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Editorial on the Research Topic

Machine Learning Approaches to HumanMovement Analysis

EMBRACING HUMAN MOVEMENT COMPLEXITY

Back in the mid-2000s, when Facebook was new and smartphones had still not become amajor part
of our everyday lives, researchers started to explore the use of Machine Learning in biomechanics.
The road ahead appeared uncertain and people asked whether it was a new dawn or false hope?
(Bartlett, 2006). Fifteen years later, we are in the middle of the era of data science, witnessing an
unprecedented flourishing of techniques and applications. When large amounts of information can
be collected and analyzed, the appeal and “unreasonable effectiveness of data” (Halevy et al., 2009)
has found fertile ground in the study of complex biological and physical systems, humanmovement
science among them.

The way we humans move, and the underlying cognitive control involved in this process
is inherently complex, dynamic, multidimensional, and highly non-linear (Phinyomark et al.,
2018). Machine Learning approaches enable us to embrace this complexity, working on three
complementary tasks: predictive modeling, classification, and dimensionality reduction. With
contributions from the five continents, the collection of papers in this Research Topic represents
insightful viewpoints on the current landscape and potential new trends on the horizon.

ESTIMATION OF KINETICS AND KINEMATICS FROM WEARABLE

SENSORS

A model is a summary of the best knowledge of a system at the time it is investigated, capturing
essential aspects that are critical in answering the question at hand. Predicting modeling maps
input data to a given output and can be used to anticipate future events with confidence. It is
not surprising that the availability of large datasets obtained from wearable sensors has promoted
considerable advancements in the estimation of quantities that traditionally required expensive
laboratory setups, such as ground reaction forces and derived variables. This is one of the main
technological trends in recent research. The study byMundt et al. discusses motion capture systems
and how they retrieve kinetic (and kinematics) data with less expert knowledge and without
expensive equipment. As they state, motion capture systems are going to “increase the availability
of motion analysis to a wider range of people.” In other words, access to such systems enables a
move toward pervasive healthcare systems (Zhou et al., 2020).
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Exploiting the power and versatility of artificial (deep) neural
networks as universal function approximators, the contributions
by Stetter et al. and Derie et al. estimated external knee moments
and vertical loading during various locomotion tasks, including
running and using a minimal set of IMUs. Dorschky et al.
worked on the same topic by augmenting a measured inertial
sensor dataset with simulated data to demonstrate how to
efficiently estimate sagittal plane angles, joint moments, and
ground reaction forces. Complimentary work by De Brabandere
et al. shows how the kinetics of the hip and knee can be estimated
using smartphone embedded sensors.

ARTIFICIAL INTELLIGENCE ON THE MOVE

The automatic classification of athletic tasks based on motion
data gathered in real-world conditions with inertial sensors is
another expanding area of investigation, as evidenced in papers
by Benson et al., Clouthier et al., and Preatoni et al. They
use neural networks together with Support-Vector Machines
and k-Nearest Neighbors algorithms. Pattern-recognition was
also made possible by a combination of unsupervised Principal
Component Analysis (PCA) and Gaussian Mixture Model
or Linear Discriminant Analysis. Another contribution by
Remedios et al. describes an alternative way to objectively identify
movement phenotypes without the need to a-priori prescribe
movement features. Ross et al. discriminate élite from novice
athletes, devising inertial features that capture motion details
related to competition level. The recognition of movement
patterns was also a key focus in the study by Suda et al., which
used ground reaction forces to recognize foot-ankle movement
strategies in long-distance runners.

COMPUTER VISION

Computer Vision represents a parallel trend, involving a
combination of deep neural networks and simpler classification
algorithms. Guerra et al. propose an interesting application
of automatic pose recognition (also used in Zago et al. for
gait analysis) and classification to trigger an alarm in frail
individuals. The study by Gregori et al. focused on rehabilitation
by developing a deep-learning method to automatically evaluate
grasping actions in people with upper limb prostheses.
Background segmentation and shape classification allowed
Monezi et al. to automatically detect the three-dimensional
location of multiple players in a basketball court.

A STEP FORWARD

Gait analysis is undoubtedly a collector of the data revolution.
Instrumented gait assessment is routinely used to evaluate an
individual’s quality of life, morbidity, and/or mortality. Here,
data science is a powerful complement to traditional approaches
when handling large, heterogeneous, and sometimes noisy data
sets (Ferber et al., 2016). The integration of machine learning
with biomechanics not only simplifies the assessment of several
interdependent parameters (Khera and Kumar, 2020) but also

provides the opportunity for automated and unbiased analysis
(Arac, 2020). Rethwilm et al. gained insights on trunk lean
control in patients with Cerebral Palsy, combining PCA to
binary logistic regression. In their technical paper, Burdack et al.
explained how data filtering and unsupervised data reduction
impacted gait classification based on ground reaction force data.
Principal Component analysis is also the framework of analysis
explored by Promsri and Federolf, who crafted a methodological
paper explaining how to gain information about the coordinative
structure of complex whole-body movements during balancing.
In addition, De Roeck et al. focus on lower limb kinematics
during deep squatting and in the forward lunge, devising a
statistical model that predicts lower limb kinetics therein.

Zaroug et al. propose a method to predict lower limb
kinematic trajectories during walking using long short-term
memory (LSTM) neural networks. LSTM was also combined
with convolutional neural networks by Yu et al. to predict
pre-impact fall for older people. Notably, this approach was
also implemented in a microcontroller unit featuring a working
device. The practical translation of these techniques constitutes a
crucial step that has not yet been undertaken that requires further
exploration in future studies.

CLINICAL APPLICATIONS

Many papers in the Research Topic propose research-grade
applications, and the effective combination of technology and
data science will be topical in the near future. The seed of this
trend is already visible. For instance, statistical shape modeling
supported by logistic regression has clinical applications in
automating the identification of surgically-relevant landmarks,
as demonstrated by Cerveri et al.. de Araújo et al. showed
how hand resting tremors could be used in the diagnosis of
Parkinson’s Disease. For patients in a similar condition, Lebel
et al. worked on the prediction of motor performance based on
visible symptomatology. A crucial issue is discussed in the work
by Chia et al., which developed a decision support system based
on gait kinematics, anthropometric characteristics, and physical
examination and trained a system to learn the recommendations
formulated by clinicians.

WHAT’S NEXT

While carefully avoiding falling into a simplistic (and potentially
dangerous) “idolatry of data,” we believe that the road is paved
for rapid and inevitable (re)volutions. Assisting human decisions
is among the most impactful advancements that data science and
human movement science together can provide to medicine in
the next decade (Jones et al., 2018). First data science can benefit
education by supporting junior clinicians and potentially, later
on, assisting in diagnosis and prognosis. In this journey, data
is a powerful ally, but there is a need for machine learning to
provide transparency and justifications of predictions (Halilaj
et al., 2018; Horst et al., 2019). A framework to interpret
deep learning features and the “magic inside the black box” is
essential and significant efforts are currently being made toward
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creating explainable artificial intelligence (Côté-Allard et al.).
Furthermore, as anticipated by many experts (Ferber et al.,
2016; Halilaj et al., 2018), a cultural shift toward data sharing is
necessary to achieve the required general validity (and constant
upgradability) that will bring these systems into clinical practice.

The constant growth of computational power and wearable
sensor miniaturization will also open pathways to pervasive
real-time applications, exploiting the wealth of data available
“out in the wild,” from marker-less motion capture to exercise
monitoring and training assistance. To date, artificial intelligence
does not simply provide new tools to study human motion.

Rather, the way we study human motion is evolving thanks

to artificial intelligence. By “following the data” (Halevy et al.,
2009), we are pursuing unexplored and fascinating avenues
of knowledge.

AUTHOR CONTRIBUTIONS

MZ, AK, and PF contributed equally to the writing of this
editorial. All authors contributed to the article and approved the
submitted version.

REFERENCES

Arac, A. (2020). Machine learning for 3D kinematic analysis of

movements in neurorehabilitation. Curr. Neurol. Neurosci. Rep. 20:29.

doi: 10.1007/s11910-020-01049-z

Bartlett, R. (2006). Artificial intelligence in sports biomechanics: new dawn or false

hope? J. Sports Sci. Med. 5, 474–479.

Ferber, R., Osis, S. T., Hicks, J. L., and Delp, S. L. (2016). Gait

biomechanics in the era of data science. J. Biomech. 49, 3759–3761.

doi: 10.1016/j.jbiomech.2016.10.033

Halevy, A., Norvig, P., and Pereira, F. (2009). The unreasonable effectiveness of

data. IEEE Intell. Syst. 24, 8–12. doi: 10.1109/MIS.2009.36

Halilaj, E., Rajagopal, A., Fiterau, M., Hicks, J. L., Hastie, T. J., and Delp,

S. L. (2018). Machine learning in human movement biomechanics: best

practices, common pitfalls, and new opportunities. J. Biomech. 81, 1–11.

doi: 10.1016/j.jbiomech.2018.09.009

Horst, F., Slijepcevic, D., Lapuschkin, S., Raberger, A. M., Zeppelzauer,

M., Samek, W., et al. (2019). On the understanding and

interpretation of machine learning predictions in clinical gait

analysis using explainable artificial intelligence. arXiv. 1912.0

7737.

Jones, L. D., Golan, D., Hanna, S. A., and Ramachandran, M. (2018).

Artificial intelligence, machine learning and the evolution of healthcare:

a bright future or cause for concern? Bone Joint Res. 7, 223–225.

doi: 10.1302/2046-3758.73.BJR-2017-0147.R1

Khera, P., and Kumar, N. (2020). Role ofmachine learning in gait analysis: a review.

J. Med. Eng. Technol. 44, 441–467. doi: 10.1080/03091902.2020.1822940

Phinyomark, A., Petri, G., Ibáñez-Marcelo, E., Osis, S. T., and Ferber, R. (2018).

Analysis of big data in gait biomechanics: current trends and future directions.

J. Med. Biol. Eng. 38, 244–260. doi: 10.1007/s40846-017-0297-2

Zhou, L., Fischer, E., Tunca, C., Brahms, C. M., Ersoy, C., Granacher, U.,

et al. (2020). How we found our imu: guidelines to IMU selection and a

comparison of seven IMUs for pervasive healthcare applications. Sensors 20,

1–28. doi: 10.3390/s20154090

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Zago, Kleiner and Federolf. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 January 2021 | Volume 8 | Article 6387938

https://doi.org/10.3389/fbioe.2020.00158
https://doi.org/10.1007/s11910-020-01049-z
https://doi.org/10.1016/j.jbiomech.2016.10.033
https://doi.org/10.1109/MIS.2009.36
https://doi.org/10.1016/j.jbiomech.2018.09.009
https://doi.org/10.1302/2046-3758.73.BJR-2017-0147.R1
https://doi.org/10.1080/03091902.2020.1822940
https://doi.org/10.1007/s40846-017-0297-2
https://doi.org/10.3390/s20154090
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


ORIGINAL RESEARCH
published: 15 November 2019
doi: 10.3389/fbioe.2019.00316

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 November 2019 | Volume 7 | Article 316

Edited by:

Matteo Zago,

Polytechnic of Milan, Italy

Reviewed by:

Marco D’Alonzo,

Campus Bio-Medico University, Italy

Lee Baugh,

University of South Dakota,

United States

*Correspondence:

Valentina Gregori

gregori@diag.uniroma1.it

Specialty section:

This article was submitted to

Biomechanics,

a section of the journal

Frontiers in Bioengineering and

Biotechnology

Received: 22 August 2019

Accepted: 24 October 2019

Published: 15 November 2019

Citation:

Gregori V, Cognolato M, Saetta G,

Atzori M, The MeganePro Consortium

and Gijsberts A (2019) On the

Visuomotor Behavior of Amputees and

Able-Bodied People During Grasping.

Front. Bioeng. Biotechnol. 7:316.

doi: 10.3389/fbioe.2019.00316

On the Visuomotor Behavior of
Amputees and Able-Bodied People
During Grasping

Valentina Gregori 1,2*, Matteo Cognolato 3,4, Gianluca Saetta 5,

Manfredo Atzori 3, The MeganePro Consortium and Arjan Gijsberts 2

1Department of Computer, Control, and Management Engineering, University of Rome La Sapienza, Rome, Italy, 2 VANDAL

Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy, 3 Information Systems Institute, University of Applied Sciences Western

Switzerland (HES-SO Valais), Sierre, Switzerland, 4 Rehabilitation Engineering Laboratory, Department of Health Sciences and

Technology, ETH Zurich, Zurich, Switzerland, 5Department of Neurology, University Hospital of Zurich, Zurich, Switzerland

Visual attention is often predictive for future actions in humans. In manipulation tasks,

the eyes tend to fixate an object of interest even before the reach-to-grasp is initiated.

Some recent studies have proposed to exploit this anticipatory gaze behavior to improve

the control of dexterous upper limb prostheses. This requires a detailed understanding

of visuomotor coordination to determine in which temporal window gaze may provide

helpful information. In this paper, we verify and quantify the gaze and motor behavior of

14 transradial amputees who were asked to grasp and manipulate common household

objects with their missing limb. For comparison, we also include data from 30 able-bodied

subjects who executed the same protocol with their right arm. The dataset contains

gaze, first person video, angular velocities of the head, and electromyography and

accelerometry of the forearm. To analyze the large amount of video, we developed a

procedure based on recent deep learning methods to automatically detect and segment

all objects of interest. This allowed us to accurately determine the pixel distances between

the gaze point, the target object, and the limb in each individual frame. Our analysis

shows a clear coordination between the eyes and the limb in the reach-to-grasp phase,

confirming that both intact and amputated subjects precede the grasp with their eyes

by more than 500 ms. Furthermore, we note that the gaze behavior of amputees was

remarkably similar to that of the able-bodied control group, despite their inability to

physically manipulate the objects.

Keywords: visuomotor strategy, eye-hand coordination, upper-limb amputees, object segmentation, phantom limb

movements, object tracking

1. INTRODUCTION

Humans interact continuously with objects in activities of daily living (ADLs). Vision and
gaze play an important role during these interactions, not only to guide the activity itself
but also in the initial planning phase. Gaze is thus said to be anticipatory and can be
used to understand an individual’s intentions even before they manifest themselves in the
motor domain. Several studies have attempted to explore this proactivity to help disabled
people, such as in a robot assistant scenario (Admoni and Srinivasa, 2016; Koochaki and
Najafizadeh, 2018; Saran et al., 2018). Another compelling use-case is the control of dexterous
upper-limb prostheses (Castellini and Sandini, 2006; Markovic et al., 2014, 2015; Gigli
et al., 2018), where deciphering the grasp intent from myoelectric activations alone can be
challenging. The integration of gaze and vision as contextual information could be helpful
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especially during the initial transient phase of a movement.
Executing this fusion successfully requires however a precise
understanding of eye-hand coordination.

Gaze behavior has been studied extensively over the last
decades. Early studies typically involved constrained settings, for
instance by fixating the chin to avoid head movements or by
limiting the field of view to a monitor (see Tatler et al., 2011,
and references therein). Obviously, these findings may not be
representative for unconstrained settings where free movement
of the body is allowed to ensure natural behavior (Tatler et al.,
2011; Tatler, 2014). Such unconstrained experiments became
possible with the introduction of wearable eye-tracking devices
that allowed the user to move freely in the environment (Land,
2006). Subsequently, studies on visuomotor coordination have
confirmed that also in this setting actions are typically preceded
by a visual fixation on the involved objects. This was verified
during a block-copying task (Smeets et al., 1996; Pelz et al., 2001),
while drinking from various objects (Belardinelli et al., 2016),
during an object displacement task (Belardinelli et al., 2016;
Lavoie et al., 2018), during pick-and-place of a bar (Johansson
et al., 2001), and when grasping (Brouwer et al., 2009). Similar
goal-oriented gaze strategies were also reported during ADLs,
such as tea-making and sandwich-making (Land and Hayhoe,
2001), walking (Patla and Vickers, 2003), driving (Land and Lee,
1994), and sports (Land and McLeod, 2000; Hayhoe et al., 2012).
Although all studies confirm the anticipatory nature of gaze, they
do not always agree on the exact timing of the motor execution
after the first visual fixation, for instance when the hand reaches
the object. These discrepancies can probably be explained by
differences in experimental setting (Smeets et al., 1996; Pelz et al.,
2001), variability due to a small number of subjects, or difficulty
in accurately analyzing a large number of trials.

Only a few studies have investigated the gaze behavior of
amputees. In a small case study, Sobuh et al. (2014) observed
that the amputated participants did not use gaze to proactively
plan subsequent actions in a task. Instead, they tend to switch
their gaze more often between the object and the prosthetic
hand to visually monitor its proper functioning (Bouwsema et al.,
2012; Hebert et al., 2019). This increased visual attention is most
likely to compensate for the lack of tactile and proprioceptive
feedback from their prostheses. A similar finding was also
reported when able-bodied subjects were engaged in similar
tasks using a prosthetic simulator (Blank et al., 2010; Sobuh
et al., 2014; Parr et al., 2018, 2019). Almost all of these studies
investigated this disruption in eye-hand coordination precisely
for this reason, namely to measure the subject’s proficiency in
controlling the prosthesis. More visual attention to the hand
area during reaching and manipulation is considered indicative
of a lower level of skill and confidence in the control of the
prosthesis. Conversely, it should therefore also be expected that
gaze behavior will “normalize” with an increasing confidence in
the control response of the prosthesis. Indeed, Chadwell et al.

Abbreviations: ADL, activity of daily living; sEMG, surface electromyography;

IVT, Identification Velocity Threshold; FPN, Feature Pyramid Network; COCO,

CommonObjects in COntext; AP, average precision; IoU, Intersection over Union.

(2016) noted that one participant who used a prosthesis daily
showedmore natural gaze behavior than another less experienced
participant, while Sobuh et al. (2014) observed a shorter fixation
on the hand area with increasing practice.

In the present study, we investigate eye-hand coordination
during reaching and grasping to determine the window of
opportunity in which gaze can provide useful information for
intent recognition. We used the data of the recently acquired
dataset, in which 15 transradial amputees were asked to try to
grasp and manipulate various household objects to the best of
their ability with their missing limb. In addition, it contains data
from 30 able-bodied control subjects who performed the same
grasps and manipulation tasks with their right arm. Throughout
the exercise, gaze, and visual data were recorded via eye-tracking
glasses, while the muscular activity of the arm was recorded
via surface electromyography (sEMG) electrodes. Contrary to
prior work, asking amputees to perform “movements without
movement” (Raffin et al., 2012b) allows us to investigate to
which extent the amputees’ eye-hand coordination has changed
as a result of the amputation, rather than due to difficulties
controlling a prosthesis. Given the similarity of movements
executed with the phantom limb compared with those executed
with intact limb (Raffin et al., 2012a,b), we also expect the eye-
hand coordination of movements involving the missing limb
to be highly similar to those involving the intact limb. This
“ideal” setting does not imply that the results are not relevant
for the prosthetic setting; the disruption of gaze strategies is
actually characterized by a markedly longer reaching phase, while
still maintaining the majority of the fixations on the target
object (Sobuh et al., 2014; Hebert et al., 2019). The window of
opportunity in the prosthetic setting is therefore expected to be
considerably longer than the one we identify here.

The total size of the dataset exceeds 70 h of video, which
is far too large to be analyzed and annotated manually within
reasonable time. However, quantifying the distances between
gaze point, target object, and the forearm is of fundamental
importance for the present study. We therefore employed state-
of-the-art deep learning techniques to automatically detect and
segment all objects of interest in all videos. This procedure
consisted of an efficient method to collect representative training
data and the subsequent finetuning of a pretrained object detector
to this data. A beneficial side-effect of detecting object locations
in the video is that we can reliably determine fixations even in the
presence of head movements.

In the following, we describe the dataset and the methods
employed in the analysis in section 2. In section 3, we then
present the results of our analysis, which are discussed more
thoroughly in section 4. Finally, we conclude and summarize the
paper in section 5.

2. MATERIALS AND METHODS

To investigate the visuomotor behavior during manipulation
actions we relied on a large, recently acquired dataset. In the
following, we describe how the data were used in the context
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TABLE 1 | The characteristics of the amputated participants considered in the present study.

Amputation

ID Age Gender Handedness Side Cause Years Prosthesis Limb [%]

101 52 M Right Right Electrocution 2 Cosmetic 60–80

102 39 M Right Right Electrocution 4 Cosmetic 60–80

103 63 M Ambidextrous Right Trauma 3 Myoelectric 60–80

104 49 M Right Right Trauma 18 Myoelectric 80–100

105 73 M Right Right Trauma 6 Body-powered 40–60

106 70 M Left Left Trauma 5 Body-powered 80–100

107 36 M Right Left Trauma 7 Body-powered 20–40

108 35 M Right Right Trauma 9 Myoelectric 0–20

109 65 M Right Left Trauma 1 Cosmetic 80–100

110 38 M Right Left Trauma 14 Myoelectric 20–40

111 38 M Right Right Trauma 10 Myoelectric 40–60

112 33 F Right Left Oncological 13 Cosmetic 60–80

113 28 M Right Left Trauma 7 Myoelectric 40–60

115 36 F Right Left Burn 8 Cosmetic n/a

The table reports the ID of the subjects in the MeganePro dataset, their age, their gender, and their handedness. Among the clinical parameters we report the amputation side, its cause,

the number of years since amputation, the type of prosthesis used, and the relative length of the residual limb with respect to the contralateral limb.

FIGURE 1 | An overview of the experimental setup.

of the present study. Due to the large amount of video data
contained in this dataset, we devised a procedure to automatically
detect and segment all objects of interest via deep learning.

This procedure is outlined and we formulate how the resulting
segmentation masks were used to determine distances.

2.1. MeganePro Dataset
The MeganePro dataset was acquired with the aim of
investigating the use of gaze and visual information to improve
prosthetic control (Cognolato et al., 2019). It contains data of 15
transradial amputees [13 M, 2 F; age: (47.13 ± 14.16) years] and
a frequency matched control group of 30 able-bodied subjects
[27 M, 3 F; age: (46.63 ± 15.11) years] who performed grasps
and manipulation tasks with a variety of household items. The
gaze data for one of the amputated subjects was unreliable due
to strabismus; this subject was therefore excluded from our
analyses. The characteristics of the remaining amputated subjects
is shown in Table 1, including information on the amputation
and prosthetic use. All of them reported to experience phantom
limb sensations, but only 12 had some voluntary control over the
phantom limb.

During the experiment, the subjects wore a Tobii Pro Glasses
2 eye-tracker (Tobii AB, Sweden) to record the gaze behavior,
first person video, and angular velocities of the head. These
glasses sample gaze and gaze-related information at 100Hz, while
the video is recorded with a 1920 px × 1080 px resolution at
25 frames per second. On their forearm, they had 12 Delsys
Trigno electrodes (Delsys Inc., USA) arranged in an array of
eight equidistant electrodes at the height of the radiohumeral
joint and four more electrodes in a second array 45mm more
distally. These electrodes record sEMG at 1926Hz and contain
an integrated three axes accelerometer that is sampled at 148Hz.
A picture showing the setup is shown in Figure 1.

The experiment consisted of repeatedly grasping or
manipulating household items placed on a table in front of
the subject. The pairing of grasps and objects was specifically
chosen based (1) on the likelihood of their co-occurrence in
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ADLs and (2) to attain as much as possible a many-to-many
relationship between grasps and objects. In the first part of the
experiment, subjects just had to perform a “static” grasp on the
object without any manipulation, hold it for a few seconds and
then return to a rest posture when instructed. The amputated
subjects were asked to attempt to execute the action as naturally
as possible “as if their missing limb were still there,” rather than
just imagining it, to elicit activation of the remaining muscles in
their residual limb. Each of the grasps in Table 2 and its three
associated objects were first introduced via a video, after which
the subjects were instructed vocally to grasp each object four
times while seated and then another four times while standing.
The order in which the objects appeared in each repetition block
was randomized to avoid habituation. During the second part
of the experiment, the same ten grasps were instead executed
as part of a “functional” movement, as can be seen in Table 3.
In this case, the movements were performed either seated or
standing, depending on which position would seem more likely
in real life.

Given the scope of the present paper, we only use sEMG
from the second and seventh electrode, which were placed
approximately on the extensor and flexor digitorum superficialis.
Besides having relatively high activations, these electrodes also
indicate roughly whether the hand was opening or closing. To
aid visualization, both channels were rectified with a moving
root mean square with a window-length of 29ms (i.e., 57
samples) (Merletti, 1999). With respect to accelerometry, we note
that the accelerations of all electrodes were highly correlated
due to their positioning around the forearm. We therefore use
accelerations only from the first electrode and normalize them
with respect to the inertial frame of the initial position in each
trial (Tundo et al., 2013).

2.2. Gaze Velocity
A common method to classify gaze events in fixations and
saccades is based on the evaluation of the angular gaze
velocity (Salvucci and Goldberg, 2000). Given two consecutive
3-dimensional gaze vectors g i−1 and g i, the angular difference
between them can easily be calculated by means of their dot
product (Duchowski, 2007)

αi = arccos

(
g i · g i−1

‖g i‖‖g i−1‖

)
, ∀i ∈ {2, ...,N} . (1)

An approximation of the instantaneous gaze velocity at time ti
then follows as

vi =
αi

ti − ti−1
, ∀i ∈ {2, ...,N} . (2)

Although the Tobii glasses provide a unit gaze vector for both
eyes, we instead use the gaze point in world coordinates to
estimate the common angle of the eyes. These world coordinates
had fewer missing data and were slightly cleaner in practice due
to onboard processing. They are however relative to the position
of the scene camera rather than the eyes. Since this camera is
located on top of the frame of the glasses, this may lead to some
inaccuracy at small gaze distances. We therefore map the gaze

TABLE 2 | Overview of the static tasks.

Grasp Object

Medium wrap

Bottle Door handle Can

Lateral

Mug Key Pencilcase

Parallel

extension

Plate Book Drawer

Tripod grasp

Bottle Mug Drawer

Power sphere

Ball Bulb Key

Precision disk

Jar Bulb Ball

Prismatic pinch

Clothespin Key Can

Index finger

extension

Remote Knife Fork

Adducted thumb

Screwdriver Remote Wrench

Prismatic

four finger

Knife Fork Wrench

For each row, the grasp and the associated objects are indicated. The subjects were

asked to grasp each object with the given hand configuration while both seated and

standing.

points to a coordinate system that is centered between the left
and right pupils

ĝ i = g i − p̄i, ∀i ∈ {1, ...,N} , (3)
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TABLE 3 | Overview of the functional tasks in the second part of the MeganePro dataset.

Grasp Vocal instruction Position Category

Medium wrap
Drink from the can

Standing
Lifting

Open and close the door handle In place

Lateral
Turn the key in the lock

Standing
In place

Open and close the pencil case In place

Parallel extension
Lift the plate

Standing
Lifting

Lift the book Lifting

Tripod grasp
Open and close the cap of the bottle

Standing
In place

Open and close the drawer In place

Power sphere
Move the ball to the right and back

Standing
Displacement

Move the keys forwards and backwards Displacement

Precision disk
Open and close the lid of jar

Seated
In place

Screw and unscrew the light bulb In place

Prismatic pinch
Squeeze the clothespin

Seated
In place

Move the keys forwards and backwards Displacement

Index finger extension
Press a button on the remote control

Seated
In place

Cut bread with the knife In place

Adducted thumb
Turn the screwdriver

Seated
In place

Move the wrench to the right and back Displacement

Prismatic four finger
Move the knife forwards and backwards

Seated
Displacement

Move the fork to the right and back Displacement

The vocal instruction in English indicates the task that had to be performed for each object-grasp pair, while the position denotes whether the subject performed the task while seated

or standing. The last column indicates the movement category as per the description in section 3.3.

where p̄i is the average of the left and right pupil locations
relative to the scene camera. To limit the impact of missing data
for the pupils, we linearly interpolated gaps shorter than 0.075 s
(Olsen and Matos, 2012).

2.3. Object Detection and Segmentation
To determine whether the subject is fixating the target object
at any given time, we need a precise segmentation of this
latter object throughout the exercise. Since the videos for each
subject totaled around 90min or 135 000 frames, this would
be very time consuming to annotate manually. We therefore
employed a deep learning algorithm to automatically segment
and classify all instances of our objects of interest (see Table 2).
Finetuning this algorithm to our data still required at least a few
dozen segmentations per object class. Rather than creating these
manually, we instead used a second deep learning algorithm to
facilitate the creation of this dataset.

2.3.1. Creation of the Training Dataset
SiamMask is a recently proposed method for object tracking and
semi-supervised video object segmentation (Wang et al., 2019).
By marking just a bounding box around an object in one frame,
this deep convolutional algorithm (1) segments the object from
the background and (2) tracks it in the following frames in a
video sequence. Although it may seem tempting to run this
algorithm on an entire video annotating each object only at its

first occurrence, in practice the object tracking does not work
reliably on such long time scales. We therefore used this method
to amplify our manual annotations; with just a single bounding
box annotation per object, we obtain 10 to 20 times as many
binary segmentation masks for our training set.

For our approach, we embedded the official implementation
of SiamMask1 with a default ResNet-50 backend in a custom
application. This software allows the user to select a frame in a
video and to annotate several objects with their bounding box
and their class identity. Based on this initialization, SiamMask
processes the initial frame and subsequent frames one by one.
At each frame, the output is presented to the user for validation,
who can either accept or refuse the proposed segmentation.
This procedure is shown schematically in Figure 2. In practice,
we accepted sequences up to about 15 frames. Applying this
procedure repeatedly, we processed in total 2,422 frames with
11,726 segmented object instances chosen from 15 subjects.
To include as much variability as possible in our dataset, we
captured the objects from different perspectives, with different
backgrounds, and while partially occluded. Furthermore, besides
the eighteen objects in Table 2, we also included segmentations
for a “person” class, which is primarily used to detect the subject’s
own limb.

1https://github.com/foolwood/SiamMask
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FIGURE 2 | The procedure to acquire the training set of segmentation masks. We first select an arbitrary frame from a video and annotate each object with its

bounding box and object identity. This information is passed to SiamMask, which produces segmentation masks for this initial frame and the subsequent frames in the

video sequence. At each frame, the user can choose whether or not to include the frame and its segmentations in the training set or to move to a new initial frame.

2.3.2. Training and Inference of Mask R-CNN
The data we acquired in this manner were used to train Mask
R-CNN on our objects of interest. This method detects and
segments all instances of the known objects in an image (He
et al., 2017). Rather than training a model “from scratch,”
we bootstrapped from a model that was supplied with the
implementation of Mask R-CNN by Massa and Girshick
(2018). This model used a relatively standard ResNet-50-FPN
backbone (Lin et al., 2017) and was pretrained on the COCO
dataset (Lin et al., 2014), a large scale generic dataset for object
detection, segmentation, and classification. As is common with
finetuning, we replaced the final classification layer of the model
with a random initialization and then performed additional
training iterations with a reduced learning rate of 0.0025 to
tailor the model to our custom dataset. The data of ten subjects
were used for training, while the validation set consisted of the
data of the remaining five subjects, which were chosen to be
as representative as possible for the entire dataset. We chose to
use the model that minimized the loss on the validation set (i.e.,
early stopping), which was obtained after just 4,000 iterations2.
The performance of this model is compared in Table 4 with
the average precision (AP) metrics of the pretrained model
on the original COCO dataset. Note that due to the limited
domain of our dataset and the smaller number of classes our
performance compares favorably to the larger COCO dataset.
After training, we employed the model in inference mode to
detect and segment objects in all videos of all subjects, as shown
graphically in Figure 3.

2.3.3. Distances
The segmentation masks for all videos were stored to disk and
then combined with the gaze data to calculate various distances.
In the following, we restrict ourselves to segmentations that were
recognized with a certainty score of at least 0.8. The distances that
are of interest for our analyses are the following.

2The model is publicly available online (Gregori and Gijsberts, 2019).

TABLE 4 | Comparison of Mask R-CNN’s detection accuracy on the COCO

dataset and the accuracy of our finetuned model on the MeganePro dataset.

Dataset AP [%] AP50 [%] AP75 [%] Source

MeganePro 77.5 92.7 87.6 This work

COCO 33.6 55.2 35.3 He et al., 2017

The AP is the average precision over Intersection over Union (IoU) from 0.5 to 0.95

evaluated at steps of 0.05. AP50 and AP75 represent the average precision when the

threshold of IoU is 0.5 or 0.75. A detailed description of these metrics can be found on

the website of the COCO dataset (http://cocodataset.org).

• The gaze-target distance, which is the distance between the
gaze point in frame coordinates and the target object for a
grasp trial, if visible in the frame. If multiple instances of the
same target class were recognized, then we chose the largest in
terms of area.

• The gaze-limb distance denotes the distance between the gaze
point and the hand or residual limb of the participant, if
visible. We only consider instances identified as “human” that
fall in the lower half of the image frame and again prefer the
largest one.

• When applicable, the limb-target distance indicates the
distance between the subject’s hand or residual limb and the
target object, as defined in the previous two distances.

Note that with the term “distance” we intend the minimum
Euclidean distance in pixels between a point and the contour of
a binary mask or between the contours of two binary masks. If
these overlap, then the distance is 0. Note that with the scene
camera of the Tobii glasses we find that 1 px ≃ 0.72mm at a
typical manipulation distance of 0.8m.

2.4. Events
The profile of these distances and the modalities described
previously were used to determine the timing of visuomotor
events with respect to the stimulus, such as the first fixation on
the target object or the onset of the arm movement. These events
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FIGURE 3 | The procedure to segment the entire dataset. By means of the previously selected training set we fine-tune the Mask R-CNN model. Later we feed the

network with new frames and it provides the segmented object instances as output.

allow us to quantitatively describe the time interval between the
activation of the eyes, head, and limb. The analysis window for
each trial ranges from 2 s before until 2.5 s after the end of the
corresponding vocal instruction with a resolution of 20ms. We
define the following events.

• The first fixation is defined as the first of at least two successive
samples where the gaze-target distance is <20 px. This
threshold was chosen to accommodate for some systematic
error in the gaze tracking and is roughly twice the average gaze
tracking accuracy (Cognolato et al., 2019). The requirement
for two successive samples that fall below the threshold is to
ignore occasional outliers.

• The saccade to the target object is assumed to initiate at the
last sample where the gaze velocity was<70 ◦/s (Komogortsev
et al., 2010), starting from 500ms prior to the target fixation.
This definition in terms of the last preceding fixation rather
than the first saccademakes it robust against missing data from
the eye tracker during saccades. Furthermore, we require this
saccade to start from a gaze-target distance of at least 100 px to
avoid occasional trials where the subject was already fixating
the target object.

• The start of the head movement is defined as the first of
two successive samples where the Euclidean norm of the
angular velocity vector of the Tobii glasses exceeds 12 ◦/s.
This threshold was chosen manually to be insensitive to
systematic errors in the measurements of the gyroscope in the
Tobii glasses.

• The movement of the arm starts at the first of two
successive samples where the Euclidean norm of the three-axis

accelerations exceeds 0.07 g. Also in this case the threshold was
tuned manually to be insensitive to the baseline level of noise
of the accelerometers.

• The activation of the forearm muscles starts when either of the
myoelectric signals exceeds 4 times its baseline level for two

successive samples. This baseline level is taken as the average
activation in the rest period from 2 s to 1 s before the vocal
instruction ended.

• Finally, the first grasp occurs when there are two successive
samples where the limb-target distance is <5 px. This
threshold was chosen to allow for a small error margin in the
detected segmentation masks.

Whenever the conditions for an event were not satisfied it was
marked as missing for the corresponding trial. Furthermore, we
invalidate all events that were found within the first 100ms of the
analysis window, as it implies that the subject was not in a rest
position or was already fixating the target object.

3. RESULTS

In the following, we analyze the eye-hand coordination of the
subjects in response to the grasp stimulus during the reach-
to-grasp and manipulation phases. In other words, we relate
movement of the eyes and head with that of the forearm. Before
moving to these analyses, we verified that subjects effectively
looked at the target object during a grasp trial. Thanks to the
deep learning approach described previously, we determined
that in 95.9% of the trials the gaze-target distance was <20 px
at least once. Manual evaluation of the remaining 4.1% of the
trials revealed that these were caused by a low accuracy of the
gaze tracking that exceeded our threshold rather than lack of
subject engagement.

3.1. Statistical Analysis
The first objective in this paper is to determine the window of
opportunity in which gaze can provide useful information about
an upcoming grasp. Table 5 shows that for intact subjects there
is a median interval of 561ms between the fixation event and
the subsequent grasp event. The same interval increases to more
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TABLE 5 | Statistical description of the intervals in seconds between various events.

Intact Amputated

Interval # Q1 Med. Q3 # Q1 Med. Q3 Significance

fixation → grasp 8,144 0.321 0.561 0.842 1,942 0.581 1.042 1.644 KS = 0.724,p = 2.602× 10−5

saccade → fixation 5,625 0.080 0.160 0.301 2,522 0.060 0.140 0.281 KS = 0.190,p = 0.811

saccade → head 5,419 −0.301 0.020 0.160 2,367 −0.461 −0.020 0.140 KS = 0.338,p = 0.173

head → arm 7,929 0.020 0.120 0.301 3,507 0.000 0.140 0.371 KS = 0.262,p = 0.447

arm → muscles 7,907 −0.020 0.080 0.401 3,576 0.200 0.581 1.042 KS = 0.829,p = 4.524× 10−7

The count refers to the number of trials where both events were recognized, out of a total of 9,703 trials for intact and 4,482 trials for amputated subjects, respectively. For the

Kolmogorov-Smirnov test the intervals were averaged per subject to guarantee independent samples.

than a second for amputated subjects, although this difference is
because they did not physically interact with the objects and the
limb-target distance therefore did not as often converge to within
the 5 px threshold. Not surprisingly, a Kolmogorov-Smirnov test
on the average interval per subject indicated that this difference
between both subject groups was statistically significant. This is in
contrast to the coordination between the initial saccade, the head,
and the arm movements, for which we fail to find a significant
difference between both groups. The saccade to the target object
leads to its fixation in approximately3 150ms. Concurrently with
the eyes, also the head starts tomove. This headmovement is then
followed by acceleration of the arm around 130ms later. In intact
subjects, the activation of the forearm muscles comes only 80ms
after the onset of the arm movement in the median case. This
interval is more than half a second longer for amputated subjects
and this difference is found to be statistically significant.

3.2. Reach-to-Grasp Phase
The coordination during the reaching phase of all “static” and
“functional” grasps is visualized in Figure 4 for both intact
and amputated participants. Whereas the previous statistical
analysis was intended to provide a quantitative assessment
of the relative timings in eye-hand coordination, this figure
instead complements those numbers by demonstrating how this
coordination evolves over time. It does so by showing the median
and quartiles of the distribution over all trials from all subjects
in either group from 1.5 s before to 2.5 s after the conclusion of
the vocal instruction. For both types of subjects, we observe an
increase in gaze velocity from −0.5 s to 1 s. This increase also
marks a sharp decrease in the distance between the gaze and
the target object, which leads to a fixation soon after. From this
moment on, the subjects retain their fixation on the object of
interest. Based on the median profiles, we see again that the onset
of the head movement starts around the same time as the eye
movement and continues for 1.5 s.

The delay of the arm movement with respect to the eyes is
slightly larger for amputated subjects, as shown by the median
profile of the forearm’s acceleration in Figure 4. Shortly after
the arm starts to move, we also observe an increase in sEMG
activity, with initially an emphasis on the extensor and later on

3This is likely a slight overestimation, considering our definition of the saccade and

missing values in the gaze data from the Tobii glasses.

the flexor. For able-bodied subjects, the profile of the limb-target
distance confirms our earlier finding that the limb arrives at
the object 500ms after its fixation. Although this result is not
directly comparable with that for amputated subjects, we observe
that the convergence between their residual limb and the target
object appears more gradual and is characterized by a much
larger variability.

A noteworthy observation is that the activation of the eyes
always preceded the end of the vocal stimulus. The reason is
that subjects could typically deduce the target object already
before the end of the instruction. This does not affect our results,
since we are interested in the relative delay between eyes, head,
and forearm rather than reaction times to the stimulus. The
differences in reaction time to the vocal instructions do increase
however the dispersion of the distributions. We also note that
the relative contribution among the three axes of the acceleration
profile differs between able-bodied and amputated subjects. The
reason is that we normalized this profile with respect to the
initial position of the forearm, which is typically different for both
types of subjects. In the present study, we use accelerometry to
determine when the arm starts to move and rely on the limb-
target distance to measure its convergence to the target object.

3.3. Manipulation Phase
In Figure 5, we focus on the behavior of intact and amputated
subjects during the functional tasks to further investigate the
similarities in gaze strategy. These figures start from 2 s before
the vocal instruction until 7 s after, which is enough to cover
the entire manipulation action. We group the MeganePro
movements into three categories based on the type of task and the
associated visual behavior, as shown in Table 3. These categories
are in place manipulation actions, lifting actions, and finally
displacement actions.

3.3.1. In Place Actions
The in place actions concern manipulation tasks that do not
require moving the object, like opening an object, cutting bread,
or pressing a button of the remote control. The aggregated
profiles of all modalities for these actions are shown in Figure 5A

for able-bodied subjects and in Figure 5B for amputees. During
this type of action, the gaze remains fixed on the target object
throughout the entire duration of the manipulation, as can also
be seen in the example in Figure 6 that overlays gaze and object
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FIGURE 4 | The trend of each modality in the reach-to-grasp phase for (A) intact and (B) amputated subjects. The zero corresponds to the end of the vocal

instruction that indicated the required manipulation action. The solid line represents the median over all trials from all subjects, whereas the shaded areas indicate the

25th and 75th percentiles. Segments with more than 90% missing data were omitted.

segmentations on representative frames of the first person video.
As expected, the hand remains on the target for the entire
duration in case of able-bodied subjects, whereas for amputees
there remains a constant subject-dependent distance between the
residual limb and the target. Head movements are limited to
the initial reach-to-grasp phase to center the object in the field
of view, after which the head remains fixed until the end of
the manipulation.

3.3.2. Lifting Actions
The second group is composed of lifting actions, in which the
subject was required to lift an object up and then place it back
in its initial position. As can be seen in Figures 5C,D, also in
this case the gaze anticipates head and forearm movement. More
interestingly, we see a clear movement in the pitch orientation
of the head. Since these actions are executed while standing,
the subjects first lower their head to locate the target object on
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FIGURE 5 | The trend of each modality for intact and amputated subjects for the (A,B) in place, (C,D) lifting, and (E,F) displacement functional tasks. The zero

corresponds to the end of the vocal instruction that indicated the required manipulation action. The solid line represents the median over all trials from all subjects,

whereas the shaded areas indicate the 25th and 75th percentiles. Segments with more than 90% missing data were omitted.
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FIGURE 6 | Example of the visuomotor behavior of an intact (first row) and an amputated (second row) participant while opening a door handle. The gaze trail is

represented by the circles from the current gaze position (red) to ten samples later (white). Both subject groups direct the gaze on the object during the reaching

phase (first column). The eyes then remain focused on the target object during the grasping and manipulation phases (second and third columns). In both cases, the

motor behavior of the arm is similar for intact and amputated subjects. During the release phase the gaze shifts away from the object (fourth column).

the table. Then, when they have located and grasped the object,
they raise their head again with a peak pitch velocity at 1.7 s for
able-bodied subjects and slightly later for amputated subjects.
This head movement coincides with a modestly increased gaze
velocity and is due to the tracking motion of the lifting action.
In some cases, this tracking strategy even caused an amputated
subject’s gaze-target distance to increase, as can also be seen in the
example in Figure 7. Finally, the subjects lower their head again
when tracking the release of the object at the end of the trial.

3.3.3. Displacement Actions
The final category are the so-called displacement actions. During
these tasks, the subjects had to grasp the objects, move them
horizontally to another position, and then place them back in the
initial position. We note that the gaze and motor behavior starts
earlier with respect to the vocal instruction. For this category of
tasks, the name of the object happens to appear at the beginning
of the instruction (see Table 3), thus allowing subjects to initiate
the task early. For intact subjects, we see in Figure 5E that 200ms
before the hand reaches the object the gaze-target distance starts
to increase again. The gaze, in this case, shifts already to the
destination position for the displacement action, as demonstrated
in the second panel in Figure 8. Although less pronounced,
the same pattern repeats itself at around 1.5 s when the subject
initiates the return movement. The profiles for the amputated
subjects in Figure 5F show different behavior, with an overall
increase in gaze-target distance throughout the entire duration
of the movement. As intact subjects did, their gaze anticipates the
path of the hand rather than the path of the object, which is not
physically displaced. This strategy is demonstrated clearly in the
bottom row of Figure 8.

4. DISCUSSION

The objective of this paper was to determine the window of
opportunity for exploiting gaze as contextual information in

decoding the grasp intent of amputees. A related question was
to which extent the natural gaze strategies of amputees and able-
bodied subjects were similar. After comparing our results with
related work, we discuss both topics. Finally, we argue for the
use of recent developments in deep learning in the analysis of
large-scale visuomotor studies.

4.1. Visuomotor Strategy and Comparison
With Related Work
In section 3.2, we presented the results of eye, head, and limb
coordination during reaching and grasping. The eyes are the
first to react to the vocal stimulus by exhibiting an increasing
saccade-related activity, leading to a fixation on the target in
about 150ms. When the eyes start moving, also the head follows
almost immediately. Such short delays between movement of the
eyes and the head have been reported in the literature, ranging
from 10 ms to 100 ms during a block-copying task (Smeets
et al., 1996) or in reaction to visual stimuli (Goldring et al.,
1996; Di Cesare et al., 2013). This behavior is however strongly
dependent on the experimental setting and even small variations
therein can change the outcome. For instance, Pelz et al. (2001)
found that depending on the exercise’s instruction the head may
both precede (by about 200ms) or follow the eyes (by about
50ms) in the same block-copying task.

After the activation of the eyes and the head we observe the
movement onset of the arm 130ms later. Similar values ranging
from 170 ms to 300 ms were also reported by Smeets et al.
(1996) and Pelz et al. (2001) in a block-copying task and by
Belardinelli et al. (2016) in a pick and place task. Land et al.
(1999) instead found a median delay of 0.56 s during a tea-
making activity. Rather than movement onset, the time the hand
takes to reach the target is more interesting for our scope. For
the intact subjects, the hand typically starts to occlude the target
object around 500ms after the first fixation. Although occlusion
does not necessarily already imply a completed grasp, especially
given the first person perspective, we do expect the grasp to follow
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FIGURE 7 | Example of the visuomotor behavior of an intact (first row) and an amputated (second row) participant lifting a plate. The gaze trail is represented by the

circles from the current gaze position (red) to ten samples later (white). The eyes focus on the manipulation point to plan the hand’s approach (first and second

columns). During the lifting phase, the eyes move away from the reaching point and the amputee’s gaze even exceeds the mask boundary of the plate (third column).

The object is fixated again during the release (fourth column).

FIGURE 8 | Example of the visuomotor behavior of an intact (first row) and an amputated (second row) participant while moving a ball. The gaze trail is represented by

the circles from the current gaze position (red) to ten samples later (white). The gaze focuses on the object until the hand’s arrival (first column), when the grasping

phase begins the eyes shift away toward the destination (second column). When the hand reaches the destination the gaze shifts back to the initial location (third

column) to release the target (fourth column).

not much later. These results confirm that visual attention on
objects anticipates manipulation. In previous studies concerning
displacements (Johansson et al., 2001; Belardinelli et al., 2016;
Lavoie et al., 2018) and grasping activities (Brouwer et al., 2009),
a variable delay ranging from 0.53 s to 1.3 s was found between
the eye and hand. Also in these cases, the exact value of the delay
depends on the characteristics of the experiment.

In section 3.3, we concentrated on the visuomotor strategy
adopted by amputated and able-bodied subjects to interact with
the objects during three groups of functional tasks. We can
characterize the strategies associated with these groups in terms
of the types of fixations defined by Land et al. (1999) and
Land and Hayhoe (2001), namely locating, directing, guiding, and
checking. A fixation to locate is typically done at the beginning
of an action, to mentally map the location of objects that is to
be used. Instead, a fixation to direct is meant to detect an object

that will be used immediately after. Fixations to guide are usually
multiple and occur when the gaze shifts among two or more
objects that are approaching each other. Finally, there are long
checking fixations to monitor the state of an action waiting for
its completion.

The visual strategy of the in place actions is relatively
straightforward. In these tasks, subjects initiate with a fixation
to direct the attention to the target object. Subsequently, their
fixation remains on the manipulated object to check the correct
execution of the task. Note that this visual attention seems
focused on the target object rather than the subject’s hand, as
can be seen comparing the gaze-target and gaze-limb distances
in Figures 5A,B. Indeed, Land et al. (1999) noted that the hands
themselves are rarely fixated.

Also the lifting actions start with a directing fixation to locate
the object of interest. However, whereas the initial fixation is
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focused on the intended grasp location (cf. the left column
in Figure 7), the gaze shifts upwards when the hand has
grasped the object. This coincides with the transition from the
directing fixation to visually checking the lifting action. This
is in line with observations by Voudouris et al. (2018), who
noted that people may fixate higher when grasping and lifting
an object to direct their gaze to where the object will be in
the future.

Finally, displacement actions are the ones most investigated
in the literature. Previous studies on pick and place tasks
(Belardinelli et al., 2016; Lavoie et al., 2018) and on the block-
copying task (Smeets et al., 1996; Pelz et al., 2001) fall in this
category. In this case, we observe in Figure 5E that the gaze-target
and gaze-limb distances have three minima for intact subjects,
namely at the initial pick-up, the destination, and at the release
again at the initial position. All three minima indicate fixations
that are meant to direct the approach of the hand, either for
(1) grasping the object, (2) displacing it, or finally (3) releasing
it. This behavior can clearly be seen for both intact as well as
amputated subjects in the example in Figure 8. We also notice
that the eyes did not wait for the completion of the pick-up
action, moving instead toward the position of the destination
around 200ms in advance. This proactive role of the eyes was
highlighted by Land et al. (1999), who measured the gaze moving
on to the next object between 0 s to 1 s before the current object
manipulation was terminated. Also Pelz et al. (2001) observed the
eyes departing from the target object 100ms to 150ms before the
arrival of the hand.

4.2. Comparison Between Intact and
Amputated Subjects
One of the aims of this work was to understand if a transradial
amputation has introduced important changes in the visuomotor
behavior of amputees. During the reach-to-grasp phase, the
overall behavior of intact and amputated subjects is comparable.
Even if the coordination timeline between eyes, head, and limb
is similar, there are some minor discrepancies between the two
groups. The main observed difference concerns the delayed
activation of the forearm muscles during the reaching phase
for amputated subjects, which was found to be statistically
significant. Similarly, during the lifting tasks we noted slower
pitch movements of the head. It is likely that some subjects
interpreted the instruction to perform the grasp with their
missing limb by activating their phantom limb. Such movements
executed with the phantom limb are known to be slower than
those executed with the intact hand (Raffin et al., 2012b; De Graaf
et al., 2016).

Throughout the manipulation phase, we observe a striking
similarity in visuomotor strategy between the amputated subjects
and the control group. The differences that we noted in the results
are not due to an alternative gaze strategy, but rather because
the objects were not physically moved during the interaction.
For instance, in the lifting task visualized in Figure 5D we saw
an increase in gaze-target distance in the range from 2 s to 5 s.
This increase was due to an upward shift in the gaze location
to track where the object would have been if it had been lifted

for real. Similarly, during the displacement task in Figure 5F we
do not observe a minimum in gaze-target distance at around
1.5 s, as was the case for intact subjects (see Figure 5E). Instead,
around the same time we observe a peak for the amputated
subjects, solely because the target object is still at its original
position whereas their gaze has shifted to the intermediate
destination. The examples for these gaze strategies in Figures 7, 8
demonstrate how similar intact and amputated subjects behaved.

It would be interesting to understand how these results relate
to the disrupted eye-hand coordination when using a prosthetic
device. Previous studies (Bouwsema et al., 2012; Sobuh et al.,
2014; Parr et al., 2018) have underlined that prosthetic users are
more fixated on guiding the current manipulation, rather than
planning the follow-up action. This behavior is most likely caused
by the fact that amputated people rely almost exclusively on visual
feedback. However, since only a small number of subjects were
engaged in the previous studies more research will be needed to
fully understand the disruption of the visuomotor strategy. In
particular, whether or not this strategy improves when the user
develops trust in the prosthesis (Chadwell et al., 2016) merits
attention. Another equally interesting question is to which extent
the proactive gaze behavior can be restored by integrating tactile
or proprioceptive feedback in the prosthesis (Cipriani et al., 2011;
Marasco et al., 2018; Markovic et al., 2018, among others).

4.3. Integration of Vision in Prostheses to
Improve Intent Recognition
The estimated time interval from fixation to grasp in section
3.1 shows that the window of opportunity is 500ms for intact
subjects. This interval cannot be accurately determined for
amputated subjects, as they executed the movement with their
missing limb and therefore lacked physical contact with the target
object. Although Figure 4B suggests that this window will at
least be as long for amputated users, one may argue that this
result is not representative for movements performed with a
prosthesis. However, previous studies showed without exception
that prosthetic users still fixate the target object for the majority
of the reaching phase (Bouwsema et al., 2012; Sobuh et al., 2014;
Chadwell et al., 2016; Hebert et al., 2019; Parr et al., 2019), albeit
alternating it more often with fixations on the hand (i.e., the
“switching” strategy). Moreover, this reaching phase may actually
take more than twice as long as compared to the same movement
performed with the anatomical limb (Sobuh et al., 2014; Hebert
et al., 2019). These findings suggest that the target object will still
be fixated proactively by a prosthetic user and that the window of
opportunity will more likely be longer than shorter.

Exploiting this anticipatory gaze behavior is appealing because
it comes naturally and therefore does not require specific
attention from the user. The success of this approach relies
however on the ability to distinguish informative fixations from
those that are not necessarily related to any grasp intent. Gigli
et al. (2018) attempted to address this problem by including the
onset of the arm movement as an additional condition, which
we have shown here to shorten the window of opportunity. Also
the method that is used to detect fixations may shorten this
window. Thanks to the frame-by-frame segmentations in the
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present study, we could accurately and instantaneously recognize
object fixations by measuring the distance between the object’s
segmentation mask and the gaze point. In contrast, common
fixation classifiers, such as (IVT) (Salvucci and Goldberg, 2000),
define a fixation simply as the lack of eye movement. In reality,
gaze shifts more commonly involve not only eye movement, but
also head and sometimes even trunk movements (Morasso et al.,
1973; Land, 2006). When the head moves, the optokinetic and
vestibulo-ocular reflexes cause the eyes to counteract the head
movement to maintain a stable gaze point (Lappe and Hoffmann,
2000). It is exactly due to such coordinated gaze movements that
the initial object fixation in Figure 4 actually coincides with a
peak in gaze velocity. The need to detect fixations as early as
possible therefore implies a detection method that uses more
information than eye movement alone. Whether this is best done
by compensating for head movements (Kinsman et al., 2012;
Larsson et al., 2014) or by comparing the visual object at the gaze
point as in the present study is an open question.

A final consideration is regarding technical and practical
concerns of a prosthetic solution that integrates eye tracking.
Myoelectric control of prostheses has a long history and a
solution that decodes natural muscle activations via pattern
recognition is commercially available (Coapt, LLC, 2015).
Tracking a user’s gaze continuously and reliably in a variety of
conditions will pose a bigger problem, however. The Tobii glasses
used for the MeganePro dataset resulted in 10.7% of missing data
on average, caused discomfort to the subjects after wearing them
for about 2 h, and needed a battery replacement after 1.5 h to
2 h of continuous acquisition. Recent developments have seen
considerable improvements however in terms of weight, cost, and
aesthetic appeal (Pupil Labs GmbH, 2019).

4.4. Advantages of Deep Learning for the
Automatic Analysis of Visual Behavior
Without the deep learning approach described in section 2.3 it
would have been extremely labor intensive to analyze 70 h of
video and data from 44 subjects. Manufacturers of eye-tracking
devices often provide applications for semi-automatic analyses,
but these do not allow the level of automation nor precision as
the procedure described here. Although the object segmentations
produced by Mask R-CNN were occasionally mistaken, the
segmentations seen in the examples from Figures 6–8 are
illustrative for the overall performance. It may easily be
overlooked that data from research studies, such as the present,
often contain much less visual variability than the datasets
on which these algorithms are trained and evaluated. With
minimal finetuning efforts, it is therefore likely to obtain levels
of performance that considerably exceed those reported in the
literature, as was seen in Table 4.

5. CONCLUSIONS

In this study, we analyzed the coordination of eye, head, and
limb movements of amputated and able-bodied participants
engaged in manipulation tasks of household objects. Our aim
was to understand the anticipatory role of gaze in the visuomotor
strategy and to determine whether this could potentially be used

to aid in the grasp intent recognition for upper limb prostheses.
We found that a fixation on the target object typically preceded
the subsequent grasp by 500ms in intact subjects and possibly
longer for amputees. Moreover, the visuomotor strategies of
amputees were similar to those of intact subjects both during the
reach-to-grasp phase as well as during functional manipulation
tasks. In future work, we aim to use the knowledge gained in
this study to integrate vision with the (sEMG) modality to verify
whether we can realize an effective improvement in recognizing
grasp intentions during the reaching phase.
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Introduction: Excessive lateral trunk lean is a commonly observed gait deviation in

children with cerebral palsy (CP), with implications for energy expenditure and the

development of back pain. While the trunk lean toward the stance leg is widely interpreted

as a compensatory strategy to unload the hip, in CP the relation to hip abductor muscle

strength is only weak. Therefore, other mechanisms may play a role in the prevalence of

excessive trunk lean in CP, or it could be a primary motor function deficit.

Research Question: Is the excessive lateral trunk lean in patients with CP part of an

underlying biomechanical mechanism?

Materials and Methods: Patients with bilateral CP (N = 255; age 13.6 ± 6.6 years)

were retrospectively included and divided into a group with (n = 174) and without (n =

81) excessive lateral trunk lean. Ten lower-extremity joint angle waveforms were analyzed

using a principal component analysis (PCA) to identify patterns of correlated deviations

from average angle waveforms. Binary logistic regressions were performed to determine

the discriminative capacity of the identified patterns.

Results: The PCA identified correlated kinematic patterns, with lower-order patterns

showing more common gait pathologies, such as torsional malalignments and crouch

gait pattern. Within five patterns, significant (p < 0.0025) group differences were

identified. Interestingly, the trunk lean was not always distinctive in these patterns and

despite the significant differences their effect sizes were small. The logistic regression

was unable to reliably classify patients based on their trunk lean patterns.

Discussion: The current study identified multiple trunk lean-related patterns, however,

excessive trunk lean was not attributable to a distinctive CP related gait pathology or to

a specific compensatory strategy. Overall, the results do not support the hypothesis that

excessive trunk lean is part of a biomechanical mechanism. Therefore, it seems more

likely that excessive lateral trunk lean is based on other disease specific dysfunctions,

influenced by the severity of the disease.

Keywords: 3D gait analysis, gait pattern, principal component analysis, trunk control, Duchenne gait, motor

function, compensatory strategy, cerebral palsy
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INTRODUCTION

An excessive lateral trunk lean is a commonly observed gait
deviation in patients with cerebral palsy (CP) (Attias et al., 2015),
with a prevalence as high as 72% in children with CP (Klum et al.,
2015). This excessive trunk lean has been shown to result in an
increased cost of locomotion (Salami et al., 2017) and may also
contribute to the development of back pain, which is one of the
most common pain sites in adults with CP (Opheim et al., 2009).

From a clinical perspective, an increased lateral trunk lean is
widely viewed as a compensatory mechanism for hip abductor
muscle weakness (Schmid et al., 2013), also known as Duchenne
gait. This mechanism describes the inclination of the trunk
toward the ipsilateral stance leg, which shifts the center of
mass (COM) laterally and reduces the hip abduction moments
significantly (Salami et al., 2017).

It is often challenging to identify the cause of an observed
gait deviation and to determine whether the nature of a
specific abnormal pattern is a primary feature of the disease
or rather a compensatory strategy adopted to cope with an
underlying gait problem (Schmid et al., 2013). Identifying
a mechanism as primary or compensatory has far-reaching
implications. Not knowing the underlying source of an abnormal
movement pattern could result in untreated primary pathology
or, even worse, in unnecessary treatment of a compensatory
mechanism that would resolve when the primary pathology is
addressed directly.

The lateral trunk lean in CP gait is a case where the source
is not as clear and apparent as in some other gait phenomena.
For example, compared to the name-giving Duchenne muscle
dystrophy, studies in CP found only weak—yet significant—
correlations with hip abductormuscle strength (Krautwurst et al.,
2013; Klum et al., 2015). This indicates that muscle weakness
contributes to the occurrence of an excessive lateral trunk
lean, but also suggests that other factors may play a role or
could possibly be more prevalent. Accordingly, some researchers
suspected further contributing causes, such as bony deformities
(Salami et al., 2017) or an underlying primary motor control
deficit (Heyrman et al., 2014).

To gain further insights into potential underlyingmechanisms
for an excessive trunk lean, the current study explored if
excessive trunk lean is part of a kinematic movement pattern
that can be frequently observed in the gait of CP patients. To
determine kinematic movement patterns, we applied a principal
component analysis (PCA), a statistical method that identifies
correlated patterns (PC-eigenvectors) in multi-dimensional data
(Daffertshofer et al., 2004; Eskofier et al., 2013; Robertson et al.,
2014). Furthermore, a score for each pattern and patient is
computed, indicating the extent to which each individual patient
exhibits a particular pattern. For such a pattern to represent a
functional mechanism, we postulated three criteria: (1) excessive
trunk lean needs to be a part of the pattern. (2) If CP patients are
classified into a group showing excessive trunk lean (eTL) and a
group non-excessive trunk lean (nTL), then we expected to find
significant differences and medium or high effect sizes for the
scores that patients in these groups receive. (3) We considered
that there could be more than one mechanism that produces

excessive trunk lean as part of its kinematic pattern, however,
we expected that based on the scores subjects receive for these
patterns, it should be possible to successfully classify the subjects
into the eTL and nTL groups.

We postulated that if gait patterns can be found that satisfy
these three criteria, then causative biomechanical relations can
be established, that are indicative for the underlying origins of an
excessive trunk lean. The absence of such patterns, in turn, would
suggest other disease related deficits of the trunk control that are
not correlated with other deviations in the kinematic movement
pattern of CP gait.

In summary, the aim of the current study was to explore
correlated patterns in the kinematic variables that characterize
CP gait. We hypothesized that patterns can be found that
satisfy the three postulated criteria, which would suggest that
excessive trunk lean is part of a kinematic pattern caused by
an underlying biomechanical mechanism. Understanding the
mechanisms related to an excessive trunk lean and whether these
are primary or compensatory could aid in the clinical decision-
making and improve the management of CP.

MATERIALS AND METHODS

Patients with bilateral CP who were at least 5 years of age were
retrospectively included from the database of the gait laboratory,
which were measured between 2009 and 2018. Written consent
was provided for research purposes by the patients and the study
was approved by the ethics commission of the local medical
association. Inclusion criteria was a Gross Motor Function
Classification System (GMFCS) level I or II; accordingly, patients
were able to walk freely without assistive devices or help.
Excluded were obese patients according to the age-dependent
body mass index thresholds suggested by the WHO (de Onis and
Lobstein, 2010) and patients with documented spine deformities.

Patient data included instrumented 3D gait analysis data,
where the kinematics had been captured with an 8-camera Vicon
MX system at a sampling rate of 200Hz. Joint angles were
computed based on the Vicon Plug-In gait model including the
trunk. All patients walked barefoot at self-selected speed along
a 13m walkway and at least 3 consistent step cycles needed to
be present.

For the analysis mean angle waveforms of the upper body and
of the lower limb of the more pronounced side (greater lateral
trunk lean) were processed. In detail, 10 angles were included:
trunk lean and the 9 angles of the Gait Profile Score (GPS) of
the lower extremity (Baker et al., 2009) (seen in Figures 1, 2),
that represent clinically relevant joint angles in patients with CP.
Furthermore, the GPS was facilitated as a descriptive measure to
assess severity differences.

For further analysis the patients were divided into patients
with and without an excessive lateral trunk lean (eTL and
nTL, respectively), where “excessive” was defined as the trunk
lean range of motion (ROM) angle exceeding 3 SD from a
typically developed norm collective (TD; n = 24). The ROM
was chosen over the maximum lateral trunk lean to account for
spine deformities resulting in a constant lateral side bending.
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FIGURE 1 | Illustration of the 10 analyzed angles. Angles referring to the

global reference frame are indicated by solid and dashed lines. Other angles

are referenced to the more proximal segment. obl, obliquity; rot, rotation;

abd/add, abduction/adduction; flx, flexion; prog, progression.

The 3SD cutoff was chosen based on the small TD trunk lean
standard deviation and a lower cutoff would be hardly visible.
The resulting threshold to classify for the eTL group was a lateral
trunk lean ROM exceeding 8.4◦ (TD ROM+ 3SD).

To identify patterns of correlated deviations from average
kinematic angle waveforms, the principal component analysis
(PCA) was facilitated. The PCA has already been successfully
used in different contexts in CP, for example, to identify CP-
related gait pathologies (Carriero et al., 2009a,b), to study multi
segmental gait deviations (Zago et al., 2017) or to evaluate post-
operative changes after multilevel surgery (Steppacher et al.,
2018).

The input data for the PCA were the time normalized
angle waveforms, each angle consisting of 101 discrete points,
concatenated to a vector of 1,010 columns. Each gait cycle of
every patient contributed a new row for the PCA input matrix.
This approach has two advantages: firstly, it allows the systematic
identification of kinematic gait patterns [principal components
(PCs)] within and between the 10 angle waveforms, and secondly,
a score is generated for each patient, expressing the coincidence
of the patients movement pattern with each PC (Daffertshofer
et al., 2004; Federolf et al., 2013). The individual PC-scores can
then be used to further investigate the group differences between
patients exhibiting an excessive trunk lean and patients who
are not.

As part of the further investigation of the PC-scores, t-tests
were used to identify group differences within the kinematic
gait patterns and the standardized mean differences effect size

Hedges’s g (d) with 95% confidence interval (CI) were calculated.
Due to multiple testing, the alpha error was conservatively
adapted with the Bonferroni correction (alpha level p < 0.0025).
Further, the PC-scores with significant group differences were
facilitated to investigate classification rates using binary logistic
regressions. This last step was used to verify that the identified
kinematic patterns are distinctive for a lateral trunk lean
mechanism since this would result in high classification rates.We
considered the third criterion of the compensatory hypothesis for
excessive trunk lean to be satisfied, when the classification rates
exceeded the proportional chance criterion (PCC) for logistic
regressions. For the analysis MATLAB (MathWorks Inc., Natick,
USA) was used for the PCA and group comparisons and SPSS
Statistics (IBM Corp., USA) for the binary logistic regression.
For the skeletal joint angle visualization (Figure 1) OpenSim was
facilitated (Delp et al., 2007; Seth et al., 2018).

RESULTS

For the current study n = 255 patients met the inclusion criteria
(mean age 13.6 ± 6.6 years, 155 males 100 females). Of these
patients n = 174 (68%) exhibited an excessive lateral trunk lean
within their gait pattern while n = 81 (32%) stayed below the
cutoff of 8.4◦ trunk lean ROM (TD ROM + 3SD). In terms of
anthropometrics the two groups were very similar (Table 1). As
for the functional status, the excessive trunk lean group (eTL)
had a larger proportion of patients rated as GMFCS II (82.2%),
compared to 64.2% in the normal trunk lean group (nTL). This
was also reflected by the GPS, where the eTL showed higher
deviations from the norm. The differences in GPS were highly
significant (p < 0.001) when comparing the eTL and nTL groups.

Joint angle waveforms averaged over the two groups are
displayed in Figure 2. The mean maximal trunk lean ROM was
16.68± 6.4 in the eTL, nTL 6.63± 2.8 and 4.18± 1.4 in TD.

Within the between-patient variations in the kinematic
variables the PCA identified correlated and mutually orthogonal
patterns (Figure 3). The lower-order patterns, specifically PC-
vectors 1 and 2 represented CP-gait deviations that did not
change over the gait cycle, such as internal rotationmalalignment
of the lower extremity (PC1) and crouch gait (PC2). Higher-
order PCs increasingly represented phase-dependent systematic
gait deviations, including the trunk lean (PC8, PC12, PC17).
More specifically, PC1, accounting for 31% of variability, showed
a kinematic pattern dominated by the rotational malalignments
of the lower extremity, expressed particularly as correlated
deviations in hip rotation and foot progression. The contribution
of these angle waveforms is visualized by the bar plots in Figure 3,
showing that 63% in contributed by hip rotation and foot
progression. The positive correlation between hip rotation and
foot progression is visualized by the Eigenvector graph being
negative in both cases. This means that the foot progressing
increases with increased hip rotation or vice versa. Whether
the correlation is positive or negative can also be seen in the
right column mean angle visualization indicated by the colored
lines. Is the colored line in both cases above or below the mean
angle, the correlation is positive. Is the colored line opposite
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FIGURE 2 | Angle waveforms averaged for the excessive eTL (excessive trunk lean) and nTL (trunk lean < 3SD of norm) groups of CP patients. In gray: typical

developed ± 1SD. obl, obliquity; rot, rotation; abd/add, abduction/adduction; flx, flexion; prog, progression.

TABLE 1 | Anthropometrics and severity.

Group characteristics eTL (n = 174) nTL (n = 81) p-value

Age (years) 13.6 (6.7) 13.6 (6.4) 0.80

Height (cm) 148 (19) 148 (16) 0.62

BMI (kg/m2 ) 18.4 (3.3) 18.5 (3.4) 0.99

GPS (◦) 9.4 (2.1) 7.9 (2.8) <0.001

GMFCS I (%) 17.8 35.8
<0.001*

GMFCS II (%) 82.2 64.2

*χ2-test.

eTL, excessive trunk lean; nTL, non-excessive trunk lean.

Significant group differences in bold.

sides, the correlation is negative. PC2 depicted a combination
of hip and knee flexion, coupled with hip rotation and foot
progression pronounced during swing phase. PC3 expressed
between-patient variations in pelvic tilt coupled with variations
in hip and knee flexion.

Within the first 20 PCs, 5 kinematic patterns with significant
differences (p < 0.0025) between the scores of the eTL and nTL
groups were identified (Figure 4). The trunk lean was distinctive
in 4 of these kinematic patterns (PC: 3, 8, 12, 17), whereas
PC2, while being significantly different between the eTL and
nTL groups, did not entail the trunk lean within its kinematic
pattern (Figure 3). Overall, the first 20 PCs explained 96% of the
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FIGURE 3 | Left column: the graphs show the shape of the eigenvectors (thick black line) and how much in % each body angle contributed to the eigenvector (bar

plots) for the first and significant PCs. Right column: mean angle waveforms (black line) and how these waveforms change for positive (blue) or negative (red) scores in

the corresponding PC component. These graphs show that PC 1 and PC2 represent patterns of correlated variations in the kinematics of the patients that do not

affect the trunk lean (first panel in each graph). However, PC 3, 8, 12, 17 are examples of variations in the kinematic patterns that influence (correlate with) the lateral

trunk lean: the higher a patient scored on PC3, the more trunk lean did the patient show.

variability between patients. The PC components that differed
between groups together explained 34% of the variability. The
4 kinematic patterns that contained trunk lean as part of their
pattern, as visible in PC 3, 8, 12, 17 in Figure 3, accounted for
14% of the between-patient variability. However, although highly
significant group differences were found within the scores of the

different kinematic patterns (PCs) a substantial overlap of the
score distributions of the eTL and nTL groups were observed
(Figure 4), corresponding to small effect sizes for the group
differences (Table 2).

Individually, none of the PCs had sufficient predictive
power in a logistic regression model (Table 3)—particularly
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FIGURE 4 | First panel: eigenvalues, showing the explained variance by each PC. PCs whose scores differed significantly (p < 0.0025) between the eTL and nTL

groups are displayed in red and marked with *. Remaining panels: histograms showing the group score distribution and their overlap.

TABLE 2 | Overview of the patterns (PCs) with significant score group differences.

PCs P-value Effect size (ES)

(d)

ES 95% CI

Lower Upper

2 <0.001 0.20 0.08 0.33

3 <0.001 0.29 0.18 0.40

8 <0.001 0.24 0.13 0.35

12 <0.001 0.28 0.17 0.38

17 <0.001 0.22 0.10 0.33

nTL patients were falsely classified at a very high rate. The
binary logistic regression model combining PC 2, 3, 8, 12,
and 17 revealed a significant association between the lateral
trunk lean and the 5 significant PC scores [X2

(5) = 96.196,
p < 0.001] and explained 44% of variance (Nagelkerke R2).
The overall predictability of the model was 81.2% (Table 3),
however, whereas eTL patients were correctly predicted by the

logistic regression at a rate of 89.7%, nTL patients were predicted
correctly at rates of 63.0%. For the given group sizes—n(eTL)
= 174; n(nTL) = 81—the proportional chance criterion (PCC),
necessitates a nTL classification rate of at least a rate of 72%
for an acceptable accuracy of an 25% improvement over a by-
chance classification.

DISCUSSION

The current study analyzed the between-patient variability in CP
gait patterns with a focus on lateral trunk lean. We hypothesized
that excessive trunk lean might be part of a functional kinematic
mechanism, and postulated that then we should find patterns in
which trunk lean is correlated with other deviations in kinematic
variables (criterion 1), in which patient groups with excessive
(eTL) or normal trunk lean (nTL) would score significantly
and substantially (effect size) different (criterion 2), and which
would together allow to reliably classify individual patients as
belonging to the eTL or nTL group (criterion 3). The PCA
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TABLE 3 | Logistic regression models for the individual significant scores and for

the combined model, with odds ratios (OR) and classification results for the

excessive (eTL) and non-excessive (nTL) trunk lean groups.

PCs P-value OR

(95% CI)

Classification rate (%)

eTL nTL

2 0.002 0.995 (0.993–0.998) 97.7 3.7

3 <0.001 1.010 (1.006–1.014) 93.7 14.8

8 <0.001 0.982 (0.973–0.990) 96.0 14.8

12 <0.001 1.032 (1.018–1.046) 95.4 12.3

17 0.001 0.968 (0.953–0.984) 96.6 11.1

Combined model

2 + 3 + 8 + 12 + 17

Overall 89.7 63.0

Combined 81.2

analysis conducted in the current study successfully identified
several patterns (PC 3, 8, 12, 17) in which trunk lean was
correlated to changes in other kinematic variables (criterion 1),
and we found that subject groups scored significantly different
on these four PCs (criterion 2a). However, we found that the
score distributions of the two patient groups on all four PCs
largely overlapped, corresponding with small effect sizes for
the group differences (criterion 2b not satisfied). Furthermore,
we found that the logistic regression model—despite yielding
a significant association between the PC scores and excessive
trunk lean—was not reliably able to classify patients into the
correct group. Particularly patients with a normal trunk lean
were to a high percentage falsely classified as eTL patients
(criterion 3 not satisfied). Overall, these findings suggest that
an excessive lateral trunk lean in CP is not based on a
kinematic compensatorymechanism but, in a large fraction of the
patients, more likely the result of other motor functional deficits
(Panibatla et al., 2017).

Interestingly, no significant differences between eTL and nTL
were found within the first kinematic pattern (PC1) entailing
rotational malalignments of the lower extremity. Therefore, it can
be concluded that lateral trunk lean mechanics are unaffected by
these rotational malalignments. This finding stands in contrast
with the assumption that hip internal rotation is a compensatory
mechanism for hip muscle lever arm dysfunctions of the often
anteverted hip in CP (Arnold et al., 1997). Since hip muscle
weakness accounts, at least to some degree, for the prevalence
of a trunk lean pattern (Krautwurst et al., 2013), a connection
between hip internal rotation and trunk lean would have been
plausible but could not be established in the current study.
Another study found a significant negative correlation between
hip rotation and foot rotation (Gaston et al., 2011) and propose
the internal hip rotation as result of a distal foot external rotation.
While the PC1 pattern contrarily shows a positive correlation of
hip rotation and foot progression, the PC2 pattern shows the,
by Gaston et al. proposed, functional relation of internal hip
rotation and foot external rotation, combined with crouch gait
characteristics, due to the lever arm dysfunction of the plantar-
flexion knee-extension couple (Sangeux et al., 2015). The fact that
the PCA revealed two different rotational patterns, the presence
of two individual mechanisms is likely.

In the 2nd pattern (PC2) changes in trunk lean angle was not
part of the PC-vector, however, the eTL and nTL groups scored
significantly different when projected onto this pattern. The
observation that excessive trunk lean was not part of this pattern,
implies that more severely affected patients were more likely to
also show excessive trunk lean (Attias et al., 2015; Swinnen et al.,
2016), without excessive trunk lean itself being correlated to the
PC2 gait variables. Other studies also found an increased trunk
lean with increasing impairment (Attias et al., 2015), which is in
line with our findings of more severe gait deviations within the
eTL group expressed by the highly significant GPS differences.
Additionally, the proportion of patients rated GMFCS II was
about 20% higher in the trunk lean group, which further
corroborates the severity explanation and was also observed in
other studies (Swinnen et al., 2016).

The other 4 kinematic patterns (PC 3, 8, 12, 17) that differed
significantly between eTL and nTL groups did not appear to show
clear functional mechanisms. This could be partly due to the fact
that the trunk lean strategy appears to be present in a variety of
gait pathologies. The heterogeneous patient groups with diverse
combinations of different gait pathologies is likely to result in
multiple patterns, of which some will also contain trunk lean as
part of their pattern. However, this does not imply a causative
nature of the trunk lean, describing functional patterns. What
can be said is that patients showing a particular combination of
angle deviations (specific for the pattern), usually also exhibited
an excessive lateral trunk lean. Since the identified patterns do
not entail clear functional mechanisms, such as relations between
frontal plane trunk, pelvis and hip kinematics, it seems plausible
to conclude that neither a universal trunk lean mechanism exists,
nor that a specific trunk lean strategy exists that is attributable
to certain CP related gait pathologies. In a clinical sense, these
findings support a multifactorial cause of a lateral trunk lean,
implying that there is no single solution for addressing or
correcting excessive trunk lean.

Limitations
To provide further insight into how the results of the current
study can be interpreted, some reservations should be mentioned
and kept in mind.

One of these limitations is the circumstance that the gait
speed was self-selected and different velocities result in altered
angle patterns (Schwartz et al., 2008), including altered trunk
kinematics (Thummerer et al., 2012). Despite the gait speed being
not significantly different between the groups, it may still have
some effect on the PCA results. PCA has been shown to be able
to detect running speed differences (Maurer et al., 2012).

Arm movement was not measured. Arm movements in
CP, however, may influence the trunk kinematics and might
entail further information for the prevalence of an excessive
trunk. Children with CP often show flexed elbow positions
and increased shoulder abduction, which might be caused by
spasticity but is also thought as compensatory strategy for balance
and guarding purposes (Galli et al., 2014). Despite these general
influences of arm movements on posture, the measured trunk
lean should be largely unaffected, since the Plug-In gait model

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 November 2019 | Volume 7 | Article 34531

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Rethwilm et al. Trunk Lean in Cerebral Palsy

uses only the thorax markers, without the shoulder markers to
calculate the trunk lean.

Furthermore, excessive trunk lean was defined as exceeding
3SD from norm. This definition is not based on a clinical
classification of a certain degree of trunk lean being pathological.
Hence, defining a meaningful cutoff will require further research
and insight into the underlying mechanisms of excessive lateral
trunk lean in CP.

CONCLUSION

The PCA was able to identify kinematic patterns that were
significantly related to the lateral trunk lean based on the group
differences. However, despite these findings, a clear kinematic
mechanism leading to excessive trunk lean was not found. The
current study does not provide conclusive evidence against a
kinematic compensatory mechanism. However, the absence of
such patterns makes it more likely that excessive lateral trunk
lean in CP could be the result of disease related motor functional
deficits. More research is necessary to clarify this issue. Our study
does provide evidence that rotational malalignments present
independently of the trunk lean and that the prevalence of an
excessive lateral trunk lean in CP depends on the severity of
the disease.
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Sensor Data Required for Automatic
Recognition of Athletic Tasks Using
Deep Neural Networks
Allison L. Clouthier, Gwyneth B. Ross and Ryan B. Graham*

School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada

Movement screens are used to assess the overall movement quality of an athlete.

However, these rely on visual observation of a series of movements and subjective

scoring. Data-driven methods to provide objective scoring of these movements are

being developed. These currently use optical motion capture and require manual

pre-processing of data to identify the start and end points of each movement. Therefore,

we aimed to use deep learning techniques to automatically identify movements typically

found in movement screens and assess the feasibility of performing the classification

based on wearable sensor data. Optical motion capture data were collected on 417

athletes performing 13 athletic movements. We trained an existing deep neural network

architecture that combines convolutional and recurrent layers on a subset of 278 athletes.

A validation subset of 69 athletes was used to tune the hyperparameters and the final

network was tested on the remaining 70 athletes. Simulated inertial measurement data

were generated based on the optical motion capture data and the network was trained

on this data for different combinations of body segments. Classification accuracy was

similar for networks trained using the optical and full-body simulated inertial measurement

unit data at 90.1 and 90.2%, respectively. A good classification accuracy of 85.9% was

obtained using as few as three simulated sensors placed on the torso and shanks.

However, using three simulated sensors on the torso and upper arms or fewer than

three sensors resulted in poor accuracy. These results for simulated sensor data indicate

the feasibility of classifying athletic movements using a small number of wearable

sensors. This could facilitate objective data-driven methods that automatically score

overall movement quality using wearable sensors to be easily implemented in the field.

Keywords: human activity recognition, wearable sensors, machine learning, neural network, movement screens

INTRODUCTION

Movement screens are used to assess the overall movement quality of an athlete. Typically,
the athlete will perform a series of movements while a trained rater visually observes and
scores the movements. The goals of movement screens are to predict injury risk and identify
performance deficits that can be targeted in training. While interrater and intrarater reliabilities
for movement screens such as the Functional Movement Screen (FMSTM) are good (Minick
et al., 2010; Teyhen et al., 2012), interrater reliability for subtest components can be poor and
dependent on rater experience (Smith et al., 2013; Gulgin and Hoogenboom, 2014; Bonazza et al.,
2017). Furthermore, concerns have been raised that grading criteria can be somewhat ambiguous
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(Frost et al., 2015; Bonazza et al., 2017) and scores may not be
sensitive enough to detect movement abnormalities (Clifton
et al., 2013). Recent work has aimed to develop objective scoring
methods for movement screens (Ross et al., 2018). Data-driven
approaches have the potential to improve the repeatability of
scoring and increase the ability to detect subtle differences in
movement patterns. However, current methods require manual
processing of motion capture data before scoring can be
performed, including cropping trials to isolate each movement.
Additionally, the reliance on optical motion capture could be a
barrier to implementation of these methods in the field.

Wearable sensors are an attractive alternative to optical
motion capture for motion analysis applications. They are cost-
effective and portable, allowing for the collection of motion
data outside of a laboratory and over large capture volumes.
Furthermore, wearable sensors have the potential to be less
cumbersome than optical markers depending on the number
and placement of sensors. Previous work investigated optimal
placement and number of sensors to classify activities of daily
living (Pannurat et al., 2017), everyday activities (Kern et al.,
2003; Olguin and Pentland, 2006; Atallah et al., 2011; Cleland
et al., 2013), and fall detection (Gjoreski et al., 2011). However,
which sensors are necessary to best classify movement screening
tasks remains unclear.

Human activity recognition is an area of research that
seeks to automatically identify human activities by applying
machine learning techniques to motion data. Methods have
been developed to classify movements including hand gestures
(Kim and Toomajian, 2016), activities of daily living (Hammerla
et al., 2016), and movements typical in various sports (Nguyen
et al., 2015; Kautz et al., 2017). Previously, activity recognition
methods employed techniques that required hand-selected
features as input (Bulling et al., 2014). However, convolutional
neural networks (CNNs), a type of deep neural network
(DNN), are now commonly used to automatically generate
features through deep learning (Zeng et al., 2014; Yang et al.,
2015; Lee et al., 2017). CNNs have shown promising results
in activity recognition; however, they are unable to capture
time dependencies. Recurrent neural networks are a type
of neural network that include a memory component that
allows them to model temporal dependencies. The combination
of CNNs to extract features with long-short-term memory
(LSTM) recurrent networks to capture temporal dependences has
provided improved classification performance over CNNs alone
(Ordóñez and Roggen, 2016).

The use of deep neural networks in movement screens would
allow for a continuous data collection during a movement screen.
Individual movements could then be automatically identified
and segmented as a preparation for further analysis or scoring.
This would decrease the manual effort required for the analysis
process and increase the utility of these objective measurement
techniques. The ability to perform the movement classification
and scoring based on data from aminimal set of wearable sensors
would further increase the applicability of data-drivenmovement
screens. Therefore, our first aim was to use a deep neural network
to identify when movements typical of movement screens occur
within motion data. Our second aim was to compare networks

trained using optical motion capture data with those trained
using data available from wearable sensors.

METHODS

Data Collection and Processing
Optical motion capture data were collected from 417 athletes
performing a series of movement tests by Motus Global
(Rockville Center, NY). The athletes competed in a variety of

FIGURE 1 | Architecture of the deep neural network used to classify athletic

movements. The network combines convolutional and recurrent layers

(Ordóñez and Roggen, 2016). Tensor sizes and function inputs based on the

OPT data and final architecture parameters are shown. PyTorch functions and

inputs are shown for each layer. SWS, sliding window size; C, number of CNN

channels; N, number of columns in the input data; k, CNN kernel size; L,

LSTM cells; Nclasses, number of movements classified.
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sports, including baseball, basketball, soccer, golf, tennis, track
and field, squash, cricket, lacrosse, football, and volleyball. They
ranged in skill level from recreational athletes to those playing in
major professional sports leagues (e.g., NBA, MLB, PGA, etc.).
Participants provided informed consent for future use of their
data for research before completing the protocol. The secondary
use of the data was approved by the University of Ottawa
Research Ethics Board. Forty-five retroreflective markers were
placed on the athlete for motion tracking (Ross et al., 2018) and
data were recorded at 120Hz using an eight-camera Raptor-E
(Motion Analysis, Santa Rosa, CA) motion capture system. Each
athlete performed a series of movement tests consisting of 21
unique movements. The 13 movements most likely to challenge
mobility and stability were selected for analysis in this study,
including hop down right/left (HDR, HDL), bird-dog right/left
(BDR, BDL), drop jump (DJ), T-balance right/left (TBR, TBL),
step-down right/left (SDR, SDL), L-hop right/left (LHR, LHL),
and lunge right/left (LR, LL) (Ross et al., 2018). Individual trials
were collected for each movement.

Start and end time points were manually identified for each
trial (Ross et al., 2018) for use as a ground truth of when each
activity was performed. The optical motion data used in the
analysis (OPT) included global x, y, z coordinates for 45 markers.
To simulate data that can be obtained using inertial measurement
units (sIMU), marker trajectories were processed in Visual3D (C-
Motion, Inc., Germantown, MD) and global angular orientation
Euler angles and the Euclidean norm of the center of mass linear
acceleration and angular velocity for each body segment were
calculated. The Euclidean norm of the velocity and acceleration

TABLE 1 | Learning and architecture parameter values tested for hyperparameter

tuning.

SGD optimizer parameter tuning

Learning Rate 0.0001, 0.001, 0.01, 0.1, 1

Momentum 0.5, 0.7, 0.9, 0.95, 0.98

DNN parameter tuning

Window Size (frames) 24 48

CNN Kernel Size (frames) 5, 6 6, 8

CNN Channels 32, 64, 96

LSTM Cells 64, 128, 192

TABLE 2 | Combination of body segments used to train and test the DNN for the

simulated IMU data.

Data input Body segments

sIMU1 Torso

sIMU2 Torso, pelvis

sIMU3L Torso, shanks (lower body)

sIMU3U Torso, upper arms (upper body)

sIMU4 Torso, pelvis, thighs

sIMU4D Forearms, shanks (distal segments)

sIMU4P Upper arms, thighs (proximal segments)

sIMU5 Torso, forearms, shanks

sIMU13 Head, torso, pelvis, upper arms, forearms, thighs, shanks, feet

was used to reduce the reliance on accurate sensor alignment.
Accelerations and velocities were low-pass filtered at 15Hz with
a zero-lag second order Butterworth filter.

Deep Neural Network
Athletes were randomly separated into training (67%, n = 278),
validation (33%, n= 69), and test (33%, n= 70) subsets. A single
matrix was created for each subset by concatenating data from
all movement trials performed by all athletes in the subset. Each
variable was normalized by subtracting the mean and dividing
by the standard deviation of all data frames across athletes and
movements in the training set for that variable. A sliding window
approach was used to divide the subset data into data segments
containing an equal number of data frames. The stride for the
sliding window was 1/4 the window size. Each data segment was

FIGURE 2 | Hyperparameter tuning was performed in two steps: learning

parameters (A) and architecture parameters (B). (A) Effect of learning rate and

momentum on micro-averaged F1 score. (B) Effect of sliding window size,

CNN kernel size, CNN channels, and LSTM cells on micro-averaged F1 score.

Mean and standard deviation of all DNNs at each parameter level are shown.
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assigned a label according to the movement that was performed
for the majority of the data segment. A “Null” label was included
to describe times when none of the movements were being
performed for a total of 14 classes.

A deep neural network based on the work of Ordóñez and
Roggen (2016) was implemented in PyTorch (Paszke et al.,
2017). The architecture combines convolutional layers to extract
features with recurrent layers to model the temporal dynamics.
The network includes four convolutional layers, two long-short-
term memory (LSTM) recurrent layers, a linear fully connected
layer, and a softmax classifier (Figure 1). The input to the
network is the windowed time series data. The length of the input
data was the sliding window size and the number of columns
depended on the data used: 3∗45 for OPT (x, y, and z component
of each trajectory) and 5 ∗ number of body segments for the
sIMU data (3 Euler angles + 1 angular velocity norm + 1 linear
acceleration norm).

For network training, a mini-batch size of 100 was used. A
stochastic gradient descent (SGD) optimizer with momentum
was used for training with a cross-entropy loss criterion. The
DNN was trained to classify the movement performed during a
given windowed data segment.

