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Editorial on the Research Topic

Innovative Imaging Techniques in Preclinical Models of Neurodegenerative Diseases

Neurodegenerative disorders have been forecast as the next global pandemic. Besides the growing
understanding of the basic molecular mechanisms associated to neurodegenerative diseases
(NDDs), the current number of disease-modifying treatments remains quite limited. Considering
the high social impact among such diseases, technical resources have been focused on the
investigation of early biomarkers aiming to maximize the treatment exposures and improve the
patient’s prognosis.

Improvements in imaging systems and more precise genetic manipulations in biological models
are possible new routes toward quantifying diseases progression or developing disease-modifying
therapy. In invertebrate models, such as the fruit fly, the compound eye is a premier experimental
system for modeling human neurodegenerative diseases. The disruption of the retinal geometry has
been historically assessed using time-consuming and poorly reliable techniques such as histology
manual counting. Recent semiautomated quantification approaches rely either on manual region-
of-interest delimitation or automated methods to estimate the extent of degeneration. The work
from Diez-Hermano et al. presents a fully automated classification pipeline of bright-field images,
based on orientated gradient descriptors and machine learning (ML) techniques. As an example,
the author’s initial region-of-interest (ROI) extraction was performed applying image classification
algorithms by different ML approaches on independent datasets (Diez-Hermano et al.). Therefore,
the authors proved ML as a useful tool to combine imaging techniques in the early detection of
AD and screen for mild cognitive impairment (MCI). On the other side, the work of Pan et al.
used convolutional neural network (CNN) taking advantage to its excellent efficiency in automated
feature learning from a variety of multilayer perceptrons. As such, ensemble learning (EL) has
shown robustness as a learning-system performance via multi-model integration. Therefore,
combining CNN and EL on a set of MRI images, the authors were able to identify subjects with
MCI or AD (Pan et al.).

Understanding non-humanmicrostructural brain alterations in the course of neurodegenerative
diseases (NDDs) has substantially improved by incorporating non-invasive imaging techniques
such as MRI. The development of diffusion-weighted sequences and techniques, such as
diffusion tensor imaging (DTI) is currently integrated into MRI medical systems. DTI-
based studies also allow the application of a variety of animal models for the study
of NDDs (Müller et al.). Further, microscopic tissue examination can also be achieved
by DTI at high fields ultra-high fields (Gatto et al., 2018). In a rodent (rat) model
of Duchenne muscular dystrophy (DMD), investigators used DTI and high-resolution
Localized MR spectroscopy (MRS) to study the brain and temporalis muscle structure in-
vivo. Imaging findings of this study indicated a disturbed motor and sensory signaling,
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resulting in dysfunctional neurotransmission, as well unstable
osmoregulation in this genetically modified preclinical brain
tissue (Xu et al.). On the other hand, DTI and 18F-
Fludeoxyglucose (FDG) PET were also used to evaluate the
effects on morphology and glucose utilization levels during
pulsed Focused Ultrasound (pFUS) and microbubbles (MB)
sessions in the rat cortex and hippocampus, which can be used
as the benchmarks for the future study of NDDs (Tu et al.).
In the line of more complex diffusion model, Diffusion Basis
Spectrum Imaging (DBSI) was applied to assess axonal loss
after transient dexamethasone treatment in optic neuritis (ON)
of mice models experimental autoimmune encephalomyelitis
(EAE) related to multiple sclerosis (MS). More important, their
finding supported the potential use of DBSI as an in vivo imaging
outcome measure to assess NDDs related pathologies (Lin et
al.). Further on, DTI has been also a valuable tool to study
the link between tauopathies (AD) and traumatic brain injury
(TBI) n P301Lmutant-tau-transgenic-pR5-mice. In combination
with immunohistochemistry techniques, the results showed that
different parameters from the DTI signal were associated with the
co-occurrence of tau-phosphorylation and glial activity following
TBI (Soni et al.). Recently, X-ray phase-contrast tomography
(XPCT), has contributed to the additional description of high-
resolution 3D imaging features in AD and MS animal models’
vascular tissues (Palermo et al.).

A more comprehensive approach has been the combination
of biological models and multi-modal imaging modalities
in the investigation of neurological diseases. Multimodal
techniques, including magnetization transfer (MT), DTI, and
relaxation along a fictitious field (RAFF) in the rotating
frame of rank 4 (RAFF4), were used to detect the changes
in the myelin content and microstructure (myelin sheets
modifications by gliosis) during the remyelination phase
by lysophosphatidylcholine (LPC) induced demyelination in
the corpus callosum of rats (Holikova et al.). Moreover,
multiparametric approaches have been used to assess different
aspects of demyelinating (MS) disease in clinical settings (Mustafi
et al., 2019).

Preclinical animal models are a fundamental link between
the discovery of basic molecular mechanisms from single-cell

organisms and full-scale clinical trials. From the acceleration
of pharmacological outcomes to the evaluation of feasibility in
revolutionary gene therapies, animal models have been making
it possible to improve clinical image acquisition procedures
and the setup of more comprehensive neuromonitoring
protocols. As an example, Parkinson’s Disease (PD), a
major neurodegenerative disease, is characterized by massive
degeneration of dopaminergic neurons in the substantia nigra
pars compacta, alpha-synuclein-containing Lewy bodies, and
neuroinflammation. In these cases, magnetic resonance (MR)
imaging plays a crucial role in the diagnosis and monitoring of
disease progression and treatment. A variety of MR methods are
available to characterize neurodegeneration and other disease
features such as iron accumulation and metabolic changes in PD
animal models (Petiet). Neuroimaging changes were also been
characterized in a PD patient with excessive daytime sleepiness
(PD-EDS), revealing regional hypertrophy of the striatum

in the cohort, concluding that this early bioimaging marker
would provide valuable information when investigating PD-EDS
(Gong et al.).

In this Research Topic, we found that the contribution of
new computational approaches, combined imaging techniques,
and animal models keeps expanding the neuroscience field
and the discovery of new imaging biomarkers of NDDs.
Therefore, we provide the reader with a wide-ranging overview
of current innovative imaging techniques that are sensitive
to novel biological paradigms and animal models to aid
translational research in the diagnosis and monitoring of
patient populations suffering from these devastating illnesses.
Ultimately, this article collection demonstrates the expanding
integration of artificial and biological models to improve
translational and therapeutical approaches among these exciting
and significant fields.
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Stage Parkinson’s Disease With
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Introduction: Excessive daytime sleepiness (EDS) is one of the common and
burdensome non-motor symptoms of Parkinson’s disease (PD). However, the underlying
neuropathology mechanism in PD patients with EDS (PD-EDS) remains unclear. The
present study aims to delineate potential locations of structural alteration of subcortical
regions in early stage and drug-naïve PD-EDS.

Methods: The study had 252 patients with PD and 92 matched healthy controls (HC).
EDS was estimated with the Epworth Sleepiness Scale, with a cutoff of 10. Ultimately,
59 patients were considered as PD-EDS. The remaining 193 were PD patients without
EDS (PD-nEDS). FMRIB’s Integrated Registration and Segmentation Tool (FIRST)
was employed to assess the volumetric and surface alterations of subcortical nuclei
in PD and PD-EDS.

Results: Volumetric analyses found no difference in the subcortical nucleus volume
between PD and HC, or PD-EDS and PD-nEDS groups. The shape analyses revealed
the local atrophic changes in bilateral caudate and right putamen in patients with PD. In
addition, the hypertrophic changes were located in the right putamen and left pallidum
in PD-EDS than in PD-nEDS.

Conclusion: Our findings revealed the regional hypertrophy of the striatum in PD-
EDS. Our results indicate that local hypertrophic striatum would be a valuable early
biomarker for detecting the alteration in PD-EDS. The shape analysis contributes
valuable information when investigating PD-EDS.

Keywords: Parkinson’s disease, excessive daytime sleepiness, striatum, shape analysis, structure

INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disorder associated with
both motor and numerous non-motor symptoms (De Lau and Breteler, 2006). Excessive daytime
sleepiness (EDS), a non-motor feature, is described as inappropriate and undesirable sleepiness
during waking hours, affecting 16–50% of patients with PD (Knie et al., 2011). As EDS has a
significant negative impact on the quality of life and driving safety (Meindorfner et al., 2005;
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Chahine et al., 2017), it is quite essential to fully understand the
neurobiological mechanism underlying this symptom.

Although studies have shown associations with EDS
symptoms in PD including non-tremor dominant phenotype,
autonomic dysfunction, depression, anxiety, and disorders of
rapid eye movement sleep behavior (Simuni et al., 2015; Amara
et al., 2017; Wen et al., 2017), the neural mechanism of EDS
in PD remains poorly understood. The lack of correlation
between EDS and disease severity of PD [Hoehn & Yahr stage
(H&Y)] has led to the notion that the EDS might be associated
with PD-specific pathology (Yousaf et al., 2018b). However,
in vivo neuroimaging quantification has been used to detect
early pathophysiological changes in PD with EDS (PD-EDS),
potentially serving as a biomarker for disease progression and
treatment monitoring (Chondrogiorgi et al., 2016; Wen et al.,
2017; Ashraf-Ganjouei et al., 2019). Molecular imaging studies
using positron emission tomography (PET) and single-photon
emission computed tomography (SPECT) implicate EDS with
dopaminergic dysfunction in subcortical regions (Happe et al.,
2007; Pagano et al., 2016). However, molecular imaging is
expensive and radioactive, so it would not be a conventional
and regular scan. T1-weighted magnetic resonance imaging
(MRI) is one of the most widely used sequences in neuroimaging
studies; it can be acquired in all scanners and is commonly used
in conventional clinical MRI protocols. Presently, three studies
have used the whole-brain gray matter analysis and revealed
widespread volume reductions in the frontal, occipital, temporal,
and limbic lobes in PD patients with EDS (PD-EDS) (Gama et al.,
2010; Kato et al., 2012; Chondrogiorgi et al., 2016). However, for
the subcortical nucleus, these studies have contradictory findings,
reporting both increased and decreased gray matter volumes
(GMs) in the hippocampus and parahippocampus in patients
with PD-EDS. One reason for inconsistent findings might be the
small sample size and antiparkinsonian medication in previous
studies. Another important factor might be attributed to the
limitation of the voxel-based morphometry (VBM) analysis,
which is based on a standard template. A previous volumetric
analysis of PD pathology also showed conflicting results on
subcortical structures (Uitti et al., 2005; Gama et al., 2010;
Péran et al., 2010).

Several surface-based subcortical region shape analyses of
PD patients have revealed local atrophy in the subcortical
nucleus, including the caudate nucleus and the putamen, and
a correlation between cognitive function and atrophy of the
caudate nucleus and the putamen (Apostolova et al., 2010;
Sterling et al., 2013; Menke et al., 2014; Nemmi et al., 2015).
Recently, Nemmi et al. (2015) showed that the shape analysis
was the most sensitive method for observing atrophy-related
differences between PD patients and control subjects. They also
found that the information from the shape analysis was able to
discriminate PD patients from healthy control subject best when
compared with the standard volumetric and gray matter density
analysis (Nemmi et al., 2015). Thus, we hypothesize that the
shape analysis could be a useful tool to detect localized subcortical
nuclei alterations in PD-EDS.

To test our hypothesis, we used a fully automated
segmentation method (FIRST, Oxford Centre, FMRIB) and

the replicable vertex-based shape analysis in our study. We
compared the subcortical nuclei shape difference between early
stage and drug-naïve PD patients and matched healthy controls
(HC). The PD patients group was further divided into PD-EDS
and PD without EDS subgroups (PD-nEDS) according to the
Epworth Sleepiness Scale (ESS; with a cutoff of 10), and the shape
difference between these two PD groups was conducted in each
subcortical nucleus, separately. We also performed a traditional
volumetric-based analysis between groups.

MATERIALS AND METHODS

Participants
All participants were enrolled in PPMI (Parkinson’s Progression
Markers Initiative), an observational, international, multicenter
investigation of clinical, biological, and neuroimaging markers of
PD progression, where all patients with PD were newly diagnosed
and untreated at baseline (Marek et al., 2011). Study aims,
methodology, and details of study assessments are available on
the PPMI website1. The inclusion and exclusion criteria were
described previously in detail (Wen et al., 2016; Chahine et al.,
2019). Institutional review boards approved the study at PPMI
sites, and written informed consent was obtained.

As of August 4, 2019, the participants in the PPMI database
include 454 patients and 215 matched HC. Only participants with
T1 structural MRI data and an ESS assessment were included
in the present study; 350 participants were selected for MRI
processing, and six were excluded based on image-processing
quality control (poor segmentation). The final sample included
252 patients with PD and 92 HC subjects.

Assessments and Subgroup of
Parkinson’s Disease
The ESS was used for EDS evaluation; this scale has high test–
retest correlation and high internal consistency (Johns, 1991).
ESS is recommended for assessing and measuring the severity
of EDS in PD by the Movement Disorders Society Sleep Scale
Task Force (Högl et al., 2010). According to the ESS cutoff
score recommend, patients with PD were categorized as having
EDS (PD-EDS group) if ESS was equal or above 10 and not
having EDS (PD-nEDS group) if ESS score was lower than
10 (Arnulf et al., 2002; Matsui et al., 2006; Högl et al., 2010;
Amara et al., 2017). As indicated by the ESS cutoff score, 192
PD patients were subdivided to PD-EDS group, and 53 PD
patients were subdivided to PD-nEDS group. The Movement
Disorders Society Unified Parkinson’s Disease Rating Scale score
(UPDRS) part III was used to measure motor function (Goetz
et al., 2008), and the Montreal Cognitive Assessment (MoCA) was
used to test global cognitive function (Nasreddine et al., 2005).
The 15-item Geriatric Depression Scale (GDS) to test mood
symptoms (Weintraub et al., 2006) and the Rapid Eye Movement
Sleep Behavior Disorder Screening Questionnaire (RBDSQ) was
selected as a measure of rapid eye movement sleep behavior
disorder (RBD) (Stiasny–Kolster et al., 2007).

1http://www.ppmi-info.org/study-design
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MRI Acquisition
The MRI acquisition procedures were displayed in detail at
http://www.ppmi-info.org/wp-content/uploads/2017/06/PPMI-
MRI-Operations-Manual-V7.pdf. In brief, a three-dimensional
(3D), T1-weighted sequence (e.g., MPRAGE or SPGR) is
required. The field of view (FOV) must include the vertex,
cerebellum, and pons. The T1-weighted image must be acquired
as a 3D sequence and have a slice thickness of 1.5 mm or less
with no interslice gap. The PPMI core optimized the acquisition
sequence across sites to minimize bias in data between sites
and maximize comparability of data in the study. Typical MRI
parameters were as follows: repetition time 5–11 ms; echo time
2–6 ms; thickness 1.2 mm; gap 0 mm; voxel size 1 × 1 × 1.2 mm;
matrix 256 × 256 × 170–200.

Image Preprocessing
MRI data analyses were performed using the tools from FSL
(version 5.0.92; FMRIB Software Library, Oxford University,
Oxford, United Kingdom) (Jenkinson et al., 2012).

First, the SIENAX3 was used to estimate the total intracranial
volume (eTIV), white matter volume (WM), and GM for all
the subjects. All reported brain volumes were normalized to a
“normalized” skull size (Smith et al., 2002).

Second, the subcortical structures were segmented using the
FMRIB’s Integrated Registration and Segmentation Tool (FIRST4,
part of FSL, version 5.0.9) (Patenaude et al., 2011). FIRST is
an automated tool to segment the subcortical nuclei and has
been used to study several neuropsychiatric disorders (van den
Bogaard et al., 2011; Seifert et al., 2015).

Third, after the automated segmentation (fun_first_all), the
quality of segmentation for each subject was checked manually
(first_roi_slicesdir). The outcome file of FIRST was then used
for the volume and vertex analysis. For the standard volumetric
analysis, the raw volume subcortical structure was normalized for
the inter-individual variability of brain size (raw volume/eTIV).

Statistical Analysis
A two-sample t-test was conducted to compare various
demographic data between the two groups, whereas the chi-
squared test was used to compare sex and H&Y stage. An
analysis of covariance (ANCOVA) was used to estimate the
group differences in the whole brain volume (eTIV) and
normalized subcortical structure volume, with age, sex, and
eTIV (not in the eTIV comparison) as covariates (SPSS 20, Inc.,
Chicago, IL, United States). Pearson correlation was employed
to examine the relationship between ESS, MoCA, GDS, and
EBDSQ scores in the PD group. Statistical significance was set at
p-values < 0.05, after correction for multiple comparisons using
the false discovery rate (FDR).

Surface-Based Shape Analysis
The new version of vertex-wise analysis was employed to
investigate localized shape differences in the subcortical nucleus

2https://fsl.fmrib.ox.ac.uk/fsl
3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/SIENA
4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST

between HC and PD, as well as the group differences between
PD-EDS and PD-nEDS, separately. The shape analyses were all
adjusted for age, sex, and eTIV (first_utils and randomize, FSL
5.0.9). This approach calculates the group differences on a per-
vertex basis. The threshold-free cluster enhancement (TFCE),
a new method for finding significant “clusters” in the statistic
image without having to define clusters in a binary way, was
used for multiple comparison correction (Smith and Nichols,
2009). As the traditional surface-based vertex analysis comprises
the vectors in each significant vertex, we used it to display the
direction of group differences.

RESULTS

Demographic and Behavioral Features
Detailed subject characteristics and clinical parameters for each
group are summarized in Table 1. There are no significant
differences in age, sex, education, ESS score, GDS score, or
eTIV between PD and HC groups. The EBDSQ score was
higher and MoCA score was lower in the PD group than
in the HC group. Similarly, except the difference in ESS,
there are no intergroup differences in age, sex, education,
disease duration, age of onset, H&Y stage, UPDRS-III, MoCA,
GDS, EBDSQ score, or eTIV between PD-nEDS and the PD-
EDS groups.

The correlation analyses revealed that the EDS scores
were significant and positively correlated with EBDSQ scores
(r = 0.223, p = 0.004) and GDS scores (r = 0.126, p = 0.046) in
the PD group. However, the relationship between EDS and GDS
was not significant after FDR correction. The EDS scores did
not correlate significantly with cognitive function (MoCA) and
motor symptom (UPRDS-III) in the PD group. In addition, the
EDS score in patients with H&Y stage 2 was significantly higher
than that in H&Y stage 1 (7.43 vs. 6.47, p = 0.03).

Subcortical Nuclei Global Normalized
Volume Comparison
There was no significant difference in any of the subcortical
nucleus volumes between PD and HC and between PD-EDS
and PD-nEDS groups in the global normalized volume of each
nucleus after FDR correlation (Table 2).

Shape Comparisons of Parkinson’s
Disease and Control Subcortical
Structures
As shown in Figure 1, the new vertex analysis revealed that
the body and right tail caudate, the left head caudate, and the
right ventrolateral putamen showed significant group differences
in the PD group than in the HC group (TFCE corrected).
The traditional surface-based vertex analysis showed an inward
displacement in these significantly different regions of the
bilateral caudate and right putamen (Figure 2), whereas the
findings of shape analysis indicated a localized caudate and
putamen volume atrophy in the PD group than in the HC group.
No significant areas of hypertrophy were observed. No significant
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TABLE 1 | Demographic and clinical characteristics of all participants.

Subject groups HC PD PD-EDS PD-nEDS p-value (HC vs. PD) p-value (PD-EDS vs.
PD-nEDS

N 92 252 59 193

Age (years) 59.81 ± 10.44 61.34 ± 9.51 62.23 ± 8.91 60.54 ± 10.05 0.203 0.361

Gender (female/male) 30/62 96/156 25/34 70/123 0.210† 0.445†

Education (years) 15.78 ± 2.88 15.31 ± 3.14 15.83 ± 3.10 16.01 ± 3.00 0.216 0.763

Disease duration (months) – 6.80 ± 7.44 7.19 ± 7.29 6.61 ± 7.44 – 0.682

Onset (years) 59.27 ± 10.07 60.52 ± 8.83 58.26 ± 10.76 – 0.249

H&Y (1/2) 118/134 23/36 95/98 – 0.285†

UPDRS-III 0.54 ± 1.22 19.60 ± 9.17 21.34 ± 10.67 18.62 ± 8.40 <0.001 0.129

MoCA 28.30 ± 1.30 27.14 ± 2.42 27.06 ± 2.81 27.48 ± 2.20 <0.001 0.376

ESS 6.71 ± 3.67 6.99 ± 3.57 12.08 ± 2.18 5.44 ± 2.21 0.510 <0.001

GDS 5.25 ± 1.55 5.32 ± 1.43 5.35 ± 2.01 5.35 ± 1.43 0.673 0.993

EBDSQ 3.77 ± 2.28 5.55 ± 2.77 5.67 ± 3.09 5.08 ± 2.86 <0.001 0.178

eTIV 1, 525.98 ± 593.29 1, 534.63 ± 564.14 1, 383.31 ± 497.73 1, 518.73 ± 534.80 0.900 0.178

All values are presented as means and standard deviation (SD). †p-value was calculated using chi-squared test. HC, healthy control; PD, Parkinson’s disease; EDS,
excessive daytime sleepiness; PD-EDS, PD patients with EDS; PD-nEDS, PD patients without EDS; H&Y, Hoehn–Yahr stage; UPDRS-III, Unified Parkinson’s Disease
Rating Scale part III; MoCA, Montreal Cognitive Assessment; ESS, Epworth Sleepiness Scale; GDS, Geriatric Depression Scale; EBDSQ, rapid eye movement episode
sleep behavior disorder (RBD) screening questionnaire; eTIV, estimated total intracranial volume.

TABLE 2 | Mean normalized volume of subcortical structure among groups.

Subcortical region HC (n = 92) PD (n = 252) t-value p-value PD-EDS (n = 59) PD-nEDS (n = 193) t-value p-value

Left accumbens 0.38 ± 0.15 0.36 ± 0.17 0.86 0.39 0.35 ± 0.14 0.38 ± 0.14 −1.10 0.27

Left amygdala 1.10 ± 0.39 1.09 ± 0.40 0.11 0.91 1.07 ± 0.33 1.20 ± 0.39 −1.86 0.07

Left caudate 2.48 ± 0.85 2.51 ± 0.88 −0.28 0.78 2.46 ± 0.78 2.68 ± 0.76 −1.46 0.15

Left hippocampus 2.80 ± 1.01 2.83 ± 1.00 −0.30 0.76 2.80 ± 0.86 3.10 ± 0.97 −1.75 0.08

Left pallidum 1.33 ± 0.47 1.38 ± 0.48 −0.79 0.43 1.33 ± 0.42 1.45 ± 0.42 −1.56 0.12

Left putamen 3.54 ± 1.22 3.61 ± 1.27 −0.45 0.65 3.57 ± 1.11 3.78 ± 1.09 −1.03 0.31

Left thalamus 5.96 ± 2.06 6.03 ± 2.04 −0.26 0.79 6.00 ± 1.78 6.41 ± 1.79 −1.18 0.24

Right accumbens 0.30 ± 0.12 0.30 ± 0.14 0.26 0.80 0.30 ± 0.13 0.30 ± 0.11 −0.02 0.99

Right amygdala 1.11 ± 0.41 1.16 ± 0.42 −0.98 0.33 1.13 ± 0.33 1.25 ± 0.36 −1.93 0.06

Right caudate 2.54 ± 0.89 2.60 ± 0.89 −0.52 0.60 2.54 ± 0.76 2.81 ± 0.81 −1.85 0.07

Right hippocampus 2.89 ± 1.04 2.89 ± 1.03 −0.01 0.99 2.87 ± 0.92 3.05 ± 0.87 −1.01 0.32

Right pallidum 1.36 ± 0.48 1.39 ± 0.48 −0.43 0.67 1.37 ± 0.43 1.45 ± 0.41 −1.08 0.28

Right putamen 3.59 ± 1.25 3.66 ± 1.29 −0.41 0.68 3.61 ± 1.11 3.85 ± 1.09 −1.12 0.27

Right thalamus 5.83 ± 1.99 5.92 ± 2.00 −0.34 0.73 5.93 ± 1.77 6.25 ± 1.74 −0.93 0.35

The values represent the mean and standard deviation of the ratio between structures’ volume and eTIV. eTIV, estimated total intracranial volume.

group differences were found in the shape analysis of the other
subcortical nuclei.

Shape Comparisons of Parkinson’s
Disease With Excessive Daytime
Sleepiness and Parkinson’s Disease
Without Excessive Daytime Sleepiness
Subcortical Structures
The shape analyses also revealed significant group differences
in the left dorsolateral pallidum and the right dorsal putamen
between the PD-EDS and PD-nEDS groups (Figure 3). The
traditional surface-based vertex analysis showed an outward
displacement in these significantly different regions of pallidum
and putamen (Figure 4); thus, the shape analysis results indicate

a localized pallidum and putamen volume hypertrophy in PD-
EDS than in PD patients without EDS (PD-nEDS). No significant
group differences were found in the shape analysis of the other
subcortical nuclei.

DISCUSSION

The current study employed surface-based shape analysis to
investigate the spatial distribution change of subcortical nuclei
in drug-naïve early stage patients with PD and PD-EDS. This
study has two main findings: First, we verified that the atrophy
of striatum volume is not global but regional in the patients
with PD. Specifically, the regional atrophy in PD was located in
the right tail caudate nuclei, left head caudate nuclei, and right
ventrolateral putamen. Second, the PD-EDS showed regional
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FIGURE 1 | The localized shape differences between HC and PD groups using vertex-wise surface analyses of each subcortical nucleus. The regions in orange
indicate the different regions of the characteristic subcortical nuclei between PD and HC groups. (A) Group differences of the right caudate are located in the body
and tail subdivisions. (B) Group differences of the left caudate are located in the head subdivision. (C) The group differences of the right putamen are located in the
ventrolateral subdivision of putamen. HC, healthy control; PD, Parkinson’s disease.

FIGURE 2 | Vector graphs of the bilateral caudate and right putamen according to the traditional surface-based vertex analysis displayed by 3D mesh. The color bar
indicates the statistical values; an increase from red to blue indicates a lower to higher statistical significance. The small arrows shown on the surface indicate the
direction of change. The inward arrows indicate the direction of difference, suggesting that these subcortical nuclei are smaller/thinner here than in the healthy control
groups.

hypertrophic volume alteration in the striatum when compared
with PD-nEDS. The hypertrophied striatum was located in the
left dorsolateral pallidum and right dorsal putamen. To our
knowledge, this is the first study demonstrating PD-EDS-related
shape differences in the striatum. Our findings indicate that

the region-specific striatum shape alteration would be the early
biomarker in PD-EDS.

The results of the present study are consistent with previous
reports of striatal shape atrophy in patients with PD and indicate
that striatal shape alteration between PD and control subjects
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FIGURE 3 | The localized shape differences between PD-EDS and PD-nEDS subgroups using vertex-wise surface analyses of each subcortical region. The regions
in orange indicate the different regions of the special subcortical nuclei between PD-EDS and PD-nEDS groups. (A) The group differences of the left pallidum are
located in the left dorsolateral subdivision of pallidum; (B) the group differences of the right putamen are located in the middle subdivision of putamen. PD-EDS,
Parkinson’s disease with excessive daytime sleepless; PD-nEDS, Parkinson’s disease without excessive daytime sleepless.

FIGURE 4 | Vector graphs of the bilateral caudate and right putamen according to the traditional surface-based vertex analysis displayed by 3D mesh. The color bar
indicates the statistical values; an increase from red to blue indicates a lower to higher statistical significance. The small arrows shown on the surface indicate the
direction of change. The inward arrows indicate the direction of difference is such that these subcortical nuclei are smaller/thinner here than in the healthy control
groups.

are most robust in the caudate nuclei and putamen (Apostolova
et al., 2010; Sterling et al., 2013; Nemmi et al., 2015). Previous
studies used manual, semi-automated, and machine learning
approaches for subcortical structure region segmentation and
shape analysis (Apostolova et al., 2010; Pitcher et al., 2012;
Sterling et al., 2013). Apostolova et al. (2010) reported that PD
with dementia showed atrophy in the left medial and lateral and
right medial of the caudate. Sterling et al. (2013) found that the
most significant atrophic putamen in PD was localized in the
caudal and ventrolateral areas, and the most atrophic caudate
was located at the rostral caudate head. They also reported

the association between cognition performance and the altered
region of putamen (Sterling et al., 2013). The local putamen
atrophy would attribute to the reduced dopaminergic activity
and striatal dopamine depletion spine loss in the putamen in
early disease stages of PD (Geng et al., 2006; Burguière et al.,
2013; Sterling et al., 2013). In addition, the atrophied caudate
nuclei were located in the right tail and left head region.
The results indicate a hemispheric difference in PD patients,
supporting the notion of an endogenous, inter-hemispheric
dopamine imbalance in the mesostriatal dopaminergic system
(Molochnikov and Cohen, 2014).
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The existing neuroimaging studies on the EDS symptom in
PD patients have found EDS-related alteration at brain structural,
functional, and metabolic levels (for review, see Yousaf et al.,
2018b). PD-EDS showed dopamine transporter (DAT) uptake
reduction in the caudate, which correlated with clinical EDS
symptom (Yousaf et al., 2018a). Happe et al. (2007) reported that
the DAT binding in the striatum and putamen inversely correlates
with EDS score in early PD. To our knowledge, no neuroimaging
study focused on the structural shape alteration of the striatum
in PD-EDS. In our study, the hypertrophic alteration in the left
dorsolateral pallidum and right dorsal putamen was found in
PD-EDS than in PD without EDS. The results are consistent
with previous structural studies on sleep disorders. Hypertrophic
cortical and subcortical alterations have been reported in other
sleep disorders, such as obstructive sleep apnea and primary
insomnia (Rosenzweig et al., 2013; Baril et al., 2017; Yu et al.,
2018). The hypertrophic structural change of the striatum in
the sleep disorders implied the intricate endogenous repair
systems in the brain, and the preconditioning and enhanced
neurogenesis mechanism might be included (Lledo et al., 2006;
Dirnagl et al., 2009). EDS also impacts the striatum in the early
stage of PD. Our study supports the notion that EDS might
be a preclinical marker of PD (Arnulf et al., 2002), and the
EDS symptom in the drug-naïve and early stage PD might
be attributed to the compensatory mechanism of the striatum.
Further studies with longitudinal designs are warranted to clarify
whether the compensation will reverse to maladaptation during
the disease progression.

It is interesting to note that the normalized global volume of
the subcortical nuclei did not show a significant difference for
any of the structures between the PD and HC, PD-EDS, and
PD-nEDS groups. These findings are consistent with previous
observations on patients with PD where volume did not show
any difference between the PD and HC groups, but the shape
analysis was able to detect the significant difference (McKeown
et al., 2008; Apostolova et al., 2010; Nemmi et al., 2015; Tanner
et al., 2017). Several studies have found decreased subcortical
nuclei volumes in the putamen, thalamus, and hippocampus in
the PD group than in the HC group; the PD patients recruited
in these studies were in the late stage of the of disease, were
at mild stage, have dementia, and undergoing dopaminergic
treatment (Halliday, 2009; Pitcher et al., 2012; Nemmi et al.,
2015; Tanner et al., 2017). These findings all suggested that the
surface-based shape analysis would be more sensitive to detect
the early change of subcortical structures in patients with PD and
in PD-EDS.

There are several limitations to our study. First, there are
no objective measures of EDS in the present study, and the
subjective assessment may result in underestimation of this
symptom (Kaynak et al., 2005). Second, structural association of
the striatum with EDS in PD patients could not be explained as
a causal relationship, and further longitudinal studies would be
necessary to confirm the hypertrophic shape change as dynamic
components of the progression in PD-EDS. Third, the PD
patients were all in the early stage, and the severity of EDS
in our group is moderate (below 16). We proposed that the
hypertrophic alteration in striatum might be a compensatory

mechanism in the mild severity of EDS in PD patients.
Further studies should enroll severe EDS patients to verify
our speculation. Lastly, all patients in our study were drug
naïve; however, another cause of EDS is drug therapy, including
dopamine agonists and levodopa (Knie et al., 2011). How the
striatum structural alteration in PD with the EDS occurred
after treatment with dopaminergic agents should be investigated
in future studies.

CONCLUSION

In summary, the present study verified the localized atrophic
striatum in patients with PD. In addition, we found the regional
putamen and pallidum hypertrophy in PD-EDS. Our results
indicate that compensatory mechanisms might be involved
in the early stage of PD-EDS, and the shape alteration of
stratum would be a useful biomarker for early detection in
the PD-EDS.
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Early detection is critical for effective management of Alzheimer’s disease (AD) and
screening for mild cognitive impairment (MCI) is common practice. Among several deep-
learning techniques that have been applied to assessing structural brain changes on
magnetic resonance imaging (MRI), convolutional neural network (CNN) has gained
popularity due to its superb efficiency in automated feature learning with the use of
a variety of multilayer perceptrons. Meanwhile, ensemble learning (EL) has shown to
be beneficial in the robustness of learning-system performance via integrating multiple
models. Here, we proposed a classifier ensemble developed by combining CNN and
EL, i.e., the CNN-EL approach, to identify subjects with MCI or AD using MRI: i.e.,
classification between (1) AD and healthy cognition (HC), (2) MCIc (MCI patients who
will convert to AD) and HC, and (3) MCIc and MCInc (MCI patients who will not convert
to AD). For each binary classification task, a large number of CNN models were trained
applying a set of sagittal, coronal, or transverse MRI slices; these CNN models were then
integrated into a single ensemble. Performance of the ensemble was evaluated using
stratified fivefold cross-validation method for 10 times. The number of the intersection
points determined by the most discriminable slices separating two classes in a binary
classification task among the sagittal, coronal, and transverse slice sets, transformed
into the standard Montreal Neurological Institute (MNI) space, acted as an indicator
to assess the ability of a brain region in which the points were located to classify
AD. Thus, the brain regions with most intersection points were considered as those
mostly contributing to the early diagnosis of AD. The result revealed an accuracy rate of
0.84± 0.05, 0.79± 0.04, and 0.62± 0.06, respectively, for classifying AD vs. HC, MCIc
vs. HC, and MCIc vs. MCInc, comparable to previous reports and a 3D deep learning
approach (3D-SENet) based on a more state-of-the-art and popular Squeeze-and-
Excitation Networks model using channel attention mechanism. Notably, the intersection
points accurately located the medial temporal lobe and several other structures of the
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limbic system, i.e., brain regions known to be struck early in AD. More interestingly,
the classifiers disclosed multiple patterned MRI changes in the brain in AD and MCIc,
involving these key regions. These results suggest that as a data-driven method, the
combined CNN and EL approach can locate the most discriminable brain regions
indicated by the trained ensemble model while the generalization ability of the ensemble
model was maximized to successfully capture AD-related brain variations early in the
disease process; it can also provide new insights into understanding the complex
heterogeneity of whole-brain MRI changes in AD. Further research is needed to examine
the clinical implication of the finding, capability of the advocated CNN-EL approach to
help understand and evaluate an individual subject’s disease status, symptom burden
and progress, and the generalizability of the advocated CNN-EL approach to locate
the most discriminable brain regions in the detection of other brain disorders such as
schizophrenia, autism, and severe depression, in a data-driven way.

Keywords: Alzheimer’s disease, mild cognitive impairment, convolutional neural networks, ensemble learning,
magnetic resonance imaging, MRI biomarkers, MCI-to-AD conversion, Alzheimer’s Disease Neuroimaging
Initiative

INTRODUCTION

Alzheimer’s disease (AD) is a chronic, progressive, and
irreversible neurodegenerative disease clinically manifested by
amnesia, cognitive dysfunction, and gradual loss of multiple
other brain functions and daily living independency (Ulep et al.,
2018). The number of patients with AD worldwide is expected
to increase from the current 47 million to 152 million by 2050,
causing serious economic, medical, and societal consequences
(Christina, 2018). The pathogenesis of AD remains not fully
elucidated and no available therapy can cure AD or completely
stop disease progression. Amnestic mild cognitive impairment
(MCI) is a transitional stage between cognitively normal aging
and AD, and patients with MCI are more likely to develop AD
than age-matched healthy cognition (HC) (Liu et al., 2014). Early
detection of AD by screening MCI is crucial both for effective
management and care strategies and for developing new drugs
and measures to prevent further deterioration of the disease.

Brain magnetic resonance imaging (MRI) has enabled non-
invasive in vivo investigations of AD-related changes in the brain.
A large number of promising machine learning applications have
used MRI for AD prediction (Mateos-Pérez et al., 2018), which
include random forests (RF) (Tripoliti et al., 2011), support
vector machine (SVM) (Leemput et al., 2002), and boosting
algorithms (Hinrichs et al., 2009). Even so, existing machine
learning approaches typically involve manual selection of pre-
defined brain regions of interest (ROIs) based on known MRI
features of AD. Given the limited understanding of definitive
MRI biomarkers for AD, it is likely that pre-selected ROIs
cannot include all the information potentially useful to uncover
the complexity of AD. Manual selection can also be prone to
subjective errors and be time-consuming and labor-intensive
(Li et al., 2018).

Deep learning represents a more advanced approach; methods
such as stacked auto-encoder (SAE) (Vincent et al., 2010), deep
belief networks (DBNs) (Hinton, 2009), and convolutional neural

networks (CNNs) (LeCun, 2015) can automatically build a more
abstract high-level representation of the learning system by
integrating low-level features embedded in the data (Sun et al.,
2012). The CNN model has been widely used for classification
(Krizhevsky et al., 2012), segmentation (Long et al., 2015), and
object detection (Girshick et al., 2014), due to several advantages:
CNNs can directly accept images data as input, utilize spatial
information embedded in adjacent pixels, and effectively reduce
the number of model parameters by using local receptive fields,
weights sharing, and subsampling. When a CNN model is trained
with MRI slices, image features can be automatically retrieved,
eliminating the need of manual selection of features for the
learning process (Lin et al., 2018). Meanwhile, ensemble learning
(EL) has shown beneficial in the performance and robustness via
integrating multiple learning systems (Opitz and Maclin, 1999),
which has also been applied to MRI (Ortiz et al., 2016).

So far, some researchers have combined deep learning and
EL on MRI data for AD. A method for AD and early AD
diagnosis by fusing functional and structural imaging data based
on the use of the Deep Learning paradigm, and more specifically,
deep belief networks (DBN) has been advocated (Ortiz et al.,
2016). Gray matter (GM) images from each brain area have been
split into 3D patches according to the regions defined by the
Automated Anatomical Labeling (AAL) atlas, and these patches
were used to train a set of DBNs. The DBNs were then ensembled
where the final prediction was determined by a voting scheme.
Two deep learning based structures and four different voting
schemes were implemented and compared, giving as a result a
potent classification architecture where discriminative features
were computed in an unsupervised fashion (Ortiz et al., 2016).
Islam and Zhang (2018) proposed an ensemble of three deep
CNNs with slightly different configurations for Alzheimer’s
disease diagnosis using brain MRI data analysis. In addition,
sparse regression models were combined with deep neural
networks for AD diagnosis (Suk et al., 2017). Here, sparse
regression models with different regularization control values
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outputted their own prediction values. To obtain the final
prediction values, CNNs discovered the optimal weights to
ensemble multiple sparse regression models in a hierarchical and
non-linear way (Suk et al., 2017). In 2019, 20 white matter and
GM slices with significant brain structures from MR images were
selected to train an ensemble of ConvNet networks (Ji et al.,
2019). In Li et al. (2018), a whole MR brain image was partitioned
into different local regions and a number of 3D patches were
extracted from each region. Subsequently, the authors grouped
the patches from each region into different clusters with the
K-Means clustering method. Next, a DenseNet was constructed
to learn the patch features for each cluster and the features
acquired from the discriminative clusters of each region were
ensembled for classification. At the end, the authors combined
the classification results from different local regions to improve
final image classification.

In the present study, we proposed a novel CNN–EL approach
based on an established eight-layer CNN network structure
(Wang et al., 2018), to automatically retrieve features from brain
MRI data that can be used to differentiate subjects with clinical
diagnosed AD and MCI from HC, and those with MCIc and
MCInc. We are also interested in identifying patterns of MRI
brain changes that characterize AD and MCIc. To achieve the
study objectives, we first derived a CNN model using each
set of the sagittal, coronal, or transverse MRI slices; then, we
developed a classifier ensemble based on three-axis slices using
EL. A number of sophisticated techniques were employed in our
approach, which included six ways of data augmentation (DA)
to facilitate an equal and relatively large number of instances of
each class in the training dataset, top-performance enforcing to
achieve a high classification accuracy and robustness of the model
training, and parallel processing to improve the time efficiency of
the system function.

In the CNN-EL, a data-driven, homogeneous ensemble
learning approach was employed. A base classifier based on
2D CNN model was trained using each set of the sagittal,
coronal, or transverse MRI slices; that is, a trained base classifier
corresponds to a slice dataset, which is composed of slices in
a specific position in brain from the subjects in the training
dataset. The preparations of training datasets didn’t depend on
prior experience or domain knowledge. In order to reduce the
loss of information as much as possible during the process of
slicing the 3D volume into 2D slices, we have utilized as many
and meaningful 2D-sagittal, -coronal, or -transverse slices from
all over the brain as we can at the same time to train the
base classifiers. Among them, the trained base classifiers with
the best generalization performance on the validation datasets
were selected and combined to generate a refined final classifier
ensemble based on three-axis slices. In this data-driven way, the
slices corresponding to the selected trained base classifiers were
considered as those with the strongest capabilities to classify
AD. The number of the intersection points determined by the
most discriminable slices separating two classes in a binary
classification task among the sagittal, coronal, and transverse
slice-sets, transformed into the standard Montreal Neurological
Institute (MNI) space, acted as an indicator to assess the ability
of a brain region in which the points were located to classify

AD. Thus, we located the most discriminable brain regions
indicated by the trained CNN-EL model while its generalization
abilities were maximized and superior to those of the compared
methods. That is, we can understand the predictions made by the
trained CNN-EL model to some extent. However, the compared
methods, i.e., PCA+ SVM (Christian et al., 2015) and a 3D deep
learning approach (3D-SENet) based on a more state-of-the-
art and popular Squeeze-and-Excitation Networks model using
channel attention mechanism, which was derived from the paper
(Hu et al., 2018), were unable to do the same thing as the
above-mentioned and failed to provide meaningful explanations
for predictions since the models achieved with those compared
methods were still like a “black-box”. To our knowledge, this is
the first attempt to do the above way with both CNN and EL,
and at the same time, the promising experimental results have
been achieved.

In detail, the CNN-EL was different from the above-
mentioned methods which combined the deep learning with
the ensemble learning to analyze MRI data for detecting AD
in the base classifiers (Ortiz et al., 2016; Suk et al., 2017; Islam
and Zhang, 2018; Li et al., 2018), the ensemble methods (Ortiz
et al., 2016; Suk et al., 2017; Islam and Zhang, 2018), the model
interpretability (Ortiz et al., 2016; Suk et al., 2017; Islam and
Zhang, 2018), or the preparation of training datasets (Ortiz et al.,
2016; Li et al., 2018; Ji et al., 2019).

Furthermore, in the paper (Wen et al., 2019), the authors
firstly systematically and critically reviewed the state-of-the-art
on classification of Alzheimer’s disease based on convolutional
neural networks and T1-weighted MRI. Next, they proposed
an open-source framework for reproducible evaluation of
classification approaches. In this study, the fivefold cross
validation procedure was strictly followed and repeated ten times
for each binary experiment, i.e., AD vs. HC, MCIc vs. HC,
and MCIc vs. MCInc. The potential data leakage among binary
classification tasks was avoided and therefore the experimental
results were unbiased and reproducible.

MATERIALS AND METHODS

Participants and Datasets
Data used in the study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database.1 The ADNI
was launched in 2003 as a public–private partnership, led by
Principal Investigator, Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial MRI, positron emission
tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of MCI and early AD.

To facilitate comparison of our results with those reported
previously, we used the same MRI dataset from the ADNI
database as utilized by Christian et al. (2015) in building the
eight-layer CNN networks (Wang et al., 2018) to train the
base classifiers, as well as to test the performance of the final
classifier ensemble based on three-axis slices (n = 509 subjects:

1adni.loni.usc.edu
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TABLE 1 | Characteristics of participants in (A) the training and testing dataset
(upper panel) and (B) the validation dataset (lower panel).

Variable AD MCIc MCInc HC

(A)

N 137 76 134 162

Gender
(male:female)

67:70 43:33 84:50 86:76

Age (year;
mean, std)

76.0,7.3 74.8, 7.3 74.5, 7.2 76.3, 5.4

Weight (kg;
mean, std)

70.9, 14.0 72.7, 14.3 76.2, 12.9 73.8, 13.6

MMSE
(mean, std)

23.2, 2.0 26.47, 1.84 27.19, 1.71 29.18, 0.96

CDR (mean,
std)

0.75, 0.25 0.50, 0.00 0.50, 0.00 0.00, 0.00

GDS (mean,
std)

1.59, 1.32 1.38, 1.14 1.52, 1.37 0.80, 1.08

(B)

N 100 39 39 100

Gender
(male:female)

60:40 23:16 29:10 45:55

Age (years;
mean, std)

74.24, 7.82 74.15, 7.10 76.02, 7.00 73.36, 5.70

Weight (kg;
mean, std)

76.04, 15.83 73.59, 14.14 78.35, 12.99 76.16, 15.66

MMSE
(mean, std)

23.84, 2.08 27.05, 1.59 27.56, 1.83 28.92, 1.25

CDR (mean,
std)

0.82, 0.24 0.50, 0.00 0.50, 0.00 0.00, 0.00

GDS (mean,
std)

1.81, 1.56 1.92, 1.35 1.79, 1.45 0.83, 1.34

AD, Alzheimer’s disease patients; MCIc, mild cognitive impairment patients who
will convert to AD; MCInc, mild cognitive impairment patients who will not convert
to AD; HC, healthy controls; MMSE, Mini Mental State Examination; CDR, Clinical
Dementia Rating; GDS, Global Deterioration Scale.

AD = 137, 18 months MCIc = 76 and MCInc = 134, and
HC = 162; Table 1A). We enrolled 162 cognitively normal elderly
controls (HC), 137 patients with diagnosis of AD, 76 patients
with diagnosis of MCI who converted to AD within 18 months
(MCIc), and 134 patients with diagnosis of MCI who did not
convert to AD within 18 months (MCInc). MCI patients who
had been followed less than 18 months were not considered
(Christian et al., 2015). A total of 509 subjects from 41 different
radiology centers were considered. Inclusion criteria for HC
were as follows: Mini Mental State Examination (MMSE) scores
between 24 and 30; Clinical Dementia Rating (CDR) (Morris,
1993) of zero; and absence of depression, MCI, and dementia.
Inclusion criteria for MCI were as follows: MMSE scores between
24 and 30; CDR of 0.5; objective memory loss, measured by
education adjusted scores on Wechsler Memory Scale Logical
Memory II (Wechsler, 1987); absence of significant levels of
impairment in other cognitive domains; and absence of dementia.
Inclusion criteria for AD were as follows: MMSE scores between
20 and 26; CDR of 0.5 or 1.0; and NINCDS/ADRDA criteria for
probable AD (McKhann et al., 1984; Dubois et al., 2007).

To facilitate the development of the EL process, an additional
validation dataset of 278 subjects (AD = 100, 36 months

MCIc = 39 and MCInc = 39, and HC = 100; Table 1B) was
also retrieved from the ADNI database and used to identify
the base classifiers showing the best generalization performance.
The validation data of 278 subjects had no overlapping with
the aforementioned data of 509 subjects, i.e., the validation data
were used for neither training the base classifiers nor testing
the acquired final classifier ensemble based on three-axis slices
(Table 1B). Here, among 164 patients with diagnosis of pMCI
(progressive MCI) used by Moradi et al. (2015), i.e., if diagnosis
was MCI at baseline but conversion to AD was reported after
baseline within 1, 2, or 3 years, and without reversion to MCI
or HC at any available follow-up (0–96 months), 39 patients
who were not in the 509 subjects were selected as MCIc subjects
in the validation dataset. Meanwhile, among 100 patients with
diagnosis of sMCI (stable MCI) used by Moradi et al. (2015), i.e.,
if diagnosis was MCI at all available time points (0–96 months)
but at least for 36 months, 39 patients who were not in the
aforementioned 509 subjects were chosen as MCInc subjects in
the validation dataset. In order to keep the validation dataset
relatively balanced, we enrolled 100 cognitively normal elderly
controls (HC) and 100 patients with diagnosis of AD who were
not in the aforementioned 509 subjects as well.

MRI Preprocessing
Upon downloading, the T1-weighted MRI data in.nii format were
processed using the CAT12 toolkit2 with default value setting. The
preprocessing pipeline included skull extraction, registration to
the MNI space, and image smoothing, so that after processing, all
the images had a dimension of 121× 145× 121 (X× Y × Z) with
a spatial resolution of 1.5× 1.5× 1.5 mm3 per voxel. Voxel-based
MRI signal intensity normalization was then performed for each
image; i.e., the value of each voxel was normalized as the original
value divided by the original maximal value of the image, yielding
a value between 0 and 1. The complete preprocessing pipeline is
summarized in Figure 1.

To facilitate the CNN training, verification, and testing, a
3D image set of each subject was re-sliced into three 2D image
sets, each of the sagittal, coronal, or transverse orientation (with
X, Y, and Z axes perpendicular to the sagittal, coronal, and
transverse planes, respectively). A preprocessed 3D MRI image
(of 121 × 145 × 121) was thus re-sliced into 121 sagittal, 145
coronal, and 121 transverse slices; the values on the X, Y, and Z
axis were {−90, −88, −87, . . . 90}, {−126, −125, −123, . . . 90},
and {−72, −71, −69, . . . 108}, respectively. For example, X(i),
i∈{−90, −88, −87, . . . 90} is the sagittal slice through the point
[i, 0, 0]. Here, the numbers within the brackets were the MNI
coordinates. To reduce the number of base classifiers without
compromising the effectiveness of the classification, every other
slice was used (given the relatively small difference between
two adjacent slices) and slices near either end of an axis were
discarded (given the relatively less amount of information useful
for classification), which lay outside the blue rectangle shown
in Figure 2. The CNN model training, testing, and verification
involved use of only 40 sagittal slices {X(−61), X(−58), X(56)},
50 coronal slices {Y(−91), Y(−88), Y(56)}, and 33 transverse

2http://dbm.neuro.uni-jena.de/cat/
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FIGURE 1 | Preprocessing pipeline—an example showing the formation of a transverse slice used in the learning. (A) Original image. (B) Skull-stripping and spatial
normalization. (C) Smoothing. (D) Gray normalization. (E) Slicing and resizing.

slices {Z(−28), Z(−25), Z(68)}, i.e., in total, 123 slices of a
subject’s 3D brain image.

Given the dimension of the 3D MRI (121 × 145 × 121),
the sizes of the sagittal, coronal, and transverse slices obtained
through re-slicing were 145 × 121, 121 × 121, and 121 × 145,
respectively. Each of the 2D slices was reformatted to 145 × 145
using edge padding and zero filling, so that the 2D slice is squared,
while the center and the spatial resolution of the resized image
remained unchanged.

Convolutional Neural Network
As an automated image recognition method, the CNN has
attracted widespread research attention with tremendous
success in recent years. Hubel and Wiesel first described
receptive fields, binocular interactions, and the functional
architecture of cat primary visual cortex about 55 years
ago (Hubel and Wiesel, 1962, 1965). Kunihiko Fukushima
proposed a neural network model nicknamed “Neocognitron”
(Fukushima, 1980) that is structurally similar to the hierarchy
model of the visual nervous system proposed by Hubel
and Wiesel. This unique network structure can effectively
reduce the complexity of feedback neural networks, which

FIGURE 2 | The cropping range (inside the blue rectangle) of the slices used
to train the model on (A) a sagittal plane and (B) a coronal plane, respectively.
(A) Sagittal Plane. (B) Coronal plane.

characterizes the CNN model. With the CNN, each input
image is passed through a series of convolution layers: filtering
layers (kernels), pooling layers, and fully connected layers
(FCs). A softmax function is then applied to classify an
image with probabilistic values between 0 and 1, making the
CNN suitable for learning representations of image features
(Schmidhuber, 2015).

A convolution layer in the CNN model is typically composed
of two segments: feature extraction and feature mapping
(Krizhevsky et al., 2012). In the feature-extraction segment, each
neuron is connected to the local receptive field of the upper
layer to extract local features. Once the local feature is extracted,
its spatial relationship with other features is also determined.
In the feature-mapping segment, convolution is performed on
the input data using a learnable filter or kernel to produce a
feature map. Feature mapping computes the outputs of neurons
connected to receptive fields in the input, with each neuron
computing a dot product between its weight (i.e., filter) and
a local receptive field (equivalent to filter size) to which it
is connected (the input volume). Multiple feature maps can
be calculated with a set of learnable filters. In this way, the
number of parameters to be tuned in the CNN is effectively
reduced. A convolutional layer is followed by a pooling layer,
e.g., max-pooling layer (Weng et al., 1992), which performs a
down-sampling operation along the spatial dimensions (e.g., X,
Y for a transverse slice). This unique dual-feature extraction
method can effectively reduce the feature resolution (Krizhevsky
et al., 2012). The basic structures of the convolutional layer
and the pooling layer of the CNN model are shown in
Figure 3.

In this study, the CNN was utilized mainly to recognize
2D images with displacement, scaling, and other non-deformed
distortions. Data were reconstructed, so that an image was
inputted into the CNN model as a vector for easy feature
extraction and classification. The effectiveness of the CNN
was improved as the pooling layer learned the features
from training data without manual extraction. Applying the
learnable kernels and convolution operation, the CNN was
trained in parallel, while the local weight-sharing effectively
reduced its complexity.

Frontiers in Neuroscience | www.frontiersin.org 5 May 2020 | Volume 14 | Article 25920

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00259 May 13, 2020 Time: 15:47 # 6

Pan et al. A Novel Approach Combining CNN and EL

FIGURE 3 | Basic structures of the CNN convolutional layer and pooling layer. (A) Convolutional layer. (B) Pooling layer.

Ensemble Learning
EL algorithms including Bagging (Breiman, 1996), Boosting
(Freund and Schapire, 1997), and Random Forest (Breiman,
2001) have been typically used to construct a set of base
classifiers in solving a given problem. Using a training dataset,
EL discriminates features to produce a weighted vote for
classes, which is then applied in classifying more cases in new
datasets. Based on the methods with which a base learner
is generated, each of the EL algorithms can be divided into
two general approaches: the heterogeneous approach, which
applies different learning algorithms in the same training
data, and the homogeneous approach, which applies the
same learning algorithm in different training data (Zhang
and Zhang, 2011). Both approaches have been shown to
significantly improve the generalizability and robustness of a
learning system.

In the present study, the homogeneous EL approach was
adopted from the stratified Bagging method. The same CNN
algorithm was employed to train different base classifiers
using different 2D MRI slices. The outputs from the multiple
trained base classifiers with the best generalization performance
on the validation dataset were then combined to generate
a refined final classifier ensemble based on three-axis slices
that was used to predict classification results for new cases,
i.e., 3D MRI data.

Classification Experiment
A total of 787 subjects’ 3D MR images from the ADNI
database were partitioned into three datasets: training and
testing datasets to build the base classifiers and examine the
performance of the final classifier ensemble based on three-
axis slices (n = 509; Table 1A) and a verification dataset to
evaluate and select the best base classifiers (n = 278; Table 1B).
For training and testing, a stratified fivefold cross-validation
method was employed, such that each binary classification task

(e.g., MCIc vs. MCInc) was conducted five times. No images
in the training/testing datasets were used to select the best
base classifiers, and thus potential data leakage among binary
classification tasks was avoided.

In each binary classification task, a total of 123 2D sagittal,
coronal, and transverse slices extracted from each 3D MRI
were employed to generate 123 trained base classifiers. Using
classification of AD (n = 137) vs. HC (n = 162) as an example, 299
labeled 3D MRI (Table 1A), were partitioned into 80% training
and 20% testing cases with stratified random sampling. The 299
2D slices of X(i) [or Y(j), or Z(k)] were compiled as a 2D dataset,
where i∈{−61, −58, . . . 56}, j∈{−91, −88, . . . 56}, and k∈{−28,
−25, . . . 68}; 239 (or 80%) of stratified randomly selected cases
were employed to train the X(i) [or Y(j), or Z(k)] base classifier,
while the remaining slices of 60 (or 20%) cases were used to
test the trained classifier ensemble based on three-axis slices. In
this way, all 123 trained base classifiers to classify AD vs.HC
were acquired.

Then, the 123 labeled 2D MR images from each of AD
(n = 100) and HC (n = 100) cases were altogether used
as the validation dataset (Table 1B): they were employed
to select the five base classifiers (i.e., in total 15) with the
best generalization performance, as determined by classification
accuracy, among the sagittal, coronal, and transverse slice-
based base classifiers, respectively. The number of five was
determined by the experiments. Finally, after building three
classifier ensembles based on single-axis slices (i.e., sagittal,
coronal, and transverse), a classifier ensemble based on three-axis
slices, which was composed of all the three classifier ensembles
based on single-axis slices, was finally built using these 15 base
classifiers, following a simple majority voting scheme (Arora
et al., 2012). The 2D slices that were extracted from the 3D MR
images of the remaining 60 (or 20%) cases in the training and
testing dataset and were corresponding to the 15 base classifiers
were used to test the performance of the built classifier ensemble
based on three-axis slices.
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TABLE 2 | Numbers of augmented images in the MCIc and MCInc datasets.

Augmentation methods MCIc MCInc Total

Original slices 76 134 210

Rotation 1368 1340 2708

Translation 1368 1340 2708

Gamma correction 1368 1340 2708

Random noise 1368 1340 2708

Scaling 1368 1340 2708

Random affine transformation 1368 1340 2708

Total number of images in the augmented dataset 8284 8174 16,458

Data Augmentation
To overcome the possible over-fitting problem in training robust
CNN models and to incorporate possible image discrepancy,
augmented images were generated from the original slices by
six operations: rotation, translation, gamma correction, random
noise addition, scaling, and random affine transformation. The
augmented data were added to the original training dataset
to allow a sufficiently large sample size (Table 2). Data
augmentation was also used to mitigate the originally imbalanced
dataset (e.g., there were more subjects with MCInc than those
with MCIc), for which the preset number of augmented slices to
be generated varied from class to class. For example, to classify
MCIc vs. MCInc, there were 76 MCIc and 134 MCInc cases.
Using six data augmentation operations, 10 new slices were
generated from an MCInc case and 18 from an MCIc case with

each operation. In this way, slice ratios of MCInc:MCIc became
∼1:1 after data augmentation from the original∼1.8:1.

