiments. Cells were seeded with high
glucose Dulbecco’s Modified Eagle Medium (DMEM) medium

(Biosera) supplemented with 10% fetal bovine serum (FBS)
(Gibco) and 1X penicillin/streptomycin (Multicell). Twenty-four
hours prior to molecule treatment, 10,000 cells were seeded into
each well of 24-well-cell culture plates. Molecules were used by
preparing 4mM stock solution in dimethyl sulfoxide (DMSO)
(Amresco). For molecule treatment, molecule stock solutions

were diluted in DMEM with 10% FBS and added onto cells in

each corresponding well. Final concentration of vehicle DMSO

was 2% atmaximum. Therefore, the vehicle group in experiments
only included a maximum of 2% DMSO concentration. We
determined the number of cells to be seeded to make sure
that none of the cells reaches more than 60% confluency
during the treatment period, as higher plate confluency levels
would slow down cell proliferation independently from the
molecule treatment.
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Values of half-maximal inhibitory concentration were
(IC50) determined by MTT cell proliferation assays. Different
concentrations of molecules ranging between 10−9 and 10−4

M were tested on used cell lines with single treatment. Five
hundred seventy nanometer absorbance values were recorded,
and IC50 values were calculated by dose–response inhibition
curves and non-linear regression analysis on GraphPad Prism
8 software. For cell proliferation assays, we performed 5-day
experiments and repeated experiments at least three times with
all cell lines. Survival rates did not change significantly after
third day of treatment. Therefore, 3 days results were presented.
MTT analysis was performed on 24-well plates with initially 1
× 104 cells/well, grown overnight, and then treated with the
selected molecules with different concentrations for at least 3
days. Following the initial incubation day, molecules were added,
and, after incubation with MTT at 37◦C for 4 h, formazan was
solubilized with DMSO (Sigma-Aldrich, St. Louis, USA) and
absorbance was measured at 570 nm.

RESULTS

In this work, a small molecule library (Specs-SC) that has
212,520 available drug-like compounds as well as small molecules
extracted from available literature were screened initially in
MC/MD platform. The molecules were filtered based on their
TAV against “cancer” disease model predicted by cancer-
QSAR model of MetaCore. The cancer-QSAR model was
constructed with 1,053 known compounds from literature, and
obtained statistical results were found as follows: Sensitivity:
0.89; Specificity: 0.83; Accuracy: 0.86; MCC: 0.72. Thus, as it
can be seen, statistical results validate the constructed cancer-
QSAR model. Moreover, we have selected 30 compounds that
have high (IC50 ≤ 10µM) inhibitory activity against BCL-2
based on biological and cell line assays to further validate used
QSAR model as suggested in various previous studies (Kumar
Yadav et al., 2013, 2014a,b). These molecules are also subjected
to cancer-QSAR model to predict their TAV against “cancer.”
Results showed that 23 out of 30 known inhibitors (more than
75% of the known inhibitors) have potential therapeutic activity
(i.e., TAV ≥ 0.5) against cancer. Although the predicted QSAR
values higher than 0.5 could potentially indicate therapeutic
activity, in this study, we considered a higher threshold/cut-off
value (≥0.8). By this way, we only considered the molecules that
would be predicted as highly therapeutically active in “Cancer-
QSAR” model of MC/MD. 5356 molecules had the predicted
cancer therapeutic activity values equal or higher than 0.8.
Compounds may show high binding affinity, but if they carry
undesired side effects, they cannot be considered for future
clinical studies. Therefore, their toxicity and pharmacokinetic
profiles must be investigated. In our study, we used 26 different
toxicity QSAR models and these diverse toxicity models cover
most of the commonly observed toxicities such as cardiotoxicity,
nephrotoxicity, neurotoxicity, cytotoxicity, kidney necrosis, liver
necrosis, etc. Out of 5,356 identified molecules, only 250
molecules showed no toxicities in all these 26 different toxicity
QSAR models. These 250 compounds were then prepared with

ligand preparation module of Maestro, and, at the end, 342
structures in total, with the possible tautomeric and protonation
states, were obtained. All these molecules were then used
in molecular docking studies for target protein BCL-2 along
with two reference molecules venetoclax and S55746 (bcl201).
For S55746, the crystal structure was available; hence, after
the preparation of the complex as explained in Materials and
Methods section, it was subjected to MD simulations. There was
no available crystal structure of BCL-2 that was cocrystallized
with venetoclax when this study was conducted, though its
analogs were available. Hence, venetoclax was also prepared with
LigPrep andmolecular docking was used to obtain complex BCL-
2/venetoclax.

The common weaknesses of docking algorithms were
established by the comparative evaluation study of Li et al.
(2014) as mentioned above. Molecular docking method
sometimes could lead to elimination of true binders and/or false
positive compounds since only top-ranked molecules would
be considered as selected candidates for in vitro tests. Protein
structure being considered as mainly rigid during docking is
one of the major weaknesses. As such, here we have applied
two different approaches: (i) an induced fit docking in which
residues in binding pocket were considered as flexible; (ii) short
MD simulations in which protein–ligand complex was relaxed to
dispose clashes between protein and ligand. Figure 1 shows the
workflow applied in this study. It can be seen that we have also
identified compounds that contain “indol” phrases using text
mining to be considered for ligand- and structure-based studies
of BCL-2 inhibitors.

Docking-Based Approach for Selection of
Hit Molecules
The top-docking scores of five molecules and their 2D structures
as well as corresponding data for reference molecules venetoclax
and S55746 could be found in Table S1. To test the validity and
reliability of docking approach as performed in previous studies
(Chen et al., 2006), we have also redocked the cocrystallized
ligand found in the crystal structure of BCL-2 (PDB ID, 4LXD).
We have seen that the docking pose obtained with our protocol
was able to reproduce the crystal pose with a root mean square
deviation (RMSD) of 0.65 Å (i.e., after alignment between docked
pose and cocrystallized pose, RMSDwas 0.65 Å). As it can be seen
from Table S1, venetoclax has the highest docking score (−15.46
kcal/mol) at BCL-2 cavity. However, venetoclax is a very large
molecule [molecular weight (MW), 868 g/mol] that contains 61
non-hydrogen atoms, which could lead to high docking score,
and in fact its ligand efficiency score (i.e., docking score per
number of non-hydrogen atoms) was lower than the suggested
compounds (Table S1). The molecules with the top-docking
scores were smaller than venetoclax and S55746. However, they
have high ligand efficiency scores, which could indicate that they
could be lead compounds for further studies. For that reason,
we performed MD simulations (100 ns) for these compounds in
complex with BCL-2 protein starting from IFD docking poses.
Although we carried out MD simulations for all five complexes
as well as for two reference molecules in complex with BCL-2, we
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will only discuss the results for three compounds: 43 (Specs ID:
AO-081/41887762); compound 58 (Specs ID: AJ-292/12931005);
and compound 243 (Specs ID: AN-698/40780701), as they were
chosen for in vitro studies.

MD-Based Approach for the Selection of
Hit Molecules
The top-scoring docking poses for all 342 compounds were
subjected to 1-ns short MD simulations, and the average binding
free energies were calculated for MD trajectory frames using
MM/GBSA approach. An in-house script was used for the
preparation of simulation boxes as well as for the analysis of
MD simulations. Compounds were then ranked based on average
MM/GBSA scores, and, as shown in Figure S1, the normal
distribution of MM/GBSA scores of studied 342 compounds
and Z-scores of the distribution curves were plotted. Then, we
selected compounds that have average MM/GBSA values above
Z ≤ −2, i.e., 12 molecules were chosen. The complexes of
these compounds with BCL-2 were subjected to longer (100 ns)
MD simulations. The structures and average MM/GBSA values
of all these selected compounds could be found in Table S2.
Although we have performed longer MD simulations for all
12 compounds in complex with the target protein, we selected
only three of the compounds for in vitro tests, 258 (Specs ID:
AK-968/12163470), 292 (Specs ID: AK-968/11842328), and 243

(Specs ID: AN-698/40780701). It should be noted that compound
243 was also found as a hit compound and selected based on
docking approach.

Text Mining Approach for Selection of Hit
Compounds
Since many currently used FDA-approved chemotherapeutics
include indole derivatives, Specs-SC database that includes only
“indol” groups (i.e., indoles, indolons, bisindoles, etc.) were also
screened at the binding pocket of the BCL-2. Thus, “indol”
keyword was searched as text within the 212,000 compounds and
around 2700 compounds were identified. These “indol” phrase
containing molecules were subjected to binary QSAR tests using
MC/MD platform and specifically the “cancer-QSAR” model
was chosen as before. Since indole derivatives are known to
have high therapeutic activity potential, here we initially used
a lower TAV threshold (0.5) to begin screening with a large
number of molecules that include the “indol” phrase. Molecules
that showed higher TAV values than 0.5 were docked at the
binding pocket of BCL-2 using Glide/SP. Top-docking poses
of these compounds were then used in MD simulations. 2700
individualMD simulations boxes were prepared with an in-house
script, and 1-ns MD simulations were conducted and the average
MM/GBSA scores were calculated. The normal distribution of
MM/GBSA values as well as Z-scores of the distribution showed
that there were 83 compounds with Z-scores lower than −2
(see Figure 2). As performing 100-ns MD simulation for all 83
complexes would require considerable computer time and power,
we instead chose to perform 10-ns MD simulations for these
compounds in complex with BCL-2 and again used MM/GBSA
approach to calculate their average binding free energies. After

10-ns MD simulations, top-10 MM/GBSA-scored “indol” phrase
containingmolecules were forwarded for 100-nsMD simulations
and their average MM/GBSA scores were calculated. Table S3
shows the 2D structures and average MM/GBSA scores for these
10 compounds. We have selected two of them for in vitro studies:
ind-199 (AG-205/12549135) and ind-435 (AN-329/13484046).

Analysis of Selected Compounds and Their
Interactions With BCL-2
Although molecular docking studies could give an initial
insight into protein–ligand interactions, it is always crucial to
understand the maintenance of these interactions and perform
dynamical studies as MD simulations for complexes. Hence,
we performed MD simulations and analyzed the interactions
observed during the simulations between protein and ligands.
While we conducted 100-ns MD simulations for 29 compounds
in total (including the referencemolecules) in complex with BCL-
2, we selected seven of them for in vitro studies based on their
docking scores, MM/GBSA values, and their interactions with the
target protein. Here, we will focus our analysis and discussion on
these seven compounds that could be lead compounds as BCL-2
inhibitors. Before analyzing the ligand–protein interactions, the
trajectories obtained from the simulations were firstly analyzed
to examine the protein and ligand structure stability. RMSD and
the root mean square fluctuations (RMSF) were used to measure
the displacements of atoms for each frame with respect to the
initial frame/structure and to categorize the local changes along
protein structures, respectively (Figures S2, S3). Here, we have
only plotted the RMSD graphs of studied proteins based on alpha
carbons (Cα). As it can be seen from the figure, for compounds
other than “indol” phrase containing ones, the RMSD plots do
not change significantly after 50-ns and they reach a plateau.
However, mainly in indol-containing molecules, RMSD values
did not stabilize and conformational changes were observed
during MD simulations (Figure S4). It can be seen that it was
the unstructured loop region 31–89, not alpha-helix regions, that
had higher displacement (Figures S3, S4). For ind-199, some
unexpected helix formation is observed for this region, though
the helix could not be conserved. The RMSF plot for protein
targets in complex with selected compounds also confirmed
that it was the loop region for which highest displacements
were observed (Figure S3). Additionally, we checked the RMSD
of the ligand molecules by considering two different fitting
modes: “fit on protein/profit” and “fit on ligand/ligfit.” While
the first mode indicates the structural stability of ligand with
respect to protein, i.e., its translational motion, the second
mode shows the internal fluctuations of the ligand atoms in its
binding pocket, i.e., its rotational motion. As can been seen from
Figure 3, the profit RMSD plot shows that after initial 50 ns,
most of the compounds did not move away from the binding
pocket. However, compound 58 had a very high RMSD value
(around 7.0 Å), which showed that it has high mobility in the
binding pocket. In fact, Figure S4 shows that the compound 58

completely changed its initial binding pose in the hydrophobic
groove just after initial 20 ns, but then it did not have high
mobility and stayed in the pocket as can be seen by lower
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FIGURE 2 | MM/GBSA scores of around 2700 molecules that include “indol” phrases.

RMSD values and also small conformational changes. Indol-
containing molecule ind-435 also displayed high mobility in the
binding pocket as can be observed in Figure 3 and Figure S4.
The RMSD for this compound did not really reach a plateau
value. The size of this compound was actually considerably
bigger than other molecules and has flexible regions. Hence, it
extended from its initial binding pocket to the one next to it (e.g.,
hydrophobic grooves P1 to P4). Compound 243 has also higher
profit RMSD values especially after 80 ns, and careful analysis
of MD trajectories showed that it was mostly the phenyl ring
that was attached thiazolidine group moving in pocket P1. The
rotational movements (ligfit RMSDs) of the selected compounds
could be seen in Figure 4. We observed that venetoclax did not
also obtain a stable RMSD plot, though the values themselves
were not higher than 3.0 Å for ligfit mode. As a large molecule,
these rotational movements were not surprising. It was also not
unexpected for ind-435 as a large molecule with flexible alkyl
chain to have high rotational RMSD values as seen in Figure 4.
Compound 58 was found with higher RMSD values for ligfit
mode; however, after 50 ns, the changes in RMSD values were
smaller. All of the compounds at the end reached a kind of plateau
value for rotational RMSD of ligands.

BCL-2 protein interacts with BH3-only proteins via
hydrophobic groove on its surface, which contains four
pockets: P1, P2, P3, and P4 pockets. To prevent the interaction of
proapoptotic proteins such as BAX and BAK with BCL-2, which
is an antiapoptotic protein, these pockets need to be filled by
either small molecules or BH3-mimetics. It is important for these
molecules to interact with key residues that mediate interaction

between BCL-2 and BH3-only proteins. Based on the literature
data, some of these crucial residues are as follows (numbering
based on PDB code 4LXD): Asp100, Phe101, Arg104, Tyr105,
Asp108, Phe109, Tyr199, Asn140, Gly142, Arg143, and Ala146.
Additionally, we have analyzed the MD simulations of reference
compounds venetoclax and S55746 in complex with BCL-2.
The protein surfaces as well as 2D and 3D ligand interactions
between protein and molecules were represented for venetoclax
and S55746 in Figure 5 and Figure S5, respectively. Consistent
with the previously published data, S55746 bind and fill the
pockets P1 to P2, while venetoclax could fill all four pockets on
the surface from P1 to P4 (Birkinshaw et al., 2019). When this
project was initiated, there was no cocrystallized venetoclax-
bound form of the BCL-2. Here, we also checked the binding
pose of venetoclax as the crystal structure of BCL-2 bound to
venetoclax recently became available (Birkinshaw et al., 2019).
A slight difference in binding pose of venetoclax was in the
more flexible region of oxane fragment; however, with the
rest of the compound, similar amino acid moieties interact by
the identical parts of venetoclax in both poses. Based on the
trajectory analysis of venetoclax, it was seen that venetoclax
preserved its interactions with Asp100 and Phe101 more than
50% of the simulation time (Figure S5). Gly142 and Arg104 were
also seen as interacting residues. Interaction with the backbone
carbonyl oxygen atom of Ala143 was the most conserved
interaction during MD simulations for S55746 (99%, Figure 5).
Also, Arg143 and Phe101 formed π-cation and π-π stacking
interactions with S55746, respectively. Based on these results,
we analyzed the complexes of BCL-2 protein with selected hit
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FIGURE 3 | ProFit RMSD graphs for the hit and reference compounds.

FIGURE 4 | LigFit RMSD graphs for the hit and reference compounds.

compounds as well as examined their ability to fill the pockets P1
to P4. Compound 43, which can mainly bind BCL-2 via P2 and
P3 pockets, consistently formed hydrogen bonds with Asp137
(96%) and π-π stacking interactions with residues Phe101 and
Tyr105 of P2 pocket, although these later interactions were not
preserved (16 and 24% of MD time, Figure S6). Compound
58 can mainly fill the pockets P1 to P3 of BCL-2 similar to
S55746. It formed stable hydrogen bonding interactions with

two key residues Asp108 and Asn140 (64 and 67%, respectively,
Figure 6). Compound 243, on the other hand, interacted with
the residues of pockets P1 to P4. A π-π stacking interaction with
Phe101 of P1 pocket was observed for 49% of MD simulation
time, while its interactions with other key residues such as
Tyr105, Asn140, and Arg143 were less conserved (Figure S7).
Compound 258 was mainly found in pockets P2 to P4, and its
most conserved interaction was observed to be with Tyr105.
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FIGURE 5 | 2D and 3D ligand interactions diagrams of selected positive control molecule S55746 at the binding pocket of BCL-2. Surface and ribbon representation

are displayed for representative structure obtained from MD simulations, while 2D interaction diagram shows the systematic details of protein-ligand interactions

observed during MD.

Not only did it form hydrogen bonds with Tyr105 but it also
formed π-π stacking interactions, albeit they were not persistent
interactions (17%, Figure S8). Compound 292 was an analog of
compound 258; as such, similar binding poses were expected,
but their binding modes were quite different. Compound 292

formed persistent hydrogen bonding interactions with Asp108
(73%, Figure S9). H-bond and π-cation interactions with
Arg143 were also observed for compound 292. The chosen
“indol” containing molecules were larger molecules compared
to other five selected molecules; as such, they are able to fill the
pockets P1 to P4. Compound ind-199 formed a stable hydrogen
bond with Asn140 (70%), π-cation, and salt bridge interactions
with Arg104 (Figure S10). Although it also formed π-π stacking
interactions with Phe109 and Phe150, these interactions were
not persistent (13 and 22%, respectively). Compound ind-435

not only filled all four pockets but also moved closer to carbonyl
terminal part of BCL-2. A persistent hydrogen bond with Asp100
(55% of MD time) was observed, and additionally it interacts and
with residues Phe100 and Arg143 (Figure S11).

We have also calculated the binding free energies for
selected compounds as well as reference molecules in complex
with BCL-2 using MM/GBSA approach after 100 ns MD
simulations. In Figure 7, the MM/GBSA energies calculated
for the trajectory frames observed during MD were plotted.
It can be seen that venetoclax had lower MM/GBSA values
compared to selected compounds. However, some of the
selected compounds such as compound 243, ind-435, and ind-

199 have considerable MM/GBSA values to other reference
molecule S55746.

TR-FRET Analysis Confirms the Inhibitory
Activity of Identified Hit Molecules on BCL2
TR-FRET analysis revealed that four of seven tested molecules
compete with BCL2 ligand in binding. In presence of inhibitory
molecules, BCL2 binding to its ligand was suppressed in
a concentration- dependent manner. Compounds 58, ind-

199, 243, and 292 showed the maximum inhibitory effect
in ranging between 60 and 100% in 10µM concentrations
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FIGURE 6 | 2D and 3D ligand interactions diagrams of selected hit molecule 58 at the binding pocket of BCL-2. Surface and ribbon representation are displayed for

representative structure obtained from MD simulations, while 2D interaction diagram shows the systematic details of protein-ligand interactions observed during MD.

(Figure 8). However, three of selected molecules showed
minimal inhibitory activity on BCL2 ranging from 10 to
40% with concentration-independent manner. We suppose
that activity is correlated with solubility of the molecules
since inactive molecules were found among partially
soluble molecules.

Cell Proliferation Was Restricted by Using
BCL2 Inhibitory Molecules
Together with TR-FRET analysis, selected hit compounds
were also evaluated in various cancer cell lines, such as
HCT-116 colon cancer, U87-MG glial tumor, MCF7 breast
cancer cell lines, and IC50 values of selected molecules were
calculated (Table 1). Of seven selected hits, five of them showed
micromolar level of inhibitory concentrations, which is an
acceptable range in cell culture experiments. Compound 258

did not show inhibitory activity on any of the tested cell-
line assays.

To test whether BCL-2 inhibitory molecules had any effect
on biological activity, we conducted cell proliferation assays
and also evaluated apoptosis by observing cell structure and
counting apoptotic cells. All molecules were tested on three

different cancer cell lines, and all molecules showed similar effects
on different cell types. The dose–response curves for all cell
lines were shown in Figures S12–S14. Of seven molecules, four
showed biological activity on MTT experiments. Molecules 58,
ind-199, 43, and 243 with 100µM concentration significantly
limited the cell proliferation capacity of cancer cells. Four
biologically active molecules showed their efficacy starting
from the first hour of treatment by decreasing the number
of proliferating cells. At the first day of treatment, only 60–
70% of cells survived, while the number of proliferating cells
decreased to <40% at the end of third day (Figure 9). MTT
assay results for cell lines U87-MG and MCF7 were displayed
in Figures S15, S16, respectively. Compared to untreated and
DMSO only treated (vehicle) group, these four hit molecules
showed significant activity. Lack of activity of other three
compounds might be due to their low/moderate solubilities.
Furthermore, the activity of the molecules was more dominant
at cancer cells. We also tested these molecules on non-cancerous
HUVEC cells, and none of the molecules showed significant
reduction in cell viability (Figure S17). When we observed
the cells under a microscope for the inactive molecules, we
saw precipitates of molecules. Further, despite all efforts for
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FIGURE 7 | MM/GBSA free energy analysis for the studied molecules at the binding pocket of BCL-2 throughout the last half of the MD simulations.

FIGURE 8 | Inhibitory activity of tested molecules. Activity of the molecules was assessed by the formula given in Materials and Methods section.
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TABLE 1 | The specs ID, 2D structure, average MM/GBSA values, and maximal % inhibitory activity at 10µM concentrations, as well as IC50 values of selected hit

compounds and reference molecules.

Compounds (specs ID) 2D structure MM/GBSA
(kcal/mol)

% inhibitory
activity at 10

µM

IC50 (µM) for
HTC116 cells

IC50 (µM) for
U87-MG cells

IC50 (µM) for
MCF7 cells

43 (AO-081/41887762) −64.15 ± 10.37 41.78 ± 1.76 24 ± 2.53 26 ± 1.73 30 ± 8.27

58 (AJ-292/12931005) −68.84 ± 6.03 62.84 ± 2.73 17 ± 1.59 18 ± 2.29 21 ± 3.34

243 (AN-698/40780701) −102.65 ± 4.56 56.78 ± 5.02 25 ± 1.77 29 ± 2.55 31 ± 3.96

258 (AK-968/12163470) −83.50 ± 5.46 25.60 ± 1.84 NA† NA† NA†

292 (AK-968/11842328) −88.93 ± 5.46 95.63 ± 1.27 130 ± 25.59 122 ± 33.21 150 ± 33.50

(Continued)
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TABLE 1 | Continued

Compounds (specs ID) 2D structure MM/GBSA
(kcal/mol)

% inhibitory
activity at 10

µM

IC50 (µM) for
HTC116 cells

IC50 (µM) for
U87-MG cells

IC50 (µM) for
MCF7 cells

ind-199
(AG-205/12549135)

−107.41 ± 7.49 75.64 ± 14.65 22 ± 3.41 28 ± 4.46 26 ± 4.89

ind-435
(AN-329/13484046)

−94.17 ± 7.28 18.51 ± 9.91 NA† NA† NA†

venetoclax −116.31 ± 9.20 NA† 3.5* 22.9* 24.7*

S55746

(CHEMBL3958369)

−101.43 ± 4.20 NA† NA† NA† NA†

†
Not applied. *Taken from The Genomics of Drug Sensitivity in Cancer (GDSC) database (www.cancerRxgene.org) for HTC-116 cell line.

increasing the solubility levels of these inactive compounds
in DMSO, it failed to obtain a pure solubilized form of
the molecules.

We also observed massive cell detachment and dying cells in
cell culture plates (Figure 10), and formation of apoptotic cell
bodies having circular structure rather than normal. Especially
for the compound 58, apoptotic cell bodies were abundant, and it
immediately affected the cells upon the first hour of treatment.
However, for the compounds 43 and 243, despite apoptotic
cell bodies having formed, there were still some unaffected
cell residues that survived and proliferated. Cell detachment,
cell death, and apoptotic bodies indicate apoptotic cell death.
Our data altogether suggest that at 100µM, concentrations of
compounds 58, ind-199, 43, and 243 induce apoptotic cell death.

Inhibition of antiapoptotic protein BCL-2 that is
overexpressed in cancer cells is one of the most studied
approaches in cancer research. Currently, venetoclax is the
only approved drug by the FDA for the treatment of chronic
lymphocytic leukemia (CLL), and it is a selective BCL-2 protein

inhibitor. Although it has a very high affinity for BCL-2 as shown
in various studies performed on different cancer cell lines (Yang
et al., 2012) (www.cancerrxgene.org), resistance to this drug
has already been observed (Birkinshaw et al., 2019). Hence, it
is necessary to suggest new compounds and scaffolds as BCL-2
inhibitors that could be more efficient against mutations on
the target structure and have no side effects. As such, in this
study, we performed combined ligand- and structure-based
approaches as well as text mining to propose new inhibitors
against BCL-2 target protein. We selected seven hit compounds
of which two are “indol”-based molecules. These compounds
were considered in cancer cell line assays, and their IC50 values
are calculated (Table 1). Based on the experimental findings,
compound 58, which has an IC50 value of 17µM, was found to
promote apoptosis, and it was the most effective of the seven
compounds. Some of the selected hit molecules (compounds 258
and 292) for in vitro analysis could only be partially solubilized
in DMSO; therefore, solubility issue may restrict the activity of
the compounds.
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FIGURE 9 | MTT cell proliferation assay. Molecules having inhibitory activity were shown. Tested concentration for each drug was 100µM. Statistical significance in

graphs was determined by comparing each treatment group with DMSO control using ANOVA testing, and significance is considered as p < 0.001. Error bars show

standard deviation.

When we have considered and compared the structures of
selected hit molecules, specifically compounds that inhibited the
proliferation of cancer cells such as compounds 58, ind-199, 43,
and 243, we have observed that all except compound 58 contains
sulfur-containing groups such as sulfanyl or thiazole derivatives.
All four molecules contain aromatic rings as well as amide groups
in their structures, which are also groups observed in FDA-
approved drug venetoclax and under development compound
S55746. It must be noted that together with identified two indol-
based compounds, 58 also involves an indole ring in its structure;
thus, it validates the importance of indoles or indole derivatives
in the scaffolds of potent BCL2 inhibitors. It must also be noted
that the proposed hit molecules have lower molecular weights
(MW) (between 490 and 529 g/mol) than the known BCL-2
inhibitors venetoclax (MW, 868 g/mol) and S55746 (MW, 710
g/mol) which indicate that the suggested compounds could be
used as lead compounds for further optimization studies by
small modifications. See .sdf file for structures of hit compounds
along with their properties such as TAV, docking score, toxicity
values, etc. in Data Sheet 1 in the Supplementary Material.

Overall, our results surprisingly show that docking-initiated
screening has a better success rate compared to MD-initiated
screening. However, this surprising result may be due to
unexpected partial solubilities of some of the tested compounds
that showed limited activity on cells.

CONCLUSIONS

In this work, a molecular library (Specs-SC) composed of
212,520 molecules was first filtered for their therapeutic effect
against cancer, and then obtained molecules again filtered

to remove toxic compounds using MC/MD from Clarivate
Analytics. Identified 342 non-toxic and potent compounds using
MC/MD were then screened based on target-driven approaches
using available BCL-2 structures. In order to compare the both
structural and energetic results, known BCL-2 inhibitors were
used as positive control molecules and same computational
protocols were applied for these compounds. Identified hit
molecules from both docking and short (i.e., 1-ns) MM/GBSA
calculations that have similar/better binding energies were
compared to known inhibitors, then subjected to longer (i.e.,
100-ns) MD simulations. In the virtual screening, two different
strategies were considered and compared in the selection of
hit compounds: (i) Compounds were ranked by their docking
scores and long (100-ns) MD simulations were performed for
the selected compounds and average MM/GBSA energies were
calculated; (ii) Short (1-ns) MD simulations were performed for
top-docking poses of all 342 compounds and average MM/GBSA
scores were considered for the selection of molecules in long
(100-ns) MD simulations of small molecules database. At the
end, seven molecules were suggested as new scaffolds for
inhibition of BCL-2. Compounds 58 (AJ-292/12931005), ind-
199 (AG-205/12549135), 43 (AO-081/41887762), and 243 (AN-
698/40780701) with 100µM concentration significantly limited
the cell proliferation capacity of cancer cells. Four biologically
active molecules showed their efficacy starting from the first hour
of treatment by decreasing the number of proliferating cells. At
the first day of treatment, only 60–70% of cells survived, while
the number of proliferating cells decreased to <40% at the end
of third day. TR-FRET analysis revealed that hit compounds
58, ind-199, 243, and 292 showed the maximum inhibitory
effect ranging between 60 and 100% in 10µM concentration.
Thus, most of the active compounds found in the cell line tests
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FIGURE 10 | Microscopic evaluation of HCT-116 cells for compounds 58 (AJ-292/12931005), ind-199 (AG-205/12549135), 43 (AO-081/41887762), and 243
(AN-698/40780701). Cells were photographed and observed under microscope for 3 days. Vehicle group showed neat proliferation of cells as untreated group did,

whereas molecule-treated groups reduced proliferation and showed apoptotic cell structures. Compound 58 (AJ-292/12931005) showed clear apoptotic activity from

the first day, whereas other molecules showed limited activity. At 48 and 72 h of treatment in other groups, resistant cells are visible together with the unresolved

molecule precipitates. However, there are no resistant cells and all cells seemed to be affected by the molecule 58 on treated group for all 3 days.

were also found potent in enzymatic assays. Results showed that
compounds identified via integrated text-mining and docking
initiated MM/GBSA-scores based approach has higher success
rate. Thus, the results of this study may open new avenues for
the designing of new BCL-2 inhibitor scaffolds.
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Today high-throughput docking is one of the most commonly used computational

tools in drug lead discovery. While there has been an impressive methodological

improvement in docking accuracy, docking scoring still remains an open challenge.

Most docking programs are rooted in classical molecular mechanics. However, to

better characterize protein-ligand interactions, the use of a more accurate quantum

mechanical (QM) description would be necessary. In this work, we introduce a QM-

based docking scoring function for high-throughput docking and evaluate it on 10

protein systems belonging to diverse protein families, and with different binding site

characteristics. Outstanding results were obtained, with our QM scoring function

displaying much higher enrichment (screening power) than a traditional docking method.

It is acknowledged that developments in quantum mechanics theory, algorithms

and computer hardware throughout the upcoming years will allow semi-empirical (or

low-cost) quantum mechanical methods to slowly replace force-field calculations. It

is thus urgently needed to develop and validate novel quantum mechanical-based

scoring functions for high-throughput docking toward more accurate methods for the

identification and optimization of modulators of pharmaceutically relevant targets.

Keywords: high-throughput docking, structure-based drug design, molecular docking, quantum mechanics,
semi-empirical methods

INTRODUCTION

The cost to bring a new drug to themarket could be as high as 2.6 billion US dollars, and can take up
to 15 years (DiMasi et al., 2016). For many years, both the identification and optimization of novel
drug lead compounds were accomplished within the drug discovery process by the experimental
high-throughput screening of large chemical libraries. In spite of multiple efforts to improve its
performance, drug discovery remains a costly and time consuming technique (Phatak et al., 2009).
However, for the last 25 years, theoretical developments, better computational algorithms, faster
computing resources, and improved visualization tools enabled the routine use of computational
methods to model and visualize protein-ligand (PL) interactions, calculate binding free energy
to different degrees of accuracy, and in silico screen chemical libraries using ligand-based and
structure-based approaches. Today, computational chemistry is firmly established as a valuable tool
in any drug lead discovery endeavor, aimed at saving time, effort, resources, and reducing costs
(Cavasotto and Orry, 2007; Jorgensen, 2009, 2012; Spyrakis and Cavasotto, 2015; Pagadala et al.,
2017).
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During the last three decades, molecular docking has been
one of the most commonly used computational methods in drug
lead discovery (for review, cf., Kitchen et al., 2004; Rognan,
2011; Ciancetta and Moro, 2015; Sotriffer, 2015; Spyrakis and
Cavasotto, 2015; Sulimov et al., 2019b). The aim of protein-
small-molecule docking is the characterization of the optimal
binding modes (poses) of a molecule within the binding site,
and an estimation of its binding free energy. In high-throughput
docking (HTD), where the protein is usually considered rigid
or with very few degrees of freedom, and thousands to millions
of molecules from a chemical library are screened, the goal is
to generate a sub-library enriched with potential ligands, which
will be prioritized for further experimental evaluation. In HTD,
two different stages can be distinguished: the assessment of the
best binding mode(s) of each molecule of the library (“docking
stage”), and, on each in silico generated protein-small-molecule
complex, the calculation of a score reflective of the likelihood
that the molecule will actually bind to the target (“scoring stage”)
(Cavasotto and Orry, 2007; Guedes et al., 2018). In the docking
stage, the docking energy (DE) is used to select, for eachmolecule,
the lowest-energy pose(s) from a large amount of conformations
generated, while the docking score (DS) is generally calculated as
a fast approximation to the binding free energy (1Gbinding), and
depends on several factors, such as the energy representation of
the system, themodel used to represent the aqueous environment
and the consideration of explicit water molecules within the
active site (Cozzini et al., 2006; Amadasi et al., 2008), and the
degree of consideration of receptor flexibility (Cavasotto and
Singh, 2008; Spyrakis et al., 2011; Spyrakis and Cavasotto, 2015).
Thus, DE discriminates among poses of the same molecule,
while the DS characterizes each molecule of the docked chemical
library and is used to rank them according to the likelihood of
binding. Many docking programs, however, use a single function
as DE and DS.

It should be stressed that one of the main advantages of
docking is that in silico generated poses usually serve as the
starting point for in silico ligand optimization, using for example
molecular dynamics-based calculation of binding free energies,
such as Molecular Mechanics-Poisson Boltzmann Surface Area
(MM-PBSA) and MM-Generalized Born Surface Area (MM-
GBSA) methods (Kerrigan, 2013; Reddy et al., 2014; Genheden
and Ryde, 2015; Sun et al., 2018; Wang et al., 2019).

While docking accuracy depends on the program, it is
acknowledged that most of them are usually successful in
identifying the correct pose (RMSD < 2 Å) with respect to
the native structure (Warren et al., 2006; Wang et al., 2016).
Moreover, an extensive recent benchmark of the Comparative
Assessment of Scoring Functions (CASF) (Su et al., 2019)
highlighted that docking programs display a better performance
in terms of docking accuracy than in any of these three scoring-
related metrics: correlation with experimental binding data
(scoring power), ranking of ligands by their binding affinity data
provided their correct poses are known (ranking power), and
identification of actual ligands from a sub-library of top-ranking
small-molecules (screening power). This was in agreement
with other works (Cavasotto and Abagyan, 2004; Slater and
Kontoyianni, 2019).