Hyperparameter Tuning
Hyperparameter tuning was performed using a grid search
with the validation set of the optical motion data (OPT). The
learning parameters were tuned first as these have a larger
impact on classifier performance (Hammerla et al., 2016). The
learning parameters were the learning rate and momentum of
the SGD optimizer. Five values of each were explored (Table 1)

resulting in 25 DNNs trained on the OPT training set. The
micro-averaged F1 score was calculated for the validation set
to assess the performance of each DNN. The F1 score is a
measure of classification accuracy that is the harmonic mean

of precision and recall (F1 = 2 ·
precision · recall
precision + recall

). The micro-

averaged F1 score calculates the mean across the classes by
considering all individual predictions, which is suitable for classes
of different sizes. The micro-averaged F1 score is equivalent
to the micro-averaged precision, micro-averaged recall, and
classification accuracy.

After selecting the learning rate and momentum that
produced the best F1 score, the architecture parameters were
tuned. Two to three values were tested for each of the
following parameters: sliding window size, CNN kernel filter size,
CNN channels, and LSTM cells (Table 1). Note that CNN kernels
of size 5 and 6 were used with window size 24 and CNN kernels of
size 6 and 8 were used with window size 48. Models were assessed
based on the micro-averaged F1 score.

Comparison of Simulated IMU Sensor Data
Once the final learning and architecture parameters were
determined, the final model was used to identify movements
in the test set. In this case, the DNN was used individually on
each athlete. All trials of athlete’s data were combined and then
segmented using sliding windows and the DNN was used to
classify each window. Then for each frame of data, the class
probabilities from each window containing that frame were
averaged, and a final classification was made for that frame
of data.
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FIGURE 3 | (A) Micro-averaged F1 score for DNNs trained using simulated IMU (sIMU) data from various combinations of body segments. (B) F1 score for each

movement for a selection of DNNs trained on sIMU data. Scores were calculated on the test set based on classification of individual data frames. Movements are

HDR/L, hop down right/left; BDR/L, bird-dog right/left; SDR/L, step-down right/left; LHR/L, L-hop right/left; DJ, drop jump; LR/L, lunge right/left; TBR/L, T-balance

right/left.
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DNNs using the final learning and architecture parameters
were also trained for the simulated IMU data on the training
subset. Different combinations of simulated sensor locations
were examined (Table 2). DNNs were evaluated on the test subset
following the procedure outlined above. For each DNN, the
confusion matrix, accuracy, precision, recall, and F1 score were
calculated. Micro and macro averages and metrics for each class
were produced.

RESULTS

Hyperparameter Tuning
The learning rate and momentum of the SGD optimizer both
had a large effect on the micro-averaged F1 score for the OPT
validation set (Figure 2A). The best F1 score was obtained for a
learning rate of 0.001 and momentum of 0.9, and these values
were used for all subsequent models. The DNN parameters had a
relatively small effect on the F1 scores, with values ranging from
0.895 to 0.911 (Figure 2B). The best results were obtained for a
sliding window size of 48 (0.04 s), CNN kernel size of 6 frames,
32 CNN channels, and 64 LSTM cells. These parameters were
selected for use in the final DNN.

Comparison of Simulated IMU Sensor Data
Deep neural networks trained using optical data (OPT) and
all 13 body segments of sIMU data (sIMU13) had similar
micro-averaged F1 scores (0.901 and 0.902, respectively). In
general, including more body segments improved performance
(Figure 3), although only small improvements were obtained
by including more than four body segments. Bird-dog (BDR/L)
movements were predicted well (F1 score > 0.76) for all
networks, while drop jumps (DJ) tended to be more poorly
identified in general.

The effect of including upper or lower limb data can be
observed in the confusion matrices for the sIMU3U and sIMU3L
models (Figure 4). With the torso and upper arms included
(sIMU3U), the DNN frequently confuses left and right versions
of tasks. Tasks involving jumping were also confused. The
network using the torso and shanks (sIMU3L) is better able
to distinguish between left and right, but occasionally confuses
the T-balance (TBR/L) and lunge tasks (LR/L). L-hops (LHR/L)
are sometimes classified as hop downs (HDR/L) in both three-
segment networks (sIMU3L, sIMU3U).

The true and predicted movements over time for the OPT,
sIMU1, sIMU3L, and sIMU13 models are shown in Figure 5 for
a representative athlete. OPT, sIMU13, and sIMU3L were better
able to predict the entire duration of movements. Networks with
fewer body segments tended to switch between predictions. The
misclassification between movements and Null largely occurs at
the beginning and end of a movement.

The complete set of precision, recall, F1 scores, and confusion
matrices are included in the Supplementary Material.

DISCUSSION

The deep neural network (DNN) combining convolutional
and recurrent layers was able to successfully identify athletic

FIGURE 4 | Confusion matrices for the sIMU3U (A) and sIMU3L (B) DNNs.

Values are percentage of the frames of the true movement classified as the

predicted movement.

movements for both optical motion capture trajectories and
simulated inertial measurement unit (sIMU) data. DNNs trained
using optical motion capture data (OPT) and full body simulated
IMU (sIMU13) data had similar performance with F1 scores of
approximately 0.90. Classification accuracy was poor (<70%) if
fewer than three body segments were included or the lower limbs
were not included in the sIMU data.

There was minimal difference between micro-averaged F1
scores for the DNNs trained using five or 13 body segments.
This indicates that it is not necessary to include measurements
from the head or more than one segment from each upper or
lower limb. This is encouraging as the use of fewer sensors would
simplify the set-up before a movement screen and would be less
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FIGURE 5 | Example of movement classification for a representative athlete using DNNs trained using different sets of input data. Data collected in separate trials for

each movement have been concatenated and displayed continuously.

of a hindrance to the athlete’s motion. The F1 score for sIMU3L,
which used the torso and shanks, was only∼0.04 less than for the
full body DNN. Therefore, depending on the desired accuracy,
classification rates may be sufficient using only three sensors.

Some movements, such as the bird-dogs, were more easily
identified by the DNN, even for networks trained on sIMU data
from one or two segments. This is likely because trunkmotion for
these movements is substantially different from that of the other
movements, with the trunk horizontal and relatively stationary
throughout the motion. Including arm segments prevented
confusion between T-balances and lunges. The drop jump was
classified particularly poorly when few segments were used, often
being classified as the null condition. This may in part be due to
the way the start and end of the L-hop motion was defined. The
L-hop involved the athlete jumping horizontally forward, landing
on one foot, then jumping laterally and landing on the opposite
foot. This movement was defined to begin when the athlete had
reached their maximum height during the initial jump. Without
sufficient data, the DNN was unable to differentiate between the
end of the drop jump movement, which involved a vertical jump,
and the initial jump of the L-hop which was included in the
null condition.

The F1 score we achieved in classifying athletic movements
is similar to previously reported human activity classification
results. The architecture of the DNN used in this study was
based on the work of Ordóñez and Roggen (2016), who achieved
an F1 score of 0.895 on a dataset including various modes of
locomotion. Other work has reported classification accuracies
ranging from 83 to 100% for everyday activities (Pärkkä et al.,
2006; Yeoh et al., 2008; Attal et al., 2015; Yang et al., 2015) and
79–93% for movements involved in various sports (Schuldhaus
et al., 2015; Groh et al., 2016; Anand et al., 2017; Cust et al., 2019).

Previous work on classification of everyday activities, such as
walking, jogging, sitting, stair climbing, etc., has identified one
sensor placed at the waist as producing the best classification
accuracy (Cleland et al., 2013; Pannurat et al., 2017). In the
current study, we found that a single simulated torso sensor

resulted in a poor classification accuracy of 48%. This discrepancy
can likely be attributed to the differences in activities included, as
optimal sensor placement depends on the activity (Atallah et al.,
2011; Attal et al., 2015). The activities classified in the previous
studies involve activities that are repetitive and take place
over a relatively long period of time. The athletic movements
included in our study, however, are short single movements.
Furthermore, the need to differentiate right and left versions of
the movements makes classification with a single torso-mounted
sensor more challenging.

The sIMU DNNs relied on simulated IMU data generated
based on optical motion tracking markers. Therefore, these
results likely represent a best-case scenario for classification of
these athletic movements using wearable sensors. Sensor drift
is a common issue with IMUs and therefore it is possible that
misclassification rates would be larger using real sensor data,
particularly for long data collections as drift increases over time.
Care would also need to be taken to standardize sensor placement
on each body segment. While we have used the Euclidean norm
of the angular velocity and linear acceleration, error would be
introduced into the angular orientation of the body segments by
misaligned sensors. Additionally, it may be possible to mitigate
sensor misalignment issues using a static or dynamic calibration
at the beginning of the data collection. Despite the reliance on
simulated sensor data, the results presented here highlight the
potential for movement classification using wearable sensors and
provide guidance for sensor placement in future work.

In this study, separate data trials were recorded for each
motion and these were combined for the classification. As a
result, the amount of null data frames included was relatively
small. It may be necessary to included more null condition
training data, including transitions between movements, for the
DNN to be used successfully on continuously collected data.

Accurate classification of movements is critical for this DNN
approach to be used with nomanual intervention in combination
with data-driven assessments of movement quality, as the quality
could only be assessed on properly identified movements. Some
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errors may be possible to correct with additional processing,
such as when the classification jumps to another movement for
a few frames in the middle of an otherwise accurately classified
movement. We observed that a large source of error was over-
or under-estimating the start or end points of a movement with
misclassification between the movement and the null condition.
It is possible that movement quality could still be quantified with
these slight errors in start and end points, but future work will
be required to verify this. Alternately, a small amount of manual
intervention could be used to verify task identification before
proceeding to quantification of movement quality.

The favorable classification rates obtained in this work using
simulated sensor data demonstrates the feasibility of classifying
athletic tasks typical of movement screens using wearable
sensors. Using simulated IMU data, we observed the best
classification accuracy by including data from all body segments;
however, we obtained good results using as few as three simulated
sensors. This indicates that classification of these athletic
movements using real IMU data would require at least three
sensors and should include the torso and legs. Implementation of
a movement classification DNNwith wearable sensor data would
facilitate automatic data-driven assessment of movement quality,
eliminating subjective scoring, and increasing the ability to detect
subtle differences.
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Joint moment measurements represent an objective biomechanical parameter of knee

joint load in knee osteoarthritis (KOA). Wearable sensors in combination with machine

learning techniques may provide solutions to develop assistive devices in KOA patients

to improve disease treatment and to minimize risk of non-functional overreaching (e.g.,

pain). The purpose of this study was to develop an artificial neural network (ANN)

that estimates external knee flexion moments (KFM) and external knee adduction

moments (KAM) during various locomotion tasks, based on data obtained by two

wearable sensors. Thirteen participants were instrumentedwith two inertial measurement

units (IMUs) located on the right thigh and shank. Participants performed six different

locomotion tasks consisting of linear motions and motions with a change of direction,

while IMU signals as well as full body kinematics and ground reaction forces were

synchronously recorded. KFM and KAMwere determined using a full body biomechanical

model. An ANN was trained to estimate the KFM and KAM time series using the

IMU signals as input. Evaluation of the ANN was done using a leave-one-subject-out

cross-validation. Concordance of the ANN-estimated KFM and reference data was

categorized for five tasks (walking straight, 90◦ walking turn, moderate running, 90◦

running turn and 45◦ cutting maneuver) as strong (r ≥ 0.69, rRMSE ≤ 23.1) and as

moderate for fast running (r = 0.65 ± 0.43, rRMSE = 25.5 ± 7.0%). For all locomotion

tasks, KAM yielded a lower concordance in comparison to the KFM, ranging from weak

(r ≤ 0.21, rRMSE≥ 33.8%) in cutting and fast running to strong (r = 0.71± 0.26, rRMSE

= 22.3 ± 8.3%) for walking straight. Smallest mean difference of classical discrete load

metrics was seen for KFM impulse, 10.6± 47.0%. The results demonstrate the feasibility

of using only two IMUs to estimate KFM and KAM to a limited extent. This methodological

step facilitates further work that should aim to improve the estimation accuracy to

provide valuable biofeedback systems for KOA patients. Greater accuracy of effective

implementation could be achieved by a participant- or task-specific ANN modeling.

Keywords: knee osteoarthritis, biomechanics, knee joint loading, biofeedback, artificial neural networks,

accelerometers and gyroscopes, reduced sensor set
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INTRODUCTION

Medio-tibiofemoral knee osteoarthritis (KOA) is a major cause
of disability in elderly people (Hurley et al., 1997) and accounts
for high socio-economic burden in industrial countries (Neogi
et al., 2009; Reeves and Bowling, 2011; Ferreira et al., 2015).
Symptoms known as knee pain, functional impairment and a loss
of mobility, can lead to physical and psychological disability and
reduced quality of life (Bennell et al., 2011; Richards et al., 2017).

Mechanical factors, particularly the knee joint load have
shown to profoundly influence the severity and progression of
KOA (Sharma et al., 1998; Andriacchi and Muendermann, 2006;
Foroughi et al., 2009; Bennell et al., 2011; Reeves and Bowling,
2011). A widely used surrogate measure of the compressive
load of the medial compartment is the external knee adduction
moment (KAM) (Sharma et al., 1998; Bennell et al., 2011; Reeves
and Bowling, 2011; Ferreira et al., 2015). Moreover, the knee
flexionmoment (KFM) has been highlighted as a critical measure
to assess the loading of the medial compartment (Walter et al.,
2010; Ferreira et al., 2015; Cheung et al., 2018) as well as
to quantify the progression of patellofemoral cartilage damage
(Teng et al., 2015; Crossley et al., 2016).

Beside other non-pharmacological conservative treatments
(e.g., bracing or footwear interventions) (Sarzi-Puttini et al.,
2005; Reeves and Bowling, 2011), gait modification approaches
by gait retraining therapies (e.g., modifying the foot progression
angle) have shown to be effective to reduce the KAM during
walking and to improve the symptoms of patients (Barrios et al.,
2010; Cheung et al., 2018; Karatsidis et al., 2018). Richards et al.
(2017) stated in their systematic review that a strong potential
exists for the development of biofeedback systems for reducing
KAM and pain and for improving knee joint function in KOA
patients. The development of assistive devices (e.g., a smart
knee sleeve to monitor the knee load in combination with a
smartphone-based user feedback system) could help to provide
effective disease-enhancing interventions to slow down the loss
of cartilage volume (Shull et al., 2014). Additionally, as exercise
is a key component of the KOA management (Bennell et al.,
2011; Ferreira et al., 2015; Richards et al., 2017), assistive devices
could be beneficial in supporting therapeutical exercise. However,
most of the current studies with respect to the assessment
of knee joint loading were conducted in a laboratory setting
using motion capture and force plate measurements (Barrios
et al., 2010; Richards et al., 2017; Cheung et al., 2018). The
major shortcoming of such laboratory-based methods is that
they cannot be completely included into a patients’ habitual
environment (Muro-de-la-Herran et al., 2014; Shull et al., 2014).

As a consequence, alternative measurement technologies have
been provided progressive advances over the past years (Muro-
de-la-Herran et al., 2014; Wong et al., 2015). One of the first
studies toward a wearable measurement tool was done by van
den Noort et al. (2011). The authors tested the effect of an
instrumented force shoe in combination with an optoelectronic
marker system on target variables (e.g., KAM) in 20 KOA
patients. Therein, the authors stated the necessity of additional
measurement equipment (e.g., inertial sensors) to obtain joint
positions and orientations as a complement to ground reaction

force (GRF) measurements in order to calculate the KAM.
Karatsidis et al. (2016) compared GRF estimation accuracies of
a full-body inertial motion capture and optical motion capture
system due to the importance of the GRF measures as input in
biomechanical analysis to estimate joint kinetics. Their results
showed comparable results between the two systems. Therefore,
the authors concluded that the inertial sensor-based system has
a high potential in monitoring critical biomechanical parameters
in habitual conditions. Yang andMao (2015) postulated amethod
for evaluating the intersegmental forces and moments acting
on the lower limbs during walking solely based on posture
data obtained from seven inertial sensors placed on the lower
limbs and trunk in combination with a 3D analytical model.
In 2018 Karatsidis et al. proposed and evaluated a wearable
visual feedback system for gait retraining using inertial sensing
with seven inertial measurement units (IMUs) and augmented
reality technologies. The foot progression angle was used for
visual feedback and was tracked by the wearable system with a
root mean square error of 2.4◦, compared to an optical motion
capture system. Knee joint kinetics were not analyzed in this
study. A further approach of a mobile assessment of knee joint
biomechanics in natural environment was recently provided by
Konrath et al. (2019). The authors estimated the KAM and the
tibio-femoral joint contact force during activities of daily living
by means of combining musculoskeletal modeling with inertial
motion capture (17 IMUs). The results showed comparable
estimation accuracies for the IMU-based approach compared to
the same musculoskeletal model using optical motion capture
and force plate measurements.

The majority of applied methods require modeling of the
musculoskeletal system to a certain degree, with mandatory
embedded subject-specific anthropometric data (e.g., mass,
dimensions, and center of mass of the body segments). However,
such modeling processes inevitably introduce inaccuracies (van
den Noort et al., 2013; Faber et al., 2016; Ancillao et al., 2018).
In contrast, machine learning-based approaches do not need an
a priori knowledge of the model as they build up their model by
using training data (Sivakumar et al., 2016; Ancillao et al., 2018;
Halilaj et al., 2018). Accurate predictions for new data can be
made by learning the relationship between a set of independent
variables (e.g., IMU signals) and one ormore dependent variables
(e.g., KAM) (Lin et al., 2016; Halilaj et al., 2018). Several
studies have shown that machine learning techniques, such as
artificial neural networks (ANN), are powerful tools to deduce
biomechanical variables based on measured accelerations or
angular velocities of body segments (Leporace et al., 2015; Guo
et al., 2017; Ancillao et al., 2018; Wouda et al., 2018; Stetter
et al., 2019). The study by Wouda et al. (2018) used an ANN
approach to estimate vertical GRFs and sagittal knee kinematics
during running, based on three inertial sensors placed at the
lower legs and the pelvis. The estimated force-time profiles
and flexion/extension profiles showed high agreement with the
optical and GRF reference measure. In a recent study we
presented an ANN approach to estimate knee joint forces in sport
movements (Stetter et al., 2019). Good agreement between ANN-
estimated outcomes and inverse dynamics-calculated vertical and
anterior-posterior knee joint forces were shown, which highlights
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the feasibility of an ANN approach to estimate internal loadings
on the knee joint structures.

Although the above described studies have estimated joint
kinematics and kinetics during locomotion, no study has directly
estimated biomechanical surrogate measures for knee joint load
in KOA using an ambulatory minimal body-worn sensor setup
so far. Therefore, the purpose of this study was to develop an
ANN that estimates KFM and KAM during various locomotion
tasks based on data obtained by two wearable sensors integrated
in a knee sleeve. The findings of this study could help to (1)
overcome current restrictions in the mobile assessment of knee
joint loading in KOA patients and (2) open new possibilities
in diagnosing the patients’ habitual life, which could help to
improve disease treatment strategies and minimizing the risk of
non-functional overreaching (e.g., pain).

MATERIALS AND METHODS

Participants
The current study used data from the sample presented in
Stetter et al. (2019) and forms a secondary dataset analysis.
The sample consisted of 13 healthy males (age, 26.1 ± 2.9
years; height, 178.7 ± 5.5 cm; body mass, 78.4 ± 5.9 kg). All
participants exhibited bowlegs (minimum inter-knee distance
of 0.05m), which mimics the common varus malalignment of
medial KOA patients (Bennell et al., 2011). All participants gave
written informed consent in accordance with the Declaration of
Helsinki. The study was approved by the ethics committee of the
Karlsruhe Institute of Technology.

Experimental Protocol
Measurements were performed at the BioMotion Center,
Institute of Sports and Sports Science, Karlsruhe Institute
of Technology, Karlsruhe, Germany. Two identical custom-
built 6DOF IMUs (1,500Hz, ±8 g accelerometer, ±2,000◦/s
gyroscope) were attached to each participant’s right leg while
they performed six different locomotion tasks at self-selected
speed: walking straight, 90◦ walking turn, moderate running,
fast running, 90◦ running turn and 45◦ cutting maneuver.
Participants were instructed to perform the 90◦ turns in clockwise
direction. A detailed description of the right orientated cutting
maneuver (named as v-cut) is described by Neptune et al. (1999).
Participants were instructed to perform at least three successful
trials of each task. A trial was considered successful when the
right foot landed cleanly within the boundaries of a force plate.
The IMUs were positioned in two patch pockets at the upper and
lower frontal end of a customized knee sleeve (Figure 1). This
positioning was chosen in order to capture IMU signals closely
related to knee kinematics and dynamics, as the recent study by
Matijevich et al. (2019) has highlighted that a targeted approach
is necessary to obtain structure-specific loading.

Full body kinematics and GRFs (1,000Hz, AMTI Inc.,
Watertown, MA) were collected synchronously using a marker-
based motion capture system (11 MX-13 cameras, 200Hz,
Vicon, Oxford, UK) in order to perform biomechanical
modeling. A total of 42 spherical reflective markers were
placed on the participants’ body segments in accordance to
the ALASKA Dynamicus protocol (ALASKA, INSYS GmbH,

FIGURE 1 | A participant wearing the knee sleeve on the right leg. The two

inertial measurement units were placed in the patch pockets at the upper and

lower frontal end of the knee sleeve.

Germany) (Härtel and Hermsdorf, 2006; Willwacher et al.,
2017). Prior to the attachment of the data collection equipment,
standardized anthropometric measurements were exhibited.
The measurements consisted of a total of 22 length, width
and circumference measures of the body segments. Prior to
performing trials, a static calibration trial was recorded for each
participant in a natural upright posture.

Biomechanical Model
The 3D marker coordinates and GRF data were reconstructed
and filtered with a 15Hz low-pass filter (zero-phase Butterworth
4th order) (Kristianslund et al., 2012). Inverse dynamics
modeling was performed using the full-body Dynamicus 9
model (Härtel and Hermsdorf, 2006; Willwacher et al., 2017).
Each participant was individually scaled to the generic linked-
segment model using the measured anthropometrics and the
static calibration trial (Whittlesey and Robertson, 2014). In a
next step, the marker trajectories and GRFs acquired from
the dynamic trials were used to determine the knee flexion
moment (KFM) and the knee adduction moment (KAM). A 20N
threshold of the vertical GRF was used to extract the stance phase
for each locomotion movement (Milner and Paquette, 2015).
KFM and KAM time series were time-normalized to 100 time
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steps representing 0–100% of the stance phase. Joint moment
amplitudes were normalized to body weight and expressed as
external moments.

Machine Learning Model
ANN modeling was set up with the Neural Network Toolbox
in MATLAB R2019a (The MathWorks, USA). The IMU signals
were low-pass filtered (zero-phase Butterworth 4th order filter;
cut-off frequency of 15Hz) and each trial was cropped to contain
data for the same phase as the biomechanical data. An IMU
signal matrix (rows: 13 participants × three trials × six tasks ×
100 time steps; columns: two locations × six spatial dimensions)
and a biomechanical data matrix (rows: 13 participants × three
trials × six tasks × 100 time steps; columns: two variables)
were created by vertically concatenating the IMU signals and
KFM and KAM time series of all trials, respectively. An ANN
was trained to model the association between the IMU signals
and the KFM and KAM time series. The IMU signal matrix
served as input and the biomechanical data matrix served as
output (target). As a consequence, the ANN had 12 and two
variables (i.e., nodes) in its input and output layer, respectively.
The ANN architecture was inspired by previous work (Favre
et al., 2012; Wouda et al., 2018) and had two hidden layers
with 100 and 20 neurons, which were connected to the input
and output nodes. The hidden layers and the output layer
consisted of hyperbolic tangent sigmoid transfer functions and
a linear transfer function, respectively. Initialization of the ANN
was done using the Nguyen-Widrow initialization function. The
ANN was trained for 1,000 iterations with Levenberg-Marquardt
back-propagated error correction (Watson and Moré, 1978) and
training was stopped if the gradient did not decrease for six
consecutive epochs or if the gradient was smaller than 1 × 10−6.
Evaluation of the ANN was done using a leave-one-subject-
out cross-validation (Halilaj et al., 2018). The cross-validation
involved training the ANN with all trials from 12 participants
(i.e., the training set) and then testing with the trials from the
remaining participant (i.e., the test set). As cross-dependencies
between the input and output in a combined estimation model
for KFM and KAM may affect the estimation accuracy (Wouda
et al., 2018), independent models for KFM and KAM were also
build. Independent models were trained and evaluated in the
same manner as the combined model, beside the fact that only
one variable was chosen in its output layer.

Statistical Analysis
According to previous studies, for eachmovement, the agreement
between the ANN-estimated outcomes (KFM∗ and KAM∗)
and the inverse dynamics-calculated data (KFM and KAM)
was derived from Pearson’s correlation coefficients, which were
categorized as weak (r ≤ 0.35), moderate (0.35 < r ≤ 0.67),
strong (0.67 < r ≤ 0.90) and excellent (r > 0.90) (Taylor, 1990;
Fluit et al., 2014; Karatsidis et al., 2016). Additionally, the Root
Mean Squared Error (RMSE) and relative Root Mean Squared
Error (rRMSE) were determined to assess the accuracy of the
ANN estimations (Ren et al., 2008). The rRMSE facilitates the
comparison between the different locomotion tasks with different
moment amplitudes. The averages and standard deviations were
calculated for r, RMSE and rRMSE from the 13 cross-validation

subsets. Average r values across participants were computed
using Fisher’s z transformation (Corey et al., 1998). Mean r values
were expressed in the original range from−1 to 1 by reversing the
transformation. Furthermore, peak KFM∗ and KFM∗ impulse as
well as peak KAM and KAM impulse were evaluated as classical
discrete load metrics (Bennell et al., 2011; Teng et al., 2015).
Impulse represents the area under the corresponding moment-
time curve. Percent differences (%Diff) between ANN-estimated
and inverse dynamics-calculated peak and impulse metrics were
used to provide a pragmatic interpretation.

RESULTS

Estimated Continuous Outcomes
The ANN-estimated KFM∗ and KAM∗ time series of the whole
stance phase are illustrated in Figures 2, 3, respectively, with the
measured references used for comparison. An overview of the
estimated accuracy for all movements is presented in Table 1.

For the different locomotion tasks, the ANN-estimated time
series revealed moderate to strong correlations for the KFM∗

and weak to strong correlations for the KAM∗. The highest
correlation for KFM∗ and KAM∗ was observed for moderate
running (r = 0.85 ± 0.43; mean ± standard deviation) and for
walking straight (0.71 ± 0.26), respectively. For all locomotion
tasks, the RMSE for KFM∗ was between 0.26 ± 0.09 and 1.13 ±

0.46 Nm/kg, whereas for KAM∗, that was between 0.18 ± 0.06
and 0.92± 0.54 Nm/kg. The rRMSE for the different locomotion
tasks ranged between 17.2± 3.1% (walking 90◦ turn) and 25.5±
7.0% (fast running) for KFM∗ and between 22.3± 8.3% (walking
straight) and 37.2± 7.8% (cutting maneuver) for KAM∗.

Discrete Load Metrics
The inverse dynamics-calculated and ANN-estimated discrete
load metrics (peak moments and moment integrals) are shown
in Table 2. Table 3 presents the %Diff results for each of the
performed locomotion tasks. The 90◦ walking turn showed the
smallest %Diff (6.7 ± 31.3%) for the ANN-estimated KFM
impulse in comparison to the reference values. In contrast, %Diff
of KAM impulse were higher with a minimum value of 42.7
± 108.9% for moderate running. The smallest %Diff for the
estimation of peak KFM and KAM was 24.7 ± 33.0% (moderate
running) and 39.1 ± 101.0% (walking straight), respectively.
Across all locomotion tasks, mean differences of peak moments
and moment integrals were lower for the KFM∗ in comparison
to the KAM∗ (40.4± 56.5 vs. 130.3± 157.3% and 10.6± 47.0 vs.
161.4± 252.8%, respectively).

Model Comparison
The changes in estimation accuracy due to independent model
building for KFM and KAM for each of the analyzed locomotion
tasks is presented in Table 4. Independent model building
resulted in a lower r value for both KFM andKAM in themajority
(five out of six) of the analyzed locomotion tasks in comparison
to the combined estimation model. Across all locomotion tasks,
mean RMSE and mean rRMSE increased for KFM∗ (RMSE =

0.15, rRMSE = 1.18) and KAM∗ (mean RMSE = 0.13, rRMSE =

0.26) due to independent model building.
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FIGURE 2 | Mean (and standard error) of the estimated knee flexion moments (blue) for the six analyzed locomotion tasks compared to their respective inverse

dynamics-calculated values (black). Positive values indicate external flexion moments and negative values indicate external extension moments.

DISCUSSION

This study was aimed to develop and train an ANN model
to estimate KFM and KAM during various locomotion
tasks based on data obtained by two wearable sensors.
The mobile assessment of knee joint loading enlarges the
scope of diagnostic methods and disease management
of KOA, which could help to improve disease treatment
strategies and minimizing the risk of non-functional
overreaching (e.g., pain).

The results of the study show a higher estimation accuracy
of the KFM compared to the KAM over most locomotion task.
However, estimation accuracy highly varied between tasks for
both the KFM and the KAM, especially with increasing intensity
and movement velocity. Apart from walking straight, for all
locomotion tasks, a distinct reduced level of agreement was found
between the ANN-estimated outcomes and reference data for the
KAM (mean r = 0.39 ± 0.32, mean rRMSE = 29.9% ± 8.1%) in
comparison to the KFM (mean r = 0.74 ± 0.36, mean rRMSE
= 20.8% ± 5.7%). Discrete load metrics highlighted lower %Diff
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FIGURE 3 | Mean (and standard error) of the estimated knee adduction moments (blue) for the six analyzed locomotion tasks compared to their respective inverse

dynamics-calculated values (black). Positive values indicate external adduction moments and negative values indicate external abduction moments.

of KFM impulses in comparison to KFM peaks in all locomotion
tasks, whereas %Diff of KAM impulses were lower compared to
KAM peaks only in three out of the six locomotion tasks.

Estimation Accuracy Across Different

Locomotion Tasks
In general, when comparing the estimation accuracy across the
different locomotion tasks, predictive power was always better
and %Diff was always less for KFM than for KAM. On average,

strong correlations (r = 0.74) and rRMSE of 20.8% for KFM and
moderate correlations (r = 0.39) with rRMSE of 29.9% for KAM
were found. Nonetheless, distinct differences between KFM and
KAM estimation values were evident across the locomotion tasks.

For KFM, highest correlations with the inverse dynamics
calculations were found for moderate running (r = 0.85), which
is reinforced by lowest %Diff for both the peak and impulse
of the KFM. The lowest correlations and largest rRMSE were
found for fast running (r = 0.65; rRMSE= 25.5%). Nevertheless,
%Diff for KFM peaks and impulses during fast running were

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 January 2020 | Volume 8 | Article 947

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Stetter et al. Machine Learning Knee Joint Loading

TABLE 1 | Accuracy (r, Pearson’s correlation coefficient; RMSE, root-mean-squared error; rRMSE, relative root-mean-squared error) of the estimated continuous

outcomes [knee flexion moment (KFM*), and knee adduction moment (KAM*)].

Locomotion task KFM* KAM*

r RMSE (Nm/kg) rRMSE (%) r RMSE (Nm/kg) rRMSE (%)

Walking straight 0.72 ± 0.32 0.26 ± 0.09 18.4 ± 5.3 0.71 ± 0.26 0.18 ± 0.06 22.3 ± 8.3

90◦ walking turn 0.69 ± 0.31 0.32 ± 0.10 17.2 ± 3.1 0.56 ± 0.33 0.29 ± 0.10 23.9 ± 6.4

Moderate running 0.85 ± 0.43 0.58 ± 0.20 19.7 ± 7.9 0.40 ± 0.35 0.37 ± 0.14 34.4 ± 13.5

Fast running 0.65 ± 0.43 1.13 ± 0.46 25.5 ± 7.0 0.21 ± 0.47 0.80 ± 0.46 33.8 ± 8.5

90◦ running turn 0.79 ± 0.28 0.77 ± 0.20 20.8 ± 4.5 0.51 ± 0.22 0.62 ± 0.19 27.9 ± 3.9

45◦ cutting maneuver 0.73 ± 0.41 1.05 ± 0.41 23.1 ± 6.5 −0.05 ± 0.30 0.92 ± 0.54 37.2 ± 7.8

Mean 0.74 ± 0.36 0.67 ± 0.24 20.8 ± 5.7 0.39 ± 0.32 0.53 ± 0.25 29.9 ± 8.1

Data are presented as mean ± standard deviations. Mean r and r standard deviation were computed using Fisher’s z transformation.

TABLE 2 | Inverse dynamics-calculated (KFM and KAM) and ANN-estimated (KFM* and KAM*) discrete load metrics (peak and impulse).

Locomotion task KFM KAM KFM* KAM*

Peak Impulse Peak Impulse Peak Impulse Peak Impulse

(Nm/kg) (Nm/kg) (Nm/kg) (Nm/kg) (Nm/kg) (Nm/kg) (Nm/kg) (Nm/kg)

Walking straight 0.67 ± 0.13 45.72 ± 14.52 0.54 ± 0.15 69.16 ± 26.03 0.91 ± 0.30 52.31 ± 24.83 0.65 ± 0.18 64.23 ± 13.76

90◦ walking turn 1.02 ± 0.38 71.79 ± 36.05 0.57 ± 0.18 44.65 ± 21.96 1.55 ± 1.19 70.12 ± 31.23 0.90 ± 0.44 52.06 ± 17.00

Moderate running 2.03 ± 0.34 193.05 ± 58.08 0.52 ± 0.16 43.48 ± 21.81 2.57 ± 0.92 197.00 ± 90.16 0.84 ± 0.39 56.35 ± 50.26

Fast running 2.49 ± 0.35 246.20 ± 71.51 0.77 ± 0.20 51.35 ± 27.01 3.44 ± 1.92 259.80 ± 118.59 1.72 ± 0.99 91.98 ± 62.78

90◦ running turn 2.20 ± 0.40 240.28 ± 83.01 0.60 ± 0.17 20.80 ± 6.56 3.12 ± 0.88 253.13 ± 91.06 1.45 ± 0.73 61.94 ± 31.19

45◦ cutting maneuver 2.52 ± 0.50 284.58 ± 85.73 0.61 ± 0.23 43.97 ± 35.24 3.50 ± 1.29 310.16 ± 144.96 2.11 ± 1.38 120.90 ± 110.35

Mean 1.82 ± 0.79 180.27 ± 98.86 0.60 ± 0.09 45.57 ± 15.56 2.52 ± 1.07 190.42 ± 106.46 1.28 ± 0.57 74.58 ± 26.66

Data are presented as mean ± standard deviations; KFM, knee flexion moment; KAM, knee adduction moment.

TABLE 3 | Percent differences (%Diff ) of discrete load metrics (peak and impulse).

Locomotion task KFM KAM

Peak Impulse Peak Impulse

%Diff %Diff %Diff %Diff

Walking straight 44.3 ± 70.8 27.4 ± 83.9 39.1 ± 101.0 62.0 ± 253.1

90◦ walking turn 47.1 ± 60.6 6.7 ± 31.3 82.4 ± 110.5 69.3 ± 127.5

Moderate running 24.7 ± 33.0 0.65 ± 37.2 68.7 ± 94.5 42.7 ± 108.9

Fast running 37.2 ± 68.7 6.8 ± 40.7 123.5 ± 124.1 94.2 ± 145.3

90◦ running turn 44.9 ± 45.2 12.1 ± 46.5 159.8 ± 157.1 230.0 ± 179.9

45◦ cutting maneuver 44.1 ± 60.7 10.0 ± 42.6 308.2 ± 356.5 470.0 ± 702.0

Mean 40.4 ± 56.5 10.6 ± 47.0 130.3 ± 157.3 161.4 ± 252.8

Data are presented as mean ± standard deviations; KFM, knee flexion moment; KAM,

knee adduction moment.

lower than for most of the other locomotion tasks, except for
moderate running. Interestingly, the largest %Diff was found for
walking straight, while %Diff of moment integrals were in general
lower compared to %Diff of peak moments. These findings
indicate that our ANN-configuration is more appropriate for
estimating knee joint loading over the stance phase than for
estimating the peak moment of the stance phase. In particular,

TABLE 4 | Increase (+) or decrease (–) in estimation accuracy (r, Pearson’s

correlation coefficient; RMSE, root-mean-squared error; rRMSE, relative

root-mean-squared error) due to independent model building in comparison to the

combined model.

Locomotion

task

KFM* KAM*

r RMSE

(Nm/kg)

rRMSE

(%)

r RMSE

(Nm/kg)

rRMSE

(%)

Walking straight 0.03 0.00 0.50 −0.20 0.05 2.64

90◦ walking turn −0.02 0.03 1.56 −0.08 0.07 0.09

Moderate running −0.02 0.18 1.31 −0.10 0.09 −1.58

Fast running −0.03 0.15 0.90 −0.04 0.20 1.87

90◦ running turn −0.08 0.11 0.85 −0.14 0.16 −0.87

45◦ cutting

maneuver

−0.07 0.44 1.94 0.26 0.22 −0.57

Mean −0.03 0.15 1.18 −0.05 0.13 0.26

KFM*, knee flexion moment; KAM*, knee adduction moment.

during walking straight, the low knee flexion moment peaks and
impulses might account for the strong correlations but large
%Diff. Albeit, for KFM generally high agreement was found
for ANN-estimated outcomes, with a reduced performance for
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the high intensity movements running and cutting maneuvers.
In contrast, in these movements lower %Diff occurred to the
lower-intensity movements.

For the estimation of KAM, overall weak to strong correlations
were found for the analyzed movements. Estimation accuracy
was highest in walking straight (r = 0.71, rRMSE = 22.3%).
Mediocre correlations were found in moderate running as well as
90◦ walking/running turns (0.40≤ r ≤ 0.56), and low or negative
correlations in fast running and 45◦ cutting maneuvers (−0.05
≤ r ≤ 0.21). With regard to rRMSE, alterations of locomotion
speed (walking to running) and direction (turning and cutting)
led to slight reductions in accuracy of the ANN estimations.
Concomitant, large increases in %Diff along with high variability
were detected in fast running, 90◦ running turns and 45◦ cutting
maneuvers (KAM impulse: 94.2, 230.0, and 470.0%, respectively).
A potential reason for the less estimation accuracy and larger
differences for movements with increased velocity and changes
of direction might be the higher variation in the execution of
these movements, while locomotor tasks such as walking or
moderate running are performed automatically with repeatable
characteristics (Schmidt and Lee, 2011). Similarly, variability
in estimation accuracy was also shown by Fluit et al. (2014),
evaluating a prediction model for GRFs and moments during
various activities of daily living by means of 3D full-body motion.

However, a generalization of the estimation accuracies cannot
be deduced, as a reduced estimation accuracy in continuous
outcomes does not necessarily result in an inaccurate estimation
of discrete variables, as it was seen in the KFM during fast
running. Similarly, good agreement in continuous outcomes does
not implicate accurate estimation of discrete load metrics, as seen
in 90◦ running turn. Furthermore, it must be noted that most
KFM and KAM show high standard deviations, which indicates a
wide dispersion across participants. Nonetheless, %Diff of KFM
were entirely lower in the impulses compared to the peak values.
In contrast, %Diff of KAM impulse were lower compared to
the peak values only in three out of the six locomotion tasks
(90◦ walking turn, moderate and fast running). Summarized,
KAM estimations were less accurate both for continuous and
for discrete outcomes compared to KFM and should therefore
be treated with caution. The more pronounced characteristic
changes in the KAM time series between locomotion tasks in
comparison to the KFM time series are a potential reason for the
reduced estimation accuracy in KAM (see Figures 2, 3).

Furthermore, with respect to the comparison of a combined
estimation model for KFM and KAM and independent models
for KFM and KAM, the results show that an independent model
building leads to slightly decreased estimation accuracy of the
KFM and amore pronounced decrease of the KAM, concomitant
with increased RMSE and rRMSE in the investigated locomotion
tasks. Hence, if only one variable was chosen as an output,
decreased performance for the model was observed, indicating
that cross-dependencies between input and output in the
combined estimation model clearly affected the estimation
accuracy. Overall, the combined estimation model for KFM and
KAM presented a fair estimation accuracy, especially, in the
low-intensity movements.

Comparison of Different Wearable

Measurement Systems
A novel machine learning based method was developed and
applied in this study to estimate KFM and KAM based
on data obtained by two wearable sensors integrated in a
knee sleeve. Various approaches have experienced progressive
advances to assess the mechanical loading of KOA patients in
their habitual environment over the past years. The majority of
the approaches were based on analytical biomechanical models,
which typically determine joint moments by means of the inverse
dynamics calculations. As a consequence, GRF measurements
and kinematic data are necessary to perform such analysis
(Whittlesey and Robertson, 2014).

Van den Noort et al. presented in 2011 an instrumented
force shoe as an alternative to force plate measurements.
Subsequently, an ambulatory measurement system, consisting
of the instrumented force shoe and an inertial measurement
system combined with a linked-segment model, was used to
compare KAM measures with a laboratory based system in
KOA patients (van den Noort et al., 2013). Limited accuracy
was shown and the authors concluded that a more advanced
calibrated linked-segment model should be investigated (van den
Noort et al., 2013). As an alternative to a direct measurement
of GRF, Karatsidis et al. (2016) estimated GRF by means of a
full-body inertial motion capture system during walking. Their
results showed for the comparison with an optical motion
capture system higher r values (range 0.82–0.99 and 0.76–0.99
for the inertial and optical motion capture systems, respectively)
and lower rRMSE values (range from 5 to 15% for both
systems) compared to the KFM and KAM estimations present
in this study. More recent studies from Dorschky et al. (2019)
and Konrath et al. (2019) used inertial motion capturing and
musculoskeletal modeling to estimate biomechanical variables,
such as joint kinematics and kinetics without GRF data. Dorschky
et al. (2019) presented high correlations for sagittal plain
kinematics (r > 0.93) and kinetics (r > 0.90) in gait and
running. In accordance, Konrath et al. (2019) estimated the

KAM and the tibio-femoral joint contact force during daily living
activities (e.g., stair walking) with moderate to strong correlation
coefficients. However, such approaches using inertial sensor data

and musculoskeletal models require more IMUs (seven IMUs

in Dorschky et al., 2019 and 17 IMUs in Konrath et al., 2019)
compared to this study’s approach.

Parallel to the analytical model development, an increasing

number of machine learning approaches have been explored to

simplify data acquisition and modeling strategies to estimate

target variables, such as the KAM (Liu et al., 2009; Favre et al.,
2012; Wouda et al., 2018). ANN modeling does not require

modeling of the musculoskeletal system, as the relationship

between the input IMU signals and the target variables is build

up during the training process of the model (Halilaj et al., 2018;
Wouda et al., 2018). However, ground truth reference data,

such as the inverse dynamics-calculated KFMs and KAMs, are

required during the supervised learning process of the model.

Providing a large amount of known output data is essential
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to establish a robust model (Sivakumar et al., 2016; Halilaj
et al., 2018). Wouda et al. (2018) used similar ANN modeling
to the one used in this study for estimating vertical GRF and
sagittal knee kinematics during running. The estimated vertical
GRF profiles of their non-personalized ANN developed by eight
participants showed a higher correlation (r > 0.90) to the
actual force time series. The slightly reduced estimation accuracy
in the current study (r < 0.85) may depend on the variety
of locomotion tasks included in the model building. A more
locomotion task-specific modeling may lead to an increased
estimation accuracy for individual tasks, but has the disadvantage
that each task must be modeled by itself (Wouda et al., 2018).
In consequence, the combination with an activity recognition
approach could help to select individual estimation models in
practical applications.

Limitations
Certain limitations of this study need to be considered when
interpreting the results. One consideration worth noting is
that the estimation accuracy depends on the neural network
architecture. The ANN was built on previous work (Favre
et al., 2012; Wouda et al., 2018), which highlighted that such
configuration is capable of mapping non-linearity between input
and output; however, other model specifications may result in
an improved estimation accuracy. The ANN was trained with
data from multiple participants as well as various locomotion
tasks, which should rather lead to a less participant- and
task-specific but a more generic model. As a consequence,
this approach rather yields a decreased performance due to
a lack of individualization, but has the advantage that not
every new user needs to perform a training phase (Favre et al.,
2012; Wouda et al., 2018). Further research is necessary to
assess if a single participant learning approach increases the
estimation accuracy. Another limitation is that we included a
homogeneous group of participants consisting of only males
without any musculoskeletal disorders and the translation of
the results to the target group of KOA patients remains
speculative. Nonetheless, future clinical studies may benefit from
the use of the method developed in this study, especially in
low-intensity movements (Richards et al., 2017). Beyond, the
sample size was rather small, including 13 participants. Similar
investigations included comparable numbers of participants
(e.g., sample of eight participants in Wouda et al., 2018
or sample of 17 participants in Leporace et al., 2015). The
small sample size potentially limits the outcome, as the
robustness of the relationship between the input and output
variables of the ANN depends on the amount of training data
(Sivakumar et al., 2016; Ancillao et al., 2018; Halilaj et al.,
2018). Finally, it cannot be fully ensured that the fixation
technique excluded any oscillations or misalignment of the
IMUs, even though the exact fit of the sleeve and the sensors
was repetitively checked. However, the wearable sensors were
integrated in a knee sleeve on purpose to mimic natural
effects and to capture IMU signals closely related to the joint
under investigation.

CONCLUSION

This study demonstrated the potential of estimating KFM and
KAM for various locomotion tasks using a minimal body-
worn sensor setup consisting of two IMUs integrated in a knee
sleeve. The agreement between the ANN-estimated outcomes
and inverse dynamics-calculated data was strong for the majority
of analyzed locomotion tasks in the KFM and moderate in
the KAM. Overall, higher estimation accuracies were seen for
the KFM in comparison to the KAM across all locomotion
tasks. The accuracy limitations especially of KAM estimation
makes prediction of knee joint loading challenging. In order to
reach an acceptable level of accuracy related to critical changes
due to KOA, typically characterized by relatively small kinetic
differences, a participant- or task-specific modeling could be
helpful. This has important implications for the development of
wearable devices as well as for scientific research on KOA. The
highest estimation accuracy for both KFM and KAM of walking
straight matches the main characteristic of KOA therapy and
treatment by low-intensity movements (e.g., walking). Looking
ahead, wearable technology could serve as a rehabilitation aid for
patients with KOA leading to an improved load management,
which could result in a slower progression.
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Ground reaction forces are often used by sport scientists and clinicians to analyze
the mechanical risk-factors of running related injuries or athletic performance during
a running analysis. An interesting ground reaction force-derived variable to track is
the maximal vertical instantaneous loading rate (VILR). This impact characteristic is
traditionally derived from a fixed force platform, but wearable inertial sensors nowadays
might approximate its magnitude while running outside the lab. The time-discrete
axial peak tibial acceleration (APTA) has been proposed as a good surrogate that
can be measured using wearable accelerometers in the field. This paper explores
the hypothesis that applying machine learning to time continuous data (generated
from bilateral tri-axial shin mounted accelerometers) would result in a more accurate
estimation of the VILR. Therefore, the purpose of this study was to evaluate the
performance of accelerometer-based predictions of the VILR with various machine
learning models trained on data of 93 rearfoot runners. A subject-dependent gradient
boosted regression trees (XGB) model provided the most accurate estimates (mean
absolute error: 5.39 ± 2.04 BW·s−1, mean absolute percentage error: 6.08%). A similar
subject-independent model had a mean absolute error of 12.41 ± 7.90 BW·s−1 (mean
absolute percentage error: 11.09%). All of our models had a stronger correlation with
the VILR than the APTA (p < 0.01), indicating that multiple 3D acceleration features in a
learning setting showed the highest accuracy in predicting the lab-based impact loading
compared to APTA.

Keywords: running biomechanics, impact loading, tibial shock, machine learning, wearable sensor, gait analysis

INTRODUCTION

Ground reaction forces are relevant parameters for running analysis (Pohl et al., 2009; Crowell
and Davis, 2011; Van Der Worp et al., 2016; Clark et al., 2017). They partially describe the center of
mass’ state of motion during running and are often used by sport scientists and clinicians to analyze
the mechanical risk-factors of running related injuries (Bredeweg et al., 2013; Napier et al., 2018)
and/or athletic performance (Preece et al., 2019).
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A commonly used ground reaction force-derived variable is
the maximal vertical instantaneous loading rate (VILR), which
is calculated as the maximal slope of the rising vertical ground
reaction force – time curve (Ueda et al., 2016). VILR has
been used to characterize the impact (i.e., high rate of force
development due to the rapid deceleration of all body segments
during the foot-ground collision) during running (Gerritsen
et al., 1995). This measure could discriminate groups of rearfoot
runners with a history of stress fractures (Van Der Worp et al.,
2016) and plantar fasciitis (Pohl et al., 2009). Consequently,
VILR has been considered clinically relevant and has been a
main outcome variable in gait retraining studies targeting runners
with high VILR (Crowell and Davis, 2011; Clansey et al., 2014;
Willy et al., 2016).

Ground reaction forces are traditionally measured using
fixed force platforms or instrumented treadmills (Ueda et al.,
2016). Unfortunately, measurements with force platforms are
laboratory-based and require both expensive equipment and
extensive post-processing. These factors limit the potential of
monitoring in-field running biomechanics, whereas wearable
inertial measurement units can accommodate this by predicting
running gait parameters outside the laboratory (Falbriard et al.,
2018; Wouda et al., 2018). In this respect, an ambulatory low-cost
accelerometer was proposed as a potential surrogate candidate
to estimate VILR when force platforms are not available (Ngoh
et al., 2018). Previous research has identified a moderate to
good correlation (range of rmean = 0.64–0.84) between the axial
peak tibial acceleration (APTA) captured by a skin-mounted
accelerometer at the tibia and VILR (Laughton et al., 2003; Pohl
et al., 2009; Greenhalgh et al., 2012; Zhang et al., 2016; Van
den Berghe et al., 2019). Therefore, using APTA as a surrogate
measure for VILR seems justifiable (Sheerin et al., 2019).

However, the APTA is based on a single, basic feature (i.e.,
the peak value) of the time-continuous 1D tibial acceleration
signal. Consequently, a large amount of data is neglected, which
may lead to missing important information. A combination of
multiple features of the 3D tibial acceleration signals, possibly
including complex and higher-order ones, may result in a
more accurate predictor of VILR than only considering APTA.
Hence, a performant computational model that extracts relevant
features and effectively copes with any non-linear relationships
(between the features of the tibial acceleration signals and
the target VILR) is desired. In that way, machine learning
techniques could help to analyze continuous time-series data
without pre-selecting discrete variables. Holzreiter and Köhle
(1993) introduced the use of neural networks to assess gait
patterns in locomotion biomechanics. Recently more advanced
machine learning techniques have been used to detect pathologic
gait-patterns (Williams et al., 2015; Zeng et al., 2016), fatigue
(Janssen et al., 2011; Op De Beéck et al., 2018) as well as classifying
gender, performance-level (Clermont et al., 2018) and age-related
running patterns (Fukuchi et al., 2011).

To gain a better understanding of the relationship between the
external load and potential injury risk in overground running,
a more accurate estimation of the athlete’s impact loading is an
essential methodological prerequisite. The screening of runners
on impact intensity could be more accurate by estimating

VILR by means of a machine-learned model instead of relying
on the APTA only. Consequently, this study proposes and
evaluates the performance (e.g., predictive accuracy, calculation
time, diagnostic ability) of an inertial sensor-based method to
estimate the runner’s VILR based on bilateral 3D shin-mounted
accelerometer data using a machine learning approach. It was
hypothesized that the incorporation of these extracted features
into a set of machine-learned models would result in stronger
predictive and diagnostic capacities than considering APTA only.

MATERIALS AND METHODS

Ethics Statement and Participants
Ninety three subjects engaged in recreational as well as
competitive running (55 men and 38 women) were recruited
from the local community. Runners were included if they were
free of running-related injuries and ran at least 15 km per week
(Table 1). All subjects signed an informed consent prior to the
testing. Approval for the study was obtained from the ethical
committee of the Ghent University Hospital (2015/0864).

Protocol and Setup
All runners were equipped with a backpack/tablet system
to measure the tibial accelerations (Van den Berghe et al.,
2019). Two tri-axial accelerometers (LIS331, Sparfkun, Colorado,
United States; 1000 Hz/axis), were as tight as tolerable strapped
with sports tape on the antero-medial side of both tibias, 8 cm
above the malleolus medialis (Laughton et al., 2003; Clansey
et al., 2014). The axis of each accelerometer was orientated in
a way that the vertical axis of the accelerometer coincided with
the longitudinal axis of the concerned tibia. The skin around
the lower leg was pre-stretched with sports tape to improve the
rigid coupling between the accelerometers and the tibia (Clansey
et al., 2014; Van den Berghe et al., 2019). Data collection took
place during two different projects, but with an exact same
measurement setup.

The first cohort consisted of 13 subjects who were asked to
run on a 30 m instrumented running track at multiple running
speeds (2.55 ms−1, 3.20 ms−1, 5.10 ms−1, and preferred running
speed). All subjects were habitual rearfoot strikers and were
provided with the same standardized neutral distance running
shoe (Li Ning Magne, ARHF041). The second cohort consisted
of 80 runners running at 3.20 m·s−1. Subjects were not pre-
selected on their habitual footstrike pattern and received no
verbal instruction about the desired footfall pattern. They wore

TABLE 1 | Characteristics of the subjects.

Men Women

Mean SD Mean SD

Age (Yrs.) 35.9 9.2 34.6 10.8

Body height (m) 1.79 0.07 1.67 0.06

Body mass (kg) 76.5 10.2 60.6 7.3

Training volume (km/week) 36.4 16.9 27.9 11.0
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FIGURE 1 | Data example, tri-axial.1pc accelerations (TA) were simultaneously captured for the left (blue) and right (red) lower leg, vertical ground reaction forces
(vGRF) were synchronized in time (black).

their regular training shoes. In both cohorts running speed was
controlled by timing gates. Recorded trials were discarded and the
runners received verbal feedback if their running speed was not
within a 0.2 m·s−1 of the targeted speed. Ground reaction forces
were measured at 1000 Hz by two built-in force platforms (2 and
1.2 m, AMTI, Watertown, MA, United States). Accelerometer
and force data were synchronized in time (Figure 1) by means
of an infrared impulse sent from the motion capture system. The
pulse was captured by an infrared sensor attached to the backpack
system. For a more detailed description of this synchronization
protocol we refer to Van den Berghe et al. (2019).

Data Processing
Example Construction and Data Preprocessing
Ground reaction force data were filtered using a zero-lag
second-order low-pass Butterworth filter with a cutoff frequency
of 60 Hz. VILR was calculated as the maximal value of
the first derivative of the vertical ground reaction force
component following initial contact (vertical ground reaction
forces exceeding a 5N threshold) (Ueda et al., 2016). This
was subsequently normalized to the subject’s body weight. The
acceleration signals were filtered in order to separate the linear
acceleration from the gravity component and remove high-
frequency noise using the approach of van Hees et al. (2013). The
filtering settings were selected using a tuning procedure where
2/3 of the data was used to train a model and 1/3 to evaluate
the model. First, to find a sensible range for the parameters,
a manual exploration was performed using Chebyshev (type I
and type II) and Butterworth filters with settings derived from
related research. Subsequently, a grid search of Butterworth
filters [(0.2, 1.0; step = 0.2)×(40.0, 70.0; step = 5)] was applied
to the acceleration signals and the filter which resulted in the
best performance on the evaluation set was selected, which

was a second-order band-pass filter with cutoff frequencies
of 0.8 and 45 Hz (Figure 2).

We extracted individual strides by splitting the collected
signals at the take-off events of the opposite feet. This guarantees
that each window contains the part of the acceleration signal
that is relevant for determining the VILR. Next, we mirrored the
data from the right and left leg, such that each of these strides
starts with the right leg making ground contact. This procedure
effectively doubled the amount of training data.

Each of the 93 subjects completed on average 16 trials (range:
6 to 67 trials), with each trial containing 2.67 strides on average.
In total, 23 trials were removed from the data set due to
clear errors in measured ground reaction forces and/or tibial
accelerations. This resulted in 4037 examples in total.

Feature Construction
A large set of features consisting of three broad categories
was considered: (1) auto-generated statistical features of the
3D acceleration waveforms, (2) trial-specific features, and
(3) subject-describing features (Figure 2).

Auto-generated statistical features
First, from the tri-axial filtered acceleration signals of both feet,
we extracted the window between the initial ground contact
event and the event where the vertical acceleration component
reaches 0 g. Next, we calculated a comprehensive set of time-
series features from these windows using the TsFresh Python
package (Christ et al., 2018). The extracted features include both
basic characteristics of the signals (e.g., mean, maximum, number
of peaks, timing of peak values) and more complex features (e.g.,
continuous wavelet coefficients, coefficients of an autoregressive
model, the time reversal symmetry statistic, Fourier coefficients).
We refer to the TsFresh paper (Christ et al., 2018) for a full
description and list of features.
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FIGURE 2 | Data preprocessing and feature engineering part of the machine learning pipeline. First, the raw acceleration signals were filtered using a Butterworth
bandpass filter. The optimal filter configuration was determined by training multiple models, using different filter configurations. The configuration which enabled the
most accurate predictions was used henceforth. Second, feature engineering was used to derive a lower-dimensional representation of the data. The generated
features were a combination of automatically generated statistical features and manually crafted domain-specific features. The set of automatically generated
features was reduced using a univariate feature selection technique.

The FRESH procedure (Christ et al., 2017) was used for
feature selection. First, this procedure evaluates the influence
of every feature on the target (VILR) using a univariate
test (i.e., Kendall rank test for real-valued features and
Kolmogorov-Smirnov for binary features) and computes the
p-value. So, it tests whether the feature and the target are
not statistically independent. Subsequently, the Benjamini-
Yekutieli procedure was carried out to control for the false
discovery rate. This procedure reduced the set of auto-generated
features to 1662.

Trial-specific features
Running speed, derived from timing gates (Van den Berghe
et al., 2019), and ground contact time, derived from tibial
accelerations, were included as trial-specific features for each
stride. Because the ground contact time cannot be inferred
directly from the tibial acceleration signals, we modeled this
as a separate prediction problem. Specifically, we solved the
related task of predicting the timings of the initial contact
and toe off gait events. The ground contact time can then be
inferred from the time difference between both events. Due to
the interrelations between both gait events (e.g., a toe off event
follows 160 to 350 ms after an initial contact event), we framed
this as a structured prediction task. In this framework, a function
between the acceleration profile and a sequence of initial contact
and toe off timings was learned. Specifically, a deep structured
recurrent neural network architecture was used. The neural
network component of the model used the raw acceleration
signals, the jerk (first order derivative of acceleration signals),
roll (arctan

(
ay · az

)
) and pitch (arctan

(
−ax

√
a2

y + a2
z

)
) of both

legs to infer the likelihood of a gait event happening for each

sample. Subsequently, the structured component consisted of a
constrained peak detection algorithm on the likelihood function
that finds the most likely combination of initial contact and toe off
timings. Both components were optimized jointly. For a detailed
description of this model, see Robberechts et al. (2019).

Subject-describing features
Third, the body weight and the shoe type were included.
The weight of each subject is a logical feature to consider
since the loading rate is expressed as a function of body
weight. Furthermore, earlier research has found that footwear
properties may affect VILR, even with similar foot-strike patterns
(Kulmala et al., 2018). When testing the second cohort (n = 80),
the subjects reported their shoe brand and type. The shoe’s
properties were verified through online databases (running shoes
guru, solereview, runner’s world, manufacturer’s website, etc.)
and subsequently categorized as being neutral, stabilization
or racing flats.

Learning Approach
We considered two different learning settings, each learned on
different subsets of the data (Figure 3):

Subject-independent model
This setting trained a model using the data from all runners
except for one. The model was then evaluated on the trials from
the one held-aside runner. That is, at training time the model
has no access to any data about the runner for whom predictions
will be made. As such, this setup estimates the model’s accuracy
when making predictions for new runners for whom there is
no available data, which is interesting in practice. Moreover, the
model remains valid if a runner adapts his running style.
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FIGURE 3 | Model selection, training and evaluation part of the machine learning pipeline. Two different learning settings were considered, differing in how the data
were split into training and test sets. In the subject-dependent setting, we trained a model on the data of one specific runner, including all trials except one.
Subsequently, the model was evaluated on the data of the one held-aside trial. In the subject-independent setting, we trained a model on the data of all runners
except for one and evaluated the model on all data of the one held-aside runner. This procedure was repeated for each trial and subject, such that we obtained
performance metrics for each fold. Last, the average MAE and R2 score per subject were reported.

Subject-dependent model
This setting trained a unique personalized model for each subject
using only data from that subject. This model would work well if
the relationship between the tibial acceleration and the VILR is
unique to each subject.

For both settings, we compared the performance of three
regression techniques: (1) Linear Regression with Elastic Net
regularization (EN), (2) Linear Regression with Least Absolute
Shrinkage and Selection Operator regularization (LASSO) and
(3) Gradient Boosted Regression Trees (XGB). We used the
implementations available in scikit-learn (Pedregosa et al., 2012)
for the first two models. For the third regression technique, we
used the XGBoost Python package (Chen and Guestrin, 2016).

All models were trained and evaluated in a leave-one-out
cross-validation analysis. The subject independent model was
iteratively trained on all but one of the subjects to be evaluated
on the remaining subject. Similarly, the subject-dependent model

is trained on all but one trial of the same subject to be evaluated
on the remaining trial. This procedure was repeated for all
possible subjects and trials, and the mean accuracy across all
folds is reported. As such, this procedure determines the average
performance of the models on a group level.

Model Evaluation and Statistical Analysis
The model’s accuracy was assessed using both the mean absolute
error (MAE) and the coefficient of determination (R2 score). The
MAE was calculated as the absolute difference between the force
platform based VILR and the machine learning predicted VILR.
It measures the average magnitude of the errors in the same unit
as the VILR and is therefore an easily interpretable measure for
the quality of a model. This metric is mainly useful to compare
across two models and for domain experts that have insight into
the range of VILR values and the magnitude of acceptable errors.
The R2 score was computed as R2

= 1 −
∑

i yi − fi∑
i yi − ȳ , where yi
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are the force plate based VILR values and fi are the machine
learning predicted values. It has the advantage of being scale-
free, thereby indicating how a model performs compared to a
constant baseline.

The number of trials completed by each runner varies
substantially. In order to avoid that one runner has an excessively
large influence on the accuracy of our models, we computed
the global MAE and R2 score in a two-step procedure. First,
the average MAE and R2 score were calculated over all
strides of that runner. Second, the global metrics were then
calculated as the average values of these metrics over all
runners that completed at least ten trials. This helps prevent
the results from being unduly influenced by a single trial or
a single runner.

Additionally, we considered two baseline models: a first
model that always predicts a runner’s average VILR for the
corresponding landing foot; and a second linear regression model
that only includes the APTA as a covariate.

Repeated measures analysis of variance (ANOVA) was used
to examine the effect of various learning settings and regression
techniques on the estimated VILR. Post hoc testing was conducted
using a Tuckey HSD test on the relative errors. Additionally,
Cohen’s drm effect sizes (Lakens, 2013) were computed for the
differences in MAE between each machine learning model and
the APTA baseline model. We refer to effect sizes as small
(d ≤ 0.2), medium (0.2 < d ≤ 0.8) and large (d > 0.8) as
suggested by Cohen (2013). Statistical analysis was done in
Python using the SciPy (ANOVA) and statsmodels (Tuckey HSD)
libraries, with the significance level set at p = 0.05.

To assess the diagnostic ability of each model, it was opted
to express the model accuracy in the proportion of correct
classifications of high impact runners at a common running
speed. Because a cut-off for high impact running at the speed of
3.2 m·s−1 was lacking, those runners with a mean VILR within
the highest 33% of our database were selected. The diagnostic
ability of the models was assessed by calculating their sensitivity
and specificity. Sensitivity is the proportion of runners who are
correctly categorized as having a high VILR among those who
truly have a high VILR. Similarly, specificity is the proportion
of runners who are correctly categorized as not having a high
VILR among all runners who truly do not have a high VILR.
The Receiver Operating Characteristic curves were constructed
to demonstrate the trade-off between both metrics using various
cut-off values for the predictions.

RESULTS

Predictive Performance of the Machine
Learning Models
Table 2 summarizes the predictive performance (MAE and R2

scores) of all learned models. In terms of regression techniques,
XGB consistently outperformed the other learners (p < 0.05; in
all but the subject-independent model with subject-describing
features setting). Therefore, the results of the XGB learner is
reported in the remainder of this section. The differences between
the different learning settings were all statistically significant

TABLE 2 | Mean absolute error (MAE) ±SD, coefficient of determination R2 scores
and effect sizes of MAE’s versus the axial peak tibial acceleration (APTA) baseline
for the estimation of the vertical instantaneous loading rate (VILR) by three different
regression models.

Model MAE [BW·s−1] R2 drm Effect size

Subject-independent (without subject-describing features)

APTA 21.07 ± 8.13 0.6027 /

LASSO 13.13 ± 8.79 0.7789 0.3576 Medium

EN 12.91 ± 7.73 0.7811 0.3749 Medium

XGB 12.71 ± 7.57 0.7397 0.4187 Medium

Subject-independent (with subject-describing features)

APTA 18.68 ± 8.44 0.6090 /

LASSO 12.75 ± 9.01 0.7682 0.3468 Medium

EN 12.48 ± 8.28 0.7713 0.3707 Medium

XGB 12.41 ± 7.90 0.7741 0.4061 Medium

Subject-dependent

APTA 7.39 ± 4.03 0.8500 /

LASSO 7.50 ± 3.45 0.8657 0.0168 Small

EN 7.36 ± 3.40 0.9124 0.0719 Small

XGB 5.39 ± 2.04 0.9461 0.2900 Medium

Linear Regression with Elastic Net regularization (EN), Linear Regression with
Least Absolute Shrinkage and Selection Operator regularization (LASSO), and
Gradient Boosted Regression Trees (XGB) in the subject-independent and subject-
dependent learning settings.

(p < 0.05). A subject-independent model without subject-
describing features resulted in the least accurate estimations
of VILR (MAE: 12.71 ± 7.57 BW·s−1; R2: 0.7397). Including
the subject’s weight and shoe type improved the subject-
independent model (MAE: 12.41 ± 7.90 BW·s−1; R2: 0.7741).
Training a unique model for each subject further improved the
predictions by a significant margin (MAE: 5.39 ± 2.04 BW·s−1;
R2: 0.9461; p < 0.01).

Predictive Performance of the Single
Metric Linear Regression Models
Table 3 shows the predictive performance of linear models
that include a single feature in the subject-independent model
learning setting. For comparison purposes was the predictive
performance of the subject-independent XGB model added as
well. Notwithstanding the moderate correlation between the
APTA and the VILR, 32 of the extracted features had a higher
predictive accuracy than the currently used proxy. Of these
32 features, the mean over the absolute differences between

TABLE 3 | Mean absolute error (MAE) ±SD and coefficient of determination R2

scores for the estimation of the VILR by linear regression models using a single
variable in the subject-independent model (SIM) learning setting.

Statistical model MAE R2

APTA 21.07 ± 8.13 0.60

Standard deviation on linear trend 18.06 ± 7.28 0.67

Mean over the absolute differences between
subsequent acceleration values

17.47 ± 7.98 0.71

SIM XGB model 12.41 ± 7.90 0.77
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subsequent values of the vertical acceleration signal had the
highest correlation with the VILR. A comprehensive overview of
all 32 features was made available (Supplementary Table A). The
previously discussed regression models that combine multiple
of these features still outperform these single-feature models
by a large margin.

Diagnostic Ability
The models’ ability to identify runners with a high VILR is shown
in Figure 4. With an area under the curve of 0.92, the subject-
independent model XGB had a stronger diagnostic ability than
the APTA which has an area under the curve of only 0.82.

Figure 5 shows cumulatively the percentage of predictions
for which the relative error is below a threshold. The subject-
independent model outperformed both baselines by a significant
margin. However, the predicted VILR has still an error larger than
25% for 12% of the samples in the test set. The subject-dependent
fails for only 3% of the examples.

Computing Time
The mean calculation time for each prediction was 142 ms
(2.3 GHz Intel Core i5), of which the majority (140 ms) is spent
on estimating the ground contact time. Meaning a prediction of
the VILR can be made within one foot contact (160 - 350 ms).

DISCUSSION

The overall aim of this study was to predict the VILR during
overground running by creating performant machine learning

FIGURE 4 | The Receiver Operating Characteristic curve reflects the ability of
the subject-independent model XGB (SIM) and APTA models to identify
runners with a high VILR. The sensitivity was plotted in function of the false
positive rate (1 – specificity). The subject-independent model XGB model had
a stronger diagnostic ability than the APTA.

models. Advanced signal processing was used to identify
time-discrete features of the 3D acceleration waveforms that
discriminate between subtle changes in running biomechanics.
Machine-learned models were subsequently built to estimate
the VILR and the performance (predictive accuracy, diagnostic
ability) of those models were compared to a traditional approach.
Two other machine learning techniques not discussed in this
study were attempted, but gave unsatisfactory results. First,
a data-driven deep recurrent neural network would require much
more data than available to learn the complex relations between
the tibial acceleration signals and VILR. Second, dynamic time
warping was used as a tool for gait-curve matching, incorrectly
assuming that runners with similar acceleration profiles have
a similar VILR. Moreover, the feature engineering approach is
preferable, since the learned models are interpretable (to a certain
extend) and have a much lower computational cost.

The findings point out that applying machine learning to
multiple 3D tibial acceleration features results in a more accurate
prediction of the VILR than the frequently used APTA, which is
a single time-discrete variable of tibial acceleration. Additionally,
this prediction can be made in real-time, because the data pre-
processing (i.e., filtering and feature construction) and prediction
requires less calculation time than the typical duration of a single
foot contact (∼250 ms).

Overall, the XGB models systematically outperformed the
other learners, suggesting that the XGB model can cope
more effectively with the large number of features or that
the relationship among the features and target are non-linear
(Hepp et al., 2016).

From a machine learning setting perspective, building
a subject-dependent model resulted in the most accurate
predictions compared to the subject-independent models. The
difference in predictive performance between the subject-
independent model and subject-dependent model may partially
be explained by the fact that all runners of the second cohort wore
their own habitual running footwear, which might influence the
measured impact loading. This assumption is further reinforced
by the fact that the performance of the subject-independent
model can be further improved by incorporating subject-
describing features (body weight and shoe type). However,
the phenotypical variability and choice of footwear can only
partly explain the differences in accuracy between a subject-
dependent and independent model. Although all runners ran in
a similar environment, the ranked order of variable importance
for predicting the VILR is unique for each runner in a
subject-dependent learned model. Moreover, we observed a large
asymmetry between the average VILR for most subject’s left and
right legs, suggesting that the subject-dependent models could
be further improved by building separate models for both legs.
However, in our study not mirroring the data resulted in a worse
predictive accuracy due to the limited amount of data available
for each subject.

The better predictive performance for a subject-dependent
model compared to a subject-independent model is in line
with previous findings described by Wouda et al. (2018) and
Ahamed et al. (2019). However, our subject-independent model
is more practical toward real-world applications. It is applicable
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FIGURE 5 | Cumulative percentage (y-axis) of predictions for which the relative error is below a threshold (x-axis). For example, a relative error of at most 20% on the
true VILR can be achieved for 97% of all predictions using the subject-dependent model (SDM), 83% of all strides using the subject-independent model (SIM), 66%
using the APTA and 65% by predicting a runner’s average max VILR for the corresponding landing foot (baseline model). The subject-independent model
outperformed the baseline and APTA by a significant margin. Similarly, the subject-dependent model outperformed all others, but is less applicable in practice.

to any runner, regardless of whether prior data is available about
the respective runner, which makes this approach generalizable
over different subjects. Supporting our hypothesis, the subject-
independent XGB model still outperformed the linear APTA
model in terms of prediction accuracy and diagnostic ability.

By incorporating multiple running speeds we were able to
create a machine learning algorithm that is capable of making
accurate predictions across a broad range of running speeds,
making it more usable in practice. As a consequence of this
design choice, we observe relatively high R2 scores for these
models in comparison with previous research that considered a
single running speed (Laughton et al., 2003; Pohl et al., 2009;
Greenhalgh et al., 2012; Zhang et al., 2016) due to the restricted
range effect (Bland and Altman, 2011): the inclusion of multiple
speeds increases the range of the maximal VILR and makes
it easier to see the global trend. However, this applies to all
models discussed here and therefore does not affect the inter-
model differences. For comparison, the evaluation metrics for all
models trained on exclusively the most frequent running speed of
3.2 m·s−1 are provided as Supplementary Table B.

The VILR was predicted accurately, using a broad range of
variables derived from filtered 3D accelerations. In order to
screen runners on their VILR at a common training speed of
3.2 m·s−1 (e.g., identifying runners with a high VILR, during
a simple overground running test without the need of an
expensive force plate) the classification of runners on impact
intensity is preferably done by estimating VILR by means of a
machine-learned model instead of relying on the APTA only.

Because VILR is the maximum increase in acceleration of the
lower extremity and of the rest of the body during stance
(Clark et al., 2017), the predictive accuracy may be further
improved by adding trunk acceleration to the accelerometer-
derived input data.

This study has several limitations. Firstly, we trained the
models only on habitual rearfoot strikers. Since machine learning
can only be used to memorize patterns that are present in
the training data, the trained models can only be applied to
other rearfoot strikers and our findings do not necessarily
generalize to other foot strike patterns. Secondly, all data
was recorded in a laboratory environment. Previous research
identified significant variations in APTA or contact time among
different running surfaces (Tessutti et al., 2012; Boey et al., 2017).
Hence, the findings should be transferred with caution to running
on other surfaces.

CONCLUSION

This study proposes an advanced method to predict VILR
during overground running by using only tri-axial shin mounted
accelerometers derived data and an XGB machine learning
approach. These algorithms, which incorporate time-continuous
variables, are able to predict the VILR more accurately than
currently possible using a time-discrete variable (e.g., APTA).
Since these algorithms do not require significant computational
power, they could be implemented on wearables worn by the
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runner in order to screen, monitor or provide biofeedback on the
predicted VILR whilst running overground.
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Enhancement of activity is one major topic related to the aging society. Therefore, it is

necessary to understand people’s motion and identify possible risk factors during activity.

Technology can be used to monitor motion patterns during daily life. Especially the

use of artificial intelligence combined with wearable sensors can simplify measurement

systems and might at some point replace the standard motion capturing using optical

measurement technologies. Therefore, this study aims to analyze the estimation of 3D

joint angles and joint moments of the lower limbs based on IMU data using a feedforward

neural network. The dataset summarizes optical motion capture data of former studies

and additional newly collected IMU data. Based on the optical data, the acceleration and

angular rate of inertial sensors was simulated. The data was augmented by simulating

different sensor positions and orientations. In this study, gait analysis was undertakenwith

30 participants using a conventional motion capture set-up based on an optoelectronic

system and force plates in parallel with a custom IMU system consisting of five sensors.

A mean correlation coefficient of 0.85 for the joint angles and 0.95 for the joint moments

was achieved. The RMSE for the joint angle prediction was smaller than 4.8◦ and the

nRMSE for the joint moment prediction was below 13.0%. Especially in the sagittal

motion plane good results could be achieved. As the measured dataset is rather small,

data was synthesized to complement the measured data. The enlargement of the

dataset improved the prediction of the joint angles. While size did not affect the joint

moment prediction, the addition of noise to the dataset resulted in an improved prediction

accuracy. This indicates that research on appropriate augmentation techniques for

biomechanical data is useful to further improve machine learning applications.

Keywords: machine learning, artificial neural networks, wearable sensors, inertial sensors, motion analysis, data

simulation
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1. INTRODUCTION

Motion analysis, especially gait, in real-world environments gains
more and more relevance in today’s society. Since people are
aging and want to retain their mobility, it is important to early
detect abnormal gait patterns in order to prevent them from
falling. To achieve this, the improvement of ambulatory motion
analysis systems is relevant (Mundt et al., 2019a). Systems that are
capable of determining motion kinematics and kinetics without
expensive equipment and with less expert knowledge required
will drastically increase the availability of motion analysis to
a wider range of people. By providing wearable easy-to-use
systems in daily life, risky motion patterns (e.g., in gait) might be
identified before a major injury occurs or the onset of gait related
diseases (Kobsar and Ferber, 2018; Majumder et al., 2019).

Gait is one of the main tasks of mobility. Baker et al. (2016)
established four reasons for gait analysis: to diagnose a disease
or injury, to assess the severity of a disease or injury, to monitor
the progress of a disease or injury and to predict the outcome of
an intervention. In all cases, long term or frequent monitoring
of a person during daily life is desirable, thus allowing to
identify any progression of a disease. To bring motion analysis
into daily life, wearable sensors—especially inertial measurement
units (IMUs)—have become increasingly popular (Caldas et al.,
2017; Jarchi et al., 2018).

To extract joint angles from IMU data, the orientation of
each sensor in a global reference system needs to be determined
and a sensor-to-segment alignment performed. Themost popular
sensor fusion techniques for IMU-based motion analysis systems
are (extended) Kalman filters or complementary filters (Gui
et al., 2015). These filters fuse the signals of each single sensor
of the IMU to determine its orientation. Either the data of
the accelerometer and gyroscope only (Gui et al., 2015) or
additionally the magnetometer data is used to identify the sensor
orientation in a global reference system (Sabatini, 2006). The
use of a magnetometer for the estimation of sensor orientation
can be seen as a major limitation because magnetometers are
highly susceptible to local disturbances in the magnetic field
(de Vries et al., 2009; Teufl et al., 2018). Different attempts
have been made either correcting magnetic disturbances or
omitting the use of magnetometers at all (Ligorio and Sabatini,
2016; Teufl et al., 2018). However, another major issue of the
commonly used approach is the (mal-)alignment of the sensor
axes to physiological meaningful segment and rotation axes that
define the anatomical model (Picerno, 2017; Robert-Lachaine
et al., 2017; Mundt et al., 2019d). Several approaches have been
suggested to overcome this problem: calibration postures or
movements (Favre et al., 2009; Ferrari et al., 2010; Palermo
et al., 2014), anatomical calibrations (Picerno et al., 2008;
Bisi et al., 2015), post-trial calibration procedures (Hamacher
et al., 2014; Li and Zhang, 2014) and more recently machine
learning approaches (Zimmermann et al., 2018). While the use
of calibration postures and movements will always be prone to
errors because they are dependent on the execution of the subject
(Seel et al., 2014; Picerno, 2017; Robert-Lachaine et al., 2017),
the post-trial alignment prohibits fast data analysis. Therefore,
the use of machine learning algorithms or the exploitation

of kinematic constraints seems to be most promising. The
most recent advancements of the kinematic-constraint-based
approaches (Laidig et al., 2017, 2019; Müller et al., 2017; Nowka
et al., 2019) have not been evaluated on gait analysis. Seel et al.
(2014) evaluated the knee and ankle joint sagittal plane angle
achieving deviations to the gold standard of less then 1◦. Machine
learning approaches have been undertaken by Findlow et al.
(2008), Goulermas et al. (2008) achieving a mean correlation of
about 0.70 for the sagittal plane joint angles. In recent work, we
predicted joint angles based on simulated IMU data during gait
achieving an accuracy higher than 0.86 (Mundt et al., 2019c).

Different approaches to determine the ground reaction force
have been suggested and were systematically reviewed recently
(Shahabpoor and Pavic, 2017). They concluded that the use of
kinematic data as inputs reveals the highest practicality although
showing lower accuracy than force plates. Additionally, the
authors noted the limited validation of these methods for long-
term measurements in real-life environment. This indicates that
further research in this direction is useful, and if the aim is the
evaluation of joint moments, a direct approach to determine
these quantities might be advantageous. Different research has
been undertaken in this direction, but less frequently. Ardestani
et al. (2014) used a wavelet neural network to predict the 3D hip
joint moments, the sagittal knee joint moment and the plantar
flexion and eversion moment of the ankle joint during gait
using GRF and EMG data as inputs. They reported normalized
root-mean-squared errors of <20% and correlation coefficients
ranging from 0.84 to 0.96. Johnson et al. (2018, 2019) used
pre-trained convolutional neural networks for the prediction of
the GRF and the knee joint moment during walking, running
and sidestepping based on marker trajectories. They achieved a
mean correlation higher than 0.85 for the knee joint moments
and GRF. Analyzing normal gait, Hahn and O’Keefe (2008)
estimated the sagittal plane lower limb joint moments based
on demographic, anthropometric, kinematic, and EMG data.
They achieved a coefficient of determination higher than 0.88,
but they did not split their test set subject-wise, hence, data
from subjects in the test set was also present in the training
set. This leads to an improved accuracy (Saeb et al., 2017).
Wouda et al. (2018) used inertial sensor data to determine the
vertical GRF and the sagittal knee kinematics. For the joint angle
prediction the correlation coefficient was larger than 0.83, and
for the GRF larger than 0.90. In previous work, we used either
marker trajectories or joint angles and the GRF as input data to
predict all joint moments of the lower limbs during side stepping
achieving a mean correlation higher than 0.86 (Mundt et al.,
2019b). In a recent study, we used simulated IMU data to predict
the joint moments during gait achieving a similar accuracy
(Mundt et al., 2019c).

Despite the already good results, machine learning approaches
have one important requirement: large datasets. These are -
due to the novelty of the system - not openly available from
IMU sensors. To overcome the lack of a large amount of data,
their synthesizing is one reasonable solution (Young et al., 2011;
Brunner et al., 2015; Zimmermann et al., 2018; Mundt et al.,
2019c). Young et al. (2011) was the first who simulated IMU
data from existing optical motion capture data to enlarge a
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dataset for pose estimation. This approach was taken a step
further and validated by Brunner et al. (2015) and Zimmermann
et al. (2018). In previous work, we simulated IMU data from
optical data as well, but only validated the simulation based
on a single participant (Mundt et al., 2019c). In this study,
the validation of the simulation is continued and IMU data
that was simulated based on optoelectronic data as well as
measured IMU data is used as input parameters to train fully-
connected feedforward neural networks. To be independent
of a homogeneous magnetic field, the magnetometer data is
not considered as input but the 3D angular rates and linear
accelerations only. Themajor advantages of the proposedmethod
are that the anatomical model is implicitly learned, hence no
calibration postures or movements are necessary, and that joint
kinematics and kinetics can be determined.We aim to predict the
joint angles and joint moments of the lower limbs during gait and
hypothesize that the use of combined simulated and measured
data will achieve a higher accuracy than the use of measured
data only. Furthermore, we hypothesize that the additional
noise in measured data caused by soft tissue movements will
decrease the prediction accuracy. We aim to provide a first step
into the direction of in-field gait analysis based on IMUs and
artificial intelligence.

2. MATERIALS AND METHODS

An overview on the workflow of the proposed methodology is
given in Figure 1.

2.1. Gold Standard Approach
All data used in this study was collected at the German
Sport University Cologne. The studies were approved by the
Ethical Committee of the German Sport University Cologne and
all participants provided their informed written consent. The
motion was recorded using an optoelectronic motion capture
system (VICONTM, MX F40, Oxford, UK, 100–125 Hz) and two
force plates (Kistler Instrumente AG, Winterthur, Switzerland,
1,000 Hz). In all studies, the participants were equipped with
28 reflecting markers that were attached to bony landmarks as
depicted in detail in Mundt et al. (2019d) to create a rigid body
model of the lower limbs. The marker trajectories and GRF
were filtered using a zero-lag second-order low-pass Butterworth
filter with a cut-off frequency of 6 Hz (Robertson et al., 2013)
prior to calculating the joint angles and joint moments of
the lower limbs with an anatomical landmark scaled model
(Lund et al., 2015) using the AnyBody Modeling SystemTM

(Version 6.0, AnyBody Technology, Aalborg, Denmark). First,
the kinematics are calculated using an overdetermined kinematic
solver to optimize the markers using a least-squares approach.
Afterwards, the models joint parameters are fitted to the subject-
specific parameters before calculating the kinetics. All data
was segmented into consistent sequences of 101 frames. For
the kinematic data, full gait cycles were extracted based on
an implementation of the foot contact algorithm proposed by
Maiwald et al. (2009). For the joint moments a threshold-based
segmentation of the stance phase was applied based on the force

plate data. The joint moments were normalized to body height
and weight of the participant.

2.2. Machine Learning Method
2.2.1. Data Simulation
To derive the simulated IMU data, first, the anatomical
coordinate systems of the biomechanical model need to be set
up, because these coordinate systems are translated and rotated
to match possible sensor positions before the derivatives are
calculated to display the acceleration and angular rate.

The joint origins and segment coordinate systems of the
hip, knee and ankle joint are calculated based on the marker
trajectories. The marker set is displayed in Figure 2. The joint
centers for pelvis and ankles are based on the recommendations
of the International Society of Biomechanics (ISB) (Wu et al.,
2002). The hip joint center is defined as per (Harrington et al.,
2007). The definition of the knee joint center is based on Pennock
and Clark (1990). After this step, five coordinate systems, one for
the pelvis, two for the thighs and shanks, respectively, are set up.
For ease of calculation, the coordinate systems are transformed
to quaternions (Solà, 2017), denoted by qseg . For this purpose,
the Hamilton convention is used:

i2 = −1, j2 = −1, k2 = −1 and ijk = −1 (1)

with i, j and k displaying the imaginary units of the quaternion.
Any quaternion Q can thus be defined as:

Q = q0 + iq1 + jq2 + kq3, (2)

with q0 being the scalar part of the quaternion and iq1+ jq2+kq3
being the vector part. The quaternion can be interpreted as vector
q in R

4, which is defined as:

q =

(
cos(θ)
u sin(θ)

)
, ‖u‖ = 1, (3)

where u = uxi+uyj+uzk is a unit vector describing the rotation
axis and θ is a scalar describing the rotation angle.

In the following step, the anatomical coordinate systems are
translated and rotated to match possible initial sensor positions
and orientations. The rotation between the segment and sensor
orientation can be described by qφ . The quaternion describing
the orientation of the sensor in global space is calculated by:

qsensor = qseg ⊗ qφ , (4)

with qsensor describing the sensor orientation, qseg describing the
segment coordinate systems orientation in a global reference
frame and qφ describing the global quaternion rotation. The
translation x of the segment coordinate system to the sensor
position x̂ is performed by:

x̂ = x0 + (qseg ⊗ x⊗ q∗seg), (5)
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FIGURE 1 | Overview of the methods applied. To get the ground truth information on the joint angles and joint moments of the lower limbs, the gold standard

approach using an optical motion capture system and force plates to collect the data is used. Based on this data, inverse dynamics simulations are undertaken to

calculate the joint angles and joint moments. Using the proposed ML method, inertial data (angular rate ω and acceleration a) is simulated from the optical data and

used as inputs for an artificial neural network. Based on the ground truth joint angles and moments, the network learns the connection between the input and output

data. The method is validated using an IMU system based on five sensors that are placed consistently with the simulated data.

with x and x̂ being pure quaternions, with their components
x0 and x̂0 = 0 yielding the sensor position in a global
reference system and q∗seg denoting the conjugate of
qseg . The original position, the joint center, is defined
by x0.

In the following step, the angular velocity ω of each sensor
can be calculated as the numerical quaternion derivative
of the sensor orientation qsensor . For ease of readability,
the subscript is omitted in the following. All quaternions
q display the sensor’s orientation. For two consecutive

orientations qk and qk+1, the local rotation 1ql of each
sensor reads:

1ql = q∗k ⊗ qk+1, (6)

which leads to:

ω =
2

1t

1qlv

‖1qlv‖
arctan(‖1qlv‖,1ql0). (7)
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FIGURE 2 | Marker set and sensor placement. The markers in the front are

displayed in red, the ones at the back are displayed in blue. The green boxes

display the IMU sensors.

The subscripts v and 0 refer to the vector and the scalar part
of the quaternion respectively. For further information on the
derivation, see Solà (2017).

The linear acceleration of each sensor is calculated as the
second derivative of the origin of the segment coordinate systems.
This is achieved by reformulating a Taylor series expansion
around xk with k = 2, ..., n−1 with n being the last time step. For
x1 and xn the one-sided forward and backward differences need
to be used respectively. The approximation can be improved for
x2 to xn−1 by applying the central differences scheme (Atkinson
and Han, 2005). In summary, this yields the following equations
for the velocities:

v1 =
x2 − x1

1t
, vk =

xk+1 − xk−1

21t
, vn =

xn − xn−1

1t
.

(8)
The same procedure can be applied again to derive the second
order differentiation for ak. Analogously to vk, the same
restrictions hold for the first and last time steps. Thus, the finite
difference approximations of the accelerations are:

a1 =
x3 − 2x2 + x1

1t2
, ak =

xk+1 − 2xk + xk−1

1t2
,

an =
xn − 2xn−1 − xn−2

1t2
. (9)

To transform the numerical derivatives into the actual sensor
readings the different signs of gravity and motion need to be
considered to define the acceleration of the sensor in the global
reference system ag :

ag = −a+ g. (10)

The different signs are caused by the working principle of
accelerometers that are used in inertial measurement units.
Accelerometers are based on the inertial force of a small mass
acting upon a piezoelectric element (Elwenspoek and Wiegerink,
2001). Thus, the gravitational acceleration directly translates to
the sensor reading while the acceleration of the sensor origin
results in an inertial force in the opposite direction of the
segment acceleration. This means that the sign of a needs to be
inverted while the sign of g remains unchanged. To describe
the sensor readings in its local coordinate system the following
transformation is necessary:

al = q∗sensor ⊗ ag ⊗ qsensor , (11)

with al displaying the linear acceleration of a sensor. The
acceleration ag and al are pure quaternions, with their
components ag0 and al0 = 0.

