
EDITED BY : Salvador Cruz Rambaud and Taiki Takahashi

PUBLISHED IN :  Frontiers in Psychology and 

Frontiers in Applied Mathematics and Statistics

MATHEMATICAL MODELS FOR 
INTERTEMPORAL CHOICE

https://www.frontiersin.org/research-topics/10020/mathematical-models-for-intertemporal-choice#articles
https://www.frontiersin.org/research-topics/10020/mathematical-models-for-intertemporal-choice#articles
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/research-topics/10020/mathematical-models-for-intertemporal-choice#articles


Frontiers in Psychology 1 September 2021 | Mathematical Models for Intertemporal Choice

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88971-409-4 

DOI 10.3389/978-2-88971-409-4

https://www.frontiersin.org/journals/psychology
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact
https://www.frontiersin.org/research-topics/10020/mathematical-models-for-intertemporal-choice#articles


Frontiers in Psychology 2 September 2021 | Mathematical Models for Intertemporal Choice

MATHEMATICAL MODELS FOR 
INTERTEMPORAL CHOICE

Topic Editors: 
Salvador Cruz Rambaud, University of Almeria, Spain
Taiki Takahashi, Hokkaido University, Japan

Citation: Rambaud, S. C., Takahashi, T., eds. (2021). Mathematical Models for 
Intertemporal Choice. Lausanne: Frontiers Media SA.  
doi: 10.3389/978-2-88971-409-4

http://doi.org/10.3389/978-2-88971-409-4
https://www.frontiersin.org/research-topics/10020/mathematical-models-for-intertemporal-choice#articles
https://www.frontiersin.org/journals/psychology


Frontiers in Psychology 3 September 2021 | Mathematical Models for Intertemporal Choice

04 Editorial: Mathematical Models for Intertemporal Choice

Salvador Cruz Rambaud

06 Gibbs-Slice Sampling Algorithm for Estimating the Four-Parameter 
Logistic Model

Jiwei Zhang, Jing Lu, Hang Du and Zhaoyuan Zhang

24 Exploring Multiple Strategic Problem Solving Behaviors in Educational 
Psychology Research by Using Mixture Cognitive Diagnosis Model

Jiwei Zhang, Jing Lu, Jing Yang, Zhaoyuan Zhang and Shanshan Sun

36 Price Attractiveness and Price Complexity: Why People Prefer  
Level-Payment Loans

Yang Lu, Jian Wang, Chenyang Li, Haoya Huang and Xintian Zhuang

45 Item-Weighted Likelihood Method for Measuring Growth in Longitudinal 
Study With Tests Composed of Both Dichotomous and Polytomous Items

Xuemei Xue, Jing Lu and Jiwei Zhang

Table of Contents

https://www.frontiersin.org/research-topics/10020/mathematical-models-for-intertemporal-choice#articles
https://www.frontiersin.org/journals/psychology


Editorial: Mathematical Models for
Intertemporal Choice
Salvador Cruz Rambaud*

Department of Economics and Business, University of Almeria, Almería, Spain

Keywords: intertemporal choice, anomalies, behavioral finance, mathematical model, decision making

Editorial on the Research Topic

Mathematical Models for Intertemporal Choice

In general, a wide variety of approaches are allowed in Mathematical Finance: one of them involves
the implementation of mathematical models able to explain the complexity of real situations in
Finance. In particular, intertemporal choice is gaining the attention of researchers because of its
increasing application to other fields −such as psychology or health. Obviously, every model
presents logical mistakes (or gaps), and intertemporal choice is not an exception. This was shown
in the recent Research Topic labeled as “Intertemporal Choice and Its Anomalies”.

The objective of this Research Topic was to describe intertemporal choices as mathematical
models, as general as possible, with the aim to cover all possible situations and analyze the properties
which can be useful for decision makers. Since most financial decisions include decision making over
time, this Research Topic is aimed also at mathematical modeling of important anomalies such as
Allais’ paradox (violation of von Neumann and Morgenstern’s independence axiom), mental
accounting, and myopic loss aversion in behavioral finance (discovered by Nobel laureate
Professor Richard H. Thaler and colleagues).

Also, in behavioral finance, Nobel laureate Professor Robert J. Schiller observed excessive
volatility in comparison to streams of future dividends in the United States stock markets,
which reflects inefficiency in the market and irrationality in people who trade stocks.
Mathematical models which have implications for these anomalies in the markets are also
within a scope of this collection. Furthermore, recent advances in neuroeconomics revealed the
important roles of emotion in a decision over time and under uncertainty.

Jiwei Zhang, Jing Lu, Hang Du and Zhaoyuan Zhang introduce a new Gibbs slice sampling
algorithm for estimating the four-parameter logistic model which has reached lot of interest in
educational testing and psychological measurement. The sampling process was divided into two
parts. The first part is the Gibbs algorithm, which was used to update the guessing and slipping
parameters when non-informative uniform priors are employed for cases which are prototypical of
educational and psychopathology items. The second part is the slice algorithm, which samples the
2PL IRT model from the truncated full conditional posterior distribution by using auxiliary
variables.

Yang Lu, JianWang, Chenyang Li, Haoya Huang and Xintian Zhuang provide an extension of the
paper by Hoelzl et al. (2011) and Cruz Rambaud et al. (2019) as they deal with the improving
sequence effect in loans contexts. Traditionally, this anomaly of the intertemporal choice was
reduced to choices between rising earnings and other increasing/decreasing sequences. In a
beginning, previous studies have shown a consistent preference for falling sequences in the
context of loan repayment plans. However, the results show that consumers follow a
comparison-based decision making process rather than optimization when evaluating temporally
reframed loan offerings. Individuals preferred the falling over the constant profile only if the interest
rate was 10% and the loan profiles were described in a per-year form.
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On the other hand, Jiwei Zhang, Jing Lu, Jing Yang, Zhaoyuan
Zhang, and Shanshan Sun introduce the so-called “Mixture
Multiple Strategy-Deterministic, Inputs, Noisy and Gate
(MMS-DINA) model in order to investigate individual
differences in the choice of responses categories. The
simulation indicates that the Markov chain Monte Carlo
(MCMC) algorithm can be used to obtain accurate parameter
estimates. Additionally, two Bayesian model assessment
criterions are considered to evaluate the model fitting among
DINA model, MS-DINA model and MMS-DINA model. Thus, it
is shown that, when the data are generated from the simple single-
strategy DINA model, the MMS-DINA model fits the data better
than the MS-DINA model.

Finally, Xuemei Xue, Jing Lu, and Jiwei Zhang introduce a
multidimensional Rasch model for measuring learning and
change (MRMLC) and its dichotomous and polytomous
extensions is used in longitudinal study. Two simulation studies
have been carried out to further illustrate the advantages of this
item-weighted likelihood estimation method compared to the
traditional Maximum a Posteriori (MAP) estimation method,
Maximum Likelihood Estimation (MLE) method, Warm’s
Weighted Likelihood Estimation (WLE) method, and Type-
Weighted maximum Likelihood Estimation (TWLE) method,

resulting in a better recover examinees’ true ability level for
both complex longitudinal IRT models and unidimensional IRT
models compared to the existing likelihood estimation methods.
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Estimating the Four-Parameter
Logistic Model
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The four-parameter logistic (4PL) model has recently attracted much interest in

educational testing and psychological measurement. This paper develops a new

Gibbs-slice sampling algorithm for estimating the 4PL model parameters in a fully

Bayesian framework. Here, the Gibbs algorithm is employed to improve the sampling

efficiency by using the conjugate prior distributions in updating asymptote parameters. A

slice sampling algorithm is used to update the 2PL model parameters, which overcomes

the dependence of theMetropolis–Hastings algorithm on the proposal distribution (tuning

parameters). In fact, the Gibbs-slice sampling algorithm not only improves the accuracy

of parameter estimation, but also enhances sampling efficiency. Simulation studies

are conducted to show the good performance of the proposed Gibbs-slice sampling

algorithm and to investigate the impact of different choices of prior distribution on the

accuracy of parameter estimation. Based on Markov chain Monte Carlo samples from

the posterior distributions, the deviance information criterion and the logarithm of the

pseudomarginal likelihood are considered to assess the model fittings. Moreover, a

detailed analysis of PISA data is carried out to illustrate the proposed methodology.

Keywords: Bayesian inference, four-parameter logistic model, item response theory, model assessment, potential

scale reduction factor, slice sampling algorithm

1. INTRODUCTION

Over the past four decades, item response theory (IRT) models have been extensively used in
educational testing and psychological measurement (Lord and Novick, 1968; Van der Linden and
Hambleton, 1997; Embretson and Reise, 2000; Baker and Kim, 2004). These are latent variable
modeling techniques, in which the response probability is used to construct the interaction between
an individual’s “ability” and item level stimuli (difficulty, guessing, etc.), where the focus is on

the pattern of responses rather than on composite or total score variables and linear regression

theory. Specifically, IRT attempts to model individual ability using question-level performance
instead of aggregating test-level performance, and it focuses more on the information provided by

an individual on each question. In social sciences, IRT has been applied to attachment (Fraley et al.,
2000), personality (Ferrando, 1994; Steinberg and Thissen, 1995; Gray-Little et al., 1997; Rouse

et al., 1999), psychopathology (Reise andWaller, 2003; Loken and Rulison, 2010; Waller and Reise,
2010; Waller and Feuerstahler, 2017), attention deficit hyperactivity disorder (Lanza et al., 2005),
and delinquency (Osgood et al., 2002), among others.
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To explore these applications, it is necessary to establish
how the appropriate IRT models should be built and what
valuable educational psychological phenomena can be examined
to guide practice. In the field of dichotomous IRT models,
the one-parameter logistic (1PL) model and the Rasch model
(Rasch, 1960), as well as their extensions, the two-parameter
logistic model (2PL) (Birnbaum, 1957) and the three-parameter
logistic model (3PL) (Birnbaum, 1968), have attracted increasing
attention in recent years because of their attractive mathematical
properties. However, compared with the widely used 1PL, 2PL,
and 3PL models, the four-parameter logistic (4PL) model has
languished in obscurity for nearly 30 years (Barton and Lord,
1981), although its importance has gradually been realized by
many researchers over the past decade (Hessen, 2005; Loken and
Rulison, 2010; Waller and Reise, 2010; Green, 2011; Liao et al.,
2012; Yen et al., 2012; Magis, 2013; Waller and Feuerstahler,
2017). This growing interest can be attributed to the need to
deal with a number of problems encountered in educational
psychology, which can be explained well and indeed solved using
the 4PL model. For example, in computerized adaptive testing
(CAT), high-ability examinees might on occasion miss items that
they should be able to answer correctly, owing to a number of
reasons, including anxiety, carelessness, unfamiliarity with the
computer environment, distraction by poor testing conditions,
or even misreading of the question (Hockemeyer, 2002; Rulison
and Loken, 2009). Chang and Ying (2008) demonstrated that
the ability determined using the traditional 2PL model is
underestimated when the examinee mistakenly answers several
items at the beginning of the CAT. In addition, Rulison and
Loken (2009) found that using the 3PL model could severely
penalize a high-ability examinee who makes a careless error on
an easy item (Barton and Lord, 1981; Rulison and Loken, 2009).
In psychopathology studies, researchers found that subjects with
severe psychopathological disorders may be reluctant to self-
report their true attitudes, behaviors, and experiences, so it is
obviously inappropriate to use the traditional 3PL model with
lower asymptotic parameter to explain such behaviors (Reise
and Waller, 2003; Waller and Reise, 2010). Descriptions of the
applications of the 4PL model in other areas can be found in
Osgood et al. (2002) and Tavares et al. (2004). In addition to the
development of the 4PL model in terms of its applications, its
theoretical properties have been investigated in some depth. For
example, Ogasawara (2012) discussed the asymptotic distribution
of the ability, and Magis (2013) systematically studied the
properties of the information function and proposed a method
for determining its maximum point.

The main reason why the 4PL model has not been more
widely used is that an upper asymptotic parameter is added
to the 3PL model, which makes parameter estimation more
difficult. However, with the rapid development of computer
technology in recent years, the estimation problem for complex
models has been solved. At the same time, the development of
statistical software makes it easier for psychometricians to study
complex models such as the 4PL model. Several researchers have
used existing software to estimate the 4PL model. For example,
Waller and Feuerstahler (2017) investigated 4PL model item
and person parameter estimations using marginal maximum

likelihood (MML) with themirt (Chalmers, 2012) package, which
uses MML via the expectation-maximization (EM) algorithm
to estimate simple item response theory models. This is a
different approach to that adopted here, where we use a Gibbs-
slice sampling algorithm based on augmented data (auxiliary
variables). Our Gibbs-slice sampling algorithm is in a fully
Bayesian framework, and the posterior samples are drawn from
the full conditional posterior distribution, whereas theMML–EM
algorithm used in themirt package is in a frequentist framework.
Parameter estimates are obtained by an integral operation in the
process of implementing the EM algorithm. Loken and Rulison
(2010) used WinBUGS (Spiegelhalter et al., 2003) to estimate
the 4PL model parameters in a Bayesian framework. However,
convergence of parameter estimation is not completely achieved
in the case of some non-informative prior distributions for
WinBUGS. The reason for this may be that WinBUGS does not
explicitly impose the monotonicity restriction c < d on the
4PL model, i.e., it does not assume that the lower asymptote
parameter c is smaller than the upper asymptote parameter
d. (The introduction of parameters in the 4PL model will be
described in section 2, and further discussion of these two
parameters can be found in Culpepper, 2016 and Junker and
Sijtsma, 2001). Thus, the prior Gibbs samplers do not strictly
enforce an identification condition, and this leads to estimator
non-convergence. More specifically, the prior distributions of the
upper and lower asymptote parameters are given by the following
informative priors (Loken and Rulison, 2010, p. 513):

cj ∼ N(0.22, 0.05), dj ∼ N(0.84, 0.05).

If we choose the non-informative prior distributions

cj ∼ N(0.22, 105), dj ∼ N(0.84, 105),

then, from the value ranges of the upper and lower asymptote
parameters, we find that the lower asymptote parameter can
be larger than the upper asymptote parameter, dj < cj, which
violates the model identification condition cj < dj (this condition
will be introduced in detail in section 2). In this case, using
WinBUGS to infer the model parameters may lead to biased
estimates when the sample size (the number of examinees) is
small and the prior distributions then play an important role.
To solve the above problems in using WinBUGS, Loken and
Rulison (2010) employed strong informative prior distributions
to obtain good recovery (Culpepper, 2016, p. 1,143). However,
Culpepper (2016, p. 1,161) pointed out that the use of informative
prior distribution may lead to serious deviations if it happens
to be centered at the wrong values. Therefore, he proposed
that recovery should also be dealt with by using some non-
informative priors.

In the present study, a novel and highly effective Gibbs-slice
sampling algorithm in the Bayesian framework is proposed to
estimate the 4PL model. The Gibbs-slice sampling algorithm
overcomes the defects of WinBUGS that affect the convergence
of parameter estimation based on the monotonicity restriction.
Moreover, the algorithm can obtain good recovery results by
using various types of prior distribution. In the following
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sections, we will introduce the theoretical foundation of the
slice sampling algorithm in detail, and we will then analyze the
advantages of the slice sampling algorithm over two traditional
Bayesian algorithms.

The rest of this paper is organized as follows. Section
2 contains a short introduction to the 4PL model, its
reparameterized form, and model identification restrictions.
In section 3, the theoretical foundation of the slice sampling
algorithm is presented and its advantages compared with
traditional Bayesian algorithms are analyzed. In section 4, three
simulation studies focus respectively on the performance of
parameter recovery, an analysis of the flexibility and sensitivity
of different prior distributions for the slice sampling algorithm,
and an assessment of model fittings using two Bayesian model
selection criteria. In section 5, the quality of the Gibbs-slice
sampling algorithm is investigated using an empirical example.
We conclude the article with a brief discussion in section 6.

2. MODELS AND MODEL
IDENTIFICATIONS

The 1PL and 2PL models have been widely used to fit binary
item response data. Birnbaum (1968) modified the 2PL model
to give the now well-known 3PL model, which includes a lower
asymptote parameter to represent the contribution of guessing
to the probability of correct response. To characterize the failure
of high-ability examinees to answer easy items, Barton and Lord
(1981) introduced an upper asymptote parameter into the 3PL
model, giving the 4PL model:

Pij = P(yij = 1 | aj, bj, cj, dj, θi)

= cj + (dj − cj)
exp[1.7aj(θi − bj)]

1+ exp[1.7aj(θi − bj)]
(1)

for i = 1, . . . ,N and j = 1, . . . , J, where N is the total number
of examinees participating in the test and J is the test length.
Here, yij is the binary response of the ith examinee with latent
ability level θi to answer the jth item and is coded as 1 for
a correct response and 0 for an incorrect response, Pij is the
corresponding probability of correct response, aj is the item
discrimination parameter, bj is the item difficulty parameter, cj
is the item lower asymptote (pseudo-guessing) parameter, and dj
is the item upper asymptote parameter. The 4PL model reduces
to the other models as special cases: dj = 1 gives the 3PL model,
cj = 0 gives the 2PL model, and aj = 1 gives the 1PL model.
Following Culpepper (2016), we reparameterize the traditional
4PL model to construct a new 4PL model by defining a slipping
parameter similar to that in cognitive diagnostic tests:

Pij = P(yij = 1 | aj, bj, cj, γj, θi)

= cj + (1− γj − cj)
exp[1.7aj(θi − bj)]

1+ exp[1.7aj(θi − bj)]
, (2)

where γj = 1− dj.
One identification restriction is that the upper asymptotemust

exceed the lower asymptote: dj > cj. Equivalently, the restriction
0 < cj + γj < 1 must be satisfied for the reparameterized

4PL model, Meanwhile, either the scale of latent abilities or
the scale of item parameters must be restricted to identify the
two0parameter IRT models. Three methods are widely used to
identify two-parameter IRT models.

1. Fx themean population level of ability to zero and the variance
population level of ability to one (Lord and Novick, 1968;
Bock and Aitkin, 1981; Fox and Glas, 2001; Fox, 2010), i.e.,
θ ∼ N(0, 1).

2. Restrict the sum of item difficulty parameters to zero and the
product of item discrimination parameters to one (Fox, 2001;
Fox, 2005, 2010), i.e.,

∑J
j = 1 bj = 0 and

∏J
j = 1 aj = 1.

3. Fix the item difficulty parameter at a specific value, most often
zero, and restrict the discrimination parameter to a specific
value, most often one (Fox, 2001; Fox, 2010), i.e., b1 = 0
and a1 = 1. The basic idea here is to identify the two-
parameter logistic model by anchoring an item discrimination
parameter to an arbitrary constant, typically a1 = 1, for a
given item. Meantime, a location identification constraint is
imposed by restricting a difficulty parameter, typically b1 = 0,
for a given item. Based on the fixed anchoring values of the
item parameters, other parameters are estimated on the same
scale. The estimated difficulty or discrimination values of item
parameters are interpreted based on their positions relative
to the corresponding anchoring values. For details, see Fox
(2010, p. 87).

In the present study, the main aim is to evaluate the accuracy of
parameter estimation obtained by the slice sampling algorithm
for different types of prior distributions. Therefore, the first of the
above methods is used to eliminate the trade-offs between ability
θ and the difficulty parameter b in location, and between ability
θ (difficulty parameter b) and the discrimination parameter a
in scale.

3. THEORETICAL FOUNDATION AND
ANALYSIS OF THE ADVANTAGES OF THE
SLICE SAMPLING ALGORITHM

3.1. Theoretical Foundation of the Slice
Sampling Algorithm
The motivation for the slice sampling algorithm (Damien et al.,
1999; Neal, 2003; Bishop, 2006; Lu et al., 2018) is that we can
use the auxiliary variable approach to sample from posterior
distributions arising from Bayesian non-conjugate models. The
theoretical basis for this algorithm is as follows.

Suppose that the simulated values are generated from a target
density function t(x) given by t(x) ∝ φ(x)

∏N
i = 1 li(x) that

cannot be sampled directly, where φ(x) is a known density from
which samples can be easily drawn and li(x) are non-negative
invertible functions, which do not have to be density functions.
We introduce the auxiliary variables represented by the vector
δ = (δ1, . . . , δN)

′, each element of which is from (0,+∞) and
where δ1, . . . , δN are mutually independent. The inequalities δi <

li(x) are established, and the joint density can be written as

t(x, δ1, . . . , δN) ∝ φ(x)

N∏

i = 1

I{δi < li(x)}, (3)
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where the indicator function I(A) takes the value 1 ifA is true and
the value 0 ifA is false. If the auxiliary variables are integrated out,
the marginal distribution t(x) is obtained as

t(x) =

∫ l1(x)

0
· · ·

∫ lN (x)

0
t(x, δ1, . . . , δN) dδN · · · dδ1,

∝ φ(x)

∫ l1(x)

0
· · ·

∫ lN (x)

0
1 dδN · · · dδ1 = φ(x)

N∏

i = 1

li(x). (4)

Using the invertibility of the function li(x), we can then obtain
the set 3δi = {x | δi < li(x)}. The simulated values are generated
from the Gibbs sampler based on the auxiliary variables by
repeatedly sampling from the full conditional distributions,
proceeding as follows at iteration r:

• Sample δ
(r)
i ∼ Uniform

(
0, li(x

(r−1))
)
, i = 1, . . . ,N.

• Sample x(r) ∼ 3δi = {x | δ
(r)
i < li(x)}.

We thereby derive a horizontal “slice” under the density
function. Thus, a Markov chain based on the new Gibbs
sampler can be constructed by sampling points alternately
from the uniform distribution under the density curve and
only concerning the horizontal “slice” defined by the current
sample points.

3.2. Advantages of the Slice Sampling
Algorithm Compared With the
Metropolis–Hastings Algorithm
In the Bayesian framework, we first consider the benefits of
the slice sampling algorithm compared with the traditional
Metropolis–Hastings (MH) algorithm (Metropolis et al., 1953;
Hastings, 1970; Tierney, 1994; Chib and Greenberg, 1995; Chen
et al., 2000). It is known that the MH algorithm relies heavily on
the tuning parameters of the proposal distribution for different
data sets. In addition, the MH algorithm is sensitive to step
size. If the step size is too small, the chain will take longer to
traverse the target density. If the step size is too large, there
will be inefficiencies due to high rejection rate. More specifically,
researchers should ensure that each parameter candidate is no
more than 50% accepted by adjusting the tuning parameters of
the MH algorithm. Further, for example, when we draw two-
dimensional item parameters at the same time in the 2PL model,
the probability of acceptance will be reduced to around 25%
(Patz and Junker, 1999, p. 163). Thus, the sampling efficiency
of the MH algorithm is greatly reduced. However, the slice
sampling algorithm avoids the retrospective tuning that is needed
in the MH algorithm if we do not know how to choose a
proper tuning parameter or if no value for the tuning parameter
is appropriate. It always keeps the drawn samples accepted,
thus increasing the sampling efficiency. Next, we show that
the slice sampling algorithm is more efficient than a particular
independent MH chain.

Let us use the MH algorithm to obtain samples from the
posterior distribution t(x) given by t(x) ∝ φ(x)l(x), where
φ(x) is selected as a special proposal distribution. Let x∗ be
a candidate value from the proposal distribution φ(x) and

let x(r) be the current point. The probability of the new
candidate being accepted, min{1, l(x∗)/l(x(r))}, is determined by
a random number u from Uniform(0, 1). Essentially, if u <

l(x∗)/l(x(r)), then x(r+1) = x∗; otherwise, x(r+1) = x(r).
The process is to draw the candidate first and then determine
whether or not to “move” or “stay” by using the random
number u. The “stay” process will lead to a reduction in the
sampling efficiency of the MH algorithm. By contrast, suppose
we consider the inverse process of the above sampling to draw
the random number u first. To achieve the purpose of moving,
we need to draw the candidate x∗ from φ(x) such that u <

l(x∗)/l(x(r)). Therefore, x∗ can be regarded as a sample from
φ(x) restricted to the set 2u(r) = {x | l(x) > ul(x(r))}. In
this case, the chain will always be moved, thus improving the
sampling efficiency.

In addition, with the MH algorithm, it is relatively difficult
to sample parameters with monotonicity or truncated interval
restrictions. Instead, it is possible to improve the accuracy
of parameter estimation by employing strong informative
prior distributions to avoid violating the restriction conditions
(Culpepper, 2016). For example, the prior distributions of the
lower asymptote and upper asymptote parameters used in Loken
and Rulison (2010) are, respectively Beta(5, 17) and Beta(17, 5),
and these two parameters are fairly concentrated in the range
of 0.227–0.773. However, the advantage of the slice sampling
algorithm is that it can easily draw the posterior samples from
any prior distribution as long as these distributions have a
reasonable value range of parameters. See the following sections
for details.

3.3. Advantages of the Slice Sampling
Algorithm Compared With the Gibbs
Algorithm
The idea of the slice sampling algorithm is to draw the posterior
samples from a truncated prior distribution by introducing
auxiliary variables, where the truncated interval is deduced
from the likelihood function. This differs from the approach
of the Gibbs algorithm (Geman and Geman, 1984; Gelfand
and Smith, 1990), which is to generate posterior samples by
sweeping through each variable to sample from its conditional
distribution, with the remaining variables fixed at their current
values. However, slice sampling algorithm can be conceived
of as extensions of the Gibbs algorithm. In particular, when
the parameters in which we are interested are represented
by a multidimensional vector X, we cannot use the slice
sampling algorithm directly to obtain the multivariate set 2u =

(21
u, . . . ,2

k
u, . . . ,2

p
u), where p is the dimension of X. Therefore,

a Gibbs sampler is employed to draw the samples from the full
conditional distribution l(xk | x(−k), u) for k = 1, . . . , p, which is
a realization of t(X). This involves sampling from φ(xk | x(−k))

restricted to the set 2k
u = {xk | l(xk, x(−k)) > u}, where

the premise must be satisfied that l(xk, x(−k)) is invertible for
all k given x(−k).

It is well-known that the Gibbs algorithm can quickly and
effectively draw samples from the posterior distribution owing
to the fact that the full conditional posterior distribution is
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easy to sample using the conjugate prior distribution. However,
the Gibbs algorithm is not valid for Bayesian non-conjugate
models such as the 2PLmodel. By comparison, the slice sampling
algorithm for estimating the 2PL model has the advantage of
a flexible prior distribution being introduced to obtain samples
from the full conditional posterior distributions rather than being
restricted to using the conjugate distributions, which is required
in Gibbs sampling and is limited to the use of the normal ogive
framework (Tanner and Wong, 1987; Albert, 1992; Béguin and
Glas, 2001; Fox and Glas, 2001; Fox, 2010; Culpepper, 2016).
The slice sampling algorithm allows the use of informative prior
distributions and non-informative prior distributions, and even if
an inappropriate prior distribution is adopted, it can still obtain
satisfactory results. That is, any prior distribution can be used as
long as the values sampled from it are in a reasonable range of
the parameter support set. For example, for the discrimination
parameter, the following prior distributions can be considered:
the informative prior logN(0, 1), the non-informative priors
N(0, 1000)I(a > 0), and the inappropriate priors Exp(1)
and Gamma(2, 3).

4. BAYESIAN INFERENCE

4.1. Bayesian Estimation
In the present study, an efficient Gibbs-slice sampling algorithm
in a fully Bayesian framework is used to estimate the following
4PL model. The sampling process of Gibbs-slice sampling
algorithm consists of two parts. One part is the Gibbs sampling
algorithm, which is used to update the guessing and slipping
parameters from the truncated Beta distributions by introducing
auxiliary variables (Béguin and Glas, 2001; Fox, 2010; Culpepper,
2016). The efficiency of Gibbs sampling is greatly improved
by the use of conjugate prior distributions (Tanner and Wong,
1987; Albert, 1992). The other part is the slice sampling
algorithm, which samples the 2PL model from the truncated
full conditional posterior distributions by introducing different
auxiliary variables.