RESULTS

Base Classifiers
To address the objective of the study, i.e., binary classification of
AD or MCIc vs. HC, and MCIc vs. MCInc, three corresponding
classifier ensembles based on the three slice orientation groups
(sagittal, coronal, and transverse), i.e., classifier ensembles based
on three-axis slices, were trained. The overall architecture of
the proposed classifier ensemble based on three-axis slices is
shown in Figure 4 and the flow chart of the experiment is
shown in Figure 5.

Each base classifier consisted of six convolution layers
(conv) and two fully connected layers (FCs). The last FC layer
had only two nodes, and the softmax function was used to
implement the binary classification. The network architecture
and corresponding hyper-parameters are shown in Figure 6 and
Table 3, respectively. Each base classifier was trained for 30
epochs, as 30 epochs proved sufficient for a base classifier to
converge. That is, after 30 epochs, a trained base classifier could
achieve 100% classification accuracy on the original slices (rather
than the augmented slices) in the training dataset. Activation
functions in all convolutional layers were of the leaky rectifier
linear activation (LReLU) type (Shan et al., 2016), while the
Adam optimization algorithm (Kingma and Ba, 2014) was used

FIGURE 4 | The architecture of the classifier ensemble based on the three sets of 2D slices (from left to right: sagittal, coronal, and transverse).
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FIGURE 5 | Experimental flow chart. (A) Training phase. (B) Testing phase.
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FIGURE 6 | Base-classifier architecture used in the CNN-EL approach proposed here.

to update network weights. The learning rate and the batch size
were set to 0.0001 and 200, respectively.

Ensemble Learning
The proposed model employed a two-stage EL scheme. Phase
1 involved building three classifier ensembles based on single-
axis slices (i.e., sagittal, coronal, and transverse) and Phase 2
involved constructing a classifier ensemble based on three-axis
slices, which was composed of all the three classifier ensembles
based on single-axis slices acquired in Phase 1. In total, 40 sagittal,
50 coronal, and 33 transverse base classifiers were acquired. Then,
the five base classifiers with the best generalization performance
for each slice orientation were selected using the verification
dataset, yielding three classifier ensembles based on single-axis
slices, each with the 5 best base classifiers. The output of a
classifier ensemble based on single-axis slices was generated by
combining the outputs of the five best base classifiers. Finally,
a simple majority voting scheme was used to combine the
predictions of these three classifier ensemble based on single-
axis slices to yield the output of the classifier ensemble based on
three-axis slices. Experimental results demonstrated that this EL
method greatly improved the generalizability and robustness of
early stage AD detection.

TABLE 3 | Detailed hyper-parameters of base classifiers of the CNN-EL
approach advocated here.

Layer # Layer
name

Kernel size Strides Input
channels

Output
channels

1 conv1 3*3 3 1 32

2 conv2 3*3 3 32 64

pooling1 3*3 1 N/A N/A

3 conv3 3*3 3 64 128

pooling2 3*3 1 N/A N/A

4 conv4 1*1 1 128 256

pooling3 3*3 1 N/A N/A

5 conv5 1*1 1 256 512

pooling4 3*3 1 N/A N/A

6 conv6 1*1 1 512 1024

pooling5 3*3 3 N/A N/A

7 FC1 N/A N/A 4096 100

8 FC2 N/A N/A 100 2

Classification Performance
Using the stratified fivefold cross-validation procedure and
repeating it 10 times, the average classification accuracies were
84% for AD vs. HC, 79% for MCIc vs. HC, and 62% for MCIc
vs. MCInc. The average classification accuracies for AD vs. HC
and MCIc vs. HC were statistically significantly higher than those
achieved using principal component analysis (PCA) plus the
SVM method described in a previous study (Christian et al.,
2015), while the average classification accuracy for MCIc vs.
MCInc was not statistically significantly lower (Christian et al.,
2015). As for the reason why the classification accuracy for MCIc
vs. MCInc task was relatively low, we suppose the performance
of the proposed CNN-EL method, as a deep learning approach,
which usually demands more training data, was a little bit more
negatively affected by the insufficient training samples in the
MCIc vs. MCInc classification task. Plus, one additional possible
reason might be the cutoff threshold of follow-up duration
to define MCIc and MCInc, and the cohorts of MCIc and
MCInc subjects might be highly heterogeneous regardless of the
threshold used (Li et al., 2019).

More importantly, the standard deviations of the classification
accuracies were only 0.05 for AD vs. HC, 0.04 for MCIc vs. HC,
and 0.06 for MCIc vs. MCInc, all of which were about one-third
of those reported previously (Christian et al., 2015).

In this study, all of the experiments were run on one node in
a GPU cluster with five nodes, each of which had two NVIDIA
Tesla P100-PCIe-16GB 250W cards. For a 1 × 5-fold cross-
validation process, the computing time of the CNN-EL proposed
here in AD vs. HC, MCIc vs. HC, and MCIc vs. MCInc task was
about 21, 19, and 15 h, respectively.

At the same time, the proposed approach here was compared
with the 3D-SENet. As the central building block of CNNs,
the convolution operator could enable networks to acquire
informative features by fusing both spatial and channel-wise
information within local receptive fields at each layer. To achieve
better generalization performance, the SENet automatically
learned the weight of each feature channel to enhance the
useful features and suppress the useless features for the task
to be tackled, by introducing “Squeeze-and-Excitation” block
as a self-attention function on channels (Hu et al., 2018).
Here, the architecture of the compared 3D-SENet model and
corresponding detailed hyper-parameters are shown in Figure 7
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FIGURE 7 | The architecture of the 3D-SENet model. (A) Convolution block (Conv), (B) Squeeze-and-Excitation block (Se_block), (C) 3D-SENet model.

TABLE 4 | Detailed hyper-parameters of 3D-SENet model.

Layer name Sub-layer name Kernel size Strides Filters Output size

MRI_images N/A N/A N/A N/A 121 × 145 × 121

Conv N/A 3 × 3 × 3 1 64 121 × 145 × 121

Maxpooling N/A 3 × 3 × 3 2 N/A 60 × 72 × 60

Se_block1 Block1 3 × 3 × 3 2 256 30 × 36 × 30

Se_block1 Block2 3 × 3 × 3 1 256 30 × 36 × 30

Se_block1 Block3 3 × 3 × 3 1 256 30 × 36 × 30

Se_block2 Block1 3 × 3 × 3 2 512 15 × 18 × 15

Se_block2 Block2 3 × 3 × 3 1 512 15 × 18 × 15

Se_block2 Block3 3 × 3 × 3 1 512 15 × 18 × 15

Se_block3 Block1 3 × 3 × 3 2 1024 8 × 9 × 8

Se_block3 Block2 3 × 3 × 3 1 1024 8 × 9 × 8

Se_block3 Block3 3 × 3 × 3 1 1024 8 × 9 × 8

Se_block3 Block4 3 × 3 × 3 1 1024 8 × 9 × 8

Avg_pool N/A 8 × 9 × 8 1 1024 1 × 1 × 1024

Softmax N/A N/A N/A N/A 2

and Table 4, respectively. With 10 × 5-fold cross-validation
processes, the accuracy rates of 0.80 ± 0.05, 0.75 ± 0.07, and
0.57 ± 0.11 were obtained, respectively, for classifying AD vs.
HC, MCIc vs. HC, and MCIc vs. MCInc. For a 1 × 5-fold cross-
validation process, the computing time of the 3D-SENet in AD
vs. HC, MCIc vs. HC, and MCIc vs. MCInc task was about 11.5,
10.9, and 10.6 h, respectively.

In order to evaluate the classification performance more
comprehensively, the Area Under the Curve (AUC) and

Matthews Correlation Coefficient (MCC) (Matthews, 1975) have
been used as the performance metrics in this study as well.
To verify whether or not our performance is different from
those of two methods, i.e., Christian et al. (2015) and the
3D-SENet model, we have further run six hypothesis tests (p-
value approach) for three binary experiments, i.e., AD vs. HC,
MCIc vs. HC, and MCIc vs. MCInc. After the homogeneity
of variance test was performed, the Student’s t-test with the
Cox-Cochran correction for unequal variances was applied if
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TABLE 5 | Comparison of experimental results with PCA + SVM (Christian et al., 2015) and 3D-SENet.

Experiment model AD vs. HC MCIc vs. HC MCIc vs. MCInc

ACC AUC MCC ACC AUC MCC ACC AUC MCC

PCA + SVM 0.76 ± 0.11 – – 0.72 ± 0.12 – – 0.66 ± 0.16 – –

3D-SENet 0.80 ± 0.05 0.88 ± 0.04 0.62 ± 0.09 0.75 ± 0.07 0.79 ± 0.07 0.42 ± 0.16 0.57 ± 0.11 0.57 ± 0.08 0.11 ± 0.15

CNN + EL proposed here 0.84 ± 0.05 0.92 ± 0.03 0.68 ± 0.10 0.79 ± 0.04 0.83 ± 0.06 0.49 ± 0.12 0.62 ± 0.06 0.59 ± 0.07 0.10 ± 0.15

the homogeneity of variance test failed. Experimental results
and corresponding statistical performance comparisons with p-
values are summarized in Tables 5, 6, respectively. For all three
binary classification tasks, the average classification accuracies
of the CNN-EL were statistically significantly higher than those
achieved using the 3D-SENet, while the standard deviations of
the CNN-EL were lower than or equal to those of the 3D-SENet.

It can be seen that the proposed early detection model for
Alzheimer’s disease based on CNN and EL was more accurate and
robust than the PCA plus SVM method (Christian et al., 2015)
and the 3D-SENet model.

Discriminable Brain Regions
In the first phase of EL, the validation set was employed to
examine each base classifier and subsequently to acquire three
classifier ensembles based on each of the three single-axis slice
datasets, each comprising of the best five sagittal, coronal, and
transverse base classifiers in generalization capabilities. As a base
classifier corresponds to a slice dataset, all 15 best base classifiers
correspond to 15 slices in the X–Y–Z coordinate system, which
can define 5 × 5 × 5 points in the X–Y–Z coordinate system.
As an example, the sagittal, coronal, and transverse slice numbers
corresponding to the 15 best base classifiers for the first time to
run the stratified fivefold cross-validation procedure are shown
in Table 7.

Take the AD vs. HC classification task for the first time
to run the stratified fivefold cross-validation procedure as
an example. One hundred twenty-five points in the X–Y–Z

TABLE 6 | Statistical comparisons with p-values about accuracy mean of the
three methods for (A) AD vs. HC task (upper panel), (B) MCIc vs. HC task (middle
panel), and (C) MCIc vs. MCInc task (lower panel).

Model PCA + SVM 3D-SENet CNN + EL
proposed here

(A)

PCA + SVM N/A p > 0.05 p < 0.05

3D-SENet p > 0.05 N/A p < 0.05

CNN + EL proposed here p < 0.05 p < 0.05 N/A

(B)

PCA + SVM N/A p > 0.05 p < 0.05

3D-SENet p > 0.05 N/A p < 0.05

CNN + EL proposed here p < 0.05 p < 0.05 N/A

(C)

PCA + SVM N/A p < 0.05 p > 0.05

3D-SENet p < 0.05 N/A p < 0.05

CNN + EL proposed here p > 0.05 p < 0.05 N/A

coordinate system were determined by the top 5 sagittal, coronal,
and transverse slices, respectively, e.g., (22, −5, −23), (20,
−17, −25). . . (28, −7, −11). These 125 points were mapped
onto various brain regions using the Brainnetome Atlas (Fan
et al., 2016), which can facilitate investigation of structure-
function relationships and comparative neuroanatomical studies.
The Brainnetome Atlas currently contains 246 regions of the
bilateral hemispheres. Moreover, the atlas connectivity-based
parcellation-yielded regions are functionally defined according to
behavioral domain and paradigm class meta-data labels of the
BrainMap database3 using forward and reverse inferences. The
brain regions corresponding to the 125 points in the standard
MNI space were located with the help of the Brainnetome
Atlas. In this way, the brain regions with particularly significant
contributions to the classification were identified according to
the number of intersection points located in those regions.
Here, the number of the intersection points determined by the
most discriminable slices separating two classes in a binary
classification task among the sagittal, coronal, and transverse
slice sets, transformed into the standard MNI space, acted as an
indicator to assess the contributions of a brain region in which
the points were located to classifying AD. Given that the brain
regions in a discriminable slice contribute to the classification

3http://www.brainmap.org/taxonomy

TABLE 7 | Sagittal, coronal, and transverse slice numbers corresponding to the
15 best base classifiers for the first time to run the stratified fivefold
cross-validation procedure.

Experiment Rank Sagittal slice # Coronal
slice #

Transverse
slice #

AD vs. HC 1 22 −5 −23

2 20 −17 −25

3 16 −13 −19

4 −20 −23 −17

5 28 −7 −11

MCIc vs. HC 1 16 −13 −17

2 20 −7 −25

3 14 −11 −7

4 26 −31 −23

5 −20 −5 −29

MCIc vs. MCInc 1 −46 −13 −23

2 −16 7 −19

3 −44 −1 55

4 −56 −79 −25

5 −50 −35 −29
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of AD, we cannot deny the fact that a brain region at which
an intersection point formed by three discriminable sagittal,
coronal, and transverse slices is located contributes most to the
classification of AD among all the brain regions that existed in the
sagittal, coronal or transverse discriminable slice since the brain
region exists in the three slices at the same time.

In this way, for all the 10 × 5-fold cross-validation processes,
the number of all the intersection points located in the same
brain region is summed to measure the ability of the brain
region to classify AD. The brain regions identified with the
most intersection points might be the most discriminable for a
binary classification task. Thus, the details of the identified brain
regions with the classification capacity are shown in Figure 8 and
Tables 8a–c. It is notable that the sum of the last column (i.e.,
the number of points located in a brain region) in each of the

three tables was less than 1250 since some intersection points
were located in the unlabeled brain regions. In Figure 8, values
on the vertical and the horizontal axes represent the brain region
labels and the number of intersection points located in each brain
region, respectively. The prefix capital letters R and L of a brain
region label (e.g., R.rHipp) refer to the right and left cerebral
hemispheres, respectively.

From the above figures and tables, the most discriminable
brain regions in the AD vs. HC classification task were the
rostral hippocampus (Greene et al., 2012), medial amygdala
(Nelson et al., 2018), globus pallidus (Baloyannis, 2006), lateral
amygdala (Kile et al., 2009), area 28/34 (EC, entorhinal cortex),
and caudal area 35/36, i.e., parahippocampal gyrus (van Hoesen
et al., 2000), while those in the MCIc vs. HC classification
task were rostral hippocampus (Ighodaro et al., 2015), medial

FIGURE 8 | The list of brain regions with the classification capacity in each classification task. (A) Discriminable brain regions in the AD vs. HC. (B) Discriminable
brain regions in the MCIc vs. HC. (C) Discriminable brain regions in the MCIc vs. MCInc.
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TABLE 8a | Details of the discriminable brain regions in the AD vs. HC task.

Label of a
brain region

Name of a brain region # of points located
in a brain region

R.rHipp Rostral hippocampus 365

L.rHipp Rostral hippocampus 215

R.mAmyg Medial amygdala 93

L.mAmyg Medial amygdala 38

R.36c Caudal area 35/36 34

L.GP Globus pallidus 28

R.GP Globus pallidus 26

R.lAmyg Lateral amygdala 26

R.34 Area 28/34 (EC, entorhinal cortex) 25

L.36c Caudal area 35/36 21

L.cHipp Caudal hippocampus 12

R.cHipp Caudal hippocampus 12

R.TH Area TH (medial PPHC) 8

L.34 Area 28/34 (EC, entorhinal cortex) 7

L.dlPu Dorsolateral putamen 6

R.dlPu Dorsolateral putamen 6

L.lAmyg Lateral amygdala 5

R.TL Area TL (lateral PPHC, posterior
parahippocampal gyrus)

5

R.NAC Nucleus accumbens 4

L.NAC Nucleus accumbens 3

L.TL Area TL (lateral PPHC, posterior
parahippocampal gyrus)

2

amygdala (Cavedo et al., 2014), caudal hippocampus (Chen
et al., 2015), lateral amygdala (Kile et al., 2009), dorsolateral
putamen (Reeves et al., 2010), rostroventral area 20, i.e., Fusiform
gyrus (Bokde et al., 2006), globus pallidus (Hernández et al.,
2020), area 28/34 (EC, entorhinal cortex) (Du et al., 2001;
Burggren et al., 2011; Tward et al., 2017), and area TL (lateral
PPHC, posterior parahippocampal gyrus) (Devanand et al.,
2007). Finally, the most discriminable brain regions in the
MCIc vs. MCInc classification task were rostral area 21 and
anterior superior temporal sulcus, i.e., middle temporal gyrus
(Karas et al., 2008); rostral area 22 and lateral area 38, i.e.,
superior temporal gyrus (Karas et al., 2008); lateroventral area
37, i.e., fusiform gyrus (Guillozet et al., 2003); and caudoventral
of area 20 and intermediate lateral area 20 and caudolateral
of area 20, i.e., inferior temporal gyrus (Scheff et al., 2011)
and caudal hippocampus (Thomann et al., 2012). The top 10
most discriminable brain regions are mapped onto brain images
in Figure 9.

In the paper (Yang et al., 2019), the results showed that
the patients with aMCI (elderly patients with amnestic MCI)
merely had slight atrophy in the inferior parietal lobe of the
left hemisphere but a significant difference was NOT found
in comparison with the NC (normal controls). The results
are consistent with the highly lateralized MCIc vs. MCInc-
related features acquired in this study, to some degree. Plus,
the most discriminable brain regions identified in the MCIc
vs. MCInc classification task in our study were in agreement
with the conclusion of the paper (Yang et al., 2019) that

TABLE 8b | Details of the discriminable brain regions in the MCIc vs. HC task.

Label of a
brain region

Name of a brain region # of points located
in a brain region

R.rHipp Rostral hippocampus 268

L.rHipp Rostral hippocampus 158

R.mAmyg Medial amygdala 77

R.cHipp Caudal hippocampus 46

R.lAmyg Lateral amygdala 40

R.dlPu Dorsolateral putamen 34

R.A20rv Rostroventral area 20 29

L.mAmyg Medial amygdala 26

L.GP Globus pallidus 25

R.34 Area 28/34 (EC, entorhinal cortex) 23

R.GP Globus pallidus 23

R.TL Area TL (lateral PPHC, posterior
parahippocampal gyrus)

20

L.TE1.0 TE1.0 and TE1.2 18

L.A22r Rostral area 22 17

L.cHipp Caudal hippocampus 16

R.TH Area TH (medial PPHC) 14

L.36c Caudal area 35/36 13

R.36c Caudal area 35/36 12

L.34 Area 28/34 (EC, entorhinal cortex) 12

R.NAC Nucleus accumbens 12

L.A20rv Rostroventral area 20 10

L.dlPu Dorsolateral putamen 8

L.vmPu Ventromedial putamen 7

L.TL Area TL (lateral PPHC, posterior
parahippocampal gyrus)

7

L.A21r Rostral area 21 7

L.lAmyg Lateral amygdala 6

L.A20iv Intermediate ventral area 20 6

R.36r Rostral area 35/36 6

L.NAC Nucleus accumbens 5

L.A20cv Caudoventral of area 20 4

L.aSTS Anterior superior temporal sulcus 3

L.vIg Ventral dysgranular and granular
insula

3

L.A37lv Lateroventral area 37 2

L.A38l Lateral area 38 2

L.A20il Intermediate lateral area 20 2

L.Otha Occipital thalamus 1

R.vmPu Ventromedial putamen 1

the atrophy of cortical thickness and surface area in aMCI
began in the temporal lobe but the range of atrophy gradually
expanded with the progression of disease, to a great extent.
Furthermore, in the paper (Karas et al., 2008), the obtained
results were that MCI converters (patients with MCI who
will progress to AD) had more left lateral temporal lobe
atrophy (superior and middle temporal gyrus) and left parietal
atrophy (angular gyrus and inferior parietal lobule) than MCI
non-converters, i.e., stable patients with MCI, and the drawn
conclusion was that by studying two MCI converter vs. non-
converter populations, atrophy beyond the medial temporal
lobe was found to be characteristic of converters and atrophy

Frontiers in Neuroscience | www.frontiersin.org 13 May 2020 | Volume 14 | Article 25928

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00259 May 13, 2020 Time: 15:47 # 14

Pan et al. A Novel Approach Combining CNN and EL

TABLE 8c | Discriminable brain regions in the MCIc vs. MCInc classification task.

Label of a
brain region

Name of a brain region # of points located
in a brain region

L.A21r Rostral area 21 121

L.A22r Rostral area 22 112

L.A38l Lateral area 38 69

L.A37lv Lateroventral area 37 66

L.A20cv Caudoventral of area 20 46

L.aSTS Anterior superior temporal sulcus 40

L.A20il Intermediate lateral area 20 26

R.cHipp Caudal hippocampus 20

L.A20cl Caudolateral of area 20 20

L.rHipp Rostral hippocampus 18

L.mAmyg Medial amygdala 18

L.A13 Area 13 17

L.vIg Ventral dysgranular and granular
insula

15

R.A20rv Rostroventral area 20 14

R.mAmyg Medial amygdala 14

R.A38m Medial area 38 13

L.A20rv Rostroventral area 20 13

R.rHipp Rostral hippocampus 13

R.A38l Lateral area 38 13

R.A13 Area 13 12

L.A20iv Intermediate ventral area 20 10

R.A37lv Lateroventral area 37 7

L.A38m Medial area 38 7

R.vIa Ventral agranular insula 6

L.3ulhf Area 1/2/3 (upper limb, head and
face region)

5

R.dId Dorsal dysgranular insula 5

R.A20iv Intermediate ventral area 20 5

L.34 Area 28/34 (EC, entorhinal cortex) 4

R.NAC Nucleus accumbens 4

L.TI Area TI (temporal agranular insular
cortex)

3

L.A6cvl Caudal ventrolateral area 6 3

L.A4tl Area 4 (tongue and larynx region) 3

L.dId Dorsal dysgranular insula 3

R.TE1.0 TE1.0 and TE1.2 3

R.A20cv Caudoventral of area 20 3

L.A6cdl Caudal dorsolateral area 6 2

L.A2 Area 1/2/3 (tongue and larynx
region)

2

L.A37mv Medioventral area 37 2

R.TL Area TL (lateral PPHC, posterior
parahippocampal gyrus)

2

L.cHipp Caudal hippocampus 2

L.A40rv Rostroventral area 40 (pfop) 2

R.A22r Rostral area 22 2

R.A21r Rostral area 21 2

L.A4hf Area 4 (head and face region) 1

L.A6vl Ventrolateral area 6 1

R.34 Area 28/34 (EC, entorhinal cortex) 1

L.vIa Ventral agranular insula 1

R.A23v Ventral area 23 1

L.A44v Ventral area 44 1

(Continued)

TABLE 8c | Continued

Label of a
brain region

Name of a brain region # of points located
in a brain region

L.TE1.0 TE1.0 and TE1.2 1

L.dIg Dorsal granular insula 1

L.G Hypergranular insula 1

R.A44op Opercular area 44 1

R.G Hypergranular insula 1

L.lPFtha Lateral pre-frontal thalamus 1

L.47l Lateral area 12/47 1

L.NAC Nucleus accumbens 1

of structures such as the left parietal cortex and left lateral
temporal lobe might independently predict conversion. The
results and conclusion were consistent with most of our
results to some extent.

After location mapping, the corresponding behavioral
domains to every identified brain region were obtained from

FIGURE 9 | Top 10 most discriminable brain regions in each binary
classification task: (A) AD vs. HC; (B) MCIc vs. HC; (C) MCIc vs. MCInc.
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FIGURE 10 | Distributions of the identified brain regions on the relevant behavioral domains in each binary classification task: (A) AD vs. HC; (B) MCIc vs. HC;
(C) MCIc vs. MCInc.

the Brainnetome Atlas official website,4 and the functions of
these identified brain regions were analyzed. Then, the number
of identified brain regions corresponding to each AD-related
behavioral domain was calculated for each task (Figure 10)
to reveal the distribution of structures showing the largest
differences between classes and thus most informative for
classification (e.g., emotion-related structures for AD vs. HC).
In the figure, the vertical and horizontal axes show the relevant
behavioral domains and the number of identified brain regions
associated with these relevant behavioral domains, respectively.

From Figure 10, it can be seen that the functions related
to these identified brain regions with the discriminability were
mainly involved with the behavioral domains of emotion,
memory, language, perception, internal feelings, and activity.
The most common symptoms of AD, especially in the early

4www.Brainnetome.org

stage, include memory loss that disrupts daily life, challenges in
planning or problem solving, difficulty completing familiar tasks
at home, at work, or at leisure, confusion with time or place,
trouble understanding visual images and spatial relationships,
new problems with words in speaking or writing, misplacing
things and losing the ability to retrace steps, decreased or poor
judgment, and changes in mood and personality (Mantzavinos
and Alexiou, 2017). Thus, the behavioral domains relevant to
the identified brain regions were generally consistent with the
common symptoms of AD.

DISCUSSION

In this study, we developed a novel deep learning approach that
combined CNN and EL and applied it to the most commonly
acquired anatomical MRI of the brain, i.e., T1WI. We aimed to
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achieve two objectives: i.e., classification of AD or MCIc vs. HC,
and MCIc vs. MCInc and identification of the complex change
patterns associated with AD.

In comparison with a previous PCA plus SVM method
(Christian et al., 2015), the current method does not require
manual selection of ROIs, but automatically extracts the
discriminable features from the MR images using a CNN-
based adaptive representation learning method in a data-
driven way. The proposed method employs a two-stage EL
scheme to improve generalization and robustness. The model
achieved average classification accuracies (± standard deviation)
of 0.84 ± 0.05 for AD vs. HC, 0.79 ± 0.04 for MCIc vs. HC, and
0.62± 0.06 for MCIc vs. MCInc. Compared to the PCA plus SVM
method, the proposed method showed statistically substantially
improved accuracy and robustness for distinguishing among the
AD, MCIc, and HC groups, while model accuracy was NOT
statistically lower than that achieved by the PCA plus SVM
method for distinguishing MCIc from MCInc. At the same time,
compared to the 3D-SENet model, the CNN-EL method achieved
statistically higher accuracy and robustness for all the three
binary classification tasks.

For a 1 × 5-fold cross-validation processes, we also identified
the 15 slices and resultant 125 (i.e., 5× 5× 5) intersection points
in the standard MNI space based on the five best base classifiers
trained respectively with sagittal, coronal, or transverse slice data.
These points were then mapped onto the Brainnetome Atlas to
identify the corresponding brain regions with the discriminability
in the three binary classification tasks. For all the 10 × 5-fold
cross-validation processes, the number of all the intersection
points located in the same brain region was summed to evaluate
the capability of the brain region to help diagnose AD. The
identified brain regions included hippocampus, amygdala, and
temporal lobe, which are known to be affected by AD and
involved in neurological processes impaired in AD (Schroeter
et al., 2009). Also, we acquired the corresponding behavioral
domains based on all identified brain regions, which were
generally consistent with the common symptoms of AD.

In two-dimensional convolutional neural network (2D-
CNN)-based models for early detection of AD, only sagittal,
coronal, or transverse slices of 3D MR images are usually used
as the training dataset. A specific slice, such as a transverse
slice through the hippocampus, was often selected based on
experience or prior domain knowledge (Wang et al., 2018).
Using only the data from a single 2D slice of a 3D MR image
removes potentially valuable information. In comparison, the
novel CNN-EL approach that we proposed here has the following
significant features:

(1) Six data augmentation (DA) methods are used to deal
with the imbalanced data problem by disproportionately
increasing the number of image slices in classes with fewer
samples. As a result, each class can have approximately
an equal increased number of training instances in the
augmented dataset.

(2) The proposed ensemble model combines features
identified from the sagittal, coronal, and transverse slices
of a 3D MRI dataset together, to improve classification

accuracy and model adaptability. Each of the base 2D
CNN classifier was trained with the data from a single
slice orientation. Then, the top “N” trained base classifiers
were selected according to the generalization performance
on the verification dataset to build the final ensemble. In
this way, the method effectively improved classification
accuracy and robustness. The slices used as training
data to construct base classifiers were not necessarily
specified based on prior domain knowledge; rather, each
available and valid slice (sagittal, coronal, or transverse)
in the dataset was used to train the corresponding
base classifier.

(3) Compared to the length of time spent on building a model
with data from only a single slice orientation, it may take
more time to build the proposed model since many more
base classifiers need to be trained. To effectively solve this
problem, the parallel processing method was adopted to
train the base classifiers used to build the ensemble model.
This greatly improved the training efficiency and made the
proposed model scalable.

(4) According to the classification performances of all trained
base classifiers on the verification dataset, the three
sets of top “N” base classifiers trained using data from
sagittal, coronal, and transverse slices, respectively, were
determined. Since a base classifier was trained with the
data from only a specific slice orientation, the most
important sagittal, coronal, or transverse slice for a binary
classification task (e.g., AD vs. HC) could be located
according to the three sets of top “N” base classifiers
in a data-driven way. Furthermore, the brain regions
corresponding to the intersection points determined by the
top “N” sagittal, coronal, and transverse slices could be
located with the help of the Brainnetome Atlas. The brain
regions identified with the most intersection points might
be the most discriminable for a binary classification task,
given that the number of the intersection points could be an
indicator to measure the ability of a brain region in which
the points were located to classify AD.

(5) The performance of the proposed classifier ensemble was
compared to that of other machine learning models using
the same dataset. The experimental results showed that
the proposed model achieved better classification accuracy
and robustness.

The relatively low classification accuracy for MCIc vs. MCInc
warrants further investigation and the classification performance
needs to be improved with the optimization methods and/or
other deep learning models to identify the brain regions with
stronger discriminability.

For an individual subject to be diagnosed, the votes of base
classifiers in the trained classifier ensemble based on the three-
axis slices and the number of resulting intersection points located
in each brain region might be employed to disclose the extent
to which AD impaired each brain region and each behavioral
domain, which could help understand and evaluate the subject’s
disease status, symptom burden and, more importantly, progress.
Plus, with the advancements of brain atlases and advanced

Frontiers in Neuroscience | www.frontiersin.org 16 May 2020 | Volume 14 | Article 25931

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00259 May 13, 2020 Time: 15:47 # 17

Pan et al. A Novel Approach Combining CNN and EL

ultra-high-field scanners, chances are that the positions and the
number of the intersection points determined by the proposed
CNN-EL methods might provide more details on and insights
into the progress of AD pathology.

Furthermore, the advocated method may be useful for
identifying additional candidate neuroimaging biomarkers for
AD as well as for other brain diseases such as Parkinson’s
disease, autism, schizophrenia and severe depression, especially
for identifying candidate neuroimaging biomarkers for other
little-known brain disorders, in a data-driven way.

The above-mentioned discussions, the clinical implication of
the finding applying other samples, and the generalizability of
the advocated CNN-EL approach need to be examined in the
future research.
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The fruit fly compound eye is a premier experimental system for modeling human
neurodegenerative diseases. The disruption of the retinal geometry has been historically
assessed using time-consuming and poorly reliable techniques such as histology or
pseudopupil manual counting. Recent semiautomated quantification approaches rely
either on manual region-of-interest delimitation or engineered features to estimate the
extent of degeneration. This work presents a fully automated classification pipeline
of bright-field images based on orientated gradient descriptors and machine learning
techniques. An initial region-of-interest extraction is performed, applying morphological
kernels and Euclidean distance-to-centroid thresholding. Image classification algorithms
are trained on these regions (support vector machine, decision trees, random forest,
and convolutional neural network), and their performance is evaluated on independent,
unseen datasets. The combinations of oriented gradient + gaussian kernel Support
Vector Machine [0.97 accuracy and 0.98 area under the curve (AUC)] and fine-tuned
pre-trained convolutional neural network (0.98 accuracy and 0.99 AUC) yielded the best
results overall. The proposed method provides a robust quantification framework that
can be generalized to address the loss of regularity in biological patterns similar to the
Drosophila eye surface and speeds up the processing of large sample batches.

Keywords: Drosophila melanogaster, neurodegeneration, rough eye phenotype, spinocerebellar ataxia, machine
learning, classification, deep learning

INTRODUCTION

Drosophila melanogaster stands out as one of the key animal models in today’s modern genetic
studies, with an estimated 75% of human disease genes having orthologs in flies (Reiter et al., 2001).
Its growth as a powerful experimental model of choice has been supported by the wide array of
genetic and molecular biology tools designed with the fruit fly in mind (Johnston, 2002), easing

Abbreviations: AdaBoost, adaptative boosting; AUC, area under the ROC curve; BN, batch normalization; CNN,
convolutional neural network; DT, decision tree; gmr, glass multimer reporter; HOG, histogram of oriented gradients; IREG,
regularity index; MLP, multilayer perceptron; NN, neural network; PolyQ, polyglutaminated; RBF, radial basis function;
RGB, red, green, blue (colorspace); RF, random forest; ROC, receiver operating characteristic; ROI, region of interest; SCA,
spinocerebellar ataxia; SEM, scanning electron micrograph; SGD, stochastic gradient descent; SVM, support vector machine;
UAS, upstream activating sequence; WT, wild type.
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the creation of genetic deletions, insertions, knock-downs, and
transgenic lines. Fly biologists have greatly contributed to
our knowledge of mammalian biology, making Drosophila the
historical premier research system in the fields of epigenetics,
cancer molecular networks, neurobiology, and immunology
(Wangler et al., 2015). The relative simplicity of Drosophila
genetics (four pairs of homologous chromosomes, in contrast
to 23 in humans) and organization (i.e., ∼2 × 105 neurons in
opposition to roughly 1011 neurons in humans) makes the fruit
fly an especially well-suited model for the analysis of subsets of
phenotypes associated with complex disorders.

Specifically, the retinal system in Drosophila has been widely
used as an experimental setting for high-throughput genetic
screening and for testing molecular interactions (Thomas
and Wassarman, 1999). Eye development is a milestone in
the Drosophila life cycle, with a massive two-thirds of the
essential genes in the fly genome required at some point
during the process (Thaker and Kankel, 1992; Treisman, 2013).
Therefore, it constitutes an excellent playground to study the
genetics underlying general biological phenomena, from the basic
cellular and molecular functions to the pathogenic mechanisms
involved in multifactorial human diseases, such as diabetes or
neurodegeneration (Garcia-Lopez et al., 2011; Lenz et al., 2013;
He et al., 2014).

The fruit fly compound eye is a biological system structured
as a stereotypic array of 800 simple units, called ommatidia,
which display a highly regular hexagonal pattern (Figure 1).
This strict organization precisely allows to evaluate the impact
of altered gene expression and mutated proteins on the
external eye morphology and to detect subtle alterations on
the ommatidia geometry due to cell degeneration. One special
type of cellular deterioration largely studied using Drosophila
retina encompasses polyglutamine-based neurodegenerative
diseases, namely, Huntington’s and spinocerebellar ataxias (SCA)
(Ambegaokar et al., 2010).

The overexpression of polyQ-expanded proteins via the
UAS/Gal4 system in the fly retina results in a depigmented,
rough eye phenotype caused by the loss of interommatidial
bristles (see the wild-type pattern in the inset of Figure 1B),
ommatidial fusion, and necrotic tissue (Figure 2). The vast

FIGURE 1 | Drosophila compound eye structure. Different eye imaging
techniques demonstrating the hexagonal packing of the ommatidia and the
trapezoidal arrangement of the photoreceptors. (A) Schematic representation
of a tangential section through the eye. Numbers depict photoreceptors. (B)
Scanning electron micrograph (SEM). Higher magnification view in inset. (C)
Bright field microscope picture.

majority of studies assessing the rough eye morphology rely on
qualitative examination (i.e., visual inspection) of its external
appearance to manually rank and categorize mutations based
on their severity (Roederer et al., 2005; Bilen and Bonini,
2007; Cukier et al., 2008). Even though evident degenerated
phenotypes are easily recognizable, weak modifiers or subtle
alterations may go undetected for the naked eye. Quantitative
approaches addressing this issue involve histological preparations
from which to evaluate the retinal thickness and the regularity of
the hexagonal array or scoring scales for the presence of expected
features in the retinal surface (Jonshon and Cagan, 2009; Jenny,
2011; Caudron et al., 2013; Mishra and Knust, 2013; Song et al.,
2013). Recently, there have been efforts to fully computerize
the analysis of Drosophila’s rough eye phenotype in bright-field
and scanning electron micrograph (SEM) images in the form
of ImageJ plugins, called FLEYE and Flynotiper (Diez-Hermano
et al., 2015; Iyer et al., 2016). Whereas both methods propose
automatized workflows, the former prompts the user to manually
delimit the region of interest (ROI) to extract the hand-crafted
features from it, which serve as input to a statistical model
and finally output a regularity index (IREG) to the user. The
second method relies upon a single engineered feature and lacks
statistical background to support it.

Hence, there is a need to tackle a fully automatized, statistically
multivariate assessment of Drosophila eye’s quantification, given
its utmost relevance as a simple, yet comprehensive, model
for testing general biology hypotheses and human neurological
diseases. Particularly, machine learning algorithms have proven
to be incredibly efficient image classifiers during the past decade
(Bishop, 2006), rapidly permeating in the fields of cell biology and
biomedical image-based screening (Sommer and Gerlich, 2013;
Chessel, 2017; Tyagi, 2019). Machine learning methods greatly
ease the analysis of complex multi-dimensional data by learning
processing rules from examples that can be later on generalized
to classify new, unseen data (Figure 3A).

The machine learning techniques typically applied to image
classification includes support vector machines (SVM) (Ben-Hur
et al., 2008; Chauhan et al., 2019), decision trees (DT) (Orrite
et al., 2009), random forests (RF) (Schroff et al., 2008), and neural
networks (NNs) (Giacinto and Roli, 2001). Alongside processing
power and graphic card-dedicated coding, deep learning methods
have exponentially grown in importance during the last few years
(LeCun et al., 2015; Po-Hsien et al., 2015). The conventional
machine learning algorithms aforementioned require data
processing and feature enrichment prior to the training phase as
they are not suited to work with raw input. In contrast, the deep
learning procedures are general-purpose learners in the sense that
they can be fed with raw data, automatically suppress irrelevant
information, and select discriminant characteristics, composing
simple layers of non-linear transformations into a higher, more
abstract level of representation (Figure 3B). The convolutional
neural networks (CNNs) are a well-known architecture for
deep learning and have been continuously outperforming the
previous machine learning techniques, especially in computer
vision and audio recognition (Po-Hsien et al., 2015). With the
increasing availability of large biological datasets, its popularity
in bioinformatics and bioimaging has quickly escalated, and
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FIGURE 2 | Bright field photographs of rough eye phenotype surfaces. SCA1 gene modifiers can be tested on the fly eye using the UAS/Gal4 system. Complete
loss of surface regularity and depigmentation can be appreciated between the WT and SCA1 phenotypes. SCA1 modifiers show intermediate levels of degeneration.

currently CNNs are addressing problems hardly resolvable by
former top-notch analysis techniques (Angermueller et al., 2016;
Chen et al., 2016; Kraus et al., 2016; Spanhol et al., 2016; Yang
et al., 2016; Anwar et al., 2018; Badar et al., 2020). The striking
advantage of these networks is that a feature’s hand-crafting and
engineering are completely avoided as they implement functions
insensitive to perturbations, thanks to the multilayer mapping
representation of discriminant details.

The novelty of the present work consists in applying and
comparing the different image classification strategies mentioned
so far in an extensively used biological model, D. melanogaster,
which has been scarcely addressed before and is in dire need of a
state-of-the-art quantification framework.

MATERIALS AND METHODS

Fly Lines and Maintenance
All stocks and crosses were grown in a temperature-controlled
incubator at 25◦C, 60% relative humidity, and under a 12-
h light–dark cycle. They were fed on conventional medium
containing wet yeast 84 g/L, NaCl 3.3 g/L, agar 10 g/L, wheat
flour 42 g/L, apple juice 167 ml/L, and propionic acid 5 ml/L.
To drive transgene expression to the eye photoreceptor, we used
the line gmr:GAL4. Rough eye phenotype was triggered using
the UAS:hATXN182Q transgene (Fernandez-Funez et al., 2000)

that models human type 1 spinocerebellar ataxia (SCA1), and
different UAS:modifier-gene constructs were used to test the
system capability to recognize intermediate phenotypes.

Sample Size
A total of 308 image files were saved using NIS-Elements software
in TIFF format. The number of pictures by category is as follows:
82 wild type (WT), 44 gmr > SCA1, 55 modifier #1, 62 modifier
#2, and 65 modifier #3.

External Eye Surface Digital Imaging
Digital pictures (2,880 × 2,048 pixels) of the surface of fly eyes
were taken with a Nikon DS-Fi3 digital camera and viewed with a
Nikon SMZ1000 stereomicroscope equipped with a Plan Apo× 1
WD70 objective. The flies were anesthetized with CO2 and their
bodies were immobilized on dual adhesive tape, with their heads
oriented to have an eye parallel to the microscope objective. The
fly eyes were illuminated with a homogeneous fiber optic light
passing through a translucid cylinder so that the light rays were
dispersed and did not directly reach the eyes. The images taken
with this method show a better representation of the surface
retinal texture in contrast to the pictures where light fell upon
the eye and the lens’ reflection was captured by the camera,
forming bright-spotted grids. The additional settings include an
8× optical zoom in the stereomicroscope.
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FIGURE 3 | Supervised image classification pipelines. Both workflows start with a dataset labeled with predefined classes. A final performance assessment is also
mandatory to test whether the classifier is able to generalize to independent datasets. (A) Conventional machine learning methods heavily depend on raw data
preprocessing. Splitting into training and test sets occurs only after relevant features have been extracted from the curated data. (B) Deep learning techniques
receive raw pixel intensities directly as input, so the pipeline begins by splitting the datasets. A simple CNN architecture is depicted as an example. Relevant feature
representation occurs in the inner layers of the network, after subsequent convolution and pooling steps. Adapted from Tarca et al. (2007) and Sommer and Gerlich
(2013).

ROI Selection Algorithm
All image analyses were performed using R programming
language (R Core Team, 2018). The eye images in red/green/blue
(RGB) color space were first resized to one-fourth of their original
resolution to help fit the image data to the memory capacity
of the computer system used. White TopHat morphological
transformation with a disc kernel of size 9 was applied using
the package EBImage (Pau et al., 2010). The transformed
images are converted to grayscale and thresholded to keep
only pixels with intensity >0.99 quantile. The overall centroid
of the remaining pixels is estimated using the Weiszfeld
L1-median (Vardi and Cun-Hui, 2000). For each pixel, the
Euclidean distance to the centroid is calculated, and those
with distances >0.8 quantile are discarded. A 0.90 confidence

level ellipse is estimated on the final selected pixels, and
its area is superimposed to the original resized picture to
extract the final ROI.

HOG Descriptor and Machine Learning
Classifiers
Firstly, RGB ROIs were converted to grayscale while maintaining
the original luminance intensities. The histogram of gradient
(HOG) features was extracted using the OpenImageR package
(Mouselimis, 2017). A 5 × 5 cell descriptor with five
orientations covering a gradient range of 0–180◦ was estimated
per cell in the gradient, resulting in a final 125-dimensional
vector for each ROI.
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FIGURE 4 | Drosophila eye ROI detection strategy. Representative examples of healthy and degenerated eyes are shown. (A) Morphological transformation and
intensity thresholding extract pixels mostly contained within the eye. (B) Euclidean distance to the centroid (red dot) and frequency histogram for quantile selection.
Dark blue points are discarded as potential pixel outliers outside the eye limit. (C) Selected pixels are superposed to the original image and those within the area of a
0.90 confidence ellipse are extracted as the final ROI (blue shaded ellipse).
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FIGURE 5 | ROI selection optimization and extensibility. (A) L1-median centroid alongside stricter thresholds improve the eye area detection. (B) Bright-spotted fly
eye images can also be successfully segmented using this method.

TABLE 1 | Machine learning classifier confusion matrix.

Reference

Predicted WT gmr > SCA SCA modifier #1 SCA modifier #2 SCA modifier #3

WT 20 16 20 20 0 2 2 2 1 4 3 1 0 0 0 1 0 4 3 1

gmr > SCA 0 2 0 0 11 7 7 8 0 2 0 0 0 1 1 0 0 2 3 0

SCA modifier #1 0 0 0 0 0 0 2 0 12 7 10 11 0 0 0 0 0 0 0 0

SCA modifier #2 0 1 0 0 0 0 0 0 0 0 0 1 14 12 11 12 0 3 0 0

SCA modifier #3 0 1 0 0 0 2 0 1 0 0 0 0 1 2 3 2 16 7 10 15

Colors scheme: SVM, DT, Boost DT, RF.

The SVM, DT, and RF algorithms were trained on the
extracted HOG features. The dataset was split into training and
test sets with a 75/25 ratio using stratified random sampling
to ensure class representation. The modeling strategy for all
classifiers included cross-validation to assess generalization, grid
search for parameter selection and performance evaluation on
test set via confusion matrix, global accuracy, Kappa statistic,
and multiclass pairwise area under the curve (AUC) (Ferri
et al., 2003). We tested a radial basis function (RBF) kernel
SVM, DT, adaptative boosting DT, and 1,000-trees RF using the
R packages kernlab, C50, and caret (Karatzoglou et al., 2004;
Kuhn et al., 2015).

Deep Learning Classifiers
The extracted ROIs were resized to a 224 × 224 × 3 RGB array
and stored in vectorized form, resulting in a final data frame of
308 × 150,528 dimensions. The dataset was split into training
and test sets with a 75/25 ratio using stratified random sampling
to ensure class representation. We further confirmed that the
training and test partitions were representative of the sample
variability via a loss plot (Supplementary Figure S1). Two CNNs
were trained on this data:

(i) A simple CNN trained from scratch, with hyperbolic
tangent as activation function, two convolutional layers,
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TABLE 2 | Machine learning performance evaluation metrics on test data.

Classifier

Metric SVM RBF DT AdaBoost DT 1000 RF

Accuracy 0.973
(0.907–0.997)

0.653
(0.535–0.760)

0.773
(0.662–0.862)

0.880
(0.784–0.944)

Kappa 0.966 0.560 0.711 0.847

Multiclass AUC 0.978 0.665 0.763 0.906

True positives are shaded in gray.

two pooling layers, two fully connected layers (200 and
five nodes), 30 epochs, and a typical softmax output. Each
convolutional layer uses a 5 × 5 kernel and 20 or 50
filters, respectively. The pooling layers apply a classical
“max pooling” approach. All the parameters in kernels,
bias terms, and weight vectors are automatically learned by
back-propagation with a learning rate equal to 0.05 and a
stochastic gradient descent (SGD) optimizer to ensure that
the magnitude of the updates stayed small (Bottou, 2010).

(ii) A fine-tuned CNN using an ImageNet pretrained model
with a batch-normalization network structure (Deng et al.,
2009; Ioffe and Szegedy, 2015), 30 epochs, a very slow
learning rate (0.05), and a SGD optimizer. The final fully
connected (five nodes) and softmax output layers are tuned
to fit the new fly eye ROIs.

For the CNN training, the R package MXNet compiled for
the central processing unit (CPU) was used (Tianqi et al., 2015).
Performance was assessed in terms of confusion matrix and
global accuracy using the caret package (Kuhn, 2008).

RESULTS

Automatized Detection of Drosophila Eye
ROIs From Bright-Field Images
The first step in the quantification workflow is the extraction
of pixels corresponding to the fly eye from the rest of the
image. One concern is that the eye is not flat but convex in
morphology, so under white light only the central surface is at the
camera focus. To address this issue, white TopHat morphological
transformations were performed, defined as the difference
between the input image and its opening by a structuring kernel.
The opening operation involves erosion followed by a dilation
of the image, retrieving the objects of the input image that are
simultaneously smaller than the structuring element and brighter
than their neighbors.

Best results were obtained using a 9 × 9 disc-shaped kernel
followed by a thresholding of pixels with intensities over the 0.99
percentile (Figure 4A). Afterward, the centroid of the selected
pixels was calculated as the L1-median, which is a more robust
estimator of the central coordinates than the arithmetic mean.
Points with Euclidean distance to the centroid greater than 0.8
percentile are more likely to lie outside the eye area and were
discarded (Figure 4B). A 0.90 confidence ellipse calculated on
the selected pixels conforms the area of the final ROI, which

was superimposed and cropped from the original eye image
(Figure 4C). As can be appreciated in the example images,
the method is invariant to the location of the eye within the
image. Various combinations of the thresholds and the centroid
estimator were tested (Figure 5A). The proposed segmentation
method also works well on bright-field images where light falls
directly onto the ommatidium and the eye is seen as a region
enriched in reflection spots (Figure 5B). The full array of the final
ROIs is represented in Supplementary Figure S2.

We also addressed whether there was any anatomical
preference in the ROI extraction that could be biasing the
classification procedure. To this extent, heatmaps overlaying all
the elliptic ROIs were generated genotype-wise (Supplementary
Figure S3). There were a few instances in which the selected
ROI included areas outside the eye. This happened more easily
in the modifier genotypes and can be seen in the figure
as shades that lay outside the eye border. Overall, the ROI
extraction seems to be robust against the different ommatidial
distribution and eye shapes.

HOG Feature Extraction
Region of interests cannot be directly input to classical machine
learning techniques, so the information contained in their pixels
must be extracted beforehand. This is done by estimating a HOG,
which can be interpreted as a feature descriptor of a picture that
outputs summarized information about predominant shapes and
structures. The HOG technique starts by dividing the picture into
cells and identifying whether a given cell is an edge or not. HOG
provides the edge direction as well, which is done by extracting
the gradient and orientation (magnitude and direction) of the
edges across neighbor cells. These cells comprise the local regions
of related pixels, from which the HOG generates a histogram
using the gradients and the orientations of the pixel values, hence
the name “histogram of oriented gradients.”

Prior to the HOG extraction, the ROIs were transformed to
grayscale, preserving the luminance of the original RGB image.
Then, a 125-dimensional feature vector is extracted for each ROI,
representing the frequency of a certain gradient within the image
(Supplementary Figure S4). The matrix formed by the 125-
D vectors of all ROIs conforms to the input for the machine
learning classifiers.

Note that HOG is only used to feed the classical machine
learning algorithms (SVM, DT, and RF), not the deep learning
CNN, which directly uses the pixels’ values as input. This is due to
the internal structure of the CNN, the inner layers of which serve
as border and edge detectors themselves. This is a reason that led
us to believe that pigmentation was not affecting the classification
procedure, given that all the methods we used relied on structure
detectors rather than color differences.

Comparison of Machine Learning
Classifiers
Support vector machine with RBF kernel, DT, AdaBoost DT,
and 1,000-trees RF algorithms were tested on the extracted
HOG features. The sample consisted in 308 fly eye images
distributed in five different phenotype classes with varying
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FIGURE 6 | Class pairwise AUC and ROC. (A) SVM with RBF kernel outperforms the other classifiers in all comparisons. (B) ROC plots corresponding to the AUCs
in (A).

degrees of retinal surface degeneration. The data were split using
stratified random sampling in 75% training and 25% test set.
The optimal parameters for each classifier were found using
10-fold cross-validation on the training set. Table 1 shows the
confusion matrix, and Table 2 represents the global accuracy,
Kappa statistic, and multiclass AUC, defined as the average AUC
of class pairwise comparisons (Figure 6A), which was calculated
on the test data. The pairwise receiver operating characteristic
(ROC) plots are represented in Figure 6B.

In general, the four classifiers performed fairly well on unseen
data. Both DT algorithms fell on the low spectrum either in
accuracy and AUC (<0.80), whereas RF achieved a remarkable
AUC of 0.90. Overall, SVM accomplished the best results among

FIGURE 7 | IREG boxplots. WT and SCA1 eyes show opposing IREG values
and no distribution overlap. SCA modifiers show intermediate rough eye
phenotypes and slight distribution overlapping, but the median and central
boxes differentiate them. Gray dotted lines mark 0.25, 0.5 and 0.75 IREG
values. Sample sizes are as follows: 82 WT, 44 gmr > SCA1, 55 modifier #1,
62 modifier #2, and 65 modifier #3.

all the error metrics evaluated, with a global accuracy of 0.97
(0.90–0.99), Kappa of 0.96, and a multiclass AUC of roughly 0.98.
The parameters that yield these results were a Gaussian kernel, a
cost penalty = 1, and sigma = 0.005. The WT eyes were the most
correctly classified phenotype by the four methods.

From the SVM estimated class probabilities, it is possible
to derive a IREG that ranges from 0 (total degeneration) to
1 (healthy eye) (Diez-Hermano et al., 2015). It is based on
the knowledge of the degeneration intensity of the phenotypes
involved in the model: WT < modifier #1 < modifier
#2 < modifier #3 < SCA1, from absence to full presence of rough
eye phenotype. IREG is then calculated as:

IREG =

4 · P
(
eye =WT

)
+ 3 · P

(
eye = Mod#1

)
+2 · P

(
eye = Mod#2

)
+ P(eye = Mod#3)

4

when estimated on the test data, the IREG distribution fits to the
expected values and properly reflects the intrinsic variability of
the fly model and the rough eye phenotype (Figure 7).

Deep Learning Classifiers
In contrast with the previous machine learning classifiers that
needed a transformation of the cropped images into an enriched
feature space (HOG), deep learning algorithms directly use the
ROI pixel intensity arrays as input. The features are automatically
learned during the learning process, from gross edge and
contour detection to discrimination of fine details the deeper the
layer in the network.

Two different strategies were followed to train the deep
networks: learning a de novo model and transfer learning. The
latter approach takes advantage of CNNs pre-trained on very
large samples, which is especially well suited for classifying new
small datasets as the majority of patterns and motifs commonly
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FIGURE 8 | CNN architectures and learning curve. (A) Inception-BN is a 15-layered CNN pre-trained on thousands of natural images. A six-nodes fully connected
layer and softmax output are trained with new fly eye images on top of the Inception blocks. (B) De novo CNN with five layers and a six-nodes fully connected and
softmax output. (C) Training accuracy in the pre-trained model starts pretty high and quickly rises in the first few epochs. In contrast, de novo model accuracy
remains low and fluctuates around the initial value with no apparent signs of improvement.

TABLE 3 | Convolutional neural networks classifier confusion matrix.

Reference

Predicted WT gmr > SCA SCA modifier #1 SCA modifier #2 SCA modifier #3

WT 20 20 0 11 0 13 0 15 0 16

gmr > SCA 0 0 11 0 0 0 0 0 0 0

SCA modifier #1 0 0 0 0 13 0 0 0 0 0

SCA modifier #2 0 0 0 0 0 0 14 0 0 0

SCA modifier #3 0 0 0 0 0 0 1 0 16 0

Color scheme: Inception-BN de novo CNN.

found in the images are already known to the model internal
representation. Thus, it is only necessary to fine-tune the final
layers to learn the particularities of the new images, which is
many times faster than training a CNN from scratch and does
not require thousands of labeled examples. The architectures of
both de novo and pre-trained CNN are depicted in Figures 8A,B.
The pre-trained model chosen uses the inception structure,
characterized by including mini-batch normalization (BN) for

each training epoch, which allows for high learning rates and
acts as regularizer. In comparison, the de novo CNN is much
shallower due to computational constraints.

Accuracy during the training phase is usually a reliable
indicator of a CNN capability to learn the discriminative features
with the available sample size (Figure 8C). The curve of the de
novo CNN is a clear sign that either the network is not deep
enough or the training sample is too small for the complexity
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TABLE 4 | Convolutional neural networks performance evaluation
metrics on test data.

Classifier

Metric Inception-BN De novo CNN

Accuracy 0.986 0.146

Multiclass AUC 0.997 0.5

True positives are shaded in gray.

of the classification task at hand. One major concern with the
pre-trained inception-BN was the possibility that the network
was memorizing the training set, given the few epochs it needed
to achieve perfect training accuracy. A performance assessment
in an independent test set of unseen images gave impressive
accuracy and AUC values close to 1 (Tables 3, 4), refuting the
possibility of overfitting. The CNN trained from scratch predicted
every eye to be WT, indicative of the weak classifying rule
learned in training.

Transfer learning CNN was also the only model capable of
properly quantifying the pictures taken under drastically different
illumination techniques, relative to the sample that it was
trained on (dispersed indirect light). The genetic background also
differed from the training sample and corresponds to tau-related
neurodegeneration, the accumulation of which contributes to
the pathology of Alzheimer disease (Lasagna-Reeves et al., 2016;
Rousseaux et al., 2016; Galasso et al., 2017). Supplementary
Figure S5 shows how IREG estimations coming from CNN were
more representative of the surface regularity than IREG coming
from the SVM, which was the top-performance machine learning
technique. In fact, the SVM predicted all eyes to have essentially
the same IREG value. Additionally, retraining all models with
our original sample of bright-spotted eyes (Supplementary
Figure S2B) resulted in transfer learning CNN being the only
model that could successfully generalize to a set of new eyes
(Supplementary Table S1).

Given its classification accuracy and versatility, transfer
learning with the pre-trained inception-BN model is
arguably the top performer classifier among all the methods
tested in this work.

DISCUSSION

The present work provides a novel and fully automated method
to quantitatively assess the degeneration intensity of the fruit flies’
compound eye using reliable and robust state-of-the-art machine
learning techniques. This new method consists in the acquisition
of bright-field images from the external retinal surface, the
automatic extraction of a ROI enriched in information of the eye
morphology, and a classification algorithm built around a pre-
trained deep learning algorithm, fine-tuned to the particularities
of the eye degeneration’s images. Additionally, a model based on
the combination of HOG features extraction and Gaussian kernel
SVM offered performance on par with the CNN and, in fact,
required much less training time.

In contrast with previous quantification approaches (Caudron
et al., 2013; Diez-Hermano et al., 2015; Iyer et al., 2016), this
method does not rely on patterns that are created by light
reflecting in the eye lenses, so it can be applied to extract ROIs
from a variety of illumination conditions. While performing the
experiment to validate the method, we have estimated the total
time that it takes for a researcher to analyze an experimental
group of 50 flies: 1.5 h from anesthetizing the flies until the final
IREG plot was statistically assessed. It is noteworthy that the
most part of that estimation was devoted to capturing the images,
which is a mandatory step, whether the flies are to be manually
or automatically classified later on. The proposed pipeline can
process a 2,880 × 2,048-resolution image in less than 10 s and
batches of 50 images in approximately 90 s, depending on the
hardware that it runs on.