As the sensor is assumed to be a rigid body, its local position
and orientation can be exactly described by six degrees of
freedom, three translations and three rotations, described by the
translation vector x (see Equation 5) and the rotation vector qφ

(see Equation 4). In order to optimize these quantities, a vector
z = [x1, x2, x3, qφ1, qφ2, qφ3] is defined. We fit the values using
the following objective function:

2(z) =

Nt∑

nt=1

(ω(m)
nt

− ω
(s)
nt
(z))T(ω(m)

nt
− ω

(s)
nt
(z))

+

Nt∑

nt=1

(a(m)
nt

− a(s)nt (z))
T(a(m)

nt
− a(s)nt (z)), (12)

subject to,

xmin ≤ xi ≤ xmax, i = 1, 2, 3 (13)

0 ≤ φi ≤
π

2
, i = 1, 2, 3. (14)

In this formulation, ω
(m)
nt and ω

(s)
nt (z) denote the angular rates

in the three dimensional space. The superscripts (m) and (s)
describe the measured and simulated values. Equivalently,

a
(m)
nt and a

(s)
nt (z) denote the acceleration in three dimensions.

We additionally defined the minimum and maximum allowed
deviation of the positions xmin and xmax to be ±50 mm as
well as the maximum allowed orientation deviation π

2 . The
constrained optimization problem was solved using the interior-
point algorithm (Byrd et al., 1999), which is implemented in
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MATLAB. The defined constraints do not allow for an arbitrary
sensor positioning but for a compensation for positioning and
orientation errors in the range specified by the constraints.
For this purpose, the sensor-to-segment-assignment needs to
be consistent.

2.2.2. Neural Network Implementation
The python library Tensorflow (Abadi et al., 2015) was used
to implement a fully-connected feedforward neural network
(Koeppe et al., 2019). Artificial neural networks work as universal
function approximators. Instead of explicitly programming the
solution of one specific task, they learn from existing (big) data.
Artificial neural networks have been inspired by the structure
of the human brain, consisting of single neurons that add up
to layers to increase the capacity of the network. Using multiple
(hidden) layers with a specified number of neurons, the capacity
of the network can be adapted (Mundt et al., 2019c). Fully-
connected neural networks need time-normalized data as inputs,
hence, only an offline analysis can be performed.

Different networks were trained for the prediction of joint
kinematics and the joint kinetics based on different datasets. The
first one is a collection of optical motion capture data of gait trials
previously collected at the German Sport University Cologne.
The dataset comprised 93 participants (38 female, 39.9 (18–75)
years, 72.6 (47.1–97.6) kg, 1.73 (1.54–1.98) m, BMI 24.3 (17.5–
31.6) kg m−2). A number of 24 participants underwent knee
arthroplasty 1.8 ± 0.4 years post-surgery prior to gait analysis
(Komnik et al., 2015). The optical data collected in this study was
additionally added to the dataset as well.

After validation of the simulated data, the neural network
was trained using the accelerations and angular rates of the
five sensors depicted in Figure 2 as input data, which resulted
in 30 inputs. One sensor was placed at the pelvis, one on
each thigh and one on each shank. The sensors were not
aligned to the segments, because the dataset is supposed to
cover the complete range of orientations and positions due
to the data simulation. Thereby, the neural network can learn
to handle the differences. A kinematic model was trained to
predict the 18 joint angles of the lower limbs, while a kinetic
model was trained to predict the 18 joint moments of the lower
limbs. Because we use a fully-connected feedforward neural
network, no time-dependencies can be covered by the neural
network (Goodfellow et al., 2016). Therefore, all data was time
normalized and unrolled before being input to the network.
This resulted in an input layer of size 30 × 101 = 3,030
and an output layer of 18 × 101 = 1,818. For the analysis,
only the nine angles/moments of the foot touching the ground
are evaluated.

In a first step, all simulated IMU data was used to determine
the best network architecture and hyperparameters for the
application using a 5-fold cross-validation. Therefore, one fixed
test set was split from the complete dataset as well as five different
validation sets. The split was undertaken randomly ensuring
that no overlapping between the sets occurred (cf. Figure 3).
A grid search was conducted to optimize the architectures
and hyperparameters.

2.3. Validation
2.3.1. Experimental Set-Up
Thirty healthy subjects (12 female, 28.1 ± 6.0 years, 72.3 ± 12.7
kg, 1.77± 0.07 m) participated in this study that was approved by
the Ethical Committee of the German Sport University Cologne.
All participants provided their informed written consent. Each
subject performed 10 level walking trials at five different speeds:
0.8 m s−1, 1.1 m s−1, 1.4 m s−1, 1.7 m s−1 and 2.0 m
s−1 ±10% on a 5 m walkway. According to the set-up of
all previous experimental investigations, each participant was
equipped with 28 retro-reflective markers to capture the motion
by 12 infrared cameras (125 Hz, VICONTM, MX F40, Oxford,
UK). Simultaneously, the participants were equipped with five
sensors of a custom low cost IMU system (100 Hz, TinyCircuits,
Akron, OH, USA) with an associated microcontroller (Atmel
ATmega328P) and a WIFI-board (Atmel ATWINC1500). An
Android application was developed to collect the data on a
smartphone (Mundt et al., 2018b). The marker set and sensor
placement are displayed in Figure 2. The sensors were only
roughly aligned to the segments but a consistent sensor-to-
segment assignment was used. The data of seven subjects was
excluded from this study due to connectivity issues, hence, data
of 23 participants is presented.

2.3.2. Data Synchronization
The synchronization of the IMU system and the optoelectronic
system cannot be performed automatically. Therefore, a
synchronization algorithm was developed. For this purpose, the
simulated medio-lateral acceleration of the pelvis was used. An
average position and orientation estimation of the pelvis sensor
was chosen. For the actual synchronization an optimization
problem was defined. We obtained the minimization problem
with the following mean-square objective function ϒ :

ϒ(δ) =

Nt∑

nt=1

(a(m)
nt

− a(s)nt )
2. (15)

Here, a
(m)
nt and a

(s)
nt denote the measured and simulated

acceleration of the pelvis in themedio-lateral direction. The value
δ is the distance between the first local maximum peak in the
measured and simulated data (cf. Figure 4). The start value for
the optimization was chosen based on the output of the optical
motion tracking system. The optimization problem is iteratively
solved using the Nelder-Mead Simplex method (Lagarias et al.,
1998) already implemented in MATLAB. After synchronization,
the optical motion capture data and the inertial sensor data was
segmented into steps as described in section 2.1.

2.3.3. Simulation Framework
First, the simulation framework was validated. For this purpose
the optimum position and orientation of each sensor were
determined for each trial. Hence the sensors were fixed once for
each subject during the complete experiment, the best estimation
was determined for each subject based on the root-mean-squared
error. Afterwards, all data was simulated again based on the
optimized values. Thereby, a valid solution representing the

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 February 2020 | Volume 8 | Article 4168

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Mundt et al. Estimation of Gait Mechanics

FIGURE 3 | Overview of the 5-fold cross-validation process. The dataset for the kinematics (A) and kinetics (B) differ and were treated separately.

differences in placement during the experiments was found.
This procedure resulted in 23 (one per subject) optimized initial
values. This information was used to generate a large simulated
dataset based on the optical data of the former studies. All
sensor positions and orientations found during the experiments
were covered.

2.3.4. Neural Network Application
The inertial sensor data was used to validate the simulation
framework presented. Afterwards, the neural network
application was verified on the measured data. For this
purpose, a leave-one-out cross-validation (Arlot and Celisse,
2010) was performed to enable the performance analysis of
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FIGURE 4 | Results of the synchronization based on the medio-lateral acceleration of the pelvis.

the neural network on single subjects. Two different scenarios
were investigated: (1) all experimental data—besides one
subject—was used for training purposes and (2) all experimental
data—besides one subject—plus the simulated data was used
for training. Since the best architecture and hyperparameters
have been found in the first step, no further validation
set is necessary. The left-out subject served as test set (cf.
Figure 5).

2.4. Data Analysis
First, the results of the data simulation are presented. Afterwards,
the results of the 5-fold cross-validation and the grid search
to find the optimum neural network parameters are displayed.
Finally, the results of the leave-one-out cross-validation based
on measured data only and on the combined—measured and
simulated—data are presented. To evaluate the simulation and
prediction accuracy, the correlation coefficient was calculated.
Furthermore, the RMSE was determined for the joint angles
and the nRMSE (normalized RMSE to the range of the data)
for the joint moments. A paired t-test and the effect size were
calculated on the RMSE/nRMSE values. Additionally, the
maximum joint angles and joint moments were calculated to
evaluate the performance on this scalar parameter. An ANOVA
and post-hoc t-test with Bonferroni correction as well as the
effect size were calculated on the prediction of the maximum
joint angles and joint moments. For each subject one mean step
was considered.

3. RESULTS

3.1. Neural Network Parameters
The best parameters for the neural network were evaluated based
on the simulated dataset. An initial learning rate α = 10−4

and an increasing batch size of 16-32-32-64 samples during
the four phased training schedule performed best for both
the kinematic and kinetic model. For the kinematic model,

two hidden layers with 4,000 and 6,000 neurones, a dropout
rate of 20% and 12,500 training steps per phase revealed
the highest accuracy. For the kinematic model, two hidden
layers with 6,000 and 4,000 neurones, a dropout rate of 40%
and a number of 15,000 training steps per phase showed the
best results.

3.2. Data Simulation
The simulation of the data for all sensors was based on one
fixed sensor position and orientation for each subject. The mean
RMSE between the measured and simulated data is displayed in
Figure 6. With an increase in gait velocity, the RMSE increased
while the correlation coefficient decreased. The simulated data
of the pelvis sensor achieved the highest accuracy (rpelvis = 0.95
± 0.08), while the accuracy for the sensors of the legs is slightly
lower (rright thigh = 0.88 ± 0.12, rleft thigh = 0.91 ± 0.08, rright shank
= 0.91± 0.11, rleft shank = 0.92± 0.10).

3.3. Five-Fold Cross-Validation
To find the best model architecture and optimize the
hyperparameters, a 5-fold cross-validation was undertaken using
the simulated data of all subjects. The results for the kinematic
and kinetic model are displayed in Figure 7. For both models
the mean correlation coefficient was very similar on new test
data (kinetics: 0.86, kinematics: 0.87). The prediction of the knee
joint frontal plane angle and the transverse moment showed the
weakest correlations, while the prediction of the joint moments
showed the highest accuracy in all planes for the hip joint (>0.91)
and the joint angle prediction in all joints in the sagittal plane
(>0.95). Additionally, the kinetic predictions showed less outliers
than the kinematic predictions. Over all, the RMSE of the joint
angle prediction was smaller than 6.0◦ for all joints and motion
planes with a mean value of 4.1◦ and the nRMSE of the joint
moment prediction was smaller than 25.5% with a mean value
of 15.5%.
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FIGURE 5 | Overview of the leave-one-out validation process. Kinematics and kinetics were treated separately.

3.4. Leave-One-Out Cross-Validation
The leave-one-out cross-validation shows the performance of
the model for each subject when trained on all other subjects’
measured and simulated data. As the hyperparameters were fixed
from the 5-fold cross-validation, no further validation set was
necessary. There were only small differences in the correlation
of the predicted and measured data using measured data only or
the combined data set (cf. Figure 8). This finding was supported
by the results of the t-test: there were differences between the two
kinematic models in the prediction of all sagittal joint angles and
the frontal hip joint angles (rhip sagittal<0.001, rhip frontal<0.001,
rknee sagittal<0.001, rankle sagittal= 0.043). For the kinetic model,
differences in all hip joint moments and the ankle joint sagittal
moment were found (rhip sagittal<0.001, rhip frontal<0.001,
rhip transverse<0.001, rankle sagittal= 0.006). Additionally, the
correlation coefficient showed distinct differences between the
motion planes: the prediction accuracy of the hip joint angle in
the transverse plane, the knee joint angle in the frontal plane and
the ankle joint angle in the frontal and transverse plane was lower
than in the other planes. The prediction of the joint moments was
more accurate although there were some subjects showing lower
correlation coefficients in some features. The same behavior
could be found when analyzing the distribution of the results (cf.
Figure 9). Those parameters with weaker correlations showed
a wider spread and more outliers in the distribution of the
RMSE/nRMSE and correlation coefficient. The mean correlation
of the models was rkinematicmeasured= 0.85, rkinematic combined=

0.89, rkineticmeasured= 0.95 and rkinetic combined= 0.95.
The mean error was RMSEkinematicmeasured= 4.8◦,
RMSEkinematic combined= 4.3◦, nRMSEkineticmeasured= 13.0% and
nRMSEkinetic combined= 11.6%.

Compared to the model used for the 5-fold cross-validation
that was based on simulated data only, the accuracy was similar
for the kinematic model and even higher for the kinetic model.
With regard to Figures 7, 9, the mean accuracy was similar for

FIGURE 6 | Root-mean-squared error between the measured and simulated

data exemplarily displayed for the pelvis sensor. With an increasing gait

velocity the simulation error increases. Some trials show outliers with larger

errors during slow walking.

the cross-validation and the leave-one-out validation, but the
number of outliers was decreased.

The ANOVA showed significant differences in the maxima

between the predicted and measured joint angles and moments.
The post-hoc t-test indicated significant differences between both

the measured and predicted and the two predicted values. The
prediction of the peak joint moments showed more significant
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FIGURE 7 | On the right, the distribution of the correlation coefficient for the kinematic (blue) and kinetic (red) model is displayed. Additionally, on top, the distribution

of the RMSE for the kinematic and on the bottom the distribution of the nRMSE for the kinetic model can be found. The violin’s width displays how much data is

accumulated, while the height shows the range of the distribution. The horizontal line indicates the median value of the distribution.

differences than the prediction of the peak joint angles (cf.
Table 1). The trends of the statistical analysis can also be seen in
Figures 10, 11.

4. DISCUSSION

4.1. Data Processing
The data processing was one major challenge in this study
because there was no possibility to synchronize both
measurement systems automatically. The developed approach
based on optimization might lead to errors, especially because
gait is a cyclic motion. Sequences were not filtered for outliers,
which might also cause outliers in the prediction. We decided
not to remove outliers from the dataset to minimize the pre-
processing on the data and observe the networks’ capability to
handle this data. The simulated data can represent the measured
IMU data well, showing good correlations when using a fixed
sensor position and orientation for the calculation of angular rate
and linear acceleration for each subject. Higher gait velocities
cause larger deviations between the measured and simulated data
(cf. Figure 6), which can be attributed to soft tissue movements
that cause noise in the measured data that is not included in the
simulated data. The optical markers placed on bony landmarks
are the basis for the simulated IMU data, while the physical
IMU sensors are placed on the body as displayed in Figure 2.
Hence, the markers and sensors experience different soft tissue
movements that correlate with the gait velocity and increase
the error. However, the mean correlation coefficients indicate
an overall good accuracy. The correlation found by Young

et al. (2011), Brunner et al. (2015) and Zimmermann et al.
(2018), who proposed frameworks for simulating IMU data, is
comparable to the results presented in this study. Young et al.
(2011) and Brunner et al. (2015) tested their simulator for leg
swinging and single rigid body movements achieving very good
correlation coefficients (r >0.97). Since during this motion no
impact occurs which causes soft tissue movements the results are
better than the ones achieved in this study. Zimmermann et al.
(2018) evaluated their simulation approach on a pure rigid body
motion (r >0.97) and during gait (racc >0.57 and rgyr >0.93).
These results support the explanation that the impact causes
soft tissue movements during gait and limits the comparability
between simulated and measured data. However, the results of
this study are slightly better than in the study of Zimmermann
et al. (2018).

4.2. Cross-Validation
The kind of validation strategy chosen can highly influence the
results (Little et al., 2017; Saeb et al., 2017). We aimed to find
the best model parameters and hyperparameters using a 5-fold
cross-validation based on the simulated dataset only. Thereby,
it was possible to exclude a fixed test set of a representative
size as well as a randomly chosen validation set that covers
most gait patterns. We ensured, that no data of any subject was
part of more than one subset to avoid bias (Saeb et al., 2017).
Simultaneously, it was possible to undertake a grid search on the
best parameters and hyperparameters in a reasonable time frame.
Afterwards, we performed a leave-one-out cross-validation on
the new data collected in this study. This led to 23 training runs
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FIGURE 8 | Mean correlation coefficient for each joint and motion plane of each subject in the test set. On top, the results for the combined input data are displayed,

while on bottom, the results of the model using measured data only are depicted. There are only small differences between both models, while there are distinct

differences in the different motion planes and between subjects.

per model. Thereby we aimed to analyze the prediction accuracy
on single subjects. Using this two-stage validation approach, it
is possible to use as much data as possible for training the
models, because there is no validation set necessary as the
hyperparameters were fixed. As a side effect of the 5-fold cross-
validation, it is possible to additionally compare the results of
measured and combined input data to only simulated input data.
However, this approach might also cause a suboptimal accuracy
on the measured data, because the network architecture and
hyperparameters were tuned to optimize the prediction on the
simulated dataset only, which is larger than the measured dataset
and the combined one.

4.3. Kinematics and Kinetics
The lower accuracy of the prediction of the kinematics indicates
that it is a more difficult task for the neural network to predict the
joint angles than the joint moments. This might be attributed to
the closer physical relationship of acceleration and (normalized)
joint moments. Additionally, the joint angles do not start at a
value around zero, which leads to a more difficult initial value
problem than for the joint moments. Therefore, the prediction
of the kinematics profits from an enlarged dataset, which can
be seen in the increased prediction accuracy from measured
over combined to simulated data. In contrast, the kinetics
prediction seems to improve with additional noise in the input

data instead of the larger dataset. This can be seen in the
increased prediction accuracy in the combined and measured
dataset compared to the simulated data only, which does not
include the larger soft tissue movements the sensors experience
in faster walking. Soft tissuemovements also affect the calculation
of joint angles and joint moments, which is a limitation in every
motion analysis. One disadvantage of the simulated IMU data is
that it does not include the same soft tissue movements as the
marker trajectories.

Both, the kinematic and the kinetic model, are not able to
cover the complete variance of the measured data (cf. Figures 10,
11). This might be improved by further increasing the dataset and
the noise of the inputs. Therefore, research on data augmentation
should be further emphasized. The higher variance in the results
of the cross-validation models compared to the leave-one-out
model might be attributed to the dataset. The dataset used for the
cross-validation includes participants with larger demographic
differences as well as knee arthroplasty patients while the
leave-one-out dataset comprises young participants without any
impairment only. For the cross-validation, one test set was
split from the complete dataset, while for the leave-one-out
validation only the participants of this study served as test set
(cf. Figures 4, 5). Additionally, Figure 7 displays each single
trial while in Figure 9 the mean results of each participant
are displayed.
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FIGURE 9 | On the right, the distribution of the RMSE and the correlation coefficient for the kinematic data is displayed. On the left, the distribution of the nRMSE and

the correlation coefficient for the kinetic model can be found. The results for the measured data as inputs is displayed in red, while the results for the combined data

inputs are displayed in blue. The violin’s width displays how much data is accumulated, while the height shows the range of the distribution. The horizontal line

indicates the median value of the distribution.

Comparing the results of this study to the literature is difficult,
because this is—to the authors knowledge—the first time that
IMU data was used to predict the joint angles and moments
in all three motion planes. Especially the analysis of kinematic
parameters using machine learning is not well investigated so
far. As displayed in Figure 8, the correlation coefficient is larger
than 0.8 in the sagittal plane for all subjects regarding the joint
angles and even higher in all motion planes regarding the joint
moments. Only Findlow et al. (2008) used an approach based on
neural networks to predict joint angles. We achieved a higher
accuracy in our study, which is probably caused by the larger
dataset, more sensors involved and an improved computing
power and algorithms compared to their study undertaken in
2008. Another approach is the use of kinematic constraints
to determine joint angles from IMU data. Based on different
joints, this approach reveals very good results (Müller et al.,
2017; Laidig et al., 2019; Nowka et al., 2019). Nevertheless, it
was not analyzed recently for gait analysis. Seel et al. (2014)
achieved already good results when analyzing the sagittal knee
and ankle joint angles with an mean RMSE of 3.3◦ and 1.6◦,
respectively. These results are slightly better than our results with
4.62◦ and 2.42◦. It might be possible to improve the accuracy
of the proposed method when also specializing on single joint
angles or adding additional sensors to the model. In a previous
study, we could achieve an error smaller than 2.5◦ in all joints and
motion planes, when using simulated data only and additional
data for the feet sensors (Mundt et al., 2019c). Zihajehzadeh
and Park (2017) used a more common approach for the joint
angle estimation based on an adapted Kalman Filter that does

not use magnetometer data for the orientation estimation. They
achieved RMSE values smaller than 3.5◦ for the three sagittal
plane angles and the hip adduction/abduction during walking.
Teufl et al. (2018) also investigated the use of magnetometer
free joint angle estimation. Their method achieved mean RMSE
values of <2.3◦ for all joints and motion planes. This results
is very promising, although it needs to be considered that the
biomechanical model was set up using optical motion capture
data. In a previous study, we could show that the differences
in joint angle estimation is mainly based on the definition
of the rotation axes used by the IMU systems (Mundt et al.,
2019d), what we aimed to overcome with the neural network
approach that implicitly learns the biomechanical model during
the training process.

There is more research on estimating joint kinetics, but none
was undertaken using IMU sensors as input data to predict
all 3D lower limb joint moments. In one of our previous
studies, we used joint angles as input parameters to predict
joint moments (Mundt et al., 2018a). We achieved slightly better
results than in this study. In another study using simulated
IMU data, the joint moment prediction resulted in an nRMSE
of 12.16%, which is slightly lower than in this study although
using additional sensors on the feet (Mundt et al., 2019c). This
further supports the hypothesis that more noise in the data is
favorable for the joint moment prediction and that it might
be useful to investigate the relevant features for the neural
network. For this purpose, Horst et al. (2019) suggested to
use the Layer-Wise Relevance Propagation technique. Another
approach might be the use of principle component analysis to
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TABLE 1 | Results of the statistical analysis of the peak prediction.

Joint angles

Measured vs. real Measured vs. combined Real vs. combined

p d p d p d

Hip sagittal <0.001⋆ 1.867 <0.001⋆ 1.392 0.004⋆ 0.676

Hip frontal <0.001⋆ 1.293 <0.001⋆ 0.948 <0.001⋆ 0.924

Hip transverse 0.085 0.377 0.226 0.260 0.080 0.383

Knee sagittal <0.001⋆ 2.580 <0.001⋆ 1.683 <0.001⋆ 1.103

Knee frontal 0.324 0.210 0.566 0.121 0.061 0.412

Knee transverse 0.123 0.335 0.104 0.354 0.724 0.074

Ankle sagittal 0.005⋆ 0.645 0.018 0.536 0.013⋆ 0.561

Ankle frontal 0.412 0.174 0.211 0.269 0.141 0.319

Ankle transverse 0.035⋆ 0.470 0.174 0.293 0.006⋆ 0.638

Joint moments

Measured vs. real Measured vs. combined Real vs. combined

p d p d p d

Hip sagittal <0.001⋆ 1.659 <0.001⋆ 1.033 <0.001⋆ 1.452

Hip frontal <0.001⋆ 2.283 <0.001⋆ 1.850 <0.001⋆ 1.036

Hip transverse 0.004⋆ 0.674 0.010⋆ 0.592 0.021 0.517

Knee sagittal <0.001⋆ 0.854 0.004⋆ 0.671 0.011⋆ 0.576

Knee frontal <0.001⋆ 1.193 <0.001⋆ 0.961 0.003⋆ 0.690

Knee transverse <0.001⋆ 0.977 0.002⋆ 0.735 0.031 0.482

Ankle sagittal <0.001⋆ 1.296 <0.001⋆ 0.901 0.001⋆ 0.839

Ankle frontal 0.041 0.452 0.108 0.350 0.078 0.386

Ankle transverse 0.038 0.460 0.079 0.384 0.087 0.373

Significant results are indicated by ⋆.

FIGURE 10 | Overview of the mean and standard deviation of the joint moments of the 23 subjects.

analyze the sensitivity of inputs and outputs (Ardestani et al.,
2015).

In future work, it might be useful to investigate a two-
staged approach: first, predict the joint angles from IMU data

and second, use the estimated joint angles to predict the joint
moments. However, for this approach the joint angle estimation
needs to be further improved. It might also be conceivable to
take this approach the other way round, using joint moments
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FIGURE 11 | Overview of the mean and standard deviation of the joint angles of the 23 subjects.

as input data to predict joint angles, because the joint moments
show better results so far. It might also be feasible to add
(estimated) joint angles or joint moments to the IMU input data
for further improvement. Additionally, the choice of another
kind of artificial neural network, e.g., long short-term memory
(LSTM) or convolutional neural networks (CNN), might be
suitable for the underlying task. Especially due to the high
number of inputs (30 features times 101 time frames) these neural
networks might outperform the fully-connected feedforward
neural network, that was used in this study. While a fully-
connected feedforward neural network uses flattened data (no
time dependency) as inputs, LSTMs and CNNs preserve the time
dependency. Thereby, it might be easier for these networks to
extract the most relevant features from the data (Goodfellow
et al., 2016). In this study, we analyzed short sequences of
motion only. During these sequences, no gyroscope drift could
be observed. For future research, to bring this method further
toward application, this aspect needs to be considered. Another
sensor system might overcome this limitation. We also only
analyzed straight walking. Most probably, this method can also
be applied tomore divergingmotion, when this motion is present
in the training dataset. It might even lead to an improved
accuracy, when using a dataset showing more variance (Mundt
et al., 2019b). Further analysis on the relevant features for the
neural network to predict the joint angles and moments will
be valuable to maybe reduce the number of sensors necessary
for the prediction and thereby decreasing the complexity of the
model. Further validation of the method with a larger amount of
measured data should be undertaken.

5. CONCLUSION

This study analyzed the ability of a fully-connected feedforward
neural network to predict joint angles and joint moments of

the lower limbs based on IMU data. Our hypothesis, that
simulated data can support the learning of the neural network
can be accepted for the joint angle prediction while it can only
be partly accepted for the prediction of joint moments. Our
second hypothesis, that noise in the input data decreases the
prediction accuracy can be rejected. For the kinetic prediction,
the noise attributed to soft tissue movements improves the
prediction accuracy and seems to be more important than the
size of the dataset. The prediction of the joint angles is not
affected by noise. Therefore, it needs to be evaluated if the
prediction can be further improved using a simulated dataset
containing soft tissue movement induced noise in the input data.
Thereby, the measured data might be better represented and
the learning of the neural network improved. Nevertheless, the
results already demonstrate the high potential of the approach
and support further research on neural networks in gait analysis.
Besides the aforementioned data augmentation, different kind
of neural networks (e.g., recurrent or convolutional neural
networks) should be investigated on the task in future work.
Thereby, data that is not time normalized could be used,
hence the gait velocity could be included in the data. For
the analysis of clinically relevant parameters, it might also be
suitable to train patient-specific models to achieve a higher
accuracy (Saeb et al., 2017).
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Falls in the elderly is a major public health concern due to its high prevalence, serious
consequences and heavy burden on the society. Many falls in older people happen
within a very short time, which makes it difficult to predict a fall before it occurs and then
to provide protection for the person who is falling. The primary objective of this study was
to develop deep neural networks for predicting a fall during its initiation and descending
but before the body impacts to the ground so that a safety mechanism can be enabled
to prevent fall-related injuries. We divided the falling process into three stages (non-fall,
pre-impact fall and fall) and developed deep neutral networks to perform three-class
classification. Three deep learning models, convolutional neural network (CNN), long
short term memory (LSTM), and a novel hybrid model integrating both convolution and
long short term memory (ConvLSTM) were proposed and evaluated on a large public
dataset of various falls and activities of daily living (ADL) acquired with wearable inertial
sensors (accelerometer and gyroscope). Fivefold cross validation results showed that
the hybrid ConvLSTM model had mean sensitivities of 93.15, 93.78, and 96.00% for
non-fall, pre-impact fall and fall, respectively, which were higher than both LSTM (except
the fall class) and CNN models. ConvLSTM model also showed higher specificities for
all three classes (96.59, 94.49, and 98.69%) than LSTM and CNN models. In addition,
latency test on a microcontroller unit showed that ConvLSTM model had a short latency
of 1.06 ms, which was much lower than LSTM model (3.15 ms) and comparable with
CNN model (0.77 ms). High prediction accuracy (especially for pre-impact fall) and
low latency on the microboard indicated that the proposed hybrid ConvLSTM model
outperformed both LSTM and CNN models. These findings suggest that our proposed
novel hybrid ConvLSTM model has great potential to be embedded into wearable inertial
sensor-based systems to predict pre-impact fall in real-time so that protective devices
could be triggered in time to prevent fall-related injuries for older people.

Keywords: fall risk, pre-impact fall, deep neural network, machine learning, inertial sensor

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 February 2020 | Volume 8 | Article 6379

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2020.00063
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fbioe.2020.00063
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2020.00063&domain=pdf&date_stamp=2020-02-12
https://www.frontiersin.org/articles/10.3389/fbioe.2020.00063/full
http://loop.frontiersin.org/people/824168/overview
http://loop.frontiersin.org/people/898975/overview
http://loop.frontiersin.org/people/759189/overview
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00063 February 10, 2020 Time: 14:58 # 2

Yu et al. Deep-Learning for Pre-impact Fall Prediction

INTRODUCTION

Falls are a major safety concern for the older people. Annual
fall rates range from 30% among those aged over 65 years old
to 50% for those over 85 (Rubenstein, 2006). Due to the high
prevalence, falls are the leading cause of both fatal and non-
fatal injuries among the older people (Bergen, 2016). The annual
medical costs for falls of the older adults have been estimated
at $31.3 billion in United States since 2015 (Burns et al., 2016).
Fall-related injuries are considered as “Global Burden of Disease”
by the World Health Organization (Murray et al., 2001). Aside
from the physical injury, falls can also cause post-fall syndrome
such as fear of falling and depression among the elderly (Fleming
and Brayne, 2008; Qiu and Xiong, 2015). Therefore, effective fall
prevention is critical to mitigate the negative consequences of falls
for the older people.

Much work has been done on developing context-aware
systems and wearable devices for post-fall detection so that
timely medical assistance can be initiated for the older fallers
to avoid losses caused by “long-lie” (Özdemir and Barshan,
2014; Yang et al., 2016). However, this approach is reactive
since injuries from impact falls have happened already. Recently,
researchers have shifted their efforts to a proactive approach-
fall prevention, which is performed through fall risk assessment
and intervention where the older individuals with high fall risks
can be screened out earlier and then treated with appropriate
interventions to reduce the risks of future falls (Choi et al., 2017;
Qiu et al., 2018). However, the developed fall risk assessment
tools and fall intervention programs are mainly focused on
predicting and reducing the overall risk of falling in a long
period (typically 1 year or more), not for the sudden falls. Many
falls in the elderly happen suddenly and are difficult to prevent
due to the complex multifactorial nature of falls and inevitably
increased fall risks with the elderly as their physical and cognitive
abilities deteriorate.

Pre-impact fall prediction can overcome aforementioned
limitations of post-fall detection and overall long-term fall risk
assessment and intervention. Pre-impact fall refers to a stage after
the fall initiation but before the body-ground impact (Hu and
Qu, 2016). Therefore, this method can predict sudden falls before
the body hits against the ground (e.g., pre-impact), which make
it possible to timely activate on-demand fall protection systems
such as wearable airbags to prevent fall-related injuries. Because
of very short period of falling (around 800 ms) and various types
of falls (Sucerquia et al., 2017; Tao and Yun, 2017), to predict the
fall before the ground impact accurately under different scenarios
is very challenging and worthy of research investigation. Some
researchers have recently attempted to tackle this challenge using
different approaches (Lee et al., 2015; Sabatini et al., 2016; Li
M. et al., 2018; Zhong et al., 2018; Ahn et al., 2019). In general,
wearable sensors or environmental cameras were utilized and
simple threshold-based algorithms were developed to predict
pre-impact falls using some selected fall indicators related to
human motions. Even though threshold-based algorithms are
easy to implement due to simple structure and low computation
cost, the thresholds are highly dependent on the certain types
of falls (e.g., forward fall, backward fall) and the tested subjects,

which can not fit well for other fall types (lateral fall, vertical
fall, etc.) and different older individuals in the real-world. In
other words, threshold-based algorithms lack the generalizability
and thus are difficult for practical applications. A few studies
utilized conventional machine learning methods such as Support
Vector Machine and Fisher Discriminant Analysis to predict
pre-impact falls (Aziz et al., 2014; Liang et al., 2018; Wu et al.,
2019). Tested by small amount of data from very limited types of
simulated falls (≤7), they reported good prediction accuracy and
reasonable lead time. However, conventional machine learning
methods heavily rely on hand-crafted features, which are usually
shallow and restricted by human domain knowledge (Wang
et al., 2019). Therefore, these approaches generated undermined
prediction performance on complex and various falls in the real
world as researchers have reported at least 15 common fall types
and 19 activities of daily living (ADL; Sucerquia et al., 2017;
Tao and Yun, 2017).

Very recently, with the fast advancement of deep learning and
computing hardware, a few studies explored deep neural network
based algorithms for pre-impact fall prediction. Li et al. (2019)
applied convolutional neural network (CNN) on RGB image data
recorded by Kinect for pre-impact fall prediction during gait
rehabilitation training. Even though they achieved a prediction
accuracy of 100% within 0.5 s after a fall initiation, they only
tested the model on one type of fall and normal walking. Tao
and Yun (2017) proposed a long short term memory (LSTM)
model using skeleton data captured by Kinect to predict pre-
impact fall. The developed model showed high sensitivity (91.7%)
but relatively low specificity (75%), indicating that the model
could recognize most of pre-impact falls but with high false alarm
rate. Both high sensitivity and specificity are essential for the
practical applications. In addition, this method is only restricted
in home environment due to the limitations of stationary settings
that Kinect cameras often suffer from. Torti et al. (2018) applied
an overlapping sliding window segmentation technique to label
falling process into three stages (non-fall, pre-impact fall or alert,
and fall) and utilized a LSTM model to perform three-class
classification based on the SisFall dataset (Sucerquia et al., 2017).
They achieved high classification accuracy on fall (98.7%) but
lower accuracy on non-fall (88.4%) and pre-impact fall (91.1%),
which showed that their algorithm missed ∼9% pre-impact falls
and misclassified many non-fall activities as other two classes
(most of instances are labeled as non-fall activities in the SisFall
dataset due to rarity of fall incidents). Furthermore, both studies
only applied one deep learning model-LSTM, comparisons with
other deep learning structures were not conducted.

This study aims to develop deep learning algorithms
for predicting pre-impact fall in real-time so that a safety
mechanism can be enabled to prevent fall induced injuries.
A novel hybrid deep neural network which integrates CNN and
LSTM architectures was proposed and evaluated on SisFall, a
large public dataset of various falls and ADL acquired with
accelerometer and gyroscope sensors. We also compared our
proposed hybrid model with CNN and LSTM models in terms of
model accuracy, latency and learning curve, which could provide
more insights about the characteristics of different deep learning
models in predicting pre-impact falls. The developed hybrid
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model is expected to be embedded into wearable inertial sensor
based systems, which would be promising to predict pre-impact
fall in real-time so that the protective device could be triggered in
time to prevent fall-induced injuries for older people.

MATERIALS AND METHODS

Dataset and Labeling
SisFall, a fall and movement dataset with various falls and ADLs
acquired with wearable inertial sensors of accelerometer and
gyroscope at a frequency of 200 Hz (Sucerquia et al., 2017), was
selected for developing and evaluating deep learning algorithms
due to two major reasons. First, it is a publicly available dataset
which consists of 15 fall types, 19 ADLs and 38 subjects, including
the largest amount of data in terms of number of subjects and
number of activities (Musci et al., 2018) when compared with
other public datasets such as MobiFall (Vavoulas et al., 2014) and
UMAFall (Casilari et al., 2017). Second, the protocol is validated
by a medical staff and there are 15 older subjects out of total 38
subjects in the SisFall dataset. Thus, the data pattern in SisFall

dataset should be close to the real-life ADLs and fall scenarios of
the older people.

To be consistent with the earlier studies, we adopted the same
criteria as Musci et al. (2018) for labeling data associated with
three classes of events.

1. Non-fall: the time interval when the person is
performing ADLs.

2. Pre-impact fall or alert: the time interval in which the person
is transiting from a controlled state to a dangerous state which
may lead to a fall.

3. Fall: the time interval when the person is experiencing a state
transition that leads to a fall.

One representative diagram for three classes of events is
illustrated in Figure 1, which shows the 3-axis acceleration data
of a forward fall while walking due to a slip. The last part of data is
removed for labeling because it is the state after the fall incident.

Design of Model Architecture
In this study, three models were applied to perform the
classification. These models are a CNN model, a LSTM model

FIGURE 1 | Illustration of labeling three classes during a fall. The beginning period is labeled as non-fall and the blue and orange areas indicate pre-impact fall and
fall, respectively; the remainder of the sequence is removed for the labeling.
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and our proposed hybrid ConvLSTM model. As shown in
Table 1, the CNN model consists of three convolutional blocks
and two fully connection layers. Each convolutional block
includes convolutional operation, batch normalization, relu and
max pooling. The LSTM model follows the similar design as

TABLE 1 | The design of CNN model.

Type Operations Filter shape Input size

Conv1 conv 3 × 64 256 × 6

batchNorm

relu

max pooling 3 × 64

Conv2 conv 3 × 64 127 × 64

batchNorm

relu

max pooling 3 × 64

Conv3 conv 3 × 64 62 × 64

batchNorm

relu

max pooling 3 × 64

FC1 fully connection 1920 × 512 1 × 1920

FC2 fully connection 512 × 3 1 × 512

Softmax softmax Classifier 1 × 3

Musci et al. (2018), which consists of LSTM cells, relu, dropout
and fully connected layers.

The architecture of our proposed ConvLSTM model mainly
combines convolutional and recurrent layers. The specific
structure of ConvLSTM was determined by the hyperparameter
tuning. For this task, we mainly considered three levels of the
width (output channels in each convolutional and LSTM layer),
two different numbers of layers for both convolutional and LSTM
structures, and two levels of dropout (probability of a neuron to
be ignored during training). Table 2 summarizes the results of
hyperparameter tuning experiments on one training-testing split.

As shown in Figure 2, the finalized ConvLSTM structure
after hyperparameter tuning consists of four convolutional
blocks and two LSTM cells with dropout operations. Each
convolutional block contains operations of convolution, batch
normalization, relu, and max pooling. The convolutional layers
act as feature extractors and provide abstract representations
of the input sensor data in feature maps. They could capture
short-term dependencies (spatial relationship) of the data. The
recurrent layers deal with the long-term temporal dynamics of
the activation of the feature maps and identify useful features
over time domain in sequential data. More importantly, this
structure could integrate advantages of CNN and LSTM on
accuracy and efficiency. In the CNN, features are extracted and
then used as inputs of fully connected network for classification.

TABLE 2 | Results of hyperparameter tuning for the structure of ConvLSTM model.

No. Width No. of Conv layers No. of LSTM layers Dropout Sensitivity (%)

Non-fall Pre-impact Fall Fall

1 32 2 2 0.5 88.99 93.31 96.31

2 32 2 2 0.8 91.49 93.31 96.31

3 32 2 4 0.5 91.64 91.21 96.77

4 32 2 4 0.8 92.84 90.79 96.31

5 32 4 2 0.5 92.41 89.12 96.77

6 32 4 2 0.8 90.51 93.72 96.77

7 32 4 4 0.5 94.84 89.54 94.47

8 32 4 4 0.8 91.28 90.38 95.85

9 64 2 2 0.5 90.93 91.63 97.70

10 64 2 2 0.8 91.65 92.89 97.24

11 64 2 4 0.5 88.54 92.05 98.16

12 64 2 4 0.8 85.78 93.51 97.24

13∗ 64 4 2 0.5 92.30 93.30 95.86

14 64 4 2 0.8 90.18 91.63 96.77

15 64 4 4 0.5 91.47 89.94 95.85

16 64 4 4 0.8 90.22 89.54 96.31

17 128 2 2 0.5 91.73 93.31 93.55

18 128 2 2 0.8 93.77 88.28 95.85

19 128 2 4 0.5 90.58 92.89 96.31

20 128 2 4 0.8 92.10 90.79 98.16

21 128 4 2 0.5 90.45 94.98 96.31

22 128 4 2 0.8 90.75 91.63 99.08

23 128 4 4 0.5 88.85 94.56 95.85

24 128 4 4 0.8 88.53 89.96 97.24

∗Finalized structure of ConvLSTM model.
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FIGURE 2 | The architecture design of hybrid ConvLSTM model.

However, it ignores long-term temporal relationships in the
time sequence, which is important for identifying actions or
behaviors. On the contrary, the LSTM uses the memory cell
to learn long-term temporal dependencies for the time-series
data. However, it is time consuming for running LSTM model
due to its complex structure. In the ConvLSTM, CNN layers
extract features from the raw data and send to LSTM layers for
identifying temporal relationships, which could save time for
computing when compared with LSTM model. It is expected that
ConvLSTM will outperform both CNN and LSTM models for
predicting different fall stages since it can capture both short-
term and long-term dependencies of the motion data.

Model Training
The architectures described in section “Design of Model
Architecture” were implemented using the PyTorch library on a
computer running Window 10 (64-bit). The models were trained
and tested on this computer, equipped with a 3.6 GHz CPU
i7-7700, 16GB RAM, and an Nvidia GTX 1080Ti GPU card.
Considering the practical applications in the future, we also
implemented the models on a microcontroller unit, Jetson Nano
(Nvidia, 2019) which runs in Ubuntu 18.04 and equipped with
a 64-bit Quad-core ARM A57 at 1.43 GHz CPU, 4GB RAM,
and 128-core NVIDIA Maxwell at 921 MHz GPU. During the
training, the input data has six dimensions including three-axis
accelerometer and three-axis gyroscope. The batch size is 64 and
the total epoch is 200. The learning rate is set as 0.0005 and the
loss function uses focal loss (Lin et al., 2017).

In order to assess the generalizability of proposed models and
prevent overfitting on one specific train/test split, fivefold cross
validation was used. There are 23 young and 15 older subjects in
SisFall dataset. In our experiment, older subjects were randomly
divided into five groups and each group included three older
subjects. Young subjects were also randomly divided into five
groups in where three groups had five subjects and remaining two
groups have four subjects. Each group of older subjects would be

randomly combined with one group of young subjects as onefold.
Therefore, there were total fivefold for the dataset. Each fold
would be the test set and the rest fourfold would be considered
as the training set. The ratio between the training and test set was
around 80%/20%. By this splitting, we could prevent the same
subject appearing in both the training and test sets and maintain
the homogeneity among folds at the same time.

All experiments were implemented for 200 epochs and all
general hyper-parameters were set exactly same among three
deep learning models for a fair comparison. In order to balance
classification accuracy of three classes but without losing our
focus on the pre-impact fall, the results of the epochs whose
summation sensitivity for three classes are within top three
and summation sensitivity is the highest for non-fall and pre-
impact fall were used for averaging the fivefold cross-validation
results. Because the accuracy can be biased by the majority class
when the dataset is highly imbalanced, sensitivity instead of
accuracy was used as the criteria to determine the best model
(Bekkar et al., 2013).

Torti et al. (2018) sets baseline for our study because they
also performed three-class classification (non-fall, pre-impact
fall, fall) based on the SisFall dataset.

RESULTS

Classification Performance
The classification performance is represented by different
metrics including sensitivity, specificity and accuracy, which are
calculated by equations 1, 2, and 3, respectively.

Sensitivity =
TP

TP+ FN
(1)

Specificity =
TN

TN+ FP
(2)

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
(3)

where TP (True Positives) of non-fall is all non-fall instances that
are correctly classified as non-fall class; FN (False Negatives) of
non-fall is all non-fall instances that are not correctly classified
as non-fall class; TN (True Negatives) of non-fall is all instances
of other two classes are not classified as non-fall class; FP
(False Positives) of non-fall is all instances of other two classes
are wrongly classified as non-fall class. To find the four terms
for other two classes, we could replace non-fall with pre-
impact fall or fall.

Table 3 summarizes the classification performances of three
deep learning models along with the baseline study. The results
showed that CNN model had the poorest performance with the
mean accuracies of 90.01, 91.51, and 98.38% for non-fall, pre-
impact fall and fall, respectively. LSTM model demonstrated
higher accuracies (91.59, 93.98, and 97.52%) than CNN, and
our proposed hybrid ConvLSTM model achieved the highest
accuracies on all classes (93.22, 94.48, and 98.66%). With respect
to the sensitivity, the results showed that ConvLSTM model
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TABLE 3 | Classification results of three deep learning models on the test dataset.

Class CNN LSTM ConvLSTM Torti et al., 2018

Sensitivity (%) Non-fall 89.90 91.50 93.15 88.39

Pre-impact fall 90.33 91.48 93.78 91.08

Fall 93.76 96.22 96.00 98.73

Specificity (%) Non-fall 95.05 95.93 96.59 97.85

Pre-impact fall 91.52 94.00 94.49 90.77

Fall 98.42 97.54 98.69 97.93

Accuracy (%) Non-fall 90.01 91.59 93.22 93.12

Pre-impact fall 91.51 93.98 94.48 90.93

Fall 98.38 97.52 98.66 98.33

had the mean sensitivities of 93.15, 93.78, and 96.00% for non-
fall, pre-impact fall and fall, respectively, which were higher
than CNN (89.90, 90.33, and 93.76%) and LSTM models (91.50,
91.48, and 96.22%) except the fall class. For the specificity, the
ConvLSTM model had the mean specificities of 96.59, 94.49, and
98.69% for non-fall, pre-impact fall and fall, respectively, which

were higher than both LSTM (95.93, 94.00, and 97.54%) and CNN
models (95.05, 91.52, and 98.42%).

Learning Curve
Figure 3 presents the representative learning curves of three
deep learning models on the same training set. All three models

FIGURE 3 | Learning curves of CNN (A), LSTM (B), and ConvLSTM (C) models on the training dataset.
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converged after certain number of epochs. Both CNN and
ConvLSTM models can quickly learn and achieve the stable status
(Figures 3A,C) while LSTM model needs more time to train
(Figure 3B). In terms of training sensitivity, the performance of
CNN was similar to LSTM on non-fall and pre-impact fall classes.
The sensitivities of both models on these two classes fluctuated
around 90%; while for the fall class, LSTM model was obviously
better than CNN model (Figures 3A,B). For ConvLSTM model,
the learning curves on all three classes were above 90%, especially
for the pre-impact fall class (Figure 3C).

Figure 4 depicts the representative learning curves of three
deep learning models on the same test set. CNN model failed
to learn the features of pre-impact fall data well because
there was a large fluctuation on sensitivity even at the end of
training (Figure 4A). Figure 4B shows that LSTM model can
gradually learn the features of three classes and achieved good
sensitivity in the last 50 epochs. Compared to the LSTM model,
ConvLSTM model can perform well after only first 20 epochs and
maintain the high sensitivity for all three classes until the end of
training (Figure 4C).

Model Latency
The latencies were evaluated with the same training and test sets
among three deep learning models. For the practical applications,
only processing time on each instance in the test set was summed
and averaged over 200 epochs. Models tested on the computer
showed average latencies of 0.61, 0.70, and 0.97 ms for CNN,
ConvLSTM, and LSTM models, respectively. Further tests on a
microcontroller unit (Nvidia Jetson Nano) showed the averaged
latency of ConvLSTM model was 1.06 ms, which was slightly
higher or comparable with CNN model (0.77 ms) but much lower
than LSTM model (3.15 ms).

DISCUSSION

We developed a hybrid deep learning model (ConvLSTM) that
integrates the CNN and LSTM architectures to predict the
pre-impact fall from accelerometer and gyroscope sensor data.
The performance of this hybrid model was comprehensively
compared with CNN and LSTM deep learning models. The
experimental results showed that the hybrid ConvLSTM model
outperformed CNN and LSTM models in terms of sensitivity,
specificity and overall accuracy. The hybrid ConvLSTM model
obtained ∼2% higher sensitivities than LSTM and ∼3% higher
sensitivities than CNN for all three classes except the fall
class. Considering our study aimed to predict the pre-impact
fall accurately for preventing fall induced injuries, the high
sensitivities for non-fall and pre-impact fall were of significant
importance in two perspectives. On the one hand, higher
classification sensitivity on non-fall class reflected lower false
alarm rate and 2% improvement was very meaningful because
dominant instances in the SisFall dataset and real-world scenarios
are non-falls or ADLs, and fall instances are very rare. On the
other hand, higher classification sensitivity for the pre-impact fall
directly indicated the superiority of the ConvLSTM model. In
addition, the ConvLSTM model obtained the highest specificities

for non-fall (96.59%), pre-impact fall (94.49%), and fall (98.69%)
among three deep learning models. A more detailed investigation
showed that although the difference on the specificity between
ConvLSTM model and LSTM model was marginal, both models
had∼3 and 2.5% higher specificities on pre-impact fall prediction
than CNN model. This result indicated that CNN model had the
highest rate of misclassifying other two classes as pre-impact fall.

It is understandable that the hybrid ConvLSTM model
outperformed individual CNN or LSTM models. CNN could
capture local dependency of human motion data (Zeng et al.,
2014). For the given time point, the neighboring accelerometer
and gyroscope readings are likely to be correlated. However, this
dependency is short-term due to the constraint by the size of
convolutional kernels (Li F. et al., 2018). On the contrary, LSTM
with memory cells could learn to store and output information
based on the training, easing the learning of long-term time
dependency of motion data (Hochreiter and Schmidhuber,
1997). Therefore, integration of both short-term and long-term
dependencies could enhance the ability to distinguish different
fall stages that vary in time span and signal distribution.

Our experimental results indicated that the motion features
in the long term were more significant in classifying three fall
stages (non-fall, pre-impact fall, fall) than those in the short term.
This finding was consistent with those of earlier studies using
deep learning approaches for human motion recognition (Yao
et al., 2017; Li F. et al., 2018). Long-term motion features were
also widely used in the conventional machine learning methods
for human movement analysis. For example, Su et al. (2016)
achieved high accuracy to distinguish falls from non-falls by
extracting twelve time-domain features from angular velocity and
angle data into a hierarchical classifier. Similarly, Panahandeh
et al. (2013) suggested that long-term features of sensor data such
as magnitude-squared discrete Fourier transform coefficient and
variance were critical for pedestrian activity classification and
gait analysis. Furthermore, researchers reported the classification
with an integration of time domain (mean, variance, kurtosis,
etc.) and gait temporal features (stride time, stance time, double-
limb support, etc.) showed better results to differentiate stroke
and other neurological disorders than using them separately
(Hsu et al., 2018). Compared with conventional machine learning
methods, our proposed deep neural networks can eliminate the
need of manually designed motion features and can fully utilize
the useful information in the raw data for classification.

Two earlier studies utilized CNN and LSTM alone to predict
pre-impact falls (Tao and Yun, 2017; Li et al., 2019). Both studies
divided the motion data into non-fall and pre-impact fall, and
pre-impact fall included several frames before and after the fall
initiation so that they could predict the pre-impact fall. However,
the data of remaining part of falling (fall class in the three
classifications) was not considered, thus these kinds of simple
binary classification models can not be used for predicting the fall
class. In addition, both studies only tested classification models
on a small dataset with limited types of falls (≤4) and ADLs
(≤4). To the best of our knowledge, there was only one published
study utilizing the LSTM-based three-class classification model
to predict the pre-impact fall based on a large dataset-SisFall
(Torti et al., 2018). To compare our proposed deep learning
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FIGURE 4 | Learning curves of CNN (A), LSTM (B), and ConvLSTM (C) models on the test dataset.

models with this baseline study, we also used the SisFall dataset
and strictly followed the same criteria for labeling three different
classes. Comparison to the benchmark (Table 3) showed that our
hybrid ConvLSTM model achieved higher sensitivity of ∼5 and
3% for the non-fall and pre-impact fall, respectively, indicating
considerably lower false alarm rate but higher true alarm rate for
the pre-impact fall prediction. However, our ConvLSTM model
had ∼3% lower sensitivity than the benchmark on predicting
the fall class. This could be caused by the different strategy we
used to choose the best model. We prioritized the high sensitivity
on classes of non-fall and pre-impact fall because the primary
objective of this study was to predict a fall with a reasonable lead
time before the body impacts to the ground rather than detect a
fall after it happens. For the specificity, even though there was
no considerable difference on classes of non-fall and fall, our
ConvLSTM model outperformed the benchmark on the class of
pre-impact fall (higher specificity by 3.7%), which demonstrated
lower misclassification rate on pre-impact fall prediction.

In terms of latency, LSTM model is time consuming due to
its complex structure and difficulty in parallel computing. In

the proposed hybrid ConvLSTM model, the first CNN layers
which are appropriate for parallel computation would extract
features hierarchically from the raw motion sensor data. The
extracted features would be inputted to following LSTM layers
for identifying temporal dependencies. Compared with the raw
data as the input in LSTM model, these features are in a much
lower dimensional space and thus far more concise. Therefore,
inserting CNN layers ahead of LSTM layers could save significant
amount of time for computation. Interestingly, even tested on
a microcontroller unit of the Jetson Nano with the exact same
model tested on the computer, the latency of our proposed
hybrid model still maintained very short and within 1.1 ms,
demonstrating a great potential to implement our developed
hybrid model into predicting the pre-impact falls in real-time
so that the on-demand fall protection systems (e.g., wearable
airbags) can be timely activated to prevent fall-related injuries.

The present study has several limitations worth noting. First,
because the SisFall dataset did not provide the video references
about the simulated falls and ADLs of each subject, the pre-
impact fall and fall intervals of the sensor signal labeled by
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authors of the baseline study may not be very consistent.
Considering Xsens wearable motion capture system could record
motion data and reconstruct graphical videos of human motions
synchronously, we will use it to build a new fall dataset and
further verify the developed deep learning algorithms. Second, for
some types of falls such as a lateral fall, the duration of falling is
very short and the time interval of pre-impact fall is too short to
specify. Therefore, for these fall cases, pre-impact fall instances
may not be labeled reliably due to the much larger width of
sliding window. Further analysis on different window sizes could
be conducted. Third, the development of the CovnLSTM model
was based on the SisFall dataset with simulated falls performed
by limited subjects. Caution is thus needed in directly applying
this model into practice. Large-scale fall simulations and real-
life tests with good protection need to be conducted further. Last
but not least, non-fall instances are very dominant in the SisFall
dataset compared with instances for other two classes, which
induces challenges in training the deep learning models. More
scientific techniques such as data argumentation to cope with
highly imbalanced data should be explored further.

CONCLUSION

We proposed a hybrid deep learning model (ConvLSTM) which
integrates the CNN and LSTM architectures to predict the
pre-impact fall for older people based on accelerometer and
gyroscope data. The performance of this hybrid model was
evaluated on SisFall, a large public dataset of various falls
and ADL. We also comprehensively compared the proposed
hybrid ConvLSTM model with CNN and LSTM deep learning
models in terms of model accuracy, latency and learning curve.
Experimental results showed that the hybrid ConvLSTM model
obtained both high sensitivities (>93%) and specificities (>94%)
for all three fall stages (non-fall, pre-impact fall and fall), which
were higher than LSTM and CNN models. In addition, latency
test on a microcontroller unit (Nvidia Jetson Nano) showed that
ConvLSTM model had a short latency of 1.06 ms, which was
much lower than LSTM model (3.15 ms) and comparable with

CNN model (0.77 ms). High prediction accuracy (especially for
pre-impact fall) and low latency on the micro board indicated
that the proposed hybrid ConvLSTM model outperformed both
LSTM and CNN models. These findings suggested that our
proposed novel hybrid ConvLSTM model has great potential
to be embedded into wearable inertial sensor-based systems to
predict pre-impact fall in real-time so that protective devices
could be triggered in time to prevent fall-related injuries
for older people.
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Traditionally, running biomechanics analyses have been conducted using 3D motion
capture during treadmill or indoor overground running. However, most runners complete
their runs outdoors. Since changes in running terrain have been shown to influence
running gait mechanics, the purpose of this study was to use a machine learning
approach to objectively determine relevant accelerometer-based features to discriminate
between running patterns in different environments and determine the generalizability
of observed differences in running patterns. Center of mass accelerations were
recorded for recreational runners in treadmill-only (n = 28) and sidewalk-only (n = 25)
environments, and an independent group (n = 16) ran in both treadmill and sidewalk
environments. A feature selection algorithm was used to develop a training dataset
from treadmill-only and sidewalk-only running. A binary support vector machine model
was trained to classify treadmill and sidewalk running. Classification accuracy was
determined using 10-fold cross-validation of the training dataset and an independent
testing dataset from the runners that ran in both environments. Nine features related
to the consistency and variability of center of mass accelerations were selected.
Specifically, there was greater ratio of vertical acceleration during treadmill running and
a greater ratio of anterior-posterior acceleration during sidewalk running in both the
training and testing dataset. Step and stride regularity were significantly greater in the
treadmill condition for the vertical axis in both the training and testing dataset, and
in the medial-lateral axis for the testing dataset. During sidewalk running, there was
significantly greater variability in the magnitude of the vertical and anterior-posterior
accelerations for both datasets. The classification accuracy based on 10-fold cross-
validation of the training dataset (M = 93.17%, SD = 2.43%) was greater than the
classification accuracy of the independent testing dataset (M = 83.81%, SD = 3.39%).
This approach could be utilized in future analyses to identify relevant differences in
running patterns using wearable technology.
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INTRODUCTION

Traditional running biomechanical analysis is confined to
treadmill or over-ground indoor running (Simon, 2004). In
contrast, most runners complete their runs outdoors (Taunton
et al., 2003) and research has shown that machine learning
algorithms trained on gait-related features from an accelerometer
can distinguish whether a runner is running on concrete,
synthetic, woodchip surfaces (Schütte et al., 2016). However, to
our knowledge, no study has examined differences in running
biomechanics between indoor running, where the speed, surface
inclination and available space are often dictated by a treadmill
or a small flat runway, and outdoor running, where these features
are less controlled. Insights gleaned from biomechanical analyses
conducted in less controlled settings may be more applicable to
runners who train and compete outdoors.

Limited research has been conducted to compare treadmill
to overground running, but has shown that the running
biomechanical patterns during treadmill running gait dynamics
do not necessarily reflect overground running patterns (Lindsay
et al., 2014; Schütte et al., 2016). Moreover, methodological
limitations make it difficult to generalize these results. For
example, Lindsay et al. (2014) compared treadmill running
to overground running on an indoor track and Schütte
et al. (2016) performed outdoor investigations on a short,
flat and straight course, limiting the ability to generalize the
findings to runners outside of the study sample and real-
world conditions. Dixon et al. (2019) collected only 8 s of
data, from between 2 and 4 running trials, whilst runners
ran on a straight 90 m segment of either concrete road,
synthetic track, or woodchip trail. Indoor tracks and short,
straight and flat runways do not necessarily reflect real-world
running conditions, particularly for long-distance runners. Thus,
research is needed in order to collect running biomechanical
data in a runner’s natural environment. Considering that
the vast majority of running biomechanical data collected to
date have been in controlled laboratory settings, it will be
beneficial to understand which biomechanical variables are
similar, or dissimilar, to those exhibited during running in real-
world environments.

Inertial measurement units (IMUs) are portable devices that
can be used to quantify running biomechanical patterns in
a runner’s natural environment (Norris et al., 2014; Reenalda
et al., 2016), yet, these investigations are still rare (Benson
et al., 2018a). Running biomechanical analysis using IMUs
is commonly conducted by recording 3D center of mass
accelerations and extracting features related to the magnitude,
consistency and variability of the signal (Henriksen et al.,
2004; Moe-Nilssen and Helbostad, 2004; Kobsar et al., 2014;
Benson et al., 2018b; Clermont et al., 2018). There remains
an absence of an association between joint-level mechanics
commonly investigated using laboratory-based motion capture
systems and features generated from center of mass accelerations.
Thus, a challenge in identifying new methods for collecting
biomechanical data using wearable sensors is to identify which
accelerometer-based features are relevant for observing running
patterns in real world settings.

The purpose of this study was to determine whether running
environments could be successfully classified from movement
patterns quantified by the use of a single accelerometer, with
generalizability to an independent dataset. A secondary objective
was to determine which features drive successful classification
between treadmill-only and sidewalk-only running. It was
expected that key features would quantify the consistency and
variability of running patterns, and that the model would be
generalizable to an independent set of runners.

MATERIALS AND METHODS

Participants and Equipment
A total of 69 self-identified recreational runners provided
informed consent to participate in this study approved by the
Ethics Board at the University of Calgary (REB16-1183). Both
male and female runners with no running-related injury in the
previous 6 months were included. All participants were outfitted
with an IMU (Shimmer3 GSR+ R©

±8 g, Shimmer Inc., Dublin,
IE, United States) on the lower back near the center of mass, such
that the positive x-axis pointed to the right, the positive y-axis
pointed vertically, and the positive z-axis pointed posteriorly.
Three-dimensional accelerations were recorded at 201.03 Hz
and stored on an SD card. Additionally, a GPS-capable watch
(Garmin vivoactive HR, Garmin Inc., Olathe, KS, United States)
with a sampling rate of 1 Hz was worn on the preferred wrist.
Participants wore their preferred clothes and shoes.

Data Collection
Each participant was included in just one of three protocols,
based on weather (i.e., outdoor running only occurred on days
with no snow or rain) and availability to attend multiple sessions
(Table 1). In Protocol 1, 28 participants ran on a level treadmill
(Bertec, Columbus, OH, United States) only. The speed was
initially set to a speed equal to what the participant self-reported
as their typical training pace, and was subsequently adjusted in
0.1 m/s increments until it matched the participant’s preferred
speed, described as “a pace which you would be comfortable
to run for about 45 min and represents a usual, common, or
typical pace (Lindsay et al., 2014).” Participants first completed
a 5–10 min warmup at this speed. Next, data were recorded
as the participants ran at their preferred speed (recorded as
the treadmill setting) for 5 min. In Protocol 2, 25 different
participants ran outdoors on a concrete sidewalk only. First,
participants completed a 5–10 min warmup at their own pace.
Then, data were recorded as the participants ran at their preferred
running speed (recorded with GPS watch) on a continuous
stretch of sidewalk that featured a straightaway, curve and slight
incline typical of real-world outdoor running conditions. The
sidewalk was 300 m, and the participants paused for 10 s at
the turnaround to complete a total of 600 m (Figure 1). It was
expected that all runners would complete the 600 m course
within 5 min (8:20/km pace). In Protocol 3, a different set of 16
participants completed both the treadmill and sidewalk runs on
separate days, with the order of days randomized, via a coin flip,
for each participant.
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TABLE 1 | Mean (SD) descriptive variables for each protocol.

Protocol 1 Protocol 2 Protocol 3

Environments TM (5 min) only S (600 m) only TM (5 min) and S (600 m)

Sex 18M, 10F 12M, 13F 8M, 8F

Height, m 1.74 (0.09) 1.73 (0.10) 1.70 (0.09)

Mass, kg 70.5 (10.3) 70.2 (13.0) 67.1 (8.1)

Age, yr 32.2 (13.4) 36.9 (10.1) 31.3 (10.2)

TM speed, m/s 2.78 (0.26) – 2.75 (0.39)*

S speed, m/s – 3.24 (0.42) 3.10 (0.60)*

TM, treadmill; S, sidewalk. * Within Protocol 3, TM speed was significantly lower than S Speed, p = 0.001. There were no significant differences between protocols
for any variables.

FIGURE 1 | Map of outdoor running path (300 m from start to turn around)
and associated altitude along path.

Data Processing
For each run, the accelerometer data were filtered using a 4th-
order low-pass Butterworth filter with a cutoff frequency at 10 Hz
(Wundersitz et al., 2015), and the first and last 5% of the signal
was removed to eliminate effects of starting and stopping. The
trimming was applied to each 300 m section of the sidewalk
runs, as a complete turnaround is likely not generalizable to
real-world running conditions. The acceleration signal was then
aligned with gravity (Moe-Nilssen, 1998) and the direction of
motion within the horizontal plane (Avvenuti et al., 2013). The
signal was segmented into steps (Lee et al., 2010), each step
was normalized to 50 data points, and a previously defined

set of 24 features (Moe-Nilssen and Helbostad, 2004; Kobsar
et al., 2014; Barden et al., 2016) was extracted from the signal
(Table 2). These features included the peaks, magnitude (RMS),
and ratio of the acceleration in three dimensions, averaged across
all steps. Several features related to consistency and variability of
the running pattern across all steps and strides. Regularity is the
consistency of the stride-to-stride or step-to-step pattern, while
symmetry is the difference between step and stride regularity
(Barden et al., 2016), and higher values indicate a more consistent
gait pattern. Mean running speed was included as a 25th feature
for each participant.

Feature Selection
To improve generalizability of classification and to reduce
model complexity, a subject-specific forward-sequential feature
selection algorithm with a linear discriminant analysis wrapper
and 10-fold cross-validation (Chizi and Maimon, 2010; Caby
et al., 2011) was applied to the data from Protocols 1 and
2 to identify relevant features, ranked based on their order
of selection, for the classification of running environments
(Figure 2). Only the features selected in at least 10% of

TABLE 2 | All features extracted from the accelerometer signal for each participant
and running condition.

Feature Independent of axes AP ML VT

Speed* X

Step time CV X

Stride time CV X

RMS tesultant X

Regularity step X X X

Regularity stride X X X

Symmetry (regularity
step/regularity stride)

X X X

Peak X X X

RMS X X X

RMS CV X X X

Ratio (RMS/RMS
resultant)

X X X

AP, anterior-posterior axis; ML, medial-lateral axis; VT, vertical axis; CV, coefficient of
variation; RMS, root mean squared. *Speed was determined from the GPS watch
or treadmill setting, not the accelerometer signal.
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FIGURE 2 | The data from Protocol 1 and Protocol 2 were used to create a model to distinguish treadmill running from sidewalk running. Prior to building the model,
the number of features in the training dataset was reduced following a feature selection task. The two environments from Protocol 3 were used as an independent
testing dataset for the model. The features in the testing dataset matched the selected features in the training dataset. TM, treadmill; S, sidewalk; SVM, support
vector machine; CA, classification accuracy; 10-CV, 10-fold cross-validation of the training dataset.

100 iterations were retained, and the selected features in
Protocols 1 and 2 became the training dataset. All data
processing and feature selection was done using custom
MATLAB software (v9.1.0.441655, Mathworks, Inc., Natick,
MA, United States).

Classification
The training dataset was used to train a binary support vector
machine classifier (Shmilovici, 2010) for treadmill and sidewalk,
with all hyper-parameters optimized with the MATLAB function
fitcsvm. The model was tested two ways: (1) 10-fold cross-
validation of the training dataset from Protocol 1 and 2, with
each participant’s data in only one fold at a time, and (2) the
selected features from both runs in Protocol 3 were used as
an independent testing dataset. The classification process was
repeated for 100 iterations, and an average classification accuracy
across all iterations was determined.

Statistical Analysis
Height, mass, age, and treadmill or sidewalk speed were
checked for normality and compared across protocols in separate
ANOVAs. A paired t-test was used to detect differences in
speed between treadmill and sidewalk among participants within
Protocol 3. Differences between treadmill and sidewalk for each
of the selected features were determined with independent t-tests
for the training dataset and paired t-tests for the testing dataset.
For each statistical test, significance was determined at p < 0.05,
with a Bonferroni adjustment based on number of comparisons.
All statistical analyses were done using SPSS (v24.0.0.1, SPSS,
Inc., Chicago, IL, United States).

RESULTS

There was no significant effect of protocol for height, mass, age,
or treadmill or sidewalk speed (p > 0.05). Within Protocol 3,
speed was significantly different (p = 0.001) between treadmill
running (M = 2.75 m/s, SD = 0.39 m/s) and sidewalk running
(M = 3.10 m/s, SD = 0.60 m/s).

Nine features were selected to discriminate treadmill and
sidewalk running (Table 3 and Figure 3). There was a greater
ratio of vertical acceleration during treadmill running and a
greater ratio of anterior-posterior acceleration during sidewalk
running in both the training and testing dataset. Step and stride

TABLE 3 | Selected features used in the classification model.

Mean rank Selected features

1.00 Ratio VT

1.05 Ratio AP

2.06 Regularity step ML

2.06 RMS CV ML

2.30 Regularity stride VT

2.39 RMS CV AP

2.67 RMS CV VT

2.86 Regularity stride ML

3.00 Regularity step VT

AP, anterior-posterior; ML, medial-lateral; VT, vertical; CV, coefficient of variation;
RMS, root mean squared. Features were ranked according to the order in which
they were selected during the 10-fold cross-validation of the feature selection
algorithm, and the mean rank over 100 iterations of feature selection is reported
for features selected at least 10% of the time.
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FIGURE 3 | Comparisons between treadmill (black) and sidewalk (gray) conditions for each of the nine selected features used in the model. Independent t-tests were
used for the training dataset comparisons and paired t-tests were used for the testing dataset comparisons. Since a total of 18 comparisons were made,
significance (*) was determined at p < 0.003.

regularity were significantly greater in the treadmill condition
for the vertical axis in both the training and testing dataset,
and in the medial-lateral axis for the testing dataset. During
sidewalk running, there was significantly greater variability in
the magnitude of the vertical and anterior-posterior accelerations
for both datasets.

The initial classification accuracy based on 10-fold cross-
validation of the training dataset (M = 93.17%, SD = 2.43%)
was greater than the classification accuracy of the independent
testing dataset (M = 83.81%, SD = 3.39%). Over 100 iterations,
ten participants had both conditions correctly classified at
least 82 times, and the remaining six had poor classification
of one condition but perfect classification of the other
condition (Table 4).

DISCUSSION

The purpose of this study was to classify running environments
based on features extracted from a single accelerometer
and identify features that would represent the difference
between treadmill and sidewalk running. Sidewalk running

was characterized by lower regularity and greater variability
than treadmill running and using these features, classification
accuracy over 80% was achieved for both the training dataset
and an independent dataset. These results are supported by
Lindsay et al. (2014) who also reported that the treadmill
running requires greater constraints and increased voluntary
control during running gait. Thus, researchers must use caution
when generalizing laboratory-based treadmill running results
to real-world conditions for purposes such as rehabilitation
of injuries, improved performance, and/or injury prevention
(Benson et al., 2018a).

The observed changes in running patterns in different running
environments are likely due to the consistency of the surfaces
and/or speed in each environment. For example, a treadmill offers
a smooth and consistent running surface and a constant speed
for every step, whereas outdoor running presents more variable
conditions with opportunities for changes in speed, surface,
inclination, turns in the running path, other pedestrians/runners,
and/or changes in weather or temperature (Ahamed et al.,
2017, 2018; Benson et al., 2019). This lack of consistency likely
contributed to the decrease in regularity in the vertical and
medial-lateral dimensions, and changes in the ratios of the
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TABLE 4 | Number of correctly predicted environments for each participant in the
testing dataset over 100 iterations (max = 100).

Test participant Number correct
treadmill predictions

Number correct
sidewalk predictions

1 100 1

2 100 21

3 100 25

4 100 95

5 100 96

6 100 100

7 100 100

8 100 100

9 99 100

10 92 98

11 87 99

12 84 97

13 82 100

14 53 100

15 40 100

16 13 100

magnitude of the acceleration. The decrease in regularity and
observed shift to a greater ratio of horizontal accelerations
than vertical accelerations when on sidewalk is consistent with
previous research that has shown differences between stable
and unstable surfaces based center of mass accelerations (Menz
et al., 2003; Schütte et al., 2016) and stride time analyses
(Lindsay et al., 2014). Sidewalk running was also characterized
by greater variability in the magnitude of accelerations in
all three dimensions. From a dynamical systems approach, a
lack of coordinative variability in movement patterns may be
associated with an unhealthy or pathological state (Hamill et al.,
2012). However, the current study did not calculate coordinative
variability in a manner similar to the methods proposed by
Hamill et al. (2012), so future prospective studies should consider
a link between the increased center of mass variability observed
during sidewalk running and running-related injuries.

Due to the influence of speed on the magnitude of center of
mass accelerations (Kobsar et al., 2014; Benson et al., 2018b), and
the tendency to preferentially select a slightly slower speed during
treadmill compared to overground running (Kong et al., 2012),
speed was included as a potential feature in the classification
model. However, speed was not one of the selected features
used in the model. Therefore, differences in features related
to the variability and consistency of the accelerometer signal
had a greater role in discriminating between treadmill and
sidewalk running.

The ability to generalize these results beyond the current study
may be influenced by overfitting the classification model to the
study participants (Ferber et al., 2016). Despite the use of 10-
fold cross-validation of the training dataset to attempt to improve
generalizability of classification, the model slightly overfit to the
training dataset as there was lower classification accuracy for
the independent testing dataset compared to the 10-fold cross-
validation of the training dataset. Regarding real-world usability,

previous studies that have classified IMU-generated running
and walking patterns have consistently reported classification
accuracy greater than 80% (Kobsar et al., 2014, 2015; Phinyomark
et al., 2014; Ahamed et al., 2018, 2019; Benson et al., 2018b;
Clermont et al., 2018). Thus, the reported 93.17% accuracy for
the training dataset and 83.81% accuracy for the independent
testing dataset in the current study suggests that this classification
mechanism has practical use.

The nearly 10% difference in classification accuracy between
the training and testing datasets can be attributed to differences
in running patterns between individuals in each dataset. In
the cases where an individual in the testing dataset had a low
classification rate for one environment, there was a perfect
classification rate for the other environment. This result does
not suggest that these misclassified participants have the same
running pattern in both environments, but rather their running
pattern on one environment is similar to the running patterns of
other runners on the opposite. For example, the poor treadmill
classification for test participant 16 (Table 4) was most likely
driven by anterior-posterior variability in the treadmill condition
that was greater than the sidewalk anterior-posterior variability
for all participants in the training dataset. Yet, test participant
16 had perfect classification accuracy in the sidewalk condition
as their anterior-posterior variability in the sidewalk condition
was even greater than their treadmill value. Therefore, the
misclassifications observed in this study highlight the potential
strength of subject-specific models of running biomechanics
to monitor changes in an individual’s running biomechanics
(Ahamed et al., 2018, 2019; Benson et al., 2019) and should be
further investigated in future studies.

In addition to the previous limitations discussed, other
limitations are acknowledged. First is the possibility that
other unmeasured variables may also differ between running
environments. The measured variables were previously used to
quantify running patterns and were thus considered suitable for
this study. However, a priori variable selection suggests a risk
of investigator bias and may lead to the dismissal of potentially
meaningful information that could be represented by other
variables, such as metrics related to the accelerometer signal
frequency content. Second, in addition to other accelerometer-
based features, physiological metrics such as heart rate may
differ between running environments. A further limitation is
that although many of the features used in this study were
on a scale of 0–1 (e.g., ratio of acceleration in a given axis,
symmetry, regularity), other features were not on the same scale
which may have influenced the contribution of each variable in
the classification model. Nevertheless, six of the nine selected
features, and four of the top-five features, were on the 0–1 scale,
suggesting that features with values greater than 1 did not have
an undue influence on the classification model.

In conclusion, we used a machine learning approach to
successfully select features related to the consistency and
variability of center of mass accelerations between treadmill
and sidewalk running. Overall, step and stride regularity were
significantly greater during treadmill running while sidewalk
running resulted in significantly greater variability in the
magnitude of the vertical and anterior-posterior accelerations.
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Based on a 10-fold cross-validation of the training dataset we
achieved a 93.17% classification accuracy, which was greater than
the 83.81% classification accuracy of the independent testing
dataset. The overall machine learning approach presented here
could be utilized in future running biomechanical analyses to
identify relevant differences in running patterns using IMUs.
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Existing research on myoelectric control systems primarily focuses on extracting

discriminative characteristics of the electromyographic (EMG) signal by designing

handcrafted features. Recently, however, deep learning techniques have been applied

to the challenging task of EMG-based gesture recognition. The adoption of these

techniques slowly shifts the focus from feature engineering to feature learning.

Nevertheless, the black-box nature of deep learning makes it hard to understand the

type of information learned by the network and how it relates to handcrafted features.

Additionally, due to the high variability in EMG recordings between participants, deep

features tend to generalize poorly across subjects using standard training methods.

Consequently, this work introduces a new multi-domain learning algorithm, named

ADANN (Adaptive Domain Adversarial Neural Network), which significantly enhances

(p = 0.00004) inter-subject classification accuracy by an average of 19.40% compared

to standard training. Using ADANN-generated features, this work provides the first

topological data analysis of EMG-based gesture recognition for the characterization

of the information encoded within a deep network, using handcrafted features as

landmarks. This analysis reveals that handcrafted features and the learned features (in the

earlier layers) both try to discriminate between all gestures, but do not encode the same

information to do so. In the later layers, the learned features are inclined to instead adopt

a one-vs.-all strategy for a given class. Furthermore, by using convolutional network

visualization techniques, it is revealed that learned features actually tend to ignore the

most activated channel during contraction, which is in stark contrast with the prevalence

of handcrafted features designed to capture amplitude information. Overall, this work

paves the way for hybrid feature sets by providing a clear guideline of complementary

information encoded within learned and handcrafted features.

Keywords: EMG, deep learning, MAPPER, feature extraction, gesture recognition, CNN, ConvNet, Grad-CAM
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1. INTRODUCTION

Surface Electromyography (sEMG) is a technique
employed in a vast array of applications from assistive
technologies (Phinyomark et al., 2011c; Scheme and Englehart,
2011) to bio-mechanical analysis (Andersen et al., 2018), and
more generally as a way to interface with computers and
robots (Zhang et al., 2009; St-Onge et al., 2019). Traditionally,
the sEMG-based gesture recognition literature primarily focuses
on feature engineering as a way to increase the information
density of the signal to improve gesture discrimination (Oskoei
and Hu, 2007; Scheme and Englehart, 2011; Phinyomark et al.,
2012a). In the last few years, however, researchers have started
to leverage deep learning (Allard et al., 2016; Atzori et al., 2016;
Phinyomark and Scheme, 2018a), shifting the paradigm from
feature engineering to feature learning.

Deep learning is a multi-level representation learning method

(i.e., methods that learn an embedding from an input to facilitate

detection or classification), where each level generates a higher,

more abstract representation of the input (LeCun et al., 2015).
Conventionally, the output layer (i.e., classifier or regressor) only
has direct access to the output of the highest representation
level (LeCun et al., 2015; Alom et al., 2018). In contrast, several
works have also fed the intermediary layers’ output directly to the
network’s head (Sermanet et al., 2013; Long et al., 2015; Yang and
Ramanan, 2015). Arguably, the most successful approach using
this design philosophy is DenseNet (Huang et al., 2017), a type of
convolutional network (ConvNet) where each layer receives the
feature maps of all preceding layers as input. Features learned by
ConvNets were also extracted to be employed in conjunctionwith
(or replace) handcrafted features when training conventional
machine learning algorithms (e.g., support vectormachine, linear
discriminant analysis, decision tree) (Poria et al., 2015; Nanni
et al., 2017; Chen et al., 2019; Liu et al., 2019). Within the context
of sEMG-based gesture recognition, deep learning was shown
to be competitive with the current state of the art (Côté-Allard
et al., 2019a) and when combined with handcrafted features,
to outperform it (Chen et al., 2019). This last result seems to
indicate that, for sEMG signals, deep-learned features provide
useful information that may be complementary to those that have
been engineered throughout the years. However, the black box
nature of these deep networks means that understanding what
type of information is encapsulated throughout the network, and
how to leverage this information, is challenging.

The main contribution of this work is, therefore, to
provide the first extensive analysis of the relationship between
handcrafted and learned features within the context of sEMG-
based gesture recognition. Understanding the feature space
learned by the network could shed new insights on the type of
information contained in sEMG signals. In turn, this improved
understanding will allow the creation of better handcrafted
features and facilitate the creation of new hybrid feature sets
using this feature learning paradigm.

An important challenge arises when working with biosignals,
as extensive variability exists between subjects (Guidetti et al.,
1996; Batchvarov and Malik, 2002; Meltzer et al., 2007; Castellini
et al., 2009; Halaki and Ginn, 2012). Especially within the

context of sEMG-based gesture recognition (Castellini et al.,
2009; Halaki and Ginn, 2012). Consequently, features learned
using traditional deep learning training methods can be highly
participant-specific, which would hinder the goal of this work
of learning a general feature representation of sEMG signals.
By defining each participant as a different domain, however,
this issue can be framed as a Multi-Domain Learning problem
(MDL) (Yang and Hospedales, 2014), with the added restriction
that the network’s weights should be participant-agnostic.
Multiple popular and effective MDL algorithms have been
proposed over the years (Nam and Han, 2016; Rebuffi et al.,
2018). For example, Nam and Han (2016) proposed to use a
shared network across multiples domains with one predictive
head per domain. In Yang and Hospedales (2014), a single
head was shared across two parallel networks with one of them
receiving the example’s representation as input, while the other
receives a vector representation of the associated domain of
the example. These algorithms however are ill-suited for this
work’s context as they: do not explicitly impose domain-agnostic
weight learning (Yang and Hospedales, 2014), can scale poorly
with the number of domains (i.e., participants) (Nam and Han,
2016), or are restricted to encode a single domain within their
learned features (and use adaptor blocks to bridge the gap
between domains) (Rebuffi et al., 2018). Unsupervised domain-
adversarial training algorithms (Ajakan et al., 2014; Ganin et al.,
2016; Tzeng et al., 2017; Shu et al., 2018) predict an unlabeled
dataset by learning a representation on a labeled dataset that
makes it hard to distinguish between examples from either
distribution. However, these algorithms are often not designed
to learn a unique representation across more than two domains
simultaneously (Ajakan et al., 2014; Ganin et al., 2016; Tzeng
et al., 2017; Shu et al., 2018), can be destructive to the source
domain representation (through iterative process) (Shu et al.,
2018), and by nature of the problem they are trying to solve,
do not leverage the labels of the target domains. As such,
this work presents a new multi-domain adversarial training
algorithm, named ADANN (Adaptive Domain Adversarial
Neural Network). ADANN trains a network across multiple
domains simultaneously while explicitly penalizing any domain-
variant representations to study learned features that generalize
well across participants.

In this work, the sEMG information encapsulated within
the general deep learning features learned by ADANN, is
characterized using handcrafted features as landmarks in a
topological network. This network is generated via the Mapper
algorithm (Singh et al., 2007), with t-Stochastic Neighbor
Embedding (t-SNE) (Maaten and Hinton, 2008), a non-linear
dimensionality reduction visualization method, as the filter
function. Mapper is a Topological Data Analysis (TDA) tool
that excels at determining the shape of high dimensional
data, by providing a faithful representation of it through a
topological network. This TDA tool has been applied as a solution
to numerous challenging applications across a wide array of
domains; for example, uncovering the dynamic organization
of brain activity during various tasks (Saggar et al., 2018) or
identifying a subgroup of breast cancer with 100% survival rate
and no metastasis (Nicolau et al., 2011). Mapper has also been
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FIGURE 1 | Diagram of the workflow of this work. The 3DC Dataset is first preprocessed before being used to train the network using standard training and the

proposed ADANN training procedure. The handcrafted features are directly calculated from the preprocessed dataset, while the deep features are extracted from the

ConvNet trained with ADANN. In the diagram, the blue rectangles represent experiments and the arrows show which methods/algorithms are required to

perform them.

applied to determine relationships between feature space for
physiological signal pain recognition (Campbell et al., 2019b),
and EMG-based gesture recognition (Phinyomark et al., 2017).
However, to the best of the authors’ knowledge, the use of TDA
to interpret information harnessed within deep-learned features
using handcrafted features as landmarks has yet to be explored.

In this paper, convNet visualization techniques are also
leveraged as a way to highlight how the network makes
class-discriminant decisions. Several works (Simonyan et al.,
2013; Springenberg et al., 2014; Zeiler and Fergus, 2014; Gan
et al., 2015) have proposed to visualize network’s predictions
by emphasizing which input-pixels have the most impact
on the network’s output, consequently, fostering a better
understanding of what the network has learned. For example,
Simonyan et al. (2013) used partial derivatives to compute pixel-
relevance for the network output. Another example is Guided
Backpropagation (Springenberg et al., 2014), which modifies
the computation of the gradient to only include paths within
the network that positively contribute to the prediction of a
given class. When compared with saliency maps (Simonyan
et al., 2013), Guided Backpropagation results in qualitative
visualization improvements (Selvaraju et al., 2017). While these
methods produce resolutions at a pixel level, the images produced
with respect to different classes are nearly identical (Selvaraju
et al., 2017). Other types of algorithms provide highly class-
discriminative visualizations, but at a lower resolution (Selvaraju
et al., 2016; Zhou et al., 2016) and sometimes require a specific
ConvNet architecture (Zhou et al., 2016) to use. Within this
work, Guided Gradient-weighted Class Activation Mapping
(Guided Grad-CAM) (Selvaraju et al., 2017) is employed
as it provides pixel-wise input resolution while being class-
discriminative. Another advantage of this technique is that it
can be implemented on any ConvNet-based architecture without

requiring re-training. To the best of the authors’ knowledge, this
is the first time that deep learning visualization techniques are
applied to EMG signals.

2. MATERIALS AND METHODS

A flowchart of the material, methods and experiment is shown
in Figure 1. This section is divided as follows: first, a description
of the dataset and preprocessing used in this work is given
in section 2.1. Then, the handcrafted features are presented
in section 2.2. The ConvNet architecture and the new multi-
domain adversarial training algorithm (ADANN) are presented
in sections 2.3.1 and 2.3.2, respectively. A brief overview of
Guided Grad-CAM is given in section 2.3.3, while sections 2.3.4
and 2.3.5 present single feature classification and handcrafted
feature regression, respectively. Finally, the Mapper algorithm is
detailed in section 2.4.

2.1. EMG Data
The dataset employed in this work is the 3DC Dataset (Côté-
Allard et al., 2019b), featuring 22 able-bodied participants
performing ten hand/wrist gestures + neutral (see Figure 2

for the list of gestures). This dataset was recorded with the
3DC Armband; a wireless, 10-channel, dry-electrode, 3D printed
sEMG armband. The device samples data at 1,000 Hz per
channel, allowing the feature extraction to take advantage of the
full spectra of sEMG signals (Phinyomark and Scheme, 2018b).
Informed consent was obtained from all participants, as approved
by Laval University’s Research Ethics Committee (Côté-Allard
et al., 2019b).

The dataset was built as follows: Each participant was asked to
perform and hold each gesture for a period of 5 s starting from
the neutral position to produce a cycle. Three more cycles were
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FIGURE 2 | The eleven hand/wrist gestures recorded in the 3DC Dataset (image re-used from Côté-Allard et al., 2019b).

recorded to serve as the training dataset. After a 5 min break, four
new cycles were recorded to serve as the test dataset. Note that
the validation set and hyperparameter selection are made from
the training dataset.

As this work aims to understand the type of features learned
by deep network in the context of myoelectric control systems,
a critical factor to consider is the input latency. Smith et al.
(2010) showed that the optimal guidance latency was between
150 and 250 ms. As such, the data from each participant was
segmented into 151ms frames with an overlap of 100ms. The raw
data was then band-pass filtered between 20 and 495 Hz using a
fourth-order Butterworth filter.

2.2. Handcrafted Features
Handcrafted features are characteristics extracted from windows
of the EMG signal using establishedmathematical equations. The
purpose of these feature extraction methods is to enhance the
information density of the signal so as to improve discrimination
between motion classes (Oskoei and Hu, 2007; Phinyomark
et al., 2012a). Across the myoelectric control literature,
hundreds of handcrafted feature extraction methods have been
presented (Oskoei and Hu, 2007; Phinyomark et al., 2012a,
2013). As such, implementing the exhaustive set of features that
has been proposed is impractical. Instead, within this study
a comprehensive subset of 79 of the most commonly used
features is employed. With a comprehensive set of features, past
literature has identified five functional groups that summarize
all sources of information current handcrafted feature extraction
techniques describe: signal amplitude and power (SAP), non-
linear complexity (NLC), frequency information (FI), time-series
modeling (TSM), and unique (UNI) (Phinyomark et al., 2017;
Campbell et al., 2019a). The SAP functional group includes time-
domain energy or power features (e.g., Root Mean Squared,
Mean Absolute Value). The FI functional group generally
refers to features extracted from the frequency domain, or

features that describe spectral properties (e.g., Mean Frequency,
Zero Crossings). The NLC functional group corresponds to
features that describe entropy or similarity based information
(e.g., Sample Entropy, Maximum Fractal Length). The TSM
functional group represents features that attempt to reconstruct
the data provided through stochastic or other algorithmic models
(e.g., Autoregressive Coefficients, Cepstral Coefficients). Finally,
the UNI functional group represents features that capture
various other modalities of information, such as measures of
signal quality or a combination of other functional groups
(e.g., Signal to Motion Artifact Ratio, Time Domain Power
Spectral Descriptors).

Table 1 presents the 56 handcrafted feature methods
considered in this work. Note that some methods produce
multiple features (e.g., Cepstral Coefficients, Histogram),
resulting in a total of 79 features. The SAP, FI, NLC, TSM, and
UNI feature groups are represented here by 25, 5, 6, 7, and 13
feature extraction methods, respectively. In the TDA of the deep
learned features (see section 2.4), these handcrafted features
serve as landmarks for well-understood properties of the EMG
signal. In the regression model analysis (see section 2.3.5),
the flow of information through the ConvNet is visualized by
employing the handcrafted features methods as the target of
the network.

2.3. Convolutional Network
The following subsections present the deep learning architecture,
training methods and visualization techniques employed in
this paper. The PyTorch (Paszke et al., 2017) implementation
employed in this work is available at: https://github.com/
UlysseCoteAllard/sEMG_handCraftedVsLearnedFeatures.

2.3.1. Architecture
Recent works on sEMG-based gesture recognition using deep
learning have shown that ConvNets trained with the raw sEMG
signal as input were able to achieve similar classification accuracy
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TABLE 1 | Handcrafted features extracted for topological landmarks sorted by functional group.