Most docking developments have been mainly rooted in
molecular mechanics (MM) force-fields (FF). However, to better
characterize protein-ligand interactions, at least in some cases,
the use of a quantum mechanical (QM) description would
be necessary (Cavasotto et al., 2019). The QM formulation
is theoretically exact, as in principle, it accounts for all
contributions to the energy (including terms or effects usually
missing in FFs, such as electronic polarization, charge transfer,
halogen bonding, and covalent-bond formation). Moreover, the
QM framework is general across the chemical space so that all
elements and interactions can be considered on equal footing,
thus avoiding MM parameterizations.

Following the pioneering work of Raha and Merz (2004,
2005) where a QM-based score was used to discriminate
ligand from decoy poses, there have been recently some
applications of QM methods in docking, mainly aiming for
accurate ligand binding mode assessment (for a survey of
recent related works cf., Mucs and Bryce, 2013; Cavasotto
et al., 2018; Aucar and Cavasotto, 2020). In a significant
step forward, Pecina et al. obtained impressive results on the
discrimination of native from decoy docking poses on four
challenging systems (Pecina et al., 2016) using a docking energy
function (Lepšík et al., 2013) based on the semi-empirical
QM PM6 Hamiltonian (Stewart, 2007) supplemented with the
D3H4X correction for dispersion, hydrogen- and halogen-
bonding interactions (Rezáč and Hobza, 2012). In a follow-up
contribution (Pecina et al., 2017), an even superior performance
was achieved for accurate pose assessment using a self-consistent-
charge density-functional tight-binding method (SCC-DFTB)
formulation coupled with D3H4 corrections for dispersion and
hydrogen-bond interactions, though at a higher computational
cost. This docking energy score function was further used to
obtain a reliable ranking on 10 inhibitors binding to carbonic
anhydrase II (CAII) (Pecina et al., 2018).

However, the development of QM-based docking scoring
functions aiming at the ranking of molecules within HTD
(screening power) has progressed at a significantly slower
pace. Only very recently, a QM-based approach was presented
displaying a very good performance on discriminating ligands
and decoys on a single system (heat shock protein 90, HSP90)
(Eyrilmez et al., 2019). In fact, the development of fast yet
accurate docking scoring functions still constitutes an area of
active research (Cavasotto, 2012; Guedes et al., 2018). Moreover,
the blind challenges ran by the Drug Design Data Resource
(D3R) for ligand-pose and affinity prediction in 2015 (Gathiaka
et al., 2016), 2016 (Gaieb et al., 2018), and 2018 (Gaieb et al.,
2019), have shown the importance of method development and
benchmarking in pose prediction and binding affinity ranking
of ligands.

In this work, we introduce a QM-based docking scoring
function and evaluate it in terms of ligand enrichment on
10 protein systems belonging to diverse protein families in
terms of different binding site characteristics, the presence of
co-factors and water molecules, and the enrichment factors
computed with a standard HTD method. Excellent results were
obtained by displaying our QM-based scoring function a much
higher enrichment (screening power) than a traditional docking
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method. We stress that our goal is to present and to validate an
initial straightforward approach, which could serve as a starting
point for further developments and improvement. A wider and
extensive benchmarking on more systems and a systematic
comparison with most of the standard docking programs, and
the assessment of the optimal combination of the different
components of our approach (QM formalism and continuum
solvent model, energy minimization strategies, use of single or
multiple docking poses for scoring, and entropy contribution)
are considerations of their importance. However, they exceed the
purpose of our work and will be published in due course.

Assuming a continuous development in QM theory,
algorithms and computer hardware, it is likely that semi-
empirical methods [or low-cost Density Functional Theory
(DFT) methods] will replace FF over the next 25 years (Grimme
and Schreiner, 2018). Therefore, it is absolutely justified and there
is an urgent need to start developing the next generation of QM-
based scoring functions for HTD toward better methods for the
identification of small-molecule modulators of pharmaceutically
relevant targets.

MATERIALS AND METHODS

Protein Systems Preparation
The following targets were downloaded from the PDB (cf.
Table 1): Cyclin-dependent Kinase 2 (CDK2, PDB 1FVV),
Estrogen Receptor α (ESR1, PDB 3ERT), Cyclooxygenase-1
(COX1, PDB 2OYU), Neuraminidase (NRAM, PDB 1B9V), Heat
Shock Protein 90 α (HSP90a, PDB 1UYG), Hexokinase Type IV
(HXK4, PDB 3F9M), Coagulation Factor VII (FA7, PDB 1W7X),
Thymidine kinase (KITH, PDB 2B8T), Fatty Acid Binding
Protein Adipocyte (FABP4, PDB 2NNQ), and Phospholipase A2
(PA2GA, PDB 1KVO). All water molecules and co-factors were
deleted, except in the following cases: NRAM and PA2GA, the
Ca2+ atom within 8 Å of the bound ligand; HSP90a, water
molecules 2059, 2121, 2123, and 2236; FA7, water molecule 2440;
FABP4 water molecules 303, 623, 634, 665.

Each target was prepared using ICM software (MolSoft, San
Diego, CA, 2019; Abagyan et al., 1994) in a similar fashion
as in earlier works (Phatak et al., 2010). Succinctly, hydrogen
atoms were added, followed by a local energy minimization of
the complete system, and polar and water hydrogen positions
were determined by optimizing the hydrogen bonding network
within the torsional coordinates space. All Asp and Glu residues
were assigned a −1 charge, and all Arg and Lys residues were
assigned a+1 charge. Histidine tautomers were chosen according
to their corresponding hydrogen bonding pattern. For docking
with AutoDock Vina (Trott and Olson, 2010), the systems were
pre-processed with AutoDock Tools (Morris et al., 2009).

Docking Library Preparation
For each target, the docking libraries were built by merging a
set of ligands and a set of decoys, where the latter had similar
physico-chemical properties to the ligands, but dissimilar 2-
D topology. This has been shown to be necessary to ensure
unbiased results when benchmarking docking programs (Huang
et al., 2006; Gatica and Cavasotto, 2012). Ligands and decoys

TABLE 1 | Target proteins used in the evaluation of QM-based scoring functions.

Receptor name Receptor
code

PDB
code

Co-
factora

Number
of water
moleculesb

EF(1)c

Cyclin-dependent

Kinase 2

CDK2 1FVV – – 8.0

Estrogen receptor α ESR1 3ERT – – 16.5

Cyclooxygenase-1 COX1 2OYU – – 1.3

Neuraminidase NRAM 1B9V Ca2+ – 0.

Heat shock protein 90 α HSP90a 1UYG – 4 0.

Hexokinase type IV HXK4 3F9M – – 1.1

Coagulation factor VII FA7 1W7X – 1 20.2

Thymidine kinase KITH 2B8T – – 35.1

Fatty acid binding protein

adipocyte

FABP4 2NNQ – 4 31.9

Phospholipase A2 PA2GA 1KVO Ca2+ – 2.0

aWithin 8 Å of the cyrstallographic ligand.
bWithin 4 Å of the cyrstallographic ligand.
cEnrichment factor at 1% corresponding to docking with AutoDock Vina.

were extracted from the Directory of Useful Decoys (DUD,
Huang et al., 2006), the NRLiSt binding data base for nuclear
receptors (Lagarde et al., 2014), or the Directory of Useful
Decoys- Enhanced (DUD-E, Mysinger et al., 2012), according to:
CDK2, DUD (72, 2074) (number of ligands, number of decoys);
ESR1, NRLiSt (133, 6555); COX1, DUD-E (210, 6955); NRAM,
DUD-E (222, 6227); HSP90a (125, 4942); HXK4, DUD-E (127,
4802); FA7, DUD-E (185, 6300); KITH, DUD-E (132, 2866);
FABP4, DUD-E (57, 2855); PA2GA (127, 5215). The protonation
state and chirality of all molecules were conserved as in their
original database.

High-Throughput Docking With AutoDock
Vina
Molecular docking of the chemical libraries onto the associated
targets using AutoDock Vina (Trott and Olson, 2010) was
performed in a similar fashion as in our recent work (Palacio-
Rodriguez et al., 2019).

Protein-Molecule Complex Generation,
Structural Relaxation, and Unbound
Protein and Ligand States Characterization
Protein-molecule complexes for QM-scoring were generated
using the ICM docking module, keeping for each molecule its
lowest DE conformation (docking RMSD values of native ligands
are shown in Table 2). These protein-molecule complexes were
also relaxed through cycles of local energy minimization in ICM
according to the following procedure: (i) For each protein, the
collected dihedral angles of amino-acids within 4 Å of any docked
ligand of the corresponding chemical library were considered
free; (ii) For each protein-molecule complex, five cycles of
local energy minimization were performed restraining the heavy
atoms with a harmonic potential with respect to their initial
conformation; in each cycle the weight of this added potential
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TABLE 2 | RMSD values of docked native ligands.

Receptor name Receptor
code

PDB
ligand ID

RMSD (Å)

ICM AD Vina

Cyclin-dependent Kinase 2 CDK2 107 0.74 2.68

Estrogen receptor α ESR1 oht 1.48 4.69

Cyclooxygenase-1 COX1 ims 1.40 0.36

Neuraminidase NRAM ra2 0.54 0.91

Heat shock protein 90 α HSP90a pu2 0.52 0.26

Hexokinase type IV HXK4 mrk 0.47 7.56

Coagulation factor VII FA7 413 0.31 0.60

Thymidine kinase KITH thm 0.22 0.70

Fatty acid binding protein

adipocyte

FABP4 t4b 0.37 0.79

Phospholipase A2 PA2GA oap 0.54 1.37

was reduced in the following way: 50, 10, 5, 1, and 0 kcal/mol
(no restraint). During this local energy minimization, the protein
system was optimized in the torsional space (Abagyan et al.,
1994), and the small-molecule in the Cartesian space.

To generate the unbound states, local energy minimization
was performed on both protein and small-molecule in
isolation from the crystallographic structure and the docked
conformation, respectively.

System Cutout
For each target, a reduced-system was defined by first listing all
the amino-acids within 8 Å of any docked molecule with ICM
(only heavy atoms were considered in this threshold). Then, upon
visual inspection, other amino-acids were eventually added to the
list in order to avoid intra-helix or intra-β-sheet fragmentation,
or loop fragments with just one amino-acid. A reduced-system
was then built by deleting from the structure all amino-acids
not included in the list, capping the N- and C-terminal of each
fragment with hydrogens.

Entropy Calculation
Binding small-molecule conformational entropy was
estimated as

1S = −R ln� (1)

where it is assumed that, upon binding, the molecule adopts
a single conformation state (thus Sbound = 0), and Ω is the
number of conformations in the free state, which was estimated
in two different ways: i) by assigning each of the N free torsional
bonds three rotational degrees of freedom (and thus Ω =

3N); ii) by performing a Monte-Carlo (MC) sampling with
local energy minimization in the torsional space using ICM
(Abagyan and Totrov, 1994; Abagyan et al., 1994), collecting all
distinct conformations within the lowest 3 kcal/mol energy, and
assuming all conformers are equally probable (a similar low-
level sampling approach was used to explore the conformational
flexibility of small-molecules, Forti et al., 2012). The MC

approach was considered since rotamer count is known to over-
estimate the number of low-energy conformations, and thus the
entropy (Anisimov and Cavasotto, 2011).

Quantum Mechanical Calculations
All QM calculations were performed using the QM package
MOPAC2016 (Stewart, 2016) and its linear-scaling module
MOZYME (Stewart, 1996), using the semi-empirical PM7
Hamiltonian (Stewart, 2013). In agreement with other authors
(Sulimov et al., 2017a), we selected PM7 since it accounts for
dispersion interactions, and hydrogen and halogen bonding have
been taken into consideration at the paramterization stage, while
it also includes several corrections to the PM6 Hamiltonian.
Moreover, PM7 exhibited a very good performance on energy
calculations aimed at discriminating native ligand positions in
crystallographic complexes (Sulimov et al., 2017b). The solvation
energy contribution in aqueous environment was calculated
using the Conductor Like Screening Model (COSMO, Klamt
and Schüürmann, 1993) continuum solvent model, with default
atomic radii and surface tension parameters. The solvent-
accessible surface area was taken from the program output [cf.
(Stewart, 2016) for details on how the surface is built]. Those
molecules which did not complete the QM calculation were
excluded when computing the enrichment.

Evaluation Metrics
The enrichment factor (EF) measures the enrichment of actual
ligands in a docked hit-list given a specific percentage of the
dataset (threshold). The EF is defined as the ratio between actual
number ligands (hits) found at the top x% of the screened
database (Hitsx%) and the number of molecules at that threshold
Nx%, normalized by the ratio between the total number of actual
ligands within the entire dataset (Hitstotal) and the total number
of molecules of the latter (Ntotal).

EF(x) =
Hitsx%

Nx%
/
Hitstotal

Ntotal
(2)

Thus, the EF represents the probability of finding an actual
ligand within the x% of the screened database with respect to the
probability of finding an actual ligand at random. Whenever a
molecule is represented within a chemical library with different
states according to its protonation or chirality, each state is
assigned an individual score, and the lowest score is used in the
hit-list, and thus to calculate the EF. Throughout this work we
report EF(1) and EF(2), since they are more representative of
early enrichment.

We also report receiver operating characteristics (ROC)
curves for each of the studied systems, measuring the area under
the curve (AUC).

THEORETICAL FRAMEWORK

The binding free energy (1Gbinding) corresponding to Protein-
Ligand (PL) association is expressed within the end-point
molecular mechanics-quantum mechanics surface area method
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(MM-QMSA) (Anisimov and Cavasotto, 2011; Anisimov et al.,
2011) as

1Gbinding = 1
〈

GQM
〉

− T1S (3)

where the difference in the first term is calculated between
the bound (PL) and unbound (P, L) states, <. . . > represents
the average over QM-minimized classical molecular dynamics
(MD) trajectories, GQM is the QM energy including a continuum
solvation term in an aqueous environment, and the second term
represents the entropy change of P and L upon binding. We
prefer to note the first term as a free energy, since it also includes
the change in solvation free energy.

Since 1Gbinding in Equation (3) is obviously too costly to be
used to score and rank large chemical libraries of small-molecules
in HTD, a reasonable QM docking scoring function (QMDS) can
be defined as an approximation to Equation (3), namely

QMDS = 1GQM
− T1S (4)

where averages over MD trajectories have been replaced by
single-point QM calculations on the docked PL structure, and
the free unbound L and P structures. The L and P deformation
penalty contributions due to changes in L and P conformations
upon binding are expressed as

1GQM
conf

(X) = GQM
o (X)− GQM(X) , with X = L, P (5)

where Go(X) is the energy of the isolated X in the conformation
of the docked PL complex, and G(X) is the energy of X in the
free unbound state. Considering Equation (5), Equation (4) can
be now be written out making the deformation contributions
explicit as

QMDS = 1GQM
o + 1GQM

conf
(P)+ 1GQM

conf
(L)− T1S (6)

where the “o” subscript in the first term refers to calculations
using the PL, P, and L conformations from the docked complex.
It should be pointed out that Equation 6 is formally identical to
another formulation (Eyrilmez et al., 2019).

Two types of QM docking scoring functions were defined
according to the relaxation of the reference docked PL complexes:
(i) QMDS1, with no relaxation, that is, the QM calculations
are performed directly on the docked PL complex, and (ii)
QMDS2, where docked PL complexes are relaxed through local
energy minimization (see Methods). When the deformation
contributions (second and third terms in Equation 6) were
included, the suffix “d” is added (QMDS1d and QMDS2d).

RESULTS AND DISCUSSION

Improved HTD Enrichment Using
QM-Based Scoring
Ten target proteins were selected based on different
characteristics such as protein family, binding site properties,
presence of co-factors and water molecules (within or close to
the binding site), and enrichment factor at 1% calculated after

TABLE 3 | Comparison of the enrichment factors [EF (1)] for docking and scoring

(QMDS1) using a complete and reduced protein systems.

Receptor Complete system Reduced system

CDK2 20.1 24.2

ESR1 33.7 36.4

docking with AutoDock Vina (Table 1). Only crystallographic
and/or conserved water molecules within 4 Å of the native ligand
were included.

Throughout all this work, the QMDS was calculated in all its
variants on PL complexes generated with ICM docking, since
it is acknowledged to generate high quality protein-molecule
poses (Bursulaya et al., 2003; Neves et al., 2012), as confirmed
by the RMSD values of the docked native ligands in Table 2).
Clearly, better enrichment is strongly coupled to scoring over
correct docking poses. In this regard, the use of multiple docked
conformations for each molecule, stemming from the same
docking program or not, might clearly enhance the results of our
QM-scoring scheme. However, we preferred to use a single pose
from a single program, to keep our methodology straightforward,
and to establish a clear baseline from which to start looking
for improvement.

Since a target receptor protein is usually very large for QM
calculations, to calculate the QMDS we used a reduced system
by cutting out amino acids farther than ∼8 Å from any docked
molecule (cf. the Methods section for full details on the cutout
process), since a threshold of <6 Å has been reported to
seriously deteriorate the results (Ehrlich et al., 2017); moreover,
it should be highlighted that the smaller the threshold, the
greater the impact of the continuous solvent surface replacing the
cutout amino-acids. To further validate our approach, quantum
mechanical docking scores QMDS considering the complete
protein and its associated reduced system were calculated on
CDK2 and ESR1 (Table 3).We observe that using a cutout system
has no impact on the calculation. Thus, throughout this work, a
reduced representation of the target protein will be used for all
QM calculations.

In Table 4, we display the enrichment factors EF(1) for the 10
target systems comparing AutoDock Vina with four schemes of
QM docking scoring (for HSP90a, enrichment values including
and excluding the 19 macrocycle containing ligands are shown).
The conformational entropy change upon ligand binding was
estimated in two ways: (i) 1Srot , based on a term proportional
to the number of N free rotatable bonds of the molecule (Ωconf

= 3N), and (ii) 1Sconf , by estimating Ωconf as the number of
low-energy diverse conformations generated using Monte-Carlo
sampling with local energy minimization (cf. Methods). We
found that the use of Srot deteriorates the EF (data not shown),
so Sconf is used in all calculations. In QMDS2 and QMDS2d the
reference docked PL complexes were local energy minimized
using MM (see Methods). Obviously, a QM minimization would
have been desirable, but this would render any QM docking
scoring function useless due to the computational times involved,
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TABLE 4 | Enrichment factors calculated at 1% [EF (1)] and 2% [EF (2)] (in

parenthesis) for AutoDock Vina and QM docking scoring.

Receptor AD Vina QMDS1 QMDS1d QMDS2 QMDS2d

CDK2 8.0 (5.0) 24.2 (15.1) 26.2 (18.1) 26.3 (16.2) 26.3 (18.2)

ESR1 16.5 (11.0) 36.4 (26.1) 30.6 (22.4) 44.0 (29.2) 43.2 (26.4)

COX1 1.3 (0.7) 2.8 (2.8) 3.5 (3.9) 2.8 (1.4) 3.5 (3.5)

NRAM 0. (0.) 9.3 (8.7) 9.3 (10.2) 21.4 (15.8) 21.4 (16.3)

HSP90a 0. (0.) 15.3 (11.9) 16.7 (11.9) 28.3 (16.1) 31.1 (16.1)

HSP90aa 0. (0.) 14.1 (10.5) 15.2 (10.5) 23.3 (14.5) 26.8 (14.0)

HXK4 1.1 (1.1) 11.4 (7.9) 9.1 (6.2) 15.6 (8.8) 15.6 (9.9)

FA7 20.2 (20.2) 49.0 (42.5) 47.0 (42.5) 54.0 (41.0) 52.0 (41.0)

KITH 35.1 (21.1) 35.4 (23.8) 31.7 (22.9) 34.1 (24.2) 30.5 (26.9)

FABP4 31.9 (16.0) 33.9 (18.9) 36.2 (20.9) 32.8 (18.6) 32.8 (23.0)

PA2GA 2.0 (2.0) 6.5 (7.5) 10.9 (8.6) 18.2 (12.9) 16.1 (12.9)

aExcluding the macrocycle containing molecules for calculating the EF.

even for reduced systems. Moreover, in this case further caution
should be exerted not to artificially deform the molecular system.

As stated before, a wide range of enrichment factors calculated
from docking with AD Vina was taken into account for selecting
the target proteins for this benchmark. It can be readily seen from
Table 4 that using any variant of QM docking scoring has an
impressive improvement over AD Vina, especially in those cases
with low AD Vina EF. This happens even in the simplest case of
QMDS1, where no relaxation is performed on the PL complexes.

It is clear that PL relaxation, even using a MM-based
approach, has on average a positive effect for calculating the
QM docking score. Moreover, in those cases where the EF(1)
slightly decreases (KITH, FABP4), the EF(2) is conserved.
Focusing in the analysis of QMDS2 and QMDS2d, inclusion
of the deformation contribution (second and third term in
Equation 6) slightly deteriorates the results in ESR1, FA7, KITH,
and PA2GA. However, in all but ESR1, EF(2) improves after
inclusion of the deformation term (as it also happens in the
other cases where EF(1) increases or is constant, CDK2, COX1,
NRAM, HSP90a, HXK4, and FABP4). Considering that the effect
on EF(1) is in no way dramatic, and that EF(2) (which also
refers to early enrichment), improves except in one case, we
state that the deformation terms are necessary to obtain better
enrichment factors, though this should obviously be validated
in a larger-scale benchmark. We hypothesize that this slight
deterioration might be related to a small noise introduced upon
energy minimization, which is canceled out in the QMDS2
case. In the special case of HSP90a, the consideration of 19
macrocycle containing molecules has a negative effect in the
EF calculation. We hypothesize that the strong performance of
QM-scoring is due to a better representation of intra- and inter-
molecular interactions, though of course further validation and
benchmarking is still needed to confirm this.

In Figure 1, the ROC plots of QMDS2 and AD Vina for
the 10 systems are shown, including the corresponding AUC
values. Analysis of the curves confirm what has been noted
above based on EF, exhibiting the QM-score excellent results.

FIGURE 1 | Receiver operating characteristic (ROC) plots of AutoDock Vina

(red line) and QM-scoring QMDS2d (blue line) for the 10 systems studied. The

dotted line corresponds to random selection (AUC = 0.5). FPR, False Positive

Rate; TPR, True Positive Rate; AUC, Area under the curve.
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FIGURE 2 | Enrichment plots for ESR1, COX1, and FA7 using AutoDock Vina (red line) and QM-scoring QMDS2d (blue line). The dotted line corresponds to random

selection.

Interestingly, in ESR1 both scoring methods show basically the
same AUC, which is in conflict with the large difference in EF
values reported in Table 4. To clarify this issue, in Figure 2 we
show the enrichment plot associated to ESR1. It can be seen that
AD out-performs QMDS2 after 30% of the screened database, a
region of no importance for drug discovery; for early enrichment,
the enrichment plot in Figure 2 confirms the trend observed
in Table 4 that QMDS2 is remarkable superior in the initial
part of the ranking. A similar behavior is observed for FA7 (cf.
Table 4 and Figures 1, 2). In the case of COX1, while the AUC
of the QM-score is slightly less than AD Vina, the enrichment
plot in Figure 2 shows that for early enrichment, QM-scoring
out-performs AD Vina.

While our QM-score appears to be a very promising for
HTD, and QM calculations are in principle more accurate than
classical ones to describe molecular interactions, there are still
a number of approximations which prevent the direct use of
QMDS as a measure of actual absolute binding free energy. We
mention three, among many: (i) QM local energy minimization
was not performed (for computational efficiency, as said above);
(ii) Vibrational entropies were not included; (iii) PM7 has not
been parameterized to reproduce binding free energies. Our QM
calculations were in the order of −70 kcal/mol, in agreement
with recent binding enthalpy calculations on protein-ligand
complexes using a PM7+COSMO approach (Sulimov et al.,
2019a), where in spite of the difference between experimental
and calculated absolute binding enthalpies, very good correlation
with experimental values was obtained. It should be added that
it is also well-known that traditional scoring functions correlate
poorly with binding energy (cf. Enyedy and Egan, 2008, among
others). Moreover, among traditional scoring functions there is
no uniform scale: While AutoDock and Glide (Friesner et al.,
2004; Halgren et al., 2004) are roughly in the range of −10
kcal/mol and higher, others are around−60 kcal/mol. Moreover,
even end-point methods such as MM/PBSA or MM/GBSA
exhibited calculated binding free energies in the order of −60
kcal/mol, or even lower when changes in vibrational entropy
are not included (Zhong and Carlson, 2005), and even when

including those terms (Woo and Roux, 2005; Anisimov and
Cavasotto, 2011; Anisimov et al., 2011). Thus, we stress that
QMDS should be considered a score, not a measure of absolute
binding energy. It is aimed for relative binding energy estimation,
and thus for compound ranking.

On average, the computing time of this QMdocking score on a
single core is∼6–8 minutes (depending on the size of the system,
and on whether the deformation energy term is considered),
around an order of magnitude slower than a MM-based DS.

CONCLUSIONS AND PERSPECTIVES

Docking programs have been so far based on molecular
mechanics force-fields. However, a better description of
protein-ligand interactions could be achieved, in principle,
with quantum mechanical methods, which are theoretically
exact, capture the underlying physics of the molecular
system, and account for all contributions to the energy,
including those effects usually missing in force-fields, such as
electronic polarization, covalent-bond formation, and charge
transfer. Moreover, a quantum mechanical formulation is
generally valid across the chemical space, thus avoiding the
force-field parameterizations.

We present a new QM-based high-throughput docking
scoring function, which has been evaluated on 10 protein
systems belonging to different protein families, displaying diverse
binding site properties, and covering a wide range of enrichment
factors computed with a traditional docking program. As shown
in Table 4, even the simplest QM docking scoring function
(where no relaxation is performed on the reference docked
protein-small-molecule complex) shows excellent results in
terms of enrichment (screening power). In fact, the improvement
over AutoDock Vina on all systems is remarkable, especially
in those cases with very low AD Vina enrichment. Upon
complex relaxation, the improvement is even larger, regardless
of whether the protein and ligand deformation terms are
included or not.
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We highlight that our main aim is to develop and validate
a simple, straightforward approach for QM docking scoring,
from which further developments can be built. Clearly, to further
improve this methodology, several aspects should be analyzed:
(i) a wider and extensive benchmark on many more target
systems; (ii) comparison with other MM-based standard docking
scoring functions; (iii) evaluation of other QM formalisms,
continuum solvent models and their associated parameters
(atomic radii and surface tension parameters); (iv) structural
relaxation strategies; (v) use of single or multiple poses for
scoring; (vi) the vibrational entropy changes upon binding. All
of these considerations are important. They are currently being
investigated and will be published in due course. Considering the
outstanding improvements to our methods, we highlight that the
QMDS should be used as a score and not an estimation to the
absolute binding energy.

In terms of CPU time, our QM docking scoring function
is approximately 10 times slower than MM-based standard
scores on a single core. In spite of this, our impressive
results on a set of 10 different protein targets highlight the
huge potential of QM-based scoring. Moreover, considering
future developments in QM theory, algorithms and computer
hardware, it can be hypothesized that semi-empirical methods
(or low-cost DFT methods) will replace FF over the following
years (Grimme and Schreiner, 2018). We thus believe it is
fully justified and of the utmost importance to develop the
next generation of QM-based scoring functions for HTD
toward highly accurate methods for the identification and
optimization of small-molecule modulators of pharmaceutically
relevant targets.
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Pharmaceutical or phytopharmaceutical molecules rely on the interaction with one

or more specific molecular targets to induce their anticipated biological responses.

Nonetheless, these compounds are also prone to interact with many other non-intended

biological targets, also known as off-targets. Unfortunately, off-target identification is

difficult and expensive. Consequently, QSAR models predicting the activity on a target

have gained importance in drug discovery or in the de-risking of chemicals. However, a

restricted number of targets are well characterized and hold enough data to build such

in silico models. A good alternative to individual target evaluations is to use integrative

evaluations such as transcriptomics obtained from compound-induced gene expression

measurements derived from cell cultures. The advantage of these particular experiments

is to capture the consequences of the interaction of compounds on many possible

molecular targets and biological pathways, without having any constraints concerning

the chemical space. In this work, we assessed the value of a large public dataset of

compound-induced transcriptomic data, to predict compound activity on a selection

of 69 molecular targets. We compared such descriptors with other QSAR descriptors,

namely the Morgan fingerprints (similar to extended-connectivity fingerprints). Depending

on the target, active compounds could show similar signatures in one ormultiple cell lines,

whether these active compounds shared similar or different chemical structures. Random

forest models using gene expression signatures were able to perform similarly or better

than counterpart models built with Morgan fingerprints for 25% of the target prediction

tasks. These performances occurred mostly using signatures produced in cell lines

showing similar signatures for active compounds toward the considered target. We show

that compound-induced transcriptomic data could represent a great opportunity for

target prediction, allowing to overcome the chemical space limitation of QSAR models.

Keywords: target prediction, compound-induced transcriptomic data, QSAR, machine learning, cellular context
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INTRODUCTION

Biologically active molecules rely on the interaction with one or
more molecular targets (Hughes et al., 2000). In the context of
hit discovery both in pharmaceutical or in phytopharmaceutical
industries, a major objective is to be able to screen molecule
candidates for their activity toward a target of interest, and
assessing compound activity toward off-targets, that can cause
adverse effects in vivo (Rouquié et al., 2015). Testing activity of
every candidate on a battery of targets represent a complex task
that requires major R&D costs. A potential solution to predict
candidate’s activity with a lower cost is to perform computational
methods using more general measured or calculated descriptors
(Chen et al., 2016; Vamathevan et al., 2019).

A commonly used technique is to compute descriptors from
chemical structures, like the extended-connectivity fingerprints
(ECFPs) and use them for prediction, relying on the quantitative
structure-activity relationship (QSAR) principle, i.e., molecules
sharing a similar structure may share a similar activity profile
(Rogers and Hahn, 2010; Cherkasov et al., 2014). However,
such molecule descriptors show limitations: they do not
perform well for all target prediction tasks depending on the
quantity and quality of available activity data, prediction is
limited to the applicability domain (depending on the training
set used), and a small change in chemical structure can
lead to a large change in biological response (activity cliffs)
(Cruz-Monteagudo et al., 2014).

Additional descriptors have been proposed to circumvent
such QSAR drawbacks, such as measurements from large
scale biological assays (Petrone et al., 2012; Laufkötter et al.,
2019). Results from high throughput screening (HTS) assays,
such as bioactivity experiments, can be used as fingerprints
(HTSFPs) in predictive models for specific targets. Petrone et al.
(2012) showed that models using HTSFPs were outperforming
models using ECFPs for certain targets, and that HTSFP
models’ predictions were covering a large structural diversity.
The main limiting factor of such models is the sparsity of
available activity data. Besides bioactivity data, more integrative
large-scale biological measurements, like transcriptomics or cell
morphology readouts can be used for target prediction (Aliper
et al., 2016; Pabon et al., 2018; Scheeder et al., 2018; Simm et al.,
2018; Hofmarcher et al., 2019; Kuthuru et al., 2019; Lapins and
Spjuth, 2019).

Compound-induced gene expression data are gathered from
biological experiments reflecting how the compound acted on
one or multiple targets in a specific biological context. Cancer
cell lines, being easily cultured, are a commonly used model
to generate gene expression data. Hughes et al. (2000) proved
that enough data allows to use pattern-matching algorithms to
study similarity between signatures coming from drug induction

(Hughes et al., 2000). Lamb et al. (2006) invented the concept of

Connectivity Map (CMAP), creating relationships between small

molecules, genes and diseases (Lamb et al., 2006). Since then,
transcriptomics data have been shown to be useful to identify
new molecules with biological activity (Hieronymus et al., 2006;
Wei et al., 2006). Recently, a large public CMAP L1000 dataset
was released representing more than 300,000 Gene Expression

Signatures (GESs) of cell line responses to so-called perturbagens
(Subramanian et al., 2017). GESs were produced for more than
20,000 compounds in 80 human cancer cell lines, tested at various
concentration and exposition time. The large scale of this dataset
allows the use of GESs in machine learning models for target
prediction or drug repurposing (Lee et al., 2016; De Wolf et al.,
2018).

In the current work, we investigated whether we could predict
compound activity toward a larger number of molecular targets
based on their GESs extracted from the CMAP L1000 dataset.
In addition, we were interested to reveal how machine learning
models using GESs perform compared to models using more
traditional QSAR descriptors, such as the Morgan fingerprints.

We show that random forest models built using compound-
induced GES were able to effectively predict targets, especially
if they were produced from a cell line showing similar GESs
between active compounds on the evaluated target. For 25% of
the target prediction tasks, GESs models had similar or higher
performances than models using Morgan fingerprints, offering
an opportunity to escape from the chemical space limitation
associated with QSAR approaches.

MATERIALS AND METHODS

Gene Expression Signatures (GESs)
Acquisition
The CMAP L1000 dataset was obtained from two GEO
repositories: GSE92742, corresponding to the first phase of
L1000 (pilot, 2012–2015) and GSE70138, which is the second
phase (production, on-going). GESs generation was described by
Subramanian et al. (2017).

For this study, we only used Level 5 GESs meaning that each
GES is represented by an instance, that is a combination of a
perturbagen (chemical or gene deletion), cell line, concentration
and time point, and is composed by the plate-normalized
expression z-scores of the whole genome, inferred from 978
landmark genes (measured gene that can be used for whole
transcriptome inference). We focused on landmark signatures
of compound perturbagens, which comprises 333,273 GESs for
21,300 unique compounds. GESs obtained in the exact same
condition were averaged, to have one signature per condition.

Among all obtained GESs, the ones generated at a 10µM and
24 h time point were selected (as shown in Figure 1), as this
condition was the most represented in the dataset and facilitate
the comparison of results. GESs from the 8most profiled cell lines
were used; cell line and number of GESs are presented in Table 1.
Also, only GESs generated by compounds with known structure
were selected. In total, the working dataset contains 39,544 GESs
obtained from 9,035 compounds.

Activity Data Acquisition
Annotations about activity or inactivity was retrieved from the
PubChem BioAssay database, using available CIDs documented
in the L1000 signature metadata, excepted for TUBB actives,
that were extracted from the Drug Repurposing Hub of the
LINCS (Wang et al., 2014; Corsello et al., 2017). Activity data
were compiled in a binary activity matrix (1 for active, 0 for
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FIGURE 1 | Data analysis pipeline performed in current work. Starting from the CMAP L1000 dataset, signatures produced at 10µM and 24 h from 8 cell lines were

extracted and used in t-SNE and distance plots. One dataset was built per cell line (GES and corresponding compound structure), and each of these datasets were

restricted to compounds having known annotations (active or inactive) for the evaluated target. For each target—cell line dataset, a first model was built using the

gene expression signatures (GES model). Alongside, a second counterpart model was built using the Morgan fingerprints of compounds whose signatures were used

in the first model (Morgan FP model).