One of the major goals of this work was to analyze the
potentiality of deep learning techniques to extract feature maps
directly from the raw pixel array, which could be used as
input to other conventional machine learning algorithms (i.e.,
SVM). Due to computational constraints, it was not possible
to tune up the graphics processing unit-compiled versions of
the software utilized, and the prohibitive CPU computational
time and memory usage in its absence made the evaluation
of the former objective not feasible. HOG was chosen as
an alternative descriptor, given its successful application in
object detection (Dalal and Triggs, 2005; Orrite et al., 2009; Li
et al., 2012), and ended up resulting in a surprisingly powerful
classifier in combination with conventional SVM. Nonetheless,
the pre-trained CNN will still be preferable for pictures taken
under illumination conditions different from the ones the
models were trained on as it has been shown to have greater
discriminative power.

A drawback of CNNs is the staggering amount of labeled
training examples that they need to learn adequate internal
representations of image patterns and motifs. Although the
sample size in Drosophila experiments ranks among the largest of
any animal model in genetics, it is still a titanic effort to go beyond
1,000 images in a typical fruit fly assay. This limitation affected
the performance of the de novo CNN, which led to the alternative
strategy of transfer learning. Using inception-BN, a CNN pre-
trained on millions of natural images (Ioffe and Szegedy, 2015),
proved to be a well-thought solution that definitely opens up the
field of deep learning to small-scale biology setups.

Future lines of work include developing the fly eye detection
algorithm further to make it extensible to other image capturing
techniques (i.e., SEM). A more immediate priority is the creation
of a user-friendly Shiny application (Winston et al., 2017) that
will allow the researcher to tweak the ROI selection parameters to
fit the peculiarities of its own dataset prior to the degeneration
quantification. Depending on the particular hardware settings,
the app may also offer the user the possibility to train its own
SVM or deep learning model.

The aim of this work is to provide a workflow that results in
a quantitative assessment of the degree of eye degeneration of
hundreds of flies in a quick and unbiased manner. This makes
our method particularly suitable for discriminating potential
genetic rescues or aberrations. We believe that our algorithm

Frontiers in Neuroscience | www.frontiersin.org 10 June 2020 | Volume 14 | Article 51644

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00516 June 2, 2020 Time: 20:39 # 11

Diez-Hermano et al. Classification of Drosophila Neurodegenerative Eye Phenotypes

could be easily implemented in fully robotized environments
as the final quantification step. The highlighted strengths
of the proposed framework will enhance the sensitivity
of high-throughput genetic screens based on rough eye
phenotypes and demonstrate that fly eye imaging is a
top-notch technique for the quantitative modeling of
human diseases.
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Duchenne muscular dystrophy (DMD) is an X-linked disorder caused by the lack of
dystrophin with progressive degeneration of skeletal muscles. Most studies regarding
DMD understandably focus on muscle, but dystrophin is also expressed in the central
nervous system, potentially resulting in cognitive and behavioral changes. Animal
models are being used for developing more comprehensive neuromonitoring protocols
and clinical image acquisition procedures. The recently developed DMD rat is an animal
model that parallels the progressive muscle wasting seen in DMD. Here, we studied
the brain and temporalis muscle structure and neurochemistry of wild type (WT) and
dystrophic (DMD) rats using magnetic resonance imaging and spectroscopy. Both
structural and neurochemistry alterations were observed in the DMD rat brain and the
temporalis muscle. There was a decrease in absolute brain volume (WT = 1579 mm3;
DMD = 1501 mm3; p = 0.039, Cohen’s d = 1.867), but not normalized (WT = 4.27;
DMD = 4.02; p = 0.306) brain volume. Diffusion tensor imaging (DTI) revealed structural
alterations in the DMD temporalis muscle, with increased mean diffusivity (MD), axial
diffusivity (AD), and radial diffusivity (RD). In the DMD rat thalamus, DTI revealed an
increase in fractional anisotropy (FA) and a decrease in RD. Smaller normalized brain
volume correlated to severity of muscle dystrophy (r = −0.975). Neurochemical changes
in the DMD rat brain included increased GABA and NAA in the prefrontal cortex, and
GABA in the hippocampus. Such findings could indicate disturbed motor and sensory
signaling, resulting in a dysfunctional GABAergic neurotransmission, and an unstable
osmoregulation in the dystrophin-null brain.

Keywords: duchenne muscular dystrophy, rat model, neuroimaging, magnetic resonance imaging, 1H magnetic
resonance spectroscopy, diffusion tensor imaging

INTRODUCTION

Duchenne muscular dystrophy (DMD) is an X-linked muscle disorder that presents clinically
with significant and progressive muscle wasting and loss of muscular function (Brooke et al.,
1989; McDonald et al., 1995; Lovering et al., 2005), due to the absence of the protein,
dystrophin. Dystrophin is a large sarcolemma-associated protein expressed in striated muscle
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(Tinsley et al., 1994; Blake et al., 1996). Our understanding about
the function of dystrophin has been derived from studies of
dystrophin-deficient animals, with the most common model
being the mdx mouse.

Dystrophin is also expressed in the central nervous system
(CNS), but there is a dearth of knowledge regarding its role in
the brain. Cognitive impairment, including mental retardation
(Cotton et al., 2005) can occur in DMD patients (Duchenne,
1861; Anderson et al., 2002; Nardes et al., 2012). This can
include diminished memory function, especially short term
memory (Hinton et al., 2007; Wingeier et al., 2011), as well
as language impairments, long-term memory problems, and
limited executive functions (Cotton et al., 2001, 2005; Wicksell
et al., 2004; Marini et al., 2007). Both CT and in vivo 1H MRS
studies indicate a slow, progressive cerebral degeneration in
DMD patients (Yoshioka et al., 1980; Uchino et al., 1994; Rae
et al., 1998; Chen et al., 1999), with findings of cortical atrophy
and ventricular dilation in older patients, and patients with large
amounts of physical disability (Yoshioka et al., 1980).

In muscle, dystrophin protects the sarcolemma against
mechanical stress (Koenig et al., 1988) and contributes to force
and signal transduction (Ervasti and Campbell, 1993; Petrof
et al., 1993; Lovering and De Deyne, 2004). Dystrophin also
regulates intracellular calcium and the cascade of calcium-
related events (Lansman and Franco, 1991; Lovering et al.,
2009), the aggregation of neurotransmitter receptors (Kong
and Anderson, 1999; Pratt et al., 2013), and reactive oxygen
species (Whitehead et al., 2006; Khairallah et al., 2012). In the
brain, various dystrophin isoforms are distributed unequally,
but dystrophin is expressed in the post-synaptic neurons of the
cortex, hippocampus, and cerebellum, which are regions integral
to cognition (Cyrulnik and Hinton, 2008). Thus, cognitive
impairment in DMD patients could be due to its absence.
However, the specific function of dystrophin in brain is not
fully understood. In muscle, dystrophin has functional and
structural roles. Identifying how dystrophin’s absence affects the
brain would be helpful in monitoring disease progression or
effectiveness of therapies that are being developed for DMD.

The most commonly studied animal model of DMD is themdx
mouse, which similar to patients with DMD, lacks dystrophin
(Sicinski et al., 1989). However, even though mdx mice have
muscle pathology, the phenotype is much less severe than patients
with DMD. Thus, the utility of the mdx mouse as a model for
DMD is questionable (Allamand and Campbell, 2000). Novel
rat models of DMD have become available (Larcher et al.,
2014; Nakamura et al., 2014), but have still not been fully
characterized. The rat model appears to better mimic DMD
than the mdx mouse, with progressive muscle fibrosis, fatty
infiltration, muscle weakness, decreased activity, and altered
diastolic function (Larcher et al., 2014; Nakamura et al., 2014).
A recent report showed that the DMD rat shows significant
changes in neuromotor behavior (Caudal et al., 2020). The
DMD rat more closely parallels the phenotype of DMD than
mdx mice in terms of histology and life span, but there are no
imaging studies of the rat DMD brain. In this brief research
report, we used in vivo magnetic resonance imaging (MRI),
diffusion tensor imaging (DTI) and high resolution localized

1H magnetic resonance spectroscopy (1H MRS) to investigate
alterations in brain structure and neurochemicals in the DMD
rat brain and adjacent temporalis muscle. The use of these
in-vivo neuroimaging technologies will be helpful in clarifying
the function of dystrophin in the brain. Furthermore, the
development of these neuroimaging techniques is important as
non-invasive tools for diagnosis, monitoring disease progression,
planning rehabilitation, and determining the effectiveness of
therapeutic interventions.

METHODS

Animals
DMD rats were generated using a CRISPR-based approach
targeting exon 22 to exon 26 of dystrophin (gRNA pairs GTCTAA
TAGTAGGTGATAAGAGG and CAGCTCTTGTACCCGATTG
CTGG), resulting in a ∼1080 bp mutant dystrophin mRNA
that is undetectable. Two-month old dystrophic (DMD, N = 4,
356 ± 26 g) and age-matched littermate wild type (WT,
N = 4, 384 ± 29 g) male rats were used. Body weight
was not significantly different between DMD and WT rats.
All experimental procedures were approved by the University
of Maryland School of Medicine Institutional Animal Care
and Use Committee.

MRI Protocol
The MRI/MRS experiments were performed on a Bruker BioSpec
70/30USR Avance III 7T scanner. A Bruker four-element 1H
surface coil array was used as the receiver and a Bruker 72 mm
linear-volume coil as the transmitter. Each rat was anesthetized
in an animal chamber using a gas mixture of O2 (1 L/min)
and isoflurane (3%) then later maintained at 1–2% isoflurane
during scanning. An MR compatible small-animal monitoring
system was used to monitor the animal respiration rate and body
temperature. The animal body temperature was maintained at
35–37◦C using warm water circulation.

T2-weighted anatomic head (including brain and the
surrounding muscle tissues) images were obtained using a
2D rapid acquisition with relaxation enhancement (RARE)
sequence in the axial plane [repetition time (TR)/echo time
(TE) = 4600/30 ms, RARE factor = 4, field of view (FOV) = 32
× 32 mm2, slice thickness = 1 mm, image matrix = 320 ×
320, in-plane resolution = 100 × 100 µm2, number of averages
(NA) = 2, number of slices = 16]. Brain volume analysis was
performed in MIPAV (Medical Image Processing, Analysis,
and Visualization1). Skull-stripping was performed manually
on images. The total brain volume was calculated by adding
the slice-by-slice volume from 13 slices that were consistently
acquired across animals as shown in Figure 1A.

In vivo DTI images on rat heads were acquired with a gradient
echo-planar imaging (EPI) sequence (TR/TE = 2,500/18.82 ms,
diffusion directions = 30, NA = 1, image matrix = 92 × 92,
in-plane resolution = 348 × 348 µm2, the FOV was the same
as T2-weighted images). Two b-values (1,000 and 2,000 s/mm2)

1https://mipav.cit.nih.gov/
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FIGURE 1 | (A) T2-weighted image of a rat brain showing all slices included for the calculation of brain volume. (B) Regions of interest (ROIs) used for DTI data
analysis. ROIs were drawn in the prefrontal cortex (PFC; ROI 1), hippocampus (HP; ROI 2), thalamus (Tha, ROI 3) and temporalis muscle (ROI 4). (C) RARE
T2-weighted MRI axial view of the muscle surrounding the cranium (temporalis muscle, red arrows) of the head of each wild-type (WT) and dystrophic (DMD) rat. In
the WT rats, the temporalis muscles were homogeneously dark with no focal hyperintense regions, whereas in the DMD rats, the temporalis muscles were
heterogeneous, with multiple, unevenly distributed focal hyperintensities. There were no apparent anatomic differences between WT and DMD brains. RARE: rapid
acquisition with relaxation enhancement sequence.

were acquired for each direction. Five additional images at
b = 0 s/mm2 were also acquired. Typically for routine brain
evaluations, the b-values (a measure of the sensitivity to diffusion)
in DTI experiments are at 1,000 s/mm2 (Xu et al., 2011; Zhuo
et al., 2012). The b = 2000 s/mm2 was added in the current study
to test whether better characterized gray matter microstructure
would yield differences in brain maturation (Cheung et al., 2009;
Zhuo et al., 2012). However, no significant differences were
found in the current age group of DMD and WT rats. The
acquisition of multiple images acquired at b = 0 s/mm2 was
utilized to obtain a strong signal to noise ratio for non-diffusion
weighted map to improve the estimation of diffusion parameters
(Jones et al., 1999).

Custom-made diffusion kurtosis software (Xu et al., 2013)
was used to generate the maps of mean diffusivity (MD),
axial diffusivity (AD), radial diffusivity (RD), and fractional
anisotropy (FA). MD measures the average water diffusion
within the head. AD measures the water diffusion along the
neuronal axons. RD measures the water diffusion perpendicular

to the axons. FA measures the degree of diffusion anisotropy of
the head. The regions of interest (ROIs), including prefrontal
cortex, hippocampus, thalamus, and the temporalis muscle
were manually defined on the FA images while using the T2-
weighted image for anatomic reference in FSLeyes2 (Figure 1B).
Values of MD, AD, RD, and FA were extracted, respectively,
from each generated map using the manually defined ROIs.
The details of this procedure have been published previously
(Zhuo et al., 2012).

A 1H short-TE Point-RESolved Spectroscopy (PRESS) pulse
sequence (Xu et al., 2013) (TR/TE = 2,500/10 ms, NA = 360)
was used for MRS data acquisition with the voxel centered on
the prefrontal cortex (PFC, 3 mm × 3 mm × 3 mm) and
hippocampus (HP, 8 mm × 2 mm × 2 mm), respectively. The
unsuppressed water signal from each of the prescribed voxels
was obtained to serve as a reference for determining the specific
metabolite concentrations. Quantification of the MRS was based

2https://git.fmrib.ox.ac.uk/fsl/fsleyes/fsleyes
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on frequency domain analysis using a “Linear Combination
of Model spectra” (LCModel) (Provencher, 1993). Absolute
concentrations were estimated with the LCModel automatic
procedure (version 6.3-0G).

Statistics
All in vivo MRI and MRS measurements between DMD and WT
rats were compared using t-tests with an alpha level set at p
< 0.05. Cohen’s d was used to measure effect size. Correlations
between normalized brain volume, MRS measurements, and
DTI parameters of MD, AD, RD, and FA were calculated using
Pearson’s correlation coefficient.

RESULTS

DMD rats clearly had muscle lesions (Figure 1C), which showed
a similar pattern to what we have reported in mdx mice (Xu et al.,
2015). The MRI of WT temporalis muscles were homogeneous,
but these muscles of DMD rats showed signal heterogeneity, with
numerous focal hyperintensities clearly present. There were no
apparent anatomical differences in T2-weighted images of the
brains between the WT and DMD rats (Figure 1C). A significant
reduction of whole brain volume was detected in DMD rats
compared to WT rats (p = 0.039, Cohen’s d = 1.867) (Figure 2A),
however, this difference was not significant when the brain
volume was normalized to body weight (p = 0.306) (Figure 2B).

All of the diffusivities were significantly increased in the
temporalis muscles of the DMD rats compared to WT rats (MD:
p = 0.024, Cohen’s d = 2.255; AD: p = 0.024, Cohen’s d = 2.234;
RD: p = 0.034, Cohen’s d = 1.199) (Figure 3A). FA
significantly increased (p = 0.028, Cohen’s d = 2.041) while
RD significantly decreased (p = 0.014, Cohen’s d = 2.5) in
the thalamus of DMD rats compared to WT rats (Figure 3B),
which could signify either increased myelination, or decreased
fiber diameters. A correlation analysis was performed between
the normalized brain volume and the MD, AD, and RD value

of temporalis muscles in WT and DMD rats using Pearson’s
correlation analysis. Significant negative correlation was detected
in DMD rats between normalized brain volume and muscle
MD (r = −0.974, p = 0.026), and normalized brain volume and
muscle RD (r = −0.975, p = 0.025), respectively (Figure 3C).
No significant correlations were observed in WT rats. This
finding suggests that the level of brain atrophy is associated with
the severity of dystrophic muscle in DMD rats. No significant
difference between WT and DMD rats was detected in any of
the diffusion measures in prefrontal cortex and hippocampus
(data not shown).

Representative high resolution localized in vivo MRS
spectra from the PFC and HP of a DMD rat are shown in
Figure 4A. Several neurochemicals were detected, such as total
creatine (tCr, creatine + phosphocreatine), γ-aminobutyric
acid (GABA), glucose (Glc), glutamate (Glu), glutamine (Gln),
glutathione (GSH), myo-inositol (Ins), N-acetyl-aspartate
(NAA), N-acetylaspartateglutamate (NAAG), taurine (Tau),
Choline (Cho), and macro molecules (MM). Compared to WT
mice, DMD rats demonstrated significant elevations in GABA
(p = 0.045) and NAA (p = 0.044) in the PFC, as well as a marginal
elevation in GABA (p = 0.062) in the HP (Figures 4A,B). No
significant differences were seen in other neurochemicals from
these regions. The relationship between MRS and DTI results
was also performed, but no significant correlation was found
(data not shown).

DISCUSSION

This brief study demonstrated that multi-modal MR
neuroimaging modalities can identify changes in the structure
(MRI/DTI) and neurobiochemistry (MRS) of muscle and brain
in young DMD rats. DMD rats had smaller brain volumes and
body weights, although there was no significant difference in
normalized brain volume. Interestingly, a recent study looking
at aged mdx mice showed a progressive, age-dependent decline

FIGURE 2 | (A) Bar graph showing differences between the whole brain volume of dystrophic (DMD) and wild-type (WT) rats. (B) Bar graph showing differences
between the normalized brain volume of DMD and WT animals. *significantly different from the corresponding values in WT rats (un-paired t-test, p < 0.05).
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FIGURE 3 | (A) Bar graph showing the increased values in muscle mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in dystrophic (DMD) rats
compared to wild-type (WT) rats. (B) Bar graph showing that fractional anisotropy (FA) was significantly increased, while RD was reduced in the thalamus of DMD
rats compared to WT rats. (C) Correlation plots between normalized whole brain volume and both muscle MD (left) and muscle RD (right) in DMD and WT rats.
*Significantly different from the corresponding value in WT rats (un-paired t-test, p < 0.05).

in cognitive function (Bagdatlioglu et al., 2020). The authors
suggested that the absence of dystrophin causes a late onset
neurodegeneration that is not readily detected in the mdx mice
because most testing has been performed in relatively young
animals before the onset of this degeneration. Such a finding is
consistent with MRI findings in older DMD patients, showing
reduced total brain volume compared to healthy controls
(although such findings are difficult to separate from effects of
steroid therapy) (Doorenweerd et al., 2014). Although we did not
assess aged rats, the slight reduction in total brain volume in the
DMD rat might reflect a phenotype that, compared to mdx mice,
more closely resembles DMD.

Mastication is impaired in DMD patients, for example patients
have a decrease in normal bite force. Thus, it’s plausible that the
reduced body weights of the DMD rats compared to controls
could be due to reduced food consumption secondary to the
muscle pathology in the temporalis muscles (Bagdatlioglu et al.,
2020), although this was not assessed.

MD, AD, and RD were significantly increased in the
temporalis muscles of the DMD rats compared to WT rats,
MD and RD values had significant negative correlations to
normalized brain volume in DMD rats, but not in WT rats.
This finding suggests that the level of brain atrophy is associated
with the severity of muscular dystrophy in DMD rats. The
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FIGURE 4 | (A) Representative in vivo 1H MR spectra acquired from the prefrontal cortex (PFC, bottom) and the hippocampus (HP, top) of a dystrophic (DMD) rat
brain. Main metabolites shown in the spectra are: γ-aminobutyric acid (GABA), glutamine (Gln), glutamate (Glu), glucose (Glc), glutathione (GSH), myo-inositol (Ins),
N-acetylaspartate (NAA), N-acetylaspartateglutamate (NAAG), taurine (Tau), total creatine (tCr; phosphocreatine + creatine), choline (Cho), glutamate/glutamine
complex (Glx), and macro molecules (MM). (B) Comparison of the neurochemical concentrations (mM) between wild-type (WT) and DMD rats in PFC (bottom) and
HP (top). Data are expressed as mean ± standard error. *Significantly different from the corresponding value in WT rats (un-paired t-test, p < 0.05).

structural alterations seen in DMD rats included increased FA
and decreased RD in thalamus, a structure that has extensive
nerve connections to the cerebral cortex and the midbrain. The
primary function of the thalamus is to relay motor and sensory
signals to and from the cerebral cortex. Thus, the microstructural
alteration in the thalamus may reflect the movement disorder
caused by the muscular dystrophy.

The changes in concentrations of neurochemicals in the
DMD rat brains were in the HP and PFC regions, where
dystrophin is normally present (Caudal et al., 2020). Elevations
in GABA (in PFC and HP) and NAA (in PFC) were
observed in DMD rats. A disruption in the amount or relative
proportions of these neurochemicals likely has consequences on
dystrophin’s functions, such as GABAergic neurotransmission
and osmoregulation in the brain.

The elevations in GABA in the both PFC and HP in the
DMD rat brains may indicate a dysfunction of GABAergic
neurotransmission. It is known that full-length dystrophin

co-localizes with GABAA receptors in the mouse cerebellum,
cerebral cortex and hippocampus (Knuesel et al., 1999).
Dystrophin likely contributes to neurotransmitter receptor
aggregation, potentially due to the reduction of GABAA resulting
in the elevation of GABA in the brain (Knuesel et al., 1999;
Kueh et al., 2011).

NAA is a known osmolyte, providing ∼7% of neuronal
osmolarity (Baslow, 2000). Missing cerebral dystrophin may lead
to modification of the microenvironment of the neurons and thus
may result in a perturbed osmoregulation. The NAA elevation
may work as a beneficial compensatory mechanism in the brain.

The subcellular distribution of dystrophin neurons is
restricted and varies within the brain, including in the rat (Caudal
et al., 2020). If dystrophin can play different roles in different
areas of the brain, this could explain why our findings are
restricted to some, and not all, brain regions. Interestingly, our
findings were restricted to brain regions known to be related to
cognitive function. Since distribution of dystrophin is limited in
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the brain, this could explain why only mild cognitive dysfunction
is seen in patients with DMD. Here, we report changes in DTI
parameters and GABA and NAA in several brain areas. Such
findings indicate small brain volume that correlated to severity of
muscle dystrophy, disturbed motor and sensory signal sending,
dysfunction of GABAergic neurotransmission, and perturbed
osmoregulation in the DMD rat brain. The prefrontal cortex
and hippocampus are two regions that show the absence of
dystrophin and feasibility of MRS. Therefore, we put these two
regions in the localized MRS protocol. Now that we know from
the DTI results that the microstructure of the thalamus can be
affected by DMD, we will add the thalamus as a target region in
our future study for MRS.

Our results in this study on DMD rat brain reflect similar
findings found in both the mdx mouse model and patients with
DMD. Behavioral studies indicate learning impairments in mdx
mice (Muntoni et al., 1991; Vaillend et al., 1995; Perronnet et al.,
2012). A handful of studies that have explored in vivo 1H MRS
indicate low ratios of Cr/Cho and NAA/Cho in mdx brains
compared to wild type controls (Tracey et al., 1996). Using MRI
and MRS, we previously reported structural and biochemical
changes in brains of 7-month old mdx mice (Xu et al., 2015).
Our results showed enlarged lateral ventricles inmdx brains when
compared to WT. Other structural alterations were observed by
ex vivo DTI. In the prefrontal cortex, elevations in diffusivities
were detected in the prefrontal cortex and a reduction of FA was
measured in the hippocampus. Biochemical changes included
elevations in phospfholine and glutathione, and a reduction in
GABA in the hippocampus of the mdx mice. In addition, we
found an elevation in taurine in the prefrontal cortex. Such
findings indicate a regional structural change, altered cellular
antioxidant defenses, modified GABAergic neurotransmission,
and disrupted osmoregulation in the brain lacking dystrophin.
Significant increases in ratios of choline-containing compounds
to N-acetylaspartate (Cho/NAA) and Cho/Cr have been detected
in the cerebellum of DMD boys compared to age-matched
controls (Rae et al., 1998). A progressive nature was further
reflected by a larger effect in 12 year old patients with DMD
than in 8 year old patients with DMD. Conversely, another study
showed a significant decrease in absolute Cho levels in both the
cerebellum and the temporo-parietal cortex of the DMD patients
(Kreis et al., 2011).

The impact of dystrophin’s absence on behavior has also
recently been studied in the DMD rat, showing clear alterations
in overall neuromotor function (Caudal et al., 2020). The current
study sheds further light on dystrophin’s role in the brain.
Replacing dystrophin in the brain would be the most logical
solution to resolving cognitive issues, but such a therapy is not

imminent, despite ongoing efforts (Goyenvalle et al., 2015). The
non-invasive imaging methods employed here could be effective
in monitoring the efficiency of the potential therapeutic agents,
including the brain if such treatments are developed.

In summary, we studied the structure (brain and muscle)
and neuro biochemistry of healthy and dystrophic rats with
MRI/MRS and found in dystrophic rats: smaller brain volume
that correlated to severity of muscular dystrophy, alterations in
diffusion of the muscle and thalamus, and several biochemical
alterations in prefrontal cortex and hippocampus.
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Blood-brain barrier opening (BBBO) with pulsed Focused Ultrasound (pFUS) and
microbubbles (MB) has received increasing interest as a method for neurotherapeutics
of the central nervous system. In general, conventional MRI [i.e., T2w, T2∗w, gadolinium
(Gd) enhanced T1w] is used to monitor the effects of pFUS+MB on BBBO and/or
assess whether sonication results in parenchymal damage. This study employed
multimodal MRI techniques and 18F-Fludeoxyglucose (FDG) PET to evaluate the effects
of single and multiple weekly pFUS+MB sessions on morphology and glucose utilization
levels in the rat cortex and hippocampus. pFUS was performed with 0.548 MHz
transducer with a slow infusion over 1 min of OptisonTM (5–8 × 107 MB) in nine
focal points in cortex and four in hippocampus. During pFUS+MB treatment, Gd-T1w
was performed at 3 T to confirm BBBO, along with subsequent T2w, T2∗w, DTI and
glucose CEST (glucoCEST)-weighted imaging by high field 9.4 T and compared with
FDG-PET and immunohistochemistry. Animals receiving a single pFUS+MB exhibited
minimal hypointense voxels on T2∗w. Brains receiving multiple pFUS+MB treatments
demonstrated persistent T2w and T2∗ abnormalities associated with changes in DTI
and glucoCEST when compared to contralateral parenchyma. Decreased glucoCEST
contrast was substantiated by FDG-PET in cortex following multiple sonications.
Immunohistochemistry showed significantly dilated vessels and decreased neuronal
glucose transporter (GLUT3) expression in sonicated cortex and hippocampus without
changes in neuronal counts. These results suggest the importance to standardize MRI
protocols in concert with advanced imaging techniques when evaluating long term
effects of pFUS+MB BBBO in clinical trials for neurological diseases.
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INTRODUCTION

MRI guided (MRIg) pulsed Focused Ultrasound (pFUS) is a non-
invasive technique being advocated for the blood brain barrier
opening (BBBO) to facilitate the delivery of neurotherapeutics
(i.e., drugs, genes, biologics) in the treatment of primary and
metastatic central nervous system (CNS) tumors (Park et al.,
2012, 2020) or neurodegenerative diseases, such as amyotrophic
lateral sclerosis (Abrahao et al., 2019) and Alzheimer’s disease
(Baseri et al., 2012; Kovacs et al., 2014; Lipsman et al., 2018).
pFUS coupled with an infusion of ultrasound contrast agent
microbubbles (MB) causes BBBO primarily by mechanical effects
from acoustic cavitation forces on the endothelium that alters
the integrity of tight junction proteins (TJP) and changes
calcium fluxes within vasculature (Sheikov et al., 2004, 2008;
Deng, 2010; Burgess and Hynynen, 2014; Gorick et al., 2020).
MRIg pFUS+MB targeting delivery of neurotherapeutics in CNS
diseases has been performed in preclinical experimental studies
(Jones et al., 2018) and ongoing clinical trials (NCT03608553,
NCT03739905, NCT04118764, NCT03551249, NCT03616860,
NCT03714243)1. Aside from the positive results, the pFUS+MB
BBBO has also been reported to induce a sterile inflammatory
response (SIR) in the targeted parenchyma (Banks, 2016; Kovacs
et al., 2017b, 2018b; McMahon and Hynynen, 2017; McMahon
et al., 2017, 2020). The magnitude of the expression of cytokines,
chemokines and trophic factors (CCTF) and cell adhesion
molecules (CAM) may be related to the sonication parameters
used along with MB dosing (Silburt et al., 2017; Kovacs et al.,
2018a). The long-term effects of the induced SIR in pFUS+MB
BBBO requires further investigation.

MRI is a sensitive and commonly used technique to
assess changes in the brain following pFUS+MB. Gadolinium-
based contrast agents (GBCA)-T1-weighted (w) MRI are
used to document BBBO following sonication, confirmed by
extravasation of dyes or plasma proteins into the parenchyma on
histology (Yang et al., 2009; Chai et al., 2018; Stavarache et al.,
2018; Morse et al., 2019). The level of contrast enhancement
in GBCA-T1w MRI may be related to the magnitude of
sonication parameters and the amount of CCTF expression
(Nance et al., 2014; Mooney et al., 2016; Olumolade et al.,
2016; Kovacs et al., 2017b; McMahon et al., 2017). T2w (Alkins
et al., 2013; Aryal et al., 2015; Meng et al., 2017) and T2∗w
(Hynynen et al., 2001) images have also been used to examine
the structural damage and microhemorrhages following pFUS
induced BBBO (Gan et al., 2012; McDannold et al., 2012;
Kovacs et al., 2014; Downs et al., 2015b; Alecou et al., 2017;
Horodyckid et al., 2017). In addition, immunohistochemistry
(IHC) techniques have also been used to document changes
in cellular activation following sonication and BBBO (Hynynen
et al., 2001; Aryal et al., 2015). However, investigations using
advanced high-resolution imaging techniques that can assess
changes in tissue morphology and glucose utilization, such as
diffusion tensor imaging (DTI) (Basser and Pierpaoli, 1996)
and chemical exchange saturation transfer (CEST) (Ward et al.,
2000). MRI have received little attention despite their potential

1clinicaltrials.gov

for assessing treatment effects following single or multiple
sonication sessions.

The purpose of this study was to evaluate the long-term effects
of single and multiple pFUS+MB BBBO in the rat cortex and
hippocampus by high-resolution advanced MRI techniques and
correlate radiological findings to pathology. MRI was performed
at 9.4 T at 1 day, 2 and 6 weeks post 1×, 2×, and 6× pFUS+MB
using T2w, T2∗w, DTI and CEST imaging. The imaging results
were compared to 2-[18F] Fluoro-deoxyglucose (FDG) positron
emission tomography (PET) performed after the sixth sonication
and IHC results for glucose transporters and neuronal density.
The results underscore the value of incorporating advanced MRI
imaging techniques in assessing metabolic and morphological
changes in the brain following sonication.

MATERIALS AND METHODS

Animal Care
For all the animal experiments, barrier-raised and specific
pathogen-free 6–8-week-old female Sprague-Dawley rats were
used (Charles River Laboratory, Wilmington, MA). Rats were
housed individually in a temperature- and light-controlled room
on a 12-h light–dark cycle and were fed commercial rodent
chow (2018 Teklad Global 18% Protein Rodent Diet; Harlan
Laboratories Inc., Indianapolis, IN) and tap water ad libitum.
This study was approved by our Institutional Animal Care and
Use Committee and all experiments were complied with the
National Research Council’s Guide for the Care and Use of
Laboratory Animals (2011).

Experiment Design
Figure 1 is a diagram outlining the timing of the imaging
experiments performed. Rats had in vivo MRI using a Bruker
9.4T scanner (Bruker Corp., Billerica, MA) and a radiofrequency
quadrature coil (Doty Scientific, Inc., Columbia, SC). Before
starting pFUS+MB treatments, anatomical T2w imaging was
used to screen for baseline brain abnormalities, including
spontaneous ventriculomegaly previously found in the Wistar
rats (Tu et al., 2014), which served as exclusion criteria. The
imaging parameters included: rapid acquisition with refocused
echoes (RARE) sequence, repetition time/echo time (TR/TE)
3000/11 ms, RARE factor 8, in-plane resolution 100 × 100
µm2, slice thickness 500 µm, slice number 30. Throughout
the MRI scans, a circulating water warming pad was placed
under the animals to ensure a constant 37◦C body temperature
while anesthesia was ensured by isoflurane (1–1.5%) in 100%
O2 via nosecone. A steady respiratory rate was monitored using
a pressure sensor (SA Instruments Inc., Stony Brook, NY)
and maintained at 40–50 breaths-per-minute by controlling the
level of isoflurane/oxygen mixture. 21 rats were first scanned
to screen for baseline abnormalities, 14 rats were determined
to be normal, and 10 of these rats received further complete
imaging examinations to serve as the baseline controls due to the
limitation on the imaging resources. These 14 rats were randomly
divided into two groups receiving either one (Group 1, n = 7)
or 6 weekly (Group 2, n = 7) pFUS+MB treatments (Figure 1).
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FIGURE 1 | Experimental design. (A) Workflow of the MRI-guided pFUS+MB treatments on 3 T MRI system. (B) Axial T2w images (left) were acquired for sonication
planning of the treatment: nine 2 mm-diameter non-overlapping focal points were placed on the left cortex covering the area anterior to the lateral ventricle and four
focal points were placed on the right hippocampus. After bolus Gd-DTPA injection, microbubbles were slowly infused via tail and followed by sonication starting 30 s
after microbubble infusion. The total sonication time is 120 s for each treatment. Gd-T1w images (right) shows the opening of blood-brain barrier after pFUS+MB
treatment. (C) Longitudinal imaging experiment timeline. Baseline T2w MRI were first obtained on 9.4 T MRI to rule out brain abnormalities prior to sonication. The
other imaging protocols included T2*w, DTI, CEST and 18F-FDG-PET. Animals were then euthanized in week 7 and brains were harvested for histological
examination.

After receiving one pFUS+MB exposures, Group 1 rats had 9.4 T
MRI performed on week 2 (1X-W6) and week 6 (1X-W6) post-
sonication and were euthanized at week 7. Group 2 rats received
6 weekly pFUS+MB treatments and had MRI at week 2 (2X-
W2) and week 6 (6X-W6) post-sonication, and were euthanized
at week 7 (Figure 1C). 18F-FDG-PET scans were performed on
week 6 on a randomly selected subsets of control (n = 4), Group
1 (n = 6) and Group 2 (n = 4) rats. The imaging results presented
in the current study were complementary to the data reported in
Kovacs et al. (2018b).

MRI-Guided Pulsed Focused Ultrasound
and Microbubbles
MRI-guided pFUS+MB treatments were performed using a
preclinical pFUS instrument equipped with a surface coil (RK-
100, FUS Instruments, Toronto, ON) on a Philips Achieva
3 T MRI system (Philips Healthcare, Andover, MA). The
workflow of the pFUS+MB treatments is illustrated in Figure 1A.
pFUS targeting coordinates for sonication were obtained from
axial T2w images by turbo spin echo (TSE) with TR/TE
2000/70 ms, echo train length 12, in-plane resolution 273 ×
273 µm2, slice thickness 1.5 mm, average 4. Prior to pFUS
sonication, rats were first infused intravenously (IV) with 100 µL
Magnevist gadopentetate dimeglumine (Gd, Bayer Healthcare

Pharmaceuticals, Inc., Whippany, NJ) via tail vein catheter for
Gd-T1w MRI examination of BBBO. Thirty seconds before
initiating sonication, an intravenous infusion (1.66 µL/s) of
OptisonTM (GE Healthcare, Little Chalfont, Buckinghamshire,
United Kingdom) was started that continued to 100 µL (i.e., 30
s) during sonication to targeted regions in the left cortex and
the right hippocampus with non-overlapping 2-mm diameter
focal spots as previously described (Figure 1B; Kovacs et al.,
2017b, 2018a,b). Infusion of MB was separated by at least 5 min
between sonications in the same rat. The initial dose (Day 0) of
OptisonTM was ∼460 µL/kg and was fixed at 100 µL (5–8 ×
107 MB) for all sonications independent of animal weight that
was sufficient to cause BBBO (Kovacs et al., 2017b; Kovacs et al.,
2018a). Immediately post-pFUS+MB, axial T1w images were
obtained by spin echo (SE, TR/TE 215/10 ms, in-plane resolution
137 × 137 µm2, slice thickness 1.5 mm, average 4). Pulsed FUS
was performed with the following parameters: 0.3–0.5 MPa peak
negative pressure (PNP) measured in water that was applied in
10 ms burst length and <1% duty cycle with a pulse repetition
frequency (PRF) of ∼0.5–0.6 Hz (i.e., 120 s/9 focal points in
the left frontal cortex anterior to the lateral ventricle including
the striatum, 120 s/4 target points in the right hippocampus
(Figure 1B), using a single-element spherical FUS transducer
(center frequency: 548 kHz focal number: 0.8 active diameter:
7.5 cm; FUS Instruments, Toronto, Canada). For Group 2 rats
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the PNP was increased to 0.5 MPa from the 4th sonication due to
the changes in skull thickness and weight gain causing an effective
decrease in MB/kg concentration in the animals. The pFUS PNP
of 0.3–0.5 MPa were chosen while the animals were on 100% O2
that would result in detectible contrast enhancement on Gd-T1w
images (McDannold et al., 2017; Kovacs et al., 2018b).

In vivo 9.4 T MRI for pFUS+MB Treatment
Effects
High-resolution 9.4 T MRI scans were obtained in the rat brain
for the longitudinal examinations after pFUS+MB exposures as
outlined in Figure 1C. The 9.4 T MRI scans were performed
within 3 days after sonication using the following imaging
protocols: T2w images by RARE (TR/TE 3000/11.6 ms; RARE
factor 8; in-plane resolution 200 × 200 µm2; slice thickness
500 µm; average 3); three dimensional T2∗w images by multiple
gradient echo (MGE; TR/TE 50/3 ms; 1TE 3 ms; number of
echoes 10; flip angle 30◦; resolution 200 µm3 isotropic; average
2). The T2∗w images were generated by combining the 10 MGE
data with an effective TE 22.7 ms to enhance the presence of
T2∗ abnormality. Quantitative T2∗ maps were obtained by fitting
the signal intensity (Si) of each voxel from MGE dataset to a
mono-exponential decay as a function of TE:

Si = S0exp(−TEi/T2∗) (1)

Three dimensional DTI was acquired using spin echo (SE)
echo-planar imaging (EPI; TR/TE 550/49 ms; EPI segment 6;
1 15 ms; δ 5 ms; b-value 800 s/mm2; 15 diffusion encoding
directions with 2 B0 images; average 1). The DTI imaging
volume and voxel size were identical to the T2∗w imaging.
Diffusion-weighted images were corrected for B0 susceptibility
induced EPI distortion, eddy current distortions, and motion
distortion with b-matrix reorientation using Tortoise v2.5 (NIH,
Bethesda, MD). After correction, the diffusion tensor was
calculated to derived DTI parameters, fractional anisotropy
(FA), mean diffusivity (MD), axial diffusivity (AD), and radial
diffusivity (RD) to evaluate the microstructural changes following
pFUS+MB opening of the BBB. CEST MRI data were acquired
by single slice RARE with (SMT) and without (S0) magnetization
transfer (MT) pulses (TR/TE 3091.7/10.4 ms; RARE factor 8;
in-plane resolution 200 × 200 µm2; slice thickness 0.8 mm;
MT pulse 1.5 µT, 1 s). The MT offset frequencies (1ω) were
set from −1.6 to +1.6 kHz with 100 Hz stepping. Z-spectral
interpolation and WAter Saturation Shift Referencing (WASSR)
techniques were applied to correct the shifted water resonance
frequency by B0 inhomogeneity (TR/TE 1500/10.4 ms; RARE
factor 8; MT pulse 0.3 µT, 250 ms; 1ω −0.4 to +0.4 kHz
with 60 Hz stepping). Magnetization transfer ratio asymmetry
(MTRasym) was calculated by [SMT(−1ω) − SMT(1ω)]/S0. The
CEST-weighted images were generated by integrating the area
under the curves of MTRasym for the proton signal of glucose
metabolites (glucoCEST) exchanging at the center of 1.2 ppm
(±0.5 ppm) in arbitrary unit (Van Zijl et al., 2007; Chan et al.,
2012; Tu et al., 2018). One Group 2 animal had severe motion
artifacts in the week 6 MRI scans. This dataset was excluded in
the rest of analysis.

In vivo 18F-FDG-PET
18F-FDG-PET imaging was performed at week 6 for each group
to evaluate the changes of glucose uptake and metabolism
following pFUS+MB treatment using a small animal Inveon
PET/CT scanner (Siemens Medical Solutions, Malvern, PA) with
transaxial field of view (FOV) of 10 cm, axial FOV of 12.7 cm
and full width at half maximum (FWHM) spatial resolution at
center FOV of 1.4 mm. Rats were first anesthetized with 2–2.5%
isoflurane-oxygen mixture and 18F-FDG (dose based on the body
weight of each animal; avg. dose = 0.951 mCi) was then injected
as a bolus through the tail vein followed by a quick saline
flush (300 µL). After the injection, the animals were allowed to
recover at room temperature. Thirty minutes after radiotracer
injection, the animals were anesthetized again and secured to
an imaging bed, placing the head symmetrically in the center
FOV. The animals’ respiratory rate was carefully monitored to
avoid any intra-subject variability of the anesthesia level (target
respiratory frequency range = 40–60 breaths/min). The body
temperature was maintained by a heating pad. Following a
30 min uptake period, PET emission scans were acquired in
list mode following which emission sinograms were corrected
for scatter, 18F-decay, random and dead time. The resulting
histograms were then reconstructed applying Fourier rebinning
and ordered subject expectation maximization algorithm (4
OSEM iterations, 18 MAP iterations, matrix: 128 × 128, target
resolution: 0.8 mm). Once scan was completed, the animals
were allowed to recover from anesthesia under a heat lamp.
The PET data were co-registered to a previously acquired T2w
anatomical MR template and the standardized uptake values
(SUVs) were processed using PMOD 3.7 (PMOD technologies,
Zurich, Switzerland).

For all the MRI and PET data quantification, the regions
of interest (ROIs) encompassing the ipsilateral treated and
contralateral untreated regions were drawn for cortex and
hippocampus by two experienced technologists (Supplementary
Figure S1). ROIs for DTI and T2∗ maps also included
external capsule (EC) to assess white matter integrity after
pFUS+MB. Except for the aforementioned software, the imaging
data were processed by in-house Matlab (Mathworks, Inc.,
Natick, MA) scripts.

Immunohistochemistry Analysis
Three animals in each group were randomly selected at week
7 after last scan for trans-cardiac perfusion with 4% PFA in
PBS. The brains were extracted and sectioned at 10 µm for
histological examination for neurons and glucose transporters
per published protocol (Yu et al., 1995; Kovacs et al., 2018b).
The following primary antibodies were used: glucose transporter
1 (GLUT1) (Invitrogen MA5-11315, Waltham, MA) at 1/200;
glucose transporter 3 (GLUT3) (Abcam ab41525, Cambridge,
United Kingdom) at 1/1500; hexaribonucleotide binding protein-
3 (NeuN) (Cat. mab377, Millipore) at 1/1000. Secondary
antibodies were used at 1/200 as follows: NeuN: goat anti-mouse
F(ab’) IgG- H&L Dylight 594 (Cat. ab96881, Abcam, Cambridge,
United Kingdom); GLUT1: goat anti-mouse F(ab’) IgG2a Dylight
594 (SAB4600328, Sigma Aldrich, St. Louis, MO); GLUT3: goat

Frontiers in Neuroscience | www.frontiersin.org 4 August 2020 | Volume 14 | Article 90859

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00908 August 25, 2020 Time: 11:45 # 5

Tu et al. Imaging Long-Term Effects of pFUS BBBO

anti-rabbit F(ab’) IgG- H&L Dylight 594 (Cat. ab102293, Abcam,
Cambridge, United Kingdom). The IHC data were quantified
from the corresponding locations matching to the ROIs for MRI
data quantification to cover each pFUS treated and contralateral
regions. In each IHC images, the positive fluorescent staining was
quantified from three FOVs in 20X and averaged to represent the
area percentage of the staining.

Statistical Analysis
Statistical analysis was performed using Prism v8.1.2 (GraphPad
Software, Inc., La Jolla, CA). The experiment was powered
around the MRI variables, including T2∗, DTI, and CEST
parameters. A sample size of n = 6 –10/group was determined
necessary to detect differences in these key variables at an α

level of p < 0.05 and 80% power. The quantification data
of the T2∗ and DTI parameters passed the Shapiro–Wilk test
for normality and were compared between the unsonicated
animals of the baseline control, animals sonicated once and
imaged at week 6 (1X-W6), and animals sonicated six times and
imaged at week 6 (6X-W6) using paired t-test in significant level
predetermined at p < 0.05. For glucoCEST and FDG-PET, the
contrast ratios between the ipsilateral treated and contralateral
untreated brain regions were calculated and reported for the
cortex and hippocampus. Because of the non-normality of
measured variables distribution, the nonparametric Kruskal–
Wallis test followed by Dunn’s post-hoc multiple comparisons
test (p < 0.05) was used to compare the glucoCEST and FDG-
PET contrast ratios among groups. The comparison included
unsonicated animals of the baseline control, animals sonicated
once and imaged at week 6 (1X-W6), and animals sonicated six

times and imaged at week 6 (6X-W6). A separate longitudinal
analysis was performed for Group 1 rats between glucoCEST
ratios at 2 weeks (1X-W2) and at 6 weeks (1X-W6), and for
Group 2 rats at week 2 (2X-W6) and at week 6 (6X-W6) scans.
The IHC data passed normality test and compared using paired
t-test between the ipsilateral treated and contralateral untreated
regions. All data are reported as mean± SD.

RESULTS

T2w, T2∗w, and DTI
pFUS+MB exposure to the cortex and hippocampus resulted in
significant contrast enhancement in Gd-T1w images indicative
of BBBO (Figure 1B). In Group 1 rats, MRI demonstrated
no qualitative differences between ipsilateral treated brain and
contralateral parenchyma on T2w, T2∗w, and DTI images 1-
day post-pFUS+MB (Figure 2). MRI scans performed at week 2
and week 6 post-sonication revealed scattered hypointense voxels
on T2∗w images in the targeted cortex and hippocampus in
five of seven rats (Figures 2B,D,E). DTI showed hyperintense
voxels in the FA maps of the treated hippocampus (Figure 2E).
In Group 2 rats that received 6 weekly pFUS+MB, there were
clear differences after the second sonication on T2 and T2∗w
images with hypointense voxels in the targeted cortex and
hippocampus (Figure 3). The hyperintense voxels appeared more
clearly in the FA maps of the treated cortex and hippocampus
that were consistent with areas of abnormalities on T2∗w
images (Figures 3C–E). Compared to the contralateral regions,
quantitative analysis demonstrated significantly decreased T2∗

FIGURE 2 | Longitudinal MRI of the brain in a single pFUS+MB treatment group (1X) acquired in baseline (BL), day 1 (D1), week 2 (W2), and week 6 (W6) by (A) T2w,
(B) T2*w, and (C) fractional anisotropy (FA) of 9.4 T MRI. The T2*w images in week 2 and 6 display apparent T2* abnormalities (arrowheads) in (B,D) the left cortex
and (E) right hippocampus, where DTI shows increased FA correspondingly. No abnormal voxel is found in the FA images in (C) and (D). The horizontal lines in (A)
denote the coronal section in (D,E). (D,E) Images from upper to lower are T2w, T2*w, FA. CT, cortex; Hipp, hippocampus.
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FIGURE 3 | Longitudinal MRI of the brain in the weekly pFUS+MB treatment
group (2X or 6X) imaged in week 2 (W2) and week 6 (W6) by 9.4 T (A) T2w,
(B) T2*w, and (C) fractional anisotropy (FA). The T2w and T2*w images
demonstrate clear treatment effects after multiple pFUS+MB treatments,
where DTI clearly shows increased FA. The arrowheads indicate the locations
that show abnormalities after treatments. The horizontal lines in (A) denote the
coronal section in (D,E). (D,E) Images from upper to lower are T2w, T2*w, FA.
CT, cortex; Hipp, hippocampus.

values in the cortex of the Group 2 rats (−23.71 ± 10.67%, t(5) =
5.818, p< 0.01), and in the hippocampus in both Group 1 [−29.8
± 9.1%, t(6) = 8.226, p < 0.001] and Group 2 [−32.98 ± 14.06%,
t(5) = 6.780, p < 0.01] rats at week 6 (Figures 4A,F). In Group 1
rats, a significant increase in RD was observed in the treated EC
[+15.89 ± 13.08%, t(6) = 3.582, p < 0.05] (Figure 4D). All the
rest of the DTI metrics were not different between the treated
and untreated hemisphere at week 6 after one sonication. In
Group 2 rats, compared to the contralateral untreated regions, FA
increased significantly in the treated cortex [+11.67± 9.2%, t(5) =
3.220, p< 0.05] and hippocampus [+25.69± 13.61%, t(5) = 5.852,
p < 0.01], while RD decreased in the cortex [−9.16 ± 6.41%, t(5)

= 4.151, p < 0.01] and hippocampus [−18.07 ± 13.25%, t(5) =
3.436, p < 0.05] at week 6, along with significantly decreased FA
[−10.55 ± 3.15%, t(5) = 7.719, p < 0.001], increased RD [+19.68
± 14.69%, t(5) = 3.658, p < 0.05], and decreased AD [−7.96 ±
5.12%, t(5) = 3.680, p < 0.05] in the EC (Figures 4G–J). The T2∗
and DTI results are also listed in the Supplementary Table S1.

GlucoCEST Weighted Imaging
No obvious difference was seen in the glucoCEST-weighted
images between the treated and untreated cortex and
hippocampus in Group 1 rats at either 2 or 6 week time
points following a single pFUS+MB treatment (Figure 5).
There was significant difference in the glucoCEST contrast
ratios between the treated and untreated cortex of the baseline
control rats, rats sonicated once and imaged in week 6, and rats

sonicated six times and imaged in week 6 [H(3) = 6.360, p < 0.05]
(Figure 8A). The post-hoc tests showed the differences were
between the animals of unsonicated baseline (0.998 ± 0.169)
and the animals sonicated six times and imaged in week 6 (0.793
± 0.126, p < 0.05). No significant difference was noted in the
hippocampus. Longitudinally, in the Group 2 animals that had
weekly sonication, there was a decrease trend in the contrast
ratios in the cortex and hippocampus between week 2 and week 6
(Supplementary Figure S2). These changes were not significant
in either of the location. Figures 6, 7 shows the group averaged
Z-spectra and MTRasym of the treated and untreated cortex
and hippocampus.

FDG-PET
FDG-PET studies were performed in the baseline control rats,
Group 1 and Group 2 rats at week 6. There was a significant
difference in the cortex among the three groups [H(3) = 8.095,
p < 0.01] (Figures 5, 8). The post-hoc tests showed significant
decreases in the ratios between the unsonicated rats (1.00 ±
0.02) and Group 2 rats (0.94 ± 0.04, p < 0.01), and between
Groups 1 (0.99 ± 0.02) and Group 2 rats (0.94 ± 0.04,
p < 0.01) (Figure 8B). No significant difference was seen in
the hippocampus among the three groups (Figure 8D). The
quantifications of glucoCEST and FDG-PET results are also listed
in the Supplementary Table S2.

Histology
Histological evaluations were performed on the tissues harvested
in week 7 after a single or six weekly pFUS+MB exposures
(Figure 9). Group 1 rats demonstrated no difference in GLUT1
or GLUT3 expression on the immunofluorescent staining in
either sonicated region. In Group 2 rats, increased GLUT1
was detected on the endothelium of the dilated vessels in the
treated hippocampus [t(2) = 4.483, p < 0.05]. Compared to a
homogenous expression in the contralateral parenchyma, the
GLUT1 expression was demonstrated as a scattered depleted
pattern on the microvasculature in the sonicated sites. Neuronal
GLUT3 expression was significantly decreased in the sonicated
cortex [t(2) = 4.726, p < 0.05] and hippocampus [t(2) = 5.334,
p< 0.05] as compared to the contralateral regions. No significant
change was observed in the NeuN staining for neurons.

DISCUSSION

The major focus of this study was to use advanced MRI
techniques and FDG-PET to evaluate the rat brain following
single or 6 weekly pFUS+MB induced BBBO sessions over time.
The majority of rats in Groups 1 and 2 had clear evidence
of morphological changes on high-resolution T2∗w and T2w
along with changes in FA on DTI images on MRI at 9.4
Tesla. In the animals receiving multiple weekly pFUS+MB,
there was a decrease in the image contrast on the glucoCEST-
weighted imaging and FDG-PET in the cortex when compared to
unsonicated animals or the Group 1 rats sonicated once in week 6.

Various pFUS+MB protocols have been used in both
experimental and clinical studies that result in BBBO, facilitating
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FIGURE 4 | (A–E) Quantification of the 9.4 T imaging data acquired in week 6 brains of Group 1 rats with a single pFUS+MB sonication (1X-W6), and (F-J) Group 2
with six weekly sonications (6X-W6) of T2* (A,F), fractional anisotropy (FA) (B,G), mean diffusivity (MD) (C,H) and radial diffusivity (RD) (D,I) and axial diffusivity (AD)
(E,J). Comparing to the brains with one sonication, changes in the DTI parameters are more significant between the ipsilateral treated and contralateral untreated
regions of the cortex (CT), external capsule (EC) and hippocampus (Hipp) after 6 weekly pFUS+MB treatments. *p < 0.05, **p < 0.01 vs. contralateral untreated
region, paired t-test (Group 1, n = 7; Group 2, n = 6).

FIGURE 5 | In vivo MRI and FDG-PET images of rat brains of (A) baseline (BL), (B) one sonication (1X), (C) multiple weekly pFUS+MB treatments (2X, 6X) and
images at week 2 (W2) and week 6 (W6). T2*w images clearly show the sonication sites in the left cortex and striatum (cyan square), and in the right hippocampus
(purple square), where the glucoCEST-weighted images and FDG-PET images show changes correspondingly.
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FIGURE 6 | (A–E) The CEST Z-spectra and (F–J) MTRasym of the treated and untreated hippocampus from baseline (A,F, n = 10), 1X-W2 (B,G, n = 7), 1X-W6 (C,H,
n = 7), 2X-W2 (D,I, n = 7), 6X-W6 (E,J, n = 6) rats. Data are presented as mean ± SD.

FIGURE 7 | (A–E) The CEST Z-spectra and (F–J) MTRasym of the treated and untreated cortex from baseline (A, F, n = 10), 1X-W2 (B, G, n = 7), 1X-W6 (C, H, n =
7), 2X-W2 (D, I, n = 7), 6X-W6 (E, J, n = 6) rats. Data are presented as mean ± SD.

FIGURE 8 | (A) The quantification of glucoCEST shows significantly decreased contrast ratios (treated/untreated) in the cortex of the Group 2 rats compared to that
of the baseline (BL) control rats. (B) The FDG-PET quantification shows significantly decreased SUV ratios (treated/untreated) in the cortex of the Group 2 rats
sonicated six times (6X-W6) compared to control animals and Group 1 rats sonicated once (1X-W6). No significant difference is seen in the hippocampus in the (C)
glucoCEST and (d) FDG-PET data. *p < 0.05, **p < 0.01 vs. BL, Kruskal–Wallis one-way ANOVA, Dunn’s test (Group 1, n = 7; Group 2, n = 6).

the delivery of neurotherapeutics to targeted regions in the brain
and potentially enhancing neurological outcomes (Kroll and
Neuwelt, 1998; Hynynen et al., 2001; McDannold et al., 2008,

2017; Neuwelt et al., 2008; Gabathuler, 2010; Burgess et al., 2014;
Chai et al., 2014; Horodyckid et al., 2017; Kovacs et al., 2017b,
2018a; McMahon et al., 2017; Wu et al., 2017). The interaction
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FIGURE 9 | Representative immunohistochemistry (IHC) staining of the endothelial glucose transporter 1 (GLUT1), neuronal glucose transporter 3 (GLUT3), and
neuronal nuclei (NeuN) of a Group 2 rat brain that was obtained at week 7 after six pFUS+MB treatments. Dilated vessels were found in the treated hemisphere
(asterisk). The IHC images were acquired and quantified from the (A,B) cortex and (C,D) hippocampus. *p < 0.05, **p < 0.01 vs. contralateral untreated region,
paired t-test (n = 3/stain/group).

of the pFUS with the MB confined to the vascular space leads to
stable cavitation and transient BBBO via stretching of endothelial
cells coupled with the induced expression of proinflammatory
molecular proteins from the neurovascular unit and alterations
in TJP expression (Sheikov et al., 2008; Aryal et al., 2015; Downs
et al., 2015b; Kovacs et al., 2017b; McMahon and Hynynen,
2017; McMahon et al., 2017). The evaluation of the sonicated
brain by MRI has usually been limited to GdT1w, T2w, T2∗w or
susceptibility-weighted imaging along with quantitative metrics
determining gadolinium leakage (Aryal et al., 2015; Downs et al.,
2015b; Wu et al., 2017) and has rarely shown damage (Kovacs
et al., 2018b). Conventional imaging techniques used following
pFUS+MB BBBO are usually performed with relatively large
voxels (>250 µm in-plane resolution and slices 0.8–1.5 mm) that
are then correlated to pathological changes in the parenchyma
(Treat et al., 2007, 2012; Chai et al., 2014; McDannold et al.,
2016; Aryal et al., 2017; McMahon et al., 2017; O’Reilly et al.,
2017; Kovacs et al., 2018b). In most of these imaging studies,
pathological changes in the sonicated parenchyma could be
missed especially when MRI is acquired at 3 T in small animal
models (Treat et al., 2007; Marquet et al., 2011).