References Feature extraction method Name Group

Phinyomark et al. (2012a) Amplitude of the first burst AFB SAP

Kim et al. (2011) Difference absolute mean value DAMV SAP

Kim et al. (2011) Difference absolute standard deviation value DASDV SAP

Zardoshti-Kermani et al. (1995) Difference log detector DLD SAP

Phinyomark et al. (2012a) Difference temporal moment DTM SAP

Zardoshti-Kermani et al. (1995) Difference variance value DVARV SAP

Zardoshti-Kermani et al. (1995) Difference v-order DV SAP

Park and Lee (1998) Integral of electromyogram IEMG SAP

Zardoshti-Kermani et al. (1995) Log detector LD SAP

Al-Timemy et al. (2015) Second-order moment M2 SAP

Oskoei and Hu (2008) Modified mean absolute value 1 MMAV1 SAP

Oskoei and Hu (2008) Modified mean absolute value 2 MMAV2 SAP

Saponas et al. (2008) Mean absolute value MAV SAP

Phinyomark et al. (2012a) Maximum MAX SAP

Du and Vuskovic (2004) Multiple hamming windows MHW SAP

Du and Vuskovic (2004) Mean power MNP SAP

Du and Vuskovic (2004) Multiple trapezoidal windows MTW SAP

Saponas et al. (2008) Root mean squared RMS SAP

Du and Vuskovic (2004) Spectral moment SM SAP

Du and Vuskovic (2004) Sum of squared integral SSI SAP

Phinyomark et al. (2012a) Temporal moment TM SAP

Du and Vuskovic (2004) Total power TTP SAP

Zardoshti-Kermani et al. (1995) Variance VAR SAP

Zardoshti-Kermani et al. (1995) v-Order V SAP

Phinyomark et al. (2012a) Waveform length WL SAP

Oskoei and Hu (2006, 2008) Frequency ratio FR FI

Thongpanja et al. (2013, 2015) Median frequency MDF FI

Thongpanja et al. (2013, 2015) Mean frequency MNF FI

Phinyomark et al. (2012a) Slope sign change SSC FI

Zardoshti-Kermani et al. (1995) Zero crossings ZC FI

Phinyomark et al. (2013) Sample entropy SAMPEN NLC

Phinyomark et al. (2013) Approximate entropy APEN NLC

Zardoshti-Kermani et al. (1995) Willison’s amplitude WAMP NLC

Gitter and Czerniecki (1995) Box-counting fractal dimension BC NLC

Gupta et al. (1997) Katz fractal dimension KATZ NLC

Arjunan and Kumar (2010) Maximum fractal length MFL NLC

Park and Lee (1998) Autoregressive coefficients AR TSM

Park and Lee (1998) Cepstral coefficients CC TSM

Park and Lee (1998) Difference autoregressive coefficient DAR TSM

Park and Lee (1998) Difference cepstral coefficients DCC TSM

Phinyomark et al. (2011d, 2012b) Detrend fluctuation analysis DFA TSM

Qingju and Zhizeng (2006) Power spectrum ratio PSR TSM

Sinderby et al. (1995) and McCool et al. (2014) Signal to noise ratio SNR TSM

Phinyomark et al. (2011a,b) Critical exponent CE UNI

Sinderby et al. (1995) and McCool et al. (2014) Maximum to minimum drop in power density ratio DPR UNI

Phinyomark et al. (2012a) Histogram HIST UNI

Thongpanja et al. (2016) and Van Den Broek et al. (2006) Kurtosis KURT UNI

Phinyomark et al. (2012a) Mean absolute value slope MAVS UNI

Sinderby et al. (1995) and McCool et al. (2014) Power spectrum deformation OHM UNI

Phinyomark et al. (2013) Peak frequency PKF UNI

Talebinejad et al. (2009) Power spectrum density fractal dimension PSDFD UNI

Thongpanja et al. (2016) and Van Den Broek et al. (2006) Skewness SKEW UNI

(Continued)
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TABLE 1 | Continued

References Feature extraction method Name Group

Sinderby et al. (1995) and McCool et al. (2014) Signal to motion artifact ratio SMR UNI

Al-Timemy et al. (2015) Time domain power spectral descriptors TSPSD UNI

Phinyomark et al. (2012a) Variance of central frequency VCF UNI

Phinyomark et al. (2013) Variance fractal dimension VFD UNI

to the current state of the art (Zia ur Rehman et al., 2018;
Côté-Allard et al., 2019a). Consequently, and to reduce bias, the
preprocessed raw data (see section 2.1) is passed directly as an
image of shape 10 × 151 (Channel× Sample) to the ConvNet.

The ConvNet’s architecture, which is depicted in Figure 3,
contains six blocks followed by a fully connected layer for gesture-
classification. The network’s topology was selected to obtain a
deep network with a limited number of learnable parameters
(to avoid overfitting) with simple layer connections to enable an
easier, and thus more thorough analysis. All architecture choices
and hyperparameter selection were performed using the training
set of the 3DC Dataset or inspired by previous works (Côté-
Allard et al., 2019a,b). Each block encapsulates a convolutional
layer (LeCun et al., 2015), followed by batch normalization
(BN) (Ioffe and Szegedy, 2015), leaky ReLU (slope = 0.1) (Xu
et al., 2015) and dropout (Gal and Ghahramani, 2016) (with a
drop rate set at 0.35 following Côté-Allard et al., 2019a). The
number of blocks within the network was selected to obtain
a sufficiently deep network to study how the type of learned
features evolve with respect to their layer. The depth of the
network was limited by the number of examples available for
training and more complex layer connections [e.g., residual
network (He et al., 2016), dense network (Huang et al., 2017)]
were avoided to not ambiguate the analysis performed in this
work. The number of feature maps (64) was kept uniform for
each layer, allowing for easier comparisons of learned features
across the convolutional layers. The filter size was 1 × 26 so
that, similarly to the handcrafted features, the learned features
are channel independent. Due to the selected filter size, the
dimensions of feature maps at the final layer is 10× 1.

Adam (Kingma and Ba, 2014) was employed to optimize the
ConvNet with an initial learning rate of 0.0404709 and batch
size of 512 (as used in Côté-Allard et al., 2019b). The training
dataset was divided into training and validation sets using the
first three cycles and last cycle, respectively. Employing this
validation set, learning rate annealing was applied with a factor
of five and a patience of fifteen with early stopping applied when
two consecutive annealings occurred without achieving a better
validation loss.

For the purpose of the TDA, featuresmaps were extracted after
the non-linearity using per feature-map channel-wise average
pooling. That is, the number of feature maps remained the same,
but the feature map’s value per channel was averaged to a single
scalar (as is common with handcrafted features).

2.3.2. Multi-Domain Adversarial Training
To better understand what type of features are commonly
learned at each layer of the network, it is desirable that the

model generalizes well across participants. This feature generality
principle also motivates the design of the handcrafted features
(presented in section 2.2), as it would be impractical to create
new features for each new participant. Learning a general feature
representation across participants, however, cannot be achieved
by simply aggregating the training data of all participants and
then training a classifier normally. As, even when precisely
controlling for electrode placement, cross-subject accuracy using
standard learning methods is poor (Castellini et al., 2009). This
problem is compounded by the fact that important differences
exist between subjects of the 3DC Dataset (i.e., position and
rotation of the armband placed on the left or right arm).

Learning a participant-agnostic representation can be framed
as a multi-domain learning problem (Nam and Han, 2016).
In the context of sEMG-based gesture recognition, AdaBN, a
domain adaptation algorithm presented in Li et al. (2016), was
successfully employed as a way to learn a general representation
across participants in Cote-Allard et al. (2017), Côté-Allard
et al. (2019a). The hypothesis of AdaBN is that label-related
information (i.e., hand gestures) will be contained within the
network’s weights, while the domain-related information (i.e.,
participants) are stored in their BN statistics. Training is thus
performed by sharing the weights of the network across the
subjects dataset while tracking the BN statistics independently for
each participant.

To inhibit the shared network’s weights from learning subject-
specific representation, Domain-Adversarial Neural Networks
(DANN) training (Ganin et al., 2016) is employed. DANN is
designed to learn domain-invariant features across two domains
from the point of view of the desired task. The approach used
by DANN to achieve this objective consists of adding a second
head (referred to as the domain classification head) to the network
presented in section 2.3.1, which receives the output of block
B6. The goal of this second head is to learn to discriminate
between the domains. However, during backpropagation, the
gradient computed from the domain loss is multiplied by a
negative constant (set to -1 in this work) as it exits the domain
classification head. This gradient reversal explicitly forces the
feature distributions over the domains to be similar. Note that
the backpropagation algorithm proceeds normally for the first
head (gesture classification head). The loss function used for both
heads is the cross-entropy loss. The two losses are combined
as follows: Ly + λLd, where Ly and Ld are the prediction and
domain loss, respectively (see Figure 4), while λ is a scalar that
weights the domain loss (set to 0.1 in this work).

Using this approach, each participant of the 3DC Dataset
represents a different domain (n=22). A direct application of
DANN would thus initialize the domain classification head
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FIGURE 3 | The ConvNet’s architecture, employing 543,629 learnable parameters. In this figure, Bi refers to the ith feature extraction block (i∈{1,2,3,4,5,6}). Conv

refers to Convolutional layer. As shown, the feature extraction is performed after the non-linearity (leaky ReLU).

FIGURE 4 | Overview of the training steps of ADANN (identical to DANN) for one labeled batch from the source ({xs, ys}, blue lines) and one unlabeled batch from the

target ({xt}, red dashed lines). The purple dotted lines correspond to the backpropagated gradient. The gradient reversal operation is represented by the

purple diamond.

with 22 output neurons. This, however, could create a pitfall
where the network is able to differentiate between the domains
perfectly while simply predict one of the 21 other domains
to maximize Ld. Instead, the domain classification head is
initialized with only two output neurons. At each epoch, a
batch is created that contains examples from a single participant
(this batch is referred to as the source batch, and is assigned
the domain label 0). A second batch, referred to as the target
batch, is also created that contains examples from one of
the other participants selected at random, and is assigned the
domain label 1. As every participants data is used as the

source batch at each epoch, this ensures that the network is
forced to learn a domain-independent feature representation.
ADANN’s goal is thus to force the network to be unable to
accurately associate a participant with their examples while
achieving a highly discriminative gesture representation across
all participants. During training, the BN statistics are tracked
individually for each subject. Therefore, when learning from
a source or target batch, the network uses the BN statistics
associated with the corresponding participant. Note that, by
construction, the participant associated with the source is
necessarily different from the participant associated with the
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target. Consequently, the network is fed the source and target
batch consecutively (i.e., not both batch simultaneously). Also
note that the BN statistics are updated only in association with
the source batch to ensure equal training updates across all
participants. For a given iteration, once the source and target
batch are constructed, the training step proceeds as described for
DANN (see Figure 4).

To assess the performance of the proposed MDL algorithm,
two identical ConvNet (as described in section 2.3.1) were
created. One of the ConvNets was trained with ADANN,
whereas the other used a standard training loop (i.e., aggregating
the data from all participants), with both using the same
hyperparameters. The networks trained with both methods were
then tested on the test dataset with no participant-specific
fine-tuning.

2.3.3. Learning Visualization
One of the main problems associated with deep learning is
interpretability of how and why a model makes a prediction
given a particular input. A first step in understanding a network
prediction is through the visualization of the learned weights,
feature maps and gradients resulting from a particular input.
Consequently, several sophisticated visualization techniques
have been developed, which are aimed at facilitating a better
comprehension of the hierarchical learning that takes place
within a network (Simonyan et al., 2013; Springenberg
et al., 2014; Zhou et al., 2016). One popular such technique
is Guided Grad-CAM, which combines high resolution
pixel-space gradient visualization and class-discriminative
visualization (Selvaraju et al., 2017). Guided Grad-CAM is thus
employed to visualize how the ConvNet trained with ADANN
makes its decisions, both on real examples from the 3DC Dataset
and on an artificially generated signals.

Given an image that was used to compute a forward pass in
the network and a label y, the output of Guided Grad-CAM is
calculated from four distinct steps (note that steps two and three
are computed independently from each other using the output of
step one):

1. Set all the gradients of the output neurons to zero, except for
the gradient of the neuron associated with the label y (which is
set to one) and name the gradient of the neuron of interest yg .

2. Set all negative activations to zero. Then, perform
backpropagation, but before propagating the gradient at
each step, set all the negative gradients to zero again.
Save the final gradients corresponding to the input
image. This step corresponds to computing the guided
backpropagation (Springenberg et al., 2014).

3. Let Fj,i be the activation of the ith feature map of the jth layer
with feature maps of the network. Select a layer Fj of interest
(in this work Fj correspond to the rectified convolutional layer
of B6). Backpropagate the signal from the output layer to Fj,i

(i.e.,
∂yg

∂Fj,i
). Then for each i compute the global average pooling

of
∂yg

∂Fj,i
and name it wj,i. Finally, compute: ReLU

(∑
i wj,iFj,i

)
.

This third step corresponds to computing the
Gradient-weighted Class Activation Mapping
(Grad-CAM) (Selvaraju et al., 2016).

4. Finally, fuse the output of the two previous steps using point-
wise multiplication to obtain the output of Guided Grad-
CAM (Selvaraju et al., 2017).

2.3.4. Learned Feature Classification
Similarly to Chen et al. (2019), the learned features were extracted
to train a Linear Discriminant Analysis (LDA) classifier to
show the discriminative ability of the learned features. LDA was
selected as it was shown to provide robust classification within
the context of sEMG-based gesture recognition (Campbell et al.,
2019c), does not require hyperparameter tuning, and creates
linear boundaries within the input feature space. LDAwas trained
in a cross-subject framework on the training dataset and tested on
the test dataset. For comparison purposes, LDA was also trained
on the handcrafted features described in section 2.2. Note that the
implementation was from scikit-learn (Pedregosa et al., 2011).

2.3.5. Regression Model
One method of highlighting the information content encoded
throughout a network is to see how well-known handcrafted
features can be predicted from the network’s feature maps at
different stages. This can be achieved using an added output
neuron (regression head) at the feature extraction stage [i.e., after
the non-linearity, but before the average pooling (before the
green trapezoid of Figure 3)] of each block. The goal of this
output is to map from the learned features to the handcrafted
features of interest. As all the features considered in section 2.2
are calculated channel-wise, only the information from the first
sEMG channel (arbitrarily selected) of the feature maps will be
fed to the regression head.

The training procedure to implement this is as follows: first,
pre-train the network using ADANN (presented in section 2.3.2).
Second, freeze all the weights of the network, except for the
weights associated with the regression head of the block of
interest. The Mean Square Error (MSE) is then employed as the
loss function with the target being the value of the handcrafted
feature of interest from the first sEMG channel. Due to the
stochastic nature of the algorithm, the training was performed
20 times for each participant and the results were given as
the average MSE computed on the test dataset across of all
participants. Note that the targets derived from multi-output
feature extraction methods (e.g., Autoregressive Coefficients)
corresponded to the first principal component returned by
Principal Component Analysis (PCA) (where singular value
decomposition was performed on the training and test set for the
training and test phase, respectively).

2.4. Topological Data Analysis—Mapper
Conventional TDA methods, such as Isomap (Balasubramanian
and Schwartz, 2002) produce a low dimensional embedding
by retaining geodesic distances between neighboring points.
However, they often have limited topological stability (Choi and
Choi, 2007) and lack the ability to produce a simplicial complex (a
ball-and-stick simplification of the shape of the dataset) with size
smaller than the original dataset (Singh et al., 2007). The Mapper
algorithm (Singh et al., 2007) is a TDA method that creates
interpretable simplifications of high-dimensional data sets that
remain true to the shape of the data set. Mapper can thus produce
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a stable representation of the topological shape of the dataset at
a specified resolution, where the shape of the network has been
simplified during a partial clustering stage. Further, the shape of
the dataset is defined such that it is coordinate, deformation, and
compression invariant. Consequently, this TDA algorithm can
be employed to better understand how handcrafted and deep-
learned features relate to one-another. In this work, Mapper is
employed on three scenarios; (A), (B), and (C). In scenario (A),
the algorithm only uses the handcrafted features as a way to
validate the hyperparameters selected by cross-referencing the
results with previous EMG works using Mapper (Phinyomark
et al., 2017; Campbell et al., 2019a). For scenario (B), only the
learned features are used to determine if features within the same
block extract similar or dissimilar sources of information (i.e., the
degree at which the features within the same block are dispersed
across the topological network). Finally, in scenario (C), Mapper
is applied to the combination of learned and handcrafted features
to better understand their relationship and to provide new
avenues of research for sEMG-based gesture recognition.

Sections 2.4.1–2.4.2, below, provide additional details about
the approach, mathematical basis and implementation ofMapper
in this work. Readers who are familiar with, or prefer to avoid
these details, may jump directly to section 3.

2.4.1. Mapper Algorithm
The construction of the topological network created using the
Mapper algorithm can be seen as a five stage pipeline:

1. prepare: organize the data set to produce a point cloud of
features in high dimensional space.

2. lens: filter the high dimensional data into a lower dimensional
representation using a lens.

3. resolution: divide the filtration into a set of regions.
4. partial clustering: for each region, cluster the contents in the

original high dimensional space.
5. combine: combine the region isolated clusters into a

single topological network using common points across
regions (Geniesse et al., 2019).

2.4.2. Mathematical Definition of Mapper
A mathematical definition of the Mapper algorithm for feature
extraction using a multi-channel recording device is as follows:

Let x
def
= (Ex1, . . . , ExC) be a series of samples for each C

channels, where Exc ∈ R
S,∀c ∈ {1, . . . ,C} and S is the length

of a consecutive series of data. Define X
def
= {xn}

N
n=1 a set of

N examples. Let also 8
def
= {φm}

M
m=1 be a set of M feature-

generating functions of the form φm :R
S → R. Given xn,c

the c th element of xn ∈ X , the resulting feature fmn,c ∈

R is obtained by applying φm such that fmn,c
def
= φm(xn,c).

Consequently, the vector Efm ∈ R
N×C is obtained such that Efm

def
=

(fm1,1, f
m
1,2, . . . , f

m
1,C, f

m
2,1, f

m
2,2, . . . , f

m
2,C, . . . , f

m
N,C).

The first step of the Mapper algorithm is to consider F
def
=

{Efm}
M
m=1, the transformed data points from X . Then define

ψ :R
N×C → R

Z , with 0 < Z ≪ N × C and consider the set

Z
def
= {ψ(Ef )|Ef ∈ F }. This dimensionality reduction (N × C → Z)

is employed to reduce the computational cost of the rest of the
Mapper algorithm and can be considered as a hyperparameter of
the Mapper algorithm.

In the second step of the algorithm, define σ :R
Z → R

W ,

with 0 < W ≪ Z and consider the set W
def
= {σ (Ez)|Ez ∈ Z }. In

the literature (Singh et al., 2007), the function σ is called filter
function andW is the image or lens.

Third, let C be the smallest hypercube of RW which coversW
entirely. As X is a finite set, each dimension ofC is a finite interval.
Let k ∈ N

∗, be a hyperparameter that subdivides C evenly into kW

smaller hypercubes. Note that the side lengths of these smaller
hypercubes are H = 1

k
× the length size of C. Denotes V the set

of all vertices of these smaller hypercubes. Next, fix D > H as
another hyperparameter. For each Ev ∈ V , consider the hypercube
cEv of length D centered on Ev. A visualization of step 3 is given
in Figure 5.

Fourth, define Z Ev
def
= {Ez ∈ Z |σ (Ez) ∈ cEv}, the set of all elements

of Z that is projected in the hypercube cEv. Let ξ be a clustering
algorithm and ξ (Z Ev) be the resulting set of clusters. Define B as
the set that consist of all so obtained clusters for all Z Ev.

Fifth, compute the topological graph G using each element
of B as a vertex and create an edge between vertices G i and G j
(i, j ∈ {1, . . . , |B |}, i 6= j) if G i ∩ G j 6= ∅.

2.4.3. Mapper Implementation Within This Work
In this work, as described in section 2.1 the dataset was recorded
using the 3DC Armband which offers 10 channel-recording
(C = 10) and an example is comprised of 151 data-points
(S = 151) for each channel. The number of considered features
in scenarios (A), (B), and (C), are 79, 384, and 465, respectively.
Note that multi-output feature extraction techniques (e.g., AR,
HIST), consider each component of that vector as a separate
feature. Each element of F is obtained by computing the result
of a feature from section 2.2 (corresponding to φm() in the
mathematical definition given previously) over each channel of
each example of the Training Dataset. The dataset undergoes
the first dimensionality reduction (9()) using PCA (Wold
et al., 1987), where the number of principal components used
corresponds to 99% of the total variance. For scenarios (A),
(B), and (C), 99% of the variance resulted in 44, 77, and
119 components, respectively, extracted from 971,860 channel-
wise examples.

A second dimensionality reduction is then performed
(σ ()), referred to as the filter function, with the goal of
representing meaningful characteristics of the relationship
between features (Singh et al., 2007). Within this study, t-
Stochastic Neighborhood Embedding (t-SNE) (Maaten and
Hinton, 2008) is used to encapsulate important local structure
between features. The two-dimensional (2D) t-SNE lens was
constructed with a perplexity of 30, as this configuration resulted
in the most stable visualization over many repetitions [tested
on scenario (A)]. Using t-SNE as part of the Mapper algorithm
instead of on its own leverages its ability to represent local
structure while avoiding the use of a low-dimensional manifold
to encapsulate global structure. Instead, the global structure
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FIGURE 5 | An example of step 3 of the Mapper algorithm with W = 2. The purple dots represent the elements of W . In (A), the red square corresponds to C. In (B),

C is subdivided using k2 squares of length H (with k = 2 in this case). The orange diamonds, in both (B,C), represent the elements of V . Finally, the square cEv of length

D is shown on the upper left corner of (C), overlapping other squares centered on other elements of V (dotted lines).

is predominantly incorporated into the topological network
produced by Mapper during the fifth stage.

The 2D lens was then segmented into a set of overlapped
bins (the hypercubes centered on the elements of V ), called the
cover. A stable topological network was obtained when each
dimension was divided into 5 regions, forming a grid of 25
cubes that were overlapped by 65%. The number of regions
correspond to the topological network’s resolution, while the
overlap has an influence on the amount of connection formed
between nodes (Singh et al., 2007).

Data points in each region are then clustered in isolation to
provide insight into the local structure of the feature space (the
elements of Z Ev correspond to the data-point of a specific region).
For each region, Ward’s hierarchical clustering (ξ ) was applied
to construct a dendogram that grouped similar features together
according to a reduction in cluster variance (Ward, 1963).

Finally, the dendograms produced using neighboring regions
are combined to form the topological network (G ) using the
features that lie in the overlapped area to construct the edges
between the nodes.

The implementation of the Mapper algorithm was facilitated
by a combination of the Kepler Mapper (van Veen and
Saul, 2019) and the DyNeuSR (Dynamical Neuroimaging
Spatiotemporal Representations) (Geniesse et al., 2019) Python
modules. An extended coverage of processing pipelines for time-
series TDA is given in Phinyomark et al. (2018).

3. RESULTS

3.1. Handcrafted Features
Figure 6 shows the topological network produced using only the
handcrafted features. The Kullback-Leibler divergence of the t-
SNE embedding of the handcrafted features plateaued at 0.50,
indicating that the perplexity and number of iterations used was

appropriate for the dataset. The topological network consisted of
125 nodes and 524 edges.

The color of the nodes within the network indicates the
percentage of members that belong to the feature group of
interest [(A):SAP, (B): NLC, (C): FI, (D): TSM, and (E): UNI].
The presence of an edge symbolizes common features present
in the connected nodes, which can be used at a global scale
to verify that functional groups (similar information) cluster
together. Due to the topological nature of the graph, information
similarity between nodes is measured using the number of
edges that separate two nodes and not the length of the edges.
Detailed interpretation of the TDA networks are given in
the discussion.

3.2. Deep Features
The average cross-subject accuracy on the test set when using
the proposed ADANN framework was 84.43 ± 0.05%. Using
a Wilcoxon signed-rank test (Wilcoxon, 1992) with n = 22,
and considering each participant as a separate dataset, this was
found to significantly outperform (p < 0.0001) the average
accuracy of 65.03 ± 0.08% obtained when training the ConvNet
conventionally. Furthermore, based on Cohen’s d, this difference
in accuracy was considered to be huge (Sawilowsky, 2009). The
accuracy obtained per participant for each training method is
given in Figure 7A, and the confusion matrices calculated on the
gestures are shown in Figure 7B.

Figure 8A provides visualizations of the ConvNet trained with
ADANN using Guided Grad-CAM for several examples from the
3DC Dataset, These visualizations highlight what the network
considers “important” (i.e., which part of the signals had the
most impact in predicting a given class) for the prediction of a
particular gesture.

Instead of using Guided Grad-CAM to visualize how the
network arrived at a decision for a known gesture, Figure 8B
presents the results of the visualization algorithm when the
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FIGURE 6 | Topological network generated exclusively for the handcrafted features, where nodes are colored to indicate percent composition of: (A) signal amplitude

and power features (SAP), (B) non-linear complexity (NLC), (C) frequency information features (FI), (D) time series modeling features (TSM), and (E) unique features

(UNI). Dashed boxes highlight dense groupings of the specified functional group in each of the networks.

network is told to find a gesture that is not present in the input.
This is akin to using a picture of a cat as an input to the network
and displaying the parts of the image that most resemble a
giraffe. In Figure 8B, the input was randomly generated from a
Gaussian distribution of mean 0 and standard deviation of 450
(chosen to have the same scale as the EMG signals of the 3DC
Dataset). For six of the eleven gestures (Radial Deviation, Wrist

Extension, Supination, OpenHand, Chuck Grip, and Pinch Grip)
the network correctly identifies no relevant areas pertaining to
these classes. While the network does highlight features in the
input space associated with the other gestures, the magnitude
of these contributions was substantially smaller (half or less)
than when the requested gesture was actually present in the
input signal.
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FIGURE 7 | Classification results of deep learning architectures. (A) Per-participant test set accuracy comparison when training the network with and without ADANN,

(B) Confusion matrices on the test set for cross-subject training with and without ADANN.

The topological network produced using only the learned
features is given in Figure 9. The color of the nodes within the
network indicates the percentage of members that belong to the
feature group of interests [(A): B1, (B): B2, (C): B3, (D): B4, (E):
B5, and (F): B6]. Interpretation of the TDA network follows the
rational stated in section 3.1. The Kullback-Leibler divergence of
the t-SNE embedding of the handcrafted features plateaued at
0.37, again indicating that the perplexity and number of iterations
used was appropriate for the dataset. The topological network
consisted of 115 nodes and 672 edges.

3.3. Hybrid Features
The topological network produced using both handcrafted and
learned features is shown in Figure 10. The Kullback-Leibler
divergence of the t-SNE embedding of all features plateaued at
0.53, again indicating that the perplexity and number of iterations
used was appropriate for the dataset. The topological network
consisted of 115 nodes and 770 edges. From this network, only
a subset of nodes were occupied by both handcrafted and learned
features. Those nodes were indicated in Figure 10.

The color of the nodes within the network indicates the
percentage of members that belong to the feature group of
interests (learned features). Information similarity was shown
through a zoomed-in region of the network, where learned and
handcrafted features clustered together. The feature members of
the numbered nodes were listed in Table 2. Interpretation of the
TDA network follows the rational stated in section 3.1.

Table 3 shows the average accuracy (grouped by block for
the learned features and by group for the handcrafted features)
obtained when training an LDA on each feature and when
using all features within a category (i.e., within a block or

within a group of handcrafted feature). Note that for the learned
features, PCA is applied to the feature map and the first
component is employed to represent a given learned feature.
Figure 11 shows examples of confusion matrices computed from
the LDA classifications of singular features (both handcrafted
and learned). Figure 11, also shows some confusion matrices
obtained from the LDA’s classification result when using all
features within a category.

Figure 12 shows the average mean square error computed
when regressing from the ConvNet’s learned features (see
section 2.3.5) to fifteen handcrafted features (three per Functional
Group). Note that the mean squared error is obtained by
computing the regression using only the output of the block
of interest.

4. DISCUSSION

4.1. Handcrafted Features
The result of the Mapper algorithm applied to handcrafted
features (see Figure 6) showed that the handcrafted features
agglomerated mostly with their respective groups, and that
the topological graph is Y-shaped. This shows that the
hyperparameters selected in this work are consistent with those
found in previous EMG literature (Phinyomark et al., 2018;
Campbell et al., 2019a).

4.2. ADANN and Deep Learning
Visualization
Figure 7B shows that training the network with ADANN
outperforms the standard training method in cross-subject
classification. One advantage of ADANN in the context of this
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FIGURE 8 | Output of Guided Grad-CAM when asked to highlight specific gestures in an example. For all graphs, the y-axis of each channel are scaled to the same

range of value (indicated on the first channel of each graph). Warmer colors indicate a higher “importance” of a feature in the input space for the requested gesture.

The coloring use a logarithmic scale. For visualization purposes, only features that are within three order of magnitudes to the most contributing feature are colored.

(A) The examples shown are real examples and correspond to the same gestures that Guided Grad-CAM is asked to highlight. (B) A single example, generated using

Gaussian noise of mean 0 and standard deviation 450, is shown three times. While the visualization algorithm does highlight features in the input space (when the

requested gesture is not truly present in the input), the magnitude of these contributions is substantially smaller (half or less) than when the requested gesture is

present in the input.
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FIGURE 9 | Topological network generated for exclusively the learned features, where nodes are colored to indicate percent composition of: (A) Block 1’s features,

(B) Block 2’s features, (C) Block 3’s features, (D) Block 4’s features, (E) Block 5’s features, and (F) Block 6’s features. Dashed boxes highlight dense groupings of the

specified block features in each of the networks.

work is that the weights of the network have strong incentives
to be subject-agnostic. As such, the learned features extracted
from the network can be thought of as general features (and to
a certain extent subject-independent) for the task of sEMG-based
hand gesture recognition.

Applying Guided Grad-CAM, as in Figure 8, shows that the
network mostly focuses on different channels for the detection
of antagonist gestures. This suggests that the ConvNet was able
to extract spatial features despite having access only to one
dimensional convolutional kernels. Furthermore, it is notable
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FIGURE 10 | Topological network generated for all features, where nodes were colored to indicate percent composition of learned features. The dashed boxes

highlight dense grouping of handcrafted features with their associated type.

TABLE 2 | Members of nodes labeled in Figure 6. LeFX refers to a Learned Feature from block X.

# Summary Members

1 TSM+LeF5 AR2 AR4 DAR2 DAR4 CC1 CC4 DCC1

DCC3 SNR 8xLeF1 1xLeF2 4xLeF4 10xLeF5 13xLe5

2 TSM+UNI+LeF6 APEN AR2 AR4 DAR2 DAR4 CC1 CC4 DCC1 DCC3 DCC4 CE DFA DPR HIST123

SKEW MAVS OHM PSDFD PSR SMR SNR VCF VFD 1xLeF1 3xLeF2 3xLeF5 21xLeF6

3 TSM+UNI+LeF6 APEN AR2 AR4 DAR2 DAR4 CC1 CC4 DCC1 DCC3 DCC4 CE DFA DPR HIST12

SKEW MAVS OHM PSDFD PSR SMR SNR VCF VFD 1xLeF1 1xLeF2 1xLeF5 27xLeF6

4 UNI+LeF6 APEN DCC4 CE DFA DPR HIST123

SKEW MAVS OHM PSDFD PSR SMR VCF VFD 2xLeF2 2xLeF5 21xLeF6

2 TSM+UNI+LeF6 APEN CC1 CC4 DCC4 CE DFA DPR HIST123

SKEW MAVS OHM PSDFD PSR SMR SNR VCF VFD 37xLeF6

6 TSM+UNI+LeF6 CC1 CC4 DCC4 CE DPR HIST123 SKEW MAVS PSDFD SMR

SNR VCF VFD 5xLeF2 5xLeF4 1xLeF5 37xLeF6

7 UNI+LeF6 DCC4 CE DPR HIST123 SKEW MAVS

PSDFD SMR VCF VFD 2xLeF2 15xLeF6

8 UNI+LeF6 DCC4 CE DPR HIST123 SKEW MAVS PSDFD SMR

VCF VFD 5xLeF2 5xLeF4 1xLeF5 37xLeF6

9 UNI+LeF6 APEN DCC4 CE DFA DPR HIST2 SKEW MAVS

OHM PSDFD PSR SMR VCF VFD 15xLeF2 36xLeF6

10 All Handcrafted+LeF6 APEN CC14 DCC4 CE DFA DPR HIST123 KURT SKEW M2 MAVS MAX MHW23

MTW123 MNP TTP OHM PSDFD PSR SM SMR SNR SSI TM DTM VAR DVARV VCF VFD 11xLeF6

11 NLC+LeF6 APEN SAMPEN BC

KATZ 1xLeF6

that for all the examples given in Figure 8A, the most active
channel was not the primary channel used for the gesture
prediction. In fact, for the vast majority of gestures, the

channel with the highest amplitude did not contribute in a
meaningful way to the network’s prediction. This observation
held true while looking at several other examples from the
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TABLE 3 | Accuracy obtained on the test set using the handcrafted features and

the learned features from their respective block.

Single feature All features

Average accuracy (%) STD (%) Accuracy (%)

SAP 26.80 7.0 41.61

FI 19.95 2.87 34.80

NLC 22.32 7.15 31.49

TSM 22.24 3.33 37.18

UNI 15.32 5.11 48.37

Block 1 28.49 3.84 74.59

Block 2 28.28 4.66 78.26

Block 3 28.90 5.06 79.19

Block 4 29.21 5.15 78.77

Block 5 28.18 5.48 79.23

Block 6 26.62 6.19 81.38

The Single Feature accuracies are given as the average accuracy over all the features of

their respective block/category.

3DC Dataset. This might indicate that the common practice of
placing the recording channel directly on the most prominent
muscle for a given gesture within the context of gesture
recognition may not be optimal. One could thus use the type
of information provided by algorithms, such as Guided Grad-
CAM as another way of performing channel selection (instead of
simply using classification accuracy). The absence of importance
on amplitude characteristics is in contrast to conventional
practices of handcrafted feature engineering—where the feature
set typically relies heavily on amplitude characteristics. This
perhaps explains the growing interest in handcrafted feature
extraction techniques that do not capture amplitude information,
such as TDPSD, that have been demonstrated to outperform
conventional amplitude-reliant features in terms of accuracy and
robustness to confounding factors (Khushaba et al., 2016).

When applying Guided Grad-CAM on a noise input (one
where the target gesture is not present, as seen in Figure 8B),
the reported activation level is substantially lower, and in some
cases non-existent. When the standard deviation of the Gaussian
noise was increased by 33%, the network did not find any
features resembling any gesture. This is most likely due to the
fact that increasing the spread of the noise leads to a potentially
greater gap in value between two adjacent data-points (reduced
smoothness) fostering the condition for a more unrealistic
signal. One could thus imagine training a generative adversarial
network with the discriminative function based on the activation
level calculated by Guided Grad-CAM, and modulating the
difficulty by augmenting the signal’s amplitude. This could
facilitate training a network to not only be able to generate
realistic, synthetic EMG signal, but also have the signal resemble
actual gestures.

In contrast to the topological networks based on handcrafted
features, those based on the learned features appear as a long
flair with a loop. From Figure 9A, the learned features from
block 1 are concentrated in the left segment of the flare, and the
lower segment of the loop. From Figure 9B, the learned features

from block 2 were located slightly more central to the network
than the block 1 features. Additionally, a small subset of block
2 features appeared at the right segment of the flare, indicating
a second distinct source of information was being harnessed.
From Figures 9C–E, the features of block 3, 4, and 5 relocate
their concentration of features to converge in the center of the
network. Finally from Figure 9F, the concentration of all block 6
features lies in the center of the network. Thus, it can be seen that
learned features from the same block tend to cluster together and
remain close in the map to adjacent blocks in the network. The
only exception to this is from the first block to the second, where
substantially different features were generated by the latter. This
suggests that the first layer may serve almost as a preprocessing
layer which conditions the signal for the other layers.

4.3. Hybrid Features Visualization
The topological network generated from using both the
handcrafted and learned features (see Figure 10) followed two
orthogonal axes with the handcrafted features on one and the
learned features on the other. The middle of the graph (where
the two axis intercept) is where any nodes containing both
handcrafted and learned features are found. The vast majority
of these nodes are populated by features from block 6 and the
NLC, TSM and UNI functional groupings. No nodes in the graph
contained both handcrafted features and features from block 3,
suggesting that block 3 extracted features not captured by current
feature designs. Conversely, no learned features shared a node
with features from the FI family, suggesting that these features
may not have been extracted by the network.

While this topological network informs the type of
information encoded within each individual feature, it is
important to note that information can still be present but
encoded in a more complex way within the weights of the deep
network. This information flow can be visualized from the
regression graphs of Figure 12. Features from the SAP family are
more easily predicted within the early blocks whereas features
from the TSM and NLC family require the latter blocks of the
network to achieve the best predictions. Interestingly, while
features from the FI family did not share any nodes learned
features, one can see that the deep network is able to better
extract this type of information within the intermediary blocks.
This indicates (from Figures 10, 12) that, while frequency
information is not explicitly used by the ConvNet, this type
of information is nonetheless indirectly used to compute the
features from the latter blocks. An example of a feature for which
the ConvNet was unable to leverage its topology is the HIST
(see Figure 12).

4.4. Understanding Deep Features
Predictions
The topological network of Figure 10 showed that the type of
information encoded within the lower blocks of the ConvNet
tended to be highly dissimilar to what the handcrafted features
encoded. Interestingly, however, Figure 11 shows that the role
fulfilled by these features is similar. That is, both the handcrafted
and learned features (from the lower blocks) try to encode
general properties that can distinguish between all classes.
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FIGURE 11 | Confusion matrices using the handcrafted features and the learned features from the first, penultimate and last block as input and a LDA as the classifier.

The first column, denoted as All features, shows the confusion matrices when using all 64 learned features of Block 1, 5, and 6, respectively (from top to bottom) and

the set of UNI handcrafted features. The next five columns, denoted as Single Feature, show the confusions matrices for handcrafted feature examplars and from the

same network’s blocks but when training the LDA on a single feature. The subset of learned features was selected as representative of the typical confusion matrices

found at each block. The examplars of the handcrafted features were selected from each handcrafted features’ category (in order: SAP, FI, NLC, TSM, and UNI).

The confusion matrices obtained from training an LDA on a
single feature highlight this behavior (see Figure 11 for some
examples) as both the handcrafted features and the learned
features (before the last block) are able to distinguish between
gestures relatively equally. In contrast, the features extracted
from the last block (and to a lesser extent from the penultimate
block) have been optimized to be a gesture detector instead of
a feature detector. A clear visual of this behavior is illustrated
in Figure 11, where the main line highlighted in the confusion
matrices from block 6 was a single column (corresponding
to the prediction of a single gesture), instead of the typical
diagonal. In other words, during training, the neurons of the
final block are encoded to have maximum activation when a
particular class was provided in the input window and minimum
activation when other classes were provided; effectively creating
a one-vs.-all (OVA) classifier. This behavior is consistent with
the feature visualization literature found in image classification
and natural language processing, where semantic dictionaries or
saliency maps have depicted neuron representations becoming
more abstract at later layers (Simonyan et al., 2013; LeCun et al.,
2015). This also explains why the features from the last block
obtained the worst average accuracy when taken individually
while achieving the highest accuracy as a group (see Table 3).
That is, as each feature map of the last layer tries to detect a
particular gesture, its activation for the other gestures should

be minimal, making the distinction between the other gestures
significantly harder. The final decision layer of the network
can then be thought of as a weighted average of these OVA
classifiers to maximize the performance of the learned feature
maps. Note that in Table 3, the lower accuracies obtained from
the handcrafted features as a group were expected as each feature
within the same family provides similar type of information,
even more so than the learned features of the network (as seen
in Figures 6, 9, 10). Overall, the best performing handcrafted
feature set as a group was the features from the UNI family
despite the fact that they were the worst on average when alone.
This is most likely due to the fact that by definitions, features
within this family are more heterogeneous.

5. CONCLUSION

This paper presents the first in-depth analysis of features learned
using deep learning for EMG-based hand gesture recognition.
The type of information encoded within learned features and
their relationship to handcrafted features were characterized
employing a mixture of topological data analysis (Mapper),
network interpretability visualization (Guided Grad-CAM),
machine learning (feature classification prediction), and by
visualizing the information flow using feature regression.
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FIGURE 12 | Mean squared error of the regressions from learned features to handcrafted features, with respect to the number of blocks employed for the regression.

The features are grouped with their respective functional groups.
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As a secondary, but significant contribution, this work
presented ADANN, a novel multi-domain training algorithm
particularly suited for EMG-based gesture recognition shown
to significantly outperform traditional training on cross-subject
classification accuracy.

This manuscript paves the way for hybrid classifiers that
contain both learned and handcrafted features. An ideal
application for the findings of this work would rely on a mix
of handcrafted features and learned features taken from all
four extremities of the hybrid topological network, and at the
center to provide complementary, and general features to the
classifier. A network could then be trained to augment its
sensitivity to similar classes. For example, to alleviate ambiguity
between pinch grip and chuck grip, a learned feature that encodes
the one-vs.-all information of pinch grip could be included
into the original feature set or into an otherwise handcrafted
only feature set. Alternatively, handcrafted feature extraction
stages may be installed within the deep learning architecture by
means of neuroevolution of augmenting topologies (Chen and
Alahakoon, 2006), a genetic algorithm that optimizes the weights
and connections of deep learning architectures.

The main limitation of this study was the use of a single
architecture to generate the learned features. Though this
architecture was chosen to be representative of current practices
in myoelectric control and be extensible to other applications,
the current work did study the impact of varying the number
of blocks and the composition of these block on the different
experiments. Additionally, although the set of handcrafted
features was selected to be comprehensive over the sources
of information available from the EMG signal, explicit time-
frequency features, such as those based on spectrograms and
wavelet were not included in the current work, as they were ill-
adapted to the framework employed in this study. Furthermore,
an analysis including a larger amount of gestures should also be
conducted. Importantly, these results are presented for a single
1D electrode array, and may not be representative of larger 2D
arrays, such as those used in high density EMG applications.
Similarly, explicit spatio-temporal features, such as coherence
between electrodes, were not explored, and the convolutional
kernels were restricted to 1D (although as seen in Figure 8A the
network was still able to learn spatial information to a certain
extent). Omitting these type of complex features was a design
choice as this work represents a first step in understanding and
characterizing learned features within the context of EMG signal.
As such, using this manuscript as a basis, future works should
study the impact of diverse architectures on the type of learned
features and will incorporate spatio-temporal features (both

handcrafted and from 2D convolutional kernels). Additionally,
formal feature set generation and hybrid classifiers should be
investigated using the tools presented in this work.
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The design of markerless systems to reconstruct human motion in a timely, unobtrusive

and externally valid manner is still an open challenge. Artificial intelligence algorithms

based on automatic landmarks identification on video images opened to a new

approach, potentially e-viable with low-cost hardware. OpenPose is a library that t

using a two-branch convolutional neural network allows for the recognition of skeletons

in the scene. Although OpenPose-based solutions are spreading, their metrological

performances relative to video setup are still largely unexplored. This paper aimed

at validating a two-cameras OpenPose-based markerless system for gait analysis,

considering its accuracy relative to three factors: cameras’ relative distance, gait

direction and video resolution. Two volunteers performed a walking test within a gait

analysis laboratory. A marker-based optical motion capture system was taken as a

reference. Procedures involved: calibration of the stereoscopic system; acquisition

of video recordings, simultaneously with the reference marker-based system; video

processing within OpenPose to extract the subject’s skeleton; videos synchronization;

triangulation of the skeletons in the two videos to obtain the 3D coordinates of the joints.

Two set of parameters were considered for the accuracy assessment: errors in trajectory

reconstruction and error in selected gait space-temporal parameters (step length, swing

and stance time). The lowest error in trajectories (∼20mm) was obtained with cameras

1.8m apart, highest resolution and straight gait, and the highest (∼60mm) with the

1.0m, low resolution and diagonal gait configuration. The OpenPose-based system

tended to underestimate step length of about 1.5 cm, while no systematic biases were

found for swing/stance time. Step length significantly changed according to gait direction

(p= 0.008), camera distance (p= 0.020), and resolution (p< 0.001). Among stance and

swing times, the lowest errors (0.02 and 0.05 s for stance and swing, respectively) were

obtained with the 1m, highest resolution and straight gait configuration. These findings

confirm the feasibility of tracking kinematics and gait parameters of a single subject in

a 3D space using two low-cost webcams and the OpenPose engine. In particular, the

maximization of cameras distance and video resolution enabled to achieve the highest

metrological performances.

Keywords: movement measurement, gait analysis, computer vision, artificial intelligence, markerless

motion capture
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INTRODUCTION

The measurement of human motion represents one of the
most interesting and challenging topics of metrology. Optical
motion tracking solutions can be broadly categorized into
marker-based and markerless systems (Winter, 1990; Zhou and
Hu, 2008). Mostly represented by the first group, the modern
technological standards ground on established measurement
principles and techniques: the position of joints and the
orientation body segments are obtained through the three-
dimensional localization of passive (or less often, active) markers,
fixed on subjects’ body and captured by a calibratedmulti-camera
stereophotogrammetric video system (Cappozzo et al., 2005).
The human body is a complex, self-occluding and only partially
rigid entity (Mündermann et al., 2006). Thus, instead of directly
tracking human body pose, these systems work by identifying
common object features in consecutive images (fiducial points
or landmarks), which are used to track the motion of a series of
rigid bodes connected by rotational joints (Winter, 1990). This
solution provides the best metrological performances, in terms of
accuracy in themarkers’ localization (usually in the order of 10ths
of millimeters), repeatability and frequency of measurements
(Ma’touq et al., 2018). Owing to their cost, complexity and
required personnel to run the recording and place the markers
on specific anatomical landmarks, marker-based systems are

mainly used in specialized laboratories for clinical/rehabilitation

applications or entertainment and digital animation (Winter,
1990; Cappozzo et al., 2005).

With the aim of limiting these drawbacks, in the last decades
the interest toward markerless solution has grown rapidly, trying
either to reduce the cost of technology or to simplify the process
(Abbondanza et al., 2016; Ronchi and Perona, 2017; Colyer et al.,
2018; Mizumoto et al., 2018; Tanaka et al., 2018; Tarabini et al.,
2018a; Clark et al., 2019). Markerless systems are based on four
main components, namely a camera system, a body model, the
image features used and the algorithms that determine shape,
pose and location of the model itself (Colyer et al., 2018). Two
families of camera systems can be used, differing by whether
or not they produce a so-called “depth map,” i.e., an image
where each pixel describes the distance of a point in the scene
from the camera. Probably the best-known depth-sensing camera
systems (often referred to as RGB-D cameras as they capture
both color and depth) are Microsoft Kinect, Intel Realsense,
and StereoLabs Zed. These solutions are particularly effective for
real-time full body pose estimation in interactive systems and
videogames (Shotton et al., 2011; Ye et al., 2013), but they also
have limitations that hinder their wide application in clinical or
biomechanical setting: short-range, inoperability in bright sun
light, and potential interference betweenmultiple sensors (Colyer
et al., 2018). In addition, the accuracy in motion tracking is
still lower than marker-based systems, which actually remain the
gold standard.

Recently, novel artificial intelligence algorithms based on
automatic landmarks identification on video images (computer
vision) opened to a new approach for markerless motion capture,
which became potentially feasible with low-cost hardware (Cao
et al., 2016; Colyer et al., 2018; Clark et al., 2019). In that,

machine learning techniques were exploited to identify the
nodes of a skeletal structure describing the posture of a
human subject within a given image frame. As the associated
computational burden made this method practicably unviable,
the process was optimized by a research group from the Carnegie
Mellon University, who released a processing framework called
OpenPose (Cao et al., 2016). OpenPose takes as input color
images from simple web-cameras and using a two-branch
convolutional neural network (CNN) produces as output
confidence maps of keypoints, and affinity for each keypoint pair
(that is, belonging to the same skeleton). This way, OpenPose
allows for the recognition of skeletons of multiple persons in
the same scene. Some Authors adopted these OpenPose-based
solutions as a functional block of their research: an example
is Huang et al. (2017), in which OpenPose was used as an
initialization step for the reconstruction of 3D human shape;
a different approach is presented in Mehta et al. (2017), in
which a 3D skeletal model was obtained starting from a single
planar image.

Although promising results were obtained, the design of
markerless systems able to reliably reconstruct human motion in
a timely, unobtrusive and externally valid manner is still an open
challenge (Colyer et al., 2018). Among the fast-growing studies
on the application to various case studies, only a few focused
on the accuracy of subjects’ three-dimensional reconstruction:
the performance of OpenPose in the computation of the lower
limbs angles were analyzed with a single camera (Gu et al.,
2018), and compared to a multi-camera marker based system.
However, to the best of our knowledge, a targeted metrological
characterization of data processing with multiple viewpoints
is still missing in the case of automated walking analysis. At
present, example of OpenPose applications for the extraction
of gait parameters are scant. We hypothesize that the cameras
resolution and positioning, as well as the walking direction (i.e.,
angle with respect to cameras) could affect the accuracy and
thus feasibility of such systems in the clinical setting. Thus,
this paper aims at describing and validating an OpenPose-based
markerless motion tracking system for gait analysis against a
gold-standard commercial marker-based motion capture system,
discussing the extent to which the aforementioned factors affect
the tracking quality.

METHODS

Experimental Design and Participants
This observational case-series study was designed to determine
the metrological performance of the stereoscopic system featured
by OpenPose. The study involved two healthy volunteers who
performed a walking test at comfortable walking speed within
an instrumented gait analysis laboratory. The two participants
were both 24-years-old male adults, with the following heights
and body masses: 1.73m and 61 kg, 1.82m and 75 kg. They wore
minimal, close-fitting clothes. Participants were instructed about
the aims and benefits of the study, and they both signed a written
informed consent prior to laboratory sessions. As this study
did not involve any clinical intervention or functional/physical
evaluation, the approval from the Ethics Committee was not
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FIGURE 1 | Laboratory setup, schematic (left) and pictorial (right) view.

required. The study was carried out in accordance with the 1964
Helsinki declaration and its later amendments.

The effect of three factors potentially influencing the accuracy
of the proposed system were considered:

1. Cameras’ relative distance: cameras were positioned 1m and
then 1.8m apart;

2. Gait direction, straight or diagonal, defined bymeans of visual
references positioned along the path (the same for all the tests
repetitions). In the second, additional sources of error may
arise from the occlusions between body parts; subjects walked
on a footboard and the walking direction was perpendicular to
the cameras’ connecting axis.

3. Video resolution: high (1,312× 736 pixel), and standard (640
× 480 pixel). Both resolutions were obtained by scaling the
camera native resolution with a cubic interpolation, this way
we avoided the repetition of recording sessions.

Given that each factor assumed two levels, 23 (8) configurations
were possible. Each test configuration was replicated 3 times per
each volunteer; 48 tests were therefore performed.

Measurement System and Equipment
Two full-HD webcams (PC-W1, Aukey, Shenzhen, China) with
a native image resolution of 1920 × 1080 pixels and a 1/2.7”
CMOS sensor were used. Cameras acquired images at 30Hz, with
contrast and brightness automatically selected by the software
provided by the manufacturer. Cameras were fastened on an
aluminum bar perpendicular to the strait gait direction at a height
of 2.3m, framing the subject frontally.

A stereophotogrammetric motion analyser (Smart-D,
BTS Bioengineering, Milano, Italy) equipped with eight
infrared cameras sampling at 100Hz was used as reference
measurement system. The system was calibrated according to the
manufacturer’s specification, and the error in markers’ location
reconstruction was 0.2mm on a working volume of 3× 2× 2m.
Figure 1 shows the implemented measurement infrastructure.

Procedures
The measurement process can be summarized as follows:

1. Calibration of the stereoscopic system using planar patterns
(Zhang, 2000; Hartley and Zisserman, 2003). Cameras
calibration was performed within Matlab (v2018b, The
Mathworks Inc., Natwick, USA) by means of the Camera
Calibration Toolbox. A black and white checkerboard whose
geometry is known (70 × 50 cm) is framed by the two
cameras while spanning the checkerboard into the working
volume. The Toolbox returns an estimate of the cameras
internal and external parameters (i.e., lens distortion, camera
relative orientation and position). To get a calibration
metric, the reprojection error is computed by projecting
the checkerboard points from world coordinates into image
coordinates. Mean reprojection error was 0.18 pixels in
the 1-m distance configuration, and 0.12 pixels in the
1.8m configuration.

2. Acquisition of two video recordings, a and b (one per each
webcam), using the cameras of the stereoscopic system. Each
recording allowed to collect between four and five steps,
according to the laboratory dimension, and lasted 4.5–6.5 s.

3. Simultaneous recording using the reference, marker-based
optical system. Twenty-four reflective markers were placed
on the subject in the following anatomical landmarks (see
Figure 2): sternum and sacrum; right and left acromion,
medial and lateral humeral epicondyles, radius and ulnar
styloid process, antero-superior iliac spines, greater trochanter,
medial and lateral femoral epicondyles, medial and lateral
malleoli. This marker set was adapted from standard protocols
used in clinical gait analysis (Davis et al., 1991; Zago et al.,
2017), and was designed to match the skeletal configuration
of OpenPose (Figure 2). To do so, wrists, elbows, knees and
ankles joint centers were located at the midpoint (average) of
medial and lateral markers. Hip joint centers were computed
using regression equations as prompted by the International
Society of Biomechanics standards (Wu and Cavanagh, 1995).
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FIGURE 2 | Stick diagrams as returned by the marker-based optical system

(top, left) and OpenPose model (top, right); corresponding 3D reconstruction

of the skeletal structures during walking (bottom).

4. Video processing within OpenPose to extract the skeleton S of
a (single) subject in each video recording (Sa and Sb).

5. Synchronization of the two videos (see paragraph Data
Synchronization and Spatial Alignment).

6. Triangulation of the skeletons Sa and Sb using the calibration
outcome (step 1) to obtain the three-dimensional coordinates
of the joints and alignment between coordinate system of
step 4.

7. Computation of gait parameters (see paragraph Target
Parameters Computation) based on the three-dimensional
coordinates obtained.

8. Evaluation of the OpenPose accuracy for each single test
according to the metrics defined in the following paragraph.

9. Evaluation of the dependence of accuracy from the factors’
levels using a 3× 2 Analysis of Variance.

Data Processing
A set of 18 2D keypoints coordinates for body pose estimation
(in pixels) are returned by OpenPose from video images; 2D

keypoints are located in relevant body landmarks (such as left
hand, right hand, face, etc.) and were used to determine the
3D Cartesian coordinates, positioning the skeletal model of
the subject in the space with respect to reference system of
one camera. This operation was performed using the Matlab
Computer Vision System Toolbox (v2018b, The Mathworks Inc.,
Natwick, USA), obtaining the 3D stereoscopic triangulation of
the camera pixel coordinates, which included:

• the intrinsic calibration parameters of each camera,
for the assessment of focal lengths, camera centers and
distortion parameters;

• the extrinsic calibration parameters, accounting for the relative
position of cameras;

• the undistortion of pixel coordinates;
• the application of a functional triangulation for each of the

2D keypoints for the identification of the corresponding 3D
coordinates in the epipolar plane.

The resulting output was the 3D skeletal model of the subject, as
shown in the bottom-right panel of Figure 2.

Prior to further processing, coordinates returned by both the
OpenPose and the marker-based reference system were filtered
using a zero-lag, 2nd order Butterworth filter with a cut-off
frequency of 10 Hz.

Data Synchronization and Spatial Alignment
Since a physical trigger for the synchronization of the cameras
with the motion capture system was not available, we asked the
subjects to perform a sequence of repeated actions (to beat the
right hand on the right hip). The synchronization procedure
was repeated before each single test and it was achieved by
overlapping the time series of the distance between the right wrist
and right hipmarkers returned by the two systems. Prior to do so,
the signals were both downsampled (cubic splines interpolation)
to 30Hz. Drift errors due to different sampling rates (100Hz for
the marker-based system, 30Hz for the webcams) were negligible
given the test duration of a few seconds.

The spatial alignment of the reference systems completed the
measurement systems calibration: the 3D coordinates provided
by the triangulation of OpenPose data were originally expressed
in a reference system located in the optical center of one of the
cameras, oriented as the camera itself. The marker-based system
returns 3D coordinates resolved in global (laboratory) reference
system fixed on the ground at the center of the working volume.
These two coordinate systems were moved to a new, coincident,
reference frame, positioned midway between the two cameras,
with the origin at the ground level and with the axes directed
as those of the original marker-based system. The alignment
procedure was taken from Kabsch (1976) and involved the initial
rotation of the OpenPose reference system, followed by the
translation toward the desired origin.

Target Parameters Computation
Within the OpenPose-based system, the definition of the gait
phases relies on the recognition of the foot condition—stance or
swing (Saggin et al., 2013). The distance between two successive
stance statuses represents the target measurement. In our case,
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FIGURE 3 | Extraction of gait phases from the trajectories of ankle nodes’ velocity, explanatory example taken from a straight gait test. OP, OpenPose-based system;

MB, marker-based optical system.

the processing structure was taken from Tarabini et al. (2018b)
and involved the analysis on the velocities of the nodes located
at the ankle level (Figure 3). Given a window of n elements,
the magnitude of the velocity (v) of the two ankle nodes was
computed as:

v = f ·

√√√√
n∏

i=1

(xi − xi−1)
2 +

n∏

i=1

(
yi − y

)2
+

n∏

i=1

(zi − zi−1)
2

where f is the sample frequency (30Hz). To minimize the
influence of noise and ease foot status detection, a moving
average lowpass filter was then applied on v, with a period of
12 samples (with a 30Hz sampling frequency, the first zero
of the filter transfer function is at 1.25Hz). Two thresholds
on the filtered velocity signal of the ankle node were set
for the identification of the foot status: HystLowSpeed and
HystHighSpeed. These were automatically obtained for each
subject from a complete gait test. After an initial sorting of all
velocities assessed from the test and reorganized in the form of a
histogram, the values were computed as:

• HystHighSpeed: upper threshold limit, as the value
corresponding to 65% of the sorted velocities: when the
joint’s filtered speed was higher than this value, then the foot
was considered in the swing state (1).

• HystLowSpeed: lower threshold limit, equal to 80% of
HystLowSpeed, to avoid erroneous swing’s end caused by small
variations induced by residual noise components. In this case,
the foot was considered in the stance state (0).

To get correct gait parameters’ values, it is essential to consider
complete steps only. For such a reason, four cases were analyzed:

1. Foot enters the considered acquisition window in swing
state (1) and exits still in swing state (1) (if the acquisition

contained at least a complete step, first and last step were
not considered).

2. Foot enters the considered acquisition window in stance
state (0) and exits in swing (1) state (the last step was
not considered).

3. Foot enters the considered acquisition window in swing
state (1) and exits in stance state (0) (the first step was
not considered).

4. Foot enters in the considered acquisition window in stance
state (0) and exits still in stance state (0) (if the acquisition
contained any number of steps, they were all considered).

Evaluation of Accuracy
In each test, the accuracy of the proposed system was evaluated
in terms of two sets of parameters, retrieved from the same
recorded dataset:

• Error in the reconstruction of the trajectories, computed
as the Root Mean Square (RMS) distance between the
trajectories of selected, corresponding skeletal nodes. In
doing so, the most similar physical fiducial points were
considered: wrists, elbows, knees and ankles. Indeed, the
reference and the proposed skeletal structures do not
correspond perfectly. Thus, a minimization procedure was
used to align the thirteen landmarks of the skeleton,
and a roto-translation of the trajectories obtained with
the OpenPose-based system was performed to align them
to the correspondent reference (marker-based coordinates).
The complete procedure is described in Abbondanza et al.
(2016) and Tarabini et al. (2018b) and it is based on
the calculation of the Euclidean distance in each frame
between correspondent keypoints of the two systems. This
method was already used to synchronize trajectories acquired
with different measurement systems, and it proved to be
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FIGURE 4 | Sample trajectories of a landmark (position of the right ankle) obtained from the reference marker-based (black) and markerless, OpenPose-based (blue

and red) systems (top); corresponding RMS distance (bottom).

unbiased also in presence of offset between the skeletal
markers (Abbondanza et al., 2016; Tarabini et al., 2018b).

• Error in gait space-temporal parameters: step length
(distance between consecutive heel-strikes position), stance
and swing time were extracted (Perry and Burnfield,
2010). The RMS error with the correspondent parameters
computed with the reference marker-based system
was computed.

Statistical Analysis
The effect of the three factors (cameras’ distance, gait direction,
and resolution) on the measurement error was assessed using

the following analysis of variance (ANOVA) model design
(Moschioni et al., 2013):

ξ = β0 + β1x1 + β2x2 + β3x3 + β(1,2)x1x2 + · · · + ǫ

where ξ is the dependent variable, namely the skeletal node
position error (RMS) or the error of one of the gait analysis
parameters (step length, stance and swing time), and xi are the
independent variables (previously referred to as factors). β0 is the
global tests average, βi and β(1,2) are used to describe the effect
of the independent variables and their interactions (in particular,
gait direction × camera distance interaction was assessed); ǫ

is the residual, namely the difference between the actual data
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TABLE 1 | Root Mean Square errors measured at different skeleton nodes as a

function of gait direction, camera distance and video resolution.

# Gait type Straight gait Diagonal gait

Distance (m) 1.8 1.8 1.0 1.0 1.8 1.8 1.0 1.0

Resolution LR HR LR HR LR HR LR HR

1 Sternum 25.2 16.8 41.1 22.1 65.8 54.0 69.5 60.1

2 Shoulder, left 32.3 20.0 42.2 26.5 46.2 45.5 52.8 51.2

3 Shoulder, right 27.5 17.7 37.2 22.1 42.1 39.2 48.3 41.2

4 Elbow, left 28.2 18.3 49.8 24.6 69.9 61.6 69.1 58.3

5 Elbow, right 27.2 18.8 50.3 27.9 62.7 74.4 48.5 44.6

6 Wrist, left 23.3 17.1 45.1 22.9 51.6 51.8 79.1 54.0

7 Wrist, right 25.4 16.1 48.6 22.3 65.1 66.9 56.1 48.2

8 Hip, left 33.0 21.9 48.5 29.0 79.9 81.1 67.5 75.7

9 Hip, right 34.6 23.4 50.1 41.4 79.5 82.5 71.6 73.5

10 Knee, left 30.9 23.4 60.0 29.2 53.7 53.0 58.7 55.4

11 Knee, right 33.9 24.8 39.6 19.9 58.4 57.6 63.7 48.3

12 Ankle, left 39.5 26.1 62.2 24.0 69.1 68.7 87.4 103.3

13 Ankle, right 35.8 26.2 34.5 21.4 63.5 62.7 64.9 61.3

- Mean 30.5 20.8 46.9 25.6 62.1 61.5 64.4 59.6

- SD 4.6 3.5 7.9 5.4 11.1 12.6 11.1 16.0

Values in mm.

TABLE 2 | Root Mean Square errors measured between the reference

(marker-based) and OpenPose-based systems on selected spatio-temporal gait

parameters.

Gait type Straight gait Diagonal gait

Distance (m) 1.8 1.8 1.0 1.0 1.8 1.8 1.0 1.0

Resolution LR HR LR HR LR HR LR HR

Step length (cm) 3.26 1.53 7.42 1.93 2.45 1.66 3.25 1.23

Swing time (s) 0.04 0.05 0.05 0.02 0.03 0.03 0.03 0.06

Stance time (s) 0.05 0.05 0.05 0.05 0.07 0.07 0.05 0.08

behavior and the model prediction. A significance alpha level of
5% was implemented throughout.

In addition, Bland-Altman plots were used to graphically
compare gait analysis parameters obtained with the reference and
OpenPose-based systems.

RESULTS

Figure 4 shows an explanatory plot of the original joints
coordinates and of the corresponding measurement error over
time. Overall measurement errors (RMS) are reported in
Tables 1, 2, and graphically summarized in the boxplots of
Figure 5; Table 3 displays the relevant statistic: all factors (p
< 0.01) and interaction (p < 0.001, see Figure 6) resulted to
be statistically significant relative to trajectories reconstruction
error. The lowest error (about 20mm) was obtained with the
1.8m, highest resolution and straight gait configuration, and the
highest (>60mm) with the 1.0m, low resolution and diagonal
gait configuration.

Bland-Altman plots displaying gait parameters comparison
are shown in Figure 7: the proposed system tended to
underestimate step length of about 1.5 cm, while no systematic
biases were found for swing/stance time. Step length significantly
changed according to gait direction (p= 0.008), camera distance
(p = 0.020) and resolution (p < 0.001, see Table 3). Consistently
with trajectories’ RMS, the lowest error in step length (1.53 cm)
was obtained with the 1.8m, high resolution and straight gait
configuration. Among stance and swing times, only for the first
emerged a significant factor, i.e., camera distance (p = 0.038),
and the lowest errors (0.02 s and 0.05 s for stance and swing,
respectively) were obtained with the 1m, high resolution and
straight gait configuration.

DISCUSSION

The findings of this work confirm to the feasibility of tracking
kinematics and gait parameters of a single subject in a 3D space
using two low-cost cameras and the OpenPose engine. The
accuracy of markerless motion tracking depends on three factors:
the occlusions between body parts, cameras position/orientation
and video resolution; considering the best combination of
the considered factors (cameras distance 1.8m, maximum
resolution, and no occlusions due to straight walking) the lowest
error in 3D trajectories reconstruction was about 20mm, the
lowest error in swing/stance time was 0.03 s and 1.23 cm in
step length. Values are comparable with intra-subject variability
in clinical gait analysis investigations (Ciprandi et al., 2017;
Temporiti et al., 2019), thus encourage a preliminary adoption of
OpenPose-based markerless solutions in this setting. However,
it should be noticed that a different configuration (smaller
camera distance, lower resolution or diagonal gait direction) can
negatively affect the results.

Accuracy
In our optimal configuration, average markers RMS was about
20mm. This can be considered a notable result, as it is only
slightly higher than the error reported in a previous study (about
15mm), where however eight cameras (fs = 120Hz) and a
subject-specific, way more complex anatomical model were used
(Corazza et al., 2010). Dunne et al. reported an error of ∼50mm
in reconstructing foot contact position with a single camera
system (Dunn et al., 2014).

While several studies compared the outcome of an OpenPose
markerless system to a traditional marker-based one (Clark
et al., 2019), the majority focused on joint angles (Colyer
et al., 2018) and to the best of our knowledge, none of them
provided gait analysis parameters. Thus, a direct evaluation of
the performances of our system is not straightforward. As a
reference, Kinect-based markerless systems returned a lower
accuracy of 2.5–5.5 cm in step length and a slightly lower
accuracy of 60–90ms in stance/swing time (Latorre et al., 2018).
Previously, Barone et al. obtained comparable or slightly better
results (accuracy of 3.7 cm for step length and 0.02 s for step
duration) but they combined a markerless system with the signal
coming from the accelerometer embedded in a smartphone
(Barone et al., 2016).
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FIGURE 5 | Boxplots of the RMS distance (measurement error) for the straight (left) and diagonal (right) walking tests; cam: cameras, res: resolution; OP, OpenPose.

TABLE 3 | Statistical outcomes from the ANOVA computed on trajectories’ RMS

and on gait spatio-temporal parameters Root Mean Square errors.

Variable Gait

direction

Camera

distance

Resolution Direction

* distance

F p F p F p F p

RMS 392.39 <0.001 8.11 0.005 44.5 <0.001 19.6 <0.001

Step length 7.84 0.008 5.84 0.020 28.46 <0.001 6.09 0.018

Stance time 1.45 0.235 3.24 0.079 4.57 0.038 0.29 0.591

Swing time 10.55 0.002 0.06 0.811 1.22 0.275 0.05 0.817

Statistically significant values are in bold.

The resolution of the stereoscopic system is not constant,
being dependent on the physical distance between the
subject and cameras. The method performances worsen
as the subject distance from the sensor increases: errors
presented in these work are average values, both summarizing
the ideal situation in which the subject is filling the two
image planes and the situation in which the subject
is far from the camera with a less favorable optical
sensor resolution.

Effect of Camera Setup
Occlusions represented the most detrimental factor emerging
from the comparison between gait types. The accuracy of results
obtained in the diagonal gait tests was always lower than those
obtained with a straight gait. In the 3D reconstruction all
the other factors are almost negligible when occlusions are
present. When body parts are occluded, OpenPose provides
an estimation of the hidden landmarks, introducing an error
that propagates in the 3D reconstruction. The problem is
common with all the vision-based measurement systems and
can be solved using more than 2 cameras simultaneously
(most optoelectronic systems use from 6 to 12 cameras)
so that each marker or joint is seen from more than
2 sensors.

Increasing the camera distance (from 1.0 to 1.8m) in
straight gait tests improved the accuracy of the reconstruction

by 22.5%. Cameras relative distance and orientation
influences the uncertainty of the triangulation, affecting the
dimensions of the volume where the triangulated point can
be placed. By positioning the two cameras further apart,
the framed person is seen from a different perspective and
the cameras are more convergent. This leads to a decrease
of the capture volume where the triangulated point can be
placed, but also a lower uncertainty in the triangulation
process. In short, the higher the cameras distance, the
narrower the working volume—but characterized by a
higher accuracy.

When increasing video resolution, the error decreased of
about 46% (1.0m camera distance) and 32% (1.8m camera
distance). By increasing the video resolution, the uncertainty in
the identification of the landmarks coordinates on the 2D images
decreases, and the 3D reconstruction results more accurate.
This comes at a cost: the main drawbacks are either higher
processing time, to a first approximation linearly dependent
to the number of pixels in the image, and more expensive
hardware required to data processing. The spatial resolution
of the system is not constant in the observed volume: the
pixel to distance conversion factor depends on the position
of the subject with respect to the cameras; consequently,
the optical resolution worsen when the subject is far and
occupies a small portion of the image. The problem can
be solved by putting more cameras surrounding the subject
and observing the motion from different directions, as in
common optoelectronic systems. Since in our test the subject
distance from the cameras varied approximately between 2 and
6m, errors’ numerical values are the average between optimal
conditions (in which the subject fills the image) and worst ones.
Consequently, in static applications when the subject is not
moving, we can expect better performances with respect to values
reported here.

Limitations and Perspectives
This pilot study was limited to two healthy subjects; a
larger population could be considered in further research
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FIGURE 6 | Effects plot for the RMS distance, according to the gait type (walking direction), cameras distance and resolution (left). Gait type×distance interaction

plot (right). Cam: cameras, res: resolution; OP, OpenPose.

FIGURE 7 | Bland-Altman plot of the pooled (selected) gait parameters, comparison between the OpenPose- and the marker-based systems.

to address, for instance, the effect of body size on the
tracking accuracy, as well as potential effects of clothes. It is
advisable that future research lines address the metrological
characterization of multi-camera systems, which will enable
a complete 360 degrees view of the subject. In this, the
occurrence of occlusions will be minimized, and a more accurate
reconstruction is expected, at the expenses of a more complex
hardware infrastructure.

CONCLUSION

In this work, a metrological characterization of OpenPose
processing in the context of gait analysis by mean of low-cost
stereoscopy was presented. Intentionally, no changes were made
to the original software interface, working instead on the test
configuration and on the influence factors in the metrological
setup. Thus, all the insights concern the actual processing
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algorithms, not considering improvements deriving from the
optimization or tuning of the code for a specific task.

Although future improvements in OpenPose performance are
expected, both in terms of accuracy in landmarks identifications
and processing speed, the proposed analysis considered general,
“external” factors that will remain practically valid. In particular,
we showed that the maximization of cameras distance and
video resolution enabled to achieve the highest metrological
performances. Therefore, system accuracy could further be
improved by reducing the presence of occlusions not only
through a better joint location prediction in the source images,
but also multiplying the number of cameras, thus obtaining a
perspective closer to the straight walking condition.

This work points the way to further applications in
environments where a video-based acquisition would be
particularly useful, i.e., those where a quick and economical
evaluation by non-expert operators is required.
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Introduction: Parkinson’s disease hinders the ability of a person to perform daily

activities. However, the varying impact of specific symptoms and their interactions on a

person’s motor repertoire is not understood. The current study investigates the possibility

to predict global motor disabilities based on the patient symptomatology andmedication.

Methods: A cohort of 115 patients diagnosed with Parkinson’s disease (mean age

= 67.0 ± 8.7 years old) participated in the study. Participants performed different

tasks, including the Timed-Up & Go, eating soup and the Purdue Pegboard test.

Performance on these tasks was judged using timing, number of errors committed,

and count achieved. K-means method was used to cluster the overall performance and

create different motor performance groups. Symptomatology was objectively assessed

for each participant from a combination of wearable inertial sensors (bradykinesia,

tremor, dyskinesia) and clinical assessment (rigidity, postural instability). A multinomial

regression model was derived to predict the performance cluster membership based on

the patients’ symptomatology, socio-demographics information and medication.

Results: Clustering exposed four distinct performance groups: normal behavior, slightly

affected in fine motor tasks, affected only in TUG, and affected in all areas. The statistical

model revealed that low to moderate level of dyskinesia increased the likelihood of being

in the normal group. A rise in postural instability and rest tremor increase the chance

to be affected in TUG. Finally, LEDD did not help distinguishing between groups, but

the presence of Amantadine as part of the medication regimen appears to decrease the

likelihood of being part of the groups affected in TUG.

Conclusion: The approach allowed to demonstrate the potential of using

clinical symptoms to predict the impact of Parkinson’s disease on a person’s

mobility performance.

Keywords: mobility, motor impact, Parkinson, clustering, K-means
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INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disease
characterized by both motor and non-motor symptoms,
including tremor, postural instability, muscle rigidity, and
bradykinesia or akinesia (Sveinbjornsdottir, 2016). These
symptoms affect the ability of patients to perform activities of
daily living (ADL) to a varying extent. There is currently no cure

FIGURE 1 | Study inclusion flowchart.

for PD, and symptoms are chiefly managed with medication.
While the treatment goal is to maximize the person’s ability to
perform everyday tasks, the impact of each symptom on ADL,
and most importantly, of the combination of symptoms, is not
well-understood. Past studies have tried to identify different
phenotypes in PD to help with this issue, and to guide diagnosis,
prognosis, and treatment (Eisinger et al., 2019). These studies
identified a tremor dominant subtype and a postural instability
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gait disorder group (Foltynie et al., 2002). Some studies also
recognize an indeterminate subtype to PD, while others propose
further sub-groups such as axial dominant, appendicular
dominant, and rigidity dominant (Eisinger et al., 2017). In other
words, classical approaches for PD phenotyping is mainly based
on an a priori hypothesis of the importance of the dominant
motor symptom on the patient’s ability to perform ADL. Yet,
patients with PD are often affected by more than one symptom.
Combination of symptoms may exacerbate mobility issues or
limit the efficacy of compensatory strategies. Furthermore, recent
studies have outlined the impact of non-motor symptoms on the
patients’ ability to perform various ADL (Berganzo et al., 2016).
The heterogeneity of the clinical profiles associated with PD
therefore result in an unclear relationship between the traditional
PD subgroups and the patients’ proficiency in ADL. Thus, it
appears desirable to revise this classification to allow a better
correspondence with the treatment goal. One way to do so is
to redirect the sub-typing approach toward an understanding
of the functional impact of a patient’s symptomatology on
its global motor repertoire. Functional impact of a disease is
traditionally assessed using questionnaires (Shulman et al.,
2016). However, self-reported questionnaire are inclined to over
or under-estimation of the patient’s ability to perform activities
and may suffer from flooring effect, as recently demonstrated
by Regnault et al. (2019) for early Parkinson’s disease. In an
attempt to shed light on this type of issue, our lab has been
working on developing methodologies to assess and objectively
quantify symptoms and motor skills performance to better
understand the relationship between PD symptoms and motor
skills performance. We herein set to explore the capacity to
assess the impact of the different symptoms on the motor skills
repertoire in a global fashion. Specifically, this study aimed at: (1)
exploring motor skill performance profiles in patients with PD;
(2) identifying the factors (in our case symptoms) influencing
the affiliation with a specific motor performance profile; and (3)
verifying the possibility to create a model allowing to predict the
motor performance profile based on the symptomatology.

METHODS

Participants
Data were extracted from a cohort of 121 patients diagnosed
with PD. These participants were recruited in collaboration with
the Quebec Parkinson Network and the Movement Disorders
Clinic of the University of Calgary. Inclusion criteria consisted
of a valid PD diagnosis given by a neurologist based on the UK
Parkinson’s Disease Society Brain Bank clinical diagnosis criteria
(Hughes et al., 1992). Patients requiring assistance to walk, having
an orthopedic condition that could hinder the performance of the
tasks, as well as patients with a psychosis, were all excluded from
the study. Previous publications using the data bank focused
on the concomitant presence of cardinal symptoms of PD with
dyskinesia (Goubault et al., 2018), as well as the influence of
dyskinesia on motor performance (Goubault et al., 2019). For
the present study, six additional participants were excluded as
detailed in Figure 1. As a result, a sample of 115 patients,
described in Table 1, was considered for the present study.

TABLE 1 | Study participants description.

Healthy elderly

(n = 69)

Parkinson’s disease

patients (n = 115)

p

GENERAL

Gender (% male) 56.5% 58.3% P = 0.8779

Age (yr) 68.1 ± 7.7 67.0 ± 8.7 P = 0.4246

Height (m) 1.67 ± 0.09 1.69 ± 0.10 P = 0.4804

Weight (Kg) 71.3 ± 14.5 69.9 ± 13.1 P = 0.6188

BMI 25.3 ± 3.9 24.5 ± 4.0 P = 0.1928

MMSE (/30) 28.6 ± 1.5 27.3 ± 2.5 P < 0.001

DISEASE INFO

H&Y – 1: 22.6% 3: 15.7%

2: 53.9% 4: 7.8%

–

UPDRS gait – 1.1 ± 0.9 –

UPDRS freezing of gait – 0.3 ± 0.8 –

UPDRS postural stability – 1.1 ± 1.0 –

UPDRS posture – 0.8 ± 1.0 –

UPDRS global

spontaneity of

movement

– 1.1 ± 1.0 –

UPDRS Postural tremor – 0.5 ± 0.9 –

UPDRS rest tremor – 0.2 ± 0.6 –

UPDRS rigidity – Arms: 0.7 ± 0.7 –

Legs: 1.1 ± 0.7 –

Years since diagnosis – 10.5 ± 5.8 –

MEDICATION

LEDD – 1029.1 ± 509.2** –

Levodopa (%) – 100* –

Agonist (%) – 32.7* –

Amantadine (%) – 39.8* –

COMT or MAOB (%) – 49.6* –

BMI, Body Mass Index; MMSE, Mini-Mental State Exam; H&Y, Hoehn and Yahr

scale; UPDRS, Unified Parkinson’s Disease Rating Scale; LEDD, Levodopa Equivalent

Daily Dose.
*Missing medication profile for 2 participants; **Missing info for 6 participants.

A second group of participants composed of 69 age and
gender-matched community-dwelling elderly (43.5% female, age
= 68.1 ± 7.7 years old, BMI = 25.3 ± 3.9) was also recruited
through the Center de Recherche de l’Institut universitaire de
gériatrie de Montréal (CRIUGM) to provide control data. The
study protocol was approved by both the CRIUGM and the
Conjoint Health Research ethics boards, and all participants
provided written informed consent.

Experimental Protocol
The experimental protocol has been described in detail
previously (Goubault et al., 2018, 2019). In brief, participants
were tested on their regular medication and equipped with
an inertial suit containing 17 sensors (IGS-180, Synertial Ltd,
UK), allowing the capture of the entire body kinematics. Each
sensor is composed of a 3-axis accelerometer, measuring linear
acceleration, a 3-axis gyroscope, assessing angular velocity, and
a 3-axis magnetometer. Upon arrival to the lab, participants
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took their medication and were asked to fill-up a socio-
demographic questionnaire as well as cognitive and quality of
life questionnaires. The study’s objective data acquisition process
was then divided into two blocks of ADL, nested between blocks
of symptoms evaluation. The chosen ADL included a variety of
activities corresponding to a wide range in velocity and amplitude
of motion (upper and/or lower limbs), in order to represent the
complete motor repertoire. Tasks were selected from a variety
of ADL and instrumented ADL scales (Klein and Bell, 1982;
Fahn et al., 1987; Lozano et al., 1995; Boraud et al., 2001; Health
Canada Interdepartmental Committee on Aging Seniors Issues,
2001; Krystkowiak and Defebvre, 2002; Guttman et al., 2003;
Health Canada/Parkinson Society Canada, 2003; Goetz et al.,
2008; Colosimo et al., 2010; Carignan et al., 2011). Chosen tasks
included eating soup, cutting and eating a piece of apple, taking
pills, drinking a glass of water, counting money, reading a book
out loud, reaching to grab an object on the ground, rising from a
chair, walking, turning, sitting down (Timed-Up and Go, TUG),
and the Purdue Pegboard task. Participants were cued to initiate
the task when a light, positioned in front of them, turned on. For
this specific study, a subset of tasks was considered in order to
limit the degrees of freedom in the analysis. The selected tasks
included the TUG, eating soup (ES), and the Purdue Pegboard
test (PB). While ES involves short range, slow speed movements,
PB requires short range and fast motion, while the TUG relates
to long range, medium speed global motion. For ES, participants
sat down on a bench with both hands flat on the table. Once
cued by the light, participants were instructed to take the spoon
positioned on the table using their dominant hand, take four
spoons of water at their preferred pace to reproduce true living
conditions, return the spoon to the table, and position their
hands back on the table. The time required to performed the task
corresponds to the time elapsed between the light stimuli and the
time the hands are placed back on the table. For PB, a board with
two parallel rows composed of 25 holes each was placed in front
of the participant. Upon signal, participants were instructed to
insert as many pins in the holes as possible in 30 s, using both
hands alternately. The TUG was initiated with the participant
sitting on a bench. Upon signal (i.e., light), the participant was
asked to rise from the bench without any help if possible (i.e.,
no hands), walk for 3m at their preferred pace, and return to
their initial sitting position. Performance was assessed using the
time required to perform the task (ES, TUG), the count achieved
(PB), and the number of errors committed (ES: dropping water,
dropping the spoon; TUG: needing assistance, using hands to
rise/sit; PB: dropping pins).

The symptoms assessment blocks consisted of a mixture
of clinical evaluation and objective assessment of the
symptomatology: postural instability was assessed using the
pull-back test (Unified Parkinson’s Disease Rating Scale item
3.12), rigidity was evaluated manually for each limb (item
#3.3), bradykinesia was appraised objectively using a rapid
alternating task, while tremor, drug-induced dyskinesia (DID)
and freezing of gait (FoG) were all assessed objectively during
appropriate tasks using inertial data (Goubault et al., 2018).
Briefly, tremor was assessed using the signal captured by
the gyroscopes positioned on the hands. These signals were

band-pass filtered between 3 and 7.5Hz to isolate the tremor
frequency range. A power density spectrum was then used to
identify the signal dominant frequency, as well as its dispersion.
Tremor was detected when dispersion was below 2Hz, in which
case the corresponding tremor value was fixed to the dispersion
bandwidth. DID was assessed during the tasks, using signals
from the sensors not directly involved in the specific task. Signals
from the gyroscopes were again band-pass filtered, this time
between 0.5 and 4Hz. The energy of the resulting signal was
then computed, per segment. The average energy among the
different segments considered corresponds to the DID value
attributed for the task. Freezing of gait was assessed during
the walking portion of the TUG. The process uses the ratio
of the power of the signal within the walking bandwidth to
the power located within the freezing bandwidth to identify
freezing events.

Performance Clusters Identification
A clustering approach was used to explore the presence of motor
skills performance profiles within a group of patients medicated
for PD. This method allows the groups to emerge directly from
the data without bias (Rui and Wunsch, 2005). In this specific
case, performance clusters were based on five metrics extracted
from three selected tasks: TUG time, TUG errors, Eating soup
time, Eating soup errors, and Pegboard number of pins. To
ensure all metrics have a similar influence during the clustering
process, timing features as well as the Pegboard pins count were
first normalized based on the control group performance data.
Extreme values, defined as values outside the ±4 Z-score, were
also set to the closest valid limit.

Clustering was performed using the K-means method. In
brief, this approach uses an iterative process to minimize the sum
of the distances between each point and its cluster’s centroid,
while maximizing the difference between the clusters (Rui and
Wunsch, 2005). This method, however, requires the user to
specify the desired number of clusters. We defined the ideal
number of clusters as a trade-off between the sum of the
Euclidean distance between each point and its cluster’s centroid
and the resulting number of very small clusters, herein defined as
groups composed of fewer than 10 participants. In other words,
the clustering process was performed using a varying number
of clusters, from 1 to 115 (the number of participants), and the
quality of the resulting clusters was evaluated based on both
the distance cost and the resulting number of small clusters, to
identify the optimal number of clusters. The ability of the clusters
to differentiate performance was then evaluated using a Kruskall-
Wallis ANOVA test. The clustering and validation processes
were performed in Matlab Release 2018a (The MathWorks,
Massachusetts, United States).

Performance Profiles Features

Identification & Membership Prediction
The second objective of this study consists in analyzing which
features, amongst the motor and the non-motor symptoms as
well as the participants’ characteristics, explain the affiliation
to a specific motor performance profile or cluster. To do so,
symptomatology was first normalized based on the control group
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FIGURE 2 | Performance clusters identification. (A) Visual representation of the clusters based on a subset of 3 factors. (B) Boxplots of the distribution of the different

performance factors within the clusters. The p-values correspond to the result of the Kruskall-Wallis ANOVA test.

data acquired. Then, the sample was divided into a training
and a validation datasets (80–20%). Using the training dataset,
univariate multinomial regression analysis was performed on
each variable, that is age, gender, BMI, years living with PD,
Mini-Mental State Exam (MMSE), symptomatology (dyskinesia,
bradykinesia, rest tremor, postural tremor, kinetic tremor,
rigidity, postural instability, freezing of gait), and medication
regimen [Levodopa Equivalent Daily Dose (LEDD), Levodopa,
Agonist, Amantadine, COMT or MAOB]. All variables with
a marginal significance (i.e., p-value) smaller or equal to 0.2
were identified as potentially explicative variables (PEV) for
a specific cluster membership. A multivariate multinomial
regression analysis was then performed using these PEV. The
model was designed using 80% of the sample; and verified with
the remaining 20%. The accuracy of the proposedmodel was then
evaluated based on a contingency table. All statistical analyses
were performed using SPSS v23 (IBM Corp., Armonk, NY).

RESULTS

Clusters Identification Results
Four clusters of performance were identified (Figure 2A) and
confirmed by statistical analyses. Only the number of errors
made while eating soup was not shown to be a discriminative
factor (Figure 2B). As detailed in Table 2, Cluster 1 is composed
of participants who performed within normal for all tasks and
parameters. Cluster 2 corresponds to participants slightly affected
in fine motor tasks. Cluster 3 is made of participants mainly
affected during the TUG, while the last cluster is composed of
participants affected in all activities.

Performance Features Identification

Results
Cluster membership was attributed to each participant, following
the process described in section Performance Profiles Features
Identification & Membership Prediction. The resulting portrait
of the patients’ symptomatology profiles, per cluster, is reported
in Table 3.

TABLE 2 | Clusters performance details.

Cluster ID p

1 2 3 4

TUG time (s)

Median [Q1,Q3]

13.0

[12.3, 13.6]

Not

affected

14.6

[13.7, 15.5]

Not

Affected

20.2

[17.5, 22.2]

Affected

22.4

[21.2, 25.0]

Affected

p < 0.001

TUG err

Median [Q1,Q3]

0

[0, 0]

Not

affected

0

[0, 0]

Not

affected

1.0

[0, 1.0]

Affected

1.0

[0.5, 2.0]

Affected

p < 0.001

Pegboard

#pins

Median [Q1,Q3]

15.0

[12.5, 18.0]

Not

affected

11.5

[9.0, 14.0]

Slightly

affected

9.0

[8.0, 11.0]

Slightly

affected

7.0

[5.0, 9.0]

Affected

p < 0.001

Eating Soup

time (s)

Median [Q1,Q3]

18.9

[17.9, 20.4]

Not

affected

23.9

[22.6, 26.8]

Slightly

affected

21.3

[17.5, 22.8]

Not

affected

32.3

[27.6, 34.3]

Affected

p < 0.001

Eating Soup

Errors

Median [Q1,Q3]

0

[0, 1]

0

[0, 1]

0

[0, 1]

0.5

[0, 3]

p = 0.1679

Univariate multinomial analysis performed on this set of
data allowed to identify 10 potentially explanatory variables:
age (p = 0.134), MMSE (p = 0.200), dyskinesia (p < 0.001),
bradykinesia (p < 0.001), rest tremor (p = 0.024), kinetic
tremor (p = 0.010), rigidity (p = 0.010), postural instability
(p < 0.001), freezing of gait (p < 0.001), and the presence of
Amantadine in the medication regimen (p= 0.180). Including all
these potentially explanatory variables into a single multinomial
regression allowed to derive a significant model (χ2 = 140.628,
p < 0.001) with a good representativeness (Nagelkerke pseudo
R2 = 0.839). This global model identified postural instability
(p < 0.001), dyskinesia (p = 0.024), bradykinesia (p = 0.022),
rigidity (p = 0.026), freezing of gait (p = 0.040), as well as
Amantadine (p = 0.003) as the main significant variables, while
cognitive impairment (p = 0.064) and rest tremor (p = 0.086)
significantly discriminates between sub-groups 3 and 1 despite
being globally significant.
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TABLE 3 | Patients symptomatology portrait per performance cluster.

