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Editorial on the Research Topic

Machine Learning Approaches to Human Movement Analysis

EMBRACING HUMAN MOVEMENT COMPLEXITY

Back in the mid-2000s, when Facebook was new and smartphones had still not become a major part
of our everyday lives, researchers started to explore the use of Machine Learning in biomechanics.
The road ahead appeared uncertain and people asked whether it was a new dawn or false hope?
(Bartlett, 2006). Fifteen years later, we are in the middle of the era of data science, witnessing an
unprecedented flourishing of techniques and applications. When large amounts of information can
be collected and analyzed, the appeal and “unreasonable effectiveness of data” (Halevy et al., 2009)
has found fertile ground in the study of complex biological and physical systems, human movement
science among them.

The way we humans move, and the underlying cognitive control involved in this process
is inherently complex, dynamic, multidimensional, and highly non-linear (Phinyomark et al.,
2018). Machine Learning approaches enable us to embrace this complexity, working on three
complementary tasks: predictive modeling, classification, and dimensionality reduction. With
contributions from the five continents, the collection of papers in this Research Topic represents
insightful viewpoints on the current landscape and potential new trends on the horizon.

ESTIMATION OF KINETICS AND KINEMATICS FROM WEARABLE
SENSORS

A model is a summary of the best knowledge of a system at the time it is investigated, capturing
essential aspects that are critical in answering the question at hand. Predicting modeling maps
input data to a given output and can be used to anticipate future events with confidence. It is
not surprising that the availability of large datasets obtained from wearable sensors has promoted
considerable advancements in the estimation of quantities that traditionally required expensive
laboratory setups, such as ground reaction forces and derived variables. This is one of the main
technological trends in recent research. The study by Mundt et al. discusses motion capture systems
and how they retrieve kinetic (and kinematics) data with less expert knowledge and without
expensive equipment. As they state, motion capture systems are going to “increase the availability
of motion analysis to a wider range of people.” In other words, access to such systems enables a
move toward pervasive healthcare systems (Zhou et al., 2020).
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Editorial: Machine Learning and Human Movement

Exploiting the power and versatility of artificial (deep) neural
networks as universal function approximators, the contributions
by Stetter et al. and Derie et al. estimated external knee moments
and vertical loading during various locomotion tasks, including
running and using a minimal set of IMUs. Dorschky et al.
worked on the same topic by augmenting a measured inertial
sensor dataset with simulated data to demonstrate how to
efficiently estimate sagittal plane angles, joint moments, and
ground reaction forces. Complimentary work by De Brabandere
et al. shows how the kinetics of the hip and knee can be estimated
using smartphone embedded sensors.

ARTIFICIAL INTELLIGENCE ON THE MOVE

The automatic classification of athletic tasks based on motion
data gathered in real-world conditions with inertial sensors is
another expanding area of investigation, as evidenced in papers
by Benson et al,, Clouthier et al., and Preatoni et al. They
use neural networks together with Support-Vector Machines
and k-Nearest Neighbors algorithms. Pattern-recognition was
also made possible by a combination of unsupervised Principal
Component Analysis (PCA) and Gaussian Mixture Model
or Linear Discriminant Analysis. Another contribution by
Remedios et al. describes an alternative way to objectively identify
movement phenotypes without the need to a-priori prescribe
movement features. Ross et al. discriminate élite from novice
athletes, devising inertial features that capture motion details
related to competition level. The recognition of movement
patterns was also a key focus in the study by Suda et al., which
used ground reaction forces to recognize foot-ankle movement
strategies in long-distance runners.

COMPUTER VISION

Computer Vision represents a parallel trend, involving a
combination of deep neural networks and simpler classification
algorithms. Guerra et al. propose an interesting application
of automatic pose recognition (also used in Zago et al. for
gait analysis) and classification to trigger an alarm in frail
individuals. The study by Gregori et al. focused on rehabilitation
by developing a deep-learning method to automatically evaluate
grasping actions in people with upper limb prostheses.
Background segmentation and shape classification allowed
Monezi et al. to automatically detect the three-dimensional
location of multiple players in a basketball court.

A STEP FORWARD

Gait analysis is undoubtedly a collector of the data revolution.
Instrumented gait assessment is routinely used to evaluate an
individual’s quality of life, morbidity, and/or mortality. Here,
data science is a powerful complement to traditional approaches
when handling large, heterogeneous, and sometimes noisy data
sets (Ferber et al., 2016). The integration of machine learning
with biomechanics not only simplifies the assessment of several
interdependent parameters (Khera and Kumar, 2020) but also

provides the opportunity for automated and unbiased analysis
(Arac, 2020). Rethwilm et al. gained insights on trunk lean
control in patients with Cerebral Palsy, combining PCA to
binary logistic regression. In their technical paper, Burdack et al.
explained how data filtering and unsupervised data reduction
impacted gait classification based on ground reaction force data.
Principal Component analysis is also the framework of analysis
explored by Promsri and Federolf, who crafted a methodological
paper explaining how to gain information about the coordinative
structure of complex whole-body movements during balancing.
In addition, De Roeck et al. focus on lower limb kinematics
during deep squatting and in the forward lunge, devising a
statistical model that predicts lower limb kinetics therein.

Zaroug et al. propose a method to predict lower limb
kinematic trajectories during walking using long short-term
memory (LSTM) neural networks. LSTM was also combined
with convolutional neural networks by Yu et al. to predict
pre-impact fall for older people. Notably, this approach was
also implemented in a microcontroller unit featuring a working
device. The practical translation of these techniques constitutes a
crucial step that has not yet been undertaken that requires further
exploration in future studies.

CLINICAL APPLICATIONS

Many papers in the Research Topic propose research-grade
applications, and the effective combination of technology and
data science will be topical in the near future. The seed of this
trend is already visible. For instance, statistical shape modeling
supported by logistic regression has clinical applications in
automating the identification of surgically-relevant landmarks,
as demonstrated by Cerveri et al.. de Aratjo et al. showed
how hand resting tremors could be used in the diagnosis of
Parkinson’s Disease. For patients in a similar condition, Lebel
et al. worked on the prediction of motor performance based on
visible symptomatology. A crucial issue is discussed in the work
by Chia et al., which developed a decision support system based
on gait kinematics, anthropometric characteristics, and physical
examination and trained a system to learn the recommendations
formulated by clinicians.

WHAT’S NEXT

While carefully avoiding falling into a simplistic (and potentially
dangerous) “idolatry of data,” we believe that the road is paved
for rapid and inevitable (re)volutions. Assisting human decisions
is among the most impactful advancements that data science and
human movement science together can provide to medicine in
the next decade (Jones et al., 2018). First data science can benefit
education by supporting junior clinicians and potentially, later
on, assisting in diagnosis and prognosis. In this journey, data
is a powerful ally, but there is a need for machine learning to
provide transparency and justifications of predictions (Halilaj
et al, 2018; Horst et al, 2019). A framework to interpret
deep learning features and the “magic inside the black box” is
essential and significant efforts are currently being made toward
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creating explainable artificial intelligence (Coté-Allard et al.).
Furthermore, as anticipated by many experts (Ferber et al.,
2016; Halilaj et al., 2018), a cultural shift toward data sharing is
necessary to achieve the required general validity (and constant
upgradability) that will bring these systems into clinical practice.

The constant growth of computational power and wearable
sensor miniaturization will also open pathways to pervasive
real-time applications, exploiting the wealth of data available
“out in the wild,” from marker-less motion capture to exercise
monitoring and training assistance. To date, artificial intelligence
does not simply provide new tools to study human motion.
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Visual attention is often predictive for future actions in humans. In manipulation tasks,
the eyes tend to fixate an object of interest even before the reach-to-grasp is initiated.
Some recent studies have proposed to exploit this anticipatory gaze behavior to improve
the control of dexterous upper limb prostheses. This requires a detailed understanding
of visuomotor coordination to determine in which temporal window gaze may provide
helpful information. In this paper, we verify and quantify the gaze and motor behavior of
14 transradial amputees who were asked to grasp and manipulate common household
objects with their missing limb. For comparison, we also include data from 30 able-bodied
subjects who executed the same protocol with their right arm. The dataset contains
gaze, first person video, angular velocities of the head, and electromyography and
accelerometry of the forearm. To analyze the large amount of video, we developed a
procedure based on recent deep learning methods to automatically detect and segment
all objects of interest. This allowed us to accurately determine the pixel distances between
the gaze point, the target object, and the limb in each individual frame. Our analysis
shows a clear coordination between the eyes and the limb in the reach-to-grasp phase,
confirming that both intact and amputated subjects precede the grasp with their eyes
by more than 500 ms. Furthermore, we note that the gaze behavior of amputees was
remarkably similar to that of the able-bodied control group, despite their inability to
physically manipulate the objects.

Keywords: visuomotor strategy, eye-hand coordination, upper-limb amputees, object segmentation, phantom limb
movements, object tracking

1. INTRODUCTION

Humans interact continuously with objects in activities of daily living (ADLs). Vision and
gaze play an important role during these interactions, not only to guide the activity itself
but also in the initial planning phase. Gaze is thus said to be anticipatory and can be
used to understand an individual’s intentions even before they manifest themselves in the
motor domain. Several studies have attempted to explore this proactivity to help disabled
people, such as in a robot assistant scenario (Admoni and Srinivasa, 2016; Koochaki and
Najafizadeh, 2018; Saran et al., 2018). Another compelling use-case is the control of dexterous
upper-limb prostheses (Castellini and Sandini, 2006; Markovic et al., 2014, 2015; Gigli
et al., 2018), where deciphering the grasp intent from myoelectric activations alone can be
challenging. The integration of gaze and vision as contextual information could be helpful
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especially during the initial transient phase of a movement.
Executing this fusion successfully requires however a precise
understanding of eye-hand coordination.

Gaze behavior has been studied extensively over the last
decades. Early studies typically involved constrained settings, for
instance by fixating the chin to avoid head movements or by
limiting the field of view to a monitor (see Tatler et al., 2011,
and references therein). Obviously, these findings may not be
representative for unconstrained settings where free movement
of the body is allowed to ensure natural behavior (Tatler et al.,
2011; Tatler, 2014). Such unconstrained experiments became
possible with the introduction of wearable eye-tracking devices
that allowed the user to move freely in the environment (Land,
2006). Subsequently, studies on visuomotor coordination have
confirmed that also in this setting actions are typically preceded
by a visual fixation on the involved objects. This was verified
during a block-copying task (Smeets et al., 1996; Pelz et al., 2001),
while drinking from various objects (Belardinelli et al., 2016),
during an object displacement task (Belardinelli et al., 2016;
Lavoie et al., 2018), during pick-and-place of a bar (Johansson
et al,, 2001), and when grasping (Brouwer et al., 2009). Similar
goal-oriented gaze strategies were also reported during ADLs,
such as tea-making and sandwich-making (Land and Hayhoe,
2001), walking (Patla and Vickers, 2003), driving (Land and Lee,
1994), and sports (Land and McLeod, 2000; Hayhoe et al., 2012).
Although all studies confirm the anticipatory nature of gaze, they
do not always agree on the exact timing of the motor execution
after the first visual fixation, for instance when the hand reaches
the object. These discrepancies can probably be explained by
differences in experimental setting (Smeets et al., 1996; Pelz et al.,
2001), variability due to a small number of subjects, or difficulty
in accurately analyzing a large number of trials.

Only a few studies have investigated the gaze behavior of
amputees. In a small case study, Sobuh et al. (2014) observed
that the amputated participants did not use gaze to proactively
plan subsequent actions in a task. Instead, they tend to switch
their gaze more often between the object and the prosthetic
hand to visually monitor its proper functioning (Bouwsema et al.,
2012; Hebert et al., 2019). This increased visual attention is most
likely to compensate for the lack of tactile and proprioceptive
feedback from their prostheses. A similar finding was also
reported when able-bodied subjects were engaged in similar
tasks using a prosthetic simulator (Blank et al., 2010; Sobuh
et al., 2014; Parr et al., 2018, 2019). Almost all of these studies
investigated this disruption in eye-hand coordination precisely
for this reason, namely to measure the subject’s proficiency in
controlling the prosthesis. More visual attention to the hand
area during reaching and manipulation is considered indicative
of a lower level of skill and confidence in the control of the
prosthesis. Conversely, it should therefore also be expected that
gaze behavior will “normalize” with an increasing confidence in
the control response of the prosthesis. Indeed, Chadwell et al.

Abbreviations: ADL, activity of daily living; SEMG, surface electromyography;
IVT, Identification Velocity Threshold; FPN, Feature Pyramid Network; COCO,
Common Objects in COntext; AP, average precision; IoU, Intersection over Union.

(2016) noted that one participant who used a prosthesis daily
showed more natural gaze behavior than another less experienced
participant, while Sobuh et al. (2014) observed a shorter fixation
on the hand area with increasing practice.

In the present study, we investigate eye-hand coordination
during reaching and grasping to determine the window of
opportunity in which gaze can provide useful information for
intent recognition. We used the data of the recently acquired
dataset, in which 15 transradial amputees were asked to try to
grasp and manipulate various household objects to the best of
their ability with their missing limb. In addition, it contains data
from 30 able-bodied control subjects who performed the same
grasps and manipulation tasks with their right arm. Throughout
the exercise, gaze, and visual data were recorded via eye-tracking
glasses, while the muscular activity of the arm was recorded
via surface electromyography (sEMG) electrodes. Contrary to
prior work, asking amputees to perform “movements without
movement” (Raffin et al., 2012b) allows us to investigate to
which extent the amputees’ eye-hand coordination has changed
as a result of the amputation, rather than due to difficulties
controlling a prosthesis. Given the similarity of movements
executed with the phantom limb compared with those executed
with intact limb (Raffin et al., 2012a,b), we also expect the eye-
hand coordination of movements involving the missing limb
to be highly similar to those involving the intact limb. This
“ideal” setting does not imply that the results are not relevant
for the prosthetic setting; the disruption of gaze strategies is
actually characterized by a markedly longer reaching phase, while
still maintaining the majority of the fixations on the target
object (Sobuh et al., 2014; Hebert et al., 2019). The window of
opportunity in the prosthetic setting is therefore expected to be
considerably longer than the one we identify here.

The total size of the dataset exceeds 70h of video, which
is far too large to be analyzed and annotated manually within
reasonable time. However, quantifying the distances between
gaze point, target object, and the forearm is of fundamental
importance for the present study. We therefore employed state-
of-the-art deep learning techniques to automatically detect and
segment all objects of interest in all videos. This procedure
consisted of an efficient method to collect representative training
data and the subsequent finetuning of a pretrained object detector
to this data. A beneficial side-effect of detecting object locations
in the video is that we can reliably determine fixations even in the
presence of head movements.

In the following, we describe the dataset and the methods
employed in the analysis in section 2. In section 3, we then
present the results of our analysis, which are discussed more
thoroughly in section 4. Finally, we conclude and summarize the
paper in section 5.

2. MATERIALS AND METHODS

To investigate the visuomotor behavior during manipulation
actions we relied on a large, recently acquired dataset. In the
following, we describe how the data were used in the context
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TABLE 1 | The characteristics of the amputated participants considered in the present study.

Amputation
ID Age Gender Handedness Side Cause Years Prosthesis Limb [%]
101 52 M Right Right Electrocution 2 Cosmetic 60-80
102 39 M Right Right Electrocution 4 Cosmetic 60-80
103 63 M Ambidextrous Right Trauma 3 Myoelectric 60-80
104 49 M Right Right Trauma 18 Myoelectric 80-100
105 73 M Right Right Trauma 6 Body-powered 40-60
106 70 M Left Left Trauma 5 Body-powered 80-100
107 36 M Right Left Trauma 7 Body-powered 20-40
108 35 M Right Right Trauma 9 Myoelectric 0-20
109 65 M Right Left Trauma 1 Cosmetic 80-100
110 38 M Right Left Trauma 14 Myoelectric 20-40
111 38 M Right Right Trauma 10 Myoelectric 40-60
112 33 F Right Left Oncological 13 Cosmetic 60-80
113 28 M Right Left Trauma 7 Myoelectric 40-60
115 36 F Right Left Burn 8 Cosmetic n/a

The table reports the ID of the subjects in the MeganePro dataset, their age, their gender, and their handedness. Among the clinical parameters we report the amputation side, its cause,
the number of years since amputation, the type of prosthesis used, and the relative length of the residual limb with respect to the contralateral limb.

FIGURE 1 | An overview of the experimental setup.

of the present study. Due to the large amount of video data
contained in this dataset, we devised a procedure to automatically
detect and segment all objects of interest via deep learning.

This procedure is outlined and we formulate how the resulting
segmentation masks were used to determine distances.

2.1. MeganePro Dataset

The MeganePro dataset was acquired with the aim of
investigating the use of gaze and visual information to improve
prosthetic control (Cognolato et al., 2019). It contains data of 15
transradial amputees [13 M, 2 F; age: (47.13 £ 14.16) years] and
a frequency matched control group of 30 able-bodied subjects
[27 M, 3 F; age: (46.63 £ 15.11) years] who performed grasps
and manipulation tasks with a variety of household items. The
gaze data for one of the amputated subjects was unreliable due
to strabismus; this subject was therefore excluded from our
analyses. The characteristics of the remaining amputated subjects
is shown in Table 1, including information on the amputation
and prosthetic use. All of them reported to experience phantom
limb sensations, but only 12 had some voluntary control over the
phantom limb.

During the experiment, the subjects wore a Tobii Pro Glasses
2 eye-tracker (Tobii AB, Sweden) to record the gaze behavior,
first person video, and angular velocities of the head. These
glasses sample gaze and gaze-related information at 100 Hz, while
the video is recorded with a 1920 px x 1080 px resolution at
25 frames per second. On their forearm, they had 12 Delsys
Trigno electrodes (Delsys Inc., USA) arranged in an array of
eight equidistant electrodes at the height of the radiohumeral
joint and four more electrodes in a second array 45 mm more
distally. These electrodes record SEMG at 1926 Hz and contain
an integrated three axes accelerometer that is sampled at 148 Hz.
A picture showing the setup is shown in Figure 1.

The experiment consisted of repeatedly grasping or
manipulating household items placed on a table in front of
the subject. The pairing of grasps and objects was specifically
chosen based (1) on the likelihood of their co-occurrence in
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ADLs and (2) to attain as much as possible a many-to-many
relationship between grasps and objects. In the first part of the
experiment, subjects just had to perform a “static” grasp on the
object without any manipulation, hold it for a few seconds and
then return to a rest posture when instructed. The amputated
subjects were asked to attempt to execute the action as naturally
as possible “as if their missing limb were still there,” rather than
just imagining it, to elicit activation of the remaining muscles in
their residual limb. Each of the grasps in Table 2 and its three
associated objects were first introduced via a video, after which
the subjects were instructed vocally to grasp each object four
times while seated and then another four times while standing.
The order in which the objects appeared in each repetition block
was randomized to avoid habituation. During the second part
of the experiment, the same ten grasps were instead executed
as part of a “functional” movement, as can be seen in Table 3.
In this case, the movements were performed either seated or
standing, depending on which position would seem more likely
in real life.

Given the scope of the present paper, we only use sSEMG
from the second and seventh electrode, which were placed
approximately on the extensor and flexor digitorum superficialis.
Besides having relatively high activations, these electrodes also
indicate roughly whether the hand was opening or closing. To
aid visualization, both channels were rectified with a moving
root mean square with a window-length of 29ms (ie., 57
samples) (Merletti, 1999). With respect to accelerometry, we note
that the accelerations of all electrodes were highly correlated
due to their positioning around the forearm. We therefore use
accelerations only from the first electrode and normalize them
with respect to the inertial frame of the initial position in each
trial (Tundo et al., 2013).

2.2. Gaze Velocity

A common method to classify gaze events in fixations and
saccades is based on the evaluation of the angular gaze
velocity (Salvucci and Goldberg, 2000). Given two consecutive
3-dimensional gaze vectors g;—; and g;, the angular difference
between them can easily be calculated by means of their dot
product (Duchowski, 2007)

8- gi-1

(1)
lgillllgi—1ll

), Vie{2,.,N} .

oj = arccos (

An approximation of the instantaneous gaze velocity at time t;
then follows as

Yie{2,.,N} . (2)

Although the Tobii glasses provide a unit gaze vector for both
eyes, we instead use the gaze point in world coordinates to
estimate the common angle of the eyes. These world coordinates
had fewer missing data and were slightly cleaner in practice due
to onboard processing. They are however relative to the position
of the scene camera rather than the eyes. Since this camera is
located on top of the frame of the glasses, this may lead to some
inaccuracy at small gaze distances. We therefore map the gaze

TABLE 2 | Overview of the static tasks.

Grasp Object

Bottle Door handle Can _
Medium wrap i J E &

Mug Key Pencilcase
Lateral

~ Plate

Parallel
extension \ )

Bottle

Tripod grasp

B

Ball

Power sphere

Precision disk

Clothespin ;
|
Prismatic pinch l il ‘
Remote Knife Fork
SO " ;
Index finger
extension
Screwdriver Remote Wrench
Adducted thumb l i ’
Knife Fork Wrench
[} V
Prismatic i
four finger

For each row, the grasp and the associated objects are indicated. The subjects were
asked to grasp each object with the given hand configuration while both seated and
standing.

points to a coordinate system that is centered between the left
and right pupils

gi=g—pi Vie{l,..N}, 3)
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TABLE 3 | Overview of the functional tasks in the second part of the MeganePro dataset.

Grasp Vocal instruction Position Category
. Drink from the can . Lifting
Medium wrap Standing
Open and close the door handle In place
Turn the key in the lock . In place
Lateral Standing
Open and close the pencil case In place
. Lift the plate . Lifting
Parallel extension Standing
Lift the book Lifting
. Open and close the cap of the bottle . In place
Tripod grasp Standing
Open and close the drawer In place
Move the ball to the right and back . Displacement
Power sphere Standing
Move the keys forwards and backwards Displacement
. , Open and close the lid of jar In place
Precision disk Seated
Screw and unscrew the light bulb In place
) o Squeeze the clothespin In place
Prismatic pinch Seated )
Move the keys forwards and backwards Displacement
. . Press a button on the remote control In place
Index finger extension Seated
Cut bread with the knife In place
Turn the screwdriver In place
Adducted thumb Seated
Move the wrench to the right and back Displacement
. . . Move the knife forwards and backwards Displacement
Prismatic four finger Seated
Move the fork to the right and back Displacement

The vocal instruction in English indicates the task that had to be performed for each object-grasp pair, while the position denotes whether the subject performed the task while seated
or standing. The last column indicates the movement category as per the description in section 3.3.

where p; is the average of the left and right pupil locations
relative to the scene camera. To limit the impact of missing data
for the pupils, we linearly interpolated gaps shorter than 0.075s
(Olsen and Matos, 2012).

2.3. Object Detection and Segmentation

To determine whether the subject is fixating the target object
at any given time, we need a precise segmentation of this
latter object throughout the exercise. Since the videos for each
subject totaled around 90 min or 135000 frames, this would
be very time consuming to annotate manually. We therefore
employed a deep learning algorithm to automatically segment
and classify all instances of our objects of interest (see Table 2).
Finetuning this algorithm to our data still required at least a few
dozen segmentations per object class. Rather than creating these
manually, we instead used a second deep learning algorithm to
facilitate the creation of this dataset.

2.3.1. Creation of the Training Dataset

SiamMask is a recently proposed method for object tracking and
semi-supervised video object segmentation (Wang et al., 2019).
By marking just a bounding box around an object in one frame,
this deep convolutional algorithm (1) segments the object from
the background and (2) tracks it in the following frames in a
video sequence. Although it may seem tempting to run this
algorithm on an entire video annotating each object only at its

first occurrence, in practice the object tracking does not work
reliably on such long time scales. We therefore used this method
to amplify our manual annotations; with just a single bounding
box annotation per object, we obtain 10 to 20 times as many
binary segmentation masks for our training set.

For our approach, we embedded the official implementation
of SiamMask! with a default ResNet-50 backend in a custom
application. This software allows the user to select a frame in a
video and to annotate several objects with their bounding box
and their class identity. Based on this initialization, SiamMask
processes the initial frame and subsequent frames one by one.
At each frame, the output is presented to the user for validation,
who can either accept or refuse the proposed segmentation.
This procedure is shown schematically in Figure 2. In practice,
we accepted sequences up to about 15 frames. Applying this
procedure repeatedly, we processed in total 2,422 frames with
11,726 segmented object instances chosen from 15 subjects.
To include as much variability as possible in our dataset, we
captured the objects from different perspectives, with different
backgrounds, and while partially occluded. Furthermore, besides
the eighteen objects in Table 2, we also included segmentations
for a “person” class, which is primarily used to detect the subject’s
own limb.

Uhttps://github.com/foolwood/SiamMask
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Input Video Sequence

Bottle
Plate

Manual Annotations for First Frame

FIGURE 2 | The procedure to acquire the training set of segmentation masks. We first select an arbitrary frame from a video and annotate each object with its
bounding box and object identity. This information is passed to SiamMask, which produces segmentation masks for this initial frame and the subsequent frames in the
video sequence. At each frame, the user can choose whether or not to include the frame and its segmentations in the training set or to move to a new initial frame.

Output Masks and Training Set Creation

@

Mug

ES

\

2.3.2. Training and Inference of Mask R-CNN

The data we acquired in this manner were used to train Mask
R-CNN on our objects of interest. This method detects and
segments all instances of the known objects in an image (He
et al, 2017). Rather than training a model “from scratch,’
we bootstrapped from a model that was supplied with the
implementation of Mask R-CNN by Massa and Girshick
(2018). This model used a relatively standard ResNet-50-FPN
backbone (Lin et al., 2017) and was pretrained on the COCO
dataset (Lin et al., 2014), a large scale generic dataset for object
detection, segmentation, and classification. As is common with
finetuning, we replaced the final classification layer of the model
with a random initialization and then performed additional
training iterations with a reduced learning rate of 0.0025 to
tailor the model to our custom dataset. The data of ten subjects
were used for training, while the validation set consisted of the
data of the remaining five subjects, which were chosen to be
as representative as possible for the entire dataset. We chose to
use the model that minimized the loss on the validation set (i.e.,
early stopping), which was obtained after just 4,000 iterations?.
The performance of this model is compared in Table 4 with
the average precision (AP) metrics of the pretrained model
on the original COCO dataset. Note that due to the limited
domain of our dataset and the smaller number of classes our
performance compares favorably to the larger COCO dataset.
After training, we employed the model in inference mode to
detect and segment objects in all videos of all subjects, as shown
graphically in Figure 3.

2.3.3. Distances

The segmentation masks for all videos were stored to disk and
then combined with the gaze data to calculate various distances.
In the following, we restrict ourselves to segmentations that were
recognized with a certainty score of at least 0.8. The distances that
are of interest for our analyses are the following.

2The model is publicly available online (Gregori and Gijsberts, 2019).

TABLE 4 | Comparison of Mask R-CNN’s detection accuracy on the COCO
dataset and the accuracy of our finetuned model on the MeganePro dataset.

Dataset AP [%] AP50 [%] AP75 [%] Source
MeganePro 77.5 92.7 87.6 This work
COCO 33.6 55.2 35.3 He et al.,, 2017

The AP is the average precision over Intersection over Union (loU) from 0.5 to 0.95
evaluated at steps of 0.05. AP50 and AP75 represent the average precision when the
threshold of loU is 0.5 or 0.75. A detailed description of these metrics can be found on
the website of the COCO dataset (http://cocodataset.org).

e The gaze-target distance, which is the distance between the
gaze point in frame coordinates and the target object for a
grasp trial, if visible in the frame. If multiple instances of the
same target class were recognized, then we chose the largest in
terms of area.

e The gaze-limb distance denotes the distance between the gaze
point and the hand or residual limb of the participant, if
visible. We only consider instances identified as “human” that
fall in the lower half of the image frame and again prefer the
largest one.

e When applicable, the limb-target distance indicates the
distance between the subject’s hand or residual limb and the
target object, as defined in the previous two distances.

Note that with the term “distance” we intend the minimum
Euclidean distance in pixels between a point and the contour of
a binary mask or between the contours of two binary masks. If
these overlap, then the distance is 0. Note that with the scene
camera of the Tobii glasses we find that 1 px >~ 0.72mm at a
typical manipulation distance of 0.8 m.

2.4. Events

The profile of these distances and the modalities described
previously were used to determine the timing of visuomotor
events with respect to the stimulus, such as the first fixation on
the target object or the onset of the arm movement. These events

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

November 2019 | Volume 7 | Article 316


http://cocodataset.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Gregori et al.

Visuomotor Behavior During Grasping

New Frames for Inference

Training Set

 —

FIGURE 3 | The procedure to segment the entire dataset. By means of the previously selected training set we fine-tune the Mask R-CNN model. Later we feed the

network with new frames and it provides the segmented object instances as output.

Fine-Tuning of Network

Mask R-CNN

Output of Inference

allow us to quantitatively describe the time interval between the
activation of the eyes, head, and limb. The analysis window for
each trial ranges from 2 s before until 2.5s after the end of the
corresponding vocal instruction with a resolution of 20 ms. We
define the following events.

The first fixation is defined as the first of at least two successive
samples where the gaze-target distance is <20px. This
threshold was chosen to accommodate for some systematic
error in the gaze tracking and is roughly twice the average gaze
tracking accuracy (Cognolato et al., 2019). The requirement
for two successive samples that fall below the threshold is to
ignore occasional outliers.

The saccade to the target object is assumed to initiate at the
last sample where the gaze velocity was <70 ° /s (Komogortsev
et al., 2010), starting from 500 ms prior to the target fixation.
This definition in terms of the last preceding fixation rather
than the first saccade makes it robust against missing data from
the eye tracker during saccades. Furthermore, we require this
saccade to start from a gaze-target distance of at least 100 px to
avoid occasional trials where the subject was already fixating
the target object.

The start of the head movement is defined as the first of
two successive samples where the Euclidean norm of the
angular velocity vector of the Tobii glasses exceeds 12°/s.
This threshold was chosen manually to be insensitive to
systematic errors in the measurements of the gyroscope in the
Tobii glasses.

The movement of the arm starts at the first of two
successive samples where the Euclidean norm of the three-axis
accelerations exceeds 0.07 g. Also in this case the threshold was
tuned manually to be insensitive to the baseline level of noise
of the accelerometers.

The activation of the forearm muscles starts when either of the
myoelectric signals exceeds 4 times its baseline level for two

successive samples. This baseline level is taken as the average
activation in the rest period from 2s to 1s before the vocal
instruction ended.

Finally, the first grasp occurs when there are two successive
samples where the limb-target distance is <5px. This
threshold was chosen to allow for a small error margin in the
detected segmentation masks.

Whenever the conditions for an event were not satisfied it was
marked as missing for the corresponding trial. Furthermore, we
invalidate all events that were found within the first 100 ms of the
analysis window, as it implies that the subject was not in a rest
position or was already fixating the target object.

3. RESULTS

In the following, we analyze the eye-hand coordination of the
subjects in response to the grasp stimulus during the reach-
to-grasp and manipulation phases. In other words, we relate
movement of the eyes and head with that of the forearm. Before
moving to these analyses, we verified that subjects effectively
looked at the target object during a grasp trial. Thanks to the
deep learning approach described previously, we determined
that in 95.9% of the trials the gaze-target distance was <20 px
at least once. Manual evaluation of the remaining 4.1% of the
trials revealed that these were caused by a low accuracy of the
gaze tracking that exceeded our threshold rather than lack of
subject engagement.

3.1. Statistical Analysis

The first objective in this paper is to determine the window of
opportunity in which gaze can provide useful information about
an upcoming grasp. Table 5 shows that for intact subjects there
is a median interval of 561 ms between the fixation event and
the subsequent grasp event. The same interval increases to more
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TABLE 5 | Statistical description of the intervals in seconds between various events.

Intact Amputated
Interval # Q1 Med. Q3 # Qi Med. Q3 Significance
fixation — grasp 8,144 0.321 0.561 0.842 1,942 0.581 1.042 1.644 KS = 0.724,p = 2.602 x 10~°
saccade — fixation 5,625 0.080 0.160 0.301 2,522 0.060 0.140 0.281 KS = 0.190,p = 0.811
saccade — head 5,419 —0.301 0.020 0.160 2,367 —0.461 —0.020 0.140 KS =0.338,p = 0.173
head — arm 7,929 0.020 0.120 0.301 3,507 0.000 0.140 0.371 KS =0.262,p = 0.447
arm — muscles 7,907 —0.020 0.080 0.401 3,576 0.200 0.581 1.042 KS = 0.829,p = 4.524 x 1077

The count refers to the number of trials where both events were recognized, out of a total of 9,703 trials for intact and 4,482 trials for amputated subjects, respectively. For the

Kolmogorov-Smirnov test the intervals were averaged per subject to guarantee independent samples.

than a second for amputated subjects, although this difference is
because they did not physically interact with the objects and the
limb-target distance therefore did not as often converge to within
the 5 px threshold. Not surprisingly, a Kolmogorov-Smirnov test
on the average interval per subject indicated that this difference
between both subject groups was statistically significant. This is in
contrast to the coordination between the initial saccade, the head,
and the arm movements, for which we fail to find a significant
difference between both groups. The saccade to the target object
leads to its fixation in approximately® 150 ms. Concurrently with
the eyes, also the head starts to move. This head movement is then
followed by acceleration of the arm around 130 ms later. In intact
subjects, the activation of the forearm muscles comes only 80 ms
after the onset of the arm movement in the median case. This
interval is more than half a second longer for amputated subjects
and this difference is found to be statistically significant.

3.2. Reach-to-Grasp Phase

The coordination during the reaching phase of all “static” and
“functional” grasps is visualized in Figure4 for both intact
and amputated participants. Whereas the previous statistical
analysis was intended to provide a quantitative assessment
of the relative timings in eye-hand coordination, this figure
instead complements those numbers by demonstrating how this
coordination evolves over time. It does so by showing the median
and quartiles of the distribution over all trials from all subjects
in either group from 1.5s before to 2.5 after the conclusion of
the vocal instruction. For both types of subjects, we observe an
increase in gaze velocity from —0.5 s to 1 s. This increase also
marks a sharp decrease in the distance between the gaze and
the target object, which leads to a fixation soon after. From this
moment on, the subjects retain their fixation on the object of
interest. Based on the median profiles, we see again that the onset
of the head movement starts around the same time as the eye
movement and continues for 1.5s.

The delay of the arm movement with respect to the eyes is
slightly larger for amputated subjects, as shown by the median
profile of the forearm’s acceleration in Figure 4. Shortly after
the arm starts to move, we also observe an increase in SEMG
activity, with initially an emphasis on the extensor and later on

3This is likely a slight overestimation, considering our definition of the saccade and
missing values in the gaze data from the Tobii glasses.

the flexor. For able-bodied subjects, the profile of the limb-target
distance confirms our earlier finding that the limb arrives at
the object 500 ms after its fixation. Although this result is not
directly comparable with that for amputated subjects, we observe
that the convergence between their residual limb and the target
object appears more gradual and is characterized by a much
larger variability.

A noteworthy observation is that the activation of the eyes
always preceded the end of the vocal stimulus. The reason is
that subjects could typically deduce the target object already
before the end of the instruction. This does not affect our results,
since we are interested in the relative delay between eyes, head,
and forearm rather than reaction times to the stimulus. The
differences in reaction time to the vocal instructions do increase
however the dispersion of the distributions. We also note that
the relative contribution among the three axes of the acceleration
profile differs between able-bodied and amputated subjects. The
reason is that we normalized this profile with respect to the
initial position of the forearm, which is typically different for both
types of subjects. In the present study, we use accelerometry to
determine when the arm starts to move and rely on the limb-
target distance to measure its convergence to the target object.

3.3. Manipulation Phase

In Figure 5, we focus on the behavior of intact and amputated
subjects during the functional tasks to further investigate the
similarities in gaze strategy. These figures start from 2 s before
the vocal instruction until 7s after, which is enough to cover
the entire manipulation action. We group the MeganePro
movements into three categories based on the type of task and the
associated visual behavior, as shown in Table 3. These categories
are in place manipulation actions, lifting actions, and finally
displacement actions.

3.3.1. In Place Actions

The in place actions concern manipulation tasks that do not
require moving the object, like opening an object, cutting bread,
or pressing a button of the remote control. The aggregated
profiles of all modalities for these actions are shown in Figure 5A
for able-bodied subjects and in Figure 5B for amputees. During
this type of action, the gaze remains fixed on the target object
throughout the entire duration of the manipulation, as can also
be seen in the example in Figure 6 that overlays gaze and object
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FIGURE 4 | The trend of each modality in the reach-to-grasp phase for (A) intact and (B) amputated subjects. The zero corresponds to the end of the vocal
instruction that indicated the required manipulation action. The solid line represents the median over all trials from all subjects, whereas the shaded areas indicate the
25th and 75th percentiles. Segments with more than 90% missing data were omitted.

segmentations on representative frames of the first person video.
As expected, the hand remains on the target for the entire
duration in case of able-bodied subjects, whereas for amputees
there remains a constant subject-dependent distance between the
residual limb and the target. Head movements are limited to
the initial reach-to-grasp phase to center the object in the field
of view, after which the head remains fixed until the end of
the manipulation.

3.3.2. Lifting Actions

The second group is composed of lifting actions, in which the
subject was required to lift an object up and then place it back
in its initial position. As can be seen in Figures 5C,D, also in
this case the gaze anticipates head and forearm movement. More
interestingly, we see a clear movement in the pitch orientation
of the head. Since these actions are executed while standing,
the subjects first lower their head to locate the target object on
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Direct Reach

Intact

Amputated

FIGURE 6 | Example of the visuomotor behavior of an intact (first row) and an amputated (second row) participant while opening a door handle. The gaze trail is
represented by the circles from the current gaze position (red) to ten samples later (white). Both subject groups direct the gaze on the object during the reaching
phase (first column). The eyes then remain focused on the target object during the grasping and manipulation phases (second and third columns). In both cases, the
motor behavior of the arm is similar for intact and amputated subjects. During the release phase the gaze shifts away from the object (fourth column).

Release

Manipulate

the table. Then, when they have located and grasped the object,
they raise their head again with a peak pitch velocity at 1.7 s for
able-bodied subjects and slightly later for amputated subjects.
This head movement coincides with a modestly increased gaze
velocity and is due to the tracking motion of the lifting action.
In some cases, this tracking strategy even caused an amputated
subject’s gaze-target distance to increase, as can also be seen in the
example in Figure 7. Finally, the subjects lower their head again
when tracking the release of the object at the end of the trial.

3.3.3. Displacement Actions

The final category are the so-called displacement actions. During
these tasks, the subjects had to grasp the objects, move them
horizontally to another position, and then place them back in the
initial position. We note that the gaze and motor behavior starts
earlier with respect to the vocal instruction. For this category of
tasks, the name of the object happens to appear at the beginning
of the instruction (see Table 3), thus allowing subjects to initiate
the task early. For intact subjects, we see in Figure 5E that 200 ms
before the hand reaches the object the gaze-target distance starts
to increase again. The gaze, in this case, shifts already to the
destination position for the displacement action, as demonstrated
in the second panel in Figure 8. Although less pronounced,
the same pattern repeats itself at around 1.5s when the subject
initiates the return movement. The profiles for the amputated
subjects in Figure 5F show different behavior, with an overall
increase in gaze-target distance throughout the entire duration
of the movement. As intact subjects did, their gaze anticipates the
path of the hand rather than the path of the object, which is not
physically displaced. This strategy is demonstrated clearly in the
bottom row of Figure 8.

4. DISCUSSION

The objective of this paper was to determine the window of
opportunity for exploiting gaze as contextual information in

decoding the grasp intent of amputees. A related question was
to which extent the natural gaze strategies of amputees and able-
bodied subjects were similar. After comparing our results with
related work, we discuss both topics. Finally, we argue for the
use of recent developments in deep learning in the analysis of
large-scale visuomotor studies.

4.1. Visuomotor Strategy and Comparison
With Related Work

In section 3.2, we presented the results of eye, head, and limb
coordination during reaching and grasping. The eyes are the
first to react to the vocal stimulus by exhibiting an increasing
saccade-related activity, leading to a fixation on the target in
about 150 ms. When the eyes start moving, also the head follows
almost immediately. Such short delays between movement of the
eyes and the head have been reported in the literature, ranging
from 10 ms to 100 ms during a block-copying task (Smeets
et al., 1996) or in reaction to visual stimuli (Goldring et al.,
1996; Di Cesare et al., 2013). This behavior is however strongly
dependent on the experimental setting and even small variations
therein can change the outcome. For instance, Pelz et al. (2001)
found that depending on the exercise’s instruction the head may
both precede (by about 200 ms) or follow the eyes (by about
50 ms) in the same block-copying task.

After the activation of the eyes and the head we observe the
movement onset of the arm 130 ms later. Similar values ranging
from 170 ms to 300 ms were also reported by Smeets et al.
(1996) and Pelz et al. (2001) in a block-copying task and by
Belardinelli et al. (2016) in a pick and place task. Land et al.
(1999) instead found a median delay of 0.56s during a tea-
making activity. Rather than movement onset, the time the hand
takes to reach the target is more interesting for our scope. For
the intact subjects, the hand typically starts to occlude the target
object around 500 ms after the first fixation. Although occlusion
does not necessarily already imply a completed grasp, especially
given the first person perspective, we do expect the grasp to follow
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Direct Reach Lift Release

Intact

Amputated

FIGURE 7 | Example of the visuomotor behavior of an intact (first row) and an amputated (second row) participant lifting a plate. The gaze trail is represented by the
circles from the current gaze position (red) to ten samples later (white). The eyes focus on the manipulation point to plan the hand’s approach (first and second
columns). During the lifting phase, the eyes move away from the reaching point and the amputee’s gaze even exceeds the mask boundary of the plate (third column).
The object is fixated again during the release (fourth column).

Direct Reach Displace Release

Intact

Amputated

FIGURE 8 | Example of the visuomotor behavior of an intact (first row) and an amputated (second row) participant while moving a ball. The gaze trail is represented by
the circles from the current gaze position (red) to ten samples later (white). The gaze focuses on the object until the hand’s arrival (first column), when the grasping
phase begins the eyes shift away toward the destination (second column). When the hand reaches the destination the gaze shifts back to the initial location (third
column) to release the target (fourth column).

not much later. These results confirm that visual attention on  that will be used immediately after. Fixations to guide are usually
objects anticipates manipulation. In previous studies concerning  multiple and occur when the gaze shifts among two or more
displacements (Johansson et al., 2001; Belardinelli et al., 2016;  objects that are approaching each other. Finally, there are long
Lavoie et al., 2018) and grasping activities (Brouwer et al., 2009),  checking fixations to monitor the state of an action waiting for
a variable delay ranging from 0.53 s to 1.3 s was found between its completion.
the eye and hand. Also in these cases, the exact value of the delay The visual strategy of the in place actions is relatively
depends on the characteristics of the experiment. straightforward. In these tasks, subjects initiate with a fixation
In section 3.3, we concentrated on the visuomotor strategy  to direct the attention to the target object. Subsequently, their
adopted by amputated and able-bodied subjects to interact with ~ fixation remains on the manipulated object to check the correct
the objects during three groups of functional tasks. We can  execution of the task. Note that this visual attention seems
characterize the strategies associated with these groups in terms  focused on the target object rather than the subjects hand, as
of the types of fixations defined by Land et al. (1999) and  can be seen comparing the gaze-target and gaze-limb distances
Land and Hayhoe (2001), namely locating, directing, guiding,and  in Figures 5A,B. Indeed, Land et al. (1999) noted that the hands
checking. A fixation to locate is typically done at the beginning  themselves are rarely fixated.
of an action, to mentally map the location of objects that is to Also the lifting actions start with a directing fixation to locate
be used. Instead, a fixation to direct is meant to detect an object  the object of interest. However, whereas the initial fixation is
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focused on the intended grasp location (cf. the left column
in Figure7), the gaze shifts upwards when the hand has
grasped the object. This coincides with the transition from the
directing fixation to visually checking the lifting action. This
is in line with observations by Voudouris et al. (2018), who
noted that people may fixate higher when grasping and lifting
an object to direct their gaze to where the object will be in
the future.

Finally, displacement actions are the ones most investigated
in the literature. Previous studies on pick and place tasks
(Belardinelli et al., 2016; Lavoie et al., 2018) and on the block-
copying task (Smeets et al., 1996; Pelz et al., 2001) fall in this
category. In this case, we observe in Figure 5E that the gaze-target
and gaze-limb distances have three minima for intact subjects,
namely at the initial pick-up, the destination, and at the release
again at the initial position. All three minima indicate fixations
that are meant to direct the approach of the hand, either for
(1) grasping the object, (2) displacing it, or finally (3) releasing
it. This behavior can clearly be seen for both intact as well as
amputated subjects in the example in Figure 8. We also notice
that the eyes did not wait for the completion of the pick-up
action, moving instead toward the position of the destination
around 200 ms in advance. This proactive role of the eyes was
highlighted by Land et al. (1999), who measured the gaze moving
on to the next object between 0's to 1s before the current object
manipulation was terminated. Also Pelz et al. (2001) observed the
eyes departing from the target object 100 ms to 150 ms before the
arrival of the hand.

4.2. Comparison Between Intact and
Amputated Subjects

One of the aims of this work was to understand if a transradial
amputation has introduced important changes in the visuomotor
behavior of amputees. During the reach-to-grasp phase, the
overall behavior of intact and amputated subjects is comparable.
Even if the coordination timeline between eyes, head, and limb
is similar, there are some minor discrepancies between the two
groups. The main observed difference concerns the delayed
activation of the forearm muscles during the reaching phase
for amputated subjects, which was found to be statistically
significant. Similarly, during the lifting tasks we noted slower
pitch movements of the head. It is likely that some subjects
interpreted the instruction to perform the grasp with their
missing limb by activating their phantom limb. Such movements
executed with the phantom limb are known to be slower than
those executed with the intact hand (Raffin et al., 2012b; De Graaf
et al., 2016).

Throughout the manipulation phase, we observe a striking
similarity in visuomotor strategy between the amputated subjects
and the control group. The differences that we noted in the results
are not due to an alternative gaze strategy, but rather because
the objects were not physically moved during the interaction.
For instance, in the lifting task visualized in Figure 5D we saw
an increase in gaze-target distance in the range from 2 s to 5 s.
This increase was due to an upward shift in the gaze location
to track where the object would have been if it had been lifted

for real. Similarly, during the displacement task in Figure 5F we
do not observe a minimum in gaze-target distance at around
1.55, as was the case for intact subjects (see Figure 5E). Instead,
around the same time we observe a peak for the amputated
subjects, solely because the target object is still at its original
position whereas their gaze has shifted to the intermediate
destination. The examples for these gaze strategies in Figures 7, 8
demonstrate how similar intact and amputated subjects behaved.
It would be interesting to understand how these results relate
to the disrupted eye-hand coordination when using a prosthetic
device. Previous studies (Bouwsema et al., 2012; Sobuh et al.,
2014; Parr et al., 2018) have underlined that prosthetic users are
more fixated on guiding the current manipulation, rather than
planning the follow-up action. This behavior is most likely caused
by the fact that amputated people rely almost exclusively on visual
feedback. However, since only a small number of subjects were
engaged in the previous studies more research will be needed to
fully understand the disruption of the visuomotor strategy. In
particular, whether or not this strategy improves when the user
develops trust in the prosthesis (Chadwell et al., 2016) merits
attention. Another equally interesting question is to which extent
the proactive gaze behavior can be restored by integrating tactile
or proprioceptive feedback in the prosthesis (Cipriani et al., 2011;
Marasco et al., 2018; Markovic et al., 2018, among others).

4.3. Integration of Vision in Prostheses to

Improve Intent Recognition

The estimated time interval from fixation to grasp in section
3.1 shows that the window of opportunity is 500 ms for intact
subjects. This interval cannot be accurately determined for
amputated subjects, as they executed the movement with their
missing limb and therefore lacked physical contact with the target
object. Although Figure 4B suggests that this window will at
least be as long for amputated users, one may argue that this
result is not representative for movements performed with a
prosthesis. However, previous studies showed without exception
that prosthetic users still fixate the target object for the majority
of the reaching phase (Bouwsema et al., 2012; Sobuh et al., 2014;
Chadwell et al., 2016; Hebert et al., 2019; Parr et al., 2019), albeit
alternating it more often with fixations on the hand (i.e., the
“switching” strategy). Moreover, this reaching phase may actually
take more than twice as long as compared to the same movement
performed with the anatomical limb (Sobuh et al., 2014; Hebert
etal., 2019). These findings suggest that the target object will still
be fixated proactively by a prosthetic user and that the window of
opportunity will more likely be longer than shorter.

Exploiting this anticipatory gaze behavior is appealing because
it comes naturally and therefore does not require specific
attention from the user. The success of this approach relies
however on the ability to distinguish informative fixations from
those that are not necessarily related to any grasp intent. Gigli
et al. (2018) attempted to address this problem by including the
onset of the arm movement as an additional condition, which
we have shown here to shorten the window of opportunity. Also
the method that is used to detect fixations may shorten this
window. Thanks to the frame-by-frame segmentations in the
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present study, we could accurately and instantaneously recognize
object fixations by measuring the distance between the object’s
segmentation mask and the gaze point. In contrast, common
fixation classifiers, such as (IVT) (Salvucci and Goldberg, 2000),
define a fixation simply as the lack of eye movement. In reality,
gaze shifts more commonly involve not only eye movement, but
also head and sometimes even trunk movements (Morasso et al.,
1973; Land, 2006). When the head moves, the optokinetic and
vestibulo-ocular reflexes cause the eyes to counteract the head
movement to maintain a stable gaze point (Lappe and Hoffmann,
2000). It is exactly due to such coordinated gaze movements that
the initial object fixation in Figure 4 actually coincides with a
peak in gaze velocity. The need to detect fixations as early as
possible therefore implies a detection method that uses more
information than eye movement alone. Whether this is best done
by compensating for head movements (Kinsman et al., 2012;
Larsson et al., 2014) or by comparing the visual object at the gaze
point as in the present study is an open question.

A final consideration is regarding technical and practical
concerns of a prosthetic solution that integrates eye tracking.
Myoelectric control of prostheses has a long history and a
solution that decodes natural muscle activations via pattern
recognition is commercially available (Coapt, LLC, 2015).
Tracking a user’s gaze continuously and reliably in a variety of
conditions will pose a bigger problem, however. The Tobii glasses
used for the MeganePro dataset resulted in 10.7% of missing data
on average, caused discomfort to the subjects after wearing them
for about 2h, and needed a battery replacement after 1.5 h to
2 h of continuous acquisition. Recent developments have seen
considerable improvements however in terms of weight, cost, and
aesthetic appeal (Pupil Labs GmbH, 2019).

4.4. Advantages of Deep Learning for the

Automatic Analysis of Visual Behavior
Without the deep learning approach described in section 2.3 it
would have been extremely labor intensive to analyze 70h of
video and data from 44 subjects. Manufacturers of eye-tracking
devices often provide applications for semi-automatic analyses,
but these do not allow the level of automation nor precision as
the procedure described here. Although the object segmentations
produced by Mask R-CNN were occasionally mistaken, the
segmentations seen in the examples from Figures 6-8 are
illustrative for the overall performance. It may easily be
overlooked that data from research studies, such as the present,
often contain much less visual variability than the datasets
on which these algorithms are trained and evaluated. With
minimal finetuning efforts, it is therefore likely to obtain levels
of performance that considerably exceed those reported in the
literature, as was seen in Table 4.

5. CONCLUSIONS

In this study, we analyzed the coordination of eye, head, and
limb movements of amputated and able-bodied participants
engaged in manipulation tasks of household objects. Our aim
was to understand the anticipatory role of gaze in the visuomotor
strategy and to determine whether this could potentially be used

to aid in the grasp intent recognition for upper limb prostheses.
We found that a fixation on the target object typically preceded
the subsequent grasp by 500 ms in intact subjects and possibly
longer for amputees. Moreover, the visuomotor strategies of
amputees were similar to those of intact subjects both during the
reach-to-grasp phase as well as during functional manipulation
tasks. In future work, we aim to use the knowledge gained in
this study to integrate vision with the (SEMG) modality to verify
whether we can realize an effective improvement in recognizing
grasp intentions during the reaching phase.
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Introduction: Excessive lateral trunk lean is a commonly observed gait deviation in
children with cerebral palsy (CP), with implications for energy expenditure and the
development of back pain. While the trunk lean toward the stance leg is widely interpreted
as a compensatory strategy to unload the hip, in CP the relation to hip abductor muscle
strength is only weak. Therefore, other mechanisms may play a role in the prevalence of
excessive trunk lean in CP, or it could be a primary motor function deficit.

Research Question: Is the excessive lateral trunk lean in patients with CP part of an
underlying biomechanical mechanism?

Materials and Methods: Patients with bilateral CP (N = 255; age 13.6 + 6.6 years)
were retrospectively included and divided into a group with (n = 174) and without (n =
81) excessive lateral trunk lean. Ten lower-extremity joint angle waveforms were analyzed
using a principal component analysis (PCA) to identify patterns of correlated deviations
from average angle waveforms. Binary logistic regressions were performed to determine
the discriminative capacity of the identified patterns.

Results: The PCA identified correlated kinematic patterns, with lower-order patterns
showing more common gait pathologies, such as torsional malalignments and crouch
gait pattern. Within five patterns, significant (o < 0.0025) group differences were
identified. Interestingly, the trunk lean was not always distinctive in these patterns and
despite the significant differences their effect sizes were small. The logistic regression
was unable to reliably classify patients based on their trunk lean patterns.

Discussion: The current study identified multiple trunk lean-related patterns, however,
excessive trunk lean was not attributable to a distinctive CP related gait pathology or to
a specific compensatory strategy. Overall, the results do not support the hypothesis that
excessive trunk lean is part of a biomechanical mechanism. Therefore, it seems more
likely that excessive lateral trunk lean is based on other disease specific dysfunctions,
influenced by the severity of the disease.

Keywords: 3D gait analysis, gait pattern, principal component analysis, trunk control, Duchenne gait, motor
function, compensatory strategy, cerebral palsy

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 25

November 2019 | Volume 7 | Article 345


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2019.00345
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2019.00345&domain=pdf&date_stamp=2019-11-19
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:r.rethwilm@bz-aschau.de
https://doi.org/10.3389/fbioe.2019.00345
https://www.frontiersin.org/articles/10.3389/fbioe.2019.00345/full
http://loop.frontiersin.org/people/764776/overview
http://loop.frontiersin.org/people/846805/overview
http://loop.frontiersin.org/people/294436/overview

Rethwilm et al.

Trunk Lean in Cerebral Palsy

INTRODUCTION

An excessive lateral trunk lean is a commonly observed gait
deviation in patients with cerebral palsy (CP) (Attias et al., 2015),
with a prevalence as high as 72% in children with CP (Klum et al.,
2015). This excessive trunk lean has been shown to result in an
increased cost of locomotion (Salami et al., 2017) and may also
contribute to the development of back pain, which is one of the
most common pain sites in adults with CP (Opheim et al., 2009).

From a clinical perspective, an increased lateral trunk lean is
widely viewed as a compensatory mechanism for hip abductor
muscle weakness (Schmid et al., 2013), also known as Duchenne
gait. This mechanism describes the inclination of the trunk
toward the ipsilateral stance leg, which shifts the center of
mass (COM) laterally and reduces the hip abduction moments
significantly (Salami et al., 2017).

It is often challenging to identify the cause of an observed
gait deviation and to determine whether the nature of a
specific abnormal pattern is a primary feature of the disease
or rather a compensatory strategy adopted to cope with an
underlying gait problem (Schmid et al, 2013). Identifying
a mechanism as primary or compensatory has far-reaching
implications. Not knowing the underlying source of an abnormal
movement pattern could result in untreated primary pathology
or, even worse, in unnecessary treatment of a compensatory
mechanism that would resolve when the primary pathology is
addressed directly.

The lateral trunk lean in CP gait is a case where the source
is not as clear and apparent as in some other gait phenomena.
For example, compared to the name-giving Duchenne muscle
dystrophy, studies in CP found only weak—yet significant—
correlations with hip abductor muscle strength (Krautwurst et al.,
2013; Klum et al., 2015). This indicates that muscle weakness
contributes to the occurrence of an excessive lateral trunk
lean, but also suggests that other factors may play a role or
could possibly be more prevalent. Accordingly, some researchers
suspected further contributing causes, such as bony deformities
(Salami et al., 2017) or an underlying primary motor control
deficit (Heyrman et al., 2014).

To gain further insights into potential underlying mechanisms
for an excessive trunk lean, the current study explored if
excessive trunk lean is part of a kinematic movement pattern
that can be frequently observed in the gait of CP patients. To
determine kinematic movement patterns, we applied a principal
component analysis (PCA), a statistical method that identifies
correlated patterns (PC-eigenvectors) in multi-dimensional data
(Daffertshofer et al., 2004; Eskofier et al., 2013; Robertson et al.,
2014). Furthermore, a score for each pattern and patient is
computed, indicating the extent to which each individual patient
exhibits a particular pattern. For such a pattern to represent a
functional mechanism, we postulated three criteria: (1) excessive
trunk lean needs to be a part of the pattern. (2) If CP patients are
classified into a group showing excessive trunk lean (eTL) and a
group non-excessive trunk lean (nTL), then we expected to find
significant differences and medium or high effect sizes for the
scores that patients in these groups receive. (3) We considered
that there could be more than one mechanism that produces

excessive trunk lean as part of its kinematic pattern, however,
we expected that based on the scores subjects receive for these
patterns, it should be possible to successfully classify the subjects
into the eTL and nTL groups.