In the current study, MRI scans at 9.4 T were performed with
in plane resolution of 200 × 200 µm2 and 500 µm thickness
for T2w images and T2∗w and DTI images were performed at
200 µm thickness, thereby limiting partial volume effects and
increasing the conspicuity of changes in signal intensity in the
sonicated cortex and hippocampus compared to contralateral
brain. T2w and T2∗w images acquired 1-day post-pFUS+MB
did not reveal any abnormalities, however after two weeks,
71.4% of the rats had hypointense voxels in T2∗w images
of the targeted cortex or hippocampus. It has recently been
shown that 4 days following pFUS+MB in the rat, T2∗ hypo-
intensities were detected suggesting vascular compromise in

area of sonication (McMahon et al., 2017). Further investigation
into the changes in vascular integrity would contribute to the
evolution of pathological changes over time following pFUS+MB
BBBO. Multiple weekly pFUS in the rat performed at higher PNP
with Definity at 10 µL/kg diluted 10× demonstrated evidence
of hypointense voxels on T2w image at 3 T associated with
microhemorrhages (Kobus et al., 2016). In comparison, repeated
pFUS+MB BBBO in non-human primates over 20 months did
not show evidence of long term damage or hypointense voxels
on SWI studies at 3 T (Downs et al., 2015b). It has recently
been reported that T2w and T2∗w pathological changes were
conspicuous at 3 T following 2 weekly pFUS+MB and there was a
quantitative increase in numbers of voxels with lower T2∗ values
following six sonications (Kovacs et al., 2018b). The current
study demonstrated similar pathological changes observed at
9.4 T on T2w and T2∗w imaging following 2 and 6 weekly
sonication to induce BBBO. The T2∗ pathology presumably due
to microhemorrhages would evolve over time and either be
metabolized by microglia and disappear or result in hemosiderin
deposition in the brain and remain as an abnormality on
T2∗ w images. The microhemorrhage changes in the rat brain
following pFUS would be tracked on MRI similar to what is
observed with ischemic disease, stroke or chronic traumatic
encephalopathy in the rat.

There have been no reports to date in the rat employing DTI
and CEST MRI to evaluate morphological and metabolic changes
in targeted area in the brain. pFUS+MB induced changes on the
FA maps of the targeted brain at 2 or 6 weeks compared to the
contralateral brain. In comparison to the Group 1 rats, Group
2 rats exhibited decreased FA and AD in the sonicated external
capsule that may reflect white matter damage, inflammation,
neurite beading and disrupted glial cells (Budde and Frank,
2010; Tu et al., 2016). The increased FA in the sonicated cortex
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and hippocampus would suggest tissue damage in association
with astrogliosis in the Group 2 rats (Budde et al., 2011). The
decreases in RD in Group 2 rat cortex and hippocampus would
be indicative of tissue swelling and/or increased cellularity, i.e.,
mononuclear cell infiltration and inflammation, in the sonicated
regions, while the increased RD in the external capsule may be
related to increased permeability or demyelination (Tu et al.,
2014, 2016). For the 6 weekly pFUS+MB treated animals,
there was greater significant T2∗ shortening in the cortex and
hippocampus that could also contribute to the differences in
the DTI metrics caused by local inhomogeneity, such as micro-
hemorrhage and iron metabolites resulting in hyperintense
regions on the FA maps compared to contralateral side. Further
investigations are needed to determine the DTI metric changes
immediately after sonication and how these changes relate to
axonal integrity in the external capsule or neuronal damage
within the parenchyma.

There have been few studies investigating glucose uptake or
metabolism in normal brains by FDG-PET following BBBO by
US combined with MB infusion (Yang et al., 2014; Horodyckid
et al., 2017). Using a planar ultrasound transducer implanted
in non-human primate skull with infusion of MB (SonoVueTM;
Bracco, Milan, Italy) every 2 weeks, the authors reported BBBO
but no evidence of change in glucose metabolism by FDG-
PET (Horodyckid et al., 2017). In comparison 18F-FDG-PET
performed immediately and 24 h after pFUS+MB showed
decreased glucose uptake in the rat brain by inhibiting GLUT1
expression within the 24 h period of BBBO as documented
by Evans blue extravasation into the parenchyma (Yang et al.,
2014). The effect of pFUS+MB on glucose uptake was found
to be transient and reversible after one sonication session.
In the current study 18F-FDG-PET detected decreased FDG
uptake and metabolism in rats receiving 6 weekly pFUS+MB
treatments in the cortex but not at the level of the hippocampus.
Changes in FDG uptake were not apparent in the treated
brain 6 weeks after a single sonication. We also demonstrated
that the glucoCEST-weighted images provided sufficient contrast
reflective of decreased glucose levels in corresponding areas of
decreased FDG uptake in Group 2 rats (Figures 5, 8). CEST-
MRI has a voxel size 80–100 times smaller than PET scans by
monitoring 1H - water 1H exchange on MRI without using
radioisotope (Guivel-Scharen et al., 1998; Ward et al., 2000).
The chemical exchange results in the transfer of magnetization
from the small exchangeable proton pool (e.g., micromolar to
millimolar range) to a much larger water proton pool (∼110 M)
until a steady state is reached. The sensitivity of glucoCEST is
higher than direct observation of the glucose through 1H-NMR
because the proton signal is amplified via many exchange events
during the extended saturation period of magnetization transfer
pulses (Van Zijl and Yadav, 2011).

In vivo glucoCEST-weighted imaging has been shown to detect
delayed hypo-metabolism in a rat brain following traumatic brain
injury (Tu et al., 2018). The imaging contrast in glucoCEST-
weighted imaging may be related to the steady-state glucose
level in the brain parenchyma which has been previously
validated by 2DG autoradiography. CEST data acquisition using
low saturation power (1.5 µT) and short saturation duration

(1 s) minimizes extensive direct saturation effect to enhance
the sensitivity for detecting glucose in the rat brain. Although
the endogenous glucoCEST contrast may also be affected by
other hydroxyl metabolites such as myo-Inositol, deriving the
glucoCEST-weighted contrast by integrating the MTRasym areas
specifically on the glucose chemical shifts at 1.2 ppm provides
the sensitivity and specificity to detect changes of glucose level in
the sonicated parenchyma (Figure 5; Chan et al., 2012; Tu et al.,
2018). In this study, the IHC analysis suggests that the changes of
the cerebral glucose level could be related to decreased neuronal
transporter GLUT3, and the re-distributed vascular glucose
transporter GLUT1 after multiple pFUS+MB BBBO sessions.
While no significant loss of neuronal cells was seen in the NeuN
staining, the decreased GLUT3 expression may be associated
with the prolonged inflammatory responses, neurogenesis and
neurodegenerative processes induced by repeated BBBO in the
treated parenchyma (Kovacs et al., 2018b). A clear pattern of
altered endothelial GLUT1 expression on the dilated vessels
or on the contracted vessels may also decrease the glucose
level in the sonicated brain (Figure 9). Further investigations
are needed to evaluate the longer-term effects of pFUS+MB
on endothelial GLUT1 and neuronal GLUT3 expression and
whether the changes would return to control levels.

The recent progress in the pFUS+MB BBB research has
advanced this novel technology to an encouraging direction
for clinical application for drug delivery in the CNS diseases
(NCT03321487, NCT02986932, NCT03608553, NCT03616860,
NCT03739905, NCT03714243) (see text footnote 1). This
contemporary technology continues to require optimization
of the FUS parameters with the use of advanced passive
cavitation detection feedback approaches to limit non-linear
stable or inertial cavitation that could result in parenchymal
damage or excessive neuroinflammation (Jones et al., 2018).
The translational work would be to see if it will be possible to
apply DTI and CEST, or a comparison to FDG-PET, for the
pFUS+MB treatment in brain tumors or Alzheimer’s disease, and
whether at higher resolution scans can detect subtle differences
in glucose concentration which may reflect micrometastasis in
the case of metastatic disease to the brain or glioblastoma
multiforme spreading outside Gd enhanced area on FLAIR or
T2w images. For Alzheimer’s disease, these imaging methods
could be correlated to areas of hypoperfusion.

The current study employed a pFUS+MB protocol with
nine 2-mm diameter focal spots in the left frontal cortex
and four in the right hippocampus to provide an example
of almost complete coverage in the hemisphere to induce
BBBO and deliver neurotherapeutics or stimulate an immune
response in the diseased brain (Kovacs et al., 2017b, 2018b).
The experimental results may not be related directly to other
pFUS+MB experiments to cause BBBO performed with different
FUS parameters, targeting approaches or MB type, dose and
infusion rates in relationship to initiating sonication (Kovacs
et al., 2018a). Another limitation of this study is the lack of longer-
term follow-up in animals that received 6 weekly sonications.
It will be important to apply advanced imaging techniques
to monitor changes in the brain following multiple sonication
treatments to determine both morphological and metabolic
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responses in relationship to pathology and functional outcomes
(Downs et al., 2015a; Kobus et al., 2016; Horodyckid et al., 2017;
Kovacs et al., 2017a; O’Reilly et al., 2017; Silburt et al., 2017). Our
findings suggest that the structural damage in the T2∗ and DTI
may be more permanent, and the CEST and PET observation of
the altered glucose levels may be transient and reversible in the
longer term. On the detection of glucose utilization, the FDG-
PET was more sensitive to detect the treatment effect with fewer
data variations and higher significance. The glucoCEST data
varied due to the less abundant endogenous glucose signals and
the susceptibility to the imaging artifacts, including motion and
field inhomogeneity. Since glucose signal at 1.2 ppm is close to
the water signal, large saturation pulses may diminish the glucose
signals due to the direct saturation effect. In order to observe the
glucose signal, our previous study uses relatively small saturation
intensity (1.5 µT and 1 s) for acquiring glucoCEST data on the
9.4 T for the rat brain (Tu et al., 2018). Further study is required
to investigate the CEST imaging parameters for optimizing
endogenous glucoCEST. Furthermore, the glucoCEST weighted
image was generated by integrating the MTRasym centered in
1.2 ppm, ranging from 0.7 to 1.7 ppm. The MTRasym at this
range may contain interferences from other metabolite signals,
including creatine centering in 1.95 ppm, myo-inositol in 0.6
ppm, and the upfield Nuclear Overhauser Enhancement (NOE).
More sophisticated CEST contrast analysis, such as multi-pool
Lorentzian fitting of the global Z-spectra (Desmond et al.,
2014; Zhou et al., 2017), may enhance the specificity of glucose
detection following pFUS+MB BBBO in the brain. GlucoCEST
imaged with exogenous glucose injection should improve the
sensitivity to detect the subtle treatment effect of the pFUS+MB.
However, the exogenous glucoCEST may be predominantly
affected by the increased vessel permeability and glucose agent
leakage from the pFUS+MB induced BBBO, which may not
be related to the static glucose levels in the treated brain. The
feasibility of applying exogenous glucoCEST in the case of
pFUS+MB BBBO would require further investigations.

CONCLUSION

This study describes the monitoring of the long-term effect
using conventional and advanced imaging techniques such as
DTI and CEST imaging following a single or multiple weekly
pFUS+MB BBBO. The findings suggest the importance of
using these imaging methods for monitoring the late effects
in the brain tissue and be used for further investigations

to evaluate the changes in the brain following low pressure
pFUS+MB treatment.
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The understanding of human and non-human microstructural brain alterations in the

course of neurodegenerative diseases has substantially improved by the non-invasive

magnetic resonance imaging (MRI) technique of diffusion tensor imaging (DTI). Animal

models (including disease or knockout models) allow for a variety of experimental

manipulations, which are not applicable to humans. Thus, the DTI approach provides

a promising tool for cross-species cross-sectional and longitudinal investigations of the

neurobiological targets and mechanisms of neurodegeneration. This overview with a

systematic review focuses on the principles of DTI analysis as used in studies at the

group level in living preclinical models of neurodegeneration. The translational aspect

from in-vivo animal models toward (clinical) applications in humans is covered as well

as the DTI-based research of the non-human brains’ microstructure, the methodological

aspects in data processing and analysis, and data interpretation at different abstraction

levels. The aim of integrating DTI in multiparametric or multimodal imaging protocols will

allow the interrogation of DTI data in terms of directional flow of information and may

identify the microstructural underpinnings of neurodegeneration-related patterns.

Keywords: DTI, magnetic resonance imaging, translational, in vivo animal model, neurodegeneration,

group studies

INTRODUCTION

In this systematic review, principles of diffusion tensor imaging (DTI) analysis at the group level
with the special focus on applications to animal models of neurodegeneration are summarized.
Methodological aspects are addressed covering experimental design and DTI data acquisition as
well as data analysis at the group level. The emphasis will be on the concept of translational
imaging from in-vivo animal models of neurodegeneration to (clinical) applications in humans that
may sometime form the basics for novel therapeutic approaches. The continuous and compulsive
research is addressed in studying the patterns underlying cellular and molecular relations in living
animals since there are at present no sufficient in-vitro or in-silico models that can serve as
alternatives to the use of in-vivo animal models (Bennett and Ringach, 2016). Thus, insights into
the spectrum of DTI-based neuroimaging data analysis is provided and interpretations at different
abstraction levels in that context are summarized.
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Neuroimaging of Neurodegenerative
Diseases in Humans and Preclinical
Models
Structural and microstructural neuroimaging findings especially
by magnetic resonance imaging (MRI) have improved the
longstanding notions regarding the pathophysiology of
neurodegenerative diseases (Frisoni et al., 2010; Chiò et al.,
2014; Politis, 2014; Blamire, 2018). The cellular mechanisms
underlying the stereotypical progression of pathology in specific
neurodegenerative diseases are not completely understood;
however, there is increasing indication that misfolded protein
aggregates can spread by a self-perpetuating neuron-to-neuron
transmission (Braak et al., 2013; Jucker and Walker, 2013, 2018;
Goveas et al., 2015). Neuroimaging techniques can identify
specific lesion patterns and explain how these disorders spread
across brain networks (Agosta et al., 2015). However, most
neuroimaging studies have drawbacks, such as limited sample
sizes in orphan diseases or insufficient clinical characterization
of patients, absence of adequate controls, and scarcity of
longitudinal assessments.

This review concentrates on DTI, as a subtechnique of
diffusion-weighted imaging, in the application to animal models
of neurodegenerative diseases. A special focus are animal
models of dementia like Alzheimer’s disease (AD), motor
neuron disorders such as amyotrophic lateral sclerosis (ALS),
and Parkinson’s disease (PD), although the neuropathological
disease-spreading concept in humans in predefined patterns
related to the forming of pathogenic assemblies of disease-
specific proteins (“prion-like paradigm”) could not be
demonstrated in an animal model yet.

Animal models of adult-onset neurodegenerative diseases
have helped to understand the molecular pathogenesis of these
diseases. Despite all limitations, the understanding of these
disorders and the improvement of mechanistically designed
therapeutics can still profit from these animal models and
from the generation of animal models that more exactly
recapitulate human disease (Dawson et al., 2018). However,
the characterization of any new model is crucial and remains
a bottleneck; efforts have to be performed to comprehensively
catalog the phenotypes associated with each model, including
studies such as in-vivo imaging (Dawson et al., 2018).

DTI Mapping of White Matter
White matter tracts of the central nervous system consist
mainly of densely packed axons and various types of neuroglia.
The axonal membrane and myelin layers are the predominant
biological features that restrict the water diffusion perpendicular
to the fiber orientation. This, leads to an anisotropic water
diffusion in brain white matter. Additionally, myelin sheaths
around the axons contribute to the anisotropy of diffusion for
intra- as well as for extracellular water (Mori and van Zijl, 2002;
Garin-Muga and Borro, 2014).

The quantitative description of this anisotropy is measured
by DTI, imaging the local microstructural characteristics of
water diffusion. The signal intensity in each recording voxel
is attenuated depending on the amplitude and the direction

of the diffusion-encoding gradients as well as on the local
microstructure in which the water molecules diffuse (Basser
et al., 1994). In the presence of anisotropy in white matter,
diffusion properties can be described in first approximation
by a tensor (Mattiello et al., 1994). The anisotropy of the
diffusion processes is related to the presence and orientation of
fiber tracts in white matter and is therefore influenced by its
micro- and macrostructural features. On a macroscopic scale,
the intra-voxel coherence in the orientation of all white matter
tracts in an imaging voxel influences its degree of anisotropy,
whereas the microstructural features, mainly the intraaxonal
organization besides the density of fiber and cell packing, degree
of myelination, and individual fiber diameter, influence diffusion
anisotropy (Pierpaoli and Basser, 1996; Duan et al., 2015).

In DTI recordings of the human brain, the voxel dimensions
are in the order of millimeters. Thus, a voxel always contains
the averaged information of diffusion covering a high number
of axons as well as the surrounding water molecules. In
spite of this multidirectional environment, DTI recordings are
sensitive to the orientation of the largest principal axis, which
aligns to the predominant axonal direction, that is, the axonal
contribution dominates the recorded signal (Mori and van Zijl,
2002; Brandstack et al., 2016).

DTI techniques provide basically several types of information
about the property of water diffusion: first, the orientation-
independent extent of diffusion anisotropy (Pierpaoli and Basser,
1996) and second, the predominant direction of water diffusion
in image voxels, that is, the diffusion orientation (Pajevic and
Pierpaoli, 1999; Marrale et al., 2016). The diffusion tensor model
allows for the calculation of multiple parameters; out of these,
the fractional anisotropy (FA) is the most commonly used
parameter to measure directional dependence of water diffusion
that way parameterizing the shape of the tensor and providing a
normalized value to the degree of anisotropy (Sampaio-Baptista
and Johansen-Berg, 2017).

DTI in the Animal Brain—Translational
Imaging
DTI has become an important tool to study the anatomy of
animal brains in vivo, for example, the mouse brain (Aggarwal
et al., 2010; Harsan et al., 2010; Nouls et al., 2018), the rat brain
(Gyengesi et al., 2014; Figini et al., 2015), the canine brain (Wu
et al., 2011), or the primate brain (Feng et al., 2017; Risser et al.,
2019). The non-invasive nature of MRI/DTI enables longitudinal
studies of transgenic disease models (Haber et al., 2017; Petrella
et al., 2018). Ultra-high fields at 11.7 T (Müller et al., 2012a) or
16.4 T (Brennan et al., 2013) and dedicated resonators [cryogenic
cooled resonator (CCR)] allow the recording of high-resolution
DTI datasets with in-plane resolutions down to 100 × 100µm
for mouse models (or small rodents) with an axial slice thickness
down to 200µm (Müller et al., 2012a), while the development
of fast DTI protocols has led to reduced acquisition times until
about 30min, enabling the logistics for the monitoring of larger
cohorts (Müller et al., 2013).

In DTI, the diffusion in each voxel is assumed to be
represented by a single tensor. In human brain imaging, where
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FIGURE 1 | (A) Selection diagram depicting the number of studies included for the spectrum of studied neurodegenerative diseases; and (B) PRISMA flowchart.

typical voxel sizes can be easily as high as 2 × 2 × 2 mm3,
this assumption fails in regions where multiple fiber bundles
of various spatial orientations may be packed together in a
single voxel (“crossing fibers”). In the same line, DTI does not
account for multiple tissue types within a voxel, and a number
of different white matter microstructural features (including
the cellular membranes of glial cells and the axon diameter
and density) contribute to the obtained DTI indices (Sampaio-
Baptista et al., 2019). The ratio of the microstructural feature
size to voxel size is improved in small animal imaging where
voxel sizes for mice and small rodents, typically in the order of
100 × 100 × 200 µm3 in vivo and even much higher spatial
resolution up to isotropic some 10µm ex vivo, are much closer
to the fiber bundle diameters (Aggarwal et al., 2010; Kumar et al.,
2014).

METHODS

Search Strategy and Study Selection
The literature review and study inclusion process were conducted
in accordance with the PRISMA guidelines (Panic et al., 2013).
In a systematic search conducted in April 2020, data were
collected from the online library PubMed (https://www.ncbi.nlm.
nih.gov/pubmed/). The search keywords were the combination
of the terms (“DTI”) and (“mouse,” “rat,” “rodent,” “animal”)
and (“ALS,” “Parkinson,” “Alzheimer,” “neurodegeneration,”
“neurodegenerative disease,” “trauma”). In total, this search
yielded more than 500 results. These studies were probed for
original research and English language in peer-reviewed journals.
Studies with models that do not refer to neurodegenerative
diseases were excluded. The references were studied for further
candidates. In total, 114 studies were included in the systematic
review (Figure 1).

DTI Data Acquisition: Scanners and Coils
The major challenges in in-vivo DTI is the long acquisition
time required to acquire the multi-directional diffusion data

with sufficient signal-to-noise ratio (SNR) at the required spatial
resolution. While scanning time for ex-vivo studies is in principle
without direct limitation, in-vivo experiments require careful
consideration of animal welfare. Since animals are usually
anesthetized, longer scan times than in human application are
possible, and adult animals can in principle be scanned for several
hours, yielding high spatial resolution and sufficient SNR for
subsequent DTI analysis with species-optimized MR scanning
protocols and even systems (Oguz et al., 2012; Rumple et al.,
2013; Zhang et al., 2013). Prolonged scan times might rise
concerns regarding motion artifacts (Oguz et al., 2014; Zhang
X. et al., 2016) despite the use of dedicated holders additionally
to the general anesthesia (Herrmann et al., 2012; Müller et al.,
2013; Zhang et al., 2015); however, drift or misalignment
can readily be corrected during post-processing. Further,
reduction of scan times is of general interest to enable large
cohort studies.

Where non-human primate and rat studies have even been
performed on clinical systems (Mayer et al., 2007; Zhang et al.,
2013; Zhang R. Z. et al., 2016), recent advances in high-field
MR imaging offer improved SNR and resolution. Especially
for rodent imaging, typically specialized coils and high-field
scanners (up to 17.6 T) are applied. DTI studies of the rodent
brain have been reported using dedicated small animal systems
from 4.7 T up to 17.6 T (Nair et al., 2005; Duong, 2010; Harsan
et al., 2010; Lodygensky et al., 2010; Gatto et al., 2018a). For
further improvement of SNR, the use of dedicated application-
specific receive coils ranging from simple single-loop surface
coils to complex phase array and micro-imaging coils (Zhao
et al., 2008) has been introduced. In the field of rodent imaging,
most promising are CCRs, which have demonstrated significant
increase of the effective SNR (Ratering et al., 2008) at 9.4 T and
are supposed to provide an SNR gain of at least a factor of 2 at
11.7 T systems (Figure 2). In mice, the use of CCR at 11.7 T has
enabled the reduction of the DTI acquisition times to ∼30min,
which is considered feasible for cohort studies (Müller et al.,
2012a).
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FIGURE 2 | Typical equipment for scanning of mouse cohorts. 11.7 T tomograph (Biospec 117/16, Bruker, Ettlingen, Germany), two-element transmit/receive 1H

mouse cryogenic surface coil (Cryo-Probe, Bruker BioSpin); the animals are placed in a stereotaxic head support (Bruker Biospin, Ettlingen, Germany) to immobilize

the head. Data acquisition is performed under isoflurane anesthesia.

DTI Data Acquisition: Pulse Sequences
DTI relies on fast diffusion encoding imaging sequences.
Although advanced acquisition techniques including spiral
(Frank et al., 2010) and gradient and spin echo GRASE
(Aggarwal et al., 2010) imaging techniques have been introduced
to in-vivo DTI, independent of the field strength and animal
model, most reported studies still rely on conventional single-
shot or segmented echo planar imaging. Ideally, isotropic 3D
imaging techniques are used to provide high-fidelity DTI data.
However, with acquisition times in the several hour range
(Cai et al., 2011; Wu et al., 2013), application to cohort
studies is limited and conventional 2D multi-slice techniques
are still broadly used. As the current standard for murine
cohort studies (and other rodents), multi-slice echo planar
imaging acquisitions with echo times between 50 and 100ms
and repetition times between 6,000 and 15,000ms are frequently
used. Spatial in-plane resolution and slice thickness is adapted
to the size of the animal model with in-plane spatial resolution

ranging from 100 × 100 µm² (mice) to 650 × 650 µm²
(chimpanzee). For volume of interest coverage, typically 50–
100 axial slices with 200µm (mice) to 1,000µm (chimpanzee)
slice thickness are acquired. To ensure sufficient diffusion
tensor fidelity, diffusion weighted (typically b = 1,000 s/mm²)
images are acquired with 30 and more different encoding
(gradient) directions plus one to five unweighted (b = 0
s/mm²) images. There is no general rule for the optimum
sampling scheme in DTI; the performance of sampling schemes
that use low numbers of sampling orientations and less
efficient schemes with larger numbers of sampling orientations
and the scenarios in which each type of scheme should
be used (Jones, 2004) are still under discussion. Scanning
times for sufficient spatial resolution, SNR, and DTI quality
have been reported in the hour range. Even though still
limited by SNR constraints, parallel imaging and compressed
sensing techniques (Shi et al., 2015) have been introduced
to further reduce scan times and high spatial resolution DTI
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in mice was shown to be feasible within 30-min scan times
(Müller et al., 2012a), thus enabling application to large
cohort studies.

Atlases
Animal MRI/DTI analysis requires atlases in analogy to the
standardized coordinate frames for humans such as the Montreal
Neurological Institute atlas (Brett et al., 2002). High-resolution
images are used for the identification of rodent brain regions by
human experts to delineate regions of interest (ROI) or tracts of
interest (TOI). Prominently used atlases are summarized in the
following (Oguz et al., 2012).

Mouse atlases:

- Waxholm atlas (Jiang and Johnson, 2009) includes four adult
male C57 mice and includes T1, T2, T2∗, and DTI images at
high resolution.

- Developmental Mouse Atlas (Zhang et al., 2003; Aggarwal
et al., 2009; Chuang et al., 2011) is a series of atlases of
developing mouse embryos, including FA, T2w, and tensor
maps collected from mouse fetuses at embryonic days.

- The mouse brain in stereotaxic coordinates (Paxinos
and Franklin, 2007) providing both accurate stereotaxic
coordinates for laboratory use, and detailed delineations and
indexing of structures for reference.

- The online Allen Reference Brain Atlas (available at https://
mouse.brain-map.org/static/atlas) including sagittal and
coronal implementation of the Allen Mouse Common
Coordinate Framework.
Rat atlases:

- A DTI-based atlas of the rat brain (Rumple et al., 2013)
- The rat brain in stereotaxic coordinates (Paxinos and Watson,
2013), providing both accurate stereotaxic coordinates
for laboratory use, detailed delineations, and indexing of
structures for reference.
Primate atlases:

- A digital 3D atlas of the marmoset brain based on multi-modal
MRI (Liu C. et al., 2018).

- The marmoset brain in stereotaxic coordinates (Palazzi and
Bordier, 2008).

Data Processing
For DTI analysis many automated and manual tools
are available. With respect to the large amount of data
that are recorded during a DTI experiment, only tools
should be considered that are necessary to address the
endpoints of the specific study, that way maintaining
statistical power and reducing analysis time. Regardless
of the tools selected, there are typically a number
of steps necessary to acquire data from DTI images
(Oguz et al., 2012).

In analogy to human DTI analysis, some preprocessing steps
are necessary on DTI data (Liu et al., 2010). These include
eddy current corrections, rigid registration of individual diffusion
weighted images to the baseline image to minimize motion
effects, correction of intensity inhomogeneities, quality control,
and elimination of possible corrupted gradient directions (Müller

et al., 2012a; Oguz et al., 2012) as well as the stereotaxic
normalization to a brain atlas coordinate frame (cf. 2.3).

As an example for the data analysis cascade, data processing
is described as performed with the Tensor Imaging and Fiber
Tracking software package, which has been successfully applied
both to human DTI group studies in neurodegenerative diseases
(Kassubek and Müller, 2016) and to data of preclinical models of
neurodegeneration (Müller et al., 2012a). Thus, with a rescaling,
the same software analysis cascade can be applied to analysis
of human and murine DTI data, that way consolidating the
translational aspect both “from man to preclinical model” and
vice versa “from preclinical model toman” (Figure 3). For animal
as well as for human DTI studies, a slice thickness to in-plane
resolution ratio between 1.0 and 1.5 is considered to be a good
choice. For animal studies, the recorded brain grid could be
adjusted to be in the same order as in human DTI studies,
since the transformation to an iso-grid of 50µm for mice (and
corresponding values for other animals) corresponds to an iso-
grid of 1mm in human studies. After transformation of the
recorded data into an iso-grid by nearest neighbor interpolation,
spatial normalization to a stereotaxic standard space is performed
using study-specific b0- and FA-templates (Müller et al., 2012a).
Optimum normalization is obtained by an iterative process using
scanner- and sequence specific b0- and FA-templates according
to landmarks of a stereotaxic animal atlas (see section DTI Data
Acquisition: Pulse Sequences).

DTI metrics maps (FA, axial diffusivity—AxD, radial
diffusivity—RD, mean diffusivity—MD) are calculated from
these stereotaxically normalized data sets and are in a following
step smoothed with a Gaussian filter with a size of about two to
three times the recording voxel size, that way providing a good
balance between sensitivity and specificity. The axonal damage
andmyelin degradation ismirrored byDTImetrics; differences at
the group level to assess microstructural alterations by statistical
analysis of DTI metrics can be performed by various approaches
(Müller and Kassubek, 2018): (1) unbiased voxelwise comparison
by whole brain-based spatial statistics (WBSS) (Müller et al.,
2012b) or tractwise comparison by tract-based spatial statistics
(TBSS) (Smith et al., 2006) or (2) hypothesis-guided tract-based
quantification by analyzing DTI metrics in tract systems by
TOI-based tractwise FA statistics (TFAS) (Müller et al., 2007)
(Figure 4).

Whole-Brain-Based Spatial Statistics
Unbiased voxelwise comparison of cohort brains can be
performed for cross-sectional comparisons of mutant animals
vs. wt animals at baseline or at follow-up, using WBSS (Müller
et al., 2012a). Statistical comparisons of DTI metrics maps for
mutant vs. wt are performed voxelwise by means of statistical
testing [a good choice is an FA threshold of 0.2 (Kunimatsu
et al., 2004) to concentrate the analysis on white matter], followed
by correction for multiple comparisons (e.g., with the false-
discovery-rate algorithm at p < 0.05 Genovese et al., 2002)
and further reduction of the alpha error by a spatial correction
algorithms in the size range of the smoothing kernel, leading to a
minimum size of alteration clusters.
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FIGURE 3 | Translational approach. In a different scale, DTI data of man and mice can be analyzed within the same software environment, that is, with the same

analysis cascade. Examples for FA maps in coronar, sagittal, and axial orientation (upper panel) and projectional views of FT examples (lower panel) for human (left)

and murine (right) group averaged data sets. The cerebellum of the mouse brains has been masked out. CST, corticospinal tracts.

Voxelwise comparison (e.g., by WBSS) of longitudinal DTI
map differences could be performed by calculating voxelwise
differences between DM maps of baseline and follow-up scans
for mutant animals and wt animals; differences have then
to be linearly normalized to an identical time-interval prior
to statistical comparison. In analogy to cross-sectional WBSS,
statistical comparisons of longitudinal DTI map differences
are performed voxelwise by means of statistical testing, and
results have to be corrected for multiple comparisons and also
by clustering.

Whole-Brain Connectivity Analysis
A connectome refers to a comprehensive description of neuronal
connections, for example, the wiring diagram of the entire brain.
Given the enormous range of connectivity in the mammalian
brain, such descriptions on a macro- or mesoscale range (Oh
et al., 2014) can be inferred from imaging white matter fiber

tracts through DTI in the living brain (Nouls et al., 2018). DTI-
based connectomics have already been applied to mouse models
of genetic risk factors for late onset AD for identifying vulnerable
brain networks (Badea et al., 2019).Wholemouse brain structural
connectomics (Shibata et al., 2015; Allan Johnson et al., 2019)
have already been verified by neuron tracing data (Chen et al.,
2015; Sinke et al., 2018; Wang et al., 2018).

Region-of-Interest Analyses
A hypothesis-guided approach is performed when using ROIs
that are placed in defined anatomical regions and comparing
the average DTI metrics values, that is, rotational invariant
parameters of the diffusion tensor, within the respective ROI
for the cohorts (e.g., Harsan et al., 2010; Müller et al.,
2019) for quantitative comparisons of in-between ROIs or to
show differences between various white matter regions. ROI
analysis could be extensively performed by placing an arbitrary
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FIGURE 4 | Analysis cascade for rodent analysis at the group level. After animal preparation and scanning, quality control could be performed first at the scan console

and second during the pre-processing at the analysis console with the option of re-scanning of low-quality data sets. A stereotaxic normalization to atlas coordinates

can be refined by the creation of study-specific templates and a subsequent template normalization. Analysis at the group level can be performed by

hypothesis-guided ROI analysis or tractwise analysis or by unbiased whole brain-based analysis, each followed by a statistical analysis extracting and representing

significant results using a pre-defined significance level.

number of ROIs (e.g., Irie et al., 2018) with variable extension.
The advantage of ROI analysis is that (in case of accurate
anatomical placement) it can also be performed without any
prior stereotaxical normalization; in this case, manual ROI
identification can be supported by confocal microscopic image
(Irie et al., 2018).

Tract-Based Analysis
In order to identify fiber structures in an atlas-based coordinate
frame, different technical approaches can be applied. One
technique is TBSS (Smith et al., 2006), a fully automated method

to perform whole-brain tract DTI analyses by calculating a
skeleton of fibers by projection onto an alignment-invariant
tract representation. TBSS has been shown to be applicable
not only to human DTI studies, but also to different animal
models (Sierra et al., 2011). An additional more tract specific
technique is the TOI-based approach for which an averaged
data set is created from all contributing data sets after
normalization to a common coordinate frame preserving all
tensor-related information (Alexander et al., 2001; Field et al.,
2005). Then, fiber tracking (FT) techniques could be applied,
e.g., deterministic streamline tracking in order to obtain defined
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tract structures. These tract structures are used in order to
obtain a quantitative access to the tractography results (TFAS—
Müller et al., 2007) by comparing the average DTI metrics
values within the respective TOI for the cohorts. This TOI
analysis approach can be used for a hypothesis-guided analysis of
FT bundles.

Advantages and Drawbacks of the
Different Analysis Techniques
Unbiased comparison of cohort brains can be performed by
WBSS or connectome/whole brain connectivity analysis either
cross-sectionally or longitudinally. The drawback of these
approaches is that they are less specific, and one has to deal
with statistical correction algorithms, such as corrections for
multiple comparisons and spatial cluster corrections. WBSS
requires no fiber tracking algorithms, thus is not depending on
all the accuracy challenges, which FT/connectome analysis has to
deal with.

Hypothesis-guided techniques, that is, ROI analysis or tract-
based analysis, have the advantage to specifically focus on certain
brain regions also at the individual level with or without any prior
stereotaxical normalization. However, the comparison of the
results to reference regions is mandatory to obtain an impression
about the validity of the results.

In general, FT-based techniques have the advantage to analyze
also long-range structural connections, whereas ROI techniques
are restricted to certain brain areas. However, as FT techniques
are much more sophisticated and probably contain a higher
sensitivity to widespread brain alterations, the possibility of
misinterpretation and unspecific erroneous results is increased.

APPLICATIONS TO MODELS OF
NEURODEGENERATIVE DISEASES

Methodological DTI Studies in Cohorts of
Preclinical Models in General
DTI in mouse cohorts has successfully been applied to image
microstructure organization with a resolution down to 50µm
(Aggarwal et al., 2010; Guilfoyle et al., 2011). The analyses have
been performed by ROI analysis or fiber tracking techniques
(Harsan et al., 2010; Müller et al., 2012a). As one example,
the translational role of DTI in developmental pathologies
has been extensively described (Oguz et al., 2012). Special
focus has been put on the identification of rodent olfactory
bulb structures with micro-DTI (Zhao et al., 2008) or DTI
tractography analysis of infralimbic and prelimbic connectivity
using high-throughput MRI (Gutman et al., 2012). In the
following chapters, a summary for AD, PD, and ALS is provided;
single studies are concerned with, for example, a risk-related
biomarker in animal model of glaucoma (Hayashi et al., 2013) or
neurodegeneration in Niemann-Pick type C mice (Totenhagen
et al., 2012). A comprehensive review of DTI in preclinical studies
of Huntington’s disease has recently been published by Gatto and
Weissmann (2019) so that Huntington’s disease was not included
in our review.

Cohort DTI Studies in Animal Models of
Amyotrophic Lateral Sclerosis (ALS)
Cohort DTI studies have been performed for the SOD1
mouse model of ALS for the spinal cord (Kim et al., 2011;
Underwood et al., 2011; Marcuzzo et al., 2017), detecting
longitudinal white matter degeneration alongside histology and
electron microscopy. DTI of ALS brains of SOD1-mice at
9.4 T and 16.7 T, respectively, have shown a presymptomatic
decrease in axonal organization by FA and neurite content by
Intracellular Volume Fraction across the spinal cord, corpus
callosum, hippocampus, and cortex; the combination of DTI,
neurite orientation dispersion, and density imaging (NODDI),
and diffusion kurtosis imaging (DKI) (Marrale et al., 2016)
models have proved to provide an assessment of the early
microstructural changes in the ALS brain (Gatto et al., 2018b,c,
2019). Longitudinal DTI in the TDP-43G298S ALS mouse model
at the cohort level revealed cortical and callosal microstructure
alterations (Müller et al., 2019); in this study, longitudinal DTI
scans at 11.7 T of baseline and follow-up scans with an interval
of several months were investigated by voxelwise comparison
as well as by tractwise analysis, while histological investigations
complemented the in-vivo results.

Cohort DTI Studies in Animal Models of
Alzheimer’s Disease (AD)
Seminal work on the application of DTI to AD mouse models
has been obtained for the first time more than 15 years ago
(Sun et al., 2005; Shepherd et al., 2006), with the identification of
age-dependent white matter disturbances in mice overexpressing
beta-amyloid precursor protein (APP) under control of the
platelet-derived growth factor promoter (PDAPP mice) (Song
et al., 2004). This work was followed up by a detailed cohort study
of APPsw transgenic mouse (Tg2576), which revealed abnormal
DTI metrics related to axonal damage (both in gray and white
matter) in mice of 12 months of age (or older) and abnormal
DTI metrics related to myelin damage at 16 and 18 months of age
(Song et al., 2005). However, these findings were not confirmed
in ex-vivo DTI measurements, which revealed no loss in white
matter integrity (Harms et al., 2006), raising questions about the
source of the signal actually lost upon formalin fixation. More
recently, DTI abnormalities have been confirmed in multiple
white matter tracts as well as in the hippocampus in different
mouse models for AD (Kerbler et al., 2013; Snow et al., 2017)
and imaged in vivo at different field strengths, for example, 7 T
(Whittaker et al., 2018) or 11.7 T (Zerbi et al., 2013). Further
investigation of the APP model has confirmed abnormalities in
DTI metrics both in gray and in white matter (Bitner et al., 2012;
Qin et al., 2013; Shu et al., 2013; Shen et al., 2018; Liu L. et al.,
2020). Gray and white matter degeneration was detected by DTI
in an unbiased approach in cohort studies of APP transgenic
mice (Müller et al., 2013) and 3×Tg-AD model mice (Manno
et al., 2019) or after Aβ injections (Sun et al., 2014; Nishioka
et al., 2019). Ex-vivo DTI was used to identify vulnerable brain
networks in mouse models for late onset AD (Hara et al., 2017;
Badea et al., 2019).
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Histological confirmation demonstrated that such
abnormalities corresponded to cortical and hippocampal
neuronal loss, dendritic dystrophy and plaque accumulation,
perivascular space dilation, and myelin damage (Qin et al.,
2013). However, study of the triple-transgenic AD mouse model
carrying mutations in APP, PS1, and the P301L mutation in Tau
genes could not detect abnormalities in DTI metrics (imaged
at 7T) despite histological detection of plaques and tangles-like
lesions (Kastyak-Ibrahim et al., 2013). More recently, DTI
imaging has been used to study murine models of tauopathies,
namely the rTg4510 carrying the Tau(P301L) transgene; FA was
found to be significantly decreased in the corpus callosum of
these mice when imaged at 8.5 months of age at 9.4 T (Wells et al.,
2015). In this model, DTI was sensitive enough to detect changes,
histologically confirmed, in several areas of corpus callosum as
early as 2.5 months after birth (Sahara et al., 2014). In a similar
model, DTI proved sensitive enough to detect the regeneration
of myelin when the expression of mutant Tau was suppressed
(Holmes et al., 2016).

Taken together, the majority of the DTI studies in AD murine
models or rat models (Anckaerts et al., 2019) appear to detect
abnormalities in FA and other metrics in white matter and, less
consistently, in gray matter. Thus, DTI imaging appears to be
a possible non-invasive approach to assess cortical and white
matter integrity in AD mouse models.

Cohort DTI Studies in Animal Models of
Parkinson’s Disease (PD)
Animal models of PD might address various aspects of the
disease and its management, that is, the examination of
pathogenetic mechanisms not only in the nigrostriatal system
(van Camp et al., 2009; Zhang et al., 2017) but also in other
brain regions and outside the brain, the investigation of the
compensatory mechanisms under dopamine deficiency, the
search of biological markers for presymptomatic parkinsonism,
and finally the development of preventive therapy (Ugrumov
et al., 2011). Early quantitative DTI studies reported decreased
FA in the substantia nigra, indicating dopaminergic nigral
degeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-treated animals (Boska et al., 2007). Current technical
studies investigated the value of DTI markers in the application
to different PD models, such as MPTP and 3,4-methylene-dioxy-
methamphetamine (MDMA) lesions, respectively, in the non-
human primate: their different patterns could be demonstrated
since MPTP-induced lesions were associated with MD increases
of within the caudate and the anterior cingulate cortex, whereas
MDMA-induced lesions were associated with FA increase within
the caudate (Météreau et al., 2018). In another technical study,
multiparametric MRI including DTI demonstrated the different
characteristics of the rotenone and the 6-hydroxydopamine (6-
OHDA) model after substantia nigra injection in rats, since
the FA value of the substantia nigra was remarkably lower
at 6 weeks than at other time points in the rotenone group,
while in the 6-OHDA group, the FA value was decreased at 1
week (Liu L. X. et al., 2018). In the characterization of another
model called the MitoPark mouse, which is a genetic model of

PD with a dopaminergic neuron-specific knock-out inactivating
mitochondrial transcription factor A, DTI demonstrated reduced
FA in the corpus callosum and the substantia nigra (Cong et al.,
2016). Beyond the different models, preclinical parkinsonism
has been characterized by DTI in different species. A voxel-
based analysis of a 7 T DTI study in marmosets before and
after MPTP administration revealed increased diffusivity in the
bilateral nigrostriatal pathway, validated by ex-vivo microscopic
tractographic images, which showed loss of fiber structures in the
MPTP-treated brain (Hikishima et al., 2015) and a longitudinal
combinedmorphometric andDTI study in cynomolgusmonkeys
revealed widespread and dynamic structural changes not
only in the nigrostriatal pathway but also in other cortical,
subcortical, and cerebellar areas (Jeong et al., 2018). Further DTI
studies (within multimodal imaging protocols) demonstrated
significantly altered diffusivity parameters (MD, AD, RD) in the
nigrostriatal tract (in correlation with MPTP dose), but not in
the substantia nigra or striatum, in the macaque nemestrina
after application of MPTP (Shimony et al., 2018) and increased
FA in the ipsi- and contralateral striatum after 3 weeks and
increase of AxD and MD in the ipsilateral striatum in rats
with 6-OHDA striatal lesions (Perlbarg et al., 2018). That way,
DTI applications to various PD models could contribute to
the mapping of the underlying pathophysiology, together with
DKI as a non-Gaussian DTI approach, which demonstrated
microstructural alterations when applied to transgenic mice
overexpressing human wildtype a-synuclein under the murine
Thy-1 promoter, that is, increases in the striatum and thalamus
after 3 months and in the substantia nigra after 6 months
(Khairnar et al., 2017). Beyond mere descriptive assessments of
the disease models, DTI was used in multimodal neuroimaging
studies as a measure for therapeutic evaluations. Here, in a first
step, levodopa-induced dyskinesia in MPTP/MDMA-intoxicated
monkeys, as a model of the “classical” treatment complication
in humans, were assessed by PET imaging and MRI including
DTI, and severity of levodopa-induced dyskinesia was correlated
to MD decreases in the ventral striatum but were no more altered
after lesion of serotonergic fibers and the second levodopa period,
highlighting that DTI is complementary to PET to decipher
pathophysiological mechanisms underlying treatment-associated
complications (Beaudoin-Gobert et al., 2018). As an example,
for the use in therapy monitoring in a prospective case–control
animal study in rats with the 6-OHDA model, simple diffusion
delivery (direct microinjection of the drug into the brain tissue)
of rasagiline was assessed by DTI and T2∗ mapping (Fang et al.,
2018). The authors could show that FA values of the substantia
nigra in the simple diffusion delivery treatment group were
significantly higher at week 1 and lower at week 6 than that
of the PD control group; given that higher T2∗ parameters
at week 6 showed the same pattern, the authors considered
the combination to be more reliable than other traditional
methods for evaluating the curative effect of PD drugs in
animal models. In summary, DTI, as one element of multimodal
neuroimaging, has demonstrated a growing importance over
the recent years in preclinical PD models for the assessment
of disease-related pathophysiology and started to be used as a
marker of therapeutic interventions.
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DTI Study of Animal Models of Traumatic
Brain Injury
In contrast to chronic neurodegenerative conditions, in
which axonal and microstructural changes progress over
months or years, in traumatic brain injury (TBI), damage to
brain architecture takes place in seconds (primary damage).
Nevertheless, further progressive alterations unfold over days or
weeks (secondary damage). Furthermore, recent evidence shows
that traumatic injury to the brain constitutes a powerful trigger of
chronic neurodegenerative processes, in particular related to Tau
protein (Chen et al., 2018; Stern et al., 2019). Thus, measuring
initial and progressive damage to the brain upon TBI is the key to
understand how the acute damage cause immediate neurological
deficits and at the same time set in motion neurodegenerative
cascades. We identified 23 papers exploiting DTI for the study of
mouse models of TBI and 42 applying DTI to rat models.

Because of the sensitivity to axonal disruption, DTI has

been extensively used to characterize diffuse axonal damage

and long-range white matter tract injury in murine models to
TBI. Initial evidence (Mac Donald et al., 2007a) showed that in

controlled-cortical-injury TBI model, DTI detected alterations
in the corpus callosum white matter underlying the trauma

site with a stereotyped evolution of DTI signal over time (Mac

Donald et al., 2007b). Notably, the alteration in radial anisotropy

displayed the largest effect size and were directly correlated with
histological measures of axonal damage (Li et al., 2013; Tu et al.,

2016; also in rat models). FAmaps have demonstrated substantial

microstructural abnormalities also in case of experimental blast

injury in mouse (Rubovitch et al., 2011; Hutchinson et al., 2018;
Venkatasubramanian et al., 2020; Weiss et al., 2020) as well as in
rat models (Budde et al., 2013; Begonia et al., 2014; Kamnaksh

et al., 2014; Zhuo et al., 2015; Tang et al., 2017; Badea et al.,
2018; Missault et al., 2019; Mohamed et al., 2020; San Martín
Molina et al., 2020). DTI appeared sensitive enough to detect

changes even in mild TBI models (Hylin et al., 2013; Takeuchi
et al., 2013; Long et al., 2015; Li et al., 2016; Herrera et al., 2017;
Kikinis et al., 2017; Wendel et al., 2018; Hoogenboom et al.,
2019) and in distant locations within the brain up to 1 year
after injury (Pischiutta et al., 2018). Interestingly, very-high field

intensity DTI (14 T) has been successfully applied ex vivo for

the analysis of closed TBI (CHIMERA model); this approach
revealed abnormalities in FA and in AxD with a sensitivity and
spatial resolution comparable to immunohistological approaches
(Haber et al., 2017). Recently, DKI has been added to the
MRI toolset for TBI investigation and has been able to detect
changes in injured cortex in a CCI model of brain injury as
soon as 5 h (Hansen et al., 2017; Soni et al., 2019). Although
the DKI approach is in principle more sensitive to complex
microstructural changes occurring upon trauma in mice and rats
(Zhuo et al., 2015; Wang et al., 2018; Braeckman et al., 2019;
Yu et al., 2019), its role is not established and remains object

of investigation.
DTI has also been employed in the detection of axonal injury

and microstructural changes following repeated mild TBI (which

mimics the occurrence of head traumas in several sports). In this

model, reduced values of axial diffusivity and mean diffusivity

in the corpus callosum were found at 7 days post injury, in
agreement with histological markers; notably, radial diffusivity
was already altered in the cortical graymatter at 24 h but returned
to baseline at the 7 days evaluation (Bennett et al., 2012). In a
similar repeated-hit model, DTI has revealed disruption of axonal
integrity in multiple white matter structures, irrespective of
microhemorrhage detection (Robinson et al., 2017); substantial
white matter damage was detected by DTI, together with
histological approaches, in juvenile mice subject to repeated mild
TBI (Yu et al., 2017; Lee et al., 2018). Similar alterations have
been detected in rat models of repeated TBI (Calabrese et al.,
2014; Singh et al., 2016; Wright et al., 2016; Qin et al., 2018; Kao
et al., 2019) as well as in juvenile rat (Fidan et al., 2018; Wortman
et al., 2018; Wright et al., 2018) or mouse (Rodriguez-Grande
et al., 2018; Clément et al., 2020) cohorts subject to TBI. A few
studies have applied ex-vivo DTI to obtain high-resolution maps
of axonal disruption upon TBI, both in mouse (Weiss et al., 2020)
and in rat (Donovan et al., 2014; Laitinen et al., 2015) models of
brain trauma.

Finally, DTI-MRI has been used as read-out of treatment
efficacy in rodents’ models of TBI. In particular, DTI has
revealed the beneficial effect on white matter integrity of
activation of mitochondrial calcium fluxes (Parent et al., 2020),
of autophagy modulators (Medina et al., 2017; Yin et al.,
2018), estrogens (Kim et al., 2015, 2017), metamphetamine
(Ding et al., 2013), erythropoietin (Robinson et al., 2016,
2018), tissue plasminogen activator (in mice; Xia et al., 2018),
mGluR5 (in mice; Byrnes et al., 2012), and dietary modulations
(Shultz et al., 2015; Schober et al., 2016; Tan et al., 2016).
Notably, the detrimental effect of alcohol in TBI was also
investigated by DTI (Kong et al., 2013). Taken together,
these studies extensively highlight the sensitivity of DTI as
readout of acute and subacute axonal damage in rodents
TBI models.

Efforts are currently made to bring DTI to non-murine
models of TBI. MRI has been successfully employed to study
traumatic damage to piglets (sus scrofa domestia) in order to
simulate pediatric TBI (Kinder et al., 2019) as well as to explore
therapeutic strategies in adult minipigs (Georgoff et al., 2017;
Nikolian et al., 2017). Recently, DTI has been implemented
in minipigs (Simchick et al., 2019), revealing a remarkable
similarity of the pattern of functional and structural connectivity
between men and pigs and underscoring the translational
value of porcine models. These experiments prove that the
use of DTI-based MRI on swine models is possible but a full
DTI study has not yet been performed. Initial studies of the
application of DTI in non-human primates for the investigation
of TBI are ongoing. Seminal work has shown that DTI can
provide outcome measures in non-human primates models of
traumatic spinal cord injury (Ma et al., 2016) and the remodeling
of brain circuits upon hippocampal damage (Meng et al.,
2018). Although non-human primate models of TBI has been
established (e.g., King et al., 2010), the logistics and the ethics
of non-human primates have so far limited the availability for
DTI investigations.

Taken together, these findings identify DTI as a key
approach to investigate large-scale and microstructural integrity
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in preclinical models of TBI, with excellent agreement with
histological readouts and the advantage of longitudinal, non-
invasive assessment.

DTI Integration With High-Resolution
Optical Imaging
There is a growing number of large-scale connectomes for
preclinical models obtained with DTI ex vivo (Nouls et al., 2018;
Allan Johnson et al., 2019) and increasingly in vivo (Gimenez
et al., 2017; Haber et al., 2017; Müller et al., 2019). At the same
time, single-neuron resolution connectomes are being obtained
for the whole mouse brain (Ho et al., 2014) or for individual
structures (e.g., Commisso et al., 2018) using viral tracing tools
and optical imaging. Therefore, the integration of these two
techniques appears to be the logical next step. This may take
place either in the form of technical approaches enabling the co-
acquisition of DTI datasets and MRI-compatible viral tracing or
in the form of post-acquisition merging of distinct datasets.

In the domain of post-hoc coregistration, the availability
of the Allen Brain Connectivity atlas (Ho et al., 2014) has
spurred early effort to merge or cross-check DTI atlases with
connectivity measures obtained from viral tracing experiments.
Initial evaluations in this direction have shown an incomplete
match between DTI datasets and tracing datasets, in particular
in the connectivity of striatum and cerebellum (Chen et al.,
2015). In particular, the DTI connectivity map emerged to
be more accurate when the anatomical parcellation was less
precise, underscoring the different resolution of the DTI vs.
optical imaging. Nevertheless, DTI appears to be reliable in the
identification of at least 90% of large projection tracts identified
by viral tracing; the misidentified tracts appear to be due to
erroneous link of two independent fiber tracts by the tracing
algorithm in the DTI dataset (Chen et al., 2015). Therefore, it
is anticipated that further improvement of the technology, using
machine-learning approaches that can use optical counterparts
as “gold standard,” will result in improvement in tracing, in
particular in terms of reduced false positives (Maier-Hein et al.,
2017). Of note, the resolution of theDTI-MRI datasets formurine
models is progressively increasing, thanks to the adoption of
ultra-high-field, ex-vivo acquisition (Allan Johnson et al., 2019).
On the other hand, the acquisition of whole-brain optical images
in cleared specimens (Ueda et al., 2020), which are going to have
the same overall format of MRI images in terms of explored
volume and reference points (and therefore could be normalized
to standardized templates), may be anticipated to make for easier
and faster integration with DTI-MRI.

Nevertheless, a large degree of complementarity, rather
than integration, remains between DTI imaging and optical,
tracer-based approaches. In fact, the major advantage for MRI
application remains the acquisition of data in vivo, which
is largely impossible with optical methods; however, DTI
datasets are intrinsically devoid of directionality so that the
polarization of the identified tracts cannot be deduced solely from
diffusion metrics. To this respect, viral tracing provides a critical
information, since viruses can be engineered to have anterograde
or retrograde propagation (e.g., Commisso et al., 2018).

Of note, DTI atlases are being refined for non-murine animal
models of disease. For porcine models, DTI imaging has been
used to provide a whole-brain map of connectivity (Simchick
et al., 2019) as well as enhanced tractography (Knösche et al.,
2015). Furthermore, DTI connectome initiatives have been
performed on marmoset (Callithrix jacchus) models (Okano and
Mitra, 2015) and in rhesus models (Feng et al., 2017; Young et al.,
2017). The correlative histological studies are quickly advancing,
especially in marmoset (Goulas et al., 2019; Liu C. et al., 2020;
Majka et al., 2020), but also in larger non-human primates
(e.g., Decramer et al., 2018 and by the PRIME-DE initiative—
PRIMatE Data Exchange (PRIME-DE) Global Collaboration
Workshop Consortium, 2020). Thus, the current challenge is to
obtain correlative DTI-histological mapping on large brains; the
most severe limitations appear to be imposed by the difficulties
in optical imaging of large samples with cellular resolution,
although promising steps have been already undertaken such as
the optical clearing of large organs (Zhao et al., 2020).

DISCUSSION

MRI in Preclinical Models of
Neurodegeneration
Neuroimaging has provided powerful data on the
temporal course of neurobiological changes associated with
neurodegenerative disorders and is emerging as a powerful
biomarker to define target engagement in therapeutic trials
in humans (Masdeu, 2017). Animal studies have a crucial
role in neuroscience and have substantially contributed to the
understanding of neurodegeneration, and the studies previously
presented in the various models of different neurodegenerative
disease will pave the way for further DTI-based imaging read-
outs in animals, including tracking of changes associated with
pharmacological manipulation. Although animal studies are not
a substitute for studies in real human biology, animal models
provide opportunities for experiments that cannot be performed
in humans and thus represent a critical platform upon which
translational efforts for treating human neurodegenerative
diseases are built (Albanese et al., 2018). Since advanced genetic
techniques allow the manipulation of the genome and precise
control of gene expression in rodents, transgenic models of
human neuropathology are becoming increasingly important.
Animal models of brain structure and organization at different

neurodegenerative disease stages may define possible read-outs

for surrogate markers and enhanced drug trials. Longitudinal
studies in animals are of special interest since they can be

designed across the entire lifespan of the respective animal
in contrast to humans where longitudinal studies have to be
designed for many years or even decades to capture a sizeable
part of the human lifespan (Gorges et al., 2017). DTI-based
analysis of the brain can show disease-related alterations of
brain areas, which develop over time. MRI has substantially
contributed to the understanding of microstructural brain
alterations in animal models in the course of neurodegenerative
diseases. Taken together, the broad spectrum of experimental
manipulations, which can be longitudinally investigated
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by the non-invasive DTI approach provides a promising
tool for cross-species comparative investigations. The
integration of DTI in a multiparametric imaging protocol
is a promising approach to integrate microstructural
characteristics into a context of the structural and
functional networks.

DTI in Translational Imaging
DTI is a powerful tool providing important information
regarding alterations in brain microstructure. As DTI has
enormous translational potential, the remaining task is to
design animal studies exhausting this potential by focusing
on clinically relevant parameters, developmental time points,
and by providing carefully matched controls. To assess the
axonal damage and myelin degradation, the statistical analysis of
DTI metrics can be performed by unbiased whole-brain-based
voxelwise comparison or by hypothesis-guided ROI-based or
TOI-based quantification. When these tools are combined with
the strengths of animal models, a more complete picture of the
neurobiological targets and mechanisms of neurodegeneration
can be developed. A methodological example of harmonized
translational imaging in man and in mouse is a recent cohort
DTI study in a mouse model of the Phelan-McDermid syndrome.
Here, white matter damage in SHANK3 deficiency has been
investigated in a back-translational study of human subjects
with Phelan-McDermid syndrome and terminal deletions of
chromosome 22q13, including SHANK3 on the one hand and
a SHANK3 mouse model on the other hand: with the identical
DTI analysis cascade, human DTI data and murine DTI data
were analyzed by unbiased voxelwise WBSS-based comparison
and by hypothesis-guided TOI-based analysis, respectively
(Jesse et al., 2020).