Cluster ID

1

(n = 36)

2

(n = 38)

3

(n = 21)

4

(n = 20)

GENERAL

Gender (% male) 52.8% 68.4% 61.9% 45.0%

Age (yr) 64.0 ± 8.7 66.5 ± 8.4 70.0 ± 8.7 70.2 ± 7.5

BMI 23.9 ± 3.3 24.0 ± 3.8 24.9 ± 3.4 26.0 ± 5.5

MMSE (/30) 28.2 ± 1.5 27.9 ± 2.0 26.5 ± 2.6 25.3 ± 3.4

DISEASE INFO

H&Y 1: 41.7% 1: 23.7% 1: 9.5% 1: 0.0%

2: 55.6% 2: 68.4% 2: 33.3% 2: 45.0%

3: 2.8% 3: 7.9% 3: 47.6% 3: 20.0%

4: 0.0% 4: 0.0% 4: 9.5% 4: 35.0%

Years since

diagnosis

8.8 ± 3.7 10.6 ± 5.9 11.8 ± 7.7 12.2 ± 6.4

MEDICATION

LEDD 994.9 ± 450.8 866.0 ± 448.1 1378.8 ± 567.4 1051.5 ± 523.7

Levodopa (%) 100% 100% 100% 100%

Agonist (%) 38.9% 35.1% 35.0% 15.0%

Amantadine (%) 50.0% 35.1% 15.0% 55.0%

COMT or MAOB(%) 47.2% 59.5% 40.0% 45.0%

SYMPTOMS

Dyskinesia

(normalized value)

1.1 ± 1.6

[−1.7, 4.2]

−0.5 ± 1.4

[−2.7, 2.5]

0.6 ± 2.1

[−3.2, 3.2]

−0.8 ± 2.2

[−4.1, 4.1]

Bradykinesia

(normalized value)

−1.1 ± 1.1

[−3.9, 0.7]

−1.9 ± 1.8

[−6.0, 1.1]

−1.7 ± 1.6

[−4.6, 1.1]

−3.6 ± 1.5

[−6.0, −0.9]

Rest tremor

(normalized value)

0.3 ± 4.1

[−6.0, 6.0]

0.7 ± 3.9

[−6.0, 6.0]

1.1 ± 4.3

[−6.0, 6.0]

2.8 ± 3.2

[−2.3, 6.0]

Postural tremor

(normalized value)

[1.6, 6.0] [1.6, 6.0] [1.6, 6.0] [1.6, 6.0]

Kinetic tremor

(normalized value)

0.5 ± 1.8

[−2.8, 6.4]

−0.1 ± 1.8

[−3.0, 4.9]

1.6 ± 2.1

[−2.1, 5.5]

1.3 ± 2.3

[−3.5, 6.0]

Postural instability 0.7 ± 0.7

[0.0, 2.5]

0.7 ± 0.7

[0.0, 1.0]

2.1 ± 1.2

[0.0, 4.0]

1.9 ± 1.0

[1.0, 4.0]

Freezing (%) 0.0 ± 0.0

[0.0, 0.0]

0.2 ± 1.2

[0.0, 2.0]

5.0 ± 15.7

[0.0, 71.6]

3.8 ± 9.0

[0.0, 36.6]

Rigidity 0.8 ± 0.6

[0, 2.5]

0.9 ± 0.6

[0, 2.0]

0.8 ± 0.8

[0, 2.5]

1.3 ± 0.6

[0.2, 2.5]

Detailed analysis of the model revealed that:

• an increase in postural instability increases the chance to be
part of cluster 3 or 4, relative to cluster 1 or 2 (p3rel1 = 0.001,
OR3rel1 = 9.323 [2.430, 35.773]; p3rel2 = 0.001, OR3rel2 = 6.785
[2.107, 21.851]; p4rel1 = 0.009, OR4rel1 = 6.268 [1.574, 24.957];
p4rel2 = 0.012, OR4rel2 = 4.561 [1.399, 14.868]);

• an increase of one standard deviation in dyskinesia level
increases the chance to be in cluster 1 compared to cluster 2
or 3 (p1rel2 = 0.014, OR1rel2: 2.12 [1.17, 3.86]; p1rel3 = 0.023,
OR1rel3 = 2.92 [1.16, 7.30]);

• an increase of one standard deviation in bradykinesia level
increases the likelihood of being in cluster 4 relative to cluster
3 (p= 0.025, OR= 6.06 [1.26, 29.41]);

• an increase in rigidity increases the chance to be in cluster 4
relative to cluster 1 (p= 0.025; OR= 34.17 [1.54, 757.05]) and
cluster 2 (p= 0.036, OR= 24.97 [1.23, 506.53]);

• the presence of Amantadine in the medication regimen
appears to decrease the risk of being in cluster 3, when
compared to cluster 1 or 2 (p3rel1 = 0.025, OR3rel1 = 3.22E-4

TABLE 4 | Contingency table.

Predicted cluster

1 2 3 4 % Correct

Observed cluster 1 27 7 1 1 75.0%

2 9 26 0 2 70.3%

3 1 2 16 1 80.0%

4 1 2 0 17 85.0%

Overall percentage 33.6% 32.7% 15.0% 18.6% 76.1%

[2.92E-7, 0.356]; p3rel2 = 0.044, OR3rel2 = 0.001 [7.30E-
7, 0.825]).

This model allowed to classify the participants within their
respective cluster of performance with an accuracy of 76%, as
illustrated in the contingency table (Table 4).

DISCUSSION

This study first aimed at investigating the presence of motor
skills performance profiles in patients medicated for PD. Using
a clustering approach, four different profiles emerged from the
data. Analyzing the variation in metrics within each cluster
revealed that cluster 1 is composed of participants who are not
affected in the motor tasks assessed under medication. Cluster
2 participants are affected only slightly in fine motor tasks.
Cluster 3 participants are mainly affected in mobility tasks, while
cluster 4 involves participants affected in all areas. These clusters
were shown to be statistically different for four performance
metrics out of five, demonstrating the potential of the method.
This approach offers an innovative view for PD classification,
focussed on the global impact of the disease on the patient’s motor
repertoire as opposed to a more classical dominant symptom
classification (Foltynie et al., 2002; Eisinger et al., 2017, 2019;
Erro et al., 2019). To our knowledge, this study is the first
to address the phenotype problematic from this point of view.
Direct comparison between the two classification approaches
would be worth investigating. Nevertheless, it is clear from
the description of the symptomatology profile per cluster that
symptoms coexist within the clusters. This observation supports
a global approach of symptomatology characterization for motor
performance prediction.

Although the clusters identified are statistically significant
and appear to hold a clinical meaning, it shall be noted that
the clustering method could be further refined. Indeed, the K-
mean method requires the user to determine in advance the
number of desired clusters. In order to remain as objective
as possible, we first investigated different potential avenues for
clusters quantity identification, such as the use of the silhouette
validity index and the Calinski-Harabasz index (Arbelaitz et al.,
2013). However, Hennig (2015) exposed an interesting way of
looking at true clusters based on the direct aim pursued by the
clustering process. Indeed, the idea for true or ideal clusters may
vary depending on the situation. In the current study, we know
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that the optimal number of clusters represents different mobility
profiles, however somehow subtle these differences may be. As
such, the dissimilarity between clusters criterion may not be
obvious, and thus, the classic validity indexes may not be optimal.
As such, we identified the ideal number of clusters as a trade-off
between the within clusters similarity and the number of small
clusters created. The pragmatic approach was appropriate for the
current study, but may need to be revisited in other cases.

The second part of the study aimed at exploring potential
factors influencing the affiliation of a participant to a specific
cluster of performance in the “ON” medicated state. It was
shown that postural instability, dyskinesia, bradykinesia, rigidity,
freezing of gait, and Amantadine all play a significant role
in the classification process. Consistent with the literature,
postural instability and freezing of gait discriminated patients
with disabled mobility (Muslimovic et al., 2008; Goubault et al.,
2019). Unsurprisingly, an increase in bradykinesia raised the risk
to be affected in fine motor tasks, but the model suggests that
this is true only for the subset of the sample also affected in
mobility tasks. Indeed, bradykinesia by itself did not come out
as a significant factor to discriminate participants with normal
performance and participants slightly affected in fine motor tasks
(i.e., clusters 1 and 2). However, an increase in residual (i.e.,
on medication) bradykinesia increased the likelihood of being
affected in all domains as opposed to being affected only in
mobility tasks, suggesting that this factor is more relevant to
appendicular rather than axial motor control. Only dyskinesia
came out as a significant factor in the differentiation between
patients with normal performance and patients slightly affected
in fine motor tasks. Indeed, the present way of analyzing this data
confirms what has been described in previous studies (Goubault
et al., 2019) using the same patients that dyskinesia increases, to a
certain extent, the likelihood of being in the normal performance
group when compared to the group slightly affected in fine motor
tasks or the group affected in mobility. We acknowledge the
fact that few patients displayed severe dyskinesia in the current
sample, but low to moderate levels of dyskinesia certainly did
not interfere with the patients’ performance. Results have also
demonstrated that when all other symptoms are equivalent, the
addition of Amantadine in the medication regimen decreases
the risk of being part of the cluster affected in mobility task,
when compared to the normal performance group. These results
are concordant with the effect of Amantadine on gait in PD
patients under deep-brain stimulation [16]. Yet, the impact of
Amantadine on gait is still unclear [17], as well as the fraction of
benefit that may derive from the reduction in levodopa daily dose
afforded by this drug. Cognitive impairment did not come out as
a global significant factor, but it did have a significant impact in
differencing people with disabled mobility.

It is worth mentioning that the reported results could have
been different if patients were tested in their OFF state. Indeed,
all patients were tested at peak dose, assuming medication was
optimal. The reported impact of the different symptoms on the
performance cluster affiliation therefore refers to the effect of
the residual symptoms. Further studies should consider running
similar analyses ON and OFF states to assess not only the direct
impact of the symptoms, but also to bring one step further the

analysis of the medication’s impact instead of only considering
the number of years since diagnosis in the analyses. Another
limit to the current study regards the subset of tasks used for the
analysis. Future work will focus on applying a similar protocol on
the entire set of tasks collected.

The statistical model developed using the global patient
symptomatology allowed to predict the impact of the disease
on the patients’ motor repertoire with an accuracy of 76%. The
model was specifically good at recognizing patients with mobility
and global issues (i.e., clusters 3 and 4). Such results demonstrate
the strength of the global approach, although future work should
investigate other classification approaches to improve the overall
accuracy. For example, machine learning approaches with a K-
fold cross-validation loop could improve the accuracy of the
classification process. The general approach also needs to be
tested on a much larger group of patients and by using traditional
clinical testing to render it more usable. We could then be able
to determine, based on that evaluation, what will be the impact
of the symptomatology of the patient’s ADL, and as such predict
their ability to perform everyday tasks.

CONCLUSION

PD affects the motor repertoire of patients to different
extents. This study demonstrated that four major performance
profiles appear to exist: patients with normal performance,
patients affected slightly in fine motor tasks, patients affected
in mobility tasks and patients affected in all domains of
mobility. This study demonstrated that it is possible to predict
the mobility performance of any patient, based on personal
clinical features. Although future research is needed to refine
the clustering method, as well as performance prediction
suiting clinical evaluations, these results appear promising, and
may lead to more personalized treatment by identifying and
targeting symptoms that specifically impede a particular patient’s
motor performance.
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Purpose: Modern statistics and higher computational power have opened novel
possibilities to complex data analysis. While gait has been the utmost described motion
in quantitative human motion analysis, descriptions of more challenging movements like
the squat or lunge are currently lacking in the literature. The hip and knee joints are
exposed to high forces and cause high morbidity and costs. Pre-surgical kinetic data
acquisition on a patient-specific anatomy is also scarce in the literature. Studying the
normal inter-patient kinetic variability may lead to other comparable studies to initiate
more personalized therapies within the orthopedics.

Methods: Trials are performed by 50 healthy young males who were not overweight
and approximately of the same age and activity level. Spatial marker trajectories and
ground reaction force registrations are imported into the Anybody Modeling System
based on subject-specific geometry and the state-of-the-art TLEM 2.0 dataset. Hip
and knee joint reaction forces were obtained by a simulation with an inverse dynamics
approach. With these forces, a statistical model that accounts for inter-subject variability
was created. For this, we applied a principal component analysis in order to enable
variance decomposition. This way, noise can be rejected and we still contemplate all
waveform data, instead of using deduced spatiotemporal parameters like peak flexion
or stride length as done in many gait analyses. In addition, this current paper is, to the
authors’ knowledge, the first to investigate the generalization of a kinetic model data
toward the population.

Results: Average knee reaction forces range up to 7.16 times body weight for the
forwarded leg during lunge. Conversely, during squat, the load is evenly distributed. For
both motions, a reliable and compact statistical model was created. In the lunge model,
the first 12 modes accounts for 95.26% of inter-individual population variance. For the
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maximal-depth squat, this was 95.69% for the first 14 modes. Model accuracies will
increase when including more principal components.

Conclusion: Our model design was proved to be compact, accurate, and reliable.
For models aimed at populations covering descriptive studies, the sample size
must be at least 50.

Keywords: lower limb kinetics, inverse dynamics, principal component analysis, musculoskeletal model,
validation analysis

INTRODUCTION

In biomechanics, the safety and efficiency of novel surgical
techniques as well as the development of biocompatible products
ultimately rely on its capability of being tested on humans
through clinical trials. The complete development chain of a new
surgical technique or implant and their introduction into clinic
practice is both time-consuming and economically demanding.
Next to it, it is known that patient-specific surgery planning
or implant design can improve the long-time outcome of an
implant (Pietsch et al., 2013; Spencer-Gardner et al., 2016).
This fact is due to the high anatomical variability between
individuals and the different functional activities, which have
a significant effect in the ratio of the force components on
the lower limb between subjects (Kutzner et al., 2010) and on
the functional alignment of the prosthetic components of a
lower limb implant (Smoger, 2016; Spencer-Gardner et al., 2016).
Within this context, methodologies such as statistical models of
the human anatomy as well as kinematics or kinetics that account
for the anatomical inter-variability of the population combined
with biomechanical simulation studies can provide non-invasive
pre-surgical clinical output.

Lower limb kinetics can be estimated based on
musculoskeletal models and ground force plates using inverse
dynamics (Carbone et al., 2012; Galloway et al., 2012; Vaitkus
and Várady, 2015; Bagwell et al., 2016). These techniques do
not often account for patient-specific variability as they use
scaled generic models (Worsley et al., 2011; Vaitkus and Várady,
2015), while it was already widely shown that the geometry of
the musculoskeletal models is very sensitive to muscle force
predictions (Carbone et al., 2012). In addition, and to the authors
knowledge, the available studies merely consider very limited
population samples which may not be representative of the
total variability of the lower limb anatomy. Lastly, the available
literature lacks completeness as, to date, no study has considered
a statistical model of the full lower limb, namely, on demanding
tasks such as the deep squat and the forward lunge.

Hence, in order to create the foundations for the development
and optimization of the design or the durability of orthopedic
implants, it is mandatory to generate appropriate loading
conditions that represent inter-patient variability across the
population (Honari and Taylor, 2013; Bischoff et al., 2014).
Patient-specific finite element analyses are the state-of-the-art
technique to infer quantitative information on a specific design
or performance of an arthroscopic implant (Shu et al., 2018).
Taylor et al. (2012) found most studies to be focusing on

variations on the morphological and bone properties rather than
the consequences of variability because of loading. Furthermore,
it has been proved that the application of single-representative
models can be extended to account for variability by either
parametrically or probabilistically varying the loading/boundary
conditions. These approaches allow model generation which can
significantly extend the coverage of the anatomical variability and
ultimately create a powerful tool to assess the performance of
medical devices (Taylor et al., 2012).

Recent developments in medical imaging significantly
increased the accuracy of the three-dimension computational
anatomical representation, enhancing the anatomical differences
within a determined population (Almeida et al., 2016; Audenaert
et al., 2019). Hence, combining the use of magnetic resonance
imaging (MRI) with musculoskeletal models will provide
us an insight on lower limb kinematics on patient-specific
anatomies. The statistical analysis of kinematic time series
by means of dimensionality reduction techniques such as
principal component analysis (PCA) or independent component
analysis is not novel per se (Daffertshofer et al., 2004; Galloway
et al., 2012), but the inclusion of patient-specific anatomies
is believed to more accurately represent inter-patient kinetic
variability. Such approach, hereby presented, will allow for a large
population of kinetic data to be generated without the time and
the expense of collecting the motion capture data of hundreds of
patients. Simultaneously, it will open the door to the generation
of large simulated populations for use in clinical outcome
simulation studies, injury biomechanics, musculoskeletal disease
models, or implant design optimization (Henak et al., 2013;
Zhang et al., 2016).

While the gait cycle has been the most researched activity
in the current literature, it is not particularly demanding for
the lower limb joints. For the purpose of implant wear testing,
implant fixation, and joint stability analysis, there are other
more challenging activities commonly performed in daily living
that might be of particular interest (Hartmann et al., 2013).
Clinical, experimental, and computational studies have clearly
reported increased complication risk and wear rate under high
contact stress conditions (Kang et al., 2008; O’Brien et al., 2015;
de Ruiter et al., 2017).

In sum, the purpose of this study is to build statistical
models of deep squatting and forward lunging for applications
in pre-clinical testing of orthopedic implants and surgery
in an asymptomatic adult population and ultimately to
analyze and validate the inter-individual variations in
lower limb kinetics.
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MATERIALS AND METHODS

Participants
Fifty-three asymptomatic volunteers participated in the
study. In order to eliminate sex and race differences and
reduce the potential influence of age and body mass
index (BMI), only healthy Caucasian men who were not
overweight and aged between 17 and 25 years are included.
The admission requirement is practicing sports for at
least 2 h a week. The subjects were asked to perform
five times a smooth maximal-depth squat and a right
forward lunge step with a predetermined frequency and
fluency after a short training. In addition, the volunteers
underwent full lower limbs MRI. An ethics committee
(Ghent University Hospital, Belgium) approved these
investigations (EC2014/0286). The characteristics of our
study population are listed in Table 1. Because of missing data,
there was no complete data acquisition for the squat among
the three subjects.

In both examinations, 28 reflective markers are
stuck on the skin on palpable anatomical landmarks.
The application of skin markers to investigate kinetics
is obvious but rather inaccurate. By contrast, using
more accurate measurements with implants would raise
ethical concerns.

Instrumentation
Our motion capture acquisition strategy was based
on a similar study by Deluzio et al. (Deluzio and
Astephen, 2007). Spatial marker trajectory data and
the corresponding force registrations are imported into
the Anybody Modeling System (AMS version 7.1.0,
Anybody Technology, Aalborg, Denmark) (Damsgaard
et al., 2006) as well as geometric data from a 3-Tesla
MAGNETOM Trio-Tim System MRI device (Siemens AG,
Erlangen, Germany).

Musculoskeletal Modeling
Motion capture musculoskeletal models were personalized with
subject-specific bone geometry that was incorporated in a
simulation model from the Twente Lower Extremity Model
(TLEM 2.0) dataset (Carbone et al., 2015). An overview of

the musculoskeletal model input is presented in Figure 1. In
the simulation output, the forces are described in three fixed
perpendicular planes.

Data Processing
The output data from musculoskeletal models are numerous,
multivariate, and multidimensional (Deluzio and Astephen,
2007; Lai et al., 2009). In contrast to some gait studies that
modeled kinematic and kinetic data together, we used only
kinetic data (Deluzio and Astephen, 2007; Reid et al., 2010;
Galloway et al., 2012). We think that integrating linear quantities
(forces) and rotation quantities (angles) is like comparing apples
and oranges. On top of that, the kinetic data in Anybody
is generated by an inverse dynamics approach starting from
the kinematic data.

The beginning and end frames of all motion lab recordings
are not useful due to irrelevant transients. Analogously, the peak
evolution will vary from the center of the recorded data. Hence,
data alignment and trimming are essential prior to incorporating
the subjects’ motion recordings into a statistical model. These
operations are executed using standard implementations in
MATLAB (MathWorks, Natick, MA, United States).

The frame recorded with the peak knee flexion angle is defined
as 50% progress of the motion. Trimming is based on knee
flexion. For the lunge, the best is to consider only the closed
chain part. As such, recordings where the right foot is not on the
right force plate are left aside. Several arbitrary ways to execute
an open-chain motion could be an important source of noise η.
Noise is defined as artifacts when processing the input data to
the output data (Lai et al., 2009). On top of data, we used only
information from the leg that was the most loaded. So, in contrast
to the squat data, a lot of waveform data are not used for the lunge.

Interpolation is performed to ensure that the measurements
are running synchronized in real time. All trimmed
measurements are subdivided into 0–50–100 proceedings,
corresponding to the onset, the middle, and the finish of motion,
respectively. Each set of kinetic data is arranged in a feature
vector and concatenated into a training matrix. The training data
matrix X contains observations in the rows and subjects in the
columns as described in Eqs. [1] to [3].

X =
[
x1, x2, x3, ..., xi, ..., xp−1, xp

]
(1)

TABLE 1 | Demographic and anthropometric characteristics of the study population.

Demographic descriptor Mean (95% CI*) Normal values

Height (cm) 181.79 (180.08–183.51) Not applicable

Weight (kg) 71.75 (69.63–73.88) Not applicable

Body mass index (kg/m2) 21.70 (21.16–22.23) 18.5–25 (Waxman, 2004)

Sport activity (hours a week) 3.40 (2.76–4.03) Not applicable

Center-edge angle (◦) 28.41 (27.19–29.63) 25–39◦ (Audenaert et al., 2012; Ghaffari et al., 2018)

Alpha angle (◦) 64.61 (62.38–66.84) <55◦ (Audenaert et al., 2012; Ghaffari et al., 2018)

Centrum-collum-diaphyseal angle or neck-shaft angle (◦) 129.24 (127.99–130.49) 125–135◦ (Audenaert et al., 2012)

Femoral anteversion angle (◦) 9.40 (7.30–11.49) <15◦ (Audenaert et al., 2012)

*Confidence interval of the mean.
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FIGURE 1 | Overview of data input for the motion capture musculoskeletal simulation model. (A) Motion is performed when standing on two force plates. Motion
capture data synchronized with ground reaction forces are exported as .c3d file. (B) Twenty-eight reflective markers are placed on anatomical bony landmarks.
A MRI scan of the full lower limb is performed. Segmentation of pelvis, thigh, and shank with corresponding positions of marker landscape. (C) Motion capture squat
model. Anybody squat (D) and lunge (E) model.

FIGURE 2 | Scree plot with the cumulative variance of the modes (or principal components) in the lunge (orange) and squat (purple) kinetic model.
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FIGURE 3 | Relation between the kinetic waveform simulation output and the squat progress for each individual sample in gray. Mean values of the measurements in
green ±2 standard deviations of the first mode in red and blue. The first mode accounts for 33.80% of the inter-subject population variance. Note the different y axis
calibrations.
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FIGURE 4 | Mean values of joint reaction forces during deep squatting in green ±2 standard deviations of the second mode in red and blue. The second mode
accounts for 14.05% of the inter-subject population variance.
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FIGURE 5 | Mean values of joint reaction forces during deep squatting in green ±2 standard deviations of the third mode in red and blue. The third mode accounts
for 11.88% of the inter-subject population variance.
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FIGURE 6 | Mean values of joint reaction forces during lunging in green ±2 standard deviations of the first mode in red and blue. The first mode accounts for
40.87% of the inter-subject population variance.
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FIGURE 7 | Mean values of joint reaction forces during lunging in green ±2 standard deviations of the second mode in red and blue. The second mode accounts for
15.07% of the inter-subject population variance.

An observation expresses several dynamic parameters on a
certain progress of the aligned lunge or squat motion from 0
to 100%. For each participant i, the kinetic model input data

are taken from the musculoskeletal model output. The kinetic
variables are implemented into a subject vector xi for the ith
subject (out of p). p represents the number of training samples,
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FIGURE 8 | Mean values of joint reaction forces during lunging in green ±2 standard deviations of the third mode in red and blue. The third mode accounts for
10.46% of the inter-subject population variance.
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being 53 for the lunge and 50 for the squat.

xi =
[
HJRFx, HJRFy, HJRFz,KJRFx, KJRFy, KJRFz,

]T (2)

The input matrices JRFaxis consist all of 101 observations o.

JRFaxis =



measurement 1
measurement 2

. . .

. . .

measurement 51 (at maximal right knee flexion)

. . .

measurement 101


(3)

D serves as a diagonal matrix with row-wise standard deviations
do for each observation o. The total number of observations is the
multiplication of the number of dynamic variables and aligned
time instances.

D =


d1 0
0 d2

0 . . .

0 0
0 0

. . . 0
. . . 0
0 d606

 (4)

After normalization by row-wise standard deviation in [4] and
[5] as well as mean centering in [6], a residual matrix R is created.
R comprises the entry data for the model M as a measure of
dispersion.

X̃ =

 . . .

. . .

x̃i
. . .

. . .

 = D−1X (5)

R =

 . . .

. . .

x̂i
. . .

. . .

withx̂i = x̃i − x̄ (6)

PCA is a powerful dimensionality reduction technique
developed by Karl Pearson. It is not a method to investigate
the center size of the data but the common variability. PCA is
mathematically defined as an orthogonal linear transformation.
PCA transforms the data; as such, most of the variance of the data
will come to lie in the first components. This allows us to create
statistical models. Altogether PCA is a reliable tool in capturing
the salient features of waveform data (Robbins et al., 2013; Jolliffe
and Cadima, 2016).

Using this for a statistical model, it enables to generate
population data from a small set of clinical data. The kinetic
model should represent waveform data as a linear combination
of vectors, representing the primary modes of variation in
experimental data (Jolliffe et al., 2002; Saliba et al., 2018).
Eigenvalues and eigenvectors have been created by singular value
decomposition.

R = U x L x AT (7)

In Eq. [7], U and A are the left and right singular vectors, so
UT .U = I and AT .A = I because of orthogonality. I refers to the
unity matrix. L is a diagonal matrix that contains the square roots
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of the eigenvalues
√

λk belonging to RTx R, as k
{

1, 2, 3, . . . , p
}

.
AT contains the eigenvectors of RTx R, whereas U has the scaled
versions of the principal component (PC) scores uok. Here, o
corresponds to the observation and k to the PC number. The PC
scores are mentioned in Eq. [8].

zok = uok
√

λk (8)

The PC scores from a single waveform quantify the contribution
of each feature. The variance of the scores for the kth eigenvalue
of RTx R amounts to λk

n−1 , as λk represents the variance of the kth
PC, whereas n is the number of observations.

The cumulative variance of each mode k is defined as

Compactness (M) =
1

p− 1

k∑
m=1

λm (9)

The PC weight matrix W in Eq. [10] involves the correlation
coefficients between components and test subject data.

W = L x AT (10)

A set of patient data can be approximately reconstructed by using
t selected PCs in Eq. [11].

x̂ij = D
√
p− 1

t∑
i=1

uoi
√
liaki + x̄ (11)

As mentioned before, D represents the diagonal matrix
of row-wise standard deviations and p stands for
the subject count.

√
li is the ith diagonal element

of L, also from the singular value decomposition
(Jolliffe et al., 2002; Galloway et al., 2012;
Jolliffe and Cadima, 2016).

Model Validation
Validation is defined as the process of ensuring that the
dimensionality-reduced PCA model accurately represents real-
world kinetics. Probably the most important problem arising
with this process is the choice of the optimal number of
the principal components to be retained. PCA projects the
input data from a high dimensional space into a subspace
of lower dimension, which can then further be divided into
two separate subspaces: the kinetic data subspace, preserving
the essence of the original kinetic data as lossless as possible,
and the noise subspace, corresponding to the remaining tail of
principal components associated with the smallest eigenvalues.
Given the complexity of the problem of optimally defining the
threshold between signal and noise principal components, the
literature on the topic is overwhelming and beyond the scope
of this work. Reliable results in distinguishing components that
express meaningful correlations among variables as opposed to
trivial components, explaining noise, have been provided using
the Monte Carlo permutation test (Peres-Neto et al., 2005).
The principal components were tested for representing valid
correlations as opposed to residual error using the following
two criteria: rank of roots and equality of roots (Jackson, 2005;
Vasco, 2012).

Further, four quantitative model parameters are investigated.
“Goodness” measures are chosen according to the statistical
shape modeling study of Styner et al. (2003) in which there is also
a PCA dimensionality reduction algorithm. This study is, to the
authors’ best knowledge, the first to provide such an approach,
implemented for a kinetic model.

Model Accuracy

Accuracy (M) =
1
p

p∑
i=1

||x̂i(M)− xi||2 (12)

The first validation test that analyzes relevant information
is retained by the model or otherwise states how well the
original data can be reconstructed from the model given the
number of principal components retained. Here, the root-mean-
square error (RMSE) is computed in Eq. [12] as the average
absolute difference between the original training data and the
reconstructed data for models with 80, 90, 95, and 98% variance
of the original data.

Model Compactness
The model will be compact enough if it can describe the variance
in kinetic measurements with a minimal number of modes. Eq.
[9] is used to describe the compactness with the cumulative
variance for a certain number of modes.

Model Generalization

Generalization (M) =
1
Tg

Tg∑
i=1

||x̂i(M′i)− xi||2 (13)

The model generalization quantifies the ability of models to
represent new instances. The generalization ability is evaluated
by performing a series of leave-one-out tests on the training data.
The question here is: how many training samples are necessary to
approach the population precisely? The generalization ability is
therefore a means for post hoc sample size evaluation. If having
enough training samples, we expect the model to be able to
describe unseen data quite accurately (Wang and Shi, 2017). The
generalization value can be interpreted as the median out-of-
sample accuracy value.

The generalization evolution gives the RMSE between the
excluded subject data and the best-matched 95% variance model
M’ values of randomly selected training data by ascending
number of training samples in the model M’. The higher the
Tg test value in Eq. [13], the higher the precision of the median
generalization value. Here the number of models created for each
number of training samples amounts to Tg = 10, 000.

Model Specificity

Specificity (M) =
1
Ts

Ts∑
i=1

||x̂′i(M)− xi||2 (14)

A population model is able to generate new data. The model
specificity measures the soundness of new instances randomly
generated by the developed model M. Models with 80, 90, 95,
and 98% of variance are tested. x̂′i(M) refers to a randomly
generated subject.
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FIGURE 9 | RMSE for the original squat training data versus reconstructed squat data with an increasing number of principal components on the x axis.

We assume that the PCs of the model are normally distributed
(Jolliffe et al., 2002; Jackson, 2005; Galloway et al., 2012). The
specificity estimator is defined in Eq. [14]. For each observation
o, an imaginary subject i is defined by choosing random normal
distributed values n ∈ N (0, 1) for each mode m in the model M
as in Eq. [15].

x̂
′

i,o (M) = x̄o + do
p∑

m=1

n.
√

λm.zm = x̄+ do
p∑

m=1

n.um (15)

The RMSE is defined as the error between the virtually subject
data and the most similar sample in the training dataset. The

specificity value can be interpreted as the median approximation
error of Ts generated subjects. The higher the Ts test value, the
higher the precision of the specificity. Here the number of models
created is set to Ts = 1, 000, 000.

RESULTS

The average hip and knee peak flexion angles are, respectively
95◦ and 104◦ for the lunge and 107◦ and 112◦ for the squat
motion, respectively. The average peak hip joint reaction force
(HJRF) amounts to 3.08 times body weight (BW) for the
maximum-depth squat and 4.76 BW for lunging. The means
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TABLE 3 | Choosing the optimal amount of principal components for the squat
kinetic datasets.

PC Eigenvalue Percentage Cumulative Rank of Equality
of variance variance roots of roots

1 204.85 33.80 33.80 0.001 0.001

2 85.11 14.04 47.85 0.001 0.001

3 71.98 11.88 59.73 0.001 0.001

4 58.21 9.61 69.33 0.001 0.001

5 46.81 7.73 77.06 0.001 0.001

6 31.26 5.16 82.22 0.001 0.001

7 18.13 2.99 85.21 0.001* 0.001

8 15.18 2.50 87.71 1 0.001

9 13.82 2.28 89.99 1 0.001

10 9.55 1.58 91.57 1 0.001

11 8.38 1.38 92.95 1 0.001

12 6.37 1.05 94.00 1 0.001

13 5.57 0.92 94.92 1 0.001

14 4.65 0.77 95.69 1 0.005*

15 3.97 0.66 96.35 1 0.078

Type I error probability is set to 0.05. Rank of roots measure suggests that seven
principal components (PCs) are statistically significant in meaningfully describing
the dataset, corresponding to 85% of data variance, whereas the equality of roots
suggests that 14 PCs are to be included (representing 95.7% of data variance).
*p < 0.05.

for peak knee joint reaction force (KJRF) are still higher:
4.52 BW for squat motion and 7.16 BW for the lunge. The
trimmed original waveform data from HJRF and KJRF of
our musculoskeletal model are represented by gray curves in
Figures 3–8.

A statistical model of kinetic output data from the AMS was
made for deep squatting and another one for lunging. Figure 2
displays the cumulative variance of modes in the statistical model.
The variances of the first three modes in the squat model are
illustrated in Figures 3–5. Together they represent 59.73% of the
population variance. For the lunge, the first three modes accounts
for 66.40% of population variance. More about these modes
are detailed in Figures 6–8. In Table 2, the in-sample model
accuracy and the specificity median RMSE are described for each
model. The boxplots in Figure 9 illustrate the in-sample squat
model accuracy for the ascending number of the components
included. There is a boxplot for every variable in the model.
The median and the interquartile range of the RMSE, when
compared to the initial data, decrease as more PCs are included in
the reconstructed data, as expected. The model accuracies from
the lunge model are quite similar but around one IQR RMSE
higher. In contrast, the lunge model is a bit more compact. For
calculating the out-of-sample accuracy based on leave-one-out
tests, we based on the lunge data because it has the most test data.
The results of the model compactness and the statistical findings
of the permutation testing related to the number of the principal
components used are demonstrated in Table 3.

Regarding Figure 10, for each training data input amount
going from 4 to 52, 10,000 models were created, including 95%
population variance, to reconstruct an excluded subject. Out-of-
sample accuracy RMSE from the reconstructed data versus the

original excluded data are given on the y axis in box-and-whisker
diagrams. The boxplots are log–log-scaled in order to visualize
the downward trend of the out-of-sample accuracy. Also plotted
is a horizontal line of the in-sample model accuracy of our 95%
model. The out-of-sample accuracies are less than 0.1 BW, except
for the KJRF in the transverse plane. From 50 test subjects up,
the out-of-sample accuracies are clearly stagnating for the HJRF
in the frontal and the transverse plane as well as for the KJRF in
the sagittal plane.

DISCUSSION

The validation analysis confirmed that our models have a high
degree of compactness and accuracy. Many types of noise are
in the higher components. The PCA technique has adequately
allowed rejection of the error variance from the model. The
meaningful variance is obviously divided over the first 12 or
14 components. This multidimensionality describes the silent
features in the data and, eventually, they could be linked to
the varying characteristics of the study population. A common
source of meaningless variance originates from data alignment.
It is impossible to avoid this because we do not want to
introduce supplementary noise in the data by aligning them more
stringently. Since all subjects have a BMI lower than 25, skin shift
errors during movements are limited (Cappozzo et al., 1996).

According to the lunge, the model only describes the closed-
chain part of motion for two reasons. First, femoroacetabular
impingement and joint reaction forces are more pronounced at
higher flexion (Audenaert et al., 2012). Secondly, while creating a
model from the onset of the lunge back to the original position,
the model would be no longer compact enough because there is
too much degree of freedom when moving a leg in the air.

The dominant mode is supposed to describe the overall
variance (Jolliffe et al., 2002), as is clearly apparent in the lunge
model. In the squat model, the overall variance is limited for the
HJRF in the frontal and the sagittal plane. This is due to low
hip flexion and rotation moments because the center of gravity
will lie almost perfectly between the hip joints (and not the
knee joints during squat), in contrast to the lunge case. For this
statement, we based on Schwab et al. (2006). They found that, for
young adults, the femoral head position appears to be a reliable
indicator for the gravity line in the sagittal plane during stance
(Schwab et al., 2006).

The second mode of the squat model indicates that a
high HJRF component in the transverse plane results in high
KJRF components in the frontal and sagittal plane in order
to counterbalance the downward force at the hip. The third
mode correlates the depth of squatting with the joint reaction
force components in the frontal plane. For the lunge, the
association of the frontal joint reaction force components is
mainly summarized in the second mode. Finally, according to
our interpretation, the third mode of the lunge model may take
alignment errors into account.

The RMSE for model accuracy are far below 0.05 BW, as
opposed to similar studies. The specificity was almost equal
for models with 80, 90, 95, and 98% of variance. It questions
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FIGURE 10 | Accuracy evolution of kinetic lunge data with log–log scaling (boxplot with root-mean-square error of the reconstructed data with 95% variance versus
the original training data) for different levels of prior knowledge expressed as amounts of training data in a kinetic model. The green horizontal line indicates the
in-sample target accuracy.

the relevance of taking the model specificity into account in
this setting. According to the generalization evolution, we could
conclude that, minimally, 50 samples are enough to provide
reliable models at 0.1 BW precision for both squat and lunge
motion. Nevertheless, we recommend exceeding this threshold

number because the in-sample accuracy is still lower, especially
for the squat. Note that gender, age group, BMI group, and race
differences are not included here. Therefore, it is very likely that,
in more heterogeneous populations like the elderly, 50 samples
will be too low to ensure reliable models.
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Unfortunately, electromyography data are not collected
during this study. This could give information about
muscle activation and muscle strength. Motor unit action
potentials could be registered non-invasively by using surface
electromyography. It has been stated several times that the muscle
activation patterns depend on several aspects like training level
and osteoarthritis (Benedetti et al., 2003; Knoop et al., 2012; Mei
et al., 2017). The integration of electromyography and kinetic
data could help to declare aberrant kinetic patterns.

By applying correlation matrix PCA to obtain uncorrelated
maximum-variance linear combinations and given that there is
only kinetic data with limited scaling differences, some more
PCs are required to account for the same amount of covariance
compared to classical covariance matrix PCA (Jolliffe et al., 2002;
Jolliffe and Cadima, 2016). This makes the selection of PCs in
the kinetic data subspace even more crucial to ensure model
validation properties like accuracy, compactness, generalization,
and specificity, which is the major drawback of PCA (Jolliffe
et al., 2002; Peres-Neto et al., 2005; Vasco, 2012). To handle
this, there are numerous methods described in the literature, but
there is no consensus yet. We objectified our selection strategy
based on eigenvalues by considering the validation measures for
different cutoffs. On top of that, for the model generalization and
specificity abilities, we assume multivariate normal distribution
which is seldom true (Vasco, 2012).

The most important limitation of the present work, however,
relates to the population under investigation, namely, young
male, Belgian adolescents and the unknown extent of which
findings can be extrapolated to other populations. Nevertheless,
in general terms, we expect our results to be representative by
extension for a Western European population.

CONCLUSION

We created two models that describe kinetics from both hip and
knee joint, contrary to the limited number of studies available
with PCA analyses of waveform data considering the knee
only (Deluzio and Astephen, 2007; Reid et al., 2010; Galloway
et al., 2012). Since all muscles from the knee, except from
the M. popliteus (Paulsen and Waschke, 2011), are biarticular
and the body should be seen as a whole, a model with the
HJRF as well as KJRF is preferable. We proved that such a

model for 95% of population variance was compact and very
accurate (<0.015 BW). To describe the population at <0.1 BW
precision, our small sample size was still sufficient. Using t-tests
to investigate differences in PC scores in comparing studies
will enable the creation of personalized hip and tibial implants
with specific weight-bearing properties, resulting in prolonged
longevity. In our opinion, this is a very important feature since
total knee arthroplasty and total hip arthroplasty are increasingly
utilized to treat more physically active patients.
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Hip osteoarthritis patients exhibit changes in kinematics and kinetics that affect joint

loading. Monitoring this load can provide valuable information to clinicians. For example,

a patient’s joint loading measured across different activities can be used to determine the

amount of exercise that the patient needs to complete each day. Unfortunately, current

methods for measuring joint loading require a lab environment which most clinicians

do not have access to. This study explores employing machine learning to construct a

model that can estimate joint loading based on sensor data obtained solely from a mobile

phone. In order to learn such a model, we collected a dataset from 10 patients with

hip osteoarthritis who performed multiple repetitions of nine different exercises. During

each repetition, we simultaneously recorded 3D motion capture data, ground reaction

force data, and the inertial measurement unit data from a mobile phone attached to

the patient’s hip. The 3D motion and ground reaction force data were used to compute

the ground truth joint loading using musculoskeletal modeling. Our goal is to estimate

the ground truth loading value using only the data captured by the sensors of the

mobile phone. We propose a machine learning pipeline for learning such a model based

on the recordings of a phone’s accelerometer and gyroscope. When evaluated for an

unseen patient, the proposed pipeline achieves a mean absolute error of 29% for the left

hip and 36% for the right hip. While our approach is a step in the direction of using

a minimal number of sensors to estimate joint loading outside the lab, developing a

tool that is accurate enough to be applicable in a clinical context still remains an open

challenge. It may be necessary to use sensors at more than one location in order to

obtain better estimates.

Keywords: machine learning, inertial measurement units, joint loading, patient monitoring, hip osteoarthrithis

1. INTRODUCTION

Hip osteoarthritis (OA) patients exhibit changes in kinematics and kinetics that affect the contact
forces of the hip and knee joints during walking and daily activities. It is believed that these changes
are important in the progression of OA (Felson, 2013) and that monitoring these changes during
daily life could provide valuable information to clinicians. For example, a patient’s joint loading
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measured across different exercises can serve as an indication
for the number of exercise repetitions that the patient needs
to complete when rehabilitating after hip arthroplasty surgery.
Despite the importance of joint loading monitoring, it is difficult
to systematically and widely measure joint loading in a clinical
environment. First, acquiring these measurements requires a lab
environment consisting of optoelectronic cameras and ground
reaction force plates. The cost and space required for such a setup
makes this impractical to install in a clinician’s practice. Second,
it would be infeasible to analyze a large number of patients in a
lab since collecting and processing the data is a time-consuming
task. Third, in order to calculate joint contact forces, one would
need to use amusculoskeletal modeling workflow, which requires
expert knowledge.

Because of these drawbacks, clinicians could greatly benefit
from a mobile system that is able to provide accurate joint
loading estimates based on cheaper sensors. Ideally, such a
system would be based on inexpensive, wearable sensors that the
patients can easily use at the clinician’s practice or even at home.
Inertial measurement unit (IMU) sensors and electromyography
(EMG) sensors are ideal candidates for this purpose as they are
relatively cheap and have been applied successfully in a wide
range of human movement analysis tasks (Zhang et al., 2011;
Camomilla et al., 2018; De Brabandere et al., 2018; Op De Beéck
et al., 2018). Designing such a system requires collecting data
in a lab setting where a subject performs the relevant exercises
while simultaneously recording data from the cheap portable
sensors and the expensive, standard lab sensors. This enables
either hand-crafting a model or applying a data-driven approach
such as machine learning to learn a model that relates the data
produced by the portable sensors to the ground truth joint
loading estimated from the lab equipment. These predictive
models can then be deployed outside the lab as they can make
predictions about a subject’s joint loading solely based on the data
captured by cheaper sensors.

Related studies have proposed different models for estimating
joint loading from wearable sensors. de Vries et al. (2012)
proposed a neural network model which estimates several
loading variables for the shoulder joint based on kinematics
and EMG data. The kinematics were measured using four IMU
sensors. While the model can be used in an ambulatory setting, it
still requires a relatively large number of sensors. Moreover, the
EMGmeasurement is somewhat intrusive as it requires attaching
13 electrodes to the person’s body. Other work by Wesseling
et al. (2018) proposed a model for estimating hip and knee joint
contact forces based on IMU kinematics and ground reaction
force (GRF) data. They found that the IMU kinematics were
sufficient to estimate the hip contact forces reliably, which enables
using the model outside a lab. However, the knee contact force
model required both the IMU and GRF data. Hence, this has the
same drawbacks as the lab sensors for calculating joint contact
forces as it is challenging to measure GRF data in the wild. Stetter
et al. (2019) proposed a model for predicting knee joint loading
using two IMU sensors, one on the upper leg and one on the
lower leg. However, similar to de Vries et al. (2012) andWesseling
et al. (2018), they evaluated the model on data from healthy
subjects only. Applying the same model to patients may not

work due to alteredmovement patterns. Other studies considered
similar problems, such as estimating the daily cumulative joint
loading (Robbins et al., 2009) and ground reaction forces (Guo
et al., 2017; Karatsidis et al., 2017; Wouda et al., 2018).

The goal of this paper is to predict the joint loading of
the left and right hip and knee based on IMU data collected
from a mobile phone. First, we collect data using three types
of sensors simultaneously: a hip-mounted phone, optoelectronic
motion capture cameras and ground reaction force plates. We
use the latter two to calculate the ground truth joint loading
using a musculoskeletal modeling workflow. Second, we employ
machine learning to automatically construct a model that can
predict the ground truth joint loading on the basis of the IMU
data collected from the mobile phone. Our approach confers two
advantages over prior work. First, by relying on a mobile phone
it both builds off an omnipresent technology and minimizes the
number of required sensors. Hence, clinicians and possibly even
patients will not need to rely on expensive specialized equipment.
Second, we focus on hip OA patients instead of healthy subjects.
Since clinicians see patients with abnormal movement patterns,
we train and evaluate the model using data collected from a
representative patient group.

2. METHODS

2.1. Subjects
For this study, 20 patients with unilateral end-stage hip
osteoarthritis were recruited from a local hospital (Ziekenhuis
Oost Limburg, Belgium). They were included based on the
following criteria: aged between 55 and 75 years; unilateral hip
osteoarthritis; awaiting joint replacement surgery; Body Mass
Index ≤ 30kg · m−2; able to walk 10m; no cortiosteroid
injection 3 months prior to inclusion; no joint replacements and
no other musculoskeletal or neurological disorders that would
affect movement pattern. Participants provided written informed
consent prior to the start of the measurements. Out of these
20 patients, we select only those for which the mobile phone
measurements were recorded correctly throughout the whole
protocol, which corresponds to a subset of 10 patients. The ethical
committee of the academic hospital Leuven approved the study
(reference no. s-59857).

2.2. Protocol
Each patient performed multiple repetitions of nine types of
exercises. Table 1 shows the number of repetitions per exercise.
The exercise types are defined as follows:

• Walk: level walking at a self-selected speed, one repetition
corresponds to one stride;

• Ascend stairs and descend stairs: at a self selected speed,
without hand-held support on a standardized 4-step staircase,
one repetition corresponds to one stride;

• Sit down and stand up: the height of the chair was
standardized to participants knee height;

• Forward lunge and side lunge: step length standardized at
70% leg length;
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TABLE 1 | Number of exercise repetitions per subject.

Subject ID W AS DS SD SU FL SL SOL SQOL

1 13 9 10 10 10 10 10 10 9

2 10 9 9 10 10 8 10 10 10

3 10 10 7 11 11 10 10 10 10

4 10 10 10 10 10 10 9 10 9

5 10 10 9 10 10 9 10 10 10

6 10 12 8 10 10 10 9 10 10

7 10 10 10 10 10 10 10 10 10

8 10 9 10 10 10 10 10 11 10

9 13 10 12 10 10 10 10 10 12

10 10 10 10 10 10 10 10 10 10

W, walk; AS, ascend stairs; DS, descend staris; SD, sit down; SU, stand up; FL, forward

lunge; SL, side lunge; SOL, stand on one leg; SQOL, squat on one leg.

• Stand on one leg (approx. 2 s) and squat on one leg: hands
fixed at the side.

2.3. Joint Loading
We measure the patients’ hip and knee contact force to define
the ground truth joint loading that we aim to estimate. While
contact forces can be measured directly using instrument
prostheses, we instead use a combination of experimental data
andmusculoskeletal modeling (Fregly et al., 2012) since the direct
method is an invasive procedure. Moreover, this method requires
total joint replacement, which would limit the number of patients
we can analyze. The remainder of this section describes the
procedure for calculating the contact forces. Validation studies
by Wesseling et al. (2016) and Zargham et al. (2019) have shown
that this procedure results in accurate estimates.

The experimental data was collected using 13 optoelectronic
cameras (Vicon, Oxford Metrics, UK, 100Hz) and three ground
reaction force plates embedded in the floor (AMTI, Watertown,
MA, USA, 1,000Hz). Each participant was equipped with 38
reflective markers on bony landmarks conforming to the full-
body plug-in walk model (Oxford Metrics). The single markers
on the body segments were substituted by rigid three marker
clusters. The marker trajectories and ground reaction force data
were used as input in a standard musculoskeletal modeling
workflow applied in OpenSim 3.3 (Delp et al., 2007). First,
the generic OpenSim model gait2392 (Delp et al., 1990)
was used. We added a degree of freedom in the knee joint
(i.e., ab/adduction) and implemented a functional knee axis
of rotation (Meireles et al., 2017). The model was scaled to
match the height and weight of the participant. Joint kinematics
were derived from marker trajectories using inverse kinematics
analysis with a Kalman smoothing algorithm (De Groote et al.,
2008). Subsequently, joint moments were calculated with the
inverse dynamic analysis using the calculated joint angles and
measured ground reaction forces. Muscle force and muscles
activation were determined using static optimization. Lastly, the
joint contact forces were calculated using the vector sum of the
estimated muscle forces and joint reaction forces (Steele et al.,
2012).

Since our goal is to build a workflow that estimates the joint
loading for one repetition of an exercise, we aggregate the contact
forces by extracting the joint impulse y. This variable is defined
as the integral of the contact force signal, relative to the subject’s
body weight:

y =

∫ T
0 CFt dt

m · 9.81

where CFt is the joint contact force at time t, T is the duration of
one exercise repetition, andm is the body mass. We compute the
joint impulse for the left and right hip and knee.

2.4. Input Signals
For the input data of our joint impulse estimation models, we
use inertial measurement unit (IMU) sensors since they are easy
to use outside the lab. IMU sensors are often used in human
motion analysis for this reason (Bussmann et al., 2001; Weyand
et al., 2001; Alvarez et al., 2008; Camomilla et al., 2018). In
addition, they are relatively inexpensive to buy compared to the
lab equipment needed to calculate joint contact forces.

In this study, we use the IMU sensors from a mobile phone
(Samsung Galaxy J5 2017). During the whole exercise protocol,
the phone continuously recorded the 3D acceleration (ax, ay, az)
and 3D angular velocity (gx, gy, gz), both with a sampling rate of
50 Hz1. The phone was attached to the patient’s left hip using a
velcro strap around the patients’ hips. While our goal is to predict
the joint loading on both sides, we also wanted to use a simple
setup with the minimal number of sensors. Hence, we only use
one sensor and always attach it on the same side of the body. Since
people usually wear their phone in a pocket, we chose the left
hip to mimic that placement. The phone was attached such that
the IMU’s reference frame corresponded to the anterior-posterior
(x), proximal-distal (y) and lateral-medial (z) direction of the
person’s left leg.

Since the signals change over time, each signal is represented
as a time series, i.e., a sequence of values. For example,
the ax acceleration signal corresponds to the time series
[ax(t0), ax(t1), ..., ax(tn)] where ti is the ith time stamp of an
exercise repetition.

2.5. Synchronization
Whereas the optoelectronic cameras and the ground reaction
force plates were connected to the computer that was used
for measuring the joint contact forces, the mobile phone
sensor recordings were collected directly on the phone. Since
the computer and the mobile phone recorded the data
independently, their recordings were not synchronized through
a single clock. In order to link to correct parts of the sensor data
to the joint contact forces, both systems’ time stamps have to be
aligned. This can be done by incrementing the time stamps of
the phone by the lag between the two clocks, i.e., the difference
between the computer’s clock time and the phone’s clock time.

1We recorded the data from the TYPE_ACCELEROMETER and

TYPE_GYROSCOPE sensor types of Android. As shown in the API documentation

(https://developer.android.com/guide/topics/sensors/sensors_motion). Android

corrects for drift in the sensor measurements.
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Unfortunately, the exact lag was unknown at the time of data
collection. Finding this lag manually would require to check
for each possible lag whether the joint contact force signal is
aligned with the phone’s signals and select the lag that results
in the best alignment. Additionally, since the lags vary across
the different collection sessions due to drift in the phone’s
clock time, this would have to be repeated for each subject.
Therefore, we align the signals automatically using an approach
based on the cross-correlation coefficient between the signals.
Specifically, we compute the cross-correlation for each possible
lag, i.e., xcorr(Pl : l+nCF ,CF) for each lag l ∈ [0, nP − nCF], which
corresponds to the lags l for which all time stamps of the contact
force data CF are between the start and end of the phone data P.
Figure 1 illustrates the synchronization approach.

2.6. Pipeline
Figure 2 shows our machine learning pipeline for predicting the
joint impulse based on the phone’s signals. The input and output
of the pipeline are defined as follows:

• Input: Themeasurements of the phone’s IMU collected during
a single exercise repetition.

• Output: The joint impulse at the left hip, right hip, left knee or
right knee. Each location corresponds to one target variable,
i.e., the goal is to predict one value per location. Since the four
locations may require different models, we develop a separate
pipeline (with the same building blocks) for each target.

The pipeline consists of three building blocks. First, the feature
extraction block converts the raw phone signals into a format
that is suitable for learning a model. This format consists of
features that summarize the phone signals, e.g., by extracting
the mean of the ax signal. Each feature summarizes the data of
one exercise repetition, i.e., one window of data. The process of
defining a set of relevant features is called feature construction.
Section 2.6.1 describes this process in more detail. Next, the
normalization block normalizes the feature values in order to
make the predictions more robust. Section 2.6.2 lists several
normalization procedures. Finally, the model block turns the
(normalized) feature values into a prediction for the left/right
hip/knee joint impulse. Since the relation between phone-based
features and joint impulse is unknown from a biomechanics
perspective, we use machine learning to automatically learn a
model from a dataset labeled with ground-truth joint impulses.
Sections 2.6.3 and 2.6.4 describe the learning settings and
methods for training these models.

2.6.1. Feature Construction
The input of the pipeline consists of the measurements collected
by the phone’s sensors. However, the high dimensionality of
the raw phone signals prevents using these signals directly
for training a model. Therefore, we follow a feature-based
approach (Fulcher, 2018) and convert the raw phone signals
into a low-dimensional feature representation which captures the
relevant characteristics of the signals.

We use the TSFuse Python package with the minimal feature
extraction settings to generate a feature representation. This
package extracts a set of statistical features (e.g., mean, median,

variance,...) from both the original signals and additional signals
derived from these signals. To derive new signals, TSFuse
combines multiple signals using different transformations (e.g.,
the resultant of three signals). We refer to De Brabandere
et al. (2019) for the complete list of transformations as well as
the feature construction algorithm which builds features using
these transformations.

Since this construction method uses the target data to
remove irrelevant features, the feature construction method
was repeated for each cross-validation fold (see section 2.7).
In our experiments, TSFuse constructed the same 63 features
in each fold. Supplementary Table 1 shows an overview of the
constructed features.

2.6.2. Normalization Procedures
Normalizing the feature values may be required from a machine
learning and biomechanics perspective. From amachine learning
perspective, standardizing the feature values to a similar range is
necessary for certain types of models, including the regularized
linear model of our pipeline (section 2.6.4). From a biomechanics
perspective, other studies using accelerometer data have shown
that individual differences (e.g., body height, body mass,
movement pattern, ...) may influence the signals and thus affect
the feature values as well (Op De Beéck et al., 2018).

For the features, we consider the following
normalization procedures:

• No normalization: use the original feature values.
• Dataset-level standardization: standardize each feature using

the mean and standard deviation as computed over the
complete dataset. This procedure only accounts for differences
in the range of the features.

• Subject-level standardization: standardize each feature using
the mean and standard deviation as computed separately for
each subject. This procedure also accounts for differences
between subjects.

For the target data, we only consider (1) the original
joint impulses relative to subject’s body weight, and (2) the
standardized impulses using the mean and standard deviation
over the complete training set. We do not consider standardizing
based on each subject’s joint impulses since that would require
ground truth joint loading measurements for the test data, which
is understandable as the model does not have these when applied
to an unseen subject.

2.6.3. Learning Settings
Since some exercises have completely different movements,
the joint impulse can not be modeled in the same way for
each exercise. The model could detect the exercise type itself
by training the model using the complete dataset. However,
given the small dataset size, we simplify the learning task by
training multiple models, each focusing on only one or a few
similar exercises. Specifically, we consider the following two
learning settings:
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FIGURE 1 | Illustration of our synchronization method for one of the subjects. The original signals (left) are the resultant acceleration measured by the phone and the

left hip contact force. The cross-correlation between these signals (middle) is computed for all possible lags, i.e., all lags for which the hip contact force signal still

ends before the acceleration signal ends. The location of the highest peak then corresponds to the time difference between the signals, which can be used to align the

signals (right).

FIGURE 2 | Joint loading estimation pipeline.

• One exercise (OE)

This setting splits the data per exercise type and evaluates
models for each exercise type separately.

• Similar exercises (SE)

This setting splits the dataset in groups of similar exercises:
walk, ascend stairs and descend stairs; sit down and stand up;
forward lunge and side lunge; and stand on one leg and squat
on one leg.

Grouping multiple exercises in the SE setting increases the
number of training examples compared to the OE setting, which
may help selecting relevant features and setting good parameters
for the model. We hypothesize that the SE setting yields more
accurate models as a result of the increased training set size. To
evaluate this hypothesis, section 3.4 compares both settings.

2.6.4. Learning Methods
To estimate the joint loading based on the phone’s data, we train
regularized linear regression models using the Least Absolute

Shrinkage and Selection Operator (LASSO) by Tibshirani (1996).
This method performs both regularization and feature selection
by including the ℓ1-norm of the weights in the cost function.
Given the small dataset of this study, this method is suitable
as it is able to select relevant features from a large number of
features (p) when the number of training examples (n) is small
(n≪ p). In our experiments, we use the Lasso implementation
of scikit-learn (Pedregosa et al., 2011) with the default
parameters, which sets the regularization constant alpha to 1.

We compare the linear regression models to a naïve baseline
model which predicts the average joint impulse of all exercise
repetitions in the training data. As the baseline requires no
learning, achieving a lower prediction error is a minimal
requirement for the linear model to do better than the current
best approach for monitoring the joint loading of patients.
This approach uses the population average as a “joint loading
profile” for monitoring an individual patient. The naïve baseline
estimates the population average from a specific group of
subjects, in this case a sample of hip OA patients.
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2.7. Evaluation
We evaluate the pipeline’s performance on unseen (i.e., future)
data with respect to two scenarios: (1) applying the model to an
unseen patient, and (2) applying the model to a seen patient, i.e.,
a patient for whom some labeled data is already available. The
first scenario is relevant when a doctor without lab access applies
the model to one of his patients. Since this patient’s movement
patterns may be different compared to the patients for whom the
model was trained, we hypothesize that the second scenario may
improve the predictions by including labeled data of the patient
in the training data. To evaluate these scenarios, we employ the
following cross-validation procedures:

• Leave-one-subject-out cross-validation

This cross-validation procedure evaluates how accurate the
pipeline works for an unseen patient. In each fold, we hold
out all data of a single patient and train the model using
all other patients’ data. The error averaged over all folds
corresponds to the prediction error that a doctor without lab
access can expect.

• Leave-one-exercise-type-out cross-validation

This cross-validation procedure evaluates how accurate the
pipeline works for a seen patient. This procedure splits the
data based on the exercise type. In each fold, the test data
consists of all repetitions of one exercise type performed by
one subject. The training data consists of all other exercises
performed by the same subject as well as all data of the other
subjects. Note that we do not consider leave-one-repetition-
out cross-validation: since all trials of each exercise were
performed consecutively, the dependency between trials may
be too strong and result in overly optimistic errors.

For both cross-validation schemes, we evaluate the models by
reporting the relative mean absolute error (MAE%) of the
estimated joint impulses ŷi w.r.t. the ground truth joint impulses
yi over all exercise repetitions i. Thismetric represents the average
relative deviation from the actual joint impulses over all exercise
repetitions performed by a patient. The MAE% is defined as
follows:

MAE% =

N∑

i

∣∣∣ ŷi − yi

yi

∣∣∣

3. RESULTS

This section evaluates the proposed joint impulse prediction
pipeline. We evaluate the pipeline using both cross-validation
procedures in section 3.1 (leave-one-subject-out) and section 3.2
(leave-one-exercise-type-out). For the pipeline’s building blocks,
we use dataset-level standardization for the feature values and
train the models using the SE setting. Our comparison in sections
3.3 and 3.4 shows that this normalization procedure and learning
setting were found to be optimal choices for our dataset.

3.1. Error for Unseen Patients
Table 2 shows the MAE% for the joint impulse at each of the
four locations. Overall, the linear model outperforms the baseline
for the hip joint loading. However, the knee joint loading seems

TABLE 2 | MAE% evaluated using leave-one-subject-out cross-validation.

Exercise Method Left hip Right hip Left knee Right knee

Walk
Baseline 0.439 0.460 0.286 0.291

Linear 0.168 0.155 0.430 0.406

Ascend stairs
Baseline 0.158 0.077 0.193 0.076

Linear 0.158 0.077 0.193 0.183

Descend stairs
Baseline 0.184 0.340 0.207 0.164

Linear 0.184 0.227 0.319 0.478

Sit down
Baseline 0.360 0.324 0.372 0.214

Linear 0.360 0.324 0.279 0.214

Stand up
Baseline 0.296 0.204 0.269 0.142

Linear 0.296 0.204 0.269 0.142

Forward lunge
Baseline 0.280 0.300 0.208 0.337

Linear 0.263 0.265 0.178 0.256

Side lunge
Baseline 0.277 0.293 0.254 0.314

Linear 0.325 0.330 0.243 0.269

Stand on one leg
Baseline 0.461 0.469 0.531 0.352

Linear 0.531 0.315 0.744 0.401

Squat on one leg
Baseline 0.278 1.031 0.291 1.986

Linear 0.251 1.081 0.223 1.811

Overall
Baseline 0.314 0.417 0.297 0.483

Linear 0.290 0.360 0.321 0.482

The errors which outperform the baseline are highlighted in bold.

TABLE 3 | MAE% for the two cross-validation schemes.

Left hip Right hip Left knee Right knee

Leave-one-subject-out 0.290 0.360 0.321 0.482

Leave-one-exercise-type-out 0.296 0.407 0.295 0.482

For each location, the lowest error is highlighted in bold, if one cross-validation method

outperforms the other.

harder to estimate as the linearmodel is marginallymore accurate
than the baseline for right knee and even less accurate than the
baseline for the left knee. Evaluating the error for each exercise
type separately shows that the results are different across different
exercise types. The hip joint impulse estimations for walking
show the largest improvement over the baseline compared to the
other exercises.

3.2. Error for Seen Patients
Table 3 compares the leave-one-subject-out cross-validation
scheme with the leave-one-exercise-type-out cross-validation.
We hypothesized that the leave-one-exercise-type-out cross-
validation could improve the predictions by including data of
the patient in the test data. Unfortunately, the leave-one-exercise-
type-out errors are close to the leave-one-subject-out errors and
for the left and right hip, the leave-one-subject-out models often
outperform the leave-one-exercise-type-out models.

3.3. Comparison of Normalization
Procedures
In section 2.6.2, we hypothesized that normalization procedures
can improve the error of the models by scaling features
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TABLE 4 | Overall MAE% (averaged over all locations, i.e., left/right hip/knee) for

different combinations of the normalization procedures.

Target normalization

No Yes

Feature normalization

No 0.439 0.433

Dataset-level 0.363 0.391

Subject-level 0.371 0.391

The table shows the results for the linear models with the SE setting evaluated using leave-

one-subject-out cross-validation. The lowest error over all combinations is highlighted in

bold.

to a similar range and removing inter-individual differences.
Table 4 compares all possible combinations of the normalization
procedures for both the features and the target data by reporting
the overall MAE% averaged over all locations (left and right
hip and knee) for each of combination. The best performing
combination is the dataset-level feature standardization and no
target normalization. Surprisingly, subject-level standardization
does not result in more accurate models compared to dataset-
level standardization.

3.4. Comparison of Learning Settings
In section 2.6.3, we hypothesized that the SE setting yields
more accurate results as this setting increases the number of
training examples by combining multiple exercises. To evaluate
this hypothesis, Table 5 compares the SE setting with the OE
setting. Overall, the SE models are more accurate than the OE
models for all locations except for the left knee. For the hip
joint impulse, the SE models show the largest improvement for
walking. However, the results are slightly less accurate for other
exercises (e.g., forward lunge and side lunge) which indicates that
the SE models are suitable for walking but not for other exercises.

4. DISCUSSION

The goal of this study was to explore the possibility of using a
minimal number of sensors for predicting joint loading in hipOA
patients. We proposed a machine learning pipeline that requires
only the IMU data collected from amobile phone. In this section,
we discuss our choices for the different building blocks of this
pipeline. We then discuss the differences in the obtained errors
with respect to the joints and exercise types. Finally, we discuss
the accuracy vs. ease-of-use trade-off of our approach and suggest
future directions with respect to this trade-off.

4.1. Building Blocks of the Machine
Learning Pipeline
The proposed machine learning pipeline required making
several decisions for the different building blocks. For
the feature extraction block, we used an automated
approach (De Brabandere et al., 2019) to define the feature
representation. For the normalization block, we compared
different normalization procedures and found that dataset-level
feature standardization was important. For the model block, we
only considered a linear regression model, since the small dataset

TABLE 5 | MAE% of the similar exercises (SE) models and one exercise (OE)

models.

Exercise Setting Left hip Right hip Left knee Right knee

Gait
OE 0.439 0.460 0.286 0.291

SE 0.168 0.155 0.430 0.406

Ascend stairs
OE 0.158 0.077 0.193 0.076

SE 0.158 0.077 0.193 0.183

Descend stairs
OE 0.184 0.340 0.207 0.164

SE 0.184 0.227 0.319 0.478

Sit down
OE 0.360 0.324 0.380 0.214

SE 0.360 0.324 0.279 0.214

Stand up
OE 0.296 0.204 0.269 0.142

SE 0.296 0.204 0.269 0.142

Forward lunge
OE 0.202 0.265 0.174 0.264

SE 0.263 0.265 0.178 0.256

Side lunge
OE 0.277 0.293 0.254 0.314

SE 0.325 0.330 0.243 0.269

Stand on one leg
OE 0.462 0.292 0.582 0.352

SE 0.531 0.315 0.744 0.401

Squat on one leg
OE 0.196 1.167 0.242 2.058

SE 0.251 1.081 0.223 1.811

Overall
OE 0.296 0.407 0.295 0.482

SE 0.290 0.360 0.321 0.482

The SE errors which outperform the OE errors are highlighted in bold.

size prevented us from using non-linear models. Whereas we
used the pipeline for predicting the joint impulses of the hip and
knee, it could be relevant for other locations as well. It could also
be interesting to explore whether this pipeline (potentially with
a non-linear model) can be used for other types of exercises and
for other types of sensors as input.

4.2. Errors Across Different Joints
The results of Table 2 show a clear difference in accuracy for
the hip and knee joints. The obtained results indicate that the
proposed pipeline is able to predict the hip impulse, but it
remains hard to outperform the naïve baseline for the knee
impulse. Perhaps placing the IMU closer to the target joint
might lead to better results in predicting knee contact forces.
An IMU sensor on the hip might not capture the higher
linear accelerations and angular velocities that are found on the
segments connected to the knee joint. Considering the body’s
ability to attenuate shock, the acceleration signal amplitude
has already weakened when reaching the IMU placed at hip
level (Kavanagh and Menz, 2008). Placing an IMU on the shank
could better capture these initial loading shocks (distal part of the
shank), or higher acceleration signals (middle part of the shank).
However, which placement is best to obtain better joint loading
predictions should be investigated. Therefore, different IMU
placements should be investigated to examine if personalizing
the placement based on the type of patient (i.e., hip or knee
osteoarthritis patient) leads to better joint loading prediction
results during these types of exercises.
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Similar to the difference between the hip and knee, there are
also different errors for the left and right side. Interestingly, this
difference does not only hold for the linear models, but also for
the baselines, which suggests that there may be a larger variability
in the joint impulses for the right side compared to the left
side. One possible reason could be the side of the hip that was
affected. However, this is unlikely as the right hip was affected
for 6 patients and the left hip for 4 patients. To evaluate whether
the difference between left and right is significant, we performed
a two-sided paired t-test for the overall MAE% of the baseline.
That is, we tested whether [x1, . . . , x10] is significantly different
from [y1, . . . , y10] where xi is subject i’s MAE% of the baseline for
the left hip/knee and yi is subject i’s MAE% of the baseline for the
right hip/knee. The resulting p-values are 0.3694 (for the hip) and
0.4458 (for the knee)meaning that the difference between left and
right was not significant. Most likely, the difference is due to the
small sample size (only 10 subjects) and does not hold in general.

4.3. Errors Across Different Exercise Types
The errors of the linear model are different for the different
exercise types, which suggests that predicting joint impulses is
easier for some exercises compared to others. Given that there
are large differences in the movements between exercises, the
differences in the joint impulse prediction errors can depend
on the relation between the data collected by the phone and
the contact force at each point in time. Figure 3 shows these
contact forces along with the resultant acceleration for each
exercise type. For those exercises for which both the left and right
hip joint impulse predictions are better than the baseline (walk
and forward lunge), the contact force signal shows two main
peaks for which also the resultant acceleration has a clear peak.
The potential relation between the height of these acceleration
peaks and the height of the contact force peaks could make the
prediction of the joint impulses easier.

4.4. Selected Features
The linear models in the model block were trained using L1-
regularization (lasso), which select a small number of features
out of the 63 generated features. Since the selected features are
different for each fold, it is hard to visualize which features are
used in themodels given the large number of models (10 subjects,
4 groups of exercises and 4 locations result in 160 models).
Instead, we run stability selection (Meinshausen and Bühlmann,
2010) for each group of exercises and for each location to get an
idea of which features were selectedmost often. Stability selection
repeatedly trains Lasso models (with random subsampling) and
reports each feature’s importance as the percentage of models in
which the feature was used. Supplementary Table 2 shows the
top 5 features with the corresponding importance scores, for each
location and each group of exercises. One observation is that sum
and length features are commonly used. Since the joint impulse
is defined as an integral of the contact force, it is expected that
this feature is important to capture the duration of the exercise
repetition. Unfortunately, it is hard to interpret the importance
of the other selected features. Future work could explore using
more specific (manually handcrafted) features when the goal is to
get a better insight in the learned models.

4.5. Trade-Off Between Accuracy and
Ease-of-Use
This study explores a trade-off between accuracy and ease-of-
use. The most accurate model would be the one that uses all
lab equipment needed for calculating joint contact forces using a
musculoskeletal modeling workflow. However, this model would
also be the most inconvenient as it requires the patient to come
to the lab (which is probably not located in the hospital), attach
38 reflective markers to the patient and analyze the collected
data in order to calculate the joint contact forces from the
collected measurements.

Our model only requires attaching a mobile phone to the
patient’s left hip2. Given that a patient consultation typically takes
approximately only 15 min, using a small number of sensors is an
important requirement for developing a joint loading estimation
tool. In addition, using a mobile phone reduces the cost of such a
tool, since clinicians most likely already own a mobile phone and
only need to install an app to apply the model.

However, given the results of this work, we recognize that
using a mobile phone may be an easy solution, but unfortunately,
one that is not accurate enough for valid clinical use. A better
compromise between accuracy and ease-of-use would be to use
a combination of IMU sensors at more than one location. This
would allow having a better view of the patient’s movements. Still,
the number of sensors should be kept to a minimum in order to
keep the tool practical. More research is needed to evaluate which
locations are most suitable.

Even though the results are far from perfect, we argue that our
phone-based model is a step in the right direction in estimating
joint loading in a clinical setting using a very limited amount
of sensors. Especially the results for predicting the joint impulse
during level walking are interesting, where distinct reduction in
mean absolute error from the baseline can be seen (MAE% from
43.9 to 16.8%). When monitoring a patient during daily life, this
result is promising as walking is one of the most commonly
performed daily activities and might be responsible for the
majority of the joint loading during a day. The improvement
over the baseline indicates that clinicians are able to obtain more
accurate estimates of a patient’s joint load compared to using
a population average. In the future, a “hip OA” profile using
population averages could shift to a “personal” profile using
a more individualized estimate of joint loading. This in turn
could help clinicians align a person’s exercise prescription to their
individual loading profile based onmore accuratemethods which
could improve their rehabilitation. Given that joint contact forces
are believed to be important in the initiation and progression
of OA (Felson, 2013), this might be a promising tool in the
rehabilitation setting to asses patients’ joint impulses during
walking over time and adjust the rehabilitation and exercise
prescription accordingly.

2Alternatively, the patient could wear the phone in his left pocket, but further

research is needed to evaluate whether this does not decrease the accuracy of

the estimations. Both ways of wearing the phone are convenient in a clinician’s

practice.
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FIGURE 3 | Hip contact force (N/kg) along with the resultant acceleration (m/s2) as measured by the mobile phone. For each exercise type, the figure shows a single

repetition performed by one subject.
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5. CONCLUSION AND FUTURE WORK

This work presented a machine learning pipeline to estimate the
hip and knee joint impulse based on a mobile phone. In terms
of the mean absolute error, we found that the proposed pipeline
is able to slightly outperform a population average baseline for
the hip (left hip: 29.0% for the linear model vs. 31.4% for the
baseline; left hip: 36.0 vs. 41.7% for the right hip), but not for
the knee. Our approach has two key advantages over existing
methods for predicting joint loading. First, the proposed pipeline
only requires a mobile phone as input. Second, we trained and
evaluated the pipeline using data of patients instead of healthy
subjects, which is relevant with respect to the setting in which the
proposed pipeline is applicable, i.e., monitoring patients.

However, even though our phone-based model is a step
in the direction of estimating joint contact forces using a
minimal number of sensors, the current approach still has several
limitations that need to be addressed in future work. First,
the overall error of our approach should be reduced further
in order to be applicable in a clinical context. One possibility
is to use multiple sensors, but still only a few such that the
model remains easy to use. Related work by Wesseling et al.
(2018) has shown that a combination of six IMU kinematic
variables can estimate hip joint loading but that for accurate
knee joint loading estimates both kinematic variables and ground
reaction forces are needed. Future work can investigate how to
extract sufficiently informative features from a minimal number
of sensors. For example, extracting joint angles could improve
the prediction error (McLean et al., 2003), but this requires at
least two sensors. Second, while we always attached the phone at
a fixed position, the phone’s orientation could be slightly different
due to variations across experiments with different subjects. This
means that our learned models are evaluated on data that may
have been collected using a slightly different reference frame for
the sensor measurements. Hence, our model should be robust
against minor perturbations of the phone’s orientation, but not
against attaching the phone at different locations. Future work
should develop models that are robust against variations in the
position of the sensors as well. This can be done by collecting data
with sensors at different locations and using machine learning to
train a model that works for various locations. Third, we decided
to only use linear models, since non-linear models did not

improve the results for this small dataset of 10 patients. Training
non-linear models using data from more patients can potentially
detect non-linear relations between the sensor data and the joint
impulse. Moreover, additional data can improve the model’s
accuracy by learning from a larger number of training examples.
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Human movements are characterized by highly non-linear and multi-dimensional

interactions within the motor system. Therefore, the future of human movement analysis

requires procedures that enhance the classification of movement patterns into relevant

groups and support practitioners in their decisions. In this regard, the use of data-driven

techniques seems to be particularly suitable to generate classification models. Recently,

an increasing emphasis on machine-learning applications has led to a significant

contribution, e.g., in increasing the classification performance. In order to ensure the

generalizability of the machine-learning models, different data preprocessing steps are

usually carried out to process the measured raw data before the classifications. In the

past, various methods have been used for each of these preprocessing steps. However,

there are hardly any standard procedures or rather systematic comparisons of these

different methods and their impact on the classification performance. Therefore, the

aim of this analysis is to compare different combinations of commonly applied data

preprocessing steps and test their effects on the classification performance of gait

patterns. A publicly available dataset on intra-individual changes of gait patterns was

used for this analysis. Forty-two healthy participants performed 6 sessions of 15 gait trials

for 1 day. For each trial, two force plates recorded the three-dimensional ground reaction

forces (GRFs). The data was preprocessed with the following steps: GRF filtering, time

derivative, time normalization, data reduction, weight normalization and data scaling.

Subsequently, combinations of all methods from each preprocessing step were analyzed

by comparing their prediction performance in a six-session classification using Support

Vector Machines, Random Forest Classifiers, Multi-Layer Perceptrons, and Convolutional

Neural Networks. The results indicate that filtering GRF data and a supervised data

reduction (e.g., using Principal Components Analysis) lead to increased prediction

performance of the machine-learning classifiers. Interestingly, the weight normalization

and the number of data points (above a certain minimum) in the time normalization does
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not have a substantial effect. In conclusion, the present results provide first domain-

specific recommendations for commonly applied data preprocessing methods andmight

help to build more comparable and more robust classification models based on machine

learning that are suitable for a practical application.

Keywords: gait classification, data selection, data processing, ground reaction force, multi-layer perceptron,

convolutional neural network, support vector machine, random forest classifier

INTRODUCTION

Human movements are characterized by highly non-linear and
multi-dimensional interactions within the motor system (Chau,
2001a; Wolf et al., 2006). In this regard, the use of data-driven
techniques seems to be particularly suitable to generate predictive
and classification models. In recent years, different approaches
based on machine-learning techniques such as Artificial Neural
Networks (ANNs), Support VectorMachines (SVMs) or Random
Forest Classifiers (RFCs) have been suggested in order to support
the decision making of practitioners in the field of human
movement analysis, e.g., in classifying movement patterns into
relevant groups (Schöllhorn, 2004; Figueiredo et al., 2018).
Most machine-learning applications in human movements are
found in human gait using biomechanical data (Schöllhorn,
2004; Ferber et al., 2016; Figueiredo et al., 2018; Halilaj
et al., 2018; Phinyomark et al., 2018). Although it is generally
striking that there are more and more promising applications
of machine learning in the field of human movement analysis,
the applications are very diverse and differ in their objectives,
samples and classification tasks. In order to fulfill the application
requirements and to ensure the generalizability of the results,
a number of stages are usually carried out to process the
raw data in classifications using machine learning. Typically,
machine-learning classifications of gait patterns consist of a
preprocessing and a classification stage (Figueiredo et al.,
2018). The preprocessing stage can be distinguished in feature
extraction, feature normalization, and feature selection. The
classification stage includes cross validation, model building and
validation, as well as evaluation. Different methods have been
used for each stage and there is no clear consensus on how to
proceed in each of these stages. This is particularly the case for
the preprocessing stages of the measured raw data before the
classification stage, where there are hardly any recommendations,
standard procedures or systematic comparisons of different
steps within the preprocessing stage and their impact on the
classification accuracy (Slijepcevic et al., 2020). The following six
steps, for example, can be derived from the preprocessing stage:
(1) Ground reaction force (GRF) filtering, (2) time derivative, (3)
time normalization, (4) data reduction, (5) weight normalization,
and (6) data scaling.

(1) There are a number of possible noise sources in the recording
of biomechanical data. Noise can be reduced by careful
experimental procedures, however, cannot be completely
removed (Challis, 1999). So far there is less known about
optimal filter-cut-off frequencies in biomechanical gait
analysis (Schreven et al., 2015). Apart from a limited

certainty about an optimal range of filter cut-off frequencies
of the individual GRF components, the effect of GRF
filtering on the prediction performance of machine-learning
classifications has not been reported.

(2) In the majority of cases, time-continuous waveforms or
time-discrete gait variables are measured and used for the
classification (Schöllhorn, 2004; Figueiredo et al., 2018).
Although, some authors also used time derivatives or data
in the frequency or frequency-time domain from time-
continuous waveforms (Schöllhorn, 2004; Figueiredo et al.,
2018). A transformation, which has barely been applied so
far, is the first-time derivative of the acceleration, also known
as jerk (1tGRF) (Flash and Hogan, 1985). However, 1tGRF
might describe human gait more precisely than velocity and
acceleration, especially when the GRF is measured. 1tGRF
can be determined directly by calculating the first-time
derivative of the GRF measured by force plates.

(3) Feature normalization has been applied in order to achieve
more robust classification models (Figueiredo et al., 2018).
A normalization in time is commonly applied to normalize
the biomechanical waveforms as percentage of the step,
stride or stance phase (Kaczmarczyk et al., 2009; Alaqtash
et al., 2011a,b; Eskofier et al., 2013; Zhang et al., 2014). It
is differentiated among other things between 101 points in
time (Eskofier et al., 2013), 1000 points in time (Slijepcevic
et al., 2017) or the percentage occurrence per step cycle (Su
and Wu, 2000).

(4) The purpose of data reduction is to reduce the amount of
data to themost relevant features. A dimensionally reduction
is often performed in order to determine which data is
to be retained and which can be discarded. The use of
dimension reduction can speed up computing time or reduce
storage costs for data analysis. However, it should be noted
that these feature selection approaches can not only reduce
computation costs, but could also improve the classification
accuracy (Phinyomark et al., 2018). Beside the unsupervised
selection of single time-discrete gait variables (Schöllhorn,
2004; Begg and Kamruzzaman, 2005), typical methods for
reducing the dimensionality of the data is, for example, the
Principal Component Analysis (Deluzio and Astephen, 2007;
Lee et al., 2009; Eskofier et al., 2013; Badesa et al., 2014).

(5) Another way of feature normalization is weight or height
normalization. Weight and height normalizations in
amplitude are a frequently used method to control for
inter-individual differences in kinetic and kinematic
variables (Wannop et al., 2012). To what extent the
multiplication by a constant factor influences the
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classification has not yet been investigated to the best of
our knowledge.

(6) A third way of feature normalization is data scaling. Data
scaling is often performed to normalize the amplitude of one
or different variable time courses (Mao et al., 2008; Laroche
et al., 2014). The z-score method is mainly used (Begg and
Kamruzzaman, 2005; Begg et al., 2005). In machine learning,
scaling to a variable or variable waveform the interval [0, 1]
or [-1, 1] is common in order to minimize amplitude-related
weightings when training the classifiers (Hsu et al., 2003). To
the best of our knowledge, it has not yet been investigated
whether it makes a difference to scale over a single gait trial
or over all trials of one subject in one session.

In summary, there is a lack of domain-specific standard
procedures and recommendations, especially for the various
data preprocessing steps commonly applied before machine-
learning classifications. Therefore, the aim of this analysis is
to compare different commonly applied data preprocessing
steps and examine their effect on the classification performance
using different machine-learning classifiers (ANN, SVM, RFC).
A systematic comparison is of particular interest for deriving
domain-specific recommendations, finding best practice models
and the optimization of machine-learning classifications of
human gait data. The analysis is based on the classification
problem described by Horst et al. (2017), who investigated intra-
individual gait patterns across different time-scales over 1 day.

MATERIALS AND METHODS

Sample and Experimental Protocol
The publicly available dataset on intra-individual changes of
gait patterns by Horst et al. (2017, 2019a) and two unpublished
datasets (Daffner, 2018; Hassan, 2019) following the same
experimental protocol were used for this analysis. In total, the
joint dataset consisted of 42 physically active participants (22
females, 20 males; 25.6± 6.1 years; 1.72± 0.09m; 66.9± 10.7 kg)
without gait pathology and free of lower extremity injuries. The
study was conducted in accordance with the Declaration of
Helsinki and all participants were informed of the experimental
protocol and provided their written consent. The approval
of the ethics committee of the Rhineland-Palatinate Medical
Association in Mainz has been received.

As presented in Figure 1, the participants performed 6
sessions (S1–S6) of 15 gait trials in each session, while there
was no intervention between the sessions. After the first, third
and fifth session, the participants had a break of 10min until
the beginning of the subsequent session. Between S2 and S3
was a break of 30min and between S4 and S5 the break was
90min. The participants were instructed to walk a 10 m-long
path at a self-selected speed barefooted. For each trial, three-
dimensional GRFs were recorded by means of two Kistler force
plates of type 9287CA (Kistler, Switzerland) at a frequency of
1,000Hz. The Qualisys Track Manager 2.7 software (Qualisys
AB, Sweden) managed the recording. During the investigation,
the laboratory environment was kept constant and each subject
was analyzed by the same assessor only. Before the first session,
each participant carried out 20 familiarization trials to get used
to the experimental setup and to determine a starting point for a
walk across the force plates. Before each of the following sessions,
five familiarization trials were carried out to take into account an
effect of practice and to control the individual starting position.
In addition, the participants were instructed to look toward a
neutral symbol (smiley) on the opposite wall of the laboratory
to direct their attention away from targeting the force plates and
ensure a natural gait with upright posture. The description of the
experimental procedure can be found as well in the original study
(Horst et al., 2017).

Data Preprocessing
The stance phase of the right and left foot was determined using
a vertical GRF threshold of 20 Newton. Different combinations
of commonly used data preprocessing steps, which typically
precede machine-learning classifications of biomechanical gait
patterns have been compared (Figure 2). Within the introduced
stage of preprocessing, the following six data preprocessing
steps were investigated: (1. GRF filtering) comparing filtered
and unfiltered GRF data. The method described by Challis
(1999) was used to determine the optimal cut-off frequencies
(fc) for the respective gait trials. The optimal filter frequencies
were calculated for each foot and each of the three dimensions
in each gait trial separetly. (2. Time derivative) comparing
the recorded GRF and 1tGRF, the first-time derivative of the
GRF. 1tGRF was calculated by temporally derivating the GRF
for each time interval. (3. Time normalization) comparing

FIGURE 1 | Experimental procedure with the chronological order of the six sessions (S1–S6) and the duration of the rest periods between subsequent sessions.
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FIGURE 2 | Combinations of commonly used data preprocessing steps before machine-learning classifications. (1) Data points per foot and dimension. (2)

Time-continuous waveforms without reduction (TC), time-discrete gait variables by an unsupervised reduction (TD), and principle components by a supervised

reduction using Principal Component Analysis (PCA). (3) Z-transformation combined with scaling from [−1, 1] over single trials (ST) or all trials (AT). fc: individual

optimal filter cut-off frequency. (4) 1tGRF: first-time derivative of GRF.

the number of time points for the time normalization to the
stance phase. Each variable was time normalized to 11, 101 and
1,001 data points, respectively. (4. Data reduction) comparing
non-reduced, time-continuous waveforms (TC), time-discrete
gait variables (TD) and principle components by a reduction
using Principal Component Analysis (PCA) applied to the
time-continuous waveforms. The PCA (Hotelling, 1933) is a
statistical procedure that uses an orthogonal transformation
from a set of observations of potentially correlated variables
into a set of values of linearly uncorrelated variables, the
so called “principal components.” In this transformation, the
first principal component explains the largest possible part
of the variance. Each subsequent principal component again
explains the largest part of the remaining variance, with the
restriction that subsequent principal components are orthogonal
to the preceding principal components. In our experiment, the
resulting features, i.e., the principle components explaining 98%
of the total variance, were used as input feature vectors for
the classification. The time-discrete gait variables of the fore-
aft and medio-lateral shear force were the minimum and the
the maximum values as well as their occurrence during the
stance phase, and of the vertical force the minimum and the
two local maxima values as well as their occurrence during the
stance phase. This resulted in 28 time-discrete gait variables
for GRF data and 24 time-discrete gait variables for 1tGRF
data. (5. Weight normalization) comparing whether weight
normalization to the body weight of every session was performed
or not. The normalization to the body weight before every season
would exclude the impact of any changes in the body mass
during the investigation. (6. Data scaling) comparing different
data scaling techniques. Scaling is a common procedure for data
processing prior to classifications of gait data (Chau, 2001a,b). It
was carried out to ensure an equal contribution of all variabilities
to the prediction performance and to avoid dominance of

variables with greater numeric range (Hsu et al., 2003). On the
one hand, this involved a z-transformation over all trials and one
over each single trial combined with a scaling to the range of
[−1, 1] (Hsu et al., 2003), determined over all trials or over each
single trial. The combination of these amplitude normalization
methods result in four different scaling methods.

The data preprocessing was managed within Matlab R2017b
(MathWorks, USA) and all combinations of each methods of
each data preprocessing and classification step were performed
in the current analysis in the order described in Figure 2.
In total, the analysis included 1,152 different combinations of
data preprocessing and classification step methods (1,152 = 2
GRF filtering ∗ 2 Time derivative ∗ 3 Time normalization ∗

3 Data reduction ∗ 2 Weight normalization ∗ 4 Data scaling
∗ 4 Classifier). In the two methods TD and PCA for data
reduction, the data scaling could not be applied for all methods.
In many cases, all values of a time-discrete gait variable or
a principle component were identical [Figure 2: Data Scaling
z: ST or [−1, 1]: ST] and thus no variance occurred, which
is necessary for the calculation of the data scaling. Only, the
data scaling over all trials from one subject [Figure 2: Data
scaling: z: AT, [−1, 1]: AT] could be performed for all three
methods of data reduction. In order to keep the number of
considered combinations the same for all methods of a data
preprocessing step, only the data scaling of all attempts of one
subject [Figure 2: Data scaling: z: AT, [−1, 1]: AT] was considered
for the descriptive and statistical analysis in the results section.
This scaling also led to by far the best performance scores.
Consequently, 288 different combinations of data preprocessing
and classification step methods (288 = 2 GRF filtering ∗ 2
Time derivative ∗ 3 Time normalization ∗ 3 Data reduction
∗ 2 Weight normalization ∗ 1 Data scaling ∗ 4 Classifier)
were compared quantitatively with each other on basis of the
performance scores.
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TABLE 1 | Length of the resulting input feature vectors depending on different

combinations of preprocessing methods.

Data

reduction

Time

normalization

Time

derivative

GRF

filtering

Length of input

feature vector

TC 11 GRF;1tGRF No; Yes 66 = 11 * 3 * 2

101 GRF;1tGRF No; Yes 606 = 101 * 3 * 2

1,001 GRF;1tGRF No; Yes 6006 = 1001 * 3 * 2

TD 11; 101; 1,001 GRF No; Yes 28 = 7 * 2 * 2

1tGRF No; Yes 24 = 6 * 2 * 2

PCA 11 GRF No 46 (44, 47)

Yes 47 (44, 48)

1tGRF No 53 (49, 55)

Yes 38 (43, 46)

101 GRF No 78 (73, 83)

Yes 72.5 (69, 79)

1tGRF No 239 (210, 268)

Yes 108 (97, 119)

1,001 GRF No 79 (73, 84)

Yes 72 (68, 79)

1tGRF No 369 (341, 386)

Yes 108 (97, 120)

TC, time-continuous waveforms for three dimensions (*3) and two steps (*2); TD, time-

discrete gait variables of minima and maxima of the three dimensions (GRF: 7; 1tGRF:

6) for two steps (*2) and their relative occurrences (*2); PCA, Median and interquartile

distance of the number of principle components.

Data Classification
The intra-individual classification of gait patterns was based on
the 90 gait trials (90 = 6 sessions × 15 trials) of each participant.
For each trial, a concatenated vector of the three-dimensional
variables of both force plates was used for the classification. Due
to the different time normalization and data reduction methods,
the resulting length of the input feature vectors differed (Table 1).