Next, the specific sampling process of the Gibbs-slice sampling
algorithm is described.

Gibbs Steps
First, following Béguin andGlas (2001), we introduce an auxiliary
variable ηij, where ηij = 1 indicates that examinee i has the
ability to answer item j correctly and ηij = 0 otherwise. The
purpose of introducing this auxiliary variable is to separate the
guessing and slipping parameters from the 4PL model and make
it easier to implement Gibbs sampling for the guessing and
slipping parameters through the conjugate Beta distributions.
Letting 1 = (θi, aj, bj, cj, γj), we can obtain the full conditional
distribution of ηij based on Bayes’ theorem:

P(ηij = 1 | yij = 1,1) =
P(ηij = 1, yij = 1,1)

P(yij = 1 | 1)

=
(1− γj)P

∗
ij

cj + (1− γj − cj)P
∗
ij

,

P(ηij = 0 | yij = 1,1) =
P(ηij = 0, yij = 1,1)

P(yij = 1 | 1)

=
cj(1− P∗ij)

cj + (1− γj − cj)P
∗
ij

, (5)

P(ηij = 1 | yij = 0,1) =
P(ηij = 1, yij = 0,1)

P(yij = 0 | 1)

=
γjP

∗
ij

1− cj − (1− γj − cj)P
∗
ij

,

P(ηij = 0 | yij = 0,1) =
P(ηij = 0, yij = 0,1)

P(yij = 0 | 1)

=
(1− cj)(1− P∗ij)

1− cj − (1− γj − cj)P
∗
ij

.

where

P∗ij =
exp[1.7aj(θi − bj)]

1+ exp[1.7aj(θi − bj)]
.

The priors of the guessing and slipping parameters follow the
Beta distributions, i.e., cj ∼ Beta(ν0, u0), γj ∼ Beta(ν1, u1).
However, the guessing and slipping parameters themselves satisfy
the following truncated restrictions owing tomodel identification
(Junker and Sijtsma, 2001; Culpepper, 2016):

4 = {(cj, γj) | 0 ≤ cj < 1, 0 ≤ γj < 1, 0 ≤ cj < 1− γj}. (6)

The joint posterior distribution of the guessing and slipping
parameters can be written as

p(cj, γj | yj, ηj) ∝

N∏

i = 1

[
(1− γj)

ηijc
(1−ηij)

j

]yij [
γ

ηij
j (1− cj)

(1−ηij)
](1−yij)

p(cj, γj)I
(
(cj, γj) ∈ 4

)
∝ ĉ

κ00+ν0−1
j (1− cj )̂

κ01+u0−1

γ
κ̂10+ν1−1
j (1− γj )̂

κ11+u1−1I
(
(cj, γj) ∈ 4

)
. (7)

Let y′j = (y1j, . . . , yNj), η
′
j = (η1j, . . . , ηNj), and

κ̂00 = (1N − ηj)
′yj, κ̂01 = (1N − ηj)

′(1N − yj),

κ̂10 = η′j(1N − yj), κ̂11 = η′jyj.

The full conditional posterior distributions of
(
cj, γj

)
can be

written as

c
(r)
j | γ

(r−1)
j ∼ Beta(̂κ00 + ν0, κ̂01 + u0)I(0 ≤ c

(r)
j < 1− γ

(r−1)
j ),

γ
(r)
j | c

(r)
j ∼ Beta(̂κ10 + ν1, κ̂11 + u1)I(0 ≤ γ

(r)
j < 1− c

(r)
j ).

(8)

Slice Steps
Supposing that the guessing and slipping parameters have been
updated by the Gibbs algorithm, we update the parameters
in the 2PL model using the slice sampling algorithm. Two
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additional independent auxiliary variables λij and ϕij, defined on
the intervals


0,

P
(r)
ij − c

(r)
j

1− γ
(r)
j − c

(r)
j


 and


0,

1− γ
(r)
j − P

(r)
ij

1− γ
(r)
j − c

(r)
j


 ,

are introduced to facilitate sampling, where r is the number of
iterations. In fact, (Pij − cj)/(1 − γj − cj) is the correct response
probability of the 2PL model, while (1− γj − Pij)/(1− γj − cj) is
the corresponding incorrect response probability. Therefore, the
joint likelihood of a, b, c, γ , θ based on the auxiliary variables λ

and ϕ can be written as

p(y | a, b, θ , c, γ ,λ,ϕ)

∝

N∏

i = 1

J∏

j = 1

[
I(yij = 1)I

(
0 < λij ≤

Pij − cj

1− γj − cj

)

+I(yij = 0)I

(
0 < ϕij ≤

1− γj − Pij

1− γj − cj

)]
. (9)

Equivalently,

p(y | a, b, θ , c, γ ,λ,ϕ) ∝
∏N

i = 1

∏J
j = 1 I(yij = 1)I(0 < λij ≤ P∗ij)

+I(yij = 0)I(0 < ϕij ≤ Q∗
ij), (10)

where

P∗ij = 1− Q∗
ij =

exp[1.7aj(θi − bj)]

1+ exp[1.7aj(θi − bj)]
=

Pij − cj

1− γj − cj
,

Q∗
ij =

1

1+ exp[1.7aj(θi − bj)]
=

1− γj − Pij

1− γj − cj
.

Integrating out the two random variables λ and ϕ in (10), the
joint likelihood based on responses can be obtained:

p(y | a, b, θ , c, γ ,λ,ϕ) ∝

N∏

i = 1

J∏

j = 1

I(yij = 1)Eλ[I(0 < λij ≤ P∗ij)]

+ I(yij = 0)Eϕ[I(0 < ϕij ≤ Q∗
ij)]

∝

N∏

i = 1

J∏

j = 1

(P∗ij)
(yij=1)(Q∗

ij)
(yij=0), (11)

where Eλ is an expectation operation for the random variable
λ. We know that η, λ, and ϕ are independent of each other.
Therefore, the joint posterior distribution based on the auxiliary
variables can be written as

p(η, θ , a, b, c, γ ,λ,ϕ | y) ∝ p(η | a, b, θ , c, γ , y)p(λ,ϕ | a, b, θ , c, γ , y)

× p(θ)p(a)p(b)p(c, γ )I
(
(c, γ ) ∈ 4

)
.

(12)

The specific form can be represented as

p(η, a, b, θ , c, γ ,λ,ϕ | y) ∝

N∏

i = 1

J∏

j = 1

[
(1− γj)

ηijc
(1−ηij)

j

]yij

[
γ

ηij
j (1− cj)

(1−ηij)
](1−yij)

×

[
I(yij = 1)I(0 < λij ≤ P∗ij)

+I(yij = 0)I(0 < ϕij ≤ Q∗
ij)

]

×

J∏

j = 1

p(aj)p(bj)p(cj, γj)I
(
(cj, γj) ∈ 4

)

N∏

i = 1

p(θi). (13)

The detailed slice sampling algorithm is given below.
First, we update the auxiliary variables λij and ϕij when given

θi, aj, bj, cj, γj, and yij. According to (13), the auxiliary variables
λij and ϕij have the following interval constraints:

0 < λij ≤ P∗ij =
Pij − cj

1− γj − cj
when yij = 1,

0 < ϕij ≤ Q∗
ij =

1− γj − Pij

1− γj − cj
when yij = 0.

Therefore, the full conditional posterior distributions of λij and
ϕij can be written as

λij | θi, aj, bj, cj, γj, yij ∼ Uniform

(
0,

Pij − cj

1− γj − cj

)
when

yij = 1, (14)

ϕij | θi, aj, bj, cj, γj, yij ∼ Uniform

(
0,

1− γj − Pij

1− γj − cj

)
when

yij = 0. (15)

Next, we update the difficulty parameter bj. The prior of the
difficulty parameter is assumed to follow a normal distribution
with mean µb and variance σ 2

b
. According to (10), ∀i, when

yij = 1, we have 0 < λij ≤ P∗ij, and the following inequality

can be established:

aj(θi − bj) ≥
1

1.7
log

(
λij

1− λij

)
, or equivalently

bj ≤ θi −
1

1.7aj
log

(
λij

1− λij

)
.

In fact, this inequality is obtained through the following
calculation process:

0 < λij ≤ P∗ij, or equivalently 0 < λij ≤
exp[1.7aj(θi − bj)]

1+ exp[1.7aj(θi − bj)]
,

from which

λij + λij exp[1.7aj(θi − bj)] ≤ exp[1.7aj(θi − bj)], or equivalently

λij

1− λij
≤ exp[1.7aj(θi − bj)].
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Therefore, we have

log

(
λij

1− λij

)
≤ [1.7aj(θi − bj)], or equivalently

aj(θi − bj) ≥
1

1.7
log

(
λij

1− λij

)
.

Finally, we obtain the following inequality:

bj ≤ θi −
1

1.7aj
log

(
λij

1− λij

)
.

In the same way, ∀i, when yij = 0, we have 0 < ϕij ≤ Q∗
ij.

Therefore, the following inequality can be obtained:

aj(θi − bj) ≤
1

1.7
log

(
1− ϕij

ϕij

)
, or equivalently

bj ≥ θi −
1

1.7aj
log

(
1− ϕij

ϕij

)
.

Using the above inequalities 0 < λij ≤ P∗ij and 0 < ϕij ≤ Q∗
ij), we

can obtain a truncated interval about the difficulty parameter bj:

θi −
1

1.7aj
log

(
1− ϕij

ϕij

)
≤ bj ≤ θi −

1

1.7aj
log

(
λij

1− λij

)
.

If this truncated interval is narrow, the sampling efficiency
is improved and the parameter can converge fast. Therefore,
we need to limit the upper and lower bounds of the
truncated interval. In fact, we can obtain a maximum of θi −

(1/1.7aj) log[(1−ϕij)/ϕij] among all the examinees who correctly
answer the jth item. Similarly, we can obtain a minimum of
θi − (1/1.7aj) log[λij/(1 − λij)] among all the examinees who
mistakenly answer the jth item. Finally, the full conditional
posterior distribution of bj can be obtained as a truncated prior
distribution, with the truncated interval between maximum and
minimum. The specific mathematical expressions are as follows.

Let Dj = {i | yij = 1, 0 < λij ≤ P∗ij} and Fj = {i | yij = 0, 0 <

ϕij ≤ Q∗
ij}. Then, given aj, cj, γj, θ , λ, ϕ, and y, the full conditional

posterior distribution of bj is

bj | aj, cj, γj, θ ,λ,ϕ, y ∼ N(µb, σ
2
b )I(b

L
j ≤ bj ≤ bUj ), (16)

where

bLj = max
i∈Fj

{
θi −

1

1.7aj
log

(
1− ϕij

ϕij

)}
and

bUj = min
i∈Dj

{
θi −

1

1.7aj
log

(
λij

1− λij

)}
.

Subsequently, we update the discrimination parameter aj. To
ensure that this parameter is greater than zero, we use a truncated
normal distribution with mean µa and variance σ 2

a as a prior
distribution, N(µa, σ

2
a )I(aj > 0). Under the condition yij = 1, ∀i,

θi − bj > 0, we have 0 < λij ≤ P∗ij, while under the condition

yij = 0, ∀i, θi − bj < 0, we have 0 < ϕij ≤ Q∗
ij. The following

inequalities concerning the discrimination parameter aj can be
established using a procedure similar to that used above to derive
the truncated interval for the difficulty parameter bj:

aj ≥
1

1.7(θi − bj)
log

(
λij

1− λij

)
,

aj ≥
1

1.7(θi − bj)
log

(
1− ϕij

ϕij

)
.

Similarly, when yij = 1, ∀i, θi − bj < 0, we have 0 < λij ≤ P∗ij,

and when yij = 0, ∀i, θi − bj > 0, we have 0 < ϕij ≤ Q∗
ij, from

which we obtain

aj ≤
1

1.7(θi − bj)
log

(
λij

1− λij

)

aj ≤
1

1.7(θi − bj)
log

(
1− ϕij

ϕij

)
.

Let

1j = {i | yij = 1, θi − bj > 0, 0 < λij ≤ P∗ij},

Hj = {i | yij = 0, θi − bj < 0, 0 < ϕij ≤ Q∗
ij},

▽j = {i | yij = 1, θi − bj < 0, 0 < λij ≤ P∗ij},

3j = {i | yij = 0, θi − bj > 0, 0 < ϕij ≤ Q∗
ij}.

Given bj, cj, γj, λ, ϕ, θ , and y, the full conditional posterior
distribution of aj is given by

aj | bj, cj, γj,λ,ϕ, θ , y ∼ N(µa, σ
2
a )I(0 < aLj ≤ aj ≤ aUj ), (17)

where

aLj = max

{
0,max

i∈1j

{
1

1.7(θi − bj)
log

(
λij

1− λij

)}
,

max
i∈Hj

{
1

1.7(θi − bj)
log

(
1− ϕij

ϕij

)}}
,

aUj = min

{
min
i∈▽j

{
1

1.7(θi − bj)
log

(
λij

1− λij

)}
,

min
i∈3j

{
1

1.7(θi − bj)
log

(
1− ϕij

ϕij

)}}
.

In fact, the discrimination parameter is set to be greater than
zero in the item response theory. Therefore, the prior distribution
for the discrimination parameter is assumed to be a normal
distribution truncated at 0. Based on the likelihood information,
we can obtain the truncation interval of the discrimination
parameter. However, the left endpoint of the truncation interval
may be <0. In this case, we need to add 0 to the truncation
interval to restrict the left endpoint in 17.

Finally, we update the latent ability θi. The prior of θi is
assumed to follow a normal distribution, θi ∼ N(µθ , σ

2
θ ). The

latent ability θi is sampled from the following normal distribution
with truncated interval between θLi and θUi :

θi | λ,ϕ, a, b, c, γ , y ∼ N(µθ , σ
2
θ )I(θ

L
i ≤ θi ≤ θUi ), (18)
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where

θLi = max
j∈Di

{
1

1.7aj
log

(
λij

1− λij

)
+ bj

}
,

θUi = min
j∈Fi

{
1

1.7aj
log

(
1− ϕij

ϕij

)
+ bj

}
.

4.2. Bayesian Model Assessment
In this paper, two Bayesian model assessment methods are
considered to fit three different models (the 2PL, 3PL, and
4PL models), namely, the deviance information criterion
(DIC; Spiegelhalter et al., 2002) and the logarithm of the
pseudomarginal likelihood (LPML; Geisser and Eddy, 1979;
Ibrahim et al., 2001). These two criteria are based on the log-
likelihood functions evaluated at the posterior samples of the
model parameters. Therefore, the DIC and LPML of the 4PL
model can be easily computed. Write� = (�ij, i = 1, . . . ,N, j =

1, . . . , J), where �ij = (θi, aj, bj, cj, γj)
′. Let {�(1), . . . ,�(R)}

denote an MCMC sample from the full conditional posterior

distribution in (8) and (16)–(18), where �(r) = (�
(r)
ij , i =

1, . . . ,N, j = 1, . . . , J) and �
(r)
ij = (θ

(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , γ

(r)
j )′ for

i = 1, . . . ,N, j = 1, . . . , J, and r = 1, . . . ,R. The joint likelihood
function of the responses can be written as

L(Y | �) =

N∏

i = 1

J∏

j = 1

f (yij | θi, aj, bj, cj, γj), (19)

where f (yij | θi, aj, bj, cj, γj) is the probability of response. The

logarithm of the joint likelihood function in (19) evaluated at�(r)

is given by

log L(Y | �(r)) =

N∑

i = 1

J∑

j = 1

log f (yij | θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , γ

(r)
j ).

(20)
Since the joint log-likelihoods for the responses, log f (yij |

θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , γ

(r)
j ), i = 1, . . . ,N and j = 1, . . . , J, are

readily available from MCMC sampling outputs, log f (yij |

θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , γ

(r)
j ) in (20) is easy to compute. We now

calculate DIC as follows:

DIC =D̂ev(�)+2PD = D̂ev(�)+2
[
Dev(�)− D̂ev(�)

]
, (21)

where

Dev(�) = −
2

R

R∑

r = 1

log L(Y | �(r)) and

D̂ev(�) = −2 max
1≤r≤R

log L(Y | �(r)).

In (21), Dev(�) is a Monte Carlo estimate of the posterior
expectation of the deviance function Dev(�) = −2 log L(Y |

�), D̂ev(�) is an approximation of Dev(�̂), where �̂ is the
posterior mode, when the prior is relatively non-informative, and

PD = Dev(�) − D̂ev(�) is the effective number of parameters.
Based on our construction, both DIC and PD given in (21) are
always non-negative. The model with a smaller DIC value fits the
data better.

Letting Uij,max = max 1 ≤ r ≤ R{− log f (yij |

θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , γ

(r)
j )}, we obtain a Monte Carlo estimate

of the conditional predictive ordinate (CPO; Gelfand et al., 1992;
Chen et al., 2000) as

log ̂(CPOij) = −Uij,max − log

{
1

R

R∑

r = 1

exp[

− log f (yij | θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , γ

(r)
j )− Uij,max]

}
. (22)

Note that the maximum value adjustment used in log ̂(CPOij)
plays an important role in numerical stabilization in computing

exp[− log f (yij | θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , γ

(r)
j ) − Uij,max] in (22). A

summary statistic of the ĈPOij is the sum of their logarithms,
which is called the LPML and given by

LPML =

N∑

i = 1

J∑

j = 1

log ̂(CPOij). (23)

The model with a larger LPML has a better fit to the data.

5. SIMULATION STUDIES

5.1. Simulation Study 1
This simulation study is conducted to evaluate the recovery
performance of the Gibbs-slice sampling algorithm based on
different simulation conditions.

5.1.1. Simulation Design
The following manipulated conditions are considered: (a) test
length J = 20 or 40 and (b) number of examinees N = 500,
1, 000, or 2, 000. Fully crossing different levels of these two factors
yield six conditions (two test lengths× three sample sizes). Next,
the true values of the parameters are given. True values of the
item discrimination parameters aj are generated from a uniform
distribution, i.e., aj ∼ U(0.5, 2.5), j = 1, 2, . . . , J. The item
difficulty parameters bj are generated from a standardized normal
distribution. The item guessing and slipping parameters (cj, γj)
are generated from cj ∼ U(0, 0.25) and γj ∼ U(0, 0.25)I(γj <

1− cj). The ability parameters of examinees θi are also generated
from a standardized normal distribution. In addition, we adopt
non-informative prior distributions for the item parameters, i.e.,
aj ∼ N(0, 105)I(0,+∞), bj ∼ N(0, 105), gj ∼ Beta(1, 1), and γj ∼

Beta(1, 1), j = 1, 2, . . . , J. The prior for the ability parameters is
assumed to follow a standardized normal distribution owing to
the model identification restrictions. One hundred replications
are considered for each simulation condition.

5.1.2. Convergence Diagnostics
To evaluate the convergence of parameter estimation, we only
consider convergence in the case of minimum sample sizes owing
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FIGURE 1 | The trace plots of three randomly selected items and persons for the Simulation Study 1.

to space limitations. That is, the test length is fixed at 20, and
the number of examinees is 500. Two methods are used to
check the convergence of our algorithm: the “eyeball” method to
monitor convergence by visually inspecting the history plots of
the generated sequences (Zhang et al., 2007), and the Gelman–
Rubin method (Gelman and Rubin, 1992; Brooks and Gelman,
1998) to check the convergence of the parameters.

The convergence of the Gibbs-slice sampling algorithm is
checked by monitoring the trace plots of the parameters for
consecutive sequences of 20,000 iterations. The first 10,000
iterations are set as the burn-in period. As an illustration, four
chains started at overdispersed starting values are run for each

replication. The trace plots of three randomly selected items and
persons are shown in Figure 1. In addition, the potential scale
reduction factor (PSRF) (̂R; Brooks and Gelman, 1998) values of
all item and person parameters are shown in Figure 2. We find
that the PSRF values of all parameters are <1.2, which ensures
that all chains converge as expected.

5.1.3. Item Parameter Recovery
The accuracy of the parameter estimates is measured by four
evaluation criteria, namely, the Bias, mean squared error (MSE),
standard deviation (SD), and coverage probability (CP) of the
95% highest probability density interval (HPDI) statistics. Let η
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FIGURE 2 | The trace plots of R̂ for the Simulation Study 1.

be the parameter of interest. Assume that M = 100 data sets are
generated. Also, let η̂(m) and SD(m)(η) denote the posterior mean
and the posterior standard deviation of η obtained from the mth
simulated data set for m = 1, . . . ,M. The Bias for the parameter
η is defined as

Bias(η) =
1

M

M∑

m = 1

(̂η(m) − η), (24)

the MSE for η is defined as

MSE(η) =
1

M

M∑

m = 1

(̂η(m) − η)2, (25)

and the average of the posterior standard deviation is defined as

SD(η) =
1

M

M∑

m = 1

SD(m)(η). (26)

Bias andMSE are important criteria used to evaluate the accuracy
of parameter estimation in a simulation study. These criteria are
used to investigate the relative distance between the parameter
estimator and the true value. The greater the distance between the
parameter estimator and the true value, the lower is the accuracy
of parameter estimation and the poorer is the performance of

the algorithm. However, for real data analysis, it is impossible
to calculate Bias and MSE. The SD, on the other hand, can
be calculated from the posterior samples of a Markov chain
in simulation studies and real data analysis. In our simulation
study, we calculate the average SD through repeated experiments
to eliminate the error caused by randomness in a single
simulation experiment.

The coverage probability is defined as

CP(η) =
# of 95% HPDIs containing η inM simulated data sets

M
.

(27)
The average Bias, MSE, SD, and CP for item parameters
based on six different simulation conditions are
shown in Table 1. The following conclusions can
be drawn.

1. Given the total test length, when the number of individuals
increases from 500 to 2,000, the average MSE and SD for
discrimination, difficulty guessing, and slipping parameters
show a decreasing trend. For example, let us consider
a total test length of 20 items. When the number of
examinees increases from 500 to 2,000, the average MSE
and the average SD of all discrimination parameters
decrease from 0.0625 to 0.0474 and from 0.1460 to 0.0759,
respectively. The average MSE and the average SD of all
difficulty parameters decrease from 0.0505 to 0.0263 and
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TABLE 1 | Evaluating the accuracy of item parameters based on six different simulated conditions in Simulation Study 1.

No. of examinees 500 No. of examinees 1,000 No. of examinees 2,000

Item parameter Bias MSE SD CP Bias MSE SD CP Bias MSE SD CP

NO. OF ITEMS = 20

Discriminationa −0.0087 0.0625 0.1460 0.9514 −0.0217 0.0513 0.1037 0.9504 0.0005 0.0474 0.0759 0.9486

Difficultyb −0.0000 0.0505 0.0559 0.9385 0.0000 0.0389 0.0390 0.9412 −0.0000 0.0263 0.0260 0.9285

Guessingc −0.0215 0.0092 0.0247 0.9325 −0.0453 0.0045 0.0193 0.9378 −0.0830 0.0023 0.0156 0.9515

Slippingγ 0.0132 0.0060 0.0260 0.9342 −0.0176 0.0038 0.0217 0.9628 −0.0558 0.0025 0.0166 0.9548

NO. OF ITEMS = 40

Discriminationa −0.0029 0.0842 0.1482 0.9546 −0.0035 0.0705 0.0962 0.9390 −0.0129 0.0594 0.0638 0.9781

Difficultyb −0.0000 0.0443 0.0561 0.9543 −0.0000 0.0325 0.0389 0.9495 0.0000 0.0224 0.0267 0.9652

Guessingc −0.0238 0.0075 0.0250 0.9385 −0.0625 0.0059 0.0201 0.9322 −0.0677 0.0033 0.0154 0.9418

Slippingγ −0.0061 0.0035 0.0264 0.9310 −0.0169 0.0025 0.0209 0.9438 −0.0407 0.0024 0.0152 0.9422

Note that the Bias, MSE, SD, and CP denote the average Bias, MSE, SD, and CP for the parameters. aDiscrimination parameters, bDifficulty parameters, cGuessing parameters,
γ Slipping parameters.

from 0.0559 to 0.0260, respectively. The average MSE and
the average SD of all guessing parameters decrease from
0.0092 to 0.0023 and from 0.0247 to 0.0156, respectively.
The average MSE and the average SD of all slipping
parameters decrease from 0.0060 to 0.0025 and from 0.0260 to
0.0166, respectively.

2. Under the six simulated conditions, the average CPs of the
discrimination, difficulty guessing, and slipping parameters
are about 0.9500.

3. When the number of examinees is fixed at 500, 1,000, or 2,000,
and the number of items is fixed at 40, the averageMSE and SD
show that the recovery results of the discrimination, difficulty,
guessing, and slipping parameters are close to those in the
case where the total test length is 20, which indicates that
the Gibbs-slice sampling algorithm is stable and there is no
reduction in accuracy owing to an increase in the number
of items.

In summary, the Gibbs-slice sampling algorithm provides
accurate estimates of the item parameters in term of various
numbers of examinees and items. Next, we will explain why
the Bias criterion is useful, and why it seems irrelevant in the
simulation study.

If we want to determine whether our algorithm estimates
the parameter accurately, we need more information to infer
the parameter, which requires a large sample size. Here, Bias
is an important criterion to evaluate the accuracy of parameter
estimation. Let us give an example to illustrate the role of Bias. In
Simulation Study 1, suppose that we investigate the accuracy of
the algorithm in estimating a discrimination parameter. When
the number of examinees increases from 500 to 2,000, the
Bias of the discrimination parameter should show a decreasing
trend. The result of Bias reduction further verifies that a greater
number of samples are needed to improve the accuracy of
parameter estimation.

In Simulation Study 1, we cannot enumerate the Bias of each
item parameter one by one because there are toomany simulation

conditions and we are subject to space limitations. Therefore, we
choose to calculate the average Bias of the parameter of interest.
Next, we take the discrimination parameters as an example to
further explain why Bias seems irrelevant in Simulation Study
1. Suppose that we have obtained 40 Biases of discrimination
parameters, that the Bias values of these 40 discrimination
parameters are either positive or negative, and that the average
Bias of all 40 items is close to 0. However, the near-zero value of
the average Bias does not show whether the parameter estimation
is accurate or the result is caused by the positive and negative
superposition of the 40 Biases. In fact, we find that the Bias for
each item discrimination parameter show a decreasing trend with
increasing number of examinees. To sum up, we do not analyze
the results of the average Bias in the simulation studies, but Bias
is indeed an important criterion to evaluate the accuracy of each
parameter estimation.

5.1.4. Ability Parameter Recovery
Next, we evaluate the recovery of the latent ability using four
accuracy evaluation criteria. The following conclusions can be
obtained from Table 2.

1. Given a fixed number of examinees (500, 1,000, or 2,000),
when the number of items increases from 20 to 40, the
average MSE and SD for the ability parameters also show a
decreasing trend.

2. Under the six simulated conditions, the average CP of the
ability is also about 0.9500.

3. Given a fixed number of examinees (500, 1,000, or 2,000),
when the number of items increases from 20 to 40, the
correlation between the estimates and the true values tends to
increase. For example, for 500 examinees, when the number
of items increases from 20 to 40, the correlation between the
estimates and the true values increases from 0.8631 to 0.9102.

4. Given a fixed number of items (20 or 40), when the number
of examinees increases from 500 to 2,000, the correlation
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TABLE 2 | Evaluating the accuracy of person parameters based on six different

simulated conditions in Simulation Study 1.