Traditional DTI analysis is using the single-tensor model.
While this model can adequately analyze alterations in the
microstructure in certain brain regions, it is hardly useful
for the representation of crossing fibers, posing substantial
problems with robust tractography. A step away from single-
tensor representations are high angular resolution diffusion
imaging (HARDI) (Ozarslan and Mareci, 2003; Cercignani et al.,
2012), Q-ball imaging (Tuch, 2004), and NODDI (Barritt et al.,
2018; Gatto et al., 2018d). These approaches rely on acquiring
a comparatively high number of diffusion gradient directions to
cover a full orientation distribution function. HARDI has been
performed in excised tissue (D’Arceuil and de Crespigny, 2007;
D’Arceuil et al., 2007), and there have been first attempts to apply
HARDI or Q-ball imaging in the whole rodent brain at 16.4 T
(Alomair et al., 2015). There are no theoretical restrictions for
the application of HARDI or Q-ball imaging to animal cohort
studies; however, there are many practical challenges such as
scanning time. However, NODDI has been applied to detect
neurite orientation dispersion of mouse brain microstructure
(Wang et al., 2019) or alterations in hippocampal microstructure
(Colon-Perez et al., 2019) and also to investigate spinal cords
at 17.6 T in an ALS mouse model (G93A-SOD1 mice) for
the detection of presymptomatic axonal degeneration (Gatto
et al., 2018d). Because simple Gaussian diffusion models do not
sufficiently describe water diffusion in complex tissues, a novel

diffusionMRI acquisition approach can be applied, that is, hybrid
diffusion imaging (HYDI). HYDI can be fit into NODDI to
extract diffusion metrics that may be more biologically specific
and unbiased by crossing fibers (Wu et al., 2008, 2018; Daianu
et al., 2015a,b). In AD research, both HYDI and NODDI have
been applied to rat models (Daianu et al., 2015a) or mouse
models (Colgan et al., 2016). Due to their elaborate character, it is
unclear if these techniques will be clinically significant, but there
are aspects that might aid in the research of neurodegenerative
diseases, for example, in the discrimination of cortical gray
matter as diffusion MRI is sensitive to architectonic differences
between a large number of different cortical areas (Ganepola
et al., 2018).

Novel developments show the applicability of deep learning-
based techniques to obtain DTI with only six gradients
directions (Li et al., 2020). The method uses deep convolutional
neural networks to learn the nonlinear relationship between
diffusion weighted images and tensor-derived maps, bypassing
the conventional tensor fitting procedure, which is well-known
to be highly susceptible to noise in diffusion weighted imaging.
This technique has been reported and it will be shown in the
future if it will contribute to significantly reduce the recording
time. The role of DKI (Marrale et al., 2016) has not been generally
established yet, although—due to its improved sensitivity to
complex microstructural changes—successful studies in TBI
(Hansen et al., 2017; Soni et al., 2019) and early microstructural
changes in the ALS brain (Gatto et al., 2018b,c, 2019) have already
been performed; thus, DKI might be considered to be one of
the promising techniques to be included in the data acquisition
protocols of future experiments.

Limitations of DTI
As a macro- or mesoscale imaging technique, DTI has
the advantages of 3D and in-vivo imaging, including the
opportunity of repeated and longitudinal scanning with an
arbitrary number of DTI recordings and follow-up scans.
The ratio of the microstructural feature size to voxel size is
improved in small animal imaging as compared with human
or primate imaging; nevertheless, a DTI voxel always contains
the averaged information of diffusion covering hundreds of
axons as well as the surrounding water molecules. Thus, any
DTI metric is a measurement of the physical properties of
a volume element without any specific restriction to axonal
microstructure. Therefore, DTI metrics determination is only an
indirect assessment of fiber density and cell packing, degree of
myelination, and individual fiber diameter. Diffusion anisotropy
is influenced by axonal integrity ormyelin degradation, which are
affected by neurodegenerative processes.

There have been many efforts to develop sophisticated
techniques to extract relevant information on axonal integrity
or myelin degradation to get insights into neurodegenerative
processes. This ranges from advanced recording techniques,
such as Q-ball, HARDI, or NODDI to extensive postprocessing
algorithms, that is, parameterization to one FA value or fiber
tracking reconstructions. However, it is an intrinsic property
of DTI (which is related to the image recording at a macro-
or mesoscale) that any FT technique can only represent the
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probable fiber bundle course rather than individual axons. As a
macro- or mesoscale imaging technique DTI has the advantages
of 3D and in-vivo imaging, which contains the opportunity of
repeated and longitudinal scanning with an arbitrary number of
DTI recordings and follow-up scans. The ratio microstructural
feature size to voxel size is improved in small animal imaging
compared to human or primate imaging; nevertheless, a DTI
voxel always contains the averaged information of diffusion
covering hundreds of axons as well as the surrounding water
molecules. Thus, any DTI metric is a measurement of the
physical properties of a volume element without any specific
restriction to axonal microstructure. Therefore, DTI metrics
determination is only an indirect measurement of density of
fibers and cell packing, degree of myelination, and individual
fiber diameter. Diffusion anisotropy is influenced by axonal
integrity or myelin degradation, which are thought to be mainly
affected by neurodegenerative processes.

Future Aspects
A future aspect of microstructure imaging by DTI (including
tractography) is the combination of the detected alteration
patterns with further MRI-based techniques such as structural
imaging and intrinsic functional connectivity imaging, which
can be the basis for connectome imaging as a comprehensive
map of neural connections of the species nervous system
(Rilling and van den Heuvel, 2018). These techniques have
successfully been applied to humans and will further strengthen
the translational insights into a complex multiparametric
comprehensive structural-functional organization of the animal
brains. Such MRI studies can then be expanded, for example,
by radioligand neuroimaging or advanced optical imaging
(see section DTI Integration With High-Resolution Optical
Imaging). There is particular interest in performing these
advanced neuroimaging analyses at the group level, given
that a trend for bottom-up initiatives is emerging within the
neuroscientific community, starting with small-scale projects by
single groups that expand upon self-organized collaborations of
researchers and infrastructures in “meso-scale” collaborations
and develop to grand-scale projects (Kassubek, 2017). Joined
forces with a focus on the analysis of specific preclinical models

for neurodegeneration might be a solution to the existing
challenges especially in preclinical imaging by the combination
of neuroimaging data: preferably in a prospectively harmonized
design than ex post facto, DTI might be one promising advanced
imaging candidate in that sense in the light of standardized
acquisition protocols with relative robustness. In the context
of models of neurodegenerative diseases, both the analysis of
disease-related brain changes including the correlation with the
clinical phenotype and the analysis of white matter plasticity
(Sampaio-Baptista and Johansen-Berg, 2017; Sampaio-Baptista
et al., 2020) might facilitate the translational approach of these
studies to clinical data.
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Alessia Sanna1, Inna Bukreeva1, Lorenzo Massimi1‡, Maura Catalano1,
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We report a qualitative study on central nervous system (CNS) damage that
demonstrates the ability of X-ray phase contrast tomography (XPCT) to confirm data
obtained with standard 2D methodology and permits the description of additional
features that are not detected with 2D or other 3D techniques. In contrast to magnetic
resonance or computed tomography, XPCT makes possible the high-resolution 3D
imaging of soft tissues classically considered “invisible” to X-rays without the use of
additional contrast agents, or without the need for intense processing of the tissue
required by 2D techniques. Most importantly for studies of CNS diseases, XPCT enables
a concomitant multi-scale 3D biomedical imaging of neuronal and vascular networks
ranging from cells through to the CNS as a whole. In the last years, we have used
XPCT to investigate neurodegenerative diseases, such as Alzheimer’s disease (AD) and
multiple sclerosis (MS), to shed light on brain damage and extend the observations
obtained with standard techniques. Here, we show the cutting-edge ability of XPCT to
highlight in 3D, concomitantly, vascular occlusions and damages, close associations
between plaques and damaged vessels, as well as dramatic changes induced at
neuropathological level by treatment in AD mice. We corroborate data on the well-known
blood-brain barrier dysfunction in the animal model of MS, experimental autoimmune
encephalomyelitis, and further show its extent throughout the CNS axis and at the level
of the single vessel/capillary.

Keywords: X-ray phase contrast tomography, preclinical disease models, Alzheimer’s disease, multiple sclerosis,
3D imaging

INTRODUCTION

Neurodegeneration is a process by which a progressive loss of neuronal structure and function
occurs in many central nervous system (CNS) pathologies; it is generally associated with
neuroinflammation. Neurodegenerative diseases are presently incurable and current therapies have
minimal or no significant effect in reversing the CNS damage.
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The research in human neurological diseases has greatly
benefited from pre-clinical research in experimental in vitro
and in vivo models. In this context, for example, several of the
therapeutic approaches that have led in the past 30 years to an
increasing number of drugs for multiple sclerosis (MS), such
as glatiramer acetate (Ben-Nun et al., 1996) and natalizumab
(Yednock et al., 1992) in particular, have been developed in
its murine model, experimental autoimmune encephalomyelitis
(EAE) (Constantinescu et al., 2011).

However, new efforts are necessary for the comprehension of
disease mechanisms and monitoring of therapeutic approaches.
In particular, the research in neurodegenerative diseases requires
tools enabling the visualization of disease-relevant networks,
such as the vascular and neuronal networks (VN and NN),
and of affected cells, as well as the monitoring of treatment
efficacy. The techniques currently used to investigate damage
in the VN and NN at cellular level suffer from several
limitations. In particular, 2D imaging (immuno-histochemistry
and electron microscopy) restricts spatial coverage, entails
destructive sample preparation, and is only applicable at the
ex vivo level. Although jumping from 2D to 3D represented
an outstanding breakthrough in the general quality of imaging
and information obtained, magnetic resonance imaging (MRI),
positron emission tomography (PET), and X-ray-computed
tomography fail to provide a satisfactory answer to the unmet
medico-imaging needs for these diseases. Thus, MRI and
PET are limited in terms of spatial resolution, and X-ray
computed tomography, whilst providing 3D visualization of
X-ray-absorbing tissues, fails in the analysis of soft tissues,
such as the CNS.

These severe limitations in 3D imaging can be overcome
by the more advanced X-ray phase contrast tomography
(XPCT), which provides much higher resolution and contrast
at cellular level also in soft tissues. XPCT makes possible the
simultaneous multi-scale 3D biomedical imaging of neuronal
and vascular networks, ranging from cells through to brain
as a whole. XPCT revolutionizes X-ray imaging and removes
its main limitation of poor image contrast arising from low
attenuation differences. XPCT increases the contrast of all details
and enables the detection of features classically considered as
“X-ray invisible.”

A key ability of XPCT is the possibility to generate a 3D
multiscale image of the whole brain, which displays information
on the NN and VN simultaneously (Fratini et al., 2015; Bukreeva
et al., 2017; Begani Provinciali et al., 2020). In previous works
(Cedola et al., 2017; Massimi et al., 2019, 2020), we exploited this
unique feature of XPCT to evaluate morphological alterations in
the VN and NN, both in EAE and in the APP/PS1dE9 mouse
model of Alzheimer’s disease (AD).

In this work, we move forward in these studies toward a deeper
understanding of specific hot issues in MS and AD. Namely, in
EAE, effective 3D imaging has allowed us to confirm disease-
related alterations in blood-brain barrier (BBB) permeability,
demonstrating its spreading throughout the affected tissue. In
the APP/PS1 mouse model, we have investigated the effect of a
new therapeutic approach on β–amyloid (Aβ) plaques, the main
neuropathological hallmark of AD (Jack et al., 2010).

MATERIALS AND METHODS

Sample Preparation
Experimental autoimmune encephalomyelitis sample: An eight-
week-old C57Bl/6J female mouse, weighing 18.5 g, purchased
from Harlan Italy, was immunized as described before (Mendel
et al., 1995) by subcutaneous injection (200 µl total) at two sites
in the flank with an emulsion of 200 µg myelin oligodendrocyte
glycoprotein (MOG) peptide 35–55 (Espikem) in incomplete
Freund adjuvant (Difco) containing 600 µg Mycobacterium
tuberculosis (strain H37Ra; Difco). The mouse was injected
(100 µl total) in the tail vein with 400 ng pertussis toxin (Sigma-
Aldrich) immediately and 48 h after immunization. The mouse
was scored daily for clinical manifestations of EAE on a scale of
0–5 (Mendel et al., 1995), and sacrificed by CO2 inhalation at
onset of clinical manifestations (day 11 after immunization), with
a clinical score of 3.5. The brain and spinal cord were dissected
out, with the spinal cord being divided into 3 parts, cervical (C1–
C7), thoracic (T1–T13, and lumbar/sacrococcygeal (L1–S4). The
tissues were fixed in 4% paraformaldehyde for 24 h, then stored
in 70% ethanol until XPCT.

All animals are housed in pathogen-free conditions and
treated according to the Italian and European guidelines (Decreto
Legislativo 4 marzo 2014, n. 26, legislative transposition of
Directive 2010/63/EU of the European Parliament and of the
Council of 22 September 2010 on the protection of animals used
for scientific purposes), with food and water ad libitum. The
research protocol was approved by the Ethical Committee for
Animal Experimentation of the University of Genoa (Prot. 319).

AD samples: APPswe/PS1dE9 transgenic male mice
[B6C3 – Tg(APPswe, PSEN1dE9)85Dbo/Mmjax mice], which
express a chimeric mouse/human amyloid precursor protein
(Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-
dE9), were purchased from Jackson Laboratories (United States).
They are referred to thereafter as AD mice.

All animals were housed in a SPF facility in groups of 4
in standard mouse cages containing sawdust with food (2018S
Envigo diet) and water ad libitum, under conventional laboratory
conditions (room temperature: 20 ± 2◦C; humidity: 60%) and a
12/12 h light/dark cycle. The IRFMN adheres to the principles
set out in the following laws, regulation, and policies governing
the Care and Use of Laboratory Animals: Italian Governing Law
(D.lgs 26/2014; Authorization n. 19/2008-A issued March 6, 2008
by Ministry of Health); Mario Negri Institutional Regulations and
Policies providing internal authorization for persons conducting
animal experiments (Quality Management System Certificate –
UNI EN ISO 9001:2015 – Reg. N◦ 6121); the NIH Guide for
the Care and Use of Laboratory Animals (2011 edition) and EU
directives and guidelines (EEC Council Directive 2010/63/UE).
The statement of Compliance (Assurance) with the Public Health
Service (PHS) Policy on Human Care and Use of Laboratory
Animals has been reviewed (9/9/2014; Animal Welfare Assurance
#A5023-01). The mice were used for the experiment at 18 months
of age. One AD mouse was treated intranasally (25 µl total
volume for both nostrils) once weekly for eight consecutive
weeks with the concentrated secretome of mesenchymal stem
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cells (MSC), that is the conditioned supernatant of cultured
MSC (MSC-CS), as described previously (Santamaria et al.,
2020); the other untreated mouse received concentrated medium
intranasally according to the same regimen. Mice were killed
under CO2 inhalation. For micro-XPCT, the brains were
removed and post-fixed in 4% paraformaldehyde overnight and
subsequently stored in 70% ethanol at 4◦C until XPCT. For
holo-nano-XPCT and nano-XPCT, the brains were removed
and specific regions (frontal cortex, hippocampus) were cut
and placed in 0.1 M cacodylate buffer pH 7.2, containing 2.5%
glutaraldehyde for 3 h at room temperature. Brain samples
were postfixed in osmium tetroxide (1% in 0.1 M cacodylate
buffer, pH 7.2; 1 h) and uranyl acetate (1% in water; 1 h).
Samples were then dehydrated through a graded ethanol series
(70/95/100%), put in propylene oxide, and embedded in resin
(Poly-Bed; Polysciences, Inc., Warrington, PA, United States)
at 42◦C overnight and for 2 days at 60◦C. The blocks were
kept at 4◦C.

Micro-XPCT
The XPCT experiments were performed at the ID17 beamline of
the European Synchrotron Radiation Facility (ESRF, Grenoble,
France) and at the ANATOMIX beamline of Synchrotron
SOLEIL (Paris, France), in free-space propagation mode
(Bravin et al., 2012).

Data acquisition at ID17 was performed using
monochromatic incident X-ray energy of 35 keV. The
sample-detector distance was set at 2.3 m. The detector has
an effective pixel size of 3.05 µm. The tomography was
produced by means of 2000 projections covering a total
angle range of 180◦. The acquisition time for each angular
position was 300 ms. The total sample volume was acquired
in about 15 min. Data pre-processing, phase retrieval, and
tomographic reconstruction were performed with SYRMEP
Tomo Project software (Brun et al., 2017; Massimi et al., 2018)
and optimized scripts.

The experiment at ANATOMIX beamline was carried out with
a filtered white beam peaked around 20 keV. The propagation
distance was 0.2 m. The effective pixel size was 3.25, resulting
from 2× optics coupled with Orca Flash 4.0 camera (sensor
type CMOS, sensor array size 2048 × 2048, pixel size 6.5 µm
16-bit nominal dynamic range). The experiment was performed
acquiring 4000 projections in 360◦ scan mode. 360◦ scan mode
or extended field of view (FOV) mode (half-acquisition mode)
pertain specifically to the acquisition of sample horizontally
larger than the FOV of the camera. In this acquisition mode,
the sample is positioned outside the rotation center of the stage
so that half of the sample is outside the FOV. We acquired
over an angular range of 360◦. The projections acquired during
the first 180◦ provide information on the first part of the
sample, while the projections acquired from 180 to 360◦ provide
information on the sample region which was initially out of
the FOV. Data pre-processing, phase retrieval, and tomographic
reconstruction were performed with PyHST software package.
The tomography color scale is a gray-shade scale from black to
white. Least dense tissues appear black, structures with highest
density appear white.

Holographic Nano-XPCT
The holographic (holo-)nano-XPCT experiment was carried
out at Nano-Imaging ID16A beamline of the ESRF. A pair of
multilayer-coated Kirkpatrick-Baez optics was used to focus the
X-rays (∼30 nm) at 17 keV. The sample is put in the divergent
beam downstream of the focus to produce magnified phase
contrast images. The projection geometry also allows zooming
into specific regions of a large sample by combining scans with
different magnifications and FOV (Mokso et al., 2007; Bartels
et al., 2015). By measuring the Fresnel diffraction patterns at
different effective propagation distances, the phase maps of
the sample can be retrieved via holographic reconstruction,
this so-called phase-retrieval procedure (Cloetens et al., 1999)
being implemented using GNU Octave software. Magnified
radiographs were recorded onto an X-ray detector using a
FReLoN-charged coupled device. For one tomography scan,
1500 projections were acquired with 0.32 s exposure time
and 50 nm effective pixel size. Tomography scans at four
different foci-to-sample distances were acquired to complete
one holotomography scan. The tomographic reconstruction was
obtained with ESRF PyHST software package. In this kind of
images, the shades of gray are proportional to electron density,
with black corresponding to the highest value of the density
spectrum, whereas white corresponds to the lowest value, hence
to features of lowest density.

Nano-XPCT
The nano-XPCT experiment was performed at TOMCAT
beamline of the Swiss Light Source at Paul Scherrer Institut
(Villigen, Switzerland). An incident monochromatic x-ray beam
with an energy of 17 keV was used. In order to obtain an effective
pixel size of 325 nm, a 20× lens was coupled with a pco.edge
5.5 camera (sCMOS-technology, 2560 × 2160 pixels, 6.5 µm
pixel size and a 16-bit nominal dynamic range). The experiment
was performed in free-space propagation mode, with a single
propagation distance of 50 mm. For one tomography scan,
1500 projections were acquired with 0.12 s exposure time. Data
reconstruction was obtained with TOMCAT plug-in of ImageJ
software. As for micro-XPCT, the gray scale is proportional to the
electron density of the tissues.

Image Analysis
We removed the ring artifacts by improved frequency filtering
(Massimi et al., 2018). Image analysis was performed using
ImageJ software1. To enhance the contrast, we used z-projection
of maximum and minimum intensity. Z-Projection consists in
projecting an image stack along the axis perpendicular to the
image plane (the so-called “z” axis). Performing the projection of
the maximum (or minimum) intensity creates an output image
of which each pixel contains the maximum (or minimum) value
over all images in the stack at the particular pixel location. On
the one hand, maximum intensity projection (MAX) enlightens
high density structures such as neurons and amyloid plaques.
On the other hand, minimum intensity projection (MIN)
emphasizes low-density details such as the lumen of the vessels.

1https://imagej.net/Fiji
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To simultaneously visualize features with low and high density,
images obtained from MAX and MIN were added together.

XPCT provides intrinsic 3D information of the samples
measured. Three-dimensional spatial distribution of anatomical
structures can be effectively rendered using VG studio Max
software. To isolate and enlighten particular structures, image
segmentation is required. This procedure groups features with
the same density by selecting the corresponding portion of
the gray-level-histogram intensity. The segmentation and 3D
rendering, performed with VGstudioMax, can be exploited to
simultaneously visualize different structures, furthering the study
of the interaction among biological networks.

RESULTS

XPCT for Brain Imaging
The ambitious objective to explore the CNS from the whole
organ down to the single cell through a detailed 3D imaging,
whilst preserving tissue chemistry and structure, can nowadays
be achieved through XPCT. Its most compelling achievement
is the possibility to investigate the highly complex VN and
NN in the context of the tissue as a whole and, therefore,
compare physiological vs. pathological states at the level of crucial
disease targets.

In order to explore the complexity of the tissue, standard
X-ray tomography of the brain requires the application of
contrast agents, as shown in Figure 1A. As can be seen, the
difference in contrast between the cortex and the thalamus
is clear, and the corpus callosum and the mammillothalamic
tract are well defined. However, despite the use of contrast
agent, little information can be extracted on nerve cells in the
cortex and on nerve fibers (Figure 1A). Contrary to standard
X-ray tomography, the contrast in the XPCT images is not
proportional to the X-ray attenuation inside the sample but is

FIGURE 1 | XPCT is a powerful technique that provides high-contrast
resolution without requirement for a contrast agent. The image shown puts
together parts of naïve mouse brain with the left side assessed by standard
X-ray micro-tomography with a mixture of 1% iodine and 90% methanol as
contrast agent (A) as reported in Zikmund et al. (2018) JINST 13 C02039,
while the right side was generated by XPCT (B). Small variations in density
appear much more evident in XPCT imaging. Both images were obtained as
z-projection of maximum intensity over 300 µm.

proportional to the refraction of the X-ray beam crossing the
sample. Since in the biomedical samples the refraction effect can
be 1000 times higher with respect to the absorption effect, XPCT
is a unique technique of tomography to image low-absorbing
tissues. Figure 1B shows the same anatomic district imaged in
Figure 1A, using XPCT, but the richness of details in this case
is quite impressive with respect to Figure 1A. Even though a
contrast agent was not used (see below), the vascularization in
the cortex clearly appears, and the cells and fibers are imaged with
optimal contrast.

Figure 2 shows XPCT of a naïve mouse brain region
where the VN (Figures 2A–C) and NN (Figures 2D–F) are
virtually extracted independently by an image post-processing,
i.e., segmentation process (see section “Materials and Methods”).
Figure 2B presents a detail of the vascular network, while a
zoomed image of the small capillary network obtained through
holo-nano-XPCT is shown in Figure 2C. In the latter image,
holo-nano-XPCT distinguishes two different types of cells: the
black-appearing cells at the capillary walls, which are compatible
with endothelial cells, and cells surrounding the capillary, which
display a white cytoplasm and a dark nucleus. Of note, nano-
XPCT and holo-nano-XPCT are presently the unique techniques
able to image the 3D capillary network. Figure 2E shows the
hippocampal NN, while Figure 2F displays a magnification
of the tissue where a cell with typical pyramidal neuron
morphology with dark cytoplasm, and surrounded by round cells,
is clearly defined.

EAE
Multiple sclerosis is a neurodegenerative autoimmune disease
of the CNS associated with neuroinflammation, demyelination,
axonal damage, and neuronal loss. The use of an appropriate
animal model, such as EAE induced by MOG peptide, a chronic
neurological disease with progressive caudo-rostral paralysis
associated with demyelination and axonal loss (Mendel et al.,
1995), facilitates the study of the disease mechanisms. In a
previous XPCT study (Cedola et al., 2017), we demonstrated
the presence of EAE-mediated vascular alterations down to
the capillary network, and shed light on how the disease
affects the tissues and on how treatment with MSC reverts the
damage to some extent.

In these previous studies of murine CNS tissue, we had
perfused the mice with saline and heparin to remove the blood,
or with MICROFIL R©, a compound that fills vessels and enhances
the opacity of the microvascular network (Fratini et al., 2015;
Bukreeva et al., 2017; Cedola et al., 2017). In the present study,
we made the serendipitous discovery that blood itself makes
for a better contrast agent, with less manipulations. Indeed,
we had planned to use gadolinium as a contrast agent to
enhance the visibility of the vessels. We injected gadolinium
intravenously, as it is used in human disease, and compared
the images of the tissues with those from mice we had injected
with PBS. Unexpectedly, we found that the XPCT images of
brain samples from mice injected with gadolinium (data not
shown) did not show better contrast than those from mice
injected with PBS, where the presence of iron in the blood
permits the visualization of the vessels. Accordingly, we have
subsequently assessed the vascular networks in non-perfused
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FIGURE 2 | XPCT is a multiscale 3D technique that enables the simultaneous visualization of different anatomical structures within biological tissues without
sectioning or staining, and allows the imaging from whole-organ level down to nanometric details. (A,B) 3D-rendering of naïve mouse brain vasculature (in red).
(C) Holo-nano-XPCT image of a single capillary (acquired at ID16, ESRF; scale bar, 50 µm). (D–F) XPCT images showing the multiscale approach to analyze the
neuronal network down to the single cell; (E) Inset of (D) showing a micro-XPCT detail of brain in the hippocampal region (scale bar, 250 µm) and a magnification
(scale bar, 80 µm) demonstrating the ability of micro-XPCT to go down to cell level; micro-XPCT measures were acquired at ID17, ESRF. (F) Holo-nano-XPCT image
highlighting the ability of XPCT to distinguish different cell types within the tissue (acquired at ID16, ESRF; scale bar, 10 µm).

mice that had not received contrast agent. More importantly
for our study, the presence of iron in the blood also permits
the visualization of extravasated material, as a result of BBB
dysfunction. In 2D analysis, extravasation from CNS blood
vessels, in particular capillaries, is detected most appropriately in
mice upon intravenous injection of immunofluorescent material
of high molecular weight, such as FITC-labeled dextran 70, prior
to sacrifice, and appears in optical fluorescence microscopy as
“clouds” of material diffusing in the parenchyma (Ferrara et al.,
2016). Similar “clouds” can be seen in the XPCT images of brain
and spinal cord from EAE-affected mice (Figures 3–5). EAE is
an experimental disease where neurological impairment proceeds
as a caudo-rostral ascending paralysis that is associated with
inflammation and accumulating vasogenic edema, followed by
demyelination and axonal damage. A dysfunctional blood-CNS
barrier is first observed in the lumbar spinal cord, spreading to
the upper spinal cord regions to reach the cerebellum. Figure 3
shows XPCT images of the lumbar spinal cord of a naïve mouse
(Figures 3A,C) and of an EAE-affected mouse at the onset
of the disease (day 11 after immunization; Figures 3B,D). In
both sagittal (Figures 3A,B) and axial (Figures 3C,D) views, 3D
analysis with XPCT shows clear alterations in this region. Thus,
while we see well-defined vessels arising from the longitudinal
spinal artery in the naïve mouse lumbar spinal cord (Figure 3A),
these appear very fuzzy and surrounded by numerous “clouds” in
the lumbar spinal cord of the EAE-affected mouse (Figure 3B),
reflecting the intense BBB dysfunction at this stage of the disease.
The 3D axial view of the lumbar spinal cord of the EAE-affected
mouse shows very clearly a large accumulation of cells close to

vessels (Figure 3D), which would be typical of an EAE lesion
with infiltrating inflammatory cells, and is never observed in
naïve mouse spinal cord (Figure 3C). In Figure 4, we see a 3D-
rendering of spinal cord volume where localized extravasated
material (bright gray) is clearly visible (panel A); in panel B,
the 3D-rendering of the lesion in Figure 4A, emphasizes the
surroundings of the vessel (red) by small cells (white) that
differ from morphologically neuron-like cells (purple). Clouds
reflecting BBB dysfunction together with accumulation of cells
are also observed in the volume from the cervical region of
the spinal cord (SC) up to the brain stem (BS), and cerebellum
(Cer) of the same EAE-affected mouse, albeit at apparently much
reduced frequencies (Figure 5A), as would be expected. Details
of these three CNS regions are reported in Figures 5B,C (Cer),
5D,E (BS), and 5F,G (SC). The blue arrows (Figures 5B,D,F,
and G) and circles indicate the areas where an extravasation is
evident and appears as a white “cloud” close to an interruption
or a thinner tract of the vessel. A clear gathering of small
bright spots around the “clouds” (see in particular Figure 5E)
suggests the presence of inflammatory cells in these areas,
that could be compatible with infiltrating inflammatory T cells
and macrophages, and/or microgliosis, which have all been
extensively described in EAE (Constantinescu et al., 2011).

The scope of the present report was to provide an overview
of the unique possibilities of XPCT and of the quality of the 3D
images obtained that has allowed us to understand the extent of
the BBB dysfunction in EAE. Rather than providing biological
statistics, we have therefore presented a qualitative study with
one mouse sample per condition. However, the high quality
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FIGURE 3 | Micro-XPCT imaging of BBB leakage and lesion in lumbar spinal cord of EAE-affected mouse. (A–D) XPCT images showing the sagittal (A,B), and axial
(C,D) views of the lumbar spinal cord in a naïve mouse (A,C), and an EAE-affected mouse at disease onset (B,D), where vessels appear surrounded by numerous
“clouds” of extravasated material (B) reflecting the intense BBB dysfunction in the EAE-affected mouse, and the accumulation of cells around the leaky vessels (D) is
commensurate with the classical EAE lesion. Images were obtained as MAX of volumes acquired at ID17, ESRF (A–C) and at ANATOMIX, Soleil (D). (A–B: MAX over
50 µm; C,D: MAX over 10 µm).

FIGURE 4 | 3D rendering of lumbar spinal cord lesion in EAE-affected mouse. (A) 3D rendering of a lumbar spinal cord volume (about 1-mm length) of EAE-affected
mouse imaged with micro-XPCT at ANATOMIX, Soleil. (B) Detail of a lesion from (A) rendered and segmented in 3D. Images were obtained with VGstudioMax.

of our images has enabled us to quantify the number of BBB
alterations at different time points throughout the disease, which
have indicated an increased trend as function of the disease stage
(manuscript in preparation).

Alzheimer’s Disease
We have exploited XPCT to study the APP/PS1dE9 mouse
model of AD (Balducci and Forloni, 2011), a progressive
neurodegenerative disorder associated with aberrant production
of Aβ depositing in the brain as extracellular plaques, especially
in the cortical and the hippocampal areas (Huang and
Mucke, 2012). APP/PS1dE9 mice develop crucial AD signatures
including extracellular and intravascular plaque deposition,
cognitive impairment, and neuroinflammation. Figures 6A,B
shows an XPCT image of an APP/PS1dE9 mouse brain section.
Here, a large number of plaques appear as small bright spots
(highly dense tissue) of a few tens of microns in size in both
the cortex and the hippocampus. We used holo-nano-XPCT to
achieve single plaque details, such as the presence of neurites –
appearing as black dense spots – inside and around the plaque

corona (Figure 6B). In AD, the deposition of Aβ inside the vessels
determines their lumen reduction or even occlusions, as well
as wall breakages, culminating in a reduced cerebral blood flow
(Klohs, 2019). Holo-nano-XPCT can reveal fine details from a
3D volume (Figure 7, left panel) to capillary and cell levels. As
can be seen in the inset of Figure 7 (right panel), holo-nano-
XPCT has the ability to reveal the presence of intralumen deposits
completely occluding the capillary. In this inset, holo-nano-
XPCT also highlights the difference between healthy neurons
featured by a dark-appearing dense cytoplasm (yellow arrow) and
the degenerated ones with a low-density, white cytoplasm (red
arrow) (Kuljis et al., 1997).

Through holo-nano- and nano-XPCT, we could also
investigate structural changes in APP/PS1dE9 mouse brain at
an advanced stage of the disease, treated either with vehicle
or with a conditioned secretome collected from mouse bone
marrow MSC. These MSC had been primed with APP/PS1dE9
mouse brain homogenate, in order to mimic a typical AD
microenvironment, which licenses the cells to assume a
neuroreparative/immunomodulatory phenotype reflected
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FIGURE 5 | Micro-XPCT imaging of EAE-affected mouse CNS. (A) Micro-XPCT image showing a sagittal view of the cerebellum (Cer), brain stem (BS), and cervical
section of the spinal cord (SC) of an EAE-affected mouse at disease onset (MAX over 150 µm; scale bar, 300 µm). (B,C) Micro-XPCT image of a detail of vessel in
the cerebellum is shown in (B), with a zoomed image of the same region shown in (C) (MAX over 130 µm; scale bar, 100 and 50 mm, respectively). (D,E)
Inflammatory lesion with BBB leakage in the brain stem (D) zoomed in (E) (MAX over 65 µm; scale bar, 350 and 100 µm, respectively), and in the cervical portion of
spinal cord (F), zoomed in (G) (MAX over 30 µm; scale bar, 90 and 50 µm, respectively). Blue arrows indicate lesions, with blue circles encompassing the vessels
and extravasated material. Images were acquired at ANATOMIX, Soleil.

FIGURE 6 | Micro-XPCT reveals the widespread distribution of Aβ plaques in cortex of 22-month-old AD mouse. (A) Maximum z-projection (over 100 µm) of
micro-XPCT of AD mouse brain clearly shows dramatic presence of Aβ deposits localized all over the cortex. (B) shows an holo-nano-XPCT magnification of a Aβ

plaque in an AD mouse cortex (the gray levels are inverted in the (A) and (B), see the text). Images were acquired at ID16, ESRF.

in their secretome (MSC-CS). In a very recent study, we
demonstrated the enormous therapeutic potential of MSC-
CS intranasally administered in 22-month-old APP/PS1dE9
mice at a very advanced disease stage. MSC-CS reduced
brain amyloidosis, neuroinflammation and hippocampal
atrophy, increased neuronal density in both the cortex and
the hippocampus, and improved mouse longevity considerably
(Santamaria et al., 2020). By applying holo-nano- and nano-
XPCT, we could achieve the resolution to visualize plaque and
vessel details, which point to a significant effect of the treatment

on the microenvironment whereby the treatment is associated
with destructured plaques (Figures 8, 9 and Supplementary
Movies 1 and Supplementary Movies 2). Thus, while in the brain
from the vehicle-treated AD mouse we detected highly dense Aβ

plaques surrounded by blood vessels almost completely occluded
by the presence of Aβ deposits in their lumen (Figure 10A),
in the AD mouse treated with MSC-CS cleaner vessels could
be observed in close proximity to less dense neuritic plaques
(Figure 10B). This latter vessel condition was highly comparable
to what can be observed in the healthy WT mouse (Figure 10C).
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FIGURE 7 | Holo-nano-XPCT enables the visualization of neuropathological findings in AD mouse brain tissue at capillary and cell levels. The volume of AD mouse
brain tissue was rendered with 3D Viewer ImageJ plug-in. The inset shows a detail of a capillary revealing the presence of intralumen Aβ deposits. As can be seen in
the inset, the high sensitivity of XPCT imaging allows the clear detection of cells with very different cytoplasm density, which might reflect the known presence of
degenerated neurons (low cytoplasm density; red arrow), together with seemingly healthy neurons (high cytoplasm density; yellow arrow). Images were acquired at
ID16 and ESRF.

FIGURE 8 | Holo-Nano-XPCT allows the visualization of fine details inside equal-sized areas of AD mouse cortex, revealing destructured plaques in AD mouse
treated with MSC-CS. The high resolution of this powerful technique highlights differences in the structure of Aβ plaques in untreated (A) and MSC-CS-treated (B)
mouse cortex. Images were acquired at ID16 and ESRF.

DISCUSSION

To investigate crucial neuropathological signatures and
therapeutic efficacy at fine level would require direct imaging
of the whole brain in a 3D fashion, allowing for simultaneous
analyses of (i) brain alterations in various cell populations
(neuronal loss, gliosis, peripheral infiltrates); (ii) structural
changes in terms of cell density and organization (brain
atrophy); (iii) modifications in vascular networks and integrity
(cerebral amyloid angiopathy, BBB modifications). This
would be far more informative than the standard histological
examination of isolated slices of brain tissue having undergone
blood removal, freezing at extremely low temperature, and
manipulation with aggressive fixatives and various detergents.
Indeed, the conventional indirect immunohistochemical

techniques require chemical tissue manipulations to add
fluorescence/chromogenic reporters. MRI helps to circumvent
these problems, but remains limited by a spatial resolution
of a few mm or several tens of microns in preclinical studies.
These limitations are overcome by X-ray tomography, which,
however, has a poor performance in imaging soft tissues. This
is why XPCT, which does not require processing of the tissue
and makes possible multi-scale 3D imaging of NN and VN
ranging from cells through to brain as a whole, can offer a
valuable alternative. XPCT can reach up to a 1000-fold gain in
contrast resolution with respect to conventional tomography
and is therefore particularly useful for low-absorbing bio-
medical samples. In particular, due to its high resolution
and large FOV, XPCT is rapidly gaining importance in the
investigation of neurodegenerative diseases, such as AD and
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FIGURE 9 | 3D rendering of Aβ plaques in untreated and MSC-CS treated mouse cortex. (A) and (B) correspond to panels (A,B) of Figure 8, respectively. Images
were obtained with VGstudioMax.

FIGURE 10 | Nano-XPCT and holo-nano-XPCT permit the visual dissection of vessels in MSC-CS-treated and untreated AD mouse cortex. (A) Nano-XPCT image
showing the almost complete occlusion of vessel lumen by Aβ deposits in vehicle-treated AD mouse brain. The image was acquired at ID16, ESRF.
(B) Holo-nano-XPCT image showing cleaner vessels in the brain of AD mouse treated with MSC-CS. (C) Nano-XPCT image of vessels in a healthy wild-type mouse
brain. Images were acquired at TOMCAT and SLS. All the images are the sum of MAX and MIN over 20 µm. Gray levels have been made consistent: white
represents highest-density structures, black corresponds to less dense features.

MS. The use of animal models to mimic neurodegenerative
disorders allows the investigation of neuropathogenic
mechanisms and the monitoring of disease progression and
therapeutic efficacy.

To the best of our knowledge, this is the first study that
has been able to show the extent of BBB damage in EAE at
the level of the single vessel/capillary. BBB dysfunction plays a
paramount role in the development of EAE and MS and has
been extensively studied. Until MRI and the development of
means to apply it in small animals, BBB dysfunction was, and
still is, generally studied at 2-dimensional level with biochemical,
histological, and immunohistochemical methods (Kassner and
Merali, 2015), that have included the assessment of extravasated
albumin and/or IgG in CNS through immunoblotting (Kerlero
de Rosbo et al., 1985), proteomic analysis (Han et al., 2008; Farias
et al., 2012; Rosenling et al., 2012), and Evan’s blue or radiological
labeling (LeVine, 2016). More recently, other injected tracers have
included horseradish peroxidase that can be visualized through
immunohistochemistry upon application of its substrate to 2D

slices (Muller et al., 2005) and fluorescein isothiocyanate-labeled
high molecular weight (70 kDa) dextran visualized by fluorescent
microscopy of tissue slices (Ferrara et al., 2016). All these
techniques require processing of the tissues to a greater or lesser
extent, and do not allow the concomitant assessment of entire
VN or NN. Multi-photon and two-photon microscopy is an
in vivo method of assessing BBB disruption (Abulrob et al.,
2008); however, albeit with high spatial and temporal resolution,
it only permits the visualization of surface microvasculature
because of poor tissue penetration (no more than 1-mm depth)
and light scattering; it would therefore be inadequate to assess
lesions in EAE in general, in particular perivascular and cortical
lesions (Constantinescu et al., 2011). MRI has been used for
3D assessment of BBB dysfunction in EAE (Rausch et al.,
2003; Nathoo et al., 2014), which enabled the demonstration of
gadolinium-enhanced areas indicative of leakage across the BBB.
However, unlike XPCT, the resolution of MRI does not reach the
singular vessel or cell levels. Thus, to clearly show cell infiltration
and accumulation of cells at BBB damage areas necessitates
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the adjunct use of 2D histology/immunohistochemistry (Kassner
and Merali, 2015) with difficulty in matching the exact co-
location of the lesion with both techniques. The injection of
iron oxide-based nanoparticles that label macrophages in the
CNS (Rausch et al., 2003) has also been used in conjunction
with MRI, albeit with caution as such nanoparticles might not
be easily distinguished by MRI from iron naturally deposited
due to the disease process. In contrast, XPCT is able to
visualize the fine location of the BBB leakage, together with its
consequences, that is infiltrating and resident cell accumulation,
in a single assessment on tissue that has not undergone extensive
denaturation or processing. We believe that, as the technique
improves, we will be able to track BBB lesions in vivo to
thereby monitor disease progression and assess the efficacy of
therapeutic approaches.

While our studies were the first to apply XPCT to evaluate VN
and NN in EAE (Fratini et al., 2015), XPCT was used to assess
the AD mouse model, showing the presence of plaques (Astolfo
et al., 2016). In the present qualitative study, XPCT enabled us to
demonstrate capillary occlusions and damages, close associations
between plaques and damaged vessels, as well as dramatic
changes induced by MSC-CS treatment in AD mice. Indeed, we
could evidence clearing of Aβ deposits inside the vessels, as well
as impressive changes in plaque structure and density.

The use of only one animal per group could be taken
as a limitation of our study. However, rather than obtaining
statistical data for a quantitative study, our aim was to emphasize
the innovative aspect of XPCT in detecting pathological
differences even at cellular level, in preclinical models of
neurodegenerative diseases.

Our results put in evidence the essential use of XPCT
as a cutting-edge technique able to provide further depth in
the imaging of the damaged brain, without lengthy and/or
destructive processing. While the present work does not
provide statistically significant biological results, it shows how
biological problems should be tackled to confirm and extend the
observations obtained with standard techniques.
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Neurodegenerative Diseases

by Palermo, F., Pieroni, N., Maugeri, L., Provinciali, G. B., Sanna, A., Bukreeva, I., et al. (2020).
Front. Neurosci. 14:584161. doi: 10.3389/fnins.2020.584161

In the original article, there were several errors, as detailed below.
Author List, Affiliations, and Author Contributions

Giuseppe Gigli was not included as an author in the published article. The corrected Author
Contributions Statement appears below.

Author Contributions

AC, CB, and NKdeR conceived and designed the experiments and participated to the discussion
of the results and wrote the manuscript. MF, FP, NP, LM, GP, AS, and AC performed the
experiments and contributed to the data analysis. IB, AC, MF, FP, NP, LM, GP, AS, IB, and GG
have contributed to the discussion of the results and to the final revision of the manuscript. MC
performed the data analysis. All the authors contributed to the final writing of the manuscript.

In the original article, the affiliation for author Giuseppe Gigli was also not included. We have
added the affiliation for Giuseppe Gigli as 7 - Institute of Nanotechnology, CNR, Università del
Salento, Lecce, Italy.

Additionally, there was an error in the order of the authors in the author list of the original
article. Inna Bukreeva should be the sixth author in the list. The original article has now
been updated.

Text Corrections

In the original article, there was a mistake in the caption for Figure 1 as published. Figure 1A
was adapted from Figure 3F of T. Zikmund et al 2018 JINST 13 C02039, but the reference to the
paper was erroneously omitted. The corrected caption appears below.
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Figure 1. XPCT is a powerful technique that provides high-
contrast resolution without requirement for a contrast agent. The
image shown puts together parts of naïve mouse brain with the
left side assessed by standard X-ray micro-tomography with a
mixture of 1% iodine and 90% methanol as contrast agent (A)
as reported in Zikmund et al. (2018) JINST 13 C02039, while the
right side was generated by XPCT (B). Small variations in density

appear much more evident in XPCT imaging. Both images were
obtained as z-projection of maximum intensity over 300µm.

In addition, the full citation for Zikmund et al. (2018) JINST
13 C02039 will be added to the reference list of the original article.

The authors apologize for these errors and state that they do
not change the scientific conclusions of the article in any way.
The original article has been updated.
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Optic neuritis is a frequent first symptom of multiple sclerosis (MS) for which
corticosteroids are a widely employed treatment option. The Optic Neuritis Treatment
Trial (ONTT) reported that corticosteroid treatment does not improve long-term visual
acuity, although the evolution of underlying pathologies is unclear. In this study, we
employed non-invasive diffusion basis spectrum imaging (DBSI)-derived fiber volume
to quantify 11% axonal loss 2 months after corticosteroid treatment (vs. baseline)
in experimental autoimmune encephalomyelitis mouse optic nerves affected by optic
neuritis. Longitudinal DBSI was performed at baseline (before immunization), after a 2-
week corticosteroid treatment period, and 1 and 2 months after treatment, followed by
histological validation of neuropathology. Pathological metrics employed to assess the
optic nerve revealed axonal protection and anti-inflammatory effects of dexamethasone
treatment that were transient. Two months after treatment, axonal injury and loss were
indistinguishable between PBS- and dexamethasone-treated optic nerves, similar to
results of the human ONTT. Our findings in mice further support that corticosteroid
treatment alone is not sufficient to prevent eventual axonal loss in ON, and strongly
support the potential of DBSI as an in vivo imaging outcome measure to assess optic
nerve pathology.

Keywords: axonal loss, optic neuritis (ON), multiple sclerosis (MS), diffusion MRI, dexamethasone, anti-
inflammation, Diffusion basis spectrum imaging (DBSI)

INTRODUCTION

Multiple sclerosis (MS) is an inflammatory demyelinating disease affecting the central nervous
system (CNS), including brain, optic nerves, and spinal cord. Anti-inflammation treatment using
corticosteroids is often used to suppress relapses. Corticosteroids are thought to shorten duration of
MS relapses but not to alter the long-term outcome. Optic neuritis (ON) occurs frequently, often as
the initial episode, in MS (Michalski et al., 1981; Gonzalez-Hernandez et al., 2015). Corticosteroids
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are widely used to treat ON in MS patients (Beck et al., 1993;
Bennett et al., 2015) and are also effective in reducing clinical
signs of murine experimental autoimmune encephalomyelitis
(EAE) (Dustman and Snyder, 1981), an animal model of
MS. Corticosteroids have multiple effects, including anti-
inflammatory and immunosuppressive effects, reduction of
blood–brain barrier (BBB) permeability and alteration of ion
channel activity (Levitan et al., 1991; Boumpas et al., 1993;
Wust et al., 2008; Myhr and Mellgren, 2009; Coutinho and
Chapman, 2011). The seminal Optic Neuritis Treatment Trial
(ONTT) reported no long-term functional benefits from either
intravenous or oral corticosteroid treatment of acute ON, but
did find expedited recovery of visual function (Valberg et al.,
1981; Gal et al., 2015). Known adverse effects of corticosteroids
in humans are many, including reduced glucose metabolism,
cataract formation, joint injury and loss of bone density.
Experimentally, several reports have also shown neuronal cell
loss in animal models (Diem et al., 2003; Lieberman et al.,
2011; Muller et al., 2014). Hence, we have taken a longitudinal
and non-invasive imaging assessment of the evolution of optic
nerve pathology in murine ON, culminating in histological
assessment, to improve the understanding of the impact of
corticosteroid treatment.

Magnetic resonance imaging (MRI) plays a vital role in
diagnosing and assessing disease progression in people with
MS. For instance, contrast-enhanced lesions and chronic T1-
weighted hypointensities reflect inflammation, and axonal loss,
respectively, but are at best only semi-quantitative (Ge, 2006;
Ceccarelli et al., 2012; Llado et al., 2012). Axonal loss is a critical
mechanism of irreversible neurological disability (Kornek et al.,
2000; Wujek et al., 2002; Medana and Esiri, 2003). A non-
invasive biomarker to quantify the extent of axonal loss and
residual axon injury would greatly improve the understanding
of evolution of injury and help stratify therapies for individual
MS. Magnetization transfer ratio (MTR) and N-acetyl aspartate
to creatine ratio determined by magnetic resonance spectroscopy
(MRS) are usually considered the best imaging biomarkers for
myelin and axon integrity, respectively, in people with MS
(Davie et al., 1999; Bjartmar et al., 2000; Schmierer et al., 2004).
Diffusion-tensor-imaging (DTI)-derived axial diffusivity (AD,
also denoted as λ‖) and radial diffusivity (RD, also denoted as
λ⊥) have been used to more specifically assess axonal injury,
and demyelination. However, the DTI model is confounded by
coexisting pathologies such as inflammation and axon loss on
AD and RD (Wang et al., 2011b; Chiang et al., 2014). Therefore,
we developed diffusion basis spectrum imaging (DBSI) to
analyze diffusion-weighted images obtained with multi-direction
and multi-b-value schemes. DBSI more accurately detects and
quantifies co-existing white-matter pathologies in EAE-affected
mice and people with MS (Wang et al., 2007, 2011a, 2014, 2015;
Chiang et al., 2014).

Optic neuritis frequently occurs in murine EAE, as seen
in people with MS. In the current study, we performed
longitudinal DBSI to assess injury progression in the optic
nerves of EAE-affected mice undergoing treatment with a
widely used corticosteroid, dexamethasone (Dex) (Wust et al.,
2008; Coutinho and Chapman, 2011) followed by post-MRI

immunohistochemical validation. The study was set up to reflect
a typical scenario for human ON, with treatment of individual
mice beginning only after signs of reduced visual acuity (VA) and
stopping after 2 weeks.

MATERIALS AND METHODS

All experimental procedures involving animals were approved
by Washington University Institutional Animal Care and Use
Committee (IACUC) and conformed to the NIH Policy on
Responsibility for Care and Use of Animals.

Experimental Autoimmune
Encephalomyelitis (EAE) Mouse Model
Fifteen 7-week-old, female C57BL/6 mice were obtained from
Jackson Laboratory (Bar Harbor, ME, United States). Before
immunization, mice were housed with 12-h dark/light cycle
for 2 weeks. EAE was induced by active immunization with
50 µg MOG35−55 peptide emulsified (1:1) in incomplete
Freund’s adjuvant (IFA) and Mycobacterium tuberculosis.
Pertussis toxin (300 ng; PTX, List Laboratories, Campbell,
CA, United States) was injected intravenously on the day of
MOG35−55 immunization and 2 days later (Wang et al., 2007).

Visual Acuity (VA)
Mouse VA was assessed using the Virtual Optometry System
(OptoMotry, Cerebral Mechanics, Inc., Canada). Briefly, the
virtual rotating columns were projected on the LCD monitors
with different spatial frequencies in cycles/degree (c/d). The
mouse head movement in response to the virtual column
rotations was noted. The spatial frequency was starting from 0.1
c/d with step size of 0.05 c/d until the mouse stopped responding.
The VA was defined as the highest spatial frequency to which the
mouse responded to the virtual rotating columns. Each mouse
was confirmed to have normal VA before immunization. After
immunization, daily VA was assessed until VA ≤ 0.25 c/d, our
definition for the onset of ON in MOG35−55 EAE mice (Chiang
et al., 2014; Lin et al., 2014a,b). The first day of VA ≤ 0.25
c/d both Dex- and PBS-treated group was 13.4 ± 3.7 days post
immunization. Upon Dex treatment commencement, VA was
performed twice a week and 1 day before MRI scans.

Dexamethasone Administration
When VA ≤ 0.25 c/d, ON-affected mice underwent daily
intraperitoneal injection of Dex (3 mg/kg, Sigma Inc., MO,
United States) or PBS for 2 weeks. The first day of VA ≤ 0.25
c/d in both Dex and PBS groups was 13.4 ± 3.7 days post
immunization. Mice were alternately assigned to receive PBS or
Dex until the 9th pair. The last EAE mouse was assigned to PBS
group. Daily clinical scores were assessed using a standard 0–5
scoring system (Wang et al., 2014).

Diffusion-Weighted MRI Data Acquisition
Mice were anesthetized for imaging as previously described (Lin
et al., 2017). In vivo MRI experiments were performed on a
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4.7-T Agilent DirectDriveTM small-animal MRI system (Agilent
Technologies, Santa Clara, CA, United States) equipped with
a Magnex/Agilent HD imaging gradient coil (Magnex/Agilent,
Oxford, United Kingdom) capable of pulsed-gradient strengths
of up to 58 G/cm and a gradient rise time ≤ 295 µs. An
actively decoupled 1.7-cm receive coil was placed on the top
of the mouse head for MR signal reception. The animal holder
assembly, including the receive coil was placed inside an 8-
cm actively decoupled volume transmit coil. Diffusion-weighted
MRI data were acquired with 25-direction diffusion weighting
scheme (Batchelor et al., 2003) using a multi-echo spin-echo
diffusion-weighted imaging sequence (Tu et al., 2010). The
following parameters were used to acquire diffusion-weighted
MRI data: TR = 1.5 s, TE = 35 ms, inter-echo delay = 20.7 ms,
FOV = 22.5 × 22.5 mm2, matrix size = 192 × 192 (zero-filled to
384 × 384), slice thickness = 0.8 mm, 25 different b-values (max
b-value = 2,200 s/mm2), one b = 0 s/mm2, 1 = 18 ms, δ = 6 ms,
total scan time = 2 h 4 min (Chiang et al., 2014; Lin et al., 2017).
The final target image view was perpendicular to optic nerve and
obtained as previously described (Spees et al., 2013; Lin et al.,
2014b). A train of two echoes was co-added to form the final MR
images to increase accumulated signal-to-noise ratio. Diffusion-
weighted MRI was performed four times on each mouse: 2 weeks
before immunization (baseline), at the end of 2-week treatment
(2 weeks after onset of ON), and 1 and 2 months after stopping
treatment (chronic, no longer treated) (Figure 1A).

Diffusion Basis Spectrum Imaging (DBSI)
and Diffusion Tensor Imaging (DTI)
Data was analyzed with DBSI multi-tensor and conventional
DTI single-tensor analysis packages developed in-house with
MATLAB (Wang et al., 2011a, 2015). The imaging data were
modeled according to Eq. 1:

Sk =
NAniso∑

i=1
fie
−

∣∣∣∣⇀bk

∣∣∣∣λ⊥i
e
−

∣∣∣∣⇀bk

∣∣∣∣(λ‖i−λ⊥i) cos2 ψik

+

b∫
a

f (D) e
−

∣∣∣∣⇀bk

∣∣∣∣DdD
(
k = 1, 2, 3, . . . , 25

)
. (1)

The quantities Sk and
∣∣∣−→bk

∣∣∣ are the signal and b-value of the

kth diffusion gradient, NAniso is the number of anisotropic tensors
(fiber tracts), 9 ik is the angle between the kth diffusion gradient
and the principal direction of the ith anisotropic tensor, λ||i and
λ⊥i are the AD and RD of the ith anisotropic tensor, fi is the
signal intensity fraction for the ith anisotropic tensor, and a and b
are the low and high diffusivity limits for the isotropic diffusion
spectrum (reflecting cellularity and edema) f (D). For a coherent
fiber bundle like the optic nerve, NAniso = 1. DBSI derived fi
represents the density of axons derived from retinal ganglion
cells (fiber fraction) in the image voxel, after resolving intra-
voxel pathological and structural complications. Based on prior
work, DBSI derived λ|| and λ⊥ reflect axon and myelin integrity
respectively: ↓ λ|| = axonal injury and ↑ λ⊥ = demyelination.
Our previous experimental findings suggest that the restricted
isotropic diffusion fraction reflecting cellularity can be derived

by the summation of f (D) at 0 ≤ ADC ≤ 0.6 µm2/ms. The
summation of the remaining f (D) at 0.6 < ADC < 3 µm2/ms
represents “hindered” isotropic diffusion, which denotes regions
of tissue loss, increased inter-axonal space, vasogenic edema
and CSF. The summation of f (D) at ADC = 3 µm2/ms
represents free water.

Regions of interest (ROI) were manually drawn with ImageJ1

(NIH, United States) at the center of each optic nerve on the
diffusion-weighted image (the edge voxel of optic nerve were
avoided), which corresponded to the diffusion gradient direction
perpendicular to optic nerves, to minimize partial volume effects.
ROIs were then transferred to the parametric maps to calculate
the mean value for individual DBSI metrics.

ROI for DBSI Fiber Volume
A separate ROI encompassing the whole optic nerve was drawn
on cross-sectional images obtained with diffusion weighting
gradient direction orthogonal to optic nerve (larger than the
ROIs for other DBSI metrics). The ROI included the edge voxel
of optic nerve. DBSI-derived fiber volume was calculated from
the optic nerve volume (the entire ROI on DWI) multiplied
by the corresponding DBSI fiber fraction. The dilution effect of
inflammation and surrounding CSF is considered in the fiber
volume computation in the manner.

Immunohistochemistry (IHC) of Optic
Nerves
Following the final MR examination, mice were perfused with
1% phosphate-buffered saline followed by 4% paraformaldehyde
in 1% phosphate-buffered saline. The brain was excised and
post-fixed for 24 h before being transferred to 1% phosphate-
buffered saline for storage at 4◦C. For histological analysis,
mouse optic nerves were embedded in 2% agar (Blewitt et al.,
1982). The agar block was then embedded in paraffin wax
and 5 µm thick transverse slices were sectioned for IHC.
Sections were deparaffinized, rehydrated, and then blocked
using 1% bovine serum albumin (BSA, Sigma Inc., MO,
United States) and 5% normal goat serum solution for
30 min at room temperature to prevent non-specific binding
and to increase antibody permeability. Slides were incubated
overnight at 4◦C with purified anti-neurofilament marker pan
axonal cocktail (1:300, SMI-312, BioLegend, United States),
or purified anti-neurofilament H (NF-H), phosphorylated
antibody (1:300, SMI-31; BioLegend, United States) to stain
total axons or only non-injured axons, respectively. Rabbit
anti-myelin basic protein (MBP) antibody (1:300, Sigma Inc.,
MO, United States) was used to stain myelin blobs from
breakdown or intact myelin sheaths (Song et al., 2003; Costello
et al., 2006b; Urolagin et al., 2012). After rinsing, goat anti-
mouse IgG or goat anti-rabbit IgG conjugated Alexa 488
(1:240, Invitrogen, United States) was applied to visualize
immunoreactivity of phosphorylated neurofilament and MBP.
Finally, slides were covered using Vectashield Mounting Medium
with 4′,6-diamidino-2-phenylindole (DAPI, Vector Laboratory,

1https://imagej.nih.gov/ij/
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FIGURE 1 | Baseline DBSI prior to active immunization of EAE mice (A). Daily intraperitoneal PBS or dexamethasone injection started at the onset of optic neuritis
(i.e., visual acuity (VA) < 0.25 c/d) and continued for 2 weeks. DBSI was performed at the end of the 2-week treatment, with 1- and 2-month follow-ups after the
initial scan (A). Dexamethasone-treated eyes exhibited baseline visual acuity (VA) that was significantly higher than PBS-treated eyes during treatment period (B).
One and two months after concluding treatment, VA of PBS and dexamethasone groups were significantly lower than their baseline (B). There was no difference
between PBS and dexamethasone groups (B). The VA data suggested that dexamethasone treatment could only retain intermittent visual function during treatment
period. * indicates p < 0.05, comparing to baseline.