The classification based on the following four supervised
machine-learning classifiers with an exhaustive hyper-parameter
search: (1) Support Vector Machines (SVMs) (Boser et al.,
1992; Cortes and Vapnik, 1995; Müller et al., 2001; Schölkopf
and Smola, 2002) using a linear kernel and a grid search to
determine the best cost parameter C = 2−5, 2−4.75, . . . , 215.
(2) Random Forest Classifiers (RFCs) (Breiman, 2001) with the
Gini coefficient as decision criterion. Different numbers of trees
(n_estimators = 200, 225, . . . , 350) and maximal tree depth
(n_depth = 4, 5, . . . , 8) were determined empirically via grid
search. (3) Multi-Layer Perceptrons (MLPs) (Bishop, 1995) with
one hidden layer of size 26 (= 64 neurons) and 2,000 iterations
with the weight optimization algorithm Adam (β1 = 0.9, β2
= 0.999, ε = 10−8). The learning rate regularization parameter
α (= 10−1, 10−2, . . . , 10−7) was determined via grid search in
the cross-validation. (4) Convolutional Neural Networks (CNNs)
(LeCun et al., 2015) consisting of three convolutional layers
and one fully connected layer. The first convolutional layers
contained 24 filters with a kernel size of 8, a stride of 2
and a padding of 4. The second contained 32 filters with a
kernel size of 8, a stride of 2 and a padding of 4. The third

convolutional layer contained 48 filters with a kernel size of 6,
a stride of 3 and a padding of 3. After each convolutional layer
a ReLU activation was performed and after a fully connected
layer a SoftMax was used to obtain probability of each of
the classes. This architecture follows CNNs previously used
for the classification of GRF data (Horst et al., 2019b). The
ability to distinguish gait patterns of one test session from
gait patterns of other test sessions was investigated in a multi-
class classification (six-session classification) setting. For the
evaluation of the prediction performance, the F1-, precision-
and recall-scores were calculated over a stratified 15-fold cross
validation configuration. 78 of 90 parts of the data were used
for training, 6 of 90 parts were used as a validation set and the
remaining 6 of 90 parts was reserved for testing. The 6 samples
per test split were evenly distributed across all session partitions
and are excluded from the complete training and validation
process. Only 6 samples were selected for the test split because
we wanted to guarantee as much training data as possible. In
order to get meaningful results, the Training Validation Test
splitting was stratified repeated 15 times so that each of the 90
gait trials was exactly once in the test set. The classification was
performed within Python 3.6.3 (Python Software Foundation,
USA) using the scikit-learn toolbox (0.19.2) (Pedregosa et al.,
2011) and PyTorch (1.2.0) (Paszke et al., 2019).

The evaluation was carried out by calculating the performance
indicators (accuracy, F1-score, precision and recall) defined by
the number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN):

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1− score = 2∗
Precision∗Recall

Precision+ Recall

Please note that since this is a balanced data set for multi-class
classification, the accuracy corresponds exactly to the recall.

Statistical Analysis
For the comparison of the different combinations of the
described preprocessing steps, the mean performance scores
were compared statistically. Each mean value combined all
combinations of preprocessing steps where the preprocessing
method was part of. The Shapiro-Wilk test showed that none
of the examined variables violated the normal distribution
assumption (p ≥ 0.109). For the comparison of all combinations
of the preprocessing methods, paired-samples t-test and
repeated-measures ANOVAs were calculated for the variables
of time derivative, GRF filtering and weight normalization. For
the ANOVAs post hoc Bonferroni corrected paired-samples t-
tests were calculated for the variables of time normalization,
data reduction and classifier. Furthermore, the effect sizes d and
η
2
p were calculated; d and η

2
p are considered a small effect for

|d| = 0.2 and η
2
p < 0.06, a medium effect for |d| = 0.5 and
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TABLE 2 | Mean F1-score for each individual participant depending on each preprocessing method and machine-learning classifier.

GRF filtering Time derivative Time normalization Data reduction Weight normalization Machine-learning classifier

No Yes GRF 1tGRF 11 101 1001 TC TD PCA No Yes SVM RFC MLP CNN

S01 38.3 42.0 41.4 39.0 34.9 42.4 43.2 40.2 25.7 54.5 39.9 40.4 46.4 45.0 36.3 32.9

S02 24.5 29.4 27.9 26.0 23.2 28.4 29.2 24.5 20.6 35.7 27.2 26.7 30.0 30.7 23.9 23.2

S03 36.9 43.5 40.6 39.8 36.1 44.3 40.2 40.9 27.6 52.1 40.1 40.3 44.8 43.9 38.2 33.9

S04 42.9 50.0 48.2 45.1 41.5 48.8 49.5 48.8 36.5 53.6 45.9 47.3 51.4 56.2 42.0 36.8

S05 49.9 50.2 52.0 48.1 47.1 51.1 52.0 50.2 36.5 63.6 49.6 50.6 56.7 56.2 45.5 41.9

S06 38.4 39.8 39.3 38.9 32.0 42.3 43.2 38.9 28.0 49.8 39.3 38.9 42.8 44.6 38.2 30.8

S07 31.5 40.5 35.4 36.7 30.5 40.0 37.6 34.6 28.7 44.8 36.2 35.9 39.2 41.7 32.8 30.3

S08 42.7 49.0 46.4 45.4 41.4 49.0 47.0 47.3 38.2 51.8 45.7 46.0 49.0 52.1 44.9 37.6

S09 43.2 47.2 46.1 44.3 39.1 49.8 46.7 43.5 34.0 58.1 45.3 45.1 51.2 49.7 41.2 38.7

S10 41.3 40.3 41.2 40.4 34.2 44.1 44.1 44.4 27.5 50.5 40.5 41.1 43.8 43.2 42.2 33.9

S11 38.5 40.7 42.5 36.7 35.3 42.8 40.8 42.0 27.6 49.3 39.5 39.7 44.0 45.1 35.2 34.2

S12 34.1 31.9 36.2 29.8 27.9 35.4 35.7 35.3 22.9 40.9 33.5 32.6 36.7 34.9 34.1 26.3

S13 31.7 34.5 34.4 31.8 28.6 36.9 33.8 32.5 27.8 39.0 32.8 33.4 36.9 36.6 31.2 27.6

S14 33.9 34.0 38.1 29.8 28.3 37.3 36.2 35.7 24.4 41.7 34.1 33.8 36.3 35.4 35.7 28.3

S15 39.9 45.3 46.8 38.4 36.8 46.7 44.2 42.5 31.2 54.0 42.8 42.3 48.7 46.2 39.5 35.8

S16 32.0 32.9 32.9 31.9 27.5 34.5 35.3 33.8 23.3 40.2 32.7 32.2 34.3 34.6 34.6 26.3

S17 29.3 30.0 31.7 27.6 22.6 33.4 32.6 30.0 21.7 36.9 29.7 29.7 33.0 31.5 29.4 24.8

S18 24.4 26.9 25.6 25.8 22.8 27.0 27.3 28.3 17.9 30.9 25.7 25.7 27.6 26.7 27.5 21.0

S19 27.3 28.7 31.5 24.5 25.0 29.4 29.5 26.8 22.7 34.5 27.9 28.0 31.0 30.6 25.5 24.8

S20 29.3 34.0 32.4 31.0 26.6 33.7 34.7 31.9 25.7 37.4 31.8 31.6 34.4 36.3 30.0 26.2

S21 27.7 29.6 30.9 26.4 25.4 30.8 29.7 28.1 22.4 35.2 28.6 28.8 31.2 33.1 26.4 24.0

S22 32.3 33.6 36.4 29.5 28.6 34.5 35.7 34.1 24.2 40.5 33.2 32.7 33.6 35.3 35.6 27.2

S23 31.7 35.0 34.6 32.1 28.5 35.0 36.5 33.8 25.6 40.7 33.1 33.6 34.9 39.0 32.8 26.6

S24 35.4 43.3 40.1 38.6 33.9 41.3 42.9 39.7 32.1 46.3 39.7 39.1 42.8 43.8 39.2 31.6

S25 34.7 41.9 39.3 37.4 34.7 41.6 38.7 37.1 33.0 44.8 38.3 38.4 40.2 43.8 36.8 32.5

S26 47.6 49.9 53.6 43.8 42.3 51.3 52.5 52.2 41.7 52.1 48.5 48.9 52.9 56.3 47.0 38.6

S27 31.5 31.8 30.4 32.8 26.5 34.2 34.2 33.6 24.6 36.7 31.6 31.6 32.8 35.2 31.5 27.0

S28 35.9 45.5 41.9 39.4 33.5 45.1 43.5 43.0 29.9 49.2 40.9 40.5 43.5 43.9 42.3 33.0

S29 32.2 36.1 33.1 35.2 30.1 36.5 35.8 36.3 22.6 43.6 34.5 33.9 36.8 35.7 36.0 28.1

S30 31.1 33.1 35.4 28.9 28.3 32.6 35.4 35.1 21.6 39.0 31.9 32.3 33.4 37.1 32.5 25.4

S31 51.3 53.7 54.5 50.5 44.5 56.0 57.0 58.6 36.6 62.2 52.4 52.5 56.8 58.3 53.5 41.3

S32 43.0 45.9 47.4 41.5 38.6 46.0 48.7 49.5 31.1 52.7 44.7 44.2 47.9 50.3 44.0 35.5

S33 35.7 41.4 39.7 37.4 32.1 40.4 43.1 41.6 23.5 50.3 38.2 38.9 42.7 41.6 39.2 30.7

S34 49.8 51.8 53.8 47.8 44.5 53.2 54.7 52.1 39.0 61.4 50.7 50.9 54.1 57.5 51.3 40.4

S35 38.4 45.4 45.3 38.8 35.1 45.5 45.5 45.6 25.7 53.7 42.2 41.8 45.8 47.7 42.2 32.2

S36 36.9 39.3 41.0 35.3 32.9 40.7 40.7 39.5 29.8 45.1 37.9 38.3 41.2 43.1 36.8 31.3

S37 30.9 33.7 35.8 28.9 27.7 33.5 35.8 33.8 20.3 42.9 32.2 32.5 35.3 33.3 34.3 26.4

S38 35.1 38.2 39.0 34.3 30.9 38.7 40.3 37.8 26.5 45.6 36.7 36.6 39.5 40.9 37.1 29.1

S39 41.6 43.2 46.1 38.7 39.0 43.1 45.1 47.4 28.1 51.7 42.4 42.4 44.3 48.6 42.8 33.9

S40 41.4 48.9 48.8 41.5 37.1 47.9 50.4 48.1 30.3 56.9 45.1 45.2 48.9 50.5 46.8 34.4

S41 38.4 43.2 43.9 37.6 34.7 42.9 44.7 44.4 28.1 49.7 40.6 41.0 42.6 48.3 40.5 31.7

S42 27.2 29.4 31.3 25.4 25.5 28.2 31.4 29.7 21.6 33.0 28.3 28.3 29.2 31.4 28.3 24.3

M 36.2 39.6 39.8 36.0 32.8 40.4 40.6 39.4 27.8 46.5 37.9 37.9 41.2 42.3 37.3 31.0

SD 6.7 7.3 7.3 6.8 6.3 7.3 7.3 7.8 5.6 8.3 6.8 7.0 7.8 8.3 6.8 5.3

The mean precision and mean recall (= accuracy) scores for each individual participant depending on each preprocessing method and machine-learning classifier can be found in Supplementary Tables S1, S2.

Each mean value combines all combinations of preprocessing steps where the preprocessing method was part of (n = 42).
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0.06 < η
2
p < 0.14 and a large effect for |d| = 0.8 and η

2
p >

0.14 (Cohen, 1988). The p-value at which research is considered
worth to be continued (Fisher, 1922) has been set to p = 0.05.
To determine a best practice model, all combinations of data
preprocessing methods were ranked according to their mean
performance scores over 15-fold cross validation and the rank
sum was calculated.

RESULTS

Average Performance of Different Data
Preprocessing Methods
The analysis compares 288 different combinations of data
preprocessing methods based on the resulting F1-score. Table 2
displays the mean F1-score for each individual participant over
the 15-fold cross validation (Supplementary Tables S1, S2 show
the mean precision and recall values).

Figure 3 shows the mean F1-scores over all participants. It is
noticeable that the highest mean F1-scores were achieved using
PCA, while the normalization to 101 and 1,001 data points or
the weighting has only a minor effect on the F1-score. The time
normalization to only 11 data points and the reduction to time-
discrete gait variables gave particularly low mean classification
scores. Concerning the machine-learning classifiers, the RFCs
achieved the highest mean F1-scores followed by the SVMs,
MLPs, and CNNs.

GRF Filtering
A paired-samples t-test was performed to determine if there were
differences in F1-score in unfiltered GRF data compared to fc–
filtered GRF data across all participants. The mean F1-score of
the filtered GRF data (M = 39.6%, SD = 7.3%) was significantly
higher than that of the unfiltered GRF data (M = 36.2%, SD =

6.7%). The effect size, however, was small [t(41) = 8.200, p <

0.001, |d|= 0.492].

Time Derivative
A paired-samples t-test was conducted to compare the F1-score
of GRF and 1tGRF across all participants. The mean F1-score of
GRF (M = 39.8%, SD = 7.3%) was significantly higher than that
of 1tGRF (M = 36.0%, SD= 6.8%) and showed a medium effect
size [t(41) = 8.162, p < 0.001, |d|= 0.540].

Time Normalization
A repeated-measures ANOVA determined that there is a
significant global effect with large effect size of F1-score between
time normalization to 11, 101 and 1,001 data points [F(2.000, 82.000)
= 367.115, p < 0.001, η2

p = 0.900]. Post hoc paired-samples t-test
with Bonferroni correction revealed that there is no significant
difference [t(41) =−0.741, p= 0.463, |d|= 0.031] between a time
normalization to 101 (M = 40.4%, SD = 7.3%) data points and
1,001 data points (M = 40.6%, SD = 7.3%). However, the time
normalization to 101 data points performed significantly better
[t(41) = 22.397, p< 0.001, |d|= 1.118] than time normalized to 11
data points (M= 32.8%, SD= 6.3%). Also the time normalization
to 1,001 data points performed significantly better than to 11 data

points [t(41) = 21.789 p< 0.001, |d|= 1.150]. Both effect sizes are
considered as large.

Data Reduction
A one-way repeated-measures ANOVA was conducted to
compare the F1-scores of PCA (M = 54.9%, SD = 8.5%), TC (M
= 50.9%, SD = 8.8%), and TD (M = 37.5%, SD = 6.5%). The
Huynh-Feldt corrected results showed a highly significant main
effect with a large effect size [F(1.594,65.365) = 378.372, p < 0.001,
η
2
p = 0.902]. Bonferroni corrected post hoc paired-samples t-tests

showed that PCA performed significantly better than TC [t(41) =
14.540, p < 0.001, |d|= 0.884] and TD [t(41) = 22.658, p < 0.001,
|d|= 2.635]. The effect size for both comparisons is considered as
large. Furthermore, TC performed also significantly better than
TD with a large effect size [t(41) = 16.516, p < 0.001, |d|= 1.701].

Weight Normalization
A paired-samples t-test was conducted to compare the F1-
scores of weight-normalized and non-weight-normalized data
across all participants. There was no significant difference [t(41)
= −0.644, p = 0.523, |d| = 0.006] in the F1-scores for non-
weight-normalized data (M = 37.9%, SD = 6.8%) and weight-
normalized data (M = 37.9%, SD= 7.0%).

Machine-Learning Classifier
A repeated-measures ANOVA with Huynh-Feldt correction
showed a highly significantly global effect with large effect size
[F(1.130,103.478) = 240.138, p < 0.001, η

2
p = 0.854] between the

predicted F1-scores by the SVMs (M = 41.2%, SD = 7.8%),
RFCs (M = 42.3%, SD = 8.3%), MLPs (M = 37.3%, SD =

6.8%), and CNNs (M = 31.0%, SD = 5.3%). Post hoc Bonferroni
corrected paired-samples t-test revealed that the RFCs performed
significantly better, with a small effect size, than the SVMs [t(41)
= 3.531, p = 0.001, |d| = 0.140], with a medium effect size
than the MLPs [t(41) = 9.459, p < 0.001, |d| = 0.664] and with
a large effect size than the CNNs [t(41) = 20.780, p < 0.001,
|d| = 1.625]. Also the SVMs performed significantly better than
the MLPs with a medium effect [t(41) = 8.115, p < 0.001, |d| =
0.534] and significantly better than the CNNs with a large effect
[t(41) = 23.811, p < 0.001, |d| = 1.530]. Furthermore, the MLPs
performed significantly better than the CNNs with a large effect
[t(41) = 13.725, p < 0.001, |d|= 1.035].

Best Practice Combinations of Different
Data Preprocessing Methods
In addition to the mean F1-scores for each method of all
preprocessing and classification steps, Table 3 shows the 30
combinations with the highest overall F1-scores, including
precision and recall (the complete list including precision and
recall can be found in Supplementary Table S3). It is particularly
noticeable that the first 18 ranks were all achieved using PCA for
data reduction. Furthermore, the first eight ranked combinations
used GRF data. The first twelve ranked combinations were
classified with SVMs, while the highest F1-score was 13th with
MLP, 27th with RFC and 57th with CNN.

Table 4 shows the rank scores of all classifications performed
for the 288 combinations of the different preprocessing steps
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FIGURE 3 | F1-score of each preprocessing step across all participants. The y-axis shows the mean F1-score achieved. The bar charts show the mean value and the

standard deviation depending on the respective preprocessing step. The parentheses show a statistically significant effect. Random Baseline = 16.7%; ***p ≤ 0.001.

according to the F1-scores (Supplementary Tables S4, S5 display
the rank score depending on precision and recall). The PCA
achieved a particularly high rank score with 87.5% of the
maximum achievable rank score. In addition, the GRF with
73.9% and the GRF filtering with 73.4% finished with high rank
scores. Again, there are no or only minor differences within the
weight normalization and the time normalization to 101 and
1,001 data points. Among the classifiers, the RFCs achieved the
highest rank score, just ahead of the SVMs and MLPs and quite
far in advance of CNNs.

DISCUSSION

A growing number of promising machine-learning applications
could be found in the field of human movement analysis.
However, these approaches differ in terms of objectives,
samples, and classification tasks. Furthermore, there is a
lack of standard procedures and recommendations within the
different methodological approaches, especially with respect to
data preprocessing steps usually performed prior to machine-
learning classification. In this regard, the current analysis
comprised a systematic comparison of different preprocessing
steps and their effects on the prediction performance of different
machine-learning classifiers. The results revealed first domain-
specific recommendations for the preprocessing of GRF data
prior to machine-learning classifications. This includes, for
example, benefits of filtering GRF data and supervised data
reduction techniques (e.g., PCA) compared to non-reduced
(time-continuous waveforms) or unsupervised data reduction
techniques (time-discrete gait variables). On the other hand,
the results indicate that the normalization to a constant factor
(weight normalization) and the number of data points (above a
certain minimum) used during time normalization seem to have

little influence on the prediction performance. Furthermore, the
first-time derivative (1tGRF) could not achieve advantages over
the GRF in terms of prediction performance.

In general, the present results can help to find domain-specific
standard procedures for the preprocessing of data that may
enable to improve machine-learning classifications in human
movement analysis make different approaches better comparable
in the future. It should be noted, however, that the results
presented are based solely on prediction performance and do not
provide information about the effects on the trained models.

GRF Filtering
The present results indicate that the filtered GRF data led to
significantly higher mean F1-scores and rank scores than the
unfiltered GRF data. The results were especially striking for the
classifications of 1tGRF data. While no clear trend could be
derived for the best-ranked combinations of GRF data, most
of the best-ranked combinations of 1tGRF data were filtered.
To our knowledge, this analysis was the first that investigated
whether a filter (using an optimal filter cut-off frequency) affects
the prediction performance of GRF data in human gait (Schreven
et al., 2015). The present findings suggest that machine-learning
classification should use filtered GRF data. However, it should be
noted that the estimation of the optimal filter cut-off frequency
using the method described by Challis (1999) is only one out
of several possibilities to set a cut-off frequency. Because the
individual filter cut-off frequencies were separately calculated for
trial and each variable, so it is not yet possible to recommend a
generally valid unique cut-off frequency.

Time Derivative
With respect to the feature extraction using the first-time
derivative, our analysis revealed that the GRF achieved
significantly higher F1-scores compared to the 1tGRF. In

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 April 2020 | Volume 8 | Article 260173

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Burdack et al. Data Preprocessing in Gait Classification

TABLE 3 | Top 30 combinations of preprocessing methods, ranked by the mean F1-score over the 15-fold cross validation (n = 42).

Rank GRF

filtering

Time

derivative

Time

normalization

Data

reduction

Weight

normalization

Machine-learning

classifier

M SD

1 No GRF 1,001 PCA No SVM 54.4 9.8

2 No GRF 101 PCA Yes SVM 54.2 10.3

3 No GRF 1,001 PCA Yes SVM 54.1 11.2

4 Yes GRF 1,001 PCA No SVM 54.0 10.3

5 Yes GRF 101 PCA No SVM 53.9 10.3

6 No GRF 101 PCA No SVM 53.8 9.8

7 Yes GRF 1,001 PCA Yes SVM 53.7 11.6

8 Yes GRF 101 PCA Yes SVM 53.6 11.3

9 Yes 1tGRF 1,001 PCA No SVM 53.5 10.6

10 Yes 1tGRF 101 PCA No SVM 53.2 10.3

11 Yes 1tGRF 101 PCA Yes SVM 53.2 10.8

12 Yes 1tGRF 1,001 PCA Yes SVM 53.2 10.6

13 No GRF 1,001 PCA No MLP 53.0 9.7

14 Yes GRF 101 PCA No MLP 52.7 9.2

15 Yes GRF 1,001 PCA No MLP 52.7 10.0

16 No GRF 101 PCA Yes MLP 52.6 10.2

17 Yes GRF 1,001 PCA Yes MLP 52.6 10.2

18 No GRF 1,001 PCA Yes MLP 52.3 9.6

19 Yes 1tGRF 101 TC Yes RFC 52.1 10.4

20 No GRF 101 PCA No MLP 52.1 9.3

21 Yes GRF 101 PCA Yes MLP 52.1 10.5

22 Yes 1tGRF 101 TC Yes MLP 51.6 9.6

23 Yes 1tGRF 1,001 PCA Yes MLP 51.6 9.4

24 Yes 1tGRF 101 PCA No MLP 51.6 10.6

25 Yes 1tGRF 101 TC No RFC 51.5 10.8

26 Yes 1tGRF 1,001 PCA No MLP 51.4 9.3

27 Yes 1tGRF 1,001 TC Yes RFC 51.4 10.7

28 Yes 1tGRF 101 PCA Yes MLP 51.4 10.5

29 Yes 1tGRF 101 TC No MLP 51.1 9.9

30 Yes 1tGRF 1,001 TC No RFC 51.1 10.5

(1) The rounded percentage means and standard deviations of the F1-scores are shown; therefore, identical values may occur in the table. However, there are no pairwise identical

values, so the ranking is unique. (2) A table including precision and recall (= accuracy) can be found in Supplementary Table S3.

addition, the highest prediction F1-scors were also achieved with
the GRF. However, it needs to be noted that the highest F1-
score using 1tGRF data were <1% lower than the highest F1-
score using GRF data. Because the time derivative alone did
not increase the prediction performance, it might be helpful
to aggregate different feature extraction methods to improve
classification models (Slijepcevic et al., 2020).

Time Normalization
The time normalization to 101 and 1,001 data points was
significantly better than that to only 11 data points. These
results are in line with current research, where 101 and 1,001
values are commonly used (Eskofier et al., 2013; Slijepcevic
et al., 2017). Three of the four best ranks were achieved using
the time normalization to 1,001 data points, but these were
only slightly higher than those time normalized to 101 data
points. In both methods, the best prediction performances where
achieved in combination with PCA. In terms of computational

costs, it is advisable to weigh up to what extent relatively
small improvements in the prediction performance justify the
additional time required for classification. Furthermore, if
computational cost is an important factor, a time normalization
to fewer data points (above a certain minimum) could also
be useful, since the results showed only little influence on the
prediction performance.

Data Reduction
This analysis showed that PCA, which is frequently used in
research (Figueiredo et al., 2018; Halilaj et al., 2018; Phinyomark
et al., 2018), also achieves the highest F1-scores and ranks,
compared with time-continuous waveforms and time-discrete
gait variables. The highest F1-score of a machine-learning
model based on time-continuous waveforms was 2.3% lower
than that of PCA. Machine-learning models solely according
to time-discrete characteristics is not recommended based on
these analysis results. In line with Phinyomark et al. (2018),
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reducing the amount of data to the relevant characteristics is
not only a cost-reducing method, but can also improve machine-
learning classifications.

Weight Normalization
While weight normalization is necessary in inter-individual
comparisons (Mao et al., 2008; Laroche et al., 2014), there have
been no recommendations regarding intra-personal comparisons
so far. The results of this analysis suggest that performing
or not performing weight normalization leads to almost the
same results and therefore shows no difference in prediction
performance. Consequently, multiplication by a constant factor
seems to play no role in the machine-learning classifications.
This could be particularly interesting if different datasets
are combined.

Machine-Learning Classifier
Four commonly used machine-learning classifiers (SVM, RFC,
MLP, and CNN) were compared in this analysis. The RFCs
achieved significantly higher mean F1-scores across all data
preprocessing methods than the SVMs, MLPs, and CNNs.
Compared to the other classifiers, the RFC seems to be most
robust in case of a strong reduction of data (i.e., the time
normalization to 11 data points or the unsupervised data
reduction using the selection of time-discrete gait variables).
However, the highest performance scores were achieved by SVMs
followed byMLPs, RFCs, and CNNs. For gait data the SVM seems
to be a powerful machine-learning classifier as often described
in the literature (Figueiredo et al., 2018). The MLPs provided
only mediocre prediction performances, which could be due to
the fact that the total amount of data is simply too small for
ANNs (Chau, 2001b; Begg and Kamruzzaman, 2005; Begg et al.,
2005; Lai et al., 2008). This impression is reinforced by the even
lower prediction performances of the CNNs as “deep” ANN
architecture. In addition, the MLPs and CNNs required a lot of
computation time for the classification, while the classification
based on SVM and RFC was much more timesaving. Based on
the presented results, using linear SVMs for the classification of
gait data can be recommended. Furthermore, in line with recent
research (Slijepcevic et al., 2020), a majority vote could possibly
provide an even better classification. However, it should be noted
that only a small selection of classifiers and architectures were
examined in this analysis.

CONCLUSION

Based on a systematic comparison, the results provide
first domain-specific recommendations for commonly used
preprocessing methods prior to classifications using machine
learning. However, caution is advised here, as the present
findings may be limited to the classification task examined
(six-session classification of intra-individual gait patterns) or
even to the dataset. Furthermore, the derived recommendations
are based exclusively on the prediction scores of the models.
Therefore, no information can be obtained about the actual
impact of the preprocessing methods and their combinations
on the training process and the class representations of the
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trained models. Overall, it can be concluded that preprocessing
has a crucial influence on machine-learning classifications of
biomechanical gait data. Nevertheless, further research on
this topic is necessary to find out general implications for
domain-specific standard procedures.
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Statistical shape models (SSMs) are a well established computational technique to

represent the morphological variability spread in a set of matching surfaces by means of

compact descriptive quantities, traditionally called “modes of variation” (MoVs). SSMs of

bony surfaces have been proposed in biomechanics and orthopedic clinics to investigate

the relation between bone shape and joint biomechanics. In this work, an SSM of

the tibio-femoral joint has been developed to elucidate the relation between MoVs

and bone angular deformities causing knee instability. The SSM was built using 99

bony shapes (distal femur and proximal tibia surfaces obtained from segmented CT

scans) of osteoarthritic patients. Hip-knee-ankle (HKA) angle, femoral varus-valgus (FVV)

angle, internal-external femoral rotation (IER), tibial varus-valgus (TVV) angles, and tibial

slope (TS) were available across the patient set. Discriminant analysis (DA) and logistic

regression (LR) classifiers were adopted to underline specific MoVs accounting for knee

instability. First, it was found that thirty-four MoVs were enough to describe 95% of the

shape variability in the dataset. The most relevant MoVs were the one encoding the

height of the femoral and tibial shafts (MoV #2) and the one representing variations of the

axial section of the femoral shaft and its bending in the frontal plane (MoV #5). Second,

using quadratic DA, the sensitivity results of the classification were very accurate, being

all >0.85 (HKA: 0.96, FVV: 0.99, IER: 0.88, TVV: 1, TS: 0.87). The results of the LR

classifier were mostly in agreement with DA, confirming statistical significance for MoV

#2 (p = 0.02) in correspondence to IER and MoV #5 in correspondence to HKA (p =

0.0001), FVV (p = 0.001), and TS (p = 0.02). We can argue that the SSM successfully

identified specific MoVs encoding ranges of alignment variability between distal femur

and proximal tibia. This discloses the opportunity to use the SSM to predict potential

misalignment in the knee for a new patient by processing the bone shapes, removing the

need for measuring clinical landmarks as the rotation centers and mechanical axes.

Keywords: knee alignment, knee instability, femur shape, tibia shape, statistical shape model (SSM)

1. INTRODUCTION

The three-dimensional (3D) rotation of the femur with respect to the tibia, called tibio-femoral
alignment, is a fundamental clinical index in knee diagnosis and surgical planning, as it can
be correlated to a large extent to the kinematic instability of the joint (Laxafoss et al., 2013;
Thienpont et al., 2014). This 3D rotation is represented by five main angular variables, namely the
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hip-knee-ankle, femoral varus-valgus, and tibial varus-valgus
angles, describing the knee stability in the frontal plane, and
the internal-external femoral rotation and tibial slope, for the
axial and sagittal alignments, respectively (Salenius and Vankka,
1975; Fitzpatrick et al., 2011; Schatka et al., 2018; Maillot
et al., 2019). Specific bony landmarks (e.g., head center in
the proximal femur, epicondyles and intercondylar fossa in the
distal femur, epicondyles and frontal tuberosity in the proximal
tibia, malleoli of the distal fibula, and the distal tibia) are
mandatory for computing anatomical and mechanical axes and
the corresponding tibio-femoral alignment in the knee (Lyras
et al., 2016; Bennett et al., 2018). Clinical practice involves
the manual detection of the landmarks on tomographic images
or 3D reconstructed surfaces of bones and soft tissues. Both
methods are time-consuming and prone to detection errors,
even when performed by radiological and orthopedic experts.
In order to improve landmark detection and tibio-femoral
alignment computation, novel methodologies and tools, taking
both semi- and fully-automatic approaches, have been proposed
in the literature (De Momi et al., 2009; Cerveri et al., 2010;
Subburaj et al., 2010; Kainz et al., 2015). However, such tools
can fail in the case of large pathological deformations of the
bony shapes. Indeed, as the degeneration progresses, the bony
morphology deviates from the physiological shape, making the
landmarks difficult to measure or even meaningless. In this
scenario, landmark-free tools such as statistical shape models
(SSMs) can represent an alternative for the evaluation of the knee
joint alignment. SSMs have been extensively studied because of
their ability to represent a set ofmatching surfaces synthetically in
terms of a representative shape, namely the average surface of the
set, and distinct morphological features, usually called “modes
of variation” (MoVs). The magnitude of each MoV outlines the
extent to which the morphological aspect it encodes is present
in the set. Applications of bony surface SSMs in biomechanics
and clinics have spanned anatomical and developmental studies
(Li et al., 2010; Zhu and Li, 2011; Mutsvangwa et al., 2015;
Baumbach et al., 2017; Wang and Shi, 2017; Zhang and Besier,
2017), shape anomaly staging (Van Haver et al., 2014; Agricola
et al., 2015; Zhang et al., 2016; Cerveri et al., 2018; Chan
et al., 2018), joint osteoarthritis (Neogi et al., 2013; Van Dijck
et al., 2018), surgical planning and intervention (Zheng and
Schumann, 2009; Cerveri et al., 2017; Mauler et al., 2017; Youn
et al., 2017), and morphology-function relations (Fitzpatrick
et al., 2011; Rao et al., 2013; Baka et al., 2014; Peloquin et al., 2014;
Smoger et al., 2015; Hollenbeck et al., 2018; Cerveri et al., 2019b;
Clouthier et al., 2019). There have, however, been few studies
attempting to extensively investigate the relationship between
morphological features and the degree of deformity of the tibio-
femoral joint affecting the mechanical stability of the knee. This
lack is probably due to the difficulty of considering the geometry
of multiple bony structures and their relative position and to
the complexity of building statistical models of pathological
bones affected by severe deformations. In Rao et al., the authors
elucidated the relationships between MoV and the relative
alignment of the knee structures by means of an SSM built
using magnetic resonance imaging of 20 knees (Rao et al., 2013).

Interestingly, they reported that some mechanical features of the
tibia (anterior-posterior alignment and varus-valgus angle) and
the femur (internal-external rotation) were encoded by specific
MoVs. However, the tibio-femoral 3D misalignment was not
explicitly encoded in the MoVs. Smoger et al. proposed to link
the knee articular geometry and kinematics using an SSM built
on 20 cadaveric specimens considered normal from a clinical
point of view. Joint kinematic data of knee flexion/extension,
captured by Kansas knee simulator, were used to compare
experimental angular variables to the one simulated by the SSM
(Smoger et al., 2015). Correlations between specific shapes in
the knee and tibio-femoral alignment were reported. However,
SSM parameter variations were not general enough to produce
sufficient pathological alteration and bone deformations. In
Clouthier et al., the authors studied the correlation between
SSM parameters and the biomechanical factors of the knee using
a statistical model built on 14 asymptomatic knees composed
of distal femur, patella, and proximal tibia (Clouthier et al.,
2019). SSMs were used to generate a number of morphological
configurations of the bones, and each one was embedded
into a lower-extremity musculo-skeletal model to evaluate the
corresponding knee mechanics during a simulated gait cycle.
The authors examined changes in knee mechanics (both bone
kinematics and contact forces) as a function of the specific SSM
realization. However, the SSM construction and experimental
tests were performed on healthy subjects, so that SSM parameter
variations did not generate extensive pathological conditions. For
example, changes in the frontal plane affected the mechanical
alignment by at most ±3◦, which is considered the normal
range for frontal stability of the knee. Based on such literature
and capitalizing on our previous works (Cerveri et al., 2017,
2018, 2019a,b), in this paper, an SSM of pathological bony
shapes in the knee is proposed to investigate the correlation
between MoVs and the mechanical deformity of tibia and femur,
assumed to induce kinematic instability. The statistical shape
model of the tibia-femur bone complex was built using 99
pathological cases. The deformity degree was described in terms
of 3D tibio-femoral alignment (Figure 1), considering the HKA
(α), FVV (β), TVV (γ ), IER (θ), and TS (ω) angles. For each
angular variable, a clinical range from the literature, representing
average physiological conditions, was selected to define the
boundary between stability and instability. For each knee joint,
the MoV weights were computed and their relation with each
angular variable investigated. Discriminant analysis and logistic
regression models (Wang, 2014) were adopted to systematically
study the relations between observations (stability/instability
classes as a binomial variable) and MoV weights (covariates). In
the light of these premises and leveraging the main hypothesis
of relationship between shape and function, the proposed work
aims at linking specific MoVs in the SSM to the parameters
describing the tibio-femoral alignment. This can have an impact
in the biomechanical and orthopedic domains, as it opens up
the opportunity to predict knee instability by analyzing the
femoral and tibial morphology in terms of MoVs expressed by
the SSM without the need for direct landmark identification
and analysis.
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FIGURE 1 | Mechanical angular deformity (α) of the knee joint in the frontal plane (A: varus; B: valgus). Femoral (β) and tibial (γ ) varus/valgus angles computed with

respect to the corresponding joint lines (C). In case of parallel joint lines, β + γ = α. Internal-external rotation (D) and tibial slope (E).

2. MATERIALS AND METHODS

2.1. Patient Data
Digital bony shapes of distal femur and proximal tibia were

extracted from a retrospective dataset of 100 patients (70 males
and 30 females) provided in anonymized form by Medacta
company (Medacta International SA, Castel S. Pietro, CH),

including planning CT scans (acquired in a supine position for
all patients) and reconstructed bony 3D surfaces (Cerveri et al.,

2017, 2018). The patients, aged 67 ± 10 years, reported localized
knee pain associated with mechanical knee instability at staging
time. Diagnostic imaging confirmed different degrees of cartilage
defects, femoral osteophytes, and shape abnormalities, mainly at
the condylar regions of the distal femur and at the tibial plateau.
All patients underwent knee resurfacing or knee replacement
surgery between 2014 and 2016. For surgical planning purposes,
the image acquisition protocol included computed tomographic
(CT) scans of the knee, hip, and ankle regions. Each CT scan
consisted of about 520 slices with an image resolution of 512
× 512 pixel and a voxel size of 0.48 × 0.48 × 0.5 mm.
Expert radiological operators manually performed the image
segmentation of the osseous portion of the proximal and distal
femur as well as of the proximal and distal tibia using Mimics
software (Materialize, Belgium). For each labeled CT volume,
the 3D surface meshes, composed of vertices and triangular
faces, were reconstructed automatically. For all the patients,
HKA, FVV, IER, TVV, and TS were computed pre-operatively,

exploiting landmarks manually detected on the surfaces. For SSM
construction, distal femur and proximal tibia surfaces only were
taken into account. As a function of the particular centering of the
knee joint in the CT scan, the distal femur was segmented up to
2–4 cm away from the frontal notch of the trochlear region along
the femur shaft. Similarly, the length of the proximal tibia shaft
was variable across the set in a range of about 2–3 cm. Among
the 100 cases, one was excluded from the set because of the
presence of a fixation screw on the femoral shaft due to a previous
intervention. All the valid surfaces underwent pre-processing
by means of smoothing and sub-sampling starting from about
60,000 vertices, for both distal femur and proximal tibia samples,
down to 10,000 vertices. Left surfaces were mirrored in the
medio-lateral direction to obtain equivalent right surfaces for the
construction of the right distal femur and proximal tibia SSM.
The surface scale and the shaft lengths were not normalized. This
is because, first, the normalization of a bundle of two shapes
(femur and tibia) would have affected the relative size in between.
Preserving the relative size of the two shapes in general increases
the generality of the SSM (Pedoia et al., 2015). Second, the
normalization would also affect the difference in the femur/tibial
shaft lengths. The shaft length can be relevant for the bending in
both sagittal and frontal planes.

2.2. Statistical Shape Model
In order to construct the SSM embedding femur and tibia shapes,
the methodology extensively described in previous papers of our
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group was adopted, which is based on a pair-wise matching
technique (Cerveri et al., 2017, 2018, 2019a). This technique rests
on the manual selection of a reference geometry for aligning
all the surfaces in the training dataset and computing robust
point correspondences. In the present custom implementation,
first, the two reference geometries (distal femur and proximal
tibia) were randomly selected within a subset of surfaces featuring
only small bone deformations. Second, they were meshed and
smoothed to obtain average edge lengths of 1.5 mm, resulting
in triangular surfaces containing about 6,000 nodes each. This
number of vertices is similar to the number of surface nodes
used in previous works in the literature (Zheng and Schumann,
2009; Subburaj et al., 2010; Zhang et al., 2014). Each pair of
surfaces in the overall set of 99 samples (distal femur and tibia)
was rigidly registered to the reference tibio-femoral shape so
that the relative position and the joint space between the two
surfaces were preserved without requiring additional constraints.
The deformable registration, based on a coherent point drift
algorithm (Myronenko and Song, 2010), required to determine
the point correspondences was, conversely, performed separately
for femur and tibia to ensure consistency of the deformation
field. A robust algorithm for determining one-to-one point
correspondences (Cerveri et al., 2019a) was adopted in this
work. The number of correspondences was determined by the
number of vertices of the reference shape. After computing
the mean model m from point correspondences, the covariance
matrix, obtained by stacking the femur and tibia distance data
from the mean model, underwent principal component analysis,
providing 98 independent MoVs. Each MoV was represented
by the eigenvector vi and the corresponding eigenvalue σi. The
percentage amount of morphological variation encoded by the
jth MoV, termed explained variance (EV), was computed as:

EVj =
σ 2
j∑M−1

i=1 σ 2
i

(1)

where M is the number of samples in the dataset. The effect
of each MoV was expressed numerically by one weight λ

that modulates the corresponding eigenvalue, where a value of
0 denotes the mean shape, and negative and positive values
represent the deviance from this mean in either direction.
Accordingly, the SSM-based surface reconstruction, named
morphing, was defined by the following equation:

Š = m+

M−1∑

i=1

λiσivi (2)

where the reconstructed surface Š is obtained by summing up the
mean model m with the series of all MoVs. For each surface, the
weights were computed by projecting the shape pair (distal femur
and proximal tibia) on the SSM by means of the scalar product
(Cerveri et al., 2018). We retained enough MoVs to describe
95% of the overall shape variation, expressed by the cumulative
EV , in the study population. The reconstructed surfaces were
compared with the corresponding samples in the set by means
of the surface distance error distribution (mean ± SD) using the
Hausdorff distance.

TABLE 1 | Stability/Instability class definitions according to the thresholds for the

five clinical variables.

Condition HKA FVV IER TVV TS

Stability 28 25 84 79 70

Instability 71 74 15 20 29

2.3. Modeling Tibio-Femoral Alignment by
SSM Parameters
In order to study the association between the MoVs and the
condition of knee misalignment, the following normality ranges
of the clinical variables were first considered: HKA: 0◦±3, FVV:
−6◦±2 (physiological valgum), IER: ±5◦, TVV: ±5◦, TS: 7◦±4
(Salenius and Vankka, 1975; Iranpour-Boroujeni et al., 2014;
Driban et al., 2016; Schatka et al., 2018). According to each
clinical variable, the 99 cases were separated into two classes,
stable and unstable (Table 1). Note that the same instance may
be considered stable according to one clinical parameter while
being unstable according to another. As an example, two very
different cases are depicted in Figure 2, the first lying within
physiological ranges according to all the five angular quantities
and the second featuring mechanical instability according to
all but one (IER) angular quantities. We adopted two different
data processing techniques, namely the discriminant analysis
(DA) and the logistic regression (LR) classifiers. Both linear
(LDA) and quadratic (QDA) discriminant analysis techniques
were applied for the classification and the detection of low-
dimensional sets of MoVs able to separate the stability from
the instability condition. The accuracy (AC), sensitivity (SE),
and specificity (SP) of the classification were computed for
each dependent variable (clinical quantities) with respect to
the explanatory variables (SSM parameters) using the leave-
one-out (LOO) cross-validation technique. LOO classification
based on LR was computed, and the statistical association (p
< 5%) between SSM parameters and the clinical quantities was
determined. In order to further understand the contribution
of each MoV in discriminating between stable and unstable
conditions, the distributions of relevant MoVs (significant
according to the previous analysis) were compared in the
two conditions using a Wilcoxon signed-rank test (p = 0.05).
Moreover, the correlations between the instability grade and
each MoV were investigated. In other words, it was assumed
that instability increased as the clinical parameter values drifted
away from the reference physiological range and looked for
a correspondence in MoV weight variations. Since both angle
increases and angle decreases from the normal values relate
to instability, a variable change was implemented, introducing
a corrected version X̂ = |X − X| of the clinical parameters
by computing the absolute value of the difference between the
parameter itself and its physiological average value, where X is a
generic clinical parameter, X is its average value (in physiological
cases), and X̂ is its corrected form. The correlation between the
MoVs and the corrected parameters was assessed by means of the
Spearman coefficient (p= 0.05).
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3. RESULTS

3.1. Relation of MoVs to Bone
Morphological Variability
Thirty-four MoVs were sufficient to describe 95% of the shape
variability. Quantitatively, the reconstruction error across the 99
surfaces was 1.38 ± 0.16 mm. Qualitatively, the first (EV1 =

36.4%) MoV primarily encoded the isotropic scale of the bone
complex. MoV #2 (EV2 = 16.3%) represented the size and height
of the shafts of the two bones, concurrently. It also represented
the shaft bending, mainly in the frontal plane (see Table 2). MoV
#3 (EV3 = 9.9%) modeled the elongation of the femoral shaft
(λ3 > 0) and the shortening of the tibial shaft (λ3 < 0).
MoV #4 (EV4 = 5.6%) encoded the enlargement of the tibial
plateau and the relative translation between the two shapes in
the mediolateral direction. MoV #5 (EV5 = 3.6%) represented

FIGURE 2 | According to the five angular quantities, patient #20 featured no

alignment deformation (left). Patient #29, in contrast, featured mechanical

instability in all but one (IER) angular quantities (right).

variations of the axial section of the femoral and tibial shafts
and the relative bending between the two bones, in both the
frontal and sagittal planes (Table 2 and Figure 3). Positive values
of the weight also encoded hypoplasia effects of the anterior
facet of the medial condyle. MoV #6 (EV6 = 2.6%) described
the concurrent modification of the anterior-posterior size of the
femoral condylar region and that of the tibial plateau. Positive
values of MoV #6 represented abnormal flatness in the trochlear
region of the femur. This is unlike MoV #7 (EV7 = 2.1%),
which modeled the tibial and femoral medio-lateral size, with
positive values representing bone shrinkage. MoV #8 (EV8 =

1.9%) again represented the bending in the frontal plane between
the two bones; however, the bending represented by MoV #5
was associated with a concurrent shrinkage/enlargement of the
two shaft diameters, which was not encoded by MoV #8. MoV
#9 (EV9 = 1.6%) modeled the medio-lateral shrinkage of the
tibial plateau, with a concurrent anterio-posterior enlargement
of the condylar region of the femur, up to pathological flattening.
MoV #10 (EV10 = 1.6%) represented tibial inclination in
both the frontal and sagittal planes. MoV #11 (EV11 = 1.3%)
mainly represented tibia inclination on the sagittal plane, with a
concurrent bending of the femur on the same plane. MoV #12
(EV12 = 1.1%) modeled a slight femoral bending on the frontal
plane. MoV #13 (EV13 = 1.1%) modeled the relative bending
between the two bones in the sagittal plane. The remainingMoVs
represented small and spread morphological variations and was
not straightforward to visually relate any to specific local features
(see Supplementary Materials).

3.2. MoV Performance in Instability
Modeling
3.2.1. Discriminant Analysis
Table 3 shows the classification performances (sensitivity,
specificity, and accuracy) obtained using the LOO procedure for
both the linear discriminant analysis and quadratic discriminant
analysis (34 MoVs were employed in the task). Despite the
fact that the LDA accuracy ranged between 0.7 and 0.84,
the respective values of sensitivity and specificity were highly
different: in two cases (IER and TS), the sensitivity was lower
than 0.4 (specificity > 0.8), while, conversely, for HKA and
FVV the sensitivity was as high as 0.85, while specificity reached
0.64 and 0.44, respectively. As far as QDA is concerned, higher

TABLE 2 | Morphological variability of femur (F) and tibia (T) and relative alignments mapped onto the MoVs from 2 to 9.

Bone variability MoV #2 MoV #3 MoV #4 MoV #5 MoV #6 MoV #7 MoV #8 MoV #9

F shaft elongation o o

F shaft diameter o o

F shaft bending o o o

F condylar AP size o o

F condylar ML size o

T shaft elongation o o

T shaft diameter o o

T shaft bending o o o

T plateau AP size o o

T plateau ML size o o
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FIGURE 3 | (Upper) Morphological deviations (mm) from the mean model

(frontal view) for MoVs from #1 to #5. (Lower) Explicit morphology in two SSM

parameter sets (MoV #3 -3σ , MoV #4 +3σ ) with the overlaid mean model.

accuracy levels (range: 0.87–1) corresponded instead with both
high sensitivity (range: 0.79–1) and high specificity (range: 0.86–
1). It is worth noticing that reducing the MoVs to the three
or four most relevant as shown in Tables 4, 5, respectively,
reduces the performance, again causing specificity/sensitivity
mismatches. In fact, in both cases (Tables 3, 4), poor accuracy
was found for TVV (0.4 and 0.55) and TS (0.44 and 0.48), while
FVV (0.32 and 0.60) resulted in low specificity. Nevertheless, it
has to be pointed out that in Table 5, using four MoVs, only
one value fell slightly below the threshold of 0.5 (TS sensitivity:
0.48) suggesting that, even in this reduced form, QDAwas able to
outperform LDA. Interestingly, considering the four-MoV-based
QDA, both MoVs #2 and #5 were representative of all of the
clinical measures except for TVV (MoV #5 only).

3.2.2. Logistic Regression
Classification results (AC, SE, SP) with LOO cross-validation
for HKA, FVV, IER, TVV, and TS were (0.79, 0.88, 0.57), (0.83,

TABLE 3 | Classification test, exploiting LOO cross-validation, of linear vs.

quadratic discriminant analysis using all SSM parameters.

LDA-AC LDA-SE LDA-SP QDA-AC QDA-SE QDA-SP

HKA 0.82 0.88 0.64 0.96 0.96 1

FVV 0.74 0.85 0.44 0.99 0.99 1

IER 0.80 0.33 0.89 0.88 1 0.86

TVV 0.84 0.55 0.92 1 1 1

TS 0.70 0.37 0.82 0.87 0.79 0.91

TABLE 4 | The three most representative SSM parameters for quadratic

discriminant analysis.

MoVs QDA-AC QDA-SE QDA-SP

HKA 2, 5, 13 0.83 0.88 0.71

FVV 5, 14, 17 0.79 0.95 0.32

IER 2, 9, 14 0.92 0.53 1

TVV 5, 12, 15 0.87 0.40 1

TS 3, 13, 18 0.81 0.44 0.97

0.93, 0.56), (0.84, 0.13, 0.97), (0.83, 0.75, 0.97), and (0.75, 0.31,
0.94), respectively. The statistical analysis provided significance
(p < 0.05) in HKA for MoVs #5, #7, and #18, FVV for MoV
#5, IER for MoV#2, TVV for MoVs #11, #14, #16, and #17, and
TS for MoV #5 (Table 6). Nicely, MoVs #2 and MoV #5 were
found to be largely representative of the logistic modeling, in
agreement with the DA results. For these twoMoVs, the box plots
were reported in order to highlight the distribution differences
across mechanically stable and unstable cases for each clinical
parameter (Figure 4). As far as MoV #2 is concerned, stability
and instability were significantly different in IER distributions
(p = 0.02). As far as MoV #5 is concerned, both HKA (p =

0.0005) and TS (p = 0.002) resulted in significant differences.
As far as the correlation analysis is concerned, MoV #5 showed

significant correlation with ĤKA (c = −0.52, p < 10−7), F̂VV
(c = −0.26, p < 0.01), and T̂S (c = −0.23, p < 0.03). Likewise,

MoV #7 showed significant correlation with ĤKA (c = −0.27, p
< 0.008) and F̂VV (c=−0.32, p< 0.002), while MoV #6 resulted
in significant correlation only in the case of F̂VV (c = 0.25, p <

0.02) (see Table 7). A scatter plot showing ĤKA against MoV #5
was reported in Figure 5.

4. DISCUSSION AND CONCLUSIONS

4.1. Findings, Limitations, and Possible
Developments
Computational approaches to study the correlation between
morphological features and functional or pathological conditions
of bony surfaces using SSM have been emerging in the literature,
with impacts in biomechanics, especially for kinematic and
dynamic analysis (Rao et al., 2013; Smoger et al., 2015; Nolte et al.,
2016; Zhang et al., 2016; Hollenbeck et al., 2018; Clouthier et al.,
2019), and clinics, especially for diagnostic and surgical interests
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TABLE 5 | The four most representative SSM parameters for quadratic

discriminant analysis.

Param QDA-AC QDA-SE QDA-SP

HKA 2, 5, 11, 17 0.88 0.93 0.75

FVV 2, 5, 10, 17 0.83 0.91 0.60

IER 2, 8, 9, 12 0.95 0.66 1

TVV 5, 12, 14, 15 0.88 0.55 0.97

TS 2, 5, 8, 11 0.84 0.48 0.99

TABLE 6 | SSM parameters that were statistically significant for the logistic

regression.

MoV/p value

HKA 5 (p = 0.0001), 7 (p = 0.03), 17 (p = 0.02), 18 (p = 0.03)

FVV 5 (p = 0.001), 10 (p = 0.01), 17 (p = 0.01)

IER 2 (p = 0.02)

TVV 11 (p = 0.008), 14 (p = 0.01), 16 (p = 0.01), 17 (p = 0.03)

TS 5 (p = 0.02)

(Neogi et al., 2013; Peloquin et al., 2014; Mutsvangwa et al.,
2015; Cerveri et al., 2018). In particular, three studies addressed
the relation between SSM parameters and knee kinematics by
focusing on the link between the morphological variability of
the bones and tibio-femoral alignment modifications (Rao et al.,
2013; Smoger et al., 2015; Clouthier et al., 2019). The main issue
of such studies was that the relationships between shape and
alignment were simulated by systematically perturbing MoVs,
reaching up to 95% variation with respect to the mean model.
However, SSMs were computed using a very small group of
asymptomatic cases. Therefore, pathological conditions were not
explicitly encoded in the MoVs, leading to the simulation of
mechanical axis misalignment within normality ranges. This
hindered the model’s ability to extrapolate non-physiological
conditions of the knee. Conversely, in our work, the SSM analysis
was addressed by considering a population of 99 knee cases with
different morphological and mechanical anomalies at:

• the distal femur, namely condylar enlargement, osteophytes,
notch narrowing, trochlear flattening;

• the proximal tibia, namely plateau enlargement, osteophytes,
smoothing of the intercondylar eminence, flattening of the
tibial tuberosity.

Moreover, for each case, the tibio-femoral alignment of the knee
was measured not only in the frontal plane (HKA, TVV, and
FVV) but also in the sagittal (TS) and axial (IER) planes. We built
an SSM using the two bone sets (distal femur and proximal tibia),
computed the MoV weights for each case, tested both DA and
LR classifiers of stability/instability as a function of MoV weights,
and analyzed the relevance of each MoV for joint instability. The
major findings of the work can be summarized as:

• the computed SSM was representative of the surface set,
demonstrated by the very low reconstruction error;

FIGURE 4 | Box plots for MoV #2 and #5 distributions across mechanically

stable and unstable cases. Upper plot—HKA (p = 0.90), VVF (p = 0.08), IER (p

= 0.02), VVT (p = 0.08), and TS (p = 0.06). Lower plot—HKA (p = 0.0005), VVF

(p = 0.01), IER (p = 0.13), VVT (p = 0.09), and TS (p = 0.002). I, Instability; S,

Stability.

• the physiological and pathological variations of the knee
morphology found in the surface dataset were consistently
encoded by 34 MoVs (EV > 0.95);

• together, MoV #2 (height/size of femoral/tibial shafts) and
MoV #5 (femoral/tibial bending in the frontal/sagittal plane)
were the most relevant MoVs, representing a total of about
20% of the variation among SSMs;

• MoV classification results were largely in agreement with
morphological features determining tibio-femoral instability
(compare Table 2 with Tables 4, 5);

• QDA outperformed LDA in classifying unstable versus stable
cases with high accuracy for all the five clinical parameters;
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TABLE 7 | Correlation intensity (Spearman coefficient c) and significance (p-value) between relevant MoVs and clinical parameters defining knee instability.

MoV HKA FVV IER TVV TS

c p c p c p c p c p

#1 −0.14 0.17 −0.09 0.36 0.06 0.53 −0.17 0.09 0.15 0.15

#2 0.11 0.26 0.10 0.35 0.18 0.07 0.09 0.40 0.03 0.74

#3 0.14 0.18 0.02 0.84 −0.07 0.47 −0.04 0.68 0.17 0.09

#4 0.12 0.22 0.17 0.10 0.09 0.35 0.05 0.59 0.11 0.26

#5 −0.52 10−8 −0.26 0.01 0.08 0.44 −0.17 0.10 −0.23 0.02

#6 0.14 0.16 0.25 0.01 0.03 0.78 0.15 0.12 0.07 0.49

#7 −0.27 0.01 −0.32 0.001 0.05 0.63 −0.11 0.27 0.08 0.43

#8 −0.11 0.28 0.01 0.92 0.16 0.12 10−4 0.99 −0.10 0.32

#9 0.03 0.78 −0.05 0.65 0.19 0.05 0.01 0.90 0.07 0.47

#10 −0.05 0.59 −0.10 0.34 −0.02 0.82 −0.05 0.65 −0.02 0.83

MoVs #5 and #7 feature significant correlation results.

• despite the fact that the LR-based classification provided
lower-accuracy results, statistically significant MoVs were in
agreement with QDA.

Synthetically, these findings suggest that the computed SSM can

be exploited for assessing whether a knee lies in a pathological

condition according to the more traditional clinical parameters,
namely HKA, FVV, IER, TVV, and TS, without the need for

landmark selection, just fitting the SSM to the shape of interest.
In more detail, the SSM decomposition showed that the first

13 were sufficient to describe 85% of the explained variance,
demonstrating the SSM’s ability to model large morphological
variability in a very compact way. MoVs of the SSM were

also related to tibio-femoral alignment and knee instability
according to the five clinical parameters considered. This was

confirmed by the classification performance, because four MoVs
(see Table 5) were able to ensure more than 80% of accuracy
in the quadratic discriminant analysis. Again, this makes SSM a

prospective candidate tool for distinguishing stable and unstable
knee conditions by analyzing the surfaces only, without the
manual definition of rotation centers and mechanical axes.

An in-depth analysis of the classification performances
showed that the LDA model was under-fitting. The size
imbalance of the two classes (see Table 1) further contributed

to bias the results. This was evident (see Table 3), for example,
when considering the HKA (featuring only 28 stable cases
with respect to 71 unstable cases) and IER (only 15 unstable

conditions). Conversely, QDA appeared to be more robust to
dataset imbalance, showing both higher sensitivity and specificity

than LDA. The LR analysis highlighted a couple ofMoVs relevant
for discriminating between stability and instability, namelyMoVs
#2 and #5, representative of all the clinical measures. These
two specific MoVs were found to be significant to discriminate
between stability and instability. Specifically, MoV #2 mainly
encoded the elongation and partially encoded the bending of
the two shafts. This is in agreement with the relation with the
variation of the two mechanical axes and, by consequence, with
their relative inclination. This can therefore be related to the joint
mechanical alignment, especially in the frontal plane. MoV #5,
encoding the relative bending of the two bones in the frontal

plane (see Table 2), was confirmed to be related to the HKA,
FVV, and TVV angles, which describe the tibio-femoral stability
in the frontal plane. As confirmed by the classification results, this
MoV was able to discriminate between stability and instability.
In synthesis, while the effect of these two MoVs could not be
predicted a priori, the morphological aspects encoded by both
of them could reasonably be considered to be related to the
tibio-femoral alignment. It has to be pointed out, however, that
differences in the bone shaft heights encoded in MoV #2 were
caused by different ranges of interest in CT scans and could not
be ascribed tomorphological variability. However, it is reasonable
to assume that the frontal bending and lateral inclination of the
shaft are morphological features relevant for the overall tibio-
femoral alignment. Therefore, MoV #2 was not discarded, a
choice that was justified a-posteriori, considering that it was
relevant for the classification.

One shortcoming of our work is the inclusion of just
the femoral and tibial surfaces, neglecting the patellar region
and the cartilages. Nonetheless, this choice was motivated by
previous literature findings showing that increasing the number
of geometries to be included in the SSM can easily lead to
difficulty in identifying specific correspondences between MoVs
and morphological features. For instance, Fitzpatrick et al.
used 26 healthy subjects to develop an SSM of the patello-
femoral joint, reporting that the main variability of the patella
articular curvature and sulcus groove was actually spread across
many different MoVs (Fitzpatrick et al., 2011). As a matter of
fact, our approach allowed us to identify correlations between
specific MoVs and clinical parameters of the alignment between
femur and tibia. In this paper, we did not investigate how
a different reference shape selection would have affected the
reconstruction and the classification results. The reference shape
was selected randomly from a subset of surfaces little-affected
by deformities. This was in agreement with the results reported
in a recent paper with similar acquisition techniques, where the
random selection of the SSM also had little effect (Cerveri et al.,
2019a). As far as data acquisition is concerned, all the patients
were lying supine during CT acquisition and images were
acquired using the same protocol. As regards data processing,
the images were segmented by different expert radiological
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operators. Each scan was segmented by one operator, so we
did not have any information about variability in segmentation.
Similarly, the landmark detection and the angle computation
were performed by one expert orthopedic surgeon. As the
scans were all at sub-millimeter resolution, the bony segmented
profiles were affected by such uncertainty, which was present
in the final surface reconstruction. The surface sub-sampling
lowered, on average, the surface quality by <2% (root-mean-
squared-distance: <1 mm) with respect to the original surfaces.
The SSM reconstruction error was, on average, lower than 1.5
mm, reasonably localized in the region affected by the largest
pathological deformations. Actually, we focused on the overall
SSM reconstruction ability without taking local errors into
account. The analysis of the reconstruction quality in critical
regions heavily affected by deformities (e.g., the presence of
large osteophytes) could have provided further information
about the specificity and generality of the SSM model. However,
this analysis would have required a greater effort by the
expert operators to manually detect and classify the regions
with severe deformations, which is a very time-consuming
task beyond the scope of the present work. Conversely, we
aimed at relating MoV weights to angular stability determined
by the five clinical indices. It is reasonable to assume that
the local reconstruction errors should affect the overall knee
joint alignment less, which should be mainly determined by
the overall bony shape. Nevertheless, analysis of how local
reconstruction errors could affect the relative 3D rotation may
be carried out in a future study by means of a sensitivity
analysis. Finally, the SSM model could be used to study the
development of stress and strain in the knee due to applied
loads as a function of surface geometry changes. This would
require that a finite element description be integrated into the
SSM to perform the computations, which could be used to predict
the outcome of surgery, taking into account patient-specific
variability. Moreover, in order to analyze the effects of the relative
tibio-femoral position and orientation on gait motion patterns,
the SSM could be combined with the angular trajectories
reconstructed using surface markers acquired by means of an
opto-electronic motion capture system. For instance, simulations
could be useful for evaluating how gait cycle parameters (e.g., gait
cadence, step length, etc.) would be affected. Likewise, the SSM
could help to study, in knee surgical planning, how the tibio-
femoral spacing would change the flexion-extension patterns
of knee.

4.2. Literature Comparison
Rao et al. developed an SSM of the femur, tibia, and patella
of 20 cadavers, considering different alignments obtained by
using a mechanical simulator applied to the specimens (Rao
et al., 2013). About 95% of the variability was captured by
just 15 MoVs. Fitzpatrick et al. used 26 healthy subjects to
develop an SSM model of the patello-femoral joint (Fitzpatrick
et al., 2011). Similarly, 15 MoVs were sufficient to capture about
97% of the morphological variability. Fourteen asymptomatic
patients scanned by MRI were used in Clouthier et al. to build
an SSM of the knee that was able to represent 70% of the
variability by means of 6 MoVs only (Clouthier et al., 2019).

FIGURE 5 | Scatter plot for HKA distribution as a function of MoV #5 range,

along with the linear fitting (Spearman correlation coefficients: −0.52 with

p<1e-07). The tendency line is depicted (red dashed line).

In our work, we used a wide dataset of pathological knees
featuring large anomalies at both femoral and tibial sites. As a
consequence, the greater number of MoVs needed to represent
most of the variability (34 MoVs accounting for 95% EV)
was to be expected. This corroborates the consideration that
morphological abnormalities cannot be simply extrapolated by
an SSM built on normal joints. In other words, femoral and
tibial deformities cannot be represented just by enlarging the
weight range of the MoVs (e.g., ±3, ±4, ±5 SD, etc), but,
rather, there is a need to encode such information in new
MoVs entirely. This is also in agreement with the limitations
acknowledged in the previous literature (Fitzpatrick et al., 2011;
Rao et al., 2013; Smoger et al., 2015; Clouthier et al., 2019).
For instance, Hollenbeck et al. reported that a maximum range
of ±2 SD was allowed in their lumbar spine SMM in order
to avoid unrealistic deformations (Hollenbeck et al., 2018). As
far as the relation between MoVs and kinematics is concerned,
Smoger et al. reported that their third MoV described differences
in the internal-external relative rotation between femur and
tibia (Smoger et al., 2015); this was nicely in agreement with
our results for MoV #5. Internal−external alignment of the
patellofemoral joint was described by the second mode in Rao
et al. (2013). Interestingly, they also found tibial internal–external
rotation and tibial varus-valgus variations encoded by the third
and fourth MoVs, respectively. However, femoral alignments
were not modeled by their SSM. In Pedoia et al., the authors
developed distal femur and proximal tibia SSMs, avoiding the
normalization of the samples (Pedoia et al., 2015). They reported
that the first mode was related to the size for both SSMs, as
in our case. For the femur, modes #2 and #3 were related to
the relative distance between the condyles and the condylar
width and height, respectively. In our model, these features
were mainly encoded by MoV #6 and #7. As far as the tibia
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FIGURE 6 | The application workflow.

was concerned, modes #2 and #3 were related to the medial
posterior curvature of the tibial plateau and the elevation of
the anteromedial tibial plateau, respectively. In our model, these
morphological features were spread across MoVs #4, #6, and
#7. These differences were expected because we dealt with a
unique SSM for the tibio-femoral joint. Our method may provide
insights regarding concurrent morphological deformations in the
two bones.

5. CONCLUSION

The SSM approach was proven to consistently represent both
morphological anomalies and alignment deviation in the knee
bones by means of few representative MoVs. In the light of
such results, the proposed SSM met the objectives of providing
an alternative to manual definition of bone landmarks to
assess pathological conditions related to knee instability. The
SSM could be exploited in a decision support system that
predicts the potential instability of the joint by processing the
knee scan without requiring images of other body regions
(e.g., hip and ankle) and with no need for manual landmark
identification. This toolbox could thus generate an automatic
report with a diagnosis of stable or unstable according to each
clinical variable of the five indexes considered. A potential
application workflow would rest on: (1) the bone segmentation
in the knee scan; (2) the surface reconstruction; (3) the weight
computation by the SSM; (4) the prediction of the instability
based on the five different clinical factors of alignment by
means of a classifier (e.g., discriminant analysis) (Figure 6).
Another possible exploitation of the proposed SSM approach
is the simulation of the effects of different morphological
conditions (achieved by varying MoV weights) on movement
analysis of the knee, as suggested by Smoger et al. (2015)
and Clouthier et al. (2019), studies that both proposed SSMs
built on healthy subjects. An SSM including large pathological

variability, such as the one developed in this work, opens up
the opportunity to study the effect of a specific misalignment
of the femur and tibia on the simulated motion pattern
and, consequently, the resulting load distribution affecting
cartilage wear.
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Background: Movement screens are increasingly used in sport and rehabilitation to
evaluate movement competency. However, common screens are often evaluated using
subjective visual detection of a priori prescribed discrete movement features (e.g.,
spine angle at maximum squat depth) and may not account for whole-body movement
coordination, or associations between different discrete features.

Objective: To apply pattern recognition and machine learning techniques to identify
whole-body movement pattern phenotypes during the performance of exemplar
functional movement screening tasks; the deep squat and hurdle step. Additionally,
we also aimed to compare how discrete kinematic measures, commonly used to
score movement competency, differed between emergent groups identified via pattern
recognition and machine learning.

Methods: Principal component analysis (PCA) was applied to 3-dimensional (3D)
trajectory data from participant’s deep squat (DS) and hurdle step performance,
identifying emerging features that describe orthogonal modes of inter-trial variance
in the data. A gaussian mixture model (GMM) was fit and used to cluster the
principal component scores as an unsupervised machine learning approach to identify
emergent movement phenotypes. Between group features were analyzed using a one-
way ANOVA to determine if the objective classifications were significantly different
from one another.

Results: Three clusters (i.e., phenotypes) emerged for the DS and right hurdle step
(RHS) and 4 phenotypes emerged for the left hurdle step (LHS). Selected discrete
points commonly used to score DS and hurdle step movements were different between
emergent groups. In regard to the select discrete kinematic measures, 4 out of 5, 7 out
of 7 and 4 out of 7, demonstrated a main effect (p < 0.05) between phenotypes for the
DS, RHS, and LHS respectively.
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Conclusion: Findings support that whole-body movement analysis, pattern recognition
and machine learning techniques can objectively identify movement behavior
phenotypes without the need to a priori prescribe movement features. However, we also
highlight important considerations that can influence outcomes when using machine
learning for this purpose.

Keywords: principal component analysis, cluster, gaussian mixture model, movement phenotypes, functional
movement screen

INTRODUCTION

Movement screens are commonly used to assess an individual’s
quality of movement as a method to highlight poor movement
patterns (McCunn et al., 2016). The quality of movement,
herein termed movement competency, can be explained as an
individual’s ability to adopt a movement pattern that achieves the
task objective, while also minimizing injury risk (Kritz et al., 2009;
McGill et al., 2015). Considering the emphasis on movement
and safety, sport (McCunn et al., 2016) and occupational settings
(Isernhagen, 1992; Sinden et al., 2017) rely on movement
screening methods to estimate performance capacity (Frost et al.,
2015; Bock et al., 2016) and to reveal functional limitations
that may increase risk of injury (O’Connor et al., 2011; Lisman
et al., 2013). Visual assessment of body mechanics is the de facto
method for measuring movement competency (Sinden et al.,
2017), which increases the subjectivity of movement screens,
thus relying on the appraisal and previous knowledge of the
practitioner. As a result, it may not be surprising that inter-
rater reliability issues continue to restrict the utility of movement
screening approaches (i.e., Shultz et al., 2013).

In addition to inter-rater reliability challenges that affect
subjective appraisal of movement competency, the current use
of top-down, prescribed, discrete movement features to define
“safe” or “good” movement may be inadequate. While many
believe that movement competency is linked to injury risk and/or
performance (where movement competency is defined using
conventional a priori definition such as torso is parallel with
the tibia when performing the deep squat), there remains little
evidence supporting such connections (Gross and Battié, 2006;
Mottram and Comerford, 2008; Schneiders et al., 2011; Okada
et al., 2011; Parchmann and McBride, 2011). Perhaps our a priori
criteria for subjectively evaluating movement competency are
incorrect or incomplete (Bennett et al., 2017), or our clinical
eye is simply not appropriately tuned to detect important
and meaningful changes. As an alternative to this top-down
approach, use of emerging tools in machine learning might
help us to identify naturally-occurring movement phenotypes,
where continued research can then explore phenotypes that are
associated with positive or negative health outcomes with respect
to specific task objectives.

Considering the magnitude of variability that exists in the
ways individuals can complete a task, a reliance on discrete
a priori measures, as common movement screen scoring

Abbreviations: DS, Deep squat; GMM, Gaussian mixture model; LHS, Left hurdle
step; PCA, Principal component analysis; PC, Principal component; RHS, Right
hurdle step.

parameters (e.g., spine angle at maximum squat depth), instead
of assessing time-series whole-body movement patterns remains
as a limitation. Specifically, the use of a priori discrete parameters
suggests that there is a single idealized pattern, which as
shown by Srinivasan and Mathiassen (2012), is not necessarily
optimal. Instead, it may be more beneficial to identify and
screen for phenotypical patterns of movement behaviors that may
differentiate and classify between those with optimal movement
competency relative to those that may benefit from a targeted
movement training intervention.

The Functional Movement ScreenTM (FMS) (Functional
Movement Systems, Chatham, VA, United States) remains
a popular tool for movement screening (Bennett et al.,
2017). Sinden et al. (2017) identified the FMSTM as one
of the most commonly used approaches for movement
screening among Kinesioligists. The FMSTM is an example of
a movement screen that depends on the visual appraisal of
discrete movement competency and identifies deficits and/or
compensatory movement patterns in the kinetic chain (Cook
et al., 2006a,b). While the FMSTM protocol includes a battery
of 7 distinct movements, we focus on the Deep Squat (DS) and
right and lift hurdle step (RHS; LHS) movements. Squatting is
a common pattern in most athletic events (Cook et al., 2006a;
Kritz et al., 2009) making it a useful movement to target first. The
hurdle step movement, provides a unique contrast relative to the
squat because it tests bilateral functional mobility and dynamic
stability of the hips, knees, and ankles (Cook et al., 2006a). Many
believe that such screening can be useful in proactive injury
prevention (Kiesel et al., 2007). However, due to the lack of
evidence relating the FMSTM to injury (McCunn et al., 2016),
or biomechanical exposure variables in transfer tasks (Beach
et al., 2014), evidence does not support that the current scoring
approach is useful for injury prevention (Okada et al., 2011;
Parchmann and McBride, 2011). This is not, however, to suggest
that screening is not useful. Considering sound biomechanical
arguments (Zazulak et al., 2008; Powers, 2010; Hewett and Myer,
2011), Beach et al. (2014), conclude that general whole-body
movement screening could be used to predict likelihood of
injury in physically demanding jobs if we advance beyond the
current scoring approaches. Therefore, to overcome limitations
associated with the subjective a priori driven grading criteria,
data-driven methods could improve the state of movement
screening (McCunn et al., 2016).

Application of pattern recognition and machine learning
techniques are growing within biomechanics (Halilaj et al., 2018)
and can enable data-driven methods to objectively identify
movement phenotypes. As a pattern recognition tool, principal
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component analysis (PCA), allows us to identify principal
movement patterns through data reduction, which explain
variance within kinematic-based data sets (Troje, 2002; Wrigley
et al., 2005; Brandon et al., 2013; Federolf et al., 2014; Ross
et al., 2018; Armstrong et al., 2019). One strength of using
PCA to determine modes of variability is that the scores can be
used in downstream analysis such as in classification through
cluster analysis to detect and interpret differences between
subjects and/or trials (Deluzio et al., 2014, p. 319). As an
example, clustering is an unsupervised machine learning method
that iteratively clusters data points into groups assigning each
observation to a cluster. In the biomechanical analysis of human
movement data, clustering has proven useful for grouping
participants with similar patterns (Sawacha et al., 2010; Bennetts
et al., 2013; Gilles and Wild, 2018) and gait waveforms (Watelain
et al., 2000; Toro et al., 2007; Roche et al., 2014). Previously,
PCA and clustering techniques have been combined to identify
and group distinct spine spatiotemporal movement strategies
(Beaudette et al., 2019), which support that a combination
of these methods may have utility in objectively identifying
movement phenotypes in a movement screening context.
However, such application of pattern recognition and clustering
to identify naturally occurring movement phenotypes within the
movement screening context remains a novel endeavor.

Therefore, to address issues related to the use of subjectively
measured a priori movement competency features, the objective
of this paper was to apply PCA and gaussian mixture model
(GMM), as pattern recognition and machine learning techniques
respectively, to objectively identify naturally occurring whole-
body movement pattern phenotypes during the performance
of common movement screening tasks (i.e., the deep squat
and hurdle step). Secondarily, we aimed to evaluate if
top-down a priori determined, discrete kinematic variables
(typically evaluated in practice using a subjective visual
appraisal), were indeed different between naturally emerging
movement phenotype groups identified using unsupervised
learning (i.e., bottom-up).

MATERIALS AND METHODS

Subjects
Thirty healthy participants volunteered for this study (Table 1).
The participants were recruited from the general student body
of the University of Waterloo, were older than 18 years old and
did not have an injury that prevented activities of daily living in
the previous 6 months. The participants completed a “Get Active
Questionnaire” that indicated their physical readiness for the
study. This study was approved by the University of Waterloo’s
Office of Research Ethics, and participants provided informed
consent prior to participation.

TABLE 1 | Participant demographics.

Age Height (cm) Weight (kg)

Male (n = 15) 23.6 ± 4.0 185.23 ± 6.8 87.9 ± 10.0

Female (n = 15) 23.7 ± 8.0 168.2 ± 9.8 64.3 ± 9.25

Instrumentation
Prior to coming to the lab, participants were instructed to wear
tight fitting clothing. All participants were instrumented with
reflective motion capture markers, including marker clusters
placed over body segments and single markers positioned over
anatomical landmarks (Figure 1). Marker clusters were used
to track segment motion instead of anatomical markers to
reduce soft tissue artifact (Leardini et al., 2005). Anatomical
markers were used during calibration to mathematically relate
the technical coordinate system of each cluster to its underlying
segment specific anatomical coordinate system (Robertson et al.,
2013). Motion was recorded using a 12 – camera (six, Vantage v5;
six, Vero v2.2) Vicon Nexus 2.6 motion capture system (Nexus,
Oxford, United Kingdom). Once participants completed a
calibration trial, the following markers, bilaterally, were removed
for the remainder of the study: lateral and medial epicondyles,
iliac crest, anterior superior iliac spine, greater trochanter of
femur, lateral and medial condyle, lateral and medial malleolus.

Protocol
Participants performed 15 movements in total for the study: 5
deep squat (DS), 5 right hurdle step (RHS), and 5 left hurdle step
(LHS) movements (Figure 2) and were given instruction about
how to perform each movement, adapted from those described
in Cook et al. (2006a). Specifically, for the deep squat participants
were instructed to: “stand with your feet approximately shoulder
width apart, place the dowel on your head adjusting your hands

FIGURE 1 | Whole-body reflective marker set up. Marker clusters were placed
bilaterally on the shank, thigh, forearm, and upper arm as well as on the pelvis
and trunk. Anatomical markers were placed on the anterior and posterior
lateral aspects of the head, suprasternal notch, xiphoid process, 7th cervical
vertebra; and bilaterally on the acromion, lateral and medial epicondyles, radial
and ulnar styloid processes, 2nd and 5th metacarpals, dorsum of the hand,
iliac crest, anterior superior iliac spine, greater trochanter of femur, lateral and
medial condyles, lateral and medial malleoli, 1st and 5th metatarsal, dorsal
tarsal midline, and calcaneus.
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FIGURE 2 | Deep squat movement and hurdle step movement as adapted from Cook et al. (2006a).

until your elbows are at 90 degrees, press the dowel overhead,
straightening the elbows, the trial will begin once you descend
into a deep squat position and back up keeping your heels on the
floor and arms extended the entire time.” For the hurdle step,
instructions were: “stand facing the front of the lab with your
toes touching the FMS board, place the dowel across the back
of your shoulders and below your neck, with your right/left leg,
step over the hurdle, touch your heel on the opposite side and
bring your moving leg back to the starting position.” Participants
completed 5 repetitions of the DS, followed by 5 repetitions of the
RHS and 5 of the LHS. Motion data were collected at 60 Hz using
Vicon Nexus while participants performed the DS, RHS and LHS
movements, respectively.

Data Post-processing and Conditioning
During post-processing, each trial was first labeled and gap filled
in Vicon Nexus, where gaps were filled using cubic spline, pattern
fill or rigid body fill functions within Vicon Nexus, where the
gap filling function was dependent on the underlying gap length
(Armstrong et al., 2019). Gap-filled and labeled marker trajectory
data were exported to Visual 3D (C-Motion Inc., Germantown,
United States). Within Visual 3D, data were filtered using a
fourth order low pass butterworth filter with an effective cut off
frequency of 6 Hz (Winter, 2009) to remove high frequency noise
from each signal. Filtered trajectory data were then used to drive
a 15 segment whole-body kinematic model, with IK constraints,
where segments were defined using ISB recommended segment
definitions (Wu et al., 2002, 2005), such that joint center positions
(ankle, knee, hip, shoulder, elbow, wrist) and centre of mass
(COM) locations (pelvis, trunk, and head) could be calculated.
Joint center and COM trajectory data were combined with
filtered position data from selected body landmarks (xiphoid
process, suprasternal notch, 7th cervical vertebra) to provide the
kinematic description of each motion.

Prior to additional data processing, start and end frames
for each trial were determined (Figure 3). The DS “start” and
“end” were defined by identifying the local maximum of the
supra-sternal notch marker in the vertical direction. The “start”
and “end” of the hurdle step were determined by identifying
the local minimum of the lead (step-over) heel marker in the
vertical direction.

To address our overarching research question, we also used
the trajectory data to calculate discrete kinematic variables

commonly used in screening. Tables 2, 3 list the additional
discrete kinematic data that were calculated and also summarizes
how they were calculated to support this analysis.

To support the use of pattern recognition and machine
learning, trajectory data representing the above mentioned joint
centers, landmarks, and COM locations were exported to Matlab
(MathWorks, Natick, United States). In Matlab, participants’
trajectory data were divided by their standing height to normalize
for inter-participant variance in height (Ross et al., 2018). The
trajectory data were also translated such that the new origin
was positioned at the center of the right (DS, LHS) or left
(RHS) ankle coordinate system. This translation was necessary
to eliminate variance in the trajectory data associated with
each participants’ relative positioning with the global coordinate
system of the laboratory.

Trials were time normalized to 101 frames (100% of the trial),
but in phases in order to account for the fact that participants

FIGURE 3 | (A) Represents the phases of the DS movement from 0 to 100%.
The “move into” phase is contained by the red and black bars and in between
the black and blue bars is the “move out” phase. The below graph represents
tracking of the suprasternal notch marker to determine 50% of the movement
(maximum squat depth) as well as define “start” and “end” points of the
movement. (B) Represents the phases of the hurdle step movement from 0 to
100%. The “move into” phase is contained by the red and black bars and in
between the black and blue bars is the “move out” phase. The graph below
represents tracking of the right (LHS) or left (RHS) calcaneus marker to
determine 50% of the movement (end of heel touch) as well as define “start”
and “end” points of the RHS and LHS, respectively.
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TABLE 2 | Calculated kinematic variables typically representative of the a priori, discrete DS scoring criteria.

Scoring criteria (Cook et al.,
2006a)

Kinematic representation Calculation Meaning/Relevance

The femur is at or below
horizontal

Femoral angle The right and left femoral segment angles were
calculated, averaged, and then the maximum
angle was found.

Representation of squat depth

The trunk is parallel with the
tibia and/or toward the vertical

Trunk- Shank angle difference
Trunk angle

The maximum trunk to shank angle difference
was determined as well as the maximum trunk
angle elicited.

The greater the difference the more the
tibia and trunk are not parallel.
The greater the trunk angle, the further
bent forward.

The knees remain aligned with
the feet

Knee-to-ankle separation ratio
(Ortiz et al., 2016)

The difference between left and right knee joint
centers in global space and the difference
between the left and right ankle joint centers in
global space were calculated.
The knee distance was divided by the ankle
distance.

(>1) = knees are wider (varus)
(<1) = knees fall inwards (valgus)

The dowel remains over top of
the feet

Left-right hand center
difference to foot center
difference.

The center of the left- and right-hands in global
space and left and right foot center in global
space were calculated. The maximum anterior
difference between the hand center and foot
center was calculated.

Measure of displacement of dowel over
the feet in the anterior direction.

TABLE 3 | Calculated kinematic variables typically representative of the a priori, discrete hurdle step scoring criteria.

Scoring criteria (Cook et al.,
2006a)

Kinematic representation Calculation Explanation

Hips, knees, and ankles remain
aligned

Hip-to-Knee difference
Knee-to-ankle difference
Hip-to-ankle difference
Hurdling leg was the leg of
interest

= (hip – knee)
= (knee – ankle)
= (hip-ankle)
All calculations used the joint center in
the y-axis (anterior plane)
Peak absolute values were calculated

A difference value closer to 0, the more in-line the
joint centers.
The hurdle step scoring criteria #1, was determined
kinematically by gathering the difference between all
three joints in the anterior plane.

Little to no movement noted in
lumbar spine

Lumbar Flexion – extension
range
Lumbar lateral flexion range

Rotation range

= (maximum extension – maximum
flexion)
= (maximum right lateral flexion –
maximum left lateral flexion)
= (maximum rotation to the right –
maximum rotation to the left)

To determine little movement in lumbar spine, angle
ranges in all three directions were calculated. The
greater the range, the more movement noted in
lumbar spine.

The dowel remains parallel with
the string

Right-left hand difference in the
z direction (superior/inferior)

= (right hand center – left hand center) Represented by the difference in hand displacement
in the superior/inferior direction. The greater the
difference of the two hands, the greater the dowel is
not parallel with the string.

typically took longer to move into the required position, but
less time to move out of the required position. As an example,
participants for the DS generally took different lengths of time
descending into maximum squat depth and returning to upright
standing. To achieve our desired phase-based time-warping, first,
the “move into” portion of the movement (i.e., from standing
to maximum squat depth, or foot extended over hurdle) was
segmented out and time normalized to 54 frames for the DS,
53 for the RHS and 52 for the LHS, respectively. Second, the
“move out” portion of the movement (i.e., return to standing)
was segmented out and time normalized to 47 frames for the DS,
48 for the RHS and 49 for the LHS respectively. Third, the time
normalized phases were re-concatenated into a complete trial
(101 frames). On average, participants tended to complete the
“move into” phase of the DS, RHS, and LHS at 54, 53, and 52% of
the total movement time, reinforcing the splits noted above. This
process was completed to eliminate timing effects or phase shift

between trials of each of the movements respectively (Moudy
et al., 2018). The time normalized estimated joint centers, body
landmarks, and calculated COM positions were then prepped for
PCA analysis in Matlab (Figure 3).

Data Analysis
Feature Selection
PCA was applied to the time-series conditioned and post-
processed trajectory data to identify emergent features that
captured orthogonal modes of variability in the data set.
Individual PCA models were developed for the DS, RHS,
and LHS data, respectively, using the ‘Statistics and Machine
Learning’ toolbox in Matlab. Described more completely in Ross
et al. (2018), but briefly summarized here, we organized the time-
series trajectory data into a [n, m] matrix, where, n represented
the number of trials (n = 150, corresponding to 30 participants
× 5 trials) and where m represented row vectors describing
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the time-series trajectory data (m = 5454, corresponding to 18
trajectories× 3 axes× 101 time points). PCA was then applied as
a data reduction and feature selection method to yield principal
components (PCs) that capture linearly uncorrelated sources of
variability within each dataset. The application of PCA in this
manner, for the purpose of identifying principal movements (PCs
representing linearly uncorrelated movement features) is more
completely described by Troje (2002) and Ross et al. (2018). PC
scores were retained, representing each observation (trial) in the
principal component space. PCs that individually explained > 5%
of the variance (Witte et al., 2010), were retained for classification.

Classification
A [p, q] matrix was input into a GMM, where p represents
each trial’s PC scores as input features (p = 150, corresponding
to 30 participants × 5 trials) and each column of q described
individuals’ PC scores for those PCs that were retained. As a brief
background, GMM is a model-based method where the algorithm
is aimed at optimizing the fit between the data and the model
to find structures (clusters) among the observations, while also
assigning a measure of probability to the clustered assignment.
GMM was applied to the data in Matlab using the “Statistics
and Machine Learning” toolbox. To determine the optimal k
(number of clusters), we used the Bayesian information criterion
(BIC), where for k = 1–10 a GMM was fit to the dataset and the
minimum BIC identified the best k. An optimal k was determined
for each movement: DS, RHS and LHS, respectively. A GMM for
each movement was applied to each data set respectively, running
100 repetitions to increase the likelihood of the data converging
to an optimum (Beaudette et al., 2019). Following the application
of the GMM to each movement dataset, centroid scores from each
cluster were determined along with the clustering assignments
from each individual trial, where hard clustering was performed
such that each trial was assigned to only 1 phenotype. The cluster
centroids therefore represent the mean movement phenotypes.

Reconstruction
Single component reconstruction was used to visualize
differences in movement patterns between clusters (Brandon
et al., 2013). This reconstruction was done by multiplying the
loading vectors for each retained PC by the centroid scores
representing each cluster and adding it to the mean loading
vector (eigenvectors from the PCA models). The reconstructed
patterns provided a visual representation that emphasizes
differences in the underlying kinematics associated with each
movement phenotype.

Statistics
Kinematic variables typically representative of the a priori,
discrete scoring criteria (Tables 2, 3) served as dependent
variables in one-way ANOVA models. Cluster assignment served
as the independent variable (3 levels for DS and RHS movements
and 4 for LHS movement, based on the emergence of 3 and
4 clusters, respectively). An alpha value of 0.05 was used to
determine significance. Where a main effect of cluster assignment
emerged, post hoc testing, using Bonferonni corrected pairwise
comparisons were used to determine significant differences in

dependent measures between clusters. Partial eta squared values
(η2) were calculated for each dependent variable where, 0.01 was
considered a small effect, 0.06 a medium effect and 0.14 a large
effect (Cohen, 1988, p. 285–287, 383). Statistical analysis was
completed using SPSS (SPSS Version 24.0, IBM Corporations,
Armonk, NY, United States).

RESULTS

Feature Selection and Classification
The PCA models revealed that 4, 6, and 6 PCs each explained
at least 5% of the variance in the time-series trajectory data for
the DS, RHS, and LHS, respectively. Using those retained PCs,
the GMM identified k = 3 as the optimal number for the DS
and RHS and k = 4 for the LHS movements (Figure 4). For
the DS, 62, 24, and 64 trials were assigned to phenotypes 1, 2,
and 3, respectively, where 23 of the participants had all 5 trials
classified within the same phenotype and 7 participants had trials
distributed between 2 different phenotypes. For the RHS, 47, 84,
and 19 trials were assigned to phenotypes 1, 2, and 3, respectively,
where 21 of the participants had all 5 trials classified into the
same phenotype, and 9 participants had trials distributed between
different phenotypes. Lastly, for the LHS, 36, 50, 25, and 39
trials were assigned in phenotypes 1, 2, 3, and 4 respectively,
where 23 participants had all 5 trials classified within the same
phenotype, and 7 participants had trials distributed between
different phenotypes. It is interesting to note the disproportionate
clustering, where many trials were assigned to cluster 2 for the
RHS, but fewer to clusters 1 or 3, as an example. It is important
to note than when interpreting the data, each movement was
analyzed separately, for example, we cannot claim that phenotype
1 for the RHS and phenotype 1 for the LHS are related.

Single Component Reconstruction
The results of the single component reconstructions are in
Figures 5–7 and in Supplementary Material. The purpose

FIGURE 4 | BIC values for k = 1–10 for the DS, RHS, and LHS demonstrating
minimum values at k = 3 for the DS and RHS, and k = 4 for the LHS.
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of the single component reconstructions is to provide a
visual representation of the emergent differences in movement
phenotypes (cluster centroids).