TABLE 1 | The 8 core cell lines used in this work, with their corresponding

number of GESs for compounds with known structure tested at 10 µM/24 h.

Cell line Primary site Subtype Number of 10 µM−24h

signatures

A375 Skin Malignant melanoma 3,525

A549 Lung Non small cell lung

cancer| carcinoma

5,267

HA1E Kidney Normal kidney 3,646

HCC515 Lung Carcinoma 1,932

HT29 Large intestine Colorectal

adenocarcinoma

3,192

MCF7 Breast Adenocarcinoma 7,546

PC3 Prostate Adenocarcinoma 8,071

VCAP Prostate Carcinoma 6,365

inactive, empty if unknown). At least one annotation among
1,388 targets was found for 7,804 of the 9,035 compounds
(512,406 annotations were found, representing 4.8% of the full
activity matrix).

Representation of Chemical and Biological
Spaces
For each compound, binaryMorgan fingerprints were computed.
The Morgan fingerprints were employed as input of a t-SNE (t-
distributed stochastic neighbor embedding) algorithm (using the
sklearn implementation) using Dice distance as metric, to reduce

the data to a two-dimensional output that can be plotted to
represent the chemical space (Van Der Maaten and Hinton, 2008;
Pedregosa et al., 2011). Information of the number of targets per
compound was included as color-code using a blue gradient in
the plot.

The whole extracted 10 µM/24 h signature dataset was used
as input for a second t-SNE using the cosine distance metric,
representing the overall biological (response) space wherein each
cell line was color-coded in the plot. For every cell line, a t-SNE
using the cosine distance metric was performed using all GESs
profiled in the cell line, generating 2D biological space.

Machine Learning Modeling
Targets for which we know at least 50 active compounds
(representing between 1 and 63% of active per target) were
selected for machine learning modeling in order to have a
minimum number of actives in test sets to evaluate the model
performances, and for computational time purposes. Complete
information on the number of active and inactive compounds for
these selected targets is listed in Table 2.

Subsequently, for each cell line GES dataset, we created a
target—cell line GES dataset, restricting to compounds for which
target activity was known as shown in Figure 1 (this step caused
the number of possible models to drop from 1,104 to 990).
Datasets for each target prediction task were split into a training
set (67% of the data) and a test set (remaining 33% of the data).
Two models for target activity prediction were trained using
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TABLE 2 | Molecular targets used in this work, with number of active and inactive compounds in total, and in each cell line GES dataset.

Gene name Total

inactive

Total

active

Description A375 A549 HA1E HCC515 HT29 MCF7 PC3 VCAP

Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active

ABCB1 801 96 ATP binding cassette subfamily B

member 1 [HGNC:40]

331 42 545 60 424 50 211 32 317 32 770 95 772 95 608 68

ABHD5 2,458 57 Abhydrolase domain containing 5

[HGNC:21396]

908 22 1,533 47 - - - - - - 2,030 57 2,045 57 1,730 52

ALOX15 1,136 101 Arachidonate 15-lipoxygenase

[HGNC:433]

508 27 764 92 808 52 496 33 498 27 1,062 97 1,066 96 804 91

AR 1,085 103 Androgen receptor [HGNC:644] 580 36 639 64 757 62 374 36 572 37 1,038 94 1,036 93 682 69

ATAD5 2,213 97 Atpase family, AAA domain containing

5 [HGNC:25,752]

1,007 43 1,466 70 1288 60 638 41 922 42 2,087 90 2,090 88 1,629 72

ATXN2 1,897 143 Ataxin 2 [HGNC:10555] 695 36 1,139 104 950 50 501 41 652 41 1556 123 1,558 129 1,243 102

BAZ2B 1,252 143 Bromodomain adjacent to zinc finger

domain 2B [HGNC:963]

516 63 873 101 653 76 319 37 470 56 1,199 135 1,197 136 974 112

BRCA1 3,008 160 BRCA1, dna repair associated

[HGNC:1100]

1,117 67 1945 116 1,519 63 800 33 1,014 50 2,537 148 2,549 150 2,134 131

CBX1 1,999 80 Chromobox 1 [HGNC:1551] 899 41 1,412 64 1,120 61 532 38 809 40 1,899 75 1,904 76 1,576 67

CHRM1 2,433 86 Cholinergic receptor muscarinic 1

[HGNC:1950]

906 49 1,544 62 1,055 59 460 39 791 48 2,036 84 2051 83 1,739 65

CHRM4 2,476 70 Cholinergic receptor muscarinic 4

[HGNC:1953]

908 45 1,552 54 1,057 55 460 40 793 45 2,049 68 2,064 67 1,751 54

CHRM5 2,478 62 Cholinergic receptor muscarinic 5

[HGNC:1954]

908 41 1,553 47 1,057 49 461 36 793 39 2,050 62 2,065 61 1,751 50

CYP1A2 307 526 Cytochrome P450 family 1 subfamily

A member 2 [HGNC:2596]

145 265 183 399 219 428 136 277 144 261 299 505 294 505 183 410

CYP2C19 717 276 Cytochrome P450 family 2 subfamily

C member 19 [HGNC:2621]

329 151 514 213 486 228 289 138 324 148 688 271 684 272 524 225

CYP2C9 708 270 Cytochrome P450 family 2 subfamily

C member 9 [HGNC:2623]

310 157 510 197 476 222 285 126 305 154 679 264 674 263 517 207

CYP3A4 1,153 164 Cytochrome P450 family 3 subfamily

A member 4 [HGNC:2637]

472 113 780 104 847 133 561 64 467 110 1,070 160 1069 161 802 118

DRD1 1,843 99 Dopamine receptor D1 [HGNC:3020] 807 54 1,295 71 1028 78 526 55 725 54 1,762 91 1,762 91 1,450 71

DRD2 2,262 95 Dopamine receptor D2 [HGNC:3023] 769 58 1,371 73 956 84 474 55 683 57 1,858 93 1873 93 1,541 74

DRD3 2,446 142 Dopamine receptor D3 [HGNC:3024] 877 76 1,432 110 1,129 114 551 78 823 75 2,004 139 2,017 139 1,569 111

EPAS1 2,443 70 Endothelial PAS domain protein 1

[HGNC:3374]

– – 1,524 52 – – – – – – 2,021 64 2,033 67 1,723 57

FEN1 2,100 53 Flap structure-specific endonuclease

1 [HGNC:3650]

961 23 1,496 29 1,213 28 – – 866 21 1,990 46 1,999 46 1,669 32

GFER 1,589 89 Growth factor, augmenter of liver

regeneration [HGNC:4236]

679 37 1,153 59 813 46 363 21 600 29 1,519 81 1,519 81 1,294 70

(Continued)
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TABLE 2 | Continued

Gene name Total

inactive

Total

active

Description A375 A549 HA1E HCC515 HT29 MCF7 PC3 VCAP

Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active

GLS 2,989 66 Glutaminase [HGNC:4331] 1,240 22 1,878 46 1,515 31 – – – – 2,560 58 2,574 59 2,072 53

GMNN 2,079 161 Geminin, DNA replication inhibitor

[HGNC:17493]

969 67 1,392 121 1,224 72 569 43 884 63 1,972 146 1,974 153 1,552 128

HPGD 1,464 92 15-Hydroxyprostaglandin

dehydrogenase [HGNC:5154]

575 38 1,000 74 962 62 618 39 567 37 1363 89 1,363 86 1,060 71

HSD17B10 1,211 107 Hydroxysteroid 17-beta

dehydrogenase 10 [HGNC:4800]

516 48 827 84 858 81 548 47 506 48 1,134 99 1,135 95 866 81

HSP90AA1 666 56 Heat shock protein 90 alpha family

class A member 1 [HGNC:5253]

295 25 453 39 419 38 – – 288 25 640 50 637 50 502 40

HSPB1 876 76 Heat shock protein family B (small)

member 1 [HGNC:5246]

461 40 522 45 600 53 304 26 454 41 837 72 837 71 558 47

HTR1A 412 60 5-Hydroxytryptamine receptor 1A

[HGNC:5286]

186 34 279 49 232 55 122 37 180 34 401 58 400 58 315 50

IL1B 1,773 206 Interleukin 1 beta [HGNC:5992] 589 54 1,005 165 768 78 382 54 541 54 1,385 190 1,391 196 1,122 163

JAK2 895 80 Janus kinase 2 [HGNC:6192] 378 39 663 58 478 43 248 29 364 40 867 71 867 74 723 55

JUN 842 97 Jun proto-oncogene, AP-1

transcription factor subunit

[HGNC:6204]

442 49 491 67 570 72 279 41 435 49 801 91 799 91 523 70

KCNH2 363 190 Potassium voltage-gated channel

subfamily H member 2 [HGNC:6251]

174 119 212 136 250 161 128 104 173 119 331 183 329 184 228 139

KDM4A 1,607 192 Lysine demethylase 4A

[HGNC:22978]

693 76 1,130 125 834 87 379 42 603 69 1,529 173 1,536 175 1,286 140

KDM4E 1,389 124 Lysine demethylase 4E

[HGNC:37098]

543 43 999 88 880 70 547 40 530 42 1,320 109 1,321 110 1,057 95

MITF 3,626 132 Melanogenesis associated

transcription factor [HGNC:7105]

1,170 42 2,238 91 1,562 51 858 42 1,083 37 2,832 116 2,871 120 2,460 93

MLLT3 14,566 101 MLLT3, super elongation complex

subunit [HGNC:7136]

– – 2,244 26 – – – – – – 3,002 33 3,461 50 3,095 46

MPHOSPH8 506 52 M-Phase phosphoprotein 8

[HGNC:29810]

278 21 365 39 403 41 253 29 278 21 490 48 485 50 382 43

MYC 2,069 121 MYC proto-oncogene, bHLH

transcription factor [HGNC:7553]

– – 1,067 113 – – – – – – 1,230 114 1,249 117 1,151 115

NFE2L2 2,850 226 Nuclear factor, erythroid 2 like 2

[HGNC:7782]

1,142 94 1,816 148 1,355 153 620 83 1,013 95 2,425 204 2,439 204 2,023 152

NFKB1 2,875 107 Nuclear factor kappa B subunit 1

[HGNC:7794]

730 23 1,608 91 1,237 37 814 29 716 22 1,978 100 2,000 101 1,742 94

NOD1 1,056 51 Nucleotide binding oligomerization

domain containing 1 [HGNC:16390]

– – 754 43 – – – – 409 21 1,010 47 1,010 49 844 40

NOD2 2,578 59 Nucleotide binding oligomerization

domain containing 2 [HGNC:5331]

952 23 1,629 53 1,124 21 – – 836 23 2,152 57 2,165 59 1,837 48

NPSR1 1,007 55 Neuropeptide S receptor 1

[HGNC:23631]

– – 712 44 554 21 – – – – 959 52 956 54 777 50

(Continued)
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TABLE 2 | Continued

Gene name Total

inactive

Total

active

Description A375 A549 HA1E HCC515 HT29 MCF7 PC3 VCAP

Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active

NR3C1 925 54 Nuclear receptor subfamily 3 group C

member 1 [HGNC:7978]

– – 636 38 692 34 451 25 – – 896 54 890 54 659 47

NR5A1 419 69 Nuclear receptor subfamily 5 group A

member 1 [HGNC:7983]

190 22 285 50 239 29 – – – – 408 60 407 64 322 50

OPRK1 1,122 51 Opioid receptor kappa 1

[HGNC:8154]

455 29 805 41 564 34 – – 428 29 1,068 51 1,070 50 895 41

PIP4K2A 1,898 88 Phosphatidylinositol-5-phosphate

4-kinase type 2 alpha [HGNC:8997]

609 31 1,082 66 812 34 – – 566 23 1,486 84 1,501 83 1,206 72

PLA2G7 1,907 57 Phospholipase A2 group VII

[HGNC:9040]

828 27 1,367 37 995 37 – – 737 28 1,825 52 1,826 51 1,534 37

PLK1 1,935 108 Polo like kinase 1 [HGNC:9077] 631 45 1,125 82 836 39 431 23 590 36 1,531 100 1,542 102 1,241 88

POLB 1,166 53 DNA polymerase beta [HGNC:9174] 480 22 850 37 646 30 – – 462 21 1,113 50 1,113 50 932 39

POLH 2,202 70 DNA polymerase eta [HGNC:9181] 858 26 1,342 44 1,015 37 – – 749 23 1,827 61 1,838 64 1,532 48

POLI 1,726 79 DNA polymerase iota [HGNC:9182] 775 29 1,210 52 945 43 448 24 689 27 1,629 71 1,637 72 1,359 55

POLK 2,895 79 DNA polymerase kappa [HGNC:9183] 1,248 30 2,048 49 1,799 43 986 27 1,154 26 2,713 69 2,722 70 2,225 54

PRMT1 2,886 80 Protein arginine methyltransferase 1

[HGNC:5187]

1,114 28 1,704 59 1,073 23 – – – – 2,394 74 2,415 74 2,081 68

RAD52 14,593 132 RAD52 homolog, DNA repair protein

[HGNC:9824]

– – 2,291 25 – – – – – – 3,043 40 3,496 54 3,121 49

SIRT5 14,103 141 Sirtuin 5 [HGNC:14933] – – 2,086 30 – – – – – – 2,769 40 3,211 44 2,844 42

SLC6A3 1,006 94 Solute carrier family 6 member 3

[HGNC:11049]

461 49 773 71 584 72 252 54 453 49 976 91 973 90 823 73

SMN2 1,633 53 Survival of motor neuron 2,

centromeric [HGNC:11118]

– – 1,136 44 1,059 28 – – – – 1,520 49 1,521 49 1,209 45

STK33 3,358 423 Serine/threonine kinase 33

[HGNC:14568]

1,127 101 2,077 304 1,458 163 776 131 1,034 102 2,660 329 2,663 360 2,268 328

TARDBP 1,802 60 TAR DNA binding protein

[HGNC:11571]

– – 1,044 50 748 25 – – – – 1,409 58 1,418 59 1,156 52

TNFRSF10B 2,429 80 TNF receptor superfamily member

10b [HGNC:11905]

– – 1,510 66 1,056 26 – – 786 27 2,008 73 2,021 75 1,718 58

TP53 2,310 198 Tumor protein p53 [HGNC:11998] 974 97 1,554 137 1,380 130 737 84 891 98 2,172 179 2,174 181 1,714 137

TSHR 2,259 70 Thyroid stimulating hormone receptor

[HGNC:12373]

968 25 1,579 58 1,317 43 727 35 – – 2,133 68 2,131 67 1,739 64

TUBB 697 51 Tubulin beta class I [HGNC:20778] – – 503 32 373 32 – – – – 692 48 693 49 563 32

USP1 2,356 64 Ubiquitin specific peptidase 1

[HGNC:12607]

877 30 1,425 46 1,260 45 697 29 833 30 1,972 55 1,985 58 1,557 44

VDR 2,696 140 Vitamin D receptor [HGNC:12679] 1,161 44 1,901 101 1,673 80 915 50 1,076 43 2,530 127 2,536 128 2,059 107

YES1 138 101 YES proto-oncogene 1, Src family

tyrosine kinase [HGNC:12841]
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each subset: a first model used the 978-landmark GES as input
(referred as GES models), and the second one used the Morgan
fingerprints of corresponding compounds to fairly compare
model performances (referred as Morgan FP models). Models
were trained using random forest classifiers (Breiman, 2001).

The training was performed using a 4-fold cross-validation on
training set to tune the maximum depth of tree, before assessing
prediction performances on the test set. The number of trees
per model was set to 200. Models were built in Python 2.7
using the sklearn package: to account for unbalanced dataset,
the “class_weight” parameter was set to “balanced_subsample,” to
increase the weight of the under-represented class samples when
training the trees (Pedregosa et al., 2011). A first step of feature
selection was performed using an initial random forest classifier,
computing the feature importance (Breiman, 2001). Sum of
importance of all feature was 1, with each feature importance
between 0 (non-important) and 1 (important). This step was
performed 5 times, feature importance was averaged by feature,
and only the 20 most important features were selected to be
loaded into a final random forest model. This whole modeling
pipeline, from train-test split to final model was performed 10
times per task, to account for variable performances depending
on the dataset split.

Models were evaluated by counting the numbers of true
positive (TP), true negative (TN), false positive (FP) and false
negative (FN). These parameters were combined in the following
metrics in order to compare model performances:

• Sensitivity = TP/(TP + FN)

• Specificity = TN/(TN + FP)

•Balanced accuracy (BA) :BA = (Sensitivity+ Specificity)/2

•Matthews correlation coefficient (MCC) :

MCC =

TP∗TN− FP∗FN
√

(TP+ FP) (TP+ FN) (TN+ FP) (TN+ FN )

Balanced accuracy allows for a fair evaluation of model
performances when using unbalanced datasets, by averaging
accuracy for each class (here active and inactives).

Quadrant Plots
Between each possible pair of compounds active on the same
target and in each cell line, Dice distance between Morgan
fingerprints, and cosine distance between GESs in given cell
line were computed. These 2 distances were plotted in a 2D
plot (referred as distance plot), Dice distance on X-axis and
cosine distance on Y-axis. These plots were theoretically split in
4 quadrants.

Quadrant I in the top-right corner contains active compound
pairs having different structures (Morgan fingerprints Dice
distance > 0.5) and presenting different GESs (cosine distance
> 0.5); quadrant II in top-left corner contains active compound
pairs having similar structures (Morgan fingerprints Dice
distance < 0.5) and presenting different GESs (cosine distance
> 0.5); quadrant III in bottom-left corner contains active
compound pairs having similar structures (Morgan fingerprints

Dice distance < 0.5) and presenting similar GESs (cosine
distance < 0.5); quadrant IV in bottom-right corner contains
active compound pairs having different structures (Morgan
fingerprints Dice distance > 0.5) and presenting similar
GESs (cosine distance < 0.5). Number of active compound
pairs in each quadrant were counted for each distance
plot. Similar calculations were made using not only active
compounds, but all compounds having an annotation (active
or inactive) for considered target and profiled in the same
cell line.

RESULTS

In the present work, we investigated the link between compound
structure information (n = 9,035) and their corresponding
induced biological responses captured by GESs (n = 39,544) in
human tumor cell lines and evaluated the potential of machine
learning approaches to infer about molecular targets involved
in the compound bioactivity. In addition, we compared these
machine learning models using GESs with counterpart models
using Morgan fingerprints.

Exploration of Chemical and Biological
Spaces
As a first step, to observe the diversity of the 9,035 compounds
profiled in the 10 µM/24 h L1000 signature dataset, the
corresponding chemical space was visualized. Figure 2A is a
2-dimensional t-SNE representation of the chemical space,
illustrating the variability in terms of Morgan fingerprints.
The 9,035 compounds form a broad chemical space, with a
mean Dice distance between compound pairs of 0.81 (ChEMBL
has a mean pairwise Dice distance of 0.82). The center of
the chemical space is mostly composed by small molecules
having on average a molecular weight lower than 500 Da
whereas the outer part is populated by clusters of compounds
with higher molecular weights (>500 Da). Overall, we were
able to retrieve, in the public domain, at least one activity
information for 7,837 compounds, from which 4,872 were active
in at least one target. The majority of those compounds were
found active in a low number of targets, on average 6 per
compound, with a median of 2. Not surprisingly, a set of
23 kinase inhibitors were found to be active in more than
100 targets.

Figure 2B shows a t-SNE plot created using all GESs induced
by the 9,035 compounds in the different cell lines to examine
the complete biological space. This t-SNE is color coded by
the different cell lines used to generate the gene signatures.
Each cell line is represented by a set of 4 to 5 main clusters
of GESs differing in size and some overlap of the cluster
indicates similar GESs derived from different cell lines. In
order to better appreciated the differences and communalities
in GESs obtained with the selected compounds, t-SNE plots
were created highlighting the clusters derived for cell lines
originating from the same tumor type namely prostate tumor
(VCAP and PC3 in Figure 2C) and lung tumor (A549 and
HCC515 in Figure 2D). GESs derived from cell lines coming
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FIGURE 2 | Exploration of the 2D chemical space, along with the corresponding 2D biological space formed by all GES. (A) t-SNE on Morgan fingerprints from the

9,035 compounds in working dataset, representing the chemical space. Points corresponding to compounds for which there is no known target are represented by

gray points (n = 4,163). Points corresponding to compounds for which there is at least one known target are in blue (n = 4,872), with darker blue depending on the

increasing number of targets. (B) t-SNE on all GESs in the working dataset, representing the biological (transcriptomic response) space. Points corresponding to

GESs are colored by cell line. (C) Biological space highlighting only PC3 and VCAP signatures, 2 cell lines originating from prostate cancer. (D) Biological space

highlighting only A549 and HCC515 signatures, 2 cell lines originating from lung cancer.

from the same tissue present very little overlap as can be observed
in Figures 2C,D.

These results illustrate the variability in the cellular
modifications occurring during carcinogenesis (Hanahan
and Weinberg, 2011) and show that each cell line represent
a distinct biological space even if the cell lines are derived
from the same tissue type. Interestingly, when comparing, for
a set of compounds showing GESs in a single cluster in VCAP,
GESs of these compounds in PC3 are spread across various
clusters from the PC3 biological space (data not shown). This
shows that each cell line explores different biological responses
to compounds.

After having described the global variability of GESs in the
different cell lines, we explored the chemical and biological spaces

corresponding to active and inactive compounds on different
targets. Since each compound-induced GES obtained in each cell
line was shown to represent a unique biological space, t-SNE plots
were computed per cell line in order to further explore the link
between the different biological spaces and the corresponding
chemical ones. For this, we decided to focus on three cell lines
derived from different tissues and among the largest GES dataset
generated that is to say A549 (lung cancer), MCF7 (breast
cancer) and PC3 (prostate cancer). In addition, we selected 3
representative molecular targets showing different chemical and
biological space profiles: compounds active on the glucocorticoid
receptor (NR3C1) have similar structures, and similar GESs in
some cell lines (Figures 3A–D); tubulin beta I (TUBB) actives
have more diverse structures but show similar GESs in each

Frontiers in Chemistry | www.frontiersin.org 8 April 2020 | Volume 8 | Article 296441

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Baillif et al. Chemical and Biological Spaces Interlink

cell line considered in this work (Figures 4A–D); and dopamine
receptor D1 (DRD1) actives have diverse structure and GESs in
every used cell line (Figures 5A–D).

NR3C1 actives compounds are mostly grouped together in
the chemical space, as shown in Figure 3A (n = 54; mean Dice
distance = 0.67). Most of NR3C1 active GESs are also grouped
in a cluster in the A549 biological space (n = 38; mean cosine
distance = 0.76), visible in Figure 3B, and remaining NR3C1
active GESs are spread across this biological space. Following
the similarity principle, we could conjecture that other GESs
that are close to this cluster are responses from other NR3C1
actives, especially in the PC3 biological space where the cluster
contains compounds known to be active. The same phenomenon
can be observed in the biological space of PC3 (Figure 3D),
HCC515, HA1E and VCAP (data not shown). Surprisingly, the
GES clusters populated by numerous known NR3C1 actives in
the biological spaces of A549 and PC3 also contain some known
inactive compounds. In the biological spaces of MCF7, A375
and HT29, there is no such clustering, like shown in Figure 3C

representing the MCF7 biological space (n = 54; mean cosine
distance= 0.92). Overall, these results show that compounds that
are known to be active on the NR3C1 target can show a similar
response in only certain cellular contexts.

TUBB actives compounds are spread in the chemical
space (represented in Figure 4A), indicating that they have
diverse chemical structures (n = 51; mean Dice distance
= 0.76). Most importantly, in each cell lines used in this
work, GESs induced by TUBB actives compounds were similar
(as illustrated in Figures 4B–D), with a rather low mean
cosine distance between active compounds ranging between
0.61 and 0.75 depending on the cell line dataset. Moreover,
GESs of TUBB actives tend to be similar across all cell lines
used in this work (highlighted in Supplementary Figure 1).
This conserved pattern in GESs induced by tubulin binding
compounds likely illustrate certainly the ubiquitous role of
tubulin polymerization of the eukaryotic cytoskeleton (Chaaban
and Brouhard, 2017).

Finally, DRD1 actives compounds, that are represented in the
chemical space t-SNE, have diverse chemical structures (n =

99; mean Dice distance = 0.81), associated with diverse GESs
for the 3 cell lines presented (mean cosine distance between
0.88 and 0.92 depending on the cell line), as illustrated in
Figures 5A–D. Since GESs of active compounds in any cell lines
are not similar, nor their chemical structures, actives cannot
be easily discriminated from inactives using these two types of
descriptors, as opposed to what was observed with NR3C1 actives
that have similar structures, or TUBB actives having similar GESs
in every cell line used in this study.

Model Performances: GES Vs. Morgan
Fingerprints
Based on the observed GES similarity of compounds sharing
target activity in appropriate cellular contexts, we tested building
predictive machine learning models using GESs as descriptors
and compare their performances with the ones of the models
using Morgan fingerprints.

In order to avoid building models with too unbalanced
datasets and to ensure a minimum of active compounds when
testing model performances, we first pre-selected targets having
at least 50 active compounds in the total dataset (representing
between 1 and 63% of active compounds per target). We
obtained one dataset per cell line—target combination (restricted
to compounds having signatures in the considered cell line,
as shown in Figure 1) and carried out a second selection by
performing prediction tasks using datasets containing at least
20 active compounds for the considered target (representing
between 1 and 69% of active compounds per dataset). For
each selected cell line—target dataset, one model using GESs
(referred as GES model) was computed. In order to perform
a fair comparison per task, one counterpart model using
corresponding compound Morgan fingerprints (referred as
Morgan FP model) was built using the same set of compounds as
the one used in the corresponding GES models. Performances of
models were evaluated using the balanced accuracy (BA) metric
on a test set, to account for class imbalance in datasets. In total,
990 models were built for a total of 69 different targets. BAs of
all built models are presented in Table 3. MCC of all built models
are presented in Supplementary Table 1.

Overall, GES model performances appeared to be variable
depending on the predicted target and on the cell line that
was used to generate the GESs, with a BA ranging from 0.49
to 0.88. Counterpart models trained with Morgan fingerprints
also had variable performances, with a BA ranging from 0.50 to
0.98. On average, Morgan FP models (mean BA = 0.65) yielded
better performances for the target activity prediction than their
counterpart GES models (mean BA = 0.58). On the 495 cell
line—target combinations, BA of GESmodels was higher than BA
of counterpart Morgan FP models for 124 combinations (25%).

On the 990 models, 208 models reached a BA higher than
0.7 (21%) for 40 targets (59 GES models for 18 targets; 138
Morgan FP models for 28 targets), and 33 models reached a
BA higher than 0.8 (3%) for 10 targets (10 GES models for 4
targets; 21 Morgan FP models for 7 targets). For all 138 Morgan
FP models reaching BA higher than 0.7, BA was superior to
counterpart GESmodels, and for the 59 GESmodels reaching BA
higher than 0.7, only 6 had counterpart Morgan FP model with
higher BA.

For NR3C1 activity prediction, Morgan FP models yielded
a BA between 0.93 and 0.98 depending on the cell line
dataset. It is not surprising considering that that NR3C1 actives
have similar structure as shown in Figure 3A. On the GES
models, a BA of 0.77 was reached using the A549 signature
dataset, correlating to similar GESs that were observed in the
A549 biological space (Figure 3B), whereas a BA of 0.6 was
obtained using the MCF7 signature dataset (no GES cluster
in MCF7 biological space, shown in Figure 3C). A549 and
MCF7 signature model performances cannot be fairly compared
because they were built using different sets of compounds.
In fact, performances of different GES models cannot be
compared across cell lines nor across targets, performances
can only be compared to observed similarity between active
compounds in either chemical and biological space plots for a
given target.
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FIGURE 3 | NR3C1 active and inactives compounds in the chemical space and the different biological spaces formed by GES produced in a single cell line. (A)

Chemical space; (B) t-SNE on all A549 signatures (A549 biological space); (C) t-SNE on all MCF7 signatures (MCF7 biological space); (D) t-SNE on all PC3 signatures

(PC3 biological space). Points corresponding to NR3C1 actives are red (n = 54), NR3C1 inactives (n = 925) are blue, gray points have no available label concerning

NR3C1 activity. Orange circles point out clustering of active compounds.

For TUBB activity prediction, GES models yielded BA
between 0.81 and 0.88 depending on the cell line dataset,
which was among the 10 best GES models. Interestingly,
their counterpart Morgan FP models were not significantly
underperforming (BA ranging from 0.78 to 0.82). Even though
the TUBB active structures are diverse, the models still managed
to identify structural fragments that could produce such
predictive performance.

For DRD1 activity prediction, Morgan FP models yielded BA
between 0.68 and 0.74 depending on the cell line dataset, and
were always better than their counterpart GES model, with a BA
ranging from 0.58 to 0.64.

Overall, we conclude that it was possible to build GES models
with acceptable performances, performing similarly or better
than their counterpart Morgan FP models in 25% of the target
prediction tasks. Moreover, we see an important advantage in the
GES models: they are theoretically performing independently of
the chemical space considered, allowing target identification of

new compounds even if their corresponding structural diversity
is not represented in the training set.

Rationalizing Model Performances Using
Distance Plots
To further describe and understand the reasons for the
differences in performances between GES model and Morgan
FP model, for every dataset used in each cell line—target
combinations, Morgan fingerprints Dice distance was plotted
against GES cosine distance between each pair of active
compounds in the given dataset.

Generated distance plots were split in 4 quadrants separated
by a 0.5 threshold for Dice distance (dotted vertical line) and a 0.5
threshold for cosine distance (dotted horizontal line). Data points
in top right (Quadrant I) represent pairs of active compounds
showing diverse structures and different GESs in the considered
cell line and contains most of compound pairs (average of 95.1%).
Data points in top left (Quadrant II) represent pairs of active
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FIGURE 4 | TUBB active and inactives compounds in the chemical space and the different biological spaces formed by GES produced in a single cell line. (A)

Chemical space; (B) A549 biological space; (C) MCF7 biological space; (D) PC3 biological space. Points corresponding to TUBB actives (n = 51) are red, TUBB

inactives (n = 697) are blue, gray points have no available label concerning TUBB activity. Orange circles point out clustering of active compounds.

compounds showing similar structures while showing diverse
GESs in the considered cell line (average of 1.9%). Data points in
bottom left (Quadrant III) represents pairs of active compounds
showing similar structures and similar GESs in the considered
cell line and contains least compound pairs (average of 0.5%).
Data points in bottom right (Quadrant IV) represents pairs of
active compounds showing similar GESs while having different
structures (average of 2.5%). Intuitively, we think that sample
similarity within the same class (here: actives) is a good indicator
to know if a machine learning model will be able to properly
predict samples from this class.

Overall, the mean percentage of compound pairs (active and
inactives) were 99.3, 0.3, 0.01 and 0.4% for quadrants I, II, III and
IV respectively. Based on this dataset, compounds active toward
a molecular target have on average more similar structures and
GESs than the totality of the compounds.

We expected to reach good Morgan FP model prediction for
combinations having a high proportion of points in quadrants II
and III (similar structures), and good GES model prediction for

combinations having a high proportion of points in quadrants
III and IV (similar GESs). We evaluated the use of distance
plots on the three targets and three cell lines used in previous
space plots (Figures 3, 5). Similar work was performed using
not only active compounds, but all compounds having at least
one annotation for each of the three previously described targets,
shown in Supplementary Figure 2.

For NR3C1 distance plots, there are approximately 10%
of compound pairs in quadrants II and III of the 3
plots (Figures 6A–C), coherent with good Morgan FP model
performances. However, depending on which cell line the
GESs were generated from, there were different proportions of
compound pairs in quadrants III and IV: there are 20% of pairs
for A549, and only 1% of pairs in MCF7. This is in agreement
with what was observed in model performances: performance
of GES models using the A549 dataset (BA = 0.77) was much
better than performances using MCF7 dataset (BA = 0.60).
Surprisingly, prediction using GESs from the PC3 dataset showed
good performances (BA = 0.73), even though the proportion
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FIGURE 5 | DRD1 active and inactives compounds in the chemical space and the different biological spaces formed by GES produced in a single cell line. (A)

Chemical space; (B) A549 biological space; (C) MCF7 biological space; (D) PC3 biological space. Points corresponding to DRD1 actives (n = 99) are red, DRD1

inactives (n = 1843) are blue, gray points have no available label concerning DRD1 activity.

of active compound pairs in quadrants III and IV was around
1% (similar to the proportion observed for the MCF7 dataset
that showed worse performances). This suggests that the GES
model built with PC3 was able to capture a subset of genes to
discriminate active compounds from inactives, even with active
compounds showing different GESs.

For TUBB distance plots (Figures 6D–F), between 7 and
10% of compound pairs was observed in quadrants II and
III, matching the good Morgan FP model performances with

the 3 cell line datasets (BA ranging from 0.80 to 0.82). Most
importantly, there are between 26 and 40% of compound pairs

in quadrants III and IV, echoing the better performances of the
GES models in these cell lines (BA ranging from 0.81 to 0.88).

For DRD1 distance plots (Figures 6G–I), 98% of compound
pairs are in quadrant I, leaving low number of active compound
pairs in the other quadrants (with similar Morgan fingerprints

and/or GESs). This is coherent with the average performances of

GES (BA ranging from 0.68 to 0.74) and Morgan FP models (BA
ranging from 0.58 to 0.64) built for this target.

Among the 50 best GESmodels, the mean percentage of active
pairs in quadrants III and IV was 5.2% (vs. 2.3% in quadrants II
and III). For the 50 best Morgan FP models, the mean percentage
of active pairs in quadrants II and III was 4.0% (vs. 2.2% in
quadrants III and IV). This suggests a positive relationship
between sample similarity between active compounds using a
given set of descriptors for active compounds and performances
of models using these descriptors.

In the current work, GESs were shown to be effective
descriptors to predict compound activity toward molecular
targets. In 25% of target prediction tasks, GES models
outperformed their counterpart Morgan FP models, especially
when using GES produced in a cell line exhibiting similar GESs
between compounds active toward the target of interest. Such
GES models performs independently of the structural diversity
of compounds that were used to produce GESs, offering a great
opportunity to escape the classical chemical space limitations
associated with QSAR models. In addition, t-SNE plots, along
with 2D distance plots, can give insights to assess the predictive
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TABLE 3 | Mean BAs of models (mean per condition).