No. of No. of Bias MSE SD CP Correlation with

items examinees true value

20 500 0.0545 0.2783 0.2523 0.9428 0.8631

1,000 0.0149 0.2923 0.2636 0.9675 0.8764

2,000 0.0052 0.3341 0.2961 0.9322 0.8599

40 500 0.0315 0.2346 0.2180 0.9274 0.9102

1,000 0.0764 0.2553 0.2343 0.9626 0.9182

2,000 0.0439 0.3042 0.2866 0.9542 0.9225

Note that the Bias, MSE, SD, and CP denote the average Bias, MSE, SD, and CP for the

ability parameters.

between the estimates and the true values remains basically
the same.

In summary, it is shown again that the Gibbs-slice sampling
algorithm is effective and that the estimated results are accurate
under various simulation conditions.

5.2. Simulation Study 2
Culpepper (2016) conducted an additional simulation study
to confirm that the guessing and slipping parameters could
give good recovery results in the process of Gibbs sampling
regardless of whether informative or non-informative
priors were used. Therefore, in this simulation study, we
also adopt non-informative prior distributions for the
guessing and slipping parameters in the Gibbs step to
eliminate biased estimation of parameters due to wrong
choices of the prior distributions, i.e., c ∼ Beta(1, 1)
and γ ∼ Beta(1, 1), and we focus on the influence of
different prior distributions on the accuracy of parameter
estimation in the process of implementing the slice
sampling algorithm. Note that in this simulation study,
we do not focus on the accuracy of the guessing and
slipping parameters, since Culpepper (2016) has already
verified the accuracy of these two parameters in the
case of the Gibbs algorithm under different types of
prior distributions.

This simulation study is designed to show that the slice
sampling algorithm is sufficiently flexible to recover various
prior distributions of the item (discrimination and difficulty)
and person parameters, and to address the sensitivity of the
algorithm with different priors. Three types of prior distributions
are examined: informative priors, non-informative priors, and
inappropriate priors.

5.2.1. Simulation Design
The number of the examinees N = 1, 000, and the test length
J = 20. The true values for the items and persons are the
same as in Simulation Study 1. One hundred replications are
considered for each simulation condition. The following three

kinds of prior distributions are considered in implementing the
slice sampling algorithm:

(i) informative prior: a ∼ logN(0, 1), b ∼ N(0, 1),
and θ ∼ N(0, 1);

(ii) non-informative prior: a ∼ N(0, 1000)I(0,+∞), b ∼

Uniform(−1000, 1000), and θ ∼ N(0, 1000);
(iii) inappropriate prior: (1) a ∼ Exp(1), b ∼ t(1), and

θ ∼ t(1); (2) a ∼ Gamma(3, 2), b ∼ Cauchy(1, 3),
and θ ∼ Cauchy(1, 3).

The Gibbs-slice sampling algorithm is iterated 20,000 times. The
first 10,000 iterations are discarded as burn-in. The PSRF values
of all parameters are <1.2. The Bias, MSE, and SD of a and
b based on the three kinds of prior distribution are shown in
Figure 3.

5.2.2. Item Parameter Recovery
From Figure 3, we can see that the Bias, MSE, and SD of a and
b are almost the same under different prior distributions. This
shows that accuracy of parameter estimation can be guaranteed
by the slice sampling algorithm, nomatter what prior distribution
is chosen, as long as the values sampled from this distribution
belong to a reasonable parameter support set. In addition, the
Bias, MSE and SD of a and b fluctuate around 0, which shows
that the slice sampling algorithm is accurate and effective in
estimating the item parameters.

5.2.3. Ability Parameter Recovery
Next, we evaluate the recovery of the latent ability based on
different prior distributions in Table 3. We find that the MSE
of ability parameters is between 0.2676 and 0.3014, and the
corresponding SD is between 0.2436 and 0.3026 for all three
kinds of prior distribution, which indicates that the choice of
prior distribution has little impact on the accuracy of the ability
parameters. In summary, the slice sampling algorithm is accurate
and effective in estimating the person parameters. It is not
sensitive to the specification of priors.

5.3. Simulation Study 3
In this simulation study, we use two Bayesian model assessment
criteria to evaluate the model fittings. Two issues warrant further
study. The first is whether the two criteria can accurately identify
the true models under different design conditions. The second
is that we study the phenomena of over-fitting and under-fitting
between the true model and the fitting models.

5.3.1. Simulation Design
In this simulation, a number of individuals N = 1, 000 is
considered and the test length is fixed at 40. Three item response
models are considered: the 2PL, 3PL, and 4PL models. Thus, we
evaluate model fitting in the following three cases:

• Case 1: 2PL model (true model) vs. 2PL model, 3PL model, or
4PL model (fitted model).

• Case 2: 3PL model (true model) vs. 2PL model, 3PL model, or
4PL model (fitted model).
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FIGURE 3 | The Bias, MSE, and SD of discrimination and difficulty parameters based on different priors.
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TABLE 3 | Evaluating the accuracy of person parameters based on different prior

distributions in Simulation Study 2.

Parameter Accuracy

evaluation

index

Prior distribution

N(0, 1) N(0, 1, 000) t(1) Cauchy(1, 3)

θ Bias 0.0064 0.0149 0.0087 0.0238

MSE 0.2676 0.2923 0.3014 0.2713

SD 0.2436 0.3026 0.2810 0.2983

Note that the Bias, MSE, and SD denote the average Bias, MSE, and SD for the ability

parameters.

• Case 3: 4PL model (true model) vs. 2PL model, 3PL model, or
4PL model (fitted model).

The true values and prior distributions for the parameters are
specified in the same way as in Simulation Study 1. To implement
the MCMC sampling algorithm, chains of length 20,000 with
an initial burn-in period of 10,000 are chosen. There are 100
replications for each simulation condition. The potential scale
reduction factor (PSRF; Brooks and Gelman, 1998) values of all
item and person parameters for each simulation condition are
<1.2. The results of Bayesian model assessment based on the 100
replications are shown in Table 4.

From Table 4, we find that when the 2PL model is the
true model, the 2PL model is chosen as the best-fitting model
according to the results of DIC and LPML, which is what we
expect to see. The medians of DIC and LPML are, respectively
29,333.1917 and −14,881.2617. The second best-fitting model is
the 3PL model. The differences between the 2PL and 3PL models
in the medians of DIC and LPML are −1234.1551 and 650.9820,
respectively. The 4PL model is the worst model to fit the data.
This is because the data are generated from a simple 2PL model,
and the complex 4PL model is used to fit this data, which leads to
over-fitting. The differences between the 2PL and 4PL models in
the medians of DIC and LPML are −5369.4761 and 2805.5087,
respectively. When the 3PL model is the true model, the DIC
and LPML consistently choose the 3PL model as the best-fitting
model, with the corresponding median values being 24,866.9338
and −12,523.6985, respectively. The second best-fitting model is
the 2PL model. The differences between the 3PL and 4PL models
in the medians of DIC and LPML are−7786.6968 and 3934.9003,
respectively, while the corresponding differences between the
3PL and 2PL models are −7569.1249 and 3886.7071. This shows
that when the data are generated from the 3PL model, the simple
2PL model is more appropriate to fit the data compared with the
complex 4PL model. When the 4PL model is the true model, the
two criteria consistently select the 4PL model as the best-fitting
model. The other two models suffer from serious under-fitting.
The differences between the 4PL and 2PL models in the medians
of DIC and LPML are −7807.8880 and 4339.4735, respectively,
while the corresponding differences between the 4PL and 3PL
models are −1104.4156 and 634.0753. The failure to select the
2PL (3PL) model is attributed to the under-fitting caused by a few
parameters. That is, the guessing and slipping parameters in the
4PL model play an important role in adjusting the probability of

TABLE 4 | The results of Bayesian model assessment in the Simulation Study 3.

True model 2PL 3PL 4PL

Fitted model 2PL DIC Q1 29319.0702 30539.6070 34676.5622

Median 29333.1917 30567.3468 34702.6678

Q3 29341.0284 30591.9937 34722.2367

IQR 21.9582 52.3867 45.6745

LPML Q1 −14888.3688 −15543.2057 −17701.0943

Median −14881.2617 −15532.2437 −17686.7704

Q3 −14875.4347 −15515.0444 −17670.9324

IQR 12.9341 28.1613 30.1319

3PL DIC Q1 32431.0873 24857.3160 32648.0788

Median 32436.0587 24866.9338 32653.6306

Q3 32442.8955 24878.2528 32660.3940

IQR 11.8082 20.9368 12.3152

LPML Q1 −16413.9390 −12528.9444 −16462.3200

Median −16410.4056 −12523.6985 −16458.5988

Q3 −16406.8835 −12517.8991 −16453.9725

IQR 7.0555 11.0453 8.3427

4PL DIC Q1 35560.7897 28870.1192 27768.0166

Median 35583.7535 28880.2811 27775.8655

Q3 35611.7761 28890.8003 27780.0024

IQR 50.9863 20.6810 11.9857

LPML Q1 −18320.2375 −14603.6126 −13965.3888

Median −18302.6986 −14597.3004 −13963.2251

Q3 −18288.7386 −14593.5979 −13958.0409

IQR 31.4988 10.0147 7.3479

Note that the boldface values indicate that the corresponding model is the best fitted

model with the smallest DIC and largest LPML values.

the tail of the item characteristic curve. In summary, the Bayesian
assessment criteria are effective for identifying the true models
and can be used in the following empirical example.

6. EMPIRICAL EXAMPLE

In this example, the 2015 computer-based PISA (Program for
International Student Assessment) science data are used. Among
the many countries that have participated in this computer-based
assessment of sciences, we choose students from the USA as
the object of analysis. The original sample size of students is
658, and 110 students with Not Reached (original code 6) or
Not Response (original code 9) are removed, with Not Reached
and Not Response (omitted) being treated as missing data. The
final 548 students answer 16 items. All 16 items are scored
using a dichotomous scale. The descriptive statistics for these
PISA data are shown in Table 5. We find that three items,
DR442Q05C, DR442Q06C, and CR442Q07S, have lower correct
rates than the other items, with the corresponding values being
25.7, 23.2, and 28.5%, respectively. The correct rate represents the
proportion at which all examinees answer each item correctly.
Moreover, the four items with the highest correct rates are
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TABLE 5 | The descriptive statistics for PISA 2015 released computer-based

sciences items.

Item Item code Correct rate (%) Item Item code Correct rate (%)

1 CR083Q01S 54.2 9 CR442Q07S 28.5

2 CR083Q02S 83.6 10 CR245Q01S 53.8

3 CR083Q03S 75.2 11 CR245Q02S 60.0

4 CR083Q04S 66.6 12 CR101Q01S 43.6

5 DR442Q02C 80.1 13 CR101Q02S 87.6

6 DR442Q03C 76.5 14 CR101Q03S 57.7

7 DR442Q05C 25.7 15 CR101Q04S 80.1

8 DR442Q06C 23.1 16 CR101Q05S 48.7

Note that the correct rate represents the percentage of all examinees who correctly

answer each item.

FIGURE 4 | Frequency histograms of the correct rates for 548 examinees.

CR101Q02S (87.6%), CR083Q02S (83.6%) DR442Q02C (80.1%),
and CR101Q04S (80.1%). The frequency histogram of the correct
rates for the 548 examinees is shown in Figure 4.

6.1. Bayesian Model Assessment
We consider three models to fit the PISA data: the 2PL, 3PL,
and 4PL models. In the estimation procedure, the same non-
informative priors as in Simulation Study 1 are utilized for the
unknown parameters. In all of the Bayesian computations, we use
20,000 MCMC samples after a burn-in of 10,000 iterations for
each model to compute all posterior estimates. The convergence
of the chains is checked by PSRF. The PSRF values of all item
and ability parameters for each model are<1.2. On this basis, the
results of Bayesianmodel assessment for the PISA data are shown
in Table 6.

According to DIC and LPML in Table 6, we find that the
4PL model is the best-fitting model compared with the 2PL and
3PL models. The values of DIC and LPML are 10,854.2075 and
−5494.4088, respectively. The second best-fitting model is the
3PL model. The differences between the 4PL and 3PL models

TABLE 6 | The results of Bayesian model assessment for the PISA data.

Model DIC LPML

2PL model 14206.9508 −7290.7545

3PL model 12230.3819 −6168.9428

4PL model 10854.2075 − 5494.4088

Note that the boldface values indicate that the corresponding model is the best fitted

model with the smallest DIC and largest LPML values.

in DIC and LPML are −1376.1744 and 674.5340, respectively.
This shows that the introduction of slipping parameters in the
3PL model is sufficient to fit these PISA data. The worst-fitting
model is the 2PL model. This is attributed to the relatively
simple structure of this model, which makes it unable to describe
changes in probability at the end of the item characteristic curve
caused by guessing or slipping. The differences between the
4PL and 2PL models in DIC and LPML are −3353.7433 and
1796.3457, respectively.

Next, we will use the 4PL model to analyze the PISA data in
detail based on the results of the model assessment.

6.2. Analysis of Item Parameters
The estimated results for the item parameters are shown in
Table 7, from which we find that the expected a posteriori (EAP)
estimations of the 11 item discrimination parameters are greater
than one. This indicates that these items can distinguish the
differences between abilities well. The five items with the lowest
discrimination are items 16 (CR101Q05S), 10 (CR245Q01S), 12
(CR101Q01S), 2 (CR083Q02S), and 5 (DR442Q02C) in turn.
The EAP estimates of the discrimination parameters for these
five items are 0.6681, 0.6792, 0.7348, 0.8083, and 0.8901. In
addition, the EAP estimates of seven of the difficulty parameters
are less than zero, which indicates that these seven items are
easier than the other nine items. The five most difficult items
are items 8 (DR442Q06C), 7 (DR442Q05C), 9 (CR442Q07S), 12
(CR101Q01S), and 16 (CR101Q05S) in turn. The EAP estimates
of the difficulty parameters for these five items are 1.2528,
1.2203, 1.0804, 0.4521, and 0.3102. The corresponding correct
rates in Table 5 for these five items are 23.1, 25.7, 28.5, 43.63
and 48.7%, respectively. The most difficult five items have low
correct rates, which is consistent with our intuition. The EAP
estimates of the guessing parameters for the 16 items range
from 0.0737 to 0.1840. The five items with the highest guessing
parameters are items 2 (CR083Q02S), 5 (DR442Q02C), 13
(CR101Q02S), 15 (CR101Q04S), and 3 (CR083Q03S) in turn.
The EAP estimates of the guessing parameters for these five
items are 0.1840, 0.1791, 0.1790, 0.1673, and 0.3102. We find
that the five items with high guessing parameters also have
high correct rates. The corresponding correct rates for these
five items are 83.6, 80.1, 87.6, 80.1, and 75.2%. This shows that
these five items are more likely to be guessed correctly than
the other 11 items. In addition, the five easiest slipping items
are items 8 (DR442Q06C), 7 (DR442Q05C), 9 (CR442Q07S), 12
(CR101Q01S), and 16 (CR101Q05S) in turn. The EAP estimates
of the slipping parameters for these five items are 1.785, 1.619,
1.581, 0.1481, and 0.1431. We find that the more difficult an
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TABLE 7 | The estimation results of item parameter for the PISA data.

PARM EAP SD HPDI PARM EAP SD HPDI

a1 1.0416 0.1227 [0.8215, 1.2856] b1 0.1939 0.0615 [0.0861, 0.3222]

a2 0.8083 0.1316 [0.5715, 1.0665] b2 −0.8496 0.0815 [−0.9936,−0.6793]

a3 1.1171 0.1513 [0.8327, 1.4101] b3 −0.5071 0.0625 [−0.6214,−0.3699]

a4 1.1119 0.1308 [0.8813, 1.3996] b4 −0.1947 0.0563 [−0.3030,−0.0876]

a5 0.8901 0.1034 [0.6847, 1.0933] b5 −0.6969 0.0623 [−0.8230,−0.5741]

a6 1.2772 0.1719 [0.9642, 1.6355] b6 −0.5966 0.0700 [−0.7525,−0.4675]

a7 1.3404 0.1348 [1.0800, 1.5839] b7 1.2203 0.0778 [1.0635, 1.3738]

a8 1.1202 0.1608 [0.7827, 1.4713] b8 1.2528 0.0966 [1.0313, 1.4246]

a9 1.2377 0.1475 [0.9338, 1.5149] b9 1.0804 0.0819 [0.9117, 1.2155]

a10 0.6792 0.1125 [0.4780, 0.9079] b10 0.1669 0.0640 [0.0423, 0.2832]

a11 1.0720 0.1214 [0.8432, 1.3184] b11 0.0258 0.0512 [−0.0617, 0.1330]

a12 0.7348 0.0897 [0.5528, 0.9035] b12 0.4521 0.0548 [0.3448, 0.5506]

a13 1.1994 0.1706 [0.8682, 1.5513] b13 −1.1843 0.0841 [−1.3510,−1.0305]

a14 1.0083 0.1219 [0.7666, 1.2336] b14 0.0985 0.0525 [0.0029, 0.2053]

a15 1.2047 0.1707 [0.8618, 1.5329] b15 −0.7719 0.0667 [−0.9095,−0.6543]

a16 0.6681 0.0924 [0.4999, 0.8482] b16 0.3102 0.0584 [0.2012, 0.4321]

c1 0.1344 0.0254 [0.0870, 0.1853] γ1 0.1170 0.0225 [0.0738, 0.1616]

c2 0.1840 0.0363 [0.1137, 0.2545] γ2 0.0736 0.0142 [0.0466, 0.1023]

c3 0.1650 0.0315 [0.1065, 0.2285] γ3 0.0804 0.0155 [0.0506, 0.1106]

c4 0.1532 0.0292 [0.1006, 0.2137] γ4 0.0950 0.0182 [0.0605, 0.1306]

c5 0.1791 0.0343 [0.1131, 0.2461] γ5 0.0781 0.0149 [0.0495, 0.1077]

c6 0.1607 0.0309 [0.1014, 0.2210] γ6 0.0749 0.0148 [0.0458, 0.1032]

c7 0.0737 0.0147 [0.0459, 0.1023] γ7 0.1619 0.0314 [0.1034, 0.2261]

c8 0.0805 0.0152 [0.0507, 0.1096] γ8 0.1785 0.0339 [0.1145, 0.2470]

c9 0.0842 0.0159 [0.0549, 0.1165] γ9 0.1581 0.0307 [0.0983, 0.2178]

c10 0.1561 0.0279 [0.1024, 0.2115] γ10 0.1313 0.0248 [0.0832, 0.1786]

c11 0.1485 0.0268 [0.0996, 0.2035] γ11 0.1028 0.0197 [0.0646, 0.1408]

c12 0.1361 0.0243 [0.0897, 0.1842] γ12 0.1481 0.0275 [0.0967, 0.2040]

c13 0.1790 0.0354 [0.1118, 0.2484] γ13 0.0607 0.0118 [0.0368, 0.0827]

c14 0.1469 0.0268 [0.0952, 0.1991] γ14 0.1100 0.0211 [0.0697, 0.1523]

c15 0.1673 0.0322 [0.1057, 0.2299] γ15 0.0716 0.0143 [0.0444, 0.1006]

c16 0.1505 0.0266 [0.0991, 0.2028] γ16 0.1431 0.0268 [0.0931, 0.1960]

PARM denotes parameter, EAP is the expected a posteriori estimation, SD denotes the standard deviation, and HPDI denotes the highest probability density interval.

item is, the more likely is the examinee to slip in answering it,
which leads to a reduction in the correct rate. The SDs of the
discrimination parameters range from 0.0897 to 0.1719, those
of the difficulty parameters from 0.0512 to 0.0966, those of the
guessing parameters from 0.0147 to 0.0363, and those of the
slipping parameters from 0.0118 to 0.0339.

6.3. Analysis of Person Parameters
The histograms of the posterior estimates of the ability
parameters are shown in Figure 5. Most of the estimated abilities
of the examinees are near zero. The number of examinees with
high ability (the estimates are between 0 and 1.2) is more than
the number with low ability (the estimates are between −1.2 and
0). The ability parameter posterior histogram is consistent with
the frequency histogram of the correct rate (Figure 4). That is,
the trend of change in the correct rate in the histogram is same as
that in the ability posterior histogram. The number of examinees

with high correct rate is more than the number with low correct
rate. It is once again verified that the results of the estimation
are accurate.

7. DISCUSSION

In this paper, an efficient Gibbs-slice sampling algorithm in a
fully Bayesian framework has been proposed to estimate the 4PL
model. This algorithm, as its name suggests, can be conceived of
as an extension of the Gibbs algorithm. The sampling process
consists of two parts. One part is the Gibbs algorithm, which
is used to update the guessing and slipping parameters when
non-informative uniform priors are employed for cases that
are prototypical of educational and psychopathology items.
This part implements sampling by using a conjugate prior and
greatly increases efficiency. The other part is the slice sampling
algorithm, which samples the 2PL IRT model from the truncated
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FIGURE 5 | The histograms of the posterior estimates of ability parameters.

full conditional posterior distribution by introducing auxiliary
variables. The motivations for the slice sampling algorithm are
manifold. First, this algorithm has the advantage of flexibility in
the choice of prior distribution to obtain samples from the full
conditional posterior distributions, rather than being restricted
to using the conjugate distributions as in the Gibbs sampling
process, which is also limited to the normal ogive framework.
This allows the use of informative priors, non-informative
priors, and inappropriate priors for the item parameters. Second,
the Metropolis–Hastings algorithm depends on the proposal
distributions and variances (tuning parameters) and is sensitive
to step size. If the step size is too small, the chain will take longer
to traverse the target density. If the step size is too large, there
will be inefficiencies due to a high rejection rate. However, the
slice sampling algorithm can automatically tune the step size to
match the local shape of the target density and draw samples with

acceptance probability equal to one. Thus, it is easier and more
efficient to implement.

However, the computational burden of the Gibbs-slice
sampling algorithm becomes intensive, especially when a large
numbers of examinees or items are considered, or a large MCMC
sample size is used. Therefore, it is desirable to develop a
standalone R package associated with C++ or Fortran software
for more a extensive large-scale assessment program. In fact,
the new algorithm based on auxiliary variables can be extended
to estimate some more complex item response and response
time models, for example, the graded response model or the
Weibull response time model. Only DIC and LPML have been
considered in this study, but other Bayesian model selection
criteria such as marginal likelihoods may also be potentially
useful to compare different IRT models. These extensions
are beyond the scope of this paper but are currently under
further investigation.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: http://www.oecd.org/pisa/data/.

AUTHOR CONTRIBUTIONS

JZ completed the writing of the article and provided article
revisions. JL provided original thoughts. JZ, JL, HD, and ZZ
provided key technical support. All authors contributed to the
article and approved the submitted version.

FUNDING

This work was supported by the Fundamental Research
Funds for the Central Universities of china (Grant No.
2412020QD025), and the “Youth Development Project” of
School of Mathematics and Statistics of Northeast Normal
University and the Foundation for Postdoctoral of Yunnan
University (Grant No. CI76220200).

REFERENCES

Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves

using Gibb ssampling. J. Educ. Stat. 17, 251–269.

Baker, F. B., and Kim, S. H. (2004). Item Response Theory: Parameter Estimation

Techniques. New York, NY: Marcel Dekker.

Barton,M. A., and Lord, F.M. (1981).AnUpper Asymptote for the Three-Parameter

Logistic Item Response Model. Princeton, NJ: Educational Testing Service.

Béguin, A. A., and Glas, C. A. W. (2001). MCMC estimation of multidimensional

IRT models. Psychometrika 66, 541–561. doi: 10.1007/BF02296195

Birnbaum, A. (1957). Efficient Design and Use of Tests of a Mental Ability for

Various Decision-Making Problems. Series Report No. 58-16. Randolph Air

Force Base, TX: USAF School of Aviation Medicine.

Birnbaum, A. (1968). “Some latent trait models and their use in inferring an

examinee’s ability,” in Statistical Theories of Mental Test Scores , eds F. M. Lord

and M. R. Novick (Reading, MA: MIT Press), 397–479.

Bishop, C. M. (2006). “Slice sampling,” in Pattern Recognition and Machine

Learning, eds M. Jordan, J. Kleinberg, B. Schölkopf (New York, NY: Springer),

523–558.

Bock, R. D., and Aitkin, M. (1981). Marginal maximum likelihood estimation of

item parameters: application of an EM algorithm. Psychometrika 46, 443–459.

doi: 10.1007/BF02293801

Brooks, S. P., and Gelman, A. (1998). Alternative methods for monitoring

convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455.

doi: 10.1080/10618600.1998.10474787

Chalmers, R. P. (2012). mirt: Amultidimensional item response theory package for

the Renvironment. J. Stat. Softw. 48, 1–29. doi: 10.18637/jss.v048.i06

Chang, H.-H., and Ying, Z. (2008). To weight or not to weight? Balancing

influence of initial items in adaptive testing. Psychometrika 73, 441–450.

doi: 10.1007/s11336-007-9047-7

Chen, M.-H., Shao, Q.-M., and Ibrahim, J. G. (2000). Monte Carlo Methods in

Bayesian Computation. New York, NY: Springer.

Chib, S., and Greenberg, E. (1995). Understanding the Metropolis-

Hastings algorithm. Am. Stat. 49, 327–335. doi: 10.1080/00031305.1995.

10476177

Culpepper, S. A. (2016). Revisiting the 4-parameter item response model:

Bayesian estimation and application. Psychometrika 81, 1142–1163.

doi: 10.1007/s11336-015-9477-6

Frontiers in Psychology | www.frontiersin.org 17 September 2020 | Volume 11 | Article 212122

http://www.oecd.org/pisa/data/
https://doi.org/10.1007/BF02296195
https://doi.org/10.1007/BF02293801
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.1007/s11336-007-9047-7
https://doi.org/10.1080/00031305.1995.10476177
https://doi.org/10.1007/s11336-015-9477-6
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Zhang et al. Estimating Four Parameter Logistic Model

Damien, P., Wakefield, J., andWalker, S. (1999). Gibbs sampling for Bayesian non-

conjugate and hierarchical models by auxiliary variables. J. R. Stat. Soc. Ser. B

61, 331–344. doi: 10.1111/1467-9868.00179

Embretson, S. E., and Reise, S. P. (2000). Item Response Theory for Psychologists.

Mahwah, NJ: Erlbaum.

Ferrando, P. J. (1994). Fitting item response models to the EPI-

A impulsivity subscale. Educ. Psychol. Measure. 54, 118–127.

doi: 10.1177/0013164494054001016

Fox, J.-P. (2010). Bayesian Item Response Modeling: Theory and Applications. New

York, NY: Springer.

Fox, J. P. (2005). Multilevel IRT using dichotomous and polytomous items. Br. J.

Math. Stat. Psychol. 58, 145–172. doi: 10.1348/000711005X38951

Fox, J. P., and Glas, C. A.W. (2001). Bayesian estimation of a multilevel IRTmodel

using Gibbs sampling. Psychometrika 66, 271–288. doi: 10.1007/BF02294839

Fraley, R. C., Waller, N. G., and Brennan, K. A. (2000). An item response theory

analysis of self-report measures of adult attachment. J. Pers. Soc. Psychol. 78,

350–365. doi: 10.1037/0022-3514.78.2.350

Geisser, S., and Eddy, W. F. (1979). A predictive approach to model selection. J.