We postulated that if gait patterns can be found that satisfy
these three criteria, then causative biomechanical relations can
be established, that are indicative for the underlying origins of an
excessive trunk lean. The absence of such patterns, in turn, would
suggest other disease related deficits of the trunk control that are
not correlated with other deviations in the kinematic movement
pattern of CP gait.

In summary, the aim of the current study was to explore
correlated patterns in the kinematic variables that characterize
CP gait. We hypothesized that patterns can be found that
satisfy the three postulated criteria, which would suggest that
excessive trunk lean is part of a kinematic pattern caused by
an underlying biomechanical mechanism. Understanding the
mechanisms related to an excessive trunk lean and whether these
are primary or compensatory could aid in the clinical decision-
making and improve the management of CP.

MATERIALS AND METHODS

Patients with bilateral CP who were at least 5 years of age were
retrospectively included from the database of the gait laboratory,
which were measured between 2009 and 2018. Written consent
was provided for research purposes by the patients and the study
was approved by the ethics commission of the local medical
association. Inclusion criteria was a Gross Motor Function
Classification System (GMFCS) level I or II; accordingly, patients
were able to walk freely without assistive devices or help.
Excluded were obese patients according to the age-dependent
body mass index thresholds suggested by the WHO (de Onis and
Lobstein, 2010) and patients with documented spine deformities.

Patient data included instrumented 3D gait analysis data,
where the kinematics had been captured with an 8-camera Vicon
MX system at a sampling rate of 200 Hz. Joint angles were
computed based on the Vicon Plug-In gait model including the
trunk. All patients walked barefoot at self-selected speed along
a 13 m walkway and at least 3 consistent step cycles needed to
be present.

For the analysis mean angle waveforms of the upper body and
of the lower limb of the more pronounced side (greater lateral
trunk lean) were processed. In detail, 10 angles were included:
trunk lean and the 9 angles of the Gait Profile Score (GPS) of
the lower extremity (Baker et al., 2009) (seen in Figures 1, 2),
that represent clinically relevant joint angles in patients with CP.
Furthermore, the GPS was facilitated as a descriptive measure to
assess severity differences.

For further analysis the patients were divided into patients
with and without an excessive lateral trunk lean (eTL and
nTL, respectively), where “excessive” was defined as the trunk
lean range of motion (ROM) angle exceeding 3 SD from a
typically developed norm collective (TD; n = 24). The ROM
was chosen over the maximum lateral trunk lean to account for
spine deformities resulting in a constant lateral side bending.
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FIGURE 1 | lllustration of the 10 analyzed angles. Angles referring to the
global reference frame are indicated by solid and dashed lines. Other angles
are referenced to the more proximal segment. obl, obliquity; rot, rotation;
abd/add, abduction/adduction; flx, flexion; prog, progression.

The 3SD cutoff was chosen based on the small TD trunk lean
standard deviation and a lower cutoff would be hardly visible.
The resulting threshold to classify for the eTL group was a lateral
trunk lean ROM exceeding 8.4° (TD ROM + 3SD).

To identify patterns of correlated deviations from average
kinematic angle waveforms, the principal component analysis
(PCA) was facilitated. The PCA has already been successfully
used in different contexts in CP, for example, to identify CP-
related gait pathologies (Carriero et al., 2009a,b), to study multi
segmental gait deviations (Zago et al., 2017) or to evaluate post-
operative changes after multilevel surgery (Steppacher et al.,
2018).

The input data for the PCA were the time normalized
angle waveforms, each angle consisting of 101 discrete points,
concatenated to a vector of 1,010 columns. Each gait cycle of
every patient contributed a new row for the PCA input matrix.
This approach has two advantages: firstly, it allows the systematic
identification of kinematic gait patterns [principal components
(PCs)] within and between the 10 angle waveforms, and secondly,
a score is generated for each patient, expressing the coincidence
of the patients movement pattern with each PC (Daffertshofer
et al., 2004; Federolf et al., 2013). The individual PC-scores can
then be used to further investigate the group differences between
patients exhibiting an excessive trunk lean and patients who
are not.

As part of the further investigation of the PC-scores, t-tests
were used to identify group differences within the kinematic
gait patterns and the standardized mean differences effect size

Hedges’s g (d) with 95% confidence interval (CI) were calculated.
Due to multiple testing, the alpha error was conservatively
adapted with the Bonferroni correction (alpha level p < 0.0025).
Further, the PC-scores with significant group differences were
facilitated to investigate classification rates using binary logistic
regressions. This last step was used to verify that the identified
kinematic patterns are distinctive for a lateral trunk lean
mechanism since this would result in high classification rates. We
considered the third criterion of the compensatory hypothesis for
excessive trunk lean to be satisfied, when the classification rates
exceeded the proportional chance criterion (PCC) for logistic
regressions. For the analysis MATLAB (MathWorks Inc., Natick,
USA) was used for the PCA and group comparisons and SPSS
Statistics (IBM Corp., USA) for the binary logistic regression.
For the skeletal joint angle visualization (Figure 1) OpenSim was
facilitated (Delp et al., 2007; Seth et al., 2018).

RESULTS

For the current study n = 255 patients met the inclusion criteria
(mean age 13.6 & 6.6 years, 155 males 100 females). Of these
patients n = 174 (68%) exhibited an excessive lateral trunk lean
within their gait pattern while n = 81 (32%) stayed below the
cutoff of 8.4° trunk lean ROM (TD ROM + 3SD). In terms of
anthropometrics the two groups were very similar (Table 1). As
for the functional status, the excessive trunk lean group (eTL)
had a larger proportion of patients rated as GMFCS 1I (82.2%),
compared to 64.2% in the normal trunk lean group (nTL). This
was also reflected by the GPS, where the eTL showed higher
deviations from the norm. The differences in GPS were highly
significant (p < 0.001) when comparing the eTL and nTL groups.
Joint angle waveforms averaged over the two groups are
displayed in Figure 2. The mean maximal trunk lean ROM was
16.68 £ 6.4 in the eTL, nTL 6.63 4= 2.8 and 4.18 & 1.4 in TD.
Within the between-patient variations in the kinematic
variables the PCA identified correlated and mutually orthogonal
patterns (Figure 3). The lower-order patterns, specifically PC-
vectors 1 and 2 represented CP-gait deviations that did not
change over the gait cycle, such as internal rotation malalignment
of the lower extremity (PC1) and crouch gait (PC2). Higher-
order PCs increasingly represented phase-dependent systematic
gait deviations, including the trunk lean (PC8, PC12, PC17).
More specifically, PC1, accounting for 31% of variability, showed
a kinematic pattern dominated by the rotational malalignments
of the lower extremity, expressed particularly as correlated
deviations in hip rotation and foot progression. The contribution
of these angle waveforms is visualized by the bar plots in Figure 3,
showing that 63% in contributed by hip rotation and foot
progression. The positive correlation between hip rotation and
foot progression is visualized by the Eigenvector graph being
negative in both cases. This means that the foot progressing
increases with increased hip rotation or vice versa. Whether
the correlation is positive or negative can also be seen in the
right column mean angle visualization indicated by the colored
lines. Is the colored line in both cases above or below the mean
angle, the correlation is positive. Is the colored line opposite
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TABLE 1 | Anthropometrics and severity.

sides, the correlation is negative. PC2 depicted a combination

Group characteristics eTL (n = 174) nTL (n = 81) p-value Of hlp and knee ﬂeXiOn, Coupled Wlth hlp rotation and fOOt
progression pronounced during swing phase. PC3 expressed
Age (vears) 136(6.7) 136 (6.4) 0.80 between-patient variations in pelvic tilt coupled with variations
Height (cm) 148 (19) 148 (16) 0.62 in hip and knee flexion.
BMI (kg/m?) 18.4 (3.9) 18.5(3.4) 0.99 Within the first 20 PCs, 5 kinematic patterns with significant
GPS (%) 9.4 (2.1) 7.9(2.8) <0.001 differences (p < 0.0025) between the scores of the eTL and nTL
GMFCS 1 (%) 17.8 358 <0001+  8roups were identified (Figure 4). The trunk lean was distinctive
GMFCS Il (%) 82.2 64.2 in 4 of these kinematic patterns (PC: 3, 8, 12, 17), whereas
ot PC2, while being significantly different between the eTL and
oTL. excessive trunk lean: nTL, non-excessive trunk lean. nTL groups, did not entail the trunk lean within its kinematic
Significant group differences in bold. pattern (Figure 3). Overall, the first 20 PCs explained 96% of the
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trunk lean: the higher a patient scored on PC3, the more trunk lean did the patient show.
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variability between patients. The PC components that differed
between groups together explained 34% of the variability. The
4 kinematic patterns that contained trunk lean as part of their
pattern, as visible in PC 3, 8, 12, 17 in Figure 3, accounted for
14% of the between-patient variability. However, although highly
significant group differences were found within the scores of the

different kinematic patterns (PCs) a substantial overlap of the
score distributions of the eTL and nTL groups were observed
(Figure 4), corresponding to small effect sizes for the group
differences (Table 2).

Individually, none of the PCs had sufficient predictive
power in a logistic regression model (Table 3)—particularly
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TABLE 2 | Overview of the patterns (PCs) with significant score group differences.

PCs P-value Effect size (ES) ES 95% CI
(d)
Lower Upper

2 <0.001 0.20 0.08 0.33
3 <0.001 0.29 0.18 0.40
8 <0.001 0.24 0.13 0.35
12 <0.001 0.28 0.17 0.38
17 <0.001 0.22 0.10 0.33

nTL patients were falsely classified at a very high rate. The
binary logistic regression model combining PC 2, 3, 8, 12,
and 17 revealed a significant association between the lateral
trunk lean and the 5 significant PC scores [X*5) = 96.196,
p < 0.001] and explained 44% of variance (Nagelkerke R?).
The overall predictability of the model was 81.2% (Table 3),
however, whereas eTL patients were correctly predicted by the

logistic regression at a rate of 89.7%, nTL patients were predicted
correctly at rates of 63.0%. For the given group sizes—n(eTL)
= 174; n(nTL) = 81—the proportional chance criterion (PCC),
necessitates a nTL classification rate of at least a rate of 72%
for an acceptable accuracy of an 25% improvement over a by-
chance classification.

DISCUSSION

The current study analyzed the between-patient variability in CP
gait patterns with a focus on lateral trunk lean. We hypothesized
that excessive trunk lean might be part of a functional kinematic
mechanism, and postulated that then we should find patterns in
which trunk lean is correlated with other deviations in kinematic
variables (criterion 1), in which patient groups with excessive
(eTL) or normal trunk lean (nTL) would score significantly
and substantially (effect size) different (criterion 2), and which
would together allow to reliably classify individual patients as
belonging to the eTL or nTL group (criterion 3). The PCA
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TABLE 3 | Logistic regression models for the individual significant scores and for
the combined model, with odds ratios (OR) and classification results for the
excessive (eTL) and non-excessive (nTL) trunk lean groups.

PCs P-value OR Classification rate (%)
(95% CI)
eTL nTL
2 0.002 0.995 (0.993-0.998) 97.7 3.7
3 <0.001 1.010 (1.006-1.014) 93.7 14.8
8 <0.001 0.982 (0.973-0.990) 96.0 14.8
12 <0.001 1.032 (1.018-1.046) 95.4 12.3
17 0.001  0.968 (0.953-0.984) 96.6 114
Combined model Overall 89.7 63.0
2+3+8+12417 Combined 81.2

analysis conducted in the current study successfully identified
several patterns (PC 3, 8, 12, 17) in which trunk lean was
correlated to changes in other kinematic variables (criterion 1),
and we found that subject groups scored significantly different
on these four PCs (criterion 2a). However, we found that the
score distributions of the two patient groups on all four PCs
largely overlapped, corresponding with small effect sizes for
the group differences (criterion 2b not satisfied). Furthermore,
we found that the logistic regression model—despite yielding
a significant association between the PC scores and excessive
trunk lean—was not reliably able to classify patients into the
correct group. Particularly patients with a normal trunk lean
were to a high percentage falsely classified as eTL patients
(criterion 3 not satisfied). Overall, these findings suggest that
an excessive lateral trunk lean in CP is not based on a
kinematic compensatory mechanism but, in a large fraction of the
patients, more likely the result of other motor functional deficits
(Panibatla et al., 2017).

Interestingly, no significant differences between eTL and nTL
were found within the first kinematic pattern (PC1) entailing
rotational malalignments of the lower extremity. Therefore, it can
be concluded that lateral trunk lean mechanics are unaffected by
these rotational malalignments. This finding stands in contrast
with the assumption that hip internal rotation is a compensatory
mechanism for hip muscle lever arm dysfunctions of the often
anteverted hip in CP (Arnold et al., 1997). Since hip muscle
weakness accounts, at least to some degree, for the prevalence
of a trunk lean pattern (Krautwurst et al., 2013), a connection
between hip internal rotation and trunk lean would have been
plausible but could not be established in the current study.
Another study found a significant negative correlation between
hip rotation and foot rotation (Gaston et al., 2011) and propose
the internal hip rotation as result of a distal foot external rotation.
While the PC1 pattern contrarily shows a positive correlation of
hip rotation and foot progression, the PC2 pattern shows the,
by Gaston et al. proposed, functional relation of internal hip
rotation and foot external rotation, combined with crouch gait
characteristics, due to the lever arm dysfunction of the plantar-
flexion knee-extension couple (Sangeux et al., 2015). The fact that
the PCA revealed two different rotational patterns, the presence
of two individual mechanisms is likely.

In the 2nd pattern (PC2) changes in trunk lean angle was not
part of the PC-vector, however, the eTL and nTL groups scored
significantly different when projected onto this pattern. The
observation that excessive trunk lean was not part of this pattern,
implies that more severely affected patients were more likely to
also show excessive trunk lean (Attias et al., 2015; Swinnen et al.,
2016), without excessive trunk lean itself being correlated to the
PC2 gait variables. Other studies also found an increased trunk
lean with increasing impairment (Attias et al., 2015), which is in
line with our findings of more severe gait deviations within the
eTL group expressed by the highly significant GPS differences.
Additionally, the proportion of patients rated GMFCS II was
about 20% higher in the trunk lean group, which further
corroborates the severity explanation and was also observed in
other studies (Swinnen et al., 2016).

The other 4 kinematic patterns (PC 3, 8, 12, 17) that differed
significantly between eTL and nTL groups did not appear to show
clear functional mechanisms. This could be partly due to the fact
that the trunk lean strategy appears to be present in a variety of
gait pathologies. The heterogeneous patient groups with diverse
combinations of different gait pathologies is likely to result in
multiple patterns, of which some will also contain trunk lean as
part of their pattern. However, this does not imply a causative
nature of the trunk lean, describing functional patterns. What
can be said is that patients showing a particular combination of
angle deviations (specific for the pattern), usually also exhibited
an excessive lateral trunk lean. Since the identified patterns do
not entail clear functional mechanisms, such as relations between
frontal plane trunk, pelvis and hip kinematics, it seems plausible
to conclude that neither a universal trunk lean mechanism exists,
nor that a specific trunk lean strategy exists that is attributable
to certain CP related gait pathologies. In a clinical sense, these
findings support a multifactorial cause of a lateral trunk lean,
implying that there is no single solution for addressing or
correcting excessive trunk lean.

Limitations

To provide further insight into how the results of the current
study can be interpreted, some reservations should be mentioned
and kept in mind.

One of these limitations is the circumstance that the gait
speed was self-selected and different velocities result in altered
angle patterns (Schwartz et al., 2008), including altered trunk
kinematics (Thummerer et al., 2012). Despite the gait speed being
not significantly different between the groups, it may still have
some effect on the PCA results. PCA has been shown to be able
to detect running speed differences (Maurer et al., 2012).

Arm movement was not measured. Arm movements in
CP, however, may influence the trunk kinematics and might
entail further information for the prevalence of an excessive
trunk. Children with CP often show flexed elbow positions
and increased shoulder abduction, which might be caused by
spasticity but is also thought as compensatory strategy for balance
and guarding purposes (Galli et al., 2014). Despite these general
influences of arm movements on posture, the measured trunk
lean should be largely unaffected, since the Plug-In gait model
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uses only the thorax markers, without the shoulder markers to
calculate the trunk lean.

Furthermore, excessive trunk lean was defined as exceeding
3SD from norm. This definition is not based on a clinical
classification of a certain degree of trunk lean being pathological.
Hence, defining a meaningful cutoff will require further research
and insight into the underlying mechanisms of excessive lateral
trunk lean in CP.

CONCLUSION

The PCA was able to identify kinematic patterns that were
significantly related to the lateral trunk lean based on the group
differences. However, despite these findings, a clear kinematic
mechanism leading to excessive trunk lean was not found. The
current study does not provide conclusive evidence against a
kinematic compensatory mechanism. However, the absence of
such patterns makes it more likely that excessive lateral trunk
lean in CP could be the result of disease related motor functional
deficits. More research is necessary to clarify this issue. Our study
does provide evidence that rotational malalignments present
independently of the trunk lean and that the prevalence of an
excessive lateral trunk lean in CP depends on the severity of
the disease.
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Sensor Data Required for Automatic
Recognition of Athletic Tasks Using
Deep Neural Networks

Allison L. Clouthier, Gwyneth B. Ross and Ryan B. Graham*

School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada

Movement screens are used to assess the overall movement quality of an athlete.
However, these rely on visual observation of a series of movements and subjective
scoring. Data-driven methods to provide objective scoring of these movements are
being developed. These currently use optical motion capture and require manual
pre-processing of data to identify the start and end points of each movement. Therefore,
we aimed to use deep learning techniques to automatically identify movements typically
found in movement screens and assess the feasibility of performing the classification
based on wearable sensor data. Optical motion capture data were collected on 417
athletes performing 13 athletic movements. We trained an existing deep neural network
architecture that combines convolutional and recurrent layers on a subset of 278 athletes.
A validation subset of 69 athletes was used to tune the hyperparameters and the final
network was tested on the remaining 70 athletes. Simulated inertial measurement data
were generated based on the optical motion capture data and the network was trained
on this data for different combinations of body segments. Classification accuracy was
similar for networks trained using the optical and full-body simulated inertial measurement
unit data at 90.1 and 90.2%, respectively. A good classification accuracy of 85.9% was
obtained using as few as three simulated sensors placed on the torso and shanks.
However, using three simulated sensors on the torso and upper arms or fewer than
three sensors resulted in poor accuracy. These results for simulated sensor data indicate
the feasibility of classifying athletic movements using a small number of wearable
sensors. This could facilitate objective data-driven methods that automatically score
overall movement quality using wearable sensors to be easily implemented in the field.

Keywords: human activity recognition, wearable sensors, machine learning, neural network, movement screens

INTRODUCTION

Movement screens are used to assess the overall movement quality of an athlete. Typically,
the athlete will perform a series of movements while a trained rater visually observes and
scores the movements. The goals of movement screens are to predict injury risk and identify
performance deficits that can be targeted in training. While interrater and intrarater reliabilities
for movement screens such as the Functional Movement Screen (FMS™) are good (Minick
et al., 2010; Teyhen et al., 2012), interrater reliability for subtest components can be poor and
dependent on rater experience (Smith et al., 2013; Gulgin and Hoogenboom, 2014; Bonazza et al.,
2017). Furthermore, concerns have been raised that grading criteria can be somewhat ambiguous
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(Frost et al., 2015; Bonazza et al., 2017) and scores may not be
sensitive enough to detect movement abnormalities (Clifton
etal., 2013). Recent work has aimed to develop objective scoring
methods for movement screens (Ross et al., 2018). Data-driven
approaches have the potential to improve the repeatability of
scoring and increase the ability to detect subtle differences in
movement patterns. However, current methods require manual
processing of motion capture data before scoring can be
performed, including cropping trials to isolate each movement.
Additionally, the reliance on optical motion capture could be a
barrier to implementation of these methods in the field.

Wearable sensors are an attractive alternative to optical
motion capture for motion analysis applications. They are cost-
effective and portable, allowing for the collection of motion
data outside of a laboratory and over large capture volumes.
Furthermore, wearable sensors have the potential to be less
cumbersome than optical markers depending on the number
and placement of sensors. Previous work investigated optimal
placement and number of sensors to classify activities of daily
living (Pannurat et al., 2017), everyday activities (Kern et al.,
2003; Olguin and Pentland, 2006; Atallah et al., 2011; Cleland
et al., 2013), and fall detection (Gjoreski et al., 2011). However,
which sensors are necessary to best classify movement screening
tasks remains unclear.

Human activity recognition is an area of research that
seeks to automatically identify human activities by applying
machine learning techniques to motion data. Methods have
been developed to classify movements including hand gestures
(Kim and Toomajian, 2016), activities of daily living (Hammerla
et al., 2016), and movements typical in various sports (Nguyen
et al,, 2015; Kautz et al,, 2017). Previously, activity recognition
methods employed techniques that required hand-selected
features as input (Bulling et al., 2014). However, convolutional
neural networks (CNNs), a type of deep neural network
(DNN), are now commonly used to automatically generate
features through deep learning (Zeng et al., 2014; Yang et al,
2015; Lee et al., 2017). CNNs have shown promising results
in activity recognition; however, they are unable to capture
time dependencies. Recurrent neural networks are a type
of neural network that include a memory component that
allows them to model temporal dependencies. The combination
of CNNs to extract features with long-short-term memory
(LSTM) recurrent networks to capture temporal dependences has
provided improved classification performance over CNNs alone
(Ordoénez and Roggen, 2016).

The use of deep neural networks in movement screens would
allow for a continuous data collection during a movement screen.
Individual movements could then be automatically identified
and segmented as a preparation for further analysis or scoring.
This would decrease the manual effort required for the analysis
process and increase the utility of these objective measurement
techniques. The ability to perform the movement classification
and scoring based on data from a minimal set of wearable sensors
would further increase the applicability of data-driven movement
screens. Therefore, our first aim was to use a deep neural network
to identify when movements typical of movement screens occur
within motion data. Our second aim was to compare networks

trained using optical motion capture data with those trained
using data available from wearable sensors.

METHODS

Data Collection and Processing

Optical motion capture data were collected from 417 athletes
performing a series of movement tests by Motus Global
(Rockville Center, NY). The athletes competed in a variety of
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FIGURE 1 | Architecture of the deep neural network used to classify athletic
movements. The network combines convolutional and recurrent layers
(Ordonez and Roggen, 2016). Tensor sizes and function inputs based on the
OPT data and final architecture parameters are shown. PyTorch functions and
inputs are shown for each layer. SWS, sliding window size; C, number of CNN
channels; N, number of columns in the input data; k, CNN kernel size; L,

LSTM cells; Nclasses, number of movements classified.
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sports, including baseball, basketball, soccer, golf, tennis, track
and field, squash, cricket, lacrosse, football, and volleyball. They
ranged in skill level from recreational athletes to those playing in
major professional sports leagues (e.g., NBA, MLB, PGA, etc.).
Participants provided informed consent for future use of their
data for research before completing the protocol. The secondary
use of the data was approved by the University of Ottawa
Research Ethics Board. Forty-five retroreflective markers were
placed on the athlete for motion tracking (Ross et al., 2018) and
data were recorded at 120 Hz using an eight-camera Raptor-E
(Motion Analysis, Santa Rosa, CA) motion capture system. Each
athlete performed a series of movement tests consisting of 21
unique movements. The 13 movements most likely to challenge
mobility and stability were selected for analysis in this study,
including hop down right/left (HDR, HDL), bird-dog right/left
(BDR, BDL), drop jump (DJ), T-balance right/left (TBR, TBL),
step-down right/left (SDR, SDL), L-hop right/left (LHR, LHL),
and lunge right/left (LR, LL) (Ross et al., 2018). Individual trials
were collected for each movement.

Start and end time points were manually identified for each
trial (Ross et al., 2018) for use as a ground truth of when each
activity was performed. The optical motion data used in the
analysis (OPT) included global x, y, z coordinates for 45 markers.
To simulate data that can be obtained using inertial measurement
units (sIMU), marker trajectories were processed in Visual3D (C-
Motion, Inc., Germantown, MD) and global angular orientation
Euler angles and the Euclidean norm of the center of mass linear
acceleration and angular velocity for each body segment were
calculated. The Euclidean norm of the velocity and acceleration

TABLE 1 | Learning and architecture parameter values tested for hyperparameter
tuning.

SGD optimizer parameter tuning
0.0001, 0.001, 0.01, 0.1, 1
0.5,0.7,0.9,0.95, 0.98

Learning Rate
Momentum
DNN parameter tuning

Window Size (frames) 24 48
CNN Kernel Size (frames) 56 6,8
CNN Channels 32, 64, 96
LSTM Cells 64, 128, 192

TABLE 2 | Combination of body segments used to train and test the DNN for the
simulated IMU data.

Data input Body segments

sIMU1 Torso

siIMU2 Torso, pelvis

sIMU3L Torso, shanks (lower body)

sIMU3U Torso, upper arms (upper body)

sIMU4 Torso, pelvis, thighs

sIMU4D Forearms, shanks (distal segments)

sIMU4P Upper arms, thighs (proximal segments)

sIMU5 Torso, forearms, shanks

sIMU13 Head, torso, pelvis, upper arms, forearms, thighs, shanks, feet

was used to reduce the reliance on accurate sensor alignment.
Accelerations and velocities were low-pass filtered at 15 Hz with
a zero-lag second order Butterworth filter.

Deep Neural Network

Athletes were randomly separated into training (67%, n = 278),
validation (33%, n = 69), and test (33%, n = 70) subsets. A single
matrix was created for each subset by concatenating data from
all movement trials performed by all athletes in the subset. Each
variable was normalized by subtracting the mean and dividing
by the standard deviation of all data frames across athletes and
movements in the training set for that variable. A sliding window
approach was used to divide the subset data into data segments
containing an equal number of data frames. The stride for the
sliding window was 1/4 the window size. Each data segment was
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FIGURE 2 | Hyperparameter tuning was performed in two steps: learning
parameters (A) and architecture parameters (B). (A) Effect of learning rate and
momentum on micro-averaged F1 score. (B) Effect of sliding window size,
CNN kernel size, CNN channels, and LSTM cells on micro-averaged F1 score.
Mean and standard deviation of all DNNs at each parameter level are shown.
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assigned a label according to the movement that was performed
for the majority of the data segment. A “Null” label was included
to describe times when none of the movements were being
performed for a total of 14 classes.

A deep neural network based on the work of Ordéfiez and
Roggen (2016) was implemented in PyTorch (Paszke et al,
2017). The architecture combines convolutional layers to extract
features with recurrent layers to model the temporal dynamics.
The network includes four convolutional layers, two long-short-
term memory (LSTM) recurrent layers, a linear fully connected
layer, and a softmax classifier (Figurel). The input to the
network is the windowed time series data. The length of the input
data was the sliding window size and the number of columns
depended on the data used: 3*45 for OPT (x, y, and z component
of each trajectory) and 5 * number of body segments for the
sIMU data (3 Euler angles + 1 angular velocity norm + 1 linear
acceleration norm).

For network training, a mini-batch size of 100 was used. A
stochastic gradient descent (SGD) optimizer with momentum
was used for training with a cross-entropy loss criterion. The
DNN was trained to classify the movement performed during a
given windowed data segment.

Hyperparameter Tuning

Hyperparameter tuning was performed using a grid search
with the validation set of the optical motion data (OPT). The
learning parameters were tuned first as these have a larger
impact on classifier performance (Hammerla et al., 2016). The
learning parameters were the learning rate and momentum of
the SGD optimizer. Five values of each were explored (Table 1)

resulting in 25 DNNs trained on the OPT training set. The
micro-averaged F1 score was calculated for the validation set
to assess the performance of each DNN. The F1 score is a

measure of classification accuracy that is the harmonic mean
-2 precision - recall
- " precision + recall
averaged F1 score calculates the mean across the classes by

considering all individual predictions, which is suitable for classes
of different sizes. The micro-averaged F1 score is equivalent
to the micro-averaged precision, micro-averaged recall, and
classification accuracy.

After selecting the learning rate and momentum that
produced the best F1 score, the architecture parameters were
tuned. Two to three values were tested for each of the
following parameters: sliding window size, CNN kernel filter size,
CNN channels, and LSTM cells (Table 1). Note that CNN kernels
of size 5 and 6 were used with window size 24 and CNN kernels of
size 6 and 8 were used with window size 48. Models were assessed
based on the micro-averaged F1 score.

of precision and recall (F1 ). The micro-

Comparison of Simulated IMU Sensor Data
Once the final learning and architecture parameters were
determined, the final model was used to identify movements
in the test set. In this case, the DNN was used individually on
each athlete. All trials of athlete’s data were combined and then
segmented using sliding windows and the DNN was used to
classify each window. Then for each frame of data, the class
probabilities from each window containing that frame were
averaged, and a final classification was made for that frame
of data.
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FIGURE 3 | (A) Micro-averaged F1 score for DNNs trained using simulated IMU (sIMU) data from various combinations of body segments. (B) F1 score for each
movement for a selection of DNNSs trained on sIMU data. Scores were calculated on the test set based on classification of individual data frames. Movements are
HDRY/L, hop down right/left; BDR/L, bird-dog right/left; SDR/L, step-down right/left; LHR/L, L-hop right/left; DJ, drop jump; LR/L, lunge right/left; TBR/L, T-balance
right/left.
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DNNs using the final learning and architecture parameters
were also trained for the simulated IMU data on the training
subset. Different combinations of simulated sensor locations
were examined (Table 2). DNNs were evaluated on the test subset
following the procedure outlined above. For each DNN, the
confusion matrix, accuracy, precision, recall, and F1 score were
calculated. Micro and macro averages and metrics for each class
were produced.

RESULTS

Hyperparameter Tuning

The learning rate and momentum of the SGD optimizer both
had a large effect on the micro-averaged F1 score for the OPT
validation set (Figure 2A). The best F1 score was obtained for a
learning rate of 0.001 and momentum of 0.9, and these values
were used for all subsequent models. The DNN parameters had a
relatively small effect on the F1 scores, with values ranging from
0.895 to 0.911 (Figure 2B). The best results were obtained for a
sliding window size of 48 (0.04s), CNN kernel size of 6 frames,
32 CNN channels, and 64 LSTM cells. These parameters were
selected for use in the final DNN.

Comparison of Simulated IMU Sensor Data
Deep neural networks trained using optical data (OPT) and
all 13 body segments of sIMU data (sIMUI13) had similar
micro-averaged F1 scores (0.901 and 0.902, respectively). In
general, including more body segments improved performance
(Figure 3), although only small improvements were obtained
by including more than four body segments. Bird-dog (BDR/L)
movements were predicted well (F1 score > 0.76) for all
networks, while drop jumps (DJ]) tended to be more poorly
identified in general.

The effect of including upper or lower limb data can be
observed in the confusion matrices for the sSIMU3U and sSIMU3L
models (Figure 4). With the torso and upper arms included
(sIMU3U), the DNN frequently confuses left and right versions
of tasks. Tasks involving jumping were also confused. The
network using the torso and shanks (sIMU3L) is better able
to distinguish between left and right, but occasionally confuses
the T-balance (TBR/L) and lunge tasks (LR/L). L-hops (LHR/L)
are sometimes classified as hop downs (HDR/L) in both three-
segment networks (SIMU3L, sIMU3U).

The true and predicted movements over time for the OPT,
sIMU1, sIMU3L, and sIMU13 models are shown in Figure 5 for
a representative athlete. OPT, sSIMU13, and sSIMU3L were better
able to predict the entire duration of movements. Networks with
fewer body segments tended to switch between predictions. The
misclassification between movements and Null largely occurs at
the beginning and end of a movement.

The complete set of precision, recall, F1 scores, and confusion
matrices are included in the Supplementary Material.

DISCUSSION

The deep neural network (DNN) combining convolutional
and recurrent layers was able to successfully identify athletic
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FIGURE 4 | Confusion matrices for the sIMU3U (A) and sIMUSBL (B) DNNSs.
Values are percentage of the frames of the true movement classified as the
predicted movement.

movements for both optical motion capture trajectories and
simulated inertial measurement unit (sSIMU) data. DNNs trained
using optical motion capture data (OPT) and full body simulated
IMU (sIMU13) data had similar performance with F1 scores of
approximately 0.90. Classification accuracy was poor (<70%) if
fewer than three body segments were included or the lower limbs
were not included in the sIMU data.

There was minimal difference between micro-averaged F1
scores for the DNNs trained using five or 13 body segments.
This indicates that it is not necessary to include measurements
from the head or more than one segment from each upper or
lower limb. This is encouraging as the use of fewer sensors would
simplify the set-up before a movement screen and would be less
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of a hindrance to the athlete’s motion. The F1 score for SIMU3L,
which used the torso and shanks, was only ~0.04 less than for the
full body DNN. Therefore, depending on the desired accuracy,
classification rates may be sufficient using only three sensors.

Some movements, such as the bird-dogs, were more easily
identified by the DNN, even for networks trained on sIMU data
from one or two segments. This is likely because trunk motion for
these movements is substantially different from that of the other
movements, with the trunk horizontal and relatively stationary
throughout the motion. Including arm segments prevented
confusion between T-balances and lunges. The drop jump was
classified particularly poorly when few segments were used, often
being classified as the null condition. This may in part be due to
the way the start and end of the L-hop motion was defined. The
L-hop involved the athlete jumping horizontally forward, landing
on one foot, then jumping laterally and landing on the opposite
foot. This movement was defined to begin when the athlete had
reached their maximum height during the initial jump. Without
sufficient data, the DNN was unable to differentiate between the
end of the drop jump movement, which involved a vertical jump,
and the initial jump of the L-hop which was included in the
null condition.

The F1 score we achieved in classifying athletic movements
is similar to previously reported human activity classification
results. The architecture of the DNN used in this study was
based on the work of Ordéiiez and Roggen (2016), who achieved
an F1 score of 0.895 on a dataset including various modes of
locomotion. Other work has reported classification accuracies
ranging from 83 to 100% for everyday activities (Parkka et al.,
2006; Yeoh et al., 2008; Attal et al., 2015; Yang et al., 2015) and
79-93% for movements involved in various sports (Schuldhaus
etal., 2015; Groh et al., 2016; Anand et al., 2017; Cust et al., 2019).

Previous work on classification of everyday activities, such as
walking, jogging, sitting, stair climbing, etc., has identified one
sensor placed at the waist as producing the best classification
accuracy (Cleland et al., 2013; Pannurat et al., 2017). In the
current study, we found that a single simulated torso sensor

resulted in a poor classification accuracy of 48%. This discrepancy
can likely be attributed to the differences in activities included, as
optimal sensor placement depends on the activity (Atallah et al.,
2011; Attal et al., 2015). The activities classified in the previous
studies involve activities that are repetitive and take place
over a relatively long period of time. The athletic movements
included in our study, however, are short single movements.
Furthermore, the need to differentiate right and left versions of
the movements makes classification with a single torso-mounted
sensor more challenging.

The sIMU DNNs relied on simulated IMU data generated
based on optical motion tracking markers. Therefore, these
results likely represent a best-case scenario for classification of
these athletic movements using wearable sensors. Sensor drift
is a common issue with IMUs and therefore it is possible that
misclassification rates would be larger using real sensor data,
particularly for long data collections as drift increases over time.
Care would also need to be taken to standardize sensor placement
on each body segment. While we have used the Euclidean norm
of the angular velocity and linear acceleration, error would be
introduced into the angular orientation of the body segments by
misaligned sensors. Additionally, it may be possible to mitigate
sensor misalignment issues using a static or dynamic calibration
at the beginning of the data collection. Despite the reliance on
simulated sensor data, the results presented here highlight the
potential for movement classification using wearable sensors and
provide guidance for sensor placement in future work.

In this study, separate data trials were recorded for each
motion and these were combined for the classification. As a
result, the amount of null data frames included was relatively
small. It may be necessary to included more null condition
training data, including transitions between movements, for the
DNN to be used successfully on continuously collected data.

Accurate classification of movements is critical for this DNN
approach to be used with no manual intervention in combination
with data-driven assessments of movement quality, as the quality
could only be assessed on properly identified movements. Some
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errors may be possible to correct with additional processing,
such as when the classification jumps to another movement for
a few frames in the middle of an otherwise accurately classified
movement. We observed that a large source of error was over-
or under-estimating the start or end points of a movement with
misclassification between the movement and the null condition.
It is possible that movement quality could still be quantified with
these slight errors in start and end points, but future work will
be required to verify this. Alternately, a small amount of manual
intervention could be used to verify task identification before
proceeding to quantification of movement quality.

The favorable classification rates obtained in this work using
simulated sensor data demonstrates the feasibility of classifying
athletic tasks typical of movement screens using wearable
sensors. Using simulated IMU data, we observed the best
classification accuracy by including data from all body segments;
however, we obtained good results using as few as three simulated
sensors. This indicates that classification of these athletic
movements using real IMU data would require at least three
sensors and should include the torso and legs. Implementation of
a movement classification DNN with wearable sensor data would
facilitate automatic data-driven assessment of movement quality,
eliminating subjective scoring, and increasing the ability to detect
subtle differences.
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Joint moment measurements represent an objective biomechanical parameter of knee
joint load in knee osteoarthritis (KOA). Wearable sensors in combination with machine
learning techniques may provide solutions to develop assistive devices in KOA patients
to improve disease treatment and to minimize risk of non-functional overreaching (e.g.,
pain). The purpose of this study was to develop an artificial neural network (ANN)
that estimates external knee flexion moments (KFM) and external knee adduction
moments (KAM) during various locomotion tasks, based on data obtained by two
wearable sensors. Thirteen participants were instrumented with two inertial measurement
units (IMUs) located on the right thigh and shank. Participants performed six different
locomotion tasks consisting of linear motions and motions with a change of direction,
while IMU signals as well as full body kinematics and ground reaction forces were
synchronously recorded. KFM and KAM were determined using a full body biomechanical
model. An ANN was trained to estimate the KFM and KAM time series using the
IMU signals as input. Evaluation of the ANN was done using a leave-one-subject-out
cross-validation. Concordance of the ANN-estimated KFM and reference data was
categorized for five tasks (walking straight, 90° walking turn, moderate running, 90°
running turn and 45° cutting maneuver) as strong (- > 0.69, rRMSE < 23.1) and as
moderate for fast running (r = 0.65 + 0.43, rRMSE = 25.5 4+ 7.0%). For all locomotion
tasks, KAM yielded a lower concordance in comparison to the KFM, ranging from weak
(r <0.21, rRMSE > 33.8%) in cutting and fast running to strong (r = 0.71 £+ 0.26, rRMSE
= 22.3 £ 8.3%) for walking straight. Smallest mean difference of classical discrete load
metrics was seen for KFM impulse, 10.6 + 47.0%. The results demonstrate the feasibility
of using only two IMUs to estimate KFM and KAM to a limited extent. This methodological
step facilitates further work that should aim to improve the estimation accuracy to
provide valuable biofeedback systems for KOA patients. Greater accuracy of effective
implementation could be achieved by a participant- or task-specific ANN modeling.

Keywords: knee osteoarthritis, biomechanics, knee joint loading, biofeedback, artificial neural networks,
accelerometers and gyroscopes, reduced sensor set
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INTRODUCTION

Medio-tibiofemoral knee osteoarthritis (KOA) is a major cause
of disability in elderly people (Hurley et al., 1997) and accounts
for high socio-economic burden in industrial countries (Neogi
et al., 2009; Reeves and Bowling, 2011; Ferreira et al., 2015).
Symptoms known as knee pain, functional impairment and a loss
of mobility, can lead to physical and psychological disability and
reduced quality of life (Bennell et al., 2011; Richards et al., 2017).

Mechanical factors, particularly the knee joint load have
shown to profoundly influence the severity and progression of
KOA (Sharma et al., 1998; Andriacchi and Muendermann, 2006;
Foroughi et al., 2009; Bennell et al., 2011; Reeves and Bowling,
2011). A widely used surrogate measure of the compressive
load of the medial compartment is the external knee adduction
moment (KAM) (Sharma et al., 1998; Bennell et al., 2011; Reeves
and Bowling, 2011; Ferreira et al, 2015). Moreover, the knee
flexion moment (KFM) has been highlighted as a critical measure
to assess the loading of the medial compartment (Walter et al.,
2010; Ferreira et al,, 2015; Cheung et al, 2018) as well as
to quantify the progression of patellofemoral cartilage damage
(Teng et al., 2015; Crossley et al., 2016).

Beside other non-pharmacological conservative treatments
(e.g., bracing or footwear interventions) (Sarzi-Puttini et al.,
2005; Reeves and Bowling, 2011), gait modification approaches
by gait retraining therapies (e.g., modifying the foot progression
angle) have shown to be effective to reduce the KAM during
walking and to improve the symptoms of patients (Barrios et al.,
2010; Cheung et al., 2018; Karatsidis et al., 2018). Richards et al.
(2017) stated in their systematic review that a strong potential
exists for the development of biofeedback systems for reducing
KAM and pain and for improving knee joint function in KOA
patients. The development of assistive devices (e.g., a smart
knee sleeve to monitor the knee load in combination with a
smartphone-based user feedback system) could help to provide
effective disease-enhancing interventions to slow down the loss
of cartilage volume (Shull et al., 2014). Additionally, as exercise
is a key component of the KOA management (Bennell et al,
2011; Ferreira et al., 2015; Richards et al., 2017), assistive devices
could be beneficial in supporting therapeutical exercise. However,
most of the current studies with respect to the assessment
of knee joint loading were conducted in a laboratory setting
using motion capture and force plate measurements (Barrios
et al,, 2010; Richards et al., 2017; Cheung et al,, 2018). The
major shortcoming of such laboratory-based methods is that
they cannot be completely included into a patients’ habitual
environment (Muro-de-la-Herran et al., 2014; Shull et al., 2014).

As a consequence, alternative measurement technologies have
been provided progressive advances over the past years (Muro-
de-la-Herran et al., 2014; Wong et al.,, 2015). One of the first
studies toward a wearable measurement tool was done by van
den Noort et al. (2011). The authors tested the effect of an
instrumented force shoe in combination with an optoelectronic
marker system on target variables (e.g., KAM) in 20 KOA
patients. Therein, the authors stated the necessity of additional
measurement equipment (e.g., inertial sensors) to obtain joint
positions and orientations as a complement to ground reaction

force (GRF) measurements in order to calculate the KAM.
Karatsidis et al. (2016) compared GRF estimation accuracies of
a full-body inertial motion capture and optical motion capture
system due to the importance of the GRF measures as input in
biomechanical analysis to estimate joint kinetics. Their results
showed comparable results between the two systems. Therefore,
the authors concluded that the inertial sensor-based system has
a high potential in monitoring critical biomechanical parameters
in habitual conditions. Yang and Mao (2015) postulated a method
for evaluating the intersegmental forces and moments acting
on the lower limbs during walking solely based on posture
data obtained from seven inertial sensors placed on the lower
limbs and trunk in combination with a 3D analytical model.
In 2018 Karatsidis et al. proposed and evaluated a wearable
visual feedback system for gait retraining using inertial sensing
with seven inertial measurement units (IMUs) and augmented
reality technologies. The foot progression angle was used for
visual feedback and was tracked by the wearable system with a
root mean square error of 2.4°, compared to an optical motion
capture system. Knee joint kinetics were not analyzed in this
study. A further approach of a mobile assessment of knee joint
biomechanics in natural environment was recently provided by
Konrath et al. (2019). The authors estimated the KAM and the
tibio-femoral joint contact force during activities of daily living
by means of combining musculoskeletal modeling with inertial
motion capture (17 IMUs). The results showed comparable
estimation accuracies for the IMU-based approach compared to
the same musculoskeletal model using optical motion capture
and force plate measurements.

The majority of applied methods require modeling of the
musculoskeletal system to a certain degree, with mandatory
embedded subject-specific anthropometric data (e.g., mass,
dimensions, and center of mass of the body segments). However,
such modeling processes inevitably introduce inaccuracies (van
den Noort et al., 2013; Faber et al., 2016; Ancillao et al., 2018).
In contrast, machine learning-based approaches do not need an
a priori knowledge of the model as they build up their model by
using training data (Sivakumar et al., 2016; Ancillao et al., 2018;
Halilaj et al., 2018). Accurate predictions for new data can be
made by learning the relationship between a set of independent
variables (e.g., IMU signals) and one or more dependent variables
(e.g., KAM) (Lin et al, 2016; Halilaj et al, 2018). Several
studies have shown that machine learning techniques, such as
artificial neural networks (ANN), are powerful tools to deduce
biomechanical variables based on measured accelerations or
angular velocities of body segments (Leporace et al., 2015; Guo
et al., 2017; Ancillao et al., 2018; Wouda et al., 2018; Stetter
et al, 2019). The study by Wouda et al. (2018) used an ANN
approach to estimate vertical GRFs and sagittal knee kinematics
during running, based on three inertial sensors placed at the
lower legs and the pelvis. The estimated force-time profiles
and flexion/extension profiles showed high agreement with the
optical and GRF reference measure. In a recent study we
presented an ANN approach to estimate knee joint forces in sport
movements (Stetter et al., 2019). Good agreement between ANN-
estimated outcomes and inverse dynamics-calculated vertical and
anterior-posterior knee joint forces were shown, which highlights
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the feasibility of an ANN approach to estimate internal loadings
on the knee joint structures.

Although the above described studies have estimated joint
kinematics and kinetics during locomotion, no study has directly
estimated biomechanical surrogate measures for knee joint load
in KOA using an ambulatory minimal body-worn sensor setup
so far. Therefore, the purpose of this study was to develop an
ANN that estimates KFM and KAM during various locomotion
tasks based on data obtained by two wearable sensors integrated
in a knee sleeve. The findings of this study could help to (1)
overcome current restrictions in the mobile assessment of knee
joint loading in KOA patients and (2) open new possibilities
in diagnosing the patients’ habitual life, which could help to
improve disease treatment strategies and minimizing the risk of
non-functional overreaching (e.g., pain).

MATERIALS AND METHODS

Participants

The current study used data from the sample presented in
Stetter et al. (2019) and forms a secondary dataset analysis.
The sample consisted of 13 healthy males (age, 26.1 + 2.9
years; height, 178.7 & 5.5cm; body mass, 78.4 + 5.9kg). All
participants exhibited bowlegs (minimum inter-knee distance
of 0.05m), which mimics the common varus malalignment of
medial KOA patients (Bennell et al., 2011). All participants gave
written informed consent in accordance with the Declaration of
Helsinki. The study was approved by the ethics committee of the
Karlsruhe Institute of Technology.

Experimental Protocol

Measurements were performed at the BioMotion Center,
Institute of Sports and Sports Science, Karlsruhe Institute
of Technology, Karlsruhe, Germany. Two identical custom-
built 6DOF IMUs (1,500Hz, +8g accelerometer, 42,000°/s
gyroscope) were attached to each participants right leg while
they performed six different locomotion tasks at self-selected
speed: walking straight, 90° walking turn, moderate running,
fast running, 90° running turn and 45° cutting maneuver.
Participants were instructed to perform the 90° turns in clockwise
direction. A detailed description of the right orientated cutting
maneuver (named as v-cut) is described by Neptune et al. (1999).
Participants were instructed to perform at least three successful
trials of each task. A trial was considered successful when the
right foot landed cleanly within the boundaries of a force plate.
The IMUs were positioned in two patch pockets at the upper and
lower frontal end of a customized knee sleeve (Figure 1). This
positioning was chosen in order to capture IMU signals closely
related to knee kinematics and dynamics, as the recent study by
Matijevich et al. (2019) has highlighted that a targeted approach
is necessary to obtain structure-specific loading.

Full body kinematics and GRFs (1,000Hz, AMTI Inc.,
Watertown, MA) were collected synchronously using a marker-
based motion capture system (11 MX-13 cameras, 200 Hz,
Vicon, Oxford, UK) in order to perform biomechanical
modeling. A total of 42 spherical reflective markers were
placed on the participants’ body segments in accordance to
the ALASKA Dynamicus protocol (ALASKA, INSYS GmbH,

FIGURE 1 | A participant wearing the knee sleeve on the right leg. The two
inertial measurement units were placed in the patch pockets at the upper and
lower frontal end of the knee sleeve.

Germany) (Hirtel and Hermsdorf, 2006; Willwacher et al.,
2017). Prior to the attachment of the data collection equipment,
standardized anthropometric measurements were exhibited.
The measurements consisted of a total of 22 length, width
and circumference measures of the body segments. Prior to
performing trials, a static calibration trial was recorded for each
participant in a natural upright posture.

Biomechanical Model

The 3D marker coordinates and GRF data were reconstructed
and filtered with a 15 Hz low-pass filter (zero-phase Butterworth
4th order) (Kristianslund et al, 2012). Inverse dynamics
modeling was performed using the full-body Dynamicus 9
model (Hirtel and Hermsdorf, 2006; Willwacher et al., 2017).
Each participant was individually scaled to the generic linked-
segment model using the measured anthropometrics and the
static calibration trial (Whittlesey and Robertson, 2014). In a
next step, the marker trajectories and GRFs acquired from
the dynamic trials were used to determine the knee flexion
moment (KFM) and the knee adduction moment (KAM). A 20 N
threshold of the vertical GRF was used to extract the stance phase
for each locomotion movement (Milner and Paquette, 2015).
KFM and KAM time series were time-normalized to 100 time
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steps representing 0-100% of the stance phase. Joint moment
amplitudes were normalized to body weight and expressed as
external moments.

Machine Learning Model

ANN modeling was set up with the Neural Network Toolbox
in MATLAB R2019a (The MathWorks, USA). The IMU signals
were low-pass filtered (zero-phase Butterworth 4th order filter;
cut-off frequency of 15 Hz) and each trial was cropped to contain
data for the same phase as the biomechanical data. An IMU
signal matrix (rows: 13 participants X three trials x six tasks x
100 time steps; columns: two locations x six spatial dimensions)
and a biomechanical data matrix (rows: 13 participants x three
trials x six tasks x 100 time steps; columns: two variables)
were created by vertically concatenating the IMU signals and
KFM and KAM time series of all trials, respectively. An ANN
was trained to model the association between the IMU signals
and the KFM and KAM time series. The IMU signal matrix
served as input and the biomechanical data matrix served as
output (target). As a consequence, the ANN had 12 and two
variables (i.e., nodes) in its input and output layer, respectively.
The ANN architecture was inspired by previous work (Favre
et al, 2012; Wouda et al,, 2018) and had two hidden layers
with 100 and 20 neurons, which were connected to the input
and output nodes. The hidden layers and the output layer
consisted of hyperbolic tangent sigmoid transfer functions and
a linear transfer function, respectively. Initialization of the ANN
was done using the Nguyen-Widrow initialization function. The
ANN was trained for 1,000 iterations with Levenberg-Marquardt
back-propagated error correction (Watson and Moré, 1978) and
training was stopped if the gradient did not decrease for six
consecutive epochs or if the gradient was smaller than 1 x 107°.
Evaluation of the ANN was done using a leave-one-subject-
out cross-validation (Halilaj et al., 2018). The cross-validation
involved training the ANN with all trials from 12 participants
(i.e., the training set) and then testing with the trials from the
remaining participant (i.e., the test set). As cross-dependencies
between the input and output in a combined estimation model
for KFM and KAM may affect the estimation accuracy (Wouda
et al.,, 2018), independent models for KFM and KAM were also
build. Independent models were trained and evaluated in the
same manner as the combined model, beside the fact that only
one variable was chosen in its output layer.

Statistical Analysis

According to previous studies, for each movement, the agreement
between the ANN-estimated outcomes (KFM* and KAMY*)
and the inverse dynamics-calculated data (KFM and KAM)
was derived from Pearson’s correlation coeflicients, which were
categorized as weak (r < 0.35), moderate (0.35 < r < 0.67),
strong (0.67 < r < 0.90) and excellent (r > 0.90) (Taylor, 1990;
Fluit et al., 2014; Karatsidis et al., 2016). Additionally, the Root
Mean Squared Error (RMSE) and relative Root Mean Squared
Error (rRMSE) were determined to assess the accuracy of the
ANN estimations (Ren et al., 2008). The rRMSE facilitates the
comparison between the different locomotion tasks with different
moment amplitudes. The averages and standard deviations were
calculated for r, RMSE and rRMSE from the 13 cross-validation

subsets. Average r values across participants were computed
using Fisher’s z transformation (Corey et al., 1998). Mean r values
were expressed in the original range from —1 to 1 by reversing the
transformation. Furthermore, peak KFM* and KFM* impulse as
well as peak KAM and KAM impulse were evaluated as classical
discrete load metrics (Bennell et al., 2011; Teng et al., 2015).
Impulse represents the area under the corresponding moment-
time curve. Percent differences (%Diff) between ANN-estimated
and inverse dynamics-calculated peak and impulse metrics were
used to provide a pragmatic interpretation.

RESULTS

Estimated Continuous Outcomes
The ANN-estimated KFM* and KAM* time series of the whole
stance phase are illustrated in Figures 2, 3, respectively, with the
measured references used for comparison. An overview of the
estimated accuracy for all movements is presented in Table 1.
For the different locomotion tasks, the ANN-estimated time
series revealed moderate to strong correlations for the KFM*
and weak to strong correlations for the KAM*. The highest
correlation for KFM* and KAM* was observed for moderate
running (r = 0.85 % 0.43; mean =+ standard deviation) and for
walking straight (0.71 £ 0.26), respectively. For all locomotion
tasks, the RMSE for KFM* was between 0.26 £ 0.09 and 1.13 £+
0.46 Nm/kg, whereas for KAM*, that was between 0.18 & 0.06
and 0.92 % 0.54 Nm/kg. The rRMSE for the different locomotion
tasks ranged between 17.2 = 3.1% (walking 90° turn) and 25.5 +
7.0% (fast running) for KFM™* and between 22.3 & 8.3% (walking
straight) and 37.2 £ 7.8% (cutting maneuver) for KAM*.

Discrete Load Metrics

The inverse dynamics-calculated and ANN-estimated discrete
load metrics (peak moments and moment integrals) are shown
in Table 2. Table 3 presents the %Diff results for each of the
performed locomotion tasks. The 90° walking turn showed the
smallest %Diff (6.7 & 31.3%) for the ANN-estimated KFM
impulse in comparison to the reference values. In contrast, %Diff
of KAM impulse were higher with a minimum value of 42.7
+ 108.9% for moderate running. The smallest %Dift for the
estimation of peak KFM and KAM was 24.7 & 33.0% (moderate
running) and 39.1 £ 101.0% (walking straight), respectively.
Across all locomotion tasks, mean differences of peak moments
and moment integrals were lower for the KFM* in comparison
to the KAM* (40.4 & 56.5 vs. 130.3 & 157.3% and 10.6 = 47.0 vs.
161.4 & 252.8%, respectively).

Model Comparison

The changes in estimation accuracy due to independent model
building for KFM and KAM for each of the analyzed locomotion
tasks is presented in Table4. Independent model building
resulted in a lower r value for both KFM and KAM in the majority
(five out of six) of the analyzed locomotion tasks in comparison
to the combined estimation model. Across all locomotion tasks,
mean RMSE and mean rRMSE increased for KFM* (RMSE =
0.15, rRMSE = 1.18) and KAM* (mean RMSE = 0.13, rRMSE =
0.26) due to independent model building.
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FIGURE 2 | Mean (and standard error) of the estimated knee flexion moments (blue) for the six analyzed locomotion tasks compared to their respective inverse
dynamics-calculated values (black). Positive values indicate external flexion moments and negative values indicate external extension moments.
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DISCUSSION

This study was aimed to develop and train an ANN model
to estimate KFM and KAM during various locomotion
tasks based on data obtained by two wearable sensors.
The mobile assessment of knee joint loading enlarges the
scope of diagnostic methods and disease management
of KOA, which could help to improve disease treatment
strategies and minimizing the risk of non-functional
overreaching (e.g., pain).

The results of the study show a higher estimation accuracy
of the KFM compared to the KAM over most locomotion task.
However, estimation accuracy highly varied between tasks for
both the KFM and the KAM, especially with increasing intensity
and movement velocity. Apart from walking straight, for all
locomotion tasks, a distinct reduced level of agreement was found
between the ANN-estimated outcomes and reference data for the
KAM (mean r = 0.39 & 0.32, mean rRMSE = 29.9% =+ 8.1%) in
comparison to the KFM (mean r = 0.74 £ 0.36, mean rRMSE
= 20.8% = 5.7%). Discrete load metrics highlighted lower %Diff

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

46

January 2020 | Volume 8 | Article 9


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Stetter et al.