Cell line A375 A549 HA1E HCC515 HT29 MCF7 PC3 VCAP

Target class Target name Target/

Descriptor

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

Enzyme 15-Hydroxyprostaglandin

dehydrogenase

HPGD 0.5 0.65 0.51 0.7 0.52 0.67 0.5 0.72 0.51 0.68 0.5 0.71 0.52 0.67 0.52 0.64

Arachidonate 15-lipoxygenase ALOX15 0.54 0.74 0.57 0.75 0.54 0.67 0.5 0.63 0.5 0.73 0.56 0.74 0.65 0.75 0.53 0.75

ATP binding cassette B1 ABCB1 0.54 0.62 0.51 0.61 0.5 0.54 0.5 0.5 0.51 0.5 0.56 0.62 0.59 0.63 0.51 0.63

BRCA1, dna repair associated BRCA1 0.74 0.69 0.69 0.62 0.67 0.57 0.6 0.52 0.71 0.6 0.78 0.64 0.75 0.64 0.67 0.65

Cytochrome P450 1A2 CYP1A2 0.54 0.6 0.56 0.6 0.57 0.61 0.59 0.58 0.5 0.59 0.59 0.63 0.6 0.63 0.56 0.61

Cytochrome P450 2C19 CYP2C19 0.52 0.57 0.55 0.59 0.5 0.55 0.52 0.55 0.51 0.57 0.56 0.58 0.56 0.59 0.53 0.58

Cytochrome P450 2C9 CYP2C9 0.55 0.57 0.52 0.61 0.52 0.6 0.51 0.6 0.53 0.58 0.55 0.58 0.6 0.58 0.54 0.6

Cytochrome P450 3A4 CYP3A4 0.51 0.55 0.52 0.59 0.52 0.58 0.49 0.6 0.51 0.54 0.52 0.6 0.54 0.6 0.53 0.57

DNA polymerase beta POLB 0.5 0.66 0.5 0.69 0.51 0.82 – – 0.5 0.69 0.5 0.69 0.53 0.73 0.5 0.69

DNA polymerase eta POLH 0.55 0.71 0.51 0.74 0.66 0.82 – – 0.5 0.76 0.51 0.73 0.55 0.72 0.52 0.69

DNA polymerase iota POLI 0.5 0.7 0.5 0.71 0.54 0.71 0.5 0.6 0.51 0.65 0.51 0.72 0.51 0.73 0.5 0.68

DNA polymerase kappa POLK 0.58 0.77 0.51 0.78 0.56 0.83 0.52 0.79 0.5 0.76 0.54 0.81 0.56 0.83 0.5 0.83

Flap structure-specific endonuclease

1

FEN1 0.5 0.72 0.5 0.68 0.5 0.77 – – 0.5 0.74 0.5 0.77 0.51 0.75 0.5 0.7

Glutaminase GLS 0.5 0.64 0.51 0.64 0.53 0.58 – – – – 0.51 0.74 0.51 0.69 0.51 0.7

Growth factor, augmenter of liver

regeneration

GFER 0.51 0.72 0.5 0.72 0.59 0.74 0.5 0.71 0.5 0.72 0.52 0.72 0.56 0.71 0.5 0.7

Hydroxysteroid 17-beta

dehydrogenase 10

HSD17B10 0.51 0.57 0.54 0.62 0.55 0.63 0.51 0.63 0.49 0.58 0.54 0.65 0.53 0.64 0.5 0.62

Janus kinase 2 JAK2 0.71 0.57 0.73 0.63 0.69 0.56 0.63 0.56 0.68 0.56 0.8 0.63 0.73 0.59 0.65 0.58

MDM2 proto-oncogene MDM2 0.77 0.69 0.71 0.61 0.7 0.62 0.76 0.53 0.67 0.59 0.83 0.65 0.81 0.64 0.76 0.66

Phosphatidylinositol-5-phosphate

4-kinase type 2 alpha

PIP4K2A 0.51 0.69 0.54 0.75 0.53 0.66 – – 0.5 0.58 0.53 0.76 0.5 0.76 0.52 0.74

Phospholipase A2 group VII PLA2G7 0.5 0.71 0.51 0.65 0.57 0.72 – – 0.5 0.69 0.54 0.69 0.57 0.71 0.51 0.69

Polo like kinase 1 PLK1 0.5 0.62 0.52 0.64 0.54 0.52 0.49 0.56 0.5 0.52 0.52 0.68 0.52 0.67 0.49 0.68

Serine/threonine kinase 33 STK33 0.78 0.58 0.68 0.62 0.78 0.59 0.74 0.6 0.7 0.56 0.72 0.61 0.71 0.64 0.66 0.65

Ubiquitin specific peptidase 1 USP1 0.5 0.54 0.51 0.58 0.51 0.53 0.51 0.53 0.5 0.55 0.52 0.57 0.57 0.59 0.5 0.57

YES proto-oncogene 1, Src family

tyrosine kinase

YES1 0.7 0.72 0.67 0.7 0.71 0.72 0.63 0.69 0.66 0.71 0.66 0.75 0.7 0.72 0.54 0.68

Epigenetic

regulator

Bromodomain adjacent to zinc finger

domain 2B

BAZ2B 0.6 0.66 0.54 0.68 0.63 0.69 0.52 0.6 0.5 0.65 0.55 0.67 0.6 0.66 0.53 0.68

Chromobox 1 CBX1 0.56 0.57 0.55 0.62 0.6 0.6 0.57 0.61 0.54 0.55 0.61 0.6 0.57 0.62 0.55 0.61

Lysine demethylase 4A KDM4A 0.64 0.62 0.56 0.67 0.65 0.7 0.57 0.63 0.6 0.65 0.58 0.68 0.6 0.65 0.53 0.63

Lysine demethylase 4E KDM4E 0.59 0.76 0.52 0.75 0.61 0.75 0.53 0.75 0.5 0.72 0.53 0.73 0.57 0.74 0.52 0.72

M-phase phosphoprotein 8 MPHOSPH8 0.52 0.53 0.52 0.64 0.54 0.64 0.51 0.65 0.5 0.54 0.63 0.63 0.54 0.64 0.51 0.65

Protein arginine methyltransferase 1 PRMT1 0.5 0.65 0.51 0.71 0.5 0.54 – – – – 0.52 0.7 0.51 0.71 0.51 0.72

Sirtuin 5 SIRT5 – – 0.51 0.65 – – – – – – 0.51 0.62 0.5 0.61 0.5 0.6

(Continued)
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TABLE 3 | Continued

Cell line A375 A549 HA1E HCC515 HT29 MCF7 PC3 VCAP

Target class Target name Target/

Descriptor

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

GES Morgan

FP

Survival of motor neuron 2,

centromeric

SMN2 – – 0.5 0.62 0.51 0.56 – – – – 0.52 0.63 0.52 0.6 0.5 0.62

Ion channel Potassium voltage-gated channel H2 KCNH2 0.72 0.82 0.64 0.8 0.66 0.79 0.65 0.76 0.74 0.8 0.65 0.84 0.65 0.8 0.67 0.8

Membrane

receptor

5-hydroxytryptamine receptor 1A HTR1A 0.5 0.72 0.51 0.75 0.54 0.75 0.53 0.75 0.51 0.7 0.55 0.77 0.52 0.76 0.55 0.79

Cholinergic receptor muscarinic 1 CHRM1 0.6 0.69 0.64 0.69 0.66 0.71 0.7 0.69 0.67 0.62 0.59 0.71 0.6 0.73 0.65 0.72

Cholinergic receptor muscarinic 4 CHRM4 0.63 0.71 0.67 0.75 0.64 0.72 0.7 0.68 0.63 0.66 0.66 0.7 0.62 0.73 0.62 0.72

Cholinergic receptor muscarinic 5 CHRM5 0.6 0.69 0.62 0.76 0.64 0.72 0.69 0.72 0.63 0.68 0.64 0.73 0.59 0.71 0.61 0.68

Dopamine receptor D1 DRD1 0.64 0.68 0.6 0.73 0.63 0.7 0.58 0.72 0.62 0.69 0.62 0.74 0.61 0.72 0.59 0.74

Dopamine receptor D2 DRD2 0.61 0.74 0.61 0.79 0.61 0.79 0.6 0.79 0.61 0.73 0.65 0.79 0.62 0.79 0.63 0.8

Dopamine receptor D3 DRD3 0.6 0.66 0.58 0.72 0.56 0.71 0.58 0.71 0.58 0.66 0.63 0.72 0.57 0.72 0.58 0.73

Neuropeptide S receptor 1 NPSR1 – – 0.59 0.64 0.5 0.55 – – – – 0.63 0.66 0.57 0.66 0.58 0.63

Opioid receptor kappa 1 OPRK1 0.5 0.61 0.52 0.65 0.5 0.61 – – 0.54 0.63 0.57 0.65 0.53 0.64 0.55 0.68

Thyroid stimulating hormone receptor TSHR 0.51 0.64 0.5 0.56 0.56 0.52 0.57 0.5 – – 0.56 0.61 0.56 0.6 0.55 0.61

TNF receptor superfamily member

10b

TNFRSF10B – – 0.69 0.61 0.56 0.52 – – 0.7 0.56 0.71 0.61 0.78 0.58 0.65 0.56

Other cytosolic

protein

Heat shock protein 90 alpha A1 HSP90AA1 0.53 0.65 0.5 0.67 0.59 0.73 – – 0.53 0.67 0.55 0.67 0.59 0.65 0.51 0.64

Heat shock protein family B1 HSPB1 0.58 0.58 0.54 0.53 0.63 0.58 0.54 0.51 0.5 0.55 0.66 0.59 0.66 0.61 0.55 0.57

Secreted protein Interleukin 1 beta IL1B 0.62 0.55 0.65 0.6 0.65 0.55 0.65 0.55 0.66 0.57 0.68 0.63 0.69 0.62 0.63 0.62

Structural protein Tubulin beta class I TUBB – – 0.81 0.8 0.82 0.78 – – – – 0.88 0.82 0.84 0.8 0.82 0.8

Transcription

factor

Androgen receptor AR 0.51 0.63 0.58 0.75 0.55 0.71 0.53 0.75 0.51 0.62 0.61 0.77 0.55 0.74 0.67 0.76

Jun proto-oncogene, AP-1

transcription factor subunit

JUN 0.6 0.69 0.54 0.63 0.58 0.65 0.56 0.61 0.59 0.67 0.6 0.65 0.57 0.67 0.6 0.63

Melanogenesis associated

transcription factor

MITF 0.81 0.64 0.7 0.61 0.73 0.57 0.73 0.56 0.68 0.57 0.82 0.65 0.79 0.68 0.69 0.61

Nuclear factor kappa B1 NFKB1 0.51 0.51 0.5 0.66 0.51 0.5 0.5 0.51 0.55 0.5 0.5 0.63 0.51 0.64 0.51 0.63

Nuclear receptor 3C1 NR3C1 – – 0.77 0.96 0.67 0.94 0.76 0.98 – – 0.6 0.93 0.73 0.95 0.69 0.95

Nuclear receptor 5A1 NR5A1 0.55 0.53 0.65 0.56 0.64 0.57 – – – – 0.72 0.62 0.73 0.62 0.65 0.6

Tumor protein p53 TP53 0.72 0.57 0.62 0.55 0.65 0.55 0.7 0.57 0.62 0.58 0.71 0.58 0.7 0.57 0.6 0.56

Vitamin D receptor VDR 0.5 0.57 0.5 0.6 0.52 0.6 0.51 0.54 0.53 0.53 0.58 0.62 0.55 0.59 0.53 0.59

Transporter Abhydrolase domain containing 5 ABHD5 0.51 0.57 0.51 0.66 – – – – – – 0.55 0.68 0.54 0.68 0.53 0.69

Solute carrier family 6 member 3 SLC6A3 0.64 0.65 0.62 0.66 0.65 0.65 0.67 0.62 0.61 0.65 0.66 0.66 0.66 0.67 0.64 0.68

Unclassified

protein

Ataxin 2 ATXN2 0.78 0.5 0.7 0.62 0.74 0.52 0.7 0.53 0.69 0.58 0.72 0.62 0.72 0.61 0.7 0.61

ATPase family, AAA domain

containing 5

ATAD5 0.58 0.56 0.52 0.67 0.59 0.62 0.55 0.62 0.52 0.6 0.6 0.65 0.64 0.65 0.52 0.68

(Continued)
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power of GESs and Morgan fingerprints for target prediction,
based on a limited dataset depending on biological (GES and
bioactivity assay) data availability.

DISCUSSION

Our results show that compound-induced transcriptomic
responses derived from cell lines have the potential to support
target prediction of unknown compounds with large structural
diversity. Interestingly, we observed that compound induced
biological responses are mostly cell line specific even when cell
lines are derived from the same tissue. Nevertheless, machine
learning models using GESs were shown to perform well as long
as the appropriate cell line was used. Exploring biological spaces
can help to overcome the limitations derived from a restricted
chemical space when using traditional QSAR. To improve the
predictivity of GESmodels, we have identified several limitations,
and discuss possible improvements.

Data Acquisition
First limitations come from gene expression data preprocessing.
Gene expression values were obtained through multiple
preprocessing steps from the initial generated raw data. For
instance, there is a first peak deconvolution step to determine
the gene expression levels, that as well as the plate-normalized z-
scoring to obtain the normalized (“Level 5”) can still be improved
as already stated by Li et al. (2017). Using GESs obtained with
different preprocessing methods could potentially give more
accurate normalized values leading to increased performances in
machine learning models.

Secondly, the CMAP L1000 technology relies on the
measurement of 978 landmark genes, representing about 5%
of the human transcriptome (Pertea, 2012). The gene values of
the remaining transcriptome can be inferred through different
computational methods (Subramanian et al. (2017) method
reached good prediction for 81% of inferred genes), that are still
under improvement (Blasco et al., 2019). We decided to only
use the 978 landmarks as input data for the machine models
generated, to reflect real measured gene expression. Doing so,
we might have missed some valuable information captured by
a change of expression of the non-measured genes. Therefore,
it would be interesting to explore the potential added value of
expanding the number of descriptors by adding the inferred gene
information to the target prediction models.

Data Restrictions
Another limitation is also coming with the activity dataset that
was used. Since compound activity is a selective interaction, there
is for each target a low number of active compounds compared
to the number of inactive compounds. As a consequence, the
training sets used for model building were highly unbalanced
favorizing the prediction of the category inactive. Moreover, not
every compound was tested for activity in all targets, leading
to a sparse dataset (5% of total compound target interactions
are known).

On top of this activity data limitation, not all available
compounds were profiled in all the 8 cell lines used in this work.
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FIGURE 6 | Morgan fingerprints Dice distance vs. GES cosine distance (distance plots). Different panels show information for pairs of NR3C1 (A–C), TUBB (D–F),

and DRD1 (G–I); active compounds in A549 (A,D,G), MCF7 (B,E,H), and PC3 (C,F,I) cell lines.

There were only about 600 compounds profiled in all the cell
lines, which is too limited to build predictive models, with regard
to available activity data. Consequently, one dataset per cell line

was created, formed by compounds profiled in this cell line and

resulting GESs. For each target prediction, the cell line datasets

were restricted to compounds having a known label for the target
of interest. Since each task used a different dataset, performances
of models across cell lines or targets the comparison across
GES models was not possible. The difference in dataset sizes is
explaining at least partly the variation of performances of GES
models across targets, ranging from models close to a random
predictor (BA= 0.50) to good GESmodels (BA= 0.88), as well as

the variation of performances of counterpart Morgan FP models
(BA ranging from 0.50 to 0.98).

Biological Response Constraints
Biologically, variation of GES model performances can also be
caused by the difference in the pathway representation in the
cell lines and consequently to compound induced signatures.
Compounds active on a given target might show GESs with
different degree of similarity or no similarity among the
considered cell lines. as illustrated by the cases of NR3C1, TUBB
and DRD1. Gene expression responses depend on the cellular
context as shown in this work and elsewhere (Chen et al., 2013;
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Yu et al., 2019). Thus, the biological system in which the GESs are
generated is of utmost importance for target prediction.

Due to practical aspects (scalability, low price, etc.), biological
systems such as in vitro immortalized cell cultures (like cancer
cell lines used in this work) are widely used, but they come
with some disadvantages: they show limited physiological
representativity and have been shown to drift along passages
(Hughes et al., 2007). Even within the same cell line, it was shown
that strains show different responses to the same compounds,
indicating a reduced reproducibility between generated GESs
(Ben-David et al., 2018). Ideally, the GESs should be derived from
biological systems mimicking as much as possible the biological
responses observed in the corresponding target organ.

The advantage of transcriptomic evaluations over single
endpoint assays is that in theory they have the potential to capture
integrative responses from compound treatments, ranging from
on target activity at high potency to off-target activities at
lower potencies, depending on the tested concentrations. GESs
responses are also known to be variable depending on time
exposition (Aguayo-Orozco et al., 2018). That is the reason
why we selected data sets originating from the same study
design. GESs measured at a concentration of 10µM after 24 h
of treatment of the cell lines were extracted, as this is the most
represented experimental condition (De Wolf et al., 2016; Lv
et al., 2017).

GES Models Versus Morgan FP Models
We showed that using GES datasets produced by the Broad
Institute with the CMAP L1000 technique (Subramanian et al.,
2017), random forest models outperformed counterpart Morgan
FP models for target prediction in 25% of the cases. Evidently,
the outcome of this comparison is depending on the available
data for the different targets to build the models as illustrated
by the wide range of differences of BA between the two types
of predictive models. Practically, both QSAR and transcriptomic
descriptors represent good opportunities for target prediction,
but each come with advantages and constraints that needs to be
considered when building predictive models.

QSAR models for target prediction are widely used because of
the wide dataset available, with existing databases like PubChem
or ChEMBL. Most QSAR descriptors are discrete unambiguous
values extracted from the chemical formula of compounds,
thus easily computed. In the context of hit discovery, a major
drawback of QSAR models is that they show significant error
rate when trying to predict activity for compounds that are too
structurally different from the training set (Cherkasov et al.,
2014). Using a new set of descriptors, like compound bioactivity
such as GESs extracted from in vitro experiments, can help in
target prediction while escaping from the classical chemical space
limitation observed in QSAR approaches.

On the other hand, GESs represents a number of changes
on a certain number of genes (the 978 landmarks), capturing
the effect of compounds. These data could be used to make
inference about biology (i.e., finding targets or biomarkers). Each
cell line shows a unique biological space that can be explored.
However, these biological experiment data are prone to technical
and biological variability like discussed earlier. Gene expression

can be measured in different dose and time conditions, adding
dimensions to explore in order to find the conditions reaching
best performances in GES models. Finally, the gene expression
measurements are more and more cost effective, making the use
of such data at a large scale possible.

When exploring a new chemical class in hit discovery,
evaluating chemical-induced biological responses in appropriate
cell-lines using transcriptomic profiling can support chemical
prioritization. This biologically-based approach present the
advantage in a given biological space of being in principle
chemical space independent as opposed to QSAR modeling
that is constrained by the chemical space of the training set.
Furthermore, during lead optimization, biological spaces inform
about the direct activity of candidates, which can help fine-
tuning their desired activity profile, by optimizing the on-target
activity. It has been recently shown that this type of data can
be used for de novo chemical design fulfilling a specific GES
(Méndez-Lucio et al., 2020). In a chemical safety approach, it
can be used to detect compound interaction with off-targets.
However, a difference between these 2 applications would be the
conditions in which the GESs are generated: on-target effects are
observable at low concentrations (Kd often in the nanomolar
range), while off-target effect are known to typically appear at
higher concentration as illustrated by Li et al. (2019).

In conclusion, in this work, we evaluated the use of a
large public dataset of compound-induced transcriptomic data,
to predict compound activity on 69 molecular targets. We
compared machine learning models built with transcriptomics
data with counterpart models built using Morgan fingerprints.
Active compounds on a given target could exhibit similar
signatures in one or multiple cell lines, independent from the
chemical structure similarity between these active compounds.
For 25% of the tasks, random forest models using transcriptomics
signatures performed similarly or better than counterpart
models built with Morgan fingerprints, occurring mostly
using signatures produced in cell lines that showed similar
signatures for active compounds on a given target. Compound-
induced transcriptomic data could offer a great opportunity
for target prediction based on cell response similarity and
allows to circumvent the applicability domain limitation of
QSAR models.
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The drug development process is a major challenge in the pharmaceutical industry

since it takes a substantial amount of time and money to move through all the phases

of developing of a new drug. One extensively used method to minimize the cost and

time for the drug development process is computer-aided drug design (CADD). CADD

allows better focusing on experiments, which can reduce the time and cost involved

in researching new drugs. In this context, structure-based virtual screening (SBVS) is

robust and useful and is one of the most promising in silico techniques for drug design.

SBVS attempts to predict the best interaction mode between two molecules to form

a stable complex, and it uses scoring functions to estimate the force of non-covalent

interactions between a ligand and molecular target. Thus, scoring functions are the main

reason for the success or failure of SBVS software. Many software programs are used to

perform SBVS, and since they use different algorithms, it is possible to obtain different

results from different software using the same input. In the last decade, a new technique

of SBVS called consensus virtual screening (CVS) has been used in some studies to

increase the accuracy of SBVS and to reduce the false positives obtained in these

experiments. An indispensable condition to be able to utilize SBVS is the availability of

a 3D structure of the target protein. Some virtual databases, such as the Protein Data

Bank, have been created to store the 3D structures of molecules. However, sometimes

it is not possible to experimentally obtain the 3D structure. In this situation, the homology

modeling methodology allows the prediction of the 3D structure of a protein from its

amino acid sequence. This review presents an overview of the challenges involved

in the use of CADD to perform SBVS, the areas where CADD tools support SBVS,

a comparison between the most commonly used tools, and the techniques currently

used in an attempt to reduce the time and cost in the drug development process.

Finally, the final considerations demonstrate the importance of using SBVS in the drug

development process.

Keywords: SBVS, homology modeling, consensus virtual screening, scoring functions, computer-aided drug
design
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INTRODUCTION

In the past, the discovery of new drugs wasmade through random
screening and empirical observations of the effects of natural
products for known diseases.

This random screening process, although inefficient, led

to the identification of several important compounds until
the 1980s. Currently, this process is improved by high-
throughput screening (HTS), which is suitable for automating
the screening process of many thousands of compounds against

a molecular target or cellular assay very quickly. The milestone
of HTS was used in the identification of cyclosporine A
as a immunosuppressant (von Wartburg and Traber, 1988).
Subsequently, several drugs such as nevirapine (Merluzzi et al.,
1990), gefitinib (Ward et al., 1994), and maraviroc (Wood and
Armour, 2005) have reached the market. Notably, gefitinib was
discovered by computational methods through a collection of

1500 compounds by ALLADIN (Martin, 1992) software. In
addition, computational methods have been used to search
successful compounds against malaria disease (Nunes et al.,
2019). The structures of these molecules are in Figure 1.

Alternatively, the increased cost and evolution of medicines

available in the last century have led to an improvement in
the quality of life of the world population. However, while
the average quality of life has been improved, a third of the
population is still without access to essential medicines, which
means that more than 2 billion people cannot afford to buy basic
medicines (Leisinger et al., 2012). This problem is even worse
in some places in Africa and Asia, where more than 50% of
the people face problems obtaining medicines (Leisinger et al.,
2012). Moreover, throughout the world, more than 18 million
deaths that occur every year could be avoided, as well as tens
of millions of deaths related to poverty and lack of access to
essential medicines (Sridhar, 2008). The price of many medicines
is inaccessible to limited-income populations andmiddle-income
countries (Stevens and Huys, 2017).

While there is a need to increase the population’s access to
medicines, the pharmaceutical industry is facing unprecedented
challenges in its business model (Paul et al., 2010). The current
process of developing new drugs began to mature only in
the second half of the twentieth century. The process evolved
from observations made in the correlation of certain physical-
chemical properties of organic molecules with biological potency.
Optimization of these compounds by the incorporation of
more favorable substituents resulted in more potent drugs. X-
ray crystallography and nuclear magnetic resonance (NMR)
techniques have provided information on the structures of
enzymes and drug receptors. Many drugs, such as angiotensin-
converting-enzyme (ACE) inhibitors, have been introduced to
the clinical practice from this structural information.

The drug development process aims to identify bioactive
compounds to assist in the treatment of diseases. In summary
(Figure 2), the process starts with the identification of molecular
targets for a given compound (natural or synthetic) and is
followed by their validation. Then, virtual screening (VS)
can be used to assist in hit identification (identification of
active drug candidates) and lead optimization (biologically

active compounds are transformed into appropriate drugs
by improving their physicochemical properties). Finally these
optimized leads will undergo preclinical and clinical trials to
ultimately be approved by regulatory bodies (Lima et al., 2016).

In general, this process is time-consuming, laborious and
expensive. The development of a new drug has an average
cost between 1 and 2 billion USD and could take 10–17 years
(Leelananda and Lindert, 2016), since it has to move through
all phases for new drug development, from target discovery to
drug registration. Even so, Arrowsmith (2012) showed that the
probability of a drug candidate reaching themarket after entering
Phase I clinical trials fell from 10% in the 2002–2004 period to
approximately 5% between 2006 and 2008, which represents a
50% decrease in just 4 years.

Thus, researchers are constantly investing in the development
of new methods to increase the efficiency of the drug discovery
process (Hillisch et al., 2004). The computer-aided drug
design (CADD) approach, which employs molecular modeling
techniques, has been used by researchers to increase the
efficacy in the development of new drugs since it uses in
silico simulations. Molecular modeling allows the analysis of
many molecules in a short period of time, demonstrating how
they interact with targets of pharmacological interest even
before their synthesis. The technique allows the simulation
and prediction of several essential factors, such as toxicity,
activity, bioavailability and efficacy, even before the compound
undergoes in vitro testing, thus allowing better planning and
direction of the research (Ferreira et al., 2011). Better planning
of the research means, in this case, fewer in vitro and in vivo
experiments. Therefore, it reduces the run time and overall
research costs.

In this context, virtual screening (VS) is a promising in silico
technique used in the drug discovery process. An indispensable
condition in performing virtual screening is the availability
of a 3D structure of the target protein (Cavasotto, 2011).
Therefore, some virtual databases were created to store 3D
structures of molecules. Virtual screening is now widely applied
in the development of new drugs and has already contributed
to compounds on the market. Examples of drugs that came
to the market with the assistance of VS include captopril
(antihypertensive drug), saquinavir, ritonavir, and indinavir
(three drugs for the treatment of human immunodeficiency
virus), tirofiban (fibrinogen antagonist), dorzolamide (used to
treat glaucoma), zanamivir (a selective antiviral for influenza
virus), aliskiren (antihypertensive drug), boceprevir (protease
inhibitor used for the treatment of hepatitis C), nolatrexed (in
phase III clinical trial for the treatment of liver cancer) (Talele
et al., 2010; Sliwoski et al., 2013; Devi et al., 2015; Nunes et al.,
2019). The structures of these molecules are in Figures 3, 4.

This review will present an overview of the challenges
involved in the development of new drugs. Section Computer-
aided drug design (CADD) will describe CADD while section
3 will demonstrate how VS has been used as an agent in the
process of developing of new drugs. Section Virtual screening
(VS), in turn, will explain the main scoring functions used
in recent scientific research. Section Consensus docking will
explain consensus docking, which is a relatively unexplored
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FIGURE 1 | Examples of structures identified by HTS. (A) cyclosporine A, (B) Neviparine, (C) Gefitinib, (D) Clioquinol, and (E) Maraviroc.

FIGURE 2 | Drug development timeline.

topic in the virtual screening process. Section Virtual Databases

will list the main virtual databases used in this task. Section

Virtual screening algorithms presents the main VS algorithms
used. Section Methods of evaluating the quality of a simulation
will present some evaluation methods used to verify if the
quality of the performed model/simulation is good. Section
VS software programs, in turn, will present the main VS

software currently used. Section Final considerations will present
final considerations.

COMPUTER-AIDED DRUG DESIGN (CADD)

One approach used to increase the effectiveness in the
development of new drugs is the use of computer-aided
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FIGURE 3 | Drugs that came to the market with the assistance of VS: (A) Captopril, (B) Saquinavir, (C) Tirofiban, (D) Indinavir, (E) Ritonavir.

drug design (CADD, well known as an in silico method)
techniques, which uses a computational chemistry approach
for the drug discovery process. CADD is a cyclic process for
developing new drugs, in which all stages of design and analysis
are performed by computer programs, operated by medicinal
chemists (Oglic et al., 2018).

Strategies for CADD may vary, depending on what
information about the target and ligand are available.
In the early stage of the drug development process, it
is normal for little or no information to exist about the
target, ligands, or their structures. CADD techniques are
able to obtain this information, such as which proteins
can be targeted in pathogenesis and what are the possible
active ligands that can inhibit these proteins. Kapetanovic
(2008) briefly notes that CADD comprises (i) making the
drug discovery and development process faster with the
contribution of in silico simulations; (ii) optimizing and
identifying new drugs using the computational approach to

discover chemical and biological information about possible
ligands and/or molecular targets; and (iii) using simulations
to eliminate compounds with undesirable properties and
selecting candidates with more chances for success. Recent
software uses empirical molecular mechanics, quantum
mechanics and, more recently, statistical mechanics. This
last advancement allows the explicit effects of solvents to be
incorporated (Das and Saha, 2017).

CADD gained prominence, as it allows obtaining information
about the specific properties of a molecule, which can
influence its interaction with the receptor. Thus, it has
been considered a useful tool in rational planning and
the discovery of new bioactive compounds. Alternatively,
CADD simulations require a high computational cost,
taking up to weeks if long jobs are used for molecular
dynamics simulations. Therefore, it is a continuous
challenge to find viable solutions that reduce the simulation
runtime and simultaneously increase the accuracy of the
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FIGURE 4 | Drugs that came to the market with the assistance of VS. (A) Dorzolamide, (B) Zanamivir, (C) Aliskiren, (D) Boceprevir, (E) Nolatrexid.

simulations (Ripphausen et al., 2011). In this context, VS is a
promising approach.

VIRTUAL SCREENING (VS)

Popular VS techniques originated in the 1980s, but the first
publication about VS appeared in 1997 (Horvath, 1997). In recent

times, the use of VS techniques has been shown to be an excellent
alternative to high throughput screening, especially in terms of
cost-effectiveness and probability of finding the most appropriate
result through a large virtual database (Surabhi and Singh, 2018).

VS is an in silico technique used in the drug
discovery process. During VS, large databases of known
3D structures are automatically evaluated using computational
methods (Maia et al., 2017). VS works like a funnel, by selecting
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FIGURE 5 | VS scheme.

more promising molecules for in vitro assays to be performed.
In the example shown in Figure 5, it is assumed that a virtual
screening will be performed on 500 possible active ligands for a
target. Then, VS with AutoDock Vina (Trott and Olson, 2009)
was carried out and the top 50 ligands were selected. Then, a
VS using DOCK 6 (Allen et al., 2015) with the Amber scoring
function was performed. DOCK 6 with Amber scoring function
takes longer, because it performs molecular dynamics, but it
promises better results. Finally, after VS with DOCK 6, the
top 5 active compounds are selected to be purchased and then
tested in vitro. With the use of VS, it is expected that those
identified molecules are more susceptible to binding to the
molecular target, which is typically a protein or enzyme receptor.
Therefore, VS assists in identifying the most promising hits
able to bind to the target protein or enzyme receptor, and only
the most promising molecules are synthesized. In addition, VS
identifies compounds that may be toxic or have unfavorable
pharmacodynamic (for example, potency, affinity, selectivity)
and pharmacokinetic (for example, absorption, metabolism,
bioavailability) properties. Thus, VS techniques play a prominent
role among strategies for the identification of new bioactive
substances (Berman et al., 2013).

VS for drug discovery is becoming an essential tool to assist
in fast and cost-effective lead discovery and drug optimization
(Maia et al., 2017). This technique can aid in the discovery of
bioactive molecules, since they allow the selection of compounds
in a structure database that are most likely to show biological
activity against a target of interest. After identification, these
bioactive molecules undergo biological assays. In addition, there
are VS techniques using machine learning methods that predict
compounds with specific pharmacodynamic, pharmacokinetic
or toxicological properties based on their structural and
physicochemical properties that are derived from the ligand
structure (Ma et al., 2009). Hence, VS tools play a prominent
role among the strategies used for the identification of new
bioactive substances, since they increase the speed of the drug
discovery process as long as they automatically evaluate large
compound libraries through computational simulations (Maithri
and Narendra, 2016).

Structure based virtual screening (SBVS) is a robust, useful
and promising in silico technique for drug design (Lionta et al.,
2014). Therefore, this review will address SBVS, although there
are other types of VS such as ligand-based virtual screening
(Banegas-Luna et al., 2018) and fragment-based virtual screening
(Wang et al., 2015).

4-Structure-Based Virtual Screening
(SBVS)
Structure-based virtual screening (SBVS), also known as target-
based virtual screening (TBVS), attempts to predict the best
interaction between ligands against a molecular target to form a
complex. As a result, the ligands are ranked according to their
affinity to the target, and the most promising compounds are
shown at the top of the list. SBVS methods require that the 3D
structure of the target protein be known so that the interactions
between the target and each chemical compound can be predicted
in silico (Liu et al., 2018). In this strategy, the compounds are
selected from a database and classified according to their affinity
for the receptor site.

Among the techniques of SBVS, molecular docking is
noteworthy due to its low computational cost and good results
achieved (Meng et al., 2011). This technique emerged in the
1980s, when Kuntz et al. (1982) designed and tested a set
of algorithms that could explore the geometrically feasible
alignments of a ligand and target. However, although the
approach was promising, it was only in the 1990s that it became
widely used after there was an improvement in the techniques
used in conjunction with an increase in the computational power
and a greater access to the structural data of target molecules.
During the execution of SBVS, the evaluated molecules are
sorted according to their affinity to the receptor site. Hence, it
is possible to identify ligands that are more likely to present
some pharmacological activity with the molecular target. Score
functions are used to verify the likelihood of a binding site
describing the affinity between the ligand and target. In this
process, a reliable scoring function is the critical component of
the docking process (Leelananda and Lindert, 2016).

The use of SBVS has advantages and disadvantages. Among
the advantages are the following:

I There is a decrease in the time and cost involved in the
screening of millions of small molecules.

II There is no need for the physical existence of the
molecule, so it can be tested computationally even before
being synthesized.

III There are several tools available to assist SBVS.

The disadvantages can be highlighted as the following:

I Some tools work best in specific cases, but not in more
general cases (Lionta et al., 2014).