Am. Stat. Assoc. 74, 153–160. doi: 10.1080/01621459.1979.10481632

Gelfand, A. E., Dey, D. K., and Chang, H. (1992). “Model determination using

predictive distributions with implementation via sampling-based methods

(with discussion),” in Bayesian Statistics, Vol. 4, eds J. M. Bernardo, J. O. Berger,

A. P. Dawid, and A. F. M. Smith (Oxford: Oxford University Press), 147–167.

Gelfand, A. E., and Smith, A. F. M. (1990). Sampling-based approaches

to calculating marginal densities. J. Am. Stat. Assoc. 85, 398–409.

doi: 10.1080/01621459.1990.10476213

Gelman, A., and Rubin, D. B. (1992). Inference from iterative simulation using

multiple sequences. Stat. Sci. 7, 457–472. doi: 10.1214/ss/1177011136

Geman, S., and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and

the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell. 6,

721–741. doi: 10.1109/TPAMI.1984.4767596

Gray-Little, B., Williams, V. S. L., and Hancock, T. D. (1997). An item response

theory analysis of the Rosenberg Self-Esteem Scale. Pers. Soc. Psychol. Bull. 23,

443–451. doi: 10.1177/0146167297235001

Green, B. F. (2011). A comment on early student blunders on

computer-based adaptive tests. Appl. Psychol. Measure. 35, 165–174.

doi: 10.1177/0146621610377080

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and

their applications. Biometrika 57, 97–109. doi: 10.1093/biomet/57.1.97

Hessen, D. J. (2005). Constant latent odds- ratios models and the Mantel-Haenszel

null hypothesis. Psychometrika 70, 497–516. doi: 10.1007/s11336-002-1040-6

Hockemeyer, C. (2002). A comparison of non-deterministic procedures for the

adaptive assessment of knowledge. Psychol. Beiträge 44, 495–503.

Ibrahim, J. G., Chen, M.-H., and Sinha, D. (2001). Bayesian Survival Analysis. New

York, NY: Springer.

Junker, B. W., and Sijtsma, K. (2001). Cognitive assessment models with few

assumptions, and connections with nonparametric item response theory. Appl.

Psychol. Measure. 25, 258–272. doi: 10.1177/01466210122032064

Lanza, S. T., Foster, M., Taylor, T. K., and Burns, L. (2005). Assessing the impact

of measurement specificity in a behavior problems checklist: An IRT analysis.

Technical Report 05-75. The Pennsylvania State University; The Methodology

Center, University Park, PA.

Liao, W.-W., Ho, R.-G., Yen, Y.-C., and Cheng, H.-C. (2012). The four-

parameter logistic item response theory model as a robust method of

estimating ability despite aberrant responses. Soc. Behav. Pers. 40, 1679–1694.

doi: 10.2224/sbp.2012.40.10.1679

Loken, E., and Rulison, K. (2010). Estimation of a four-parameter

item response theory model. Br. J. Math. Stat. Psychol. 63, 509–525.

doi: 10.1348/000711009X474502

Lord, F. M., and Novick, M. R. (1968). Statistical Theories of Mental Test Scores.

Reading, MA: Addison-Wesley.

Lu, J., Zhang, J. W., and Tao, J. (2018). Slice-Gibbs sampling algorithm for

estimating the parameters of a multilevel item response model. J. Math. Psychol.

82, 12–25. doi: 10.1016/j.jmp.2017.10.005

Magis, D. (2013). A note on the item information function of the

four-parameter logistic model. Appl. Psychol. Measure. 37, 304–315.

doi: 10.1177/0146621613475471

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,

E. (1953). Equation of state calculations by fast computing machines. J. Chem.

Phys. 21, 1087–1092. doi: 10.1063/1.1699114

Neal, R. (2003). Slice sampling. Ann. Stat. 31, 705–767.

doi: 10.1214/aos/1056562461

Ogasawara, H. (2012). Asymptotic expansions for the ability estimator in item

response theory. Comput. Stat. 27, 661–683. doi: 10.1007/s00180-011-0282-0

Osgood, D. W., McMorris, B. J., and Potenza, M. T. (2002). Analyzing multiple-

item measures of crime and deviance I: item response theory scaling. J. Quant.

Criminol. 18, 267–296. doi: 10.1023/A:1016008004010

Patz, R. J., and Junker, B. W. (1999). A straight forward approach to Markov

chain Monte Carlo methods for item response models. J. Educ. Behav. Stat. 24,

146–178. doi: 10.3102/10769986024002146

Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests.

Copenhagen: Danish Institute for Educational Research.

Reise, S. P., and Waller, N. G. (2003). How many IRT parameters does

it take to model psychopathology items? Psychol. Methods 8, 164–184.

doi: 10.1037/1082-989X.8.2.164

Rouse, S. V., Finger, M. S., and Butcher, J. N. (1999). Advances in clinical

personality measurement: an item response theory analysis of the MMPI-2

PSY-5 scales. J. Pers. Assess. 72, 282–307. doi: 10.1207/S15327752JP720212

Rulison, K. L., and Loken, E. (2009). I’ve fallen and I can’t get up: Can high-

ability students recover from early mistakes in CAT? Appl. Psychol. Measure.

33, 83–101. doi: 10.1177/0146621608324023

Spiegelhalter, D. J, Thomas, A., Best, N. G., and Lunn, D. (2003). WinBUGS

Version 1.4 User Manual. Cambridge: MRC Biostatistics Unit. Available online

at: http://www.mrc-bsu.cam.ac.uk/wp-content/uploads/manual14.pdf

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., andVanDer Linde, A. (2002). Bayesian

measures of model complexity and fit. J. R. Stat. Soc. Ser. B 64, 583–639.

doi: 10.1111/1467-9868.00353

Steinberg, L., and Thissen, D. (1995). “Item response theory in personality

research,” in Personality Research, Methods, and Theory: A Festschrift Honoring

Donald W. Fiske, eds P. E. Shrout and S. T. Fiske (Hillsdale, NJ: Erlbaum),

161–181.

Tanner, M. A., and Wong, W. H. (1987). The calculation of posterior

distributions by data augmentation. J. Am. Stat. Assoc. 82, 528–550.

doi: 10.1080/01621459.1987.10478458

Tavares, H. R., de Andrade, D. F., and Pereira, C. A. (2004). Detection of

determinant genes and diagnostic via item response theory. Genet. Mol. Biol.

27, 679–685. doi: 10.1590/S1415-47572004000400033

Tierney, L. (1994). Markov chains for exploring posterior distributions (with

discussions). Ann. Stat. 22, 1701–1762. doi: 10.1214/aos/1176325750

Van der Linden, W. J., and Hambleton, R. K. (eds.). (1997). Handbook of Modern

Item Response Theory. New York, NY: Springer.

Waller, N. G., and Feuerstahler, L. M. (2017). Bayesian modal estimation of

the four-parameter item response model in real, realistic, and idealized

data sets. Multivar. Behav. Res. 52, 350–370. doi: 10.1080/00273171.2017.12

92893

Waller, N. G., and Reise, S. P. (2010). “Measuring psychopathology with non-

standard IRT models: fitting the four-parameter model to the MMPI,” in

Measuring Psychological Constructs: Advances in Modelbased Approaches, eds

S. Embretson and J. S. Roberts (Washington, DC: American Psychological

Association), 147–173.

Yen, Y.-C., Ho, R.-G., Laio, W.-W., Chen, L.-J., and Kuo, C.-C. (2012). An

empirical evaluation of the slip correction in the four parameter logistic

models with computerized adaptive testing. Appl. Psychol. Measure. 36, 75–78.

doi: 10.1177/0146621611432862

Zhang, Z., Hamagami, F., Wang, L., Grimm, K. J., and Nesselroade, J.

R. (2007). Bayesian analysis of longitudinal data using growth curve

models. Int. J. Behav. Dev. 31, 374–383. doi: 10.1177/0165025407

077764

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Zhang, Lu, Du and Zhang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Psychology | www.frontiersin.org 18 September 2020 | Volume 11 | Article 212123

https://doi.org/10.1111/1467-9868.00179
https://doi.org/10.1177/0013164494054001016
https://doi.org/10.1348/000711005X38951
https://doi.org/10.1007/BF02294839
https://doi.org/10.1037/0022-3514.78.2.350
https://doi.org/10.1080/01621459.1979.10481632
https://doi.org/10.1080/01621459.1990.10476213
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1177/0146167297235001
https://doi.org/10.1177/0146621610377080
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1007/s11336-002-1040-6
https://doi.org/10.1177/01466210122032064
https://doi.org/10.2224/sbp.2012.40.10.1679
https://doi.org/10.1348/000711009X474502
https://doi.org/10.1016/j.jmp.2017.10.005
https://doi.org/10.1177/0146621613475471
https://doi.org/10.1063/1.1699114
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1007/s00180-011-0282-0
https://doi.org/10.1023/A:1016008004010
https://doi.org/10.3102/10769986024002146
https://doi.org/10.1037/1082-989X.8.2.164
https://doi.org/10.1207/S15327752JP720212
https://doi.org/10.1177/0146621608324023
http://www.mrc-bsu.cam.ac.uk/wp-content/uploads/manual14.pdf
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1080/01621459.1987.10478458
https://doi.org/10.1590/S1415-47572004000400033
https://doi.org/10.1214/aos/1176325750
https://doi.org/10.1080/00273171.2017.1292893
https://doi.org/10.1177/0146621611432862
https://doi.org/10.1177/0165025407077764
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


ORIGINAL RESEARCH
published: 03 June 2021

doi: 10.3389/fpsyg.2021.568348

Frontiers in Psychology | www.frontiersin.org 1 June 2021 | Volume 12 | Article 568348

Edited by:

Salvador Cruz Rambaud,

University of Almeria, Spain

Reviewed by:

Jung Yeon Park,

George Mason University,

United States

Steffen Zitzmann,

University of Tübingen, Germany

*Correspondence:

Jing Lu

luj282@nenu.edu.cn

Jing Yang

yangj014@nenu.edu.cn

Specialty section:

This article was submitted to

Quantitative Psychology and

Measurement,

a section of the journal

Frontiers in Psychology

Received: 01 June 2020

Accepted: 30 April 2021

Published: 03 June 2021

Citation:

Zhang J, Lu J, Yang J, Zhang Z and

Sun S (2021) Exploring Multiple

Strategic Problem Solving Behaviors

in Educational Psychology Research

by Using Mixture Cognitive Diagnosis

Model. Front. Psychol. 12:568348.

doi: 10.3389/fpsyg.2021.568348

Exploring Multiple Strategic Problem
Solving Behaviors in Educational
Psychology Research by Using
Mixture Cognitive Diagnosis Model

Jiwei Zhang 1, Jing Lu 2*, Jing Yang 3*, Zhaoyuan Zhang 4 and Shanshan Sun 5

1 Key Lab of Statistical Modeling and Data Analysis of Yunnan Province, School of Mathematics and Statistics, Yunnan

University, Kunming, China, 2 Key Laboratory of Applied Statistics of MOE, School of Mathematics and Statistics, Northeast

Normal University, Changchun, China, 3College of Mathematics, Taiyuan University of Technology, Jinzhong, China, 4 School
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A mixture cognitive diagnosis model (CDM), which is called mixture multiple

strategy-Deterministic, Inputs, Noisy “and” Gate (MMS-DINA) model, is proposed

to investigate individual differences in the selection of response categories in

multiple-strategy items. The MMS-DINA model system is an effective psychometric

and statistical approach consisting of multiple strategies for practical skills diagnostic

testing, which not only allows for multiple strategies of problem solving, but also allows

for different strategies to be associated with different levels of difficulty. A Markov

chain Monte Carlo (MCMC) algorithm for parameter estimation is given to estimate

model, and four simulation studies are presented to evaluate the performance of the

MCMC algorithm. Based on the available MCMC outputs, two Bayesian model selection

criteria are computed for guiding the choice of the single strategy DINA model and

multiple strategy DINA models. An analysis of fraction subtraction data is provided as

an illustration example.

Keywords: Bayesian inference, cognitive diagnosis, classification, Markov chain Monte Carlo, multiple-strategy

models

1. INTRODUCTION

Multiple classification latent class models, namely cognitive diagnosis models (CDMs), have been
developed specifically to diagnose the presence or absence of multiple fine-grained skills required
for solving problems in an examination (Doignon and Falmagne, 1999; Junker and Sijtsma, 2001;
Tatsuoka, 2002; de la Torre and Douglas, 2004; Templin and Henson, 2006; DiBello et al., 2007;
Haberman and von Davier, 2007; de la Torre, 2009, 2011; Henson et al., 2009; von Davier,
2014; Chen et al., 2015). Compared with the traditional item response theory models, one of
the advantages of multiple classification latent class models is that they can provide effective
measurement of student learning and progression, design better teaching instruction, and conduct
possibly intervention guidance for different individual and group needs.

However, most CDMs only consider the probability that examinees solve a problem in one way.
In fact, examinees may solve a problem in different ways. Fuson et al. (1997) found that the children
at elementary schools used more than one strategy to solve the problem of multi-digit addition and
subtraction. Moreover, in eye-movement studies, Gorin (2007) expounded that the subjects often
used very different cognitive strategies when solving similar reading tasks. More specifically, an
example of a multiple-strategy used by de la Torre and Douglas (2008) in educational research is
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on the analysis of fraction subtraction data including responses
of 2,144 examinees to 15 fraction subtraction items. The
attributes required for the fraction subtraction are as follows:
(a) performing basic fraction subtraction operation; (b)
simplifying/reducing; (c) separating whole number from
fraction; (d) borrowing one from whole number to fraction;
(e) converting whole number to fraction; (f) converting mixed
number to fraction; (g) column borrowing in subtraction (de
la Torre and Douglas, 2008). As an illustration, they use two
strategies to solve 4 4

12 − 2 7
12 . Strategy 1 requires attributes a, b,

c, and d. Strategy 2 requires attributes a, b, and f. The detailed
calculation processes were shown in de la Torre and Douglas
(2008).

de la Torre and Douglas (2008) proposed a multiple strategy-
Deterministic, Inputs, Noisy “and” Gate (MS-DINA) model to
address the problem of fraction subtraction, where the DINA
model (Haertel, 1989; Doignon and Falmagne, 1999; Junker and
Sijtsma, 2001; de la Torre and Douglas, 2004; de la Torre, 2009)
was the most popular and widely used model among various
CDMs which assumed that examinees were expected to answer
an item correctly only when they possessed all the required
attributes. TheMS-DINAmodel is a straightforward extension of
the DINAmodel that allows incorporating multiple strategies for
cognitive diagnosis based on competing assumptions. However,
as de la Torre and Douglas (2008) indicated, although the
simplicity of the MS-DINA model was appealing, it made a
restrictive assumption that the item parameters were same
for different strategies, which implied that the application of
each strategy was equally difficulty. Another limitation of MS-
DINA model is that the joint distribution attributes is expressed
as a function of a higher-order continuous ability. The joint
distribution of the attributes as the most special form of the
saturated model may not be applied to all cases (Huo and de la
Torre, 2014). Moreover, the MS-DINAmodel cannot provide the
information of the strategies selected by the examinees, that is,
in the case that multiple strategies are available, the probability
of each strategy being used cannot be obtained, and the strategy
diagnosis for examinees is an important part in the multiple
strategies cognitive diagnosis.

To maximize the diagnostic results of multiple-strategy
(MS) assessment and overcome the limitation that assumes
identical item parameters across strategies, in this paper, we
propose a cognitive diagnosis framework for analyzing the
MS data. Specifically, the framework describes a psychometric
model that can exploit multiple-strategy information. The
psychometric model is a multiple-strategy model called the
mixture multiple-strategy DINA (MMS-DINA) model. The
details of the framework are laid out in section 2. In section 3,
MCMC algorithm is employed to estimate model parameters.
In section 4, four simulation studies are used to evaluate the
viability of the proposed framework and to simulate true testing
conditions to evaluate the performance of the MCMC algorithm
based on several different criteria. According to the available
MCMC outputs, two Bayesian model selection criteria are
computed to guide the choice of the single strategy DINA model
and multiple strategy DINA models. An empirical example of
fraction subtraction is used to illustrate the application of the

proposed MMS-DINA model in section 5. The final section
concludes the article with discussion and some directions for
further research.

2. MODELS

2.1. Multiple-Strategy DINA Model
The MS-DINA model (de la Torre and Douglas, 2008; Huo and
de la Torre, 2014) is a straightforward extension of the DINA
model, which allows several different strategies of solution for
each item. Let uij denote the observed item response for the
ith examinee to response jth item, where i = 1, 2, . . . ,N, and
j = 1, 2, . . . , J, uij = 1, if the ith examinee correct answer
the jth item, 0 otherwise. The ith examinee mastery attribute
profile, αi, can be represented by a vector of length K, that is,

αi = (αi1,αi2, . . . ,αik, . . . ,αiK)
′

, where

αik =





1, the ith examinee masters the kth attribute;

0, otherwise.

Suppose each item has as many as M distinct strategies that
would suffice to solve it. A strategy is defined as a subset of
the K attributes which could be used together to solve the
item. This may be coded by constructing M different matrices,
Q1, . . . ,QM , and the element in the jth row and kth column of
Qm (m = 1, 2, . . . ,M) is denoted as

qjkm =





1, if item j requires skill k ofmth strategy

0, otherwise

Let

ηijm =
K∏

k=1

α
qjkm
ik

,m = 1, 2, . . . ,M.

The latent variable ηijm denotes whether the examinee i has
the all the required attributes to apply the mth strategy to
the jth item. Let

ηij = max
{
ηij1, ηij2, . . . , ηijm, . . . , ηijM

}
.

The variable ηij is 1 if examinee i satisfies the attribute
requirements of at least one of the M strategies. Therefore, the
item response function of the MS-DINA model is given as

p
(
uij = 1 |αi

)
=
(
1− sj

)ηij g1−ηij
j , (1)

where the parameter sj is the slipping parameter, which indicates
the probability of slipping on the jth item when an examinee
has mastered all the required attributes for at least one of the
strategies. The parameter gj is the guessing parameter, which
denotes the probability of correctly answering the jth item when
an examinee does not master all the required attributes for at least
one of the strategies.
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2.2. Mixture Multiple-Strategy DINA Model
We can see that the MS-DINA model assumes that the slipping
and guessing parameters are the same for different strategies.
The assumption that the application of each strategy has equally
difficulty is too restrictive, as indicated by de la Torre and
Douglas (2004). Then, de la Torre and Douglas (2008) tried
and suggested a variant of the multiple-strategy model in order
to break the limitation mentioned above. However, one of the
issues they discussed is a feasible approach for estimating the
parameters in their model can not be provided due to the
necessary identifiability issues. Inspired by their thoughts, we
propose a multiple-strategy model to overcome the limitation
that assumes identical item parameters across strategies. One
way to solve the problem is to use a discrete mixture model.
Discrete mixture models assume that a data set is composed
of distinct subpopulations of observations that are described
by different parametric distributions (Titterington et al., 1985).
Thus, a mixture multiple-strategy-DINA (MMS-DINA) model is
proposed to allow for different strategies to be associated with
different levels of difficulty. The item response function of the
MMS-DINA model is given by

p
(
uij = 1 |αi

)
=

M∑

m=1

πmpijm =

M∑

m=1

πm

(
1− sjm

)ηijm g
1−ηijm
jm ,

(2)
swhere M is the number of strategy, pijm indicates the correct
response probability that the ith examinee adopts the mth
strategy to answer the jth item, and πm (m = 1, 2, . . . ,M) is a

mixing proportion satisfying

M∑

m=1

πm = 1. In addition to the

specific strategy, mixing proportion parameters are related to the
distribution of α. The average value of latent attributes for all
examinees (α) using strategym isµm. The parameters sjm and gjm
denote the slipping and guessing parameters for themth strategy
to the jth item, respectively. When the number of strategies is
one (i.e., M = 1), it is apparent that the MMS-DINA model in
Equation (2) reduces to the DINA model.

3. BAYESIAN INFERENCES

3.1. Bayesian Estimation
Within a fully Bayesian framework, the Metropolis-Hastings
within the Gibbs sampling algorithm (Geman and Geman, 1984;
Casella and George, 1992; Chib and Greenberg, 1995; Gilks,
1996; Patz and Junker, 1999a,b) is used to estimate the model
parameters. In fact, MCMC methods have been found to be
particularly useful in estimating mixture distributions (Diebold
and Robert, 1994), including mixtures that involve random
effects within classes (Lenk and DeSarbo, 2000). A common
MCMC strategy is to sample a class membership parameter for
each observation at each stage of the Markov chain (Robert,
1996). For the current model, a strategy membership parameter,
ci = 1, 2, . . . ,M, is sampled for each examinee i along with a
latent attribute parameter αi. Then, the item response function

of the MMS-DINA model in Equation (2) can be expressed as

p
(
uij = 1

∣∣αi, sj, gj
)
=

M∑

m=1

p (ci = m)
(
1− sjm

)ηijm g
1−ηijm
jm , (3)

where the latent variable ci takes a value in the set {1, 2, . . . ,M}

for the ith examinee, indicating which type of strategies the ith
examinee uses.

The following prior distributions for π , c, α, s, and g are
used in conjunction with the MMS-DINA model, where c =

(c1, c2, . . . , cN) , s =
(
s1, s2, . . . , sJ

)
and g =

(
g1, g2, . . . , gJ

)
,

π= (π1,π2, . . . ,πM) ∼ Dirichlet (β1,β2, . . . ,βM) ,

ci ∼ Multinominal (1 |π1,π2, . . . ,πM ) ,

µm ∼ Beta (λ1, λ2) ,

[αik |ci = m ] ∼ Bernoulli (µm) ,

sjm ∼ 4-Beta
(
vs, ts, as, bs

)
,

gjm ∼ 4-Beta
(
vg , tg , ag , bg

)
.

Based on the results of de la Torre and Douglas (2004)’s
research, we use the four-parameter Beta distribution as the
prior distribution of slipping and guessing parameters. The four
parameter Beta distribution, 4-Beta

(
v, t, a, b

)
, is a generalization

of the Beta (v, t) distribution, and it has the interval
(
a, b
)
rather

than (0, 1) as its support set. Then, the joint posterior distribution
can be written as

p
(
α, s, g,π |u

)
∝




N∏

i=1

J∏

j=1

M∑

m=1

p (ci = m) f
(
uij
∣∣αi, sjm, gjm

)



[
N∏

i=1

p (αi |µm )I(ci=m)

]

× fprior (µm)




M∏

m=1

J∏

j=1

fprior
(
sjm
)
fprior

(
gjm
)



M∏

m=1

fprior (πm) , (4)

where u = (u1, u2, . . . , ui, . . . , uN)
′

and ui =
(
ui1, ui2, . . . , uiJ

)
.

The MCMC sampling procedure is composed of the
following steps:

Step 1: Sample the mixing proportions π = (π1, sπ2, . . . ,πM)
′

.
Assuming conditional independence between the mixing
proportions and all parameters except the strategy memberships
of examinees, the mixing proportions have a full condition
posterior distribution of the form:

p
(
π
∣∣all other parameters

)
∝ p (c |π ) fprior (π) , (5)
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where nm is the number of examinees using strategy m. This full
conditional distribution is

Dirichlet (β1 + n1,β2 + n2, . . . ,βM + nM) .

Step 2: Sample a strategy membership ci for each examinee,
where i = 1, . . . ,M. Assuming independence of examinees, the
full condition posterior distribution of ci can be written as

p
(
ci = m

∣∣all other parameters
)
∝ p

(
ui
∣∣ci = m,αi, sm, gm

)

p (αi |µm, ci = m )

∝




J∏

j=1

p
uij
ijm

(
1− pijm

)1−uij




K∏

k=1

Bernoulli (αik;µm) πm,

(6)

where ui =
(
ui1, . . . , uiJ

)′
is the item response vector for

examinee i across items, J and K are respectively the numbers
of item and attribute, and Bernoulli (αik;µm) is the Bernoulli
density evaluated at αik with parameter µm.
Step 3: Sample attribute mean µm for each strategy. Assuming
the attribute distribution parameters are independent of all
parameters expect the attribute vectors for examinees in mth
strategy, the full conditional distribution of µm can be written as

p
(
µm

∣∣all other parameters
)
∝

[
N∏

i=1

p (αi |µm )I(ci=m)

]
fprior (µm) ,

(7)
which results in the following full conditional distribution for
µm :

µm ∼ Beta

(
N∑

i=1

K∑

k=1

αikI (ci = m) + λ1, (N × K)

−

N∑

i=1

K∑

k=1

αikI (ci = m) + λ2

)
. (8)

where I (·) denotes the indicator function. I (ci = m) = 1 if
the ith examinee choose the mth strategy to answer the item,
0 otherwise.
Step 4: Sample a latent variable αi for each examinee, where
i = 1, . . . ,N. Assuming independence of examinees, the full
conditional distribution of αi can be written as

p
(
αi

∣∣all other parameters
)
∝ p

(
ui
∣∣ci = m,αi, sm, gm

)

p (αi |µm, ci = m )

∝




J∏

j=1

p
uij
ijm

(
1− pijm

)1−uij




K∏

k=1

Bernoulli (αik;µm) . (9)

Step 5: Sample item parameters sjm and gjm for each strategy and
each item. Assuming conditional independence across items, the
full conditional distribution of sjm and gjm can be written as

p
(
sjm, gjm

∣∣all other parameters
)

∝

[
N∏

i=1

p
(
uj
∣∣ci = m,αi, sjm, gjm

)
]
fprior

(
sjm
)
fprior

(
gjm
)

∝

{
N∏

i=1

[
p
uij
ijm

(
1− pijm

)1−uij
]I(ci=m)

}
[
Beta

(
sjm; vs, ts, as, bs

)]

×
[
Beta

(
gjm; vg , tg , ag , bg

)]
, (10)

where uj =
(
u1j, . . . , uNj

)′
is the item response vector for item j

across examinees, N is the number of examinees.

3.2. Bayesian Model Assessment
Within the Bayesian framework, the deviance information
criterion (DIC; Spiegelhalter et al., 2002) and the logarithm of
the pseudo-marignal likelihood (LPML; Geisser and Eddy, 1979;
Ibrahim et al., 2001) are considered to compare three different
models (the DINA model, the MS-DINA model, and the MMS-
DINA model). As an explanation, we only provide the most
complicated calculation process of DIC and LPML in the MMS-
DINAmodel, and the calculation formulas of DIC and LPML for
the DINA model and MS-DINA model are similar. These two
criteria are based on the log-likelihood functions evaluated at
the posterior samples of model parameters. Therefore, the DIC
and LPML of the MMS-DINA model can be easily computed.
Let � =

(
�ij, i = 1, . . . ,N, j = 1, . . . , J,m = 1, . . . ,M

)
, where

�ijm =
(
αi, sjm, gjm, πm

)′
. Let

{
�(1), . . . ,�(R)

}
, where

�(r) =

(
�

(r)
ijm, i = 1, . . . ,N, j = 1, . . . , J ,m = 1, . . . ,M),

�
(r)
ijm =

(
α

(r)
i , s

(r)
jm , g

(r)
jm ,π

(r)
m

)′
for i = 1, . . . ,N, j = 1, . . . , J,

m = 1, . . . ,M and r = 1, . . . ,R, which denotes rth MCMC
sample from the posterior distribution in (4). The joint likelihood
function of the responses can be written as

L (u |� ) =

N∏

i=1

J∏

j=1

M∑

m=1

πmp
(
uij
∣∣αi, sjm, gjm

)
, (11)

where p
(
uij
∣∣αi, sjm, gjm

)
is the response probability. The

logarithm of the joint likelihood function in (11) evaluated at�(r)

is given by

log L
(
u
∣∣∣�(r)

)
=

N∑

i=1

J∑

j=1

log

M∑

m=1

π (r)
m p

(
uij

∣∣∣α(r)
i , s

(r)
jm , g

(r)
jm

)
.