Machine Learning Knee Joint Loading

Walking straight
0.6 ——Reference
— Estimated
0.4
o
=
€ 02
<
3 \
-0.2
-0.4
0 20 40 60 80 100
Stance phase (%)
Moderate running
0.6 ——Reference
—Estimated
0.4
2
=
€ 02
==
g 0
-0.2
-0.4
0 20 40 60 80 100
Stance phase (%)
90° running turn
—Reference
—Estimated
—~ 05
(@]
<
S
£ 0
=
§ -0.5
"0 20 40 60 80 100
Stance phase (%)

FIGURE 3 | Mean (and standard error) of the estimated knee adduction moments (blue) for the six analyzed locomotion tasks compared to their respective inverse
dynamics-calculated values (black). Positive values indicate external adduction moments and negative values indicate external abduction moments.
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of KFM impulses in comparison to KFM peaks in all locomotion
tasks, whereas %Diff of KAM impulses were lower compared to
KAM peaks only in three out of the six locomotion tasks.

Estimation Accuracy Across Different

Locomotion Tasks

In general, when comparing the estimation accuracy across the
different locomotion tasks, predictive power was always better
and %Diff was always less for KFM than for KAM. On average,

strong correlations (r = 0.74) and rRMSE of 20.8% for KFM and
moderate correlations (r = 0.39) with rRMSE of 29.9% for KAM
were found. Nonetheless, distinct differences between KFM and
KAM estimation values were evident across the locomotion tasks.

For KFM, highest correlations with the inverse dynamics
calculations were found for moderate running (» = 0.85), which
is reinforced by lowest %Diff for both the peak and impulse
of the KFM. The lowest correlations and largest rRMSE were
found for fast running (r = 0.65; rRMSE = 25.5%). Nevertheless,
%Diff for KFM peaks and impulses during fast running were
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TABLE 1 | Accuracy (r, Pearson’s correlation coefficient; RMSE, root-mean-squared error; rRMSE, relative root-mean-squared error) of the estimated continuous

outcomes [knee flexion moment (KFM'), and knee adduction moment (KAM')].

Locomotion task KFM* KAM*

r RMSE (Nm/kg) rRMSE (%) r RMSE (Nm/kg) rRMSE (%)
Walking straight 0.72 +£0.32 0.26 +0.09 184 +£5.3 0.71 £ 0.26 0.18 +£0.06 22.3+83
90° walking turn 0.69 + 0.31 0.32 £0.10 172 £ 3.1 0.56 £ 0.33 0.29+£0.10 239+6.4
Moderate running 0.85+0.43 0.58 +£0.20 19.7+£7.9 0.40 £ 0.35 0.37 £0.14 34.4+£135
Fast running 0.65 +0.43 1.13 £0.46 255+ 7.0 0.21 £ 0.47 0.80 + 0.46 33.8+85
90° running turn 0.79+0.28 0.77 +£0.20 20.8+4.5 0.51 £ 0.22 0.62 +0.19 279+ 3.9
45° cutting maneuver 0.73 + 0.41 1.05 £ 0.41 231 +6.5 —0.05 +£ 0.30 0.92 +0.54 37.2+78
Mean 0.74 +£0.36 0.67 +£0.24 20.8 +5.7 0.39 +£ 0.32 0.583+0.25 29.9 £ 8.1
Data are presented as mean =+ standard deviations. Mean r and r standard deviation were computed using Fisher’s z transformation.
TABLE 2 | Inverse dynamics-calculated (KFM and KAM) and ANN-estimated (KFM" and KAM') discrete load metrics (peak and impulse).
Locomotion task KFM KAM KFM* KAM*

Peak Impulse Peak Impulse Peak Impulse Peak Impulse
(Nm/kg) (Nm/kg) (Nm/kg) (Nm/kg) (Nm/kg) (Nm/kg) (Nm/kg) (Nm/kg)

Walking straight 0.67 £ 0.13 4572 £14.52 054 £0.15 69.16 £26.03 0.91 £ 0.30 52.31 £ 24.83 0.65 £ 0.18 64.23 £ 13.76
90° walking turn 1.02 + 0.38 7179 +£36.05 0.57 £0.18 44.65+ 2196 1.55+ 1.19 70.12 + 31.28 0.90 + 0.44 52.06 + 17.00
Moderate running 2.03 £ 0.34 193.05 +£58.08 0.52 +0.16  43.48 + 21.81 2,57 £0.92 197.00 + 90.16 0.84 + 0.39 56.35 + 50.26
Fast running 2.49 +£ 0.35 246.20 + 71.51 0.77 £ 0.20 51.35 + 27.01 3.44 +£1.92 259.80 + 118,59 1.72 £ 0.99 91.98 + 62.78
90° running turn 2.20 £ 0.40 240.28 + 83.01 0.60 £ 0.17  20.80 + 6.56 3.12 £ 0.88  253.13 + 91.06 1.45 + 0.73 61.94 + 31.19
45° cutting maneuver  2.52 £ 0.50 284.58 + 85.73 0.61 £0.23 43.97 £ 3524 350+ 1.29 310.16 £ 144.96 2.11 £1.38 120.90 £ 110.35
Mean 1.82+0.79 180.27 £98.86 0.60 +0.09 4557 +£156.56 2.52 +£1.07 190.42 + 106.46 1.28 £ 0.57 74.58 + 26.66

Data are presented as mean =+ standard deviations; KFM, knee flexion moment; KAM, knee adduction moment.

TABLE 3 | Percent differences (%Diff) of discrete load metrics (peak and impulse).

Locomotion task KFM KAM
Peak Impulse Peak Impulse
%Diff %Diff %Diff %Diff
Walking straight 443 +£70.8 27.4 £83.9 39.1 +£101.0 62.0 + 2531
90° walking turn 471+ 606 6.7 +£31.3 824+ 1105 69.3 + 127.5
Moderate running 247 £ 33.0 0.656 +£37.2 68.7+£945 427 £108.9
Fast running 37.2 £ 68.7 6.8+ 40.7 123.5 £ 1241 94.2 + 145.3

449 +£45.2 121 + 46,5 169.8 + 1567.1 230.0 £ 179.9
45° cutting maneuver 44.1 4 60.7 10.0 £+ 42.6 308.2 + 356.5 470.0 & 702.0
40.4 £56.5 10.6 + 47.0 130.3 + 157.3 161.4 £ 252.8

90° running turn

Mean

Data are presented as mean =+ standard deviations; KFM, knee flexion moment; KAM,
knee adduction moment.

lower than for most of the other locomotion tasks, except for
moderate running. Interestingly, the largest %Diff was found for
walking straight, while %Diff of moment integrals were in general
lower compared to %Diff of peak moments. These findings
indicate that our ANN-configuration is more appropriate for
estimating knee joint loading over the stance phase than for
estimating the peak moment of the stance phase. In particular,

TABLE 4 | Increase (+) or decrease (-) in estimation accuracy (r, Pearson’s
correlation coefficient; RMSE, root-mean-squared error; rRMSE, relative
root-mean-squared error) due to independent model building in comparison to the
combined model.

Locomotion KFM* KAM*
task

r RMSE rRMSE r RMSE rRMSE

(Nm/kg) (%) (Nm/kg) (%)

Walking straight 0.03 0.00 0.50 -0.20 0.05 2.64
90° walking turn -0.02 0.03 1.56 —0.08 0.07 0.09
Moderate running ~ —0.02 0.18 1.31 -0.10 0.09 —1.58
Fast running —0.03 0.15 0.90 —0.04 0.20 1.87
90° running turn —0.08 0.11 0.85 -0.14 0.16 -0.87
45° cutting -0.07 0.44 1.94 0.26 0.22 —0.57
maneuver
Mean —0.03 0.15 1.18 —0.05 0.13 0.26

KFM', knee flexion moment; KAM', knee adduction moment.

during walking straight, the low knee flexion moment peaks and
impulses might account for the strong correlations but large
%Diff. Albeit, for KFM generally high agreement was found
for ANN-estimated outcomes, with a reduced performance for
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the high intensity movements running and cutting maneuvers.
In contrast, in these movements lower %Diff occurred to the
lower-intensity movements.

For the estimation of KAM, overall weak to strong correlations
were found for the analyzed movements. Estimation accuracy
was highest in walking straight (r = 0.71, rRMSE = 22.3%).
Mediocre correlations were found in moderate running as well as
90° walking/running turns (0.40 < r < 0.56), and low or negative
correlations in fast running and 45° cutting maneuvers (—0.05
< r < 0.21). With regard to rRMSE, alterations of locomotion
speed (walking to running) and direction (turning and cutting)
led to slight reductions in accuracy of the ANN estimations.
Concomitant, large increases in %Dift along with high variability
were detected in fast running, 90° running turns and 45° cutting
maneuvers (KAM impulse: 94.2, 230.0, and 470.0%, respectively).
A potential reason for the less estimation accuracy and larger
differences for movements with increased velocity and changes
of direction might be the higher variation in the execution of
these movements, while locomotor tasks such as walking or
moderate running are performed automatically with repeatable
characteristics (Schmidt and Lee, 2011). Similarly, variability
in estimation accuracy was also shown by Fluit et al. (2014),
evaluating a prediction model for GRFs and moments during
various activities of daily living by means of 3D full-body motion.

However, a generalization of the estimation accuracies cannot
be deduced, as a reduced estimation accuracy in continuous
outcomes does not necessarily result in an inaccurate estimation
of discrete variables, as it was seen in the KFM during fast
running. Similarly, good agreement in continuous outcomes does
not implicate accurate estimation of discrete load metrics, as seen
in 90° running turn. Furthermore, it must be noted that most
KFM and KAM show high standard deviations, which indicates a
wide dispersion across participants. Nonetheless, %Diff of KFM
were entirely lower in the impulses compared to the peak values.
In contrast, %Diff of KAM impulse were lower compared to
the peak values only in three out of the six locomotion tasks
(90° walking turn, moderate and fast running). Summarized,
KAM estimations were less accurate both for continuous and
for discrete outcomes compared to KFM and should therefore
be treated with caution. The more pronounced characteristic
changes in the KAM time series between locomotion tasks in
comparison to the KFM time series are a potential reason for the
reduced estimation accuracy in KAM (see Figures 2, 3).

Furthermore, with respect to the comparison of a combined
estimation model for KFM and KAM and independent models
for KFM and KAM, the results show that an independent model
building leads to slightly decreased estimation accuracy of the
KFM and a more pronounced decrease of the KAM, concomitant
with increased RMSE and rRMSE in the investigated locomotion
tasks. Hence, if only one variable was chosen as an output,
decreased performance for the model was observed, indicating
that cross-dependencies between input and output in the
combined estimation model clearly affected the estimation
accuracy. Overall, the combined estimation model for KFM and
KAM presented a fair estimation accuracy, especially, in the
low-intensity movements.

Comparison of Different Wearable

Measurement Systems

A novel machine learning based method was developed and
applied in this study to estimate KFM and KAM based
on data obtained by two wearable sensors integrated in a
knee sleeve. Various approaches have experienced progressive
advances to assess the mechanical loading of KOA patients in
their habitual environment over the past years. The majority of
the approaches were based on analytical biomechanical models,
which typically determine joint moments by means of the inverse
dynamics calculations. As a consequence, GRF measurements
and kinematic data are necessary to perform such analysis
(Whittlesey and Robertson, 2014).

Van den Noort et al. presented in 2011 an instrumented
force shoe as an alternative to force plate measurements.
Subsequently, an ambulatory measurement system, consisting
of the instrumented force shoe and an inertial measurement
system combined with a linked-segment model, was used to
compare KAM measures with a laboratory based system in
KOA patients (van den Noort et al., 2013). Limited accuracy
was shown and the authors concluded that a more advanced
calibrated linked-segment model should be investigated (van den
Noort et al., 2013). As an alternative to a direct measurement
of GRE Karatsidis et al. (2016) estimated GRF by means of a
full-body inertial motion capture system during walking. Their
results showed for the comparison with an optical motion
capture system higher r values (range 0.82-0.99 and 0.76-0.99
for the inertial and optical motion capture systems, respectively)
and lower rRMSE values (range from 5 to 15% for both
systems) compared to the KFM and KAM estimations present
in this study. More recent studies from Dorschky et al. (2019)
and Konrath et al. (2019) used inertial motion capturing and
musculoskeletal modeling to estimate biomechanical variables,
such as joint kinematics and kinetics without GRF data. Dorschky
et al. (2019) presented high correlations for sagittal plain
kinematics (r > 0.93) and kinetics (r > 0.90) in gait and
running. In accordance, Konrath et al. (2019) estimated the
KAM and the tibio-femoral joint contact force during daily living
activities (e.g., stair walking) with moderate to strong correlation
coeflicients. However, such approaches using inertial sensor data
and musculoskeletal models require more IMUs (seven IMUs
in Dorschky et al., 2019 and 17 IMUs in Konrath et al., 2019)
compared to this study’s approach.

Parallel to the analytical model development, an increasing
number of machine learning approaches have been explored to
simplify data acquisition and modeling strategies to estimate
target variables, such as the KAM (Liu et al., 2009; Favre et al.,
2012; Wouda et al, 2018). ANN modeling does not require
modeling of the musculoskeletal system, as the relationship
between the input IMU signals and the target variables is build
up during the training process of the model (Halilaj et al., 2018;
Wouda et al., 2018). However, ground truth reference data,
such as the inverse dynamics-calculated KFMs and KAMs, are
required during the supervised learning process of the model.
Providing a large amount of known output data is essential
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to establish a robust model (Sivakumar et al., 2016; Halilaj
et al., 2018). Wouda et al. (2018) used similar ANN modeling
to the one used in this study for estimating vertical GRF and
sagittal knee kinematics during running. The estimated vertical
GREF profiles of their non-personalized ANN developed by eight
participants showed a higher correlation (r > 0.90) to the
actual force time series. The slightly reduced estimation accuracy
in the current study (r < 0.85) may depend on the variety
of locomotion tasks included in the model building. A more
locomotion task-specific modeling may lead to an increased
estimation accuracy for individual tasks, but has the disadvantage
that each task must be modeled by itself (Wouda et al., 2018).
In consequence, the combination with an activity recognition
approach could help to select individual estimation models in
practical applications.

Limitations

Certain limitations of this study need to be considered when
interpreting the results. One consideration worth noting is
that the estimation accuracy depends on the neural network
architecture. The ANN was built on previous work (Favre
et al., 2012; Wouda et al.,, 2018), which highlighted that such
configuration is capable of mapping non-linearity between input
and output; however, other model specifications may result in
an improved estimation accuracy. The ANN was trained with
data from multiple participants as well as various locomotion
tasks, which should rather lead to a less participant- and
task-specific but a more generic model. As a consequence,
this approach rather yields a decreased performance due to
a lack of individualization, but has the advantage that not
every new user needs to perform a training phase (Favre et al.,
2012; Wouda et al., 2018). Further research is necessary to
assess if a single participant learning approach increases the
estimation accuracy. Another limitation is that we included a
homogeneous group of participants consisting of only males
without any musculoskeletal disorders and the translation of
the results to the target group of KOA patients remains
speculative. Nonetheless, future clinical studies may benefit from
the use of the method developed in this study, especially in
low-intensity movements (Richards et al., 2017). Beyond, the
sample size was rather small, including 13 participants. Similar
investigations included comparable numbers of participants
(e.g., sample of eight participants in Wouda et al, 2018
or sample of 17 participants in Leporace et al, 2015). The
small sample size potentially limits the outcome, as the
robustness of the relationship between the input and output
variables of the ANN depends on the amount of training data
(Sivakumar et al., 2016; Ancillao et al., 2018; Halilaj et al,
2018). Finally, it cannot be fully ensured that the fixation
technique excluded any oscillations or misalignment of the
IMUs, even though the exact fit of the sleeve and the sensors
was repetitively checked. However, the wearable sensors were
integrated in a knee sleeve on purpose to mimic natural
effects and to capture IMU signals closely related to the joint
under investigation.

CONCLUSION

This study demonstrated the potential of estimating KFM and
KAM for various locomotion tasks using a minimal body-
worn sensor setup consisting of two IMUs integrated in a knee
sleeve. The agreement between the ANN-estimated outcomes
and inverse dynamics-calculated data was strong for the majority
of analyzed locomotion tasks in the KFM and moderate in
the KAM. Overall, higher estimation accuracies were seen for
the KFM in comparison to the KAM across all locomotion
tasks. The accuracy limitations especially of KAM estimation
makes prediction of knee joint loading challenging. In order to
reach an acceptable level of accuracy related to critical changes
due to KOA, typically characterized by relatively small kinetic
differences, a participant- or task-specific modeling could be
helpful. This has important implications for the development of
wearable devices as well as for scientific research on KOA. The
highest estimation accuracy for both KFM and KAM of walking
straight matches the main characteristic of KOA therapy and
treatment by low-intensity movements (e.g., walking). Looking
ahead, wearable technology could serve as a rehabilitation aid for
patients with KOA leading to an improved load management,
which could result in a slower progression.
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Tibial Acceleration-Based Prediction
of Maximal Vertical Loading Rate
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Dirk De Clercq’, Veerle Segers’ and Jesse Davis?

" Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium, 2 Department of Computer Science,
KU Leuven, Leuven, Belgium

Ground reaction forces are often used by sport scientists and clinicians to analyze
the mechanical risk-factors of running related injuries or athletic performance during
a running analysis. An interesting ground reaction force-derived variable to track is
the maximal vertical instantaneous loading rate (VILR). This impact characteristic is
traditionally derived from a fixed force platform, but wearable inertial sensors nowadays
might approximate its magnitude while running outside the lab. The time-discrete
axial peak tibial acceleration (APTA) has been proposed as a good surrogate that
can be measured using wearable accelerometers in the field. This paper explores
the hypothesis that applying machine learning to time continuous data (generated
from bilateral tri-axial shin mounted accelerometers) would result in a more accurate
estimation of the VILR. Therefore, the purpose of this study was to evaluate the
performance of accelerometer-based predictions of the VILR with various machine
learning models trained on data of 93 rearfoot runners. A subject-dependent gradient
boosted regression trees (XGB) model provided the most accurate estimates (mean
absolute error: 5.39 + 2.04 BW-s~ !, mean absolute percentage error: 6.08%). A similar
subject-independent model had a mean absolute error of 12.41 + 7.90 BW-s~' (mean
absolute percentage error: 11.09%). All of our models had a stronger correlation with
the VILR than the APTA (p < 0.01), indicating that multiple 3D acceleration features in a
learning setting showed the highest accuracy in predicting the lab-based impact loading
compared to APTA.

Keywords: running biomechanics, impact loading, tibial shock, machine learning, wearable sensor, gait analysis

INTRODUCTION

Ground reaction forces are relevant parameters for running analysis (Pohl et al., 2009; Crowell
and Davis, 2011; Van Der Worp et al., 2016; Clark et al., 2017). They partially describe the center of
mass’ state of motion during running and are often used by sport scientists and clinicians to analyze
the mechanical risk-factors of running related injuries (Bredeweg et al., 2013; Napier et al., 2018)
and/or athletic performance (Preece et al., 2019).
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A commonly used ground reaction force-derived variable is
the maximal vertical instantaneous loading rate (VILR), which
is calculated as the maximal slope of the rising vertical ground
reaction force — time curve (Ueda et al., 2016). VILR has
been used to characterize the impact (i.e., high rate of force
development due to the rapid deceleration of all body segments
during the foot-ground collision) during running (Gerritsen
et al,, 1995). This measure could discriminate groups of rearfoot
runners with a history of stress fractures (Van Der Worp et al.,
2016) and plantar fasciitis (Pohl et al., 2009). Consequently,
VILR has been considered clinically relevant and has been a
main outcome variable in gait retraining studies targeting runners
with high VILR (Crowell and Davis, 2011; Clansey et al., 2014;
Willy et al., 2016).

Ground reaction forces are traditionally measured using
fixed force platforms or instrumented treadmills (Ueda et al.,
2016). Unfortunately, measurements with force platforms are
laboratory-based and require both expensive equipment and
extensive post-processing. These factors limit the potential of
monitoring in-field running biomechanics, whereas wearable
inertial measurement units can accommodate this by predicting
running gait parameters outside the laboratory (Falbriard et al.,
2018; Wouda et al., 2018). In this respect, an ambulatory low-cost
accelerometer was proposed as a potential surrogate candidate
to estimate VILR when force platforms are not available (Ngoh
et al.,, 2018). Previous research has identified a moderate to
good correlation (range of rmean = 0.64-0.84) between the axial
peak tibial acceleration (APTA) captured by a skin-mounted
accelerometer at the tibia and VILR (Laughton et al., 2003; Pohl
et al, 2009; Greenhalgh et al, 2012; Zhang et al, 2016; Van
den Berghe et al., 2019). Therefore, using APTA as a surrogate
measure for VILR seems justifiable (Sheerin et al., 2019).

However, the APTA is based on a single, basic feature (i.e.,
the peak value) of the time-continuous 1D tibial acceleration
signal. Consequently, a large amount of data is neglected, which
may lead to missing important information. A combination of
multiple features of the 3D tibial acceleration signals, possibly
including complex and higher-order ones, may result in a
more accurate predictor of VILR than only considering APTA.
Hence, a performant computational model that extracts relevant
features and effectively copes with any non-linear relationships
(between the features of the tibial acceleration signals and
the target VILR) is desired. In that way, machine learning
techniques could help to analyze continuous time-series data
without pre-selecting discrete variables. Holzreiter and Kohle
(1993) introduced the use of neural networks to assess gait
patterns in locomotion biomechanics. Recently more advanced
machine learning techniques have been used to detect pathologic
gait-patterns (Williams et al., 2015; Zeng et al., 2016), fatigue
(Janssen etal., 2011; Op De Beéck et al., 2018) as well as classifying
gender, performance-level (Clermont et al., 2018) and age-related
running patterns (Fukuchi et al., 2011).

To gain a better understanding of the relationship between the
external load and potential injury risk in overground running,
a more accurate estimation of the athlete’s impact loading is an
essential methodological prerequisite. The screening of runners
on impact intensity could be more accurate by estimating

VILR by means of a machine-learned model instead of relying
on the APTA only. Consequently, this study proposes and
evaluates the performance (e.g., predictive accuracy, calculation
time, diagnostic ability) of an inertial sensor-based method to
estimate the runner’s VILR based on bilateral 3D shin-mounted
accelerometer data using a machine learning approach. It was
hypothesized that the incorporation of these extracted features
into a set of machine-learned models would result in stronger
predictive and diagnostic capacities than considering APTA only.

MATERIALS AND METHODS

Ethics Statement and Participants

Ninety three subjects engaged in recreational as well as
competitive running (55 men and 38 women) were recruited
from the local community. Runners were included if they were
free of running-related injuries and ran at least 15 km per week
(Table 1). All subjects signed an informed consent prior to the
testing. Approval for the study was obtained from the ethical
committee of the Ghent University Hospital (2015/0864).

Protocol and Setup

All runners were equipped with a backpack/tablet system
to measure the tibial accelerations (Van den Berghe et al,
2019). Two tri-axial accelerometers (LIS331, Sparfkun, Colorado,
United States; 1000 Hz/axis), were as tight as tolerable strapped
with sports tape on the antero-medial side of both tibias, 8 cm
above the malleolus medialis (Laughton et al., 2003; Clansey
et al., 2014). The axis of each accelerometer was orientated in
a way that the vertical axis of the accelerometer coincided with
the longitudinal axis of the concerned tibia. The skin around
the lower leg was pre-stretched with sports tape to improve the
rigid coupling between the accelerometers and the tibia (Clansey
et al., 2014; Van den Berghe et al., 2019). Data collection took
place during two different projects, but with an exact same
measurement setup.

The first cohort consisted of 13 subjects who were asked to
run on a 30 m instrumented running track at multiple running
speeds (2.55 ms™ !, 3.20 ms~!, 5.10 ms~ !, and preferred running
speed). All subjects were habitual rearfoot strikers and were
provided with the same standardized neutral distance running
shoe (Li Ning Magne, ARHF041). The second cohort consisted
of 80 runners running at 3.20 m-s~!. Subjects were not pre-
selected on their habitual footstrike pattern and received no
verbal instruction about the desired footfall pattern. They wore

TABLE 1 | Characteristics of the subjects.

Men Women
Mean SD Mean SD
Age (Yrs.) 35.9 9.2 34.6 10.8
Body height (m) 1.79 0.07 1.67 0.06
Body mass (kg) 76.5 10.2 60.6 7.3
Training volume (km/week) 36.4 16.9 27.9 11.0
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FIGURE 1 | Data example, tri-axial. 1pc accelerations (TA) were simultaneously captured for the left (blue) and right (red) lower leg, vertical ground reaction forces
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their regular training shoes. In both cohorts running speed was
controlled by timing gates. Recorded trials were discarded and the
runners received verbal feedback if their running speed was not
within a 0.2 m-s~! of the targeted speed. Ground reaction forces
were measured at 1000 Hz by two built-in force platforms (2 and
1.2 m, AMTI, Watertown, MA, United States). Accelerometer
and force data were synchronized in time (Figure 1) by means
of an infrared impulse sent from the motion capture system. The
pulse was captured by an infrared sensor attached to the backpack
system. For a more detailed description of this synchronization
protocol we refer to Van den Berghe et al. (2019).

Data Processing

Example Construction and Data Preprocessing
Ground reaction force data were filtered using a zero-lag
second-order low-pass Butterworth filter with a cutoff frequency
of 60 Hz. VILR was calculated as the maximal value of
the first derivative of the vertical ground reaction force
component following initial contact (vertical ground reaction
forces exceeding a 5N threshold) (Ueda et al., 2016). This
was subsequently normalized to the subject’s body weight. The
acceleration signals were filtered in order to separate the linear
acceleration from the gravity component and remove high-
frequency noise using the approach of van Hees et al. (2013). The
filtering settings were selected using a tuning procedure where
2/3 of the data was used to train a model and 1/3 to evaluate
the model. First, to find a sensible range for the parameters,
a manual exploration was performed using Chebyshev (type I
and type II) and Butterworth filters with settings derived from
related research. Subsequently, a grid search of Butterworth
filters [(0.2, 1.0; step = 0.2)x(40.0, 70.0; step = 5)] was applied
to the acceleration signals and the filter which resulted in the
best performance on the evaluation set was selected, which

was a second-order band-pass filter with cutoff frequencies
of 0.8 and 45 Hz (Figure 2).

We extracted individual strides by splitting the collected
signals at the take-off events of the opposite feet. This guarantees
that each window contains the part of the acceleration signal
that is relevant for determining the VILR. Next, we mirrored the
data from the right and left leg, such that each of these strides
starts with the right leg making ground contact. This procedure
effectively doubled the amount of training data.

Each of the 93 subjects completed on average 16 trials (range:
6 to 67 trials), with each trial containing 2.67 strides on average.
In total, 23 trials were removed from the data set due to
clear errors in measured ground reaction forces and/or tibial
accelerations. This resulted in 4037 examples in total.

Feature Construction

A large set of features consisting of three broad categories
was considered: (1) auto-generated statistical features of the
3D acceleration waveforms, (2) trial-specific features, and
(3) subject-describing features (Figure 2).

Auto-generated statistical features

First, from the tri-axial filtered acceleration signals of both feet,
we extracted the window between the initial ground contact
event and the event where the vertical acceleration component
reaches 0 g. Next, we calculated a comprehensive set of time-
series features from these windows using the TsFresh Python
package (Christ et al., 2018). The extracted features include both
basic characteristics of the signals (e.g., mean, maximum, number
of peaks, timing of peak values) and more complex features (e.g.,
continuous wavelet coefficients, coefficients of an autoregressive
model, the time reversal symmetry statistic, Fourier coeflicients).
We refer to the TsFresh paper (Christ et al., 2018) for a full
description and list of features.
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Data Preprocessing and Feature Engineering
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FIGURE 2 | Data preprocessing and feature engineering part of the machine learning pipeline. First, the raw acceleration signals were filtered using a Butterworth
bandpass filter. The optimal filter configuration was determined by training multiple models, using different filter configurations. The configuration which enabled the
most accurate predictions was used henceforth. Second, feature engineering was used to derive a lower-dimensional representation of the data. The generated
features were a combination of automatically generated statistical features and manually crafted domain-specific features. The set of automatically generated

The FRESH procedure (Christ et al., 2017) was used for
feature selection. First, this procedure evaluates the influence
of every feature on the target (VILR) using a univariate
test (i.e., Kendall rank test for real-valued features and
Kolmogorov-Smirnov for binary features) and computes the
p-value. So, it tests whether the feature and the target are
not statistically independent. Subsequently, the Benjamini-
Yekutieli procedure was carried out to control for the false
discovery rate. This procedure reduced the set of auto-generated
features to 1662.

Trial-specific features

Running speed, derived from timing gates (Van den Berghe
et al, 2019), and ground contact time, derived from tibial
accelerations, were included as trial-specific features for each
stride. Because the ground contact time cannot be inferred
directly from the tibial acceleration signals, we modeled this
as a separate prediction problem. Specifically, we solved the
related task of predicting the timings of the initial contact
and toe off gait events. The ground contact time can then be
inferred from the time difference between both events. Due to
the interrelations between both gait events (e.g., a toe off event
follows 160 to 350 ms after an initial contact event), we framed
this as a structured prediction task. In this framework, a function
between the acceleration profile and a sequence of initial contact
and toe off timings was learned. Specifically, a deep structured
recurrent neural network architecture was used. The neural
network component of the model used the raw acceleration
signals, the jerk (first order derivative of acceleration signals),

roll (arctan (a, - a;)) and pitch (arctan (—ax a; + aZ)) of both
legs to infer the likelihood of a gait event happening for each

sample. Subsequently, the structured component consisted of a
constrained peak detection algorithm on the likelihood function
that finds the most likely combination of initial contact and toe off
timings. Both components were optimized jointly. For a detailed
description of this model, see Robberechts et al. (2019).

Subject-describing features

Third, the body weight and the shoe type were included.
The weight of each subject is a logical feature to consider
since the loading rate is expressed as a function of body
weight. Furthermore, earlier research has found that footwear
properties may affect VILR, even with similar foot-strike patterns
(Kulmala et al., 2018). When testing the second cohort (n = 80),
the subjects reported their shoe brand and type. The shoe’s
properties were verified through online databases (running shoes
guru, solereview, runner’s world, manufacturer’s website, etc.)
and subsequently categorized as being neutral, stabilization
or racing flats.

Learning Approach
We considered two different learning settings, each learned on
different subsets of the data (Figure 3):

Subject-independent model

This setting trained a model using the data from all runners
except for one. The model was then evaluated on the trials from
the one held-aside runner. That is, at training time the model
has no access to any data about the runner for whom predictions
will be made. As such, this setup estimates the model’s accuracy
when making predictions for new runners for whom there is
no available data, which is interesting in practice. Moreover, the
model remains valid if a runner adapts his running style.
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Model Selection, Training and Evaluation
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FIGURE 3 | Model selection, training and evaluation part of the machine learning pipeline. Two different learning settings were considered, differing in how the data
were split into training and test sets. In the subject-dependent setting, we trained a model on the data of one specific runner, including all trials except one.
Subsequently, the model was evaluated on the data of the one held-aside trial. In the subject-independent setting, we trained a model on the data of all runners
except for one and evaluated the model on all data of the one held-aside runner. This procedure was repeated for each trial and subject, such that we obtained
performance metrics for each fold. Last, the average MAE and R2 score per subject were reported.
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Subject-dependent model

This setting trained a unique personalized model for each subject
using only data from that subject. This model would work well if
the relationship between the tibial acceleration and the VILR is
unique to each subject.

For both settings, we compared the performance of three
regression techniques: (1) Linear Regression with Elastic Net
regularization (EN), (2) Linear Regression with Least Absolute
Shrinkage and Selection Operator regularization (LASSO) and
(3) Gradient Boosted Regression Trees (XGB). We used the
implementations available in scikit-learn (Pedregosa et al., 2012)
for the first two models. For the third regression technique, we
used the XGBoost Python package (Chen and Guestrin, 2016).

All models were trained and evaluated in a leave-one-out
cross-validation analysis. The subject independent model was
iteratively trained on all but one of the subjects to be evaluated
on the remaining subject. Similarly, the subject-dependent model

is trained on all but one trial of the same subject to be evaluated
on the remaining trial. This procedure was repeated for all
possible subjects and trials, and the mean accuracy across all
folds is reported. As such, this procedure determines the average
performance of the models on a group level.

Model Evaluation and Statistical Analysis

The model’s accuracy was assessed using both the mean absolute
error (MAE) and the coefficient of determination (R2 score). The
MAE was calculated as the absolute difference between the force
platform based VILR and the machine learning predicted VILR.
It measures the average magnitude of the errors in the same unit
as the VILR and is therefore an easily interpretable measure for
the quality of a model. This metric is mainly useful to compare
across two models and for domain experts that have insight into
the range of VILR values and the magnitude of acceptable errors.

2y —fi

The R? score was computed as R> = 1 — S§—5> where y;
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are the force plate based VILR values and f; are the machine
learning predicted values. It has the advantage of being scale-
free, thereby indicating how a model performs compared to a
constant baseline.

The number of trials completed by each runner varies
substantially. In order to avoid that one runner has an excessively
large influence on the accuracy of our models, we computed
the global MAE and R? score in a two-step procedure. First,
the average MAE and R? score were calculated over all
strides of that runner. Second, the global metrics were then
calculated as the average values of these metrics over all
runners that completed at least ten trials. This helps prevent
the results from being unduly influenced by a single trial or
a single runner.

Additionally, we considered two baseline models: a first
model that always predicts a runner’s average VILR for the
corresponding landing foot; and a second linear regression model
that only includes the APTA as a covariate.

Repeated measures analysis of variance (ANOVA) was used
to examine the effect of various learning settings and regression
techniques on the estimated VILR. Post hoc testing was conducted
using a Tuckey HSD test on the relative errors. Additionally,
Cohen’s d;y;, effect sizes (Lakens, 2013) were computed for the
differences in MAE between each machine learning model and
the APTA baseline model. We refer to effect sizes as small
(d < 0.2), medium (0.2 < d < 0.8) and large (d > 0.8) as
suggested by Cohen (2013). Statistical analysis was done in
Python using the SciPy (ANOVA) and statsmodels (Tuckey HSD)
libraries, with the significance level set at p = 0.05.

To assess the diagnostic ability of each model, it was opted
to express the model accuracy in the proportion of correct
classifications of high impact runners at a common running
speed. Because a cut-off for high impact running at the speed of
3.2 m-s~! was lacking, those runners with a mean VILR within
the highest 33% of our database were selected. The diagnostic
ability of the models was assessed by calculating their sensitivity
and specificity. Sensitivity is the proportion of runners who are
correctly categorized as having a high VILR among those who
truly have a high VILR. Similarly, specificity is the proportion
of runners who are correctly categorized as not having a high
VILR among all runners who truly do not have a high VILR.
The Receiver Operating Characteristic curves were constructed
to demonstrate the trade-off between both metrics using various
cut-off values for the predictions.

RESULTS

Predictive Performance of the Machine
Learning Models

Table 2 summarizes the predictive performance (MAE and R?
scores) of all learned models. In terms of regression techniques,
XGB consistently outperformed the other learners (p < 0.05; in
all but the subject-independent model with subject-describing
features setting). Therefore, the results of the XGB learner is
reported in the remainder of this section. The differences between
the different learning settings were all statistically significant

TABLE 2 | Mean absolute error (MAE) SD, coefficient of determination R? scores
and effect sizes of MAE’s versus the axial peak tibial acceleration (APTA) baseline
for the estimation of the vertical instantaneous loading rate (VILR) by three different
regression models.

Model MAE [BW-s— 1] R2 drm Effect size
Subject-independent (without subject-describing features)

APTA 21.07 £ 8.13 0.6027 /

LASSO 13.13+£8.79 0.7789 0.3576 Medium
EN 12.91 £7.738 0.7811 0.3749 Medium
XGB 12.71 £ 7.57 0.7397 0.4187 Medium
Subject-independent (with subject-describing features)

APTA 18.68 £ 8.44 0.6090 /

LASSO 12.75 £ 9.01 0.7682 0.3468 Medium
EN 12.48 £ 8.28 0.77183 0.3707 Medium
XGB 12.41 £7.90 0.7741 0.4061 Medium
Subject-dependent

APTA 7.39 £ 4.03 0.8500 /

LASSO 7.50 £+ 3.45 0.8657 0.0168 Small
EN 7.36 £+ 3.40 0.9124 0.0719 Small
XGB 5.39 +£2.04 0.9461 0.2900 Medium

Linear Regression with Elastic Net regularization (EN), Linear Regression with
Least Absolute Shrinkage and Selection Operator regularization (LASSO), and
Gradient Boosted Regression Trees (XGB) in the subject-independent and subject-
dependent learning settings.

(p < 0.05). A subject-independent model without subject-
describing features resulted in the least accurate estimations
of VILR (MAE: 12.71 £ 7.57 BW-s—1; R%: 0.7397). Including
the subjects weight and shoe type improved the subject-
independent model (MAE: 12.41 + 7.90 BW-s~1; R%: 0.7741).
Training a unique model for each subject further improved the
predictions by a significant margin (MAE: 5.39 £ 2.04 BW-s~1;
R?:0.9461; p < 0.01).

Predictive Performance of the Single

Metric Linear Regression Models

Table 3 shows the predictive performance of linear models
that include a single feature in the subject-independent model
learning setting. For comparison purposes was the predictive
performance of the subject-independent XGB model added as
well. Notwithstanding the moderate correlation between the
APTA and the VILR, 32 of the extracted features had a higher
predictive accuracy than the currently used proxy. Of these
32 features, the mean over the absolute differences between

TABLE 3 | Mean absolute error (MAE) +£SD and coefficient of determination R?
scores for the estimation of the VILR by linear regression models using a single
variable in the subject-independent model (SIM) learning setting.

Statistical model MAE R?

APTA 21.07 +£8.13 0.60
Standard deviation on linear trend 18.06 + 7.28 0.67
Mean over the absolute differences between 17.47 £7.98 0.71
subsequent acceleration values

SIM XGB model 12.41 £ 7.90 0.77
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subsequent values of the vertical acceleration signal had the
highest correlation with the VILR. A comprehensive overview of
all 32 features was made available (Supplementary Table A). The
previously discussed regression models that combine multiple
of these features still outperform these single-feature models
by a large margin.

Diagnostic Ability
The models’ ability to identify runners with a high VILR is shown
in Figure 4. With an area under the curve of 0.92, the subject-
independent model XGB had a stronger diagnostic ability than
the APTA which has an area under the curve of only 0.82.
Figure 5 shows cumulatively the percentage of predictions
for which the relative error is below a threshold. The subject-
independent model outperformed both baselines by a significant
margin. However, the predicted VILR has still an error larger than
25% for 12% of the samples in the test set. The subject-dependent
fails for only 3% of the examples.

Computing Time

The mean calculation time for each prediction was 142 ms
(2.3 GHz Intel Core i5), of which the majority (140 ms) is spent
on estimating the ground contact time. Meaning a prediction of
the VILR can be made within one foot contact (160 - 350 ms).

DISCUSSION

The overall aim of this study was to predict the VILR during
overground running by creating performant machine learning

APTA
(area = 0.82) /’
4
// Random
/ guess

Sensitivity

0.0 0.1 02 03 04 05 06 0.7 0.8 09 1.0

1 - Specificity

FIGURE 4 | The Receiver Operating Characteristic curve reflects the ability of
the subject-independent model XGB (SIM) and APTA models to identify
runners with a high VILR. The sensitivity was plotted in function of the false
positive rate (1 — specificity). The subject-independent model XGB model had
a stronger diagnostic ability than the APTA.

models. Advanced signal processing was used to identify
time-discrete features of the 3D acceleration waveforms that
discriminate between subtle changes in running biomechanics.
Machine-learned models were subsequently built to estimate
the VILR and the performance (predictive accuracy, diagnostic
ability) of those models were compared to a traditional approach.
Two other machine learning techniques not discussed in this
study were attempted, but gave unsatisfactory results. First,
a data-driven deep recurrent neural network would require much
more data than available to learn the complex relations between
the tibial acceleration signals and VILR. Second, dynamic time
warping was used as a tool for gait-curve matching, incorrectly
assuming that runners with similar acceleration profiles have
a similar VILR. Moreover, the feature engineering approach is
preferable, since the learned models are interpretable (to a certain
extend) and have a much lower computational cost.

The findings point out that applying machine learning to
multiple 3D tibial acceleration features results in a more accurate
prediction of the VILR than the frequently used APTA, which is
a single time-discrete variable of tibial acceleration. Additionally,
this prediction can be made in real-time, because the data pre-
processing (i.e., filtering and feature construction) and prediction
requires less calculation time than the typical duration of a single
foot contact (~250 ms).

Overall, the XGB models systematically outperformed the
other learners, suggesting that the XGB model can cope
more effectively with the large number of features or that
the relationship among the features and target are non-linear
(Hepp et al., 2016).

From a machine learning setting perspective, building
a subject-dependent model resulted in the most accurate
predictions compared to the subject-independent models. The
difference in predictive performance between the subject-
independent model and subject-dependent model may partially
be explained by the fact that all runners of the second cohort wore
their own habitual running footwear, which might influence the
measured impact loading. This assumption is further reinforced
by the fact that the performance of the subject-independent
model can be further improved by incorporating subject-
describing features (body weight and shoe type). However,
the phenotypical variability and choice of footwear can only
partly explain the differences in accuracy between a subject-
dependent and independent model. Although all runners ran in
a similar environment, the ranked order of variable importance
for predicting the VILR is unique for each runner in a
subject-dependent learned model. Moreover, we observed a large
asymmetry between the average VILR for most subject’s left and
right legs, suggesting that the subject-dependent models could
be further improved by building separate models for both legs.
However, in our study not mirroring the data resulted in a worse
predictive accuracy due to the limited amount of data available
for each subject.

The better predictive performance for a subject-dependent
model compared to a subject-independent model is in line
with previous findings described by Wouda et al. (2018) and
Ahamed et al. (2019). However, our subject-independent model
is more practical toward real-world applications. It is applicable

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

February 2020 | Volume 8 | Article 33


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Derie et al. Predicting Vertical Instantaneous Loading Rate
100%
SDM
90%
80%
70% Baseline
7]
=)
2 60%
—
Q
=
o 50%
=
o
Gy
©  40%
X
3()‘,)'(1
20%

10%

0%

0”'(7 5() 0

10%

15% 20%

Error [% of true VILR]
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outperformed the baseline and APTA by a significant margin. Similarly, the subject-dependent model outperformed all others, but is less applicable in practice.
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to any runner, regardless of whether prior data is available about
the respective runner, which makes this approach generalizable
over different subjects. Supporting our hypothesis, the subject-
independent XGB model still outperformed the linear APTA
model in terms of prediction accuracy and diagnostic ability.

By incorporating multiple running speeds we were able to
create a machine learning algorithm that is capable of making
accurate predictions across a broad range of running speeds,
making it more usable in practice. As a consequence of this
design choice, we observe relatively high R? scores for these
models in comparison with previous research that considered a
single running speed (Laughton et al., 2003; Pohl et al., 2009;
Greenhalgh et al,, 2012; Zhang et al., 2016) due to the restricted
range effect (Bland and Altman, 2011): the inclusion of multiple
speeds increases the range of the maximal VILR and makes
it easier to see the global trend. However, this applies to all
models discussed here and therefore does not affect the inter-
model differences. For comparison, the evaluation metrics for all
models trained on exclusively the most frequent running speed of
3.2 m-s~! are provided as Supplementary Table B.

The VILR was predicted accurately, using a broad range of
variables derived from filtered 3D accelerations. In order to
screen runners on their VILR at a common training speed of
3.2 m-s™! (e.g., identifying runners with a high VILR, during
a simple overground running test without the need of an
expensive force plate) the classification of runners on impact
intensity is preferably done by estimating VILR by means of a
machine-learned model instead of relying on the APTA only.

Because VILR is the maximum increase in acceleration of the
lower extremity and of the rest of the body during stance
(Clark et al., 2017), the predictive accuracy may be further
improved by adding trunk acceleration to the accelerometer-
derived input data.

This study has several limitations. Firstly, we trained the
models only on habitual rearfoot strikers. Since machine learning
can only be used to memorize patterns that are present in
the training data, the trained models can only be applied to
other rearfoot strikers and our findings do not necessarily
generalize to other foot strike patterns. Secondly, all data
was recorded in a laboratory environment. Previous research
identified significant variations in APTA or contact time among
different running surfaces (Tessutti et al., 2012; Boey et al., 2017).
Hence, the findings should be transferred with caution to running
on other surfaces.

CONCLUSION

This study proposes an advanced method to predict VILR
during overground running by using only tri-axial shin mounted
accelerometers derived data and an XGB machine learning
approach. These algorithms, which incorporate time-continuous
variables, are able to predict the VILR more accurately than
currently possible using a time-discrete variable (e.g., APTA).
Since these algorithms do not require significant computational
power, they could be implemented on wearables worn by the
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runner in order to screen, monitor or provide biofeedback on the
predicted VILR whilst running overground.
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Enhancement of activity is one major topic related to the aging society. Therefore, it is
necessary to understand people’s motion and identify possible risk factors during activity.
Technology can be used to monitor motion patterns during daily life. Especially the
use of artificial intelligence combined with wearable sensors can simplify measurement
systems and might at some point replace the standard motion capturing using optical
measurement technologies. Therefore, this study aims to analyze the estimation of 3D
joint angles and joint moments of the lower limbs based on IMU data using a feedforward
neural network. The dataset summarizes optical motion capture data of former studies
and additional newly collected IMU data. Based on the optical data, the acceleration and
angular rate of inertial sensors was simulated. The data was augmented by simulating
different sensor positions and orientations. In this study, gait analysis was undertaken with
30 participants using a conventional motion capture set-up based on an optoelectronic
system and force plates in parallel with a custom IMU system consisting of five sensors.
A mean correlation coefficient of 0.85 for the joint angles and 0.95 for the joint moments
was achieved. The RMSE for the joint angle prediction was smaller than 4.8° and the
NRMSE for the joint moment prediction was below 13.0%. Especially in the sagittal
motion plane good results could be achieved. As the measured dataset is rather small,
data was synthesized to complement the measured data. The enlargement of the
dataset improved the prediction of the joint angles. While size did not affect the joint
moment prediction, the addition of noise to the dataset resulted in an improved prediction
accuracy. This indicates that research on appropriate augmentation techniques for
biomechanical data is useful to further improve machine learning applications.

Keywords: machine learning, artificial neural networks, wearable sensors, inertial sensors, motion analysis, data
simulation
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1. INTRODUCTION

Motion analysis, especially gait, in real-world environments gains
more and more relevance in today’s society. Since people are
aging and want to retain their mobility, it is important to early
detect abnormal gait patterns in order to prevent them from
falling. To achieve this, the improvement of ambulatory motion
analysis systems is relevant (Mundt et al., 2019a). Systems that are
capable of determining motion kinematics and kinetics without
expensive equipment and with less expert knowledge required
will drastically increase the availability of motion analysis to
a wider range of people. By providing wearable easy-to-use
systems in daily life, risky motion patterns (e.g., in gait) might be
identified before a major injury occurs or the onset of gait related
diseases (Kobsar and Ferber, 2018; Majumder et al., 2019).

Gait is one of the main tasks of mobility. Baker et al. (2016)
established four reasons for gait analysis: to diagnose a disease
or injury, to assess the severity of a disease or injury, to monitor
the progress of a disease or injury and to predict the outcome of
an intervention. In all cases, long term or frequent monitoring
of a person during daily life is desirable, thus allowing to
identify any progression of a disease. To bring motion analysis
into daily life, wearable sensors—especially inertial measurement
units (IMUs)—have become increasingly popular (Caldas et al.,
2017; Jarchi et al., 2018).

To extract joint angles from IMU data, the orientation of
each sensor in a global reference system needs to be determined
and a sensor-to-segment alignment performed. The most popular
sensor fusion techniques for IMU-based motion analysis systems
are (extended) Kalman filters or complementary filters (Gui
et al,, 2015). These filters fuse the signals of each single sensor
of the IMU to determine its orientation. Either the data of
the accelerometer and gyroscope only (Gui et al, 2015) or
additionally the magnetometer data is used to identify the sensor
orientation in a global reference system (Sabatini, 2006). The
use of a magnetometer for the estimation of sensor orientation
can be seen as a major limitation because magnetometers are
highly susceptible to local disturbances in the magnetic field
(de Vries et al., 2009; Teufl et al., 2018). Different attempts
have been made either correcting magnetic disturbances or
omitting the use of magnetometers at all (Ligorio and Sabatini,
2016; Teufl et al., 2018). However, another major issue of the
commonly used approach is the (mal-)alignment of the sensor
axes to physiological meaningful segment and rotation axes that
define the anatomical model (Picerno, 2017; Robert-Lachaine
et al., 2017; Mundt et al., 2019d). Several approaches have been
suggested to overcome this problem: calibration postures or
movements (Favre et al., 2009; Ferrari et al., 2010; Palermo
et al, 2014), anatomical calibrations (Picerno et al., 2008;
Bisi et al., 2015), post-trial calibration procedures (Hamacher
et al, 2014; Li and Zhang, 2014) and more recently machine
learning approaches (Zimmermann et al., 2018). While the use
of calibration postures and movements will always be prone to
errors because they are dependent on the execution of the subject
(Seel et al., 2014; Picerno, 2017; Robert-Lachaine et al., 2017),
the post-trial alignment prohibits fast data analysis. Therefore,
the use of machine learning algorithms or the exploitation

of kinematic constraints seems to be most promising. The
most recent advancements of the kinematic-constraint-based
approaches (Laidig et al., 2017, 2019; Miiller et al., 2017; Nowka
et al.,, 2019) have not been evaluated on gait analysis. Seel et al.
(2014) evaluated the knee and ankle joint sagittal plane angle
achieving deviations to the gold standard of less then 1°. Machine
learning approaches have been undertaken by Findlow et al.
(2008), Goulermas et al. (2008) achieving a mean correlation of
about 0.70 for the sagittal plane joint angles. In recent work, we
predicted joint angles based on simulated IMU data during gait
achieving an accuracy higher than 0.86 (Mundt et al., 2019c¢).

Different approaches to determine the ground reaction force
have been suggested and were systematically reviewed recently
(Shahabpoor and Pavic, 2017). They concluded that the use of
kinematic data as inputs reveals the highest practicality although
showing lower accuracy than force plates. Additionally, the
authors noted the limited validation of these methods for long-
term measurements in real-life environment. This indicates that
further research in this direction is useful, and if the aim is the
evaluation of joint moments, a direct approach to determine
these quantities might be advantageous. Different research has
been undertaken in this direction, but less frequently. Ardestani
etal. (2014) used a wavelet neural network to predict the 3D hip
joint moments, the sagittal knee joint moment and the plantar
flexion and eversion moment of the ankle joint during gait
using GRF and EMG data as inputs. They reported normalized
root-mean-squared errors of <20% and correlation coefficients
ranging from 0.84 to 0.96. Johnson et al. (2018, 2019) used
pre-trained convolutional neural networks for the prediction of
the GRF and the knee joint moment during walking, running
and sidestepping based on marker trajectories. They achieved a
mean correlation higher than 0.85 for the knee joint moments
and GRF. Analyzing normal gait, Hahn and O’Keefe (2008)
estimated the sagittal plane lower limb joint moments based
on demographic, anthropometric, kinematic, and EMG data.
They achieved a coeflicient of determination higher than 0.88,
but they did not split their test set subject-wise, hence, data
from subjects in the test set was also present in the training
set. This leads to an improved accuracy (Saeb et al., 2017).
Wouda et al. (2018) used inertial sensor data to determine the
vertical GRF and the sagittal knee kinematics. For the joint angle
prediction the correlation coeflicient was larger than 0.83, and
for the GRF larger than 0.90. In previous work, we used either
marker trajectories or joint angles and the GRF as input data to
predict all joint moments of the lower limbs during side stepping
achieving a mean correlation higher than 0.86 (Mundt et al,
2019b). In a recent study, we used simulated IMU data to predict
the joint moments during gait achieving a similar accuracy
(Mundt et al., 2019c¢).

Despite the already good results, machine learning approaches
have one important requirement: large datasets. These are -
due to the novelty of the system - not openly available from
IMU sensors. To overcome the lack of a large amount of data,
their synthesizing is one reasonable solution (Young et al., 2011;
Brunner et al., 2015; Zimmermann et al., 2018; Mundt et al.,
2019c). Young et al. (2011) was the first who simulated IMU
data from existing optical motion capture data to enlarge a
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dataset for pose estimation. This approach was taken a step
further and validated by Brunner et al. (2015) and Zimmermann
et al. (2018). In previous work, we simulated IMU data from
optical data as well, but only validated the simulation based
on a single participant (Mundt et al, 2019c). In this study,
the validation of the simulation is continued and IMU data
that was simulated based on optoelectronic data as well as
measured IMU data is used as input parameters to train fully-
connected feedforward neural networks. To be independent
of a homogeneous magnetic field, the magnetometer data is
not considered as input but the 3D angular rates and linear
accelerations only. The major advantages of the proposed method
are that the anatomical model is implicitly learned, hence no
calibration postures or movements are necessary, and that joint
kinematics and kinetics can be determined. We aim to predict the
joint angles and joint moments of the lower limbs during gait and
hypothesize that the use of combined simulated and measured
data will achieve a higher accuracy than the use of measured
data only. Furthermore, we hypothesize that the additional
noise in measured data caused by soft tissue movements will
decrease the prediction accuracy. We aim to provide a first step
into the direction of in-field gait analysis based on IMUs and
artificial intelligence.

2. MATERIALS AND METHODS

An overview on the workflow of the proposed methodology is
given in Figure 1.

2.1. Gold Standard Approach

All data used in this study was collected at the German
Sport University Cologne. The studies were approved by the
Ethical Committee of the German Sport University Cologne and
all participants provided their informed written consent. The
motion was recorded using an optoelectronic motion capture
system (VICON™, MX F40, Oxford, UK, 100-125 Hz) and two
force plates (Kistler Instrumente AG, Winterthur, Switzerland,
1,000 Hz). In all studies, the participants were equipped with
28 reflecting markers that were attached to bony landmarks as
depicted in detail in Mundt et al. (2019d) to create a rigid body
model of the lower limbs. The marker trajectories and GRF
were filtered using a zero-lag second-order low-pass Butterworth
filter with a cut-off frequency of 6 Hz (Robertson et al., 2013)
prior to calculating the joint angles and joint moments of
the lower limbs with an anatomical landmark scaled model
(Lund et al, 2015) using the AnyBody Modeling System™
(Version 6.0, AnyBody Technology, Aalborg, Denmark). First,
the kinematics are calculated using an overdetermined kinematic
solver to optimize the markers using a least-squares approach.
Afterwards, the models joint parameters are fitted to the subject-
specific parameters before calculating the kinetics. All data
was segmented into consistent sequences of 101 frames. For
the kinematic data, full gait cycles were extracted based on
an implementation of the foot contact algorithm proposed by
Maiwald et al. (2009). For the joint moments a threshold-based
segmentation of the stance phase was applied based on the force

plate data. The joint moments were normalized to body height
and weight of the participant.

2.2. Machine Learning Method

2.2.1. Data Simulation

To derive the simulated IMU data, first, the anatomical
coordinate systems of the biomechanical model need to be set
up, because these coordinate systems are translated and rotated
to match possible sensor positions before the derivatives are
calculated to display the acceleration and angular rate.

The joint origins and segment coordinate systems of the
hip, knee and ankle joint are calculated based on the marker
trajectories. The marker set is displayed in Figure 2. The joint
centers for pelvis and ankles are based on the recommendations
of the International Society of Biomechanics (ISB) (Wu et al.,
2002). The hip joint center is defined as per (Harrington et al.,
2007). The definition of the knee joint center is based on Pennock
and Clark (1990). After this step, five coordinate systems, one for
the pelvis, two for the thighs and shanks, respectively, are set up.
For ease of calculation, the coordinate systems are transformed
to quaternions (Sola, 2017), denoted by qs. For this purpose,
the Hamilton convention is used:

?=-1,72=-1,kK¥ =—landijk = -1 (1)

with 7,j and k displaying the imaginary units of the quaternion.
Any quaternion Q can thus be defined as:

Q = qo + iq1 +jq2 + kg3, (2)

with go being the scalar part of the quaternion and iq; +jq» + kg3
being the vector part. The quaternion can be interpreted as vector
q in R*, which is defined as:

) , [[ull

y

where u = uyi+ uyj+ u.k is a unit vector describing the rotation
axis and 0 is a scalar describing the rotation angle.

In the following step, the anatomical coordinate systems are
translated and rotated to match possible initial sensor positions
and orientations. The rotation between the segment and sensor
orientation can be described by q4. The quaternion describing
the orientation of the sensor in global space is calculated by:

cos(0)
usin(0)

=1 (3)

Qsensor = Qseg @ Q> (4)

with qgensor describing the sensor orientation, qgee describing the
segment coordinate systems orientation in a global reference
frame and q4 describing the global quaternion rotation. The
translation x of the segment coordinate system to the sensor
position X is performed by:

X=X+ (qseg R®x® q;keg)) (5)
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FIGURE 1 | Overview of the methods applied. To get the ground truth information on the joint angles and joint moments of the lower limbs, the gold standard

approach using an optical motion capture system and force plates to collect the data is used. Based on this data, inverse dynamics simulations are undertaken to
calculate the joint angles and joint moments. Using the proposed ML method, inertial data (angular rate w and acceleration a) is simulated from the optical data and
used as inputs for an artificial neural network. Based on the ground truth joint angles and moments, the network learns the connection between the input and output
data. The method is validated using an IMU system based on five sensors that are placed consistently with the simulated data.

orientations qx and qgy;, the local rotation Aq; of each
sensor reads:

with x and X being pure quaternions, with their components
xo and Xo 0 yielding the sensor position in a global
reference sys.te.m and . gjeg deno.tir.lg the con.jugate of
Qseg- The original position, the joint center, is defined

by xo. Aq = q; ® qkt 1> (6)
In the following step, the angular velocity w of each sensor
can be calculated as the numerical quaternion derivative  which leads to:
of the sensor orientation Qepnsor. For ease of readability,
. . . . . 2 A
the .subscrlpt is omlttf:d 1n‘ the 'followmg. All quatermqns o= v arctan(|| Aqu [l Aqp). )
q display the sensor’s orientation. For two consecutive At [[Aqpll
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FIGURE 2 | Marker set and sensor placement. The markers in the front are
displayed in red, the ones at the back are displayed in blue. The green boxes
display the IMU sensors.