II It is difficult to accurately predict the correct binding
position and classification of compounds due to the
difficulty of parameterizing the complexity of ligand-receptor
binding interactions.

III It can generate false positives and false negatives.
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Despite the disadvantages noted above, many studies using SBVS
have been developed in recent years (Carregal et al., 2017;
Mugumbate et al., 2017; Wójcikowski et al., 2017; Carpenter
et al., 2018; Dutkiewicz and Mikstacka, 2018; Surabhi and Singh,
2018; Nunes et al., 2019), which shows that although SBVS has
disadvantages, it is still wide used for developing drugs due
to the reduction of time and cost. However, docking protocols
are essential for achieving accurate SBVS. These protocols are
composed of twomain components: the search algorithm and the
score function.

Search Algorithms
Search algorithms are used to systematically search for
ligand orientations and conformations at the binding site. A
good docking protocol will achieve the most viable ligand
conformations, in addition the most realistic position of the
ligand at the binding site.

Thus, the search algorithm explores different positions
of ligands at the active binding site using translational
and rotational degrees of freedom in the case of rigid
docking, while flexible docking adds conformational degrees
of freedom to translations and rotations of the ligands.
To predict the correct conformation of ligands, search
algorithms adopt various techniques, such as checking the
chemistry and geometry of the atoms involved [DOCK 6
(Allen et al., 2015), FLEXX (Rarey et al., 1996)], genetic
algorithm [GOLD (Verdonk et al., 2003)] and incremental
construction (Friesner et al., 2004). Algorithms that consider
ligand flexibility can be divided into three types: systematic,
stochastic and deterministic (Ruiz-Tagle et al., 2018). Some
software uses more than one of these approaches to obtain
better results.

Systematic search algorithms exploit the degrees of freedom
of the molecules, usually through their incremental construction
at the binding site. Increasing the degree of freedom (rotatable
bonds) increases the number of evaluations needed to be
performed by the algorithm. Increasing the degree of freedom
(rotary links) increases the number of evaluations required
to be performed by the algorithm, causing an increase in
the time required for its execution. To reduce the time
it takes to execute, termination criteria are inserted that
prevent the algorithm from trying solutions that are in the
space known to lead to wrong solutions. DOCK 6 (Allen
et al., 2015), FLEXX (Rarey et al., 1996), and Glide (Friesner
et al., 2004) are examples of software that uses systematic
search algorithms.

Stochastic search algorithms perform random changes in
the spatial conformation of the ligand, usually changing one
system degree of freedom at a time, which leads to the
exploration of several possible conformations (Ruiz-Tagle et al.,
2018). The main problem of stochastic algorithms is the
uncertainty of converging to a good solution. For this reason,
to minimize this problem, several independent executions
of stochastic algorithms are usually performed. Examples of
stochastic research algorithms are Monte Carlo (MC) methods
used by Glide (Friesner et al., 2004) and MOE (Vilar et al., 2008)

and genetic algorithms used by GOLD (Verdonk et al., 2003) and
AutoDock4 (Morris et al., 2009).

During the execution of a deterministic search algorithm, the
initial state is responsible for determining the movement that can
be made to generate the next state, which generally must be equal
to or less in the energy from the initial state. One problem with
deterministic algorithms is that they are often trapped in local
minima because they cannot cross barriers; there are approaches,
such as increasing the simulation temperature, that can be
implemented to circumvent this problem. Energy minimization
methods are an example of deterministic algorithms. Molecular
dynamics (MD) is also an example of a deterministic search
algorithm and is used by DOCK 6 (Allen et al., 2015). However,
MD computational demands are very high, and while MD
promises to have better results and ensures full-system flexibility,
the runtime becomes a limiting factor for simulations because
structure databases can have millions of ligands and targets.

Scoring Functions
Molecular docking software uses scoring functions to estimate
the force of non-covalent interactions between a ligand and
molecular target using mathematical methods. A scoring
function is one of the most important components in SBVS
(Huang et al., 2010) as it is primarily responsible for predicting
the binding affinity between a target and its ligand candidate.
Thus, the scoring functions are the main reason for the success or
failure of docking tools (ten Brink and Exner, 2009). Therefore,
despite the wide use, the estimation of the interaction force
between a ligand and molecular target remains a major challenge
in VS. Figure 6 illustrates docking using Autodock Vina between
cyclooxygenase-2 (PDB ID: 4PH9) and two ligands (a) an inactive
ligand and (b) celecoxib (an anti-inflammatory). Compared to
the inactive ligand, celecoxib is observed to have much more
interactions with the protein, which causes celecoxib to form a
more stable binding in the VS. This result causes the AutoDock
Vina scoring function to see a binding energy of −10.4 kcal/mol
for celecoxib and −5.4 kcal/mol for the inactive compound.
The ligand with the highest binding affinity to the target can
be selected for further testing. Therefore, in this case celecoxib
would be chosen.

In general, there are three important applications of scoring
functions in molecular docking. First, they can be used to
determine the ligand binding site and the conformation between
a target and ligand. This approach can be used to search for
allosteric sites. Second, they can be used to predict the binding
affinity between a protein and ligand. Third, they can also be used
in lead optimization (Li et al., 2013).

Most authors define the scoring functions as three types
(Huang et al., 2010; Ferreira et al., 2015; Haga et al., 2016): force
field (FF), empirical and knowledge-based. Liu and Wang (2015)
define two more types of scoring functions as: machine-learning-
based and hybrid methods.

The force field scoring functions are based on the
intermolecular interactions between the ligand and target
atoms, such as the van der Waals, electrostatic and bond
stretching/bending/torsional force interactions, obtained from
experimental data and in accordance with the principles of
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FIGURE 6 | Identification of a ligand candidate by using a typical scoring function. The hydrogens were omitted for better visualization. (A) Inactive ligand, (B)
celecoxib.

molecular mechanics (Ferreira et al., 2015). Some published
force-field scoring functions include the ones described in Li
et al. (2015), Goldscore (Verdonk et al., 2003), and Sybyl/D-Score
(Ash et al., 1997).

Empirical scoring functions estimate the binding free energy
based on weighted structural parameters by adjusting the scoring
functions to experimentally determine the binding constants of
a set of complexes (Ferreira et al., 2015). To create an empirical
scoring function, a set of data from protein-binding complexes
whose affinities are known is initially used for training. A linear
regression is then performed as a way of predicting the values
of some variables (Huang et al., 2010). The weight constants
generated by the empirical function are used as coefficients to
adjust the equation terms. Each term of the function describes a
type of physical event involved in the formation of the ligand-
receptor complex. Thus, hydrogen bonding, ionic bonding,
non-polar interactions, desolvation and entropic effects are
considered. Some popular empirical, scoring functions include
Glide-Score (Friesner et al., 2004), Sybyl-X/F-score (Certara,
2016) and DOCK 6 empirical force field (Allen et al., 2015).

In the knowledge-based scoring functions, the binding affinity
is calculated by summing the binding interactions of the atoms of
a protein and the molecular target (Ferreira et al., 2015). These
functions consider statistical observations performed on large

databases (Ferreira et al., 2015). The method uses pairwise energy
potentials extracted from known ligand-receptor complexes to
obtain a general scoring function. These methods assume that
intermolecular interactions occurring near certain types of atoms
or functional groups that occur more frequently are more likely
to contribute favorably to the binding affinity. The final score
is given as a sum of the score of all individual interactions.
One example of software that uses a knowledge-based scoring
function is ParaDockS (Meier et al., 2010).

In addition, machine-learning-basedmethods (Liu andWang,
2015) have been considered as a fourth type of scoring function.
Machine learning-based methods have gained attention for their
reliable prediction (Pereira et al., 2016; Chen et al., 2018).
Many researchers have used machine learning to improve
SBVS algorithms, but we do not know any drugs developed
after combining SBVS with machine learning. However, some
researchers applied machine learning techniques to discover
a new antibiotic capable of inhibiting the growth of E. coli
bacteria (Stokes et al., 2020). These techniques have been used
in quantitative structure-activity relationship (QSAR) analysis to
predict various physical-chemical (for example, hydrophobicity,
and stereochemistry of the molecule), biological (for example,
activity and selectivity), and pharmaceutical (for example,
absorption, and metabolism) properties of small molecule
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compounds. In these types of scoring functions, modern QSAR
analyses can be applied to derive statistical models that calculate
protein-ligand binding scores. Some scoring functions of this
type are NNScore 2.0 (Durrant and McCammon, 2011), RF-
Score-VS (Wójcikowski et al., 2017), SFCscoreRF (Zilian and
Sotriffer, 2013), SVR-KB (Li et al., 2011), SVR-EP (Li et al., 2011),
ID-Score (Li et al., 2013) and CScore (Ouyang et al., 2011).

There are some hybridized scoring functions that cannot
easily be classified into any of the categories listed above
because they combine two or more of the previously defined
scoring function types [force field (FF), empirical, knowledge
based and machine-learning-based] into one scoring function.
Therefore, they are called hybrid scoring functions. In general,
the hybrid scoring function is a linear combination of the two
or more scoring function components derived from a multiple
linear regression fitting procedure (Tanchuk et al., 2016). For
example, the GalaxyDock score function is a hybrid of physics-
based, empirical, and knowledge-based score terms that has the
advantages of each component. As a result, the performance was
improved in decoy pose discrimination tests (Baek et al., 2017). A
few recently published examples of this type of scoring function
include the hybrid scoring function developed by Tanchuk et
al. (Tanchuk et al., 2016), which combines force field machine
learning scoring functions; SMoG2016 (Geng et al., 2019), which
combines knowledge-based and an empirical scoring functions;
GalaxyDock BP2 (Baek et al., 2017), which combines force field,
empirical, and knowledge-based scoring functions and iScore
(Geng et al., 2019), which combines empirical and force-field
scoring functions.

Consensus Docking
In the last decade, a new technique of VS called consensus
docking (CD) has been used in some studies (Park et al., 2014;
Tuccinardi et al., 2014; Chermak et al., 2016; Poli et al., 2016;
Aliebrahimi et al., 2017) to increase the accuracy of VS studies
and to reduce the false positives obtained in VS experiments
(Aliebrahimi et al., 2017).

This technique is a combination of two different approaches,
in which the resultant combination is better than a single
approach alone. However, Poli et al. (2016) reported that there
are few studies that evaluate the possibility of combining the
results from different VS methods to achieve higher success rates
in VS studies.

Houston and Walkinshaw (2013) described the main reason
for using this combination: the individual program may
present incorrect results and these errors are mostly random.
Therefore, even when two programs present different results,
the combination of these results may, in principle, be much
closer to the correct answer than even the best program alone.
Houston andWalkinshaw also suggest that CD approaches using
two different docking programs improve the precision of the
predicted binding mode for any VS study. The same study also
verified that a greater level of consensus in a given pose indicates
a greater reliability in this result. Finally, the results presented by
the authors suggest that the CD approach works as well as the
best VS approaches available in the literature.

Park et al. (2014) use an approach in which they used a
combination of the programs AutoDock 4.2 (Morris et al., 2009)
and FlexX (Rarey et al., 1996) programs. These programs were
chosen because both use different types of score functions (force
field in AutoDock and empirical in FlexX). In this study, they
achieved superior performance with the application of consensus
docking than using each of the programs alone.

Alternatively, when using two different VS programs, there is
extra time to run the two different tools and combine the results.
However, Houston and Walkinshaw (2013) showed that the
increased runtime may be advantageous; using AutoDock Vina
(Trott and Olson, 2009) in a VS approach along with AutoDock4
(Morris et al., 2009) increased the final runtime by ∼10%. This
combination is interesting given the potential gains from its use.

Therefore, the use of consensus docking is a recent technique,
and although there are few papers in the literature on the subject,
it seems to be a promising approach for further VS studies.

VIRTUAL DATABASES

An indispensable condition in performing VS is the availability
of a 3D structure of the target protein (Cavasotto, 2011) and
ligands to be docked. Some databases were created to store
3D structures of molecules. Some of the free databases include
Protein Data Bank (PDB) (Berman et al., 2013), PubChem
(Kim et al., 2016), ChEMBL (Bento et al., 2014), ChemSpider
(Pence and Williams, 2010), Zinc (Sterling and Irwin, 2015),
Brazilian Malaria Molecular Targets (BraMMT) (Nunes et al.,
2019), Drugbank (Wishart et al., 2018), and Our Own Molecular
Targets (OOMT) (Carregal et al., 2013). In addition, there are
some commercially available databases such as the MDL Drug
Data Report1 Below we are going to present a brief explanation
of each of these databases:

• Protein Data Bank (PDB) (Berman et al., 2013): PDB is
the public database where three-dimensional structures of
proteins, nucleic acids, and complex molecules have been
deposited since 1971. The worldwide PDB organization
ensures that PDB files are publicly available to the global
community. It is widely used by the academic community and
has grown consistently in recent years. In the last 10 years, the
number of 3D structures of the PDB increased from 48,169 at
the end of 2008 to 147,604 in the end of 2018, an increase of
nearly 207%. This implies that in the last 10 years, almost 9,943
new structures have been added to the PDB every year, just
over 27 structures per day, on average. The pace of this growth
has increased. At the beginning of this decade approximately
25 new entries were added per day on average. In 2018, over 31
new structures were added per day, an average daily growth of
24% compared to 2010.

• PubChem (Kim et al., 2016): PubChem is a public database,
aggregating information from smaller, more specific databases.
It has more than 97 million compounds available.

1http://accelrys.com/products/collaborative-science/databases/bioactivity-

databases/mddr.html
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• ChEMBL (Bento et al., 2014): ChEMBL is a database of
bioactive molecules with medicinal properties maintained
by the European Institute of Bioinformatics (EBI) of the
European Molecular Biology Laboratory (EMBL). Currently,
it has almost 2.3 million compounds and 15.2 million known
biological activities.

• Zinc (Sterling and Irwin, 2015): Zinc is a free database of
commercially available compounds for VS. Zinc has more
than 230 million commercially available compounds in the 3D
format. Zinc is maintained by Irwin and Shoichet Laboratories
of the Department of Pharmaceutical Chemistry at the
University of California, San Francisco (UCSF).

• NatProDB (Paixão and Pita, 2016): The State University
of Feira de Santana has made NatProDB available. This
database stores 3D structures of the semiarid biome. The
pharmacological profile of compounds from the semiarid
flora have not yet been studied, which has motivated our
research group to deepen the research by their molecular
targets (Taranto et al., 2015).

• Our Own Molecular Target (OOMT) (Carregal et al., 2013):
OOMT is a special molecular target database because it has
the biological assay for all its molecular targets, and includes
specific targets for cancer, dengue, and malaria. OOMT was
created by a group of researchers from Federal University of
São João del-Rei (UFSJ).

• Brazilian Malaria Molecular Targets (BraMMT) (Nunes
et al., 2019): The BRAMMT database comprises thirty-five
molecular targets for Plasmodium falciparum retrieved from
the PDB database. This database allows in silico virtual high
throughput screening (vHTS) experiments against a pool of P.
falciparummolecular targets.

• Drugbank (Wishart et al., 2018): DrugBank is a database that
contains comprehensive molecular information about drugs,
their mechanisms, their interactions, and their targets. The
database contains more than 11,900 drug entries, including
nearly 2,538 FDA-approved small molecule drugs, 1,670
biotechnology (protein / peptide) drugs approved by the FDA,
129 nutraceuticals and nearly 6,000 investigational drugs.

Commercially available Databases:

• MDL Drug Data Report (MDDR) (Sci Tegic Accelrys Inc,
2019): MDDR is a commercial database built from patent
databases, publications and congresses. It has more than
260,000 biologically relevant compounds and approximately
10,000 compounds are added every year.

• ChemSpider (Pence and Williams, 2010): ChemSpider is a
database of chemical substances owned by the Royal Society
of Chemistry. It has more than 71 million chemical structures
from over 250 data sources. ChemSpider allows downloading
up to 1000 structures per day. Previous contact is needed for
the download of more structures, and ChemSpider is therefore
not a totally free database.

VIRTUAL SCREENING ALGORITHMS

In VS, we are targeting proteins in the human body to find
novel ligands that will bind to them. VS can be divided into

two classes: structure-based and ligand-based. In structure-
based virtual screening, a 3D structure of the target protein
is known, and the goal is to identify ligands from a database
of candidates that will have better affinity with the 3D
structure of the target. VS can be performed using molecular
docking, a computational process where ligands are moved
in 3D space to find a configuration of the target and ligand

that maximizes the scoring function. The ligands in the
database are ranked according to their maximum score, and

the best ones can be investigated further, e.g., by examining

the mode and type of interaction that occurs. Additionally,
VS techniques can be divided according to the algorithms
used as follows:

• Machine Learning-based Algorithms

• Artificial neural networks (ANNs) (Ashtawy and
Mahapatra, 2018);

• Support vector machines (Sengupta and Bandyopadhyay,
2014);

• Bayesian techniques (Abdo et al., 2010);
• Decision tree (Ho, 1998);
• k-nearest neighbors (kNN) (Peterson et al., 2009);
• Kohonen’s SOMs and counterpropagation ANNs

(Schneider et al., 2009);
• Ensemble methods using machine learning (Korkmaz et al.,

2015);

• Evolutionary Algorithms

• Genetic algorithms (Xia et al., 2017);
• Differential evolution (Friesner et al., 2004), Gold (Verdonk

et al., 2003), Surflex (Spitzer and Jain, 2012) and FlexX
(Hui-fang et al., 2010);

• Ant colony optimization (Korb et al., 2009);
• Tabu search (Baxter et al., 1998);
• Particle swarm optimization (Gowthaman et al., 2015) and

PSOVina (Ng et al., 2015);

• Local search such as Autodock Vina (Trott and Olson, 2009),

SwissDock/EADock (Grosdidier et al., 2011) and GlamDock
(Tietze and Apostolakis, 2007);

• Exhaustive search such as eHiTS (Zsoldos et al., 2007);
• Linear programming methods such as Simplex Method (Ruiz-

Carmona et al., 2014);
• Systematic methods such as incremental construction used by

FlexX (Rarey et al., 1996), Surflex (Spitzer and Jain, 2012), and
Sybyl-X (Certara, 2016);

• Statistical methods

• Monte Carlo (Harrison, 2010);
• Simulated annealing (SA) (Doucet and Pelletier, 2007),

Hatmal and Taha (Hatmal and Taha, 2017);
• Conformational space annealing (CSA) (Shin et al., 2011);

• Similarity-based algorithms

• Based on substructures (Tresadern et al., 2009);
• Pharmacochemical (Cruz-Monteagudo et al., 2014);
• Overlapping volumes (Leach et al., 2010);
• Molecular interaction fields (MIFs) (Willett, 2006);
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• Hybrid approach (Morris et al., 2009; Haga et al., 2016);

After performing a VS simulation, it is necessary to verify
whether the quality of the generated protein-ligand complexes
can represent a complex that could be reproduced in
experiments. There are several methods that can perform
this assessment, which will be explained in the next section.

METHODS OF EVALUATING THE QUALITY
OF A SIMULATION

To verify the quality of a docking approach, some methods
are used to evaluate generated complexes and to verify if the
protein generated by the docking can reproduce the experimental
data results of the ligand-receptor complex. The most common
evaluation methods are root mean square deviation (RMSD)
(Hawkins et al., 2008), receiver operating characteristic (ROC),
area under the curve ROC (AUC-ROC) (Flach and Wu, 2005;
Trott and Olson, 2009) enrichment factors (EFs) (Truchon and
Bayly, 2007) and Boltzmann-enhanced discrimination of ROC
(BEDROC) (Truchon and Bayly, 2007).

Root-Mean-Square Deviation (RMSD)
One of the aspects evaluated in docking programs is the accuracy
of the generated geometry (Jain, 2008). Docking programs
attempt to reproduce the conformation of the ligand-receptor
complex in a crystallographic structure. The metric root-mean-
square deviation (RMSD) of atomic coordinates after the ideal
superposition of rigid bodies of two structures is popular. Its
popularity is because it allows the quantification of the differences
between two structures, and these can be structures with the
same and different amino acid sequences (Sargsyan et al., 2017).
RMSD is widely used to evaluate the quality of a docking process
performed by a program (Ding et al., 2016). The RMSD between
two structures can be calculated according to the following
equation (Sargsyan et al., 2017):

RMSD (A,B) =
1

N

n
∑

i=1

d2i

where d is the distance between atom i in the two structures and
N is the total number of equivalent atoms. Since the calculation of
RMSD requires the same number of atoms in both structures, it is
often used in the calculation of only the heavy atoms or backbone
of each amino acid residue.

Using the RMSD calculation, it is possible to evaluate
if a program was able to reliably reproduce a known
crystallographic conformation, as well as their respective
intramolecular interactions. To verify if a given program can
accomplish this task, ligand-targets complexes are subjected
to a redocking process. After redocking, the overlap of the
crystallographic ligand with the conformation of the ligand
obtained with the docking program is then performed. Then, the
RMSD calculation is used to check the average distance between
the corresponding atoms (usually backbone atoms).

Generally, the RMSD threshold value is 2.0 Å (Jain, 2008;
Meier et al., 2010; Gowthaman et al., 2015). However, for

ligands with several dihedral angles, an RMSD value of 2.5 Å is
considered acceptable (De Magalhães et al., 2004). In the case of
binding a large ligand, some authors generally relax this criterion
(Méndez et al., 2003; Verschueren et al., 2013). For a model
generated by homology modeling, evaluating the RMSD value is
important, although visual inspection of the generated model is
also essential.

However, RMSD has some important limitations:

• RMSD can only compare structures with the same number
of atoms;

• A small perturbation in just one part of the structure can create
large RMSD values, suggesting that the two structures are very
different, although they are not (Carugo, 2007);

• It has also been observed that RMSD values depend on the
resolution of structures that are compared (Carugo, 2003);

• RMSD does not distinguish between a structure with some
very rigid regions and some very flexible regions from a
molecule in which all regions are semiflexible (Sargsyan et al.,
2017);

Comparing the RMSD value of large structures may be

significantly distorted from the commonly used 2Å threshold

(Méndez et al., 2003). Despite these limitations, RMSD remains

one of the most commonly used metrics to quantify differences

between structures (Sargsyan et al., 2017).
Figure 7 shows the visualization of the FCP ligand superposed

with its conformation after redocking to a protein (PDB
ID: 1VZK, A Thiophene Based Diamidine Forms a “Super”
AT Binding Minor Groove Agent). The RMSD between the
crystallographic ligand and the same ligand after the redocking
using DOCK6 is 0.97 Å. In the figure below, red represents the
crystallographic ligand FCP and yellow represents FCP ligand
after redocking using DOCK 6.

ROC Curve and AUC
One of the great challenges of VS methods is the ability to
differentiate true positive compounds (TPCs) against the target
from false positive compounds (FPCs) (Awuni and Mu, 2015).
Thus, it is important that VS tools have ways to assist their users
in distinguishing TPCs from FPCs. The ROC curve and the area
under the ROC curve (AUC-ROC) (Lätti et al., 2016) are widely
used methodologies for this purpose.

TPC and decoys are used to create a ROC curve and AUC-
ROC. TPCs are those with known biological activity for the
molecular target of interest. Some databases, such as ChEMBL
(Gaulton et al., 2012; Bento et al., 2014), allows users to search
for these compounds. Alternatively, decoys are compounds that,
although possessing physical properties similar to a TPC (such
as molecular mass, number of rotatable bonds, and logP), have
different chemical structures that make them inactive. They are
generated from randommolecular modifications in the structure
of a TPC (Huang et al., 2006). Some databases, such as DUD-
E (Mysinger et al., 2012) and Zinc (Sterling and Irwin, 2015),
provide decoys for compounds of interest. DUD-E generates 50
different decoys for each TPC. The idea of using DUD-E decoys
in VS is that the result of VS is more reliable if the program can
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FIGURE 7 | RMSD between the ligand FCP with a protein (PDB ID: 1VZK)

after redocking using DOCK6.

FIGURE 8 | ROC curve example.

separate TPCs from FPCs generated by DUD-E because FPCs
have many TPC-like physical properties but are known to be
inactive. A small number (>2) of known TPCs have to be used
to calculate an AUC-ROC (Lätti et al., 2016).

After generating decoys, a VS process is performed using
known TPCs and decoys against a target of interest (Yuriev
and Ramsland, 2013). For each ligand-target complex, an affinity
energy is then calculated. TPCs are expected to have lower
affinity energy than inactive compounds. The ROC curve plots
the distribution of true and false results on a graph, while AUC-
ROC allows the evaluation of the probability of a result to be false.
Hence, AUC-ROC reflects the probability of recovering an active
compound preferentially to inactive compounds (Triballeau
et al., 2005; Zhao et al., 2009), allowing verification of the

sensitivity of a VS experiment in relation to its specificity. The
larger the area under the curve, the better the ability to have a
TPC and fewer FPC.

The AUC value can vary between 0 and 1. Hamza (Hamza
et al., 2012) showed a practical way of interpreting the
AUC values:

• AUC between 0.90 and 1.00: Excellent
• AUC between 0.80 and 0.90: Good
• AUC between 0.70 and 0.80: Fair
• AUC between 0.60 and 0.70: Poor
• AUC between 0.50 and 0.60: Failure

Therefore, the closer the AUC is to 1, the greater the ability of the
VS tool to separate between TPCs and FPCs. AUC-ROC values
close to 0.5 indicate a random process (Ogrizek et al., 2015).
Acceptable values should be >0.7.

Figure 8 shows an example of an ROC curve generated in a
VS performed with cyclooxygenase-1 complexed withmeloxicam
(PDB ID: 4O1Z) protein using five TPCs and 250 decoys. The
VS tool was able to distinguish well between TPCs and FPCs
with the generated ROC curve and its respective AUC, which
was 0.8628.

Boltzmann-Enhanced Discrimination of
ROC (BEDROC)
There is much criticism in the use of the ROC curve as
a method to measure virtual screening performance because
it does not highlight the best ranked active compounds that
would be used in in vitro experiments, which is called early
recognition. Thus, Tuchon and Bayly (Truchon and Bayly,
2007) proposed Boltzmann-Enhanced Discrimination of ROC
(BEDROC), which uses exponential weighting to give early
rankings of active compounds more weight than late rankings
of active compounds. However, Nicholls (Nicholls, 2008) say
that AUC-ROC and BEDROC correlate when considering virtual
screening simulations, and therefore, the ROC curve is a
sufficient metric for performance measurements.

Enrichment Factors (EFs)
The enrichment factor (EF) consists of the number of active
compounds found in a fraction of 0 < χ <1 in relation to
the number of active compounds that would be found after
a random search (Truchon and Bayly, 2007). EFs are often
calculated against a given percentage of the database. For
example, EF10% represents the value obtained when 10% of
the database is screened. EFs can be defined by the following
formula (1):

EF =

∑n
1 δi

χn
where δi =

{

1, ri ≤ χN
0, ri > χN

(1)

ri is the rank of the ith active compound in the list, N is the
total number of compounds and n is the number corresponding
to the selected compounds. The maximum value of EF is 1 /
χ if x ≥ n / N and N / n if χ < n / N. The minimum value
for EF is 0.
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TABLE 1 | Virtual screening software.

Software License Platform Protein
flexibility

Docking algorithm Scoring function

AutoDock4 (Morris et al.,

2009)

Free for academic

use

Windows, Linux

and Mac

Yes Genetic algorithm

Simulated annealing

Hybrid (Force-field and

empirical)

Autodock Vina (Trott and

Olson, 2009)

Open- source Windows, Linux

and Mac

Yes Genetic algorithm

Simulated annealing

Local search

Particle swarm optimization

Hybrid (Empirical and

knowledge-based)

DOCK 6 (Allen et al., 2015) Free for academic

use

Windows, Linux

and Mac

Yes Shape fitting (sphere sets)

Lowest energy binding

Force-Field

Empirical

SwissDock/EADock DSS

(Grosdidier et al., 2011)

Free for academic

use

Web No Stochastic (Tabu search based)

Local search

Combination of broad and local

search of the conformational space

Force-field

eHiTS (Zsoldos et al., 2007) Freeware for

academic use

Unix No Exhaustive search Hybrid (Empirical and

knowledge-based)

FITTED (Corbeil et al., 2007,

2008)

Commercial Linux, Windows

and Mac

Yes Genetic algorithm Force-field

FlexX (Rarey et al., 1996) Commercial Windows and

Linux

No Incremental construction Empirical

FLIPDock (Zhao and

Sanner, 2007)

Freeware for

academic Use

Linux e Windows Yes Genetic algorithm Force-field

Fred (McGann, 2011) Free for academic

use

Windows, Linux

and Mac

No Exhaustive search algorithm Hybrid

GalaxyDock2 (Shin et al.,

2013)

Freeware Linux Yes Conformational analysis

Genetic algorithm

Force-field

GeauxDock (Fang et al.,

2016)

Open-source Linux Yes Monte Carlo Hybrid (Empirical and

knowledge-based)

GlamDock (Tietze and

Apostolakis, 2007)

Freeware Windows, Linux

and Mac

No Monte Carlo

Simulated annealing

Local search

Conformational analysis

Empirical

Glide (Friesner et al., 2004) Commercial Windows, Linux Yes Conformational analysis

Monte Carlo sampling

Empirical

GOLD (Verdonk et al., 2003) Commercial Linux and

Windows

Yes Genetic algorithm Force-field

ICM (Abagyan et al., 1994) Commercial Windows, Linux

and Mac

Yes Monte Carlo minimization Force-field

iGEMDOCK/GEMDOCK

(Hsu et al., 2011)

Freeware Windows and

Linux

Yes Genetic algorithm Empirical

LigandFit (Montes et al.,

2007)

Commercial Linux Yes Monte Carlo Force-field

LigDockCSA (Shin et al.,

2011)

– – Yes Conformational space annealing

Global optimization

Hybrid (Empirical and

Force-field)

MOE (Vilar et al., 2008) Commercial Windows, Linux

and Mac

Yes Conformational

analysis

Empirical, Force-field

ParaDockS (Meier et al.,

2010)

Freeware Linux No Genetic algorithm Hybrid

(Knowledge-based and

empirical)

rDOCK (Ruiz-Carmona

et al., 2014)

Open-source Linux Yes Genetic algorithm,

Monte CarloSimplex minimization

Hybrid (Empirical and

force-field)

SLIDE (Schnecke and Kuhn,

2000)

Free for academic

use

Linux Yes Conformational

analysis

Empirical

Surflex (Spitzer and Jain,

2012)

Commercial Windows, Linux

and Mac

Yes Incremental xonstruction Empirical

Sybyl-X (Certara, 2016) Commercial Windows Yes Incremental construction Force field

vLifeDock (Chopade, 2015) Commercial Windows, Linux

and Mac

Yes Genetic algorithm Empirical
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EF is quite simple, but it has some disadvantages. The EF,
in addition to depending on the value set for χ, depends
on the number of true positives and true negatives, which
makes it another measure of experiment performance rather
than measuring method performance (Nicholls, 2011). Another
disadvantage of EF is that it weighs active compounds equally
within the cutoff, so it is not possible to distinguish the best
ranking algorithm in which all active compounds are ranked at
the beginning of the ordered list of a worse algorithm and they
are sorted immediately before the cutoff value [saturation effect
(Lopes et al., 2017)].

The relative enrichment factor (REF) proposed by von
Korff et al. (2009) eliminates the problem associated with the
saturation effect by normalizing the EF by the maximum possible
enrichment. Consequently, REF has well-defined boundaries and
is less subject to the saturation effect.

VS SOFTWARE PROGRAMS

There are several VS software programs using different docking
algorithms that make a VS process easier for the researchers
to execute by avoiding the need to have advanced knowledge
of computer science and on how to implement the algorithms
used in this task. In this regard, VS software can act as a
possible cost reducer, since they function as filters that select
from a database with thousands of molecules that are more
likely to present biological activity against a target of interest.
VS programs measure the affinity energy of a small molecule
(ligand) to a molecular target of interest to determine the
interaction energy of the resulting complex (Carregal et al.,
2017).

Table 1 summarizes the main characteristics of the most
used software in VS. The first column contains the software
used and its reference. The second column contains the type of
software license: free for academic use, freeware, open-source,
or commercial. The free for academic use license indicates
that the software in question can be used for teaching and
research in the academic world without a fee. However, it
implies that the software has restrictions for commercial use.
A freeware license indicates that the software is free. Thus,
users can use it without a fee, and all the functions of the
program are available to be used without any restrictions. An
open-source license indicates that the software source code
is accessible so users can study, change, and distribute the
software to anyone and for any purpose. Software developed
under a commercial license indicates that it is designed and
developed for a commercial purpose. Thus, in general, it is
necessary to pay some licensing fee for its use. The third column
indicates on which platforms the software can be used (Windows,
Linux, or Mac). The next column indicates whether or not
the software may consider protein flexibility during anchoring.
The docking algorithm column lists the algorithms used by the
software to perform the docking. The sixth column, called the
scoring function, indicates which scoring functions are used by
the software.

FINAL CONSIDERATIONS

CADD has been used to improve the drug development
process. In the past, the discovery of new drugs was often
conducted through the empirical observation of the effect of
natural products in known diseases. Thus, several possible
drug candidates were tested without efficacy, and thereby
wasted resources. The use of CADD allows for improving
the development of new biologically active compounds and
decreasing the time and cost for the development of a new drug.
Thus, the emergence of SBVS has improved the drug discovery
process and was established as one of the most promising in silico
techniques for drug design.

This review verified that CADD approaches can contribute to
many stages of the drug discovery process, notably to perform a
search for active compounds by VS.

The use of techniques, such as SBVS, has limitations, such as
the possibility of generating false positives and correct ranking
of ligands docked. Moreover, there are several CADD methods
and it is possible to obtain different results for the same input
in different software. However, reducing the time and cost of
the new drug development process as well as the constant
improvement of existing docking tools indicates that CADD
techniques will be one of the most promising techniques in the
drug discovery process over the next years.

In the last decade, many studies have applied artificial
intelligence in CADD to obtain more accurate models. Thus,
most studies and future innovations will benefit from the
application of AI in CADD.

Finally, the use of CADD tools requires a variety of expertise
of researchers to perform all of the steps of the process, such as
selecting and preparing targets and ligands, analyzing the results
and having broad knowledge of computation, chemistry and
biology. Thus, the researcher’s background is important for the
selection of new hits and to enrich high throughput experiments.
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In silico methodologies have opened new avenues of research to understanding and

predicting drug resistance, a pressing health issue that keeps rising at alarming pace.