(12)
Since the joint log-likelihoods for the responses,

log

M∑

m=1

π
(r)
m p

(
uij

∣∣∣α(r)
i , s

(r)
jm , g

(r)
jm

)
, i = 1, . . . ,N, j = 1, . . . , J,

and m = 1, . . . ,M are readily available from MCMC sampling
outputs,
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log

M∑

m=1

π
(r)
m p

(
uij

∣∣∣α(r)
i , s

(r)
jm , g

(r)
jm

)
in (12) is easy to compute.

Now, we calculate DIC as follows

DIC =D̂ev(�)+2PD = D̂ev(�)+2
[
Dev(�)− D̂ev(�)

]
, (13)

where

Dev(�) = −
2

R

R∑

r=1

log L
(
u
∣∣∣�(r)

)
and D̂ev(�)

= −2 max
1≤r≤R

log L
(
u
∣∣∣�(r)

)
.

In (13), Dev(�) is a Monte Carlo estimate of the posterior
expectation of the deviance function Dev(�) = −2 log L (u |� ) ,

D̂ev(�) is an approximation of Dev(�̂), where �̂ is the posterior
mode, when the prior is relatively non-informative, and PD =

Dev(�) − D̂ev(�) is the effective number of parameters. Based
on our construction, both DIC and PD given in (13) are always
non-negative. The model with a smaller DIC value fits the data
better.

LettingGij,max = max
1≤r≤R

[
− log

M∑

m=1

π
(r)
m p

(
uij

∣∣∣α(r)
i , s

(r)
jm , g

(r)
jm

)]
,

a Monte Carlo estimate of the conditional predictive ordinate
(CPO; Gelfand et al., 1992; Chen et al., 2000) is given by

log ̂(CPOij) = −Gij,max

− log

[
1

R

R∑

r=1

exp

{
− log

M∑

m=1

π (r)
m p

(
uij

∣∣∣α(r)
i , s

(r)
jm , g

(r)
jm

)

−Uij,max

}]
. (14)

Note that the maximum value adjustment used in log ̂(CPOij)
plays an important role in numerical stabilization in computing

exp

{
− log

M∑

m=1

π
(r)
m p

(
uij

∣∣∣α(r)
i , s

(r)
jm , g

(r)
jm

)
− Gij,max

}
in (14). A

summary statistic of the ĈPOij is the sum of their logarithms,
which is called the LPML and given by

LPML =

N∑

i=1

J∑

j=1

log ̂(CPOij). (15)

The model with a larger LPML has a better fit to the data.

3.3. The Accuracy Evaluation of Parameter
Estimation
To implement the MCMC sampling algorithm, chains of length
10,000 with an initial burn-in period 5,000 are chosen. Fifty
replications are used in the following simulation studies. Three
indices are used to assess the accuracy of the parameter estimates.
Let ϑ be the parameter of interest. Assume thatM = 50 data sets
are generated. Also, let ϑ̂ (m) and SD(m) (ϑ) denote the posterior

mean and the posterior standard deviation of ϑ obtained from
themth simulated data set form = 1, . . . ,M.
The Bias for parameter ϑ is defined as

Bias (ϑ) =
1

M

M∑

m=1

(
ϑ̂ (m) − ϑ

)
, (16)

and the mean squared error (MSE) for parameter ϑ is defined as

MSE (ϑ) =
1

M

M∑

m=1

(
ϑ̂ (m) − ϑ

)2
, (17)

and the average of posterior standard deviation can be defined as

SD (ϑ) =
1

M

M∑

m=1

SD(m) (ϑ) . (18)

In addition, four criteria are used to assess the accuracy of
the examinee classification methods. These criteria include the
following: (h) the marginal correct classification rate for each
attribute; (t) the proportion of examinees classified correctly
for all K attributes; (v) the proportion of examinees classified
correctly for at least K − 1 attributes; (z) the proportion of
examinees classified incorrectly for K − 1 or K attributes.

4. SIMULATION

4.1. Simulation 1
This simulation study is conducted to evaluate the parameter
recoveries of the proposed model using the MCMC algorithm as
the number of examinees increases. Here, we fix the test length
and the numbers of attributes.

4.1.1. Simulation Designs
The following manipulated conditions are considered. Test
length is fixed at 20, and 2 strategies with 5 attributes are used in
this simulation. The correspondingQmatrix of the 20 items is the
same as de la Torre (2008, p. 605); and the number of examinees,
N = 500, 1,000, and 2,000. Fully crossing different levels produce
3 simulation conditions (1 test length× 3 sample sizes). The true
values of slipping and guessing parameters are set to be 0.3 and
0.1, respectively. Assuming independence among examinees and
independence among attributes, the true value of αik is generated
from Bernoulli (0.5) . We can obtain a N × 5 matrix α, where
α = (α1,α2, . . . ,αi, . . . ,αN)

′

, and the ith row vector αi denotes
the ith examinee’s true cognitive state. The hyper-parameters of
the prior distributions are fixed as follows: β1 = β2 = 0.01, and
λ1 = λ2 = 0.5.We assume the priors of the slipping and guessing
parameters to follow a 4-Beta (1, 2, 0.1, 0.5) based on de la Torre
and Douglas (2004)’s paper. Response data are simulated using
the MMS-DINA model. About 50 replications are considered to
evaluate the parameters recovery in this simulation.

To evaluate the convergence of parameter estimations,
we only consider the convergence in the case of minimum
sample sizes. That is, the number of examinees is 500. Two
methods are used to check the convergence of our algorithm.
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TABLE 1 | Evaluating the accuracy of the item parameters based on different sample sizes in simulation study 1.

Strategy 1 Strategy 2

Sample s1 g1 s2 g2

size ABias AMSE ASD ABias AMSE ASD ABias AMSE ASD ABias AMSE ASD

500 0.101 0.010 0.057 0.078 0.011 0.021 0.100 0.010 0.057 0.101 0.014 0.022

1,000 0.086 0.007 0.048 0.063 0.009 0.018 0.097 0.009 0.049 0.091 0.010 0.018

2,000 0.079 0.006 0.044 0.058 0.008 0.016 0.089 0.008 0.046 0.083 0.006 0.015

Note that the ABias, AMSE, and ASD denote the average Bias, average MSE, and average SD for all item parameters.

One is the “eyeball” method to monitor the convergence by
visually inspecting the history plots of the generated sequences
(Hung and Wang, 2012), and the other method is to use the
Gelman-Rubin method (Gelman and Rubin, 1992; Brooks and
Gelman, 1998) to check the convergence of the parameters. The
convergence of Bayesian algorithm is checked by monitoring
the trace plots of the parameters for consecutive sequences
of 10,000 iterations. The trace plots show that all parameter
estimates converge quickly. We set the first 5,000 iterations
as the burn-in period. In addition, the values of the potential
scale reduction factor R̂ (PSRF; Brooks and Gelman, 1998) are
calculated. We find the PSRF (Brooks and Gelman, 1998) values
of all parameters are less than 1.2, which ensures that all chains
converge as expected.

4.1.2. Recovery Results Based on Minimum Sample

Sizes
As an illustration, we only show the Bias, MSE, and SD for all
of the slipping and guessing parameters based on 500 examinees.
In the case of the strategy 1, the Bias is between 0.083 and 0.110
for the slipping parameters and between 0.053 and 0.096 for the
guessing parameters. The MSE is between 0.007 and 0.019 for the
slipping parameters and between 0.004 and 0.013 for the guessing
parameters. The SD are about 0.057 and 0.020 for the slipping
and guessing parameters. In the case of the strategy 2, the Bias is
between 0.087 and 0.107 for the slipping parameters and between
0.069 and 0.114 for the guessing parameters. The MSE is between
0.007 and 0.011 for the slipping parameters, between 0.006 and
0.018 for the guessing parameters. The SDs are about 0.057 and
0.022 for the slipping and guessing parameters.

We consider the criteria (h) in this simulation study, and
the results show that the marginal correct classification rates
are consistently high for the MMS-DINA model. Based on the
criteria (t) through (z), we find that the MMS-DINA model
consistently classifies examinees correctly high at least K − 1
attributes and produces few severe misclassifications. Thus, the
classification method on the MMS-DINA model is effective.

4.1.3. Item Parameters Recovery Based on Different

Sample Sizes
Given the total test length, when the number of individuals
increases from 500 to 2,000, the average Bias, MSE, and SD for
slipping and guessing parameters decrease. For example, under
the first strategy, the average Bias of all slipping parameters
decreases from 0.101 to 0.079, the average MSE of all slipping

parameters decreases from 0.010 to 0.006, and the average SD
of all slipping parameters decreases from 0.057 to 0.044. The
average Bias of all guessing parameters decreases from 0.078 to
0.058, the average MSE of all guessing parameters decreases from
0.011 to 0.008, and the average SD of all guessing parameters
decreases from 0.021 to 0.016. The evaluation results of the
accuracy of item parameter estimation for different numbers of
examinees are given in Table 1. We find that as the number of
individuals increases, the estimates of item parameters become
more accurate. In summary, the estimation of this algorithm is
effective and accurate under the condition of simulation study 1.

4.2. Simulation 2
This simulation study is conducted to assess the parameter
recoveries of the proposed model using the MCMC algorithm as
the number of items increases. Here, we fix the sample size and
the numbers of attributes.

4.2.1. Simulation Designs
The following manipulated conditions are considered. The
number of examinees is fixed at 1,000, and the number of items,
J = 20 or 30. Two strategies with five attributes are considered
in this simulation. The corresponding Qmatrix of the 20 items is
the same as de la Torre (2008, p. 605), and the Qmatrix of the 30
items is shown in Table 2. Fully crossing different levels have two
conditions (2 test lengths× 1 sample size).

The true values and prior distributions for the parameters
are the same as the simulation 1. To implement the MCMC
sampling algorithm, chains of length 10,000 with an initial burn-
in period 5,000 are chosen. Fifty replications are considered
in this simulation. The following conclusions can be obtained.
Given the total number of examinees, when the number of items
increases from 20 to 30, the average Bias, MSE, and SD for
slipping and guessing parameters increase. For example, for the
first strategy, the average Bias of all slipping parameters increases
from 0.086 to 0.093, the average MSE of all slipping parameters
increases from 0.007 to 0.009, and the average SD of all slipping
parameters increases from 0.048 to 0.051. The average Bias of all
guessing parameters increases from 0.063 to 0.087, the average
MSE of all guessing parameters increases from 0.009 to 0.014, and
the average SD of all guessing parameters increases from 0.018 to
0.023. The evaluation results of the accuracy of item parameter
estimation for different numbers of items are specified in Table 3.
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TABLE 2 | The Q matrix design in simulation 2.

Item Attribute

Strategy A Strategy B

1 1 1 0 0 0 0 1 0 1 1

2 1 0 1 0 0 0 0 1 1 1

3 1 0 0 1 0 0 1 1 0 1

4 1 0 0 0 1 0 1 1 1 0

5 0 1 1 0 0 1 0 0 1 1

6 0 1 0 1 0 1 1 0 0 1

7 0 1 0 0 1 1 1 0 1 0

8 0 0 1 1 0 1 0 1 0 1

9 0 0 1 0 1 1 0 1 1 0

10 0 0 0 1 1 1 1 1 0 0

11 1 1 1 0 0 0 0 0 1 1

12 1 1 0 1 0 0 1 0 0 1

13 1 1 0 0 1 0 1 0 1 0

14 1 0 1 1 0 0 0 1 0 1

15 1 0 1 0 1 0 0 1 1 0

16 1 0 0 1 1 0 1 1 0 0

17 0 1 1 1 0 1 0 0 0 1

18 0 1 1 0 1 1 0 0 1 0

19 0 1 0 1 1 1 1 0 0 0

20 0 0 1 1 1 1 0 1 0 0

21 1 1 0 0 0 1 0 0 0 0

22 1 0 1 0 0 0 1 0 0 0

23 1 0 0 1 0 0 0 1 0 0

24 1 0 0 0 1 0 0 0 1 0

25 0 1 1 0 0 0 0 0 0 1

26 1 0 0 0 0 0 1 1 0 0

27 0 1 0 0 0 1 0 0 0 1

28 0 0 1 0 0 1 0 0 1 0

29 0 0 0 1 0 1 1 0 0 0

30 0 0 0 0 1 1 0 1 0 0

4.3. Simulation 3
This simulation study is conducted to evaluate the recoveries of
the proposed model using the MCMC algorithm as the number
of attributes increases. Here, the sample size and the test length
are fixed.

4.3.1. Simulation Designs
The following manipulated conditions are considered. The
number of examinees is fixed at 1,000, and the number of items
is fixed at 40, that is, J = 40. Two strategies with seven attributes
are considered in this simulation. The corresponding Q matrix
of the 40 items is shown in Table 4. The true values and prior
distributions for the parameters are the same as the simulation
1. To implement the MCMC sampling algorithm, chains of
length 10,000 with an initial burn-in period 5,000 are chosen.
Fifty replications are considered in this simulation. The recovery
results of item parameters are shown in Table 5.

We find that when the number of attributes increases, the
maximums of the average Bias, MSE, and SD for all of the

TABLE 3 | Evaluating the accuracy of the item parameters based on different

numbers of items in simulation study 2.

Strategy 1

s1 g1

Test length ABias AMSE ASD ABias AMSE ASD

20 0.086 0.007 0.048 0.063 0.009 0.018

30 0.093 0.009 0.051 0.087 0.014 0.023

Strategy 2

s2 g2

Test length ABias AMSE ASD ABias AMSE ASD

20 0.097 0.009 0.049 0.091 0.010 0.018

30 0.106 0.012 0.051 0.103 0.016 0.023

Note that the ABias, AMSE, and ASD denote the average Bias, averageMSE, and average

SD for all item parameters.

slipping parameters are 0.085, 0.011, and 0.039, respectively, and
the maximums of the average Bias, MSE, and SD for all of the
guessing parameters are 0.097, 0.019, and 0.021, respectively. In
summary, it is found that the MCMC algorithm can provide
accurate parameters and can be used to guide practice through
the three different simulation studies.

4.4. Simulation 4
In this simulation study, we use the DIC and LPML model
assessment criteria to evaluate model fitting.

4.4.1. Simulation Designs
In this simulation, the number of examinees N = 1, 000 is
considered and the test length is fixed at 20. The Q matrix from
de la Torre (2008, p. 605)’s paper is used in this simulation study.
Three cognitive diagnosis models will be considered. That is,
the DINA model, the MS-DINA model, and the MMS-DINA
model. Therefore, we evaluate the model fitting in the following
three cases.

Case 1: True model: DINA model vs. Fitted model: DINA
model, MS-DINA model, and MMS-DINA model;
Case 2: True model: MS-DINA model vs. DINA model, MS-
DINA model, and MMS-DINA model;
Case 3: True model: MMS-DINA model vs. Fitted model:
DINA model, MS-DINA model, and MMS-DINA model.

The true values and prior distributions for the parameters are the
same as the simulation 1. To implement the MCMC sampling
algorithm, chains of length 10,000 with an initial burn-in period
5,000 are chosen. The results of the Bayesian model assessment
based on the 50 replications are shown in Table 6. Note that the
following results of DIC and LPML are based on the average
of 50 replications.

From Table 6, we find that when the DINA model is the
true model, the DINA model fits the data best as we expected.
The average DIC and LPML for the DINA model are 17605.31
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TABLE 4 | The Q matrix design in simulation 3.

Item Attribute

Strategy A Strategy B

1 1 1 1 0 0 0 0 1 1 0 0 0 0 0

2 0 1 0 0 0 0 1 0 1 0 0 0 0 0

3 0 0 1 0 0 0 0 1 0 0 1 0 0 0

4 1 0 0 1 0 0 0 1 0 0 0 1 0 0

5 0 0 1 0 1 0 0 0 0 0 1 0 0 0

6 0 0 0 0 0 1 0 1 0 0 0 0 0 1

7 1 0 0 0 0 0 1 0 0 0 1 1 1 0

8 0 1 0 1 0 0 0 1 0 0 0 0 0 0

9 1 0 1 0 0 0 0 1 0 1 0 0 0 0

10 0 0 0 1 0 0 0 0 0 1 0 0 0 0

11 1 0 0 0 1 0 0 1 0 0 0 0 1 0

12 0 0 1 0 0 1 0 0 0 0 0 1 0 0

13 0 0 0 0 0 0 1 0 0 0 0 0 1 0

14 0 1 1 0 0 0 0 0 0 0 0 0 0 1

15 1 1 0 0 0 0 0 1 1 1 0 0 0 0

16 0 1 0 0 1 0 0 1 1 0 1 0 0 0

17 0 1 0 0 0 0 0 1 1 0 0 1 0 0

18 0 0 1 1 0 0 0 1 1 0 0 0 1 0

19 0 0 0 0 1 0 0 0 0 1 0 0 1 1

20 1 0 0 0 0 1 0 0 1 1 1 0 0 0

21 0 0 1 0 0 0 1 0 0 1 0 1 0 1

22 0 0 0 1 1 0 0 1 1 0 0 0 0 1

23 0 0 0 1 0 1 0 0 1 1 0 0 0 1

24 0 0 0 1 0 1 0 0 0 1 1 1 0 0

25 0 0 0 1 0 0 1 0 0 0 1 0 1 1

26 0 0 0 0 1 1 0 0 1 1 0 0 0 0

27 0 0 0 0 1 0 1 0 0 1 0 0 1 0

28 0 0 0 0 0 1 1 0 1 0 0 1 0 0

29 1 0 0 0 0 0 0 0 1 0 0 0 0 1

30 1 1 0 1 0 0 0 0 0 1 1 0 0 0

31 1 1 0 0 1 0 0 0 0 1 0 1 0 0

32 1 1 0 0 0 1 0 0 1 0 1 0 0 0

33 1 1 0 0 0 0 1 0 0 0 1 0 1 0

34 0 1 1 1 0 0 0 0 0 0 1 1 0 0

35 0 0 1 0 1 0 1 0 0 0 1 0 1 0

36 0 0 1 0 0 1 1 0 0 1 0 0 0 1

37 0 1 1 0 0 0 1 0 0 0 1 0 0 1

38 0 0 1 1 1 0 0 0 0 0 0 1 1 0

39 0 0 0 1 0 1 1 0 0 0 0 1 0 1

40 0 0 0 1 1 1 0 0 0 0 0 0 1 1

and −9544.81. The second best fitting model is the MMS-
DINA model. The differences between DINA model and MMS-
DINA model in the average DIC and LPML are −2708.68
and 791.37, respectively. The differences between DINA model
and MS-DINA model in the average DIC and LPML are
−3316.56 and 2502.22, respectively. This indicates that the
MMS-DINA model is more sufficient fitting compared with
the MS-DINA model if the data are generated from a simple
DINA model. When the MS-DINA model is the true model,

the MS-DINA fitting the data generated from the MS-DINA
is better than the DINA model and the MMS-DINA model.
The DINA model is worst model. The differences between MS-
DINA model and MMS-DINA model in the average DIC and
LPML are −36.04 and 1474.36, respectively, and the differences
between MS-DINA model and DINA model in the average
DIC and LPML are −4452.13 and 2081.16, respectively. When
the MMS-DINA is the true model, the average DIC difference
between MMS-DINA model and MS-DINA (DINA) model is
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TABLE 5 | Evaluating the accuracy of the item parameters when the examined

attributes increase.

Strategy 1

s1 g1

Test length×Examinee ABias AMSE ASD ABias AMSE ASD

40× 1000 0.077 0.008 0.033 0.095 0.015 0.017

Strategy 2

s2 g2

Test length×Examinee ABias AMSE ASD ABias AMSE ASD

40× 1000 0.085 0.011 0.039 0.097 0.019 0.021

Note that the ABias, AMSE, and ASD denote the average Bias, averageMSE, and average

SD for all item parameters.

TABLE 6 | The results of Bayesian model assessment in simulation 4.

True Model DINA MS-DINA MMS-DINA

Fitted DINA DIC 17605.31 20921.87 20313.99

model LPML −9544.81 −12047.03 −10336.18

MS-DINA DIC 26998.25 22546.12 22582.16

LPML −13805.85 −11724.69 − 13199.05

MMS-DINA DIC 21264.30 21023.73 19944.07

LPML −11851.35 −11393.62 −10126.66

The meaning of the bold values is the model with the best-fitting data among the three

candidate models.

about −1079.66 (−1320.23), and the average LPML difference
between MMS-DINA model and MS-DINA (DINA) model is
about 1266.96 (1724.69). This shows that when the data come
from the mixture multiple strategy model, the DINA model
with a single strategy is obviously ineffective in fitting this
batch of data. The MS-DINA model has better fitting than the
DINA model. No matter which models (DINA and MS-DINA)
generate data, the MMS-DINA model is better fitting model
than the other not true models. The MMS-DINA model is
effective under many conditions of model fitting. In summary,
the Bayesian assessment criterion is effective for identifying
the true models, and it can be used in the subsequent real
data study.

5. EMPIRICAL EXAMPLE ANALYSIS

5.1. Data
To study the applicability of the mixture multiple-strategy DINA
model, we consider a real data including responses by 528
middle school students to answer 15 fraction subtraction items,
which is a subset of the data originally used and described by
Tatsuoka (2002). The Q-matrix design is given in de la Torre and
Douglas (2008) research. Two strategies are considered to solve
the 15 items, where the attribute definition is the same as in the
introduction. The prior distributions described in the simulation

TABLE 7 | MMS-DINA model parameter estimates for the fraction

subtraction data.

Strategy 1 Strategy 2

sj1 gj1 sj2 gj2

Item Estimate SD Estimate SD Estimate SD Estimate SD

1 0.13 0.02 0.12 0.05 0.13 0.01 0.11 0.01

2 0.12 0.01 0.22 0.03 0.14 0.02 0.18 0.02

3 0.10 0.02 0.20 0.02 0.11 0.02 0.12 0.02

4 0.11 0.03 0.18 0.02 0.13 0.02 0.11 0.02

5 0.20 0.01 0.25 0.03 0.13 0.01 0.23 0.01

6 0.21 0.02 0.10 0.01 0.17 0.02 0.12 0.02

7 0.10 0.01 0.13 0.01 0.13 0.02 0.12 0.02

8 0.10 0.02 0.21 0.03 0.12 0.03 0.14 0.03

9 0.10 0.01 0.19 0.02 0.12 0.01 0.14 0.01

10 0.15 0.03 0.17 0.01 0.12 0.02 0.11 0.02

11 0.15 0.01 0.19 0.02 0.11 0.03 0.12 0.03

12 0.16 0.02 0.12 0.03 0.13 0.01 0.11 0.01

13 0.13 0.03 0.15 0.00 0.15 0.02 0.12 0.02

14 0.15 0.01 0.11 0.01 0.13 0.01 0.12 0.01

15 0.17 0.01 0.11 0.02 0.11 0.02 0.11 0.02

section are used for the relevant parameters of the MMS-DINA
model. Parameter estimates are based on averaging the estimates
from 5 parallel chains with randomly chosen starting values. The
standard deviations are obtained by averaging the sample SDs of
the parameters from the separate chains. Each of these parallel
chains is run for 10,000 iterations with the first 5,000 iterations
as burn-in.

5.2. Bayesian Model Assessment
Three comparative models, the DINA model, the MS-DINA
model, and the MMS-DINA model, are used to fit the fraction
subtraction data. The deviance information criterion (DIC;
Spiegelhalter et al., 2002) and the logarithm of the pseudo-
marignal likelihood (LPML; Geisser and Eddy, 1979; Ibrahim
et al., 2001) are computed on the “CODA” R package (Plummer
et al., 2006). Based on the comparable values of the DIC, that
is, 5941.12 for the DINA model vs. 6652.13 (7306.29) for the
MMS-DINA model (MS-DINA model). The LPMLs for the
DINA model, MS-DINA model, and the MMS-DINA model are
−2970.56, −3653.14, and −3326.06, respectively. The second
best fitting model is also the MMS-DINA model. Based on the
above model assessment results, we find that the DINAmodel fits
the data most appropriately. The two multiple strategy models
may show the over-fitting phenomenon, which results in that the
data fitting is not as good as the simple DINAmodel. In addition,
the MMS-DINA model is preferred for this data set because its
relatively flexible formulation do not lead to worse fit compared
with the MS-DINA model.

5.3. Results
The estimated posterior means and the SDs for the MMS-
DINA model are shown in Table 7. The estimates of the slipping
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parameters range from 0.10 to 0.23 and the estimates of the
guessing parameters range from 0.10 to 0.25. For the item 2,
the students choose two strategies to answer the item, in which
the first strategy examines four attributes (attributes 1, 2, 3, and
4), and the second strategy examines two attributes (attributes
1 and 6). We know that the more attributes an item measures,
the lower the probability that the specific examinee will answer
correctly. This is because the examinee can answer the item
correctly if they have mastered all the attributes. If the examinee
answers correctly the item with more attributes, the examinee
is more likely to guess correctly the item. Therefore, for item 2,
the estimate of the guessing parameter under the first strategy is
0.22, which is higher than the estimate of the guessing parameter
under the second strategy is 0.18. Similarly, for item 4, the first
strategy examines five attributes (attributes 1, 2, 3, 4, and 5)
and the second strategy examines three attributes (attributes 1,
5, and 6). The corresponding estimates of guessing parameters
are 0.18 and 0.12, respectively. When the number of attributes
examine under the two strategies is the same, the estimates of
the guessing parameters of the two strategies are basically the
same. For example, four attributes are examined under both
strategies for item 15. The probability of guessing under both
strategies is the same as 0.11. In addition, the three items with
the easiest slipping are items 6, 5, and 15 when using the strategy
1, and the corresponding estimates of the slipping parameters are
0.21, 0.20, and 0.17, respectively. When using the strategy 2, the
three items with the easiest slipping are items 6, 13, and 2. The
corresponding estimates of the slipping parameters are 0.17, 0.15,
and 0.14, respectively.

In order to depict individual tendency of which strategy
the examinees used, we use the probability plots of examinees
choosing different strategies to show the selection tendency of
all 528 examinees. In Figure 1, We find that 432 examinees use
the first strategy to answer all 15 items. Compared to the first
strategy, the number of examinees who adopt the second strategy
is relatively small, only 96 examinees.

6. CONCLUSIONS AND DISCUSSION

The goal of this article is to investigate a discrete mixture
version of multiple-strategy model for cognitive diagnosis. A
unique feature of the mixture model (MMS-DINA model)
presented in this article is its capacity to break the limitation
that assumes identical item parameters across strategies. The
model-based approach presented in this article provides a
natural generalization of the DINA model that allows it to
account for the strategies to have different item parameters for
each item. In the simulation studies, two simulation designs
to examine the accuracy of the algorithm estimation from
three different perspectives. The simulation results indicate that
MCMC algorithm can be used to obtain accurate parameter
estimates. Thus, this research provides researchers a tool that
allows them to explore the practicability of the MMS-DINA
model, which can in turn pave the way for the applications
of CDMs in practical education settings to inform instruction
and learning. In addition, two Bayesian model assessment

FIGURE 1 | The probabilities of examinees choosing different strategies. The

y-axis indicates the probabilities of all examinees using the first strategy to

answer items. 0 indicates that examinees use the first strategy to answer item

with 0% probability, while 1 indicates that examinees use the first strategy to

answer items with 100% probability.

criterion are considered to evaluate the model fitting among
DINA model, MS-DINA model and MMS-DINA model. We
find that when the data are generated from the simple single-
strategy DINA model, the MMS-DINA model fits the data
better than the MS-DINA model. This may be because each
strategy is selected with a certain probability in the MMS-
DINA model, unlike the MS-DINA model, which randomly
chooses one strategy from multiple strategies. In this way, the
Q matrix used in the MS-DINA model may be inconsistent
with the Q matrix of the DINA model that generates data,
resulting in the biased estimates and poor fitting. However,
when the data are generated from MMS-DINA model, the
DINA model is the worst fitting model. The worst fitting
result is attributed to the relatively simple model structure,
which leads to the phenomenon of under-fitting. Finally, we
draw a valuable conclusion that no matter which models
(DINA and MS-DINA) generate the data, the MMS-DINA
is better fitting model than other not true models. However,
in the real data analysis, the DINA model is preferred for
this data set because its relatively simple formulation do not
lead to worse fit compared with the MS-DINA model and
MMS-DINA model.