The subscripts v and 0 refer to the vector and the scalar part
of the quaternion respectively. For further information on the
derivation, see Sola (2017).

The linear acceleration of each sensor is calculated as the
second derivative of the origin of the segment coordinate systems.
This is achieved by reformulating a Taylor series expansion
around x; with k = 2,..., n — 1 with n being the last time step. For
x; and x,, the one-sided forward and backward differences need
to be used respectively. The approximation can be improved for
X, to X,—1 by applying the central differences scheme (Atkinson
and Han, 2005). In summary, this yields the following equations
for the velocities:

X3 — X
V1: At >

_ X1 — X1 — Xn—1

Vi = > Vn =

2At At
(®)
The same procedure can be applied again to derive the second
order differentiation for a;. Analogously to vi, the same
restrictions hold for the first and last time steps. Thus, the finite
difference approximations of the accelerations are:

X3 — 2% + X1 Xp+1 — 2Xg + X1

To transform the numerical derivatives into the actual sensor
readings the different signs of gravity and motion need to be
considered to define the acceleration of the sensor in the global
reference system ay:

a,=—a+g (10)

The different signs are caused by the working principle of
accelerometers that are used in inertial measurement units.
Accelerometers are based on the inertial force of a small mass
acting upon a piezoelectric element (Elwenspoek and Wiegerink,
2001). Thus, the gravitational acceleration directly translates to
the sensor reading while the acceleration of the sensor origin
results in an inertial force in the opposite direction of the
segment acceleration. This means that the sign of a needs to be
inverted while the sign of g remains unchanged. To describe
the sensor readings in its local coordinate system the following
transformation is necessary:

(11)

*
a = qsensor ® ag ® qsensorx

with a; displaying the linear acceleration of a sensor. The
acceleration a; and a; are pure quaternions, with their
components a0 and ajy = 0.

As the sensor is assumed to be a rigid body, its local position
and orientation can be exactly described by six degrees of
freedom, three translations and three rotations, described by the
translation vector x (see Equation 5) and the rotation vector qg
(see Equation 4). In order to optimize these quantities, a vector
z = [x1,X2,X3,q¢1> 42> G¢3] is defined. We fit the values using
the following objective function:

N
0@ = ) (" — ) @) @ ~ vf)2)

ny=1

Nt
+ Y @ —aY@) @ -al)@), 12
ny=1
subject to,
Xmin = Xi = Xmax> i=123 (13)
b1
0§¢i§? i=1,23. (14)

In this formulation, wﬁ,'t") and wﬁft)(z) denote the angular rates

in the three dimensional space. The superscripts (m) and (s)
describe the measured and simulated values. Equivalently,
ag,'?) and agft)(z) denote the acceleration in three dimensions.
We additionally defined the minimum and maximum allowed

deviation of the positions X, and Xu.c to be £50 mm as

a = AL > = Nz > well as the maximum allowed orientation deviation 7. The

Xy — 2Xp_1 — Xn_2 corllstralned. optimization problem was so.lved. using the interior-

a; = N - (9 point algorithm (Byrd et al, 1999), which is implemented in

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 67 February 2020 | Volume 8 | Article 41


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Mundt et al.

Estimation of Gait Mechanics

MATLAB. The defined constraints do not allow for an arbitrary
sensor positioning but for a compensation for positioning and
orientation errors in the range specified by the constraints.
For this purpose, the sensor-to-segment-assignment needs to
be consistent.

2.2.2. Neural Network Implementation

The python library Tensorflow (Abadi et al., 2015) was used
to implement a fully-connected feedforward neural network
(Koeppe et al., 2019). Artificial neural networks work as universal
function approximators. Instead of explicitly programming the
solution of one specific task, they learn from existing (big) data.
Artificial neural networks have been inspired by the structure
of the human brain, consisting of single neurons that add up
to layers to increase the capacity of the network. Using multiple
(hidden) layers with a specified number of neurons, the capacity
of the network can be adapted (Mundt et al., 2019¢). Fully-
connected neural networks need time-normalized data as inputs,
hence, only an offline analysis can be performed.

Different networks were trained for the prediction of joint
kinematics and the joint kinetics based on different datasets. The
first one is a collection of optical motion capture data of gait trials
previously collected at the German Sport University Cologne.
The dataset comprised 93 participants (38 female, 39.9 (18-75)
years, 72.6 (47.1-97.6) kg, 1.73 (1.54-1.98) m, BMI 24.3 (17.5-
31.6) kg m~2). A number of 24 participants underwent knee
arthroplasty 1.8 & 0.4 years post-surgery prior to gait analysis
(Komnik et al.,, 2015). The optical data collected in this study was
additionally added to the dataset as well.

After validation of the simulated data, the neural network
was trained using the accelerations and angular rates of the
five sensors depicted in Figure 2 as input data, which resulted
in 30 inputs. One sensor was placed at the pelvis, one on
each thigh and one on each shank. The sensors were not
aligned to the segments, because the dataset is supposed to
cover the complete range of orientations and positions due
to the data simulation. Thereby, the neural network can learn
to handle the differences. A kinematic model was trained to
predict the 18 joint angles of the lower limbs, while a kinetic
model was trained to predict the 18 joint moments of the lower
limbs. Because we use a fully-connected feedforward neural
network, no time-dependencies can be covered by the neural
network (Goodfellow et al., 2016). Therefore, all data was time
normalized and unrolled before being input to the network.
This resulted in an input layer of size 30 x 101 = 3,030
and an output layer of 18 x 101 = 1,818. For the analysis,
only the nine angles/moments of the foot touching the ground
are evaluated.

In a first step, all simulated IMU data was used to determine
the best network architecture and hyperparameters for the
application using a 5-fold cross-validation. Therefore, one fixed
test set was split from the complete dataset as well as five different
validation sets. The split was undertaken randomly ensuring
that no overlapping between the sets occurred (cf. Figure 3).
A grid search was conducted to optimize the architectures
and hyperparameters.

2.3. Validation

2.3.1. Experimental Set-Up

Thirty healthy subjects (12 female, 28.1 £ 6.0 years, 72.3 & 12.7
kg, 1.77 £ 0.07 m) participated in this study that was approved by
the Ethical Committee of the German Sport University Cologne.
All participants provided their informed written consent. Each
subject performed 10 level walking trials at five different speeds:
08 ms!, 1.1 m s!, 1.4 m s}, 1.7 m s} and 20 m
s7! +10% on a 5 m walkway. According to the set-up of
all previous experimental investigations, each participant was
equipped with 28 retro-reflective markers to capture the motion
by 12 infrared cameras (125 Hz, VICON™, MX F40, Oxford,
UK). Simultaneously, the participants were equipped with five
sensors of a custom low cost IMU system (100 Hz, TinyCircuits,
Akron, OH, USA) with an associated microcontroller (Atmel
ATmega328P) and a WIFI-board (Atmel ATWINC1500). An
Android application was developed to collect the data on a
smartphone (Mundt et al., 2018b). The marker set and sensor
placement are displayed in Figure 2. The sensors were only
roughly aligned to the segments but a consistent sensor-to-
segment assignment was used. The data of seven subjects was
excluded from this study due to connectivity issues, hence, data
of 23 participants is presented.

2.3.2. Data Synchronization

The synchronization of the IMU system and the optoelectronic
system cannot be performed automatically. Therefore, a
synchronization algorithm was developed. For this purpose, the
simulated medio-lateral acceleration of the pelvis was used. An
average position and orientation estimation of the pelvis sensor
was chosen. For the actual synchronization an optimization
problem was defined. We obtained the minimization problem
with the following mean-square objective function Y:

Nt
TE) =) () —al).

ng=1

(15)

Here, ai" and a} denote the measured and simulated

acceleration of the pelvis in the medio-lateral direction. The value
8 is the distance between the first local maximum peak in the
measured and simulated data (cf. Figure 4). The start value for
the optimization was chosen based on the output of the optical
motion tracking system. The optimization problem is iteratively
solved using the Nelder-Mead Simplex method (Lagarias et al.,
1998) already implemented in MATLAB. After synchronization,
the optical motion capture data and the inertial sensor data was
segmented into steps as described in section 2.1.

2.3.3. Simulation Framework

First, the simulation framework was validated. For this purpose
the optimum position and orientation of each sensor were
determined for each trial. Hence the sensors were fixed once for
each subject during the complete experiment, the best estimation
was determined for each subject based on the root-mean-squared
error. Afterwards, all data was simulated again based on the
optimized values. Thereby, a valid solution representing the
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test set:
17 participant,
23483 samples

split 1
split 2
split 3
split 4
split 5

simulated data:
93 participants
117691 samples

validation set:

— 12 participants,

14467 samples

split 1

validation set:
12 participants,
17135 samples

split 2

validation set:

14 participants,

15042 samples

split 3

validation set:
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split 4

validation set:

14 participants, split 5
15686 samples
kinematics
- split 1
test set: split 2
23 participant, split 3
13984 samples split 4
| split 5
validation set:
— 14 participants, split 1
13662 samples
validation set:
15 participants, split 2
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simulated data: validation set:
93 participants 16 participants, split 3
77165 samples 9315 samples
validation set:
18 participants, split 4
9269 samples
validation set:
14 participants, split 5
11155 samples

kinetics

FIGURE 3 | Overview of the 5-fold cross-validation process. The dataset for the kinematics (A) and kinetics (B) differ and were treated separately.

differences in placement during the experiments was found.
This procedure resulted in 23 (one per subject) optimized initial
values. This information was used to generate a large simulated
dataset based on the optical data of the former studies. All
sensor positions and orientations found during the experiments
were covered.

2.3.4. Neural Network Application

The inertial sensor data was used to validate the simulation
framework presented. Afterwards, the neural network
application was verified on the measured data. For this
purpose, a leave-one-out cross-validation (Arlot and Celisse,
2010) was performed to enable the performance analysis of
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FIGURE 4 | Results of the synchronization based on the medio-lateral acceleration of the pelvis.

the neural network on single subjects. Two different scenarios
were investigated: (1) all experimental data—besides one
subject—was used for training purposes and (2) all experimental
data—besides one subject—plus the simulated data was used
for training. Since the best architecture and hyperparameters
have been found in the first step, no further validation
set is necessary. The left-out subject served as test set (cf.
Figure 5).

2.4. Data Analysis

First, the results of the data simulation are presented. Afterwards,
the results of the 5-fold cross-validation and the grid search
to find the optimum neural network parameters are displayed.
Finally, the results of the leave-one-out cross-validation based
on measured data only and on the combined—measured and
simulated—data are presented. To evaluate the simulation and
prediction accuracy, the correlation coefficient was calculated.
Furthermore, the RMSE was determined for the joint angles
and the nRMSE (normalized RMSE to the range of the data)
for the joint moments. A paired t-test and the effect size were
calculated on the RMSE/nRMSE values. Additionally, the
maximum joint angles and joint moments were calculated to
evaluate the performance on this scalar parameter. An ANOVA
and post-hoc t-test with Bonferroni correction as well as the
effect size were calculated on the prediction of the maximum
joint angles and joint moments. For each subject one mean step
was considered.

3. RESULTS

3.1. Neural Network Parameters

The best parameters for the neural network were evaluated based
on the simulated dataset. An initial learning rate « = 107*
and an increasing batch size of 16-32-32-64 samples during
the four phased training schedule performed best for both
the kinematic and kinetic model. For the kinematic model,

two hidden layers with 4,000 and 6,000 neurones, a dropout
rate of 20% and 12,500 training steps per phase revealed
the highest accuracy. For the kinematic model, two hidden
layers with 6,000 and 4,000 neurones, a dropout rate of 40%
and a number of 15,000 training steps per phase showed the
best results.

3.2. Data Simulation

The simulation of the data for all sensors was based on one
fixed sensor position and orientation for each subject. The mean
RMSE between the measured and simulated data is displayed in
Figure 6. With an increase in gait velocity, the RMSE increased
while the correlation coeflicient decreased. The simulated data
of the pelvis sensor achieved the highest accuracy (rpelyis = 0.95
=+ 0.08), while the accuracy for the sensors of the legs is slightly
lower (rrightthigh =0.88 +£0.12, Tleft thigh = 0.91 £ 0.08, T'right shank
=0.91 & 0.11, flef shank = 0.92 % 0.10).

3.3. Five-Fold Cross-Validation

To find the best model architecture and optimize the
hyperparameters, a 5-fold cross-validation was undertaken using
the simulated data of all subjects. The results for the kinematic
and kinetic model are displayed in Figure 7. For both models
the mean correlation coefficient was very similar on new test
data (kinetics: 0.86, kinematics: 0.87). The prediction of the knee
joint frontal plane angle and the transverse moment showed the
weakest correlations, while the prediction of the joint moments
showed the highest accuracy in all planes for the hip joint (>0.91)
and the joint angle prediction in all joints in the sagittal plane
(>0.95). Additionally, the kinetic predictions showed less outliers
than the kinematic predictions. Over all, the RMSE of the joint
angle prediction was smaller than 6.0° for all joints and motion
planes with a mean value of 4.1° and the nRMSE of the joint
moment prediction was smaller than 25.5% with a mean value
of 15.5%.
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FIGURE 5 | Overview of the leave-one-out validation process. Kinematics and kinetics were treated separately.

3.4. Leave-One-Out Cross-Validation

The leave-one-out cross-validation shows the performance of
the model for each subject when trained on all other subjects’
measured and simulated data. As the hyperparameters were fixed
from the 5-fold cross-validation, no further validation set was
necessary. There were only small differences in the correlation
of the predicted and measured data using measured data only or
the combined data set (cf. Figure 8). This finding was supported
by the results of the t-test: there were differences between the two
kinematic models in the prediction of all sagittal joint angles and
the frontal hip joint angles (rhip sagittal <0-001, Thip fronta1 <0.001,
Tknee sagittal <0-001, Tankle sagittal = 0.043). For the kinetic model,
differences in all hip joint moments and the ankle joint sagittal
moment were found (fhipsagittal <0.001,  Ihip fronta1 <0.001,
Thip transverse <0-001,  Tankle sagittal = 0.006).  Additionally, the
correlation coefficient showed distinct differences between the
motion planes: the prediction accuracy of the hip joint angle in
the transverse plane, the knee joint angle in the frontal plane and
the ankle joint angle in the frontal and transverse plane was lower
than in the other planes. The prediction of the joint moments was
more accurate although there were some subjects showing lower
correlation coefficients in some features. The same behavior
could be found when analyzing the distribution of the results (cf.
Figure 9). Those parameters with weaker correlations showed
a wider spread and more outliers in the distribution of the
RMSE/nRMSE and correlation coeflicient. The mean correlation
of the models was ryjnematic measured = 0-85, Tkinematic combined =
0.89, Tkinetic measured = 0.95 and Tkinetic combined = 0.95.
The mean error was RMSEinematic measured = 4-8°,
RMSELinematic combined = 4-3°, NRMSEjinetic measured = 13.0% and
NRMSEjinetic combined = 11.6%.

Compared to the model used for the 5-fold cross-validation
that was based on simulated data only, the accuracy was similar
for the kinematic model and even higher for the kinetic model.
With regard to Figures 7, 9, the mean accuracy was similar for

1 5
3
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FIGURE 6 | Root-mean-squared error between the measured and simulated
data exemplarily displayed for the pelvis sensor. With an increasing gait
velocity the simulation error increases. Some trials show outliers with larger
errors during slow walking.

the cross-validation and the leave-one-out validation, but the
number of outliers was decreased.

The ANOVA showed significant differences in the maxima
between the predicted and measured joint angles and moments.
The post-hoc t-test indicated significant differences between both
the measured and predicted and the two predicted values. The
prediction of the peak joint moments showed more significant
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FIGURE 7 | On the right, the distribution of the correlation coefficient for the kinematic (blue) and kinetic (red) model is displayed. Additionally, on top, the distribution
of the RMSE for the kinematic and on the bottom the distribution of the nRMSE for the kinetic model can be found. The violin’s width displays how much data is
accumulated, while the height shows the range of the distribution. The horizontal line indicates the median value of the distribution.

differences than the prediction of the peak joint angles (cf. et al. (2011), Brunner et al. (2015) and Zimmermann et al.
Table 1). The trends of the statistical analysis can also be seenin ~ (2018), who proposed frameworks for simulating IMU data, is
Figures 10, 11. comparable to the results presented in this study. Young et al.
(2011) and Brunner et al. (2015) tested their simulator for leg
swinging and single rigid body movements achieving very good
4. DISCUSSION correlation coefficients (r >0.97). Since during this motion no
4.1. Data Processing impact occurs which causes soft tissue movements the results are
better than the ones achieved in this study. Zimmermann et al.
(2018) evaluated their simulation approach on a pure rigid body
motion (r >0.97) and during gait (rsec >0.57 and rg,, >0.93).
These results support the explanation that the impact causes
soft tissue movements during gait and limits the comparability
between simulated and measured data. However, the results of
this study are slightly better than in the study of Zimmermann
et al. (2018).

The data processing was one major challenge in this study
because there was no possibility to synchronize both
measurement systems automatically. The developed approach
based on optimization might lead to errors, especially because
gait is a cyclic motion. Sequences were not filtered for outliers,
which might also cause outliers in the prediction. We decided
not to remove outliers from the dataset to minimize the pre-
processing on the data and observe the networks’ capability to
handle this data. The simulated data can represent the measured
IMU data well, showing good correlations when using a fixed 4.2. Cross-Validation

sensor position and orientation for the calculation of angular rate  The kind of validation strategy chosen can highly influence the
and linear acceleration for each subject. Higher gait velocities  results (Little et al., 2017; Saeb et al., 2017). We aimed to find
cause larger deviations between the measured and simulated data  the best model parameters and hyperparameters using a 5-fold
(cf. Figure 6), which can be attributed to soft tissue movements  cross-validation based on the simulated dataset only. Thereby,
that cause noise in the measured data that is not included in the it was possible to exclude a fixed test set of a representative
simulated data. The optical markers placed on bony landmarks  size as well as a randomly chosen validation set that covers
are the basis for the simulated IMU data, while the physical  most gait patterns. We ensured, that no data of any subject was
IMU sensors are placed on the body as displayed in Figure2.  part of more than one subset to avoid bias (Saeb et al., 2017).
Hence, the markers and sensors experience different soft tissue ~ Simultaneously, it was possible to undertake a grid search on the
movements that correlate with the gait velocity and increase  best parameters and hyperparameters in a reasonable time frame.
the error. However, the mean correlation coefficients indicate =~ Afterwards, we performed a leave-one-out cross-validation on
an overall good accuracy. The correlation found by Young  the new data collected in this study. This led to 23 training runs

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 72 February 2020 | Volume 8 | Article 41


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Mundt et al.

Estimation of Gait Mechanics

mixed kinematic model

mixed kinetic model

subject

subject

) 1
0.95
I ]
il
real kinetic model 0.9
T
0.85
0.8

hip

differences in the different motion planes and between subjects.

FIGURE 8 | Mean correlation coefficient for each joint and motion plane of each subject in the test set. On top, the results for the combined input data are displayed,
while on bottom, the results of the model using measured data only are depicted. There are only small differences between both models, while there are distinct

hip

per model. Thereby we aimed to analyze the prediction accuracy
on single subjects. Using this two-stage validation approach, it
is possible to use as much data as possible for training the
models, because there is no validation set necessary as the
hyperparameters were fixed. As a side effect of the 5-fold cross-
validation, it is possible to additionally compare the results of
measured and combined input data to only simulated input data.
However, this approach might also cause a suboptimal accuracy
on the measured data, because the network architecture and
hyperparameters were tuned to optimize the prediction on the
simulated dataset only, which is larger than the measured dataset
and the combined one.

4.3. Kinematics and Kinetics

The lower accuracy of the prediction of the kinematics indicates
that it is a more difficult task for the neural network to predict the
joint angles than the joint moments. This might be attributed to
the closer physical relationship of acceleration and (normalized)
joint moments. Additionally, the joint angles do not start at a
value around zero, which leads to a more difficult initial value
problem than for the joint moments. Therefore, the prediction
of the kinematics profits from an enlarged dataset, which can
be seen in the increased prediction accuracy from measured
over combined to simulated data. In contrast, the kinetics
prediction seems to improve with additional noise in the input

data instead of the larger dataset. This can be seen in the
increased prediction accuracy in the combined and measured
dataset compared to the simulated data only, which does not
include the larger soft tissue movements the sensors experience
in faster walking. Soft tissue movements also affect the calculation
of joint angles and joint moments, which is a limitation in every
motion analysis. One disadvantage of the simulated IMU data is
that it does not include the same soft tissue movements as the
marker trajectories.

Both, the kinematic and the kinetic model, are not able to
cover the complete variance of the measured data (cf. Figures 10,
11). This might be improved by further increasing the dataset and
the noise of the inputs. Therefore, research on data augmentation
should be further emphasized. The higher variance in the results
of the cross-validation models compared to the leave-one-out
model might be attributed to the dataset. The dataset used for the
cross-validation includes participants with larger demographic
differences as well as knee arthroplasty patients while the
leave-one-out dataset comprises young participants without any
impairment only. For the cross-validation, one test set was
split from the complete dataset, while for the leave-one-out
validation only the participants of this study served as test set
(cf. Figures4, 5). Additionally, Figure 7 displays each single
trial while in Figure9 the mean results of each participant
are displayed.
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FIGURE 9 | On the right, the distribution of the RMSE and the correlation coefficient for the kinematic data is displayed. On the left, the distribution of the nRMSE and
the correlation coefficient for the kinetic model can be found. The results for the measured data as inputs is displayed in red, while the results for the combined data
inputs are displayed in blue. The violin’s width displays how much data is accumulated, while the height shows the range of the distribution. The horizontal line
indicates the median value of the distribution.

Comparing the results of this study to the literature is difficult, ~ not use magnetometer data for the orientation estimation. They
because this is—to the authors knowledge—the first time that  achieved RMSE values smaller than 3.5° for the three sagittal
IMU data was used to predict the joint angles and moments  plane angles and the hip adduction/abduction during walking.
in all three motion planes. Especially the analysis of kinematic ~ Teufl et al. (2018) also investigated the use of magnetometer
parameters using machine learning is not well investigated so  free joint angle estimation. Their method achieved mean RMSE
far. As displayed in Figure 8, the correlation coefficient is larger ~ values of <2.3° for all joints and motion planes. This results
than 0.8 in the sagittal plane for all subjects regarding the joint  is very promising, although it needs to be considered that the
angles and even higher in all motion planes regarding the joint  biomechanical model was set up using optical motion capture
moments. Only Findlow et al. (2008) used an approach based on ~ data. In a previous study, we could show that the differences
neural networks to predict joint angles. We achieved a higher  in joint angle estimation is mainly based on the definition
accuracy in our study, which is probably caused by the larger  of the rotation axes used by the IMU systems (Mundt et al.,
dataset, more sensors involved and an improved computing  2019d), what we aimed to overcome with the neural network
power and algorithms compared to their study undertaken in  approach that implicitly learns the biomechanical model during
2008. Another approach is the use of kinematic constraints  the training process.
to determine joint angles from IMU data. Based on different There is more research on estimating joint kinetics, but none
joints, this approach reveals very good results (Miiller et al,  was undertaken using IMU sensors as input data to predict
2017; Laidig et al., 2019; Nowka et al., 2019). Nevertheless, it  all 3D lower limb joint moments. In one of our previous
was not analyzed recently for gait analysis. Seel et al. (2014)  studies, we used joint angles as input parameters to predict
achieved already good results when analyzing the sagittal knee  joint moments (Mundt et al., 2018a). We achieved slightly better
and ankle joint angles with an mean RMSE of 3.3° and 1.6°,  results than in this study. In another study using simulated
respectively. These results are slightly better than our results with ~ IMU data, the joint moment prediction resulted in an nRMSE
4.62° and 2.42°. It might be possible to improve the accuracy  of 12.16%, which is slightly lower than in this study although
of the proposed method when also specializing on single joint  using additional sensors on the feet (Mundt et al., 2019¢c). This
angles or adding additional sensors to the model. In a previous  further supports the hypothesis that more noise in the data is
study, we could achieve an error smaller than 2.5° in all jointsand ~ favorable for the joint moment prediction and that it might
motion planes, when using simulated data only and additional  be useful to investigate the relevant features for the neural
data for the feet sensors (Mundt et al., 2019¢). Zihajehzadeh  network. For this purpose, Horst et al. (2019) suggested to
and Park (2017) used a more common approach for the joint  use the Layer-Wise Relevance Propagation technique. Another
angle estimation based on an adapted Kalman Filter that does  approach might be the use of principle component analysis to
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TABLE 1 | Results of the statistical analysis of the peak prediction.

Joint angles

Measured vs. real

Measured vs. combined

Real vs. combined

P d P d P d
Hip sagittal <0.001* 1.867 <0.001* 1.392 0.004* 0.676
Hip frontal <0.001* 1.293 <0.001* 0.948 <0.001* 0.924
Hip transverse 0.085 0.377 0.226 0.260 0.080 0.383
Knee sagittal <0.001* 2.580 <0.001* 1.683 <0.001* 1.103
Knee frontal 0.324 0.210 0.566 0.121 0.061 0.412
Knee transverse 0.123 0.335 0.104 0.354 0.724 0.074
Ankle sagittal 0.005* 0.645 0.018 0.536 0.013* 0.561
Ankle frontal 0.412 0.174 0.211 0.269 0.141 0.319
Ankle transverse 0.035* 0.470 0.174 0.293 0.006* 0.638

Joint moments

Measured vs. real

Measured vs. combined

Real vs. combined

P d p d P d
Hip sagittal <0.001* 1.659 <0.001* 1.033 <0.001* 1.452
Hip frontal <0.001* 2.283 <0.001* 1.850 <0.001* 1.036
Hip transverse 0.004* 0.674 0.010* 0.592 0.021 0.517
Knee sagittal <0.001* 0.854 0.004* 0.671 0.011* 0.576
Knee frontal <0.001* 1.198 <0.001* 0.961 0.003* 0.690
Knee transverse <0.001* 0.977 0.002* 0.735 0.031 0.482
Ankle sagittal <0.001* 1.296 <0.001* 0.901 0.001* 0.839
Ankle frontal 0.041 0.452 0.108 0.350 0.078 0.386
Ankle transverse 0.038 0.460 0.079 0.384 0.087 0.373
Significant results are indicated by *.
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FIGURE 10 | Overview of the mean and standard deviation of the joint moments of the 23 subjects.
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analyze the sensitivity of inputs and outputs (Ardestani et al.,

2015).

In future work, it might be useful to investigate a two-
staged approach: first, predict the joint angles from IMU data

and second, use the estimated joint angles to predict the joint

moments. However, for this approach the joint angle estimation

needs to be further improved. It might also be conceivable to
take this approach the other way round, using joint moments
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as input data to predict joint angles, because the joint moments
show better results so far. It might also be feasible to add
(estimated) joint angles or joint moments to the IMU input data
for further improvement. Additionally, the choice of another
kind of artificial neural network, e.g., long short-term memory
(LSTM) or convolutional neural networks (CNN), might be
suitable for the underlying task. Especially due to the high
number of inputs (30 features times 101 time frames) these neural
networks might outperform the fully-connected feedforward
neural network, that was used in this study. While a fully-
connected feedforward neural network uses flattened data (no
time dependency) as inputs, LSTMs and CNNs preserve the time
dependency. Thereby, it might be easier for these networks to
extract the most relevant features from the data (Goodfellow
et al, 2016). In this study, we analyzed short sequences of
motion only. During these sequences, no gyroscope drift could
be observed. For future research, to bring this method further
toward application, this aspect needs to be considered. Another
sensor system might overcome this limitation. We also only
analyzed straight walking. Most probably, this method can also
be applied to more diverging motion, when this motion is present
in the training dataset. It might even lead to an improved
accuracy, when using a dataset showing more variance (Mundt
et al., 2019b). Further analysis on the relevant features for the
neural network to predict the joint angles and moments will
be valuable to maybe reduce the number of sensors necessary
for the prediction and thereby decreasing the complexity of the
model. Further validation of the method with a larger amount of
measured data should be undertaken.

5. CONCLUSION

This study analyzed the ability of a fully-connected feedforward
neural network to predict joint angles and joint moments of

the lower limbs based on IMU data. Our hypothesis, that
simulated data can support the learning of the neural network
can be accepted for the joint angle prediction while it can only
be partly accepted for the prediction of joint moments. Our
second hypothesis, that noise in the input data decreases the
prediction accuracy can be rejected. For the kinetic prediction,
the noise attributed to soft tissue movements improves the
prediction accuracy and seems to be more important than the
size of the dataset. The prediction of the joint angles is not
affected by noise. Therefore, it needs to be evaluated if the
prediction can be further improved using a simulated dataset
containing soft tissue movement induced noise in the input data.
Thereby, the measured data might be better represented and
the learning of the neural network improved. Nevertheless, the
results already demonstrate the high potential of the approach
and support further research on neural networks in gait analysis.
Besides the aforementioned data augmentation, different kind
of neural networks (e.g., recurrent or convolutional neural
networks) should be investigated on the task in future work.
Thereby, data that is not time normalized could be used,
hence the gait velocity could be included in the data. For
the analysis of clinically relevant parameters, it might also be
suitable to train patient-specific models to achieve a higher
accuracy (Saeb et al., 2017).
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Falls in the elderly is a major public health concern due to its high prevalence, serious
consequences and heavy burden on the society. Many falls in older people happen
within a very short time, which makes it difficult to predict a fall before it occurs and then
to provide protection for the person who is falling. The primary objective of this study was
to develop deep neural networks for predicting a fall during its initiation and descending
but before the body impacts to the ground so that a safety mechanism can be enabled
to prevent fall-related injuries. We divided the falling process into three stages (non-fall,
pre-impact fall and fall) and developed deep neutral networks to perform three-class
classification. Three deep learning models, convolutional neural network (CNN), long
short term memory (LSTM), and a novel hybrid model integrating both convolution and
long short term memory (ConvLSTM) were proposed and evaluated on a large public
dataset of various falls and activities of daily living (ADL) acquired with wearable inertial
sensors (accelerometer and gyroscope). Fivefold cross validation results showed that
the hybrid ConvLSTM model had mean sensitivities of 93.15, 93.78, and 96.00% for
non-fall, pre-impact fall and fall, respectively, which were higher than both LSTM (except
the fall class) and CNN models. ConvLSTM model also showed higher specificities for
all three classes (96.59, 94.49, and 98.69%) than LSTM and CNN models. In addition,
latency test on a microcontroller unit showed that ConvLSTM model had a short latency
of 1.06 ms, which was much lower than LSTM model (3.15 ms) and comparable with
CNN model (0.77 ms). High prediction accuracy (especially for pre-impact fall) and
low latency on the microboard indicated that the proposed hybrid ConvLSTM model
outperformed both LSTM and CNN models. These findings suggest that our proposed
novel hybrid ConvLSTM model has great potential to be embedded into wearable inertial
sensor-based systems to predict pre-impact fall in real-time so that protective devices
could be triggered in time to prevent fall-related injuries for older people.

Keywords: fall risk, pre-impact fall, deep neural network, machine learning, inertial sensor
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Yu et al.

Deep-Learning for Pre-impact Fall Prediction

INTRODUCTION

Falls are a major safety concern for the older people. Annual
fall rates range from 30% among those aged over 65 years old
to 50% for those over 85 (Rubenstein, 2006). Due to the high
prevalence, falls are the leading cause of both fatal and non-
fatal injuries among the older people (Bergen, 2016). The annual
medical costs for falls of the older adults have been estimated
at $31.3 billion in United States since 2015 (Burns et al., 2016).
Fall-related injuries are considered as “Global Burden of Disease”
by the World Health Organization (Murray et al., 2001). Aside
from the physical injury, falls can also cause post-fall syndrome
such as fear of falling and depression among the elderly (Fleming
and Brayne, 2008; Qiu and Xiong, 2015). Therefore, effective fall
prevention is critical to mitigate the negative consequences of falls
for the older people.

Much work has been done on developing context-aware
systems and wearable devices for post-fall detection so that
timely medical assistance can be initiated for the older fallers
to avoid losses caused by “long-lie’ (Ozdemir and Barshan,
2014; Yang et al, 2016). However, this approach is reactive
since injuries from impact falls have happened already. Recently,
researchers have shifted their efforts to a proactive approach-
fall prevention, which is performed through fall risk assessment
and intervention where the older individuals with high fall risks
can be screened out earlier and then treated with appropriate
interventions to reduce the risks of future falls (Choi et al., 2017;
Qiu et al., 2018). However, the developed fall risk assessment
tools and fall intervention programs are mainly focused on
predicting and reducing the overall risk of falling in a long
period (typically 1 year or more), not for the sudden falls. Many
falls in the elderly happen suddenly and are difficult to prevent
due to the complex multifactorial nature of falls and inevitably
increased fall risks with the elderly as their physical and cognitive
abilities deteriorate.

Pre-impact fall prediction can overcome aforementioned
limitations of post-fall detection and overall long-term fall risk
assessment and intervention. Pre-impact fall refers to a stage after
the fall initiation but before the body-ground impact (Hu and
Qu, 2016). Therefore, this method can predict sudden falls before
the body hits against the ground (e.g., pre-impact), which make
it possible to timely activate on-demand fall protection systems
such as wearable airbags to prevent fall-related injuries. Because
of very short period of falling (around 800 ms) and various types
of falls (Sucerquia et al., 2017; Tao and Yun, 2017), to predict the
fall before the ground impact accurately under different scenarios
is very challenging and worthy of research investigation. Some
researchers have recently attempted to tackle this challenge using
different approaches (Lee et al., 2015; Sabatini et al., 2016; Li
M. et al,, 2018; Zhong et al., 2018; Ahn et al,, 2019). In general,
wearable sensors or environmental cameras were utilized and
simple threshold-based algorithms were developed to predict
pre-impact falls using some selected fall indicators related to
human motions. Even though threshold-based algorithms are
easy to implement due to simple structure and low computation
cost, the thresholds are highly dependent on the certain types
of falls (e.g., forward fall, backward fall) and the tested subjects,

which can not fit well for other fall types (lateral fall, vertical
fall, etc.) and different older individuals in the real-world. In
other words, threshold-based algorithms lack the generalizability
and thus are difficult for practical applications. A few studies
utilized conventional machine learning methods such as Support
Vector Machine and Fisher Discriminant Analysis to predict
pre-impact falls (Aziz et al., 2014; Liang et al., 2018; Wu et al,,
2019). Tested by small amount of data from very limited types of
simulated falls (<7), they reported good prediction accuracy and
reasonable lead time. However, conventional machine learning
methods heavily rely on hand-crafted features, which are usually
shallow and restricted by human domain knowledge (Wang
et al,, 2019). Therefore, these approaches generated undermined
prediction performance on complex and various falls in the real
world as researchers have reported at least 15 common fall types
and 19 activities of daily living (ADL; Sucerquia et al.,, 2017;
Tao and Yun, 2017).

Very recently, with the fast advancement of deep learning and
computing hardware, a few studies explored deep neural network
based algorithms for pre-impact fall prediction. Li et al. (2019)
applied convolutional neural network (CNN) on RGB image data
recorded by Kinect for pre-impact fall prediction during gait
rehabilitation training. Even though they achieved a prediction
accuracy of 100% within 0.5 s after a fall initiation, they only
tested the model on one type of fall and normal walking. Tao
and Yun (2017) proposed a long short term memory (LSTM)
model using skeleton data captured by Kinect to predict pre-
impact fall. The developed model showed high sensitivity (91.7%)
but relatively low specificity (75%), indicating that the model
could recognize most of pre-impact falls but with high false alarm
rate. Both high sensitivity and specificity are essential for the
practical applications. In addition, this method is only restricted
in home environment due to the limitations of stationary settings
that Kinect cameras often suffer from. Torti et al. (2018) applied
an overlapping sliding window segmentation technique to label
falling process into three stages (non-fall, pre-impact fall or alert,
and fall) and utilized a LSTM model to perform three-class
classification based on the SisFall dataset (Sucerquia et al., 2017).
They achieved high classification accuracy on fall (98.7%) but
lower accuracy on non-fall (88.4%) and pre-impact fall (91.1%),
which showed that their algorithm missed ~9% pre-impact falls
and misclassified many non-fall activities as other two classes
(most of instances are labeled as non-fall activities in the SisFall
dataset due to rarity of fall incidents). Furthermore, both studies
only applied one deep learning model-LSTM, comparisons with
other deep learning structures were not conducted.

This study aims to develop deep learning algorithms
for predicting pre-impact fall in real-time so that a safety
mechanism can be enabled to prevent fall induced injuries.
A novel hybrid deep neural network which integrates CNN and
LSTM architectures was proposed and evaluated on SisFall, a
large public dataset of various falls and ADL acquired with
accelerometer and gyroscope sensors. We also compared our
proposed hybrid model with CNN and LSTM models in terms of
model accuracy, latency and learning curve, which could provide
more insights about the characteristics of different deep learning
models in predicting pre-impact falls. The developed hybrid
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model is expected to be embedded into wearable inertial sensor
based systems, which would be promising to predict pre-impact
fall in real-time so that the protective device could be triggered in
time to prevent fall-induced injuries for older people.

MATERIALS AND METHODS

Dataset and Labeling

SisFall, a fall and movement dataset with various falls and ADLs
acquired with wearable inertial sensors of accelerometer and
gyroscope at a frequency of 200 Hz (Sucerquia et al., 2017), was
selected for developing and evaluating deep learning algorithms
due to two major reasons. First, it is a publicly available dataset
which consists of 15 fall types, 19 ADLs and 38 subjects, including
the largest amount of data in terms of number of subjects and
number of activities (Musci et al., 2018) when compared with
other public datasets such as MobiFall (Vavoulas et al., 2014) and
UMAFall (Casilari et al., 2017). Second, the protocol is validated
by a medical staff and there are 15 older subjects out of total 38
subjects in the SisFall dataset. Thus, the data pattern in SisFall

dataset should be close to the real-life ADLs and fall scenarios of
the older people.

To be consistent with the earlier studies, we adopted the same
criteria as Musci et al. (2018) for labeling data associated with

three classes of events.

1. Non-fall: the time interval when the person is
performing ADLs.
2. Pre-impact fall or alert: the time interval in which the person

is transiting from a controlled state to a dangerous state which
may lead to a fall.

. Fall: the time interval when the person is experiencing a state
transition that leads to a fall.

One representative diagram for three classes of events is

illustrated in Figure 1, which shows the 3-axis acceleration data

of a forward fall while walking due to a slip. The last part of data is
removed for labeling because it is the state after the fall incident.

Design of Model Architecture
In this study, three models were applied to perform the
classification. These models are a CNN model, a LSTM model
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fall, respectively; the remainder of the sequence is removed for the labeling.

FIGURE 1 | lllustration of labeling three classes during a fall. The beginning period is labeled as non-fall and the blue and orange areas indicate pre-impact fall and

Pre-impact fall

Lie down on the ground
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and our proposed hybrid ConvLSTM model. As shown in
Table 1, the CNN model consists of three convolutional blocks
and two fully connection layers. Each convolutional block
includes convolutional operation, batch normalization, relu and
max pooling. The LSTM model follows the similar design as

TABLE 1 | The design of CNN model.

Type Operations Filter shape Input size
Conv1 conv 3 x 64 256 x 6
batchNorm
relu
max pooling 3 x 64
Conv2 conv 3 x 64 127 x 64
batchNorm
relu
max pooling 3 x 64
Conv3 conv 3 x 64 62 x 64
batchNorm
relu
max pooling 3 x 64
FCA1 fully connection 1920 x 512 1 x 1920
FC2 fully connection 512 x 3 1 x 512
Softmax softmax Classifier 1x3

Musci et al. (2018), which consists of LSTM cells, relu, dropout
and fully connected layers.

The architecture of our proposed ConvLSTM model mainly
combines convolutional and recurrent layers. The specific
structure of ConvLSTM was determined by the hyperparameter
tuning. For this task, we mainly considered three levels of the
width (output channels in each convolutional and LSTM layer),
two different numbers of layers for both convolutional and LSTM
structures, and two levels of dropout (probability of a neuron to
be ignored during training). Table 2 summarizes the results of
hyperparameter tuning experiments on one training-testing split.

As shown in Figure 2, the finalized ConvLSTM structure
after hyperparameter tuning consists of four convolutional
blocks and two LSTM cells with dropout operations. Each
convolutional block contains operations of convolution, batch
normalization, relu, and max pooling. The convolutional layers
act as feature extractors and provide abstract representations
of the input sensor data in feature maps. They could capture
short-term dependencies (spatial relationship) of the data. The
recurrent layers deal with the long-term temporal dynamics of
the activation of the feature maps and identify useful features
over time domain in sequential data. More importantly, this
structure could integrate advantages of CNN and LSTM on
accuracy and efficiency. In the CNN, features are extracted and
then used as inputs of fully connected network for classification.

TABLE 2 | Results of hyperparameter tuning for the structure of ConvLSTM model.

No. Width No. of Conv layers No. of LSTM layers Dropout Sensitivity (%)
Non-fall Pre-impact Fall Fall

1 32 2 2 0.5 88.99 93.31 96.31
2 32 2 2 0.8 91.49 93.31 96.31
3 32 2 4 0.5 91.64 91.21 96.77
4 32 2 4 0.8 92.84 90.79 96.31
5 32 4 2 0.5 92.41 89.12 96.77
6 32 4 2 0.8 90.51 93.72 96.77
7 32 4 4 0.5 94.84 89.54 94.47
8 32 4 4 0.8 91.28 90.38 95.85
9 64 2 2 0.5 90.93 91.63 97.70
10 64 2 2 0.8 91.65 92.89 97.24
iR 64 2 4 0.5 88.54 92.05 98.16
12 64 2 4 0.8 85.78 93.51 97.24
13* 64 4 2 0.5 92.30 93.30 95.86
14 64 4 2 0.8 90.18 91.63 96.77
15 64 4 4 0.5 91.47 89.94 95.85
16 64 4 4 0.8 90.22 89.54 96.31
17 128 2 2 0.5 91.73 93.31 93.55
18 128 2 2 0.8 93.77 88.28 95.85
19 128 2 4 0.5 90.58 92.89 96.31
20 128 2 4 0.8 92.10 90.79 98.16
21 128 4 2 0.5 90.45 94.98 96.31
22 128 4 2 0.8 90.75 91.63 99.08
23 128 4 4 0.5 88.85 94.56 95.85
24 128 4 4 0.8 88.53 89.96 97.24

*Finalized structure of ConvLSTM model.
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FIGURE 2 | The architecture design of hybrid ConvLSTM model.

However, it ignores long-term temporal relationships in the
time sequence, which is important for identifying actions or
behaviors. On the contrary, the LSTM uses the memory cell
to learn long-term temporal dependencies for the time-series
data. However, it is time consuming for running LSTM model
due to its complex structure. In the ConvLSTM, CNN layers
extract features from the raw data and send to LSTM layers for
identifying temporal relationships, which could save time for
computing when compared with LSTM model. It is expected that
ConvLSTM will outperform both CNN and LSTM models for
predicting different fall stages since it can capture both short-
term and long-term dependencies of the motion data.

Model Training

The architectures described in section “Design of Model
Architecture” were implemented using the PyTorch library on a
computer running Window 10 (64-bit). The models were trained
and tested on this computer, equipped with a 3.6 GHz CPU
i7-7700, 16GB RAM, and an Nvidia GTX 1080Ti GPU card.
Considering the practical applications in the future, we also
implemented the models on a microcontroller unit, Jetson Nano
(Nvidia, 2019) which runs in Ubuntu 18.04 and equipped with
a 64-bit Quad-core ARM A57 at 1.43 GHz CPU, 4GB RAM,
and 128-core NVIDIA Maxwell at 921 MHz GPU. During the
training, the input data has six dimensions including three-axis
accelerometer and three-axis gyroscope. The batch size is 64 and
the total epoch is 200. The learning rate is set as 0.0005 and the
loss function uses focal loss (Lin et al., 2017).

In order to assess the generalizability of proposed models and
prevent overfitting on one specific train/test split, fivefold cross
validation was used. There are 23 young and 15 older subjects in
SisFall dataset. In our experiment, older subjects were randomly
divided into five groups and each group included three older
subjects. Young subjects were also randomly divided into five
groups in where three groups had five subjects and remaining two
groups have four subjects. Each group of older subjects would be

randomly combined with one group of young subjects as onefold.
Therefore, there were total fivefold for the dataset. Each fold
would be the test set and the rest fourfold would be considered
as the training set. The ratio between the training and test set was
around 80%/20%. By this splitting, we could prevent the same
subject appearing in both the training and test sets and maintain
the homogeneity among folds at the same time.

All experiments were implemented for 200 epochs and all
general hyper-parameters were set exactly same among three
deep learning models for a fair comparison. In order to balance
classification accuracy of three classes but without losing our
focus on the pre-impact fall, the results of the epochs whose
summation sensitivity for three classes are within top three
and summation sensitivity is the highest for non-fall and pre-
impact fall were used for averaging the fivefold cross-validation
results. Because the accuracy can be biased by the majority class
when the dataset is highly imbalanced, sensitivity instead of
accuracy was used as the criteria to determine the best model
(Bekkar et al., 2013).

Torti et al. (2018) sets baseline for our study because they
also performed three-class classification (non-fall, pre-impact
fall, fall) based on the SisFall dataset.

RESULTS

Classification Performance

The classification performance is represented by different
metrics including sensitivity, specificity and accuracy, which are
calculated by equations 1, 2, and 3, respectively.

Sensitivit 1P (1)
ensitivity = ———
YWE TP LN
TN
Specificity = ———— 2
pecificity TN + FP (2)
TP + TN
Accuracy = ki (3)
TP 4+ FP + TN + FN

where TP (True Positives) of non-fall is all non-fall instances that
are correctly classified as non-fall class; FN (False Negatives) of
non-fall is all non-fall instances that are not correctly classified
as non-fall class; TN (True Negatives) of non-fall is all instances
of other two classes are not classified as non-fall class; FP
(False Positives) of non-fall is all instances of other two classes
are wrongly classified as non-fall class. To find the four terms
for other two classes, we could replace non-fall with pre-
impact fall or fall.

Table 3 summarizes the classification performances of three
deep learning models along with the baseline study. The results
showed that CNN model had the poorest performance with the
mean accuracies of 90.01, 91.51, and 98.38% for non-fall, pre-
impact fall and fall, respectively. LSTM model demonstrated
higher accuracies (91.59, 93.98, and 97.52%) than CNN, and
our proposed hybrid ConvLSTM model achieved the highest
accuracies on all classes (93.22, 94.48, and 98.66%). With respect
to the sensitivity, the results showed that ConvLSTM model
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TABLE 3 | Classification results of three deep learning models on the test dataset.

Class CNN LSTM ConvLSTM Torti et al., 2018

Sensitivity (%) Non-fall 89.90 91.50 93.15 88.39
Pre-impact fall 90.33 91.48 93.78 91.08

Fall 93.76 96.22 96.00 98.73

Specificity (%) Non-fall 95.05 95.93 96.59 97.85
Pre-impact fall 91.52 94.00 94.49 90.77

Fall 98.42 97.54 98.69 97.93

Accuracy (%) Non-fall 90.01 91.59 93.22 93.12
Pre-impact fall 91.51 93.98 94.48 90.93

Fall 98.38 97.52 98.66 98.33

had the mean sensitivities of 93.15, 93.78, and 96.00% for non-
fall, pre-impact fall and fall, respectively, which were higher
than CNN (89.90, 90.33, and 93.76%) and LSTM models (91.50,
91.48, and 96.22%) except the fall class. For the specificity, the
ConvLSTM model had the mean specificities of 96.59, 94.49, and
98.69% for non-fall, pre-impact fall and fall, respectively, which

were higher than both LSTM (95.93, 94.00, and 97.54%) and CNN
models (95.05, 91.52, and 98.42%).

Learning Curve
Figure 3 presents the representative learning curves of three
deep learning models on the same training set. All three models
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FIGURE 3 | Learning curves of CNN (A), LSTM (B), and ConvLSTM (C) models on the training dataset.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

84

February 2020 | Volume 8 | Article 63


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Yu et al.

Deep-Learning for Pre-impact Fall Prediction

converged after certain number of epochs. Both CNN and
ConvLSTM models can quickly learn and achieve the stable status
(Figures 3A,C) while LSTM model needs more time to train
(Figure 3B). In terms of training sensitivity, the performance of
CNN was similar to LSTM on non-fall and pre-impact fall classes.
The sensitivities of both models on these two classes fluctuated
around 90%; while for the fall class, LSTM model was obviously
better than CNN model (Figures 3A,B). For ConvLSTM model,
the learning curves on all three classes were above 90%, especially
for the pre-impact fall class (Figure 3C).

Figure 4 depicts the representative learning curves of three
deep learning models on the same test set. CNN model failed
to learn the features of pre-impact fall data well because
there was a large fluctuation on sensitivity even at the end of
training (Figure 4A). Figure 4B shows that LSTM model can
gradually learn the features of three classes and achieved good
sensitivity in the last 50 epochs. Compared to the LSTM model,
ConvLSTM model can perform well after only first 20 epochs and
maintain the high sensitivity for all three classes until the end of
training (Figure 4C).

Model Latency

The latencies were evaluated with the same training and test sets
among three deep learning models. For the practical applications,
only processing time on each instance in the test set was summed
and averaged over 200 epochs. Models tested on the computer
showed average latencies of 0.61, 0.70, and 0.97 ms for CNN,
ConvLSTM, and LSTM models, respectively. Further tests on a
microcontroller unit (Nvidia Jetson Nano) showed the averaged
latency of ConvLSTM model was 1.06 ms, which was slightly
higher or comparable with CNN model (0.77 ms) but much lower
than LSTM model (3.15 ms).

DISCUSSION

We developed a hybrid deep learning model (ConvLSTM) that
integrates the CNN and LSTM architectures to predict the
pre-impact fall from accelerometer and gyroscope sensor data.
The performance of this hybrid model was comprehensively
compared with CNN and LSTM deep learning models. The
experimental results showed that the hybrid ConvLSTM model
outperformed CNN and LSTM models in terms of sensitivity,
specificity and overall accuracy. The hybrid ConvLSTM model
obtained ~2% higher sensitivities than LSTM and ~3% higher
sensitivities than CNN for all three classes except the fall
class. Considering our study aimed to predict the pre-impact
fall accurately for preventing fall induced injuries, the high
sensitivities for non-fall and pre-impact fall were of significant
importance in two perspectives. On the one hand, higher
classification sensitivity on non-fall class reflected lower false
alarm rate and 2% improvement was very meaningful because
dominant instances in the SisFall dataset and real-world scenarios
are non-falls or ADLs, and fall instances are very rare. On the
other hand, higher classification sensitivity for the pre-impact fall
directly indicated the superiority of the ConvLSTM model. In
addition, the ConvLSTM model obtained the highest specificities

for non-fall (96.59%), pre-impact fall (94.49%), and fall (98.69%)
among three deep learning models. A more detailed investigation
showed that although the difference on the specificity between
ConvLSTM model and LSTM model was marginal, both models
had ~3 and 2.5% higher specificities on pre-impact fall prediction
than CNN model. This result indicated that CNN model had the
highest rate of misclassifying other two classes as pre-impact fall.

It is understandable that the hybrid ConvLSTM model
outperformed individual CNN or LSTM models. CNN could
capture local dependency of human motion data (Zeng et al,,
2014). For the given time point, the neighboring accelerometer
and gyroscope readings are likely to be correlated. However, this
dependency is short-term due to the constraint by the size of
convolutional kernels (Li F. et al., 2018). On the contrary, LSTM
with memory cells could learn to store and output information
based on the training, easing the learning of long-term time
dependency of motion data (Hochreiter and Schmidhuber,
1997). Therefore, integration of both short-term and long-term
dependencies could enhance the ability to distinguish different
fall stages that vary in time span and signal distribution.

Our experimental results indicated that the motion features
in the long term were more significant in classifying three fall
stages (non-fall, pre-impact fall, fall) than those in the short term.
This finding was consistent with those of earlier studies using
deep learning approaches for human motion recognition (Yao
et al,, 2017; Li F. et al., 2018). Long-term motion features were
also widely used in the conventional machine learning methods
for human movement analysis. For example, Su et al. (2016)
achieved high accuracy to distinguish falls from non-falls by
extracting twelve time-domain features from angular velocity and
angle data into a hierarchical classifier. Similarly, Panahandeh
etal. (2013) suggested that long-term features of sensor data such
as magnitude-squared discrete Fourier transform coefficient and
variance were critical for pedestrian activity classification and
gait analysis. Furthermore, researchers reported the classification
with an integration of time domain (mean, variance, kurtosis,
etc.) and gait temporal features (stride time, stance time, double-
limb support, etc.) showed better results to differentiate stroke
and other neurological disorders than using them separately
(Hsu etal., 2018). Compared with conventional machine learning
methods, our proposed deep neural networks can eliminate the
need of manually designed motion features and can fully utilize
the useful information in the raw data for classification.

Two earlier studies utilized CNN and LSTM alone to predict
pre-impact falls (Tao and Yun, 2017; Li et al., 2019). Both studies
divided the motion data into non-fall and pre-impact fall, and
pre-impact fall included several frames before and after the fall
initiation so that they could predict the pre-impact fall. However,
the data of remaining part of falling (fall class in the three
classifications) was not considered, thus these kinds of simple
binary classification models can not be used for predicting the fall
class. In addition, both studies only tested classification models
on a small dataset with limited types of falls (<4) and ADLs
(<4). To the best of our knowledge, there was only one published
study utilizing the LSTM-based three-class classification model
to predict the pre-impact fall based on a large dataset-SisFall
(Torti et al., 2018). To compare our proposed deep learning
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FIGURE 4 | Learning curves of CNN (A), LSTM (B), and ConvLSTM (C) models on the test dataset.

fall

models with this baseline study, we also used the SisFall dataset
and strictly followed the same criteria for labeling three different
classes. Comparison to the benchmark (Table 3) showed that our
hybrid ConvLSTM model achieved higher sensitivity of ~5 and
3% for the non-fall and pre-impact fall, respectively, indicating
considerably lower false alarm rate but higher true alarm rate for
the pre-impact fall prediction. However, our ConvLSTM model
had ~3% lower sensitivity than the benchmark on predicting
the fall class. This could be caused by the different strategy we
used to choose the best model. We prioritized the high sensitivity
on classes of non-fall and pre-impact fall because the primary
objective of this study was to predict a fall with a reasonable lead
time before the body impacts to the ground rather than detect a
fall after it happens. For the specificity, even though there was
no considerable difference on classes of non-fall and fall, our
ConvLSTM model outperformed the benchmark on the class of
pre-impact fall (higher specificity by 3.7%), which demonstrated
lower misclassification rate on pre-impact fall prediction.

In terms of latency, LSTM model is time consuming due to
its complex structure and difficulty in parallel computing. In

the proposed hybrid ConvLSTM model, the first CNN layers
which are appropriate for parallel computation would extract
features hierarchically from the raw motion sensor data. The
extracted features would be inputted to following LSTM layers
for identifying temporal dependencies. Compared with the raw
data as the input in LSTM model, these features are in a much
lower dimensional space and thus far more concise. Therefore,
inserting CNN layers ahead of LSTM layers could save significant
amount of time for computation. Interestingly, even tested on
a microcontroller unit of the Jetson Nano with the exact same
model tested on the computer, the latency of our proposed
hybrid model still maintained very short and within 1.1 ms,
demonstrating a great potential to implement our developed
hybrid model into predicting the pre-impact falls in real-time
so that the on-demand fall protection systems (e.g., wearable
airbags) can be timely activated to prevent fall-related injuries.
The present study has several limitations worth noting. First,
because the SisFall dataset did not provide the video references
about the simulated falls and ADLs of each subject, the pre-
impact fall and fall intervals of the sensor signal labeled by
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authors of the baseline study may not be very consistent.
Considering Xsens wearable motion capture system could record
motion data and reconstruct graphical videos of human motions
synchronously, we will use it to build a new fall dataset and
further verify the developed deep learning algorithms. Second, for
some types of falls such as a lateral fall, the duration of falling is
very short and the time interval of pre-impact fall is too short to
specify. Therefore, for these fall cases, pre-impact fall instances
may not be labeled reliably due to the much larger width of
sliding window. Further analysis on different window sizes could
be conducted. Third, the development of the CoviLSTM model
was based on the SisFall dataset with simulated falls performed
by limited subjects. Caution is thus needed in directly applying
this model into practice. Large-scale fall simulations and real-
life tests with good protection need to be conducted further. Last
but not least, non-fall instances are very dominant in the SisFall
dataset compared with instances for other two classes, which
induces challenges in training the deep learning models. More
scientific techniques such as data argumentation to cope with
highly imbalanced data should be explored further.