Sequence-based interpretation systems are routinely applied in clinical context in an

attempt to predict mutation-based drug resistance and thus aid the choice of the

most adequate antibiotic and antiviral therapy. An important limitation of approaches

based on genotypic data exclusively is that mutations are not considered in the

context of the three-dimensional (3D) structure of the target. Structure-based in silico

methodologies are inherently more suitable to interpreting and predicting the impact

of mutations on target-drug interactions, at the cost of higher computational and

time demands when compared with sequence-based approaches. Herein, we present

a fast, computationally inexpensive, sequence-to-structure-based approach to drug

resistance prediction, which makes use of 3D protein structures encoded by input target

sequences to draw binding-site comparisons with susceptible templates. Rather than

performing atom-by-atom comparisons between input target and template structures,

our workflow generates and compares Molecular Interaction Fields (MIFs) that map the

areas of energetically favorable interactions between several chemical probe types and

the target binding site. Quantitative, pairwise dissimilarity measurements between the

target and the template binding sites are thus produced. The method is particularly suited

to understanding changes to the 3D structure and the physicochemical environment

introduced by mutations into the target binding site. Furthermore, the workflow relies

exclusively on freeware, making it accessible to anyone. Using four datasets of known

HIV-1 protease sequences as a case-study, we show that our approach is capable of

correctly classifying resistant and susceptible sequences given as input. Guided by ROC

curve analyses, we fined-tuned a dissimilarity threshold of classification that results in

remarkable discriminatory performance (accuracy ≈ ROC AUC ≈ 0.99), illustrating the

high potential of sequence-to-structure-, MIF-based approaches in the context of drug
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resistance prediction. We discuss the complementarity of the proposed methodology to

existing prediction algorithms based on genotypic data. The present work represents a

new step toward a more comprehensive and structurally-informed interpretation of the

impact of genetic variability on the response to HIV-1 therapies.

Keywords: drug resistance prediction, Molecular Interaction Fields, sequence-to-structure algorithm, binding-site

dissimilarities, HIV-1 protease

INTRODUCTION

Drug resistance is one of the greatest threats of the twenty
first century. Fundamentally, the problem resides in the
development and spread of resistance-conferring mechanisms
among infectious pathogens such as viruses and other microbial
targets (McKeegan et al., 2002). Importantly, the selection of
random mutations stands out as one of the main mechanisms
of acquiring resistance, particularly relevant in viruses which
mutate at high frequencies. RNA viruses, for instance, have a
mutation rate estimated at 10−4 per nucleotide per replication,
while DNA viruses have a rate of 10−8 per nucleotide per
replication (Vere Hodge and Field, 2011; Mason et al., 2018).
The extreme variability and rapid mutational spectrum of viral
genomes, ongoing viral replication, and prolonged drug exposure
linked with the selection and widespread of new drug-resistant
strains is still a matter of great concern and importance,
particularly in immunocompromised populations (Strasfeld and
Chou, 2010; Mason et al., 2018). While a limited number of
antiviral drug classes are getting approved for human use, an
increasing resistance to some of the most effective available
antivirals for HIV/AIDS, herpes, influenza and hepatitis, is being
observed. Furthermore, the unpredictability of viral evolution
and drug resistance means that antiviral treatments remain costly
to the health care systems and are still associated with a significant
risk of mortality, particularly in low- and middle-income
countries (Irwin et al., 2016). Hence, a priori understanding and
prediction of resistance against drug targets is of paramount
importance toward developing more effective and longer lasting
treatment options and regimens.

Antiviral drug resistance has been extensively studied in the

rapidly mutating human immunodeficiency virus (HIV). HIV-1,
in particular, is one of the most studied virus and the increasingly
affordable and accessible genotypic data from clinical HIV-1

strains, together with corresponding data on strain susceptibility
or resistance toward several drugs, have sparked the development
of several genotypic interpretation systems for prediction of
phenotypic drug resistance and therapy response based on
genotype (Bonet, 2015). Said systems include (a) rule-based
algorithms, including the Agence Nationale de Recherche sur le
Sida (ANRS) (Brun-Vézinet et al., 2003), the Stanford HIV Drug
Resistance Database interface (HIVdb) (Tang et al., 2012), Rega
(Van Laethem et al., 2002), and HIV-GRADE (Obermeier et al.,
2012a), which heavily rely on the periodic update of mutation-
resistance profile lists, and on the knowledge of expert panels;
and (b) machine learning-based algorithms trained on large sets
of genotype–phenotype pairs to predict the in vitro resistance

to a specific drug, with renowned examples such as geno2pheno
(Beerenwinkel et al., 2003) and SHIVA (Riemenschneider et al.,
2016). These sequence-based methods are relatively fast and low
cost, justifying their routine use to support medical decision in
HIV pharmacotherapy (Vercauteren and Vandamme, 2006).

The most relevant computational predictors of antiviral drug
resistance currently available share the shortcoming of being
purely based on genotypic sequence data. By disregarding the
three-dimensional structural context and enzymatic function of
the mutated amino acid residues, these systems fail to capture
the links between genetic viral mutations and the corresponding
mutation-induced structural changes to the effector protein
viral machinery (Cao et al., 2005; Weber and Harrison, 2016;
Khalid and Sezerman, 2018). This means that such methods
are limited in their predictive power and interpretability
toward novel mutations and combinations of mutations that
go beyond the information accessible for training, such as
mutation patterns that are encountered in only a small number
of patients.

In contrast, structure-based methods hold potential to help
understanding and eventually predicting resistance mechanisms
for previously unknown data, shedding light on the elusive
link between novel mutations and drug resistance. This may be
justified by the fact that such methods can take advantage of
available structural information on protein-ligand complexes and
structural modeling of point mutations in the protein structure
(Hao et al., 2012). Reported examples of the use of structure-
based methods include the application of molecular docking
to predict resistance or susceptibility of HIV1-PR to different
inhibitors (Jenwitheesuk and Samudrala, 2005; Toor et al., 2011),
the use of molecular dynamics simulations to study the impact
of mutations on enzyme dynamics, stability and binding affinity
(Hou and Yu, 2007; Agniswamy et al., 2016; Sheik Amamuddy
et al., 2018), and the use of computational mutation scanning
protocols to extract insights on free energy and binding affinity
changes resulting from active site and non-active site mutations
(Hao et al., 2010). Even though these methods are constantly
adding new pieces to the puzzle and opening opportunities in
the understanding of drug resistance, they suffer from various
drawbacks, such as being time-consuming and offering limited
predictive accuracy. As a result of such limitations, the primary
challenge facing structure-based drug resistance prediction is to
achieve an acceptable balance between prediction accuracy and
computational efficiency to become both reliable and fast tools
to be used in clinic context (Hao et al., 2012). In fact, some of
the most recent reports describe the use of machine learning
strategies merging both sequence and structural data in attempt
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to achieve such balance (Masso and Vaisman, 2013; Yu et al.,
2014; Khalid and Sezerman, 2018).

In this contribution, we describe a fast, computationally
inexpensive, sequence-to-structure-based approach to the
prediction of drug resistance. The proposed workflow makes use
of an archetypal GRID-basedmethod (Goodford, 1985) involving
the generation and comparison of Molecular Interaction Fields
(MIFs). MIFs may be defined as the spatial variation of
interaction energies between a molecular target structure and
selected types of chemical probes laid out on a three-dimensional
(3D) grid (Cruciani, 2005). The broad range of applications
of MIFs extends from ligand-based methodologies, e.g., 3D
Quantitative Structure-Activity Relationships (3D-QSAR)
models, drug metabolism and pharmacokinetics (DMPK)
predictions and pharmacophore elucidation, all the way to
structure-based drug design, including binding site detection
and molecular docking (Artese et al., 2013). Within the context
of viral drug resistance, MIFs hold potential in capturing subtle,
mutation-induced, chemical perturbations within the binding
site of resistant or susceptible viral structures, thus representing
a promising approach to anticipating the impact of mutations on
the response to antiviral drugs with atomistic detail.

HIV-1 protease (HIV1-PR) is one of the most characterized
viral enzymes, with extensive structural, inhibitor, and mutation
data available (Weber and Agniswamy, 2009). As of late 2019, the
RCSB Protein Data Bank (RCSB PDB, 2000) ranks HIV-1 as the
virus holding the highest number of available structures (2,586),
majorly obtained through X-ray crystallography. Of these, the
PDB returns 662 entities with at least 90% identity to the HIV1-
PR subtype B consensus sequence from a BLAST sequence search
(Stanford University, 1998a). The search by consensus sequences
of other HIV-1 subtype B enzymes (Stanford University, 1998a)
returns 586 structures for reverse transcriptase and 190 for
integrase. With such amount of structural information available,
we have built the framework of the present work using HIV1-PR
as our first case-study. Commercially available HIV-1 protease
inhibitors (PIs) are competitive peptidomimetics with a core
structural scaffold that mimics the tetrahedral transition state of
HIV1-PR substrate. Although these drugs are chemically distinct,
their active conformations are superimposable, and generally
establish the same pharmacophoric interactions with their target
(Wlodawer and Erickson, 1993; King et al., 2004; Qiu and Liu,
2011; Nayak et al., 2019). Many mutations in HIV1-PR translate
into changes in the structure and binding site physicochemical
environment, thus affecting the affinity of PIs and representing
a hurdle to achieving long-term viral suppression (Irwin et al.,
2016; Pawar et al., 2019; Wensing et al., 2019). A quantitative
analysis of HIV1-PR drug-resistant mutation frequency, with
particular focus on the binding site, was performed using
public sequence datasets to support the potential of a MIF-
based approach to capturing mutation-induced active site
dissimilarities. From this perspective, the workflow proposed
here encompasses the use of a conservative structural modeling
step for the generation of a HIV1-PR structure from its
respective amino acid sequence, and a MIF-based structural
alignment and chemical dissimilarity detection step comparing
the input sequence-structure pair with a carefully selected naïve,

susceptible template sequence-structure pair. We demonstrate
that the quantification of such dissimilarity, depicting the extent
of structural, physicochemical and pharmacophoric alterations
introduced by mutations, allows for an accurate prediction of
HIV1-PR’s resistance to PIs.

Compared with previous approaches reported in the
literature, and to the best of our knowledge, this work stands
out as a first implementation of a fast, sequence-to-structure-
based algorithm capable of discriminating susceptible and
resistant HIV1-PR sequences. Considering that the problem of
mutation-induced resistance cuts across virtually all infectious
diseases, we believe the approach reported herein may be
extended to a wide range of microbial targets besides HIV-
1, thus helping rationalize and personalize the therapeutic
decision-making process.

MATERIALS AND METHODS

The availability of a public and curated database such as HIVDB
(Stanford University, 1998c; Rhee et al., 2003) allows access to
HIV1-PR sequences with known levels of resistance, and thus
to establish datasets for the development of new methodologies
to predict HIV1-PR resistance to protease inhibitors (PIs). This
section describes the materials and methods employed in (1)
the preparation of sequence datasets with various levels of
resistance to PIs; (2) frequency analysis of major and minor
mutations in the sequence datasets in (1); (3) the structural
modeling of the reference structure used as template for
subsequent modeling of HIV1-PR structures corresponding to
each sequence in the datasets; (4) the core components of the
proposed algorithm, including the calculation and comparison
of pairwise Molecular Interaction Field points between the
resulting structural models and the selected naïve template
structure; and (5) the performance metrics used to test and
evaluate the predictive power of the developed structure-based
drug-resistance classification algorithm. A general workflow
illustrating (4) and (5) is sketched (draw.io, 2005) in Figure 1

and the complete scriptHIV1predict.sh for running the sequences
is available at GitHub (Alves et al., 2019b). Calculations
were run on a 64-bit CentOS 6 Linux server with an Intel
Xeon CPU (E5620) at 2.40 GHz (further information as
Supplementary Table S1).

Datasets of Resistant and Susceptible
Sequences
A set of genotype-phenotype correlated HIV1-PR sequences
was retrieved from HIVDB, version 8.7 (Stanford University,
1998b,c), and filtered by drug class for PIs. The considered PIs
include darunavir, fosamprenavir, atazanavir, indinavir, lopinavir,
nelfinavir, saquinavir, and tipranavir. Analyzing the subtype B
HIV1-PR sequence of each isolate, i.e., a viral sample obtained
from an infected individual, and considering positions with a
mixture of amino acids, all possible mutation patterns were
written to the FASTA format using a script written in-house
(Alves et al., 2018f).
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FIGURE 1 | General description of the workflow underlying the proposed sequence-to-structure-based drug resistance classifier, holding platform applications to

multiple microbial targets. The depicted algorithm starts off with the sequential reading of an amino acid sequence in FASTA format, followed by identification of the

present mutations by comparison with the consensus sequence, insertion of the identified mutations in the naïve template, and processing of the structural models for

alignment and comparison. Upon structural alignment of the target or database (predicted) structure with the naïve template structure, six types of MIF probe points

are computed for the former structure and superimposed with pre-calculated MIF probe points of the latter structure. Calculation of MIF dissimilarities by means of a

Tanimoto coefficient proceeds. The bottom panel represents the process of performance evaluation of the proposed classifier based on its application to a large

dataset of sequence-structure pairs generated for HIV1-PR sequences retrieved from HIVDB. Included are performance metrics such as accuracy, Matthews

Correlation Coefficient (MCC), and the area under the receiver-operating-characteristic curve (ROC AUC).

The genotype-phenotype correlation results from the in vitro
PhenoSense assay (Zhang et al., 2005), which measures the
levels of resistance to a PI compared to the wild-type sequence.
Following the categorization of susceptibility to PIs described
by Rhee et al. (2006), the collected sequences were classified
as follows:

• Susceptible. Sequences holding <3.0-fold resistance to all
PIs in the dataset were considered susceptible (N =

7,768) [Susceptible].
• Resistant. Sequences holdingmore than 20.0-, or 15.0-, or 10.0-

fold resistance to all PIs, resulting in three resistant subgroups
of increasing degree of resistance: respectively, [Res20] (N =
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60) [Res20], [Res15] (N = 83) [Res15], which encompasses
[Res20] plus 23 sequences holding between 15- and 20-fold
resistance, and [Res15] (N = 873) [Res10], which encompasses
[Res20] and [Res15] plus 790 additional sequences holding
between 15- and 10-fold resistance.

Counting of Mutations in HIV1-PR
The quantification of major and minor mutations (Weber and
Agniswamy, 2009) in all datasets was carried out using scripts
written in-house (Alves et al., 2018a,b, 2019a) that sequentially
read the listing of mutations for each sequence, extract either the
major or minor mutations, and count them for each sequence.
Said script was applied to quantifymajor andminormutations in
the HIV1-PR binding site.

Preparation of HIV1-PR Structures
Using PDB’s BLAST utility (Altschul et al., 1990) to guide the
choice of a template for homology modeling, a sequence search,
with a 10.0 E-value cut-off and at least 50% identity to the HIV1-
PR subtype B consensus (Stanford University, 1998a), resulted in
784 entities available. With a more refined query of at least 95%
identity to the HIV1-PR subtype B consensus, there were still 376
structures available to work with.

Out of these 376 structures, PDB entry 1NH0 for HIV1-PR
was chosen as template structure for homology modeling by
using PDB’s BLAST utility (Altschul et al., 1990). It returned an
E-value of 7.20281E-51, but since the intended work was heavily
based on structure, our choice was also based on having the best
resolution possible. The structure of 1NH0 holds 99% sequence
identity (98/99) with the consensus B amino acid sequence of
protease, HXB2 (henceforth referred to as consensus sequence),
with one single mutation at position 37 (S37N), has 100%
coverage of the sequence, and has been determined at 1.03 Å X-
ray resolution. Importantly, this HIV1-PR sequence is known to
be susceptible to all PIs.

In this work, Modeler version 9.19 (Šali and Blundell, 1993;
Šali, 2019a) was used for predictive modeling of all HIV1-
PR structures from their respective sequences. The listing of
mutations present in each sequence was automated by scripting
(Alves et al., 2018c) and followed by sequentially running the
mutate_model.py script provided with Modeler (Šali, 2019b)
to obtain the correct pattern of mutations and outputting the
respective structural model. The procedure implemented in
mutate_model.py performs local optimization of the mutated
residues region and ensures that the obtained structural models
are comparable to the template structure. The PDB structure
itself (1NH0) was subjected to mutate_model.py in order to
reverse the mutation present in the template with 99% identity
(Asn37, on the outside of the protease) and keep on the consensus
sequence, remove HETATM entries and alt-locs—thus yielding
the reference template structure. This reference structure was
used as template for the generation of the respective structural
model of each input FASTA sequence present in the datasets.

All generated structural models were protonated using
Reduce, version 3.23 (Word et al., 1999). The reference structure
was centered to the origin of the axes of the cartesian coordinate
system using VMD, version 1.9.3 (Humphrey et al., 1996).

Structural alignment of all query models onto the centered
reference structure was performed with LovoAlign, version
16.342 (Martínez et al., 2007).

Workflow for Detection and Scoring of
Molecular Interaction Field Dissimilarities
The MIF module of the software package IsoMIF, version
dated March 2015 (Chartier and Najmanovich, 2015), was used
to generate Molecular Interaction Fields (MIFs) within the
HIV1-PR binding sites. MIF-based alignment and calculation
of pairwise MIF dissimilarities between reference and dataset
binding sites proceeded using the IsoMIF module of the same
package. The IsoMIF setup comprises three sequential modules:
GetCleft, MIF, and IsoMIF.

Cavity Detection (GetCleft Module)
GetCleft (Gaudreault et al., 2015) was employed to predict
cavities in the structure of the reference HIV1-PR (Alves et al.,
2018e). This geometry-based method detects cavities by insertion
of spheres of radius r between the non-hydrogen protein atoms,
reducing such radius if they intersect with any neighboring atoms
(clefts defined by the union of overlapping spheres). First, the
top five largest cavities were searched at the same time, with
a minimum and maximum sphere radius of 1.5 and 4.0 Å,
respectively. The largest predicted cavity was visually confirmed
to be completely enclosed within the HIV1-PR binding site, using
VMD, version 1.9.3 (Humphrey et al., 1996). Next, such cavity
volume represented by spheres was used to define the location of
MIF interaction vectors to be calculated for the reference and all
3D HIV1-PR structural models.

Generation of Molecular Interaction Field (MIF) Probe

Points (MIF Module)
The MIF module of IsoMIF was used to compute molecular
interaction fields (MIFs) for six different chemical probe
types (Figure 2): hydrophobic, aromatic, H-bond donor, H-
bond acceptor, positive charge and negative charge. The
pharmacophoric features shared by PIs (Wlodawer and Erickson,
1993; Nayak et al., 2019) highlight the importance of a conserved
physicochemical environment in the binding site. Alterations of
this environment are detected with the MIF probes (circled in
Figures 2A,B) which allow for a quantification of changes caused
by the presence of mutations. In this work, a grid resolution of
1.5 Å was defined to calculate the MIFs on the cleft covering
the volume of the binding site. Such resolution was selected
upon testing to achieve an adequate balance between speed and
accuracy of IsoMIF pairwise field dissimilarity calculations.

Alignment of MIF Probe Points and Calculation of

Dissimilarities (IsoMIF Module)
Field similarities were computed using the IsoMIF module,
which employs a clique-based graph matching approach based
on the Bron-Kerbosch algorithm (Bron and Kerbosch, 1973) to
perform functional alignments between the probe points under
comparison. A grid spacing of 1.5 Å, a geometric distance
threshold of 1.0 Å and a maximum of 100 cliques were used
as parameters for the calculation of similarities between the
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FIGURE 2 | A three-dimensional ribbon depiction of the quaternary structure

HIV1-PR dimeric unit, including the six different types of MIF probe points

calculated on the enzyme’s binding site. (A) Structure and probe points of the

reference naïve template. (B) Illustration of the structure and probe points of a

mutated model resulting from a sequence holding over 20-fold resistance for

PIs. (C) An exemplary output of IsoMIF, highlighting a MIF-based alignment

and comparison of both structures: (A,B). The red circles in (A,B) denote areas

where the difference in probe points is most visible. The arrows in (C) point to

semi-transparent probes, representing the probes which are not shared

between the two structures. Legend for the six (6) probe types legend:

hydrophobic in light blue, aromatic in orange, H-bond donor in dark blue and

acceptor in red, positive in green and negative charge in purple.

binding site of reference and structural models of HIV1-PR. Such
similarities were then quantified by the Tanimoto coefficient (Tc),

calculated as in Equation 1:

Tc =
NC

NR+NQ−NC
(1)

where Nc is the number of common probe points to the two
MIF maps under comparison; Nr and Nq represent the number
of probe points present in the reference and query structure,
respectively (Figure 2C) (Chartier and Najmanovich, 2015). The
measurement of dissimilarity (Equation 2) between binding
sites is justified by the fact that the focus of this work is set
on the discrimination of resistant structures, when compared
with a susceptible reference. Therefore, the chosen metric was
dissimilarity rather than similarity:

dissimilarity coefficient = 1.0−Tc (2)

Analysis of Mutation Patterns Across
Thousands of HIV1-PR Sequences
Analyses of the number and position of mutations were
performed on HIV1-PR sequences in order to obtain

information supporting and justifying the development of
a sequence-to-structure-, MIF-based approach to antiviral
resistance classification and prediction.

R version 3.4.3 (R Core Team, 2018) was used to conduct the
analysis and generating the associated graphical representations.
The R packages used in this work were ggplot2 (Wickham,
2009), gplots (Warnes et al., 2019), and ROCit (Khan and
Brandenburger, 2019).

“Outlier” Detection on Binding-Site MIF

Dissimilarities
Tukey’s method (Tukey, 1949; Hoaglin, 2003), also referred to
as Tukey’s fences method, was used to detect outliers in the
binding-site MIF dissimilarities results. Tukey’s method is a
statistical approach used to determine whether a value should
be considered an outlier or not: the method relies on the
interquartile range (IQR) measurement, which is calculated by
the difference between the first quartile (Q1) and the third
quartile (Q3) (see Equation 3). Q1 stands for the value in the
dataset that holds 25% of the values below it and Q3 is the value
in the dataset that holds 25% of the values above it.

IQR= Q3−Q1 (3)

According to Tukey’s method, a value is considered an outlier if
it is observed in the range described in Equation 4:

outlier<Q1−k×IQR∨outlier>Q3+k×IQR

outlier<LowerBound∨outlier>UpperBound (4)

where k= 1.5 indicates an outlier and k= 3 indicates an extreme
outlier. For the purpose of the present work, only extreme outliers
were discarded.

Evaluation of the Algorithm’s Predictive Performance
The performance of our method at discriminating resistant from
susceptible models was assessed by calculation of several metrics
typically employed in the fields of predictive modeling and
machine learning, particularly in cases where binary classification
occurs. These included the Receiver Operating Characteristic
(ROC) and the respective Area Under the Curve (ROC AUC).
The ROC curve is a graphical representation of the True Positive
Rate (TPR) as a function of the True Negative Rate (TNR), i.e.,
at various cut-off settings. The TPR is also known as Sensitivity
(Equation 5), which measures the proportion of positive cases.
On the other hand, the TNR is also calculated as 1—Specificity
(Equation 6) and measures the proportion of true negative cases.

Sensitivity =
TP

TP+FN
(5)

Specificity =
TN

TN+FP
(6)

where TP represents the number of correctly identified resistant
structures (true positives), TN, the number of correctly identified
susceptible structures (true negatives), FP, the number of
susceptible incorrectly predicted as resistant (false positives), and
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FN the number of resistant incorrectly predicted as susceptible
(false negatives).

Additional performance metrics included Accuracy (Equation
7) and Matthews Correlation Coefficient (MCC; see Equation 8)
(Matthews, 1975; Florkowski, 2008; Powers, 2011).

Accuracy=
TP+TN

TP+FP+TN+FN
(7)

MCC=
TP×TN−FP×FN

√

(TP+FP) (TP+FN) (TN+FP) (TN+FN)
(8)

The dissimilarity threshold used for classification in resistant
or susceptible sequence-structure pairs was derived from ROC
curves, corresponding to the highest Youden’s index (Youden,
1950), J, calculated as in Equation 9:

J = Sensitivity+Specificity−1 (9)

This index defines the maximum potential effectiveness of a
classifier. It can be determined for all points of an ROC curve,
although its maximum value represents the classifier optimal
differentiating ability cut-point when equal weight is given to
Sensitivity and Specificity (Ruopp et al., 2008).

RESULTS AND DISCUSSION

In this work, we describe a sequence-to-structure-, MIF-based
method to assess binding-site dissimilarities across sequence-
structure pairs, with the aim of predicting antiviral resistance—
and using HIV1-PR as a case-study. It is generally accepted
that the majority of resistance-conferring mutations occur in the
binding site regions of viral enzymes (Weber and Agniswamy,
2009; Weber and Harrison, 2016). In order to further support
the rationale and underlying assumptions of the proposed
approach, we performed analysis of major and minor mutations
of HIV1-PR binding site residues focusing on sequences known
to be fully resistant and fully susceptible. For the sake of
comparison, the quantification of mutations was also extended
to major and minor mutations occurring in the remainder
residues, i.e., residues not comprising the binding site region
of HIV1-PR.

Counting of PI-Resistant Mutations in
HIV1-PR Sequences
Resistance to PIs develops upon accumulation of mutations
that increasingly impact the structure of HIV1-PR, resulting in
highly-resistant variants of HIV-1. As mentioned by Weber and
Agniswamy (2009), PI resistance is linked to the occurrence
of primary (major) mutations, commonly associated with
the active site where HIV PIs typically bind, resulting from
structural changes that disrupt the van derWaals contacts and/or
hydrogen bonding patterns in the inhibitor-protein interaction
and promote direct steric hindrance, by altering the pocket
volume or its physicochemical environment. Secondary (minor)
mutations occur in addition to major mutations, acting like
accessory mutations that compensate the flaws produced by
major mutations and enhancing the resistance level (synergistic

effect). Being less obvious, they seem to affect HIV1-PR catalysis,
dimer stability, inhibitor binding kinetics, and/or active site re-
shaping through long-range structural perturbations (Weber and
Agniswamy, 2009; Weber and Harrison, 2016).

Our workflow follows a sequence-to-structure approach in
attempt to capture changes to the structural and physicochemical
determinants of HIV1-PR’s binding site uponmutation, based on
the assumption that these changes represent the main driver of
antiviral resistance. To support this assumption, quantification of
mutations known to contribute to PI resistance was carried out
across the retrieved datasets. The version 8.7 HIVDB (Stanford
University, 1998b,c,d) listed the following PI-resistant mutations
for HIV1-PR:

• Major mutations: D30N, V32I, L33F, M46IL, I47VA,
G48VM, I50VL, I54VTALM, L76V, V82AFTSL, I84V, N88SD,
and L90M;

• Minor mutations: L10FIVRY, V11IL, K20RIMTV, L23I,
L24IFM,M36I, K43T,M46V, G48ASTQL, F53LY, I54ST, Q58E,
A71VTIL, G73STCADV, T74PS, V82MC, N83DS, I84AC,
I85V, N88TG, and L89VT.

Even though not all sequences exhibit the same degree of
resistance to each PI, we selected these two groups of major and
minor PI-resistant mutations and quantitatively characterized
their presence in our subsets. Since all HIV1-PR sequences in
our dataset were retrieved from the same unique source, HIVDB
(Stanford University, 1998c; Rhee et al., 2003), the percentage
of sequences holding PI-resistant mutations distributed across
the entire HIV1-PR sequence, as well as the percentage of
PI-resistant mutations manifesting in residues comprising the
binding site of HIV1-PR, were determined and compared among
all four subsets: [Susceptible], [Res10], [Res20], and [Resistant∗]–
as represented in Figure 3.

Figures 3A,B shows that, as expected, all HIV1-PR sequences
belonging to the Susceptible subset hold much less PIs-resistant
mutations than those belonging to the Resistant subsets. The
majority (98.24%) of susceptible HIV1-PR sequences does not
hold any major mutations, while 1.74% contain one major
mutation, and only one sequence (0.01%) comprises three
major mutations. The presence of major mutations across drug-
resistant sequences is higher, ranging from three to seven
major mutations, implying that among these subsets the major
mutations appear in the shape of mutation patterns rather
than individual mutations. The presence of minor mutations
(Figure 3B) follows a similar trend to that witnessed for major
mutations, with susceptible sequences denoting a lower number
when compared to their resistant counterparts. Approximately
98.25% of the susceptible sequences present two or less minor
mutations, with about half of susceptible HIV1-PR sequences
(53.3 %) displaying nominor mutations.

When comparing susceptible vs. drug-resistant sequences,
it can be observed that resistance against PIs is linked to
the presence of major mutations, as implied above (Weber
and Harrison, 2016). However, within the subsets of drug-
resistant sequences, a direct relation between the number of
major mutations and the increase of resistance is not observed.
Drug-resistant sequences show a higher frequency of minor
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FIGURE 3 | Histograms representing the percentage of PI-resistant mutations in the datasets showing increasing number of PI-resistant mutations in the datasets

retrieved from HIVDB. (A) Percentage of major mutations in the whole HIV1-PR. (B) Percentage of minor mutations in the whole HIV1-PR. (C) Percentage of major

mutations in the HIV1-PR binding site. (D) Percentage of minor mutations in the HIV1-PR binding site. Represented datasets: [Susceptible] (green); [Res10] (yellow);

[Res15] (orange); [Res20] (dark orange).

mutations, ranging from three to 18, with a visual apparent
difference between sequences with lower resistance ([Res10]) and
the more resistant sequences ([Res15] and [Res20]). In [Res10],
98.2% of the sequences have up to seven minor mutations, while
78.3% in [Res15] and 93.3% [Res20] have more than eight minor
mutations. This trend in the profile of mutation distribution
among the resistant sequences is in line with minor mutations
acting as accessory mutations, appearing as patterns and not
as individual mutations, and showing a similar trait as the one
observed for the distribution ofmajor mutations.

Analysis ofmajormutations located in HIV1-PR’s binding site
residues (Figure 3C), corresponding to sequence positions 30,
32, 47, 48, 50, 82, and 84, shows that 99.78% of the susceptible

sequences do not display major mutations, while the remainder
show only one major mutation. In contrast, less than 1% of
resistant sequences lackmajormutations in the drug binding site.
Interestingly, the eight sequences representing this small fraction
(0.91%) belong to the lower (10-fold) resistance subset ([Res10]).
All remaining drug-resistant sequences hold from one to three
major mutations in the enzyme’s binding site.

Counting of mutations in binding site residues of HIV1-PR
exposes a systematic presence of major mutations in resistant
HIV1-PR sequences, while also highlighting the absence of such
mutations on 99.78% of their susceptible counterparts. This
contrasting trait observed between the binding site region of
susceptible and resistant HIV1-PR supports the development
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of a structure-based drug-resistance classifier focusing on the
detection and quantification of binding site dissimilarities.

Regarding the distribution ofminor mutations across binding
site residues, as represented in Figure 3D, mutations localized in
sequence positions 23, 48, 82, and 84 were quantified among both
HIV1-PR susceptible and drug-resistant sequences, revealing
that the great majority does not presentminor mutations in their
respective binding sites. Only a small percentage of susceptible
(0.01%) and resistant sequences (0.91%) show minor mutations
in this region. It should be noted that the small subset of resistant
sequences holding a minor mutation in their binding site region
correspond to sequences that do not display major mutations in
the active site.

These results show that the binding site minor mutations
are uncommon on the datasets of HIV1-PR sequences—be they
resistant or susceptible. Although such mutations appear to be
important to increase the enzyme resistance’s by stabilizing the
mutated protein structure, they seem to produce limited direct
effect on the enzyme’s binding site, where they are mostly absent.
Thus, these results seem to be in agreement with our motivation
to explore a quantitative detection of binding-site dissimilarities
to predict HIV1-PR resistance to PIs, as themajormutations play
the main role on altering the binding site conformation, volume
and/or physicochemical environment.

The quantification of mutations in the datasets retrieved from
HIVDB yielded distinct results between the susceptible and drug-
resistant sequences.Most of the resistant sequences show a higher
frequency of major mutations when compared to the susceptible
set. All resistant sequences present at least one mutation in
the binding site region, contrasting with 98% of susceptible
sequences that do not present anymajormutations in that site. It
is worth noticing that half of themajormutations are found in the
binding site of resistant sequences. However, when considering
the total number of mutations, the increase in the number
of mutations per sequence seems to hold a reflection on the
increase in the resistance of the observed sequence. Furthermore,
binding sitemajormutations are more likely to cause changes on
the HIV1-PR binding cleft physicochemical environment when
compared with susceptible enzymes which do not have such type
of mutations.

A Fast, Sequence-to-Structure-,
MIF-Based Antiviral Drug Resistance
Classifier
The quantification of resistance-conferring mutations in HIV1-
PR sequences, using the datasets retrieved from HIVDB,
prompted us to further develop a discriminative resistance-
classifier approach focused on analysis and comparison of
binding-site MIFs. In practice, the proposed workflow involves
performing structural modeling of input HIV1-PR sequences
using the same template (i.e., 1NH0) and a script (Alves et al.,
2018d) that calls mutate_model.py (Šali, 2019b) to conduct
local energy minimization around the mutated residues of the
HIV1-PR structure. Once the generation of structure models is
concluded, the modules belonging to the IsoMIF package are
deployed for cavity detection (GetCleft module), calculation of

TABLE 1 | Tukey’s method results to determine outliers.

Susceptible Res10 Res15 Res20

Q1 0.0057 0.1075 0.1173 0.0649

Q3 0.0225 0.2041 0.2041 0.2171

IQR 0.0168 0.0966 0.0868 0.1522

Lower Bound −0.0447* −0.1823* −0.1431* −0.3917*

Upper Bound 0.0729 0.4939 0.4645 0.6737

Quartile 1 (Q1), Quartile 3 (Q3), Inter Quartile Range (IQR), Upper Bound and Lower Bound

values for susceptible sequences dissimilarity coefficient distribution. Upper and Lower

Bound were calculated as described in Equation 4, with k = 3. Values above the upper

bound and below the lower bound were considered outliers. *Negative values are not

realistic lower bounds; the minimum value must be 0.

MIFs within the selected cavity volume (MIF module), field
alignment and quantification of dissimilarities between MIF
points computed for the dataset HIV1-PR structural models and
those computed for a high quality [Susceptible] reference HIV1-
PR structure (1NH0) and, finally, scoring bymeans of a Tanimoto
coefficient (IsoMIF module). The average running time of the
workflow is ≈ 77 s per sequence (Supplementary Figure S1 and
Supplementary Datasheet S1), considering that this value varies
with the amount of mutations present in the HIV1-PR.