Classificationmethods based on CDMs play an important role
in cognitive diagnosis, because it is desired in some educational
settings to classify examinees as masters or non-masters of
multiple discrete latent attributes. In simulation study, as an
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illustration, we consider the MMS-DINA model is used in the
situation that 500 examinees answer 20 items, indicating that
it classifies few examinees correctly on all K skills but classifies
high ability examinees almost or exactly correctly with few
severe misclassification.

Because there are a large number of parameters in MMS-
DINA model, we can only rely on MCMC algorithm to estimate
the parameters. However, the computational burden of the
MCMC algorithm becomes intensive especially when a large
number of examinees or the items is considered, or a large
number of the MCMC sample size is used. Therefore, it is
desirable to develop a standing-alone R package associated
with C++ or Fortran software for more extensive large-scale
assessment program. In addition, the convergence of Bayesian
algorithm need to be further investigated in the next studies.
Firstly, for the PSRF value, we use a relatively relaxed 1.2 as a
cutoff for determining the convergence of Bayesian estimation
based on the previous literature (Brooks and Gelman, 1998;
Fagua et al., 2019). In fact, we cannot decide whether 1.2
as a cutoff is really sufficient to determine the convergence.
Educational psychologists have to bemore careful when choosing
1.2 as a cutoff. This is because the effective sample size (ESS)
can be only small, which can result in the summary statistics for
the chain that provide only poor approximations of the Bayesian
estimates. More specifically, the mean of the chain might not
be very close to the expected value of the posterior distribution
from the perspective of Bayesian point estimation. Therefore, in
more substantive applications of the model, a more conservative
PSRF cutoff (e.g., PSRF < 1.05) should ideally be used (Gelman
et al., 2014; Vehtari et al., 2019; Zitzmann and Hecht, 2019).
However, if we use a more conservative criterion for the PSRF,
it is unknown how long it will take to achieve a PSRF of 1.05,
and it will be a great challenge for our MMS-DINA model due
to the large number of unknown parameters to be estimated.
In order to achieve a cutoff of 1.05 for PSRF, we need to run
a longer Markov chains to achieve the required number of ESS
for convergence, but this process is very time-consuming and
requires a large amount of computer memory. These require us
to do a lot of simulation studies in later stages to give the definite
results. Secondly, we also need to further investigate whether
the obtained standard errors are accurate by using the coverage
rate. However, these studies are beyond the purpose of this study
to analyze the different solution strategies of the examinees by
constructing a MMS-DINA model.

There are several avenues for further research on multiple-
strategy models. In this paper, we focus on the comparison of
multiple-strategy models under the most commonly used DINA
model framework, and explore the cognitive process of solving

items using different strategies among examinees, without
focusing on the comparison of other multiple strategy cognitive
diagnostic models, such as MS high-order DINA model, or

some saturated type MS CDMs which are MS generalized DINA
models, or MS loglinear cognitive model and so on. As Li
et al. (2016) point out, it needs to be further explored to find
the most appropriate model to fit data among the numerous
cognitive diagnosis models. Therefore, in the later research, we
will focus on the comparison of different MS CDMs to find
out the advantages, disadvantages, and application scope of each
model. In addition, the different classification methods may be
helpful in both item selection and final examinee classification
(Xu et al., 2003; Cheng, 2009). Also, note that a strategy is
merely defined by the set of attributes required by a particular
approach to solving a problem. One can imagine that a strategy
might instead be determined by a set of attributes as well as a
procedure and sequence for using them. So depending on how
the attributes are defined, this will not always be the case, and
one may consider different methods of using the same attributes.
In addition, in this study, we only analyze two strategies. When
the number of strategies increase, the performance of our MMS-
DINA model needs to be further investigated. For example, we
need to investigate that whether the identification conditions
are satisfied as the number of strategies increases, as well as
whether the parameter estimates are recovered well. In addition,
the computational efficiency may be reduced due to the large
number of parameters with the increased strategies.
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The improving sequence effect suggests that in choices between a rising earning and
any other sequences, participants prefer the rising earning. Recent studies show that
the improving sequence effect also exists in a loan context. As consumers have a
strong preference for falling loan profiles, banks may consider to offer loans in which
the loan repayments concentrate at the beginning of the loan term. In this paper, we
examined the improving sequence effect in context of a car loan with three repayment
plans expressed in temporally reframed prices (TRP). By regressing the evaluation
of loan profiles on the perceived price attractiveness, price complexity, TRP and the
interaction terms, we find that (1) the perceived price attractiveness and price complexity
significantly predict the loan evaluation, and they also explain a significant proportion of
variance in loan evaluation; (2) the TRP effect interacts with the improving sequence
effect. Specifically, with the introduction of TRP, respondents prefer constant profiles
over falling profiles. TRP may explain why level-payment loans are still popular in real
world, though the improving sequence effect suggests otherwise.

Keywords: sequence effect, temporal reframing of price, q-exponential discount model, intertemporal choice,
discounted utility model

INTRODUCTION

Firstly introduced by Samuelson (1937), the Discounted Utility Model (hereinafter, DUM) has
been widely used to evaluate present utility of future rewards. This theory assumes that individuals
evaluate future rewards based on the present value of the rewards by using an exponential discount
function. According to the DUM, individuals would prefer falling sequences over rising sequences
when evaluating positive future rewards, i.e., individuals prefer rewards received in an decreasing
sequence rather than increasing, whilst the total amount of the rewards stays the same. This is
because the rewards in a falling sequence concentrate at the beginning of the period, and thus have
greater present value than that of a rising sequence of rewards with equal total amount. Similarly,
by employing the DUM, we can also conclude that individuals prefer rising sequences over falling
sequences if future outcomes are negative.

However, the preference for improvement contradicts the DUM. Loewenstein and Sicherman
(1991) first found that when choosing between a falling sequence and a rising sequence of
money, whilst the aggregate amount of money of the two sequences was the same, most people
preferred the rising sequence. The preference for sequences of monetary rewards has been studied
extensively. For positive series of future rewards such as incomes, restaurant visits, leisure activities
or other gains, the preference for improvement means that individuals prefer to start with the least
attractive outcome and end with the most attractive outcome than the opposite, i.e., they prefer
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the rising sequence over the falling sequence adding up to
the same total amount (Loewenstein and Prelec, 1991, 1993;
Loewenstein and Sicherman, 1991; Gigliotti and Sopher, 1997;
Thaler, 1999; Matsumoto et al., 2000; Guyse et al., 2002; Duffy
and Smith, 2013; Duxbury et al., 2013). Likewise, for negative
series of outcomes such as pains, annoying noise, discomfort or
other losses, individuals prefer the falling sequence over the rising
sequence (Ariely and Loewenstein, 2000; Ariely and Zauberman,
2000; Langer et al., 2005; Rambaud et al., 2018; Garcia et al.,
2020).

Some researchers examined human preferences for sequences
with respect to loan repayment plans. Hassenzahl (2005) found
a preference for decreasing loan profiles. Participants were
requested to take out a loan for a vacation, and to choose between
a profile starting with a large repayment followed by a series of
small repayments, and a profile ending with the large repayment.
The majority of respondents preferred an earlier large repayment.
Hoelzl et al. (2011) viewed loan repayments as a sequence of
installments that are either falling, rising or constant over time.
The respondents preferred the falling repayment plan over other
options, and they took out loans that contradicted their financial
benefits. Rambaud et al. (2019) also found a strong preference
for falling sequence in car loans, and used the q-exponential
discounting to explain the improving sequence effect.

In real world, marketers continually tried to minimize the
perceived cost of a product. A common practice is the temporal
reframing of prices (hereinafter, TRP), in which the price is
expressed by marketers according to a short period, such as
car insurance for “$1 a day” as opposed to “$365 a year,”
despite of the fact that the physical cash flows of the payments
remain the same. In an initial study, Gourville (1998) referred
to this technique as “pennies-a-day.” Gourville (1998, 1999)
found that consumers’ purchase intentions increased in domains
such as charitable donations, cellular telephone services, and
health clubs memberships, when the prices were expressed in
a per-day form. Gourville (2003) examined the reframed prices
of three periods, and found that both per-day and per-month
forms were preferred to a per-year form. Bambauer-Sachse and
Grewal (2011) examined the role of four moderating variables,
and found that per-day reframed prices were more beneficial
than aggregate prices for high-priced products, especially in
combination with even price endings, a comparatively short time
period, or customers with poor calculation affinity.

However, Bambauer-Sachse and Mangold (2009) showed the
negative effects of TRP on product evaluations. They found
that TRP has positive effects through higher price attractiveness
but negative effects through higher complexity of the price
structure and a stronger feeling of being manipulated by the
marketer. Specifically, price attractiveness positively influences
loan evaluations. Previous studies show that objective price
presentation influences price perceptions, which affect perceived
product quality, value, and willingness to buy (e.g., Dodds et al.,
1991; Grewal et al., 1998; Gourville, 2003). If TRP has a positive
effect on perceived price attractiveness, it then should result in
better evaluations and purchase intentions. In contrast, price
complexity negatively influences loan evaluations. According to
equity theory (Adams, 1965; Martins and Monroe, 1994), the

greater complexity of the temporally reframed price structure
implies that more cognitive input is needed, relative to the
output gained from the product. Thus, more complex price
structures may cause consumers to suspect they are being
manipulated by marketers, prompting comparatively negative
product evaluations. Price complexity therefore captures both
the complexity of price structure and a feeling of being misled
(Bambauer-Sachse and Mangold, 2009; Bambauer-Sachse and
Grewal, 2011).

The main objective of this paper is to examine the improving
sequence effect in a loan context by employing TRP technique.
The repayment plans of the loan are expressed in per-day
forms and per-year forms. We use perceived price attractiveness
to represent the positive effect of TRP, and perceived price
complexity to represent the negative effect of TRP. As Bambauer-
Sachse and Grewal (2011) stated, per-day reframed loan profiles
are perceived as more attractive relative to per-year reframed
loan profiles, and thus may result in better evaluation due to
this positive effect of TRP. However, they are also perceived as
more complex at the same time, and may as well be less preferred
due to the negative effect of TRP. The overall evaluation of a
loan profile depends on the joint role of price attractiveness and
price complexity.

Temporally reframed prices may also interact with the
improving sequence effect. According to the improving sequence
effect, individuals prefer falling over rising and constant
loan profiles. However, some research also detected a strong
preference for constant sequences (e.g., Read and Powell, 2002;
Hoelzl et al., 2011). Read and Powell (2002) related the preference
for constant sequences to “the ease with which money can be
managed.” This explanation is closely related to price complexity
in TRP. A logical deduction is that if the constant loan profile
is considered as an easier way to manage money, it may also
be perceived as less complex than other profiles. Particularly,
marketers can express constant loan profiles using a per-day
loan cost, but they have to use a series of falling or rising per-
day costs when describing falling or rising profiles. A series of
prices are usually considered as more complex than a single
price, and then constant profiles will be preferred due to less
price complexity. Thus, we hypothesize that the effect of TRP
differs across profiles. Specifically, the introduction of the per-
day framings affects price complexity of constant loan profiles
differently than other profiles. This may explain the popularity of
level-payment loans in real-life banking service, as they benefit
from less price complexity. Hence, the main objective of this
study is to explore the interaction effect between the improving
sequence effect and the TRP effect. The foregoing discussion
generates the following testable hypotheses:

H1. Ratings of loan profiles are positively correlated with
perceived price attractiveness, and negatively correlated with
perceived price complexity.
H2. Per-day reframed loan profiles are perceived to be more
attractive than per-year reframed profiles.
H3. Per-day reframed loan profiles are perceived to be more
complex than per-year reframed profiles for falling and rising
profiles, but not for constant profiles.
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H4. An interaction effect exists between the improving
sequence effect and the TRP effect. When loan profiles are
expressed in a per-day form, individuals prefer constant loan
profiles over falling and rising loan profiles.

The organization of this paper is as follows. In Section
“Methodology,” we explain the empirical methodology. In
Section “Results,” we regress scores of loan profiles on price
attractiveness, price complexity, TRP and the interaction terms.
We present our conclusions in Section “Discussion.”

METHODOLOGY

Material
We conducted this experiment in the same way as Hoelzl et al.
(2011) and Rambaud et al. (2019). Participants read scenarios
which described that they worked for a big company and earned
10,000 Yuan per month after taxes (1USD≈7 Yuan or $1≈U7,
U10,000≈$1,400). They will stay in this job for at least three
years. They were asked to consider purchasing a new car that
costs U120,000 (≈$17,000) on credit. Research shows that per-
day framings are more beneficial for products consumed on an
ongoing basis than on a lump sum basis (Gourville, 1999), and
for high-priced products than low-priced products (Bambauer-
Sachse and Grewal, 2011). As cars are expensive and consumed
on a continuous basis, we expected that the respondents would
prefer the per-day reframed car loans. The loan value was the
same as the price of the car with three optional repayment
plans (i.e., constant installments, falling installments or rising
installments), and with regard to two annual interest rates (10
vs. 0%). The loan is three-year term. Both Hoelzl et al. (2011)
and Rambaud et al. (2019) used 5-year loan term in their
experiments, but 3-year term is more common in China’s auto
loan market. The loan was repaid in monthly installments.
The monthly principal repayments of the falling plan were
U5,000 (U60,000/12) in year 1, U3,333.3 (U40,000/12) in year
2, and U1,666.7 (U20,000/12) in year 3. The monthly principal
repayments of the rising plan were U1,666.7 in year 1, U3,333.3
in year 2, and U5,000 in year 3. We adopted similar amortization
schedule as Rambaud et al. (2019) except for constant profiles.
Both Hoelzl et al. (2011) and Rambaud et al. (2019) designed
the constant profiles by fixing the monthly principal repayment.
The monthly payments of such constant profiles are actually a
falling sequence, as the monthly payment of interest falls over
time. In contrast to these studies, our experiment defined the
constant sequence as a level payment loan with identical monthly
payments (principal + interest) over the term of the loan [see
equation (1)].

MPc = L
(

rL(1+ rL)t

(1+ rL)t − 1

)
(1)

where MPc is the constant monthly payment, L is the loan
principal, rL is the loan rate, t is the number of installments of
this loan, t∈[1,2,...,n].

The loan profiles were presented with per-year repayments
or per-day repayments. Although repayments are temporally

reframed, the respondents still pay off the loan on a monthly
basis. A per-year reframed repayment is the sum of the
twelve actual monthly payments in that year, and the per-day
reframed repayment is the per-year reframed repayment/365
(see Supplementary Appendix A).

Participants
144 MBA students (76 males and 68 females) from Northeastern
University (China) with a mean age of 29.48 years took part
in the experiment.

Measures
All items were measured on a seven-point rating scale from 1
to 7. At first, participants were asked to evaluate each loan plan,
where "1" was the score for a loan they would never choose and
"7" was the score for what they considered to be the best plan.
Next, they were required to respond to two questions regarding
the profiles: price attractiveness (“not at all attractive/extremely
attractive”), and price complexity (“not at all complex/extremely
complex”). These scales were derived from previous studies (e.g.,
Bambauer-Sachse and Grewal, 2011; Bornemann and Homburg,
2011; Hoelzl et al., 2011; Shirai, 2018; Rambaud et al., 2019).

Procedure
The questionnaires (see Supplementary Appendix B) were
presented in a paper-pencil-version at Northeastern University
(China), and were distributed in MBA classes. Participants were
asked to assign scores to the three repayment plans at two
interest rates and at per-day or per-year framings. They were
randomly assigned to one of the four experimental groups via
the questionnaires (2 rates × 2 temporal framings), which were
also randomized. We decided the sample size according to
the number of MBA students. Also, we designed our study to
let each group have the same number (36) of participants for
comparison’s sake, thereby resulting in an analytic sample of 144
(36× 4) participants.

Participants were allowed to assign the same score to the three
plans. They were then requested to evaluate price attractiveness
and price complexity of the profiles using a 1 to 7 scale.
At the beginning of the experiment, the researcher explained
the procedure. The experiment took approximately 15 min to
complete. No monetary incentive was given for participation.

Finally, to offset the impact of stylized responses, the order of
presentation of the profiles was counterbalanced across subjects.
Therefore, for those 36 subjects in each group, 12 saw falling,
constant and rising profile from left to right, 12 saw constant,
rising, and falling profile from left to right, while 12 saw rising,
falling and constant profile from left to right.

RESULTS

Interaction Effect Between the Improving
Effect and TRP Effect
Means of Evaluations
Participants evaluated the rising profile as the least preferred
option regardless of the loan rate and temporal framings.
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TABLE 1 | Means of evaluations.

Groups Number of
subjects

Sequence Profiles

Falling Constant Rising

Score PC PA Score PC PA Score PC PA

Per-year, 0% 36 5.19 (1.62) 1.69 (1.43) 4.08 (1.68) 5.64 (1.10) 1.67 (1.76) 4.94 (1.37) 3.81 (1.6181) 1.61 (1.34) 3.14 (1.85)

Per-day, 0% 36 3.86 (1.74) 3.19 (1.97) 4.97 (1.25) 5.75 (1.32) 1.72 (1.45) 5.58 (1.32) 3.14 (1.81) 3.33 (2.11) 4.11 (1.47)

Per-year, 10% 36 5.19 (1.95) 1.56 (0.88) 4.56 (1.65) 4.92 (1.44) 1.64 (1.38) 4.69 (1.77) 3.50 (1.63) 1.81 (1.53) 2.39 (1.73)

Per-day, 10% 36 4.64 (1.62) 2.97 (1.08) 4.86 (1.46) 5.28 (1.26) 1.61 (0.77) 5.25 (1.23) 2.56 (2.08) 2.75 (1.52) 2.92 (2.26)

Score is the overall evaluation of loan profiles, PC is the perceived price complexity, and PA is the perceived price attractiveness (with standard deviations in parentheses).

This result provides additional support for the improving
effect (Loewenstein and Prelec, 1993), and is consistent
with the result of Hoelzl’s (2011) study. The preference
order of per-year reframed profiles at 10% discount rate
(falling > constant > rising) was consistent with the order
deduced from utilizing the DUM and exponential discounting.
However, the preference orders of the other three groups
contradicted the DUM. Table 1 shows the group means of
scores, the perceived price complexity and price attractiveness
of the profiles.

ANOVA Results
We analyzed the means using 3(sequences) ×

2(TRP) × 2(Interest) ANOVAs. Normality is not an issue
for our large sample size. According to central limit theorem, for
sufficiently large samples with size greater than 30 (144 in our
study), the sampling distribution for means is always normally
distributed regardless of a variable’s original distribution. Because
the loan profiles have roughly equal standard deviations, ranging
from 1.3 to 1.9, the assumption of homoscedasticity is also
met. We run the tests in SPSS version 20. The sequence score,
perceived price complexity, and perceived price attractiveness
were used as the dependent variables (a within-subject factor).
The independent variables included the interest rate (10%, or
0%), and TRP (day-framing or year-framing), which are all

TABLE 2 | ANOVA results for evaluation score.

Factor DF1 DF2 F MSbetween MSwithin ηp
2

Sequence 2 264 54.936*** 173.419 3.157 0.282

TRP 1 140 17.433*** 27.502 1.578 0.111

Interest 1 140 3.241 5.113 1.578 0.023

Sequence ×
TRP

2 264 4.748** 14.988 3.157 0.033

Sequence ×
Interest

2 264 3.213* 10.141 3.157 0.022

TRP × Interest 1 140 1.070 1.688 1.578 0.008

Sequence ×
TRP × Interest

2 264 0.794 2.507 3.157 0.006

Columns list the degrees of freedom for the numeration (DF1), and denominator
(DF2), the F ratio (F), the mean-squared between (MSbetween), the mean-squared
within (MSwithin), and the partial eta squared (ηp

2). *p < 0.05, **p < 0.01,
***p < 0.001.

TABLE 3 | ANOVA results for price complexity.

Factor DF1 DF2 F MSbetween MSwithin ηp
2

Sequence 2 264 19.910*** 23.863 1.199 0.125

TRP 1 140 22.467*** 94.454 4.204 0.138

Interest 1 140 0.564 2.370 4.204 0.004

Sequence ×
TRP

2 264 19.238*** 23.058 1.199 0.121

Sequence ×
Interest

2 264 0.141 0.169 1.199 0.001

TRP × Interest 1 140 0.637 2.676 4.204 0.005

Sequence ×
TRP × Interest

2 264 1.207 1.447 1.199 0.009

Columns list the degrees of freedom for the numeration (DF1), and denominator
(DF2), the F ratio (F), the mean-squared between (MSbetween), the mean-squared
within (MSwithin), and the partial eta squared (ηp

2). ***p < 0.001.

TABLE 4 | ANOVA results for price attractiveness.

Factor DF1 DF2 F MSbetween MSwithin ηp
2

Sequence 2 264 58.420*** 152.521 2.611 0.294

TRP 1 140 17.639*** 45.370 2.572 0.112

Interest 1 140 5.475* 14.083 2.572 0.038

Sequence ×
TRP

2 264 0.107 0.280 2.611 0.001

Sequence ×
Interest

2 264 4.631* 12.090 2.611 0.032

TRP × Interest 1 140 1.440 3.704 2.572 0.010

Sequence ×
TRP × Interest

2 264 0.230 0.600 2.611 0.002

Columns list the degrees of freedom for the numeration (DF1), and denominator
(DF2), the F ratio (F), the mean-squared between (MSbetween), the mean-squared
within (MSwithin), and the partial eta squared (ηp

2). *p < 0.05 and ***p < 0.001.

between-subjects factors. A Tables 2–4 show the results of the
ANOVAs. Figures 1A–C show the estimated marginal means.

Figure 1 shows the estimated marginal means of falling,
constant and rising profiles with regard to per-day and per-
year framings. The lines in Figures 1A,B are far from parallel,
suggesting an interaction effect between the improving sequence
effect and the TRP effect, i.e., the improving sequence effect is
different for per-year reframed and per-day reframed profiles.
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FIGURE 1 | Estimated marginal means (day vs. year). (A) Score, (B) price complexity, and (C) price attractiveness.

Table 2 shows that the main effects of Sequence and
TRP are significant, suggesting the existence of the improving
sequence effect and TRP effect. The results also show a
significant Sequence × TRP interaction, and a significant
Sequence × Interest interaction. To identify the locus of
Sequence× TRP interaction, we examined the effect of sequence
for per-day and per-year framings separately. At per-year
framings, F = 21.257, p < 0.001, ηp

2 = 0.23. Pair comparisons
show that the rising profile differs from the falling profile (mean
difference = −1.542, p < 0.001) and the constant profile (mean
difference = −1.625, p < 0.001). The difference between the
falling and constant profile, however, is not statistically significant
(mean difference = −0.08, p > 0.05). In contrast, at per-
day framings, F = 35.923, p < 0.001, ηp

2 = 0.336. All three
profiles are significantly different from each other. The rising
profile differs from the falling profile (mean difference = −1.403,
p < 0.001) and the constant profile (mean difference = −2.667,
p < 0.001). The falling profile differs from the constant profile
(mean difference = −1.264, p < 0.001). In general, the sequence
effects are significant regardless of TRP involved in the profile.
Tables 1–4 show that the rising profile is with the least score
in all conditions, indicating that participants are not financially
rational and the DUM is violated. This result provides additional
support for the improving sequence effect (Loewenstein and
Prelec, 1993), and is consistent with the results of Hoelzl’s
(2011) study and Rambaud et al.’s (2019) study. However,
individuals prefer the constant profile over the falling profile at
per-day framings.

Table 3 shows a significant main effect of TRP, indicating that a
per-day reframed price is generally perceived to be more complex
than a per-year reframed price for falling and rising profiles.
Thus, H3 is supported. There is also a significant interaction
effect between Sequence and TRP for price complexity. We
examined the sequence effect for per-day and per-year framings
separately. At per-year framings, F = 0.138, p > 0.05, ηp

2 = 0.002.
Pair comparisons suggest that individuals perceive all three
profiles as equally complex. Neither the difference between the
rising and falling profile (mean difference = 0.083, p > 0.05),
the difference between the rising and constant profile (mean
difference = 0.056, p > 0.05), nor the difference between the
falling and constant profile (mean difference =−0.028, p > 0.05)

is significant. In contrast, At per-day framings, F = 32.399,
p < 0.001, ηp

2 = 0.316. Pair comparisons show that the constant
profile differs from the falling profile (mean difference = −1.417,
p < 0.001) and the rising profile (mean difference = −1.375,
p < 0.001). But the difference between the falling and rising
profile is not significant (mean difference = 0.042, p > 0.05).
The result indicates that the constant profile is perceived to be
less complex only when the loan profiles are expressed in a per-
day form. This result is consistent with the result of Table 2, as
the falling profile is preferred when the profiles are described in
a per-year form.

Table 4 shows that using a per-day reframed price leads to a
significantly more positive perception of price attractiveness than
using a per-year reframed price, as the main effect of TRP is also
significant. Therefore, H2 is supported. No significant interaction
effect between Sequence and TRP is found.

As Tables 2–4 show significant sequence x TRP interactions
in score and price complexity, we examined the main effect of
TRP for each sequence. Table 5 shows that TRP affects score,
price attractiveness, price complexity of falling and rising loan
profiles. However, TRP does not significantly affect score and
price complexity of constant profiles. This finding is consistent
with the mean values in Table 1, in which the mean score of
constant profiles in a per-day form is not significantly different
from that in a per-year form. However, the mean score of
constant profiles is significantly higher than the mean scores

TABLE 5 | TRP effect for each sequence.

Evaluations DF1 DF2 F

Scores of falling profiles 1 142 10.488***

Scores of constant profiles 1 142 1.166

Scores of rising profiles 1 142 7.249**

PA of falling profiles 1 142 5.573*

PA of constant profiles 1 142 6.241*

PA of rising profiles 1 142 5.584*

PC of falling profiles 1 142 39.337***

PC of constant profiles 1 142 0.004

PC of rising profiles 1 142 23.438***

*p < 0.05, **p < 0.01, ***p < 0.001.
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TABLE 6 | Regression results.