CONCLUSION

We proposed a hybrid deep learning model (ConvLSTM) which
integrates the CNN and LSTM architectures to predict the
pre-impact fall for older people based on accelerometer and
gyroscope data. The performance of this hybrid model was
evaluated on SisFall, a large public dataset of various falls
and ADL. We also comprehensively compared the proposed
hybrid ConvLSTM model with CNN and LSTM deep learning
models in terms of model accuracy, latency and learning curve.
Experimental results showed that the hybrid ConvLSTM model
obtained both high sensitivities (>93%) and specificities (>94%)
for all three fall stages (non-fall, pre-impact fall and fall), which
were higher than LSTM and CNN models. In addition, latency
test on a microcontroller unit (Nvidia Jetson Nano) showed that
ConvLSTM model had a short latency of 1.06 ms, which was
much lower than LSTM model (3.15 ms) and comparable with
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Traditionally, running biomechanics analyses have been conducted using 3D motion
capture during treadmill or indoor overground running. However, most runners complete
their runs outdoors. Since changes in running terrain have been shown to influence
running gait mechanics, the purpose of this study was to use a machine learning
approach to objectively determine relevant accelerometer-based features to discriminate
between running patterns in different environments and determine the generalizability
of observed differences in running patterns. Center of mass accelerations were
recorded for recreational runners in treadmill-only (n = 28) and sidewalk-only (n = 25)
environments, and an independent group (n = 16) ran in both treadmill and sidewalk
environments. A feature selection algorithm was used to develop a training dataset
from treadmill-only and sidewalk-only running. A binary support vector machine model
was trained to classify treadmill and sidewalk running. Classification accuracy was
determined using 10-fold cross-validation of the training dataset and an independent
testing dataset from the runners that ran in both environments. Nine features related
to the consistency and variability of center of mass accelerations were selected.
Specifically, there was greater ratio of vertical acceleration during treadmill running and
a greater ratio of anterior-posterior acceleration during sidewalk running in both the
training and testing dataset. Step and stride regularity were significantly greater in the
treadmill condition for the vertical axis in both the training and testing dataset, and
in the medial-lateral axis for the testing dataset. During sidewalk running, there was
significantly greater variability in the magnitude of the vertical and anterior-posterior
accelerations for both datasets. The classification accuracy based on 10-fold cross-
validation of the training dataset (M = 93.17%, SD = 2.43%) was greater than the
classification accuracy of the independent testing dataset (M = 83.81%, SD = 3.39%).
This approach could be utilized in future analyses to identify relevant differences in
running patterns using wearable technology.
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INTRODUCTION

Traditional running biomechanical analysis is confined to
treadmill or over-ground indoor running (Simon, 2004). In
contrast, most runners complete their runs outdoors (Taunton
et al,, 2003) and research has shown that machine learning
algorithms trained on gait-related features from an accelerometer
can distinguish whether a runner is running on concrete,
synthetic, woodchip surfaces (Schiitte et al., 2016). However, to
our knowledge, no study has examined differences in running
biomechanics between indoor running, where the speed, surface
inclination and available space are often dictated by a treadmill
or a small flat runway, and outdoor running, where these features
are less controlled. Insights gleaned from biomechanical analyses
conducted in less controlled settings may be more applicable to
runners who train and compete outdoors.

Limited research has been conducted to compare treadmill
to overground running, but has shown that the running
biomechanical patterns during treadmill running gait dynamics
do not necessarily reflect overground running patterns (Lindsay
et al,, 2014; Schiitte et al., 2016). Moreover, methodological
limitations make it difficult to generalize these results. For
example, Lindsay et al. (2014) compared treadmill running
to overground running on an indoor track and Schiitte
et al. (2016) performed outdoor investigations on a short,
flat and straight course, limiting the ability to generalize the
findings to runners outside of the study sample and real-
world conditions. Dixon et al. (2019) collected only 8 s of
data, from between 2 and 4 running trials, whilst runners
ran on a straight 90 m segment of either concrete road,
synthetic track, or woodchip trail. Indoor tracks and short,
straight and flat runways do not necessarily reflect real-world
running conditions, particularly for long-distance runners. Thus,
research is needed in order to collect running biomechanical
data in a runners natural environment. Considering that
the vast majority of running biomechanical data collected to
date have been in controlled laboratory settings, it will be
beneficial to understand which biomechanical variables are
similar, or dissimilar, to those exhibited during running in real-
world environments.

Inertial measurement units (IMUs) are portable devices that
can be used to quantify running biomechanical patterns in
a runner’s natural environment (Norris et al., 2014; Reenalda
et al, 2016), yet, these investigations are still rare (Benson
et al., 2018a). Running biomechanical analysis using IMUs
is commonly conducted by recording 3D center of mass
accelerations and extracting features related to the magnitude,
consistency and variability of the signal (Henriksen et al,
2004; Moe-Nilssen and Helbostad, 2004; Kobsar et al., 2014;
Benson et al.,, 2018b; Clermont et al., 2018). There remains
an absence of an association between joint-level mechanics
commonly investigated using laboratory-based motion capture
systems and features generated from center of mass accelerations.
Thus, a challenge in identifying new methods for collecting
biomechanical data using wearable sensors is to identify which
accelerometer-based features are relevant for observing running
patterns in real world settings.

The purpose of this study was to determine whether running
environments could be successfully classified from movement
patterns quantified by the use of a single accelerometer, with
generalizability to an independent dataset. A secondary objective
was to determine which features drive successful classification
between treadmill-only and sidewalk-only running. It was
expected that key features would quantify the consistency and
variability of running patterns, and that the model would be
generalizable to an independent set of runners.

MATERIALS AND METHODS

Participants and Equipment

A total of 69 self-identified recreational runners provided
informed consent to participate in this study approved by the
Ethics Board at the University of Calgary (REB16-1183). Both
male and female runners with no running-related injury in the
previous 6 months were included. All participants were outfitted
with an IMU (Shimmer3 GSR+® +£8 g, Shimmer Inc., Dublin,
IE, United States) on the lower back near the center of mass, such
that the positive x-axis pointed to the right, the positive y-axis
pointed vertically, and the positive z-axis pointed posteriorly.
Three-dimensional accelerations were recorded at 201.03 Hz
and stored on an SD card. Additionally, a GPS-capable watch
(Garmin vivoactive HR, Garmin Inc., Olathe, KS, United States)
with a sampling rate of 1 Hz was worn on the preferred wrist.
Participants wore their preferred clothes and shoes.

Data Collection

Each participant was included in just one of three protocols,
based on weather (i.e., outdoor running only occurred on days
with no snow or rain) and availability to attend multiple sessions
(Table 1). In Protocol 1, 28 participants ran on a level treadmill
(Bertec, Columbus, OH, United States) only. The speed was
initially set to a speed equal to what the participant self-reported
as their typical training pace, and was subsequently adjusted in
0.1 m/s increments until it matched the participants preferred
speed, described as “a pace which you would be comfortable
to run for about 45 min and represents a usual, common, or
typical pace (Lindsay et al., 2014).” Participants first completed
a 5-10 min warmup at this speed. Next, data were recorded
as the participants ran at their preferred speed (recorded as
the treadmill setting) for 5 min. In Protocol 2, 25 different
participants ran outdoors on a concrete sidewalk only. First,
participants completed a 5-10 min warmup at their own pace.
Then, data were recorded as the participants ran at their preferred
running speed (recorded with GPS watch) on a continuous
stretch of sidewalk that featured a straightaway, curve and slight
incline typical of real-world outdoor running conditions. The
sidewalk was 300 m, and the participants paused for 10 s at
the turnaround to complete a total of 600 m (Figure 1). It was
expected that all runners would complete the 600 m course
within 5 min (8:20/km pace). In Protocol 3, a different set of 16
participants completed both the treadmill and sidewalk runs on
separate days, with the order of days randomized, via a coin flip,
for each participant.
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TABLE 1 | Mean (SD) descriptive variables for each protocol.

Protocol 1

Protocol 2 Protocol 3

Environments TM (5 min) only

S (600 m) only TM (5 min) and S (600 m)

Sex 18M, 10F
Height, m 1.74 (0.09)
Mass, kg 70.5 (10.9)
Age, yr 32.2 (13.4)
TM speed, m/s 2.78 (0.26)

S speed, m/s -

12M, 13F 8M, 8F
1.73(0.10) 1.70 (0.09)
70.2 (13.0) 67.1 (8.1)
36.9 (10.1) 31.3(10.2)
- 2.75 (0.39)*
3.24 (0.42) 3.10 (0.60)*

TM™, treadmill; S, sidewalk. * Within Protocol 3, TM speed was significantly lower than S Speed, p = 0.001. There were no significant differences between protocols

for any variables.
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FIGURE 1 | Map of outdoor running path (300 m from start to turn around)
and associated altitude along path.

Data Processing

For each run, the accelerometer data were filtered using a 4th-
order low-pass Butterworth filter with a cutoft frequency at 10 Hz
(Wundersitz et al., 2015), and the first and last 5% of the signal
was removed to eliminate effects of starting and stopping. The
trimming was applied to each 300 m section of the sidewalk
runs, as a complete turnaround is likely not generalizable to
real-world running conditions. The acceleration signal was then
aligned with gravity (Moe-Nilssen, 1998) and the direction of
motion within the horizontal plane (Avvenuti et al., 2013). The
signal was segmented into steps (Lee et al., 2010), each step
was normalized to 50 data points, and a previously defined

set of 24 features (Moe-Nilssen and Helbostad, 2004; Kobsar
et al., 2014; Barden et al., 2016) was extracted from the signal
(Table 2). These features included the peaks, magnitude (RMS),
and ratio of the acceleration in three dimensions, averaged across
all steps. Several features related to consistency and variability of
the running pattern across all steps and strides. Regularity is the
consistency of the stride-to-stride or step-to-step pattern, while
symmetry is the difference between step and stride regularity
(Barden et al., 2016), and higher values indicate a more consistent
gait pattern. Mean running speed was included as a 25th feature
for each participant.

Feature Selection

To improve generalizability of classification and to reduce
model complexity, a subject-specific forward-sequential feature
selection algorithm with a linear discriminant analysis wrapper
and 10-fold cross-validation (Chizi and Maimon, 2010; Caby
et al,, 2011) was applied to the data from Protocols 1 and
2 to identify relevant features, ranked based on their order
of selection, for the classification of running environments
(Figure 2). Only the features selected in at least 10% of

TABLE 2 | All features extracted from the accelerometer signal for each participant
and running condition.

Feature Independent of axes AP ML vT

Speed* v
Step time CV v
Stride time CV v
RMS tesultant v
Regularity step v v v
Regularity stride

SN
SN
SN

Symmetry (regularity
step/regularity stride)
Peak

RMS

RMS CV

Ratio (RMS/RMS
resultant)

SNENIENIEN
SUENIENEN
SNENIENEN

AR anterior-posterior axis;, ML, medial-lateral axis; VT, vertical axis; CV, coefficient of
variation; RMS, root mean squared. *Speed was determined from the GPS watch
or treadmill setting, not the accelerometer signal.
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Protocol 3

N=16
Selected Features
Surfaces: TM and S

TM Test

S Test

Protocol 1
28 x 25

(N x feat.) Feature
Surface: TM Selection

Protocol 2 '
25x 25

(N x feat.)
Surface: S

TM Train

FIGURE 2 | The data from Protocol 1 and Protocol 2 were used to create a model to distinguish treadmill running from sidewalk running. Prior to building the model,
the number of features in the training dataset was reduced following a feature selection task. The two environments from Protocol 3 were used as an independent
testing dataset for the model. The features in the testing dataset matched the selected features in the training dataset. TM, treadmill; S, sidewalk; SVM, support
vector machine; CA, classification accuracy; 10-CV, 10-fold cross-validation of the training dataset.

Train 10-CV
CA

100 iterations were retained, and the selected features in
Protocols 1 and 2 became the training dataset. All data
processing and feature selection was done using custom
MATLAB software (v9.1.0.441655, Mathworks, Inc., Natick,
MA, United States).

Classification

The training dataset was used to train a binary support vector
machine classifier (Shmilovici, 2010) for treadmill and sidewalk,
with all hyper-parameters optimized with the MATLAB function
fitesvm. The model was tested two ways: (1) 10-fold cross-
validation of the training dataset from Protocol 1 and 2, with
each participant’s data in only one fold at a time, and (2) the
selected features from both runs in Protocol 3 were used as
an independent testing dataset. The classification process was
repeated for 100 iterations, and an average classification accuracy
across all iterations was determined.

Statistical Analysis

Height, mass, age, and treadmill or sidewalk speed were
checked for normality and compared across protocols in separate
ANOVAs. A paired t-test was used to detect differences in
speed between treadmill and sidewalk among participants within
Protocol 3. Differences between treadmill and sidewalk for each
of the selected features were determined with independent ¢-tests
for the training dataset and paired ¢-tests for the testing dataset.
For each statistical test, significance was determined at p < 0.05,
with a Bonferroni adjustment based on number of comparisons.
All statistical analyses were done using SPSS (v24.0.0.1, SPSS,
Inc., Chicago, IL, United States).

RESULTS

There was no significant effect of protocol for height, mass, age,
or treadmill or sidewalk speed (p > 0.05). Within Protocol 3,
speed was significantly different (p = 0.001) between treadmill
running (M = 2.75 m/s, SD = 0.39 m/s) and sidewalk running
(M =3.10 m/s, SD = 0.60 m/s).

Nine features were selected to discriminate treadmill and
sidewalk running (Table 3 and Figure 3). There was a greater
ratio of vertical acceleration during treadmill running and a
greater ratio of anterior-posterior acceleration during sidewalk
running in both the training and testing dataset. Step and stride

TABLE 3 | Selected features used in the classification model.

Mean rank Selected features
1.00 Ratio VT

1.05 Ratio AP

2.06 Regularity step ML
2.06 RMS CV ML

2.30 Regularity stride VT
2.39 RMS CV AP

2.67 RMS CV VT

2.86 Regularity stride ML
3.00 Regularity step VT

AR, anterior-posterior; ML, medial-lateral; VT, vertical, CV, coefficient of variation;
RMS, root mean squared. Features were ranked according to the order in which
they were selected during the 10-fold cross-validation of the feature selection
algorithm, and the mean rank over 100 iterations of feature selection is reported
for features selected at least 10% of the time.
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FIGURE 3 | Comparisons between treadmill (black) and sidewalk (gray) conditions for each of the nine selected features used in the model. Independent ¢-tests were
used for the training dataset comparisons and paired t-tests were used for the testing dataset comparisons. Since a total of 18 comparisons were made,
significance (*) was determined at p < 0.003.

regularity were significantly greater in the treadmill condition
for the vertical axis in both the training and testing dataset,
and in the medial-lateral axis for the testing dataset. During
sidewalk running, there was significantly greater variability in
the magnitude of the vertical and anterior-posterior accelerations
for both datasets.

The initial classification accuracy based on 10-fold cross-
validation of the training dataset (M = 93.17%, SD = 2.43%)
was greater than the classification accuracy of the independent
testing dataset (M = 83.81%, SD = 3.39%). Over 100 iterations,
ten participants had both conditions correctly classified at
least 82 times, and the remaining six had poor classification
of one condition but perfect classification of the other
condition (Table 4).

DISCUSSION

The purpose of this study was to classify running environments
based on features extracted from a single accelerometer
and identify features that would represent the difference
between treadmill and sidewalk running. Sidewalk running

was characterized by lower regularity and greater variability
than treadmill running and using these features, classification
accuracy over 80% was achieved for both the training dataset
and an independent dataset. These results are supported by
Lindsay et al. (2014) who also reported that the treadmill
running requires greater constraints and increased voluntary
control during running gait. Thus, researchers must use caution
when generalizing laboratory-based treadmill running results
to real-world conditions for purposes such as rehabilitation
of injuries, improved performance, and/or injury prevention
(Benson et al., 2018a).

The observed changes in running patterns in different running
environments are likely due to the consistency of the surfaces
and/or speed in each environment. For example, a treadmill offers
a smooth and consistent running surface and a constant speed
for every step, whereas outdoor running presents more variable
conditions with opportunities for changes in speed, surface,
inclination, turns in the running path, other pedestrians/runners,
and/or changes in weather or temperature (Ahamed et al,
2017, 2018; Benson et al., 2019). This lack of consistency likely
contributed to the decrease in regularity in the vertical and
medial-lateral dimensions, and changes in the ratios of the
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TABLE 4 | Number of correctly predicted environments for each participant in the
testing dataset over 100 iterations (max = 100).

Number correct
sidewalk predictions

Number correct
treadmill predictions

Test participant

1 100 1

2 100 21

3 100 25
4 100 95
5 100 96
6 100 100
7 100 100
8 100 100
9 99 100
10 92 98
1 87 99
12 84 97
13 82 100
14 53 100
15 40 100
16 13 100

magnitude of the acceleration. The decrease in regularity and
observed shift to a greater ratio of horizontal accelerations
than vertical accelerations when on sidewalk is consistent with
previous research that has shown differences between stable
and unstable surfaces based center of mass accelerations (Menz
et al, 2003; Schiitte et al, 2016) and stride time analyses
(Lindsay et al., 2014). Sidewalk running was also characterized
by greater variability in the magnitude of accelerations in
all three dimensions. From a dynamical systems approach, a
lack of coordinative variability in movement patterns may be
associated with an unhealthy or pathological state (Hamill et al.,
2012). However, the current study did not calculate coordinative
variability in a manner similar to the methods proposed by
Hamill et al. (2012), so future prospective studies should consider
a link between the increased center of mass variability observed
during sidewalk running and running-related injuries.

Due to the influence of speed on the magnitude of center of
mass accelerations (Kobsar et al., 2014; Benson et al., 2018b), and
the tendency to preferentially select a slightly slower speed during
treadmill compared to overground running (Kong et al., 2012),
speed was included as a potential feature in the classification
model. However, speed was not one of the selected features
used in the model. Therefore, differences in features related
to the variability and consistency of the accelerometer signal
had a greater role in discriminating between treadmill and
sidewalk running.

The ability to generalize these results beyond the current study
may be influenced by overfitting the classification model to the
study participants (Ferber et al.,, 2016). Despite the use of 10-
fold cross-validation of the training dataset to attempt to improve
generalizability of classification, the model slightly overfit to the
training dataset as there was lower classification accuracy for
the independent testing dataset compared to the 10-fold cross-
validation of the training dataset. Regarding real-world usability,

previous studies that have classified IMU-generated running
and walking patterns have consistently reported classification
accuracy greater than 80% (Kobsar et al., 2014, 2015; Phinyomark
et al., 2014; Ahamed et al, 2018, 2019; Benson et al., 2018b;
Clermont et al., 2018). Thus, the reported 93.17% accuracy for
the training dataset and 83.81% accuracy for the independent
testing dataset in the current study suggests that this classification
mechanism has practical use.

The nearly 10% difference in classification accuracy between
the training and testing datasets can be attributed to differences
in running patterns between individuals in each dataset. In
the cases where an individual in the testing dataset had a low
classification rate for one environment, there was a perfect
classification rate for the other environment. This result does
not suggest that these misclassified participants have the same
running pattern in both environments, but rather their running
pattern on one environment is similar to the running patterns of
other runners on the opposite. For example, the poor treadmill
classification for test participant 16 (Table 4) was most likely
driven by anterior-posterior variability in the treadmill condition
that was greater than the sidewalk anterior-posterior variability
for all participants in the training dataset. Yet, test participant
16 had perfect classification accuracy in the sidewalk condition
as their anterior-posterior variability in the sidewalk condition
was even greater than their treadmill value. Therefore, the
misclassifications observed in this study highlight the potential
strength of subject-specific models of running biomechanics
to monitor changes in an individual’s running biomechanics
(Ahamed et al., 2018, 2019; Benson et al., 2019) and should be
further investigated in future studies.

In addition to the previous limitations discussed, other
limitations are acknowledged. First is the possibility that
other unmeasured variables may also differ between running
environments. The measured variables were previously used to
quantify running patterns and were thus considered suitable for
this study. However, a priori variable selection suggests a risk
of investigator bias and may lead to the dismissal of potentially
meaningful information that could be represented by other
variables, such as metrics related to the accelerometer signal
frequency content. Second, in addition to other accelerometer-
based features, physiological metrics such as heart rate may
differ between running environments. A further limitation is
that although many of the features used in this study were
on a scale of 0-1 (e.g., ratio of acceleration in a given axis,
symmetry, regularity), other features were not on the same scale
which may have influenced the contribution of each variable in
the classification model. Nevertheless, six of the nine selected
features, and four of the top-five features, were on the 0-1 scale,
suggesting that features with values greater than 1 did not have
an undue influence on the classification model.

In conclusion, we used a machine learning approach to
successfully select features related to the consistency and
variability of center of mass accelerations between treadmill
and sidewalk running. Overall, step and stride regularity were
significantly greater during treadmill running while sidewalk
running resulted in significantly greater variability in the
magnitude of the vertical and anterior-posterior accelerations.
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Based on a 10-fold cross-validation of the training dataset we
achieved a 93.17% classification accuracy, which was greater than
the 83.81% classification accuracy of the independent testing
dataset. The overall machine learning approach presented here
could be utilized in future running biomechanical analyses to
identify relevant differences in running patterns using IMUs.
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Existing research on myoelectric control systems primarily focuses on extracting
discriminative characteristics of the electromyographic (EMG) signal by designing
handcrafted features. Recently, however, deep learning techniques have been applied
to the challenging task of EMG-based gesture recognition. The adoption of these
techniques slowly shifts the focus from feature engineering to feature learning.
Nevertheless, the black-box nature of deep learning makes it hard to understand the
type of information learned by the network and how it relates to handcrafted features.
Additionally, due to the high variability in EMG recordings between participants, deep
features tend to generalize poorly across subjects using standard training methods.
Consequently, this work introduces a new multi-domain learning algorithm, named
ADANN (Adaptive Domain Adversarial Neural Network), which significantly enhances
(o = 0.00004) inter-subject classification accuracy by an average of 19.40% compared
to standard training. Using ADANN-generated features, this work provides the first
topological data analysis of EMG-based gesture recognition for the characterization
of the information encoded within a deep network, using handcrafted features as
landmarks. This analysis reveals that handcrafted features and the learned features (in the
earlier layers) both try to discriminate between all gestures, but do not encode the same
information to do so. In the later layers, the learned features are inclined to instead adopt
a one-vs.-all strategy for a given class. Furthermore, by using convolutional network
visualization techniques, it is revealed that learned features actually tend to ignore the
most activated channel during contraction, which is in stark contrast with the prevalence
of handcrafted features designed to capture amplitude information. Overall, this work
paves the way for hybrid feature sets by providing a clear guideline of complementary
information encoded within learned and handcrafted features.
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Handcrafted vs. Deep Learning Features

1. INTRODUCTION

Surface  Electromyography (sEMG) is a technique
employed in a vast array of applications from assistive
technologies (Phinyomark et al., 2011¢; Scheme and Englehart,
2011) to bio-mechanical analysis (Andersen et al., 2018), and
more generally as a way to interface with computers and
robots (Zhang et al., 2009; St-Onge et al., 2019). Traditionally,
the sSEMG-based gesture recognition literature primarily focuses
on feature engineering as a way to increase the information
density of the signal to improve gesture discrimination (Oskoei
and Hu, 2007; Scheme and Englehart, 2011; Phinyomark et al.,
2012a). In the last few years, however, researchers have started
to leverage deep learning (Allard et al., 2016; Atzori et al., 2016;
Phinyomark and Scheme, 2018a), shifting the paradigm from
feature engineering to feature learning.

Deep learning is a multi-level representation learning method
(i.e., methods that learn an embedding from an input to facilitate
detection or classification), where each level generates a higher,
more abstract representation of the input (LeCun et al., 2015).
Conventionally, the output layer (i.e., classifier or regressor) only
has direct access to the output of the highest representation
level (LeCun et al., 2015; Alom et al., 2018). In contrast, several
works have also fed the intermediary layers’ output directly to the
network’s head (Sermanet et al., 2013; Long et al., 2015; Yang and
Ramanan, 2015). Arguably, the most successful approach using
this design philosophy is DenseNet (Huang et al., 2017), a type of
convolutional network (ConvNet) where each layer receives the
feature maps of all preceding layers as input. Features learned by
ConvNets were also extracted to be employed in conjunction with
(or replace) handcrafted features when training conventional
machine learning algorithms (e.g., support vector machine, linear
discriminant analysis, decision tree) (Poria et al., 2015; Nanni
etal., 2017; Chen et al., 2019; Liu et al., 2019). Within the context
of sSEMG-based gesture recognition, deep learning was shown
to be competitive with the current state of the art (Coté-Allard
et al., 2019a) and when combined with handcrafted features,
to outperform it (Chen et al., 2019). This last result seems to
indicate that, for sEMG signals, deep-learned features provide
useful information that may be complementary to those that have
been engineered throughout the years. However, the black box
nature of these deep networks means that understanding what
type of information is encapsulated throughout the network, and
how to leverage this information, is challenging.

The main contribution of this work is, therefore, to
provide the first extensive analysis of the relationship between
handcrafted and learned features within the context of SEMG-
based gesture recognition. Understanding the feature space
learned by the network could shed new insights on the type of
information contained in SEMG signals. In turn, this improved
understanding will allow the creation of better handcrafted
features and facilitate the creation of new hybrid feature sets
using this feature learning paradigm.

An important challenge arises when working with biosignals,
as extensive variability exists between subjects (Guidetti et al.,
1996; Batchvarov and Malik, 2002; Meltzer et al., 2007; Castellini
et al, 2009; Halaki and Ginn, 2012). Especially within the

context of SEMG-based gesture recognition (Castellini et al.,
2009; Halaki and Ginn, 2012). Consequently, features learned
using traditional deep learning training methods can be highly
participant-specific, which would hinder the goal of this work
of learning a general feature representation of sSEMG signals.
By defining each participant as a different domain, however,
this issue can be framed as a Multi-Domain Learning problem
(MDL) (Yang and Hospedales, 2014), with the added restriction
that the network’s weights should be participant-agnostic.
Multiple popular and effective MDL algorithms have been
proposed over the years (Nam and Han, 2016; Rebuffi et al,
2018). For example, Nam and Han (2016) proposed to use a
shared network across multiples domains with one predictive
head per domain. In Yang and Hospedales (2014), a single
head was shared across two parallel networks with one of them
receiving the example’s representation as input, while the other
receives a vector representation of the associated domain of
the example. These algorithms however are ill-suited for this
work’s context as they: do not explicitly impose domain-agnostic
weight learning (Yang and Hospedales, 2014), can scale poorly
with the number of domains (i.e., participants) (Nam and Han,
2016), or are restricted to encode a single domain within their
learned features (and use adaptor blocks to bridge the gap
between domains) (Rebuffi et al., 2018). Unsupervised domain-
adversarial training algorithms (Ajakan et al., 2014; Ganin et al,,
2016; Tzeng et al., 2017; Shu et al., 2018) predict an unlabeled
dataset by learning a representation on a labeled dataset that
makes it hard to distinguish between examples from either
distribution. However, these algorithms are often not designed
to learn a unique representation across more than two domains
simultaneously (Ajakan et al., 2014; Ganin et al., 2016; Tzeng
et al., 2017; Shu et al., 2018), can be destructive to the source
domain representation (through iterative process) (Shu et al.,
2018), and by nature of the problem they are trying to solve,
do not leverage the labels of the target domains. As such,
this work presents a new multi-domain adversarial training
algorithm, named ADANN (Adaptive Domain Adversarial
Neural Network). ADANN trains a network across multiple
domains simultaneously while explicitly penalizing any domain-
variant representations to study learned features that generalize
well across participants.

In this work, the sEMG information encapsulated within
the general deep learning features learned by ADANN, is
characterized using handcrafted features as landmarks in a
topological network. This network is generated via the Mapper
algorithm (Singh et al., 2007), with t¢-Stochastic Neighbor
Embedding (t-SNE) (Maaten and Hinton, 2008), a non-linear
dimensionality reduction visualization method, as the filter
function. Mapper is a Topological Data Analysis (TDA) tool
that excels at determining the shape of high dimensional
data, by providing a faithful representation of it through a
topological network. This TDA tool has been applied as a solution
to numerous challenging applications across a wide array of
domains; for example, uncovering the dynamic organization
of brain activity during various tasks (Saggar et al., 2018) or
identifying a subgroup of breast cancer with 100% survival rate
and no metastasis (Nicolau et al., 2011). Mapper has also been
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FIGURE 1 | Diagram of the workflow of this work. The 3DC Dataset is first preprocessed before being used to train the network using standard training and the
proposed ADANN training procedure. The handcrafted features are directly calculated from the preprocessed dataset, while the deep features are extracted from the
ConvNet trained with ADANN. In the diagram, the blue rectangles represent experiments and the arrows show which methods/algorithms are required to

applied to determine relationships between feature space for
physiological signal pain recognition (Campbell et al., 2019b),
and EMG-based gesture recognition (Phinyomark et al., 2017).
However, to the best of the authors’ knowledge, the use of TDA
to interpret information harnessed within deep-learned features
using handcrafted features as landmarks has yet to be explored.
In this paper, convNet visualization techniques are also
leveraged as a way to highlight how the network makes
class-discriminant decisions. Several works (Simonyan et al,
2013; Springenberg et al., 2014; Zeiler and Fergus, 2014; Gan
et al., 2015) have proposed to visualize network’s predictions
by emphasizing which input-pixels have the most impact
on the networKs output, consequently, fostering a better
understanding of what the network has learned. For example,
Simonyan et al. (2013) used partial derivatives to compute pixel-
relevance for the network output. Another example is Guided
Backpropagation (Springenberg et al, 2014), which modifies
the computation of the gradient to only include paths within
the network that positively contribute to the prediction of a
given class. When compared with saliency maps (Simonyan
et al., 2013), Guided Backpropagation results in qualitative
visualization improvements (Selvaraju et al., 2017). While these
methods produce resolutions at a pixel level, the images produced
with respect to different classes are nearly identical (Selvaraju
et al, 2017). Other types of algorithms provide highly class-
discriminative visualizations, but at a lower resolution (Selvaraju
et al,, 2016; Zhou et al., 2016) and sometimes require a specific
ConvNet architecture (Zhou et al., 2016) to use. Within this
work, Guided Gradient-weighted Class Activation Mapping
(Guided Grad-CAM) (Selvaraju et al., 2017) is employed
as it provides pixel-wise input resolution while being class-
discriminative. Another advantage of this technique is that it
can be implemented on any ConvNet-based architecture without

requiring re-training. To the best of the authors’ knowledge, this
is the first time that deep learning visualization techniques are
applied to EMG signals.

2. MATERIALS AND METHODS

A flowchart of the material, methods and experiment is shown
in Figure 1. This section is divided as follows: first, a description
of the dataset and preprocessing used in this work is given
in section 2.1. Then, the handcrafted features are presented
in section 2.2. The ConvNet architecture and the new multi-
domain adversarial training algorithm (ADANN) are presented
in sections 2.3.1 and 2.3.2, respectively. A brief overview of
Guided Grad-CAM is given in section 2.3.3, while sections 2.3.4
and 2.3.5 present single feature classification and handcrafted
feature regression, respectively. Finally, the Mapper algorithm is
detailed in section 2.4.

2.1. EMG Data
The dataset employed in this work is the 3DC Dataset (Coté-
Allard et al., 2019b), featuring 22 able-bodied participants
performing ten hand/wrist gestures + neutral (see Figure 2
for the list of gestures). This dataset was recorded with the
3DC Armband; a wireless, 10-channel, dry-electrode, 3D printed
sEMG armband. The device samples data at 1,000 Hz per
channel, allowing the feature extraction to take advantage of the
full spectra of SEMG signals (Phinyomark and Scheme, 2018b).
Informed consent was obtained from all participants, as approved
by Laval University’s Research Ethics Committee (Coté-Allard
et al., 2019b).

The dataset was built as follows: Each participant was asked to
perform and hold each gesture for a period of 5 s starting from
the neutral position to produce a cycle. Three more cycles were
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FIGURE 2 | The eleven hand/wrist gestures recorded in the 3DC Dataset (image re-used from Coté-Allard et al., 2019b).
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recorded to serve as the training dataset. After a 5 min break, four
new cycles were recorded to serve as the test dataset. Note that
the validation set and hyperparameter selection are made from
the training dataset.

As this work aims to understand the type of features learned
by deep network in the context of myoelectric control systems,
a critical factor to consider is the input latency. Smith et al.
(2010) showed that the optimal guidance latency was between
150 and 250 ms. As such, the data from each participant was
segmented into 151 ms frames with an overlap of 100 ms. The raw
data was then band-pass filtered between 20 and 495 Hz using a
fourth-order Butterworth filter.

2.2. Handcrafted Features

Handcrafted features are characteristics extracted from windows
of the EMG signal using established mathematical equations. The
purpose of these feature extraction methods is to enhance the
information density of the signal so as to improve discrimination
between motion classes (Oskoei and Hu, 2007; Phinyomark
et al, 2012a). Across the myoelectric control literature,
hundreds of handcrafted feature extraction methods have been
presented (Oskoei and Hu, 2007; Phinyomark et al., 2012a,
2013). As such, implementing the exhaustive set of features that
has been proposed is impractical. Instead, within this study
a comprehensive subset of 79 of the most commonly used
features is employed. With a comprehensive set of features, past
literature has identified five functional groups that summarize
all sources of information current handcrafted feature extraction
techniques describe: signal amplitude and power (SAP), non-
linear complexity (NLC), frequency information (FI), time-series
modeling (TSM), and unique (UNI) (Phinyomark et al., 2017;
Campbell et al., 2019a). The SAP functional group includes time-
domain energy or power features (e.g., Root Mean Squared,
Mean Absolute Value). The FI functional group generally
refers to features extracted from the frequency domain, or

features that describe spectral properties (e.g., Mean Frequency,
Zero Crossings). The NLC functional group corresponds to
features that describe entropy or similarity based information
(e.g., Sample Entropy, Maximum Fractal Length). The TSM
functional group represents features that attempt to reconstruct
the data provided through stochastic or other algorithmic models
(e.g., Autoregressive Coefficients, Cepstral Coefficients). Finally,
the UNI functional group represents features that capture
various other modalities of information, such as measures of
signal quality or a combination of other functional groups
(e.g., Signal to Motion Artifact Ratio, Time Domain Power
Spectral Descriptors).

Table1 presents the 56 handcrafted feature methods
considered in this work. Note that some methods produce
multiple features (e.g., Cepstral Coefficients, Histogram),
resulting in a total of 79 features. The SAP, FI, NLC, TSM, and
UNI feature groups are represented here by 25, 5, 6, 7, and 13
feature extraction methods, respectively. In the TDA of the deep
learned features (see section 2.4), these handcrafted features
serve as landmarks for well-understood properties of the EMG
signal. In the regression model analysis (see section 2.3.5),
the flow of information through the ConvNet is visualized by
employing the handcrafted features methods as the target of
the network.

2.3. Convolutional Network

The following subsections present the deep learning architecture,
training methods and visualization techniques employed in
this paper. The PyTorch (Paszke et al., 2017) implementation
employed in this work is available at: https://github.com/
UlysseCoteAllard/sEMG_handCraftedVsLearnedFeatures.

2.3.1. Architecture

Recent works on sEMG-based gesture recognition using deep
learning have shown that ConvNets trained with the raw sEMG
signal as input were able to achieve similar classification accuracy
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TABLE 1 | Handcrafted features extracted for topological landmarks sorted by functional group.

References Feature extraction method Name Group
Phinyomark et al. (2012a) Amplitude of the first burst AFB SAP
Kim et al. (2011) Difference absolute mean value DAMV SAP
Kim et al. (2011) Difference absolute standard deviation value DASDV SAP
Zardoshti-Kermani et al. (1995) Difference log detector DLD SAP
Phinyomark et al. (2012a) Difference temporal moment DT™M SAP
Zardoshti-Kermani et al. (1995) Difference variance value DVARV SAP
Zardoshti-Kermani et al. (1995) Difference v-order DV SAP
Park and Lee (1998) Integral of electromyogram IEMG SAP
Zardoshti-Kermani et al. (1995) Log detector LD SAP
Al-Timemy et al. (2015) Second-order moment M2 SAP
Oskoei and Hu (2008) Modified mean absolute value 1 MMAVA SAP
Oskoei and Hu (2008) Modified mean absolute value 2 MMAV2 SAP
Saponas et al. (2008) Mean absolute value MAV SAP
Phinyomark et al. (2012a) Maximum MAX SAP
Du and Vuskovic (2004) Multiple hamming windows MHW SAP
Du and Vuskovic (2004) Mean power MNP SAP
Du and Vuskovic (2004) Multiple trapezoidal windows MTW SAP
Saponas et al. (2008) Root mean squared RMS SAP
Du and Vuskovic (2004) Spectral moment SM SAP
Du and Vuskovic (2004) Sum of squared integral SSI SAP
Phinyomark et al. (2012a) Temporal moment ™ SAP
Du and Vuskovic (2004) Total power TTP SAP
Zardoshti-Kermani et al. (1995) Variance VAR SAP
Zardoshti-Kermani et al. (1995) v-Order \ SAP
Phinyomark et al. (2012a) Waveform length WL SAP
Oskoei and Hu (2006, 2008) Frequency ratio FR Fl
Thongpanija et al. (2013, 2015) Median frequency MDF Fl
Thongpanja et al. (2013, 2015) Mean frequency MNF Fl
Phinyomark et al. (2012a) Slope sign change SSC Fl
Zardoshti-Kermani et al. (1995) Zero crossings ZC Fl
Phinyomark et al. (2013) Sample entropy SAMPEN NLC
Phinyomark et al. (2013) Approximate entropy APEN NLC
Zardoshti-Kermani et al. (1995) Willison’s amplitude WAMP NLC
Gitter and Czerniecki (1995) Box-counting fractal dimension BC NLC
Gupta et al. (1997) Katz fractal dimension KATZ NLC
Arjunan and Kumar (2010) Maximum fractal length MFL NLC
Park and Lee (1998) Autoregressive coefficients AR TSM
Park and Lee (1998) Cepstral coefficients CC TSM
Park and Lee (1998) Difference autoregressive coefficient DAR TSM
Park and Lee (1998) Difference cepstral coefficients DCC TSM
Phinyomark et al. (2011d, 2012b) Detrend fluctuation analysis DFA TSM
Qingju and Zhizeng (2006) Power spectrum ratio PSR TSM
Sinderby et al. (1995) and McCool et al. (2014) Signal to noise ratio SNR TSM
Phinyomark et al. (2011a,b) Critical exponent CE UNI
Sinderby et al. (1995) and McCool et al. (2014) Maximum to minimum drop in power density ratio DPR UNI
Phinyomark et al. (2012a) Histogram HIST UNI
Thongpanja et al. (2016) and Van Den Broek et al. (2006) Kurtosis KURT UNI
Phinyomark et al. (2012a) Mean absolute value slope MAVS UNI
Sinderby et al. (1995) and McCool et al. (2014) Power spectrum deformation OHM UNI
Phinyomark et al. (2013) Peak frequency PKF UNI
Talebinejad et al. (2009) Power spectrum density fractal dimension PSDFD UNI
Thongpanja et al. (2016) and Van Den Broek et al. (2006) Skewness SKEW UNI
(Continued)
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TABLE 1 | Continued

References Feature extraction method Name Group
Sinderby et al. (1995) and McCool et al. (2014) Signal to motion artifact ratio SMR UNI
Al-Timemy et al. (2015) Time domain power spectral descriptors TSPSD UNI
Phinyomark et al. (2012a) Variance of central frequency VCF UNI
Phinyomark et al. (2013) Variance fractal dimension VFD UNI

to the current state of the art (Zia ur Rehman et al., 2018;
Coté-Allard et al., 2019a). Consequently, and to reduce bias, the
preprocessed raw data (see section 2.1) is passed directly as an
image of shape 10 x 151 (Channel x Sample) to the ConvNet.

The ConvNet’s architecture, which is depicted in Figure 3,
contains six blocks followed by a fully connected layer for gesture-
classification. The network’s topology was selected to obtain a
deep network with a limited number of learnable parameters
(to avoid overfitting) with simple layer connections to enable an
easier, and thus more thorough analysis. All architecture choices
and hyperparameter selection were performed using the training
set of the 3DC Dataset or inspired by previous works (Coté-
Allard et al., 2019a,b). Each block encapsulates a convolutional
layer (LeCun et al,, 2015), followed by batch normalization
(BN) (Ioffe and Szegedy, 2015), leaky ReLU (slope = 0.1) (Xu
et al., 2015) and dropout (Gal and Ghahramani, 2016) (with a
drop rate set at 0.35 following Coté-Allard et al., 2019a). The
number of blocks within the network was selected to obtain
a sufficiently deep network to study how the type of learned
features evolve with respect to their layer. The depth of the
network was limited by the number of examples available for
training and more complex layer connections [e.g., residual
network (He et al., 2016), dense network (Huang et al., 2017)]
were avoided to not ambiguate the analysis performed in this
work. The number of feature maps (64) was kept uniform for
each layer, allowing for easier comparisons of learned features
across the convolutional layers. The filter size was 1 x 26 so
that, similarly to the handcrafted features, the learned features
are channel independent. Due to the selected filter size, the
dimensions of feature maps at the final layer is 10 x 1.

Adam (Kingma and Ba, 2014) was employed to optimize the
ConvNet with an initial learning rate of 0.0404709 and batch
size of 512 (as used in Coté-Allard et al., 2019b). The training
dataset was divided into training and validation sets using the
first three cycles and last cycle, respectively. Employing this
validation set, learning rate annealing was applied with a factor
of five and a patience of fifteen with early stopping applied when
two consecutive annealings occurred without achieving a better
validation loss.

For the purpose of the TDA, features maps were extracted after
the non-linearity using per feature-map channel-wise average
pooling. That is, the number of feature maps remained the same,
but the feature map’s value per channel was averaged to a single
scalar (as is common with handcrafted features).

2.3.2. Multi-Domain Adversarial Training
To better understand what type of features are commonly
learned at each layer of the network, it is desirable that the

model generalizes well across participants. This feature generality
principle also motivates the design of the handcrafted features
(presented in section 2.2), as it would be impractical to create
new features for each new participant. Learning a general feature
representation across participants, however, cannot be achieved
by simply aggregating the training data of all participants and
then training a classifier normally. As, even when precisely
controlling for electrode placement, cross-subject accuracy using
standard learning methods is poor (Castellini et al., 2009). This
problem is compounded by the fact that important differences
exist between subjects of the 3DC Dataset (i.e., position and
rotation of the armband placed on the left or right arm).

Learning a participant-agnostic representation can be framed
as a multi-domain learning problem (Nam and Han, 2016).
In the context of sEMG-based gesture recognition, AdaBN, a
domain adaptation algorithm presented in Li et al. (2016), was
successfully employed as a way to learn a general representation
across participants in Cote-Allard et al. (2017), Coté-Allard
et al. (2019a). The hypothesis of AdaBN is that label-related
information (i.e., hand gestures) will be contained within the
network’s weights, while the domain-related information (i.e.,
participants) are stored in their BN statistics. Training is thus
performed by sharing the weights of the network across the
subjects dataset while tracking the BN statistics independently for
each participant.

To inhibit the shared network’s weights from learning subject-
specific representation, Domain-Adversarial Neural Networks
(DANN) training (Ganin et al., 2016) is employed. DANN is
designed to learn domain-invariant features across two domains
from the point of view of the desired task. The approach used
by DANN to achieve this objective consists of adding a second
head (referred to as the domain classification head) to the network
presented in section 2.3.1, which receives the output of block
B6. The goal of this second head is to learn to discriminate
between the domains. However, during backpropagation, the
gradient computed from the domain loss is multiplied by a
negative constant (set to -1 in this work) as it exits the domain
classification head. This gradient reversal explicitly forces the
feature distributions over the domains to be similar. Note that
the backpropagation algorithm proceeds normally for the first
head (gesture classification head). The loss function used for both
heads is the cross-entropy loss. The two losses are combined
as follows: £y + ALy, where £, and Ly are the prediction and
domain loss, respectively (see Figure 4), while A is a scalar that
weights the domain loss (set to 0.1 in this work).

Using this approach, each participant of the 3DC Dataset
represents a different domain (n=22). A direct application of
DANN would thus initialize the domain classification head
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with 22 output neurons. This, however, could create a pitfall
where the network is able to differentiate between the domains
perfectly while simply predict one of the 21 other domains
to maximize L. Instead, the domain classification head is
initialized with only two output neurons. At each epoch, a
batch is created that contains examples from a single participant
(this batch is referred to as the source batch, and is assigned
the domain label 0). A second batch, referred to as the target
batch, is also created that contains examples from one of
the other participants selected at random, and is assigned the
domain label 1. As every participants data is used as the

source batch at each epoch, this ensures that the network is
forced to learn a domain-independent feature representation.
ADANN'’s goal is thus to force the network to be unable to
accurately associate a participant with their examples while
achieving a highly discriminative gesture representation across
all participants. During training, the BN statistics are tracked
individually for each subject. Therefore, when learning from
a source or target batch, the network uses the BN statistics
associated with the corresponding participant. Note that, by
construction, the participant associated with the source is
necessarily different from the participant associated with the
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target. Consequently, the network is fed the source and target
batch consecutively (i.e., not both batch simultaneously). Also
note that the BN statistics are updated only in association with
the source batch to ensure equal training updates across all
participants. For a given iteration, once the source and target
batch are constructed, the training step proceeds as described for
DANN (see Figure 4).

To assess the performance of the proposed MDL algorithm,
two identical ConvNet (as described in section 2.3.1) were
created. One of the ConvNets was trained with ADANN,
whereas the other used a standard training loop (i.e., aggregating
the data from all participants), with both using the same
hyperparameters. The networks trained with both methods were
then tested on the test dataset with no participant-specific
fine-tuning.

2.3.3. Learning Visualization

One of the main problems associated with deep learning is
interpretability of how and why a model makes a prediction
given a particular input. A first step in understanding a network
prediction is through the visualization of the learned weights,
feature maps and gradients resulting from a particular input.
Consequently, several sophisticated visualization techniques
have been developed, which are aimed at facilitating a better
comprehension of the hierarchical learning that takes place
within a network (Simonyan et al, 2013; Springenberg
et al, 2014; Zhou et al,, 2016). One popular such technique
is Guided Grad-CAM, which combines high resolution
pixel-space gradient visualization and class-discriminative
visualization (Selvaraju et al., 2017). Guided Grad-CAM is thus
employed to visualize how the ConvNet trained with ADANN
makes its decisions, both on real examples from the 3DC Dataset
and on an artificially generated signals.

Given an image that was used to compute a forward pass in
the network and a label y, the output of Guided Grad-CAM is
calculated from four distinct steps (note that steps two and three
are computed independently from each other using the output of
step one):

1. Set all the gradients of the output neurons to zero, except for
the gradient of the neuron associated with the label y (which is
set to one) and name the gradient of the neuron of interest y$.

2. Set all negative activations to zero. Then, perform
backpropagation, but before propagating the gradient at
each step, set all the negative gradients to zero again.
Save the final gradients corresponding to the input
image. This step corresponds to computing the guided
backpropagation (Springenberg et al., 2014).

3. Let Fj; be the activation of the ith feature map of the jth layer
with feature maps of the network. Select a layer F; of interest
(in this work F;j correspond to the rectified convolutional layer
of B6). Backpropagate the signal from the output layer to F;;

(i.e., z?T)i)' Then for each i compute the global average pooling
of ;T}i and name it wj;. Finally, compute: ReLU (}_; wjiFj,).
This third step corresponds to computing the

Gradient-weighted Class Activation Mapping
(Grad-CAM) (Selvaraju et al., 2016).

4. Finally, fuse the output of the two previous steps using point-
wise multiplication to obtain the output of Guided Grad-
CAM (Selvaraju et al., 2017).

2.3.4. Learned Feature Classification

Similarly to Chen et al. (2019), the learned features were extracted
to train a Linear Discriminant Analysis (LDA) classifier to
show the discriminative ability of the learned features. LDA was
selected as it was shown to provide robust classification within
the context of SEMG-based gesture recognition (Campbell et al.,
2019c), does not require hyperparameter tuning, and creates
linear boundaries within the input feature space. LDA was trained
in a cross-subject framework on the training dataset and tested on
the test dataset. For comparison purposes, LDA was also trained
on the handcrafted features described in section 2.2. Note that the
implementation was from scikit-learn (Pedregosa et al., 2011).

2.3.5. Regression Model

One method of highlighting the information content encoded
throughout a network is to see how well-known handcrafted
features can be predicted from the networks feature maps at
different stages. This can be achieved using an added output
neuron (regression head) at the feature extraction stage [i.e., after
the non-linearity, but before the average pooling (before the
green trapezoid of Figure 3)] of each block. The goal of this
output is to map from the learned features to the handcrafted
features of interest. As all the features considered in section 2.2
are calculated channel-wise, only the information from the first
SEMG channel (arbitrarily selected) of the feature maps will be
fed to the regression head.

The training procedure to implement this is as follows: first,
pre-train the network using ADANN (presented in section 2.3.2).
Second, freeze all the weights of the network, except for the
weights associated with the regression head of the block of
interest. The Mean Square Error (MSE) is then employed as the
loss function with the target being the value of the handcrafted
feature of interest from the first SEMG channel. Due to the
stochastic nature of the algorithm, the training was performed
20 times for each participant and the results were given as
the average MSE computed on the test dataset across of all
participants. Note that the targets derived from multi-output
feature extraction methods (e.g., Autoregressive Coeflicients)
corresponded to the first principal component returned by
Principal Component Analysis (PCA) (where singular value
decomposition was performed on the training and test set for the
training and test phase, respectively).

2.4. Topological Data Analysis—Mapper

Conventional TDA methods, such as Isomap (Balasubramanian
and Schwartz, 2002) produce a low dimensional embedding
by retaining geodesic distances between neighboring points.
However, they often have limited topological stability (Choi and
Choi, 2007) and lack the ability to produce a simplicial complex (a
ball-and-stick simplification of the shape of the dataset) with size
smaller than the original dataset (Singh et al., 2007). The Mapper
algorithm (Singh et al., 2007) is a TDA method that creates
interpretable simplifications of high-dimensional data sets that
remain true to the shape of the data set. Mapper can thus produce
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a stable representation of the topological shape of the dataset at
a specified resolution, where the shape of the network has been
simplified during a partial clustering stage. Further, the shape of
the dataset is defined such that it is coordinate, deformation, and
compression invariant. Consequently, this TDA algorithm can
be employed to better understand how handcrafted and deep-
learned features relate to one-another. In this work, Mapper is
employed on three scenarios; (A), (B), and (C). In scenario (A),
the algorithm only uses the handcrafted features as a way to
validate the hyperparameters selected by cross-referencing the
results with previous EMG works using Mapper (Phinyomark
et al., 2017; Campbell et al., 2019a). For scenario (B), only the
learned features are used to determine if features within the same
block extract similar or dissimilar sources of information (i.e., the
degree at which the features within the same block are dispersed
across the topological network). Finally, in scenario (C), Mapper
is applied to the combination of learned and handcrafted features
to better understand their relationship and to provide new
avenues of research for sSEMG-based gesture recognition.

Sections 2.4.1-2.4.2, below, provide additional details about
the approach, mathematical basis and implementation of Mapper
in this work. Readers who are familiar with, or prefer to avoid
these details, may jump directly to section 3.

2.4.1. Mapper Algorithm
The construction of the topological network created using the
Mapper algorithm can be seen as a five stage pipeline:

1. prepare: organize the data set to produce a point cloud of
features in high dimensional space.

2. lens: filter the high dimensional data into a lower dimensional
representation using a lens.

3. resolution: divide the filtration into a set of regions.

4. partial clustering: for each region, cluster the contents in the
original high dimensional space.

5. combine: combine the region isolated clusters into a
single topological network using common points across
regions (Geniesse et al., 2019).

2.4.2. Mathematical Definition of Mapper
A mathematical definition of the Mapper algorithm for feature

extraction using a multi-channel recording device is as follows:

def - > .
Let x = (%1,...,%c) be a series of samples for each C

channels, where . € RS,Vc € {1,...,C} and S is the length

. . def
of a consecutive series of data. Define X = {x, 1\ a set of

n=1
N examples. Let also ® def {qu}f\n/fz1 be a set of M feature-

generating functions of the form ¢, : RS — R. Given X,
the ¢ th element of x, € X, the resulting feature f; €

R is obtained by applying ¢, such that f" L ¢, (x,.).
def

Consequently, the Vector]?m € RN*C s obtained such thatfm =
ofle - Hohvhy - he - o

The first step of the Mapper algorithm is to consider 7 def

{fm}%zl, the transformed data points from X. Then define

E RN*C . RZ with 0 < Z <« N x C and consider the set

z {W(]?)[]? € 7F}. This dimensionality reduction (N x C — Z)

is employed to reduce the computational cost of the rest of the
Mapper algorithm and can be considered as a hyperparameter of
the Mapper algorithm.

In the second step of the algorithm, define o : R — RV,

with 0 < W « Z and consider the set W def {c(@)|z € z}.In
the literature (Singh et al., 2007), the function o is called filter
function and 9 is the image or lens.

Third, let € be the smallest hypercube of R" which covers W
entirely. As X is a finite set, each dimension of € is a finite interval.
Letk € N*, be a hyperparameter that subdivides € evenly into k"
smaller hypercubes. Note that the side lengths of these smaller
hypercubes are H = %x the length size of €. Denotes 7 the set
of all vertices of these smaller hypercubes. Next, fix D > H as
another hyperparameter. For each v € ¥/, consider the hypercube
¢y of length D centered on v. A visualization of step 3 is given
in Figure 5.

Fourth, define Z5 def (z € Z2|0(2Z) € 3}, the set of all elements
of z that is projected in the hypercube cj;. Let & be a clustering
algorithm and £(Zy) be the resulting set of clusters. Define B as
the set that consist of all so obtained clusters for all Z.

Fifth, compute the topological graph G using each element
of B as a vertex and create an edge between vertices G, and G i

(ihj € {1,...,|BILi#))if G,N G # 0.

2.4.3. Mapper Implementation Within This Work

In this work, as described in section 2.1 the dataset was recorded
using the 3DC Armband which offers 10 channel-recording
(C = 10) and an example is comprised of 151 data-points
(§ = 151) for each channel. The number of considered features
in scenarios (A), (B), and (C), are 79, 384, and 465, respectively.
Note that multi-output feature extraction techniques (e.g., AR,
HIST), consider each component of that vector as a separate
feature. Each element of 7 is obtained by computing the result
of a feature from section 2.2 (corresponding to ¢,,() in the
mathematical definition given previously) over each channel of
each example of the Training Dataset. The dataset undergoes
the first dimensionality reduction (¥()) using PCA (Wold
et al., 1987), where the number of principal components used
corresponds to 99% of the total variance. For scenarios (A),
(B), and (C), 99% of the variance resulted in 44, 77, and
119 components, respectively, extracted from 971,860 channel-
wise examples.

A second dimensionality reduction is then performed
(0()), referred to as the filter function, with the goal of
representing meaningful characteristics of the relationship
between features (Singh et al, 2007). Within this study, -
Stochastic Neighborhood Embedding (t-SNE) (Maaten and
Hinton, 2008) is used to encapsulate important local structure
between features. The two-dimensional (2D) t-SNE lens was
constructed with a perplexity of 30, as this configuration resulted
in the most stable visualization over many repetitions [tested
on scenario (A)]. Using t-SNE as part of the Mapper algorithm
instead of on its own leverages its ability to represent local
structure while avoiding the use of a low-dimensional manifold
to encapsulate global structure. Instead, the global structure
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FIGURE 5 | An example of step 3 of the Mapper algorithm with W = 2. The purple dots represent the elements of #. In (A), the red square corresponds to €. In (B),
¢ is subdivided using k? squares of length H (with k = 2 in this case). The orange diamonds, in both (B,C), represent the elements of 4. Finally, the square ¢; of length
D is shown on the upper left corner of (C), overlapping other squares centered on other elements of % (dotted lines).

is predominantly incorporated into the topological network
produced by Mapper during the fifth stage.

The 2D lens was then segmented into a set of overlapped
bins (the hypercubes centered on the elements of 7/), called the
cover. A stable topological network was obtained when each
dimension was divided into 5 regions, forming a grid of 25
cubes that were overlapped by 65%. The number of regions
correspond to the topological network’s resolution, while the
overlap has an influence on the amount of connection formed
between nodes (Singh et al., 2007).

Data points in each region are then clustered in isolation to
provide insight into the local structure of the feature space (the
elements of Z3 correspond to the data-point of a specific region).
For each region, Ward’s hierarchical clustering (&) was applied
to construct a dendogram that grouped similar features together
according to a reduction in cluster variance (Ward, 1963).

Finally, the dendograms produced using neighboring regions
are combined to form the topological network (G) using the
features that lie in the overlapped area to construct the edges
between the nodes.