Analysis of MIF Dissimilarities in HIV1-PR
Binding Site
Figure 4 discloses the frequency of HIV1-PR sequence-structure
pairs scattered across a spectrum of Tanimoto coefficient (Tc)
values (varying from 0.00 to 1.00), in turn reflecting binding-
site MIF dissimilarities in the subset of susceptible sequences
(containing 7,768 sequence-structure pairs) against the selected
naïve, template structure. Analyzing this profile of binding
site dissimilarities, we observe that there are substantially
more susceptible sequences concentrated on lower end of the
dissimilarity spectrum. However, a small number of sequences (N
= 81) present higher values, more visibly around the Tc value of
0.35. Since susceptible HIV1-PR sequence-structure pairs display
a lower frequency of mutations in the binding site residues, we
assume that Tc values deviating from the normal trend may
highlight inconsistent data, errors and/or any form of outliers
worthy of further investigation.

In order to verify if the higher Tc values could reflect true
outliers, Tukey’s outlier detectionmethod was used (Tukey, 1949;
Hoaglin, 2003).Table 1 shows the result of applying the statistical
Tukey method to the MIF dissimilarity Tc values obtained
for the dataset of susceptible sequence-structure pairs, and to
the [Res10], [Res15], and [Res20] subsets. For each of the four
groups, Figure 5 shows boxplots summarizing the distribution
of the MIF dissimilarity Tc values. On the susceptible subset,
the higher Tc values were identified as significantly different
from the central tendency (values were below the determined
lower bound; see Equation 4 in Methods). Looking at the
dataset of resistant sequence-structure pairs, extreme outliers
(as described in the Methods section) were only found in
the [Res10] subset. These outliers were found to be associated
with a software limitation wherein the same reference grid
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FIGURE 4 | Frequency of susceptible sequences distributed across a range of HIV1-PR binding site 3D dissimilarity coefficients. The maximum value reported

is ∼0.667.

FIGURE 5 | Boxplot representation of dissimilarity coefficients obtained for the HIVDB datasets. The maximum value reported is ∼0.667. Outliers are marked in red.

Represented datasets: [Susceptible] (green); [Res10] (yellow); [Res15] (orange); [Res20] (dark orange).

(generated by GetCleft), covering the entire binding site volume,
was not homogeneous across all HIV1-PR structure models.
In fact, a wider grid was calculated for some structures when
compared to the reference HIV1-PR structure, which resulted
on a different number of grid points, consequently leading to
an increase of dissimilarities. Thus, these sequence-structure pairs

were not considered relevant for performance evaluations, as
they could introduce performance bias. The Tukey’s boxplot
analysis thus allowed the identification and removal of extreme
outliers in the [Susceptible] and [Res10] subsets, resulting in
6269 and 680 HIV1-PR structural models, respectively. The
[Res15] and [Res20] subsets remained unchanged with 83 and 60
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FIGURE 6 | Percentage of sequences distributed across a range of HIV1-PR binding site 3D dissimilarity coefficients. Maximum value reported is ∼0.463.

Represented datasets: [Susceptible] (green); [Res10] (yellow); [Res15] (orange); [Res20] (dark orange).

HIV1-PR structural models, respectively. The resulting dataset
has been used for further statistical analysis and as test set for
performance calculations.

Figure 6 shows a profile of the HIV1-PR binding-site
MIF dissimilarities across the susceptible dataset withdrawn
of extreme outliers ([Susceptible∗]) and the stratified resistant
data set (encompassing [Res10], [Res15], and [Res20]) also
withdrawn of extreme outliers ([Susceptible∗]). As seen,
susceptible HIV1-PR structures tend to present very low to null
binding-site MIF dissimilarities compared to the ([Susceptible])
structure modeled from the consensus sequence. In fact,
93.91% of the sequence-structure pairs in the susceptible group
show dissimilarities lower than 0.02, indicating a considerable
degree of conservation within the binding site. Overall, these
results show a segregation between susceptible and resistant
sequence-structure pairs, when analyzing their binding-site MIF
dissimilarities against a susceptible reference sequence-structure
pair, suggesting that our method is able to quantitatively capture
differences among susceptible and resistant HIV1-PR structures.

Evaluation of the Classification
Performance of Our Drug Resistance
Classifier
At the current stage of development, the proposed workflow only
performs binary classification, meaning that each input sequence
gets classified as either susceptible or resistant. Sequence data are
used exclusively for the generation of the structural models on
which dissimilarities are analyzed, but not to aid the classification
itself. It is worth highlighting that our workflow relies on the
detection of structural and chemical changes in viral enzymes
that dictate susceptibility or resistance to drugs—rather than

on the training of predictive models using sequences with
known phenotypic response to drugs. Therefore, instead of
using performance evaluation methods, such as cross-validation,
that assess the impact of hiding a portion of training data
(observations) on the accuracy of the resulting predictions, we
resorted to the calculation of metrics of overall performance of
our binary classifier.

The Receiver Operating Characteristic (ROC) curve was used
to assess the overall discriminatory performance of our method.
The score assigned to each dataset entry (here used for testing),
corresponding to binding-site dissimilarities between each input
sequence-structure pair and the template consensus sequence-
structure, were thus plotted as a ROC curve. ROC curves
are conceptually simple plots that depicts a binary classifier’s
discriminative capability as its discrimination threshold is varied.
Such graphical plots are created by plotting the method’s true
positive rate (sensitivity) against its false positive rate (1-
specificity), at varying thresholds. The area under the ROC curve
(ROC AUC) value is a single scalar value varying between 0 and
1, providing a measure of the overall discriminatory power of
the method. A ROC AUC value of 1 (or 100%) entails a perfect
discrimination, a value of 0.5 represents random classification,
while values above 0.8 are commonly accepted as indicators
of an acceptable discriminatory performance (Fawcett, 2006;
Pines and Everett, 2008; Powers, 2011; Tape). Furthermore,
several performance measures, such as the Sensitivity (Equation
5), Specificity (Equation 6), Accuracy (Equation 7), and MCC
(Equation 8) were also determined.

Figure 7 represents the obtained ROC curves and
their respective ROC AUC values for the susceptible and
resistant HIV1-PR binding-site MIF dissimilarities. ROC
AUC values for [Res10], [Res15], and [Res20] subsets were
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FIGURE 7 | Predictive performance of the binary classification (resistant vs.

susceptible) produced by the algorithm/workflow presented herein, quantified

by means of Receiver Operating Characteristic (ROC) curves and their

respective Area Under the Curve (ROC AUC). The colors represent the ROC

curves as follows: yellow for HIV1-PR sequences associated with 10-fold

resistance; orange for HIV1-PR sequences associated with 15-fold resistance;

and dark orange for HIV1-PR sequences associated with 20-fold resistance.

found to be similarly very high-−0.9999, 0.9990, and 0.9987,
respectively – suggesting that the method holds significant
discriminatory power to distinguishing susceptible from fully
resistant HIV1-PR sequence-structure pairs—based on their
binding-site MIF dissimilarities to the [Susceptible] reference
sequence-structure pair.

We have also used ROC curve analysis to guide the definition
of an optimal discrimination threshold based on Youden’s
index (Equation 9) (Youden, 1950). The optimal threshold
observed corresponded to a 0.06 dissimilarity Tc for all [Res10],
[Res15], and [Res20] subsets. Table 2 presents the values of each
performance metric obtained for each subset, when applying a
classification threshold of 0.06. At this classification cut-off, the
specificities and sensitivities were found to be 0.997 and 0.994
for the [Res10] subset, 0.997 and 0.952 for the [Res15] subset and
0.997 and 0.933 for the [Res20] subset, respectively. In all cases,
there is strong discriminative performance toward susceptibility
or resistance—as it can be appreciated by the high accuracy values
highlighted inTable 2. Nevertheless, the best results are found for
the [Res10] subset, with an accuracy of about 0.997. On the other
hand, the subsets with increasing degree of resistance, [Res15] and
[Res20], show only slightly worst results concerning Sensitivity
determined at a threshold of 0.06.

The overall predictive performance of our method was also
evaluated by the Matthews correlation coefficient (MCC) on the
three resistant subsets, which summarizes the sensitivity and the
specificity of a classification method within a unique value, also
varying between 0 and 1. A higher value of MCC indicates that

TABLE 2 | Performance metrics obtained using a dissimilarity threshold of 0.0603.

Dissimilarity Threshold = 0.0603 Res10 Res15 Res20

ROC AUC 0.99988 0.99904 0.99867

Sensitivity 0.994118 0. 951807 0. 933333

Specificity 0.992184 0. 992184 0. 992184

Accuracy 0.99669 0.996379 0.996366

MCC 0.98151 0.874199 0.833085

the method has a better discriminatory performance. For the
[Res10], [Res15], and [Res20] groups, MCC values of 0.982, 0.874,
and 0.833 were, respectively, obtained. Still, such performance
metrics seems to highlight the clear potential of our MIF-based
method to predict drug resistance, especially within the most
populated [Res10] group (MCC value close to 1).

Positioning and Differentiation vs.
Sequence-Based, PI-Resistance Prediction
Tools
More than a decade ago, Lengauer and Sing pointed out the
lack of commonly agreed benchmark (or test) datasets to assess
and compare the performance of different prediction methods
(Lengauer and Sing, 2006). The amount of available information
on matched HIV genotype–resistance phenotype has increased
significantly over recent years, with HIVDB embodying an
important role as a centralized data repository (Rhee et al.,
2003). As expected, sequence-based methods can make use of as
much information as available to train their predictions, resulting
in that they become proficient at “predicting” the phenotypic
response for the sequences they have been trained on. Only in
a few cases do we witness a concern in drawing prospective
validation on unseen sequence sets and in making those test
sets available to the community (Tarasova et al., 2018). This
hinders the design of fair comparisons with methods that do
not make direct use of sequence data for training, such as the
one we propose here. On the other hand, over the past years
genotypic-based methods have reached a level of sophistication
that allows them to perform resistance predictions to specific
drugs, exclusively based on sequence data matched to phenotypic
response, while, at its current stage of development, our MIF-
based method can only perform binary classification (susceptible
or resistant) of input sequences.

Taken together, these aspects render the comparison of our
algorithm with existing, sequence-trained, multi-classification
predictors non-trivial to say the least. Further developments
of our methodology, aiming at a more exhaustive exploration
of specific MIF areas around the mutated binding sites, may
enable stratification of classification into multiple drug classes
by detecting the determinants of resistance to specific PIs.
For the time being, we center the analysis of differentiation
of our method on the answer to a recurrent question in the
mind virologists or physicians who prescribe HIV-1 medications:
would it be possible to accurately predict whether a new, unknown
HIV-1 strain will be susceptible to known PIs?
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TABLE 3 | Performance metrics for exemplary sequence-based prediction tools tested against the datasets compiled in this work.

PI-resistance predictor Sensitivity(A) Sensitivity(B) Specificity FN(A)
‡ FN(B)

‡ FP‡

HIV-GRADE 07/2019 1.0000 0.1471 0.9809 0 580

12

120

8

ANRS 29_11/2018 1.0000 0.1868 0.8493 0 553

14

945

61

HIVdb 8.9.1 1.0000 1.0000 0.8818 0 0 741

21

Rega 10.0.0 1.0000 0.0838 0.9804 0 623

7

123

10

MIF-based Drug Resistance Classifier
†

0.9941 0.9941 0.9922 4

1

4

1

49

11

†The proposed MIF-based drug resistance classifier is shown in the last row for comparison purposes.
‡False negatives (FN) corresponds to the number of sequences belonging to the Resistant* dataset (withdrawn of extreme outliers) that were predicted susceptible to all PIs. False

positives (FP) corresponds to the number of sequences belonging to the Susceptible* dataset (withdrawn of extreme outliers) that were predicted resistant to at least one PI. In italics

are indicated the number of viral isolates to which the sequences misclassified as FP belong. Rules for sensitivity analysis in (1) benchmark A [Sensitivity(A) ]: resistance to one or more

PIs is considered a correct prediction; and (2) benchmark B [Sensitivity(B) ]: resistance to all PIs is considered a correct prediction.

In order to answer to this question, we first converted our
test set containing susceptible and resistant HIV1-PR sequences
withdrawn of extreme outliers (N = 6,269 [[Susceptible∗]]
and N = 680 [[Resistant∗]], respectively) into codon code,
using the EMBOSS Backtranseq online tool (Madeira et al.,
2019a,b), and then submitted it to the HIV-GRADE web server
(Obermeier et al., 2012a,b) for comparison with the sequence-
based algorithms ANRS-rules (Brun-Vézinet et al., 2003), HIVdb
(Rhee et al., 2003; Tang et al., 2012) and Rega (Van Laethem
et al., 2002; Camacho et al., 2017). Unexpectedly, we were not
able to obtain predictions from geno2pheno via HIV Grade due
to a technical issue of the web platform. To eschew this problem,
we tried to submit the test set directly through geno2pheno’s web
server, but the interface is limited to an unpractical maximum of
20 sequences per run.

Because the existing sequence-based interpretation systems
try to predict phenotypical susceptibility or resistance to the
individual drugs for a given genotype, whereas our approach only
performs binary classification (susceptibility or resistance to all
PIs), in order to draw comparison between the methods we tried
to “level the playing field” by converting the predictions made by
sequence-based algorithms into simpler binary classifications. In
a first benchmark (benchmark A), the prediction outputs were
converted into (i) susceptibility to all PIs ([Susceptible]) or (ii)
resistance to any PI (Resistant). In a second, more challenging
benchmark (benchmark B), the outputs were encoded as either
(i) susceptible to all PIs (Susceptible) or (ii) resistant to all PIs
(Resistant). The full list of criteria applied to the conversion
of multiple classifiers into binary classification is given in
Supplementary Table S2. The full raw output of HIV-GRADE is
available in Supplementary Datasheet S2.

The ability to accurately predict the susceptibility of the input
sequences to all PIs was assessed by determining the rate of
correct predictions, with reflection into the calculated methods’
Sensitivity (Equation 5) and Specificity (Equation 6). Table 3
lists calculated performance metrics for the sequence-based
algorithms on both benchmarks A and B, contrasted with the

performance of our sequence-to-structure-, MIF-based algorithm.
Sensitivity(A) and the number of detected false negatives FN(A)

translate the methods’ ability to classifying a HIV1-PR sequence
known to be resistant to all PIs as Resistant to at least one PI. In
contrast, Sensitivity(B) and FN(B) translate the methods’ ability
to correctly predict the same sequences (known to be resistant
to all PIs) as resistant to all PIs. From the methods’ sensitivity
viewpoint, the assessment of the results of both benchmarks
A and B has been important to counterbalance the crudeness
of the conversion of a multiple classifier of resistance toward
specific PIs into a binary classification. Benchmark A clearly
biases sensitivity in favor of a multi-classifier by considering any
resistance prediction (in number or kind of PI) for sequences
known to be resistant to all PIs as correct, whereas benchmark
B offers a more stringent evaluation of sensitivity wherein only
resistant-to-all-PIs predictions for the same set of fully resistant
sequences are considered as correct.

As expected the discriminatory power of the methods
in benchmark A is in stark contrast with that calculated
for benchmark B. Sensitivity(A) suggests that sequence-based
methods slightly outperform our sequence-to-structure-, MIF-
based classifier, with 100% correct predictions of Resistant
sequences vs. a Sensitivity(A) value of 0.994 obtained by our
method. By contrast, benchmark B shows a considerable drop in
performance by sequence-based methods at correctly predicting
HIV1-PR sequences resistant to all PIs—aside HIVdb, which
retains a Sensitivity of 1.000.

The results in Table 3 indicate that our workflow outperforms
all other algorithms at identifying sequences susceptible to
all PIs, with a Specificity of approximately 0.992, while its
sequence-based counterparts display Specificities ranging from
approximately 0.849 to 0.981. Still, it is worth noting that the large
number of FP from the other sequence-based methods mostly
come from the same isolates, similarly as mentioned above
for FN(B). This fact highlights the advantage of accounting for
structural information besides genotypic data. While MIFs allow
searching for differences in the structural and physicochemical
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environment of proteins, which might not be significantly
affected by mutations for similar amino acids, sequence-based
approaches will consistently search for mutations at positions
of interest and consistently assign them the same classification.
At an early-stage of development, our workflow’s performance
is quite satisfactory, considering that the ability of correctly
classifying a sequence as susceptible to all PIs is a highly relevant
step at the beginning of antiretroviral therapy—where a false
positive weights more on the flexibility of first-line therapy
regimens and, consequently, quality of life of the patient.

CONCLUSION AND FUTURE
PERSPECTIVES

In recent years, the availability of data in the form of
matched HIV genotype–resistance phenotype has expanded
greatly, enabling further training of statistical learning methods
relating genotype to different levels of phenotypic resistance
and against specific drugs. However, in spite of the increased
access to and routine sequencing of HIV’s genome in many
countries, as well as the constant evolution of machine learning
(ML)-based techniques, HIV’s high mutation rate (estimated
in 3 × 10−5 per nucleotide per replication) will continue
to pose significant challenges: not only in terms of the
constant demand for curation of genotypic and phenotypic
data to be fed into ML algorithms, but also from the
viewpoint of the interpretability and translation of said data
into knowledge to assist the design of novel anti-microbial
agents. Therefore, the exploration of innovative structure-
based in silico approaches to the prediction of drug resistance,
focusing at the molecular interface that bridges to drug
design, holds clear interest and appeal as alternative or
complement to some of the most developed sequence-based
statistical methods.

In this contribution, we propose a novel approach to
drug resistance prediction, which captures structural and
physicochemical modifications induced by mutations in the
binding site of an extensively studied viral target, HIV1-PR. We
demonstrate that, even at an early, proof-of-principle stage of
development, our methodology can identify HIV1-PR sequence-
structure pairs belonging to three levels of increasing resistance—
with impressively high accuracy—thus anticipating, on a purely
structural basis, whether a given HIV1-PR sequence will translate
into phenotypic resistance or susceptibility to PIs. Since our
sequence-to-structure-based classifier does not rely on training
from genotypic data and only uses an individual input sequence
to derive the corresponding viral enzyme structure and yield a
prediction, its potential real-world value in supporting clinical
decision is clearly relevant. Due to the fact that the proposed
workflow produced predictions of complete drug susceptibility to
the HIV1-PR datasets with high predictive accuracy, said results
highlight this methodology as a potential valuable resource on
clinical practice. Being able to use the clinical isolate sequence
data to accurately predict susceptibility to known PIs, before
starting a therapeutic regimen, is of paramount importance to
allow the initiation of PI-based therapy with the less expensive 1st

generation PIs, resulting in an economic benefit to the healthcare
systems. Importantly, even though the method performs analysis
on thousands of structural data points (atomic coordinates and
MIF points), classification into susceptible or resistant takes place
in a couple-of-minutes time scale.

It is worth emphasizing, nevertheless, that there is obvious
room for methodological improvement and expansion. The
upgrade to multi-classification functionality, where target
structures known to be susceptible to specific inhibitors and
drugs are used as template for structural modeling, is a critical
milestone that will pave the way to predicting resistance to
those specific anti-microbial agents. The growing amount of
three-dimensional structural data on microbial target-inhibitor
complexes, coupled with more elaborate use of sequence data,
fuels our belief in that an improved sequence-to-structure -, MIF-
based drug resistance classifier, will be able to combine the
strengths and overcome the shortcomings of current approaches.

Claims of greatness must be backed by adequate validation
designs. While the current version of our workflow does not
allow drawing comprehensive and direct comparisons with more
advanced sequence-based predictors of resistance to specific
HIV1-PR inhibitors, further developments to our method will
also be accompanied by the assembly and sharing of stratified
benchmark sets of susceptible and resistant microbial target
sequences—enabling fairer comparisons to be made both by
ourselves and the scientific community.

As implied in our concluding words, a clear expectation
around this work involves extending the application of our
method to other targets, other than HIV1-PR, with inherent and
multiple patterns of genetic variation. We realize, however, that
this expectation may only be fulfilled if workable amounts of
data are shared among the scientific community. Undoubtedly,
one of the most critical aspects facing drug resistance prediction
is the development of community-wide efforts to prepare and
share useful datasets and tools to facilitate improvement and
performance evaluation of existing and novel methodologies—
which should be a clear priority for researchers working in the
field. By basing its development on the use of freeware, our
method is freely-available for non-commercial use.

To conclude, we see the results presented here as a promising
example of the potential application of combined sequence- and
structure-based in silico methods to achieve a more detailed
interpretation and prediction of the impact of mutations in drug
resistance. The ever-increasing emergence and widespread of
drug-resistance calls in for the development of more efficient
strategies to combat microbial threats in several fronts—be that
in the drug discovery research setting or the clinical and medical
therapeutic decision realm.
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Computational chemistry has now been widely accepted as a useful tool for shortening

lead times in early drug discovery. When selecting new potential drug targets, it is

important to assess the likelihood of finding suitable starting points for lead generation

before pursuing costly high-throughput screening campaigns. By exploiting available

high-resolution crystal structures, an in silico druggability assessment can facilitate the

decision of whether, and in cases where several protein family members exist, which of

these to pursue experimentally. Many of the algorithms and software suites commonly

applied for in silico druggability assessment are complex, technically challenging and

not always user-friendly. Here we applied the intuitive open access servers of DoGSite,

FTMap and CryptoSite to comprehensively predict ligand binding pockets, druggability

scores and conformationally active regions of the NUDIX protein family. In parallel we

analyzed potential ligand binding sites, their druggability and pocket parameter using

Schrödinger’s SiteMap. Then an in silico docking cascade of a subset of the ZINC

FragNow library using the Glide docking program was performed to assess identified

pockets for large-scale small-molecule binding. Subsequently, this initial dual ranking of

druggable sites within the NUDIX protein family was benchmarked against experimental

hit rates obtained both in-house and by others from traditional biochemical and fragment

screening campaigns. The observed correlation suggests that the presented user-friendly

workflow of a dual parallel in silico druggability assessment is applicable as a standalone

method for decision on target prioritization and exclusion in future screening campaigns.

Keywords: druggability, nudix, drug discovery, workflow, malachite green

INTRODUCTION

The nucleoside diphosphates attached to sequence-x (NUDIX) hydrolase protein family was
recently comprehensively and exhaustively reviewed by Carreras-Puigvert et al. (2017) NUDIX
proteins possess a conserved sequence, called the NUDIX box, i.e., Gx5Ex5[UA]xREx2EExGU),
which differs little between individual members which are otherwise of low sequence similarity.
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Structural and domain analysis revealed three major groups and
one outlier, NUDT22, mostly based on their already reported
activity against substrate classes such as diphosphoinositol
polyphosphates (Caffrey et al., 1999, 2000) and NADH
diphosphates (Abdelraheim et al., 2003). Subsequently, a
systematical screening against a large set of substrates was
performed and painted a rather promiscuous picture of
the NUDIX hydrolases, indicating backup functionality or
redundancy. Consequently, a global expression analysis was
performed and showed a clear dependency on tissue of origin
and the corresponding cancer tissue. Interestingly, NUDT1,
NUDT5, and NUDT14 amongst others were present in a cluster
of highly expressed proteins, confirming a potential role in
cancer as reported earlier (Choi et al., 2011; Gad et al., 2014;
Huber et al., 2014; Wright et al., 2016). Importantly, when
evaluated for epistasis, it became apparent that several NUDIX
members sustain relations as measured in cell viability and
cell cycle perturbations and that these interactions are more
important for cancerous cells. With this overview in structure,
expression, substrate specificity and relation, the NUDIX protein
family members gained considerable attention as potential drug
targets. The original interest in pharmacological modulation
of NUDIX members was sparked by the notion that NUDT1
is overexpressed in several cancer cell types, while its role in
healthy cells can largely be compensated for as evidenced by
the normal life-span of knock-out mice (Tsuzuki et al., 2001).
Besides GTP and dGTP, NUDT1 hydrolyzes several oxidatively
damaged DNA nucleotides including 8-oxo-dGTP and 2-OH-
dATP, thus preventing their incorporation into DNA, which

FIGURE 1 | Published NUDIX inhibitors: TH588 was developed as a first in class NUDT1 inhibitor at Science for Life Laboratory and Karolinska Institutet (Gad et al.,

2014); (S)-Crizotinib is a potent NUDT1 inhibitor and the enantiomer of (R)-Crizotinib (Huber et al., 2014), a clinically applied tyrosine kinase inhibitor; optimized by

Astra-Zeneca; AZ-15, AZ-21 and AZ-24 are distinct chemotype inhibitors targeting NUDT1 (Kettle et al., 2016); BAY-707 (Ellermann et al., 2017) was discovered as a

NUTD1 inhibitor by Sprint Bioscience; IACS-4759 (Petrocchi et al., 2016) is a NUDT1 inhibitor developed by MD Anderson; MI-743 is a selective inhibitor of NUDT1 in

gastric cancers (Zhou et al., 2019); Compound 5 was reported by Gilead and inhibits NUDT1 (Farand et al., 2020); TH5427 was synthesized as a lead compound

against NUDT5 (Page et al., 2018); NUDT7-COV-1 is a covalent inhibitor generated by electrophile screening and fragment combination (Resnick et al., 2019).

otherwise would lead to DNA damage and ultimately cell death.
This led to the hypothesis that increased expression of NUDT1,
and hence improved sanitization capacity of oxidatively damaged
DNA bases from the nucleotide pool, would enable cancer cells
to cope with the increased oxidative stress they are exposed
to compared with healthy cells. Gad and coworkers published
TH588 (Figure 1) as the first small-molecule NUDT1 inhibitor
with efficacy in mouse xenograft models (Gad et al., 2014),
although subsequent potent and selective NUDT1 inhibitors
disclosed by AstraZeneca, MD Anderson, Gilead and Sprint
Bioscience/Bayer failed to reproduce these findings with regards
to cytotoxicity (Figure 1) (Kettle et al., 2016; Petrocchi et al.,
2016; Ellermann et al., 2017; Farand et al., 2020). The validity of
NUDT1 as an anticancer target has thus been questioned and is
still under debate (Warpman Berglund et al., 2016; Samaranayake
et al., 2017). Regardless, these studies served to demonstrate
significant amenability to small-molecule inhibition of NUDT1,
justifying the question as to how this translates to other members
of the NUDIX family.

Besides NUDT1, a series of potent, drug-like NUDT5
inhibitors have been described by Page and coworkers (Page et al.,
2018). The lead compound TH5427 (Figure 1) was shown to
block progestin-dependent, PAR-derived nuclear ATP synthesis
and subsequent chromatin remodeling, gene regulation and
proliferation in breast cancer cells, suggesting that targeting
NUDT5 may represent a novel therapeutic approach for breast
cancer treatment. Most recently, the covalent NUDT7 inhibitor
NUDT7-COV-1 was developed by employing electrophilic
fragment screening and a fragment combination approach
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(Figure 1) (Resnick et al., 2019). To the best of our knowledge no
potent inhibitors for any of the other NUDIX hydrolase members
have been disclosed to date, although there are public data on
hit rates for selected family members on the Structural Genomics
Consortium homepage1, 2.

One aspect not addressed in the recent comprehensive review
(Carreras-Puigvert et al., 2017) is an assessment of the potential
druggability of the different NUDIX family members, i.e., their
amenability to be modulated by drug-like small molecules.
With the recent dawn of PROTACs, synthetic neoantigens and
biologics, but also established targeting strategies like allosteric
modulation or active site inhibition, several scenarios of how to
target a protein may be exploited.With that in mind, druggability
as such is no longer restricted to active site inhibition of a protein
by a small molecule with an optimized small-molecule drug-
like profile. Both orthosteric or catalytic sites and secondary,
allosteric sites, may be equally interesting to be targeted for the
development of small-molecule chemical probes and potential
drug candidates. As high-resolution crystal structures of 18 out
of the 22 human NUDIX hydrolases are now available, a family-
wide in silico druggability assessment for available sites is feasible.

Here we use several open-access binding site analysismethods,
i.e., DoGSite (Volkamer et al., 2012)3, CryptoSite (Cimermancic
et al., 2016)4, and FTMap (Kozakov et al., 2015)5, as well as
the commercial SiteMap and in silico fragment screening of a
fragment library using Glide to probe the NUDIX hydrolase
protein structures for potential small-molecule binding sites
and assess their druggability and suitability for a prospective
drug discovery campaign. This established in silico prioritization
workflow within the NUDIX family is further supported
by results obtained from biochemical screens employing the
malachite green assay (Baykov et al., 1988) as well as differential
scanning fluorimetry (DSF) (Niesen et al., 2007) fragment
screens for some of the family members. This correlation
with own experimental results and those published previously
highlights the benefit of this comparably low-cost computational
assessment workflow prior to applying experimental screening
methods for the rapid evaluation of target druggability.

MATERIALS AND METHODS

Protein Preparation and Validation
Available crystal structures of human NUDIX hydrolases with
the highest resolution were imported into Maestro (Schrödinger
Suite 2019-1, Schrödinger, LLC, New York, NY, 2019.) The
structures were then prepared using the Protein Preparation
Wizard as implemented in the Schrödinger Suite. Briefly, raw
PDB structures were processed by automatically assigning bond

1Fragment Screening. Available online at: https://www.thesgc.org/fragment-

screening (accessed August 8, 2019).
2NUDT15.Manuscript Submitted.
3Zentrum für Bioinformatik: Universität Hamburg - Proteins Plus Server. Available

online at: https://proteins.plus/ (accessed June 3, 2019).
4Cryptic binding site. Available online at: https://modbase.compbio.ucsf.edu/

cryptosite/ (accessed June 3, 2019).
5FTMap: A Small Molecule Mapping Server. Available online at: http://ftmap.bu.

edu/login.php (accessed June 3, 2019).

orders, adding hydrogens, creating zero-order bonds to metals,
converting selenomethionine to methionine, adding missing
side-chains, creating possible disulfide bridges, deleting waters
beyond 5.0 Å of hetero groups (if present), and generating
hetero protonation states at pH 7.0. Residues with alternate
positions were locked in the conformations with the highest
average occupancy. Small ligands and metal ions originating
from crystallization buffer were removed. The hydrogen bonding
networks were optimized automatically, by sampling water
orientations and optimization of hydroxyls, Asn, Gln, and His
residue states using ProtAssign. Any remaining water molecules
were subsequently removed. A restrained minimization was
then performed using the OPLS3e force field, until an RMSD
convergence of 0.30 Å was reached for the heavy atoms. Finally,
the minimized NUDIX structures were aligned to the structure
of NUDT1 (3Q93) with respect to the backbone atoms of the
A chain.

DoGSite
The protein structures as prepared above were exported as
PDB files, uploaded to the DoGSite server and assessed for
binding sites and their corresponding DrugScores according to
the published protocol (Volkamer et al., 2012). Pocket Size and
DrugScores were extracted for all identified sites and annotated
to pocket numbers.

FTMap
All prepared PDB files were uploaded to the FTMap server and
interrogated for number of probes per cluster found according to
the published protocols (Kozakov et al., 2015; Vajda et al., 2018).

CryptoSite
All prepared PDB files were uploaded to CryptoSite server and
assessed for amino acid flexibility according to the published
protocol (Cimermancic et al., 2016). Amino acid residues
exceeding a Cryptic Site Score of 0.10 were extracted.

SiteMap
Prepared protein structures were submitted to SiteMap analyses
as implemented in Schrödinger Suite 2019-1. The 5 top-ranked
potential binding sites were identified. At least 15 site points
per reported sites were required. The more restricted definition
of hydrophobicity together with a standard grid (0.7 Å) were
used. Site maps at 4 Å or more from the nearest site points were
cropped. Clustering of the SiteMap parameters was performed
using the heatmaply library in R6. The SiteMap parameters were
transformed using “percentize,” and average linking was used
for clustering.

Virtual Fragment Screening
1) Fragment subset selection: a subset of the ZINC Frags Now set

(Irwin et al., 2012) was created by applying a number of filters
implemented in a Knime workflow (Knime 3.5.2, Berthold
et al., 2008). Foremost, only fragments available from a list
of 19 preferred suppliers, composed by a team of experienced

6Introduction to Heatmaply. Available online at: https://cran.r-project.org/web/

packages/heatmaply/vignettes/heatmaply.html (accessed April 16, 2020).
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medicinal chemists were considered. These were then filtered
using a cascade of structural filters, including REOS (Walters
and Murcko, 2002), PAINS (Baell and Holloway, 2010)
and a set of in-house filters (ScrapFilter) compiled over
the years. Lipinski-type descriptors (SlogP, TPSA, AMW,
NumLipinskiHBA, NumLipinskiHBD, NumRotatableBonds,
NumHeavyAtoms, NumRings, NumAromaticRings) were
then calculated using the RDKit Descriptor Calculation
node. An additional descriptor HetRatio was then calculated
as the ratio of NumLipinskiHBA and NumHeavyAtoms,
and fragments with HetRatio <0.2 or >0.5 were filtered
out. Finally, remaining outliers were removed by applying
Gaussian Z-score normalization on the descriptor space,
and then filtering out fragments with descriptor values
deviating more than 3 units from the mean. The entire
filtering cascade reduced the original input file of 704,041
structures as downloaded from ZINC to 205,891 fragments
(Supplementary Data Sheet 1).

2) Ligand preparation: the selected fragment subset was then
prepared for docking using LigPrep (Schrödinger): the
OPLS3e force field was used for minimizations; possible
ionization states at pH 7.0 ± 2.0 were generated using
Epik (Shelley et al., 2007; Greenwood et al., 2010), metal
binding states were added, and tautomers were generated;
specified chiralities were retained and at most 4 stereoisomers
were generated per structure. This yielded 345,044 structures
for docking.

3) Receptor grid generation: Glide docking grids (Friesner et al.,
2004, 2006; Halgren et al., 2004) were generated for each target
protein by focusing the grid box on the center of the site
with the highest Dscore as determined by SiteMap (Halgren,
2007, 2009). The size of the box enclosing the grid was set to
16 Å. No constraints, rotatable groups or excluded volumes
were defined.

4) Virtual screening: The Virtual Screening Workflow as
implemented in Schrödinger Suite was used for docking,
scoring, and ranking of the top-1,000 fragments against the
sites with the highest Dscore as determined by SiteMap.
The workflow comprised a cascade of docking steps with
increased accuracy (Glide HTVS → SP → XP), where
the top-10% ranked ligands are passed on to the next step.
After Glide XP docking the top-1,000 ranked fragments were
retained for druggability assessment based on their combined
docking scores.

Biochemical Screening
Small-molecule screening of NUDT2, NUDT15, and NUDT16
at a compound concentration of 10µM was conducted using
coupled enzymatic assays as already described for NUDT1
(Gad et al., 2014) and NUDT5 (Page et al., 2018). In brief
this involved the purification of recombinant proteins following
overexpression in E. coli and subsequent validation of coupled
enzymatic assays based on cognate substrates for each of these
[Ap4A for NUDT2, dGTP for NUDT15 and ADP for NUDT16
(Trésaugues et al., 2015)]2. The assays for NUDT2 and NUDT15
were based on enzymatic release of inorganic pyrophosphate
and subsequent degradation to two molecules of inorganic

phosphate in the presence of excess inorganic pyrophosphatase.
Levels of inorganic phosphate are measured using an established
procedure for such measurements in 384-well format in our lab
(see e.g., Gad et al., 2014; Page et al., 2018). The screening of
NUDT16 was based on enzymatic processing of ADP to release
one molecule of inorganic phosphate, such that the coupled
enzyme was not needed in this assay. All assays were optimized
to allow their application at close to the Km of each substrate and
with an incubation time chosen to ensure consumption of <30%
of substrate and near linearity of assay signal increase with time.