Inc., Burlingame, CA, United States) to stain cell nuclei (Costello
et al., 2006b; Wang et al., 2007, 2011a). Images were acquired
with a Nikon Eclipse 80i fluorescence microscope equipped
with 100 × oil objective and a black-and-white CCD camera
with MetaMorph software (Universal Imaging Corporation,
Sunnyvale, CA, United States) for entire optic nerve with the
montage function.

Histological Data Analysis
The whole field of SMI-31, MBP, and DAPI stained images at
100× magnification was captured with the same fluorescence
light intensity and exposure time for each image. All captured
images were converted to 8-bit gray scale and analyzed using
threshold, edge enhancement, analyze particles and gray level
watershed segmentation functions in ImageJ (see text footnote 1,
NIH, United States). Nucleus counts were performed by signal
intensity threshold on DAPI staining (Lin et al., 2014a,b).

Statistical Analysis
Three PBS-treated EAE mice and one Dex-treated EAE mouse
died before the end of the 2-week treatment. Two PBS-treated
EAE mice died before the MRI scan at 1 month after treatment. At
conclusion of the study, five PBS-treated and seven Dex-treated
EAE mice had survived through the final DBSI scan (2 months
after treatment) and histologic analysis.

For all the boxplots, whiskers extend to the
minimum/maximum and the means are marked as diamonds.
VA or MRI measurements were taken on each eye at baseline,
end of 2-week treatment, and at 1 and 2 months after treatment.
Data were analyzed with a mixed random effects repeated
measures model with side, time, treatment, and time by
treatment interaction as fixed effects. Degrees of freedom were
adjusted with Kenward–Rogers method. A first order auto-
regressive covariance structure was used to account for repeated
measures. Contrasts were estimated for change from baseline.
The associations of histology data with DBSI measurements at
2 months after treatment were analyzed by mixed random effects
regression with correlation calculated as the mean of Pearson
correlations on left and right sides.

RESULTS

Recovery of Visual Function During
Dexamethasone Treatment Period
Visual acuity in Dex-treated eyes were comparable to its baseline
(p = 0.1615, Figure 1B) and significantly improved than PBS-
treated eyes at the end of 2-week treatment (p = 0.0242,
Figure 1B). One and two months after stopping treatment,
both Dex- and PBS-treated eyes were significantly lower than

Frontiers in Neuroscience | www.frontiersin.org 4 January 2021 | Volume 14 | Article 592063105

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-592063 January 19, 2021 Time: 10:31 # 5

Lin et al. Axonal Loss After Transient Dexamethasone

FIGURE 2 | DBSI-derived hindered (putative vasogenic edema marker) and restricted (putative cellularity marker) isotropic diffusion tensor fraction maps (A) from the
representative PBS- and dexamethasone-treated mice were compared. Dexamethasone suppressed inflammation, i.e., the putative inflammation markers did not
differ from baseline values including hindered (p = 0.51) and restricted (p = 0.46) fractions, at the end of 2-week treatment (B,C). In contrast, hindered (p < 0.05) and
restricted (p < 0.05) fractions significantly increased (reflecting prominent inflammation) at the end of 2-week PBS treatment. At 1 and 2 months after cessation of
PBS or dexamethasone treatment, hindered (p < 0.05) and restricted (p < 0.05) isotropic diffusion fractions increased compared to baseline (A–C). Summary box
plots show that these isotropic diffusion metrics were elevated to similar degree in both PBS- and dexamethasone-treated optic nerves at 1 and 2 months (B,C).
The latter suggest the ineffectiveness of dexamethasone after cessation of treatment. There was no statistically significant difference between treatment groups at
each matched time point. * indicates p < 0.05, comparing to baseline.

their baseline (p < 0.0001, Figure 1B) and no difference
between two groups (p = 0.3992 and p = 0.3570 for 1 and
2 months, respectively).

DBSI: Acute Anti-inflammatory Effects of
Dexamethasone
Comparing to the baseline (within each treatment group),
significantly increased DBSI hindered (elevated by 90% from
baseline, p = 0.038, Figure 2B and Table 1) and restricted
isotropic (increased by 285% from baseline, p = 0.0074, Figure 2C
and Table 1) diffusion fractions were seen in optic nerves at
the end of the 2-week PBS treatment (Figure 2). In contrast,
moderate but not statistically significantly increased DBSI
hindered (28%, p = 0.52, Figure 2B and Table 1) and restricted
isotropic (48%, p = 0.46, Figure 2C and Table 1) fractions were
seen 2 weeks after the Dex-treatment. The extent of increased
hindered isotropic diffusion fraction (putative marker of edema,
increased inter-axonal space, or tissue loss) and restricted
isotropic diffusion fraction (putative marker of cellularity) was
significantly increased at 2 months after Dex- (187%, p = 0.0002
and 174%, p = 0.0071 from baseline, respectively and Table 1)
or PBS-treatments (147%, p = 0.0009 and 207%, p = 0.0093
from baseline, respectively and Table 1). With our limited

mouse number, none of the DBSI metrics exhibited a statistically
significant difference between the two treatment groups at any of
the examined time points.

DBSI: Delayed Axon/Myelin Injury With
Dexamethasone Administration
At the end of 2-week treatments, DBSI λ|| (putative marker of
axonal injury) of Dex-treated optic nerves was not decreased
compared with the baseline value (p = 0.96, Table 1). DBSI λ||
of PBS-treated optic nerves moderately decreased by 13% from
the baseline value although not reaching statistical significance
(p = 0.11, Figure 3B and Table 1). Compared to the baseline,
DBSI λ⊥ (putative marker of myelination) in PBS-treated optic
nerves increased by 41% (p = 0.01, Table 1) while Dex-treated
DBSI λ⊥ increased non-significantly by 16% (Figure 3C and
Table 1). A moderate but not significant DBSI λ|| decrease was
observed in both PBS- and Dex-treated optic nerves at 1 month
(decreased by 4% and 2% respectively, Table 1) and 2 months
(decreased by 8% and 6% respectively, Table 1) after treatment
(Figure 3B). Increased DBSI λ⊥ was seen at 1 month after
PBS treatment (increased by 59% from baseline, p = 0.006,
Figure 3C and Table 1) but was not significantly increased
in Dex-treated optic nerves (increased by 20% from baseline,
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TABLE 1 | Group averaged of DTI or DBSI metrics of EAE mice with PBS (n = 7 for baseline and end of treatment, n = 5 for 1 and 2 months after treatment) and
dexamethasone (n = 8 for baseline, end of treatment, and 1 month after treatment, n = 7 for 2 months after treatment) treatment.

Baseline End treatment 1 month 2 months

DTI ADC (µm2/ms) PBS 0.74 ± 0.03 0.74 ± 0.06 0.74 ± 0.06 0.72 ± 0.06

Dexamethasone 0.73 ± 0.03 0.74 ± 0.07 0.71 ± 0.06 0.73 ± 0.04

DBSI axial diffusivity (µm2/ms) PBS 1.88 ± 0.15 *1.76 ± 0.22 *1.80 ± 0.18 *1.73 ± 0.21

Dexamethasone 1.86 ± 0.11 1.86 ± 0.16 *1.82 ± 0.18 *1.76 ± 0.10

DTI axial diffusivity (µm2/ms) PBS 1.72 ± 0.25 *1.49 ± 0.38 *1.52 ± 0.21 *1.50 ± 0.24

Dexamethasone 1.74 ± 0.12 1.70 ± 0.22 *1.56 ± 0.18 *1.49 ± 0.18

DBSI radial diffusivity (µm2/ms) PBS 0.18 ± 0.52 *0.26 ± 0.09 *0.29±0.08 0.23 ± 0.06

Dexamethasone 0.19 ± 0.05 0.23 ± 0.05 0.23 ± 0.05 *0.26 ± 0.08

DTI radial diffusivity (µm2/ms) PBS 0.25 ± 0.16 0.35 ± 0.11 0.35 ± 0.10 0.33 ± 0.06

Dexamethasone 0.21 ± 0.04 0.26 ± 0.05 0.30 ± 0.07 0.36 ± 0.11

DBSI non-restricted fraction PBS 0.05 ± 0.04 *0.09 ± 0.05 *0.09 ± 0.05 *0.08 ± 0.12

Dexamethasone 0.04 ± 0.04 0.05 ± 0.04 *0.08 ± 0.07 *0.12 ± 0.07

DBSI restricted fraction PBS 0.02 ± 0.01 *0.06 ± 0.05 *0.06 ± 0.05 *0.05 ± 0.05

Dexamethasone 0.02 ± 0.02 0.03 ± 0.02 *0.05 ± 0.04 *0.06 ± 0.04

DBSI fiber signal fraction PBS 0.79 ± 0.07 *0.70 ± 0.07 *0.73 ± 0.07 *0.71 ± 0.11

Dexamethasone 0.79 ± 0.05 0.79 ± 0.04 0.75 ± 0.09 *0.69 ± 0.10

DWI-derived optic nerve volume (mm3) PBS 0.09 ± 0.01 0.11 ± 0.02 0.10 ± 0.01 0.09 ± 0.02

Dexamethasone 0.10 ± 0.01 0.10 ± 0.01 0.10 ± 0.01 0.10 ± 0.03

DBSI-derived fiber volume (mm3) PBS 0.073 ± 0.007 0.073 ± 0.012 0.071 ± 0.014 0.065 ± 0.013

Dexamethasone 0.078 ± 0.006 0.075 ± 0.006 0.077 ± 0.014 *0.070 ± 0.019

*Indicates p < 0.05, comparing to baseline.

p = 0.15, Figure 3C and Table 1). A moderate but not significant
DBSI λ⊥ increase by 27% from baseline was seen at 2 months
after PBS (p = 0.27, Table 1). In contrast, the Dex-treated group
had 35% DBSI λ⊥ increase from baseline (p = 0.02, Figure 3C
and Table 1). However, DTI λ|| (Figures 4A,B and Table 1) and
DBSI λ⊥ (Figures 4A,C and Table 1) results were exaggerated
and consistent with the change of DBSI hindered (Figure 2B)
and restricted (Figure 2C) fraction, suggesting DTI result might
be contaminated inflammatory pathology. In addition, DTI ADC
(Figure 4D and Table 1) could not reflect damage in either PBS-
or Dex-treated optic nerves.

Dexamethasone Treatment Failed to
Prevent Axonal Loss
Optic nerve DBSI fiber fraction (putative marker of apparent
axon density) was decreased in PBS-treated but not Dex-treated
mice at the end of the 2-week treatment (decreased from baseline
by 12%, p = 0.0008 vs. 1%, p = 0.37 respectively, Figures 5A,B and
Table 1). Significant optic nerve volume increase was detected in
the PBS-treated optic nerves (increased by 13% from baseline,
p = 0.0147, Figure 5C and Table 1) at the end of the 2-week
treatment. In contrast, there was no detectable change in nerve
volume at any measured time point in Dex-treated optic nerves
(decreased by 2% from baseline, p = 0.6232, Figure 5C and
Table 1) at the end of 2-week treatment. Comparing to Dex-
treated group, significant lower fiber signal fraction was observed
at the end of 2-week treatment (p = 0.0381, Figure 5B and
Table 1). Meanwhile, significant increased nerve volume was
detected at the end of 2-week treatment (p = 0.0012, Figure 5C
and Table 1). Significantly lower fiber signal fraction was seen
in both PBS- and Dex-treated optic nerves at 2 months after

treatment (decreased by 10%, p = 0.0005 and 13%, p < 0.0001
from baseline respectively, Figure 5B and Table 1). There was no
difference of fiber fraction (p = 0.858, Figure 5B and Table 1),
nerve volume (p = 0.7252, Figure 5C and Table 1), and DBSI-
derived fiber volume (p = 0.7096, Figure 5D and Table 1) between
PBS- and Dex-treated groups at 2 months after treatment. These
results suggest that Dex treatment offers no long-term benefits
related to axon preservation.

Immunohistochemistry (IHC) Staining of
Optic Nerve
Comparing IHC of naïve optic nerve (Figures 6A–D), IHC
of PBS-treated (Figures 6E–H) and Dex-treated (Figures 6I–
L) optic nerves at end of the experiment showed decreased
SMI-31 (intact phosphorylated axons) and SMI-312 (intact plus
injured axons) staining intensity with irregular distribution of
expanded hyper-intense areas due to axonal injury and axonal
swelling (white arrows, Figures 6E,G,I,K), which were detected
by DBSI fiber signal fraction (Figures 6a,e,i) and DBSI λ‖
(Figures 6c,g,k). Reduced MBP (myelin basic protein) staining
intensity and irregular hyper-intense spots (white arrows,
Figures 6F,J) resulting from demyelination and possible myelin
debris was seen in both PBS- and Dex-treated optic nerves,
and the results was consistent with DBSI λ⊥ (Figures 6b,f,j).
Increased DAPI counts (number of cell nuclei) was also
observed in PBS- and Dex-treated optic nerves (Figures 6H,L)
and consistent with DBSI restricted fraction (Figures 6d,h,l).
Decreased SMI-312 staining intensity in PBS- and Dex-treated
optic nerves were associated with noticeable axonal loss
(Figures 6E,I). SMI312 area, MBP fraction, SMI31 counts,
and DAPI counts associated with DBSI-derived fiber volume
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FIGURE 3 | DBSI-derived axial (λ‖) and radial (λ⊥) diffusivity maps (A) from the same two representative mice as in Figure 2. Optic nerves from the PBS-treated
mouse developed axon and myelin injury as revealed by the decreased λ‖ and increased λ⊥ (A). In contrast, optic nerves from the dexamethasone treated mouse
were minimally affected, as reflected by the near baseline λ‖ and λ⊥ values at the end of 2-week treatment (A). Box plots of DBSI-derived λ‖ (B) and λ⊥ (C) from
the two cohorts of mice revealed that at the end of the 2-week treatment period, DBSI-derived λ‖ decreased by 7% (p = 0.11) in the PBS cohort, while no change
was seen in the Dex-treated cohort. DBSI-derived λ⊥ increased by 41% (p < 0.05) and 16% (p = 0.24) in PBS- and Dex-treated EAE mice, respectively, at the end
of 2-week treatment. At 1 month after treatment, moderate but not statistically significant DBSI λ‖ decrease was observed in both PBS- and
dexamethasone-treated optic nerves comparing to their baseline (decreased by 4% and 2% respectively, B). Significantly elevated DBSI λ⊥ was seen at 1 month
after PBS treatment (increased by 59%, p < 0.05, C) but not statistically significant in dexamethasone-treated optic nerves (increased by 20%, p = 0.14, C)
comparing to their baseline. Two months after treatment, DBSI λ⊥ increase was apparent at 2 months after ending PBS (increased by 27%, p = 0.28, C) and
dexamethasone treatment (increased by 35%, p = 0.02, C) from baseline. There was no statistical difference between treatment groups at each single time point.
*Indicates p < 0.05, comparing to baseline.

(Figure 7A, directly correlated), DBSI λ⊥ (Figure 7E, inversely
correlated), DBSI λ|| (Figure 7I, directly correlated), DBSI
restricted isotropic fraction (Figure 7M, inversely correlated),
suggesting that DBSI derived pathological metrics revealed the
severity of axonal loss, demyelination, axonal injury, and cell
infiltration. In this study, the change of DBSI λ⊥ was also
associated with SMI312 area (Figure 7B, inversely correlated),
SMI31 counts (Figure 7J, inversely correlated), and DAPI counts
(Figure 7N, directly correlated). The change of DBSI-derived
fiber volume was associated with SMI31 counts (Figure 7K,
directly correlated) and DAPI counts (Figure 7O, inversely
correlated). The change of DBSI λ|| was associated with MBP
(Figure 7D, directly correlated). The change of DBSI restricted
fraction was associated with SMI31 (Figure 7L, inversely
correlated). Correlations among IHC and DBSI metrics indicate
that optic nerve pathologies were inter-dependent reflecting
the inter-dependence among inflammation, demyelination, and
axonal injury in optic neuritis of EAE mice. IHC scatter plot
distributions overlapped between treatment groups at 2 months,
suggesting that the 2-week treatment dexamethasone treatment
had little impact on long-term optic nerve pathologies. Overall,
the data indicate that in vivo findings of DBSI metrics reflected
underlying neuropathology.

DISCUSSION

Diffusion basis spectrum imaging has shown success in modeling
non-Gaussian diffusion phenomena with multiple Gaussian
functions for biological tissues and environment in MS subjects
and EAE mice (Wang et al., 2011a, 2015; Chiang et al.,
2014; Lin et al., 2017). In this study, we used DBSI to assess
the effects of 2-week Dex treatment on optic nerve integrity
in murine ON serially over the subsequent 2 months, with
immunohistochemistry at the conclusion of study time course to
assess optic nerve neuropathology. A two-sample Student’s t-test
of DBSI restricted fraction (putative biomarker for inflammation)
was used to estimate the sample size (n = 7) needed to achieve the
statistical significance. During the experiment, five PBS-treated
EAE mice died at various time points leading to the small sample
size for this study. Despite the small cohort size, the longitudinal
comparison within individual EAE mice demonstrated the
difference between PBS- and Dex-treatments. It is much close to
clinical need to design the personal treatment strategy, especially
for people with MS (Gajofatto and Benedetti, 2015). Our findings
were still consistent with the classic human ONTT trial (Gal
et al., 2012), finding that a short course of corticosteroids
led to improved visual function in the short-term while it
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FIGURE 4 | DTI-derived axial (λ‖) and radial (λ⊥) diffusivity, and ADC maps (A) from the same two representative mice as in Figure 2. PBS-treated optic nerves
showed exaggerated DTI λ‖ decrease (B) and DTI λ⊥ increase (C) than DBSI λ‖ (Figure 3B) and DBSI λ⊥ (Figure 3C). DTI-derived ADC showed no difference
within or between groups (D). * indicates p < 0.05, comparing to baseline.

FIGURE 5 | DBSI fiber signal fraction is the portion of the total diffusion signal within an image voxel that is putative biomarker of axonal density (A). Decreased
axonal density from baseline was apparent at all time-points (p < 0.05) after ON onset in the PBS treated mice, and at 1 and 2 months after Dex (p < 0.05)
treatment (A, same representative mice of Figures 2, 3). Dexamethasone treatment effectively maintained the baseline fiber signal fraction at 2 weeks after
treatment, slightly decreased by ∼10% from baseline without reaching statistical significance at 1 and 2 months afterward (B, p = 0.37). The DBSI “fiber volume” (D)
was derived as DBSI anisotropic diffusion fiber signal fraction (B) multiplied by DWI-derived nerve volume (C) to reflect total fiber signal amount without dilution
effects from cell inflammation/edema, putatively estimating the extent of axon loss (D). DBSI-derived fiber volume quantifies the severity of axonal loss although not a
true volume. At 2 months after treatment, axonal loss was seen in both PBS- and dexamethasone-treated optic nerves, suggesting that dexamethasone was not
able to prevent irreversible axonal degeneration. * indicates p < 0.05, comparing to baseline.
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FIGURE 6 | Representative 100× immunohistochemical staining images of total neurofilament (SMI-312, staining both injured and intact axons, A,E,I), myelin basic
protein (MBP, assessing myelin integrity, B,F,J), phosphorylated neurofilament (SMI-31, reflecting intact axons, C,G,K), and 4′, 6-dianidino-2-phenylindole (DAPI,
detecting nuclei, D,H,L) from naïve control (row 1), PBS-treated (row 2), and dexamethasone-treated (row 3) optic nerves at end of DBSI time course (2 months after
treatment). The corresponding DBSI fiber signal fraction (the total signal of optic nerve tracts, a,e,i), radial diffusivity (λ⊥, myelin integrity of residual optic nerve tracts,
b,f,j), axial diffusivity (λ‖, axonal integrity of residual optic nerve tracts, c,g,k) and restricted fraction (cellularity, d,h,l) metrics demonstrate injury patterns of optic
nerve. Results here show different degrees of tissue damage in optic nerves from mice with optic neuritis treated with PBS versus dexamethasone. The results are
consistent with in vivo DBSI findings that short-term treatment with dexamethasone does not protect optic nerves after the cessation of treatment. Optic nerves
developed axonal injury (decreased staining intensity and swollen axons, the white arrows, in SMI-312, MBP and SMI-31 panels), demyelination (decreased staining
intensity for MBP), axonal loss (decreased SMI-32 staining intensity and tissue shrinkage), and increased cellularity (increased DAPI staining). White scale bar: 50 µm.

failed to preserve visual function in the long-term (Figure 1B).
Histologically, similar degrees of optic nerve axonal injury/loss
were observed in both PBS- and Dex-treated mice at 2 months
after the 2-week treatment. To the best of our knowledge, this
is the first study to non-invasively and longitudinally examine
the effects of corticosteroids on the evolution of optic nerve
pathologies of ON mice.

Corticosteroids suppress inflammation through inhibiting
vascular permeability, suppressing leukocyte emigration into
sites of inflammation, and reducing production of inflammatory
mediators (Perretti and Ahluwalia, 2000; Coutinho and
Chapman, 2011). Although corticosteroids are commonly
employed to treat acute inflammation, they have known
associated adverse effects, some of which are cumulative
(Ohno et al., 1987; Buchman, 2001; Myhr and Mellgren, 2009),
limiting its long-term use. Our findings were consistent with
ONTT conclusion that no long-tern benefits of steroids for
VA improvement. We speculate that timing of treatment
commencement may play a critical role in treatment efficacy.
Thus, with accurate and non-invasive assessment of optic nerve
pathologies using DBSI that is capable of detect subclinical
pathologies could improve the treatment efficacy by affording an
early treatment before clinical manifestations detectable in MS
(Noyes and Weinstock-Guttman, 2013; Kavaliunas et al., 2017).
In the current study, we started at 0.1–0.3 mg/kg dexamethasone
(Donia et al., 2010) that resulted in inconsistent and limited
effects on EAE mice. Our final working dose of dexamethasone
for treating ON (10× clinical dose) is comparable to that used in
previous reports to treat optic neuritis of MOG35−55 EAE mice
(Wust et al., 2008; Donia et al., 2010). The anti-inflammation

effect of Dex seen in the report was also detected in the
present study, manifested as the lower restricted isotropic
diffusion fraction than PBS-treated EAE mice by comparing to
baseline within group.

Axonal loss is believed to be the primary substrate of
irreversible neurological disability in MS (van Waesberghe
et al., 1999; Bjartmar et al., 2000; Wujek et al., 2002; Van
Asseldonk et al., 2006). Optical coherence tomography (OCT)
has been increasingly relied upon as a non-invasive biomarker
of axonal loss for people with MS (Costello et al., 2006a;
Lagreze et al., 2009; Saidha et al., 2015). DTI-derived fractional
anisotropy (FA) has also been implied to reflect axonal injury.
However, acute inflammation-associated cell infiltration and
vasogenic edema might lead to optic nerve swelling. Both DTI
and OCT results might be masked by these inflammations
associated changes. Our results indicated that DTI λ‖ and λ⊥
was affected by the progression of inflammation overestimating
axonal pathologies (Figures 2B,C). Thus, DTI metrics would
fail to accurately reflect axonal injury or demyelination in the
presence of axonal loss and/or inflammation. In contrast, DBSI
not only detects inflammatory pathologies but also reflects
axonal injury and demyelination without confounding effects
of inflammation. DBSI-derived fiber volume, i.e., DBSI fiber
fraction multiplied by optic nerve volume, quantified axonal
loss of the optic nerve and spinal cord in the presence of
acute inflammation-associated swelling (Lin et al., 2017, 2019).
In the present study, DBSI-derived fiber volume reflected
histology-detected axonal loss, and non-invasively reflected the
failure of dexamethasone to prevent long-term optic nerve axonal
loss in living mice.
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FIGURE 7 | Optic nerve tissues were extracted and prepared for IHC staining after the last imaging time point (2 months post-treatment). The correlations of IHC
and DBSI metrics were (A–P) were shown. The IHC biomarkers included SMI-312 area (absolute value of positive staining counts, A–D), MBP area fraction (the ratio
of positive staining counts and total tissue area, E–H) and SMI-31 counts (I–L), and DAPI counts (M–P) to reflect severity of axonal loss, demyelination, axonal injury,
and cellularity, respectively. Total axonal counts as expected directly correlated with DBSI fiber volume (A) and DBSI-λ|| (D), inversely correlated with DBSI-λ⊥ (direct
correlation with myelin integrity) and DBSI restricted diffusion fraction (increased inflammation impact axonal integrity). Similarly, MBP area (myelination integrity)
directly corrected with DBSI axonal volume (F) and DBSI-λ|| (H, i.e., axonal integrity impacted myelin integrity), and inversely correlated with DBSI-λ⊥ (E, increased
myelination integrity) and DBSI-restricted fraction (G, increased inflammation also damaged myelin). Intact axonal staining (SMI-31) directly correlated with DBSI-λ||
(I) and axonal volume (L), i.e., DBSI axonal integrity markers, and inversely correlated with DBSI-λ⊥ (directly correlated with myelin integrity) and DBSI restricted
fraction (L, inflammation damaged myelin integrity). Cellularity (DAPI staining) directly correlated with DBSI restricted fraction (M) and DBSI-λ⊥ (directly correlated
with myelin damage), and inversely correlated with DBSI fiber volume (O) and DBSI-λ|| (i.e., inversely correlated with axonal integrity). Results reflect that axonal
pathologies in EAE optic nerves are inter-dependent due to the pathological dependence.

In the current study, SMI312, MBP, SMI31, and DAPI were
used to validate the specificity and sensitivity of DBSI-derived
fiber volume, DBSI λ⊥, DBSI λ‖, and DBSI restricted fraction.
However, the inter-dependence among IHC biomarkers and
DBSI metrics seen in the current study (Figure 7) reflects
the potential causal relationships among underlying pathologies
of optic neuritis in EAE mice. The results imply that DBSI
metrics may not uniquely correlated with the target pathologies
since one cannot definitively isolated inter-relationship between
metrics. This observation is likely to hold true for all MRI
derived biomarkers that are derived based on morphological
changes without molecular specificity. For complex pathologies
in diseases such as multiple sclerosis, it would be difficult
to definitively validate any pathological biomarkers since the
underlying pathologies are inter-dependent.

Histological validation of in vivo MRI findings needs
to take into account of the evolution of pathologies of

MS/EAE to elucidate the potential inter-correlations among
coexisting individual pathological components. For example,
if at a lesion or normal appearing white matter site where
inflammation induces subsequence axonal injury at the same
site or in close vicinity, then inflammation and axonal
injury would correlate with each other. Under this scenario,
an inflammatory marker could correlate with axonal injury
or vice versa. Our previous numerous studies on EAE
mice and postmortem MS specimens favorably suggest that
DBSI-derived pathological metrics are adequate biomarkers
of pathologies of axon, myelin, and inflammation origin.
However, due to the unspecific nature of MRI biomarkers
of white matter injury it would require researchers to be
cautious in applying these markers in complex pathologies
present in MS/EAE.

In summary, we employed serial DBSI to assess optic
nerve pathology longitudinally in living EAE mice. Optic nerve
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responses to dexamethasone and PBS treatments, showing
short-term but not long-term benefits of corticosteroids, which
recapitulated observations from the ONTT in ON patients. Upon
comparing in vivo DBSI to neuropathology, we demonstrated
that DBSI-derived fiber volume can serve as a quantitative
biomarker of axonal loss. Measurement of axonal loss is
important, as it underpins permanent neurological impairment.
The current study provides an important validation of DBSI-
derived pathological markers in response to a treatment, and
uniquely quantifies axonal loss in vivo.
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Traumatic brain injury (TBI) has been linked with tauopathy. However, imaging methods
that can non-invasively detect tau-protein abnormalities following TBI need further
investigation. This study aimed to investigate the potential of diffusion tensor imaging
(DTI) to detect tauopathy following TBI in P301L mutant-tau-transgenic-pR5-mice.
A total of 24 9-month-old pR5 mice were randomly assigned to sham and TBI groups.
Controlled cortical injuries/craniotomies were performed for TBI/sham groups followed
by DTI data acquisition on days 1 and 7 post-injury. DTI data were analyzed by using
voxelwise analysis and track-based spatial statistics for gray matter and white matter.
Further, immunohistochemistry was performed for total-tau and phosphorylated-tau,
astrocytes, and microglia. To detect the association of DTI with these pathological
markers, a correlation analysis was performed between DTI and histology findings. At
day 1 post-TBI, DTI revealed a widespread reduction in fractional anisotropy (FA) and
axial diffusivity (AxD) in the TBI group compared to shams. On day 7, further reduction
in FA, AxD, and mean diffusivity and increased radial diffusivity were observed. FA was
significantly increased in the amygdala and cortex. Correlation results showed that in
the ipsilateral hemisphere FA reduction was associated with increased phosphorylated-
tau and glial-immunoreactivity, whereas in the contralateral regions, the FA increase was
associated with increased immunostaining for astrocytes. This study is the first to exploit
DTI to investigate the effect of TBI in tau-transgenic mice. We show that alterations in
the DTI signal were associated with glial activity following TBI and would most likely
reflect changes that co-occur with/without phosphorylated-tau. In addition, FA may
be a promising measure to identify discrete pathological processes such as increased
astroglia activation, tau-hyperphosphorylation or both in the brain following TBI.

Keywords: traumatic brain injury, diffusion tensor imaging, transgenic, tau-hyperphosphorylation, astrocytes,
microglia, fractional anisotropy, P301L-mutation

INTRODUCTION

Traumatic brain injury (TBI) has recently been deemed a leading risk factor for dementias such
as Alzheimer’s disease (AD) or chronic traumatic encephalopathy (Fleminger et al., 2003; Hay
et al., 2016; Li et al., 2017). People sustaining a TBI are 24% more likely to develop dementia,
which increases with the severity and number of injuries (Fann et al., 2018). Distinctive but
overlapping features of TBI and AD, apart from the associated cognitive deficits, are the deposition
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of fragments of the β-amyloid peptide to form plaques, and
aggregation of hyperphosphorylated forms of the microtubule-
associated protein tau to form intracellular neurofibrillary tangles
(NFTs) (Tran et al., 2011a,b; Johnson et al., 2012; Magnoni et al.,
2012). Clinicopathological studies show that NFTs are associated
with brain function loss and the cognitive deficits reported in
TBI and AD with the density of NFTs reflecting the degree of
dementia (Yoshiyama et al., 2005; Johnson et al., 2016; Buckley
et al., 2017). These findings indicate that tau is a valuable marker
for the diagnosis of the long-term sequelae of TBI (Johnson et al.,
2012). Immunohistochemical and biochemical methods have
remained the gold standards for the detection of tau pathology in
clinical, as well as experimental studies. In 5 to 7-month-old mice
expressing wild-type human tau, accelerated tau pathology in the
hippocampus, progressive astrogliosis, cognitive, and locomotor
impairments were identified 6 weeks post-injury (Zhang et al.,
2019). In a 3×Tg-AD mouse model overexpressing human tau
and β-amyloid, accelerated hyperphosphorylation of tau and
tau aggregates were observed 1 week after a single TBI (Tran
et al., 2011a). Although both clinical and pre-clinical studies
have proposed tau as a potential marker linking TBI to AD,
the evidence has been largely based on post mortem evaluations
and cannot be implemented in clinical settings. Moreover, the
structural and pathological features of tauopathy have made
its detection challenging even with ex vivo tools, hindering a
concrete conclusion regarding its role in the link between TBI and
AD (Hanger et al., 2009; Castellani and Perry, 2019). Therefore,
there is a need to develop some in vivo tools to detect tau
pathology at the early stages of disease in order to determine its
effects during an individual’s lifespan.

Diffusion tensor imaging (DTI) is a magnetic resonance
imaging (MRI) modality that uses magnetic field gradients
to detect diffusivity parameters of water molecules as they
undergo diffusion in biological tissues; and these diffusivities
may be affected by pathological processes (Beaulieu, 2002;
Alexander et al., 2007). Tau protein is soluble and responsible for
microtubular stability. In the hyperphosphorylated state, it begins
to aggregate in the form of insoluble paired helical filaments, and
water mobility on the surface of the tau protein is highly affected
in its transition from monomeric to aggregated forms (Fichou
et al., 2015). Reduced fractional anisotropy (FA) and increased
MD have also been reported in hippocampal regions of early
AD patients; however, no studies were performed to understand
the pathological underpinnings of these changes (Rose et al.,
2008). In the rTg4510 tau transgenic mouse model, a strain
with massive tau expression and neurodegeneration, reduced
FA and increased radial diffusivity (RD) were noticed in white
matter regions with tau aggregates (Sahara et al., 2014; Wells
et al., 2015). In the triple transgenic 3×Tg mouse model of
AD, decreased FA and axial diffusivity (AxD) were associated
with the depositions of both amyloid-β and hyperphosphorylated
tau in the hippocampal region (Snow et al., 2017). Although,
DTI has been shown to detect hyperphosphorylated tau in AD
patients and experimental models, no study is available that
has investigated the potential of this method to detect tau
abnormalities following severe TBI. Given that TBI involves a
complex pathology and survivors can develop tauopathy within

a week (Tran et al., 2011a; Rubenstein et al., 2017), it is crucial to
understand if and how DTI reflects tau hyperphosphorylation in
other confounding pathologies associated with brain injuries at
its early stages.

Neuroinflammation is a crucial intrinsic process that has
been implicated in the pathological events of tau aggregation
and can be robustly induced by TBI (Johnson et al., 2013;
Bemiller et al., 2017; Laurent et al., 2018; Pischiutta et al., 2018).
Active glial cells (astrocytes and microglia) can increase tau
hyperphosphosphorylation, followed by its aggregation (Leyns
and Holtzman, 2017; Laurent et al., 2018). DTI has been shown
to detect post-TBI neuroinflammation (Budde et al., 2011;
Soni et al., 2018), but in AD, neuroinflammation has mostly
been investigated using positron emission tomography imaging
(Lagarde et al., 2018). Recently, Wang et al. (2015) proposed
that DTI can detect inflammation in pre-clinical stages of AD
by identifying reduced diffusivity measures (AD, MD, and RD).
Thus, the evaluation of DTI to detect tau-induced structural brain
abnormality at the early stages of TBI and to differentiate them
from neuroinflammation-like pathologies can put more insight
into DTI’s detection potential in TBI.

This work applies a DTI-histopathological approach to
examine the effect of TBI on tau pathology progression in
both white and gray matter structures in pR5 mice. pR5
mice overexpress the human tau isoform with a P301L
mutation and a well-developed model to study tauopathy
(Gotz et al., 2001). Since tauopathy is a key process that
is triggered following TBI in the AD brain, confirmed both
biochemically and histopathologically, we demonstrate, for the
first time, the potential of DTI to map the spatial and temporal
profile of the pathological processes following TBI in a tau
transgenic mouse model.

MATERIALS AND METHODS

Animals and Study Design
Twenty-four 9-month-old male and female P301L tau transgenic
mouse (line pR5) (21–35 g) generated on a C57B1/6 × DBA2F1
background, and backcrossed onto C57B1/6 were used (Gotz
et al., 2001). Transgenic mice were randomly allocated into two
TBI and two sham groups at two respective time points, i.e.,
days 1 and 7 post-injury. To ensure the validity and precision
of the statistical analysis, we used six mice per group. This study
was approved by the Animal Research Ethics Committee of the
University of Queensland (Animal Ethics Committee number:
QBI/SCMB/036/16/MAIC). All the experiments were performed
in accordance with the Australian code of practice for the care
and use of animals for scientific purposes.

All animals were housed in the animal facility of the Center
for Advanced Imaging, UQ, and acclimatized for a week before
commencing surgeries. The TBI groups received a controlled
cortical impact (CCI), whereas the sham groups underwent only
craniotomy without an impact followed by MRI scan at the
respective time points. All animals were immediately perfused
after the MRI scans for histological studies. The study design is
illustrated in Figure 1.
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FIGURE 1 | Representation of experimental design and experiments performed at different time points. (A) A schematic representation of the pathological
progression in pR5 mice before and after injury in 9-month-old mice. (B) Experimental design, 9-month-old pr5 mice (n = 6/group) were exposed to controlled
cortical impact followed by structural MRI scans at days 1 and 7, followed by histological analysis for astrocytes, microglia, total tau, and phospho-tau.

Controlled Cortical Impact Model of
Traumatic Brain Injury
Focal open skull injuries were performed using a CCI injury
model following the same protocol described in our previous
paper (Soni et al., 2018). Briefly, animals were anesthetized with
1.5–1.8% of isoflurane in a mixture of compressed air and oxygen
(1:0.8) and fixed in a stereotactic frame with ear bars and a bite
bar. Eye gel was applied to the eyes to avoid dryness. Craniotomy
was performed on the left side of the brain, and the bone flap
was removed from the craniotomy region with the dura intact.
All mice in the TBI groups were exposed to a cortical impact
using the CCI device (model-TBI 0310; Precision System and
Instrumentation LLC.) with a 3 mm diameter piston tip. The
brain was hit with an impact velocity = 3.5 m/s, depth = 1 mm,
and dwell time = 400 ms, whereas, in the sham groups, only
craniotomy was performed. In all cases, the bone flap was
replaced, and the skin was sutured after the procedure in all
mice. Animals were removed from the stereotaxic frame and
placed on a heating pad for recovery. 0.5 ml of saline was injected
subcutaneously in three different regions in all the animals for
rehydration. All the mice were active within 5–10 min following
injury and were kept in cages with ad libitum access to water
gel and wet food.

MRI Data Acquisition
All animals were handled for a minimum of 2 weeks prior to
the scan. Animals were conditioned to handling for 5–10 min
each day for a week before the surgery. On the day of surgery,
each mouse was handled for 3–5 min before being placed in
the anesthetic chamber, and then they were handled each day
until the day of scanning. On the day of the scan, animals were
also handled for 3–5 min before the induction of anesthesia
to minimize stress. All TBI and sham animals underwent MRI

scanning on days 1 and 7. MRI scans were performed on a
9.4T MRI scanner (Bruker BioSpin, Germany) equipped with
a cryogenically cooled transmit and receive coil, controlled by
a console running Paravision 6.0.1 (Bruker BioSpin, Germany)
Deep anesthesia was induced by 3% of isoflurane in a mixture
of compressed air/O2 (0.6/0.4) at 1 l/min, followed by 1.5–2%
of isoflurane for maintenance. Deeply anesthetized rodents were
then placed on an MRI-compatible cradle (Bruker Biospin) in
the head first, supine position, and the head was fixed using ear
bars and a bite bar to avoid movement. The respiration rate and
rectal temperature were monitored by an MRI-compatible rodent
physiological monitoring system (Model 1030, SA Instruments
Inc.). Three−dimensional (3D) T2-weighted (T2w) imaging data
sets were acquired using a rapid acquisition with relaxation
enhancement (RARE) sequence with the following parameters:
repetition time (TR) = 7200 ms, echo time (TE) = 39 ms,
averages = 4, slice thickness = 0.3 mm, field of view
(FoV) = 19.2 × 19.2 × 15.6 mm, and matrix = 192 × 192 × 52
totaling to 11 min 31 s of acquisition time/animal. DTI data were
acquired using an axial gradient echo-planar imaging sequence
using TR = 10,000 ms, TE = 25 ms, averages = 2, number of
slices = 48, slice thickness = 0.3 mm, FoV = 18 × 18 × 15.6 mm,
and matrix = 100 × 100 × 48, 2 b0 volumes, 33 non−collinear
directions with b−value 750 s/mm2 with acquisition time of
11 min 40 s of acquisition time/animal. A reverse-phase image
was acquired for DTI, which was used in data pre-processing.

MRI Data Analysis
T2-weighted and DTI data sets were analyzed using the FMRIB
Software Library version 5.0.9 (FSL)1. First, all T2w images
were corrected for motion using the MCFLIRT tool (FMRIB’s
Software Library) (Smith et al., 2004), followed by inhomogeneity

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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correction using the N4BiasFieldCorrection function of the
advanced normalization tools (ANTs Version: 2.1.0-gGIT-N).
Corrected T2w datasets were then skull-stripped using brain
masks created with the 3D Pulsed-Couple Neural Networks tool
(Chou et al., 2011) and brain images were extracted. Skull-
stripped individual T2w images were affinely registered to the
Australian Mouse Brain Mapping Consortium template2 using
FMRIB’s FLIRT. The registered images were averaged to create
the first iteration of a study-specific template. This first iteration
study-specific template was used as reference for non-linear
registration of individual images using FMRIB’s FNIRT. The non-
linearly registered individual images were averaged to generate
the final study specific template to which a final round of non-
linear registration of individual T2w images was performed.

Firstly, we used the reverse phase encoding volume pair as
input for TOPUP (Andersson et al., 2003) to estimate distortion
then correct all DWIs, then the MCFLIRT tool (FMRIB’s Software
Library) (Smith et al., 2004) was used to adjust for eddy
current distortion. The DTI data were then corrected for signal
inhomogeneity using N4 Field bias correction from ANTS (ANTs
Version: 2.1.0-gGIT-N). The FSL-diffusion Toolkit (DTI-FIT)
(Behrens et al., 2003) was used for local fitting of the diffusion
tensors to generate the maps for the DTI parameters FA, MD,
AxD, and RD using b-values 0 and 750 s/mm. To register the
data to the study specific template, we firstly co-registered the
individual’s B0 maps to the corresponding T2 images and then
apply the warp files from T2-to-study template to register the DTI
measures to the same common space of study specific template.
All estimated DTI maps were registered to the study-specific T2w
template for inter-group voxelwise permutation testing.

To improve the sensitivity, objectivity, and interpretability of
the white matter changes, voxel-based analysis style-TBSS (track-
based spatial statistics) was performed by using the standard
pipeline in FSL, FMRIB (Smith et al., 2006, 2007). In this
analysis method, all FA maps in a common study−specific
T2w template space were first averaged to create the mean FA
template, followed by generation of the mean skeletonized FA
maps (representation of fiber tracts). The individual skeletonized
mean FA map was further used to generate a distance map.
The distance map, together with the FA map thresholded at 0.2
and the anterior commissure as the reference, was used to get a
TBSS skeleton for the individual FA maps and subsequently for
all other individual metrics (AxD, RD, and MD skeletonized) to
show changes in the white matter tracks. The mean FA template
was used as an underlay to represent the diffusion changes in
the white matter. A demonstration of DTI image registration
efficiency and TBSS skeletonization procedure can be found in
Supplementary Figures 1, 2. Which demonstrated the efficiency
of image registration, its short comings with regards to larger
white matter tracts while acceptable for large homogenous gray
matter structures, and TBSS efficiency and accuracy in improve
the matching across subjects and reflect, for example, missing
white matter tracts in the lesion area.

For region-of-interest based analyses, we mainly focused
on the regions with maximal changes seen on statistical

2http://imaging.org.au/AMBMC/Model

difference maps obtained from the voxel-based analysis. These
regions involved the corpus callosum (middle region), ipsilateral
(ip) and contralateral (cn) external capsule, and the internal
capsule. In the gray matter, the cn-dentate gyrus, CA1 region
(the ipsilateral hippocampus was washed away during brain
processing for histology), ipsilateral and contralateral amygdala,
cortex, and thalamus were explored. Regions-of-interest were
drawn manually on the study-specific template using the
Australian mouse brain mapping consortium template (Watson
et al., 2017) and the Allen adult mouse brain atlas3 as a
reference (Soni et al., 2020). Diffusion and anisotropy values were
extracted from the regions-of-interest and correlated with the
measures from immunohistochemistry, namely, phosphorylated
tau, microglia, and astrocytes.

Histology Preparation and Analysis
Immediately after MRI scans, the mice were deeply anesthetized
with isoflurane and perfused transcardially with 11 ml 0.1 M
phosphate-buffered saline containing 1% sodium nitrite (PBS,
pH 7.4) followed by 11 ml 4% formaldehyde (prepared from
paraformaldehyde) dissolved in 0.1 M PBS. Perfusates were
delivered using an automated syringe pump [10 ml–14.48 mm
diameter BD (New Jersey, United States) syringes were used]
programed to deliver perfusates at 90 ml/h. Brains were excised
and immersion-fixed in 4% PFA overnight at 4◦C and then
stored in PBS supplemented with 0.05% sodium azide. Prior
to slicing, the brains were cryoprotected with 30% sucrose for
48 h. The frozen brains were sectioned coronally (40 µm thick)
using a Leica SM2010R freezing microtome and collected serially
in PBS with 0.02% sodium azide and kept at 4◦C until used
for immunohistology. In accordance with the 3rd edition of
the Franklin and Paxinos, 1997 mouse brain atlas, five coronal
mouse brain sections were selected (between Bregma −0.5
and −4.5 mm) for each immunohistology staining (Every 25th
coronal section of 40 µm thickness). Allen mouse brain atlas
(see text footnote 3) was also referred to cross verify regions of
interest for clarity.

Immunohistochemistry
For immunohistochemistry, free-floating brain sections were
rinsed thrice with tris-buffer saline (TBS, pH 7.5) and then
incubated with 30% H2O2 in methanol in TBS for 30 min to
quench the endogenous peroxidase activity. This was followed
by TBS washing and citrate buffer treatment at 95◦C for 10 min
for antigen retrieval. Sections were then treated in 0.1% Triton
X-100 in TBS (TBS-A; pH = 7.5) for 15 min, followed by
blocking in 2% bovine serum albumin in TBS and Triton
X-100 (TBS-B; pH = 7.5) for 30 min. Brain sections were
further incubated with the primary antibody for phosphorylated-
tau [rabbit pSer (396 + 404) (Thermo Fisher; 1:1,000)] with
5% normal-horse-serum and kept on the shaker overnight at
4◦C. The tissues were washed gently for 15 min the next
morning. Prior to the secondary antibody treatment, sections
were blocked with 5% normal-horse-serum diluted in TBS-B for
30 min and then incubated with secondary biotinylated horse

3https://alleninstitute.org/
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anti-rabbit immunoglobulin-G (Vector Laboratories; 1:500)
for an hour. After 20 min of blocking with TBS-B, the
sections underwent Avidin-Biotin Complex (ABC) reagent
treatment (Vector laboratories) for 30 min, followed by 3,3′-
Diaminobenzidine (DAB) treatment with hydrogen peroxide
at room temperature. The DAB treatment time was strictly
controlled to obtain comparable results. The sections were then
rinsed with TBS and mounted on superfrost-plus slides. After
drying, the slides were cover-slipped with the mounting medium
and allowed to dry overnight.

Immunofluorescence
For total tau, immunofluorescence was performed. Except for
H2O2 and citrate buffer treatment, the initial steps were similar
to those used for immunohistochemistry. Brain sections were
then incubated with primary antibody (polyclonal rabbit anti-
human) (Dako; 1:1,000) for total tau. Goat anti-rabbit 488
(Life Technologies; 1:200) was used as the secondary antibody.
The sections were rinsed, mounted, dried, and cover-slipped.
Double immunofluorescence was performed for astrocytes and
microglia using glial fibrillary acidic protein (GFAP) and ionized
calcium-binding adaptor molecule 1 (Iba1) markers, anti-GFAP
chicken polyclonal antibody (Abcam; 1:1,000) and anti-Iba1
rabbit monoclonal antibody (Wako; 1:1,000). Goat anti-rabbit
555 (Life Technologies; 1:200) and goat-anti chicken 488 (Life
Technologies; 1:200) secondary antibodies were used.

Quantification
Sections were examined for staining under an upright microscope
(Axio Imager Green). For the quantification, slides were scanned
using a Metafer VSlide scanner (MetaSystems) using a Zeiss
Axio Imager Z2. Each section of the slides was then cropped
into individual images using the 3D crop tool of the interactive
microscopy image analysis software (Imaris; Bitplane). For the
histology figures, selected areas of interests were acquired using
a spinning-disk confocal system (Marianas; 3i, Inc.) consisting of
an Axio Observer Z1 (Carl Zeiss), CSU-W1 spinning-disk head
(Yokogawa Corporation), ORCA-Flash4.0 v2 sCMOS camera
(Hamamatsu Photonics), using 63×magnification oil immersion
objective. Images were acquired as 20 µm Z-stacks with 0.5 µm
intervals and the 3D stacks were maximum intensity Z-projected
to create a single 2D image for figures.

The percentage area of phosphorylated-tau positive
immunoreactivity was calculated as described previously
(Bodea et al., 2017). Total five serial sections per animal were
used for the histological quantification. Using ImageJ, two
sample boxes, one large and one small were created. These two
sample boxes were utilized to create multiple ROIs of the same
dimensions that were then placed on the respective areas of
interest on the slices (corpus callosum, internal capsule, external
capsule, cortex, dentate gyrus, CA1, thalamus, and amygdala).
Please refer to Supplementary Figure 3 for the ROI details.
These regions were chosen on the basis of voxel-based analysis
results of DTI maps. To be consistent, same ROIs were used for
all the animals with slight adjustments for the regions if needed.
For total-tau, astrocyte and microglia sections were corrected for
the background using the rolling ball algorithm, then thresholded

using the automated ImageJ threshold (moment), where staining
was not visible in the negative control. Cell number and percent
area covered by cells were then calculated using the particle
analyzer tool. Any region that has multiple boxes, average values
were calculated. The graphs are platted statistically while the
images shown are the representative images from a random
subject of each group. Slight differences in the contrast in the
representative images could be during data acquisition from the
automatic scanning, however the data acquisition parameters
were well optimized and consistent for the data. Visual analysis
was performed to check the major deformations, link to the data
repository can be provided if needed.

Statistical Analysis
For voxel-based analysis, an unpaired two-sample t-test was used
to calculate the differences between the TBI and sham animals
for the DTI parameters using the FSL−randomize tool with the
number of permutations set to exhaustive. The FSL-threshold-
free cluster enhancement corrected difference maps, thresholded
at p-value ≤ 0.05 results, were reported.

For region-of-interest-based analysis, prior to fitting the
statistical models, we examined the normality of the data using
the Shapiro–Wilk test. All the data sets were normally distributed,
so parametric tests were used for the analysis. One-way ANOVA
with post hoc analysis using Tukey’s multiple comparisons
test was used. Data analysis was completed and plotted using
GraphPad Prism version 7.04 (GraphPad Software Inc.). The
results are presented as mean± standard error measurement. ∗p-
value ≤ 0.05, ∗∗p-value ≤ 0.001, and ∗∗∗p-value ≤ 0.0001 were
considered significant.

In order to investigate the possible association between
DTI measures, tau pathology, and neuroinflammation, Pearson’s
multiple correlations were performed. The calculated R2 or
the coefficient of correlation values and corrected p-values
are reported in the results. A p-value ≤ 0.05 was considered
significant. As we have n = 6, it was not enough separate the data
and perform correlation within separate groups. Thus, both sham
and TBI groups were combined for correlation.

RESULTS

In this study, the effects of TBI on the microstructure of the white
and gray matter were examined by determining the associated
changes of water diffusion using DTI, with corresponding
pathological analyses in the same animals from histological
specimens. Here, we report the whole brain voxel-based analysis
results. Further, we discuss our immunohistochemistry findings
and their correlation with DTI measures (FA, MD, AxD, and RD)
in several white matter and gray matter regions selected on the
basis of the voxel-based analysis results.

Diffusion Tensor Imaging Reveals
Changes in the White Matter of pR5 Mice
Following TBI
Figure 2 represents significantly affected white matter regions
after TBI as compared sham controls. From the TBSS results
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(Figure 2A), FA was significantly low in pR5 mice following TBI
compared to sham-treated pR5 mice in the white matter regions
ipsilateral to the lesion side involving the corpus callosum,
external capsule, fimbria, stria terminalis and internal capsule,
optic tracks, and external medullary lamina of the thalamus on
day 1 post-injury. FA reduction was also seen in the contralateral-
external capsule of the pR5 TBI mice. On day 7, in addition to
the above-mentioned regions, a significant reduction in FA was
observed in the corpus callosum, fimbria, and internal capsule
in the TBI mice compared to the sham mice. In the case of
diffusivity changes, on day 1 post-injury, a significantly reduced
AxD was noted in the ipsilateral and contralateral fimbria and
external capsule in the TBI mice as compared to the sham
mice, whereas RD and MD were significantly higher. A similar
increase in RD and MD was observed in the corpus callosum,
ipsilateral internal capsule, and contralateral internal capsule. On
day 7 post-injury, a significant AxD reduction was evident in the

corpus callosum and the contralateral fimbria, internal capsule,
and external capsule regions in the TBI group versus the sham
group. Unlike on day 1, RD and MD changes were negligible
except in the ipsilateral external capsule, where increased RD and
MD changes were noted in the TBI mice. These results indicate
that DTI measures were potentially detecting the white matter
abnormalities induced by TBI in tau transgenic mice.

DTI Reveals Changes in the Gray Matter
in pR5 Mice Following TBI
Diffusion tensor imaging results shown in Figure 3 reveal
significant destruction in the gray matter microstructural regions.
In voxel-based analysis findings (Figure 3A), on day 1 post-
injury, there was a significant reduction in FA in the ipsilateral
caudate-putamen and the thalamus in the TBI group as
compared to the sham group. On day 7, together with the

FIGURE 2 | Alterations in DTI measures (FA, AxD, MD, and RD) in white matter representing statistical differences between pR5-sham and pR5-TBI groups over
1 week. (A) Tract-based spatial statistical Intergroup difference maps for DTI parameters fractional anisotropy (FA), axial diffusivity (AxD), mean diffusivity (MD), and
radial diffusivity (RD) between sham (n = 6) and TBI groups (n = 6) at different time points overlaid on the FA-template (columns). Yellow–red indicates TBI > sham,
and blue–green indicates TBI < sham. The statistical map was thresholded at p-value ≤ 0.05, unpaired two-sample t-test, implemented as permutation tested for
the General Linear Model. (B) Showing the regions of interest chosen for the correlation analysis involving the corpus callosum, ipsilateral internal capsule,
contralateral internal capsule, ipsilateral external capsule, and contralateral external capsule.
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FIGURE 3 | Alterations in DTI measures (FA, AxD, MD, and RD) in gray matter representing statistical differences between pR5-sham and pR5-TBI groups 1 week
after TBI. (A) Voxel-by-voxel statistical analysis results of DTI parameters fractional anisotropy (FA), axial diffusivity (AxD), mean diffusivity (MD), and radial diffusivity
(RD) between sham and TBI groups at different time points overlaid on the FA-template (columns). Yellow–red indicates TBI > sham, and blue–green indicates
TBI < sham. The statistical map was thresholded at p-value ≤ 0.05, unpaired two-sample t-test, implemented as permutation tested for the General Linear Model.
Fractional anisotropy changes were extremely high after 7 days post-injury in the gray matter. (B) Showing the regions of interest chosen in the correlation analysis,
involving ipsilateral and contralateral thalamus, amygdala, cortex, and contralateral hippocampal regions. MRI regions of interest are also presented in
Supplementary Figure 3B.

ipsilateral regions, a significantly reduced FA was apparent in the
contralateral regions involving the caudate-putamen, cortex, and
hippocampus (CA1 and dentate gyrus). The FA was significantly
increased in the piriform amygdala, cortex, and in the deep gray
matter in close proximity to the lesion. A significant reduction in
AxD in the TBI group versus the sham group was mainly found
in the ipsilateral and contralateral cortex, the ipsilateral thalamic
area closer to the injury site, and in the caudal hippocampus on
day 1 post-injury. On day 7, a widespread reduction in AxD in
the TBI group as compared to the sham group was observed in
the regions involving the ipsilateral caudate-putamen, thalamus,
and amygdala. Unlike on day 1, a significant increase in the AxD
was seen in the cortex and caudal hippocampus. The RD and MD
were significantly increased in cortical and thalamic areas in the
TBI group versus the sham group after day 1 post-injury. On day
7, significant increases in RD and MD were noted only in the
cortex of TBI group as compare to sham group. Overall, these
results indicate that TBI induced structural abnormalities in tau

transgenic mice were significantly altering all DTI measures. Both
increased and decreased FA changes were noted in different in
gray matter regions.

Increased Tau Phosphorylation
Post-injury in pR5 Mice
Immunohistochemistry revealed post-injury increase in tau
hyperphosphorylation at the epitope site ser396 + 404 in
several white and gray matter regions (Figures 4A, 5A). This
increased pathology was potentially reflected by the various DTI
measures as shown in our correlation analysis, represented in
Figures 4C, 5C.

Statistically (Figure 4B), on day 1, a significant increase in
the percentage of Ser396 + 404-positive area was observed in
the cn-internal capsule in the TBI group (3.638 ± 0.7967;
p = 0.0482) versus the sham group (0.5933 ± 0.1722).
Immunoreactivity for phosphorylated tau was not altered
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FIGURE 4 | Controlled cortical impact increases phosphorylation in the white matter of injured pR5 mice: (A) Phosphorylation at the pSer396 + 404 epitopes of tau
was detected in different white matter regions, including the corpus callosum (a–d), ipsilateral internal capsule (e–h), contralateral internal capsule (i–l), ipsilateral
external capsule (m–p), and contralateral external capsule (q–t) of pR5 mice post-injury (n = 6 pR5 TBI mice and n = 6 pR5-sham mice at days 1 and 7). Scale bar:
100 µm. Zoom-in view of phospho-tau positive cells indicated with the black arrows are shown in the square boxes. (B) (i–v), Phosphorylation at the pSer396 + 404
epitopes was markedly increased in all the regions (corpus callosum, ipsilateral internal capsule, contralateral internal capsule, ipsilateral external capsule, and
contralateral external capsule) on day 7 post-injury in the pR5-TBI group versus the pR5-sham group, whereas no significant differences were observed on day 1
pR5-TBI group versus the pR5-sham group except contralateral internal capsule (iii). One-way ANOVA with Tukey’s multiple comparison test, *p ≤ 0.05, **
p ≤ 0.001, ***p ≤ 0.0001). (C) (i–v), Anisotropy was significantly reduced with hyperphosphorylation in all regions (corpus callosum, ipsilateral internal capsule,
contralateral internal capsule, ipsilateral external capsule, and contralateral external capsule). A negative correlation was also found with axial diffusion in corpus
callosum, ipsilateral internal capsule, contralateral internal capsule, and contralateral external capsule whereas in ipsilateral external capsule axial diffusivity (AxD) was
increased significantly with increased phosphorylation. Radial diffusivity (RD) and mean diffusivity (MD) were also increased markedly with phosphorylation in the
ipsilateral external capsule (C (iv)) (Pearson multiple correlations p-value ≤ 0.05).