The implementation of the Mapper algorithm was facilitated
by a combination of the Kepler Mapper (van Veen and
Saul, 2019) and the DyNeuSR (Dynamical Neuroimaging
Spatiotemporal Representations) (Geniesse et al., 2019) Python
modules. An extended coverage of processing pipelines for time-
series TDA is given in Phinyomark et al. (2018).

3. RESULTS

3.1. Handcrafted Features

Figure 6 shows the topological network produced using only the
handcrafted features. The Kullback-Leibler divergence of the t-
SNE embedding of the handcrafted features plateaued at 0.50,
indicating that the perplexity and number of iterations used was

appropriate for the dataset. The topological network consisted of
125 nodes and 524 edges.

The color of the nodes within the network indicates the
percentage of members that belong to the feature group of
interest [(A):SAP, (B): NLC, (C): FL, (D): TSM, and (E): UNI].
The presence of an edge symbolizes common features present
in the connected nodes, which can be used at a global scale
to verify that functional groups (similar information) cluster
together. Due to the topological nature of the graph, information
similarity between nodes is measured using the number of
edges that separate two nodes and not the length of the edges.
Detailed interpretation of the TDA networks are given in
the discussion.

3.2. Deep Features

The average cross-subject accuracy on the test set when using
the proposed ADANN framework was 84.43 + 0.05%. Using
a Wilcoxon signed-rank test (Wilcoxon, 1992) with n = 22,
and considering each participant as a separate dataset, this was
found to significantly outperform (p < 0.0001) the average
accuracy of 65.03 &= 0.08% obtained when training the ConvNet
conventionally. Furthermore, based on Cohen’s d, this difference
in accuracy was considered to be huge (Sawilowsky, 2009). The
accuracy obtained per participant for each training method is
given in Figure 7A, and the confusion matrices calculated on the
gestures are shown in Figure 7B.

Figure 8A provides visualizations of the ConvNet trained with
ADANN using Guided Grad-CAM for several examples from the
3DC Dataset, These visualizations highlight what the network
considers “important” (i.e., which part of the signals had the
most impact in predicting a given class) for the prediction of a
particular gesture.

Instead of using Guided Grad-CAM to visualize how the
network arrived at a decision for a known gesture, Figure 8B
presents the results of the visualization algorithm when the
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FIGURE 6 | Topological network generated exclusively for the handcrafted features, where nodes are colored to indicate percent composition of: (A) signal amplitude
and power features (SAP), (B) non-linear complexity (NLC), (C) frequency information features (Fl), (D) time series modeling features (TSM), and (E) unique features
(UNI). Dashed boxes highlight dense groupings of the specified functional group in each of the networks.

network is told to find a gesture that is not present in the input.
This is akin to using a picture of a cat as an input to the network
and displaying the parts of the image that most resemble a
giraffe. In Figure 8B, the input was randomly generated from a
Gaussian distribution of mean 0 and standard deviation of 450
(chosen to have the same scale as the EMG signals of the 3DC
Dataset). For six of the eleven gestures (Radial Deviation, Wrist

Extension, Supination, Open Hand, Chuck Grip, and Pinch Grip)
the network correctly identifies no relevant areas pertaining to
these classes. While the network does highlight features in the
input space associated with the other gestures, the magnitude
of these contributions was substantially smaller (half or less)
than when the requested gesture was actually present in the
input signal.
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The topological network produced using only the learned
features is given in Figure 9. The color of the nodes within the
network indicates the percentage of members that belong to the
feature group of interests [(A): B1, (B): B2, (C): B3, (D): B4, (E):
B5, and (F): B6]. Interpretation of the TDA network follows the
rational stated in section 3.1. The Kullback-Leibler divergence of
the t-SNE embedding of the handcrafted features plateaued at
0.37, again indicating that the perplexity and number of iterations
used was appropriate for the dataset. The topological network
consisted of 115 nodes and 672 edges.

3.3. Hybrid Features

The topological network produced using both handcrafted and
learned features is shown in Figure 10. The Kullback-Leibler
divergence of the t-SNE embedding of all features plateaued at
0.53, again indicating that the perplexity and number of iterations
used was appropriate for the dataset. The topological network
consisted of 115 nodes and 770 edges. From this network, only
a subset of nodes were occupied by both handcrafted and learned
features. Those nodes were indicated in Figure 10.

The color of the nodes within the network indicates the
percentage of members that belong to the feature group of
interests (learned features). Information similarity was shown
through a zoomed-in region of the network, where learned and
handcrafted features clustered together. The feature members of
the numbered nodes were listed in Table 2. Interpretation of the
TDA network follows the rational stated in section 3.1.

Table 3 shows the average accuracy (grouped by block for
the learned features and by group for the handcrafted features)
obtained when training an LDA on each feature and when
using all features within a category (i.e., within a block or

within a group of handcrafted feature). Note that for the learned
features, PCA is applied to the feature map and the first
component is employed to represent a given learned feature.
Figure 11 shows examples of confusion matrices computed from
the LDA classifications of singular features (both handcrafted
and learned). Figure 11, also shows some confusion matrices
obtained from the LDAS classification result when using all
features within a category.

Figure 12 shows the average mean square error computed
when regressing from the ConvNet’s learned features (see
section 2.3.5) to fifteen handcrafted features (three per Functional
Group). Note that the mean squared error is obtained by
computing the regression using only the output of the block
of interest.

4. DISCUSSION

4.1. Handcrafted Features

The result of the Mapper algorithm applied to handcrafted
features (see Figure 6) showed that the handcrafted features
agglomerated mostly with their respective groups, and that
the topological graph is Y-shaped. This shows that the
hyperparameters selected in this work are consistent with those
found in previous EMG literature (Phinyomark et al., 2018;
Campbell et al., 2019a).

4.2. ADANN and Deep Learning

Visualization

Figure 7B shows that training the network with ADANN
outperforms the standard training method in cross-subject
classification. One advantage of ADANN in the context of this
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FIGURE 8 | Output of Guided Grad-CAM when asked to highlight specific gestures in an example. For all graphs, the y-axis of each channel are scaled to the same
range of value (indicated on the first channel of each graph). Warmer colors indicate a higher “importance” of a feature in the input space for the requested gesture.
The coloring use a logarithmic scale. For visualization purposes, only features that are within three order of magnitudes to the most contributing feature are colored.
(A) The examples shown are real examples and correspond to the same gestures that Guided Grad-CAM is asked to highlight. (B) A single example, generated using
Gaussian noise of mean 0 and standard deviation 450, is shown three times. While the visualization algorithm does highlight features in the input space (when the
requested gesture is not truly present in the input), the magnitude of these contributions is substantially smaller (half or less) than when the requested gesture is
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specified block features in each of the networks.

FIGURE 9 | Topological network generated for exclusively the learned features, where nodes are colored to indicate percent composition of: (A) Block 1's features,
(B) Block 2’s features, (C) Block 3’s features, (D) Block 4’s features, (E) Block 5's features, and (F) Block 6's features. Dashed boxes highlight dense groupings of the

work is that the weights of the network have strong incentives
to be subject-agnostic. As such, the learned features extracted
from the network can be thought of as general features (and to
a certain extent subject-independent) for the task of sSEMG-based
hand gesture recognition.

Applying Guided Grad-CAM, as in Figure 8, shows that the
network mostly focuses on different channels for the detection
of antagonist gestures. This suggests that the ConvNet was able
to extract spatial features despite having access only to one
dimensional convolutional kernels. Furthermore, it is notable
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TABLE 2 | Members of nodes labeled in Figure 6. LeFX refers to a Learned Feature from block X.

# Summary Members
1 TSM+LeF5 AR2 AR4 DAR2 DAR4 CC1 CC4 DCCH
DCC3 SNR 8xLeF1 1xLeF2 4xLeF4 10xLeF5 13xLe5
2 TSM+UNI+LeF6 APEN AR2 AR4 DAR2 DAR4 CC1 CC4 DCC1 DCC3 DCC4 CE DFA DPR HIST123
SKEW MAVS OHM PSDFD PSR SMR SNR VCF VFD 1xLeF1 3xLeF2 3xLeF5 21xLeF6
3 TSM+UNI+LeF6 APEN AR2 AR4 DAR2 DAR4 CC1 CC4 DCC1 DCC3 DCC4 CE DFA DPR HIST12
SKEW MAVS OHM PSDFD PSR SMR SNR VCF VFD 1xLeF1 1xLeF2 1xLeF5 27xLeF6
4 UNI+LeF6 APEN DCC4 CE DFA DPR HIST123
SKEW MAVS OHM PSDFD PSR SMR VCF VFD 2xLeF2 2xLeF5 21xLeF6
2 TSM+UNI+LeF6 APEN CC1 CC4 DCC4 CE DFA DPR HIST123
SKEW MAVS OHM PSDFD PSR SMR SNR VCF VFD 37xLeF6
6 TSM+UNI+LeF6 CC1 CC4 DCC4 CE DPR HIST123 SKEW MAVS PSDFD SMR
SNR VCF VFD 5xLeF2 5xLeF4 1xLeF5 37xLeF6
7 UNI+LeF6 DCC4 CE DPR HIST123 SKEW MAVS
PSDFD SMR VCF VFD 2xLeF2 15xLeF6
8 UNI+LeF6 DCC4 CE DPR HIST123 SKEW MAVS PSDFD SMR
VCF VFD 5xLeF2 5xLeF4 1xLeF5 37xLeF6
9 UNI+LeF6 APEN DCC4 CE DFA DPR HIST2 SKEW MAVS
OHM PSDFD PSR SMR VCF VFD 15xLeF2 36xLeF6
10 All Handcrafted+LeF6 APEN CC14 DCC4 CE DFA DPR HIST123 KURT SKEW M2 MAVS MAX MHW23
MTW123 MNP TTP OHM PSDFD PSR SM SMR SNR SSI TM DTM VAR DVARV VCF VFD 11xLeF6
11 NLC+LeF6 APEN SAMPEN BC
KATZ 1xLeF6

that for all the examples given in Figure 8A, the most active  channel with the highest amplitude did not contribute in a
channel was not the primary channel used for the gesture  meaningful way to the networK’s prediction. This observation
prediction. In fact, for the vast majority of gestures, the held true while looking at several other examples from the
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TABLE 3 | Accuracy obtained on the test set using the handcrafted features and
the learned features from their respective block.

Single feature All features

Average accuracy (%) STD (%) Accuracy (%)
SAP 26.80 7.0 41.61
FI 19.95 2.87 34.80
NLC 22.32 715 31.49
TSM 22.24 3.33 37.18
UNI 16.32 5.1 48.37
Block 1 28.49 3.84 74.59
Block 2 28.28 4.66 78.26
Block 3 28.90 5.06 79.19
Block 4 29.21 5.15 78.77
Block 5 28.18 5.48 79.23
Block 6 26.62 6.19 81.38

The Single Feature accuracies are given as the average accuracy over all the features of
their respective block/category.

3DC Dataset. This might indicate that the common practice of
placing the recording channel directly on the most prominent
muscle for a given gesture within the context of gesture
recognition may not be optimal. One could thus use the type
of information provided by algorithms, such as Guided Grad-
CAM as another way of performing channel selection (instead of
simply using classification accuracy). The absence of importance
on amplitude characteristics is in contrast to conventional
practices of handcrafted feature engineering—where the feature
set typically relies heavily on amplitude characteristics. This
perhaps explains the growing interest in handcrafted feature
extraction techniques that do not capture amplitude information,
such as TDPSD, that have been demonstrated to outperform
conventional amplitude-reliant features in terms of accuracy and
robustness to confounding factors (Khushaba et al., 2016).

When applying Guided Grad-CAM on a noise input (one
where the target gesture is not present, as seen in Figure 8B),
the reported activation level is substantially lower, and in some
cases non-existent. When the standard deviation of the Gaussian
noise was increased by 33%, the network did not find any
features resembling any gesture. This is most likely due to the
fact that increasing the spread of the noise leads to a potentially
greater gap in value between two adjacent data-points (reduced
smoothness) fostering the condition for a more unrealistic
signal. One could thus imagine training a generative adversarial
network with the discriminative function based on the activation
level calculated by Guided Grad-CAM, and modulating the
difficulty by augmenting the signal’s amplitude. This could
facilitate training a network to not only be able to generate
realistic, synthetic EMG signal, but also have the signal resemble
actual gestures.

In contrast to the topological networks based on handcrafted
features, those based on the learned features appear as a long
flair with a loop. From Figure 9A, the learned features from
block 1 are concentrated in the left segment of the flare, and the
lower segment of the loop. From Figure 9B, the learned features

from block 2 were located slightly more central to the network
than the block 1 features. Additionally, a small subset of block
2 features appeared at the right segment of the flare, indicating
a second distinct source of information was being harnessed.
From Figures 9C-E, the features of block 3, 4, and 5 relocate
their concentration of features to converge in the center of the
network. Finally from Figure 9F, the concentration of all block 6
features lies in the center of the network. Thus, it can be seen that
learned features from the same block tend to cluster together and
remain close in the map to adjacent blocks in the network. The
only exception to this is from the first block to the second, where
substantially different features were generated by the latter. This
suggests that the first layer may serve almost as a preprocessing
layer which conditions the signal for the other layers.

4.3. Hybrid Features Visualization

The topological network generated from using both the
handcrafted and learned features (see Figure 10) followed two
orthogonal axes with the handcrafted features on one and the
learned features on the other. The middle of the graph (where
the two axis intercept) is where any nodes containing both
handcrafted and learned features are found. The vast majority
of these nodes are populated by features from block 6 and the
NLC, TSM and UNI functional groupings. No nodes in the graph
contained both handcrafted features and features from block 3,
suggesting that block 3 extracted features not captured by current
feature designs. Conversely, no learned features shared a node
with features from the FI family, suggesting that these features
may not have been extracted by the network.

While this topological network informs the type of
information encoded within each individual feature, it is
important to note that information can still be present but
encoded in a more complex way within the weights of the deep
network. This information flow can be visualized from the
regression graphs of Figure 12. Features from the SAP family are
more easily predicted within the early blocks whereas features
from the TSM and NLC family require the latter blocks of the
network to achieve the best predictions. Interestingly, while
features from the FI family did not share any nodes learned
features, one can see that the deep network is able to better
extract this type of information within the intermediary blocks.
This indicates (from Figures 10, 12) that, while frequency
information is not explicitly used by the ConvNet, this type
of information is nonetheless indirectly used to compute the
features from the latter blocks. An example of a feature for which
the ConvNet was unable to leverage its topology is the HIST
(see Figure 12).

4.4. Understanding Deep Features

Predictions

The topological network of Figure 10 showed that the type of
information encoded within the lower blocks of the ConvNet
tended to be highly dissimilar to what the handcrafted features
encoded. Interestingly, however, Figure 11 shows that the role
fulfilled by these features is similar. That is, both the handcrafted
and learned features (from the lower blocks) try to encode
general properties that can distinguish between all classes.
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FIGURE 11 | Confusion matrices using the handcrafted features and the learned features from the first, penultimate and last block as input and a LDA as the classifier.
The first column, denoted as All features, shows the confusion matrices when using all 64 learned features of Block 1, 5, and 6, respectively (from top to bottom) and
the set of UNI handcrafted features. The next five columns, denoted as Single Feature, show the confusions matrices for handcrafted feature examplars and from the
same network’s blocks but when training the LDA on a single feature. The subset of learned features was selected as representative of the typical confusion matrices

found at each block. The examplars of the handcrafted features were selected from each handcrafted features’ category (in order: SAP, FI, NLC, TSM, and UNI).

The confusion matrices obtained from training an LDA on a
single feature highlight this behavior (see Figure 11 for some
examples) as both the handcrafted features and the learned
features (before the last block) are able to distinguish between
gestures relatively equally. In contrast, the features extracted
from the last block (and to a lesser extent from the penultimate
block) have been optimized to be a gesture detector instead of
a feature detector. A clear visual of this behavior is illustrated
in Figure 11, where the main line highlighted in the confusion
matrices from block 6 was a single column (corresponding
to the prediction of a single gesture), instead of the typical
diagonal. In other words, during training, the neurons of the
final block are encoded to have maximum activation when a
particular class was provided in the input window and minimum
activation when other classes were provided; effectively creating
a one-vs.-all (OVA) classifier. This behavior is consistent with
the feature visualization literature found in image classification
and natural language processing, where semantic dictionaries or
saliency maps have depicted neuron representations becoming
more abstract at later layers (Simonyan et al., 2013; LeCun et al.,
2015). This also explains why the features from the last block
obtained the worst average accuracy when taken individually
while achieving the highest accuracy as a group (see Table 3).
That is, as each feature map of the last layer tries to detect a
particular gesture, its activation for the other gestures should

be minimal, making the distinction between the other gestures
significantly harder. The final decision layer of the network
can then be thought of as a weighted average of these OVA
classifiers to maximize the performance of the learned feature
maps. Note that in Table 3, the lower accuracies obtained from
the handcrafted features as a group were expected as each feature
within the same family provides similar type of information,
even more so than the learned features of the network (as seen
in Figures 6, 9, 10). Overall, the best performing handcrafted
feature set as a group was the features from the UNI family
despite the fact that they were the worst on average when alone.
This is most likely due to the fact that by definitions, features
within this family are more heterogeneous.

5. CONCLUSION

This paper presents the first in-depth analysis of features learned
using deep learning for EMG-based hand gesture recognition.
The type of information encoded within learned features and
their relationship to handcrafted features were characterized
employing a mixture of topological data analysis (Mapper),
network interpretability visualization (Guided Grad-CAM),
machine learning (feature classification prediction), and by
visualizing the information flow using feature regression.
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FIGURE 12 | Mean squared error of the regressions from learned features to handcrafted features, with respect to the number of blocks employed for the regression.
The features are grouped with their respective functional groups.
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As a secondary, but significant contribution, this work
presented ADANN, a novel multi-domain training algorithm
particularly suited for EMG-based gesture recognition shown
to significantly outperform traditional training on cross-subject
classification accuracy.

This manuscript paves the way for hybrid classifiers that
contain both learned and handcrafted features. An ideal
application for the findings of this work would rely on a mix
of handcrafted features and learned features taken from all
four extremities of the hybrid topological network, and at the
center to provide complementary, and general features to the
classifier. A network could then be trained to augment its
sensitivity to similar classes. For example, to alleviate ambiguity
between pinch grip and chuck grip, a learned feature that encodes
the one-vs.-all information of pinch grip could be included
into the original feature set or into an otherwise handcrafted
only feature set. Alternatively, handcrafted feature extraction
stages may be installed within the deep learning architecture by
means of neuroevolution of augmenting topologies (Chen and
Alahakoon, 2006), a genetic algorithm that optimizes the weights
and connections of deep learning architectures.

The main limitation of this study was the use of a single
architecture to generate the learned features. Though this
architecture was chosen to be representative of current practices
in myoelectric control and be extensible to other applications,
the current work did study the impact of varying the number
of blocks and the composition of these block on the different
experiments. Additionally, although the set of handcrafted
features was selected to be comprehensive over the sources
of information available from the EMG signal, explicit time-
frequency features, such as those based on spectrograms and
wavelet were not included in the current work, as they were ill-
adapted to the framework employed in this study. Furthermore,
an analysis including a larger amount of gestures should also be
conducted. Importantly, these results are presented for a single
1D electrode array, and may not be representative of larger 2D
arrays, such as those used in high density EMG applications.
Similarly, explicit spatio-temporal features, such as coherence
between electrodes, were not explored, and the convolutional
kernels were restricted to 1D (although as seen in Figure 8A the
network was still able to learn spatial information to a certain
extent). Omitting these type of complex features was a design
choice as this work represents a first step in understanding and
characterizing learned features within the context of EMG signal.
As such, using this manuscript as a basis, future works should
study the impact of diverse architectures on the type of learned
features and will incorporate spatio-temporal features (both
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The design of markerless systems to reconstruct human motion in a timely, unobtrusive
and externally valid manner is still an open challenge. Artificial intelligence algorithms
based on automatic landmarks identification on video images opened to a new
approach, potentially e-viable with low-cost hardware. OpenPose is a library that t
using a two-branch convolutional neural network allows for the recognition of skeletons
in the scene. Although OpenPose-based solutions are spreading, their metrological
performances relative to video setup are still largely unexplored. This paper aimed
at validating a two-cameras OpenPose-based markerless system for gait analysis,
considering its accuracy relative to three factors: cameras’ relative distance, gait
direction and video resolution. Two volunteers performed a walking test within a gait
analysis laboratory. A marker-based optical motion capture system was taken as a
reference. Procedures involved: calibration of the stereoscopic system; acquisition
of video recordings, simultaneously with the reference marker-based system; video
processing within OpenPose to extract the subject’s skeleton; videos synchronization;
triangulation of the skeletons in the two videos to obtain the 3D coordinates of the joints.
Two set of parameters were considered for the accuracy assessment: errors in trajectory
reconstruction and error in selected gait space-temporal parameters (step length, swing
and stance time). The lowest error in trajectories (~20 mm) was obtained with cameras
1.8m apart, highest resolution and straight gait, and the highest (~60 mm) with the
1.0m, low resolution and diagonal gait configuration. The OpenPose-based system
tended to underestimate step length of about 1.5 cm, while no systematic biases were
found for swing/stance time. Step length significantly changed according to gait direction
(p = 0.008), camera distance (p = 0.020), and resolution (o < 0.001). Among stance and
swing times, the lowest errors (0.02 and 0.05 s for stance and swing, respectively) were
obtained with the 1 m, highest resolution and straight gait configuration. These findings
confirm the feasibility of tracking kinematics and gait parameters of a single subject in
a 3D space using two low-cost webcams and the OpenPose engine. In particular, the
maximization of cameras distance and video resolution enabled to achieve the highest
metrological performances.

Keywords: movement measurement, gait analysis, computer vision, artificial intelligence, markerless
motion capture
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3D Gait Analysis With OpenPose

INTRODUCTION

The measurement of human motion represents one of the
most interesting and challenging topics of metrology. Optical
motion tracking solutions can be broadly categorized into
marker-based and markerless systems (Winter, 1990; Zhou and
Hu, 2008). Mostly represented by the first group, the modern
technological standards ground on established measurement
principles and techniques: the position of joints and the
orientation body segments are obtained through the three-
dimensional localization of passive (or less often, active) markers,
fixed on subjects’ body and captured by a calibrated multi-camera
stereophotogrammetric video system (Cappozzo et al., 2005).
The human body is a complex, self-occluding and only partially
rigid entity (Miindermann et al., 2006). Thus, instead of directly
tracking human body pose, these systems work by identifying
common object features in consecutive images (fiducial points
or landmarks), which are used to track the motion of a series of
rigid bodes connected by rotational joints (Winter, 1990). This
solution provides the best metrological performances, in terms of
accuracy in the markers’ localization (usually in the order of 10ths
of millimeters), repeatability and frequency of measurements
(Ma'touq et al.,, 2018). Owing to their cost, complexity and
required personnel to run the recording and place the markers
on specific anatomical landmarks, marker-based systems are
mainly used in specialized laboratories for clinical/rehabilitation
applications or entertainment and digital animation (Winter,
1990; Cappozzo et al., 2005).

With the aim of limiting these drawbacks, in the last decades
the interest toward markerless solution has grown rapidly, trying
either to reduce the cost of technology or to simplify the process
(Abbondanza et al., 2016; Ronchi and Perona, 2017; Colyer et al.,
2018; Mizumoto et al., 2018; Tanaka et al., 2018; Tarabini et al.,
2018a; Clark et al., 2019). Markerless systems are based on four
main components, namely a camera system, a body model, the
image features used and the algorithms that determine shape,
pose and location of the model itself (Colyer et al., 2018). Two
families of camera systems can be used, differing by whether
or not they produce a so-called “depth map,” i.e., an image
where each pixel describes the distance of a point in the scene
from the camera. Probably the best-known depth-sensing camera
systems (often referred to as RGB-D cameras as they capture
both color and depth) are Microsoft Kinect, Intel Realsense,
and StereoLabs Zed. These solutions are particularly effective for
real-time full body pose estimation in interactive systems and
videogames (Shotton et al., 2011; Ye et al., 2013), but they also
have limitations that hinder their wide application in clinical or
biomechanical setting: short-range, inoperability in bright sun
light, and potential interference between multiple sensors (Colyer
et al., 2018). In addition, the accuracy in motion tracking is
still lower than marker-based systems, which actually remain the
gold standard.

Recently, novel artificial intelligence algorithms based on
automatic landmarks identification on video images (computer
vision) opened to a new approach for markerless motion capture,
which became potentially feasible with low-cost hardware (Cao
et al.,, 2016; Colyer et al., 2018; Clark et al, 2019). In that,

machine learning techniques were exploited to identify the
nodes of a skeletal structure describing the posture of a
human subject within a given image frame. As the associated
computational burden made this method practicably unviable,
the process was optimized by a research group from the Carnegie
Mellon University, who released a processing framework called
OpenPose (Cao et al., 2016). OpenPose takes as input color
images from simple web-cameras and using a two-branch
convolutional neural network (CNN) produces as output
confidence maps of keypoints, and affinity for each keypoint pair
(that is, belonging to the same skeleton). This way, OpenPose
allows for the recognition of skeletons of multiple persons in
the same scene. Some Authors adopted these OpenPose-based
solutions as a functional block of their research: an example
is Huang et al. (2017), in which OpenPose was used as an
initialization step for the reconstruction of 3D human shape;
a different approach is presented in Mehta et al. (2017), in
which a 3D skeletal model was obtained starting from a single
planar image.

Although promising results were obtained, the design of
markerless systems able to reliably reconstruct human motion in
a timely, unobtrusive and externally valid manner is still an open
challenge (Colyer et al., 2018). Among the fast-growing studies
on the application to various case studies, only a few focused
on the accuracy of subjects’ three-dimensional reconstruction:
the performance of OpenPose in the computation of the lower
limbs angles were analyzed with a single camera (Gu et al,
2018), and compared to a multi-camera marker based system.
However, to the best of our knowledge, a targeted metrological
characterization of data processing with multiple viewpoints
is still missing in the case of automated walking analysis. At
present, example of OpenPose applications for the extraction
of gait parameters are scant. We hypothesize that the cameras
resolution and positioning, as well as the walking direction (i.e.,
angle with respect to cameras) could affect the accuracy and
thus feasibility of such systems in the clinical setting. Thus,
this paper aims at describing and validating an OpenPose-based
markerless motion tracking system for gait analysis against a
gold-standard commercial marker-based motion capture system,
discussing the extent to which the aforementioned factors affect
the tracking quality.

METHODS

Experimental Design and Participants

This observational case-series study was designed to determine
the metrological performance of the stereoscopic system featured
by OpenPose. The study involved two healthy volunteers who
performed a walking test at comfortable walking speed within
an instrumented gait analysis laboratory. The two participants
were both 24-years-old male adults, with the following heights
and body masses: 1.73 m and 61 kg, 1.82 m and 75 kg. They wore
minimal, close-fitting clothes. Participants were instructed about
the aims and benefits of the study, and they both signed a written
informed consent prior to laboratory sessions. As this study
did not involve any clinical intervention or functional/physical
evaluation, the approval from the Ethics Committee was not
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FIGURE 1 | Laboratory setup, schematic (left) and pictorial (right) view.
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required. The study was carried out in accordance with the 1964
Helsinki declaration and its later amendments.

The effect of three factors potentially influencing the accuracy
of the proposed system were considered:

1. Cameras’ relative distance: cameras were positioned 1 m and
then 1.8 m apart;

2. Gait direction, straight or diagonal, defined by means of visual
references positioned along the path (the same for all the tests
repetitions). In the second, additional sources of error may
arise from the occlusions between body parts; subjects walked
on a footboard and the walking direction was perpendicular to
the cameras’ connecting axis.

3. Video resolution: high (1,312 x 736 pixel), and standard (640
x 480 pixel). Both resolutions were obtained by scaling the
camera native resolution with a cubic interpolation, this way
we avoided the repetition of recording sessions.

Given that each factor assumed two levels, 2* (8) configurations
were possible. Each test configuration was replicated 3 times per
each volunteer; 48 tests were therefore performed.

Measurement System and Equipment

Two full-HD webcams (PC-W1, Aukey, Shenzhen, China) with
a native image resolution of 1920 x 1080 pixels and a 1/2.7”
CMOS sensor were used. Cameras acquired images at 30 Hz, with
contrast and brightness automatically selected by the software
provided by the manufacturer. Cameras were fastened on an
aluminum bar perpendicular to the strait gait direction at a height
of 2.3 m, framing the subject frontally.

A stereophotogrammetric motion analyser (Smart-D,
BTS Bioengineering, Milano, Italy) equipped with eight
infrared cameras sampling at 100 Hz was used as reference
measurement system. The system was calibrated according to the
manufacturer’s specification, and the error in markers’ location
reconstruction was 0.2 mm on a working volume of 3 x 2 x 2m.
Figure 1 shows the implemented measurement infrastructure.

Procedures
The measurement process can be summarized as follows:

1. Calibration of the stereoscopic system using planar patterns
(Zhang, 2000; Hartley and Zisserman, 2003). Cameras
calibration was performed within Matlab (v2018b, The
Mathworks Inc., Natwick, USA) by means of the Camera
Calibration Toolbox. A black and white checkerboard whose
geometry is known (70 x 50cm) is framed by the two
cameras while spanning the checkerboard into the working
volume. The Toolbox returns an estimate of the cameras
internal and external parameters (i.e., lens distortion, camera
relative orientation and position). To get a calibration
metric, the reprojection error is computed by projecting
the checkerboard points from world coordinates into image
coordinates. Mean reprojection error was 0.18 pixels in
the 1-m distance configuration, and 0.12 pixels in the
1.8 m configuration.

2. Acquisition of two video recordings, a and b (one per each
webcam), using the cameras of the stereoscopic system. Each
recording allowed to collect between four and five steps,
according to the laboratory dimension, and lasted 4.5-6.5s.

3. Simultaneous recording using the reference, marker-based
optical system. Twenty-four reflective markers were placed
on the subject in the following anatomical landmarks (see
Figure 2): sternum and sacrum; right and left acromion,
medial and lateral humeral epicondyles, radius and ulnar
styloid process, antero-superior iliac spines, greater trochanter,
medial and lateral femoral epicondyles, medial and lateral
malleoli. This marker set was adapted from standard protocols
used in clinical gait analysis (Davis et al., 1991; Zago et al,,
2017), and was designed to match the skeletal configuration
of OpenPose (Figure 2). To do so, wrists, elbows, knees and
ankles joint centers were located at the midpoint (average) of
medial and lateral markers. Hip joint centers were computed
using regression equations as prompted by the International
Society of Biomechanics standards (Wu and Cavanagh, 1995).
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FIGURE 2 | Stick diagrams as returned by the marker-based optical system
(top, left) and OpenPose model (top, right); corresponding 3D reconstruction
of the skeletal structures during walking (bottom).

4. Video processing within OpenPose to extract the skeleton S of
a (single) subject in each video recording (S, and Sy).

5. Synchronization of the two videos (see paragraph Data
Synchronization and Spatial Alignment).

6. Triangulation of the skeletons S, and S;, using the calibration
outcome (step 1) to obtain the three-dimensional coordinates
of the joints and alignment between coordinate system of
step 4.

7. Computation of gait parameters (see paragraph Target
Parameters Computation) based on the three-dimensional
coordinates obtained.

8. Evaluation of the OpenPose accuracy for each single test
according to the metrics defined in the following paragraph.

9. Evaluation of the dependence of accuracy from the factors’
levels using a 3 x 2 Analysis of Variance.

Data Processing
A set of 18 2D keypoints coordinates for body pose estimation
(in pixels) are returned by OpenPose from video images; 2D

keypoints are located in relevant body landmarks (such as left
hand, right hand, face, etc.) and were used to determine the
3D Cartesian coordinates, positioning the skeletal model of
the subject in the space with respect to reference system of
one camera. This operation was performed using the Matlab
Computer Vision System Toolbox (v2018b, The Mathworks Inc.,
Natwick, USA), obtaining the 3D stereoscopic triangulation of
the camera pixel coordinates, which included:

e the intrinsic calibration parameters of each camera,
for the assessment of focal lengths, camera centers and
distortion parameters;

o the extrinsic calibration parameters, accounting for the relative
position of cameras;

e the undistortion of pixel coordinates;

e the application of a functional triangulation for each of the
2D keypoints for the identification of the corresponding 3D
coordinates in the epipolar plane.

The resulting output was the 3D skeletal model of the subject, as
shown in the bottom-right panel of Figure 2.

Prior to further processing, coordinates returned by both the
OpenPose and the marker-based reference system were filtered
using a zero-lag, 2nd order Butterworth filter with a cut-off
frequency of 10 Hz.

Data Synchronization and Spatial Alignment

Since a physical trigger for the synchronization of the cameras
with the motion capture system was not available, we asked the
subjects to perform a sequence of repeated actions (to beat the
right hand on the right hip). The synchronization procedure
was repeated before each single test and it was achieved by
overlapping the time series of the distance between the right wrist
and right hip markers returned by the two systems. Prior to do so,
the signals were both downsampled (cubic splines interpolation)
to 30 Hz. Drift errors due to different sampling rates (100 Hz for
the marker-based system, 30 Hz for the webcams) were negligible
given the test duration of a few seconds.

The spatial alignment of the reference systems completed the
measurement systems calibration: the 3D coordinates provided
by the triangulation of OpenPose data were originally expressed
in a reference system located in the optical center of one of the
cameras, oriented as the camera itself. The marker-based system
returns 3D coordinates resolved in global (laboratory) reference
system fixed on the ground at the center of the working volume.
These two coordinate systems were moved to a new, coincident,
reference frame, positioned midway between the two cameras,
with the origin at the ground level and with the axes directed
as those of the original marker-based system. The alignment
procedure was taken from Kabsch (1976) and involved the initial
rotation of the OpenPose reference system, followed by the
translation toward the desired origin.

Target Parameters Computation

Within the OpenPose-based system, the definition of the gait
phases relies on the recognition of the foot condition—stance or
swing (Saggin et al., 2013). The distance between two successive
stance statuses represents the target measurement. In our case,
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FIGURE 3 | Extraction of gait phases from the trajectories of ankle nodes’ velocity, explanatory example taken from a straight gait test. OP, OpenPose-based system;
MB, marker-based optical system.

the processing structure was taken from Tarabini et al. (2018b)
and involved the analysis on the velocities of the nodes located
at the ankle level (Figure 3). Given a window of n elements,
the magnitude of the velocity (v) of the two ankle nodes was
computed as:

v=f- 1_[ (i — xim1)? + 1_[ (}’i —y)2 + 1_[ (zi — zi—1)?
i=1 i=1

i=1

where f is the sample frequency (30Hz). To minimize the
influence of noise and ease foot status detection, a moving
average lowpass filter was then applied on v, with a period of
12 samples (with a 30 Hz sampling frequency, the first zero
of the filter transfer function is at 1.25Hz). Two thresholds
on the filtered velocity signal of the ankle node were set
for the identification of the foot status: HystLowSpeed and
HystHighSpeed. These were automatically obtained for each
subject from a complete gait test. After an initial sorting of all
velocities assessed from the test and reorganized in the form of a
histogram, the values were computed as:

e HystHighSpeed: upper threshold limit, as the value
corresponding to 65% of the sorted velocities: when the
joint’s filtered speed was higher than this value, then the foot
was considered in the swing state (1).

e HystLowSpeed: lower threshold limit, equal to 80% of
HystLowSpeed, to avoid erroneous swing’s end caused by small
variations induced by residual noise components. In this case,
the foot was considered in the stance state (0).

To get correct gait parameters’ values, it is essential to consider
complete steps only. For such a reason, four cases were analyzed:

1. Foot enters the considered acquisition window in swing
state (1) and exits still in swing state (1) (if the acquisition

contained at least a complete step, first and last step were
not considered).

2. Foot enters the considered acquisition window in stance
state (0) and exits in swing (1) state (the last step was
not considered).

3. Foot enters the considered acquisition window in swing
state (1) and exits in stance state (0) (the first step was
not considered).

4. Foot enters in the considered acquisition window in stance
state (0) and exits still in stance state (0) (if the acquisition
contained any number of steps, they were all considered).

Evaluation of Accuracy

In each test, the accuracy of the proposed system was evaluated
in terms of two sets of parameters, retrieved from the same
recorded dataset:

e Error in the reconstruction of the trajectories, computed
as the Root Mean Square (RMS) distance between the
trajectories of selected, corresponding skeletal nodes. In
doing so, the most similar physical fiducial points were
considered: wrists, elbows, knees and ankles. Indeed, the
reference and the proposed skeletal structures do not
correspond perfectly. Thus, a minimization procedure was
used to align the thirteen landmarks of the skeleton,
and a roto-translation of the trajectories obtained with
the OpenPose-based system was performed to align them
to the correspondent reference (marker-based coordinates).
The complete procedure is described in Abbondanza et al.
(2016) and Tarabini et al. (2018b) and it is based on
the calculation of the Euclidean distance in each frame
between correspondent keypoints of the two systems. This
method was already used to synchronize trajectories acquired
with different measurement systems, and it proved to be
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FIGURE 4 | Sample trajectories of a landmark (position of the right ankle) obtained from the reference marker-based (black) and markerless, OpenPose-based (blue
and red) systems (top); corresponding RMS distance (bottom).

unbiased also in presence of offset between the skeletal the following analysis of variance (ANOVA) model design

markers (Abbondanza et al., 2016; Tarabini et al., 2018b). (Moschioni et al., 2013):
e Error in gait space-temporal parameters: step length
(distance between consecutive heel-strikes position), stance £ =po+ Bix1 + Baxa + Baxs + Bupxixa + -+ €

and swing time were extracted (Perry and Burnfield,
2010). The RMS error with the correspondent parameters
computed with the reference marker-based system
was computed.

where & is the dependent variable, namely the skeletal node
position error (RMS) or the error of one of the gait analysis
parameters (step length, stance and swing time), and x; are the
independent variables (previously referred to as factors). Sy is the
global tests average, f; and B, are used to describe the effect
Statistical Analysis of the independent variables and their interactions (in particular,
The effect of the three factors (cameras’ distance, gait direction,  gait direction x camera distance interaction was assessed); €
and resolution) on the measurement error was assessed using  is the residual, namely the difference between the actual data
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TABLE 1 | Root Mean Square errors measured at different skeleton nodes as a
function of gait direction, camera distance and video resolution.

# Gait type Straight gait Diagonal gait

Distance (m) 1.8 1.8 1.0 1.0 1.8 1.8 1.0 1.0
Resolution LR HR LR HR LR HR LR HR

1 Sternum 252 168 411 221 658 540 69.5 60.1
2 Shoulder, left 323 200 422 265 462 455 528 512
3  Shoulder,right 27.5 17.7 372 221 421 39.2 483 412
4 Elbow, left 282 183 49.8 246 699 616 69.1 583
5  Elbow, right 272 188 50.3 279 627 744 485 446
6 Wrist, left 233 171 451 229 516 51.8 79.1 540
7 Wrist, right 254 161 486 223 65.1 669 56.1 482
8  Hip, left 33.0 219 485 290 799 811 675 757
9  Hip, right 346 234 501 414 795 825 716 735
10 Knee, left 309 234 600 292 537 530 587 554
11 Knee, right 339 248 396 199 584 57.6 637 483
12 Ankle, left 395 261 622 240 69.1 687 874 1033
13 Ankle, right 358 262 345 214 635 627 649 61.3
- Mean 305 208 469 256 621 615 644 596
- SD 46 85 79 54 111 126 111  16.0
Values in mm.

TABLE 2 | Root Mean Square errors measured between the reference
(marker-based) and OpenPose-based systems on selected spatio-temporal gait
parameters.

Gait type Straight gait Diagonal gait
Distance (m) 1.8 1.8 1.0 1.0 1.8 1.8 1.0 1.0
Resolution LR HR LR HR LR HR LR HR

Step length cm) 326 153 7.42 1.93 245 166 325 1.23
Swing time (s) 004 005 005 002 003 003 003 006
Stancetime(s)  0.05 005 005 005 007 007 0.05 0.08

behavior and the model prediction. A significance alpha level of
5% was implemented throughout.

In addition, Bland-Altman plots were used to graphically
compare gait analysis parameters obtained with the reference and
OpenPose-based systems.

RESULTS

Figure 4 shows an explanatory plot of the original joints
coordinates and of the corresponding measurement error over
time. Overall measurement errors (RMS) are reported in
Tables 1, 2, and graphically summarized in the boxplots of
Figure 5; Table 3 displays the relevant statistic: all factors (p
< 0.01) and interaction (p < 0.001, see Figure 6) resulted to
be statistically significant relative to trajectories reconstruction
error. The lowest error (about 20 mm) was obtained with the
1.8 m, highest resolution and straight gait configuration, and the
highest (>60 mm) with the 1.0 m, low resolution and diagonal
gait configuration.

Bland-Altman plots displaying gait parameters comparison
are shown in Figure7: the proposed system tended to
underestimate step length of about 1.5 cm, while no systematic
biases were found for swing/stance time. Step length significantly
changed according to gait direction (p = 0.008), camera distance
(p = 0.020) and resolution (p < 0.001, see Table 3). Consistently
with trajectories’ RMS, the lowest error in step length (1.53 cm)
was obtained with the 1.8 m, high resolution and straight gait
configuration. Among stance and swing times, only for the first
emerged a significant factor, i.e., camera distance (p = 0.038),
and the lowest errors (0.02s and 0.05s for stance and swing,
respectively) were obtained with the 1m, high resolution and
straight gait configuration.

DISCUSSION

The findings of this work confirm to the feasibility of tracking
kinematics and gait parameters of a single subject in a 3D space
using two low-cost cameras and the OpenPose engine. The
accuracy of markerless motion tracking depends on three factors:
the occlusions between body parts, cameras position/orientation
and video resolution; considering the best combination of
the considered factors (cameras distance 1.8 m, maximum
resolution, and no occlusions due to straight walking) the lowest
error in 3D trajectories reconstruction was about 20 mm, the
lowest error in swing/stance time was 0.03s and 1.23cm in
step length. Values are comparable with intra-subject variability
in clinical gait analysis investigations (Ciprandi et al., 2017;
Temporiti et al., 2019), thus encourage a preliminary adoption of
OpenPose-based markerless solutions in this setting. However,
it should be noticed that a different configuration (smaller
camera distance, lower resolution or diagonal gait direction) can
negatively affect the results.

Accuracy

In our optimal configuration, average markers RMS was about
20mm. This can be considered a notable result, as it is only
slightly higher than the error reported in a previous study (about
15mm), where however eight cameras (fs = 120Hz) and a
subject-specific, way more complex anatomical model were used
(Corazza et al., 2010). Dunne et al. reported an error of ~50 mm
in reconstructing foot contact position with a single camera
system (Dunn et al., 2014).

While several studies compared the outcome of an OpenPose
markerless system to a traditional marker-based one (Clark
et al,, 2019), the majority focused on joint angles (Colyer
et al., 2018) and to the best of our knowledge, none of them
provided gait analysis parameters. Thus, a direct evaluation of
the performances of our system is not straightforward. As a
reference, Kinect-based markerless systems returned a lower
accuracy of 2.5-5.5cm in step length and a slightly lower
accuracy of 60-90 ms in stance/swing time (Latorre et al., 2018).
Previously, Barone et al. obtained comparable or slightly better
results (accuracy of 3.7cm for step length and 0.02s for step
duration) but they combined a markerless system with the signal
coming from the accelerometer embedded in a smartphone
(Barone et al., 2016).
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TABLE 3 | Statistical outcomes from the ANOVA computed on trajectories’ RMS
and on gait spatio-temporal parameters Root Mean Square errors.

Variable Gait Camera Resolution Direction
direction distance * distance
F P F P F P F p
RMS 392.39 <0.001 8.11 0.005 445 <0.001 19.6 <0.001
Steplength  7.84 0.008 584 0.020 28.46 <0.001 6.09 0.018
Stancetme 1.45 0.235 324 0.079 457 0.088 0.29 0.591
Swing time  10.55 0.002 0.06 0.811 122 0275 0.05 0.817

Statistically significant values are in bold.

The resolution of the stereoscopic system is not constant,
being dependent on the physical distance between the
subject and cameras. The method performances worsen
as the subject distance from the sensor increases: errors
presented in these work are average values, both summarizing
the ideal situation in which the subject is filling the two
image planes and the situation in which the subject
is far from the camera with a less favorable optical
sensor resolution.

Effect of Camera Setup
Occlusions represented the most detrimental factor emerging
from the comparison between gait types. The accuracy of results
obtained in the diagonal gait tests was always lower than those
obtained with a straight gait. In the 3D reconstruction all
the other factors are almost negligible when occlusions are
present. When body parts are occluded, OpenPose provides
an estimation of the hidden landmarks, introducing an error
that propagates in the 3D reconstruction. The problem is
common with all the vision-based measurement systems and
can be solved using more than 2 cameras simultaneously
(most optoelectronic systems use from 6 to 12 cameras)
so that each marker or joint is seen from more than
2 sensors.

Increasing the camera distance (from 1.0 to 1.8m) in
straight gait tests improved the accuracy of the reconstruction

by 22.5%. Cameras relative distance and orientation
influences the uncertainty of the triangulation, affecting the
dimensions of the volume where the triangulated point can
be placed. By positioning the two cameras further apart,
the framed person is seen from a different perspective and
the cameras are more convergent. This leads to a decrease
of the capture volume where the triangulated point can be
placed, but also a lower uncertainty in the triangulation
process. In short, the higher the cameras distance, the
narrower the working volume—but characterized by a
higher accuracy.

When increasing video resolution, the error decreased of
about 46% (1.0m camera distance) and 32% (1.8 m camera
distance). By increasing the video resolution, the uncertainty in
the identification of the landmarks coordinates on the 2D images
decreases, and the 3D reconstruction results more accurate.
This comes at a cost: the main drawbacks are either higher
processing time, to a first approximation linearly dependent
to the number of pixels in the image, and more expensive
hardware required to data processing. The spatial resolution
of the system is not constant in the observed volume: the
pixel to distance conversion factor depends on the position
of the subject with respect to the cameras; consequently,
the optical resolution worsen when the subject is far and
occupies a small portion of the image. The problem can
be solved by putting more cameras surrounding the subject
and observing the motion from different directions, as in
common optoelectronic systems. Since in our test the subject
distance from the cameras varied approximately between 2 and
6m, errors numerical values are the average between optimal
conditions (in which the subject fills the image) and worst ones.
Consequently, in static applications when the subject is not
moving, we can expect better performances with respect to values
reported here.

Limitations and Perspectives
This pilot study was limited to two healthy subjects; a
larger population could be considered in further research
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to address, for instance, the effect of body size on the
tracking accuracy, as well as potential effects of clothes. It is
advisable that future research lines address the metrological
characterization of multi-camera systems, which will enable
a complete 360 degrees view of the subject. In this, the
occurrence of occlusions will be minimized, and a more accurate
reconstruction is expected, at the expenses of a more complex
hardware infrastructure.

CONCLUSION

In this work, a metrological characterization of OpenPose
processing in the context of gait analysis by mean of low-cost
stereoscopy was presented. Intentionally, no changes were made
to the original software interface, working instead on the test
configuration and on the influence factors in the metrological
setup. Thus, all the insights concern the actual processing
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algorithms, not considering improvements deriving from the
optimization or tuning of the code for a specific task.

Although future improvements in OpenPose performance are
expected, both in terms of accuracy in landmarks identifications
and processing speed, the proposed analysis considered general,
“external” factors that will remain practically valid. In particular,
we showed that the maximization of cameras distance and
video resolution enabled to achieve the highest metrological
performances. Therefore, system accuracy could further be
improved by reducing the presence of occlusions not only
through a better joint location prediction in the source images,
but also multiplying the number of cameras, thus obtaining a
perspective closer to the straight walking condition.

This work points the way to further applications in
environments where a video-based acquisition would be
particularly useful, i.e., those where a quick and economical
evaluation by non-expert operators is required.
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Introduction: Parkinson’s disease hinders the ability of a person to perform daily
activities. However, the varying impact of specific symptoms and their interactions on a
person’s motor repertoire is not understood. The current study investigates the possibility
to predict global motor disabilities based on the patient symptomatology and medication.

Methods: A cohort of 115 patients diagnosed with Parkinson’s disease (mean age
= 67.0 £ 8.7 years old) participated in the study. Participants performed different
tasks, including the Timed-Up & Go, eating soup and the Purdue Pegboard test.
Performance on these tasks was judged using timing, number of errors committed,
and count achieved. K-means method was used to cluster the overall performance and
create different motor performance groups. Symptomatology was objectively assessed
for each participant from a combination of wearable inertial sensors (bradykinesia,
tremor, dyskinesia) and clinical assessment (rigidity, postural instability). A multinomial
regression model was derived to predict the performance cluster membership based on
the patients’ symptomatology, socio-demographics information and medication.

Results: Clustering exposed four distinct performance groups: normal behavior, slightly
affected in fine motor tasks, affected only in TUG, and affected in all areas. The statistical
model revealed that low to moderate level of dyskinesia increased the likelihood of being
in the normal group. A rise in postural instability and rest tremor increase the chance
to be affected in TUG. Finally, LEDD did not help distinguishing between groups, but
the presence of Amantadine as part of the medication regimen appears to decrease the
likelihood of being part of the groups affected in TUG.

Conclusion: The approach allowed to demonstrate the potential of using
clinical symptoms to predict the impact of Parkinson’s disease on a person’s
mobility performance.

Keywords: mobility, motor impact, Parkinson, clustering, K-means
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INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disease
characterized by both motor and non-motor symptoms,
including tremor, postural instability, muscle rigidity, and
bradykinesia or akinesia (Sveinbjornsdottir, 2016). These
symptoms affect the ability of patients to perform activities of
daily living (ADL) to a varying extent. There is currently no cure

for PD, and symptoms are chiefly managed with medication.
While the treatment goal is to maximize the person’s ability to
perform everyday tasks, the impact of each symptom on ADL,
and most importantly, of the combination of symptoms, is not
well-understood. Past studies have tried to identify different
phenotypes in PD to help with this issue, and to guide diagnosis,
prognosis, and treatment (Eisinger et al, 2019). These studies
identified a tremor dominant subtype and a postural instability
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Not meeting inclusion criteria (n = 47)
Declined to participate (n = 30)
Other reasons (n = 56)

Excluded (n = 3)

Presence of an unrevealed exclusion
criteria (n = 1)
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Assessed for eligibility by
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(n = 254)
L ]
-
L ]
L ]
Y
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L ]
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participants
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FIGURE 1 | Study inclusion flowchart.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

131

March 2020 | Volume 8 | Article 189


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Lebel et al.

Predicting Motor Performance From Symptomatology

gait disorder group (Foltynie et al., 2002). Some studies also
recognize an indeterminate subtype to PD, while others propose
further sub-groups such as axial dominant, appendicular
dominant, and rigidity dominant (Eisinger et al., 2017). In other
words, classical approaches for PD phenotyping is mainly based
on an a priori hypothesis of the importance of the dominant
motor symptom on the patient’s ability to perform ADL. Yet,
patients with PD are often affected by more than one symptom.
Combination of symptoms may exacerbate mobility issues or
limit the efficacy of compensatory strategies. Furthermore, recent
studies have outlined the impact of non-motor symptoms on the
patients’ ability to perform various ADL (Berganzo et al., 2016).
The heterogeneity of the clinical profiles associated with PD
therefore result in an unclear relationship between the traditional
PD subgroups and the patients’ proficiency in ADL. Thus, it
appears desirable to revise this classification to allow a better
correspondence with the treatment goal. One way to do so is
to redirect the sub-typing approach toward an understanding
of the functional impact of a patient’s symptomatology on
its global motor repertoire. Functional impact of a disease is
traditionally assessed using questionnaires (Shulman et al.,
2016). However, self-reported questionnaire are inclined to over
or under-estimation of the patient’s ability to perform activities
and may suffer from flooring effect, as recently demonstrated
by Regnault et al. (2019) for early Parkinson’s disease. In an
attempt to shed light on this type of issue, our lab has been
working on developing methodologies to assess and objectively
quantify symptoms and motor skills performance to better
understand the relationship between PD symptoms and motor
skills performance. We herein set to explore the capacity to
assess the impact of the different symptoms on the motor skills
repertoire in a global fashion. Specifically, this study aimed at: (1)
exploring motor skill performance profiles in patients with PD;
(2) identifying the factors (in our case symptoms) influencing
the affiliation with a specific motor performance profile; and (3)
verifying the possibility to create a model allowing to predict the
motor performance profile based on the symptomatology.

METHODS

Participants

Data were extracted from a cohort of 121 patients diagnosed
with PD. These participants were recruited in collaboration with
the Quebec Parkinson Network and the Movement Disorders
Clinic of the University of Calgary. Inclusion criteria consisted
of a valid PD diagnosis given by a neurologist based on the UK
Parkinson’s Disease Society Brain Bank clinical diagnosis criteria
(Hughes et al., 1992). Patients requiring assistance to walk, having
an orthopedic condition that could hinder the performance of the
tasks, as well as patients with a psychosis, were all excluded from
the study. Previous publications using the data bank focused
on the concomitant presence of cardinal symptoms of PD with
dyskinesia (Goubault et al., 2018), as well as the influence of
dyskinesia on motor performance (Goubault et al., 2019). For
the present study, six additional participants were excluded as
detailed in Figurel. As a result, a sample of 115 patients,
described in Table 1, was considered for the present study.

TABLE 1 | Study participants description.

Healthy elderly Parkinson’s disease p
(n = 69) patients (n = 115)
GENERAL
Gender (% male) 56.5% 58.3% P =0.8779
Age (yr) 68.1+£7.7 67.0 +£8.7 P =0.4246
Height (m) 1.67 £0.09 1.69 +0.10 P =0.4804
Weight (Kg) 71.3 £ 145 69.9 + 13.1 P =0.6188
BMI 253+ 3.9 245+ 4.0 P =0.1928
MMSE (/30) 286+ 1.5 27.3+25 P < 0.001
DISEASE INFO
H&Y - 1:22.6% 3: 15.7% -
2:53.9% 4:7.8%
UPDRS gait - 1.1£09 -
UPDRS freezing of gait = 0.3+0.8 -
UPDRS postural stability - 1.1+£10 -
UPDRS posture - 08+1.0 -
UPDRS global - 11+1.0 -
spontaneity of
movement
UPDRS Postural tremor - 0.5+09 -
UPDRS rest tremor - 0.2+0.6 -
UPDRS rigidity - Arms: 0.7 £ 0.7 -
Legs: 1.1 £0.7 -

Years since diagnosis - 10.5+£56.8 -
MEDICATION
LEDD - 1029.1 £ 509.2** -
Levodopa (%) - 100* -
Agonist (%) - 32.7* -
Amantadine (%) - 39.8* -
COMT or MAOB (%) - 49.6* -

BMI, Body Mass Index; MMSE, Mini-Mental State Exam,; H&Y, Hoehn and Yahr
scale; UPDRS, Unified Parkinson’s Disease Rating Scale; LEDD, Levodopa Equivalent
Daily Dose.

“Missing medication profile for 2 participants; ~Missing info for 6 participants.

A second group of participants composed of 69 age and
gender-matched community-dwelling elderly (43.5% female, age
= 68.1 £ 7.7 years old, BMI = 25.3 £ 3.9) was also recruited
through the Center de Recherche de I'Institut universitaire de
gériatrie de Montréal (CRIUGM) to provide control data. The
study protocol was approved by both the CRIUGM and the
Conjoint Health Research ethics boards, and all participants
provided written informed consent.

Experimental Protocol

The experimental protocol has been described in detail
previously (Goubault et al., 2018, 2019). In brief, participants
were tested on their regular medication and equipped with
an inertial suit containing 17 sensors (IGS-180, Synertial Ltd,
UK), allowing the capture of the entire body kinematics. Each
sensor is composed of a 3-axis accelerometer, measuring linear
acceleration, a 3-axis gyroscope, assessing angular velocity, and
a 3-axis magnetometer. Upon arrival to the lab, participants
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took their medication and were asked to fill-up a socio-
demographic questionnaire as well as cognitive and quality of
life questionnaires. The study’s objective data acquisition process
was then divided into two blocks of ADL, nested between blocks
of symptoms evaluation. The chosen ADL included a variety of
activities corresponding to a wide range in velocity and amplitude
of motion (upper and/or lower limbs), in order to represent the
complete motor repertoire. Tasks were selected from a variety
of ADL and instrumented ADL scales (Klein and Bell, 1982;
Fahn et al., 1987; Lozano et al., 1995; Boraud et al., 2001; Health
Canada Interdepartmental Committee on Aging Seniors Issues,
2001; Krystkowiak and Defebvre, 2002; Guttman et al., 2003;
Health Canada/Parkinson Society Canada, 2003; Goetz et al.,
2008; Colosimo et al., 2010; Carignan et al., 2011). Chosen tasks
included eating soup, cutting and eating a piece of apple, taking
pills, drinking a glass of water, counting money, reading a book
out loud, reaching to grab an object on the ground, rising from a
chair, walking, turning, sitting down (Timed-Up and Go, TUG),
and the Purdue Pegboard task. Participants were cued to initiate
the task when a light, positioned in front of them, turned on. For
this specific study, a subset of tasks was considered in order to
limit the degrees of freedom in the analysis. The selected tasks
included the TUG, eating soup (ES), and the Purdue Pegboard
test (PB). While ES involves short range, slow speed movements,
PB requires short range and fast motion, while the TUG relates
to long range, medium speed global motion. For ES, participants
sat down on a bench with both hands flat on the table. Once
cued by the light, participants were instructed to take the spoon
positioned on the table using their dominant hand, take four
spoons of water at their preferred pace to reproduce true living
conditions, return the spoon to the table, and position their
hands back on the table. The time required to performed the task
corresponds to the time elapsed between the light stimuli and the
time the hands are placed back on the table. For PB, a board with
two parallel rows composed of 25 holes each was placed in front
of the participant. Upon signal, participants were instructed to
insert as many pins in the holes as possible in 30, using both
hands alternately. The TUG was initiated with the participant
sitting on a bench. Upon signal (i.e., light), the participant was
asked to rise from the bench without any help if possible (i.e.,
no hands), walk for 3m at their preferred pace, and return to
their initial sitting position. Performance was assessed using the
time required to perform the task (ES, TUG), the count achieved
(PB), and the number of errors committed (ES: dropping water,
dropping the spoon; TUG: needing assistance, using hands to
rise/sit; PB: dropping pins).