Falling Constant Rising

Coeff. VIF Coeff. VIF Coeff. VIF

Model 1

Attractiveness 0.687 (0.075)*** 1.004 0.571 (0.058)*** 1.005 0.602 (0.062)*** 1.028

Complexity −0.364 (0.074)*** 1.004 −0.062 (0.062) 1.005 −0.271 (0.067)*** 1.028

F (2,141) 51.246*** 49.578*** 50.387***

R2 0.421 0.413 0.417

Model 2

Attractiveness 0.677 (0.084)*** 1.236 0.572 (0.058)*** 1.005 0.640 (0.060)*** 1.059

Complexity −0.361 (0.075)*** 1.029 −0.057 (0.062) 1.013 −0.337 (0.067)*** 1.103

Attractiveness * Complexity −0.017 (0.062) 1.248 0.034 (0.043) 1.009 0.139 (0.037)*** 1.090

F (3,140) 33.967*** 33.182*** 41.505***

1F 0.079 0.641 14.262***

R2 0.421 0.416 0.471

1R2 0.000 0.003 0.054

Model 3

Attractiveness 0.676 (0.114)*** 2.543 0.489 (0.092)*** 2.730 0.864 (0.089)*** 2.769

Complexity −0.210 (0.134)*** 3.668 0.072 (0.077) 1.676 −0.481 (0.111)*** 3.574

Attractiveness * Complexity −0.017 (0.062) 1.405 −0.026 (0.050) 1.472 0.123 (0.036)*** 1.211

TRP −1.079 (0.255)*** 1.356 −0.088 (0.172) 1.124 −0.884 (0.233)*** 1.262

Interest 0.212 (0.222) 1.023 −0.457 (0.165)** 1.027 0.404 (0.222) 1.147

Complexity × TRP 0.028 (0.172) 3.378 −0.423 (0.154)** 2.346 0.352 (0.135)** 3.037

Attractiveness × Interest 0.110 (0.146) 2.097 0.031 (0.117) 2.411 −0.250 (0.115)* 2.525

F (7,136) 19.120*** 17.615*** 25.006***

1F 4.052** 3.249** 9.079***

R2 0.496 0.476 0.563

1R2 0.075 0.063 0.146

*p < 0.05, **p < 0.01, ***p < 0.001. Coeff. is unstandardized regression coefficient (standard error).

of falling and rising profiles when all profiles are described
in a per-day form. A possible explanation is that constant
profiles are positively affected by TRP in terms of higher price
attractiveness just like falling and rising profiles. But unlike
other profiles, when switching from a per-year form to a
per-day form, constant profiles are not perceived to be more
complex, i.e., the falling and rising profiles are exposed to
both positive and negative effects of TRP, while the constant
profile only benefits from the positive effect of TRP. Therefore,
H4 is supported.

Regression Analysis Between Scores of
Loan Profiles, Price Attractiveness and
Price Complexity
As the main focus of this study is to explore the interaction
between the improving sequence effect and TRP effect, we treated
TRP as a between-subjects factor in our experiment and ran
hierarchical multiple regression analysis with one dependent
variable (scores). In model 1, two independent variables were
included: price complexity and price attractiveness. Table 6
shows the results of regression tests (we run the tests in SPSS
version 20.). Coefficients of price attractiveness are positive and
coefficients of price complexity are negative for all loan profiles.
All coefficients are statistically significant except for that of

price complexity for constant profiles. The exception is possibly
because the per-day and per-year framings have close mean
price complexities (see Table 1). These variables accounted for
a significant amount of variance in scores. For falling profiles,
R2 = 0.421, F(2, 141) = 51.246, p < 0.001; for constant profiles,
R2 = 0.413, F(2, 141) = 49.578, p < 0.001; for rising profiles,
R2 = 0.417, F(2, 141) = 50.378, p < 0.001.

In model 2, we centered price complexity and price
attractiveness, and used the multiply as the third independent
variable to examine the moderation. The interaction term
between price complexity and price attractiveness was added to
the regression model. For rising profiles, the interaction term is
significant, and model 2 accounts for significantly more variance
than model 1, 1R2 = 0.054, 1F = 14.262, p < 0.001. This result
shows that the effect of price attractiveness is higher when the
perceived price complexity is high, relative to the effect when the
perceived price complexity is low. However, the interaction term
is not significant for falling or constant profiles.

In model 3, we included TRP and interest rate as independent
variables, TRP = 0 for per-year reframings, TRP = 1 for per-
day reframings, Interest = 0 for 0%, Interest = 1 for 10%.
Complexity × TRP and Attractiveness × Interest interactions
were also included because of the significant interaction effects
(see Tables 2–4). Model 3 accounts for significantly more
variance than model 1 for all profiles (p < 0.01 for falling
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and constant profiles, p < 0.001 for rising profiles). Although
price attractiveness and price complexity captures most of the
changes in scores, TRP and interest rate also influence evaluations
of loan profiles.

In general, scores are positively correlated with the perceived
price attractiveness, and negatively correlated with the perceived
price complexity. The inclusion of covariates such as TRP and
interest rate significantly increase the R2, but price attractiveness
and price complexity account for most of the variance in scores
in all three models. No multicollinearity was detected. Therefore,
H1 is supported.

DISCUSSION

In this study, we examined the preferences for sequences
in context of a car loan when the loan repayment plans
are expressed in temporally reframed prices. Our study is
motivated by the fact that TRP tactic has been widely
used as an effective pricing strategy to improve consumer’s
product evaluations. In general, our results show that TRP
has positive effects through higher price attractiveness but
negative effects through higher price complexity. The results
also support the improving sequence effect. Also, we found an
interaction effect between the improving sequence effect and
TRP. Although TRP tactic improves price attractiveness for all
loan profiles, it affects price complexity differently. Specifically,
the introduction of TRP leads to higher price complexity for
falling and rising loan profiles, but has no significant influence
on constant profiles. Thus, individuals choosing among loan
repayment profiles expressed in per-day forms will prefer
constant profiles.

A number of research papers provided explanations for
preferences in relation to money sequences (e.g., Loewenstein
and Sicherman, 1991; Chapman, 1996, 2000; Read and Powell,
2002). Many studies believe that the violation of the DUM is
caused by the misuse of exponential discount function. They
explained the improving sequence effect by employing discount
functions other than exponential discounting. For example,
hyperbolic discounting (Loewenstein and Prelec, 1993; Overton
and MacFadyen, 1998) and the q-exponential discounting
(Rambaud et al., 2019) were used. Rambaud et al. (2019) stated
that the falling profile is more appealing if participants discount
future loan repayments using the q-exponential discounting
instead of the traditional exponential function. The q-exponential
discount function is known in the deformed algebra inspired
in non-extensive thermodynamics (Tsallis, 1994), and was first
utilized to study intertemporal choices, as proposed by Cajueiro
(2006).

V(L) =

n∑
t=1

MPt/[1+ (1− q)rqt)]1/(1−q) (2)

where t, L stay the same, MPt is the monthly repayment,
V(L) is subject discounted value of the repayments, and rq
and q are discount parameters of the model, t∈[1,2,...,n].
For q→1, the q-exponential discount recovers the classical

exponential discount. For q→0, it yields the simple hyperbolic
discount (Cajueiro, 2006). Hence, with two free parameters, the
q-exponential discount model is a general form of the exponential
discount model and simple hyperbolic model, in which 1-q
indicates the degree of inconsistency (Takahashi et al., 2007). If 1-
q > 0, q-exponential discounting exhibits decreasing impatience,
"the instantaneous discount rate is decreasing according to
the value of q" (Rambaud and Torrecillas, 2013). Because
the discount factor of the q-exponential discount function
between adjacent periods is smaller than between similar periods
that are further away, the discount rate of the q-exponential
discount function is higher than that of the exponential discount
function at the beginning of the loan term, but is lower in the
long run.

The inconsistency level can be calculated as the coefficient
of variation (CV) of the obtained average scores (see Table 1):
1-q (CV) for the four groups (Per-year, 0%, Per-day, 0%, Per-
year, 10%, Per-day, 10%) are 0.1954, 0.3172, 0.2001, and 0.3419,
and all greater than 0. Due to this time inconsistency, the falling
profile is more appealing if participants discount MPt using the
q-exponential function instead of the exponential function, as
the former function results in a small present value. This type
of thinking was labeled as “optimization” by Read and Powell
(2002), because individuals can always maximize their utilities
by choosing the sequence with the highest present value of
positive outcomes (Samuelson, 1937), or lowest present value in
context of a loan.

However, some empirical results contradicts the
“optimization” theory. For example, studies also found the
improving sequence effect in the context of interest-free loans
(Hirst et al., 1992; Wonder et al., 2008; Hoelzl et al., 2011).
As Rambaud et al. (2019) also stated, no discount function
can explain the improving sequence effect if the interest rate
is zero. As the rising profile will always has the least subjective
discounted value regardless of discount function, it should
represent respondents’ best choice. Moreover, individuals
may have limited financial capability to discount future
outcomes. Herrmann and Wricke (1998) found that when
evaluating the attractiveness of auto loan offers, respondents
did not even calculate the product of monthly payment and
number of payments, not to mention using discounted values.
“Optimization” cannot explain the preference pattern in our
result either, as the introduction of TRP does not change the
physical cash flows of the payments, the discounted values of
the per-day and per-year reframed loan profiles are identical
regardless of discount function.

A possible explanation is that consumers do not process price
information completely but use simplifying heuristics (Anderson,
1971; Davis et al., 1986; Bambauer-Sachse and Mangold, 2009).
Therefore, they may evaluate loan profiles on the basis of the
reframed price and predict a lower total cost. Furthermore,
consumers may compare the per-day loan cost to the cost of
a petty cash expense. For example, an advertisement for smart
phones stated “For the Cost of Your Morning Coffee, Never
Be Un-Reachable!.” Likewise, a per-day reframed constant loan
profile can also be compared to a breakfast or a pack of cigarettes.
TRP induces consumers to compare the per-day loan cost to
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a petty cash expense or daily budget, and thus influences their
perceptions of product affordability. For example, the per-day
expressed constant profile at 0% loan rate in our study is only
U109.6 (≈$15) per day, very close to the expense of a good
lunch or a pack of top brand cigarette, easily fitting into many
respondents’ daily budgets. Gourville (1999)’s result shows that
an explicit petty cash comparison (e.g., one’s morning coffee)
can be as impactful as a per-day framing at influencing product
purchase intention. Either an implicit comparison via per-day
framing, or an explicit petty cash comparison will result in
significantly higher perceived values. In the field of sequence
preference, Read and Powell (2002) labeled this type of thinking
as “Ideal consumption,” as people tend to choose the sequence
that they believe as appropriate (Chapman, 1996). Read and
Powell (2002) also found a strong preference for constant
sequences, mostly related to reasons of “convenience” or “the
ease with which money can be managed.” In our study, the per-
day reframed rising or falling profile can only be expressed as a
rising or falling sequence of per-day loan costs, i.e., there are three
different per-day loan costs in three years, making the petty cash
comparison less obvious. Therefore, rising and falling profiles are
perceived as more difficult to manage than constant profiles.

CONCLUSION

Previous studies have shown a consistent preference for the
falling sequence in loan repayment plans, suggesting that banks
need to develop loan schemes in which the repayments are
concentrated at the beginning of the loan term. However, our
results show that consumers follow a comparison-based decision
making process rather than optimization when evaluating
temporally reframed loan offerings. Individuals preferred the
falling over the constant profile only if the interest rate
was 10% and the loan profiles were described in a per-year
form. Otherwise, they preferred the constant profile. Therefore,
regardless of the amply evidence supporting the improving
sequence effect, borrowers may still prefer the level payment
loans, especially when the loan profiles are expressed in a per-
day form.

In general, we found that the improving sequence effect
existed in a loan context and the DUM was violated. However,
the violation of the DUM in the 0% interest condition cannot be
explained by any discount function. Thus, we propose that future
studies in sequence effect may also consider psychological reasons
and comparison-based decision making process. However, there

are limitations that need to be addressed in future studies. First,
the study is limited in external validity in that respondents
are not a representative sample from any particular population
(all MBA students from the same university). Furthermore,
the generalizability of the findings is limited in that the
loan stimuli are entirely hypothetical based on a fictional
job scenario provided to the students. Future research should
design the experiment based on participants’ real-life job and
financial backgrounds.
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In this paper, a new item-weighted scheme is proposed to assess examinees’ growth
in longitudinal analysis. A multidimensional Rasch model for measuring learning and
change (MRMLC) and its polytomous extension is used to fit the longitudinal item
response data. In fact, the new item-weighted likelihood estimation method is not only
suitable for complex longitudinal IRT models, but also it can be used to estimate the
unidimensional IRT models. For example, the combination of the two-parameter logistic
(2PL) model and the partial credit model (PCM, Masters, 1982) with a varying number of
categories. Two simulation studies are carried out to further illustrate the advantages of
the item-weighted likelihood estimation method compared to the traditional Maximum
a Posteriori (MAP) estimation method, Maximum likelihood estimation method (MLE),
Warm’s (1989) weighted likelihood estimation (WLE) method, and type-weighted
maximum likelihood estimation (TWLE) method. Simulation results indicate that the
improved item-weighted likelihood estimation method better recover examinees’ true
ability level for both complex longitudinal IRT models and unidimensional IRT models
compared to the existing likelihood estimation (MLE, WLE and TWLE) methods and MAP
estimation method, with smaller bias, root-mean-square errors, and root-mean-square
difference especially at the low-and high-ability levels.

Keywords: longitudinal model, item-weighted likelihood, mixed-format test, dichotomous item response,
polytomous item response

INTRODUCTION

The measurement of change has been a topic to both practitioners and methodologists (e.g.,
Dearborne, 1921; Woodrow, 1938; Lord, 1963; Fischer, 1973, 1976, 1995; Rasch, 1980; Andersen,
1985; Wilson, 1989; Embretson, 1991, 1997; von Davier and Xu, 2011; Barrett et al., 2015). Item
response theory (IRT), particularly, a family of Rasch models (RM), provides a new perspective
to modeling change. Andersen (1985) proposed the multidimensional Rasch model for modeling
growth in the repeated administration of the same items at different occasions. Embretson (1991)
presented a special multidimensional Rasch model for measuring learning and change (MRMLC)
based on IRT. Embretson’s model postulated the involvement of K abilities for K occasions.
Specifically, the MRMLC assumes that on the first occasion (k = 1), performance depends on initial
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ability. The MRMLC further assumes that on later occasions
(k > 1), performance also depends on k−1 additional abilities,
termed “modifiabilities,” as well as initial ability. Thus, the
number of abilities increases at each time point. The same
items are repeated over occasions in Andersen’s model which
may lead to practice effects or memory effects and result in
local dependency among item responses (von Davier and Xu,
2011), whereas items in Embretson’s MRMLC are not necessarily
repeated. Fischer (2001) extended the MRMLC to polytomous
items by extending the partial credit model (PCM, Masters, 1982).
This paper extends Embretson’s method to measure growth
based on item responses from mixed-format tests composed of
both dichotomous and polytomous items which are frequently
used in large-scale educational assessments, such as the National
Assessment of Educational Progress (NAEP) and the Program for
International Student Assessment (PISA). For polytomous items,
each response category provides information. If categories within
an item are close together, the item information will be peaked
near the center of the location parameter of category. However, if
the categories are spread further apart, each can add information
at a different location. Therefore, the item information for a
polytomous item can have multiple peaks and can be spread over
a broader extent of the ability range. Thus, polytomous items
may contain more information than dichotomous items (e.g.,
Donoghue, 1994; Embretson and Reise, 2000, p. 95; Jodoin, 2003;
Penfield and Bergeron, 2005; Yao, 2009; Christine, 2010; Tao et al.,
2012). How to utilize the potential information difference hidden
in different item types to improve estimates of the latent trait is
the main concern in our study.

As mentioned above, it has been demonstrated that
polytomous items can often provide more information than
dichotomous items concerning the level of estimated latent
trait (Tao et al., 2012). Meanwhile, different items of the same
type may provide different amount of information about latent
trait estimation. To improve the precision of ability estimation,
the aim of this study is to develop an efficient item-weighting
scheme by assigning different weights to different items in
accordance with the amount of information for a certain
latent trait level. As early as 40 years ago, Lord (1980) has
considered to optimal item weights for dichotomously scored
items. Tao et al. (2012) proposed a bias-reduced item-weighted
likelihood estimation method, and Sun et al. (2012) proposed
weighted maximum-a-posteriori estimation, which focused
on differentiating the information gained from different item
types. In their methods, the weights were pre-assigned and
known or automatically selected such that the weights assigned
to the polytomous items are larger than that assigned to the
dichotomous items. They assign different weights to different
item types, instead of assigning different weights to different
items, and items of the same type all have the same weight. For
convenience, we called these weighting methods type-weighted
estimation. However, different items of the same type may
have different information for a certain latent trait level; the
same weights assigned to the same-type items may not be
statistically optimal in terms of the precision and accuracy
of ability estimation due to neglecting the difference in the
individual item contribution. It is expected that assigning a

weight for each item based on its own contribution may increase
measurement precision.

The remainder of this paper is organized as follows. First,
we present the MRMLC and its polytomous extension, and
then the proposed item-weighted likelihood estimation (IWLE)
method and the other two ability estimation methods: Warm’s
(1989) weighted likelihood estimation (WLE) and type-weighted
maximum likelihood estimation (TWLE). Second, we show that
the IWLE is consistent and asymptotically normal with mean
zero and a variance-covariance matrix, and the bias of IWLE is
of order n−1. Third, a simulation study is conducted to compare
the proposed IWLE method with MLE, MAP, WLE, and TWLE.
Fourth, a simulation study is conducted to show IWLE can also be
applied to general unidimensional item response models. Finally,
we conclude this paper with discussion.

MATERIALS AND METHODS

MRMLC and Its Polytomous Extension
The MRMLC assumes that the probability of a correct response
by person l on item i at occasion k can be written as:

P
(
Uilk = 1| (θl1, ..., θlk) , bi

)
=

exp
(∑k

v=1 θlv−bi
)

1+ exp
(∑k

v=1 θlv−bi
) , (1)

where Uilk is the response variable with values in {0, 1},θl1 is the
initial ability of person l on the first occasion v = 1,θl2, ..., θlk
are modifiabilities that correspond to occasion k > 1, and bi is
item difficulty Although the MRMLC may be applied to multiple
occasions, for clarity, the model will be presented with only two
occasions. To simplify the notation, the examinee subscript will
not be shown in the following derivations. Using the abbreviated
notations Pi1 and Pi2 for the probability of a correct item response
for Occasions 1 and 2, respectively,

Pi1 (θ1) =
exp

(
θ1−bi

)
1+ exp

(
θ1−bi

) , (2)

and

Pi2 (θ1, θ2) =
exp

(
θ1 + θ2−bi

)
1+ exp

(
θ1 + θ2−bi

) , (3)

Regarding the polytomous items, we use the abbreviated
notations Pij1 and Pij2 to denote the probability of selecting
response category j (where j = 1, ..., h) of polytomous item i for
Occasions 1 and 2, respectively,

Pij1 (θ1) =
exp

(
jθ1−

∑j
v=1 biv

)
∑h

r=1 exp
(
rθ1−

∑r
v=1 biv

) , (4)

and

Pij2 (θ1, θ2) =
exp

[
j (θ1 + θ2)−

∑j
v=1 biv

]
∑h

r=1 exp
[
r (θ1 + θ2)−

∑r
v=1 biv

] , (5)
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To develop a conditional maximum likelihood estimation
method for item parameters in the learning process model,
Embretson (1991) constructed a data design structure for
item calibration in which item blocks are counterbalanced
in several occasions over groups. This data design matrix is
needed to determine the occasion on which an item appears
for an individual. Every item must be observed on every
occasion, but to preserve local independence, an item should
be administered only once to an individual across the two
occasions. To incorporate Embretson’s design structure, two
groups of examinees are asked to respond to unique items
on two occasions, kig is now defined as a binary variable to
indicate the occasion on which item i is administered to group
g(g = 1, 2).

Specifically,

kig =
{

1, if item i is administered in group g under Occasion 1,
0, if item i is administered in group g under Occasion 2.

Thus, the probability of a response vector u = (u1, ..., un) in
group g, Pg for n items conditional on ability vector (θ1, θ2), item
difficulty vector b and item occasion vector kg , for k1g, ..., kng is
given by:

Pg
(
U = u| (θ1, θ2) , b, kg

)
=

n∏
i=1

[
Pi1(θ1)

ui(1−Pi1 (θ1))
1−ui

]kig
·

[
Pi2(θ1, θ2)

ui(1−Pi2 (θ1, θ2))
1−ui

]1−kig
,

where b =
(
b1, ..., bn

)
.

First, suppose that person l is assigned to a test condition
group g that receives items I. For the following considerations, it
is assumed that some of the items I = {I1, ..., In} are presented at
time point (Occasion) 1, called the “pretest,” denoted I1, and some
items are presented at point time 2, called the “posttest,” denoted
I2 according to Fischer (2001). The nonempty item subsets I1
and I2 may be completely different, may overlap, or may be
identical. For convenience, however, a notation is adopted where
I1 and I2 are considered disjoint subsets of I, I1 =

{
I1, ..., In1

}
and I2 =

{
In1+1, ..., In

}
. However, the cases in which I1 and I2

overlap are implicitly covered; it suffices to let some Ia ∈ I1 have
the same parameters as some Ib ∈ I2. Let us consider mixed-
format tests; specifically, k items I1, ..., Ik are dichotomous and
n1−k items Ik+1, ..., In1 are polytomous in the pretest; for the
posttest, m−n1 items In1+1, ..., Im are dichotomous and n−m
items Im+1, ..., In are polytomous.

Maximum Likelihood Estimator
Now we consider the problem of likelihood estimation of ability
θ = (θ1, θ2). The likelihood function of responses is the product
of two types of likelihood functions given local independence:

L(θ|U) = Ld(θ|U)Lp(θ|U), (6)

where

Ld(θ|U) =

 k∏
i=1

Pi1(θ1)
uiQi1(θ1)

1−ui

 ·
 m∏

i=n1+1

Pi2(θ1, θ2)
viQi2(θ1, θ2)

1−vi

 , (7)

and

Lp(θ|U) =

 n1∏
i=k+1

h∏
j=1

Pij1(θ1)
uij

·
 n∏

i=m+1

h∏
j=1

Pij2(θ1, θ2)
vij

,
(8)

are the likelihood functions of the dichotomous model and
the polytomous model of a mixed-format longitudinal test,
respectively, in which,

Qi1 (θ1) = 1−Pi1 (θ1) , Qi2 (θ1, θ2) = 1−Pi2 (θ1, θ2) .

The response matrix U contains the responses to dichotomous
items ui, vi and the responses to polytomous items uij, vij. The
conventional maximum likelihood estimator (MLE) θ̂ can be
obtained by maximizing the log-likelihood function logL(θ| U).

Weighted Likelihood Estimator
Warm (1989) proposed a weighted likelihood estimation (WLE)
method for dichotomous IRT model. Compared with the
maximum likelihood estimation, Warm’s weighted likelihood
estimation method can obtain less bias estimation. Penfield
and Bergeron (2005) extended this method to the case of
the generalized partial credit model (GPCM). The weighted
likelihood function of a mixed-type model can be expressed as:

w(θ)L(θ|U) = w(θ)Ld(θ|U)Lp(θ|U),

where w(θ) is the weighting function, w(θ) = I
1
2 in one or two

parameter models of IRT. w(θ) is multiplied by the likelihood
function L(θ|U), and the product is maximized. WLE was proved
to yield asymptotically normally distributed estimates, with finite
variance, and with bias of only o

(
n− 1).

Item-Weighted Maximum Likelihood
Estimator
In this section, we consider the following item-weighted
likelihood function:

IWL(θ|U) = IWLd(θ|U) · IWLp(θ|U), (9)

where

IWLd(θ|U) =
k∏

i=1

{
Pi1(θ1)

ui · Qi1(θ1)
1−ui

}wi(θ)
·

m∏
i=n1+1

{
Pi2(θ1, θ2)

vi · Qi2(θ1, θ2)
1−vi

}wi(θ)
,(10)
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and

IWLp (θ | U) =
n1∏

i=k+1


h∏

j=1

Pij1(θ1)
uij


wi(θ)

·

n∏
i=m+1


h∏

j=1

Pij2(θ1, θ2)
vij


wi(θ)

, (11)

are the item-weighted likelihood functions of the dichotomous
model and the polytomous model of a mixed-format longitudinal
test, respectively. Here the weight vector:
(w1(θ), ...,wn(θ)) satisfy wi(θ) > 0 for each i and

n∑
i=1

wi(θ) = 1.

Note that,

wi(θ) =
Ii(θ)
I(θ)

, for all i ∈ {1, 2, ..., n}, (12)

where Ii(θ) is the information function of item i given as:

Ii(θ) =


Pi(θ)Qi(θ),

for dichotomous item i,∑h
j=1 j2Pij(θ)−

(∑h
j=1 jPij(θ)

)2
,

for polytomous item i.

Pi is the probability of a correct response to item i,Qi =

1−Pi, Pij is the probability of selecting response category j (where
j = 1, ..., h) of polytomous item i, and I(θ) =

∑n
i=1 Ii(θ) is

the test information function consisting both dichotomous and
polytomous items (Muraki, 1993). Using the information ratio
of each item to the test at a certain ability level, the weights of
items are determined.

In IRT, the item and test information functions relate to how
well an examinee’s ability is being estimated over the whole ability
scale; they are usually used to calculate the standard error of
measurement and the reliability. Since the test information is a
function of proficiency (or whatever trait or skill is measured)
and the items on the test, the expression of the proposed weights
involves the ability level θ and item characteristic parameters.
The weights may be “adaptive” in the sense that they are allowed
to be estimated based on the ability level and individual test
items. By using the information ratio of each item to the test to
determine the weights, so the more information an item has at
a certain ability level, the larger weight could be assigned to it.
According to the proposed weighting method, the weight for the
polytomous item is then larger than that for the dichotomous
item and the weights for the same type item are different due
to the difference between the amounts of item information. The
weight assigned to each item just indicates its contribution to the
precision for ability parameter estimation. This item weighting
scheme maximizes the information obtained from both different
types of items and different items of the same type and may
lead to more accurate estimates of the latent trait than equally
weighting all items. If each item with same scoring procedure
has same item information at a certain latent trait level, the

weights are equal between them. Hence, the proposed item-
weighted likelihood method may be an extension of the method
proposed by Tao et al. (2012). The item-weighted likelihood
estimator (IWLE) can be obtained by maximizing the item-
weighted log-likelihood function log IWL(θ|U) (for derivation
details, see Supplementary Appendix A). Maximum likelihood
estimator (Lord, 1983) was shown to have bias of O

(
n−1). When

the weights are determined at a certain ability level, with some
assumptions made by Lord (1983), the bias of the item-weighted
maximum likelihood estimation also has bias of O

(
n−1). The

approach and techniques of this derivation were taken from, and
parallel closely, the derivations in Lord (1983). The asymptotic
properties of IWLM can be obtained by generalizing those of
Bradley and Gart (1962) (for more details, see Supplementary
Appendix B).

Type-Weighted Maximum Likelihood
Estimator
In contrast to the MLE, the type-weighted maximum likelihood
estimator (TWLE) yields usable ability estimator for mixed-type
tests composed of both dichotomous and polytomous items (Sun
et al., 2012). The type-weighted likelihood function of a mixed-
type model can be expressed as:

TWL(θ|U) = Ld(θ|U)w̃1(θ)Lp(θ|U)w̃2(θ),

where

w̃1 (θ) =

(
Id (θ)
I (θ)

)α

, w̃2 (θ) =

(
Ip (θ)
I (θ)

)β

,

I = Id + Ip,

Id =
∑k

i=1 Ii +
∑m

i=n1+1 Ii, and Ip =
∑n1

i=k+1 Ii +
∑n

i=m+1 Ii,
are test information of the dichotomous and polytomous model
based on the longitudinal model, respectively. According to
the weighting scheme proposed by Sun et al. (2012), the ratio
parameters α, β determined to make sure that the weight assigned
to the polytomously scored item is larger than that assigned to the
dichotomously scored item. Three steps are needed to determine
the ratio parameters α, β and the two weights. First, we obtain
the ML estimator θ̂0 and take it as the initial estimator. Second,
if Id

(
θ̂0

)
< Ip

(
θ̂0

)
, the two ratio parameters are all equal to

1. Otherwise, we may set α and β to be a small value ε (such
as ε < 0.4) to make sure Id

(
θ̂0

)
< Ip

(
θ̂0

)
. Then, no change is

needed for either α or β if w̃1

(
θ̂0

)
< w̃2

(
θ̂0

)
. Otherwise, we

may increase α in increments of 0.05 or less, or decrease β in
increments of 0.05 or less. We adjust α and β to ensure w̃1

(
θ̂0

)
<

w̃2

(
θ̂0

)
. Third, we maximize the type-weighted log-likelihood

function log TWL(θ|U) to obtain θ̂ with the obtained α and β

values from the above. If w̃1(θ̂) < w̃2(θ̂), the θ̂ is the TWLE.
Otherwise, the ratio parameters should be adjusted continually
basing on the above process until w̃1(θ̂) < w̃2(θ̂ ).