Kinematic Differences Between Clusters
Deep Squat
A main effect of cluster assignment was detected for 4 of the
5 kinematic measures typically used to subjectively evaluate
the DS (Table 4 and Figure 8). The trunk segment angle,
a measure to represent forward lean of the torso, was not
different between the clusters. Post hoc pairwise comparisons
revealed that the femoral angle (Figure 8A), was different
between phenotypes 1 and 2 and phenotypes 1 and 3, but that
phenotypes 2 and 3 were not different. Considering the trunk-
shank angle difference measure (Figure 8B) phenotypes 1 and 2
were different, but phenotype 3 was not different from either 1
or 2. The sagittal plane dowel alignment, was different between
phenotypes 1 and 3, but phenotype 2 was not different from
either 1 or 3 (Figure 8C). Lastly, the knee-ankle separation
ratio, a measure aimed to represent knee varus/valgus, showed
differences between phenotypes 1 and 3 only (Figure 8D).

Right Hurdle Step
A main effect of cluster assignment was detected for all 7
kinematic measures commonly used to score the RHS, implying
these variables soundly represent variance in the movement
of the RHS (Table 5). Post hoc pairwise comparisons revealed
that all three hip-knee-ankle frontal plane alignment variables
were significant between phenotypes 2 and 3, and where the

ankle-hip alignment variable was different between phenotypes
1 and 3 (Figure 9A). Considering measures associated with
lumbar spine control, post hoc pairwise comparisons revealed
differences between phenotypes 2 and 3 in the range of
motion about all three axes (Figure 9B). There were further
differences between phenotypes 1 and 3 for both the lumbar
range of motion associated with a lateral bend and rotation.
Phenotypes 1 and 2 only differed for the range of lumbar
movement represented by the flexion/extension axis. Lastly,
consider the hands/dowel parallel to the string measure, there
were significant difference between phenotypes 1 and 3, and 2
and 3 (Figure 9C).

Left Hurdle Step
A main effect of cluster assignment was detected for 4 of the
7 kinematic measures commonly used to score LHS, including
hip-ankle alignment, lumbar flexion/extension range, lumbar
lateral flexion range, and hands/dowel parallel with the string
measure. No main effects were detected for hip-knee and
knee-ankle alignment difference and lumbar rotation range
(Table 5). Post hoc pairwise comparisons revealed that hip-
ankle alignment measures were different between phenotypes
2 and 4 only (Figure 10A). Further, flexion-extension range
were different between phenotypes 1 and 2 as well as 2 and
4. Considering lumbar movement regarding lateral flexion,
phenotype 4 differed statistically from all other phenotypes
(Figure 10B). Lastly, all phenotypes for the hands/dowel parallel
with the string measure differed statistically except phenotype 4
with 1 and 3 (Figure 10C).

FIGURE 5 | Reconstructed movement phenotypes using the centroid PC scores from each cluster considering the deep squat movement. Black, movement
phenotype 1; red, movement phenotype 2; blue, movement phenotype 3.
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FIGURE 6 | Reconstructed movement phenotypes using the centroid PC scores from each cluster considering the right hurdle step movement phenotypes
identified. Black, movement phenotype 1; red, movement phenotype 2; blue, movement phenotype 3.

FIGURE 7 | Reconstructed movement phenotypes using the centroid PC scores from each cluster considering the left hurdle step movement phenotypes identified.
Black, movement phenotype 1; red, movement phenotype 2; blue, movement phenotype 3; gray, movement phenotype 4.

DISCUSSION

The objective of this study was to identify naturally occurring
whole body movement pattern phenotypes related to the
performance of exemplar movement screening tasks including
the DS, RHS and LHS by using pattern recognition (PCA)
and machine learning techniques (GMM). Further, we aimed
to contrast how kinematic measures commonly used to score

these movements differed between the groups. The statistical
results demonstrate that while all kinematic measures commonly
used to score the RHS demonstrated a main effect, none of
the kinematic measures independently were actually different
between all emergent phenotypes (Figure 9). Instead, data
demonstrate that kinematic measures commonly used score
these screening movements are often different between pairs of
phenotypes, but not necessarily able to independently distinguish
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TABLE 4 | Level of significance (p-value) and effect size (η2= partial eta squared value) results for the kinematic variable representation of the DS scoring criteria.

The thigh is at or below
horizontal

The trunk remains upright and/or The Dowel remains
aligned over feet

The knees remain
aligned with the ankleremains parallel with the tibia

Thigh segment angle Trunk segment angle Trunk shank angle
difference

Hand center – foot
center difference

Knee ankle separation
ratio

Deep squat p = 0.000*
η2 = 0.141

p = 0.140
η2 = 0.026

p = 0.011*
η2 = 0.059

p = 0.000*
η2 = 0.143

p = 0.009*
η2 = 0.063

*Denotes a main effect at the 0.05 level.

FIGURE 8 | Violin plot (Holger Hoffmann, 2020) demonstrating the distribution shape of each phenotype for kinematic measures commonly used to score the DS.
The mean is represented by the white dotted line and median with the solid white line. (A) The femur is at or below horizontal; (B) the torso remains upright and/or is
parallel with the tibia; (C) the dowel remains aligned over the feet; (D) the knees remain aligned with the feet. *The mean difference is significant at the 0.05 level.
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TABLE 5 | Level of significance (p-value) and effect size (η2 = partial eta squared value) results for the kinematic variable representation of the hurdle step scoring criteria.

The hips, knees, ankle remain aligned There is little to no movement in the lumbar spine Dowel parallel with string

Hip-knee Knee-ankle Hip-ankle Flex/Ext range Lat flex range Rotation range Hands parallel

Right hurdle step p = 0.003* p = 0.026* p = 0.000* p = 0.000* p = 0.000* p = 0.004* p = 0.000*

η2 = 0.077 η2 = 0.048 η2 = 0.120 η2 = 0.139 η2 = 0.127 η2 = 0.074 η2 = 0.258

Left hurdle step p = 0.238 p = 0.418 p = 0.008* p = 0.001* p = 0.000* p = 0.932 p = 0.000*

η2 = 0.028 η2 = 0.019 η2 = 0.078 η2 = 0.112 η2 = 0.225 η2 = 0.003 η2 = 0.284

*Denotes a main effect at the 0.05 level.

across all groups (Figures 8–10). This suggests that, if screening
continues to be performed using visual appraisal of selected
kinematics markers, a hierarchical-based decision tree approach
(i.e., first classify on marker A, then sub-classify within those
groups based on marker B, etc.) is likely to improve the ability
to truly classify and distinguish between groups. Alternatively,
contrary to the common practice of analyzing movements based
on a priori prescribed features, objective data driven analysis
can identify and cluster relevant movement phenotypes while
considering the system as a whole. Using data driven methods
to determine common patterns of movement tasks can reduce
the need to use subjective visual appraisal based on a priori
prescribed features. However, it is also important to note
that while this study has generated insights about emergent
movement phenotypes during the performance of the DS and
hurdle step as exemplar movement screening tasks, the pattern
recognition and machine learning techniques applied in this
study cannot be applied blindly.

Independent evaluation of discrete kinematics features may
not adequately distinguish and separate movement phenotypes.
This is particularly evident when analyzing how the phenotypes
relate back to the FMSTM scoring criteria, as the means
of some scoring criteria were significantly different between
phenotypes and others were not. This demonstrates that
kinematic measures commonly used to score movements likely
shouldn’t be considered independently, and that the interaction
between multiple variables might be more revealing. For example,
the results for the DS demonstrate significant differences between
groups 1 and 2 for two different features (thigh angle and
trunk-shank angle difference) and 1 and 3 for three different
features (thigh angle, dowel alignment measure and knee-ankle
separation ratio). This suggests that the thigh angle or dowel
alignment measure could be used to first extract phenotype
1 DS movements (i.e., exceed an appropriate DS thigh angle
or dowel alignment threshold), and also highlights a potential
redundancy in the DS scoring criteria. However, there were no
significant differences present between phenotypes 2 and 3 in any
of the measures, which suggests that there are other features that
differentiate these groups. It also reveals an important limitation
regarding the use of a priori prescribed kinematic measure, in
that a top-down a priori assignment of variables may not actually
coincide with kinematic outcomes that do indeed differentiate
between groups (Bennett et al., 2017). In this case a sub-ordinate
criterion is necessary to distinguish between the movements that
remain after screening out phenotype 1 movements by using

the DS thigh angle or dowel alignment measure. Highlighting
the strengths of pattern recognition and machine learning, these
techniques can be applied “bottom-up” to probe for other
measures that might better distinguish between DS phenotype
2 and 3. Using our single component reconstructions as a
starting point, the frontal view visual representation of the
DS phenotypes (Figure 5) shows that foot width was different
between phenotypes 1 and 2, and 2 and 3 and has the potential
to be a sub-ordinate measure to distinguish between phenotypes.
While participants are instructed to place their feet approximately
shoulder width apart, some individuals may place their feet wider
due to limitations (e.g., morphological). Although this is not
a factor that the FMS considers, the use of a wider base may
be a result of some functional or behavioral differences that
clinicians can explore.

Interpreting results from the LHS and RHS also reveal
important evidence underscoring limitations in the use of “top-
down” discrete a priori measures to score screening movements
and further reinforcing the utility of pattern recognition and
clustering approaches as “bottom-up” strategies to identify
movement phenotypes. In comparison to the FMSTM based
kinematic measures used to score the RHS, the clustering
revealed that not all features were significant between groups
and may be differentially affected in the synergistic control
of movement features, further reinforcing the potential of a
hierarchical-based approach to screening. For example, the hip-
knee, knee-ankle, and hip-ankle alignments were all statistically
different between phenotypes 2 and 3, indicating redundancy
in the ability of these measures to differentiate, but also in
the ability of any one of these measures to be a useful initial
measure. However, only the hip-ankle alignment was statistically
different between phenotypes 1 and 3, suggesting that this
measure could be useful as a sub-ordinate to further refine
grouping assignments. Similarly, when considering the lumbar
motion related criteria, range of motion about each axis was
different between phenotypes 2 and 3, emphasizing redundancy.
Nevertheless, the results suggest the ability to differentiate
between phenotypes 1 and 2 based on lumbar flexion extension
range, and groups 1 and 3 based on the lumbar lateral flexion
and lumbar rotation ranges. Like the DS, the use of a bottom-
up, data-driven approach has also revealed a factor that might
be important, but that is not currently considered: anterior-
posterior centre of mass (COM) range of motion (Figure 6).
Phenotype 3 (RHS), as an example, elicited a larger range of
motion of the COM in the anterior direction, which could not be
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FIGURE 9 | Violin plot (Holger Hoffmann, 2020) demonstrating the distribution shape of each phenotype for kinematic measures commonly used to score the RHS.
The mean is represented by the white dotted line and median with the solid white line. (A) Hip, knee, and ankle remain aligned; (B) there is little to no movement in
the lumbar spine; (C) the hands/dowel remains parallel to the string. ∗The mean difference is significant at the 0.05 level.

explained by lumbar angle range of motion, suggesting a possible
necessity as an additional movement assessment consideration.

For the LHS, the hip-ankle alignment was the only feature
that showed differences between groups for the frontal plane hip-
knee-ankle alignment measures. The results demonstrated that
phenotype 4 can be differentiated from the other phenotypes
based on the lateral lumbar flexion range, but would need
subsequent analysis to differentiate further. Whereas, the feature
separating phenotypes 1 and 2 and 2 and 4 were due to lumbar
lateral flexion range, again supporting a hierarchical approach to
screening in the absence of direct data-driven methods. Further,

the dowel/hands parallel to string measure elicited differences for
phenotype 1 from 2 and 3, as well as phenotype 2 from 3 and 4,
thus demonstrating that the kinematic representation of keeping
the dowel parallel to the string of FMSTM scoring criteria is a
useful tool for differentiating differences in the hierarchy for the
LHS. Considering that there were few differences between the
frontal plane hurdling leg alignment, perhaps this is a feature that
does not demonstrate as much variance as the RHS. Moreover, at
this point in the analysis we are not able to explicitly state why the
number of optimal clusters differs between the LHS and RHS, but
speculate that there may be more variability in the LHS compared
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FIGURE 10 | Violin plot (Holger Hoffmann, 2020) demonstrating the distribution shape of each phenotype for kinematic measures commonly used to score the LHS.
The mean is represented by the white dotted line and median with the solid white line. (A) Hip, knee, and ankle remain aligned; (B) there is little to no movement in
the lumbar spine. (C) The hands/dowel remains parallel to the string. ∗The mean difference is significant at the 0.05 level.

to the RHS possibly due to foot dominance. Unfortunately, we
did not record foot dominance so we cannot further verify this
speculation. Further analysis would be needed to identify the
specific kinematic features that further aid to differentiate in the
hypothesized hierarchical approach.

This study applied PCA and GMM to a dataset of DS, RHS,
and LHS movements as performed by healthy individuals. As
a result, the grouping assignments and underlying kinematic

difference will likely be different among samples, or perhaps even
a larger sample, although the FMSTM has a target population
of healthy, active individuals within the general population
(Bennett et al., 2017), so our sample may be representative.
However, with access to such a larger, representative dataset,
this paper provides evidence to support and inform how motion
capture, pattern recognition and machine learning can advance
movement screening approaches. But, it is also important
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discuss the assumptions and challenges that emerge when
deploying this approach.

One challenge that emerged earlier on in the process of using
PCA to identify principal movements was the determination
of how many principal movements (PCs) to retain. In this
study, PCs that individually explain >5% variance were kept and
retained for analysis (Witte et al., 2010), since this method elicited
the least number of PCs. However, other common strategies
for PC retention include: PCs retained until a trace criterion of
90% of the total variance was retained (Deluzio and Astephen,
2007; Deluzio et al., 2014, p. 322) and PCs retained until a
trace criterion of 95% of the total variance was retained (Deluzio
et al., 2014, p. 322). However, in other applications, such as
optimizing the prediction of a dependent variable, retaining PCs
that individually explain >5% variability may not be sufficient
(Richter et al., 2014). While retaining a greater number of
PCs will include more of the variance within the dataset,
when working with clustering, reducing the dimensionality is
an important consideration, reinforcing our selection of a PC
retention strategy that balance the variance explained with the
number of PCs retained.

We chose a GMM as our clustering approach although other
types of clustering algorithms may be considered. A GMM
was chosen for its advantages of being a distribution-based
model. GMM is a soft clustering method based on how probable
it is that all data points in the cluster belong to the same
distribution. This is contradictory to a centroid-based model
with hard clustering (i.e., k-means clustering), where the notion
of clustering is based on how close each data point is to the
centroid and are assigned to a cluster without considering its
variance. While this distinction may not be critical for this
paper, it has important implications when clustering for the
purpose of movement screening. Considering human variability
(within and between), philosophically, it is unlikely that any
one individual will absolutely cluster the same way every time.
Instead, movements are likely to look more or less like a
representative cluster (mean movement), where the GMM can
provide an estimate of that likelihood. Such likelihood estimates
may inform a hierarchical assessment approach, whereas a mover
could be considered not just on the clustered assignment, but also
on their likelihood weighting with regards to their assignment to
each cluster. This is a concept that requires further contemplation
and investigation.

Selecting the optimal number of clusters is also an important
consideration, particularly when aiming to quickly screen a
wide population of movers, such that they can be appropriately
triaged (i.e., identify movers that require targeted training to
improve). With the distribution, soft clustering-based method,
GMM, the clusters can represent different ellipsoid shapes,
overlap or be relatively close to one another which can skew
results determined by a method such as a silhouette analysis.
Silhouette analysis measures the separability of the clusters
based on how close each point in one cluster is to points
in the neighboring clusters (Beaudette et al., 2019). As an
alternative, the BIC is a criterion for model selection among
a finite set of models partly based on the likelihood function.
The lower the BIC, the better the model to predict using the

data, this model avoids overfitting by penalizing models with
big number of clusters (Bishop, 2006, p. 217). Although this
may be interpreted as a drawback, if we want to be able to
generalize our phenotypes for the purpose of rapid screening
or movement-based triage, it is better to penalize large number
of clusters. However, if the intent was to support a more
personalized diagnoses, an alternate interpretation of the BIC
may be required.

Limitations
Limitations related to the sample size, kinematic trajectories
chosen to represent whole-body motion, kinematic variables
chosen to represent the scoring criteria and decisions required
to apply PCA and GMM likely all have some influence on
the results and interpretation of these data. Specific to sample
size, the sample size for this study was originally intended
for a different research question. However, given that we
did not know how many clusters would emerge, we were
challenged upon determining the a priori sample size. We
hope moving forward this study will assist in determining
a priori sample size. While remaining limitations have been
discussed within the main body of the paper, this method
nevertheless does show that objective whole-body evaluation
can identify phenotypes within a data set. With further
research, this method may prove useful and promising in
eliminating the subjective assessment of movement screens and
improving interrater reliability, or at a minimum, informing
on a hierarchy of distinguishable measures that can be used
to differentiate movements. It is also important to note that
future studies should consider adding their classification code
to enable other researchers to use their methods. At this
point we are not able to differentiate “good” versus “bad”
movers, although our group continues to explore this possibility
(Armstrong et al., 2019).

CONCLUSION

Overall, pattern recognition and machine learning techniques
were able to objectively identify phenotypes within a group
of individuals performing the DS, RHS and LHS. Further,
when comparing kinematic measures commonly used to score
movement between the different phenotype groups, some criteria
were indeed different and others were not. In most cases,
independent kinematic measures were not able to distinguish
between all three/four different emergent phenotypes, and several
measures overlapped in their ability to differentiate between
phenotype groups. In the absence of objective, data-driven
movement assessment, our results suggest that visual-based
screening can likely be improved by reducing the number of
measures to consider by eliminating independent measures that
provide redundant information (i.e., measures that are likely
coordinated in their control), and by considering measures using
a hierarchical approach (i.e., screen based on measure A, then
screen emergent groups based on sub-ordinate measures as
necessary). Objective data analysis using whole body movement
patterns gives insight into features of the DS and hurdle step that
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may not be elicited through a priori feature selection analysis.
Therefore, the results from this study provide important findings
to the field that open up a number of future study directions,
such as identifying which movement strategy could elicit different
injury risk factors to advance injury prediction. Moving toward
such objective data driven analysis may further enhance the
ability to apply movement screening for the purpose of injury risk
identification and mitigation.
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Sports complexity must be investigated at competitions; therefore, non-invasive
methods are essential. In this context, computer vision, image processing, and machine
learning techniques can be useful in designing a non-invasive system for data acquisition
that identifies players’ positions in official basketball matches. Here, we propose and
evaluate a novel video-based framework to perform automatic 3D localization of multiple
basketball players. The introduced framework comprises two parts. The first stage is
player detection, which aims to identify players’ heads at the camera image level. This
stage is based on background segmentation and on classification performed by an
artificial neural network. The second stage is related to 3D reconstruction of the player
positions from the images provided by the different cameras used in the acquisition.
This task is tackled by formulating a constrained combinatorial optimization problem
that minimizes the re-projection error while maximizing the number of detections in the
formulated 3D localization problem.

Keywords: machine learning, sports, computer vision, player detection, non-invasive method, tracking

INTRODUCTION

Recent advances in sports science have been made possible due to the development of appropriate
technology. For instance, computer-aided systems can be applied in several sports to obtain both
high and low-level data about the performance of a player or team. In basketball, a typical example
of low-level data is the position of a player on the court. Knowing the players’ positions reveals
important information because it can be used to compute higher-order data related to technical and
physical activities as well as tactical analysis. As claimed in the sports science literature (Hopkins
et al., 1999; McGarry et al., 2002), sports complexity must be analyzed at competitions, which means
that non-invasive methods are preferable for acquiring data such as player position. In this respect,
the fields of computer vision, image processing, and machine learning can play a role as they provide
useful tools for designing non-invasive video-based systems to collect player motion data during
official basketball matches. In the last two decades, researchers have made important contributions
to individual and team sports analysis through the development of video-based computer-aided
systems (Intille and Bobick, 1995; Iwase and Saito, 2004; Figueroa et al., 2006b; Barros et al.,
2007, 2011; Gomez et al., 2014; Morais et al., 2014). In team sports, these studies particularly
focus on tracking the players (Figueroa et al., 2006b; Barros et al., 2011; Morais et al., 2014) and
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the ball (Stennett, 2003; Spagnolo et al., 2013). When tracking
objects, one goal is to obtain the object’s trajectory as a
function of time, however, doing so requires a previous step:
accurately detecting the object of interest. Therefore, tracking by
video-based methods necessarily requires both object detection
and determination of the object’s location within the scene.
This information can then be used to associate the identified
objects with their trajectories. The desirable objects to track
in team sports applications for evaluating game dynamics are
the players, the referees, and the ball. As reported by Figueroa
et al. (2006b); Barros et al. (2007, 2011), and Morais et al.
(2014), several 2D approaches have been used in video-based
applications for player and referee detection, localization, and
tracking. In a 2D approach, only two spatial coordinates are
taken into account, however, it is also possible to consider three
spatial coordinates (a 3D approach), because 3D data provides
a huge variety of information that will give coaches support
in their training process, besides of the possibility in get game
contextualized performance data for both physical and technical
aspects. Generally, 3D methods have mainly been considered
for ball tracking applications (Ohno et al., 2000; Stennett, 2003;
Poliakov et al., 2010). However, the vertical component of player
position is essential information in basketball analysis because
the players frequently jump during the game. Player detection in
basketball is not an easy task; artifacts such as player occlusions,
strong shadows cast by players, and sharp reflections from
the polished floor significantly affect the segmentation process
(Alahi et al., 2009). The midpoint between the feet and the
bottom center of a player’s bounding box have both been used
as reference points that determine a player’s position within
the image, allowing subsequent reconstruction of the player’s
2D position on the court (Iwase and Saito, 2004; Figueroa
et al., 2006b; Lu et al., 2009; Barros et al., 2011). However,
the use of the midpoint between the feet as a reference point
can lead to problems during the segmentation stage, especially
when the legs have a color pattern similar to the basketball
court itself. Because a low error rate in identifying players’
positions is key for tracking algorithms, other reference points
must be explored. One possible candidate in this respect is
the player’s head, which is less affected by the aforementioned
artifacts. In fact, player head shape, color, and size provide more
stable and invariant features than feet. Moreover, choosing head
position on the court space as a reference point for locating a
player and detecting heads in multiple cameras are measures
that conform well to a 3D reconstruction approach. Bearing in
mind the limitations and requirements discussed above, in this
paper, we propose a video-based framework for automatic 3D
localization of multiple basketball players. The paper is organized
as follows. Section named Proposed Framework presents the two
stages of our method: player detection and 3D reconstruction.
Then, in Framework Performance Evaluation Section, we provide
a set of numerical experiments to assess the performance
of the proposed method. Discussion Section contains a talk
of the results, and Conclusion Section presents the closing
considerations. Approval for video data collection was obtained
from the Brazilian National Basketball League and Limeira
Basketball Association.

MATERIALS AND METHODS

Proposed Framework
The proposed framework, summarized in Figure 1, comprises
two main parts. The first part addresses the identification
of the players’ heads at the camera image level. As will be
detailed in section, player detection is conducted after image
acquisition and requires image processing and machine learning
procedures. The second stage of our proposal concerns the 3D
reconstruction of player positions. This task, as will be discussed
in section, can be addressed by formulating a combinatorial
optimization problem.

Player Detection
Acquisition
Image acquisition is the first step required for player detection
(Figure 1). To accomplish this, a dedicated capturing program
was built (using Vimba SDK, OpenCV, and C/C++) to
directly record and synchronize videos from multiple camera
views to a computer. The video data (1,038 × 7,765 Hz)
used in this work were acquired using three static industrial
FireWire cameras (Allied Vision Technologies GmbH, with
6 mm lens) attached inside protected cages at the highest
possible places in the gym (12 m from the ground). To
extend the FireWire connection for the cameras and achieve
the right locations for framing the court, a converter adapter
was plugged into each camera using optical fiber (Gefen
Firewire 1394 400/800 Extender). Because these cameras used
aspherical lenses (C-mount, 6 mm), it was necessary to
perform a distortion correction over the entire image. The
correction protocol involved a chessboard (planar pattern)
which was moved so the cameras could take images at
different orientations. In this manner, a closed-form solution
was obtained and refined for modeling the radial distortion
(Zhang, 2000).

Image Processing
In order to illustrate part of the player detection process, we
provide in Supplementary Video S1. The first step in player
detection is based on segmentation, which separates parts of the
image. For sports applications, these parts can be the court or
playing field, the players, and balls or other gear. Some image
processing tools were used to perform the segmentation of the
basketball players. The basic idea was to separate static image
regions from moving regions and then perform background
segmentation to extract the portions of the images that showed
the basketball court while keeping the parts that showed the
players (Figure 2).

The Gaussian Mixture-based Background/Foreground
Segmentation algorithm was used to do this (Zivkovic, 2004).
With the background model, we can also detect shadows and
re-mark any shadow pixels marked with foreground labels to
background labels (Prati et al., 2003). Finally, noise suppression
using image processing techniques that rely on morphological
filtering (erosion followed by dilation) was applied to the
foreground-mask (Figueroa et al., 2006a).
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FIGURE 1 | Framework Diagram. The key tasks for player detection and 3D localization. For better understanding the structure of the method we produced a series
of videos of the main process used: S1-detection, S2-1st round optimization, S3-2nd round optimization, and S4-3rd round optimization.

Machine Learning
The next step is to identify the players’ heads. To do that, the first
task is to estimate the contour of a player in the binary foreground
image (Suzuki and Be, 1985). Due to the high number of players
in the area, the contours found contained frequently more than
one player. The highest point in a contour curve may be directly
related to a player’s head if the contour contains just one player
(Figure 2, f, player from left), however, when the contour curve
encloses multiple players (Figure 2, f, two players from right), the
highest point can identify only one player’s head. Therefore, to
circumvent this issue, the location of the global maximum as well
as of the local maxima are taken into account to search for circular
patterns related to players’ heads. Thus, a circle was fitted in
the grayscale foreground mask near the places of maxima. Then,
the Circle Hough Transform (Yuen et al., 1990) was adopted to
obtain the best circle (taking head size into account) that was not
too far away from the original local maxima (Figure 3).

A classification into \head" or \non-head" is the ultimate goal
of player detection; therefore, the candidate points were classified
by a multilayer perceptron neural network, which had previously

been trained. The features used were the Histogram of Oriented
Gradients, HOG (Dalal and Triggs, 2005) using a fixed square
region around the candidate player point (Figures 3, 4).

The centers of the circles obtained are considered as the
candidate points, however, these points are not necessarily
heads – they could represent a raised arm (Figure 5, N1), the
ball (Figure 5, N4), or any other non-head body segment. The
candidate points are analyzed only if they appear inside of the
interest area (a pre-determined polygon, Figure 2) thus, the high
image variability caused by spectators and objects in areas beyond
the court does not affect the detection process.

The chosen architecture was a multilayer perceptron feed-
forward network with 10 hidden neurons in one hidden
layer. The neural network was trained with a back-propagation
algorithm (Rumelhart et al., 1986). To train and test the classifier,
briefly, we selected a total of 30,009 labeled samples (Figure 5)
and analyzed whether the HOG features and neural network
classifications were suitable. The samples, collected from an
official game (Game 1), were divided into three subsets: training
(70%), validation (15%), and test (15%). Finally, reproducibility
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FIGURE 2 | Process inside of Player Detection stage. Player detection process over a delimited interest area (E) with some steps depicted. The video image (A) is
used to model the static background image of the court (B), and the foreground mask (C) is the result of subtracting the background (D). The image in (F) is a closer
view of the three player- head candidates.

FIGURE 3 | Head candidates’ points. Heads enclosed by the Circle Hough
Transform (the square around of the heads delimited region for a computation
of HOG features).

was checked using a different game (Game 2, 2,027 samples)
with samples acquired in a scenario in which the players
were wearing different jerseys (the visiting team) and players
who had never appeared in the previous dataset of 30,009
samples. The neural network input layer had 1,764 neurons
(Figure 4), which correspond to the values from the HOG
features (Dalal and Triggs, 2005).

FIGURE 4 | Neural network and histogram of oriented gradients
representations. Architecture of neural network adopted with the input
variables selected.

Reconstruction
A prerequisite task for a 3D reconstruction of a given point is to
calibrate the cameras. The camera calibration aimed to estimate
the parameters of each camera so we could later transform
the image coordinates of the player reference point (the head
in this paper) to the global coordinates associated with the
court dimensions. After correcting for image distortion, a direct
linear transform, DLT (Abdel-Aziz et al., 2015), was adopted
to perform 3D camera calibration and player reconstruction
(Qingchao et al., 1996; Rossi et al., 2015). In this calibration
procedure, the intersections of the lines on the basketball
playing court were chosen as reference spots; the measurements
for these intersections (2D positions) were obtained from the
official FIBA rules manual. The origin of the global system
was defined at the intersection of one of the lateral lines
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FIGURE 5 | Training samples examples. HOG features of positive and negative samples used as inputs for the neural network.

FIGURE 6 | Camera Calibration. (A) Rigid bar used for camera calibration, the adopted court reference system, and the calibration points (red, B) that appeared at
least twice in the camera images.

(X-axis) with one of the bottom lines (Y-axis). Therefore,
for any spot selected on the court plane, we placed a rigid
vertically oriented bar (checked with a spirit level) that had
demarcations along its length showing known measurements. At
these demarcation points, white Styrofoam balls (with diameters
of 15 cm) were fixed so they would be easy to visualize in camera
images (Figure 6).

By measuring some points in the image with known real
coordinates, it then becomes possible to solve for any point in
the system using (Equations 1 and 2) to estimate the eleven
DLT parameters. Eleven unknown variables require eleven or
more equations, which means that a minimum of six pairs of
points between the image 155 and the real measurements were
required (because a point pair provides two equations) (Wood
and Marshall, 1986; Abdel-Aziz et al., 2015). The parameters A1
to A11 are associated to the relation between object in space
(position X, Y, and Z) and its image in the plane (position x

and y). The variable k denote to the camera index. For further
details about DLT, please verify Abdel-Aziz et al. (2015) and
http://www.kwon3d.com/theory/dlt/dlt.html. The absolute re-
projection errors of the calibration points that appeared at least
twice (36 points, Figure 6B) averaged 0.026 m (X-axis), 0.031 m
(Y-axis), and 0.043 m (Z-axis). The DLT equations are as follows:

(λ1k − λ3k xpk)X + (λ4k − λ6k xpk)Y + (λ7k − λ9k xpk)Z

+ λ10k − xpk = 0 (1)

(λ2k − λ3k ypk)X + (λ5k − λ6k ypk)Y + (λ8k − λ9k xpk)Z

+ λ11k − ypk = 0 (2)

After obtaining the parameters, it was then possible to
reconstruct the X, Y, and Z coordinates in court space from at
least two pairs of camera image coordinates.
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The goal of the proposed 3D reconstruction process is to
estimate the 3D localization of all the players in the scene. The
process is built upon a constrained combinatorial optimization
problem. The underlying problem-to assign the points detected
to a true player-can be modeled by the following assignment
matrix:

Am,n =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 (3)

where Ap,l is a binary (decision) variable that takes a value of
1 when an indexed image point from player head detection p
is related to a labeled player l; otherwise, it takes a value of 0.
To locate a given player in court space, a reconstruction must
be performed by considering only the points that represent the
given player. The problem here is that we do not know the labels
of the detected points; in other words, the associations between
detected points and players are unknown. A possible solution to
that problem would be to test all possible combinations, searching
for the combination that minimizes the re-projection error.
Unfortunately, that is a combinatorial optimization problem that
can be extremely costly in terms of computation. Moreover, an
additional complication is that the number of players in the
scene is unknown. Thus, to estimate the assignment matrix A,
we propose a constructive greedy solution that initially locates a
single player. Having located this first player, the image points
related to the head of the located player are dropped out of the
next interaction. This heuristic drastically decreases the number
of required calculations. The 3D localization of a new player
stops when no more feasible solutions are available. If there are
remaining player head image points that have not been assigned
yet, the method takes a priori information into account (Z equal
to the mean player height) to locate the last players on the court.

Let us detail our approach (Table 1) presents the notation
considered herein). Basically, we seek to optimize two cost
functions: (4) the minimization of the sum of the re-
projection errors associated with the assigned points, which is
mathematically given by the following equation:

min
n∑

l=1

m∑
p=1

[(
xpk − xlk

)2 (ypk − ylk
)2
]

Apl (4)

and, (5) the maximization of the number of the assigned points,
which is given by the following:

max
n∑

l=1

m∑
p=1

Apl (5)

The rationale behind this cost function comes from the notion
that greater numbers of designated image points allow for better
approximations of the players’ localizations. Of course, this is not
the case for outlier points, which require additional constraints to
prevent their designation. Note that the cost functions expressed
in Equations (4) and (5) are in conflict because a larger number

TABLE 1 | Notation.

n Number of players

m Number of points detected as player’s heads

p Point index

l Player label index

xlk ylk Coordinates of player l re-projected

w Total number of cameras

k Camera index

XlYlZl Court-space coordinates of player l

λ1k , λ2k , · · · , λ11k DLT parameters of camera k

of designated players increases the re-projection error. In view of
this fact, we propose to merge these cost functions into a single
function, as follows:

min
n∑

l=1

(xpk − xlk
)2 (ypk − ylk

)2(∑m
p=1 Apl

)2 −

m∑
p=1

Apl

Apl (6)

For the greedy solution, we solve the 1st round to obtain the
location of the 1st player (Figures 7, 8) and then proceed to the
subsequent rounds (2nd player, 3rd player, etc.) by discarding the
image points that have already been designated.

The examples can be seen in Supplementary Videos S1–S4;
respectively, for first, second and third players localized in each
round in straight for a given frame. The minimization of (6) must
be conducted by considering the following set of constraints:

n∑
l=1

Apl ≤ 1,∀p (7)

m∑
ι=1

Apι ≤ w,∀l (8)

n∑
ι=1

Apι ≥ 2,∀l (9)

Apι

[(
xpk − xlk

)2 (ypk − ylk
)2
]
≥ , ∀p (10)

hmin ≤ Zl ≤ hmax (11)

Constraint (7) means that for every point p, only one player l
can be assigned. Constraint (8) means that for every player, the
number of points assigned must be equal to or less than the
number of cameras. Constraint (9) means that for every player,
the number of points assigned must be equal or greater than
two (this is required for 3D reconstruction). Finally, Constraint
(10) sets the maximum re-projection error in terms of pixel
tolerance, and Constraint (11) imposes the head height limits.
Having estimated the assignment matrix A, the reconstruction
of the 3D position of each player can be obtained by solving a
set of algebraic equations, as shown in Table 2. An example of
combination tested is represented in Figure 8.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 April 2020 | Volume 8 | Article 286210

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00286 April 28, 2020 Time: 17:31 # 7

Monezi et al. Multiple Basketball Players 3D Localization

FIGURE 7 | The best feasible solution obtained in first player localization. In this case, the head points are correctly assigned to the player obtaining a low
re-projection error in all three cameras and then a god value for the optimization function.

FIGURE 8 | An example of combination tested with re-projection errors detailed. The head detected (red asterisk) that were designed to a given player (green circles)
resulting in a poor 3D reconstruction, which the value of re-projection errors (red lines between green circles and yellow plus sign) are too large, and then provide an
infeasible solution due to the one constraint.

As already mentioned, due to the limited number of cameras
along with the requirement of having at least two points from
different views for 3D reconstruction, some detected points are

not assigned as players and, thus, are not located in court space.
In these cases, we used a priori information to solve a DLT with
a fixed mean height. Figure 9 describes an example of a 3D
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TABLE 2 | Systems equations build upon DLT.

p = 1
[
(λ1k − λ3k x1k )X + (λ4k − λ6k x1k )Y + (λ7k − λ9k x1k )Z + λ10k − x1k

]
A1l = 0[

(λ2k − λ3k y1k )X + (λ5k − λ6k y1k )Y + (λ8k − λ9k y1k )Z + λ11k − y1k

]
A1l = 0

p = 2
[
(λ1k − λ3k x2k )X + (λ4k − λ6k x2k )Y + (λ7k − λ9k x2k )Z + λ10k − x2k

]
A1l = 0[

(λ2k − λ3k x1k )X + (λ5k − λ6k y2k )Y + (λ8k − λ9k y2k )Z + λ11k − y2k

]
A1l = 0

... ...

p = m
[
(λ1k − λ3k xmk )X + (λ4k − λ6k xmk )Y + (λ7k − λ9k xmk )Z + λ10k − xmk

]
Aml = 0[

(λ2k − λ3k xmk )X + (λ5k − λ6k ymk )Y + (λ8k − λ9k ymk )Z + λ11k − ymk

]
Aml = 0

Direct Linear Transform (DLT) equation composing a system that solve the 3D position (X; Y; Z) for a given player.

localization result with the proposed framework; the player head
detection (red asterisk) and assignments (colored circles) were
obtained for a given frame as an example.

The first player localized is shown by a blue circle, the second
by a green circle, and the third by a red circle. These are the top
optimizations. For this example, 3 players were 3D localized by
optimization and 3 players was located using a priori information
(the remaining points detected only in camera 1-up left) at a
position near the middle of the court (the white/red diamond).
Supplementary Video S5 depicted the framework result in a
short sequence movie.

RESULTS

For a better understanding of results presented below, the
results section will be divided into 3 subsections, as named:
Neural Network Classification Performance, Players Detection
Evaluation and Player Localization Evaluation.

Neural Network Classification
Performance
The performance obtained by the neural network for the
30,009 samples in Game 1 is illustrated in Figure 10 using
confusion matrices.

Each confusion matrix depicts the occurrences of true
classification (\head" classified as \head" or \non-head" classified
as \non-head"), false positive classification (\non-head" classified
as \head"), and false negative classification (\head" classified as
\non-head") for one of the subsets or for all subsets together.
A classification was considered positive only if the head appears
centralized in the square region where the HOG features
were computed (e.g., in N3 in Figure 5, the head is not
centralized). Finally, it is worth mentioning that the values
presented in Figure 10 represent the rates of the neural network
classification task, which do not correspond to the rates at the
player detection stage. Figure 11 shows the results obtained
for Game 2 (2,027 samples). We denote good performance,
however, we cannot forget to state that is an unbalanced
classification problem.

Note that – despite the fact that the neural network was trained
using samples from Game – the results obtained for Game 2
were also satisfactory. Finally, in the Table 3 is presented the
2D localization error’s benchmark of our method with others
presented in literature.

FIGURE 9 | 3D Localization of a given frame. Localization of 3 players, in
meters, by optimization (the colored circles) and 3 remaining point. Player
localizations represented on the basketball playing court (D).

The player detection accuracy was compared against a manual
measurement (ground truth) performed using the DVideo
(Campinas, SP, BRAZIL) system (Figueroa et al., 2006b; Barros
et al., 2007) run by an expert operator (5 years of experience). The
detection rates for each camera were calculated by considering
that a detection was true when the pixel distance between a
detected player’s head and the ground truth was less than 25
pixels. A pixel distance greater than 25 pixels was considered
to be a false positive detection. A misdetection occurred when
no point was found near a manual measure. The measures
were performed only inside of a designated interest area (a
pre-determined polygon). In addition, the player localization
performance of the proposed framework was evaluated by
comparing the real distance in meters between the player’s
position as reconstructed by the proposed framework and the
expert’s manual measurement in DVideo.

Player Detection Evaluation
The results of 10,164 detections were as follows: for cameras 1,
2, and 3, respectively, the true detection rates were 78.9, 68.9,
and 79.8%; the false positive rates were 2, 1.2, and 5%; and
the misdetection rates were 19.1, 29.9, and 19.7%. For just the
true detections, the root mean squared error (RMSE) found
was 6.59 pixels.
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FIGURE 10 | Neural Network classification. Neural network confusion matrices (Matlab confusion matrix plot model), \head" is 1 and \non-head" is 0. True
classifications are denoted by green squares (a,e) and false classifications are denoted by red squares (b,d). Blue squares indicate the overall rates (correctness and
error rate) of classifications (I). Gray squares (c,f,g,h) show the conditional rates (correctness and error rate) given a pre-determined target (3rd row, g,h) or given a
pre-determined output (3rd column, c,f). The performance was evaluated in Game 1 for each subset.

Player Localization Evaluation
Error computation of player localization by optimization were
accounted for only the players present in at least two cameras
visualization inside of interest area (2,941 samples). The RMSE
of 0.16 m in plane court (axis X and Y), and RMSE of 0.18 m in
space court reference (axis X, Y, and Z). For the remaining (917

samples) point issues that were not assigned (not localized by
optimization), the errors are shown an RMSE of 0.30 m in plane
court (axis X and Y) and 0.33 m in space court (axis X, Y, and Z).
The processing time required to assign the players’ locations by
combinatorial optimization grows exponentially according to the
number of player heads detected. The computation time required

TABLE 3 | Some works in the literature on player detection in team sports.

References Sport 3D localization Method Localization error (2D)

Morais et al. (2014) Futsal No AdaBoost detection + particle filter ˜0.6 m

Needham and Boyle (2001) Futsal No Background segmentation (BS) ˜1.16 m

Pers et al. (2001) Handball No Background segmentation + template matching ˜0.32 m

Barros et al. (2011) Handball No AdaBoost detection + graph –

Alahi et al. (2009) Basketball No Planar homography –

Delannay et al. (2009) Basketball No Mean-shift segmentation –

Figueroa et al. (2006a) Soccer No Background segmentation –

Ours Basketball Yes BS + neural network + combinatorial optimization ˜0.16 m

Note that not all works report a value for the player position error.
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FIGURE 11 | Classification in another game. Reproducibility of the
classification by the neural network using images from an independent game.

FIGURE 12 | Processing time. Processing time (s) to solve the 3D localization
of one player based on the number of total points detected in the camera
images.

was computed for the preliminary Matlab code (not parallelized)
and is depicted in Figure 12. This is the time required to measure
the 3D localization of just one player, however, the localization
of the next player in the optimization problem requires at least
two fewer points.

DISCUSSION

The framework presented in the previous section and its
performance are discussed in this section in more detail.
The steps of player detection and localization are inherent
to video-based tracking methods and play an important role
in tracking. Therefore, we will discuss how tracking methods

reported both in the literature and our proposal address player
detection and localization and how other methods determine
the players’ positions compared with our approach. Systems
for data acquisition in sports must be feasible and reliable;
therefore, a complete and automatic solution to measuring the
players’ positions on the basketball court cannot be achieved
using the knowledge from only a single research field. Thus, it was
necessary to integrate tools from different fields for our approach
to successfully localize the players. Searching for high-interest
objects in player tracking works by integrating methods from
several fields. We observed that such integrations corroborate
the choice of going beyond the frontiers of knowledge in any
one field. Some integration examples in the literature include
image processing mixed with graph representations (Figueroa
et al., 2006b), AdaBoost detection mixed with a particle filter
(Lu et al., 2009; Morais et al., 2014), AdaBoost detection mixed
with graph representations (Barros et al., 2011), and image
processing mixed with clustering (Chen et al., 2012). Mixing
together techniques from image processing, machine learning,
computer vision and optimization was vital for the localization
of multiple basketball players on a court. Even after the technical
procedures were in place, we still faced innumerable difficult tasks
in basketball player localization such as our chosen approach to
seek head patterns with a Circle Hough transform, or adopting
neural network classification to reject non-head points – or even
using optimization to select the best assignments. State-of-the-art
video-based methods for detection and player tracking in team
sports take 2D positions into account, however, in the context of
basketball analysis, kinematic variables that consider the vertical
component of player position are essential because many sort of
measurements that could be get from 3D positional data, such as
specific efforts made at jump actions, fatigue index by detecting
jump’s height variation during game, height of ball during passes,
balls trajectory, rebounds height efficiency reached by players
and vertical components of shots in different game contexts (free
throws at specific moments of the match, differences of 2-point
and 3-point shots, difference performance at open shots and tight
shots, etc.). All these information could be useful for a more
accurately diagnostics by coach’s staff in order to improve specific
trainings and get a better performance from players in court.
Therefore, our principal contribution lies in considering the 3D
position of a given player reference point. Instead of using the
bottom center of a player’s bounding box or silhouette, which
attempts to represent the position of a player’s feet, we chose
the player’s head as the reference point, and that decision plays
a key role in our framework. There were two reasons behind this
choice. First the goal was to perform a 3D reconstruction using a
point that lies in court space (Z 6 = 0) and second, the solution
needed to address the frequent player occlusions. Given these
goals, analyzing the player’s head position was more stable and
more robust to occlusions and other effects from illumination
across the court. Our proposed framework comprises two main
parts: (i) the detection of the players’ heads from the camera
images and, (ii) the 3D reconstruction of the players’ positions.
Starting with the first part, detection, we will present the levels of
performance accuracy found in the literature. Then, the second
part investigates the accuracy of these methods in estimating
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the players’ positions. The player detection rate of our proposed
framework was ˜71%. In other works that concentrated on indoor
team sports, we found the following detection rates: 74% in a
study of handball when applied to a game other than the training
game (Barros et al., 2011), 70.5% in a basketball study (Delannay
et al., 2009). Still focusing on basketball, the performance
reported by a detection approach that used a mixed network of
planar and omnidirectional cameras achieved a recall of 0.76 and
a precision of 0.72 (Alahi et al., 2009). Works on outdoor team
sports have also evaluated player detection rates. Experimental
results from a soccer study reported 81.50 and 78.03% detection
rates by two player detection methods based on a neural network
and on Viola and Jones’ AdaBoost, respectively (Lehuger et al.,
2007). A method for automatically tracking soccer players can
locate players in 94% of video frames (Barros et al., 2007). These
studies, which focused on automatic detection and tracking of
outdoor team sports, used several approaches that have also been
studied for indoor applications – although, for indoor sports, the
camera setup (quantity, resolution, view point) and the problems
faced are slightly different and include the number of players
to be detected, interference from environmental features, and
the spatial organization of players. Thus, outdoor studies do
not allow a direct comparison with our results in detecting
basketball players indoors. The median error of nearly 10 pixels
in determining the players’ head positions 318 seems to be
appropriate because we used images with a resolution of 1,038
× 776 pixels. An average RMS error value of ˜3.4 pixels was
found in a work targeted toward indoor sports applications
(handball and basketball) using images with a resolution of 348
× 288 pixels obtained from gym ceiling cameras (Kristan et al.,
2009). The average error in determining the position of hockey
players’ foot positions from images was 20% of the width of
the ground-truth box, however, this work did not present the
error in terms of pixels (Lu et al., 2009). Proceeding with the
discussion of the accuracy in determining a player’s position
on court, even with a limited number of cameras (three in
this study), it was possible to use the proposed framework to
detect and localize multiple basketball players in 3D space. The
median 3D error of 0.25 m was suitable considering the players
were being localized on one-half of the full basketball court (14
× 15 m). Moreover, changes in the values of the parameters
for optimization constraints and adding additional cameras can
decrease the errors. To understand the error results through
comparisons with other studies, the average cumulative error of
0.60 m in a 2D trajectory approach presented by Morais et al.
(2014) used multiple-camera methodology developed for Futsal
(on a playing surface of 20 × 40 m) with the errors attenuated
by Fusion AdaBoost (Viola and Jones, 2001), detection from four
camera images, and player appearance models. A mean error
value of 0.20 m, which is associated with the uncertainties of the
position of points on the visible court and not to player position
error, was reported for a handball tracking study (Barros et al.,
2011). Experiments showed an RMS error in player position of
0.28 m near the optical axis and 0.36 m for the court boundary
when tracking handball players using ceiling cameras (Pers et al.,
2001). An automatic tracking soccer study reported a spatial
resolution of 0.3 m (Barros et al., 2007). A study focused on
automatically tracking the positions of indoor 5-a-side football

players (on a playing surface of 18 × 32 m) achieved an RMS
of 1.16 m and a modal value below 40 cm compared with
manual tracking (Needham and Boyle, 2001). In our approach,
we attack the problem of localizing multiple basketball players
using a video-based framework. Yet another alternative for
tracking player position is to use a global positioning system
(GPS), however, at present, the errors from GPS measurements
are too large even outdoors (Gray et al., 2010), and indoor use
is impracticable. To provide an example of GPS accuracy, ˜50%
of the GPS coordinates were within 2.5 m in a static position
test (Mohamad et al., 2009). However, GPS systems often do not
work at all in basketball gyms. In addition, the rules of many
sports do not allow the players to use GPS devices. Because no
temporal information was used in our proposed framework, the
results could be improved by using the players’ trajectories to
help predict their current positions, filtering the player trajectory
data to discard outlier positions. Although linking temporal
information to player detection was not the goal of this study,
it is an aspect that could be investigated in future studies.

CONCLUSION

A video-based framework for automatic 3D localization of
multiple basketball players was described in the context of
official games. Player detection was based on image processing
techniques and – considering the complexity of basketball
games – the classification problem presented satisfactory results.
The classification procedure was essential to properly reject head
candidate points (for example, to reject other body parts such
as a raised arm).

A combinatorial optimization problem was solved with a
greedy heuristic and provided satisfactory results in accurately
determining both the number of players in a scene and their
positions. Knowing the player’s positions in 3D relative to
the court is crucial for basketball performance analysis due to
the nature of the sport. This work helps to further systems
development aiming to acquire 3D player position data during
competitions, and the application can be extended to other
indoor team sports in which a vertical component is relevant.

DATA AVAILABILITY STATEMENT

All the datasets generated and analyzed for this study are included
in the article/Supplementary Material.

ETHICS STATEMENT

Ethical review and approval was not required for the study on
human participants in accordance with the local legislation and
institutional requirements. The patients/participants provided
their written informed consent to participate in this study.
Written informed consent was obtained from the individual(s)
for the publication of any potentially identifiable images or data
included in this article.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 April 2020 | Volume 8 | Article 286215

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00286 April 28, 2020 Time: 17:31 # 12

Monezi et al. Multiple Basketball Players 3D Localization

AUTHOR CONTRIBUTIONS

LMo, LD, and MM: writing-original draft preparation. LMo,
LD, MM, AJ, and LMe: investigation, data analysis, and
conceptualization. LMo, LD, MM, and LMe: funding acquisition.

FUNDING

This work was supported by CAPES funding agency (Protocol
No. 01P-04384-2015).

ACKNOWLEDGMENTS

We would like to thank the CAPES, FAEPEX, FAPESP, and CNPq
for funding their research. This paper has content from master
degree’s dissertation previously published (Monezi, 2016) and
available online.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbioe.
2020.00286/full#supplementary-material

VIDEO S1 | Player detection process. Candidate points obtained through some
image processing including a background segmentation approach to be
classificated into head or non-head.

VIDEO S2 | First round of optimization. Test of all possible combinations
for first player localization with the best feseable solution. Head points detected
depicted as red asterisk, points assign to the player showed as green circles,
camera reprojection of 3D reconstructed player in the current combination tested
marked as yellow plus sign, and, court plane representation with 3D player
position reconstructed for tested solution depicted as green
plus sign.

VIDEO S3 | Second round of optimization. Test for all combinations for localization
of the second player remember that head point assigned to the first player are
excluded for current cominations. Head points detected depicted as red asterisk,
points assign to the player showed as green circles, camera reprojection of 3D
reconstructed player in the current combination tested marked as yellow plus
sign, and, court plane representation with 3D player position reconstructed for
tested solution depicted as green plus sign.

VIDEO S4 | Third round of optimization. Test for all combinations for localization of
the second player remember that head point assigned to the first player are
excluded for current cominations. Head points detected depicted as red asterisk,
points assign to the player showed as green circles, camera reprojection of 3D
reconstructed player in the current combination tested marked as yellow plus
sign, and, court plane representation with 3D player position reconstructed for
tested solution depicted as green plus sign.

VIDEO S5 | Player Localization in game. A sequence example of player
localization. The player localized in 3D court spacare reprojected in each camera
keeping the same color circles for the same player.
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This study determined whether the kinematics of lower limb trajectories during walking
could be extrapolated using long short-term memory (LSTM) neural networks. It was
hypothesised that LSTM auto encoders could reliably forecast multiple time-step
trajectories of the lower limb kinematics, specifically linear acceleration (LA) and angular
velocity (AV). Using 3D motion capture, lower limb position–time coordinates were
sampled (100 Hz) from six male participants (age 22 ± 2 years, height 1.77 ± 0.02 m,
body mass 82 ± 4 kg) who walked for 10 min at 5 km/h on a 0% gradient motor-
driven treadmill. These data were fed into an LSTM model with a sliding window of four
kinematic variables with 25 samples or time steps: LA and AV for thigh and shank. The
LSTM was tested to forecast five samples (i.e., time steps) of the four kinematic input
variables. To attain generalisation, the model was trained on a dataset of 2,665 strides
from five participants and evaluated on a test set of 1 stride from a sixth participant. The
LSTM model learned the lower limb kinematic trajectories using the training samples
and tested for generalisation across participants. The forecasting horizon suggested
higher model reliability in predicting earlier future trajectories. The mean absolute error
(MAE) was evaluated on each variable across the single tested stride, and for the five-
sample forecast, it obtained 0.047 m/s2 thigh LA, 0.047 m/s2 shank LA, 0.028 deg/s
thigh AV and 0.024 deg/s shank AV. All predicted trajectories were highly correlated
with the measured trajectories, with correlation coefficients greater than 0.98. The
motion prediction model may have a wide range of applications, such as mitigating the
risk of falls or balance loss and improving the human–machine interface for wearable
assistive devices.

Keywords: LSTM, neural networks, machine learning, forecasting, gait, walking

INTRODUCTION

An increasingly useful application of machine learning (ML) is in predicting features of human
actions. If it can be shown that algorithm inputs related to actual movement mechanics can predict
a limb or limb segment’s future trajectory, a range of apparently intractable problems in movement
science could be solved. One such problem is how to anticipate movement characteristics that can
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predict the risk of tripping, slipping or balance loss. Previous
work has investigated balance control using wearable sensors to
estimate the body’s centre of mass (CoM) trajectory (Fuschillo
et al., 2012). The Internet of things (IoT) has also created
a new paradigm of algorithms and systems to predict and
subsequently apply interventions to prevent falls (Rubenstein,
2006; Tao and Yun, 2017; Nait Aicha et al., 2018). Perhaps the
most valuable motion-prediction application is in the design and
control of wearable assistive devices, such as prostheses, bionics
and exoskeletons, in which smart algorithms can ensure safer,
more efficient integration of the assistive device with the user’s
natural limb and body motion (Lee et al., 2017; Rupal et al., 2017).

Previous computational methods have investigated motion
trajectory prediction, using position-time inputs and their
derivatives (velocity and acceleration). Lower limb trajectory
prediction has been implemented in rehabilitation robotics
(Duschau-Wicke et al., 2009). Using inverse dynamics, Wang
et al. (2011) designed a model for foot trajectory generation using
a predefined pelvic trajectory and line fitting 10 data points from
a single gait cycle. Also using inverse dynamics, Ren et al. (2007)
predicted all segment motions and ground reaction forces from
the average forward velocity gait, double stance duration and gait
cycle period. Another technique was implemented in the Lower
Extremity Powered Exoskeleton (LOPES) device to emulate the
trajectories from a healthy limb to the impaired limb (Vallery
et al., 2008). Prediction of the lower limb joint angles future
trajectory that effectively leads to foot events timing was also
investigated in the works of Aertbeliën and De Schutter (2014)
and Tanghe et al. (2019) using probabilistic principal component
analysis (PPCA).

Recent methods implemented ML algorithms such as artificial
neural networks (ANNs) to identify subject gait trajectories
to recognise neurological as well as pathological gait patterns
(Alaqtash et al., 2011; Horst et al., 2019). Artificial neural
networks were also used to improve user intention detection in
wearable assistive devices (Jung et al., 2015; Islam and Hsiao-
Wecksler, 2016; Moon et al., 2019; Trigili et al., 2019). A variation
of ANNs called generalised regression neural networks (GRNNs)
was found to be capable of predicting lower limb joint angles (hip,
knee and ankle) from the linear acceleration (LA) and angular
velocity (AV) of foot and shank segments (Findlow et al., 2008),
or from subject gait and anthropomorphic parameters (Luu et al.,
2014). Recurrent neural networks (RNNs) and convolutional
neural networks (CNNs), which are classes of ANNs, were able
to classify human motions and activities (Murad and Pyun, 2017;
Han et al., 2019).

Long short-term memory (LSTM) neural networks are a
subclass of RNNs, and they have proven success in modelling
a wide range of sequence problems, including human activity
recognition (Ordóñez and Roggen, 2016), gait diagnosis (Zhao
et al., 2018), falls prediction (Nait Aicha et al., 2018) and
gait event detection (Kidziński et al., 2019). Long short-term
memory autoencoder is an architecture of LSTM that has been
implemented in an array of applications such as language
translation (Ding et al., 2018) and in forecasting of video frames
(Srivastava et al., 2015), weather (Gangopadhyay et al., 2018;
Reddy et al., 2018; Poornima and Pushpalatha, 2019), traffic

flow (Park et al., 2018; Wei et al., 2019) and stock prices
(Li et al., 2018).

Given the potential of lower limb trajectory prediction,
no previous work was found that utilised ML techniques to
predict future lower limb trajectories using simulated inertial
measurement data, which could have a profound impact on
human movement science. Simulated measurement data such
as the kinematics output from inertial measurement units
(IMUs; i.e., LA and AV) offer the opportunity to transcend a
predictive model outside the laboratory settings. The aim of this
work was to determine whether the kinematics of lower limb
trajectories during walking could be reliably extrapolated using
LSTM autoencoder neural networks. It was hypothesised that
an LSTM autoencoder could reliably forecast multiple time-step
trajectories of the lower limb kinematics.

MATERIALS AND METHODS

Collection Protocol
Ethics approval was granted by the Department of Defence
and Veterans’ Affairs Human Research Ethics Committee
and Victoria University Human Research Ethics Committee
(Protocol 852-17). All participants signed a consent form and
volunteered freely to participate. Walking data were obtained
from six male participants (22 ± 2 years old, 1.77 ± 0.02 m in
height, 82 ± 4 kg in mass) who walked for 10 min at 5 km/h on
a 0% gradient treadmill. A set of 25 retroreflective markers were
attached to each participant in the form of clusters (Findlow et al.,
2008). Each cluster comprised a group of individual markers that
represent a single body segment (e.g., shank). That included left
and right foot (three markers), left shank (four markers), right
shank (five markers), left thigh (three markers), right thigh (four
markers) and pelvis (three markers). The 3D position of each
cluster was tracked using a 14-camera motion analysis system
(Vicon Bonita, Version 2.8.2) at 150 Hz. Virtual markers were
also established to calibrate the position and orientation of the
lower body skeletal system (Garofolini, 2019). Three-dimensional
ground reaction force and moment data were collected from
a force-plate instrumented treadmill (Advanced Mechanical
Technology, Inc., Watertown, MA, United States) at 1,500 Hz.

Dataset Processing
Recorded 3D positional and force data were processed using
Visual 3D (C-motion, Inc, Version 6) to obtain LA and AV. In
Visual 3D (Figure 1), the data were firstly filtered using a low-
pass digital filter with a 15-Hz cut-off frequency and normalised
to mean 0 and standard deviation 1 using standard scores (z-
scores), preserving the original data properties. Secondly, raw
AV was obtained as the derivative of Euler/Cardan angles (C-
motion, 2015), and the raw LA was generated by the double
derivative of segment linear displacement using built-in pipeline
commands (Hibbeler, 2007). These data (LA and AV) simulated
the kinematic outputs from body-mounted IMUs widely used
in wearable assistive devices, monitoring lower limb kinematics
(Santhiranayagam et al., 2011; Lai et al., 2012), controlling
powered actuators (Lee et al., 2017) and recognising human
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FIGURE 1 | Components (x,y,z) definition and markers setup. Grey balls are
retroreflective markers. Turquoise balls are virtual markers.

actions (Van Laerhoven and Cakmakci, 2000; Jimenez-Fabian
and Verlinden, 2012; Koller et al., 2016).

As shown in Figure 1, the main direction of movements
included the translation along the Y-axis (i.e., LA) and the
rotation along the X-axis (i.e., AV), which were used for LSTM
prediction, resulting in four predictor variables: (i) Y1 thigh LA,
(ii) Y2 shank LA, (iii) X3 thigh AV and (iv) X4 shank AV. The
thigh segment was defined as the reference frame to the shank,
and the shank segment was defined as the reference frame to the
thigh (Figure 2).

Dataset Description
The data were divided into training and testing sets. The training
set comprised 2,665 strides from five participants that included
four kinematic feature variables (Y1, Y2, X3, X4) (N-columns)
and 453,060 samples or time steps (M-rows) for each variable.
To attain generalisation, a testing set was used that comprised
of a single stride from the sixth participant with the four feature
variables and 170 samples for each variable.

Time Series Transformation to a
Supervised Learning Problem
The inputs to the LSTM were four parallel feature variables and
the outputs were the successive four parallel feature variables.
Prior to feeding into the LSTM model, the MxN training and
testing datasets were transformed to a 3D dataset using a sliding
window technique (Banos et al., 2014). The sliding window
comprised of an input window, an output window and a sliding
size. The input window consists of M samples and N features,
so as the output window. The input window is the input data to
the LSTM model, and the output window is the future prediction
output from the LSTM model. The sliding size is how much of M
samples that both the input and the output windows are sliding
forward with (see Figure 3). The sliding size (M samples) was
always equal to the output size.

Recurrent Neural Networks
While multiple layer perceptrons (MLPs) consider all inputs
as independent, RNNs are designed to work with time series
data (Ordóñez and Roggen, 2016). RNNs are a class of ANN
architecture designed specifically to model sequence problems
and exploit the temporal correlations between input data samples
(Elman, 1990; Murad and Pyun, 2017). It contains feedback
connections between each of its units, which enables the network
to relate all the previous inputs to its outputs (Figure 4).

The forward pass equations from the inputs to the outputs of
the RNN are given as follows.

For the hidden units:

at
h =

I∑
i=1

wihxt
i +

H∑
h′=1

wh′hbt−1
h′ (1)

and differentiable activation functions are then applied:

bt
h = θh(at

h) (2)

The network input to output units:

at
k =

H∑
h=1

whkbt
h (3)

where
at

h is the sum of inputs to unit h at time t, bt
h is the activation of

unit h at time t, θh is the non-linear and differentiable activation
function of unit h, at

k is the sum of all inputs to output unit k at
time t, xt

i is the input i at time t, wih is the connection weights
between input unit i and hidden unit h, wh′h is the connection
weights between the previous hidden state h′ and itself h and
whk is the connection weights between the hidden state h and the
output unit k. Bias was neglected for simplicity.

LSTM Networks
As the input data propagates through the standard RNN’s hidden
connections to the output units, it either slowly attenuates or
amplifies exponentially, referred to, respectively, as vanishing or
exploding gradients (Bengio et al., 1994; Hochreiter et al., 2001).
The problems with this approach are that the vanishing gradient
prevents the network from learning long-term dependencies
and the exploding gradient leads to weights oscillation. These
difficulties have been addressed using gradient norm clipping
to tackle the exploding gradient and a soft constraint to deal
with the vanishing gradient (Pascanu et al., 2013). The LSTM
design addresses these problems by maintaining a memory cell C
(Figure 5) that enables the network to retain information over a
longer period by using an explicit gating mechanism (Hochreiter
and Schmidhuber, 1997; Graves, 2012; Karpathy et al., 2015).

Each LSTM cell has an input gate, forget gate, and output
gate. The input gate dictates the information used to update the
memory state, and the forget gate decides which information
to discard or remove from the cell. The final gate specifies the
information to output based on the cell input and memory.
All gates are designed such that information is exchanged from
inside and outside the block (Figure 5). Furthermore, each
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FIGURE 2 | Average thigh and shank LA and AV within a stride. A stride was defined as the interval between two successive heel strikes of the same foot (De Lisa,
1998). (A) Thigh three-dimensional AV (direction of the rotation around the X-axis). (B) Shank three-dimensional AV (direction of the rotation around the X-axis).
(C) Thigh three-dimensional LA (direction of the progression along the Y-axis). (D) Shank three-dimensional LA (direction of the progression along the Y-axis). Red is
the X-axis. Green is the Y-axis. Blue is the Z-axis.

memory block contains three peephole-weighted connections
(dotted lines in Figure 5), which are the input weight wcι, the
output weight wcω and the memory state wcφ. The functions f ,
g and h are usually tanh or logistic sigmoid activation functions
(Graves, 2012). Below are the network equations (Graves, 2012)
that govern the LSTM architecture used:

Input gates:

at
ι =

I∑
i=1

wiιxt
i +

H∑
h=1

whιbt−1
h +

C∑
c=1

wcιst−1
c (4)

bt
ι = f (at

ι) (5)

Forget gates:

at
φ =

I∑
i=1

wiφxt
i +

H∑
h=1

whφbt−1
h +

C∑
c=1

wcφst−1
c (6)

bt
φ = f (at

φ) (7)

Cells:

at
c =

I∑
i=1

wicxt
i +

H∑
h=1

whcbt−1
h (8)

st
c = bt

φst−1
c + bt

ιg(at
c) (9)

Output gates:

at
c =

I∑
i=1

wiwxt
i +

H∑
h=1

whwbt−1
h +

C∑
c=1

wcwst
c (10)

bt
w = f (at

w) (11)

Cell outputs:
bt

c = bt
wh(st

c) (12)

where wij is the weight of the connection from unit i to unit j;
at

j is the network input to unit j at time t; bt
j is the activation of

unit j at time t; ι, φ, ω respectively stand for the input gate, the
forget gate and the output gate; C is the memory cell; wcι, wcφ,
wcω are peephole weights; st

c is the state of cell C at time t; f is the
input, output and forget gates activation function; g and h are the
cell input and output activations, respectively; I is the number of
inputs; H is the number of cells in the hidden layer; and index h
is the cell outputs from other blocks in the hidden layer. Bias was
neglected for simplicity.

Design of the LSTM Model
The implemented model was based on the autoencoder
LSTM, a neural network architecture composed of an encoder
and a decoder (Ding et al., 2018). The encoder encodes
the input variable length vector into a fixed length feature
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FIGURE 3 | Sliding window illustration example using the normalised shank angular velocity X-axis component (one feature). The window in this model is 25
samples and four features and the prediction outputs are five samples of four features.

FIGURE 4 | Unfolded structure of the Recurrent Neural Network.
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vector that captures the attributes of the variable length
vector. The LSTM decoder decodes the encoded fixed length
feature vector back into a variable length vector (Figure 6).
The final layer is a fully connected dense (feedforward)
mechanism for outputting predictions. The network weights
and biases were updated at the end of each batch using an
adaptive moment estimation (Adam) optimisation algorithm
(Kingma and Ba, 2014) with mean absolute error (MAE)
as an optimisation criterion. A single batch consists of 100
input/output windows. The activation for all LSTM layers was
set to a rectified rectilinear unit (ReLU) activation function
(Nair and Hinton, 2010). The LSTM autoencoder model was
implemented in Google Colab as well as Amazon Web Services
(AWS) using Python 3 (Libraries: Keras, Numpy, Pandas
and Scikit learn).

Evaluation Metrics
To evaluate the network quality, three parameters were
considered to calculate how closely the network predicted
variable trajectories ŷj (Y1, Y2, X3, X4) were to the actual variable
trajectories yj (Y1, Y2, X3, X4) across the n samples:

1. MAE given as:

MAE =
1
n

n∑
j=1

∣∣yj − ŷj
∣∣ (13)

2. Mean squared error (MSE) given as:

MSE =
1
n

n∑
j=1

(
yj − ŷj

)2 (14)

FIGURE 5 | Standard LSTM memory cell with peephole connections.

FIGURE 6 | Structure of the implemented encoder–decoder LSTM architecture given one input window. The adapter converts the 2D encoded features into 3D
output to be adopted by LSTM. The last layer is a fully connected dense layer for outputting one window prediction.
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3. Correlation coefficient (CC) given as:

P =
cov(y, ŷ)

std
(
y
)
× std(ŷ)

(15)

where std() is the standard deviation and cov(y, ŷ) is the
covariance between variables y and ŷ.

RESULTS

Using the sparse grid search approach, the model’s
hyperparameters were tuned to determine the optimum
model design (least MAE), including the number of epochs,
batch size, layers and cells. The optimum model was then trained
for 50 epochs (repetitions), and performance evaluated on the
test set using MAE, MSE and the CC. The test set was a single
stride that consisted of 170 samples. Initial 25 samples were
used from the preceding cycle in order to start predicting the
trajectories of the single stride.

Model Performance With Different Input
Window Sizes
The size of the input window was varied eight times at five
sample intervals (5–40 samples) to demonstrate the optimum
input window size (least error). The output sliding window was
fixed to five samples prediction. The model performance is shown
in Figure 7 where the impact of each input window size on the
prediction of each variable is computed.

Model Performance With Five Samples
Prediction
This sliding window comprised of 25 samples input and 5
samples prediction output. Results were given in two analyses: (i)
predicted versus actual trajectories including the absolute error
(AE) for each sample in the first output window (Figure 8)
and for the whole gait cycle (Figure 9) and (ii) performance
metrics (MAE, MSE and CC) for the first window of five samples
(Table 1) and for all windows combined (Table 2).

Model Performance With 10 Samples
Prediction
This sliding window comprised of 25 samples input, 10 samples
prediction output. Figure 10 illustrates the results as predicted
versus the actual trajectories including the AE for each sample in
the first output window, whereas Figure 11 displays the results
for the whole gait cycle. Performance metrics (MAE, MSE and
CC) for the first window of 10 samples are presented in Table 3
and for all windows combined in Table 4.

DISCUSSION

Our aim was to develop and evaluate an LSTM autoencoder
model to predict the trajectories of four kinematic variables (Y1,
Y2, X3, X4), simulating the output from wearable sensors (IMU).
The predicted kinematic feature variables, LA and AV, for the
shank and thigh were reliably predicted up to 10 samples or

FIGURE 7 | Model performance with different input window sizes. Red is MAE. Blue is MSE. (A) Thigh LA (Y1). (B) Shank LA (Y2). (C) Thigh AV (X3). (D) Shank AV
(X4).
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FIGURE 8 | Model performance for the first window, showing predicted trajectories (green) and actual trajectories (red). Columns represent the absolute error (AE)
for the five predicted samples. (A) Thigh LA Y1. (B) Shank LA Y2. (C) Thigh AV X3. (D) Shank AV X4

FIGURE 9 | Model performance over the entire gait cycle when five samples prediction window is used. The figure shows predicted trajectories (orange) and actual
trajectories (blue). (A) Thigh LA Y1. (B) Shank LA Y2. (C) Thigh AV X3. (D) Shank AV X4.
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TABLE 1 | Model performance for predicting the first five stride samples.

Feature MAE MSE CC

Y1 0.125 m/s2 0.019 m/s2 0.99

Y2 0.133 m/s2 0.022 m/s2 0.99

X3 0.032 deg/s 0.001 deg/s 0.98

X4 0.033 deg/s 0.001 deg/s 0.99

TABLE 2 | Model performance for predicting the complete stride using an input
window size of 25 samples and an output window size of 5 samples.

Feature MAE MSE CC

Y1 0.047 m/s2 0.006 m/s2 0.99

Y2 0.047 m/s2 0.006 m/s2 0.99

X3 0.028 deg/s 0.001 deg/s 0.99

X4 0.024 deg/s 0.001deg/s 0.99

time steps, i.e., up to 60 ms in the future. A 60-ms prediction
of future trajectories adds a feedforward term to an assistive
device controller rather than being reactive and predominantly
relying on feedback terms (i.e., sensory information; Tanghe
et al., 2019). This enables the assistive device to adapt to changes
in human gait, allowing smoother synchronisation with user
intentions and minimising interruptions when the user changes
their movement pattern (Elliott et al., 2014; Zhang et al., 2017;
Ding et al., 2018; Zaroug et al., 2019). A known future trajectory
might also monitor the risk of balance loss, tripping and falling,
in which impending incidents can be remotely reported for early
intervention (Begg and Kamruzzaman, 2006; Begg et al., 2007;

Nait Aicha et al., 2018; Hemmatpour et al., 2019; Naghavi et al.,
2019). Since 60 ms falls in the range of slow (60–120 ms) and fast
(10–50 ms) twitch motor units (Winter, 2009), this would enable
wearable devices such as IMUs to alert (e.g., by audio/visual
signal) an elderly user about an imminent risk of tripping and
potentially gives them a chance to adjust their gait accordingly.

In contrast to the 1- to 2-s window for human activity
recognition proposed by Banos et al. (2014), no window has
previously been suggested for forecasting human movement
trajectories (Banos et al., 2014). In addressing this limitation, the
present project input and output sliding windows were tested
to discover the optimum prediction model. The input window
was varied from 5 to 40 samples, whereas the output window
was fixed at 5 samples during each test. Results showed that
both MAE and MSE increased after 25 samples for all variables
except for the thigh LA Y1 in which 15 samples scored lowest.
Due to the majority score, 25 samples were fixed, and the output
window size manipulated between 5 and 10 samples. Prediction
error MAE and MSE gradually increased across the first 5 and 10
sample prediction windows, indicating better prediction early in
the stride cycle. This prediction horizon suggests that an output
window exceeding five samples may not be sufficiently reliable
for forecasting gait trajectories. LA-predicted trajectories began
to deviate earlier than AV, possibly due to the double derivative
generating a noisier signal.

Across the stride cycle, an output window of 5 samples showed
better model performance (lower MAE scores) than the 10-
sample output window, particularly when there is less noise in
the predicted signal for all variables. Predictions of five samples

FIGURE 10 | Model performance for the first window, showing predicted trajectories (green) and actual trajectories (red). Columns represent the AE for the 10
predicted samples. (A) Thigh LA Y1. (B) Shank LA Y2. (C) Thigh AV X3. (D) Shank AV X4.
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FIGURE 11 | Model performance over the entire gait cycle when 10 samples prediction window is used. The figure shows predicted trajectories (orange) and actual
trajectories (blue). (A) Thigh LA Y1. (B) Shank LA Y2. (C) Thigh AV X3. (D) Shank AV X4.

for all variables achieved high CC (0.99) and maintained below
MAE 0.048 deg/s and 0.029 m/s2. These result parameters are
different from those of earlier work (Findlow et al., 2008; Luu
et al., 2014). The difference is in the type of predicted data (lower
limb joint angles of the hips, knees and ankles) and in the type
of output, which was not a forecast, but rather a prediction of
joint angles from the LA and AV of the lower limb segments.
Nonetheless, the work presented in this paper showed higher CC
values than the earlier works (Findlow et al., 2008; Luu et al.,
2014) at the intersubject test. Overall, the LSTM model was able

TABLE 3 | Model performance for predicting the first 10 stride samples.

Feature MAE MSE CC

Y1 0.839 m/s2 1.206 m/s2 0.52

Y2 0.596 m/s2 0.667 m/s2 0.75

X3 0.176 deg/s 0.042 deg/s 0.94

X4 0.122 deg/s 0.019 deg/s 0.96

TABLE 4 | Model performance for predicting the complete stride using an input
window size of 25 samples and an output window size of 10 samples.

Feature MAE MSE CC

Y1 0.170 m/s2 0.096 m/s2 0.96

Y2 0.202 m/s2 0.096 m/s2 0.96

X3 0.079 deg/s 0.015 deg/s 0.98

X4 0.086 deg/s 0.014 deg/s 0.98

to learn the trajectories and generalise across participants. This
generalisation is invaluable to adapt algorithm performance to a
wider population in assistive devices, particularly when each user
responds differently to the same device (Zhang et al., 2017).

This study was limited to the walking movement with a 60-ms
prediction horizon and healthy participants walking at 5 km/h.
The speed was imposed to report the feasibility of whether
lower limb future trajectories are predictable. In future work,
the model would be developed to accommodate a higher gait
variance from more participants and other populations, such as
female, older adults and individuals with gait disorders walking
at their preferred as well as slower and faster speeds (Winter,
1991). More participants (i.e., stride examples) would potentially
improve the model performance to predict trajectories above
60 ms and also provide a more comprehensive validation set,
a strategy to find the optimum number of epochs and avoid
model overfitting (Graves, 2013). The LSTM autoencoder can
be made flexible by automating the input/output window size
depending on the detected human activity, which revamps the
LSTM capacity to recognise a wider range of human action
transitions, such as slow to fast walking. Although LSTM
autoencoders described here were able to learn and predict
future data points, further research is needed to explore other
LSTM architectures, such as bi-directional LSTM (Graves and
Schmidhuber, 2005). Bi-directional LSTM can be useful in
forward and backward modelling of sequential data, giving
further insights into sequential pattern modelling (Liu and Guo,
2019; Zhang et al., 2019).
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CONCLUSION

This study confirmed the possibility of predicting the future
trajectories of human lower limb kinematics during steady-state
walking, i.e., thigh AV, shank AV, thigh LA and shank LA. An
input window of 25 samples and an output window of 5 samples
were found to be the optimum sliding window sizes for future
trajectories prediction in LSTM. The LSTM model prediction
horizon was better able to forecast the earlier sample trajectories
and was also able to learn trajectories across different participants.
Further work is required to systematically investigate the effects
of tuning the model’s hyperparameters, including layers and
cells, optimisation algorithms and learning rate. Future work
could focus on automating input/output window size and using
predicted kinematics to identify discrete gait cycle events such
as heel strike and toe-off (Kidziński et al., 2019). Long short-
term memory methods for human movement prediction have
applications to balance loss, falls prevention and controlling of
assistive devices.
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Monitoring Dangerous Situations in
Ambient-Assisted Living
Bruna Maria Vittoria Guerra, Stefano Ramat* , Giorgio Beltrami and Micaela Schmid

Laboratory of Bioengineering, Department of Electrical, Computer and Biomedical Engineering, University of Pavia,
Pavia, Italy

Continuous monitoring of frail individuals for detecting dangerous situations during their
daily living at home can be a powerful tool toward their inclusion in the society by
allowing living independently while safely. To this goal we developed a pose recognition
system tailored to disabled students living in college dorms and based on skeleton
tracking through four Kinect One devices independently recording the inhabitant with
different viewpoints, while preserving the individual’s privacy. The system is intended
to classify each data frame and provide the classification result to a further decision-
making algorithm, which may trigger an alarm based on the classified pose and the
location of the subject with respect to the furniture in the room. An extensive dataset
was recorded on 12 individuals moving in a mockup room and undertaking four poses to
be recognized: standing, sitting, lying down, and “dangerous sitting.” The latter consists
of the subject slumped in a chair with his/her head lying forward or backward as if
unconscious. Each skeleton frame was labeled and represented using 10 discriminative
features: three skeletal joint vertical coordinates and seven relative and absolute angles
describing articular joint positions and body segment orientation. In order to classify
the pose of the subject in each skeleton frame we built a two hidden layers multi-layer
perceptron neural network with a “SoftMax” output layer, which we trained on the data
from 10 of the 12 subjects (495,728 frames), with the data from the two remaining
subjects representing the test set (106,802 frames). The system achieved very promising
results, with an average accuracy of 83.9% (ranging 82.7 and 94.3% in each of the four
classes). Our work proves the usefulness of human pose recognition based on machine
learning in the field of safety monitoring in assisted living conditions.

Keywords: Ambient-Assisted Living, vision-based activity recognition, skeleton tracking, pose recognition,
machine learning, geometric features

Abbreviations: AAL, Ambient-Assisted Living; ANN, artificial neural network; DL, deep learning; DT, decision tree; HMM,
hidden Markov model; IoT, internet of things; KNN, K-nearest neighbor; LR, logistic regression; ML, machine learning; MLP,
multi-layer perceptron; NBC, Naïve Bayes classifier; RF, random forest; SVM, support vector machine.
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INTRODUCTION

The integration of frail people into society is a major issue in
developed countries for both social and economic motivations.
This inclusion should start with the environment in which these
subjects live, and can be achieved by improving well-being,
autonomy, care, and assistance in the home. Internet of things
(IoT) and modern domotic technologies offer a plethora of
solutions to implement intelligent and automated environments
allowing frail individuals to live in autonomy and safety in place
(Álvarez-García, 2013; Amiribesheli et al., 2015; Lloret et al.,
2015; Debes et al., 2016; Mehr et al., 2016; Majumder et al.,
2017; Guo et al., 2019). In the last years, Ambient-Assisted
Living (AAL) has attracted great attention and numerous projects
have proposed different networks of sensors and complex
monitoring algorithms which most frequently require to shift
from a low-level data collection and analysis toward high-level
information integration, context processing, activity recognition
and inference (Chen et al., 2012; Verrini et al., 2018).

The most commonly used sensors for AAL are wearable and
environmental sensors (Delahoz and Labrador, 2014; Pannurat
et al., 2014; Mehr et al., 2016; Torti et al., 2019). The first category
includes radio frequency identification tags, accelerometers,
gyroscopes, and more generally inertial sensors which can be
embedded in devices such as smartphones and smartwatches. The
main advantages of wearable sensors are to be particularly light
and non-intrusive, yet they have the important drawback of being
dependent on rechargeable batteries and of requiring correct
body positioning to maximize the signal quality and reduce noise.

The second category, environmental sensors, commonly
refers to cameras able to monitor an inhabitant behavior and
environment changes (vision-based activity recognition) (Chen
et al., 2012). Using properly located cameras, the inhabitant can
be recorded while free to perform the normal actions of daily life
without limitations and without having to be in anyway involved,
e.g., having to remember to wear a device or to charge it. The
cameras used for AAL purposes are commonly depth cameras,
such as Asus Xtion (Taipei, Taiwan), Intel RealSense (Santa Clara,
United States), Orbbec Astra (Troy, United States) and Microsoft
Kinect (Redmond, United States) (Ben Hadj Mohamed et al.,
2013; Han et al., 2013; Gasparrini et al., 2014; Mastorakis and
Makris, 2014; Pannurat et al., 2014; Visutarrom et al., 2014, 2015;
Damaševičius et al., 2016; Calin and Coroiu, 2018). Thanks to
many approaches based on RGB sequences, depth images or
their combination, these sensors are able to provide detailed
information about 3D human motion (Wang et al., 2014; Kim
et al., 2017). Moreover, real time algorithms can estimate the
body skeleton, which allows to describe human poses with a
lower dimensionality than RGB/RGB-D-based representations
while being intrinsically anonymous, thereby respecting the
privacy of the subject.

To infer what an individual is doing, and which pose he/she
assumes, the data collected from both wearable sensors and
cameras are commonly processed using data mining, machine
learning (ML), and deep learning (DL) algorithms. Machine
learning focuses on teaching computers how to learn from
experience, without the need to be programed for specific

tasks. This makes ML particularly suitable to analyze data
coming from smart house sensors in order to recognize falls
or to detect a dangerous situation during daily life activities.
Machine learning algorithms such as Naïve Bayes classifiers
(NBC), K-nearest neighbor (KNN), support vector machines
(SVM), hidden Markov models (HMM), and artificial neural
networks (ANN), random forest (RF), decision tree (DT), and
logistic regression (LR) (Begg and Hassan, 2006; Crandall and
Cook, 2010; Hussein et al., 2014; Visutarrom et al., 2014; Wang
et al., 2014; Amiribesheli et al., 2015; Jalal et al., 2015) are
the most popular algorithms used in sensor- and vision-based
activity recognition. K-nearest neighbor is widely used in real-
life scenarios since it is non-parametric, meaning that it does
not make any assumptions about the underlying distribution
of the data. The main disadvantage of this approach is that
the algorithm must compute the distance and sort all the
training data at each prediction, therefore it turns out slow with
large numbers of training examples. A similar weakness affects
the SVM algorithm, which nevertheless is considered relatively
memory efficient. Achieving the best classification results, for
any given problem, requires setting several key parameters that
need to be chosen correctly (Bishop, 2006). Artificial neural
networks, such as multi-layer perceptron (MLP) algorithm, can
be applied to many smart home problems, ranging from activity
classification, to novelty and anomaly recognition, to activity
prediction (Begg and Hassan, 2006; Hussein et al., 2014). Patsadu
et al. (2012) compared four ML algorithms (MLP, SVM, DT,
and NBC) training the models on a dataset of 7200 frames and
testing them on further 3600 frames to identify three different
human poses: standing, sitting, and lying down. The poses were
performed by a subject positioned in front of the camera and
each videoframe was encoded as a row of 20 body-joints positions
that were used as features for ML algorithms. The best classifier
was found to be the MLP network (100% of accuracy vs. 99.75%
of SVM, 93.19% of DT and 81.94% of NBC). Visutarrom et al.
(2014) went deeper into this topic comparing six different ML
classifiers and two different sets of features (geometric vs. skeletal
joints features). Four poses (standing, sitting, sitting on floor,
and lying down) of a subject watching television in front of the
Kinect device were classified. They compared MLP, DT, NBC,
RF, LR, and SVM by training and testing the six models on a
dataset of geometric features and found that DT, RF, and MLP
algorithms performed best (accuracy about 97.9%), followed
by the SVM (accuracy about 97.5%). Altogether various ML
algorithms have been successfully applied to pose recognition,
yet all these approaches suffer from various limitations that do
not prove their usefulness in the context of identifying dangerous
situations in ecological conditions of assisted living. Indeed, all
algorithms were applied to recordings performed by subjects
statically facing the camera, i.e., the ideal conditions for skeleton
tracking systems, which are nonetheless unlikely to occur while
monitored subjects perform their daily living activities at home.
Furthermore, their performance has been tested in recognizing
upright standing or poses typically assumed immediately after a
fall, e.g., lying down or sitting on the floor, yet omitting more
general dangerous situations such as recognizing that a person
has fainted while sitting on a chair.
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In an automated monitoring system for AAL, the accuracy of
event recognition is vital. False negatives are unacceptable as they
would imply the lack of intervention in a dangerous condition.
Recognition accuracy is strongly dependent not only on the
model algorithm, but also on the type and number of attributes
that make up the database used to train the network. In vision-
based action recognition, the common approach is to extract
image features from video data and to issue a corresponding
action class label (Poppe, 2010; Babiker et al., 2018). Nevertheless,
when skeleton representation of the human body is used, the
most privileged discriminative features are the raw data coming
from the skeletal tracking (joint spatial coordinates) (Patsadu
et al., 2012; Youness and Abdelhak, 2016) or some indices
expressing geometric relations between certain body points, such
as: the vertical distance from hip joint to room floor (Visutarrom
et al., 2014, 2015), the distance between the right toe and the
plane spanned by the left ankle, the left hip and the foot for a
fixed pose (Müller et al., 2005) the distance between two joints,
two body segments, or a joint and a body segment (Yang and
Tian, 2014), the relative angle between two segments within
the body kinematic chain (Müller et al., 2005) and finally,
the size of the 3D bounding box enclosing the body skeleton
(Bevilacqua et al., 2014). Geometric features are synthetic in the
sense that they express a single geometric aspect making them
particularly robust to spatial variations that are not correlated
with the aspect of interest (Müller et al., 2005). In order to
identify the best attribute set to classify, off- and on-line, standing,
bending, lying, and sitting poses, Le et al. (2013) compared
the results of a ML algorithm trained and tested with four
different sets of features. They trained an SVM with a radial
basis function kernel on off-line data referred to a subject in
front of the camera, using 7, 9, and 17 joint angles with and
without scaling, and absolute joint coordinates without scaling.
In off-line, optimal Kinect acquisition configuration, very good
results were obtained with the absolute coordinates without
scaling. They then tested the algorithm also using on-line data
of a subject at a different distance from and at different angles
with the Kinect camera. In the latter, more realistic scenarios,
the angles were found to represent more relevant features for
posture representation.

In this paper we focus on the problem of skeleton-
based human pose recognition for the detection of dangerous
situations. This work is part of a broader project (TheDALUS,
The Disable Assisting Living for University Students), aimed
to promote the inclusion of disabled students in a university
environment (a room in college dorms) guaranteeing them safety
and autonomy. This is done using a net of four Kinect One
devices, whose data are collated and processed to identify both
voluntary requests for help and dangerous situations (i.e., the
subject has fainted or slipped from the wheeling chair, etc.)
to trigger an alarm toward third parties, when needed. During
daily activities a subject assumes a set of poses that can be
very similar to those assumed during dangerous situations. Our
approach is based upon the consideration that to distinguish
these two different scenarios knowledge of the location domain
is fundamental (the spatial position of the room inhabitant,
objects and room furniture position and the relative position

of the inhabitant with respect to the objects and the room
furniture). Indeed, a normal pose could become a dangerous one
when it takes place in relatively specific locations of the room.
For example, the lying down pose is a daily living pose if it
occurs on the bed. Conversely, it takes the form of a possible
alarm condition if it occurs on the floor. In this context, an
accurate body pose pattern recognition model must be defined
first, and, in a later processing stage, the identified poses can be
joined with the knowledge of the location domain. This implicit
relationship between body poses and related spatial context
provides the heuristics to infer the occurrence of a dangerous
scenario, thereby broadening the scope of current approaches
of ML in human pose recognition to the field of monitoring
safety in assisted living conditions. The aim of this study is to
implement the first step of this analysis procedure by using a
large amount of skeleton tracking data referred to real scenarios,
in which a more extensive camera coverage of the room is
obtained by using four Kinect One devices. As such, here we are
interested in classifying each acquired skeleton frame provided
by the device in a set of predefined poses (standing, sitting, lying
down and “dangerous sitting”). To this goal a three layers MLP
network was trained and tested using a custom-built data set
of robust and discriminative kinematic features computed based
on skeleton data.