The symptoms assessment blocks consisted of a mixture
of clinical evaluation and objective assessment of the
symptomatology: postural instability was assessed using the
pull-back test (Unified Parkinson’s Disease Rating Scale item
3.12), rigidity was evaluated manually for each limb (item
#3.3), bradykinesia was appraised objectively using a rapid
alternating task, while tremor, drug-induced dyskinesia (DID)
and freezing of gait (FoG) were all assessed objectively during
appropriate tasks using inertial data (Goubault et al, 2018).
Briefly, tremor was assessed using the signal captured by
the gyroscopes positioned on the hands. These signals were

band-pass filtered between 3 and 7.5Hz to isolate the tremor
frequency range. A power density spectrum was then used to
identify the signal dominant frequency, as well as its dispersion.
Tremor was detected when dispersion was below 2 Hz, in which
case the corresponding tremor value was fixed to the dispersion
bandwidth. DID was assessed during the tasks, using signals
from the sensors not directly involved in the specific task. Signals
from the gyroscopes were again band-pass filtered, this time
between 0.5 and 4 Hz. The energy of the resulting signal was
then computed, per segment. The average energy among the
different segments considered corresponds to the DID value
attributed for the task. Freezing of gait was assessed during
the walking portion of the TUG. The process uses the ratio
of the power of the signal within the walking bandwidth to
the power located within the freezing bandwidth to identify
freezing events.

Performance Clusters Identification

A clustering approach was used to explore the presence of motor
skills performance profiles within a group of patients medicated
for PD. This method allows the groups to emerge directly from
the data without bias (Rui and Wunsch, 2005). In this specific
case, performance clusters were based on five metrics extracted
from three selected tasks: TUG time, TUG errors, Eating soup
time, Eating soup errors, and Pegboard number of pins. To
ensure all metrics have a similar influence during the clustering
process, timing features as well as the Pegboard pins count were
first normalized based on the control group performance data.
Extreme values, defined as values outside the 4 Z-score, were
also set to the closest valid limit.

Clustering was performed using the K-means method. In
brief, this approach uses an iterative process to minimize the sum
of the distances between each point and its cluster’s centroid,
while maximizing the difference between the clusters (Rui and
Wunsch, 2005). This method, however, requires the user to
specify the desired number of clusters. We defined the ideal
number of clusters as a trade-off between the sum of the
Euclidean distance between each point and its cluster’s centroid
and the resulting number of very small clusters, herein defined as
groups composed of fewer than 10 participants. In other words,
the clustering process was performed using a varying number
of clusters, from 1 to 115 (the number of participants), and the
quality of the resulting clusters was evaluated based on both
the distance cost and the resulting number of small clusters, to
identify the optimal number of clusters. The ability of the clusters
to differentiate performance was then evaluated using a Kruskall-
Wallis ANOVA test. The clustering and validation processes
were performed in Matlab Release 2018a (The MathWorks,
Massachusetts, United States).

Performance Profiles Features

Identification & Membership Prediction

The second objective of this study consists in analyzing which
features, amongst the motor and the non-motor symptoms as
well as the participants’ characteristics, explain the affiliation
to a specific motor performance profile or cluster. To do so,
symptomatology was first normalized based on the control group
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FIGURE 2 | Performance clusters identification. (A) Visual representation of the clusters based on a subset of 3 factors. (B) Boxplots of the distribution of the different

performance factors within the clusters. The p-values correspond to the result of the Kruskall-Wallis ANOVA test.

data acquired. Then, the sample was divided into a training
and a validation datasets (80-20%). Using the training dataset,
univariate multinomial regression analysis was performed on
each variable, that is age, gender, BMI, years living with PD,
Mini-Mental State Exam (MMSE), symptomatology (dyskinesia,
bradykinesia, rest tremor, postural tremor, kinetic tremor,
rigidity, postural instability, freezing of gait), and medication
regimen [Levodopa Equivalent Daily Dose (LEDD), Levodopa,
Agonist, Amantadine, COMT or MAOB]. All variables with
a marginal significance (i.e., p-value) smaller or equal to 0.2
were identified as potentially explicative variables (PEV) for
a specific cluster membership. A multivariate multinomial
regression analysis was then performed using these PEV. The
model was designed using 80% of the sample; and verified with
the remaining 20%. The accuracy of the proposed model was then
evaluated based on a contingency table. All statistical analyses
were performed using SPSS v23 (IBM Corp., Armonk, NY).

RESULTS

Clusters Identification Results

Four clusters of performance were identified (Figure 2A) and
confirmed by statistical analyses. Only the number of errors
made while eating soup was not shown to be a discriminative
factor (Figure 2B). As detailed in Table 2, Cluster 1 is composed
of participants who performed within normal for all tasks and
parameters. Cluster 2 corresponds to participants slightly affected
in fine motor tasks. Cluster 3 is made of participants mainly
affected during the TUG, while the last cluster is composed of
participants affected in all activities.

Performance Features Identification

Results
Cluster membership was attributed to each participant, following
the process described in section Performance Profiles Features
Identification & Membership Prediction. The resulting portrait
of the patients’ symptomatology profiles, per cluster, is reported
in Table 3.

TABLE 2 | Clusters performance details.

Cluster ID P
1 2 3 4
TUG time (s) 13.0 14.6 20.2 22.4 p < 0.001
Median [Q1,Q3] [12.3,13.6] [13.7,15.5] [17.5,22.2] [21.2,25.0]
Not Not Affected Affected

affected Affected
TUG err 0 0 1.0 1.0 p < 0.001
Median [Q1,Q3] [0, 0] [0, 0] [0, 1.0] [0.5,2.0]

Not Not Affected Affected

affected affected
Pegboard 15.0 1.5 9.0 7.0 p < 0.001
#pins [12.5,18.0] [9.0, 14.0] [8.0, 11.0] [6.0,9.0]
Mediian [Q1,Q3] Not Affected

affected
Eating Soup 18.9 239 21.3 32.3 p < 0.001
time (s) [17.9,20.4] [22.6,26.8] [17.5,22.8] [27.6,34.3]
Median [Q1,Q3] Not Not Affected

affected affected
Eating Soup 0 0 0 0.5 p=0.1679
Errors [0, 1] [0, 1] [0,1] [0, 3]

Mediian [Q1,Q3]

Univariate multinomial analysis performed on this set of
data allowed to identify 10 potentially explanatory variables:
age (p = 0.134), MMSE (p = 0.200), dyskinesia (p < 0.001),
bradykinesia (p < 0.001), rest tremor (p = 0.024), kinetic
tremor (p = 0.010), rigidity (p = 0.010), postural instability
(p < 0.001), freezing of gait (p < 0.001), and the presence of
Amantadine in the medication regimen (p = 0.180). Including all
these potentially explanatory variables into a single multinomial
regression allowed to derive a significant model (x> = 140.628,
p < 0.001) with a good representativeness (Nagelkerke pseudo
R? = 0.839). This global model identified postural instability
(p < 0.001), dyskinesia (p = 0.024), bradykinesia (p = 0.022),
rigidity (p = 0.026), freezing of gait (p = 0.040), as well as
Amantadine (p = 0.003) as the main significant variables, while
cognitive impairment (p = 0.064) and rest tremor (p = 0.086)
significantly discriminates between sub-groups 3 and 1 despite
being globally significant.
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TABLE 3 | Patients symptomatology portrait per performance cluster.

TABLE 4 | Contingency table.

Cluster ID
1 2 3 4
(n =36) (n=38) (n=21) (n=20)
GENERAL
Gender (% male) 52.8% 68.4% 61.9% 45.0%
Age (yr) 64.0 +£8.7 66.5 + 8.4 70.0 £8.7 702+£75
BMI 23.9 £+ 3.3 24.0+3.8 249+ 3.4 26.0+55
MMSE (/30) 282+15 27.9+20 265+26 2563+ 3.4
DISEASE INFO
H&Y 1:41.7% 1:28.7% 1:9.5% 1:0.0%
2:55.6% 2:68.4% 2:33.3% 2:45.0%
3:2.8% 3:7.9% 3:47.6% 3:20.0%
4:0.0% 4:0.0% 4:9.5% 4:35.0%
Years since 8.8 +£3.7 10.6 +£5.9 1.8+£7.7 122 +6.4
diagnosis
MEDICATION
LEDD 994.9 + 450.8 866.0 +448.1 1378.8 +567.4 1051.5 + 523.7
Levodopa (%) 100% 100% 100% 100%
Agonist (%) 38.9% 35.1% 35.0% 15.0%
Amantadine (%) 50.0% 35.1% 15.0% 55.0%
COMT or MAOB(%) 47.2% 59.5% 40.0% 45.0%
SYMPTOMS
Dyskinesia 11+16 -05+14 0.6+ 2.1 -08+22
(normalized value) [-1.7,4.2] [-2.7,2.5] [-3.2,8.2] [-4.1,4.1]
Bradykinesia —11+£11 -19+18 —1.7+16 -36+15
(normalized value) [-3.9,0.7] [-6.0, 1.1] [-4.6, 1.1] [-6.0, —0.9]
Rest tremor 0.3+4.1 0.7+ 39 11+£43 28+3.2
(normalized value) [-6.0, 6.0] [-6.0, 6.0] [-6.0, 6.0] [-2.3, 6.0]
Postural tremor [1.6, 6.0] [1.6, 6.0] [1.6,6.0] [1.6, 6.0]
(normalized value)
Kinetic tremor 05+1.8 —-0.1+18 1.6 £2.1 1.3+£23
(normalized value) [-2.8, 6.4] [-3.0, 4.9] [-2.1,5.5] [-3.5, 6.0]
Postural instability 0.7 +£0.7 0.7 +£0.7 21+£1.2 1.9+1.0
[0.0, 2.5] [0.0, 1.0] [0.0, 4.0 [1.0, 4.0]
Freezing (%) 0.0 £0.0 02+1.2 50+ 15.7 38+9.0
[0.0, 0.0] [0.0, 2.0] [0.0, 71.6] [0.0, 36.6]
Rigidity 0.8+0.6 09+06 0.8+0.8 1.3+06
[0, 2.5] [0, 2.0] [0, 2.5] [0.2,2.5]

Detailed analysis of the model revealed that:

e an increase in postural instability increases the chance to be
part of cluster 3 or 4, relative to cluster 1 or 2 (p3r; = 0.001,
ORsye1; = 9.323 [2.430, 35.773]; parel = 0.001, ORjpep, = 6.785
[2.107, 21.851]; parel = 0.009, ORyrer; = 6.268 [1.574, 24.957];
Parel2 = 0.012, ORypepp = 4.561 [1.399, 14.868));

e an increase of one standard deviation in dyskinesia level
increases the chance to be in cluster 1 compared to cluster 2
or3 (plrelZ = 0.014, OR]relzl 2.12 [117, 386], Pirels = 0.023,
ORyep3 = 2.92 [1.16, 7.30]);

e an increase of one standard deviation in bradykinesia level
increases the likelihood of being in cluster 4 relative to cluster
3 (p=10.025, OR = 6.06 [1.26, 29.41]);

e an increase in rigidity increases the chance to be in cluster 4
relative to cluster 1 (p = 0.025; OR = 34.17 [1.54, 757.05]) and
cluster 2 (p = 0.036, OR = 24.97 [1.23, 506.53]);

e the presence of Amantadine in the medication regimen
appears to decrease the risk of being in cluster 3, when
compared to cluster 1 or 2 (p3rey; = 0.025, OR3e; = 3.22E-4

Predicted cluster

1 2 3 4 % Correct
Observed cluster 1 27 7 1 1 75.0%
2 9 26 0 2 70.3%
3 1 2 16 1 80.0%
4 1 2 0 17 85.0%
Overall percentage 33.6% 32.7% 15.0% 18.6% 76.1%

[2.92E-7, 0.356]; psren = 0.044, ORs; = 0.001 [7.30E-
7,0.825]).

This model allowed to classify the participants within their
respective cluster of performance with an accuracy of 76%, as
illustrated in the contingency table (Table 4).

DISCUSSION

This study first aimed at investigating the presence of motor
skills performance profiles in patients medicated for PD. Using
a clustering approach, four different profiles emerged from the
data. Analyzing the variation in metrics within each cluster
revealed that cluster 1 is composed of participants who are not
affected in the motor tasks assessed under medication. Cluster
2 participants are affected only slightly in fine motor tasks.
Cluster 3 participants are mainly affected in mobility tasks, while
cluster 4 involves participants affected in all areas. These clusters
were shown to be statistically different for four performance
metrics out of five, demonstrating the potential of the method.
This approach offers an innovative view for PD classification,
focussed on the global impact of the disease on the patient’s motor
repertoire as opposed to a more classical dominant symptom
classification (Foltynie et al., 2002; Eisinger et al., 2017, 2019;
Erro et al, 2019). To our knowledge, this study is the first
to address the phenotype problematic from this point of view.
Direct comparison between the two classification approaches
would be worth investigating. Nevertheless, it is clear from
the description of the symptomatology profile per cluster that
symptoms coexist within the clusters. This observation supports
a global approach of symptomatology characterization for motor
performance prediction.

Although the clusters identified are statistically significant
and appear to hold a clinical meaning, it shall be noted that
the clustering method could be further refined. Indeed, the K-
mean method requires the user to determine in advance the
number of desired clusters. In order to remain as objective
as possible, we first investigated different potential avenues for
clusters quantity identification, such as the use of the silhouette
validity index and the Calinski-Harabasz index (Arbelaitz et al.,
2013). However, Hennig (2015) exposed an interesting way of
looking at true clusters based on the direct aim pursued by the
clustering process. Indeed, the idea for true or ideal clusters may
vary depending on the situation. In the current study, we know
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that the optimal number of clusters represents different mobility
profiles, however somehow subtle these differences may be. As
such, the dissimilarity between clusters criterion may not be
obvious, and thus, the classic validity indexes may not be optimal.
As such, we identified the ideal number of clusters as a trade-off
between the within clusters similarity and the number of small
clusters created. The pragmatic approach was appropriate for the
current study, but may need to be revisited in other cases.

The second part of the study aimed at exploring potential
factors influencing the affiliation of a participant to a specific
cluster of performance in the “ON” medicated state. It was
shown that postural instability, dyskinesia, bradykinesia, rigidity,
freezing of gait, and Amantadine all play a significant role
in the classification process. Consistent with the literature,
postural instability and freezing of gait discriminated patients
with disabled mobility (Muslimovic et al., 2008; Goubault et al.,
2019). Unsurprisingly, an increase in bradykinesia raised the risk
to be affected in fine motor tasks, but the model suggests that
this is true only for the subset of the sample also affected in
mobility tasks. Indeed, bradykinesia by itself did not come out
as a significant factor to discriminate participants with normal
performance and participants slightly affected in fine motor tasks
(i.e., clusters 1 and 2). However, an increase in residual (i.e.,
on medication) bradykinesia increased the likelihood of being
affected in all domains as opposed to being affected only in
mobility tasks, suggesting that this factor is more relevant to
appendicular rather than axial motor control. Only dyskinesia
came out as a significant factor in the differentiation between
patients with normal performance and patients slightly affected
in fine motor tasks. Indeed, the present way of analyzing this data
confirms what has been described in previous studies (Goubault
etal,, 2019) using the same patients that dyskinesia increases, to a
certain extent, the likelihood of being in the normal performance
group when compared to the group slightly affected in fine motor
tasks or the group affected in mobility. We acknowledge the
fact that few patients displayed severe dyskinesia in the current
sample, but low to moderate levels of dyskinesia certainly did
not interfere with the patients’ performance. Results have also
demonstrated that when all other symptoms are equivalent, the
addition of Amantadine in the medication regimen decreases
the risk of being part of the cluster affected in mobility task,
when compared to the normal performance group. These results
are concordant with the effect of Amantadine on gait in PD
patients under deep-brain stimulation [16]. Yet, the impact of
Amantadine on gait is still unclear [17], as well as the fraction of
benefit that may derive from the reduction in levodopa daily dose
afforded by this drug. Cognitive impairment did not come out as
a global significant factor, but it did have a significant impact in
differencing people with disabled mobility.

It is worth mentioning that the reported results could have
been different if patients were tested in their OFF state. Indeed,
all patients were tested at peak dose, assuming medication was
optimal. The reported impact of the different symptoms on the
performance cluster affiliation therefore refers to the effect of
the residual symptoms. Further studies should consider running
similar analyses ON and OFF states to assess not only the direct
impact of the symptoms, but also to bring one step further the

analysis of the medication’s impact instead of only considering
the number of years since diagnosis in the analyses. Another
limit to the current study regards the subset of tasks used for the
analysis. Future work will focus on applying a similar protocol on
the entire set of tasks collected.

The statistical model developed using the global patient
symptomatology allowed to predict the impact of the disease
on the patients’ motor repertoire with an accuracy of 76%. The
model was specifically good at recognizing patients with mobility
and global issues (i.e., clusters 3 and 4). Such results demonstrate
the strength of the global approach, although future work should
investigate other classification approaches to improve the overall
accuracy. For example, machine learning approaches with a K-
fold cross-validation loop could improve the accuracy of the
classification process. The general approach also needs to be
tested on a much larger group of patients and by using traditional
clinical testing to render it more usable. We could then be able
to determine, based on that evaluation, what will be the impact
of the symptomatology of the patients ADL, and as such predict
their ability to perform everyday tasks.

CONCLUSION

PD affects the motor repertoire of patients to different
extents. This study demonstrated that four major performance
profiles appear to exist: patients with normal performance,
patients affected slightly in fine motor tasks, patients affected
in mobility tasks and patients affected in all domains of
mobility. This study demonstrated that it is possible to predict
the mobility performance of any patient, based on personal
clinical features. Although future research is needed to refine
the clustering method, as well as performance prediction
suiting clinical evaluations, these results appear promising, and
may lead to more personalized treatment by identifying and
targeting symptoms that specifically impede a particular patient’s
motor performance.
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Purpose: Modern statistics and higher computational power have opened novel
possibilities to complex data analysis. While gait has been the utmost described motion
in quantitative human motion analysis, descriptions of more challenging movements like
the squat or lunge are currently lacking in the literature. The hip and knee joints are
exposed to high forces and cause high morbidity and costs. Pre-surgical kinetic data
acquisition on a patient-specific anatomy is also scarce in the literature. Studying the
normal inter-patient kinetic variability may lead to other comparable studies to initiate
more personalized therapies within the orthopedics.

Methods: Trials are performed by 50 healthy young males who were not overweight
and approximately of the same age and activity level. Spatial marker trajectories and
ground reaction force registrations are imported into the Anybody Modeling System
based on subject-specific geometry and the state-of-the-art TLEM 2.0 dataset. Hip
and knee joint reaction forces were obtained by a simulation with an inverse dynamics
approach. With these forces, a statistical model that accounts for inter-subject variability
was created. For this, we applied a principal component analysis in order to enable
variance decomposition. This way, noise can be rejected and we still contemplate all
waveform data, instead of using deduced spatiotemporal parameters like peak flexion
or stride length as done in many gait analyses. In addition, this current paper is, to the
authors’ knowledge, the first to investigate the generalization of a kinetic model data
toward the population.

Results: Average knee reaction forces range up to 7.16 times body weight for the
forwarded leg during lunge. Conversely, during squat, the load is evenly distributed. For
both motions, a reliable and compact statistical model was created. In the lunge model,
the first 12 modes accounts for 95.26% of inter-individual population variance. For the
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maximal-depth squat, this was 95.69% for the first 14 modes. Model accuracies will
increase when including more principal components.

Conclusion: Our model design was proved to be compact, accurate, and reliable.
For models aimed at populations covering descriptive studies, the sample size

must be at least 50.

Keywords: lower limb kinetics, inverse dynamics, principal component analysis, musculoskeletal model,

validation analysis

INTRODUCTION

In biomechanics, the safety and efficiency of novel surgical
techniques as well as the development of biocompatible products
ultimately rely on its capability of being tested on humans
through clinical trials. The complete development chain of a new
surgical technique or implant and their introduction into clinic
practice is both time-consuming and economically demanding.
Next to it, it is known that patient-specific surgery planning
or implant design can improve the long-time outcome of an
implant (Pietsch et al., 2013; Spencer-Gardner et al., 2016).
This fact is due to the high anatomical variability between
individuals and the different functional activities, which have
a significant effect in the ratio of the force components on
the lower limb between subjects (Kutzner et al., 2010) and on
the functional alignment of the prosthetic components of a
lower limb implant (Smoger, 2016; Spencer-Gardner et al., 2016).
Within this context, methodologies such as statistical models of
the human anatomy as well as kinematics or kinetics that account
for the anatomical inter-variability of the population combined
with biomechanical simulation studies can provide non-invasive
pre-surgical clinical output.

Lower limb kinetics can be estimated based on
musculoskeletal models and ground force plates using inverse
dynamics (Carbone et al., 2012; Galloway et al., 2012; Vaitkus
and Vdrady, 2015; Bagwell et al., 2016). These techniques do
not often account for patient-specific variability as they use
scaled generic models (Worsley et al., 2011; Vaitkus and Varady,
2015), while it was already widely shown that the geometry of
the musculoskeletal models is very sensitive to muscle force
predictions (Carbone et al., 2012). In addition, and to the authors
knowledge, the available studies merely consider very limited
population samples which may not be representative of the
total variability of the lower limb anatomy. Lastly, the available
literature lacks completeness as, to date, no study has considered
a statistical model of the full lower limb, namely, on demanding
tasks such as the deep squat and the forward lunge.

Hence, in order to create the foundations for the development
and optimization of the design or the durability of orthopedic
implants, it is mandatory to generate appropriate loading
conditions that represent inter-patient variability across the
population (Honari and Taylor, 2013; Bischoff et al., 2014).
Patient-specific finite element analyses are the state-of-the-art
technique to infer quantitative information on a specific design
or performance of an arthroscopic implant (Shu et al., 2018).
Taylor et al. (2012) found most studies to be focusing on

variations on the morphological and bone properties rather than
the consequences of variability because of loading. Furthermore,
it has been proved that the application of single-representative
models can be extended to account for variability by either
parametrically or probabilistically varying the loading/boundary
conditions. These approaches allow model generation which can
significantly extend the coverage of the anatomical variability and
ultimately create a powerful tool to assess the performance of
medical devices (Taylor et al., 2012).

Recent developments in medical imaging significantly
increased the accuracy of the three-dimension computational
anatomical representation, enhancing the anatomical differences
within a determined population (Almeida et al., 2016; Audenaert
et al., 2019). Hence, combining the use of magnetic resonance
imaging (MRI) with musculoskeletal models will provide
us an insight on lower limb kinematics on patient-specific
anatomies. The statistical analysis of kinematic time series
by means of dimensionality reduction techniques such as
principal component analysis (PCA) or independent component
analysis is not novel per se (Daffertshofer et al., 2004; Galloway
et al, 2012), but the inclusion of patient-specific anatomies
is believed to more accurately represent inter-patient kinetic
variability. Such approach, hereby presented, will allow for a large
population of kinetic data to be generated without the time and
the expense of collecting the motion capture data of hundreds of
patients. Simultaneously, it will open the door to the generation
of large simulated populations for use in clinical outcome
simulation studies, injury biomechanics, musculoskeletal disease
models, or implant design optimization (Henak et al., 2013;
Zhang et al., 2016).

While the gait cycle has been the most researched activity
in the current literature, it is not particularly demanding for
the lower limb joints. For the purpose of implant wear testing,
implant fixation, and joint stability analysis, there are other
more challenging activities commonly performed in daily living
that might be of particular interest (Hartmann et al., 2013).
Clinical, experimental, and computational studies have clearly
reported increased complication risk and wear rate under high
contact stress conditions (Kang et al., 2008; O’Brien et al., 2015;
de Ruiter et al., 2017).

In sum, the purpose of this study is to build statistical
models of deep squatting and forward lunging for applications
in pre-clinical testing of orthopedic implants and surgery
in an asymptomatic adult population and ultimately to
analyze and validate the inter-individual variations in
lower limb kinetics.
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MATERIALS AND METHODS

Participants

Fifty-three asymptomatic volunteers participated in the
study. In order to eliminate sex and race differences and
reduce the potential influence of age and body mass
index (BMI), only healthy Caucasian men who were not
overweight and aged between 17 and 25 years are included.
The admission requirement is practicing sports for at
least 2 h a week. The subjects were asked to perform
five times a smooth maximal-depth squat and a right
forward lunge step with a predetermined frequency and
fluency after a short training. In addition, the volunteers

underwent full lower limbs MRI. An ethics committee
(Ghent University Hospital, Belgium) approved these
investigations (EC2014/0286). The characteristics of our

study population are listed in Table 1. Because of missing data,
there was no complete data acquisition for the squat among
the three subjects.

In both examinations, 28 reflective markers are
stuck on the skin on palpable anatomical landmarks.
The application of skin markers to investigate kinetics
is obvious but rather inaccurate. By contrast, using
more accurate measurements with implants would raise
ethical concerns.

Instrumentation

Our motion capture acquisition strategy was based
on a similar study by Deluzio et al. (Deluzio and
Astephen, 2007). Spatial marker trajectory data and

the corresponding force registrations are imported into
the Anybody Modeling System (AMS version 7.1.0,
Anybody Technology, Aalborg, Denmark) (Damsgaard
et al, 2006) as well as geometric data from a 3-Tesla
MAGNETOM Trio-Tim System MRI device (Siemens AG,
Erlangen, Germany).

Musculoskeletal Modeling

Motion capture musculoskeletal models were personalized with
subject-specific bone geometry that was incorporated in a
simulation model from the Twente Lower Extremity Model
(TLEM 2.0) dataset (Carbone et al., 2015). An overview of

the musculoskeletal model input is presented in Figure 1. In
the simulation output, the forces are described in three fixed
perpendicular planes.

Data Processing

The output data from musculoskeletal models are numerous,
multivariate, and multidimensional (Deluzio and Astephen,
2007; Lai et al, 2009). In contrast to some gait studies that
modeled kinematic and kinetic data together, we used only
kinetic data (Deluzio and Astephen, 2007; Reid et al., 2010;
Galloway et al., 2012). We think that integrating linear quantities
(forces) and rotation quantities (angles) is like comparing apples
and oranges. On top of that, the kinetic data in Anybody
is generated by an inverse dynamics approach starting from
the kinematic data.

The beginning and end frames of all motion lab recordings
are not useful due to irrelevant transients. Analogously, the peak
evolution will vary from the center of the recorded data. Hence,
data alignment and trimming are essential prior to incorporating
the subjects’ motion recordings into a statistical model. These
operations are executed using standard implementations in
MATLAB (MathWorks, Natick, MA, United States).

The frame recorded with the peak knee flexion angle is defined
as 50% progress of the motion. Trimming is based on knee
flexion. For the lunge, the best is to consider only the closed
chain part. As such, recordings where the right foot is not on the
right force plate are left aside. Several arbitrary ways to execute
an open-chain motion could be an important source of noise 1.
Noise is defined as artifacts when processing the input data to
the output data (Lai et al., 2009). On top of data, we used only
information from the leg that was the most loaded. So, in contrast
to the squat data, a lot of waveform data are not used for the lunge.

Interpolation is performed to ensure that the measurements
are running synchronized in real time. All trimmed
measurements are subdivided into 0-50-100 proceedings,
corresponding to the onset, the middle, and the finish of motion,
respectively. Each set of kinetic data is arranged in a feature
vector and concatenated into a training matrix. The training data
matrix X contains observations in the rows and subjects in the
columns as described in Egs. [1] to [3].

X = [x13x23x3’ ooy Xis ‘..,xpfl,xp] (1)

TABLE 1 | Demographic and anthropometric characteristics of the study population.

Demographic descriptor

Mean (95% CI*)

Normal values

Height (cm)

Weight (kg)

Body mass index (kg/m?)

Sport activity (hours a week)

Center-edge angle (°)

Alpha angle (°)

Centrum-collum-diaphyseal angle or neck-shaft angle (°)
Femoral anteversion angle (°)

181.79 (180.08-183.51)
71.75 (69.63-73.88)
21.70 (21.16-22.23)
3.40 (2.76-4.03)

28.41 (27.19-29.63)
64.61 (62.38-66.84)
129.24 (127.99-130.49)
9.40 (7.30-11.49)

Not applicable

Not applicable

18.5-25 (Waxman, 2004)

Not applicable

25-39° (Audenaert et al., 2012; Ghaffari et al., 2018)
<55° (Audenaert et al., 2012; Ghaffari et al., 2018)
125-135° (Audenaert et al., 2012)

<15° (Audenaert et al., 2012)

*Confidence interval of the mean.
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FIGURE 1 | Overview of data input for the motion capture musculoskeletal simulation model. (A) Motion is performed when standing on two force plates. Motion
capture data synchronized with ground reaction forces are exported as .c3d file. (B) Twenty-eight reflective markers are placed on anatomical bony landmarks.

A MRI scan of the full lower limb is performed. Segmentation of pelvis, thigh, and shank with corresponding positions of marker landscape. (C) Motion capture squat
model. Anybody squat (D) and lunge (E) model.
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FIGURE 5 | Mean values of joint reaction forces during deep squatting in green +2 standard deviations of the third mode in red and blue. The third mode accounts

for 11.88% of the inter-subject population variance.
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An observation expresses several dynamic parameters on a
certain progress of the aligned lunge or squat motion from 0
to 100%. For each participant i, the kinetic model input data

are taken from the musculoskeletal model output. The kinetic
variables are implemented into a subject vector x; for the ith
subject (out of p). p represents the number of training samples,
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TABLE 2 | Validation analyses of the squat and lunge statistical kinetic model. We consider squat and lunge models that capture 80, 90, 95, and 98% of inter-individual population variance.

Lunge model

Squat model

Validation summary

90% 95% 98% 80% 90% 95% 98%

80%

% of inter-variability
in the population

0.0107 +£0.0087 0.0075 +0.0064 0.0054 +£0.0048 0.0248 +£0.0210 0.0162 +£0.0167 0.0132 +£0.0126 0.0082 +0.0083

0.0149 +£0.0122

Model accuracy RMSE
(median +IQR*) (BW)

Dimensionality*

17
0.1320+0.0803

13
0.1314+0.0809

19
0.1584+0.0943

14

0.1583+0.0946

10
0.1581+0.0948

0.1310+0.0815

0.1291+0.0831

0.1582+0.0943

Model specificity RMSE
(median +IQR*) (BW)

*i.e., the number of modes. **IQR, interquartile range.

being 53 for the lunge and 50 for the squat.
x; = [HJRFx, HJRF,, HJRF;, KJRF, KJRF,, KJRF;, ]T (2)
The input matrices JRF,is consist all of 101 observations o.

measurement 1
measurement 2

JRFaxis = B
measurement 51 (at maximal right knee flexion)

measurement 101

3)
D serves as a diagonal matrix with row-wise standard deviations
d, for each observation o. The total number of observations is the
multiplication of the number of dynamic variables and aligned
time instances.

d o o0...

D= 0d, 00 (4)
00 ... 0
...0 0 deos

After normalization by row-wise standard deviation in [4] and
[5] as well as mean centering in [6], a residual matrix R is created.
R comprises the entry data for the model M as a measure of
dispersion.

X=1|..% =D7'X (5)

withx; = X; — (6)

PCA is a powerful dimensionality reduction technique
developed by Karl Pearson. It is not a method to investigate
the center size of the data but the common variability. PCA is
mathematically defined as an orthogonal linear transformation.
PCA transforms the data; as such, most of the variance of the data
will come to lie in the first components. This allows us to create
statistical models. Altogether PCA is a reliable tool in capturing
the salient features of waveform data (Robbins et al., 2013; Jolliffe
and Cadima, 2016).

Using this for a statistical model, it enables to generate
population data from a small set of clinical data. The kinetic
model should represent waveform data as a linear combination
of vectors, representing the primary modes of variation in
experimental data (Jolliffe et al., 2002; Saliba et al., 2018).
Eigenvalues and eigenvectors have been created by singular value
decomposition.

R=UxLxA" 7)

In Eq. [7], U and A are the left and right singular vectors, so
UT.U = Iand AT A = I because of orthogonality. I refers to the
unity matrix. L is a diagonal matrix that contains the square roots
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of the eigenvalues \/Xx belonging to RTx R, as k {1.2,3,....p}.
AT contains the eigenvectors of RTx R, whereas U has the scaled
versions of the principal component (PC) scores u,;. Here, o
corresponds to the observation and k to the PC number. The PC
scores are mentioned in Eq. 8].

Zok = Uok/ Mk (8)

The PC scores from a single waveform quantify the contribution
of each feature. The variance of the scores for the kth eigenvalue

k

of RTx R amounts to %, as \j represents the variance of the kth

PC, whereas 7 is the number of observations.
The cumulative variance of each mode k is defined as

k
1
Compactness (M) = pil Z Am )
m=1

The PC weight matrix W in Eq. [10] involves the correlation
coeflicients between components and test subject data.
W=LxA" (10)

A set of patient data can be approximately reconstructed by using
t selected PCs in Eq. [11].

t
&j=Dyp—1 ug/liay +x (11)
i=1

As mentioned before, D represents the diagonal matrix

of row-wise standard deviations and p stands for
the subject count. +/I; is the ith diagonal element
of L, also from the singular value decomposition
(Jolliffe et al, 2002; Galloway et al, 2012

Jolliffe and Cadima, 2016).

Model Validation

Validation is defined as the process of ensuring that the
dimensionality-reduced PCA model accurately represents real-
world kinetics. Probably the most important problem arising
with this process is the choice of the optimal number of
the principal components to be retained. PCA projects the
input data from a high dimensional space into a subspace
of lower dimension, which can then further be divided into
two separate subspaces: the kinetic data subspace, preserving
the essence of the original kinetic data as lossless as possible,
and the noise subspace, corresponding to the remaining tail of
principal components associated with the smallest eigenvalues.
Given the complexity of the problem of optimally defining the
threshold between signal and noise principal components, the
literature on the topic is overwhelming and beyond the scope
of this work. Reliable results in distinguishing components that
express meaningful correlations among variables as opposed to
trivial components, explaining noise, have been provided using
the Monte Carlo permutation test (Peres-Neto et al,, 2005).
The principal components were tested for representing valid
correlations as opposed to residual error using the following
two criteria: rank of roots and equality of roots (Jackson, 2005;
Vasco, 2012).

Further, four quantitative model parameters are investigated.
“Goodness” measures are chosen according to the statistical
shape modeling study of Styner et al. (2003) in which there is also
a PCA dimensionality reduction algorithm. This study is, to the
authors’ best knowledge, the first to provide such an approach,
implemented for a kinetic model.

Model Accuracy

P
Accuracy (M) = }) Z 1% (M) — xi||* (12)
i=1
The first validation test that analyzes relevant information
is retained by the model or otherwise states how well the
original data can be reconstructed from the model given the
number of principal components retained. Here, the root-mean-
square error (RMSE) is computed in Eq. [12] as the average
absolute difference between the original training data and the
reconstructed data for models with 80, 90, 95, and 98% variance
of the original data.

Model Compactness

The model will be compact enough if it can describe the variance
in kinetic measurements with a minimal number of modes. Eq.
[9] is used to describe the compactness with the cumulative
variance for a certain number of modes.

Model Generalization

T,
1 L

Generalization (M) = — E [1%:(M)) — x| (13)
Tg i=1

The model generalization quantifies the ability of models to
represent new instances. The generalization ability is evaluated
by performing a series of leave-one-out tests on the training data.
The question here is: how many training samples are necessary to
approach the population precisely? The generalization ability is
therefore a means for post hoc sample size evaluation. If having
enough training samples, we expect the model to be able to
describe unseen data quite accurately (Wang and Shi, 2017). The
generalization value can be interpreted as the median out-of-
sample accuracy value.

The generalization evolution gives the RMSE between the
excluded subject data and the best-matched 95% variance model
M’ values of randomly selected training data by ascending
number of training samples in the model M’. The higher the
T, test value in Eq. [13], the higher the precision of the median
generalization value. Here the number of models created for each
number of training samples amounts to Ty = 10, 000.

Model Specificity

T
1
Specificity (M) = — > I%(M) — il (14)
S i=1

A population model is able to generate new data. The model
specificity measures the soundness of new instances randomly
generated by the developed model M. Models with 80, 90, 95,
and 98% of variance are tested. X;(M) refers to a randomly
generated subject.
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FIGURE 9 | RMSE for the original squat training data versus reconstructed squat data with an increasing number of principal components on the x axis.

We assume that the PCs of the model are normally distributed  specificity value can be interpreted as the median approximation
(Jolliffe et al., 2002; Jackson, 2005; Galloway et al.,, 2012). The error of T, generated subjects. The higher the T test value, the
specificity estimator is defined in Eq. [14]. For each observation higher the precision of the specificity. Here the number of models
0, an imaginary subject i is defined by choosing random normal  created is set to Ty = 1, 000, 000.
distributed values n € N (0, 1) for each mode m in the model M

asin Eq. [15]. RESULTS

p p
,}; o (M) =X, + d, z o/ M zm = X + d z n.u, (15) The average hip and knee peak flexion angles are, respectively
' p— el 95° and 104° for the lunge and 107° and 112° for the squat

motion, respectively. The average peak hip joint reaction force
The RMSE is defined as the error between the virtually subject (HJRF) amounts to 3.08 times body weight (BW) for the
data and the most similar sample in the training dataset. The maximum-depth squat and 4.76 BW for lunging. The means
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TABLE 3 | Choosing the optimal amount of principal components for the squat
kinetic datasets.

PC Eigenvalue Percentage Cumulative Rank of Equality
of variance variance roots of roots
1 204.85 33.80 33.80 0.001 0.001
2 85.11 14.04 47.85 0.001 0.001
3 71.98 11.88 59.73 0.001 0.001
4 58.21 9.61 69.33 0.001 0.001
5 46.81 7.73 77.06 0.001 0.001
6 31.26 5.16 82.22 0.001 0.001
7 18.13 2.99 85.21 0.001* 0.001
8 15.18 2.50 87.71 1 0.001
9 13.82 2.28 89.99 1 0.001
10 9.55 1.58 91.57 1 0.001
iR 8.38 1.38 92.95 1 0.001
12 6.37 1.05 94.00 1 0.001
13 5.57 0.92 94.92 1 0.001
14 4.65 0.77 95.69 1 0.005*
15 3.97 0.66 96.35 1 0.078

Type | error probability is set to 0.05. Rank of roots measure suggests that seven
principal components (PCs) are statistically significant in meaningfully describing
the dataset, corresponding to 85% of data variance, whereas the equality of roots
suggests that 14 PCs are to be included (representing 95.7% of data variance).
*n < 0.05.

for peak knee joint reaction force (KJRF) are still higher:
4.52 BW for squat motion and 7.16 BW for the lunge. The
trimmed original waveform data from HJRF and KJRF of
our musculoskeletal model are represented by gray curves in
Figures 3-8.

A statistical model of kinetic output data from the AMS was
made for deep squatting and another one for lunging. Figure 2
displays the cumulative variance of modes in the statistical model.
The variances of the first three modes in the squat model are
illustrated in Figures 3-5. Together they represent 59.73% of the
population variance. For the lunge, the first three modes accounts
for 66.40% of population variance. More about these modes
are detailed in Figures 6-8. In Table 2, the in-sample model
accuracy and the specificity median RMSE are described for each
model. The boxplots in Figure 9 illustrate the in-sample squat
model accuracy for the ascending number of the components
included. There is a boxplot for every variable in the model.
The median and the interquartile range of the RMSE, when
compared to the initial data, decrease as more PCs are included in
the reconstructed data, as expected. The model accuracies from
the lunge model are quite similar but around one IQR RMSE
higher. In contrast, the lunge model is a bit more compact. For
calculating the out-of-sample accuracy based on leave-one-out
tests, we based on the lunge data because it has the most test data.
The results of the model compactness and the statistical findings
of the permutation testing related to the number of the principal
components used are demonstrated in Table 3.

Regarding Figure 10, for each training data input amount
going from 4 to 52, 10,000 models were created, including 95%
population variance, to reconstruct an excluded subject. Out-of-
sample accuracy RMSE from the reconstructed data versus the

original excluded data are given on the y axis in box-and-whisker
diagrams. The boxplots are log-log-scaled in order to visualize
the downward trend of the out-of-sample accuracy. Also plotted
is a horizontal line of the in-sample model accuracy of our 95%
model. The out-of-sample accuracies are less than 0.1 BW, except
for the KJRF in the transverse plane. From 50 test subjects up,
the out-of-sample accuracies are clearly stagnating for the HJRF
in the frontal and the transverse plane as well as for the KJRF in
the sagittal plane.

DISCUSSION

The validation analysis confirmed that our models have a high
degree of compactness and accuracy. Many types of noise are
in the higher components. The PCA technique has adequately
allowed rejection of the error variance from the model. The
meaningful variance is obviously divided over the first 12 or
14 components. This multidimensionality describes the silent
features in the data and, eventually, they could be linked to
the varying characteristics of the study population. A common
source of meaningless variance originates from data alignment.
It is impossible to avoid this because we do not want to
introduce supplementary noise in the data by aligning them more
stringently. Since all subjects have a BMI lower than 25, skin shift
errors during movements are limited (Cappozzo et al., 1996).

According to the lunge, the model only describes the closed-
chain part of motion for two reasons. First, femoroacetabular
impingement and joint reaction forces are more pronounced at
higher flexion (Audenaert et al., 2012). Secondly, while creating a
model from the onset of the lunge back to the original position,
the model would be no longer compact enough because there is
too much degree of freedom when moving a leg in the air.

The dominant mode is supposed to describe the overall
variance (Jolliffe et al., 2002), as is clearly apparent in the lunge
model. In the squat model, the overall variance is limited for the
HJRF in the frontal and the sagittal plane. This is due to low
hip flexion and rotation moments because the center of gravity
will lie almost perfectly between the hip joints (and not the
knee joints during squat), in contrast to the lunge case. For this
statement, we based on Schwab et al. (2006). They found that, for
young adults, the femoral head position appears to be a reliable
indicator for the gravity line in the sagittal plane during stance
(Schwab et al., 2006).

The second mode of the squat model indicates that a
high HJRF component in the transverse plane results in high
KJRF components in the frontal and sagittal plane in order
to counterbalance the downward force at the hip. The third
mode correlates the depth of squatting with the joint reaction
force components in the frontal plane. For the lunge, the
association of the frontal joint reaction force components is
mainly summarized in the second mode. Finally, according to
our interpretation, the third mode of the lunge model may take
alignment errors into account.

The RMSE for model accuracy are far below 0.05 BW, as
opposed to similar studies. The specificity was almost equal
for models with 80, 90, 95, and 98% of variance. It questions
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HJRF frontal plane model generalization evolution
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the relevance of taking the model specificity into account in
this setting. According to the generalization evolution, we could
conclude that, minimally, 50 samples are enough to provide
reliable models at 0.1 BW precision for both squat and lunge
motion. Nevertheless, we recommend exceeding this threshold

number because the in-sample accuracy is still lower, especially
for the squat. Note that gender, age group, BMI group, and race
differences are not included here. Therefore, it is very likely that,
in more heterogeneous populations like the elderly, 50 samples
will be too low to ensure reliable models.
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Unfortunately, electromyography data are not collected
during this study. This could give information about
muscle activation and muscle strength. Motor unit action
potentials could be registered non-invasively by using surface
electromyography. It has been stated several times that the muscle
activation patterns depend on several aspects like training level
and osteoarthritis (Benedetti et al., 2003; Knoop et al., 2012; Mei
et al., 2017). The integration of electromyography and kinetic
data could help to declare aberrant kinetic patterns.

By applying correlation matrix PCA to obtain uncorrelated
maximum-variance linear combinations and given that there is
only kinetic data with limited scaling differences, some more
PCs are required to account for the same amount of covariance
compared to classical covariance matrix PCA (Jolliffe et al., 2002;
Jolliffe and Cadima, 2016). This makes the selection of PCs in
the kinetic data subspace even more crucial to ensure model
validation properties like accuracy, compactness, generalization,
and specificity, which is the major drawback of PCA (Jolliffe
et al.,, 2002; Peres-Neto et al., 2005; Vasco, 2012). To handle
this, there are numerous methods described in the literature, but
there is no consensus yet. We objectified our selection strategy
based on eigenvalues by considering the validation measures for
different cutoffs. On top of that, for the model generalization and
specificity abilities, we assume multivariate normal distribution
which is seldom true (Vasco, 2012).

The most important limitation of the present work, however,
relates to the population under investigation, namely, young
male, Belgian adolescents and the unknown extent of which
findings can be extrapolated to other populations. Nevertheless,
in general terms, we expect our results to be representative by
extension for a Western European population.

CONCLUSION

We created two models that describe kinetics from both hip and
knee joint, contrary to the limited number of studies available
with PCA analyses of waveform data considering the knee
only (Deluzio and Astephen, 2007; Reid et al., 2010; Galloway
et al., 2012). Since all muscles from the knee, except from
the M. popliteus (Paulsen and Waschke, 2011), are biarticular
and the body should be seen as a whole, a model with the
HJRF as well as KJRF is preferable. We proved that such a
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Hip osteoarthritis patients exhibit changes in kinematics and kinetics that affect joint
loading. Monitoring this load can provide valuable information to clinicians. For example,
a patient’s joint loading measured across different activities can be used to determine the
amount of exercise that the patient needs to complete each day. Unfortunately, current
methods for measuring joint loading require a lab environment which most clinicians
do not have access to. This study explores employing machine learning to construct a
model that can estimate joint loading based on sensor data obtained solely from a mobile
phone. In order to learn such a model, we collected a dataset from 10 patients with
hip osteoarthritis who performed multiple repetitions of nine different exercises. During
each repetition, we simultaneously recorded 3D motion capture data, ground reaction
force data, and the inertial measurement unit data from a mobile phone attached to
the patient’s hip. The 3D motion and ground reaction force data were used to compute
the ground truth joint loading using musculoskeletal modeling. Our goal is to estimate
the ground truth loading value using only the data captured by the sensors of the
mobile phone. We propose a machine learning pipeline for learning such a model based
on the recordings of a phone’s accelerometer and gyroscope. When evaluated for an
unseen patient, the proposed pipeline achieves a mean absolute error of 29% for the left
hip and 36% for the right hip. While our approach is a step in the direction of using
a minimal number of sensors to estimate joint loading outside the lab, developing a
tool that is accurate enough to be applicable in a clinical context still remains an open
challenge. It may be necessary to use sensors at more than one location in order to
obtain better estimates.

Keywords: machine learning, inertial measurement units, joint loading, patient monitoring, hip osteoarthrithis

1. INTRODUCTION

Hip osteoarthritis (OA) patients exhibit changes in kinematics and kinetics that affect the contact
forces of the hip and knee joints during walking and daily activities. It is believed that these changes
are important in the progression of OA (Felson, 2013) and that monitoring these changes during
daily life could provide valuable information to clinicians. For example, a patient’s joint loading
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measured across different exercises can serve as an indication
for the number of exercise repetitions that the patient needs
to complete when rehabilitating after hip arthroplasty surgery.
Despite the importance of joint loading monitoring, it is difficult
to systematically and widely measure joint loading in a clinical
environment. First, acquiring these measurements requires a lab
environment consisting of optoelectronic cameras and ground
reaction force plates. The cost and space required for such a setup
makes this impractical to install in a clinician’s practice. Second,
it would be infeasible to analyze a large number of patients in a
lab since collecting and processing the data is a time-consuming
task. Third, in order to calculate joint contact forces, one would
need to use a musculoskeletal modeling workflow, which requires
expert knowledge.

Because of these drawbacks, clinicians could greatly benefit
from a mobile system that is able to provide accurate joint
loading estimates based on cheaper sensors. Ideally, such a
system would be based on inexpensive, wearable sensors that the
patients can easily use at the clinician’s practice or even at home.
Inertial measurement unit (IMU) sensors and electromyography
(EMG) sensors are ideal candidates for this purpose as they are
relatively cheap and have been applied successfully in a wide
range of human movement analysis tasks (Zhang et al., 2011;
Camomilla et al., 2018; De Brabandere et al., 2018; Op De Beéck
et al., 2018). Designing such a system requires collecting data
in a lab setting where a subject performs the relevant exercises
while simultaneously recording data from the cheap portable
sensors and the expensive, standard lab sensors. This enables
either hand-crafting a model or applying a data-driven approach
such as machine learning to learn a model that relates the data
produced by the portable sensors to the ground truth joint
loading estimated from the lab equipment. These predictive
models can then be deployed outside the lab as they can make
predictions about a subject’s joint loading solely based on the data
captured by cheaper sensors.

Related studies have proposed different models for estimating
joint loading from wearable sensors. de Vries et al. (2012)
proposed a neural network model which estimates several
loading variables for the shoulder joint based on kinematics
and EMG data. The kinematics were measured using four IMU
sensors. While the model can be used in an ambulatory setting, it
still requires a relatively large number of sensors. Moreover, the
EMG measurement is somewhat intrusive as it requires attaching
13 electrodes to the person’s body. Other work by Wesseling
et al. (2018) proposed a model for estimating hip and knee joint
contact forces based on IMU kinematics and ground reaction
force (GRF) data. They found that the IMU kinematics were
sufficient to estimate the hip contact forces reliably, which enables
using the model outside a lab. However, the knee contact force
model required both the IMU and GRF data. Hence, this has the
same drawbacks as the lab sensors for calculating joint contact
forces as it is challenging to measure GRF data in the wild. Stetter
et al. (2019) proposed a model for predicting knee joint loading
using two IMU sensors, one on the upper leg and one on the
lower leg. However, similar to de Vries et al. (2012) and Wesseling
et al. (2018), they evaluated the model on data from healthy
subjects only. Applying the same model to patients may not

work due to altered movement patterns. Other studies considered
similar problems, such as estimating the daily cumulative joint
loading (Robbins et al., 2009) and ground reaction forces (Guo
et al., 2017; Karatsidis et al., 2017; Wouda et al., 2018).

The goal of this paper is to predict the joint loading of
the left and right hip and knee based on IMU data collected
from a mobile phone. First, we collect data using three types
of sensors simultaneously: a hip-mounted phone, optoelectronic
motion capture cameras and ground reaction force plates. We
use the latter two to calculate the ground truth joint loading
using a musculoskeletal modeling workflow. Second, we employ
machine learning to automatically construct a model that can
predict the ground truth joint loading on the basis of the IMU
data collected from the mobile phone. Our approach confers two
advantages over prior work. First, by relying on a mobile phone
it both builds off an omnipresent technology and minimizes the
number of required sensors. Hence, clinicians and possibly even
patients will not need to rely on expensive specialized equipment.
Second, we focus on hip OA patients instead of healthy subjects.
Since clinicians see patients with abnormal movement patterns,
we train and evaluate the model using data collected from a
representative patient group.

2. METHODS
2.1. Subjects

For this study, 20 patients with unilateral end-stage hip
osteoarthritis were recruited from a local hospital (Ziekenhuis
Oost Limburg, Belgium). They were included based on the
following criteria: aged between 55 and 75 years; unilateral hip
osteoarthritis; awaiting joint replacement surgery; Body Mass
Index < 30kg - m~2; able to walk 10m; no cortiosteroid
injection 3 months prior to inclusion; no joint replacements and
no other musculoskeletal or neurological disorders that would
affect movement pattern. Participants provided written informed
consent prior to the start of the measurements. Out of these
20 patients, we select only those for which the mobile phone
measurements were recorded correctly throughout the whole
protocol, which corresponds to a subset of 10 patients. The ethical
committee of the academic hospital Leuven approved the study
(reference no. s-59857).

2.2. Protocol

Each patient performed multiple repetitions of nine types of
exercises. Table 1 shows the number of repetitions per exercise.
The exercise types are defined as follows:

e Walk: level walking at a self-selected speed, one repetition
corresponds to one stride;

e Ascend stairs and descend stairs: at a self selected speed,
without hand-held support on a standardized 4-step staircase,
one repetition corresponds to one stride;

e Sit down and stand up: the height of the chair was
standardized to participants knee height;

e Forward lunge and side lunge: step length standardized at
70% leg length;
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TABLE 1 | Number of exercise repetitions per subject.

Subject ID W AS DS SD SU FL SL SOL sQOL
1 13 9 10 10 10 10 10 10 9
2 10 9 9 10 10 8 10 10 10
3 10 10 7 11 " 10 10 10 10
4 10 10 10 10 10 10 9 10 9
5 10 10 9 10 10 9 10 10 10
6 10 12 8 10 10 10 9 10 10
7 10 10 10 10 10 10 10 10 10
8 10 9 10 10 10 10 10 ihl 10
9 13 10 12 10 10 10 10 10 12
10 10 10 10 10 10 10 10 10 10

W, walk; AS, ascend stairs; DS, descend staris; SD, sit down; SU, stand up; FL, forward
lunge; SL, side lunge; SOL, stand on one leg; SQOL, squat on one leg.

e Stand on one leg (approx. 2s) and squat on one leg: hands
fixed at the side.

2.3. Joint Loading

We measure the patients’ hip and knee contact force to define
the ground truth joint loading that we aim to estimate. While
contact forces can be measured directly using instrument
prostheses, we instead use a combination of experimental data
and musculoskeletal modeling (Fregly et al., 2012) since the direct
method is an invasive procedure. Moreover, this method requires
total joint replacement, which would limit the number of patients
we can analyze. The remainder of this section describes the
procedure for calculating the contact forces. Validation studies
by Wesseling et al. (2016) and Zargham et al. (2019) have shown
that this procedure results in accurate estimates.

The experimental data was collected using 13 optoelectronic
cameras (Vicon, Oxford Metrics, UK, 100 Hz) and three ground
reaction force plates embedded in the floor (AMTI, Watertown,
MA, USA, 1,000 Hz). Each participant was equipped with 38
reflective markers on bony landmarks conforming to the full-
body plug-in walk model (Oxford Metrics). The single markers
on the body segments were substituted by rigid three marker
clusters. The marker trajectories and ground reaction force data
were used as input in a standard musculoskeletal modeling
workflow applied in OpenSim 3.3 (Delp et al., 2007). First,
the generic OpenSim model gai t 2392 (Delp et al, 1990)
was used. We added a degree of freedom in the knee joint
(i.e., ab/adduction) and implemented a functional knee axis
of rotation (Meireles et al., 2017). The model was scaled to
match the height and weight of the participant. Joint kinematics
were derived from marker trajectories using inverse kinematics
analysis with a Kalman smoothing algorithm (De Groote et al.,
2008). Subsequently, joint moments were calculated with the
inverse dynamic analysis using the calculated joint angles and
measured ground reaction forces. Muscle force and muscles
activation were determined using static optimization. Lastly, the
joint contact forces were calculated using the vector sum of the
estimated muscle forces and joint reaction forces (Steele et al.,
2012).

Since our goal is to build a workflow that estimates the joint
loading for one repetition of an exercise, we aggregate the contact
forces by extracting the joint impulse y. This variable is defined
as the integral of the contact force signal, relative to the subject’s
body weight:

) CRat
T m-9.81

where CF; is the joint contact force at time ¢, T is the duration of
one exercise repetition, and m is the body mass. We compute the
joint impulse for the left and right hip and knee.

2.4. Input Signals

For the input data of our joint impulse estimation models, we
use inertial measurement unit (IMU) sensors since they are easy
to use outside the lab. IMU sensors are often used in human
motion analysis for this reason (Bussmann et al., 2001; Weyand
et al., 2001; Alvarez et al., 2008; Camomilla et al., 2018). In
addition, they are relatively inexpensive to buy compared to the
lab equipment needed to calculate joint contact forces.

In this study, we use the IMU sensors from a mobile phone
(Samsung Galaxy J5 2017). During the whole exercise protocol,
the phone continuously recorded the 3D acceleration (ax, ay, a;)
and 3D angular velocity (gx, g, gz), both with a sampling rate of
50 Hz!. The phone was attached to the patient’s left hip using a
velcro strap around the patients” hips. While our goal is to predict
the joint loading on both sides, we also wanted to use a simple
setup with the minimal number of sensors. Hence, we only use
one sensor and always attach it on the same side of the body. Since
people usually wear their phone in a pocket, we chose the left
hip to mimic that placement. The phone was attached such that
the IMU’s reference frame corresponded to the anterior-posterior
(x), proximal-distal (y) and lateral-medial (z) direction of the
person’s left leg.