Frontiers in Neuroscience | www.frontiersin.org 8 February 2021 | Volume 15 | Article 611451121

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-611451 February 18, 2021 Time: 19:5 # 9

Soni et al. DTI Histology Investigation in Tau-TBI Mouse Model

FIGURE 5 | Phosphorylation occurred in additional gray matter regions 1-week post-TBI in injured pR5 mice: (A) Phosphorylation at the pSer396 + 404 epitopes of
tau was detected in the ipsilateral thalamus (a–d), contralateral thalamus (e–h), and contralateral dentate gyrus (i–l) (n = 6 pR5 TBI mice and n = 6 pR5-sham mice at
days 1 and 7). Scale bar: 100 µm. (B) (i–iii), Phosphorylation at the pSer396 + 404 epitopes was evidently increased in the regions on day 7 post-injury in the
pR5-TBI group versus the pR5-sham group, whereas no significant differences were observed in the day 1 pR5-TBI group versus the pR5-sham group (one-way
ANOVA with Tukey’s multiple comparisons test, *p ≤ 0.05, **p ≤ 0.001). (C) (i–ii), Fractional anisotropy (FA) and axial diffusivity (AxD) were significantly reduced with
increased phosphorylation in the ipsilateral thalamus. Although hyperphosphorylation was not significant in the cortex, radial and mean diffusivity was significantly
correlating with tau hyperphosphorylation in the cortex (Pearson multiple correlations p-value ≤ 0.05).

in the ip-external capsule (3.271± 1.056; p = 0.6090), ip-internal
capsule (5.254 ± 1.250; p = 0.9211), and corpus callosum
(1.799 ± 0.0858; p = 0.8524) compared to the sham group;
ip-external capsule (1.293 ± 0.2726), ip-internal capsule
(2.514 ± 1.046), and corpus callosum (0.7057 ± 0.1883).
On day 7, immunoreactivity for phosphorylated tau was
significantly higher in all selected regions-of-interest in the
TBI group [ip-external capsule (5.456 ± 1.951; p = 0.0426),
ip-internal capsule (18.81 ± 5.868; p = 0.0057), cn-internal
capsule (6.331 ± 1.119; p = 0.0020), and corpus callosum
(10.61 ± 1.911; p = 0.0001)] as compared to the day 7 sham
group [ip-external capsule (0.8712 ± 0.2962), ip-internal capsule
(2.299 ± 0.8450), cn-internal capsule (1.733 ± 0.6496), and
corpus callosum (0.7123 ± 0.1344)]. In the corpus callosum
(10.61 ± 1.911; p = 0.0001), ip-internal capsule (18.81 ± 5.868;
p = 0.0257), and cn-external capsule (21.51 ± 8.695; p = 0.0439),
immunoreactivity for phosphorylated tau in the day 7
TBI group was even higher than in the day 1 TBI group
[corpus callosum (1.799 ± 0.0858), ip-internal capsule

(5.254 ± 1.250), and cn-external capsule (2.434 ± 0.4153)].
Notably, immunoreactivity for phosphorylated tau was more
abundant in contralateral regions than ipsilateral regions. There
was no significant increase in total tau levels (data not shown).

Upon correlation with the DTI measures (Figure 4C),
a negative correlation was seen between the percentage of
ser396 + 404 positive area and FA in the corpus callosum
(R2 = 0.3330; p = 0.0039), ip-external capsule (R2 = 0.2269;
p = 0.0216), ip-internal capsule (R2 = 0.5076; p = 0.0001), cn-
external capsule (R2 = 0.5435; p = 0.0001), and cn-internal
capsule (R2 = 0.2483; p = 0.0155). A negative correlation was
also observed with AxD in the corpus callosum (R2 = 0.3654;
p = 0.0022), ip-internal capsule (R2 = 0.3438; p = 0.0026), and cn-
internal capsule (R2 = 0.3710; p = 0.0020). Interestingly, a positive
correlation was noted in the ip-external capsule phosphorylated-
tau and diffusivity measures of AxD (R2 = 0.3969; p = 0.0013),
MD (R2 = 0.3509; p = 0.0029), and RD (R2 = 0.3004; p = 0.0068).
Overall, these results indicate that decreased FA is associated with
increased tau pathology.
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In the gray matter (Figure 5B), no significant changes
were observed on day 1 post-TBI. On day 7, a significant
increase in the phosphorylated-tau positive area was seen
only in the ip-thalamus (0.3324 ± 0.1478; p = 0.0488), cn-
thalamus (0.08643 ± 0.01638; p = 0.0062), and cn-dentate
gyrus (5.619 ± 1.554; p = 0.0318) in the TBI group versus
the day 7 sham group [ip-thalamus (0.01743 ± 0.0055), cn-
thalamus (0.02256± 0.0052), cn-dentate gyrus (1.533± 0.4619)].
In other regions involving the ip-cortex (3.099 ± 1.498;
p = 0.4406), cn-cortex (2.353± 0.7649; p = 0.3659), cn-amygdala
(4.896 ± 2.076; p = 0.5464), and cn-CA1 (18.13 ± 4,775;
p = 2.447), a non-significant increase was noted as compared
to the respective sham group [ip-cortex (0.6220 ± 0.3059), cn-
cortex (0.9850 ± 0.3171), cn-amygdala (1.432 ± 0.6714), and
cn-Ca1 (7.971 ± 3.573)]. These findings indicate that cn-dentate
gyrus and ip- and cn-thalamus were the two main gray regions
that were affected with tau pathology within a week in the pR5
mice after injury.

Similar to the white matter, a negative correlation of
phosphorylated-tau area was observed with FA (R2 = 0.1865;
p = 0.0396) and AxD (R2 = 0.3938; p = 0.0013) but only
in the ip-thalamus. In the cn-cortex, a positive correlation
was observed with MD (R2 = 0.1802; p = 0.0435) and RD
(R2 = 0.2020; p = 0.0314) (Figure 5C). This suggests that a
decrease in FA in the gray matter is associated with increased tau
hyperphosphorylation.

Increased GFAP Expression Post-injury
in pR5 Mice
Overall, increased GFAP expression was evident one day post-
TBI that peaked after 7 days in the TBI groups as compared
to the sham group (Figures 6A, 7A). In the case of astrocytes,
changes were noted in both the percentage of GFAP-positive cell
areas (reported below) and GFAP-positive cell count (outlined
in Supplementary Table 1). DTI measures-FA, AxD, MD, and
RD-showed significant changes with the increased expression of
GFAP in several regions of the brain.

In the white matter (Figure 6B), on day 1, a significant
increase percentage of GFAP-positive cell area was observed
in the ip-internal capsule in the TBI group (3.909 ± 0.5325;
p = 0.0075) versus the sham group (1.611 ± 0.3459). No
significant increase in percentage of GFAP positive cell area was
seen in the cn-internal capsule (2.560 ± 0.3460; p = 0.0693), and
corpus callosum (2.714 ± 0.3160; p = 0.2327) when compared
to the day 1 sham group; cn-internal capsule (1.427 ± 0.1885),
corpus callosum (1.640± 0.2749). On day 7, percentage of GFAP-
positive staining was significantly higher in the TBI groups in
all selected white matter regions, including ip-internal capsule
(4.679 ± 0.5405, p = 0.0149), corpus callosum (6.165 ± 0.4585;
p = 0.0001), ip-external capsule (7.089 ± 1.014, p = 0.0027), and
cn-external capsule (7.570 ± 0.4892, p = 0.0003) versus sham
regions; ip-internal capsule (2.576 ± 0.2912), corpus callosum
(1.893 ± 0.4579), ip-external capsule (3.364 ± 1.156), and cn-
external capsule (3.670± 0.6898). These findings show that GFAP
immunostaining in the white matter increase within a week of
injury in the pR5 mice.

In correlating with the DTI measures (Figure 6C), a negative
correlation was seen between the percentage of GFAP positive cell
area and FA in the corpus callosum (R2 = 0.3989; p = 0.0012), an
ip-internal capsule (R2 = 0.3075; p = 0.0049), and with AxD in
the corpus callosum (R2 = 0.3140; p = 0.0054), ip-internal capsule
(R2 = 0.3920; p = 0.0011), cn-internal capsule (R2 = 0.4124;
p = 0.0010), and cn-external capsule (R2 = 0.3734; p = 0.0019).
A positive correlation was observed with AxD (R2 = 0.2210;
p = 0.0236), MD (R2 = 0.3083; p = 0.0060), and RD (R2 = 0.3344;
p = 0.0038) in the ip-external capsule. Overall, this indicates that
a decrease in anisotropy and an increase in diffusion in the white
matter were associated with an increase in astrocytes.

In the gray matter (Figure 7B), a significant increase in GFAP
expression was seen only in the ip-thalamus (0.9537 ± 0.1991,
p = 0.0300) and ip-cortex (0.9743 ± 0.1880, p = 0.0160)
on day 1 in the TBI versus the sham group [ip-thalamus
(0.2697 ± 0.1126) and ip-cortex (0.4305 ± 0.0474)], with
a significant increase in the ip-thalamus (3.486 ± 0.2074,
p = 0.0001), ip-cortex (2.867 ± 0.1161, p = 0.0001), cn-cortex
(0.8618 ± 0.1270; p = 0.0004), ip-amygdala (3.900 ± 0.0990,
p = 0.0001), cn-CA1 (6.119± 0.1884, p = 0.0001), and cn-dentate
gyrus (5.619 ± 1.554, p = 0.0318) being observed at 7 days post-
injury as compared to shams [ip-thalamus (0.2617 ± 0.0755),
ip-cortex (0.4200 ± 0.0463), cn-cortex (0.2523 ± 0.0579), ip-
amygdala (0.9060 ± 0.1575), cn-CA1 (2.944 ± 0.2041), and
cn-dentate gyrus (1.533 ± 0.4619)]. These results suggest that
GFAP immunostaining in gray matter was increased within a
week in pR5 mice post-injury.

A negative correlation (Figure 7C) in the ip-thalamus
(R2 = 0.2048; p = 0.0301) and a positive correlation in the ip-
cortex (R2 = 0.3148; p = 0.0053) and ip-amygdala (R2 = 0.2759;
p = 0.0101) were observed with FA. A negative correlation
was also seen with AxD in the ip-thalamus (R2 = 0.2837;
p = 0.0089) and ip-amygdala (R2 = 0.2682; p = 0.0114). In the
ip-amygdala, GFAP expression also negatively correlated with
MD (R2 = 0.2467; p = 0.0159). These findings demonstrate
region-dependent increases and decreases in FA in association
with an increase in GFAP immunostaining. Together with the
phosphorylated-tau results, the increase in FA was associated
with increased GFAP immunostaining with no tauopathy,
and the FA decrease was associated with increased GFAP
immunostaining with tauopathy.

Increased Microglial Cell Number 7 Days
Post-injury
Unlike astrocytes, we did not observe any increase in microglial
number (Iba1+ cell count) on day 1; however, active microglial
cells were seen in the thalamus region (Figure 8A). A significant
increase in microglial cell number was noted only 7 days
after injury in both the white matter (Figures 9A,B) corpus
callosum (9.796 ± 1.259, p = 0.0001), ip-external capsule
(10.88 ± 0.3521, p = 0.0001), ip-internal capsule (60.33 ± 9.124,
p = 0.0002), and the gray matter (Figures 8A,B) in the TBI
group (ip-thalamus (93.83 ± 10.54; p = 0.0001) versus the
sham groups–corpus callosum (2.019 ± 0.1608), ip-external
capsule (2.042 ± 0.2534), ip-internal capsule (19.42 ± 1.546),
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FIGURE 6 | Increased astrogliosis in white matter early after injury in pR5 mice: (A) Increase in glial fibrillary acidic protein (GFAP) positive cell area percentage was
noticed in white matter regions containing the corpus callosum (a–d), ipsilateral internal capsule (e–h), ipsilateral external capsule (i–l), and contralateral external
capsule (m–p) of injured pR5 mice (n = 6 pR5 TBI mice and n = 6 pR5-sham mice at days 1 and 7). Scale bar: 50 µm. (B) (i–iv), GFAP positive cell area was
significantly increased in all the regions (corpus callosum, ipsilateral internal capsule, ipsilateral external capsule, and contralateral external capsule) on day 7
post-injury in pR5-TBI group versus the pR5-sham group, whereas no significant differences were observed the day 1 pR5-TBI group versus the pR5 sham group
except ipsilateral internal capsule (B (iii)) (one-way ANOVA with Tukey’s multiple comparison test, *p ≤ 0.05, **p ≤ 0.001, ***p ≤ 0.0001). (C) (i–iv), Anisotropy was
significantly reduced with gliosis in the corpus callosum and ipsilateral internal capsule. Axial diffusion (AxD) was also measurably reduced in the corpus callosum,
ipsilateral internal capsule, and contralateral external capsule whereas in the ipsilateral external capsule, axial diffusivity (AxD) was increased significantly with gliosis.
Radial and mean diffusivity were also increased in the ipsilateral external capsule with gliosis, whereas, in the contralateral external capsule, mean diffusivity (MD) was
reduced with gliosis (Pearson multiple correlations p-value ≤ 0.05).
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FIGURE 7 | Augmented astrogliosis post-TBI in the gray matter of injured pR5 mice: (A) Statistically significant increase in glial fibrillary acidic protein (GFAP)-positive
cell area percentage in the gray matter regions, including the ipsilateral thalamus (a–d), ipsilateral amygdala (e–h), ipsilateral cortex (i–k), contralateral cortex (m–p),
contralateral CA1 (q–t), and contralateral dentate gyrus (u–x) of pR5 TBI groups versus sham groups (n = 6 pR5 TBI mice and n = 6 pR5-sham mice at days 1 and
7). Scale bar: 50 µm. Extended views of astrocytes from all regions were shown (i–viii) indicating the differences in the shape of the astrocytes. (B) (i–vi),
GFAP-positive percentage cell area was significantly higher in the ipsilateral thalamus and ipsilateral cortex on day 1 post-injury in pR5-TBI mice versus the
pR5-sham mice control group. On day 7, the percent positive area was evidently increased in ipsilateral thalamus, ipsilateral amygdala, ipsilateral cortex,
contralateral cortex, contralateral CA1, and contralateral dentate gyrus (One-way ANOVA with Tukey’s multiple comparison test, *p ≤ 0.05, **p ≤ 0.001,
***p ≤ 0.0001). (C) (i–iii), Anisotropy was significantly reduced in the ipsilateral thalamus and increased in the ipsilateral amygdala with gliosis. Axial diffusion was also
measurably reduced in the ipsilateral thalamus and ipsilateral amygdala. Reduced mean diffusivity was also noted in the ipsilateral amygdala with increased gliosis
(Pearson multiple correlations p-value ≤ 0.05).
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FIGURE 8 | Increased microglia activity in gray matter post-TBI in pR5 mice: (A) Iba1+ cell counts were evident in gray matter regions, ipsilateral thalamus (a–d),
contralateral CA1 hippocampal region (e–h), and contralateral dentate gyrus (i–l). Extended iba1+ cells (i–vi) demonstrate a difference between active and inactive
microglia cells at days 1 and 7 (n = 6 pR5 TBI mice and n = 6 pR5-sham mice for days 1 and 7). Scale bar: 50 µm. (B) (i–iii), A significant increase in microglia count
in the ip-thalamus, contralateral CA1, and contralateral dentate gyrus were noticed at day 7 post-injury (One-way ANOVA with Tukey’s multiple comparison test,
*p ≤ 0.05, **p ≤ 0.001, ***p ≤ 0.0001). (C) Significant negative correlations are observed between Iba1+ cell counts and DTI measures fractional anisotropy (FA),
and axial diffusivity (AxD) ipsilateral thalamus (C (i)) (Pearson multiple correlations p-value ≤ 0.05).

and ip-thalamus (28.75 ± 3.857). Notably, in the contralateral
regions, a significant increase was observed in the cn-external
capsule (7.542 ± 0.9820, p = 0.0001), CA1 (95.17 ± 9.862,
p = 0.0001), and dentate gyrus (73.78 ± 5.007, p = 0.0003)
at day 7 in the TBI group versus the sham group; cn-external
capsule (2.042± 0.3501), Ca1 (25.67± 5.354), and dentate gyrus
(32.39 ± 6.159) regions. These results indicate that microglial
activity increases within a week of TBI in pR5 mice.

Although correlated with DTI (Figures 8C, 9C), microglial
counts negatively correlated with FA in the ip-external capsule
(R2 = 0.2010; p = 0.0319), ip-internal capsule (R2 = 0.2581;
p = 0.0113), and with AxD in the ip-internal capsule (R2 = 0.2755;
p = 0.0085) and ip-thalamus (R2 = 0.3631; p = 0.0023). A positive
correlation was observed with AxD (R2 = 0.4300; p = 0.0007), MD
(R2 = 0.6658; p = 0.0001), and RD (R2 = 0.7362; p = 0.0001) in ip-
external capsule and negative correlation with MD (R2 = 0.2143;
p = 0.0261) in the ip-thalamus. Together, these findings reveal
that the white matter anisotropy was mainly affected by the

increase in microglial activity whereas in the gray matter
diffusivity was primarily affected.

DISCUSSION

This work revealed evolving and progressive microstructural
alterations in tau animals as early as 1 day post-injury that
propagated to the contralateral hemisphere within a week, and
were associated with TBI-accelerated tauopathy. In the white
matter, the reduction in FA and AxD and an increase in MD
and RD at day 1 were followed by a decrease in FA, AxD, and
MD, and increased RD at seven days post-injury in the TBI-
pR5 group compared to shams. In the gray matter, FA was
markedly increased in the amygdala and cortex, but remained
significantly decreased in the thalamic and hippocampal regions
for 1 week as compared to the sham group. The reduced
FA was consistently associated with increased expression of
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FIGURE 9 | TBI induces microglial increase in the white matter of pR5 mice: (A) Increased Iba1+ cell count in white matter regions, including the corpus callosum
(a–d), ipsilateral internal capsule (e–h), ipsilateral external capsule (i–l), and contralateral external capsule (m–p), (n = 6 pR5 TBI mice and n = 6 pR5-sham mice for
days 1 and 7-time points). Scale bar: 50 µm. (B) (i–iv), Iba1+ cells were significantly higher in day 7 pR5 TBI mice versus sham mice in all four regions (One-way
ANOVA with Tukey’s multiple comparison test, *p ≤ 0.05, ** p ≤ 0.001, ***p ≤ 0.0001). (C) (i,ii), Fractional anisotropy decreased with increased microglia count in the
ipsilateral internal capsule and ipsilateral external capsule. Axial diffusivity was decreased in the ipsilateral internal capsule while increased in the ipsilateral external
capsule with an increase in microglia count. Along with this, mean and radial diffusivity were also increased with microglia level in the ipsilateral external capsule
(Pearson multiple correlations p-value ≤ 0.05).

phosphorylated tau evident after day 1 in the white matter
followed by its propagation to the gray matter within 1 week, in
line with neuroinflammation. An increased FA on the other hand,
particularly reflected a prominent increase in neuroinflammation
without any significant increase in tau phosphorylation. Overall,
we observed regional changes in the DTI signal, particularly in
FA, that could reflect either increased phosphorylation of tau,
neuroinflammation, or both.

Tauopathy has been documented as a possible linking factor
between TBI and AD (Johnson et al., 2012). Pathological
isoforms of tau have been detected immunohistochemically and
biochemically in postmortem TBI brain at various different time
points and are shown to affect the behavioral function associated
with respective brain areas (Zanier et al., 2018; Zhang et al.,
2019). In vivo detection of tauopathy at an early stage post-TBI is
underexplored. The findings presented here advance our current
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understanding of TBI-accelerated tauopathy in experimental
models by providing information about the early pathological
and microstructural changes in a tau transgenic mouse model
post single severe injury. This work exploits DTI along with
histology to measure widespread pathology in pR5 mice for a
period of 1-week post-TBI. This is the first study to apply DTI
to investigate the effect of TBI in tau transgenic animals.

In the past few years, tauopathies following TBI have been
the hypothesized link with AD (McKee and Daneshvar, 2015).
In clinicopathological studies, postmortem TBI brains analyzed
at different time points exhibited extensive tau phosphorylation
that was associated with cognitive deficits in the patients (Zanier
et al., 2018; Zhang et al., 2019). Consistent with previous
studies (Acosta et al., 2017; Zhao et al., 2017), we document
immunohistologically, a similar increase in tau phosphorylation
following TBI. Hyperphosphorylation appeared at day 1 post-
injury in the ipsilateral internal capsule then spread to the gray
matter regions, specifically to the ipsilateral and contralateral
thalamus and the contralateral dentate gyrus after 1 week.
Such early changes in tau phosphorylation were consistent with
another study that utilized the CCI model in a triple-transgenic
mouse (3×Tg-AD), where an increase in phosphorylated-
tau expression in the fimbria and the CA1 region of the
hippocampus, along with the deposition of amyloid-β plaques
within 1 week of the injury were reported (Tran et al., 2011a).
Unlike Tran et al., we did not see any increase in total tau
levels, which was consistent with the report of Zhang et al.
(2019) who reported no changes in total tau levels even 6 weeks
after injury. In pR5 mice, NFT formation is initiated at around
6 months in the amygdala and also detectable in the CA1 region
at 20 months of age (Deters et al., 2008). In general, the literature
supports that aging accelerates the course of AD pathogenesis.
Tau hyperphosphorylation was evident in the hippocampus of
pR5 mice at 9 months of age post-TBI in our study as compared
the typical 20 months of age as reported by previous studies (Gotz
et al., 2001; Deters et al., 2008).

The role of neuroinflammation in tau pathogenesis has also
been extensively documented (Curran and O’Connor, 2001;
Sutinen et al., 2012; Morales et al., 2013; Collins-Praino and
Corrigan, 2017; Leyns and Holtzman, 2017; Laurent et al., 2018).
In both clinical and experimental models, TBI can augment tau
pathology if it coexists with active glial cells (Johnson et al.,
2012, 2013; Ojo et al., 2013; Nilson et al., 2017). We noted
the presence of reactive astrocytes and activated microglia in
regions presenting with increased hyper-phosphorylation, such
as the ipsilateral thalamus and contralateral dentate gyrus,
corpus callosum, and internal and external capsule. Both
microglia and astrocytes have been shown to be promoters
for tau hyper-phosphorylation by either increasing the release
of pro-inflammatory mediators in their active states that
further increases the activity of kinases responsible for tau
phosphorylation or by altering other involved pathways (Curran
and O’Connor, 2001; Sutinen et al., 2012).

Diffusion tensor imaging is a well-established imaging tool
that has been known to detect TBI-induced microstructural
abnormalities in the brain (Alexander et al., 2007; Lo et al., 2009;
Budde et al., 2011; Soni et al., 2018). Here we have shown, FA

and AxD were reduced in the TBI group in the ip-thalamus,
corpus callosum, external capsule, and internal capsule compared
to the sham transgenic mice with immunohistochemical evidence
of increases in tau phosphorylation in these same regions. These
findings were consistent with Sahara et al. (2014) where DTI
changes in rTg4510 tau transgenic mice were studied with respect
to tau pathology, regardless of injury, a similar reduction in FA in
the white matter was associated with tau hyper-phosphorylation
in rTg4510 mice. In 3×Tg mice, decreased FA was reported
primarily in the hippocampal region which was associated with
depositions of both Aβ plaques and hyperphosphorylated tau
(Snow et al., 2017). Here we noticed tau phosphorylation and
reduced FA in the dentate gyrus; however, the correlation was
not significant, most likely related to the sensitivity limitations
of DTI (Taoka et al., 2009). Another reason could be that the pR5
mouse model used in this study is a tau transgenic mouse with
no amyloid pathology; therefore, unlike 3×Tg mice, the changes
we noticed were only associated with hyperphosphorylated tau.
It should be noted that contradictory to our findings, Wells et al.
(2015) reported an opposite trend of FA change in the areas of
high tau burden, including the cortex and hippocampus but not
in the thalamus where NFT density was significantly low. We
also noticed increased FA in a few regions involving the cortical
areas close to the injury site–amygdala, ipsilateral epithalamic,
and contralateral-ventral thalamic region–but did not find any
correlation with phosphorylated-tau increase. It is possible that
phosphorylated tau in its aggregated form alters the directionality
and diffusion of water in a different manner; however, as we
did not look at NFTs, this cannot be confirmed with the current
data. Altogether, our results indicate that the post-TBI increase in
phosphorylated-tau may induce structural impairments that are
measurable with DTI.

The DTI changes observed may be further complicated by
the associated neuroinflammatory processes. Astrocytes, that are
responsible for upholding homeostasis in the central nervous
system (Sofroniew and Vinters, 2010). They are typically been
shown to have star like shape and isotropic morphology
(Schiweck et al., 2018). However, advanced visualization
techniques revealed that shape of astrocytes is complex and
keeps changing depending on the region and physiology of the
brain (Fernaud-Espinosa et al., 1993). In pathological conditions,
such as brain insults, gliomas and neurodegenerative disorders
astrocytes appear in different structural forms depending on the
severity or stages of the pathological condition (Schiweck et al.,
2018). This can either highlight its isotropic behavior or shift it
toward anisotropy and can affect directionality of water diffusion.
In TBI, some reports have demonstrated isotropic gliosis in
gray matter, where astrocytes maintain their distinct shapes but
become hypertrophic that may lead to visible decrease in FA
(Edlow et al., 2016). Contradictory to these findings, some others
have depicted anisomorphic gliosis following injury (Budde et al.,
2011; Laitinen et al., 2015; Soni et al., 2018). These studies
indicated that astrocytes present in close proximity to injury site
have the characteristics to change their shapes by expanding their
busy processes toward lesion that lead to anisotropic structure
causing increase in FA (Budde et al., 2011; Laitinen et al.,
2015; Soni et al., 2018). These astrocytes named as palisading
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astrocytes are also responsible for the formation of glial scars.
In AD, along with morphological variations astrocytes are also
demonstrated to have spatial association with the pathological
tau which may contribute in disease progression concurrently
(Sidoryk-Wegrzynowicz et al., 2017; Kovacs et al., 2018).

In this study, on day 1 post-injury, we observed increase
in astrocytes but we did not observe any increase in tau and
microglia count. Therefore, slight reduction in FA seen on day
1 can either be because of increased astrocytes, or damage to the
fiber bundle attached to the thalamic region or edema. However,
as we did not see any significant changes in AxD, RD, and
MD thalamic region and also no change in ad was noted in
white matter tracks, it is likely indicated toward glial pathology.
Generally, microglia activation starts earlier than astrocytes post-
TBI but because gliosis had already been reported at 9 months
of age in Pr5 animals, it might be possible that TBI induction
in these animals resulted in increased astrocyte expression prior
to microglial activation seen on days 1 and 7 (Skripuletz et al.,
2013; Jha et al., 2019). In our previous TBI study on wild type
mouse, we observed an increased FA in the ipsilateral thalamus
post 7 days of injury, which was reflecting the anisotropic gliosis
(Soni et al., 2018). Whereas in our current study, we observed
FA increase only in the cortical area very close to the injury
site which can be because of palisading astrocytes and amygdala
may reflect neurodegeneration supported by reduction in AD
and MD. In thalamus, FA changes were supporting isotropic
nature of astrocytes leading to reduction in FA on day 7 post-
injury. These differences in FA can be driven by a combined
effect of astrocytes, phosphorylated tau and active microglia also
seen in the thalamic region on day 7 post-injury. While the
association of DTI parameters with neuroinflammatory markers
in both gray matter and white matter regions has been extensively
studied post-TBI (Budde et al., 2011; Bennett et al., 2012; Soni
et al., 2018), the alterations induced by the combined effect of
neuroinflammatory markers along with tauopathy has not been
explored. In our study, we observed a negative correlation of
GFAP expression with FA and AxD change in the areas with
phosphorylated-tau increases. This FA reduction with respect to
gliosis was opposite to other CCI studies on wild-type rodents,
where increased FA was shown to reflect gliosis (Budde et al.,
2011; Xu et al., 2011; Soni et al., 2018). This inconsistent pattern
could be explained by the additional presence of phosphorylated-
tau and microglia in the thalamus of transgenic mice post-
injury, that might be absent in those wild-type rodents. Thus,
it could be suggested that these changes are either driven by
both the astrocytes or phosphorylated tau together or dominated
by phosphorylated tau (Sahara et al., 2014; Snow et al., 2017).
In contrast to the thalamus, in the ip-amygdala and cortex,
we observed a positive correlation between astrocytes and FA,
which was consistent with the TBI studies (Budde et al., 2011;
Soni et al., 2018). Thus, it justifies that the changes were
only driven by astrocytes as the phosphorylated-tau burden in
these areas did not differ between sham and TBI groups. The
negative correlation of microglia counts with MD and AxD in
the thalamus suggested that the increase in the microglial cell
density in the thalamic region could restrict water diffusion in
the area. However, as TBI initiated multifaceted mechanisms

and DTI measures might be affected by a multitude of factors
other than phosphorylation and neuroinflammatory processes,
investigation of other processes would contribute further to
the specificity of these effects. Other pathological mechanisms,
such as axonal injury, amyloid deposition (Tran et al., 2011b;
Genrikhs et al., 2017), neuronal death (Murakami et al., 1998;
Genrikhs et al., 2017), neurogenesis (Tran et al., 2006), and
demyelination (Guglielmetti et al., 2016) may also contribute to
the changes observed in DTI measures specifically FA (Rola et al.,
2006). Axonal injury to the axons may perturb the dissociation
of tau protein from the microtubules leading to microtubular
destabilization and increased tau protein levels in the brain tissue,
cerebrospinal fluid, and serum/plasma (Zemlan et al., 1999; Smith
et al., 2003; Johnson et al., 2013). When evaluated in TBI patients
and experimental models it has been found that both total tau
and phosphorylated tau levels were significantly increased and
were affecting memory functions (Zhao et al., 2017; Zanier et al.,
2018). These findings suggested that axonal injury is not the only
mechanism responsible for TBI associated tauopathy. Axonal
damage dissociates tau protein from the microtubule and may
provide a surge to other underlying pathological mechanisms
that can further accelerate and worsen the tau pathology by
initiating tau hyperphosphorylation and oligomer formation.
Axonal injury together with inflammation, cell death and myelin
damage can affect diffusion differently at one and 7 days after
the injury. Therefore, investigating transgenic models, where key
processes are more prominent and elevated than others, may be
a key approach to highlighting the DTI alterations that may be
more reflective of those processes.

Our study has several limitations, which if addressed, could aid
in a better understanding of the associated pathological process.
This study shows that TBI affects increasing tau pathology in the
pR5 mice, it is unable to conclude whether TBI has more of an
effect in the presence of tau pathology since no comparison was
made in normal mice. Therefore, the inclusion of non-transgenic
sham and TBI littermates would have provided a suitable
baseline for comparisons. Further, behavioral assessments of
cognition were not performed. The lack of cognitive testing in
this study means that this study cannot define the functional
impact of the DTI and pathological changes that we have
detected, and this warrants future study. The investigation at
longer follow-up times would provide insight into the trajectory
of tau propagation in pR5 mice and allow the development
of better diagnosis paradigm. Although DTI changes were
observed in the regions with a high burden of phospho-tau,
astrocytes and microglia due to its nature of detecting complex
pathologies, it cannot be said that the changes observed in
DTI measures are specifically due to these pathological events
as the direct correlation were not performed. The limitation
on direct matching of DTI and histological measurements are
inherent to the methods themselves: MRI can image the whole
brain while in general, histology can only image a few very thin
sections per animal. Even a single MRI slice is approximately
10 times thicker than one histological slice. Nevertheless, the
specific correlation of a histopathological process with a specific
trend of diffusion imaging metric change is a complicated issue.
For example, a specific pathology may result in a predictable
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biomarker on DTI or NODDI; however, different pathologies
may create the same diffusion metric change (Jelescu and Budde,
2017). Furthermore, in complex conditions like concussion or
TBI, pathologies generally do not occur alone. Astrogliosis,
microgliosis, and axonal injury generally occur together as a
consequence of TBI in mice (Namjoshi et al., 2016, 2017; Bashir
et al., 2020; To et al., 2020). Thus, we placed greater importance
on maintaining consistency within the same modality (MRI or
histology) across different subjects rather than across different
modalities (MRI and histology) within the same subject. For
consistency across all subjects with MRI, the same ROI covering
the defined by the AMBMC atlas was used. For histology, we
used the same box ROI size for different subjects covering
approximately the same area. Greater importance was placed on
determining the capability of DTI on detecting the effects of
injury by comparing the sham and controls and demonstrating
the underlying pathologies underpinning in injured animals. The
correlation between DTI and histological measurements were
serendipitous in nature. Also, Fourier or structure tensor-based
analyses (Budde et al., 2011) can provide anisotropy to directly
compare to FA. However, as this was the first MRI study in TBI-
tau transgenic mice model, our purpose was to first understand
the pathological cascade if there is any pathological change at
early stage and how it can affect DTI measures for which it
was important to perform staining. As from this study it is
now clear the microstructural changes involved in this double
model are mainly affecting FA. In our proposed future study,
we will be specifically performing a correlation study and will
be using Fourier or structure tensor-based analyses. Another
major limitation of this study was the lack of evaluation of sex
differences which indeed can increase our understating of disease
progression and spatiotemporal changes with time (Wright et al.,
2017a,b). A comprehensive comparison of disease progression
is a critical step which is required to implement the diagnostic
and therapeutic tools at a clinical level thus can be suggested to
include in the future studies. Further, a sample size of n = 6 per
group was used for this study. to calculate the sample size of this
study we conducted a power analysis based on our previously
published work; we obtained a standard deviation obtained in the
DTI measures (FA and mean diffusivity) from first study, which
was 20% relative to the mean, six mice per surgery group were
required to be able to observe a 22% difference with alpha of 0.05
and 80% power. Further, with the standard deviation found in
immunohistochemistry in the pilot experiments (which was 25%
relative to the mean), we needed six mice per surgery group to
be able to observe 27% of differences at the 0.05 significance level
and 80% power. However, considering the heterogeneous of the
model and pathologies evolved post-injury in CCI, we suggest the
use of large data sets for similar future studies.

CONCLUSION

In conclusion, the detection of the cumulative effects of TBI
in the AD brain is limited because of the myriad of ongoing
processes. We highlight that DTI, and in particular, FA patterns
as promising methods to discern tauopathy-related pathology
compared to combined tau and neuroinflammatory processes

in the brain. These findings are supported by our histological
measures of tau, microglia, and astrogliosis. We suggest FA as
a potential in vivo marker to detect TBI-associated tauopathy
and this would be the first study to demonstrate the spatio-
temporal profile of DTI microstructural changes following TBI
in a transgenic tau model. Our findings advance the current
understanding of diagnostic tools for the detection of TBI-
accelerated tauopathy in experimental animal models.
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Supplementary Figure 1 | Example of distortion-corrected data from a sham
subject, demonstrating SNR.
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Supplementary Figure 2 | Examples of registered FA maps from sham and CCI
animals of days 2 and 7. Each individual’s registered FA maps (grayscale
background) were shown with the corresponding skeletonized FA maps (rainbow
scaled overlays). Generally, thinner white matter tracts (e.g., the external capsule
on contralateral side) were well-matched across subjects, evidenced by the thin
FA skeleton consistently covering the whole tract. Thicker white matter tracts, i.e.,
areas with high FA, (e.g., the corpus callosum and internal capsule, indicated on
first row with purple arrows) had slight mismatches, in terms of the tract thickness
and/or the FA skeleton did not always pass through the same location along the
tract. TBSS skeletonizing process improve the spatial matching of these white
matter tracts and overall, the skeletonizing process was accurate, i.e., the FA
skeleton always fall within larger FA tracts. TBSS also reflected situation where the
white matter tract was disrupted in lesion area in the CCI animals, for example the
ipsilateral external capsule (indicated by light blue arrows). On the registered FA
maps, the external capsule in the lesion area disappeared and the corresponding
FA skeleton passing through the area, the FA value was significantly lower to than
the contralateral external capsule FA skeletonized FA tract (∼0.1, below the TBSS
FA threshold). The white matter tracts were grossly aligned and consequently the
more homogenous (in terms of DTI metrics pattern) gray matter area was
sufficiently well-matched for voxel-wise spatial statistics. This is relevant since
TBSS does not provide results on DTI changes in the gray matter.

Supplementary Figure 3 | Figure representing the sections and regions of
interest chosen for region-based quantification: (A) Representative images from
the developing Allen mouse brain atlas to demonstrate the bregma region (−0.5 to
−4.5 mm) used for immunohistochemistry analysis and quantification. (B) Images
of the MRI slices from the same bregma region were chosen to demonstrate the
Regions-of-interest that were drawn manually on the study-specific template using
the Australian mouse brain mapping consortium template (Watson et al., 2017)
and the Allen adult mouse brain atlas (https://alleninstitute.org/) as a reference. All
slices between the bregma regions −0.5 to −4.5 mm were covered in the ROI
mask. (C) Representative serial coronal sections chosen for
immunohistochemistry quantification. Regions of interest were Amygdala,
thalamus, hippocampus (CA1 and dentate gyrus), cortex (closer to the amygdala
region), corpus callosum, internal and external capsule shown with different colors
on the slices. Two sample boxes (one large and one small) were used to create
multiple ROIs for all the slices, that were used to quantify pathologies in different
areas as shown in different colors in the figure. To be consistent with the size of
the ROIs, same set of ROIs for all the five sections were used for all the animals
with slight adjustment in the location if needed.

Supplementary Figure 4 | Histology sections of a representative sham mouse
stained for p-tau.
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Remyelination is a naturally occurring response to demyelination and has a central
role in the pathophysiology of multiple sclerosis and traumatic brain injury. Recently
we demonstrated that a novel MRI technique entitled Relaxation Along a Fictitious
Field (RAFF) in the rotating frame of rank n (RAFFn) achieved exceptional sensitivity
in detecting the demyelination processes induced by lysophosphatidylcholine (LPC)
in rat brain. In the present work, our aim was to test whether RAFF4, along with
magnetization transfer (MT) and diffusion tensor imaging (DTI), would be capable of
detecting the changes in the myelin content and microstructure caused by modifications
of myelin sheets around axons or by gliosis during the remyelination phase after LPC-
induced demyelination in the corpus callosum of rats. We collected MRI data with
RAFF4, MT and DTI at 3 days after injection (demyelination stage) and at 38 days
after injection (remyelination stage) of LPC (n = 12) or vehicle (n = 9). Cell density
and myelin content were assessed by histology. All MRI metrics detected differences
between LPC-injected and control groups of animals in the demyelination stage, on day
3. In the remyelination phase (day 38), RAFF4, MT parameters, fractional anisotropy,
and axial diffusivity detected signs of a partial recovery consistent with the remyelination
evident in histology. Radial diffusivity had undergone a further increase from day 3 to
38 and mean diffusivity revealed a complete recovery correlating with the histological
assessment of cell density attributed to gliosis. The combination of RAFF4, MT and DTI
has the potential to differentiate between normal, demyelinated and remyelinated axons
and gliosis and thus it may be able to provide a more detailed assessment of white
matter pathologies in several neurological diseases.

Keywords: myelin, demyelination, remyelination, MRI, diffusion, rotating frame relaxation

Abbreviations: MRI, magnetic resonance imaging; MR, magnetic resonance; DTI, diffusion tensor imaging;
MT, magnetization transfer; RAFF, relaxation along a fictitious field; MTR, magnetization transfer ratio; LPC,
lysophosphatidylcholine; MD, mean diffusivity; FA, fractional anisotropy; RD, radial diffusivity; AD, axial diffusivity;
FSL, FMRIB’s Software Library; ROI, region of interest; OD, optical density.
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INTRODUCTION

Myelin is essential for the proper functioning of the central
nervous system. It not only accelerates the propagation of
electrical impulses along myelinated fibers, but it also provides
protection and nutrients to neurons (Saab and Nave, 2017).
Disturbances in the integrity of myelin can cause a wide variety
of motor, sensory and cognitive symptoms, and demyelination,
e.g., damage or loss of myelin sheaths has been associated with
several diseases including multiple sclerosis (Noseworthy et al.,
2000), Alzheimer’s disease (Nasrabady et al., 2018), and traumatic
brain injury (Armstrong et al., 2016a).

Remyelination is a natural regenerative response to
demyelination. Both acquired and genetic demyelinations
are followed by remyelination, and this has been found to
play an important role especially in multiple sclerosis (Prineas
and Connell, 1979; Hirano, 1989) and traumatic brain injury
(Armstrong et al., 2016b). Oligodendrocytes create new myelin
sheaths that cover the demyelinated axons; however, the newly
formed myelin sheaths are typically thinner than the original
myelin sheaths and/or may have a different structure and
altered conduction properties (Zhao et al., 2005; Franklin and
Ffrench-Constant, 2008). Remyelination is a key step in the
patient’s recovery process, as electrical impulses propagate
too slowly along demyelinated axons to allow normal brain
function. Non-invasive quantitative imaging of changes
in myelin content and microstructure can provide critical
information about demyelination and remyelination processes
and be useful for monitoring the progression of diseases and
responses to treatment.

There are several methods available which can be used for
imaging of demyelination, however, MRI is able to map myelin
only indirectly (Heath et al., 2018). Direct detection of myelin
is difficult as the movement restriction of lipid chains in the
myelin bilayer causes a fast relaxation decay of the MR signal,
although it may become more feasible by adopting zero echo time
imaging approaches (Wilhelm et al., 2012; Seifert et al., 2017).
Diffusion MRI, in particular diffusion tensor imaging (DTI),
monitors the microscopic motion of water molecules that occur
in brain tissues as a part of the diffusion process. As myelin
sheaths restrict water diffusion, DTI can detect abnormalities in
the structure of white matter, although it is not specific for the
myelin compartment as many other cell structures contribute to
the restriction of diffusion in tissue. Magnetization transfer (MT)
MRI is an indirect method that was proposed many years ago
for the detection of demyelination (Wolff and Balaban, 1989).
This method utilizes the exchange of magnetization between
the hydrogen nuclei of semisolid macromolecules and hydrogen
protons in free water; as a consequence, semisolid tissue
components such as myelin structures can modulate the MR
image contrast. One limitation to the use of MT for monitoring
myelin is that other macromolecular tissue components, as well
as changes in the water content due to edema, also affect the MT
contrast. Multi-exponential T2 can serve as a potential indicator
of the myelin content in white matter. However, the relative size
of the short-T2 component around 8–50 ms is defined as myelin
associated water, and this has often been interpreted as the myelin

content (Dula et al., 2010). While the water fraction of myelin
has been found to correlate with the myelin content, the exact
relationship between the short T2 component and the myelin
content is not well understood (Tozer et al., 2005).

A novel rotating frame relaxation method operating in non-
adiabatic regime, entitled Relaxation Along a Fictitious Field
(RAFF) (Liimatainen et al., 2010, 2011) in the rotating frame
of rank n (RAFFn) (Liimatainen et al., 2015), was recently
presented and shown to have excellent sensitivity for myelin
detection both in normal brain (Hakkarainen et al., 2016) and in
demyelinated lesions induced by lysophosphatidylcholine (LPC)
injections into the corpus callosum and in the dorsal tegmental
tract (Lehto et al., 2017) of the rat brain and in dysmyelination
(Satzer et al., 2015) in mouse brain. The correlation of relaxation
time constants detected with RAFF4 (TRAFF4) with the myelin
content obtained in a previous study (Lehto et al., 2017) was
ascribed to the increased sensitivity of RAFFn to slow/ultra-
slow motional regimes. These have correlation times of motion
in the ms range (Liimatainen et al., 2015; Satzer et al., 2015;
Hakkarainen et al., 2016), likely reflecting the exchange of
myelin associated water as well as the conformational dynamics
of methylene functional groups within myelin. The highest
correlation between relaxation time constants and the myelin
content was achieved with RAFF4 and RAFF5 techniques as
compared to T1, T2 and conventional spin-lock rotating frame
relaxation contrasts (Satzer et al., 2015; Hakkarainen et al.,
2016) in the rat brain. In addition, RAFFn provides the distinct
advantage of resulting in a substantially lower specific absorption
rate (SAR) as compared to conventional continuous wave (CW)
(Liimatainen et al., 2010, 2015).

While our previous work demonstrated the clear advantages
of RAFFn in the detection of demyelination (Lehto et al., 2017),
the process of remyelination was not assessed by multimodal
MRI. In the present work, we hypothesize that by combining
microstructural imaging, DTI, and methods specific to myelin
content, RAFFn and/or MT, it is possible to characterize both
the myelin content and the integrity of myelin sheaths during
remyelination. To test this hypothesis, we used LPC-induced
demyelination in the rat corpus callosum, and conducted a
longitudinal study using multiparametric MRI data during both
the acute demyelination and chronic remyelination phases and
compared the results with histological findings.

MATERIALS AND METHODS

Animal Model
A total of 26 adult male Sprague-Dawley rats (Charles River,
Germany; 300–350 g) were used in this study. Rats were
group housed with a 12 h light/12 h dark cycle and had
ad libitum access to food and water. All animal procedures
were approved by the Animal Ethics Committee of the
Provincial Government of Southern Finland and conducted in
accordance with the guidelines set by the European Commission
Directive 2010/63/EEC.

All surgical procedures were done under inhalation anesthesia
using 1.8–2.2% isoflurane in 30%/70% O2/N2O. To induce
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demyelinated lesions, stereotaxic injections of the LPC
solution (volume of 1.5 µl; concentration: 10 mg/ml; L-α-
lysophosphatidylcholine from egg yolk; L-4129 Sigma-Aldrich,
St. Louis, United States) were administered into the corpus
callosum of the rat brain with stereotactic coordinates of 0.4 mm
caudal from bregma, 1.4 mm left from bregma, and 2.6 mm from
the brain surface (n = 17). Control animals (n = 9) underwent the
identical protocol but were injected with 1.5 µl of vehicle solution
of 0.1 M sodium phosphate buffer solution instead of LPC.

Pilot Study
A pilot study was first performed to clarify the time course of the
demyelination/-remyelination process in the LPC model under
our experimental conditions. It has been previously described
that demyelination without an inflammatory reaction peaks at
day 3 after LPC injection (Waxman et al., 1979; Lehto et al., 2017).
However, it was our intention to determine the time course of
remyelination. In the pilot experiment, 5 LPC rats were imaged
at 7 T MRI (Bruker Pharmascan, Entlingen, Germany) with an
actively decoupled quadrature receiver rat head coil and volume
transmit coil pair every 2–3 days for 38 days using a high-
resolution T2-weighted fast spin-echo (FSE) sequence with the
following parameters: TR = 2.6 s, averages = 8, TEeff = 42.7 ms,
rare factor = 8, FOV = 25.6× 25.6 mm2, matrix size = 256× 256,
number of slices = 24 and slice thickness = 0.3 mm) with total
imaging time of 10 min 55 s. Immediately after the final scanning,
the animals were perfused for histology.

MRI Protocol to Study Demyelination
and Remyelination
The remaining rats (n = 21) were imaged on day 3 after the
LPC (n = 12) or vehicle (n = 9) injection, when there was
already a significant demyelination without any inflammatory
reaction or any signs of remyelination (Waxman et al., 1979),
and again on day 38 after the injection when there should
be a marked remyelination according to our pilot study. All
MRI procedures were performed with the 7 T MRI system
described above. The location of injections was localized using
T2-weighted FSE acquisitions. The center of the imaging
slice for RAFF4, MT, and DTI (middle slice), on both day
3 and day 38, was positioned to align with the center of
the T2-weighted slice next (caudal) to the slice covering the
injection site to exclude any mechanical damage induced
by the injection.

For the relaxation and MT measurements, a FSE pulse
sequence was used as the readout portion of the sequence. The
parameters for the readout were TR = 4 s, TEeff = 8.3 ms, necho = 8,
FOV = 32.0 × 32.0 mm2, matrix size = 256 × 256, number of
slices = 1 and slice thickness = 0.5 mm with a total acquisition
time of 16 min for one relaxation time constant map.

The RAFFn method has been presented in detail previously
(Liimatainen et al., 2015). Here, we used RAFF4; to generate
RAFFn contrast, trains of RAFFn pulses assembled in P-packets
(PP−1 Pπ Pπ

−1) were used as described before (Liimatainen
et al., 2010). The duration of each RAFF4 pulse, defined
as Tp = 4π/(

√
2ω1

max), was set to 4.525 ms and the peak

RF amplitude was γB1 = 324 Hz. The RAFF4 pulse
train durations were 0, 109, 217, 326, and 434 ms. Separate
measurements were performed with and without an adiabatic full
passage (AFP) inversion pulse (hyperbolic secant (HS1) pulse,
Tp = 8 ms, γB1 = 2,500 Hz) preceding the RAFFn pulse trains
(Liimatainen et al., 2010).

RAFF4 was calculated by a non-linear least-squares fitting
approach simultaneously on data obtained with initial -z′ and+z′
magnetization orientations (Liimatainen et al., 2010). Equation
1 was used to model the observed exponential decay and the
approach to steady state,

S±Z(t) = S0,±Z e−Rt
− SSS(1− e−Rt) (1)

Here, S0 is the initial signal intensity (t = 0), R is the relaxation
rate constant describing the decay, and SSS is the steady-state
intensity at t→∞.

In acquiring MT metrics, we used the modified inversion
MT protocol with two consecutive acquisitions as described
previously (Mangia et al., 2011). Separate measurements were
performed with the magnetization initially aligned along the +z
axis during off-resonance irradiation, or -z axis to allow the
signal to recover, i.e., without or with initial global inversion
achieved by an adiabatic full passage (AFP) pulse, in analogy
to the acquisitions with RAFF4. A square saturation pulse with
γB1 = 200 Hz was placed at 8 kHz off-resonance with an
incremental duration (0.0, 0.3, 0.6, 0.9, 1.2 s). T1sat , MSS (steady
state magnetization) and M0 (fully relaxed magnetization in the
absence of RF), were calculated using pixel-by-pixel analysis, as
described by Mangia et al. (2011). MTR was also calculated as
MTR = 1–MSS/M0.

For DTI, segmented spin-echo EPI was used with TR = 1
s, TE = 31.8 ms, nshots = 2, number of averages = 48,
FOV = 21.3 × 14.4 mm2, matrix size = 170 × 115, number of
slices = 5, slice thickness = 0.5 mm, b = 2,000 s/mm2, diffusion
directions = 42 leading to a total acquisition time of 1 h 18 min.
Mean diffusivity (MD), fractional anisotropy (FA), and radial and
axial diffusivity (RD, AD) maps were calculated from DTI data.
DTI data were corrected for motion and eddy current-induced
image distortions using Explore DTI (Leemans et al., 2009).
Relaxation time constants and parametric maps from MT and
DTI were reconstructed from signal intensities using pixel-by-
pixel fitting in MATLAB (MathWorks, Natick, MA) and FMRIB’s
Software Library (FSL).

Region-of-Interest (ROI) Analysis
All the images from both time points were co-registered to the
RAFF4 images from day 3 using Advanced Normalization Tools
(ANTs)1. Two ROIs in the corpus callosum, one contralateral
and one ipsilateral to the injection site, were manually drawn
on T2-weighted images in every animal and transferred to the
co-registered stack of parametric maps using the Aedes software
package2 When drawing the ROIs, we chose one slice caudally
to the injection site based on the day 3 images and we used the

1http://stnava.github.io/ANTs/
2http://aedes.uef.fi
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same location on day 38. Mean values from each ROIs from
every map were used in the statistical analysis. In the vehicle
injected animals, the ROIs were drawn at the vehicle injection
site similarly as conducted for the LPC- injected animals.

Histological Procedures and Analysis
After the last MRI session, all animals were transcranially
perfused first with 0.9% NaCl (30 ml/min, 2 min, 4◦C) followed
by 4% paraformaldehyde solution in 0.1 M phosphate buffer
(pH 7.4) (30 ml/min, 25 min, 4◦C). After perfusion, the brains
were removed from the skull, and post-fixed for 4 h in 4%
paraformaldehyde solution. Then, the brains were cryoprotected
in 20% glycerol in 0.02 M potassium phosphate-buffered saline
(pH 7.4) for 36 h, and frozen in dry ice, and stored at –70◦C
until sectioning.

The brains were sectioned into five series of 30 µm thick
coronal sections using a sliding microtome. The first series
was stored in 10% formalin at room temperature, and second
to fifth series were stored in a cryoprotectant tissue-collecting
solution (30% ethyleneglycol, 25% glycerol in 0.05 M PBS) at
–20◦C until staining.

Selected sections from the first series of sections were stained
with Nissl (thionin) to assess changes in the cytoarchitecture
of the corpus callosum. We stained up to 10 sections covering
and exceeding the lesioned area as revealed in MRI on day
3. Consecutive sections from the second series were stained
with gold chloride to assess the myeloarchitecture of the corpus
callosum (Laitinen et al., 2010).

The optical density of Nissl- and myelin-stained sections
was quantified in locations corresponding to the ROIs in the
MRI analysis. Three consecutive sections were selected based
on the MRI images where the ROI was drawn for analysis.
The histological sections were selected based on anatomical
landmarks, and the ROIs for optical density were drawn in
the same anatomical location as in the MRI images in the
ipsi- and contralateral corpus callosum. The three consecutive
sections represent 450 µm in the rostral-caudal direction, which
provides good coverage of the slice thickness of 500 µm in MRI.
High-resolution photomicrographs of both Nissl- and myelin-
stained sections of the corpus callosum were obtained using
a light microscope (Zeiss Axio Imager2, White Plains, NY,
United States) equipped with a digital camera (Zeiss Axiocam
color 506). The whole corpus callosum area was imaged in
each section by using the tile mode with an objective of 20×.
Acquisition, alignment and format conversion were performed
with Zen software (Blue edition, v2.6, Carl Zeiss Microscopy
GmbH, United States).

The optical density (OD) on Nissl- and myelin-stained
sections was quantified using ImageJ software (version 1.47,
http://rsb.info.nih.gov/ij/, NIH, United States). First, the color
photomicrographs were converted into 16-bit gray scale images,
and then the gray scale was inverted to facilitate the interpretation
of intensity values in the image to the intensities observed in
the myelin-stained sections. We obtained the intensity values
from each ROI from Nissl and myelin-stained sections. In order
to correct for possible staining differences between sections and
brains, the intensity values were corrected against the background

intensity with no cell/myelin as in the cortical areas. OD was
estimated as (Iref – Icc)/Iref, and for each ROI, the OD value
was the average of the three consecutive sections. The estimation
of the area of demyelination was conducted on the myelin-
stained sections by selecting the area with a low content of
myelin ipsi- and/or contralaterally. This selection was limited
to the area of demyelination included in the previously drawn
ROI for intensity.

Statistical Analysis
Data were analyzed using GraphPad Prism software (version 5.03
for Windows, La Jolla, CA, United States). Numerical results
are represented as mean and standard deviation. Differences
between vehicle- and LPC-injected rats were assessed using the
two-sample t-test, and differences between ipsi- and contralateral
corpus callosum within the same brain using the paired t-test.
The contribution of myelinated axons and cell density to the
MRI metrics was assessed using Pearson’s linear correlation
of the ROI analysis results from MRI and OD of myelin-
and Nissl-stained sections. The change of the MRI parameters
between days 3 and 38 was assessed using paired-samples
t-test separately for ipsi- and contralateral ROIs of vehicle-
and LPC-injected rats. The Benjamini-Hochberg false discovery
rate method was used for multiple comparison corrections, and
FDR-threshold q < 0.05 was chosen for statistical significance
(Benjamini and Hochberg, 1995).

RESULTS

The time course of the relative signal changes in T2-
weighted images after LPC injection is shown in Figure 1.
This pilot experiment showed that a clear lesion could be
detected on day 3 in the corpus callosum, followed by a
gradual recovery of the T2-weighted signal intensity in the
subsequent time points (Figure 1G). This is consistent with
the demyelination/remyelination process described for the LPC
model in white matter (Woodruff and Franklin, 1999). Based
on this experiment, we chose day 3 as the time point for
demyelination and day 38 for remyelination.

On day 3, all the LPC animals exhibited a lesion in the
MRI maps with the lesion mainly in the ipsilateral corpus
callosum, but also extending to the contralateral side (Figure 2).
The group-wise results and comparisons in absolute units are
shown in Figure 3, while Table 1 shows relative differences
and q-values (FDR corrected p-values) facilitating a comparison
between modalities. The relative differences were calculated
as (LPC-Vehicle)/Vehicle)∗100%. All MRI metrics revealed the
significant and robust effect of demyelination following LPC-
injected animals in the ipsilateral site (Figure 3). The largest
relative differences were detected by RAFF4, FA and AD (48,
–50, –54%, respectively), while MTR, T1sat and RD showed
more modest (–18, 21, 26%) but still very clear changes between
the demyelinated ipsilateral area and a similar area in vehicle
treated animals (Table 1). The contralateral side also showed
statistically significant but smaller changes between LPC and
vehicle injected animals. Diffusion parameters, especially AD,
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FIGURE 1 | T2 weighted images showing the lesion in the corpus callosum (white arrow) and its development from day 3 to day 38 (A–F). The graph represents the
signal intensity ratio between lesioned and normal tissue on individual days (G).

FA and RD (–16, –22, 18%) were most sensitive at detecting
the contralateral changes; these were caused most likely by the
diffusion of LPC from the ipsilateral side to the contralateral side.

On day 38, all the LPC-injected animals revealed at least
a partial recovery of the lesion in the MRI maps (Figure 4).
Nonetheless, significant differences were still observed on day
38 between LPC and vehicle injected animals in the ipsilateral
side in all other MRI metrics except the MD (Figure 5). When
comparing MRI outcomes on day 3 (demyelination) to day 38
(remyelination), significant differences were detected in all MRI
metrics (Table 1). In particular, the recovery toward normal
values on the ipsilateral side of the LPC injected animals was
detected with RAFF4 (from 48 to 17%, difference in ipsilateral
side of LPC rats, from day 3 to day 38), MTR (from –18 to –7%),
T1sat (from 21 to 10%), MD (from –31 to 1%), FA (from –51
to –22%), AD (from –54 to –16%). Furthermore, RD displayed a
further robust increase (from 26 to 45%) from days 3 to 38.

Figure 6 shows the quantitative assessment of the histological
results as well as representative examples of myelin- and
Nissl-stained sections from vehicle- and LPC-injected animals.

On day 38, the optical density (OD) analysis on myelin-
stained sections revealed a small but significant decrease in
the myelin content when comparing the ipsi- and contralateral
ROIs in the corpus callosum in the LPC-injected brains
(q = 0.02) (Figure 6A). We found a significant increase
of the demyelinated area in animals after LPC injection in
comparison to vehicle animals, ipsilaterally (q = 0.0085) but
not contralaterally (q = 0.11) (Figure 6B). The demyelinated
area was small as compared to the total area of the ROI
analyzed in the OD analysis; these results demonstrate that the
remyelination was well advanced but not completed at 38 days
after the injection (Figures 6D–G). Additionally, we found that
myelin alterations were taking place along the corpus callosum
structure, which may be an indication of ongoing remyelinating
processes (Figure 6F).