The above three-weighted estimations TWLE, WLE, and
IWLE have different weighting schemes. For TWLE, the larger
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weights are assigned to the polytomous items and the smaller
weights are assigned to the dichotomous items. This method
only assigns different weights to different item types, instead
of assigning different weights to different items, thus items of
the same type all have the same weight. However, different
items of the same type may have different information about
a certain latent trait level; the same weights assigned to the
same-type items may not be statistically optimal in terms of the
precision and accuracy of ability estimation due to neglecting
the difference in the individual item contribution. The proposed
IWLE assigns different weights to different items in accordance
with the amount of the information an item provides at a certain
latent trait level. Using the information ratio of each item to the
test, the weights of items are determined. This improved IWLE
procedure that incorporates item weights in likelihood functions
for the ability parameter estimation may increase measurement
precision. The WLE provides a bias correction to the maximum
likelihood method. The weight function is multiplied by the
likelihood function L(θ|U) in the WLE method, which provides
a correction to the maximum likelihood estimation method by
solving an weighted, log-likelihood equation. The WLE and
IWLE are both consistent and asymptotically normal with mean
zero and a variance-covariance matrix, and the bias of the
estimators is of order n − 1.

SIMULATION STUDY 1

Simulation Design
In this section, the performance of the three weighting methods,
the WLE, the type-weighted likelihood estimation (TWLE), and
IWLE are compared. To investigate the effects of the test-length
and the proportion of dichotomous and polytomous items in
a mixed-format test on the properties of the θ estimators, nine
artificial tests were constructed at each time point, three of them
short (10 items with 7, 5, and 3 dichotomous items), three
medium (30 items with 20, 15, and 10 dichotomous items), and
three long (60 items with 40, 30, and 20 dichotomous items). In
the simulation, the 3 levels of test length were representative of
those encountered in measuring settings using fixed-length tests.
The 3 levels of proportion of dichotomous and polytomous items
(λ = 2, 1, 0.5) were selected, so that we may have a thorough
investigation into the property of different weighting methods.

The item parameters and ability parameters are set as
follows. The difficulty parameters of the dichotomous items
were randomly generated from the standard normal distribution
N(0, 1). The polytomously scored items with four-category were
constructed. The step parameters of each polytomous item were
randomly generated from four normal distributions:

bi1 ∼ N(−1.5, 0.2), bi2 ∼ N(−0.5, 0.2), bi3 ∼ N(0.5, 0.2),
and bi4 ∼ N(1.5, 0.2).

This pattern of location parameters centers items on zero and
thus centers the test on zero. In the simulation, 17 equally
spaced θ1 values were considered, ranging from −4.0 to 4.0
in increments of 0.5. We set 3 values of θ2 (0.6, 0.8, and
1.0) for 3 different initial ability levels: high (value of θ1

larger than 2), medium (value of θ1 between −2 and 2), and
low (value of θ1 smaller than −2), respectively. Thus, a high
initial ability will have low gain, a medium initial ability will
have moderate gain, and a low initial ability will have high
gain. At each level of (θ1, θ2) ,N(N = 1000) replications were
administered for all 9 tests. In each replication, the dichotomous
item responses were simulated according to the MRMLC model
as presented in Equations 2 and 3, and the polytomous item
responses were simulated according to the PCM as presented in
Equations 4 and 5. For the tests containing response patterns
consisting of all correct responses for dichotomous items and
all 4s for polytomous items or all incorrect responses for
dichotomous items and all 4s, the Newton-Raphson algorithm
cannot converge, and thus the likelihood estimators could not
be obtained. These response patterns were removed from the
analysis, and the same item responses were scored using the WLE,
TWLE, and IWLE procedures. In the simulation, the θ in the
weight for each item is taken as θ̂, the MLE of θ. All levels of the
number of items, the proportion of dichotomous and polytomous
items, and the number of examinee were crossed, resulting in 27
conditions of test properties at each time point. For each of the 27
conditions of test properties, the WLE, TWLE, and IWLE were
obtained for each of the response patterns.

Evaluation Criteria
The bias, absolute bias, root mean squared error (RMSE) and root
mean squared difference (RMSD) of the ability estimates were
used as evaluation criteria to examine all estimation methods. The
absolute bias is calculated using Equation 13. In Equation 13, θ
denotes the true ability value and θ̂l the corresponding ability
estimate for the l th replication.

|Bias| = |
1
N

N∑
i=1

(
θ̂l−θ

)
| (13)

RMSE and RMSD are calculated using Equation 14 and 15,
respectively:

RMSE =

√√√√ 1
N

N∑
l=1

(
θ̂l−θ

)2
, (14)

RMSD =

√√√√√ 1
N

N∑
l=1

(
θ̂l−

1
N

N∑
l=1

θ̂l

)2

. (15)

N is the number of replications. In simulation studies, we fix the
number of replications at 1000, that is, N = 1000.

Results of Simulation
The weights of IWLE for 6 dichotomous and 3 polytomous items
are shown in Figures 1, 2 The purpose of these figures is to
give more intuition in terms of our item weighting scheme. The
weights are based on the individual test items and the ability level,
with θ1 ranging from −4.0 to 4.0 and 3 values of θ2(0.6, 0.8,
and 1.0). We can find that the different items are designed with
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FIGURE 1 | The weights of IWLE based on θ1 for dichotomous items (item 1 to 6) and polytomous items (items 7 to 9) in test 1.

FIGURE 2 | Weights based on θ (θ = (θ1, θ2)) at 17 ability levels for dichotomous items (item 1 to 6) and polytomous items (items 7 to 9) in test 2.

TABLE 1 | Correlation between the estimated abilities and the true abilities for all three weighting estimation methods under nine conditions.

Test

N Method 7d+3p 5d+5p 3p+7d 20d+10p 15d+15p 10d+20p 40d+20p 30d+30p 20d+40p

1000 IWLE 0.8685 0.9068 0.9189 0.9478 0.9548 0.9593 0.9663 0.9609 0.9822

WLE 0.8189 0.8378 0.8608 0.9246 0.9375 0.9470 0.9640 0.9606 0.9716

TWLE 0.8001 0.8344 0.8542 0.9216 0.9360 0.9451 0.9612 0.9796 0.9711

n1 d+ n2p means the (n1 + n2) -item test with n1 dichotomous items and n2 polytomous items.

different weights. In addition, the weights assigned to polytomous
items are larger than that of dichotomous items.

Table 1 shows the correlation between the estimated abilities
and the true abilities for all three weighting estimation methods
under nine conditions. The higher degree of correlation obtained
by the IWLE ability estimates indicates that the IWLE produces
better quality ability estimates. The results in Table 1 indicate that
the longer tests provide higher correlation between the estimated

abilities and the true abilities. In the tests with the same length,
higher proportion of polytomous and dichotomous items also
provide higher correlation between the estimated abilities and
the true abilities.

The simulation results of 3 test lengths show similar trends
for the three weighting estimators: WLE, TWLE, and IWLE.
Due to page limitation, only those for the 30-item test are
presented. The complete results can be obtained from the author.
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Tables 2–7 displays the obtained values of absolute bias, and
RMSD for WLE, TWLE, and IWLE at 17 different levels of
initial ability θ1(−4,−3.5,, 3.5, 4) and 3 different levels of growth
θ2(0.6, 0.8, 1) in the simulation scenarios.

Examining these results, the following general trends are
observed. The absolute bias are all nearly to zero for three

estimators when |θ1| < 2, or θ2 = 0.8, but IWLE has a
considerably less absolute bias than the other two estimators
when |θ1| > 2 or θ2 = 0.6 and 1.We note that in the 3 simulation
scenarios the absolute bias of IWLE is slightly larger than that
of WLE at some level of θ1 when |θ1| < 2, but is considerably
smaller than that of WLE at the low and the high levels of

TABLE 2 | Absolute bias and root mean squared difference for WLE, TWLE, and IWLE at 17 different levels of initial ability on 20d+10p.

20d+10p Methods

N = 1000 IWLE WLE TWLE

θ1 Abs.Bias RMSD Abs.Bias RMSD Abs.Bias RMSD

−4.0 0.5615 1.7379 1.1045 3.5101 1.1596 3.5370

−3.5 0.3221 1.3011 0.4678 2.3189 0.5249 2.3495

−3.0 0.1402 0.9134 0.1582 1.3797 0.1783 1.4074

−2.5 0.0342 0.5038 0.0361 0.5118 0.0494 0.5675

−2.0 0.0162 0.4809 0.0130 0.4401 0.0158 0.4931

−1.5 0.0047 0.4384 0.0005 0.4061 0.0054 0.4494

−1.0 0.0045 0.4020 0.0004 0.3821 0.0049 0.4237

−0.5 0.0047 0.3662 0.0119 0.3570 0.0053 0.3943

0.0 0.0092 0.3718 0.0114 0.3433 0.0107 0.3784

0.5 0.0071 0.3707 0.0041 0.3456 0.0083 0.3740

1.0 0.0076 0.3654 0.0039 0.3378 0.0078 0.3670

1.5 0.0179 0.3834 0.0164 0.3675 0.0189 0.4095

2.0 0.0112 0.4025 0.0039 0.3764 0.0169 0.4272

2.5 0.0205 0.4133 0.0187 0.4400 0.0455 0.4926

3.0 0.0190 0.5846 0.0282 0.6321 0.0508 0.6763

3.5 0.2811 1.1297 0.3414 2.0295 0.3876 2.0387

4.0 0.3805 1.3812 0.6268 2.8406 0.6900 2.8470

20 d+ 10p means the 30-item test with 20 dichotomous items and 10 polytomous items.

TABLE 3 | Absolute bias and root mean squared difference for WLE, TWLE, and IWLE at 3 different levels of growth on 20d+10p.

20d+10p Methods

N = 1000 IWLE WLE TWLE

θ2 Abs.Bias RMSD Abs.Bias RMSD Abs.Bias RMSD

1 0.4219 1.9411 1.0146 3.7642 1.0438 3.7842

1 0.2559 1.5026 0.4351 2.5015 0.4801 2.5460

1 0.0907 1.0243 0.1419 1.4468 0.1536 1.4836

1 0.0215 0.6990 0.0296 0.6428 0.0399 0.7196

0.8 0.0145 0.6201 0.0050 0.5732 0.0225 0.6349

0.8 0.0078 0.5947 0.0071 0.5492 0.0101 0.6095

0.8 0.0188 0.5555 0.0144 0.5204 0.0194 0.5697

0.8 0.0055 0.5402 0.0073 0.4952 0.0075 0.5518

0.8 0.0054 0.5365 0.0042 0.5032 0.0100 0.5435

0.8 0.0283 0.5380 0.0236 0.4971 0.0276 0.5439

0.8 0.0056 0.5670 0.0023 0.5213 0.0059 0.5761

0.8 0.0301 0.6168 0.0197 0.5684 0.0330 0.6224

0.8 0.0726 0.7236 0.0504 0.7475 0.0779 0.8220

0.6 0.0782 0.9579 0.1165 1.2499 0.1224 1.3136

0.6 0.2395 1.4137 0.4164 2.3609 0.4538 2.3896

0.6 0.3946 2.2477 0.9091 4.3898 0.9462 4.3887

0.6 0.7397 2.8244 1.7386 5.9953 1.7629 5.9489

20 d+ 10p means the 30-item test with 20 dichotomous items and 10 polytomous items.
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TABLE 4 | Absolute bias and root mean squared difference for WLE, TWLE, and IWLE at 17 different levels of initial ability on 15d+15p.

15d+15p Methods

N = 1000 IWLE WLE TWLE

θ1 Abs.Bias RMSD Abs.Bias RMSD Abs.Bias RMSD

−4.0 0.4756 1.4673 0.8064 2.9131 0.8465 2.9195

−3.5 0.1589 0.8002 0.1603 1.2443 0.2009 1.2795

−3.0 0.0605 0.6537 0.0866 0.9311 0.0965 0.9520

−2.5 0.0104 0.4371 0.0167 0.4411 0.0152 0.4712

−2.0 0.0229 0.4076 0.0266 0.3855 0.0384 0.421

−1.5 0.0163 0.3677 0.0102 0.3535 0.0146 0.3791

−1.0 0.0035 0.3349 0.0057 0.3223 0.0039 0.3425

−0.5 0.0092 0.3433 0.0038 0.3295 0.0093 0.3509

0.0 0.0038 0.3336 0.0015 0.3168 0.0039 0.3375

0.5 0.0038 0.3334 0.0050 0.3199 0.0074 0.3365

1.0 0.0001 0.3306 0.0054 0.3111 0.0038 0.3398

1.5 0.0040 0.3578 0.0003 0.3333 0.0024 0.3553

2.0 0.0160 0.3776 0.0113 0.3611 0.0164 0.3796

2.5 0.0300 0.4917 0.0248 0.5686 0.0348 0.5867

3.0 0.1358 0.6881 0.1997 0.9829 0.1484 1.0048

3.5 0.2461 1.0279 0.2718 1.7932 0.3194 1.8233

4.0 0.4730 1.5333 0.8051 3.1026 0.8775 3.1494

15 d+ 15p means the 30-item test with 15 dichotomous items and 15 polytomous items.

TABLE 5 | Absolute bias and root mean squared difference for WLE, TWLE, and IWLE at 3 different levels of growth on 15d+15p.

15d+15p Methods

N = 1000 IWLE WLE TWLE

θ2 Abs.Bias RMSD Abs.Bias RMSD Abs.Bias RMSD

1 0.3555 0.5993 0.7385 3.0097 0.7626 3.0257

1 0.0864 0.9536 0.1136 1.3520 0.1371 1.4041

1 0.0877 0.7725 0.1020 1.0090 0.1020 1.0338

1 0.0030 0.5857 0.0053 0.6040 0.0049 0.6358

0.8 0.0013 0.5067 0.0063 0.5133 0.0025 0.5528

0.8 0.0103 0.4933 0.0030 0.4738 0.0132 0.5085

0.8 0.0022 0.4669 0.0070 0.4513 0.0029 0.4735

0.8 0.0162 0.4728 0.0123 0.4462 0.0178 0.4820

0.8 0.0087 0.4572 0.0003 0.4324 0.0096 0.4603

0.8 0.0161 0.4787 0.0129 0.4531 0.0164 0.4796

0.8 0.0177 0.4941 0.0178 0.4640 0.0151 0.4906

0.8 0.0407 0.5626 0.0328 0.5328 0.0490 0.5632

0.8 0.0473 0.5864 0.0487 0.5805 0.0476 0.6206

0.6 0.0617 0.8184 0.0618 0.9583 0.0629 0.9855

0.6 0.1824 1.3755 0.3231 2.3313 0.3333 2.3686

0.6 0.3534 2.0572 0.8409 4.0178 0.8563 4.0486

0.6 0.5312 2.8113 1.4114 6.0129 1.4160 6.0353

15 d+ 15p means the 30-item test with 15 dichotomous items and 15 polytomous items.

ability. IWLE consistently displays the level of absolute bias that
is smaller than that of TWLE, especially substantially smaller
than that of TWLE at the low and the high levels of ability. In
addition, the absolute bias of WLE is less than that of TWLE at
the extremes of ability level. However, the changes are observed

when the proportion of the dichotomous and polytomous items
in mixed-type test is changed. With the number of polytomous
items increased, the absolute bias produced by TWLE and WLE
are more similar, even TWLE produces a little larger absolute
bias than WLE at the extremes of ability level. The similar
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TABLE 6 | Absolute bias and root mean squared difference for WLE, TWLE, and IWLE at 17 different levels of initial ability for 10 d+ 20p.

10d+20p Methods

N = 1000 IWLE WLE TWLE

θ1 Abs.Bias RMSD Abs.Bias RMSD Abs.Bias RMSD

−4.0 0.4139 1.4081 0.7042 2.7417 0.8002 2.9845

−3.5 0.1748 0.8937 0.2045 1.4292 0.2356 1.5412

−3.0 0.0547 0.5415 0.0580 0.7017 0.0750 0.7492

−2.5 0.0108 0.4168 0.0155 0.4233 0.0223 0.4351

−2.0 0.0035 0.3677 0.0073 0.3540 0.0047 0.3691

−1.5 0.0020 0.3567 0.0023 0.3459 0.0038 0.3579

−1.0 0.0275 0.3360 0.0237 0.3253 0.0241 0.3421

−0.5 0.0211 0.3281 0.0145 0.3196 0.0200 0.3295

0 0.0039 0.3087 0.0040 0.2968 0.0047 0.3130

0.5 0.0010 0.3030 0.0007 0.2883 0.0018 0.3053

1.0 0.0089 0.2886 0.0054 0.2798 0.0115 0.2903

1.5 0.0066 0.3048 0.0000 0.2963 0.0210 0.3024

2.0 0.0081 0.3392 0.0073 0.3282 0.0109 0.3391

2.5 0.0182 0.3904 0.0234 0.3912 0.0327 0.4157

3.0 0.0205 0.5022 0.0288 0.5837 0.0436 0.5952

3.5 0.1616 0.8334 0.1687 1.3778 0.2042 1.3954

4.0 0.3306 1.2024 0.4565 2.3132 0.5022 2.3207

10 d+ 20p means the 30-item test with 10 dichotomous items and 20 polytomous items.

TABLE 7 | Absolute bias and root mean squared difference for WLE, TWLE, and IWLE at 3 different levels of growth for 10 d+ 20p.

10d+20p Methods

N = 1000 IWLE WLE TWLE

θ2 Abs.Bias RMSD Abs.Bias RMSD Abs.Bias RMSD

1 0.3451 1.5350 0.6859 2.8275 0.7519 3.0801

1 0.1355 0.9881 0.1899 1.4906 0.2130 1.6003

1 0.0359 0.6451 0.0560 0.7772 0.0650 0.8253

1 0.0111 0.5061 0.0188 0.5386 0.0253 0.5580

0.8 0.0057 0.5151 0.0109 0.4972 0.0078 0.5181

0.8 0.0056 0.4737 0.0002 0.4611 0.0095 0.4753

0.8 0.0198 0.4510 0.0196 0.4408 0.0199 0.4593

0.8 0.0162 0.4532 0.0116 0.4398 0.0168 0.4536

0.8 0.0168 0.4385 0.0167 0.4201 0.0169 0.4428

0.8 0.0008 0.4142 0.0028 0.3979 0.0032 0.4152

0.8 0.0276 0.4301 0.0204 0.4293 0.0277 0.4389

0.8 0.0089 0.4325 0.0140 0.4250 0.0119 0.4349

0.8 0.0408 0.5412 0.0375 0.5347 0.0466 0.5510

0.6 0.0123 0.6007 0.0151 0.6038 0.0270 0.6342

0.6 0.1462 1.0715 0.2162 1.7098 0.2350 1.7319

0.6 0.3919 1.8900 0.8098 3.5369 0.8265 3.5700

0.6 0.5514 2.4670 1.3889 5.0994 1.4169 5.1159

10 d+ 20p means the 30-item test with 10 dichotomous items and 20 polytomous items.

change patterns are also observed for RMSD produced by three
estimators. The RMSD of IWLE is slightly larger than that of
WLE at some level of θ1 when |θ1| < 2, but is considerably
smaller than that of WLE and TWLE at the low and the high
levels of ability.

To investigate the performance of the proposed IWLE
method, an simulation study was conducted for the comparison
of the five estimators: MLE, MAP [with a non-informative
prior distribution U(4, 4)] WLE, TWLE, and IWLE under the
above simulation condition. Figures 3–8 show the results of
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FIGURE 3 | RMSE of the five θ1 estimation methods MLE, MAP, IWLE, WLE, and TWLE for 20d+10p.

FIGURE 4 | RMSE of the five θ1 estimation methods MLE, MAP, IWLE, WLE, and TWLE for 15d+15p.

FIGURE 5 | RMSE of the five θ1 estimation methods MLE, MAP, IWLE, WLE, and TWLE for 10d+20p.
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FIGURE 6 | RMSE of the five θ2 estimation methods MLE, MAP, IWLE, WLE, and TWLE for 20d+10p.

FIGURE 7 | RMSE of the five θ2 estimation methods MLE, MAP, IWLE, WLE, and TWLE for 15d+15p.

FIGURE 8 | RMSE of the five θ2 estimation methods MLE, MAP, IWLE, WLE, and TWLE for 10d+20p.
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RMSE calculated from 30-item test in the following simulation
scenarios:

(1). 30-item test includes 20 dichotomous items and 10
polytomous items (20 d+ 10p).

(2). 30-item test includes 15 dichotomous items and 15
polytomous items (15 d+ 15p).

(3). 30-item test includes 10 dichotomous items and 20
polytomous items (10 d+ 20p).

The RMSE presented in Figures 3–5 show that among the
five θ1 estimation methods, IWLE has a slight large RMSE when
|θ1| < 2, but is considerably smaller than that of MLE, MAP, WLE
and TWLE at extreme levels of the latent trait. The RMSE of WLE
is very similar to that of MLE and TWLE. EAP has lower RMSE
than MLE, WLE, TWLE, and IWLE in the middle of the ability
range because of the shrinkage. The RMSE plotted in Figures 6–8
shows the similar change patterns for θ 2.

The proposed IWLE method outperforms the MLE, MAP,
WLE and TWLE in terms of controlling the absolute bias, RMSE,
and RMSD at the low and the high levels of ability, but has
a slight large RMSE and RMSD in the middle range of the
ability scale.

In general, test length had a dramatic impact on the relative
performance of the five estimators. We can observe the strongest
differences between the five estimators are obtained when the
test length is short. The absolute bias, RMSE, and RMSD of five
estimation methods have a slightly decrease with the length of test
increased. The proportion of dichotomous and polytomous items
in a mixed-format test appears to affect the absolute bias, RMSE,
and RMSD of five estimation methods.

SIMULATION STUDY 2

When we only care about the ability of the examinee without
considering the ability growth at multiple time points, the

FIGURE 9 | RMSE of the two θ estimation methods MLE and IWLE for 10p+20d.

FIGURE 10 | RMSE of the two θ estimation methods MLE and IWLE for 15p+15d.
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FIGURE 11 | RMSE of the two θ estimation methods MLE and IWLE for 20p+10d.

unidimensional IRT models are the focus of many educational
psychometrists. In fact, our IWLE method can’t only be used
to analyze multidimensional IRT models, but also can be
implemented for unidimensional IRT models. In this simulation
study, we evaluate the accuracy of the IWLE method in the
unidimensional models.

The proposed IWLE method is applied to the unidimensional
IRT models for mixed-format test that is the combination of the
two-parameter logistic model and the partial-credit model. We
consider the following item-weighted likelihood function:

IWL(θ|U) = IWLd(θ|U) · IWLp(θ|U),

where

IWLd(θ|U) =
k∏

i=1

{
Pi(θ)ui · Qi(θ)

1−ui
}wi(θ)

,

and

IWLp(θ|U) =
24n∏

i=k+1

h∏
j=1

;
{
Pij(θ)uij

}wi(θ),

Pi(θ) is determined by dichotomously scored items; Pik(θ) is
determined by polytomously scored items. Here the weight wi(θ)
assigned to item i is defined as equation 4, and

∑n
i=1 wi(θ) = 1.

The 3 levels of test length (10 items, 30 items and 60 items)
and the 3 levels of proportion of dichotomous and polytomous
items (λ = 2, 1, 0.5) were selected. The item parameters were
generated similar to simulation 1, and 17 equally spaced θ1 values
were considered, ranging from−4.0 to 4.0 in increments of 0.5.

The simulation results of three test lengths show similar
trends. The proposed IWLE method outperforms the MLE in
terms of the absolute bias, RMSE and RMSD at the low and
high levels of ability. However, the IWLE has a slight large
absolute bias, RMSE and RMSD in the middle range of the
ability scale compared with the MLE. Figures 9–11 show the
results of RMSE calculated from 30-item test. According to the
simulation results, we find that the IWLE can also be applied

to the general unidimensional IRT models for tests composed of
both dichotomous and polytomous items.

DISCUSSION AND CONCLUSION

In this study, an improved IWLE procedure that incorporates
item weights in likelihood functions for the ability parameter
estimation is proposed. The weights may be “adaptive” in the
sense that they are allowed to be estimated with the ability level
and individual test items. We assign different weights to different
items in accordance with the amount of the information an item
provides at a certain latent trait level. Using the information ratio
of each item to the test, the weights of items are determined.
We also give the rigorous derivations for asymptotic properties
and the bias of IWL estimators. The results from the simulation
study clearly demonstrate that the proposed IWLE method
outperforms the usual, MLE, MAP, WLE and TWLE in terms
of controlling absolute bias, RMSE, and RMSD especially at low
and high ability levels. Latent trait estimation is one of the most
important components in IRT, but when an examinee scores
high (or low) in a test, we known that the examinee is high (or
low) on the trait but we do not have a very precise estimate of
how high (or low). It could be considerably higher (or lower)
than the test instrument’ scale reaches. In the case, improving
latent trait estimation especially at extreme levels of ability scale
is worthy of attention.

Improving latent trait estimation is always important in
longitudinal survey assessments, such as the Early Childhood
Longitudinal Study (ECLS) and the PISA (von Davier and Xu,
2011), which aims at tracking growth of a representative sample
of the target population over time. The proposed weighting
scheme also can be applied in the general unidimensional item
response models. Other issues should be further explored. First,
the proposed weighting scheme could be generalized to other
application settings where latent ability needs to be estimated
for each person such as computerized adaptive testing (CAT).
Second, although the Rasch model and the PCM are commonly

Frontiers in Psychology | www.frontiersin.org 13 July 2021 | Volume 12 | Article 58001557

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-580015 July 21, 2021 Time: 16:32 # 14

Xue et al. Item Weighted Likelihood Measuring Growth

used in practical tests, there are other more general item response
models, for instance the three-parameter logistic (3PL) model
and the generalized partial credit model. Therefore, it is worth
studying the extension of the IWLE to these more complex
models, with different test lengths and sample sizes. Third,
more than two occasions can be considered in longitudinal
study, so the proposed weighting method can be generalized
to deal with more general situations. Finally, the proposed
IWLE method can be extended to multidimensional longitudinal
IRT model.

From a practical point of view, we would not use a
test that is way too difficult or way too easy items. This
is because each item should have a certain discrimination
to distinguish the examinees with different ability levels. In
fact, the reliability and validity of the test items are pre-
calibrated before the actual assessment. When the examinees
answer the pre-calibrated test, some examinees answer all items
correctly while others do not answer all items correctly. In
this case, the extreme ability estimator will occur. Thus, the
extreme ability occur because there are large differences between
examinees’ abilities rather than items being too difficult or too
easy (the test items are pre-calibrated, reliable and valid). In
addition, the examinees were obtained through a multistage
stratified sample in the actual assessment. In the first stage,
the sampling population is classified according to district, and
schools are selected at random. In the second stage, students
are selected at random from each school. Therefore, in this
case, there are some extreme cases of the examinees’ ability.
For example, some examinees with high abilities answer all
the items correctly, or some examinees with low abilities
answered all the items incorrectly. Traditional methods (WLE
and TWLE) fail to estimate these extreme abilities. However,
our IWLE method is more accurate in estimating these

extreme abilities. This is the main advantage of our item-
weighted scheme.
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