Since the signals change over time, each signal is represented
as a time series, i.e., a sequence of values. For example,
the ay acceleration signal corresponds to the time series
[ax(to), ax(t1), ..., ax(ty)] where #; is the i time stamp of an
exercise repetition.

2.5. Synchronization

Whereas the optoelectronic cameras and the ground reaction
force plates were connected to the computer that was used
for measuring the joint contact forces, the mobile phone
sensor recordings were collected directly on the phone. Since
the computer and the mobile phone recorded the data
independently, their recordings were not synchronized through
a single clock. In order to link to correct parts of the sensor data
to the joint contact forces, both systems’ time stamps have to be
aligned. This can be done by incrementing the time stamps of
the phone by the lag between the two clocks, i.e., the difference
between the computer’s clock time and the phone’s clock time.

'We recorded the data from the TYPE ACCELEROVETER and
TYPE_GYROSCOPE sensor types of Android. As shown in the API documentation
(https://developer.android.com/guide/topics/sensors/sensors_motion). Android
corrects for drift in the sensor measurements.
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Unfortunately, the exact lag was unknown at the time of data
collection. Finding this lag manually would require to check
for each possible lag whether the joint contact force signal is
aligned with the phone’s signals and select the lag that results
in the best alignment. Additionally, since the lags vary across
the different collection sessions due to drift in the phone’s
clock time, this would have to be repeated for each subject.
Therefore, we align the signals automatically using an approach
based on the cross-correlation coefficient between the signals.
Specifically, we compute the cross-correlation for each possible
lag, i.e., xcorr(P;. 44> CF) for each lag I € [0,np — ncp], which
corresponds to the lags I for which all time stamps of the contact
force data CF are between the start and end of the phone data P.
Figure 1 illustrates the synchronization approach.

2.6. Pipeline

Figure 2 shows our machine learning pipeline for predicting the
joint impulse based on the phone’ signals. The input and output
of the pipeline are defined as follows:

e Input: The measurements of the phone’s IMU collected during
a single exercise repetition.

e Output: The joint impulse at the left hip, right hip, left knee or
right knee. Each location corresponds to one target variable,
i.e., the goal is to predict one value per location. Since the four
locations may require different models, we develop a separate
pipeline (with the same building blocks) for each target.

The pipeline consists of three building blocks. First, the feature
extraction block converts the raw phone signals into a format
that is suitable for learning a model. This format consists of
features that summarize the phone signals, e.g., by extracting
the mean of the a, signal. Each feature summarizes the data of
one exercise repetition, i.e., one window of data. The process of
defining a set of relevant features is called feature construction.
Section 2.6.1 describes this process in more detail. Next, the
normalization block normalizes the feature values in order to
make the predictions more robust. Section 2.6.2 lists several
normalization procedures. Finally, the model block turns the
(normalized) feature values into a prediction for the left/right
hip/knee joint impulse. Since the relation between phone-based
features and joint impulse is unknown from a biomechanics
perspective, we use machine learning to automatically learn a
model from a dataset labeled with ground-truth joint impulses.
Sections 2.6.3 and 2.6.4 describe the learning settings and
methods for training these models.

2.6.1. Feature Construction
The input of the pipeline consists of the measurements collected
by the phone’s sensors. However, the high dimensionality of
the raw phone signals prevents using these signals directly
for training a model. Therefore, we follow a feature-based
approach (Fulcher, 2018) and convert the raw phone signals
into a low-dimensional feature representation which captures the
relevant characteristics of the signals.

We use the TSFuse Python package with the minimal feature
extraction settings to generate a feature representation. This
package extracts a set of statistical features (e.g., mean, median,

variance,...) from both the original signals and additional signals
derived from these signals. To derive new signals, TSFuse
combines multiple signals using different transformations (e.g.,
the resultant of three signals). We refer to De Brabandere
et al. (2019) for the complete list of transformations as well as
the feature construction algorithm which builds features using
these transformations.

Since this construction method uses the target data to
remove irrelevant features, the feature construction method
was repeated for each cross-validation fold (see section 2.7).
In our experiments, TSFuse constructed the same 63 features
in each fold. Supplementary Table 1 shows an overview of the
constructed features.

2.6.2. Normalization Procedures
Normalizing the feature values may be required from a machine
learning and biomechanics perspective. From a machine learning
perspective, standardizing the feature values to a similar range is
necessary for certain types of models, including the regularized
linear model of our pipeline (section 2.6.4). From a biomechanics
perspective, other studies using accelerometer data have shown
that individual differences (e.g., body height, body mass,
movement pattern, ...) may influence the signals and thus affect
the feature values as well (Op De Beéck et al., 2018).
For the features, we consider the
normalization procedures:

following

e No normalization: use the original feature values.

e Dataset-level standardization: standardize each feature using
the mean and standard deviation as computed over the
complete dataset. This procedure only accounts for differences
in the range of the features.

e Subject-level standardization: standardize each feature using
the mean and standard deviation as computed separately for
each subject. This procedure also accounts for differences
between subjects.

For the target data, we only consider (1) the original
joint impulses relative to subjects body weight, and (2) the
standardized impulses using the mean and standard deviation
over the complete training set. We do not consider standardizing
based on each subject’s joint impulses since that would require
ground truth joint loading measurements for the test data, which
is understandable as the model does not have these when applied
to an unseen subject.

2.6.3. Learning Settings

Since some exercises have completely different movements,
the joint impulse can not be modeled in the same way for
each exercise. The model could detect the exercise type itself
by training the model using the complete dataset. However,
given the small dataset size, we simplify the learning task by
training multiple models, each focusing on only one or a few
similar exercises. Specifically, we consider the following two
learning settings:
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FIGURE 1 | lllustration of our synchronization method for one of the subjects. The original signals (left) are the resultant acceleration measured by the phone and the
left hip contact force. The cross-correlation between these signals (middle) is computed for all possible lags, i.e., all lags for which the hip contact force signal still
ends before the acceleration signal ends. The location of the highest peak then corresponds to the time difference between the signals, which can be used to align the
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FIGURE 2 | Joint loading estimation pipeline.

2.6.1 Feature construction

2.6.2 Normalization Procedures

2.6.3 Learning Settings
2.6.4 Learning Methods

One exercise (OE)

This setting splits the data per exercise type and evaluates
models for each exercise type separately.

Similar exercises (SE)

This setting splits the dataset in groups of similar exercises:
walk, ascend stairs and descend stairs; sit down and stand up;
forward lunge and side lunge; and stand on one leg and squat
on one leg.

Grouping multiple exercises in the SE setting increases the
number of training examples compared to the OE setting, which
may help selecting relevant features and setting good parameters
for the model. We hypothesize that the SE setting yields more
accurate models as a result of the increased training set size. To
evaluate this hypothesis, section 3.4 compares both settings.

2.6.4. Learning Methods
To estimate the joint loading based on the phone’s data, we train
regularized linear regression models using the Least Absolute

Shrinkage and Selection Operator (LASSO) by Tibshirani (1996).
This method performs both regularization and feature selection
by including the £;-norm of the weights in the cost function.
Given the small dataset of this study, this method is suitable
as it is able to select relevant features from a large number of
features (p) when the number of training examples (n) is small
(n < p). In our experiments, we use the Lass0 implementation
of sci kit-1earn (Pedregosa et al., 2011) with the default
parameters, which sets the regularization constant al pha to 1.

We compare the linear regression models to a naive baseline
model which predicts the average joint impulse of all exercise
repetitions in the training data. As the baseline requires no
learning, achieving a lower prediction error is a minimal
requirement for the linear model to do better than the current
best approach for monitoring the joint loading of patients.
This approach uses the population average as a “joint loading
profile” for monitoring an individual patient. The naive baseline
estimates the population average from a specific group of
subjects, in this case a sample of hip OA patients.
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2.7. Evaluation

We evaluate the pipeline’s performance on unseen (i.e., future)
data with respect to two scenarios: (1) applying the model to an
unseen patient, and (2) applying the model to a seen patient, i.e.,
a patient for whom some labeled data is already available. The
first scenario is relevant when a doctor without lab access applies
the model to one of his patients. Since this patient’s movement
patterns may be different compared to the patients for whom the
model was trained, we hypothesize that the second scenario may
improve the predictions by including labeled data of the patient
in the training data. To evaluate these scenarios, we employ the
following cross-validation procedures:

e Leave-one-subject-out cross-validation
This cross-validation procedure evaluates how accurate the
pipeline works for an unseen patient. In each fold, we hold
out all data of a single patient and train the model using
all other patients’ data. The error averaged over all folds
corresponds to the prediction error that a doctor without lab
access can expect.

e Leave-one-exercise-type-out cross-validation
This cross-validation procedure evaluates how accurate the
pipeline works for a seen patient. This procedure splits the
data based on the exercise type. In each fold, the test data
consists of all repetitions of one exercise type performed by
one subject. The training data consists of all other exercises
performed by the same subject as well as all data of the other
subjects. Note that we do not consider leave-one-repetition-
out cross-validation: since all trials of each exercise were
performed consecutively, the dependency between trials may
be too strong and result in overly optimistic errors.

For both cross-validation schemes, we evaluate the models by
reporting the relative mean absolute error (MAE%) of the
estimated joint impulses ¥; w.r.t. the ground truth joint impulses
yi over all exercise repetitions i. This metric represents the average
relative deviation from the actual joint impulses over all exercise
repetitions performed by a patient. The MAE% is defined as
follows:

Yi — i

N
MAE% = Z
Vi

i

3. RESULTS

This section evaluates the proposed joint impulse prediction
pipeline. We evaluate the pipeline using both cross-validation
procedures in section 3.1 (leave-one-subject-out) and section 3.2
(leave-one-exercise-type-out). For the pipeline’s building blocks,
we use dataset-level standardization for the feature values and
train the models using the SE setting. Our comparison in sections
3.3 and 3.4 shows that this normalization procedure and learning
setting were found to be optimal choices for our dataset.

3.1. Error for Unseen Patients

Table 2 shows the MAE% for the joint impulse at each of the
four locations. Overall, the linear model outperforms the baseline
for the hip joint loading. However, the knee joint loading seems

TABLE 2 | MAE% evaluated using leave-one-subject-out cross-validation.

Exercise Method Lefthip Righthip Left knee Right knee
Walk Baseline  0.439 0.460 0.286 0.291
al
Linear 0.168 0.155 0.430 0.406
) Baseline  0.158 0.077 0.193 0.076
Ascend stairs
Linear 0.158 0.077 0.193 0.183
. Baseline 0.184 0.340 0.207 0.164
Descend stairs
Linear 0.184 0.227 0.319 0.478
) Baseline  0.360 0.324 0.372 0.214
Sit down
Linear 0.360 0.324 0.279 0.214
Baseline  0.296 0.204 0.269 0.142
Stand up
Linear 0.296 0.204 0.269 0.142
Baseline  0.280 0.300 0.208 0.337
Forward lunge
Linear 0.263 0.265 0.178 0.256
) Baseline 0.277 0.293 0.254 0.314
Side lunge
Linear 0.325 0.330 0.243 0.269
Baseline  0.461 0.469 0.531 0.352
Stand on one leg
Linear 0.531 0.315 0.744 0.401
Baseline 0.278 1.031 0.291 1.986
Squat on one leg
Linear 0.251 1.081 0.223 1.811
Baseline 0.314 0.417 0.297 0.483
Overall
Linear 0.290 0.360 0.321 0.482
The errors which outperform the baseline are highlighted in bold.
TABLE 3 | MAE% for the two cross-validation schemes.
Left hip Right hip Left knee Right knee
Leave-one-subject-out 0.290 0.360 0.321 0.482
Leave-one-exercise-type-out 0.296 0.407 0.295 0.482

For each location, the lowest error is highlighted in bold, if one cross-validation method
outperforms the other.

harder to estimate as the linear model is marginally more accurate
than the baseline for right knee and even less accurate than the
baseline for the left knee. Evaluating the error for each exercise
type separately shows that the results are different across different
exercise types. The hip joint impulse estimations for walking
show the largest improvement over the baseline compared to the
other exercises.

3.2. Error for Seen Patients

Table 3 compares the leave-one-subject-out cross-validation
scheme with the leave-one-exercise-type-out cross-validation.
We hypothesized that the leave-one-exercise-type-out cross-
validation could improve the predictions by including data of
the patient in the test data. Unfortunately, the leave-one-exercise-
type-out errors are close to the leave-one-subject-out errors and
for the left and right hip, the leave-one-subject-out models often
outperform the leave-one-exercise-type-out models.

3.3. Comparison of Normalization

Procedures
In section 2.6.2, we hypothesized that normalization procedures
can improve the error of the models by scaling features
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TABLE 4 | Overall MAE% (averaged over all locations, i.e., left/right hip/knee) for
different combinations of the normalization procedures.

Target normalization

No Yes
No 0.439 0.433

Feature normalization Dataset-level 0.363 0.391
Subject-level 0.371 0.391

The table shows the results for the linear models with the SE setting evaluated using leave-
one-subject-out cross-validation. The lowest error over all combinations is highlighted in
bold.

to a similar range and removing inter-individual differences.
Table 4 compares all possible combinations of the normalization
procedures for both the features and the target data by reporting
the overall MAE% averaged over all locations (left and right
hip and knee) for each of combination. The best performing
combination is the dataset-level feature standardization and no
target normalization. Surprisingly, subject-level standardization
does not result in more accurate models compared to dataset-
level standardization.

3.4. Comparison of Learning Settings

In section 2.6.3, we hypothesized that the SE setting yields
more accurate results as this setting increases the number of
training examples by combining multiple exercises. To evaluate
this hypothesis, Table 5 compares the SE setting with the OE
setting. Overall, the SE models are more accurate than the OE
models for all locations except for the left knee. For the hip
joint impulse, the SE models show the largest improvement for
walking. However, the results are slightly less accurate for other
exercises (e.g., forward lunge and side lunge) which indicates that
the SE models are suitable for walking but not for other exercises.

4. DISCUSSION

The goal of this study was to explore the possibility of using a
minimal number of sensors for predicting joint loading in hip OA
patients. We proposed a machine learning pipeline that requires
only the IMU data collected from a mobile phone. In this section,
we discuss our choices for the different building blocks of this
pipeline. We then discuss the differences in the obtained errors
with respect to the joints and exercise types. Finally, we discuss
the accuracy vs. ease-of-use trade-off of our approach and suggest
future directions with respect to this trade-off.

4.1. Building Blocks of the Machine

Learning Pipeline

The proposed machine learning pipeline required making
several decisions for the different building blocks. For
the feature extraction block, we used an automated
approach (De Brabandere et al., 2019) to define the feature
representation. For the normalization block, we compared
different normalization procedures and found that dataset-level
feature standardization was important. For the model block, we
only considered a linear regression model, since the small dataset

TABLE 5 | MAE% of the similar exercises (SE) models and one exercise (OE)
models.

Exercise Setting Lefthip Right hip Leftknee Right knee
Gait OE 0.439 0.460 0.286 0.291
i
SE 0.168 0.155 0.430 0.406
) OE 0.158 0.077 0.193 0.076
Ascend stairs
SE 0.158 0.077 0.193 0.183
) OE 0.184 0.340 0.207 0.164
Descend stairs
SE 0.184 0.227 0.319 0.478
) OE 0.360 0.324 0.380 0.214
Sit down
SE 0.360 0.324 0.279 0.214
OE 0.296 0.204 0.269 0.142
Stand up
SE 0.296 0.204 0.269 0.142
OE 0.202 0.265 0.174 0.264
Forward lunge
SE 0.263 0.265 0.178 0.256
) OE 0.277 0.293 0.254 0.314
Side lunge
SE 0.325 0.330 0.243 0.269
OE 0.462 0.292 0.582 0.352
Stand on one leg
SE 0.531 0.315 0.744 0.401
OE 0.196 1.167 0.242 2.058
Squat on one leg
SE 0.251 1.081 0.223 1.811
OE 0.296 0.407 0.295 0.482
Overall
SE 0.290 0.360 0.321 0.482

The SE errors which outperform the OE errors are highlighted in bold.

size prevented us from using non-linear models. Whereas we
used the pipeline for predicting the joint impulses of the hip and
knee, it could be relevant for other locations as well. It could also
be interesting to explore whether this pipeline (potentially with
a non-linear model) can be used for other types of exercises and
for other types of sensors as input.

4.2. Errors Across Different Joints

The results of Table 2 show a clear difference in accuracy for
the hip and knee joints. The obtained results indicate that the
proposed pipeline is able to predict the hip impulse, but it
remains hard to outperform the naive baseline for the knee
impulse. Perhaps placing the IMU closer to the target joint
might lead to better results in predicting knee contact forces.
An IMU sensor on the hip might not capture the higher
linear accelerations and angular velocities that are found on the
segments connected to the knee joint. Considering the body’s
ability to attenuate shock, the acceleration signal amplitude
has already weakened when reaching the IMU placed at hip
level (Kavanagh and Menz, 2008). Placing an IMU on the shank
could better capture these initial loading shocks (distal part of the
shank), or higher acceleration signals (middle part of the shank).
However, which placement is best to obtain better joint loading
predictions should be investigated. Therefore, different IMU
placements should be investigated to examine if personalizing
the placement based on the type of patient (i.e., hip or knee
osteoarthritis patient) leads to better joint loading prediction
results during these types of exercises.
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Similar to the difference between the hip and knee, there are
also different errors for the left and right side. Interestingly, this
difference does not only hold for the linear models, but also for
the baselines, which suggests that there may be a larger variability
in the joint impulses for the right side compared to the left
side. One possible reason could be the side of the hip that was
affected. However, this is unlikely as the right hip was affected
for 6 patients and the left hip for 4 patients. To evaluate whether
the difference between left and right is significant, we performed
a two-sided paired t-test for the overall MAE% of the baseline.
That is, we tested whether [x,...,x)0] is significantly different
from [y1, ..., y10] where x; is subject i's MAE% of the baseline for
the left hip/knee and y; is subject i's MAE% of the baseline for the
right hip/knee. The resulting p-values are 0.3694 (for the hip) and
0.4458 (for the knee) meaning that the difference between left and
right was not significant. Most likely, the difference is due to the
small sample size (only 10 subjects) and does not hold in general.

4.3. Errors Across Different Exercise Types
The errors of the linear model are different for the different
exercise types, which suggests that predicting joint impulses is
easier for some exercises compared to others. Given that there
are large differences in the movements between exercises, the
differences in the joint impulse prediction errors can depend
on the relation between the data collected by the phone and
the contact force at each point in time. Figure 3 shows these
contact forces along with the resultant acceleration for each
exercise type. For those exercises for which both the left and right
hip joint impulse predictions are better than the baseline (walk
and forward lunge), the contact force signal shows two main
peaks for which also the resultant acceleration has a clear peak.
The potential relation between the height of these acceleration
peaks and the height of the contact force peaks could make the
prediction of the joint impulses easier.

4.4. Selected Features

The linear models in the model block were trained using L1-
regularization (lasso), which select a small number of features
out of the 63 generated features. Since the selected features are
different for each fold, it is hard to visualize which features are
used in the models given the large number of models (10 subjects,
4 groups of exercises and 4 locations result in 160 models).
Instead, we run stability selection (Meinshausen and Bithlmann,
2010) for each group of exercises and for each location to get an
idea of which features were selected most often. Stability selection
repeatedly trains Lasso models (with random subsampling) and
reports each feature’s importance as the percentage of models in
which the feature was used. Supplementary Table 2 shows the
top 5 features with the corresponding importance scores, for each
location and each group of exercises. One observation is that sum
and length features are commonly used. Since the joint impulse
is defined as an integral of the contact force, it is expected that
this feature is important to capture the duration of the exercise
repetition. Unfortunately, it is hard to interpret the importance
of the other selected features. Future work could explore using
more specific (manually handcrafted) features when the goal is to
get a better insight in the learned models.

4.5. Trade-Off Between Accuracy and

Ease-of-Use

This study explores a trade-off between accuracy and ease-of-
use. The most accurate model would be the one that uses all
lab equipment needed for calculating joint contact forces using a
musculoskeletal modeling workflow. However, this model would
also be the most inconvenient as it requires the patient to come
to the lab (which is probably not located in the hospital), attach
38 reflective markers to the patient and analyze the collected
data in order to calculate the joint contact forces from the
collected measurements.

Our model only requires attaching a mobile phone to the
patient’s left hip2. Given that a patient consultation typically takes
approximately only 15 min, using a small number of sensors is an
important requirement for developing a joint loading estimation
tool. In addition, using a mobile phone reduces the cost of such a
tool, since clinicians most likely already own a mobile phone and
only need to install an app to apply the model.

However, given the results of this work, we recognize that
using a mobile phone may be an easy solution, but unfortunately,
one that is not accurate enough for valid clinical use. A better
compromise between accuracy and ease-of-use would be to use
a combination of IMU sensors at more than one location. This
would allow having a better view of the patient’s movements. Still,
the number of sensors should be kept to a minimum in order to
keep the tool practical. More research is needed to evaluate which
locations are most suitable.

Even though the results are far from perfect, we argue that our
phone-based model is a step in the right direction in estimating
joint loading in a clinical setting using a very limited amount
of sensors. Especially the results for predicting the joint impulse
during level walking are interesting, where distinct reduction in
mean absolute error from the baseline can be seen (MAE% from
43.9 to 16.8%). When monitoring a patient during daily life, this
result is promising as walking is one of the most commonly
performed daily activities and might be responsible for the
majority of the joint loading during a day. The improvement
over the baseline indicates that clinicians are able to obtain more
accurate estimates of a patient’s joint load compared to using
a population average. In the future, a “hip OA” profile using
population averages could shift to a “personal” profile using
a more individualized estimate of joint loading. This in turn
could help clinicians align a person’s exercise prescription to their
individual loading profile based on more accurate methods which
could improve their rehabilitation. Given that joint contact forces
are believed to be important in the initiation and progression
of OA (Felson, 2013), this might be a promising tool in the
rehabilitation setting to asses patients’ joint impulses during
walking over time and adjust the rehabilitation and exercise
prescription accordingly.

2 Alternatively, the patient could wear the phone in his left pocket, but further
research is needed to evaluate whether this does not decrease the accuracy of
the estimations. Both ways of wearing the phone are convenient in a clinician’s
practice.
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FIGURE 3 | Hip contact force (N/kg) along with the resultant acceleration (m/s?) as measured by the mobile phone. For each exercise type, the figure shows a single
repetition performed by one subject.
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5. CONCLUSION AND FUTURE WORK

This work presented a machine learning pipeline to estimate the
hip and knee joint impulse based on a mobile phone. In terms
of the mean absolute error, we found that the proposed pipeline
is able to slightly outperform a population average baseline for
the hip (left hip: 29.0% for the linear model vs. 31.4% for the
baseline; left hip: 36.0 vs. 41.7% for the right hip), but not for
the knee. Our approach has two key advantages over existing
methods for predicting joint loading. First, the proposed pipeline
only requires a mobile phone as input. Second, we trained and
evaluated the pipeline using data of patients instead of healthy
subjects, which is relevant with respect to the setting in which the
proposed pipeline is applicable, i.e., monitoring patients.
However, even though our phone-based model is a step
in the direction of estimating joint contact forces using a
minimal number of sensors, the current approach still has several
limitations that need to be addressed in future work. First,
the overall error of our approach should be reduced further
in order to be applicable in a clinical context. One possibility
is to use multiple sensors, but still only a few such that the
model remains easy to use. Related work by Wesseling et al.
(2018) has shown that a combination of six IMU kinematic
variables can estimate hip joint loading but that for accurate
knee joint loading estimates both kinematic variables and ground
reaction forces are needed. Future work can investigate how to
extract sufficiently informative features from a minimal number
of sensors. For example, extracting joint angles could improve
the prediction error (McLean et al.,, 2003), but this requires at
least two sensors. Second, while we always attached the phone at
a fixed position, the phone’s orientation could be slightly different
due to variations across experiments with different subjects. This
means that our learned models are evaluated on data that may
have been collected using a slightly different reference frame for
the sensor measurements. Hence, our model should be robust
against minor perturbations of the phone’s orientation, but not
against attaching the phone at different locations. Future work
should develop models that are robust against variations in the
position of the sensors as well. This can be done by collecting data
with sensors at different locations and using machine learning to
train a model that works for various locations. Third, we decided
to only use linear models, since non-linear models did not
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Human movements are characterized by highly non-linear and multi-dimensional
interactions within the motor system. Therefore, the future of human movement analysis
requires procedures that enhance the classification of movement patterns into relevant
groups and support practitioners in their decisions. In this regard, the use of data-driven
techniques seems to be particularly suitable to generate classification models. Recently,
an increasing emphasis on machine-learning applications has led to a significant
contribution, e.g., in increasing the classification performance. In order to ensure the
generalizability of the machine-learning models, different data preprocessing steps are
usually carried out to process the measured raw data before the classifications. In the
past, various methods have been used for each of these preprocessing steps. However,
there are hardly any standard procedures or rather systematic comparisons of these
different methods and their impact on the classification performance. Therefore, the
aim of this analysis is to compare different combinations of commonly applied data
preprocessing steps and test their effects on the classification performance of gait
patterns. A publicly available dataset on intra-individual changes of gait patterns was
used for this analysis. Forty-two healthy participants performed 6 sessions of 15 gait trials
for 1 day. For each trial, two force plates recorded the three-dimensional ground reaction
forces (GRFs). The data was preprocessed with the following steps: GRF filtering, time
derivative, time normalization, data reduction, weight normalization and data scaling.
Subsequently, combinations of all methods from each preprocessing step were analyzed
by comparing their prediction performance in a six-session classification using Support
Vector Machines, Random Forest Classifiers, Multi-Layer Perceptrons, and Convolutional
Neural Networks. The results indicate that filtering GRF data and a supervised data
reduction (e.g., using Principal Components Analysis) lead to increased prediction
performance of the machine-learning classifiers. Interestingly, the weight normalization
and the number of data points (above a certain minimum) in the time normalization does
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not have a substantial effect. In conclusion, the present results provide first domain-
specific recommendations for commonly applied data preprocessing methods and might
help to build more comparable and more robust classification models based on machine
learning that are suitable for a practical application.

Keywords: gait classification, data selection, data processing, ground reaction force, multi-layer perceptron,
convolutional neural network, support vector machine, random forest classifier

INTRODUCTION

Human movements are characterized by highly non-linear and
multi-dimensional interactions within the motor system (Chau,
2001a; Wolf et al., 2006). In this regard, the use of data-driven
techniques seems to be particularly suitable to generate predictive
and classification models. In recent years, different approaches
based on machine-learning techniques such as Artificial Neural

Networks (ANNs), Support Vector Machines (SVMs) or Random

Forest Classifiers (RFCs) have been suggested in order to support

the decision making of practitioners in the field of human

movement analysis, e.g., in classifying movement patterns into

relevant groups (Schollhorn, 2004; Figueiredo et al, 2018).

Most machine-learning applications in human movements are

found in human gait using biomechanical data (Schéllhorn,

2004; Ferber et al., 2016; Figueiredo et al., 2018; Halilaj

et al.,, 2018; Phinyomark et al., 2018). Although it is generally

striking that there are more and more promising applications
of machine learning in the field of human movement analysis,
the applications are very diverse and differ in their objectives,
samples and classification tasks. In order to fulfill the application
requirements and to ensure the generalizability of the results,

a number of stages are usually carried out to process the

raw data in classifications using machine learning. Typically,

machine-learning classifications of gait patterns consist of a

preprocessing and a classification stage (Figueiredo et al,

2018). The preprocessing stage can be distinguished in feature

extraction, feature normalization, and feature selection. The

classification stage includes cross validation, model building and
validation, as well as evaluation. Different methods have been
used for each stage and there is no clear consensus on how to
proceed in each of these stages. This is particularly the case for
the preprocessing stages of the measured raw data before the
classification stage, where there are hardly any recommendations,
standard procedures or systematic comparisons of different
steps within the preprocessing stage and their impact on the
classification accuracy (Slijepcevic et al., 2020). The following six
steps, for example, can be derived from the preprocessing stage:

(1) Ground reaction force (GRF) filtering, (2) time derivative, (3)

time normalization, (4) data reduction, (5) weight normalization,

and (6) data scaling.

(1) There are a number of possible noise sources in the recording
of biomechanical data. Noise can be reduced by careful
experimental procedures, however, cannot be completely
removed (Challis, 1999). So far there is less known about
optimal filter-cut-off frequencies in biomechanical gait
analysis (Schreven et al., 2015). Apart from a limited

2

3)

(4)

(5)

certainty about an optimal range of filter cut-off frequencies
of the individual GRF components, the effect of GRF
filtering on the prediction performance of machine-learning
classifications has not been reported.

In the majority of cases, time-continuous waveforms or
time-discrete gait variables are measured and used for the
classification (Schéllhorn, 2004; Figueiredo et al., 2018).
Although, some authors also used time derivatives or data
in the frequency or frequency-time domain from time-
continuous waveforms (Schollhorn, 2004; Figueiredo et al.,
2018). A transformation, which has barely been applied so
far, is the first-time derivative of the acceleration, also known
as jerk (AtGRF) (Flash and Hogan, 1985). However, AtGRF
might describe human gait more precisely than velocity and
acceleration, especially when the GRF is measured. AtGRF
can be determined directly by calculating the first-time
derivative of the GRF measured by force plates.

Feature normalization has been applied in order to achieve
more robust classification models (Figueiredo et al., 2018).
A normalization in time is commonly applied to normalize
the biomechanical waveforms as percentage of the step,
stride or stance phase (Kaczmarczyk et al., 2009; Alagtash
et al., 2011a,b; Eskofier et al., 2013; Zhang et al., 2014). It
is differentiated among other things between 101 points in
time (Eskofier et al., 2013), 1000 points in time (Slijepcevic
et al., 2017) or the percentage occurrence per step cycle (Su
and Wu, 2000).

The purpose of data reduction is to reduce the amount of
data to the most relevant features. A dimensionally reduction
is often performed in order to determine which data is
to be retained and which can be discarded. The use of
dimension reduction can speed up computing time or reduce
storage costs for data analysis. However, it should be noted
that these feature selection approaches can not only reduce
computation costs, but could also improve the classification
accuracy (Phinyomark et al., 2018). Beside the unsupervised
selection of single time-discrete gait variables (Schéllhorn,
2004; Begg and Kamruzzaman, 2005), typical methods for
reducing the dimensionality of the data is, for example, the
Principal Component Analysis (Deluzio and Astephen, 2007;
Lee et al., 2009; Eskofier et al., 2013; Badesa et al., 2014).
Another way of feature normalization is weight or height
normalization. Weight and height normalizations in
amplitude are a frequently used method to control for
inter-individual differences in kinetic and kinematic
variables (Wannop et al, 2012). To what extent the
multiplication by a constant factor influences the
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classification has not yet been investigated to the best of
our knowledge.

A third way of feature normalization is data scaling. Data
scaling is often performed to normalize the amplitude of one
or different variable time courses (Mao et al., 2008; Laroche
et al., 2014). The z-score method is mainly used (Begg and
Kamruzzaman, 2005; Begg et al., 2005). In machine learning,
scaling to a variable or variable waveform the interval [0, 1]
or [-1, 1] is common in order to minimize amplitude-related
weightings when training the classifiers (Hsu et al., 2003). To
the best of our knowledge, it has not yet been investigated
whether it makes a difference to scale over a single gait trial
or over all trials of one subject in one session.

In summary, there is a lack of domain-specific standard
procedures and recommendations, especially for the various
data preprocessing steps commonly applied before machine-
learning classifications. Therefore, the aim of this analysis is
to compare different commonly applied data preprocessing
steps and examine their effect on the classification performance
using different machine-learning classifiers (ANN, SVM, RFC).
A systematic comparison is of particular interest for deriving
domain-specific recommendations, finding best practice models
and the optimization of machine-learning classifications of
human gait data. The analysis is based on the classification
problem described by Horst et al. (2017), who investigated intra-
individual gait patterns across different time-scales over 1 day.

MATERIALS AND METHODS

Sample and Experimental Protocol

The publicly available dataset on intra-individual changes of
gait patterns by Horst et al. (2017, 2019a) and two unpublished
datasets (Daffner, 2018; Hassan, 2019) following the same
experimental protocol were used for this analysis. In total, the
joint dataset consisted of 42 physically active participants (22
females, 20 males; 25.6 &+ 6.1 years; 1.72 & 0.09 m; 66.9 =+ 10.7 kg)
without gait pathology and free of lower extremity injuries. The
study was conducted in accordance with the Declaration of
Helsinki and all participants were informed of the experimental
protocol and provided their written consent. The approval
of the ethics committee of the Rhineland-Palatinate Medical
Association in Mainz has been received.

As presented in Figure 1, the participants performed 6
sessions (S1-S6) of 15 gait trials in each session, while there
was no intervention between the sessions. After the first, third
and fifth session, the participants had a break of 10 min until
the beginning of the subsequent session. Between S2 and S3
was a break of 30 min and between S4 and S5 the break was
90 min. The participants were instructed to walk a 10 m-long
path at a self-selected speed barefooted. For each trial, three-
dimensional GRFs were recorded by means of two Kistler force
plates of type 9287CA (Kistler, Switzerland) at a frequency of
1,000 Hz. The Qualisys Track Manager 2.7 software (Qualisys
AB, Sweden) managed the recording. During the investigation,
the laboratory environment was kept constant and each subject
was analyzed by the same assessor only. Before the first session,
each participant carried out 20 familiarization trials to get used
to the experimental setup and to determine a starting point for a
walk across the force plates. Before each of the following sessions,
five familiarization trials were carried out to take into account an
effect of practice and to control the individual starting position.
In addition, the participants were instructed to look toward a
neutral symbol (smiley) on the opposite wall of the laboratory
to direct their attention away from targeting the force plates and
ensure a natural gait with upright posture. The description of the
experimental procedure can be found as well in the original study
(Horst et al., 2017).

Data Preprocessing

The stance phase of the right and left foot was determined using
a vertical GRF threshold of 20 Newton. Different combinations
of commonly used data preprocessing steps, which typically
precede machine-learning classifications of biomechanical gait
patterns have been compared (Figure 2). Within the introduced
stage of preprocessing, the following six data preprocessing
steps were investigated: (1. GRF filtering) comparing filtered
and unfiltered GRF data. The method described by Challis
(1999) was used to determine the optimal cut-off frequencies
(fo) for the respective gait trials. The optimal filter frequencies
were calculated for each foot and each of the three dimensions
in each gait trial separetly. (2. Time derivative) comparing
the recorded GRF and AtGRE, the first-time derivative of the
GRF. AtGRF was calculated by temporally derivating the GRF
for each time interval. (3. Time normalization) comparing
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FIGURE 1 | Experimental procedure with the chronological order of the six sessions (S1-S6) and the duration of the rest periods between subsequent sessions.
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FIGURE 2 | Combinations of commonly used data preprocessing steps before machine-learning classifications. (1) Data points per foot and dimension. (2)
Time-continuous waveforms without reduction (TC), time-discrete gait variables by an unsupervised reduction (TD), and principle components by a supervised
reduction using Principal Component Analysis (PCA). (3) Z-transformation combined with scaling from [—1, 1] over single trials (ST) or all trials (AT). f¢: individual

the number of time points for the time normalization to the
stance phase. Each variable was time normalized to 11, 101 and
1,001 data points, respectively. (4. Data reduction) comparing
non-reduced, time-continuous waveforms (TC), time-discrete
gait variables (TD) and principle components by a reduction
using Principal Component Analysis (PCA) applied to the
time-continuous waveforms. The PCA (Hotelling, 1933) is a
statistical procedure that uses an orthogonal transformation
from a set of observations of potentially correlated variables
into a set of values of linearly uncorrelated variables, the
so called “principal components.” In this transformation, the
first principal component explains the largest possible part
of the variance. Each subsequent principal component again
explains the largest part of the remaining variance, with the
restriction that subsequent principal components are orthogonal
to the preceding principal components. In our experiment, the
resulting features, i.e., the principle components explaining 98%
of the total variance, were used as input feature vectors for
the classification. The time-discrete gait variables of the fore-
aft and medio-lateral shear force were the minimum and the
the maximum values as well as their occurrence during the
stance phase, and of the vertical force the minimum and the
two local maxima values as well as their occurrence during the
stance phase. This resulted in 28 time-discrete gait variables
for GRF data and 24 time-discrete gait variables for AtGRF
data. (5. Weight normalization) comparing whether weight
normalization to the body weight of every session was performed
or not. The normalization to the body weight before every season
would exclude the impact of any changes in the body mass
during the investigation. (6. Data scaling) comparing different
data scaling techniques. Scaling is a common procedure for data
processing prior to classifications of gait data (Chau, 2001a,b). It
was carried out to ensure an equal contribution of all variabilities
to the prediction performance and to avoid dominance of

variables with greater numeric range (Hsu et al., 2003). On the
one hand, this involved a z-transformation over all trials and one
over each single trial combined with a scaling to the range of
[—1, 1] (Hsu et al., 2003), determined over all trials or over each
single trial. The combination of these amplitude normalization
methods result in four different scaling methods.

The data preprocessing was managed within Matlab R2017b
(MathWorks, USA) and all combinations of each methods of
each data preprocessing and classification step were performed
in the current analysis in the order described in Figure 2.
In total, the analysis included 1,152 different combinations of
data preprocessing and classification step methods (1,152 = 2
GREF filtering * 2 Time derivative * 3 Time normalization *
3 Data reduction * 2 Weight normalization * 4 Data scaling
* 4 Classifier). In the two methods TD and PCA for data
reduction, the data scaling could not be applied for all methods.
In many cases, all values of a time-discrete gait variable or
a principle component were identical [Figure 2: Data Scaling
z: ST or [—1, 1]: ST] and thus no variance occurred, which
is necessary for the calculation of the data scaling. Only, the
data scaling over all trials from one subject [Figure2: Data
scaling: z: AT, [—1, 1]: AT] could be performed for all three
methods of data reduction. In order to keep the number of
considered combinations the same for all methods of a data
preprocessing step, only the data scaling of all attempts of one
subject [Figure 2: Data scaling: z: AT, [—1, 1]: AT] was considered
for the descriptive and statistical analysis in the results section.
This scaling also led to by far the best performance scores.
Consequently, 288 different combinations of data preprocessing
and classification step methods (288 = 2 GRF filtering * 2
Time derivative * 3 Time normalization * 3 Data reduction
* 2 Weight normalization * 1 Data scaling * 4 Classifier)
were compared quantitatively with each other on basis of the
performance scores.
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TABLE 1 | Length of the resulting input feature vectors depending on different
combinations of preprocessing methods.

Data Time Time GRF Length of input
reduction normalization derivative filtering feature vector
TC 11 GRF; AtGRF  No; Yes 66=11"3"2
101 GRF; AtGRF  No; Yes 606 =101*3*2
1,001 GRF; AtGRF  No; Yes 6006 = 1001 *3*2
D 11;101; 1,001 GRF No; Yes 28=7*2*2
AtGRF No; Yes 24=6*2*2
PCA 11 GRF No 46 (44, 47)
Yes 47 (44, 48)
AtGRF No 53 (49, 55)
Yes 38 (43, 46)
101 GRF No 78 (73, 83)
Yes 72.5 (69, 79)
AtGRF No 239 (210, 268)
Yes 108 (97, 119)
1,001 GRF No 79 (73, 84)
Yes 72 (68, 79)
AtGRF No 369 (341, 386)
Yes 108 (97, 120)

TC, time-continuous waveforms for three dimensions (*3) and two steps (*2); TD, time-
discrete gait variables of minima and maxima of the three dimensions (GRF: 7; AtGRF:
6) for two steps (*2) and their relative occurrences (*2); PCA, Median and interquartile
distance of the number of principle components.

Data Classification
The intra-individual classification of gait patterns was based on
the 90 gait trials (90 = 6 sessions x 15 trials) of each participant.
For each trial, a concatenated vector of the three-dimensional
variables of both force plates was used for the classification. Due
to the different time normalization and data reduction methods,
the resulting length of the input feature vectors differed (Table 1).
The classification based on the following four supervised
machine-learning classifiers with an exhaustive hyper-parameter
search: (1) Support Vector Machines (SVMs) (Boser et al,
1992; Cortes and Vapnik, 1995; Miiller et al., 2001; Schélkopf
and Smola, 2002) using a linear kernel and a grid search to
determine the best cost parameter C = 272,247 215,
(2) Random Forest Classifiers (RFCs) (Breiman, 2001) with the
Gini coefficient as decision criterion. Different numbers of trees
(n_estimators = 200, 225, ..., 350) and maximal tree depth
(n_depth = 4, 5, ..., 8) were determined empirically via grid
search. (3) Multi-Layer Perceptrons (MLPs) (Bishop, 1995) with
one hidden layer of size 2° (= 64 neurons) and 2,000 iterations
with the weight optimization algorithm Adam (B1 = 0.9, B2
=0.999, ¢ = 1078). The learning rate regularization parameter
a (=10711072,..., 1077) was determined via grid search in
the cross-validation. (4) Convolutional Neural Networks (CNNs)
(LeCun et al.,, 2015) consisting of three convolutional layers
and one fully connected layer. The first convolutional layers
contained 24 filters with a kernel size of 8, a stride of 2
and a padding of 4. The second contained 32 filters with a
kernel size of 8, a stride of 2 and a padding of 4. The third

convolutional layer contained 48 filters with a kernel size of 6,
a stride of 3 and a padding of 3. After each convolutional layer
a ReLU activation was performed and after a fully connected
layer a SoftMax was used to obtain probability of each of
the classes. This architecture follows CNNs previously used
for the classification of GRF data (Horst et al,, 2019b). The
ability to distinguish gait patterns of one test session from
gait patterns of other test sessions was investigated in a multi-
class classification (six-session classification) setting. For the
evaluation of the prediction performance, the F1-, precision-
and recall-scores were calculated over a stratified 15-fold cross
validation configuration. 78 of 90 parts of the data were used
for training, 6 of 90 parts were used as a validation set and the
remaining 6 of 90 parts was reserved for testing. The 6 samples
per test split were evenly distributed across all session partitions
and are excluded from the complete training and validation
process. Only 6 samples were selected for the test split because
we wanted to guarantee as much training data as possible. In
order to get meaningful results, the Training Validation Test
splitting was stratified repeated 15 times so that each of the 90
gait trials was exactly once in the test set. The classification was
performed within Python 3.6.3 (Python Software Foundation,
USA) using the scikit-learn toolbox (0.19.2) (Pedregosa et al.,
2011) and PyTorch (1.2.0) (Paszke et al., 2019).

The evaluation was carried out by calculating the performance
indicators (accuracy, F1-score, precision and recall) defined by
the number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN):

TP + TN
Accuracy =
TP 4+ TN + FP + FN
. TP
Precision = ——
TP + FP
TP
Recall = ————
TP + FN
. Precision*Recall
F1 — score =

Precision + Recall

Please note that since this is a balanced data set for multi-class
classification, the accuracy corresponds exactly to the recall.

Statistical Analysis

For the comparison of the different combinations of the
described preprocessing steps, the mean performance scores
were compared statistically. Each mean value combined all
combinations of preprocessing steps where the preprocessing
method was part of. The Shapiro-Wilk test showed that none
of the examined variables violated the normal distribution
assumption (p > 0.109). For the comparison of all combinations
of the preprocessing methods, paired-samples t-test and
repeated-measures ANOVAs were calculated for the variables
of time derivative, GRF filtering and weight normalization. For
the ANOVAs post hoc Bonferroni corrected paired-samples -
tests were calculated for the variables of time normalization,
data reduction and classifier. Furthermore, the effect sizes d and
T]IzJ were calculated; d and T]f, are considered a small effect for

|[d] = 0.2 and nf) < 0.06, a medium effect for |d| = 0.5 and
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TABLE 2 | Mean F1-score for each individual participant depending on each preprocessing method and machine-learning classifier.

GRF filtering Time derivative Time normalization Data reduction Weight normalization Machine-learning classifier

No Yes GRF AtGRF 11 101 1001 TC TD PCA No Yes SVM RFC MLP CNN
SO1 38.3 42.0 41.4 39.0 34.9 42.4 43.2 40.2 25.7 54.5 39.9 40.4 46.4 45.0 36.3 32.9
S02 24.5 29.4 27.9 26.0 23.2 28.4 29.2 245 20.6 35.7 27.2 26.7 30.0 30.7 23.9 23.2
S03 36.9 43.5 40.6 39.8 36.1 44.3 40.2 40.9 27.6 52.1 40.1 40.3 44.8 43.9 38.2 33.9
S04 42.9 50.0 48.2 451 41.5 48.8 49.5 48.8 36.5 53.6 45.9 47.3 51.4 56.2 42.0 36.8
S05 49.9 50.2 52.0 48.1 471 51.1 52.0 50.2 36.5 63.6 49.6 50.6 56.7 56.2 45.5 41.9
S06 38.4 39.8 39.3 38.9 32.0 42.3 43.2 38.9 28.0 49.8 39.3 38.9 42.8 44.6 38.2 30.8
S07 31.5 40.5 35.4 36.7 30.5 40.0 37.6 34.6 28.7 44.8 36.2 35.9 39.2 41.7 32.8 30.3
S08 42.7 49.0 46.4 45.4 41.4 49.0 47.0 47.3 38.2 51.8 45.7 46.0 49.0 52.1 44.9 37.6
S09 43.2 47.2 46.1 44.3 39.1 49.8 46.7 43.5 34.0 58.1 45.3 451 51.2 49.7 41.2 38.7
S10 41.3 40.3 41.2 40.4 34.2 441 441 44.4 27.5 50.5 40.5 411 43.8 43.2 42.2 33.9
S 38.5 40.7 42.5 36.7 35.3 42.8 40.8 42.0 27.6 49.3 39.5 39.7 44.0 451 35.2 34.2
S12 34.1 31.9 36.2 29.8 27.9 35.4 35.7 35.3 22.9 40.9 33.5 32.6 36.7 34.9 34.1 26.3
S13 31.7 34.5 34.4 31.8 28.6 36.9 33.8 32.5 27.8 39.0 32.8 33.4 36.9 36.6 31.2 27.6
S14 33.9 34.0 38.1 29.8 28.3 37.3 36.2 35.7 24.4 4.7 34.1 33.8 36.3 35.4 35.7 28.3
S15 39.9 45.3 46.8 38.4 36.8 46.7 44.2 42.5 31.2 54.0 42.8 42.3 48.7 46.2 39.5 35.8
S16 32.0 32.9 32.9 31.9 275 34.5 35.3 33.8 23.3 40.2 32.7 32.2 34.3 34.6 34.6 26.3
S17 29.3 30.0 31.7 27.6 22.6 33.4 32.6 30.0 21.7 36.9 29.7 29.7 33.0 31.5 29.4 24.8
S18 24.4 26.9 25.6 25.8 22.8 27.0 27.3 28.3 17.9 30.9 25.7 25.7 27.6 26.7 27.5 21.0
S19 27.3 28.7 31.5 24.5 25.0 29.4 29.5 26.8 22.7 34.5 279 28.0 31.0 30.6 25.5 24.8
S20 29.3 34.0 324 31.0 26.6 33.7 34.7 31.9 25.7 37.4 31.8 31.6 34.4 36.3 30.0 26.2
S21 27.7 29.6 30.9 26.4 25.4 30.8 29.7 28.1 22.4 35.2 28.6 28.8 31.2 33.1 26.4 24.0
S22 32.3 33.6 36.4 29.5 28.6 34.5 35.7 34.1 24.2 40.5 33.2 32.7 33.6 35.3 35.6 27.2
S23 31.7 35.0 34.6 32.1 28.5 35.0 36.5 33.8 25.6 40.7 33.1 33.6 34.9 39.0 32.8 26.6
S24 35.4 43.3 40.1 38.6 33.9 41.3 42.9 39.7 32.1 46.3 39.7 39.1 42.8 43.8 39.2 31.6
S25 34.7 41.9 39.3 37.4 34.7 41.6 38.7 37.1 33.0 44.8 38.3 38.4 40.2 43.8 36.8 32.5
S26 47.6 49.9 53.6 43.8 42.3 51.3 52.5 52.2 4.7 52.1 48.5 48.9 52.9 56.3 47.0 38.6
S27 315 31.8 30.4 32.8 26.5 34.2 34.2 33.6 24.6 36.7 31.6 31.6 32.8 35.2 31.5 27.0
S28 35.9 45.5 41.9 39.4 33.5 451 43.5 43.0 29.9 49.2 40.9 40.5 43.5 43.9 42.3 33.0
S29 32.2 36.1 33.1 35.2 30.1 36.5 35.8 36.3 22.6 43.6 34.5 33.9 36.8 35.7 36.0 28.1
S30 31.1 33.1 35.4 28.9 28.3 32.6 35.4 35.1 21.6 39.0 31.9 32.3 33.4 37.1 32.5 254
S31 51.3 53.7 54.5 50.5 44.5 56.0 57.0 58.6 36.6 62.2 52.4 52.5 56.8 58.3 53.5 41.3
S32 43.0 45.9 47.4 41.5 38.6 46.0 48.7 49.5 31.1 52.7 44.7 44.2 47.9 50.3 44.0 35.5
S33 35.7 41.4 39.7 37.4 32.1 40.4 431 41.6 23.5 50.3 38.2 38.9 42.7 41.6 39.2 30.7
S34 49.8 51.8 53.8 47.8 44.5 53.2 54.7 52.1 39.0 61.4 50.7 50.9 541 57.5 51.3 40.4
S35 38.4 45.4 45.3 38.8 35.1 45.5 45.5 45.6 25.7 53.7 42.2 41.8 45.8 47.7 42.2 32.2
S36 36.9 39.3 41.0 35.3 32.9 40.7 40.7 39.5 29.8 451 37.9 38.3 41.2 43.1 36.8 31.3
S37 30.9 33.7 35.8 28.9 27.7 33.5 35.8 33.8 20.3 42.9 32.2 32.5 35.3 33.3 34.3 26.4
S38 35.1 38.2 39.0 34.3 30.9 38.7 40.3 37.8 26.5 45.6 36.7 36.6 39.5 40.9 37.1 29.1
S39 41.6 43.2 46.1 38.7 39.0 43.1 451 47.4 28.1 51.7 42.4 42.4 44.3 48.6 42.8 33.9
S40 41.4 48.9 48.8 41.5 37.1 47.9 50.4 48.1 30.3 56.9 451 45.2 48.9 50.5 46.8 34.4
S41 38.4 43.2 43.9 37.6 34.7 42.9 44.7 44.4 28.1 49.7 40.6 41.0 42.6 48.3 40.5 31.7
S42 27.2 29.4 31.3 25.4 255 28.2 31.4 29.7 21.6 33.0 28.3 28.3 29.2 31.4 28.3 24.3
M 36.2 39.6 39.8 36.0 32.8 40.4 40.6 39.4 27.8 46.5 37.9 37.9 41.2 42.3 37.3 31.0
SD 6.7 7.3 7.3 6.8 6.3 7.3 7.3 7.8 5.6 8.3 6.8 7.0 7.8 8.3 6.8 5.3

The mean precision and mean recall (= accuracy) scores for each individual participant depending on each preprocessing method and machine-learning classifier can be found in Supplementary Tables S1, S2.
Each mean value combines all combinations of preprocessing steps where the preprocessing method was part of (n = 42).
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0.06 < nfz, < 0.14 and a large effect for |[d| = 0.8 and nfz, >
0.14 (Cohen, 1988). The p-value at which research is considered
worth to be continued (Fisher, 1922) has been set to p = 0.05.
To determine a best practice model, all combinations of data
preprocessing methods were ranked according to their mean
performance scores over 15-fold cross validation and the rank
sum was calculated.

RESULTS

Average Performance of Different Data

Preprocessing Methods

The analysis compares 288 different combinations of data
preprocessing methods based on the resulting F1-score. Table 2
displays the mean F1-score for each individual participant over
the 15-fold cross validation (Supplementary Tables S1, S2 show
the mean precision and recall values).

Figure 3 shows the mean F1-scores over all participants. It is
noticeable that the highest mean F1-scores were achieved using
PCA, while the normalization to 101 and 1,001 data points or
the weighting has only a minor effect on the F1-score. The time
normalization to only 11 data points and the reduction to time-
discrete gait variables gave particularly low mean classification
scores. Concerning the machine-learning classifiers, the RFCs
achieved the highest mean Fl-scores followed by the SVMs,
MLPs, and CNN.

GREF Filtering

A paired-samples t-test was performed to determine if there were
differences in F1-score in unfiltered GRF data compared to f.-
filtered GRF data across all participants. The mean F1-score of
the filtered GRF data (M = 39.6%, SD = 7.3%) was significantly
higher than that of the unfiltered GRF data (M = 36.2%, SD =
6.7%). The effect size, however, was small [t4;) = 8.200, p <
0.001, |d| = 0.492].

Time Derivative

A paired-samples ¢-test was conducted to compare the F1-score
of GRF and AtGRF across all participants. The mean F1-score of
GRF (M = 39.8%, SD = 7.3%) was significantly higher than that
of AtGRF (M = 36.0%, SD = 6.8%) and showed a medium effect
size [t(41) = 8.162, p < 0.001, |d| = 0.540].

Time Normalization

A repeated-measures ANOVA determined that there is a
significant global effect with large effect size of F1-score between
time normalization to 11, 101 and 1,001 data points [F(5 000, 82.000)
=367.115, p < 0.001, nf, = 0.900]. Post hoc paired-samples ¢-test
with Bonferroni correction revealed that there is no significant
difference [t(4;) = —0.741, p = 0.463, |d| = 0.031] between a time
normalization to 101 (M = 40.4%, SD = 7.3%) data points and
1,001 data points (M = 40.6%, SD = 7.3%). However, the time
normalization to 101 data points performed significantly better
[t1) =22.397,p < 0.001, |d| = 1.118] than time normalized to 11
data points (M = 32.8%, SD = 6.3%). Also the time normalization
to 1,001 data points performed significantly better than to 11 data

points [t(41) = 21.789 p < 0.001, |d| = 1.150]. Both effect sizes are
considered as large.

Data Reduction

A one-way repeated-measures ANOVA was conducted to
compare the F1-scores of PCA (M = 54.9%, SD = 8.5%), TC (M
= 50.9%, SD = 8.8%), and TD (M = 37.5%, SD = 6.5%). The
Huynh-Feldt corrected results showed a highly significant main
effect with a large effect size [F(; 504,65.365) = 378.372, p < 0.001,
nIZ) = 0.902]. Bonferroni corrected post hoc paired-samples t-tests
showed that PCA performed significantly better than TC [t(4;) =
14.540, p < 0.001, |d| = 0.884] and TD [t(41) = 22.658, p < 0.001,
|d| = 2.635]. The effect size for both comparisons is considered as
large. Furthermore, TC performed also significantly better than
TD with a large effect size [t4;) = 16.516, p < 0.001, |d| = 1.701].

Weight Normalization

A paired-samples t-test was conducted to compare the FI-
scores of weight-normalized and non-weight-normalized data
across all participants. There was no significant difference [t(4;)
= —0.644, p = 0.523, |d| = 0.006] in the Fl-scores for non-
weight-normalized data (M = 37.9%, SD = 6.8%) and weight-
normalized data (M = 37.9%, SD = 7.0%).

Machine-Learning Classifier

A repeated-measures ANOVA with Huynh-Feldt correction
showed a highly significantly global effect with large effect size
[F(1.130,103.478) = 240.138, p < 0.001, T’]I?7 = 0854] between the
predicted Fl-scores by the SVMs (M = 41.2%, SD = 7.8%),
RFCs (M = 42.3%, SD = 8.3%), MLPs (M = 37.3%, SD =
6.8%), and CNNs (M = 31.0%, SD = 5.3%). Post hoc Bonferroni
corrected paired-samples ¢-test revealed that the RFCs performed
significantly better, with a small effect size, than the SVMs [t(4))
= 3.531, p = 0.001, |d| = 0.140], with a medium effect size
than the MLPs [t(4;) = 9.459, p < 0.001, |d| = 0.664] and with
a large effect size than the CNNs [t(4;) = 20.780, p < 0.001,
|d| = 1.625]. Also the SVMs performed significantly better than
the MLPs with a medium effect [t4;) = 8.115, p < 0.001, |d| =
0.534] and significantly better than the CNNs with a large effect
[t1) = 23.811, p < 0.001, |d| = 1.530]. Furthermore, the MLPs
performed significantly better than the CNNs with a large effect
[ta1) = 13.725, p < 0.001, |d| = 1.035].

Best Practice Combinations of Different

Data Preprocessing Methods
In addition to the mean Fl-scores for each method of all
preprocessing and classification steps, Table3 shows the 30
combinations with the highest overall Fl-scores, including
precision and recall (the complete list including precision and
recall can be found in Supplementary Table S3). It is particularly
noticeable that the first 18 ranks were all achieved using PCA for
data reduction. Furthermore, the first eight ranked combinations
used GRF data. The first twelve ranked combinations were
classified with SVMs, while the highest F1-score was 13th with
MLP, 27th with RFC and 57th with CNN.

Table 4 shows the rank scores of all classifications performed
for the 288 combinations of the different preprocessing steps
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