Slightly different screening sets have been applied for
the family members, with only a smaller subset of 5,500
compounds in common. All screens conducted at Chemical
Biology Consortium Sweden have 16 each of negative (DMSO
only – 0% inhibition) and positive controls (no enzyme or
inhibitor at concentration that gives 100% inhibition). These are
located in columns 23 and 24 of the 384-well plates and they are
used to normalize the response in each well-containing library
compounds to a % inhibition value. Hit limits are defined based
on the average plus three standard deviations of the response
for all library compounds and hit rates are provided as the
percentage of library compounds above this limit. The malachite
green assay has been extensively used for screening purposes in
our lab as it is associated with low interference rates, as evidenced
by the lack of common hits appearing in screens of NUDT1
(Gad et al., 2014), NUDT5 (Page et al., 2018), dCTPase (Llona-
Minguez et al., 2016), dUTPase and ITPase besides the herein
reported NUDIX proteins (Supplementary Material – Screens
using malachite green).

DSF Fragment Screening
NUDT1, NUDT2, NUDT5, and NUDT15 druggability was
further experimentally assessed through fragment screening by
DSF. Different fragments sets were screened over time, reflecting
history and development of the available fragment sets. The
initial fragment library comprised 450 fragments selected from
the Chemical Biology Consortium Sweden reagent store at the
Karolinska Institutet, and this set was screened against NUDT1
and NUDT5. Over time this library was complemented with sets
of nucleobase analogs acquired from the NCI Developmental
Therapeutics Program, which was grown to a subset of 200
compounds. This set, together with the 450-member library,
thus totaling 650 fragments, was screened against NUDT2.
Subsequently the 450-member library was complemented with
550 additional fragments from the Chemical Biology Consortium
Sweden reagent store in order to generate a more diverse generic
fragment library of 1,000 compounds. This second version
together with the 200 nucleobase analogs acquired from NCI
was screened against NUDT15. The proteins were expressed
and purified as previously reported (Carreras-Puigvert et al.,
2017). Fragment screening by DSF was essentially performed
as described in detail by Niesen et al. (2007) All fragments
were screened at a final concentration of 500µM. Positive
controls for each target were used at 100µM. Assay buffer was
composed of 100mM Tris Acetate, 40mM NaCl, and 10mM
Mg Acetate. Sypro Orange (S6650, Molecular Probes, 5000x) was
used as the fluorescent dye. Native melting points of the proteins
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under the assay conditions were 50.0, 50.0, 76.0, and 57.0◦C
for NUDT1, NUDT2, NUDT5, and NUDT15, respectively.
Screening was performed in 96-well Q-PCR plates using a
BioRad 96CFX real-time PCR detection system with temperature
increments of 1.0◦C.More details of the assay conditions for each
target are provided in the Supplementary Material – Fragment
screen conditions.

RESULTS AND DISCUSSION

Automated Arm - Step 1: DoGSite and
FTMap Predict Druggable Catalytic Sites
and Potentially Druggable Secondary Sites
We started by compiling a list of available high-resolution
crystal structures of human NUDIX proteins (Table 1). Due to
the systematic work of the Structural Genomics Consortium,
the majority of structures were solved with high sequence
coverage (Supplementary Material – SiteMap secondary sites)
and are often available together with screening data1. PDBs
were imported to Maestro and prepared as described in
the Method part. To enable application in the automated
workflow, the prepared proteins were exported as new PDB
files (Figure 2). In a first step, these files were uploaded
to the DoGSite server. DoGSite is a web-based open-access
algorithm that interrogates rigid protein structures for binding
hotspots, including druggability prediction (Volkamer et al.,
2012). Initially, a grid covering the protein identifies grid points
that overlap with protein atoms. Application of a difference
of Gaussian (DoG) filter then screens for preferred binding
spots of sphere-like objects. Combination of several hotspots
creates subpockets, which, if neighboring, are merged into
a pocket. Several geometric and physico-chemical properties
are automatically calculated for the predicted pockets and
subpockets. A machine learning model trained on a set of known
druggable proteins is then used to predict the druggability of the
pockets, expressed as DrugScore. Reported as a factor between
0 and 1.0 a DrugScore over 0.5 and closer to 1.0 corresponds to
good druggability.

Application of this algorithm to NUDIX crystal structures
identified between two and ten pockets with a wide range of
DrugScores (Figure 3 and Supplementary Material - DogSite).
Between one and four bindings sites were judged druggable by
the DoGSite algorithm. For some of the NUDIX hydrolases the
natural substrates and their binding sites are yet to be deciphered.
In addition, with the broad targeting possibilities provided by
PROTACs (An and Fu, 2018) or allosteric inhibitors (Wenthur
et al., 2014; Aretz et al., 2018), it is not necessarily required
to target a catalytic pocket to convey a desired phenotype.
Thus, the single highest-ranking site of each NUDIX structure,
often corresponding to the known substrate binding site, was
used to calculate a NUDIX druggability score. With an average
druggability score of 0.80, the NUDIX family of proteins qualify
as good predicted drug targets. As a positive control and
validated target when it comes to chemical amenability, NUDT1
(3Q93) reaches a similar score of 0.81. The protein tyrosine
phosphatase 1B (PTP1B) was included into the assessment

TABLE 1 | High-resolution crystal structures used in this study.

Protein name PDB code References

NUDT1, MTH1 3Q93 Tresaugues et al., 2011a

NUDT2, APAH1 3U53 Ge et al., 2013

NUDT3, DIPP1 2FVV Thorsell et al., 2009

NUDT4, DIPP2 5LTU Srikannathasan et al., 2017a

NUDT5, HSPC115 6GRU Dubianok et al., 2018

NUDT6, FGF2AS 3H95 Tresaugues et al., 2009a

NUDT7 5T3P Srikannathasan et al., 2017b

NUDT9 1Q33 Shen et al., 2003

NUDT10, DIPP3A 3MCF Tresaugues et al., 2010

NUDT12 6SCX Wu et al., 2019

NUDT14, UGPP 3Q91 Tresaugues et al., 2011b

NUDT15, MTH2 5BON Carter et al., 2015

NUDT16 3COU Tresaugues et al., 2008

NUDT17 5LF8 Mathea et al., 2017a

NUDT18, MTH3 3GG6 Tresaugues et al., 2009b

NUDT20, DCP2 5MP0 Mathea et al., 2017b

NUDT21 3BAP Coseno et al., 2008

NUDT22 5LF9 Tallant et al., 2017

PTP1B* 2HNP Barford et al., 1994

*Added as reference protein.

(2HNP) as this is generally known to be a challenging target for
classical drug discovery approaches. PTP1B, like other tyrosine
phosphatases, contains a relatively polar substrate pocket which
can accommodate phosphate isosteres. In the last two decades,
small molecules targeting this pocket have been shown to fail
eliciting sufficient effects in vivo (Zhang and Zhang, 2007;
Krishnan et al., 2018). Instead a non-classical approach of
allosteric inhibition is currently under evaluation in clinical
trials (Mullard, 2018). When interrogated with DoGSite, PTP1B
(2HNP) scores 0.72 only by combination of two subpockets
through a narrow channel.

An interesting observation is that all NUDIXmembers, except
NUDT4 (0.72, 5LTU) and NUDT18 (0.63, 3GG6), individually
score a high DrugScore around 0.80. Furthermore, it can
be observed that several members, including NUDT6 (3H95,
0.78), NUDT7 (5T3P, 0.77), NUDT9 (1Q33, 0.82), NUDT17
(5LF8, 0.79), NUDT12 (6SCX, 0.85), and NUDT22 (5LF9, 0.81,
Figure 4), are predicted to possess a second high-ranking pocket.
These sites may increase the potential for pharmacological
targeting of the corresponding proteins, for instance by
masking a protein-protein interaction or a cofactor binding site.
Identification of a second high-ranking pocket remote from the
catalytic site, however, may also point toward an artifact in
the crystal structure due to the construct used for expression
or lack of electron density. For a comparison of resolved and
expressed sequences please refer to Supplementary Material –
SiteMap secondary sites. Thus, when inspected for their location,
it became apparent that secondary sites can be distinguished
as either neighboring to the top-ranked site or being located
more remotely.

The druggability of the identified pockets can be further
assessed using FTMap (Kozakov et al., 2015; Yueh et al.,
2019). FTMap interrogates the protein surface for contributions
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FIGURE 2 | In silico druggability prioritization workflow – High-resolution crystal structures and comprehensive commercial space compound databases are freely

available. PDBs are prepared by protein preparation wizard (Thorsell et al., 2009), inspected for structural flaws and limitations and exported as new structure files. In a

first step, the structures are assessed for binding sites and site druggability by algorithms using rigid proteins or allowing for flexible behavior, i.e. DoGSite (Volkamer

et al., 2012) and CryptoSite (Cimermancic et al., 2016). To eliminate artifacts due to protein construct choice, limitations of crystal structure resolution or

co-crystallization of additional protein copies, all identified sites are counter-screened by FTMap (Kozakov et al., 2015). In a second and parallel step, the same

structures are initially assessed for binding sites, druggability and pocket parameter using SiteMap (Halgren, 2007, 2009). A separate Knime (Berthold et al., 2008)

workflow for the elimination of promiscuous functionalities is followed by Ligand Preparation which builds an applicable set of small molecules including a number of

tautomers and stereoisomers. In a three-step cascade this set is then docked (Friesner et al., 2004, 2006; Halgren et al., 2004) against the highest-ranking site as

identified by SiteMap. The median docking score of the top-1,000 fragments is used to assess druggability based on commercial fragment space. In a final step,

prioritization of targets passing both parallel screening schemes may be performed based on published experimental screening data or own future screening efforts

during translation to the lab.

to ligand-free energy. Small organic molecules, reflecting the
complexity of potential active substances, are scored using a
detailed energy function. Some regions bind several clusters
of probes and thus identify as a binding hotspot. Earlier,
this orthogonal method was applied on pockets identified by
CryptoSite (Vajda et al., 2018), where high druggability would
correspond to an FTMap cluster populating these sites and
containing at least 16 probes. When similarly examined for
the number of bound probes, all highest-ranking sites of each
NUDIX protein except for NUDT4 (5LTU) and NUDT18
(3GG6), reached more than 16 probes confirming the good
druggability of the expected active sites of the enzyme family
(Figure 3 and Supplementary Material - FTMap). NUDT4
(5LTU) and NUDT18 (3GG6), which showed a lower DrugScore
before, failed to contain more than 16 probes and are the only
family members with a lower druggability assessment based on
DoGSite and FTMap. Assessment of PTP1B (2HNP) returned all
FTMap probe clusters to be located in the smaller of the two
sites predicted by DoGSite (DrugScore 0.38). When evaluated
with FTMap, secondary sites of NUDT6 (3H95), NUDT7
(5T3P), NUDT9 (1Q33), NUDT17 (5LF8), and NUDT22 (5LF9,
Figure 4) neighboring the highest-ranking site tend to harbor
more probes than those sites found remotely. All remote

secondary sites, i.e., NUDT9 (1Q33), NUDT17 (5LF8) and
NUDT 12 (6SCX), fail to incorporate the required 16 probes.
Of those located much closer to the highest-ranking pocket,
only NUDT7 (5T3P) fails to accommodate 16 or more probes
underscoring the potential use in pharmacological targeting
additionally to the neighboring highest-ranking pocket.

Automated Arm – Step 2: CryptoSite and
FTMap Confirm Druggable Active Binding
Pockets With High Flexibility
Druggability predictions using DoGSite are based on rigid
protein structures, not allowing for flexibility typically induced by
larger natural substrates or specifically designed small molecules
(Michel et al., 2019). Another aspect is the potential existence
of allosteric sites. Typically, a crystal structure of a compound
bound to the allosteric site or comprehensive protein dynamics
calculations based on several distinct crystal structures are
required for their discovery. The CryptoSite algorithm however,
can give first insights in whether an already identified active site
or a shallow pocket allows for high single amino acid flexibility
(Cimermancic et al., 2016). Networks of these flexible cryptic
sites could indicate concerted movements of the protein, possibly
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FIGURE 3 | Binding pocket identification and druggability assessment in the automated arm: (A) rigid protein assessment with DogSite identifies a number of binding

sites within a range of predicted druggability scores; (B) FTMap identifies a number of cluster per protein and only NUDT4 and NUDT18 fail to contain enough

samples per cluster in the active site; (C,D) flexible protein assessment with CryptoSite identifies amino acid residues with different degrees of conformational

freedom. Including the top scoring residues these networks largely overlap with pockets identified by DogSite.

forming an allosteric site or conformational changes relevant for
substrate binding and protein function. Cryptic scores returned
by the algorithm above 0.10 and higher consider a site as cryptic
and thus flexible.

When interrogated with CryptoSite, NUDIX hydrolases
showed an increased number of cryptic sites around the highest-
ranking site as identified before by DoGSite, indicating an
extended and flexible three-dimensional network of amino acid
residues (Figure 3 and Supplementary Material - CryptoSite).
Between 11 and 86 and on average 40 residues scored higher
than 0.10 (NUDT1, 42; PTP1B, 33). The highest scoring
residues reached values between 0.26 and 0.52 and on average
0.40 (NUDT1, 0.49; PTP1B, 0.33). NUDT10 failed to form a
cryptic network while NUDT6, NUDT7 and NUDT22 (Figure 4)
possessed a second cluster of cryptic sites overlapping with the
second highest-ranking sites as identified by DoGSite. Except
for NUDT4 (5LTU) and NUDT18 (3GG6), all cryptic networks
of the protein family members were populated by more than
16 probes in FTMap (Figure 3 and Supplementary Material –
FTMap).

The result of this initial druggability assessment suggest
that NUDIX hydrolases are on average good drug targets with
regard to their expected or known active sites. Further, only

a few members of the family possess a second druggable site
as based on DoGSite and FTMap analyses, and even fewer
exhibit conformational flexible sites remote from the identified
active site.

User Arm – Step 1: SiteMap Binding Site
Prediction and Druggability Assessment
In a second parallel approach we assessed druggability using
SiteMap and a Glide-based virtual screening workflow applied
to a KNIME filtered fragment library (Figure 2). SiteMap, an
application to identify binding pockets and predict druggability,
is implemented in the Schrödinger small-molecule modeling
suite. Binding pockets identified on the protein surface are given
a score, the Dscore, which is based on pocket parameters such as
size, exposure to solvent, enclosure by protein, ratio of hydrogen
bond donors and acceptors and importantly hydrophilicity,
hydrophobicity and a determined ratio thereof. This druggability
score favors proteins with a higher hydrophobic/hydrophilic
ratio and thus allows for an early assessment of pocket polarity as
required for binding of small-molecule drugs. Typical Dscores for
druggable protein pockets are above 1.108 while Dscores below
0.871 suggest a difficult to drug protein (Halgren, 2007, 2009).
In addition, comparing individual pocket parameters allows for
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FIGURE 4 | Druggable sites of NUDT22 as identified in the automated and the user arm: (A) Rigid assessment with DoGSite identifies a second highly druggable site

(orange, DrugScore 0.81) in close proximity to the highest-ranking site (yellow, DrugScore 0.82); (B) Flexible assessment with CryptoSite predicts 52 amino acid

residues around both pockets as part of an extended 3D network. Highlighted amino acid residues possess cryptic score over 0.2; (C) FTMap confirms all cluster

hotspots and at least 16 probes within 5 Å radius of either of the binding sites (site 1: pink; site 2: light blue) or high cryptic value sites. (D) SiteMap combines the two

sites identified by DogSite into a single large binding pocket with an evenly distribution of hydrophobic (yellow) and hydrophilic (red and purple) patches; (E) cascade
docking of the ZINC fragment library shows a preference for the active site, while the second druggable site is only engaged by members of one chemotype among

the top 1000 fragments. The assessment highlights NUDT22 comprising two adjacent druggable sites which in a prospective drug discovery campaign could be

targeted separately or in combination.

a detailed picture of druggability and for specific assessment of
proteins with similar Dscores and/or sequence.

When SiteMap was applied on the NUDIX hydrolases, the
obtained Dscores of the highest-ranking sites were between

0.51 and 1.11 with an average of 0.88 (Figure 5A and
Supplementary Material -SiteMap). Interestingly, except for
NUDT4, all identified highest-ranking sites were in overlapping
regions or even identical with sites identified with DoGSite
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FIGURE 5 | Predictive value of in silico assessment and docking for in vitro screening hit rates and suitability of fragment screens for chemical probe generation: (A) in
silico druggability assessment of pockets identified by SiteMap correlates well with the observed ZINC Fragments Now (ZFN) median docking scores of the highest

ranking 1000 fragments (R = −0.717); (B) when translated to in vitro to either DSF or X-Ray screens using fragment libraries with overlapping chemical space, a

similar correlation can be observed, highlighting the suitability of a purely in silico druggability workflow as a standalone method (R = −0.826); (C) DSF fragment

screens reported here yielded strong stabilizing fragment hits that are structural subunits of reported ligands for NUDT1 (Gad et al., 2014; Huber et al., 2014).

FIGURE 6 | Clustering of investigated NUDIX family members based on the primary SiteMap parameters of the top-ranked sites, resulting in a clear separation of the

members deemed druggable (green branches) and those deemed undruggable (red branches).

(Supplementary Material - FTMap). Thus, the returned lower
Dscore values for NUDT4 (0.51) and NUDT18 (0.61) were
consistent between these approaches. In addition, judging
by SiteMap, NUDT3 (0.74), NUDT6 (0.77), NUDT10 (0.59),
NUDT20 (0.73), and PTP1B (2HNP, 0.78) were classed as
difficult drug targets. The highest-ranking members and thus
favored drug targets in the family were NUDT1 (1.02), NUDT5
(1.11) NUDT7 (1.04), NUDT9 (1.01), NUDT12 (1.05), NUDT15

(1.00), NUDT17 (1.01), and NUDT22 (1.04, Figure 3). Due to
the chosen cut-off distance to merge identified pockets (5 Å),
SiteMap identified large extended pockets which included several
subpockets. Furthermore, as NUDT5, NUDT12, and NUDT15
are functional homodimers, these have two high-ranking pockets.
Of these, NUDT12 and NUDT15 contain a third druggable
site. NUDT7on the other hand possesses a second high-ranking
pocket (Dscore 0.82).
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Clustering of the highest-scoring SiteMap pockets using
the primary SiteMap parameters shows a clear separation
of druggable versus undruggable NUDIX members and
allows for comparison of members which are (dis)similar
in terms of their active site properties rather than based on
sequence (dis)similarities (Figure 6). Full-length sequence
identity is generally low among the NUDIX family members
(see Supplementary Material, Percentage Identity), with the
exception of NUDT3, NUDT4, NUDT10, and NUDT11. The
former 3 being deemed challenging targets and NUDT11 was
not evaluated due to lack of structural data. General selectivity
issues are thus not anticipated when targeting a specific NUDIX
family member. On the other hand, several members have some
degree of overlap in their substrate specificity, e.g. NUDT1, 15
and 18 as a subgroup, and NUDT5, NUDT9, NUDT12, and
NUDT14 as a second subgroup (Carreras-Puigvert et al., 2017),
implying that their active sites share some structural similarity.
In this context, the SiteMap parameter profile of NUDT5 is a
good reference as it has the highest Dscore of all members. In
comparison, NUDT9 has a less favorable balance in hydrophobic
and hydrophilic character, while the active site of NUDT12
is somewhat more exposed than NUDT5, but also larger.
Although these 3 members have high Dscores, classing them
clearly as druggable, they vary in their capacity to accommodate
different fragments, as it is reflected by their different median
docking scores further down (Figure 5). NUDT14 is considered
challenging, primarily due to its smaller active site which also is
more exposed.

NUDT15 and NUDT18 have been hypothesized to be able
to act as back-up enzymes for NUDT1 due to their overlapping
substrate specificities. Comparison of their SiteMap parameter
profiles shows clear differences despite NUDT1 and NUDT15
being among the NUDIX members with highest Dscores. The
active site of NUDT15 is somewhat smaller and more enclosed
than for NUDT1 due to an inward movement of a helix (Carter
et al., 2015). NUDT18 is considered to be challenging due to its
small and more exposed active site. This also results in a poor
fragment scoring profile (please see below). Collectively, these
differences in site parameters allow for the development of highly
selective chemical probes, as witnessed for NUDT1 and NUDT5
(Gad et al., 2014; Page et al., 2018).

User Arm – Step 2: in silico Docking of
ZINC Library
As a final druggability assessment and potential to identify
starting points amenable for a fragment growing-based drug
discovery campaign out of commercial fragment space, we
performed in silico docking campaigns of the ZINC Frag
now database (Irwin et al., 2012) against the structures under
consideration. The comprehensive fragment library was filtered
against unwanted structural motifs and prepared for docking
using a KNIME workflow (Berthold et al., 2008). For a detailed
description, please refer to the Methods part of this manuscript.
Ultimately, 205,891 fragments remained after filtering the
original set of 704,041 ZINC fragments. Using the Schrödinger

suite, ligand preparation and grid generation for the highest-
ranking pocket as identified by SiteMap were performed to
enable virtual screening of this subset applying three stages
of accuracy. In each stage, the top-ranked 10% of compounds
were retained and passed on to the next stage. Finally, the
top-ranked 1,000 fragments were used to calculate a median
docking score enabling assessment of druggability based on
commercially available fragment space. The returned median
docking scores, where lower is better, ranged from−4.0 to −11.4
kcal/mol with an average of−6.8 kcal/mol. NUDT1 and NUDT5,
both validated drug targets in the literature, scored−11.4 and
−9.9 kcal/mol respectively. In addition, and judged by the
median docking score, NUDT17 (−8.8 kcal/mol) is a third
promising drug target. PTP1B (−6.8 kcal/mol) scores average
among the NUDIX family members, while the scores for
NUDT4 (−4.0 kcal/mol), NUDT10 (−4.3 kcal/mol), NUDT20
(−4.7 kcal/mol) and NUDT18 (−5.0 kcal/mol) indicate a
potentially challenging drug discovery campaign (Figure 5A).
When using the median docking scores and plotted against
their respective SiteMap Dscores, a good inverse correlation
(R = −0.717, Bravais-Pearson) can be observed (Figure 5),
suggesting an in silico-based prioritization scheme of drug
discovery campaigns against NUDIX proteins. Thus, fragment
docking against the top-ranked SiteMap pockets recapitulates
their druggability potential but additionally provides potential
starting points readily accessible for fragment-based drug
discovery campaigns.

The hydrophobicity of small-molecule drugs is a property
which needs to be delicately balanced since it affects multiple
parameters including solubility, permeability, plasma protein
binding and metabolism. Druggable binding pockets of target
proteins therefore require a certain hydrophobic-hydrophilic
balance to accommodate ligands with drug-like properties.When
applying a balance of at least 0.5 the SiteMap assessment
prefers NUDT1 (3Q93, 0.69), NUDT5 (6GRU, 1.34), NUDT7
(5T3P, 0.72), NUDT15 (5BON, 0.62), NUDT17 (5LF8, 0.50),
and NUDT22 (5LF9, 0.58) and disfavors NUDT3 (2FVV, 0.01),
NUDT4 (5LTU, 0.00), NUDT10 (3MCF, 0.01), and PTP1B
(2HNP, 0.05). With regard to their returned median fragment
docking scores, pocket polarity might correlate with either higher
or lower scores (Supplementary Material – ZINC fragment
docking and SiteMap). A possible explanation is, that the
library was filtered to fit a drug-like profile and thus preselects
for druggable proteins itself, ignoring their respective pocket
properties. Importantly, none of the crystal structures used here
were bound to high-affinity lead compounds originating from
drug discovery campaigns and hence no hydrophobic subpockets
induced by such compounds where probed in this study.

When combined, the top-1,000 ranked fragments
obtained for the 18 protein targets comprised 13,203 unique
fragments, indicating a certain amount of “promiscuity,”
i.e., fragments binding to 2 or more proteins (36% of
fragments). In fact, 73 fragments bound to 6 or more targets (see
Supplementary Material - Fragment promiscuity), with one
fragment hitting 11 out of 18 proteins. It should be noted that
the average docking scores were rather poor, ranging from−7.56
to −5.53 kcal/mol. Of interest is the notion that the proteins
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TABLE 2 | Summary of NUDIX protein family members in screens against fragment and in biochemical malachite green assays.

Protein Screening technique Size screening set Hit rate

NUDT7 Fragment covalent (Resnick et al., 2019) 993 36 (3.6%)

NUDT4 Fragment diamond Xray1 768 7 (0.9%)

NUDT5 Fragment diamond Xray1 768 113 (14.7%)

NUDT7 Fragment diamond Xray1 768 39 (5.1%)

NUDT21 Fragment diamond Xray1 768 43 (5.6%)

NUDT22 Fragment diamond Xray1 768 12 (1.6%)

NUDT1 Fragment DSF 450 44 (9.8%)

NUDT2 Fragment DSF 650 35 (5.3%)

NUDT5 Fragment DSF 450 0*

NUDT15 Fragment DSF 1,200 60 (5.0%)

NUDT1 Biochem screen malachite green 5,336 429 (8.0%)

NUDT2 Biochem screen malachite green 5,336 [11,992] 261 (4.9%) [235 (2.0%)**]

NUDT5 Biochem screen malachite green 5,336 [72,004] 3 (0.1%) [527 (0.7%)**]

NUDT15 Biochem screen malachite green 5,336 [17,908] 10 (0.2%) [98 (0.5%)**]

NUDT16 Biochem screen malachite green 5,336 7 (0.1%)

Please note the biochemical screen library grew over time. For comparison, results beyond the basic set of 5,336 compounds are presented in brackets. *Melting temperature unsuitable

for thermal shift screens; **Definition of hit more stringent.

deemed undruggable by SiteMap appeared to be enriched for
promiscuous fragment hits (except NUDT10 and NUDT20), as
opposed to druggable proteins (except NUDT15 and NUDT22).
A certain degree of promiscuity should be expected when
docking 200K fragments to multiple targets, as this is in line
with the basic concept of fragment-based drug discovery, i.e., the
ability of low-complexity fragments to interact with a multitude
of (sub)pockets across a wide range of proteins.

Correlation With Experimental
Fragment-Based and Biochemical
Screening Data
A number of fragment screens against NUDIX proteins have
been performed by others and us1. For a list of applied screening
techniques, library sets and hit rates, please see Table 2. When
the hit rates of the fragment screens were compared with the in
silico-derived median ZFN docking scores a good correlation was
observed (Bravais-Pearson 0.826; Figure 5B). This underscores
the applicability of in silico docking for rapid protein druggability
assessment. In agreement with most computational assessments,
NUDT1 and NUDT5 yield high hit rates of 9.8% and 14.7%,
respectively, while the experimental hit rate of 0.9% for NUDT4
confirms its challenging character predicted by computational
assessment. Other NUDIX proteins are in the range of common
hit rates for fragment screens and between 1.6 and 5.6% (Aretz
et al., 2014). This observation holds true for different sets
screened by different groups (Figures 5B, 7). Interestingly, the
DSF screen against NUDT1 found two structures with a strong
thermal stabilization of 5◦C. These structures are fragments
of the reported NUDT1 inhibitors TH588 (IC50: 2.1 nM) and
Crizotinib (IC50: 48 nM) and thus underscore the suitability
of DSF to find starting points for lead generation (Figure 5C).
However, DSF is not feasible for proteins with high nativemelting

points (e.g., NUDT5, 76◦C), and here in silico fragment screening
against druggable sites may be particularly advantageous.

Several biochemical screening campaigns against NUDIX
proteins have also been performed in our laboratories. While
compound libraries have varied somewhat between targets,
reflecting development of the compound libraries over time,
there is a small core set of about 5,300 chemically diverse
compounds that have been tested for all proteins. It is noteworthy
that these screens were performed based on a common screening
platform employing a coupled enzymatic assay with a malachite
green readout. This cost-effective assay has been frequently
employed in our lab, including screens on other nucleotide-
processing targets such as dCTPase (Llona-Minguez et al., 2016),
ITPase and dUTPase, and with robust performance in compound
sets beyond 100,000 compounds (all unpublished). A key reason
for this is the low rates of interference with the coupled enzymes
and the absorbance readout at 630 nm, as evidenced by a low
appearance of common hits. Also, the presence of PAINS and
aggregators within hit lists is generally low for this family of
proteins (Supplementary Material – Screens using malachite
green), demonstrating robust screening performance of the
recombinantly produced proteins and other assay components.
The biochemical screen outcomes are summarized in detail in
Table 2 and in the Supplementary Material – Screens using
malachite green. In line with assessments of chemical amenability
and learnings in the fragment-based screens, the majority of
targets generated hits that confirmed activity in follow-up studies,
with NUDT1 demonstrating an extreme hit rate in this sub-set.
This significant amenability is in line with the publication of hits
from multiple groups. A critical outlier in this set was NUDT5,
which demonstrated hit rates as low as notoriously challenging
targets dUTPase and ITPase, while predictions and fragment-
based screening showed the opposite (Supplementary Material

– Fragment screening hit rates). Already at the time of screening
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we had a reason to revisit the screening data for NUDT5 and
follow-up studies demonstrated competition between active site
hits and a structurally important Mg2+ (Costa and Dieckmann,
2011; Vardakou et al., 2014). After correction of the assay
buffer, by lowering the MgCl2 concentration 10-fold, we
observed significantly higher hit rates in the subsequently applied
compound sets and identified compounds that could be further
optimized to nM potencies (Page et al., 2018). As a general
observation and for the five NUDIX protein members screened,
no correlation between ZINC fragment docking scores and
observed hit rates from biochemical screening can be observed
(Supplementary Material – Screens using malachite green). In
contrast to the covered fragment library chemical space, a
rule-of-five compliant library of few thousand compounds may
complement the search for a chemical starting point but may be
limited in coverage of chemical space itself. However, in the past
we have shown, that embarking on drug discovery campaigns
from observed hits in both fragment and biochemical screen
lead to successful generation of chemical probes for a number
of NUDIX protein family members and other pyrophosphatases
(Gad et al., 2014; Llona-Minguez et al., 2016; Page et al., 2018)2.

CONCLUSION AND SUMMARY

Here we presented a dual in silico druggability assessment
workflow suitable for large-scale evaluation of proteins and
protein families, applied to the NUDIX family. Initially, we
introduced a hands-on workflow solely based on the protein
crystal structure using the open access server of DogSite
(Volkamer et al., 2012) and FTMap (Kozakov et al., 2015) for
rigid and CryptoSite (Cimermancic et al., 2016) and FTMap
for dynamic assessment. Importantly, before using these servers,
thorough manual protein structure verification is necessary to

exclude artifacts due to crystal packing, construct used and
resolution limits. On the one hand, DogSite returns both identity
and score of druggable sites, while FTMap docks small organic
solvent molecules. Especially in cases of sparsely evaluated
proteins or protein complexes this dual assessment may be
beneficial for structural assessment and potential chemical
probe generation. On the other hand, CryptoSite identifies
conformationally active amino acid residues. In the past, the
returned cryptic scores have been correlated with FTMap solvent
docking and eased decision on whether or where potential
allosteric sites may be situated (Vajda et al., 2018). Timewise,
this quick computational assessment may be achieved within
days for singular proteins and weeks for small protein families.
Depending on local load and choice of sever location the return
time is usually minutes for DogSite, hours for FTMap, and 1
day for CryptoSite. The detailed assessment and correlation of
data from the different algorithms allows for the rationalization
of targeting strategies. In case of the NUDIX proteins, NUDT22
for example showed to have high scores in DogSite and FTMap
with CryptoSite confirming flexibility around two closely related
sites. Further, in the past we have shown that comparing
different crystals structures of the same protein can allow for
the observation of targetable conformations more suitable small-
molecule development (Michel et al., 2019). With the open access
deposition of all screening data by the SGC, a similar albeit
more time consuming approach is possible for a number of
NUDIX proteins1.

In a second, user-guided arm we assessed protein druggability
employing several implemented functions in Schrödinger’s
commercial small-molecule modeling suite combined with freely
available KNIME (Berthold et al., 2008). First, proteins were
interrogated for potential binding pockets and the corresponding
DScores using SiteMap. The highest ranking pockets were then

FIGURE 7 | Comparison of fragment libraries used in screens against NUDIX protein family members: Laboratory for Chemical Biology at Karolinska Institutet (LCBKI)

DSF fragment library of the first generation (DSF 1.0, blue), additional members of a second generation DSF fragment library (DSF 2.0, red), Nucleobase analogs (NCI,

light blue) and Diamond-SGC Poised Library (DSPL, green) with respect to: (A) physicochemical property coverage and diversity, expressed as the first two principal

components (pc1 and pc2) obtained from a principal component analysis (PCA) on six Lipinski-type properties; (B) clogP against Molecular weight.
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used to perform cascade docking with a filtered ZINC fragment
library (Irwin et al., 2012). Subsequently, the median docking
score of the top-1,000 ranked fragments was used as a chemical
space-based druggability assessment. Both parameters, DScore
and median docking score form the basis of this second in
silico druggability assessment and require few days per protein,
depending on the user set up and the size of the used in silico
library. The observed docking scores correlate well with predicted
DScores (Figure 5A) and additionally provide commercially
accessible chemical starting points for the development of
chemical probes. At last, when compared with experimental
fragment screens based on X-ray crystallography, a covalent
set and thermal stabilization in DSF, a similar correlation
was observed between hit rates and median docking scores
(Figure 5B), even when using chemically distinct screening
sets (Figure 7). This supports the applicability of an in silico
druggability workflow as a standalone method for protein
assessment and speaks for the chemical space coverage of
fragment libraries generated at CBCS and Diamond/SGC
(Michel et al., 2019)7.

In summary, we report here a fully in silico druggability
assessment of the NUDIX protein family, that serves as a
standalone method and a workflow to identify the most suitable
members for a drug discovery campaign. We show that the dual
assessment correlates well with experimental results and further
allows for the in silico identification of secondary druggable sites,
alternative targeting strategies and structural basis for fragment
growing campaigns. Importantly, the workflow allows for rapid
assessment of any protein with reported structures in the protein
data bank and as such should be broadly applicable in early drug
discovery campaigns.
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