The analysis on Nissl-stained sections revealed increased
cell density, which can be attributed to gliosis. The OD
analysis on Nissl-stained sections showed that values in
both ipsi- (q = 0.0032) and contralateral (q = 0.0085)
ROIs of the corpus callosum significantly increased when
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comparing vehicle and LPC animals (Figure 6C). The
increased cell density area overlapped with the demyelinated
area (Figures 6G,K) and myelin alterations (Figures 6F,J)
observed in myelin staining. These results demonstrate

FIGURE 2 | Quantitative MRI maps in the demyelination phase, on day 3:
RAFF4 (A), magnetization transfer ratio, MTR (B), T1sat (C), mean diffusivity,
MD (D), fractional anisotropy, FA (E), axial diffusivity, AD (F), radial diffusivity,
RD (G), T2w image with lesion (H) and representative example of ROIs for
analyzing the lesion on a grayscale RAFF4 map (I). White arrow points to the
lesion in the corpus callosum.

that the persistent demyelination was accompanied by
inflammatory processes which were still ongoing at 38 days
after the LPC infection.

None of the MRI parameters correlated with the OD of myelin
staining in the lesion area in the remyelination phase, however,
RD, FA and AD correlated with the OD assessed with Nissl
staining (q < 0.05) (Table 2).

DISCUSSION

In the present work, we investigated the capabilities of
quantitative RAFF4, MTR, T1sat and DTI metrics to detect LPC-
induced demyelination and remyelination in rat brain corpus
callosum. We confirmed the previously demonstrated high
sensitivity of RAFF4, MTR, and DTI for detecting demyelination
(Lehto et al., 2017). This is the first time when RAFF4 was tested
for investigating the myelination status during the remyelination
phase. Our main finding was that the remyelination phase was
associated with a partial recovery of RAFF4, MTR, and T1sat,
FA and AD, while RD remained abnormally high and MD
showed a complete recovery on day 38 after LPC injection, i.e.,
a time point when there was histological evidence of marked
remyelination and gliosis.

Our results confirmed the sensitivity of RAFF4 and MTR
to detect demyelination at 3 days after the LPC injection into
the corpus callosum when only mild gliosis was present (Lehto
et al., 2017). The demyelination phase was also associated with
a distinct pattern in the DTI metric’s changes, namely decreases
in FA, AD, and MD, and an increase in RD. In our previous
study, the LPC induced demyelination in the corpus callosum was
characterized by a clearly decreased myelin content as detected
by myelin staining. However, in that study we also observed

FIGURE 3 | Region of interest analysis of MRI parameters in the demyelination phase, on day 3: RAFF4 (A), magnetization transfer ratio, MTR (B), T1sat (C), mean
diffusivity MD (D), fractional anisotropy, FA (E) and axial and radial diffusivity, AD (F), and RD (G). Values obtained from the ipsilateral and contralateral sides of LPC
injected (n = 12) rats and from the corresponding ROI in the vehicle injected (n = 9) rats. Mean ± SD, paired (+) or unpaired (*) t-test, FDR corrected p-values:
*<0.05, ** or ++<0.01, *** or +++<0.001.
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TABLE 1 | Relative differences with statistical significances in the MRI metrics.

RAFF4 MTR T1sat MD FA AD RD

Day 3 Ipsi % 48.01 –18.16 21.33 –31.18 –50.51 –53.55 26.24

t 9.53 –12.57 9.44 –10.29 –15.89 –18.11 4.86

q 6.12e–08 1.10e–09 6.12e–08 2.33e–08 2.77e–11 5.35e–12 0.00017

Contra % 4.86 4.13 –3.92 –11.43 –17.80 –23.14 17.84

t 1.88 –3.21 2.71 –4.41 –5.51 –6.39 4.25

q 0.088 0.0061 0.018 0.00044 6.86e–05 1.58e–05 0.00061

Day 38 Ipsi % 17.02 –7.06 9.99 1.27 –22.33 –15.91 44.67

t 6.03 –4.88 5.49 1.03 –5.39 –5.11 5.81

q 2.94e–05 0.00017 6.86e–05 0.33 7.89e–05 0.00012 4.23e–05

Contra % 0.68 –1.11 2.78 –3.02 –17.54 –16.39 30.48

t 0.40 –1.282 2.52 –1.85 –5.18 –5.30 4.98

q 0.70 0.23 0.025 0.089 0.00011 8.71e–05 0.00015

Day 38 - Day 3 LPC Ipsi % –22.90 15.81 –12.07 42.14 60.16 75.64 12.02

t –7.18 10.22 –7.11 12.33 6.96 12.70 1.85

q 9.16e–05 5.57e–06 9.16e–05 1.24e–06 9.54e–05 1.24e–06 0.12

LPC Contra % –7.86 5.00 –4.72 6.78 1.33 7.19 7.41

t –4.65 4.67 –3.69 2.07 0.077 1.19 2.05

q 0.0016 0.0016 0.0077 0.095 0.97 0.33 0.095

Vehicle Ipsi % –3.30 1.85 –3.21 –4.53 –0.32 –4.94 –2.31

t –6.58 2.81 –5.79 –3.48 –0.23 –2.06 –0.68

q 0.00060 0.043 0.0013 0.017 0.89 0.10 0.58

Vehicle Contra % –4.27 1.92 –3.58 –3.12 0.13 –2.81 –2.83

t –9.84 2.72 –5.63 –2.36 –0.0051 –1.02 –0.74

q 6.69e–05 0.046 0.0014 0.075 1.00 0.41 0.56

*Percentage on day 3 and day 38: ((LPC-Vehicle)/Vehicle)*100%. q value is the p-value that has been adjusted for the false discovery rate. Percentage on day 38 vs. day
3: ((day 38 - day 3)/day 3)*100 LPC and vehicle ipsi- and contralaterally. q-value on day 38 vs. day 3: (value on day 38-value on day 3) vs. zero.

some remaining disorganized pockets in the myelin sheaths
with myelin debris being evident in electron microscopy (Lehto
et al., 2017). In the present experiments, the pattern of changes
in DTI metrics in demyelination phase, was mostly consistent
with our previous work, however, now we did find increased
RD, a parameter which was unchanged in our previous study.
The present finding is in agreement with the general view that
increased RD is an indication of demyelination (Song et al.,
2005). The difference to the previous study may originate from
differences in LPC patches leading to more severe demyelination.
This is also consistent with the somewhat relatively larger changes
in RAFF4 and MTR observed in the present study as compared to
those reported by Lehto et al. (2017).

The remyelination phase was characterized by a close-
to-normal myelin content as confirmed by OD analysis of
myelin-stained histological sections. Unlike on day 3, when
only very mild gliosis was present, on day 38 increased
cellular density was detected in Nissl staining, likely due to
gliosis. As increased cellularity affects relaxation, MT and
diffusion, this makes the interpretation of the results more
complicated, resembling more realistically the human pathology
where myelin damage typically triggers gliosis, and thus these
pathological features overlap. At the late time point, we
observed a recovery of RAFF4 toward the normal values
measured in the healthy tissue, which is consistent with

remyelination. It has been shown that RAFF4 is sensitive to
the correlation time regime in the ms-range (Satzer et al., 2015;
Hakkarainen et al., 2016), which likely corresponds to exchange
and dipolar interactions of myelin and water as well as
dipolar interaction with methylene groups. Therefore, the high
sensitivity of RAFF4 to myelin, also during the remyelination
phase, was expected.

MT showed a similar recovery toward baseline as RAFF4.
However, the relative difference to controls was smaller than in
RAFF4, reflecting its lower sensitivity to myelination changes
in the demyelination phase. Previously, RAFF4 had been
shown to correlate with myelin density to a greater extent
than MT in normal brain (Hakkarainen et al., 2016) and
in LPC-induced demyelinated lesions in dorsal tegmental
tract (dtg) of the rat brain (Lehto et al., 2017). It should
be emphasized, however, that there is a distinct difference
between relaxation mechanisms during RAFF4 and MT. RAFF4
is a rotating frame method operating in the rotating frame
of rank 4, and thus has contributions from longitudinal,
T1r, and transverse, T2r, relaxation pathways (Liimatainen
et al., 2015). In addition to anisochronous and isochronous
exchange and dipolar interactions contributing to RAFF4,
RAFF4 share cross-relaxation pathways with MT (van
Zijl et al., 2018). Therefore, these two techniques provide
only partially overlapping information when characterizing
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tissue integrity. This substantial distinction in the relaxation
mechanisms contributing to RAFF4 and MT is reflected in
the differential sensitivity of RAFF4 and MT to demyelination,

FIGURE 4 | Quantitative MRI maps in the remyelination phase, on day 38.
Relaxation time constant map of RAFF4 (A), magnetization transfer ratio, MTR
(B), T1sat (C), mean diffusivity, MD (D), fractional anisotropy, FA (E), axial
diffusivity, AD (F), radial diffusivity, RD (G), T2w image with the lesion (H) and a
representative example of ROIs for analyzing lesion on a grayscale RAFF4
map (I). White arrow points to the lesion in the corpus callosum.

dismyelination and remyelination processes in the brain
(Satzer et al., 2015). It is also worth noting that RAFFn
offers the possibility of achieving the desired fictitious field
by making use of a frequency swept pulse which improves
the flexibility in handling SAR issues in human applications
(Liimatainen et al., 2015).

The pattern of changes detected in DTI metrics in the
remyelination phase was likely conveying information from
multiple factors including the thickness and microstructure of the
myelin sheaths as well as the cell density. The partial recoveries of
FA and AD are similar to those detected with RAFF4 and may
reflect the rebuilding of myelin sheaths and the clearance of the
myelin debris. The increase in RD is consistent with the fact that
the remyelinated sheaths are structurally different from intact
myelin sheaths (Raine, 1984; Oluich et al., 2012; Podbielska et al.,
2013; Pfeiffer et al., 2019), i.e., they are likely more permeable
to water. MD was the only MRI parameter that returned to the
normal level on day 38. It is well known from cancer studies
that MD inversely correlates with the cellularity of the tissue
(Chenevert et al., 2000) and therefore the increased cellularity
due to gliosis likely contributes to the pseudo-normalization of
MD. The extension to more complex diffusion MRI models has
the potential to extract more specific information related to these
processes (Luo et al., 2019).

MRI changes were also detected on the contralateral side
of the injection between LPC and vehicle injected animals.
This is likely attributable to diffusion of LPC along axons in
corpus callosum such that LPC reached also the contralateral
side. Interestingly, changes in cell density in Nissl, attributed
to gliosis, were pronounced on the contralateral side on day
38, probably explaining the higher sensitivity of diffusion

FIGURE 5 | Region of interest analysis of MRI parameters in the remyelinization phase, on day 38: RAFF4 (A), magnetization transfer ratio, MTR (B), T1sat (C),
mean diffusivity MD (D), fractional anisotropy, FA (E) and axial and radial diffusivity, AD (F) and RD (G). Values obtained from the ipsilateral and contralateral side of
LPC injected (n = 12) rats and from the corresponding ROI in the vehicle injected (n = 9) rats. Mean ± SD, paired (+) or unpaired (*) t-test, FDR corrected p-values: +
< 0.05, *** or +++<0.001.
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FIGURE 6 | Histologic assessment of the myelin and Nissl stainings at 38 days after vehicle or LPC injection. OD (A) and demyelinated area (B) analyses of the
myelin-stained sections, and OD analysis of the Nissl-stained (C) sections. Values were obtained from the ipsi- and contralateral corpus callosum of vehicle- (n = 9)
and LPC-injected (n = 12) rats. Results are shown as mean ± SD. The unpaired t-test compared the same hemispheres between vehicle- and LPC-injected rats
(**p < 0.01), and the paired t-test ipsi- and contralateral hemispheres within the same animals (++p < 0.01). Photomicrographs of vehicle- and LPC-injected animals
in myelin (D–G) and Nissl (H–K) stains of representative rats. The white arrow points to the ongoing demyelinated area and the presence of gliosis, and the asterisk
indicates the area with ongoing myelin alterations accompanied by gliosis. Scale bar: 1 mm (D,E,H,I) and 200 µm (F,G,J,K).

TABLE 2 | Correlation between MRI metrics and the OD of myelin- and
Nissl-stained sections.

Myelin OD Nissl OD

R p R p

AD −0.18086 0.25171 −0.63062 7.5945e–06

FA −0.14081 0.37376 −0.67323 1.0335e–06

RD 0.13148 0.40656 0.64884 3.3607e–06

MD −0.13111 0.40787 −0.071477 0.65284

MTR 0.014335 0.92821 −0.29864 0.054724

RAFF4 0.036727 0.81738 0.2594 0.097141

T1SAT 0.086483 0.58604 0.36175 0.018572

Critical p-value (q < 0.05): 7.5945e–06.

changes than were evident with RAFF4 or MT. None of the
MRI parameters correlated significantly with optical density
of myelin staining in the remyelination phase. This is likely
because the optical densities were close to normal in the

lesioned area and therefore there was a narrow range of
values both for MRI and optical density. This, together with
confounding effect of gliosis on MRI parameters, explains the
non-significant correlation values between MRI parameters and
myelin density in the remyelination phase, even though there
was an evident recovery of MRI parameters, especially RAFF4
and MTR, from demyelination values. The influence of gliosis
on diffusion metrics is consistent with the earlier reports of
Budde et al. (2011). Consistently, we observed a correlation
between cellularity in Nissl staining and diffusion parameters
but not with RAFF4 or MT parameters, further emphasizing the
different sensitivities of these techniques to detect myelination
and cellularity.

One limitation of our study is that in spite of careful manual
alignment of histology with MRI by an expert in the field, the
partial volume effect and the challenge of selecting the same
ROIs in MRI and histology could have influenced our results. In
addition, the limited sampling in histology vs. the slice thickness
in MRI may have affected our assessments of the correlations.
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CONCLUSION

Our data confirms the sensitivity of RAFF4 and MT for detecting
the myelin content in demyelinated lesions, but now reveals
that remyelination is associated with a recovery of RAFF4 and
MT toward normal values. DTI metrics displayed a distinct
pattern of changes in the remyelination phase, likely reflecting
on-going changes not only in the myelin content but also in
the architecture of the myelin sheaths as well as the presence
of gliosis. The combination of RAFF4, MT and DTI has
the potential to differentiate between normal, demyelinated
and remyelinated axonal bundles and gliosis, thus making
possible a unique non-invasive characterization of white matter
pathologies in several neurological diseases. Further studies will
be required to evaluate the sensitivity of multiple MRI modalities
to detect remyelination in areas with more isotropic fiber
distributions, where RAFF4 has demonstrated its superiority over
DTI (Lehto et al., 2017).
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Parkinson’s disease (PD) is a major neurodegenerative disease characterized by massive
degeneration of the dopaminergic neurons in the substantia nigra pars compacta,
α-synuclein-containing Lewy bodies, and neuroinflammation. Magnetic resonance (MR)
imaging plays a crucial role in the diagnosis and monitoring of disease progression and
treatment. A variety of MR methods are available to characterize neurodegeneration
and other disease features such as iron accumulation and metabolic changes in animal
models of PD. This review aims at giving an overview of how those physiopathological
features of PD have been investigated using various MR methods in rodent models.
Toxin-based and genetic-based models of PD are first described. MR methods for
neurodegeneration evaluation, iron load, and metabolism alterations are then detailed,
and the main findings are provided in those models. Ultimately, future directions are
suggested for neuroinflammation and neuromelanin evaluations in new animal models.

Keywords: MRI methods, Parkinson’s disease, animal model, diffusion MRI, MR spectroscopy, resting-state
functional MRI

INTRODUCTION

Parkinson’s disease is a major neurodegenerative disease in the elderly affecting 7 to 10 million
people worldwide. This disease is characterized by massive degeneration of the dopaminergic (DA)
neurons and Lewy body inclusions containing α-synuclein proteins in the subtantia nigra pars
compacta (SNc), as well as neuroinflammation. The reduction of DA levels in the striatum (STR)
causes the appearance of the clinical symptoms such as akinesia, rigidity, and tremor. The clinical
diagnosis can only be done when 50% of those neurons are destroyed (Redgrave et al., 2010). While
most forms of PD are sporadic, less than 10% are associated with familial mutations (Dauer and
Przedborski, 2003; Thomas and Beal, 2007). Mutations in the leucin-rich repeat kinase 2 (LRRK2)
and the α-synuclein coding gene (SNCA) are responsible for the autosomal-dominant PD, and
mutations in the Parkin (PARK2), the phosphatase and tensin (Pten)-induced kinase 1 (PINK1),
and DJ-1 genes are responsible for the autosomal–recessive PD.

Abbreviations: PD, Parkinson disease; MRI, magnetic resonance imaging; DA, dopamine; LRRK2, leucin-rich repeat
kinase 2; SNCA, α-synuclein coding gene; PARK2, Parkin 2; PINK1, phosphatase and tensin (Pten)-induced kinase 1; rs-
fMRI, resting-state functional MRI; FC, functional connectivity; R2

∗, transverse relaxation rate (1/T2
∗); T2

∗, transverse
relaxation time; MRS, magnetic resonance spectroscopy; 6-OHDA, 6-hydroxydopamine; MPTP, 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine; BBB, blood–brain barrier; fMRI, functional MRI; BOLD, blood oxygenation level-dependent signal; SWI,
susceptibility-weighted imaging; QSM, quantitative susceptibility mapping; LPS, lipopolysaccharide; Tg, transgenic; Glu,
glutamate; GABA, γ-aminobutyric acid; NAA, N-acetyl-aspartate; mIns, myo-inositol; Cre, creatine; Gln, glutamine; Cho,
choline; MD, mean diffusivity; FA, fractional anisotropy; AD, axial diffusivity; RD, radial diffusivity; ADC, apparent diffusion
coefficient; SNc, substantia nigra pars compacta; STR, striatum; GP, globus pallidus; SNr, substantia nigra pars reticulata;
TH, thalamus; STN, subthalamic nucleus; MFB, medial forebrain bundle; M1, primary motor cortex; CC, corpus callosum;
SM, sensorimotor cortex; Hc, hippocampus; GPi, globus pallidus interna; GPe, globus pallidus externa; BG, basal ganglia; cp,
cerebral peduncle.
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Motor dysfunction in PD is classically described by the
corticobasal ganglia–thalamocortical motor pathway model and
with the direct, indirect, and hyperdirect pathways illustrated
in Figure 1 (Delong, 1990; Honey et al., 2003; Lanciego et al.,
2012). The basal ganglia (BG) include the dorsal STR, the globus
pallidus (GP) interna and externa, the SNc, the substantia nigra
pars reticulata (SNr), the thalamus (TH), and the subthalamic
nuclei (STN). The dorsal STR receives excitatory glutamatergic
(Glu) inputs from the cortex, while projection neurons from
the SN and GP to the TH use inhibitory γ-aminobutyric
acid (GABA) neurotransmitters. To close the loop, the motor
cortex receives back excitatory Glu projections from the TH.
Consequently, inhibition of the TH therefore leads to inhibition
of the motor activation. Within the BG, the direct pathway is
composed of monosynaptic connections from the dorsal STR to
the GP interna, whereas the indirect pathway is composed of
polysynaptic connections from the dorsal STR to the GP externa,
STN, and to the GP interna. The hyperdirect pathway projects
cortical neurons directly to the STN. Coming from the SNc,
DA excites or inhibits GABAergic medium spiny neurons via
D1 or D2 receptors in the STR, respectively. Those structures
and neurotransmitters have been the targets for neuroimaging
methods developments.

Neuroinflammation also characterizes PD and includes
microglial activation, astrocyte proliferation, lymphocyte
infiltration, and the presence of proinflammatory cytokines
(Glass et al., 2010). Whether inflammation is a cause or
consequence of neurodegeneration in PD is still under debate
(de Lau and Breteler, 2006; Glass et al., 2010; Tansey and
Goldberg, 2010; Cabezudo et al., 2020). Likewise, the protective
or deleterious role of inflammation in PD is still unknown
(Sofroniew, 2015).

Non-invasive imaging tools have the potential to add critical
value for earlier diagnosis and therefore for the development
of more efficient treatments against the disease. In this regard,
Magnetic Resonance Imaging (MRI) plays a crucial role in the
diagnosis and monitoring of disease progression and treatment
in both humans and animal models. Neurodegeneration has been
evaluated in the SN and nigrostriatal fibers in PD patients using
MRI. Changes in diffusion metrics have been reported in the SN
of patients [decreased anisotropy and increased mean diffusivity
(MD)] and spreading to other gray and white matter regions
and tracts, indicating expended loss of microstructural integrity
(see review by Weingarten et al., 2015). Likewise, changes in the
functional properties of these structures can be detected with
resting-state functional MRI (rs-fMRI) (see review by Lehéricy
et al., 2012). Reduced functional connectivity (FC) in the SN and
in corticostriatal networks was also reported in patients (Helmich
et al., 2010; Sharman et al., 2012).

Abnormal iron accumulation in specific brain regions has
been observed in several neurodegenerative diseases including
PD. Up to 35% increase in the SNc of PD patients has been
reported (Dexter et al., 1989; Hirsch et al., 1991). As T2- and T2

∗-
weighted imaging are sensitive to the presence of paramagnetic
iron, they have been used to evaluate iron deposits in the SN
(Lehéricy et al., 2014; see review by Pietracupa et al., 2017).
Decreased T2 values have been measured in the caudate nucleus,
putamen, and SN of PD patients (Antonini et al., 1993). Increased

nigral transverse relaxation rates R2
∗ (1/T2

∗) have been reported
in PD patients and correlated with disease progression (Ulla et al.,
2013; Hopes et al., 2016).

Metabolism alterations in PD patients have been investigated
with MR spectroscopy (MRS). While N-acetyl-aspartate (NAA) is
a marker of neuronal integrity, myo-inositol (mIns) is a marker
of gliosis, and creatine (Cre) is a marker of energy metabolism.
Changes in neurotransmitters levels can also inform on the
pathological state. For instance, decreased levels of NAA have
been reported in the cortex and SN, whereas increased GABA and
Glu levels have been found in the pons, putamen, and SN of PD
patients (Emir et al., 2012; Levin et al., 2012; Graff-Radford et al.,
2014; Gröger et al., 2014).

Animal models have been widely used to improve our
understanding of PD features with anatomical, functional,
and metabolic MR-based tools. Toxic models based on
intracerebral or systemic injections of neurotoxins produce
nigrostriatal lesions that replicate many of PD features (see
the review by Blandini and Armentero, 2012). The most used
models of neurodegeneration are based on injections of the
6-hydroxydopamine (6-OHDA) and the 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) neurotoxins to produce
degeneration of DA neurons in the SN and subsequently of
the entire nigrostriatal pathway (Yuan et al., 2005). Although
those models are partial models and more acute than the
progressive human pathology, they have been extremely useful
in mimicking many of PD features accompanied by motor
symptoms. Alternatively, genetic-based animal models of PD
allow the investigation of the prodromal stage of the disease
during the presymptomatic period, as well as the study of specific
pathways related to genetic and biochemical alterations (see
reviews by Chesselet et al., 2008; Creed and Goldberg, 2018 and
by Dawson et al., 2010).

This review aims at giving an overview of how the
physiopathological features of PD have been investigated using
the most represented MR methods in animal models. It is based
on PubMed searches within the last 10 years, and it is limited
to rodent models of PD as they have been the most widely
used and for their potential in genetic studies. It was elaborated
based on a physiopathological perspective to demonstrate how
various imaging approaches have been used to investigate PD
physiopathology in animals. Rodent models are first described,
including toxin-based and genetic-based models. Then structural
and functional MR methods are detailed, such as diffusion
and rs-fMRI to evaluate neurodegeneration, followed by T2

∗

and susceptibility imaging to evaluate iron accumulation and
MRS to evaluate metabolism changes. Future directions for
preclinical MR developments are suggested and include strategies
for neuroinflammation and neuromelanin evaluations.

RODENT MODELS

Toxin-Based Models
The 6-OHDA Model
Following the discovery that 6-OHDA could produce selective
degeneration of sympathetic adrenergic nerves (Thoenen and
Tranzer, 1968), this neurotoxin has been used as a denervation
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FIGURE 1 | Schematic representation of the corticobasal ganglia–thalamocortical motor pathway model. (A) Normal pathway. (B) PD pathway. Red arrows
correspond to glutamatergic excitatory projection neurons. Blue arrows correspond to GABAergic inhibitory projection neurons. D1, D2: striatal receptors. SNc,
subtantia nigra pars compacta; SNr, subtantia nigra pars reticulata; STN, subthalamic nucleus; GPi, globus pallidus interna; GPe, globus pallidus externa; BG, basal
ganglia. The direct (STR/GPi/TH), indirect (STR/GPe/STN/GPi/TH), and hyperdirect (cortex/STN) pathways are represented. Thick lines represent increased
excitation/inhibition. Thin lines represent decreased excitation/inhibition. Dotted lines represent DA neuronal loss in the SNc.

tool in animals (Ungerstedt, 1968; Jonsson, 1980). As a
hydroxylated analog of DA, 6-OHDA enters DA neurons through
DA transporters. Once in the cytosol, it forms hydrogen peroxide
by auto-oxidation reaction. As 6-OHDA does not cross the blood-
brain barrier (BBB), it is necessary to administer it directly into
the brain with stereotaxic injections. As bilateral injections cause
high mortality rates, unilateral injections have been preferred.
The mechanism of action varies depending on the injection
site along the nigrostriatal pathway. Injections into the SNc or
into the medial forebrain bundle (MFB) produce massive and
rapid anterograde degeneration of the nigral DA neurons, up
to 90%–100% of SN and striatal neurons, and subsequently
of the entire nigrostriatal pathway within days. Alternatively,
injections into the dorsal STR induce partial lesions of the nigral
DA neurons, up to 50%–70% loss within 4 to 6 weeks, which
leads to progressive retrograde degeneration of the nigrostriatal
pathway more closely mimicking human pathology and allowing
longitudinal evaluations (Berger et al., 1991; Przedborski et al.,
1995; Shimohama et al., 2003). In the STR, greater than 90% loss
of DA can be reached after intrastriatal infusion of 6-OHDA in
mice (Xiao et al., 2011).

The MPTP Model
The selective toxicity of MPTP for the nigrostriatal tract was first
described by Langston et al. (1983). MPTP is converted to 1-
methyl-4-phenylpyridinium ion (MPP+) and accumulates in the
SNc neurons via DA transporters. As MPTP can cross the BBB,
it can be injected via the peripheral system. However, systemic
MPTP administration fails in rats as the conversion from MPTP

to MPP+ occurs at the BBB preventing influx into the brain
(Giovanni et al., 1994; Pienaar et al., 2010; Jagmag et al., 2016;
Konnova and Swanberg, 2018); it is therefore alternatively used
in mice (Mori et al., 1988). Repeated intraperitoneal injections
in mice cause rapid and massive DA neuron loss, which leads
to similar symptoms as those found in patients such as akinesia,
rigidity, and episodes of tremor (Jackson-Lewis et al., 1995;
Tatton and Kish, 1997).

Genetic-Based Models
Autosomal-Dominant Models
The most common mutations in autosomal-dominant PD are the
LRRK2 mutations (Zimprich et al., 2004). This kinase enzyme is
normally present in membranes and plays a role in mitochondria,
autophagy, and endocytosis (Winklhofer and Haass, 2010;
Berwick et al., 2019). Transgenic mice present little to no DA
neurodegeneration; however, most of them have abnormalities
in the nigrostriatal system, α-synuclein aggregation, or impaired
DA release (Li et al., 2009; Jagmag et al., 2016). Likewise, LRRK2
mutated rats do not show any DA neurodegeneration in the SN
but rather behavioral alterations (Daher et al., 2014; Walker et al.,
2014; Lee et al., 2015; Shaikh et al., 2015; Sloan et al., 2016).

The SNCA gene codes for the presynaptic α-synuclein protein,
which is abundantly found in the brain (Maroteaux et al.,
1988). Its function is not fully understood; however, it is
believed to play a role in synaptic vesicle function, hence of
neurotransmitter release (Kahle et al., 2002). Overexpression
of α-synuclein produces heterogeneous phenotypes in mice,
depending on the promoters used for transgene expression.
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Although they lack DA degeneration, some of them present
nigrostriatal dysfunctions (Abeliovich et al., 2000; Fleming et al.,
2005; Chesselet et al., 2008).

Autosomal–Recessive Models
The Parkin (PARK2) gene is involved in the ubiquitin proteasome
system as an E3 ubiquitin ligase, and mutations of this gene
cause loss of function in patients. Parkin knockout does not
seem to induce nigrostriatal or DA lesions in mice (Perez and
Palmiter, 2005). However, overexpression of a mutated form of
this gene leads to nigral DA cell depletion, striatal synaptic loss,
and decreased striatal DA levels in mice (Lu et al., 2009). Likewise,
overexpression of Parkin induces mild neurodegeneration in rats
(Van Rompuy et al., 2014).

PINK1 is a mitochondrial protein kinase that protects neurons
from mitochondrial dysfunction stress. The PINK1 mutation
leads to loss of function mainly affecting the kinase domain
in patients (Klein and Westenberger, 2012). PINK1 knockout
does not produce any DA neuronal depletion in mice, but it
alters DA neurotransmission and mitochondrial function (Kitada
et al., 2007; Gautier et al., 2008; Gispert et al., 2009). In contrast,
PINK1 knockout rats have SN DA neuronal loss, α-synuclein
accumulation, mitochondrial defects, and motor dysfunction
(Dave et al., 2014; Villeneuve et al., 2016).

DJ-1 is a ThiJ/Pgpl molecular chaperone encoded by the
PARK7 gene and widely expressed in the body. DJ-1 knockout
mice do not exhibit any DA depletion but show some nigrostriatal
and mitochondrial abnormalities (Goldberg et al., 2005; Kim
et al., 2005; Andres-Mateos et al., 2007).

Other Models
A conditional knockout mouse model with respiratory chain-
deficient DA neurons was created in 2007 and named MitoPark
mice (Ekstrand et al., 2007). This model is based on the
inactivation of the mitochondrial transcription factor A (Tfam)
gene in DA neurons. Among the different genetic models,
those mice present the most PD-like phenotypes including
DA cell death, intraneuronal inclusions, and progressive
motor dysfunction.

MR METHODS FOR
NEURODEGENERATION EVALUATION

Diffusion Imaging
In an unrestricted medium, water molecules undergo random
Brownian motion and diffuse freely. Its motion can be hindered
by membranes, extracellular hindrance, or tissue heterogeneity.
Diffusion-weighted imaging is sensitive to water diffusion
through the application of diffusion gradients (Le Bihan, 2003).
In the white matter, where fiber bundles constitute physical
constraints, water molecules diffuse along a preferred direction
along the fibers, which is referred to as anisotropy. The diffusion
tensor model, a model of the displacement of water molecules,
can provide indices such as the MD, characterizing the overall
displacement of water molecules; the fractional anisotropy (FA),
characterizing the orientation of diffusion; and the eigenvalues,
characterizing the main directions of diffusivities, also derived

FIGURE 2 | The nigrostriatal pathway illustrated with color-coded diffusion
tensor images of a rat brain (coronal views). (Top) Zoom into the subtantia
nigra (SN) projection to the striatum (Str) and inlet showing the detailed
structure with the cerebral peduncle (cp), the SN reticulata (SNr), and the SN
compacta (SNc). (Bottom) Three-dimensional reconstructed nigrostriatal tract
(green) from the SN (orange) to the dorsal Str using diffusion-based
tractography.

as axial and radial diffusivities (AD, RD). Although the cellular
origin of anisotropy is multifactorial and remains unclear
(Chabert and Scifo, 2007), it has been shown that AD changes
can be used as an index of axonal damage, whereas RD can be
used as an index of myelin damage (Song et al., 2005). In highly
oriented fiber bundles, FA is high (close to 1), whereas in regions
of crossing fibers, it is low (close to 0).

Diffusion imaging has been used to evaluate microstructural
changes in rodents. The SN can be sufficiently resolved
from those images, and the nigrostriatal tract can clearly
be identified and reconstructed (Figure 2). Following MFB
injections of 6-OHDA in rats, Monnot et al. (2017) reported
decreased FA and increased RD in the ipsilateral SNc and
SNr. Those results were supported by a previous study by
Soria et al. (2011), which showed bilateral changes in the
SN in the same model targeting the MFB. They showed
that FA was decreased in the ipsilateral SNr, AD was
bilaterally decreased in the SNr, and RD was bilaterally
increased in the cortex (Soria et al., 2011). Furthermore,
those results were consistent with neurodegeneration and with
human findings (Vaillancourt et al., 2009; Rolheiser et al., 2011;

Frontiers in Neuroscience | www.frontiersin.org 4 April 2021 | Volume 15 | Article 583678148

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-583678 March 30, 2021 Time: 13:25 # 5

Petiet MR Methods and Outcome in PD Models

Skorpil et al., 2012; Cochrane and Ebmeier, 2013; Schwarz et al.,
2013). In contrast, they were in disagreement with a previous
study by Van Camp et al. (2009), which found increased FA
in the ipsilateral SN of 6-OHDA rats injected in the STR.
This FA increase was attributed to neuroinflammation, but
the discrepancy with the other studies might also be due to
differences in the injection site (MFB vs. STR). A more recent
study by Perlbarg et al. (2018) demonstrated increased FA in the
ipsilateral and contralateral STR of 6-OHDA rats who received
intrastriatal injections (Perlbarg et al., 2018). This result was
consistent with neurodegeneration in a crossing-fiber structure.
Indeed, regions of crossing fibers such as the STR have lower FA
than regions of linearly oriented fibers such as corpus callosum
(CC). Therefore, the selective degeneration of a group of fibers
crossing other populations of fibers leads to increase of FA
(Winston, 2012). Additionally, they found increased MD in
the ipsilateral STR indicating loss of microstructural integrity
and in line with human findings. However, in this study, no
changes in the SN could be detected presumably because of a
lack of sensitivity.

In genetic-based models, neuroimaging studies showed
decreased MD, AD, and RD in regions of known α-synuclein
accumulation such as the SN, STR, sensorimotor cortex (SM),
and TH in α-synuclein transgenic mice (Supplementary data,
Khairnar et al., 2015). Those results could be explained by the
presumable decrease of free water diffusion caused by the protein
aggregation. In a presymptomatic PINK1 knockout rat model,
altered diffusion metrics [reduced anisotropy and apparent
diffusion coefficient (ADC)] were observed in the BG and other
regions (e.g., hippocampus, brainstem, and cerebellum) (Cai
et al., 2019). Those widespread changes throughout the brain
have also been described in PD patients (Braak et al., 2004). In
the MitoPark mouse model, decreased FA has been measured
in the SN and CC, indicating neuronal and fiber degeneration
(Cong et al., 2016).

Functional Imaging
Functional connectivity or “synchrony” between and within
brain regions refers to temporal correlations between spatially
remote neurophysiological events, as measured by fMRI blood
oxygenation level-dependent (BOLD) signal (Friston et al.,
1993). Using fMRI, low-frequency, spontaneous, and, in some
cases, coherent signal fluctuations may be detected in the
resting brain (Biswal et al., 1995). Rs-fMRI studies have thus
revealed co-activation in distributed networks of cortical and
subcortical regions that characterize functional brain networks.
Such connectivity may or may not also involve a structural
connection (Honey et al., 2009). Most of PD imaging in patients
and in animal models has been conducted in the resting state.

Functional connectivity changes have been explored in the
nigrostriatal pathway in animal models. Decreased FC was found
in the interhemispheric STR and in the ipsilateral cortices of
6-OHDA rats (Monnot et al., 2017; Westphal et al., 2017).
Those animals were injected in the MFB and anesthetized
with either a mixture of isoflurane and medetomidine (former
study) or with medetomidine alone (latter study) during
imaging. Likewise, decreased FC between the ipsilateral primary
motor cortex (M1) and contralateral TH was reported in the

intrastriatal 6-OHDA model using isoflurane alone (Perlbarg
et al., 2018). Zhurakovskaya et al. (2019) also reported decreased
FC in corticocortical and striatocortical connections of 6-
OHDA-injected rats under urethane anesthesia (Zhurakovskaya
et al., 2019). Decreased FC is commonly interpreted as direct
lesioning effects.

Increased FC was found between the STR and the SM and
in the TH of both hemispheres in 6-OHDA rats injected in the
MFB (Monnot et al., 2017; Westphal et al., 2017). Similarly,
increased FC was found between the ipsilateral STR and the
GP, the contralateral M1 and the GP, and the interhemispheric
STR and the GP of 6-OHDA rats injected in the STR (Perlbarg
et al., 2018). Figure 3 illustrates the FC maps from the lesioned
STR to the rest of the brain in this study and highlights
the (non-significant) increased FC between the ipsilateral and
contralateral STR in the 6-OHDA group compared to the
sham-operated group 3 weeks after lesioning. Increased FC is
generally attributed to compensatory effects and reorganization,
like it has been observed in PD patients (Helmich et al., 2010;
Sharman et al., 2012).

In a presymptomatic PINK1 knockout rat model, Cai et al.
(2019) observed changes in rs-fMRI connectivity in the BG and
other regions such as the amygdala, cortex, septum, and pons.
They measured decreased connectivity between the TH and
STR, whereas the cerebellar nuclei showed increased connectivity
within the cerebellum and hippocampus in PINK1 rats under
isoflurane anesthesia. Based on their findings, they suggested a
reorganization of connectivity pathways in PINK1 mice, in which
the STR to TH connection would be rerouted from the STR to
the hippocampus also showing increased connectivity from the
cerebellum. They argued on the role of the cerebellum in PD
pathology similar to the cerebellar hyperconnectivity found in PD
patients (Cerasa et al., 2016; Tuovinen et al., 2018).

MR METHODS FOR IRON
ACCUMULATION EVALUATION

T2
∗ Imaging

It has been shown that iron accumulates in the SN of MPTP
and 6-OHDA-lesioned animals (Wang et al., 2004; Hare et al.,
2009; Jiang et al., 2010; Lv et al., 2011). Iron deposits can be
detected with conventional T2

∗ imaging. For example, Olmedo
et al. (2017) quantified hyposignal levels in the SN of 6-OHDA
rats 1 and 4 weeks postinjection in the MFB. They reported
significantly increased hypointense pixels (i.e., decreased T2

∗

signal) in 6-OHDA rats compared to sham rats, which correlated
to iron staining with Prussian blue at 4 weeks. Furthermore,
Virel et al. (2014) evidenced iron accumulation in the STR of
6-OHDA rats following intrastriatal injections. In this study,
they measured increased T2

∗ hypointensities (i.e., decreased T2
∗

signal) in the ipsilateral STR as early as 1 week postlesioning
and persisting up to 4 weeks. They also showed correlations
of those hypointensities with edematous hyperintensities and
with iron accumulation revealed with Prussian blue staining at
4 weeks only. In contrast, the SN remained intact, presumably
due to milder and delayed depletion in this structure at this
later timepoint.
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FIGURE 3 | Functional connectivity maps from the right striatum for the sham-operated and the 6-OHDA groups at 3 weeks postinjection in the right hemisphere
(i.e., on the right side of the brain on the images). The 6-OHDA group shows a non-significant increase of FC between the left and right striatum. Maps are
expressed as correlation coefficient R. See Perlbarg et al. (2018) for the full study description.

Decreased T2
∗ in the SN and STR has also been found

in the MitoPark mouse model and was presumably attributed
to iron accumulation in the SN as it is a shared feature
with PD patients.

Susceptibility Imaging
Other iron-sensitive MRI methods include susceptibility-
weighted imaging (SWI) and quantitative susceptibility mapping
(QSM), both of which have been used to improve imaging of
the SN nigrosomes, STN, and GP interna (Lotfipour et al.,
2012; Liu et al., 2013; Schwarz et al., 2014). In SWI methods,
the phase data are used to detect susceptibility differences
between tissues and are combined to the magnitude data to
improve image contrast (Haacke et al., 2004). Increased iron
accumulation in PD patients has been measured in deep gray
nuclei using SWI (Zhang et al., 2009, 2010; Jin et al., 2011;
Wu et al., 2014; Guan et al., 2016; Hopes et al., 2016). QSM
is a more recent technique that converts the phase shifts to
localize magnetic susceptibility (Haacke et al., 2015). Very
little literature is available in PD rodent models applications;
nevertheless, increased QSM has been reported in the SN of
an MPTP mouse model (Guan and Feng, 2018). This study
also evidenced that QSM was a more accurate method than
R2
∗ to detect iron-related changes in the SN, which was

supported by a study including PD patients (Hopes et al., 2016).
Further improvements of QSM methods have been developed
for imaging the mouse brain microstructure at a very high
resolution, such that striatal tracts can be reconstructed at 20-µm
resolution based on QSM images from postmortem brains (Wei
et al., 2016). It has therefore the potential to be used in PD
models applications.

MR SPECTROSCOPY FOR METABOLISM
EVALUATION

Magnetic resonance spectroscopy is based on the chemical
shift and the spin–spin coupling effects. Different nuclei
possess different resonant frequencies depending on their
chemical environment and local magnetic fields. Their
chemical shift is expressed in parts per million (ppm)
relative to the standard reference compound tetramethylsilane
(Barker et al., 2010).

Magnetic resonance spectroscopy has been used to assess brain
metabolic changes in PD models. For example, increased GABA
levels have been measured in the STR of MPTP mice and of 6-
OHDA rats injected in the MFB (Chassain et al., 2010; Coune
et al., 2013). Those results were consistent with human data in
which increased GABA levels were found in the pons, putamen,
and in the SN of patients (Emir et al., 2012; Gröger et al., 2014).
Those findings could be explained by the following mechanism:
the STR receives DA projections from the SNc, and knowing
that DA inhibits GABAergic spiny neurons via D2 receptors in
the STR, DA denervation should lead to hyperactivation of those
neurons (Gerfen, 1992).

Likewise, Glu and glutamine (Gln) levels were found to
increase in the STR of MPTP mice (Chassain et al., 2010),
consistent with increased Glu in the SN of PD patients (Gröger
et al., 2014). In their article, Chassain et al. (2010) explain that
this Glu increase inducing changes in the corticostriatal activity
is “related to an increased synthesis and release of Glu in the
synaptic terminal of the STR.” In contrast, decreased Glu levels
were measured in the STR of 6-OHDA rats injected in the MFB
(Coune et al., 2013).
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Decreased NAA levels were found in the ipsilateral STR and
in the cortex of 6-OHDA rats injected in the MFB and SN,
respectively (Hou et al., 2010; Coune et al., 2013), consistent with
neuronal loss also reported in PD patients (Levin et al., 2012;
Graff-Radford et al., 2014). However, no changes in NAA levels
were found in an MPTP mouse model (Chassain et al., 2010).

Viral vector-based α-synuclein rodent models can be used
as an alternative to transgenic models to produce α-synuclein
accumulation and subsequent DA cell loss. Intranigral injections
of an adeno-associated viral vector coding for human α-synuclein
resulted in increased GABA levels in the STR as measured by
MRS in rats (Coune et al., 2013). This finding was also reported
in a 6-OHDA rat model by the same group and was consistent
with MRS data in patients (Emir et al., 2012; Gröger et al., 2014).
Furthermore, decreased NAA levels were measured in the SN of
rats following intranigral injections. This finding was consistent
with nigral cell loss induced in the model and with NAA decrease
also found in patients (Clarke and Lowry, 2001; Öz et al., 2006).

Metabolic changes have also been observed in PINK1
knockout rats using MRS. Villeneuve et al. (2016) found
decreased taurine and Cre in the STR of PINK1 rats. Similarly,
decreased taurine and increased Gln were reported in the STR
in the same model by Ren et al. (2019). Decreased taurine has
been found in patients (Engelborghs et al., 2003) and is associated
with mitochondrial function (Hansen et al., 2010). Increased Gln
could be attributed to Glu dysregulation as found in the STR of
patients (Gardoni and Bellone, 2015).

SUGGESTED FUTURE DIRECTIONS

Evaluation of Neuroinflammation
Inflammation is common to many brain diseases as it has been
shown to contribute to neurodegeneration (Ransohoff, 2016).
To improve our understanding of the role of inflammation
in the etiology of PD, lipopolysaccharide (LPS) animal models
have been developed.

LPS Animal Model
The endotoxin LPS is a large molecule found in the
outer membrane of Gram-negative bacteria. It binds the
CD14/TLR4/MD2 (cluster of differentiation 14/Toll-like
receptor 4/myeloid differentiation factor 2) receptor complex,
which triggers the activation of proinflammatory pathways and
ultimately the activation of microglia (Park and Lee, 2013).

Lipopolysaccharide can be injected in the central or peripheral
nervous system to generate various inflammatory responses
associated with neurodegeneration (see review by Batista et al.,
2019). To induce Parkinson-like features, LPS is injected in the
SN or STR, leading to DA degeneration and motor dysfunction in
rats (Castano et al., 1998), as well as to macrophage and microglia
reactions (Herrera et al., 2000; Gao et al., 2002). Likewise,
systemic LPS injections in mice cause microglial activation,
progressive loss of nigral DA neurons, and locomotor deficits
(Qin et al., 2007).

Lipopolysaccharide models can also be used to assess
mitochondrial dysfunction and their contribution to PD

pathophysiology. For example, intrastriatal injections of LPS lead
to energy dysfunction and neuronal loss in the STR (Hunter
et al., 2017). Furthermore, LPS injections can change iron
and ferritin levels in nigral glial cells of rats associated with
decreased tyrosine hydroxylase staining in the GP and STR
(Zhang et al., 2005; Hunter et al., 2008). Interestingly, transgenic
mice overexpressing α-synuclein and injected with LPS show
increased protein aggregation, chronic nigral DA neuronal loss,
and nigral inflammation compared to wild-type mice, suggesting
a potentiation role of inflammation on α-synuclein dysfunction
(Gao et al., 2011).

In their review, Belloli et al. (2020) give an overview of
neuroinflammation imaging markers in PD. Based on the work
by Ostrerova-Golts et al. (2000), which provides further data
that support the role of toxic iron in α-synuclein aggregation
(Ostrerova-Golts et al., 2000), the authors suggest a link between
iron concentration and neuroinflammation (Belloli et al., 2020).
As SWI can measure iron accumulation, it can therefore be used
to assess iron-driven neuroinflammation.

Overall, the use of animal models with LPS-induced
inflammation can help our understanding of the
neuroinflammatory component of PD. To date, no MRI studies
have been conducted on LPS rodent models of PD, which opens
new paths to the field. Combined MR methods have the potential
to investigate both inflammation and neurodegeneration
and to help better define the role of inflammation in the
pathophysiology of PD.

Diffusion MR Spectroscopy of Metabolites
Among other complex mechanisms, inflammation involves glial
cells activation, and it participates both to the clearance of
damaged tissue and to tissue repair. Whether astrocytes play
a protective role against inflammation or triggers it is still
unknown and constitutes the topic of much ongoing research
(Sofroniew, 2015). As brain metabolites are present in specific
cell types, they can provide cell-specific markers. For instance,
increased levels of choline (Cho) and mIns have been attributed
to inflammation and gliosis, respectively (Öz et al., 2014).
However, while metabolite concentration changes derived from
conventional MRS cannot be attributed to specific pathological
mechanisms, diffusion-weighted MRS can probe microstructural
changes, such as glial cell swelling upon activation (Palombo
et al., 2018). This emerging technique is based on the diffusion
properties of metabolites within the intracellular space. For
instance, metabolites in hypertrophic cells have more space to
diffuse, which should increase their ADC—derived from multiple
diffusion spectroscopy experiments.

The diffusivities of Cho and mIns have been proposed as
specific markers of cellular hypertrophy triggered during glial
activation (Ercan et al., 2016; Ligneul et al., 2019). Ligneul
et al. (2019) used a cytokine ciliary neurotrophic factor-induced
mouse model in which only hypertrophic reactive astrocytes
were detected, whereas neuronal death and microglia were
absent. They evidenced that the diffusivity of mIns was the
most sensitive and specific marker of astrocytes morphological
modulations in those mice.
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Evaluation of Neuromelanin
Neuromelanin is the intracellular pigmentation present
in nigral DA neurons. While its accumulation in the SN
during aging is normal, it is known that its deposition
beyond a certain threshold and its specific degeneration
can be a marker of the disease (Vila, 2019; Vila et al.,
2019). Imaging methods sensitive to neuromelanin have

been developed in humans including first spin echo T1-
weighted MRI (Sasaki et al., 2006), and then magnetization
transfer MRI after the magnetization transfer effect was
found to be responsible for the neuromelanin contrast
(Ogisu et al., 2013; Langley et al., 2015). The combination
of multicontrast MRI such as SWI and magnetization transfer
for iron (found in large amounts in the SNr) and neuromelanin

TABLE 1 | Summary of the MRI/MRS measure changes with the corresponding rodent models.

Method Measure Alterations Model

Neurodegeneration Diffusion FA Decreased in ipsilateral SN1 6-OHDA in MFB

Decreased in bilateral SN2 6-OHDA in MFB

Decreased in basal ganglia and all regions3 Tg PINK1

Decreased in SN and CC4 Tg MitoPark

Increased in ipsilateral SN5 6-OHDA in STR

Increased in bilateral STR6 6-OHDA in STR

MD Increased in ipsilateral SN1 6-OHDA in MFB

Increased in bilateral SN2 6-OHDA in MFB

Increased in ipsilateral STR6 6-OHDA in STR

Decreased in SN, STR, SM, TH7 Tg α-synuclein

AD Decreased in bilateral SN2 6-OHDA in MFB

Decreased in basal ganglia and more regions3 Tg PINK1

Decreased in SN, STR, SmCx, TH7 Tg α-synuclein

RD Increased in bilateral cortex2 6-OHDA in MFB

Decreased in basal ganglia and more regions3 Tg PINK1

Decreased in STR, Hc, TH7 Tg α-synuclein

rs-fMRI FC Decreased in interhemispheric STR1 6-OHDA in MFB

Decreased in ipsilateral cortices8 6-OHDA in MFB

Decreased between ipsilateral M1/contralateral TH6 6-OHDA in STR

Decreased between TH and STR3 Tg PINK1

Decreased corticocortical and striatocortical connections9 6-OHDA in STR

Increased between ipsilateral STR/bilateral SM1 6-OHDA in MFB

Increased in bilateral TH8 6-OHDA in MFB

Increased between ipsilateral STR/GP, contralateral M1/GP, interhemispheric STR/GP6 6-OHDA in STR

Increased between cerebellar nuclei3 Tg PINK1

Iron T2* Signal intensity T2* Decreased in ipsilateral SN10 6-OHDA in MFB

Decreased in ipsilateral STR11 6-OHDA in STR

Decreased in SN, STR4 Tg MitoPark

QSM QSM Increased QSM in SN12 MPTP

Metabolism MRS GABA Increased in ipsilateral STR13 MPTP

Increased in ipsilateral STR14 6-OHDA in MFB

Increased in ipsilateral STR15 AAV α-synuclein

Glu Increased in ipsilateral STR13 MPTP

Decreased in ipsilateral STR13 6-OHDA in MFB

Gln Increased in STR13 MPTP

Increased in STR16 Tg PINK1

NAA Decreased in ipsilateral STR14 6-OHDA in MFB

Decreased in cortex15 6-OHDA in SN

No change13 MPTP

Rs-fMRI, resting-state functional MRI; MRS, magnetic resonance spectroscopy; FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD, radial diffusivity;
FC, functional connectivity; GABA, γ-aminobutyric acid; Glu, glutamate; Gln, glutamine; SN, substantia nigra; STR, striatum; M1, primary motor cortex; TH, thalamus;
GP, globus pallidus; MFB, medial forebrain bundle; SM, sensorimotor cortex; Hc, hippocampus; CC, corpus callosum; Tg, transgenic; AAV, adenoviral vector. 1Monnot
et al., 2017; 2Soria et al., 2011; 3Cai et al., 2019; 4Cong et al., 2016; 5Van Camp et al., 2009; 6Perlbarg et al., 2018; 7Khairnar et al., 2015; 8Westphal et al., 2017;
9Zhurakovskaya et al., 2019; 10Olmedo et al., 2017; 11Virel et al., 2014; 12Guan and Feng, 2018; 13Chassain et al., 2010; 14Coune et al., 2013; 15Hou et al., 2010; 16Ren
et al., 2019.
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FIGURE 4 | Main MRI/MRS findings in PD rodents affecting the basal ganglia pathways. FC, functional connectivity; MD, mean diffusivity; FA, fractional anisotropy;
AD, axial diffusivity; GABA, γ-aminobutyric acid; Gln, glutamine; T2*, effective transverse relaxation time. “+” means increase and “-” means decrease of the MR
measure. Measures indicated in red are commonly found across studies. Thick/thin lines represent increased/decreased measure. Arrows represent FC changes
between structures. For toxic models, the dotted lines represent the lesioned structures; the left/right side of the figure represents the intact/lesioned hemispheres.

(found in the SNc) detection, respectively, has been used
to improve the delineation of the SN structures (Langley
et al., 2015). Furthermore, diffusion-based tractography
can add critical information on structural connections
within the BG to better segregate the SNr from the SNc
(Menke et al., 2010).

Multicontrast imaging can more easily be performed in
anesthetized animals than in humans as scan time is less limited.
In addition, the use of ultrahigh magnetic fields can drastically
improve the visualization of the SN through increased signal-
to-noise ratio (therefore resolution) and increased contrast, as
reviewed in Lehéricy et al. (2014). It is therefore expected that
the use of 11.7 T and 17 T scanners in rodents should be highly
beneficial for better visualizing the details of the SN anatomy.

While neuromelanin is present in the human SNc, its
absence in rodents (Marsden, 1961; Barden and Levine,
1983) prevents any investigation in those models. The
group of M. Vila recently developed a rat model in which
an adeno-associated viral vector expressing human tyrosinase
is stereotaxically injected in the SNc region of their brains.
Subsequently, those rats overexpressing human tyrosinase
produce neuromelanin in the nigral DA neurons (Carballo-
Carbajal et al., 2019). This model opens tremendous
opportunities for the development of preclinical neuromelanin
imaging strategies.

CONCLUSION AND DISCUSSION

The changes in the MRI and MRS measures in the different
rodent models presented are summarized in Table 1. The
discrepancies found in the studies can be explained by several
factors: the choice of a genetic or toxic model. Genetic models
give insights into widespread cerebral alterations, but they
lack the neurodegeneration component for most of them,
limiting symptomatic evaluations. In toxic models, the injection
site can produce different types of degeneration—massive or
partial, rapid or progressive—and can have contrasting effects
on the MR measures. The anesthesia protocols, isoflurane or
medetomidine alone or a combination of both, which have
different modes of action, can impact the rs-fMRI output
measures (Williams et al., 2010; Schroeter et al., 2014). The
detection sensitivity can also be modulated by different magnetic
field strengths (from 7 to 11.7 T) and varying spatial resolutions
used in those studies. The effect of iron on water diffusivity
can also bias the measurements. Indeed, the presence of iron
in the brain causes local magnetic field disturbances, which
can lead to reduced water diffusivity if measured by imaging
sequences sensitive to those local magnetic changes. In addition,
it has been shown that the level of signal-to-noise ratio has an
impact on anisotropy measurements, leading to overestimated
high eigenvalues and underestimated low eigenvalues

Frontiers in Neuroscience | www.frontiersin.org 9 April 2021 | Volume 15 | Article 583678153

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-583678 March 30, 2021 Time: 13:25 # 10

Petiet MR Methods and Outcome in PD Models

(Pierpaoli and Basser, 1996; Anderson, 2001). Therefore, one
could expect to find higher FA in low-signal and iron-rich
structures such as the SN. For example, Xu et al. (2015)
showed that iron accumulation correlated with decreased MD
and increased FA in the putamen of healthy adults. All of
those considerations highlight the fact that the interpretation
of diffusivity measures is complex and influenced by various
mechanisms, such as iron accumulation in the SN and other
regions involved in PD, which further contributes to the
discrepancies found in the literature. Multimodal imaging
combining susceptibility and diffusion sequences may help
disentangle the relationship between iron and water diffusivity
and could add valuable insights into human and rodent
investigations. For instance, Du et al. (2011) demonstrated
improved sensitivity and specificity of combined R2

∗ and FA
measures over the use of single measures to differentiate PD
patients from healthy controls.

The limited number of MRI studies in genetic models makes
the comparison with toxic models difficult. However, it can
be highlighted that decreased FA and AD in the SN and
increased GABA and Gln in the STR seem to be the most
robust measures across toxic and genetic models. Increased
MD seems to be measured only in 6-OHDA models, not in
genetic models; however, more studies are needed to confirm this
trend. Interestingly, decreased FC and increased FC in various
brain regions, as well as interhemispheric changes, are common
findings in both toxic and genetic models and suggest overall
functional reorganizations. Decreased T2

∗ signal or value in the
SN and STR is also common across studies. Those major findings
are illustrated in Figure 4.

All of those imaging measures provide insight into the
physiopathology of PD; however, the animal models used do
not replicate the entire complexity of the disease. The results
should therefore be interpreted with this knowledge. Toxin-
based models have been the most widely used in rodents,
especially the 6-OHDA rat model; however, genetic-based models
are being increasingly used in neuroimaging studies, especially
the α-synuclein mouse and the PINK1 rat models. Gathering
more MRI data in various genetic models will help improve
our understanding of the role of pathogenic genes in PD.
The ideal model should be progressive and age-dependent and
include DA depletion together with motor dysfunction as the
ones observed in PD patients, as well as inflammation, which
is not the case in most models so far. As a consequence,
improving animal models is sought after by different groups

for either genetic-based rat models (Creed and Goldberg,
2018) or humanized rat models expressing neuromelanin
(Carballo-Carbajal et al., 2019).

Ongoing work from various groups aims at improving
the specificity of MR-based methods (Petiet et al., 2019). As
described above, the diffusivity of mIns as a specific marker
of astrogliosis triggers increasing interest for diffusion-weighted
MRS developments. Furthermore, this technique has the
potential to quantitatively evaluate cell sizes, fiber lengths,
and diameters (of either neuronal or glial cells). Indeed, the
use of different diffusion time scales allows the quantification
of the different parameters governing molecular displacement.
Measuring the ADC in the limit of ultrashort diffusion times
(<1 ms) allows probing short-range restrictions and cytosol
viscosity (Marchadour et al., 2012), whereas measuring ADC
in the limit of long diffusion times allows probing long-range
restrictions such as cell walls, such that cell geometry and size
can be inferred (Najac et al., 2014; Valette et al., 2018). Those
technical developments open new fields of investigations in MR-
based methods, and they should help better understand the
underlying mechanisms.
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