MATERIALS AND METHODS

Experimental Set-Up
In order to minimize the invasiveness of the monitoring system, a
main requirement in a 24-h surveillance of daily activities setting,
we decided to avoid any wearable sensor. On the other hand,
considering the constraints raised by the privacy of the students
inhabiting the rooms, video recording and video surveillance
systems did not represent a viable option. We therefore chose a
motion sensing system based on skeletal tracking (Booranrom
et al., 2014; Du et al., 2015; Gasparrini et al., 2015; Visutarrom
et al., 2015; Liu et al., 2018). The current implementation is
based on Microsoft’s Kinect One motion sensing system, yet it
is easily portable to any skeletal tracking device that can provide
the 3D coordinates of the chosen set of skeletal joints. The
Kinect One motion sensing system can detect a human body
and voice signal using an RGB camera (1920 × 1080 pixels), a
depth sensor (512× 424 pixels) and an array of four microphones
(48 kHz). The depth sensor is composed of an IR emitter and
an IR camera and provides depth measurements based on the
Time of Flight principle (Pagliari and Pinto, 2015; Sarbolandi
et al., 2015; Corti et al., 2016). Acquisitions can be carried out
with a framerate up to 30 Hz and require a computer with an
USB 3.0 interface for data transfer. The ideal distance of an
object from the sensor is 0.8–3.5 m, with a maximum range
of 0.5–4.5 m. The angle of vision is 60◦ vertically and 70◦
horizontally (Sell and O’Connor, 2014; Fankhauser et al., 2015;
Pagliari and Pinto, 2015). Microsoft released also a Software
Development Kit (SDK), used for skeletal estimation. It is
capable of tracking 25 joints for up to six users simultaneously
(Microsoft, 2019).
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Experimental acquisitions were performed in a prototype
room, mimicking that of the university college dorms
(same dimensions and similar furniture) that was set up in
the laboratory. In this setting, we decided to record each
experimental trial using four Kinect One devices (K1, K2, K3,
and K4 in Figure 1). Two are positioned to sense the whole room
(K1 and K4), while the remaining two are placed to specifically
acquire two areas of the room, such as the bed (K2) and the
desk (K3), which were especially relevant to our aim. This
decision was made after several careful eye-inspections of the
different shots obtained with different camera configurations.
Each arrangement was different for number, position and
orientation of the devices. The goal was to ensure recording
of the entire room minimizing possible blind spots. The data
of the four Kinect One were acquired at the same time but
processed separately. A custom-made C#-based tool with GUI
was developed using VisualStudio 2017 to control the Kinect
One acquisitions.

Acquisitions
We decided to focus our acquisitions around the three most
frequent and recurrent poses assumed by a person in a room
during daily activities (Datasets – Advise, 2019; Fall detection
Dataset, 2019; Fall detection testing dataset, 2019; Weblet
Importer, 2019): standing, sitting, and lying down. In addition to
the listed poses, we added one further pose, labeled “dangerous
sitting,” which grouped all situations of malaise or fainting
resulting in a seated person slumped or lying backward. This
allowed us to perform a first distinction, prior to establishing a
relationship between the subject location and the room furniture,
between routine activities and alarm situations. Experimental
protocols were designed to simulate the actions and poses
performed during the daily life of a general disabled student, not
necessarily having motor disabilities.

In order to build a dataset suitable for training a neural
network to discern the four poses we performed a set of
experimental acquisitions on a group of 12 normal subjects (7
females and 5 males; age ranging 25 and 60 years old; height
ranging 1.55 and 1.90 m). All subjects gave written informed
consent in accordance with the Declaration of Helsinki. The four
Kinect One devices installed in the room acquired simultaneously
the movement of the subject. The acquisitions were structured as
four separate sessions performed on the same day for a total of
about 13 min:

• subject starts to walk from standing position in front of K1
(Figure 1), then grabs a chair near the desk, placing it in
front of the camera, and finally sits on it. While sitting, the
subject first moves the head backward and then leans the
trunk forward, while simultaneously pitching the head as an
unconscious person. The subject then returns to the normal
sitting position and finally gets up and brings the chair back to
its original location. Each pose was maintained for 10 s. The
sequence was then repeated in front of the other cameras (K2,
K3, K4 in Figure 1);

• subject starts sitting on the bed, then lies down on the back,
turns on the right side, then returns on the back and turns to
the other side;
• subject starts lying on the ground on the back, then turns on

the left side;
• subject starts sitting on the bed, then lies down. The action is

repeated three times.

The sequence of poses in each acquisition was timed by the
operator running the acquisitions.

Data Pre-processing
Using custom developed software based on the Kinect’s SDK we
computed the spatial coordinates (x, y, z) of the standardized
25 skeletal joints (Microsoft, 2019). Based on considerations
relative to the reliability of the detected joints and to the aim
of this study, we decided to reduce the number of skeletal
joints from 25 (Figure 2A) to 16. An additional joint labeled
Hc was instead added as the midpoint between the two hips
joints (Figure 2B).

The 17 selected joints were (Figure 2B): head (1), shoulders
segment’s mid-point (C7), acromion (3–4), elbow (5–6), wrist
(7–8), iliac crest (9–10), knee (11–12), malleolus (13–14), foot
(15–16); hips segment’s mid-point (Hc). In order to identify
the position of the subject in the room, the coordinates of
the 17 joints were roto-translated to obtain data referred to
an absolute reference system (X, Y, Z) located in one corner
of the mock-up room (Figure 1). The absolute position in
space of each body joint, described by the corresponding X, Y,
Z triplet, isn’t the most convenient description for classifying
human poses, since: (1) coordinates depend on the relative
location of the individual in the room, while the same posture
can be taken in different locations within the room; (2) the
joint coordinates of two subjects having the same pose in the
same room location have different values depending on the
size of the subject’s body; and (3) posture is independent of
where it occurs in space while it is defined by the geometrical
relationship between the different body segments. The latter
can instead be efficiently captured by articular angles, so that
we chose to compute the following 16 articular angles defined
between two consecutive body segments measured in the plane
defined by the segments themselves: head–shoulder axis (µ1,
µ2), head–trunk (ξ ), shoulder axis–trunk (τ1, τ2), shoulder axis–
arm (η1, η2), arm–forearm (θ1, θ2), trunk–iliac crest axis (δ1,
δ2), iliac crest axis–thigh (γ1, γ2), thigh–leg (β1, β2), and leg–
foot (α1, α2) (Figure 2B). Based on the same line of reasoning
we further computed the roll and pitch angles of the head
and trunk and labeled them as follows: A_pitch (trunk pitch),
A_roll (trunk roll), B_pitch (head pitch), and B_roll (head
roll). All angles were normalized dividing them by 180◦. We
further considered the vertical coordinates (Z) of the skeletal
joints as they are significant for distinguishing the lying down
from the standing pose. On the other hand these are not so
discriminative for discerning between sitting and “dangerous
sitting” poses, which are more easily identified through joints
angles’ values. The joints’ Z coordinates werethen scaled on the
height of each subject.
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FIGURE 1 | Kinect one positions in the prototype room (K1, K2, K3, and K4), reconstructed with a CAD software (SketchUp). Two different fields of view.

FIGURE 2 | (A) 25-joints skeleton computed by Kinect One; (B) reduced skeleton used in this analysis with 17 joints for the left and right hemi-body. The relative
angles computed in the plane defined by the two body segments are depicted, for illustrative purpose, only for the frontal plane and labeled with Greek letters. For
clarity, except for τ1, only the angles of the right hemi-body are shown.

During the acquisition process we noted that sometimes
Kinect One was not able to recognize the subject. For example,
transient exits of the subject from the camera sight (Figure 1)
could cause temporary non-identifications of all skeletal joints,
and the same may occur when the subject assumes a “dangerous
sitting” pose while not facing the camera. This could generate
temporal holes between data frames (missing data). For these
frames we decided to assign the value “999” to all the selected
parameters in order to maintain consistency among the data of
the four Kinect One systems. All the pre-processing algorithms
were implemented using MATLAB.

Database
Once all joints’ Z-coordinates, the relative angles and the chosen
pitch and roll angles were obtained, i.e., a total of 37 (17
vertical joints coordinates, 16 relative angles, 4 absolute angles)
features describing the skeleton in each frame. We then applied a
ReliefF (Urbanowicz et al., 2018) algorithm for feature selection

(MATLAB) and selected a subset of ten attributes: A_pitch,
A_roll, B_pitch, B_roll, ξ , µ2, δ2, Z_1, Z_C7, Z_Hc (see Figure 2B
for the last six attributes).

Using a custom-made LabView (National Instruments,
Inc.) software, angles and joints position traces were then
visually inspected together with a graphical visualization of the
reconstructed skeleton to label each frame with one of the
following four poses:

• Class 1: standing pose;
• Class 2: sitting pose;
• Class 3: lying down pose;
• Class 4: “dangerous sitting” pose.

Using the same software we also identified the frames
corresponding to the transition from a pose to another and
removed them from the dataset. The data from the four
Kinect One systems were collated to build the final database
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FIGURE 3 | Data acquisition and processing with the proposed MLP network model having two hidden layers and a “SoftMax” output layer. The considered features
are 10 kinematic parameters computed from skeletal tracking. The output classification corresponds to the one of the four classes (Class 1, Class 2, Class 3,
Class 4).

composed by 602,530 frames. Among these, 145,196 frames
belonged to Class 1, 233,593 to Class 2, 86,786 to Class 3, and
136,955 to Class 4.

A training set was eventually built using the data from 10 of
the 12 subjects (database of 495,728 frames). The test set was
built using the data of the 2 remaining subjects (database of
106,802 frames).

Neural Network
The aim of this work was not to detect dynamic situations,
such as the falling of the subject in order to prevent it, but
rather to identify the subject lying on the floor immediately
after the fall in order to activate an alarm and intervene with
first aid actions. Therefore, in the current implementation we
wanted to identify a subject pose at any one time, leaving the
decision-making process about alarm triggering to a downstream
algorithm having access to more data (e.g., subject’s position
in the room). The pose classification problem is therefore seen
as a static mapping problem. For this reason, among a range
of possible ML algorithms, we have selected an MLP Neural
Network to classify predefined human poses. The network was
implemented in MATLAB using the Neural Network Toolbox.
We designed a network consisting of three fully connected layers
of neurons, plus an input layer connected to the 10 features
describing each frame in the database (Figure 3). The first hidden
layer has a number of neurons equal to the number of attributes
in the database (10), each with a hyperbolic tangent transfer
function and a bias. The second hidden layer has a structure
similar to the first one, but contains a smaller number of neural

units (6). The output layer is instead composed by a number
of neurons equal to the number of target classes (4) and their
transfer function is the “SoftMax” function producing, for each
input element, the probabilities of belonging to each considered
class. The MLP network was trained using the Levenberg-
Marquardt backpropagation algorithm, first with a k-fold cross
validation (k = 10), and then using the whole training set. The
learning process was performed over a maximum of 1000 epochs,
i.e., 1000 iterations on the training set.

Statistical Analysis
MLP network was trained and tested 50 times to study its
classification robustness. Total accuracy (mean over the four
classes), class accuracy, F-score, sensitivity, and specificity were
calculated for each network simulation. These parameters rely
upon the concept of True Positive (TP, a pose correctly classified
as pertaining to the considered class), True Negative (TN, a pose
which is correctly classified as pertaining to a class different
from the one considered), False Positive (FP, a pose that is
wrongly classified as pertaining to the considered class), and False
Negative (FN a pose that is wrongly classified as not pertaining to
the class considered).

Accuracy
Accuracy is a metric parameter for evaluating classification
models. In general, for binary classification, accuracy can be
calculated as:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
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Sensitivity
The Sensitivity (also called Recall) is a metric parameter that
measures the proportion of genuinely positive samples that are
currently identified as such. It is defined as:

Sensitivity =
TP

TP+ FN

Specificity
The Specificity is the proportion of genuinely negative samples
that are currently identified as such. It is defined as:

Specificity =
TN

TN+ FP

F-Score
F-score is an overall measure model’s accuracy that combines
precision and recall. Precision is the number of positive results
divided by the number of all positive results returned by a
classifier. Recall, instead, is the ratio between TP and the number
of all samples that should have been identified as positive, which
corresponds to the sensitivity parameter.

F-score = 2×
Precision× Recall
Precision+ Recall

where:
Precision =

TP
TP+ FP

For each of five parameters considered, the mean value over
the 50 network simulations was then computed. This average
operation was done only after verifying that the results listed
above were normally distributed. Since the number of samples
was 50, i.e., the number of network simulations, we decided
to use the Shapiro–Wilk test as a hypothesis test (Hanusz and
Tarasińska, 2015). The null hypothesis of this test is that the
population is normally distributed. For each test performed the
p-value was greater than the chosen alpha level, therefore the
null hypothesis that the data came from a normally distributed
population cannot be rejected (IBM SPSS Statistics, IBM).
Therefore, in the result section, for each of the five parameters,
the mean and the standard deviation are considered.

Confusion Matrix
Confusion matrix is a specific table summarizing the results of the
classifier used to visualize the performance of a machine learning
algorithm. The rows of the matrix represent the classifications
predicted by the MLP network while the columns represent the
instances actually belonging to each class.

In the present study we computed a confusion matrix for
each of the 50 network simulations. Then, we computed a mean
confusion matrix in which the number of frames reported in each
cell is the mean, over the 50 confusion matrices, of the frames
pertaining to that cell.

ROC Curve
ROC curve graph shows the performance of a classification
model. True positive rate (sensitivity) is plotted against the false
positive rate (1-specificity) at different classification thresholds.

FIGURE 4 | Mean, SD of the mean total accuracy obtained over the 50
network simulations. The mean total accuracy from each of 50 the simulations
are superimposed (black empty triangles).

The area under the ROC curve (AUC) gives an index of the
performance of the classifier. Higher values of AUC correspond
to a good prediction of the model.

In the present study we computed, for each class, the ROC
curve graph for each of the 50 network simulations. Then, to
obtain a mean ROC curve, we averaged the ROC curve of the
50 simulations as the mean true positive rate for each value of the
false positive rate considered on the abscissa.

RESULTS

In Figure 4 the mean value (Mean), the corresponding standard
deviation (SD) and the distribution of the 50 mean total accuracy
values, each corresponding to one of the 50 network simulations
(0.839± 0.0073) are shown. Values range 0.852–0.820.

Figure 5 shows mean values, SD, and the distributions of
the accuracy, F-score, sensitivity, and specificity of each of the
four classes. All four variables represented in Figure 5 show a
similar trend. Class 3, which corresponds to the lying pose, and
Class 1, which corresponds to the standing pose, represent the
classes best identified by the net. The network, on the other
hand, classified Class 2 (sitting pose) and, especially, Class 4
(“dangerous sitting” pose) with more difficulty for each of the
four variables calculated (Figure 5).
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FIGURE 5 | Mean, SD and individual results (black empty triangles) of the 50 network simulations. From top left: accuracy, F-score, sensitivity, and specificity for
each of the 4 classes.

Figure 6 shows, for each class, the ROC curves calculated on
the 50 network simulations. The average ROC curve has been
calculated for each of the four classes, in order to observe the
learning behavior of the network during its 50 simulations. The
average ROC curves confirm the observations made previously,
i.e., that Class 1 and Class 3 are better identified by the neural
network than Class 2 and Class 4. The same results are confirmed
also by computing the AUC values for the average ROC curves of
the four classes (97.2 for Class1, 92.1 for Class2, 98.5 for Class3
and 89.2 for Class4). Figure 6 also shows the greater variability of
the ROC curves relative to Class 4, compared to those obtained
with Class 1, Class 2, and Class 3.

Figure 7 shows the mean confusion matrix computed over the
entire set of 50 network simulations performed. It summarizes
the average values of the False Positives (FP), False Negatives
(FN), True Negatives (TN) and True Positives (TP) for each class.

DISCUSSION

In order to grant the safety of disabled students living in
automated rooms of university dorms while allowing for their
independency, their privacy and freedom of movement, we

developed a 24/7 monitoring system being able to raise an
alarm, either upon request of the student, or automatically when
a danger situation is identified. The approach implemented
here was based on instrumenting the room with four skeleton-
tracking Kinect One devices providing the data for identifying
dangerous situations.

In this work we presented a pose recognition system
processing the skeleton information provided by the Kinect One
devices using a static neural network that classifies the data
relative to each frame in one of four classes corresponding to
the four poses considered. Three of these (standing, sitting, and
lying) represent the most common poses taken by a subject while
living in a room, while the fourth (“dangerous sitting”) represents
a potential danger situation in which the subject is sitting on a
chair with the head forward or backward, that might need an
external intervention.

We decided to train and test an MLP model with two hidden
layers and a “SoftMax” output layer, in order to classify the
four poses described before. After the selection of the attributes
and the construction of the database, the MLP neural network
was trained and tested 50 times in order to provide data for a
statistically reliable description of its performances.
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FIGURE 6 | Set of 50 ROC curves calculated for each of the four classes (gray traces). The average ROC curve (black trace) was also calculated and superimposed.

Previous studies have faced similar problems using ML
algorithms with good results, although on smaller datasets and
asking the subject to maintain the planned poses while facing
the camera, i.e., a very favorable condition for the Kinect
acquisition, yet unlikely in our project scenario (Patsadu et al.,
2012; Visutarrom et al., 2014). Our study considered a less
constrained dataset in which 12 subjects were recorded in the
defined poses both statically (e.g., lying down) and while moving
over the entire room area (e.g., the subjects were walking when
assuming the standing pose) for a total of 495728 frames for
training and 106802 frames for testing. As a result, our data

was more variable in terms of how each subject interpreted the
requested poses, and noisier for the different views recorded by
each of the four Kinect One devices, which were necessarily
frequently sub-optimal.

In spite of these limitations, nonetheless, required to mimic
real life conditions, the proposed MLP classifier achieved good
results with a total average accuracy of 83.9%. A more detailed
inspection of the results relative to the four classes shows that
Class 3 and Class 1 are better recognized than the remaining
two classes, with average accuracies around 94% (94.3 and 93.8%,
respectively). On the other hand, Class 2 and Class 4, both
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FIGURE 7 | Mean confusion matrix obtained from the 50 network simulations.
It represents the False Positive (FP), False Negative (FN), True Negative (TN)
and True Positive (TP) values computed for each of the four classes.

regarding sitting positions yet differing mostly in terms of trunk
and head pitch angles, were less accurately recognized (86.9 and
82.7%, respectively), with frames being incorrectly assigned to
the two classes (see accuracy values in Figure 5). These lower
accuracy values are mainly due to the misclassification errors
between Class 2 and Class 4 and vice-versa. Indeed the 6.01%
of frames labeled as Class 2 were identified as Class 4 and
the 2.91% of Class 4 data were classified as Class 2 (see the
mean confusion matrix in Figure 7). At least two plausible
reasons can be considered as contributing to this misclassification
error in recognizing these two poses. First and foremost, during
sitting some articular joints are covered by other body parts,
thereby requiring the Kinect One system to reconstruct the
positions of the hidden joints and making the resulting data
very noisy. Second, despite the careful choice of features as
powerful descriptors of body poses while being independent
from the physical characteristics of the subjects who participated
to the study, the distinction between two kinematically very
similar poses is very difficult. The number of features that can
help the classifier to distinguish between them is reduced. Only
the upper body features may be discriminative and probably,
even among these, the normalized vertical positions of the head
and cervical vertebrae (Z_1, Z_C7), i.e., the most discriminative
joint-related features for the identification of Class 1, 2 and 3,
sometimes take comparable values between Class 2 and 4 due
to the subjects’ individual interpretation of the description of the
“dangerous sitting” pose.

Another relatively important misclassification error was
between Class 1 and Class 2 and vice-versa (2.24% Class 1

identified as Class 2 and 1.15% Class 2 identified as Class 1).
For the identification of these two poses, the vertical position of
the joints (Z_1, Z_C7 and Z_Hc) should be more informative
for the MLP network. Nevertheless, in our study this was not so
evident probably because some of the data calculated by Kinect
One devices are particularly noisy, especially when the subject
is not exactly in front of the camera (Rougier et al., 2011; Li
et al., 2019). The relative angles and the head and trunk absolute
angles do not weight as much in the distinction between the two
classes since they assume comparable values. Conversely, lower
misclassification error was found for the standing pose (Class 1)
and the “dangerous sitting” pose (Class 4) and vice-versa (0.25%
Class 1 identified as Class 4 and 0.62% Class 4 identified as Class
1, respectively). In this case, the relative and absolute angles of
head and trunk features in the database are more discriminant.

The lowest misclassification error, almost equal to zero, was
that between the identification of standing (Class 1) and lying
down (Class 3) poses and vice-versa, where the vertical position
of the joints is very discriminative.

Considering the assumptions made so far in order to
explain the misclassification errors we can hypothesize that
an appropriate pre-processing of the data could significantly
reduce the number of misclassifications. A classification model
requires a reliable and valid dataset to efficiently generate
the decision-making rules. To reduce classification errors, the
quality of the data provided to the classifier is important
during both the training and the usage phases, so that data
pre-processing techniques removing anatomically implausible
body reconstructions resulting in longer than real limbs or in
impossible articular angles may be needed.

CONCLUSION

We have proposed an implementation of a pose classification
system for monitoring frail individuals in their daily living
facilities. Kinect One devices, recording an inhabitant moving
in a room in real scenarios, provided skeleton data frames.
These data were processed to compute a set of features that
make up the database for training and testing a three layers
MLP neural network for inhabitant pose recognition (standing,
lying, sittingand “dangerous sitting”). We built a database
with a large amount of data (over 600,000 frames) in which
each pose was described by a set of geometric and vertical
joint position features. Despite the data were quite noisy as
they were acquired with the subject not necessarily facing the
camera, the proposed MLP network achieves a good mean total
accuracy of 83.9%.

This work is, to our knowledge, the first attempt to classify
human poses based on skeleton tracking data acquired in an
ecological daily living scenario, with no constraints on the relative
position of the subject with respect to the recording devices,
and with an extensive dataset comprising sitting and “dangerous
sitting” classes.

This work has been designed for a room tailored to disabled
students, but it can be extended to all those categories of
individuals living in community environments, such as the

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 May 2020 | Volume 8 | Article 415239

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00415 May 12, 2020 Time: 21:21 # 11

Guerra et al. Pose Recognition for AAL

elderly, where safety, accessibility and autonomy can be a
restriction to participation.
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One criterion when selecting the number of principal components (PCs) to be considered

in a principal component analysis (PCA) is the fraction of overall variance that each PC

represents. When applying a PCA to kinematic marker data in postural control research,

this criterion relates to the amplitude of postural changes, recently often called “principal

(postural) positions” (PPs). However, in the assessment of postural control, important

aspects are also how fast posture changes and the acceleration of postural changes,

i.e., “principal accelerations” (PAs). The current study compared how much of the total

position variance each PP explained (PP_rVAR) and how much of the total acceleration

variance each PA explained (PA_rVAR). Furthermore, the frequency content of PP and PA

signals were evaluated. Postural movements of 26 participants standing on stable ground

or balancing on amultiaxial balance boardwere analyzed by applying a PCA on 90marker

coordinates. For each PC, PP_rVAR, PA_rVAR, and the Fourier transformations of the

PP and PA time series were calculated. The PP_rVAR and the PA_rVAR-distributions

differed substantially. The PP-frequency domain was observed well below 5Hz, the

PA-frequency domain up to 5Hz for stable standing and up to 10Hz on the balance

board. These results confirm that small-amplitude but fast movement components can

have a higher impact on postural accelerations—and thus on the forces active in the

system—than large-amplitude but slow lower-order movement components. Thus, PA

variance and its dependence on filter frequencies should be considered in dimensionality

reduction decisions.

Keywords: movement strategy, neuromuscular control, filtering, frequency analysis, principal component analysis

PCA, principal acceleration

INTRODUCTION

Principal component analysis (PCA) is an unsupervised data analysis procedure often used as a
preprocessing step, e.g., to improve performance or for dimensionality reduction, before more
complex machine learning procedures are applied. If applied in the analysis of human motion,
a PCA can by itself reveal interesting information about the coordinative structure of complex
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whole-body movements. Accordingly, applying a PCA on
kinematic data has received increasing attention in research on
several kinds of human movements, such as reaching (Longo
et al., 2019), karate kicking (Zago et al., 2017a), juggling (Zago
et al., 2017b), skiing (Federolf et al., 2014; Gløersen et al., 2018;
Pellegrini et al., 2018), or walking (Troje, 2002; Daffertshofer
et al., 2004; Verrel et al., 2009; Zago et al., 2017c).

One of the main purposes for performing a PCA on kinematic
data—or in fact on any dataset—is the idea that the entire
variance in the data can often be approximated to high accuracy
with only a limited number of principal components (PCs). One
of the most common criteria for choosing the number of PCs is
the eigenvalue spectrum, which represents the variance explained
by each PC and which can be expressed in relative values, i.e., as
a percentage of the entire variance in the data.

A research area where PCA has been particularly frequently
applied on kinematic human movement data is research on
postural control (Federolf et al., 2013; Federolf, 2016; Haid and
Federolf, 2018; Haid et al., 2018, 2019; Promsri et al., 2018,
2019, 2020a,b; Wachholz et al., 2019a,b). In postural control
studies, when PCA is applied to kinematic data, it decomposes
the complex multi-segment whole-body movements into a set
of one-dimensional movement components, called “principal
movements” PMk, where k is the order of the movement
component (Federolf et al., 2013; Federolf, 2016). Previous
research has shown that the lower-order PMk represent in
close approximation the classical motor strategies (Horak and
Nashner, 1986; Winter, 1995), i.e., the ankle or hip strategies
(Federolf, 2013). If PCA is calculated on normalized data from
different volunteers, then a subject-specific relative explained
variance can be calculated in analogy to the eigenvalues, which
quantify the explained variance for the whole dataset and are
thus not subject-specific. The relative explained variance-spectra
provide one criterion for howmanymovement components PMk

one wants to consider in the analysis (Federolf, 2013; Haid et al.,
2019).

However, analyzing the different postures observed during
a measurement sequence may not be the only variable of
interest. How fast the posture changes and how much a postural
change is accelerated, also provide valuable information. We
have shown in previous papers, that Newton’s mechanics can
be applied to the PCA-based posture space by defining a
“principal (postural) position” (PPk) for each PM and their time
derivatives, principal velocity (PVk) and principal acceleration
(PAk) (Federolf, 2016; Longo et al., 2019). The PAk are of
interest, since they relate to forces acting in the system and
thus to the neuromuscular control of the postural movements
(Federolf, 2016; Haid et al., 2018; Promsri et al., 2018, 2019,
2020a,b; Haid and Federolf, 2019; Wachholz et al., 2019a,b,
2020). We want to emphasize here that the PAk obtained by
double-differentiation of the PPk time series (Federolf, 2016;
Longo et al., 2019) are different variables than when a PCA is
performed directly on acceleration data (Verheul et al., 2019):
The former can be seen as an expansion of the movement
strategy concept (Horak and Nashner, 1986; Winter, 1995),
since the PAk quantify the acceleration of the considered
movement components/movement strategies; the latter PCA

identifies correlated patterns directly in acceleration data, which
yields a different solution.

Differentiation is a non-linear operation and, consequently,
the relative variance spectra of the PPk differ from the PAk

relative variance spectra (Longo et al., 2019). Particularly in
postural control it is likely that large-amplitude, yet slow
movement components influence the PA-spectrum less than
small-amplitude, but fast movement components. The PA-
explained variance spectrum could be a second important
criterion for the decision on how many PMk should be
considered in an analysis (Longo et al., 2019). Unfortunately,
noise amplification in differentiation makes a filtering of the PPk
signals necessary before PVk and PAk are calculated (Winter
et al., 1974), and since the PAk variance spectra are speed-
dependent, they will change with the filter cut-off frequency used
before the differentiation.

In summary, when applying a PCA to investigate the
coordinative structure of postural control movements, both the
principal positions (PPk) and the principal accelerations (PAk)
are of interest since they provide relevant information on the
composition of the postural movements and on the control of the
movement components, respectively (Promsri et al., 2020a). Both
the PPk- and PAk-spectra should be considered when selecting
the number of movement components to be analyzed, however,
the PAk-spectra are speed- and thus filter frequency-dependent.
Thus, the purposes of the current Brief Research Report were (i)
to compare the PPk and PAk relative variance spectra for postural
control data; (ii) to evaluate the frequency content of the PPk and
PAk time series; and (iii) to assess how the PA relative variance
spectrum depends on the filtering cut-off frequency.

MATERIALS AND METHODS

Participants
Twenty-six physically active young adults (14/12 males/females,
age 25.3± 4.2 years, weight 70.7± 11.4 kg, height 175.0± 8.1 cm,
physical activity participation 8.4 ± 5.4 h/weeks [mean ± SD])
with no neuromuscular injuries/disorders and no specific balance
training participated in the current study. All volunteers provided
informed consent and the study protocol had been approved by
the Board of Ethical Questions in Science of the University of
Innsbruck, Austria (Certificate 16/2016).

Measurement Procedures
Participants were equipped with 39 reflective-markers according
to the “Plug-In Gait” marker setup (Vicon Motion Systems Ltd.,
Oxford, UK). Two 80-s barefooted-bipedal balancing trials, one
for each support surface, were completed in randomized order
on a firm surface (FS) and on a wobble board (WB; Powrx
Balance Board; POWRX GmbH., Germany). After completing
the first trial, participants could rest for up to 3min. For the
WB condition, volunteers had a 15-s familiarization trial with
no instruction or feedback. Postural movement trajectories were
captured by a standard 8-camera motion tracking system (Vicon
Bonita B10 cameras with Nexus 2.2.3 software; Vicon Motion
Systems Ltd., Oxford, UK) using a sampling rate of 250 Hz.
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To standardize the standing position
(Supplementary Figure 1), participants were asked to place
two marked points (base of each 2nd metatarsal bone) over a
horizontal line taped on the floor for FS or over a horizontal
diameter of the WB; to align the inside of the feet (the medial
borders of each distal end of the first metatarsal bone) with tapes
defining an individual inter-feet distance (15% of biacromial
diameter); to rest their hands on the hips; and to look straight
ahead at a 10-cm-diameter red-circle target on a wall at the
individual eye level ∼5m away. To standardize the position of
the wobble board, we placed the center of the wobble board over
the center of a reticle cross-line marked on the floor. During
testing, volunteers were asked to stand still for the FS or to
keep the board horizontal for the WB; to avoid any voluntary
movements; and to keep their eyes on the target.

Data Analysis
Kinematic Data Pre-processing
All data processing was conducted in Matlab (MathWorks Inc.,
Natrick, MA, USA). The pre-processing steps and the PCA
analysis were conducted based on earlier studies (Federolf, 2016;
Promsri et al., 2018, 2019, 2020a). Briefly, any gaps in marker
trajectories were filled by a PCA-based reconstruction technique
(Federolf, 2013; Gløersen and Federolf, 2016). Two PCAs were
performed, one for each balancing condition (Promsri et al.,
2020a). The middle 60 seconds of each balancing trial were
extracted and nine asymmetrical markers placed on the upper
arms, lower arms, right scapular, upper thighs, and the lower
thighs were omitted. In analogy to previous studies (Troje, 2002;
Daffertshofer et al., 2004; Verrel et al., 2009; Federolf, 2016), the
3D coordinates (x, y, z) of the remaining 30 markers of each
dataset at a given time t were interpreted as 90-dimensional
posture vectors:

−→
p(t)=

[
x1(t) , y1 (t) , z1 (t) ,. . .,x30 (t) , y30 (t) , z30 (t)] (1)

Three pre-processing steps were then conducted. First, the
posture vectors were centered by subtracting the subject’s mean
posture vector. For each subject, subj, a mean posture vector:

−−→

psubj=
[
x1 , y1,. . ., z30

]
(2)

where the bar over the variable indicates the mean over time,
x = meant(x (t) ), was subtracted from each posture vector:

−−→
p
′

(t) =
−−→
p (t) −

−−→

psubj (3)

This procedure is the first step toward removing anthropometric
differences (Federolf, 2016). The PCA was, therefore, conducted
on deviations from a subject’s mean posture, i.e., on postural
movements. Second, the centered posture vectors were

normalized to the mean Euclidean distance dsubj (Federolf, 2013,

2016). Thus, for each posture vector
−−→
p
′
(t) the Euclidean norm:

dsubj(t) = (

√
x1 (t)2 + y1 (t)2 + z1 (t)2 + . . . + z30 (t)2) (4)

was calculated and the
−−→
p
′
(t) were then divided by the mean of

these Euclidian distances:

−−→
p
′′

(t) =
1

dsubj

−−→
p
′

(t). (5)

Third, the normalized posture vectors were weighted using sex-
specific mass distributions (Gløersen et al., 2018). Specifically,
for each marker i a weight factor wi was calculated by dividing
the relative weight of the segment to which the marker was
attached, ms, by the number ns of markers on this segment.
For markers placed on joints, the masses of both segments were
added. For example, wi for the knee markers was calculated as
wi =

mthigh

nthigh
+

mshin
nshin

with nthigh = nshin = 3, mthigh = 14.16%,

andmshin = 4.33% formen (de Leva, 1996). Thus, the normalized
postural movement vectors had the form:

−−−→
p
′′′

(t) =
1

dsubj

[
w1

(
x1 (t) − x1subj

)
, w1

(
y1 (t) − y1subj

)
,
]

[
. . . ,w30

(
z30 (t) − z30subj

)]
(6)

TABLE 1 | The relative explained variance of principal position PP_rVAR (%) and a

qualitative description of the movement patterns represented by the first ten

principal movements (PM1−10 ).

PM PP_rVAR (%) Main movements

A: Firm surface

1 64.4 ± 16.3 Anteroposterior ankle strategy

2 19.9 ± 13.5 Mediolateral ankle strategy (lateral weight shift)

3 4.8 ± 3.8 Anteroposterior hip strategy

4 2.3 ± 1.9 Transverse rotation of pelvis and upper body

5 1.8 ± 1.8 Vertical breathing movement patterns

6 1.3 ± 0.8 Vertical breathing movement patterns

7 1.0 ± 1.4 Anteroposterior trunk flexion coupled with knee flexion

and extension

8 0.7 ± 1.0 Breathing; small chest movements

9 0.6 ± 0.7 Retraction and protraction of shoulders

10 0.4 ± 0.4 Upper body movement

B: Wobble board

1 29.9 ± 8.5 Mediolateral ankle strategy (lateral weight shift)

2 24.2 ± 8.3 Anteroposterior ankle strategy

3 17.9 ± 10.5 Transverse; twisting of the board coupled with the

whole-body rotation

4 11.7 ± 8.2 Anteroposterior hip strategy coupled with

anteroposterior ankle strategy

5 5.0 ± 3.0 Vertical hip, knee, and ankle flexion/extension

6 3.7 ± 1.3 Mediolateral hip strategy coupled with mediolateral ankle

strategy

7 1.6 ± 0.8 Diagonal lateral weight shift

8 1.1 ± 0.6 Anteroposterior ankle plantarflexion/dorsiflexion

9 1.1 ± 1.9 Twisting of the board coupled with the whole-body

rotation

10 0.5 ± 0.3 Lateral weight shift and with small rotation

Together, PM1−10 explained 97.2 and 96.7% of the overall postural variance when

balancing on (A) firm surface, and (B) wobble board, respectively.
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Then, the normalized posture vectors
−−−→
p
′′′

(t) from all volunteers
were concatenated to form a 390,000 × 90-PCA input-matrix
(250 [sampling rate] ∗ 60 [trial duration] ∗ 26 [number of
subjects]× 90 [marker coordinates]).

Principal Component Analysis
The PCA was calculated by a singular-value decomposition
of the input matrix’s covariance matrix and produced

a set of PC-eigenvectors,
−−→
PCk, which form a new basis

for the vector space of marker positions (Haid et al.,
2019). All PC-eigenvectors are linear combinations of
the original marker coordinates. Animated stick figures
can be created from the mean postures and from each
eigenvector to characterize the principal movements PMk

(Federolf et al., 2013; Federolf, 2016). The time evolution
of each PMk, i.e., the PPk(t), were obtained by a coordinate
transformation of the normalized posture vectors onto

FIGURE 1 | Illustration of the first ten principal movements (PM1−10) of bipedal standing on (A) the firm surface and bipedal balancing on (B) the wobble board. Gray

and black lines/dots show the extreme posture in opposite directions. Movement amplitudes are amplified using the indicated factor for a better visualization (Firm

surface: amplification 10× for PM1−5, and 20× for PM6−10; Wobble board: amplification 1× for PM1−5, and 2× for PM6−10). Movements are clearer and can be more

easily characterized when viewed in animated stick figure videos: Supplementary Videos S1, S2 for balancing on the firm and soft surfaces, respectively.
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the PCA-eigenvectors.

PPk(t) =
−−−→
p
′′′

(t) ·
−→
PCk

The PPk(t) represent positions in posture space, i.e., how much
the posture at time t deviates in the direction of the PCk-
eigenvector from the mean posture (Federolf, 2016). In other
words, the PPk(t) represent the amplitude of each movement
component PMk. The variance of each PPk(t), divided by
the sum of the variances of all PPk(t), results in a variable
relative explained variance of principal position PP_rVARk that
quantifies for each volunteer and each order k, how much the
specific PMk contributed to the whole postural movements of
the subject.

In analogy to Newton’s mechanics and differentiation rules,
the rate of postural change can be quantified by principal
velocities PVk(t), i.e., by the first time derivative of the PPk(t),
PVk=

d
dt PPk; and the acceleration of postural movements can

be quantified by principal accelerations PAk(t), i.e., by the second

time derivative of the PPk(t), PAk=
d2

dt2
PPk (Federolf, 2016). In

case of unperturbed human postural control, PAk(t) are either a

direct result of muscle activation, a result of the neuromuscular
system utilizing gravity to produce desired accelerations, or an
undesired result of gravity which the neuromuscular system
was not able to prevent e.g., loss of stability (Promsri et al.,
2020a). In this sense, the PAk(t) are the essential mechanical
variables that the sensorimotor system must control in order to
govern the body’s motion and maintain its stability. Thus, each
PAk(t) represents a variable that quantifies how the mechanical
system is controlled (Federolf, 2016; Promsri et al., 2020a).
In analogy to PP_rVARk, we calculated the variable relative
explained variance of principal acceleration PA_rVARk to assess
howmuch each movement component contributed to the overall
postural accelerations in the individual subjects.

Due to noise amplification in the differentiation processes
(Winter et al., 1974), filtering of the PPk(t) is needed before
computing PVk(t) and PAk(t). The current study examined the
effect of low-pass filtering using a 3rd-order, zero-phase, low-pass
Butterworth filter. The Butterworth filter was selected, since it is
free of ripples in the pass and stop band. The filter order (3rd)
was selected arbitrarily, however, preliminary tests suggested that
the filter order has a very small effect on the PA time series. Prior

FIGURE 2 | Box plots representing the data from all 26 participants of (A) the relative explained variance of principal postural positions (PP_rVARk ) and (B) the relative

explained variance of principal postural accelerations (PA_rVARk ) of standing on the firm surface (FS) and balancing on the wobble board (WB). The PA_rVARk were

determined after filtering the data with a 3rd-order 10Hz low-pass Butterworth filter.
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FIGURE 3 | Box plots of the relative explained variance of principal postural acceleration (PA_rVARk ) of standing on the firm surface (FS) and balancing on the wobble

board (WB) with different cut-off frequencies, including (A) 1Hz, (B) 2Hz, (C) 5Hz, (D) 10Hz, (E) 20Hz, and (F) no filtering, which were observed from 26 participants

(k displays order of principal components, PMs; k = 1 to 25). The letter, “A,” and its arrows point to lower-order PAs, PA_rVAR1, and PA_rVAR2, whose contribution to

the overall acceleration variance decrease with increasing cutoff frequencies. The letter “B” and its arrows highlight two medium-order PAs, PA_rVAR8, and

PA_rVAR10, whose contribution to the overall acceleration variance increase as cutoff frequencies are increased.
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to filtering, the frequency contents of the raw PPk(t) and PAk(t)
were evaluated using a Fourier transformation. Then, the effect of
cut-off frequency on PA_rVARk was evaluated for both balancing
situations, FS and WB, with cut-off frequencies of 1, 2, 5, 10, and
20Hz and with no filtering. Finally, explained variance spectra of
PP_rVARk and PA_rVARk (10Hz) were compared.

RESULTS

The first 10 principal movements (PM1−10) of standing
on a firm surface (FS) and balancing on a wobble board
(WB) are described and shown in (Table 1, Figure 1), and
in (Supplementary Videos 1, 2). Higher-order movement
components were not included for the visualization and
description, since their small movement amplitudes make them
difficult to characterize, however, higher-order components were
considered in the evaluation of the variance spectra. The spectra
of explained variance, PP_rVARk and PA_rVARk (for a cut-off
frequency of 10Hz) are shown in (Figure 2). As expected, several
movement components that contributed little to the postural
variance did have an over-proportional contribution to the
acceleration variance. Specifically, for standing on the FS, PM3,
PM8, and PM10 which predominantly represented hip strategy
and upper body movements, and for balancing on the WB PM8

which predominantly quantified ankle plantar/dorsiflexion, were
of particular interest.

Fourier transformations of the raw PP and PA time
series of one arbitrarily selected, representative volunteer
are shown in (Supplementary Figure 2) for FS and in
(Supplementary Figure 3) for WB. The PP-frequency domain
of both FS and WB conditions was observed well below 5Hz. In
contrast, in the PA-spectra, despite the strong and blue-shifted
noise, signals are visible in the ranges 0–5Hz for FS and in the
range up to ∼10Hz for WB. In addition, (Figure 3) illustrates
how the spectrum of explained variance PA_rVARk changes with
increasing filter cut-off frequency.

DISCUSSION

Our analysis demonstrates that PAk and PAk-based variables,
here PA_rVARk, depend on the filter cut-off applied in
the PA calculation. Low cut-off frequencies (<5Hz) lead to
over-pronunciation of slow movement components. As filter
frequency is increased (5–20Hz) a new pattern emerges, in line
with the expectation that some of the higher-order movement
components contribute more than other movement components
to the accelerations. The Fourier analysis of the underlying
signals suggests that the pattern emerging with increasing filter
cut-offs is not (not only) a consequence of noise increasingly
affecting the signal: while the PPk(t) live in a very low frequency
range (<3Hz), several of the PAk(t) show a relevant frequency
content up to∼5Hz in FS and up to 10Hz in theWB conditions.
These observations suggest that filter cut-off frequencies of 5–
7Hz for FS and around 10Hz for WB would be appropriate.

The current findings underpin that (i) when focusing only
on the classical movement strategies (lower-order PMs), one

might overlookmovement components that are small in posture-
amplitude, but that can be accelerated fast and thus provide
an important contribution to postural control. Spectra of
PA-explained variance should be considered when deciding
on how many PC-components are included in an analysis.
(ii) When interested in neuromuscular control and thus in
the accelerations and forces controlling postural movements,
then filter frequencies should not be selected below 5Hz
for stable situations and not below 10Hz for more dynamic
balancing trials. The current findings corroborate the findings
of Longo et al. (2019), who assessed PA-relative variance in a
cyclic upper-body motion. Moreover, Longo et al. (2019) also
mathematically validated that all PAk together (i.e., the sum
of all PAk) represent the entire marker accelerations present
in the dataset. The current results also agree with previous
studies in which the dependence of PAk variables on filter cut-
off frequencies was assessed, and which reported consistent
results for cut-off frequencies in the range 5 to 12Hz (Haid
et al., 2018; Promsri et al., 2018, 2019, 2020a). Furthermore,
recent studies on muscle synergies and on coherence between
electromyographic signals from different muscles also reported
spectra peaking around 9Hz and posture-related coherence in
frequency bands 5–20Hz (Boonstra et al., 2008, 2015), which
supports the assumption that the PAk signals in this frequency
range are of physiological origin and probably not an artifact or
noise phenomenon.

The role of movement analysis in monitoring and diagnosing
neurodegenerative conditions is increasingly recognized,
particularly when combined with machine/deep learning
approaches (Buckley et al., 2019). However, how successful such
approaches can become depends largely on the information
contained in the input data to these algorithms. Disregarding
information at an early stage, e.g., due to dimensionality
reduction or through filtering, is a form of investigator bias that
likely affects even the performance of so-called unsupervised
methods. Driven by biomechanical considerations, the current
study evaluated what information might be contained in the
often disregarded higher-order PC-components. The question,
which specific PCk components are relevant, depends on the
specific movement, the specific boundary conditions that are
present, and the research question that is studied. However,
as general advise the current study suggest that PA_rVARk-
spectra should be analyzed when deciding on how many PC
components are to be considered; and the frequency content
and suitable filters should be carefully assessed in the calculation
of PAs.
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Running practice could generate musculoskeletal adaptations that modify the body
mechanics and generate different biomechanical patterns for individuals with distinct
levels of experience. Therefore, the aim of this study was to investigate whether
foot-ankle kinetic and kinematic patterns can be used to discriminate different levels
of experience in running practice of recreational runners using a machine learning
approach. Seventy-eight long-distance runners (40.7 ± 7.0 years) were classified into
less experienced (n = 24), moderately experienced (n = 23), or experienced (n = 31)
runners using a fuzzy classification system, based on training frequency, volume,
competitions and practice time. Three-dimensional kinematics of the foot-ankle and
ground reaction forces (GRF) were acquired while the subjects ran on an instrumented
treadmill at a self-selected speed (9.5–10.5 km/h). The foot-ankle kinematic and kinetic
time series underwent a principal component analysis for data reduction, and combined
with the discrete GRF variables to serve as inputs in a support vector machine
(SVM), to determine if the groups could be distinguished between them in a one-
vs.-all approach. The SVM models successfully classified all experience groups with
significant crossvalidated accuracy rates and strong to very strong Matthew’s correlation
coefficients, based on features from the input data. Overall, foot mechanics was different
according to running experience level. The main distinguishing kinematic factors for the
less experienced group were a greater dorsiflexion of the first metatarsophalangeal joint
and a larger plantarflexion angles between the calcaneus and metatarsals, whereas
the experienced runners displayed the opposite pattern for the same joints. As for
the moderately experienced runners, although they were successfully classified, they
did not present a visually identifiable running pattern, and seem to be an intermediate
group between the less and more experienced runners. The results of this study have
the potential to assist the development of training programs targeting improvement in
performance and rehabilitation protocols for preventing injuries.

Keywords: running, machine learning, running experience, biomechanics, fuzzy logic
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INTRODUCTION

Running is a very popular activity and its practice has been
increasing in the last decades because of its accessibility and
several benefits (Lee et al., 2017). It is a repetitive activity which
results in minor load variations at each step (Davis and Futrell,
2016). These repeated loads that occur during running have
beneficial effects over the foot musculoskeletal structures, such as
increases in foot muscle volume and cross-sectional area, and in
bone density (Garofolini and Taylor, 2019). However, repetitive
loading can also make musculoskeletal tissues from the lower
limbs more susceptible to cumulative overload and, therefore,
overuse injuries (Davis and Futrell, 2016).

Notably, the foot-ankle forms a dynamic link between
the body and the ground (Rodgers, 1988), being the first
segment to provide this interaction and being responsible for
the accommodation for the irregularities of the supporting
surfaces. Additionally, the foot-ankle complex contributes to
the dissipation of energy returned from the ground and to
the attenuation of high impact forces during foot strike in
running by having many kinematic adjustments in its more than
33 joints, participating in propulsion generation during push-
off (Holowka and Lieberman, 2018), and storing and releasing
elastic energy during stance phase (Holowka and Lieberman,
2018; Kelly et al., 2018). Altogether, these features make the
structure and function of the foot-ankle complex extremely
important for running practice. There are evidences that
barefoot running, which enhances strength of the plantarflexors
and foot intrinsic muscles (Lieberman, 2012), might serve as
protection against knee injuries (Altman and Davis, 2016),
one of the most common running-related injury (van Gent
et al., 2007). Therefore, the study of possible changes that
might occur in foot-ankle biomechanics with running practice
gains importance.

Running experience appears to be protective against injuries
(Macera, 1992; Nielsen et al., 2012; van der Worp et al., 2015;
Hulme et al., 2017; Linton and Valentin, 2018). Videbæk et al.
(2015) showed that novice runners have a significantly greater
risk of injury than recreational runners, who run regularly and
participate in short races (less than 10 km), showing an incidence
of 17.8 per 1000 h of running against 7.7, respectively. Besides
that, novice runners have the majority of injuries in the lower leg
(34.7%), 3.5% in the foot and 8.2% in the ankle, while recreational
runners present the majority of injuries in the knee (26.3%),
10.1% in the foot and 7.8% in the ankle (Kluitenberg et al.,
2015). Those differences in injury incidence and distribution
point out that these might be distinct populations, who could
present different running mechanics that can be related to
experience level and could be a protective factor for running-
related injuries.

However, most studies classify experience based solely
on years of practice, or just classify the subjects between
“novice” or “experienced,” leaving the reasons behind this
possible protective effect unknown. Although development of
expertise can be achieved through deliberate practice, i.e.,
by performing a task in a way that provides effective skill
acquisition (Ericsson et al., 1993), defining running experience

just as years of practice does not take into account the
structure of the deliberate practice (Iglesias et al., 2010).
In this context, Roveri et al. (2017) developed a decision
support system to classify experience in the deliberate practice
of running that takes into account the structure of the
practice, including training frequency, training volume, years of
practice, and participation in races as inputs in the algorithm.
Therefore, using this classification approach could provide a
more complete and objective measure of experience levels,
allowing the study of how the biomechanical adaptations in
running might be transitioning across the experience acquisition
process. Furthermore, future studies could take advantage
of these findings to investigate what are the implications
of the potential differences in biomechanics to running
performance and injuries.

Some studies suggest that running experience does not
influence running biomechanics. Agresta et al. (2018) did not
find any influence of years of running experience in trunk
and lower limb kinematics, spatiotemporal variables, nor GRF
variables during running. Similarly, Schmitz et al. (2014) did
not find differences between novice and experienced runners in
impact peak, loading rate, nor peak hip adduction angle during
running. However, Clermont et al. (2017) compared 3D running
kinematics of the pelvis, hip, knee and ankle of recreational and
competitive runners by means of a combination of principal
component analysis and a SVM classifier and determined that it
is possible to distinguish both groups based on the differences
in pelvic tilt, knee flexion and ankle eversion. Hence, there
is evidence that multivariate analysis combined with machine
learning approaches can be an effective analysis method for
identifying mechanical patterns of running. Nevertheless, there
is still a lack of understanding of how the different segments
of the foot-ankle complex participate in these biomechanical
adaptations, given that there is a functional importance of
this multi-joint complex during running regarding energy
dissipation, attenuation of forces, energy storage and release
during stance, and propulsion generation.

In this context, studying the effects of experience on the
mechanical behavior of the foot-ankle can contribute to the better
understanding of how it is influenced by the skill acquisition.
This understanding could give insights on what type of training
or rehabilitation protocol could enhance performance or prevent
and treat injuries. Therefore, the main purpose of this study
is to determine if it is possible to separate and classify groups
with distinct levels of experience, determined by a system
that takes into account different aspects of running practice,
based on foot-ankle kinematics and kinetic patterns, and impact
variables. We hypothesize that there will be different foot-
ankle mechanical patterns that can distinguish between levels of
running experience, identified by a machine learning approach.

MATERIALS AND METHODS

This study was a retrospective secondary analysis of a subset
of data from a larger randomized clinical trial approved by
the Research and Ethics Committee of the School of Medicine,

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 June 2020 | Volume 8 | Article 576252

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00576 June 9, 2020 Time: 21:15 # 3

Suda et al. Foot-Ankle Movement Patterns and Running Experience

University of São Paulo (Protocol no. 031/15) and registered at
ClinicalTrials.gov (Identifier NCT02306148).

Participants
Data from 78 recreational long-distance runners were selected
based on the availability for this analysis, since this study is
a secondary analysis from a larger randomized clinical trial.
All runners consented to participate after receiving information
on all details of the study. Participants were between 18 and
55 years of age, ran between 20 and 100 km per week, and
had no lower limb injury or pain in the 3 months prior to
assessment. Participants were excluded if they were under any
physical therapy treatment at baseline, had a history of using
minimalist shoes or barefoot running, presented any orthopedic
or neurologic impairment or major vascular complication, had
previous lower-limb surgery, or had diabetes mellitus.

Running experience was classified by a fuzzy decision-support
system developed by Roveri et al. (2017), that is composed by
two Mamdani subsystems based on expert running coaches’
knowledge. The first subsystem uses the training frequency and
volume as inputs, which are transformed into linguistic variables:
(i) too low, (ii) low, (iii) medium, or (iv) high for each one of the
inputs. These linguistic variables are combined to generate a score
(0–10) of quality of practice. In the second subsystem, the quality
of practice serves as input, along with the number of competitions
and practice time, also transformed in linguistic variables: (i) very
bad, (ii) bad, (iii) medium, (iv) good, or (v) very good for quality
of practice; (i) few, (ii) medium or (iii) many for number of
competitions; (i) very short, (ii) short, (iii) moderate, or (iv) long
for practice time. The second subsystem generates, then, the final
score of running experience. The running experience score (x)
for was used to classify the subjects as less experienced (x < 5.0),
moderately experienced (5.0 ≤ x ≤ 7.0), or experienced (x > 7.0).
The characteristics of the subjects according to the experience
level and anthropometry are shown in Table 1.

Data Collection
Foot biomechanics were assessed during barefoot running at
a self-selected speed on an instrumented treadmill, which was
leveled with the ground and embedded with two force plates
in tandem position (AMTI Force-Sensing treadmill AMTI,
Watertown, EUA; force plates at 1000 Hz). Foot kinematics
were acquired using eight infrared cameras (Vicon R© VERO,
Vicon Motion System, Ltd., Oxford Metrics, United Kingdom; at
200 Hz) and 16 retroreflective markers (10 mm in diameter) were
placed on the dominant foot according to the Rizzoli Orthopedics
Institute Foot Model (Leardini et al., 2007; Portinaro et al., 2014).
Subjects underwent a warmup period for habituation to the
treadmill and laboratory environment, after which, kinematic
data was recorded for 30 s in order to acquire at least 10 step
cycles of the assessed limb. There was no statistically significant
difference for running velocity across groups (Table 1).

Data Processing
The origin of the laboratory coordinate system was defined as
one corner of the force plate and all segments were modeled as
rigid bodies with the local coordinate system coinciding with the

anatomical axes. All joints were considered to have a spherical
shape (three rotational degrees of freedom), with rotations of
each segment reported relative to the neutral positions defined
during the initial static standing trial. All joint rotations were
calculated based on the International Society of Biomechanics
recommendations (Wu et al., 2002).

Kinematic and GRF data were analyzed and processed using
a zero-lag, fourth-order Butterworth low-pass filter with cutoff
frequencies of 15 and 100 Hz, respectively, based on residual
analysis (Winter and Patla, 1997).

We extracted the eight kinematic time series from the
following joints: ankle in all three movement planes; medial
longitudinal arch in sagittal plane (Caravaggi et al., 2019);
1st metatarsophalangeal joint in sagittal plane (Met-Hal); the
angle between the calcaneus and metatarsal bones (Cal-
Met) in all planes.

Calculation of joint kinematics and kinetics were performed
using Visual3D software (C-motion, Kingston, ON, Canada).
A bottom–up inverse dynamics method was used to calculate
the net ankle moment and power in the sagittal plane, with
the human body modeled as 2 linked segments (foot and
shank) and the inertial properties were based on Dempster’s
standard regression equations. Net ankle moment and power
were calculated for the stance phase.

All nine analyzed GRF variables were normalized by each
runner’s body weight. From the vertical component, it was
extracted the first and second peaks, calculated the loading rate
(the force rate between 20 and 80% of the magnitude between
the foot contact and the first peak), and the impulses from the
beginning of the stance phase to the second peak, and from the
second peak to the end of stance phase (Figure 1). From the
anteroposterior component, it was extracted the negative and
positive peaks and calculated the impulses from the decelerating
and accelerating phases (Figure 1).

Machine Learning Analysis
Feature Extraction
The stance phase of all kinematic (eight variables) and kinetic
(ankle sagittal moment and power) time series were determined
by means of the vertical GRF using a 10 N threshold and
normalized in time to 101 points. Then, the data waveforms (10
waveforms) were averaged across 10 consecutive stance phases
of the dominant limb (101 data points per axis direction for
each joint kinematics and kinetic waveform), combined into a
78 × 1010 matrix (78 runners X 1010 waveform data point),
and standardized to a mean of 0 and a standard deviation of
1 (Kettaneh et al., 2005). Given the large number of dependent
variables and potential for redundancy of data, this data matrix
underwent a principal component analysis (PCA), resulting
in 77 principal components (PCs). PCA is an orthogonal
transformation technique used to convert a set of variables into
a set of linearly uncorrelated variables by determining new bases
(PCs) that maximize the variability in the original data set (Abdi
and Williams, 2010). These PC scores were combined with nine
standardized discrete GRF variables, resulting in a total set of 86
potential predictor variables.
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TABLE 1 | Mean and standard deviation of participants’ characteristics from the studied groups.

Less Experienced (n = 24) Moderately experienced (n = 23) Experienced (n = 31) P

Age (years) 40.1 ± 5.3 40.6 ± 7.1 41.8 ± 7.0 0.614†

Height (m) 1.66 ± 0.09 1.71 ± 0.09 1.69 ± 0.09 0.097†

Body mass (kg) 71.1 ± 15.4 74.7 ± 10.4 67.1 ± 11.6 0.136†

Body mass index (kg/cm2) 25.6 ± 3.5a 25.2 ± 3.1 23.3 ± 2.5a 0.017†*

Sex (% women) 41.7 60.9 48.4 0.409‡

Training frequency (times/week) 3.1 ± 0.6bc 3.9 ± 1.0b 4.2 ± 1.6c <0.001†*U

Training volume (km/week) 20.0 ± 5.6d 29.1 ± 10.3e 54.1 ± 38.0de <0.001†*U

Quality of practice (fuzzy system score) 3.4 ± 0.9 4.6 ± 1.2 6.7 ± 1.6 <0.001†*U

Years of practice (years) 2.8 ± 2.9f 7.7 ± 11.0 9.0 ± 5.8f 0.006†*

Participation in races 18.8 ± 26.0g 31.1 ± 29.4 53.1 ± 56.9g 0.012†*

Running experience level (fuzzy system score) 3.2 ± 0.8 5.9 ± 0.7 7.9 ± 0.6 <0.001†*U

Running velocity at data collection (km/h) 9.4 ± 1.4 9.8 ± 1.5 9.7 ± 1.0 0.639†

†ANOVA followed by Bonferroni post hoc tests. ‡Chi-square test. *Statistically significant differences. UStatistically significant differences between all studied groups.
a,b,c,d,e,f,gStatistically significant differences between the groups.

Classification Procedures
The potential predictors were used as inputs for creating
SVM models to classify the runners into each experience level
group, using a one-vs.-all approach. The SVM approach was
chosen because of its capability of overcoming the problem of
high dimensionality with high discriminative power for group
classification, even in cases with small sample sizes (Verplancke
et al., 2008; Son et al., 2010). The SVM algorithm (Noble, 2006)
defines an optimal separating hyperplane, creating a maximum-
margin of separation between binary classes in a dataset. For
that, the SVM projects the input feature’s data into a higher
dimensional space using kernel functions, and then, based on the
data points located closest to the separating hyperplane (support
vectors), constructs a linear hyperplane in this transformed space,
which can be projected back to the original data space. In order
to deal with possible misclassifications (datapoints in the wrong
side of the separating hyperplane), SVM uses the soft margin
concept, which allows these errors without affecting the final
result. The trade-off between margin width and misclassification
rate is defined by the C-parameter, wherein different values for
C (0.1, 1, 10, 100, 1000) were used in the evaluation to test
the dependence of the approach on the C-parameter. A linear
kernel function was applied to the SVM algorithm, since it is less
prone to overfitting to the dataset, and the current study has a
limited sample size.

A sequential forward selection algorithm was applied for the
identification of relevant features, in which a subset of potential
predictor variables was defined by sequentially adding one new
feature at a time to the SVM model, and the feature subset
that rendered the best classification performance was selected. In
order to assess the generalization performance of the classifier
in identifying the label of unknown data and to avoid data
overfitting, a 10-fold cross-validation was performed (Fukuchi
et al., 2011), wherein the runners were randomly divided into
10 subsets, stratified proportionally by the experience level class.
The SVM algorithm was trained by removing one subset at a
time and the resulting model was applied to the holdout subset
to determine the cross-validation performance. The evaluation

function selected the feature that provided the highest Matthew’s
correlation coefficient (MCC) as the first criteria, because the
group distribution becomes unequal in a one-vs.-all approach
(Chicco and Jurman, 2020). When it was not possible to calculate
the MCC, because of absence of predicted cases in one class, the
feature with highest Cohen’s d effect size and highest performance
accuracy was selected. This process was repeated for all input
variables in a greedy search approach, applying each C-parameter
value, and the model with the highest MCC was chosen as the
final classification model.

Classifier Performance and Interpretation
In order to assess the performance of the SVM models, the cross-
validated classification results were used to calculate the MCC,
accuracy, precision, recall, and F1-score. A critical binomial test
indicated the minimum significant accuracy level for each model,
considering a distribution probability equal to the ratio of cases
in each experience level class and a confidence level of 0.95.

The squared coefficients of correlation between the PC scores
and the joint kinematic and kinetic waveforms was calculated as a
measure of proportion of variance of the data that was explained
by the selected PCs (Abdi and Williams, 2010), and the relative
proportion in each joint and axis was used to help with the
interpretation of the selected PC features. The data waveforms
were reconstructed based on the selected PCs for each model and
the Cohen’s d effect size between each group and the remaining
runners was calculated. The regions of the waveforms with at
least a medium effect size in the one-vs.-all comparison were
also considered for interpretation of the distinguishing profile
for each experience level class. All data analyses and variable
calculations were performed using a custom-written MATLAB
script (MathWorks, Natick, MA, United States).

For a better understanding of the discrete GRF variables
that were included as possible inputs to the model they
were compared between the experience groups using ANOVAs
followed by Bonferroni post hoc tests (P < 0.05). The significance
level was set at 5%. All the univariate analyses were performed
with SPSS Statistics 23.0 (IBM, Armonk, NY, United States).
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FIGURE 1 | Vertical and anteroposterior (AP) ground reaction forces (GRF) showing the extracted variables: force peaks for both vertical and AP forces, and loading
rate for the vertical component. Loading rate was determined as the slope of the line between 20 and 80% of the first vertical peak. The colored areas correspond to
the calculated impulses: 1 – from the beginning of the stance phase to the valley after the first vertical peak (light blue area, upper graph); 2 – from the valley after the
first vertical peak to the end of the stance phase (blue area, upper graph); 3 – decelerating phase (light blue area, bottom graph); 4 – accelerating phase (blue area,
bottom graph).
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RESULTS

Performance of SVM Classification
Models
All classification performance measures are presented in Table 2.
The C-parameter values influenced the SVM performance, and
the best model for classifying the less experienced group used
C = 100, while the best classifiers for the other groups used C = 1.
The SVM models for the classification of all experience groups
presented a cross-validated accuracy that surpassed the minimum
significant accuracy indicated by the critical binomial test. The
best classification model for the less experienced group obtained
the highest MCC value and the best balance between precision
and recall rates, rendering an F1-score of 0.80. The best model
for the moderately experienced presented a perfect precision rate,
wherein all the runners identified as a member of this group were
correctly classified, but almost half of the moderately experienced
runners were misclassified, resulting in low recall rate (56.5%).
The model for the experienced group presented a lower accuracy
rate, but precision and recall rates reached 82.1 and 76.7%,
respectively. Overall, the best classification models achieved an
MCC score of strong to very strong relationships.

Discriminating Running Patterns
The SVM model for the less experienced group selected 81
variables as the input features, from which 72 of them were PCs
from the foot-ankle kinematic and kinetic (ankle sagittal moment
and power) time series, with a total variance explained of 99.9%
The other nine features were GRF variables, which included the
loading rate, 1st and 2nd vertical peaks, both vertical impulses, the
anteroposterior negative and positive peaks, and impulses from
decelerating and accelerating phases. However, between-group
comparisons of the GRF variables did not find any significant
differences across experience levels (Table 3). The reconstructed
waveforms indicated that the kinematic features considered
important for the identification of the less experienced runners
were mainly related to greater Cal-Met plantar flexion, and
greater Met-Hal dorsiflexion (Figures 2, 3). Both of these joint
movements are related to PC2, which was the first feature
included in the forward feature selection process and represents
15.5% of variance explained of the total foot-ankle data, wherein
the relative proportion of representation is highly loaded on
Cal-Met (44.1% of PC2) and Met-Hal (28.1%) sagittal planes.

The classification model for the moderately experienced group
selected eight PCs that were responsible for only 0.4% of variance
explained, and two GRF variables, which were the loading rate
and anteroposterior negative peak. The foot-ankle mechanics
features distinguishing the moderately experienced runners
were not as evident, since they were only PCs representing
very low variance explained and did not present a visually
identifiable pattern.

For the experienced group the best model selected six
foot-ankle kinematic/kinetic waveform PCs representing 21.7%
of variance explained, along with the 1st vertical GRF peak
and the anteroposterior impulse from the acceleration phase.
The experienced runners presented the opposite distinguishing

features from the less experienced group, which were mainly
related to smaller CalMet plantar flexion and smaller Met-Hal
dorsiflexion (Figures 2, 3). These differences were also related
to PC2, which was the only selected with a relatively high
variance explained.

DISCUSSION

The main purpose of the study was to determine if running
experience level could be classified based on foot-ankle
kinematic and kinetic patterns, and GRF variables. The
results of this study showed that this classification is possible
since the SVM models successfully separated all experience
groups, with the less experienced and experienced runners
presenting discriminating features with opposing motor patterns
in the metatarsophalangeal and calcaneus-metatarsal joints,
while the moderately experienced group did not present an
explicitly visible pattern, although they were classified with
significant accuracy.

One of the distinguishing kinematic features for the less
experienced runners was a larger toe dorsiflexion angle
throughout the whole stance phase. It is possible that the
lack of experience is related to a greater use of hallux and
toe extensor muscles in combination with tibialis anterior
muscle as ankle dorsiflexors, in order to guarantee toe
clearance and dorsiflexion throughout the running stance phase,
especially during the weight acceptance phase, which could
result in the observed greater toe dorsiflexion. Interestingly,
the experienced group presented smaller toe dorsiflexion angles
than the other runners, suggesting that there is a change
in motor strategy with skill acquisition, possibly reducing
muscle activation that are unnecessary and causing less energy
consumption. There is evidence that runners with more years
of running experience show different lower-limb coordination
patterns, more specifically, in the variability of coordination,
as measured by non-linear analysis (Agresta et al., 2019;
Hafer et al., 2019; Mo and Chow, 2019), showing that
deliberate practice seems to cause motor strategy adaptations
that modifies biomechanical patterns. Unfortunately, to our
knowledge there are no studies comparing muscular activation
patterns in runners with different experience levels showing
evidences of that. A study in cyclists showed that novice
cyclists present longer periods of primary activity in leg
muscles and more extensive coactivation between muscles, as
opposed to trained cyclists, who display shorter bursts with
consistent timing of muscle activity (Chapman et al., 2008).
Although cycling is a different motor task, this finding suggests
that deliberate practice of a motor task seems to change
muscle coordination.

The metatarsophalangeal joints function as a dissipater
of large amounts of energy during running and sprinting,
particularly when a passive dorsiflexion occurs at the foot
contact transition from the metatarsal heads onto the toes,
but fail to generate any energy at push off by remaining
in that position (Stefanyshyn and Nigg, 1997). Since the less
experienced runners displayed larger angles of hallux dorsiflexion
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TABLE 2 | Performance measures of the SVM models.

Less experienced vs. all Moderately experienced vs. all Experienced vs. all

Minimum significant accuracy
Cross-validation performance

76.9% 78.2% 70.5%

Accuracy 88.5% 87.2% 84.6%

Recall 72% 56.5% 76.7%

Precision 90% 100% 82.1%

F1-score 0.80 0.72 0.79

MCCa 0.73 0.69 0.67

aMatthew’s correlation coefficient.

TABLE 3 | Mean and standard deviation of ground reaction force variables extracted from the stance phase of running and results from the between-group comparisons
and correlation analysis.

Discrete variable Less experienced (n = 24) Moderately experienced (n = 23) Experienced (n = 31) ANOVA F P

Vertical component

Loading rate (N/s) 78.86 ± 43.45 61.94 ± 25.95 69.00 ± 36.79 1.295 0.28

First peak (BW) 1.19 ± 0.40 1.09 ± 0.37 1.08 ± 0.39 0.598 0.55

Second peak (BW) 2.15 ± 0.29 2.26 ± 0.30 2.21 ± 0.28 0.990 0.38

Impulse 1 (N.s) 0.033 ± 0.020 0.027 ± 0.016 0.031 ± 0.019 0.590 0.56

Impulse 2 (N.s) 0.318 ± 0.028 0.327 ± 0.024 0.311 ± 0.030 1.898 0.16

Anteroposterior component

Positive peak (BW) 0.226 ± 0.050 0.238 ± 0.045 0.239 ± 0.053 0.502 0.61

Negative peak (BW) −0.230 ± 0.080 −0.226 ± 0.614 −0.236 ± 0.053 0.160 0.85

Impulse 3 (N.s) −0.017 ± 0.006 −0.018 ± 0.005 −0.016 ± 0.005 1.027 0.36

Impulse 4 (N.s) 0.016 ± 0.004 0.016 ± 0.004 0.017 ± 0.005 0.254 0.78

BW, body weight.

during this transition between midstance to push off, they
would be expected to have greater soft tissue tension, such
as in the toe flexor muscles and tendons, and plantar fascia
(Bruening et al., 2018). However, since there was little or no
metatarsophalangeal plantar flexion, there was more energy
dissipated by the passive structures, leading to less efficient
propulsion in the following phase.

There was also an opposing behavior between the less
experienced and experienced groups regarding the calcaneus-
metatarsal, with the former displaying greater plantar flexion.
This higher plantar flexion in less experienced runners could
be associated to the greater toe dorsiflexion angles, because of
the windlass mechanism, in which the dorsiflexion moments
at the metatarsophalangeal joints cause tension to the plantar
aponeurosis, pulling the calcaneus toward the metatarsal heads
(Holowka and Lieberman, 2018).

Evidence shows that the passive structures of the foot arch
have an important role in the metabolic energy-saving of the
foot by the reduction of the mechanical work that would be
needed from muscle activation (Stearne et al., 2016). One of
the exclusion criteria for the current study was the use of
minimalist shoes, which are known to be associated with higher
intrinsic foot muscle volume after a running training regime
(Miller et al., 2014; Chen et al., 2016). Since the subjects
of this study all ran with traditional shoes, the function of
the foot intrinsic muscles is probably reduced due to the
support given to the medial longitudinal arch and the stiffness

of the midsole in the traditional running footwear, possibly
causing a higher reliance on the passive properties of the
plantar tissues. Therefore, it is expected that there would
be no disparity in the function of these muscles between
groups. The fact that the experienced runners presented a less
plantar flexed calcaneus-metatarsal joint potentially indicate the
presence of a higher tension in the plantar structures, such
as the plantar fascia, and intrinsic and extrinsic foot muscles,
since this higher angle would correspond to a greater distance
between the rearfoot and the forefoot. Although the arch
compression/recoil property is not changed due to experience
level, since the calcaneus-metatarsal range of motion is similar
between all experience groups (Figure 2), the foot plantar
structures would be working in a position with higher strain in
the experienced runners. If experienced runners rely more on
the passive structures, less muscle activation is needed, and less
energy is spent (Stearne et al., 2016), showing that experienced
runners might have a more efficient foot-ankle biomechanical
pattern. The question remains whether this pattern could be
related to protective factors against injuries in runners with
more experience.

Moderately experienced runners did not show a clearly
distinct biomechanical pattern since the SVM model selected
only higher order PCs with low explained variance (0.4%)
as discriminating factors, indicating that differences were very
subtle and complicated to be visualized. Still, these complex
patterns were able to successfully distinguish this particular
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FIGURE 2 | Angle between calcaneus and metatarsal bones in the sagittal plane during stance phase of running for all three running experience level groups. The
foot schematics in the left represent the calculated angles.

group from the other runners. It is possible that this is a
transitioning group that is composed of a more heterogeneous
sample, which would hinder the identification of a specific
movement pattern. This model presented a perfect precision
rate, i.e., all the subjects identified as moderately experienced
runners were correctly classified. However, it had a low recall
rate (56.5%), meaning that it fails to detect almost half of
the runners from the moderately experienced group. Therefore,
there is a specific mechanical pattern for this group, which
is probably responsible for the high precision rate of the
model, but the high rate of false negatives supports the
assumption of a heterogeneous and intermediate group, with a
great portion of runners possibly behaving similarly to either
experienced or less experienced runners. It is possible that a
further stratification of the experience levels could improve the
discrimination among these subjects, but that would not be
possible with the current sample size, which is a limitation
of this analysis.

Although there were no significant differences between
experience levels for the GRF variables, they were still crucial
for the performance of the classification models, since they were
selected as discriminating features by the SVM models. This
shows that the combination of different biomechanical features
is a better representation of the motor behavior and necessary
for an improved identification of the mechanical patterns.
Unfortunately, it was not possible to identify how these GRF
factors are specifically related to the distinguishing mechanical
pattern within each group.

The identified mechanical patterns should be considered with
caution, since the participants were asked to run barefoot because
it was needed for the multi-segment foot model implementation
(Leardini et al., 2007; Portinaro et al., 2014), which could
have altered the runners’ habitual movement. Nevertheless,
they still reflect distinct motor strategies across experience
levels, highlighting the importance of foot-ankle mechanics to
discriminate the experimental groups. On a similar matter, we
did not define a fixed running velocity for the subjects, which
could lead to mechanical differences that are due to speed effects.
However, there were no significant differences in running velocity
across experience levels, thus we do not expect that such effects
influenced our results.

A PCA was applied to the foot-ankle kinematic and
kinetic data for dimensionality reduction and feature extraction
purposes, and this strategy allows the identification of patterns
across the foot joints. However, all the PCs were included as
possible features in the SVM, even though the movement patterns
are only visible in the low-order PCs and the high-order PCs
could be including noise and signal artifacts. This approach was
chosen because there are studies that were not able to identify
differences between experience levels, indicating that the changes
due to running experience could be more complex and subtle,
and such differences have been shown to be identified only by the
high-order PCs (Phinyomark et al., 2015). Although it is possible
that a portion of the PCs are representing noise in the data, the
SVM models still successfully classified the different experience
levels by including these high-order PCs, and presented an
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FIGURE 3 | First metatarsophalangeal joint sagittal plane angle during stance phase of running for all three running experience level groups. The foot schematics in
the left represent the calculated angles.

accuracy rate that surpassed the minimal threshold determined
by a critical binomial test.

Another limitation of this study is its relatively small sample
size, since the training data set for a machine learning classifier
approach should increase exponentially in size for each added
input dimension (Altman and Krzywinski, 2018). For that reason,
the SVM was chosen for the analysis, because it considers the data
points in the margins of each class to determine the separating
hyperplane, thus it is not influenced by the distribution of the
data points and can effectively separate binary classes even with
limited sample size (Noble, 2006). In addition, the use of SVM
has shown very high classification performance in clinical settings
(Golub et al., 1999; Son et al., 2010) and with biomechanical data
(Lai et al., 2009; Fukuchi et al., 2011).

Another problem that a reduced sample size can encounter
is data overfitting, which causes the classifying function to
be too specific to the training dataset and not generalizable.
Although it would be ideal to have a test dataset to ensure
the generalizability of the analysis, it was not possible to use
this strategy because of the limited sample size coming from
the major randomized clinical trial. Thus, in order to avoid
overfitting, a 10-fold cross-validation was applied in the feature
selection process and the performance measurement, increasing
the robustness of the results, and a linear kernel was applied
to the algorithm, again to prevent overfitting by not adapting
the hyperplanes to irregular margins. Still, the current results

should be considered with caution since extrapolation for general
population may not be suitable. Furthermore, since SVM is
intended for binary classifications, it was necessary to use
a one-vs.-all approach, which causes the group sizes to be
unequal and interferes in the classifier performance measures.
Nevertheless, this issue was dealt by applying the MCC as
the main performance measure because it is more reliable and
informative when evaluating binary classifications, especially on
imbalanced datasets (Chicco and Jurman, 2020).

This is the first study to apply a machine learning
approach to investigate how running experience affects foot-
ankle biomechanics. The results indicate that using foot-ankle
kinematic and kinetic waveforms associated with GRF variables
as inputs in an SVM classifier can successfully separate and
classify runners with different levels of experience. The main
identifiable features that are important for the discrimination
were the toe dorsiflexion and calcaneus-metatarsal plantar
flexion angles. The less experienced group presented greater
metatarsophalangeal dorsiflexion throughout the whole stance
phase, which could cause higher energy dissipation and
a less efficient propulsion. The more experienced group
displayed smaller calcaneus-metatarsal plantar flexion that
might be related to a more efficient biomechanical pattern
regarding energy expenditure. As for the moderately experienced
runners, although they were successfully classified, they did
not present a visually identifiable running pattern, and seem
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to be an intermediate group between the less and more
experienced runners. The current findings can potentially
guide the development of training programs and rehabilitation
protocols aimed at foot-ankle mechanics for different levels
of experience in running. Furthermore, future studies could
investigate what are the implications of those different
biomechanical patterns according to the experience level in
running performance and injuries.
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Machine learning is a promising approach to evaluate human movement based on

wearable sensor data. A representative dataset for training data-driven models is crucial

to ensure that the model generalizes well to unseen data. However, the acquisition

of sufficient data is time-consuming and often infeasible. We present a method to

create realistic inertial sensor data with corresponding biomechanical variables by 2D

walking and running simulations. We augmented a measured inertial sensor dataset with

simulated data for the training of convolutional neural networks to estimate sagittal plane

joint angles, joint moments, and ground reaction forces (GRFs) of walking and running.

When adding simulated data, the root mean square error (RMSE) of the test set of hip,

knee, and ankle joint angles decreased up to 17%, 27% and 23%, the RMSE of knee

and ankle joint moments up to 6% and the RMSE of anterior-posterior and vertical GRF

up to 2 and 6%. Simulation-aided estimation of joint moments and GRFs was limited

by inaccuracies of the biomechanical model. Improving the physics-based model and

domain adaptation learning may further increase the benefit of simulated data. Future

work can exploit biomechanical simulations to connect different data sources in order to

create representative datasets of human movement. In conclusion, machine learning can

benefit from available domain knowledge on biomechanical simulations to supplement

cumbersome data collections.

Keywords: biomechanics, biomechanical simulation and analysis, gait analysis, musculoskeletal simulation,

inertial sensors, optimal control, machine learning, convolutional neural networks - CNN

1. INTRODUCTION

Due to technological advances in wearable computing, it is now possible to measure human
movement outside the lab, in the natural environment (Seshadri et al., 2019). This facilitates
a continuous monitoring of patients and athletes supporting medical diagnosis, performance
assessment in sports, prevention of falling or sport-related injuries, tracking of disease progression
and evaluating the efficiency of treatment. Extracting useful information from sensor data
remains challenging as uncontrolled natural conditions imply variations in sensor placement,
in data quality, and a wide range of movement patterns. Typically, only discrete variables are
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computed from sensor data, such as speed, stride length, and step
frequency (Hannink et al., 2017; Falbriard et al., 2018; Zrenner
et al., 2018). However, a comprehensive biomechanical analysis,
which involves the evaluation of joint angles, joint moments,
muscle forces, and ground reaction forces (GRFs), would be
beneficial to gain a deeper understanding of the movement
mechanics and underlying causes.

However, low-quality sensor data and sparse measurements
make it difficult to achieve a comprehensive analysis that
is comparable to laboratory results, where optical motion
capture (OMC) systems and force plates are available.
Different methods were developed to address the challenge
of extracting the kinematic and kinetic parameters of
movements from sensor data, commonly inertial sensor
data. These methods can be divided into physics-based or
data-driven approaches.

Physics-based approaches use kinematic chain models or
musculoskeletal models in combination with Kalman filters or
global optimization to constrain the solution space (Roetenberg
et al., 2009; Koning et al., 2013; Kok et al., 2014; Miezal
et al., 2017; Karatsidis et al., 2018; Dorschky et al., 2019).
Physical models can act as a filter to the noisy sensor data.
Moreover, reconstructing the movement with a musculoskeletal
model yields a comprehensive analysis including muscle forces,
kinematics, and kinetics. In contrast to data-driven approaches,
no lab measurements are necessary to train the model.
However, global optimization methods require a relatively high
computation time (Kok et al., 2014; Dorschky et al., 2019) and are
thus less suitable for real-time applications. In addition, model
inaccuracies such as simplified ground contact lead to errors in
GRF and joint moment estimations.

Data-driven approaches can directly learn a mapping between
sensor data and target biomechanical variables based on lab
measurements (Wouda et al., 2018; Komaris et al., 2019;
Stetter et al., 2019; Zell and Rosenhahn, 2019). Machine
learning algorithms can reveal hidden relationships between
sensor data and biomechanical variables, in particular, deep
learning is a promising approach to model time series data of
human movement (Halilaj et al., 2018). Trained models can
be exploited in real-time to provide instantaneous feedback
to the patient, athlete, or coach. For example, an early
warning system monitoring the internal joint loads during
sports could potentially prevent catastrophic non-contact knee
injuries (Johnson et al., 2019). Furthermore, low-latency feedback
on joint moments could help gait retraining in osteoarthritis
patients to reduce the knee adduction moment (Preece
et al., 2009). However, training data-based models requires a
representative dataset, which is cumbersome to acquire as it
typically involves synchronized recordings of inertial sensors and
OMC systems. It is often impractical to collect a dataset large
enough to train deep neural networks. Variations in movement
patterns, different sensor positions, and movement or sensor
artifacts can lead to high generalization errors within data-based
models (Wouda et al., 2018).

Strategies like data augmentation and transfer learning
have been applied to improve robustness and generalization
of data-based models. Um et al. (2017) used label-preserving

transformations of the sensor data (e.g., rotations, permutations,
and time-warping) to augment the training dataset. This
improved the robustness of the model with respect to sensor
position and noise, but did not account for variations
in movement patterns as the target variables remained
unchanged. Veiga et al. (2017) and Johnson et al. (2019)
utilized pre-trained deep neural networks from the image
domain as a feature extractor. The former authors used
images showing line curves of sensor signals. However,
characteristic features of one dimensional inertial sensor signals
likely differ from photographic images extracted from the
ImageNet database. Johnson et al. (2019) transformed the
data of five accelerometers into two-dimensional images: one
dimension representing the sensor locations and the other
dimension the normalized time. The acceleration magnitude was
quantized to greyscale or RGB colorspace, what probably caused
information loss.

To learn from sufficient data and incorporate variations
of movement, Johnson et al. (2019) synthesized accelerometer
data via double-differentiation of marker trajectories from their
OMC archive. Huang et al. (2018) also synthesized inertial
sensor data from motion capture datasets using a 3D model
of the human body shape and pose (SMPL) together with a
virtual sensor model. Mundt et al. (2020a,b) used OMC data
from several studies of their lab together with a biomechanical
model to create a large simulated dataset, which was used
for training feedforward neural networks to estimate joint
kinematics and kinetics. One drawback of these approaches is
that additional datasets containing OMC data or SMPL poses
of the movement of interest were required. Notably, Huang
et al. (2018) reported that combining these datasets was non-
trivial. Moreover, each recorded motion trajectory led to only
one synthetic sensor trajectory. An infinite number of random
samples can be generated using statistical modeling. Norgaard
et al. (2018) synthesized inertial sensor data from random
vectors using a generative adversarial network. Their approach
did not include biomechanical constraints to extract physically
plausible samples.

Our goal is to use physical knowledge of biomechanics
to alleviate the issue of data limitation. We contribute a
new method to expand a training dataset via biomechanical
simulations created by solving optimal control problems. We
simulated musculoskeletal models to follow walking and running
trajectories which were randomly sampled from a “small”
measured training dataset. In principle, an infinite number of
simulations could be obtained with matching inertial sensor
data and biomechanical variables. The constraints in the optimal
control problem ensured that simulated motions were physically
possible and dynamically consistent.

We evaluated if learning on simulated data can decrease
generalization errors, how much simulated data is necessary,
and what happens in the case of even smaller training datasets.
Therefore, we trained convolutional neural networks (CNNs) to
map inertial sensor data of walking and running cycles to joint
angles, joint moments and GRFs. We compared the performance
of the CNNs for training on only measured data with training on
measured and simulated data.
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FIGURE 1 | We trained CNNs to estimate sagittal lower body kinematics and kinetics from accelerometer and gyroscope data from four inertial sensors which were

placed on the lower body. Therefore, we created simulated data based on the measured training dataset (described in section 2.1): we drew random samples from

measured joint angles, GRFs, and walking/running speeds (see section 2.2), which were then tracked by musculoskeletal models solving optimal control problems

(see section 2.3). Simulated movements yielded biomechanics with matching inertial sensor data using a virtual inertial sensor model.

2. MATERIALS AND METHODS

Figure 1 shows the overview of the proposed methods. We
trained CNNs (LeCun et al., 1989) to estimate sagittal lower
body kinematics and kinetics from accelerometer and gyroscope
data from four inertial sensors which were placed on the
lower body. Therefore, we created simulated data based on
the measured training dataset (described in section 2.1): we
drew random samples from measured joint angles, GRFs, and
walking/running speeds (see section 2.2), which were then
tracked by musculoskeletal models solving optimal control
problems (see section 2.3). Simulated movements yielded
biomechanics with matching inertial sensor data using a virtual
inertial sensor model. We explain the network architecture of the
CNNs in section 2.4 and the evaluation process in section 2.5.

2.1. Measured Data
We used the data recorded by Dorschky et al. (2019), which
consisted of data from 10 subjects (denoted by S01-S10) walking
and running at six different speeds with 10 trials each. The
walking speeds were: 0.9 to 1.0m s−1, 1.2 to 1.4m s−1, and 1.8 to
2.0m s−1. The running speeds were: 3.1 to 3.3m s−1, 3.9 to
4.1m s−1, and 4.7 to 4.9m s−1. The dataset comprises 595 (valid)
walking and running cycles in total. It includes data from
seven custom-built inertial sensors (Portabiles GmbH, Erlangen,

DE) (Blank et al., 2015) including tri-axial accelerometers
(±16 g) and gyroscopes (±2.000 deg/s) sampled at 1.000Hz.
Corresponding lower body joint angles, moments, and GRFs
in the sagittal plane were computed from data measured with
an OMC system with 16 infrared cameras (Vicon MX, Oxford,
UK) and one force plate (Kistler Instruments Corp, Winterhur,
CH), which were sampled at 200 and 1,000, respectively. The
speed was measured by two light barriers at a distance of 2
m. In order to analyze right-sided biomechanics, data from
four inertial sensors were used; located at the lower back,
the lateral right thigh, the lateral right shank, and over the

2nd to 4th metatarsal of the right foot. Sensor positions are
shown in Figure 2. Sensor data was aligned with segmental
axes based on calibrating movements. Eight sagittal plane
biomechanical variables were used as a reference: the right-
side hip, knee, and ankle flexion angles and moments, and
the anterior-posterior (A-P) and vertical GRFs. Biomechanical
variables and sensor data were segmented into isolated segments
of data from initial contact to initial contact and resampled
to 100 time points using linear interpolation. For evaluation
in section 2.5, the data from three subjects (S01, S02, and
S03) were left out for testing and the data of the remaining
subjects (S04-S10) were used for training the CNNs. Simulated
data was created from the measured biomechanics of the
training subjects.
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FIGURE 2 | Conceptual drawing of musculoskeletal model consisting of seven

rigid segments and 16 Hill-type muscles (blue) with seven virtual inertial

sensors (red). The muscles are drawn for the right leg only: 1—iliopsoas,

2—glutei, 3—hamstrings, 4—rectus femoris, 5—vasti, 6—gastrocnemius,

7—soleus, and 8—tibialis anterior. The virtual sensors are drawn for the left leg

only simulating sagittal inertial sensor signals: anterior-posterior accelerations,

longitudinal accelerations, and medial-lateral angular velocities indicated with

red arrows. The figure is taken and modified from Dorschky et al. (2019).

2.2. Random Sampling
We estimated the joint distribution of measured joint angles,
GRFs, and walking and running speeds of individual training
subjects and drew random samples from these distributions.
To achieve this, we concatenated for each walking and running
cycle the 100 time points of right-sided hip, knee, and ankle
joint angle and the A-P and vertical GRF and the corresponding
speed. Thus, every walking and running cycle was described
by a vector of R

501. For each subject Si, the vectors of
the (approximately) 30 walking and 30 running cycles were
stacked to matrices of R

30×501, ZSi ,walking and ZSi ,running, whose
rows represented observations of the random variable vectors
zSi ,walking and zSi ,running, respectively. We assumed multivariate
normal distributions: zSi ,walking ∼ N(µSi ,walking,6Si ,walking) and
zSi ,running ∼ N(µSi ,running,6Si ,walking). Therefore, we computed

the sample means µSi ,walking and µSi ,running ∈ R
501 over the

rows of ZSi ,walking and ZSi ,running and the sample covariance

matrices 6Si ,walking and 6Si ,running ∈ R
501×501 estimating

the covariance between the random variables (the columns of
ZSi ,walking/ZSi ,running). We drew 1,000 random samples from
each distribution to serve as tracking data for the optimal

control simulation in section 2.3 using Matlab R2018a mvnrnd
function (Kotz et al., 2004). Random samples of z were
partitioned into joint angles, GRFs, and speed. Joint angles and
GRFs were parted in the middle such that they could be used as
tracking data for the right and left leg, as only a half symmetric
cycle was simulated.

2.3. Simulated Data
We created seven planar musculoskeletal models (Van den
Bogert et al., 2012), one for each of the training subjects. Each
musculoskeletal model consisted of seven rigid segments (trunk,
thighs, shanks, and feet) connected by six hinge joints (hip,
knee, ankle in each limb) resulting in nine kinematic degrees
of freedom. In addition, each model had 16 Hill-type muscles
which are shown in Figure 2. The segments of the model were
scaled using the bodyweight (BW) and bodyheight (BH) of each
subject according to Winter (2009). The multi-body dynamics
andmuscle dynamics are described in previous publications (Van
den Bogert et al., 2011; Dorschky et al., 2019). The unknowns of
the model, which were the generalized coordinates and velocities,
the muscle activations, muscle lengths, and the contact state,
were summarized in state vector x(t). The control vector u(t)
described the neural excitations of the muscles at time t. The
model was simulated to follow random trajectories m(t) of the
right and left hip, knee, and ankle angles and anterior-posterior
and vertical GRFs while minimizing average muscular effort. We
simulated a half walking/running cycle of duration T assuming
left-right symmetry, to speed up simulation. The simulation was
formulated as the following optimal control problem:

minimize
x(t),u(t)

J(x(t), u(t))

=
1

T

T∫

0

(
1

10

10∑

j=1

(
sj(t)−mj(t)

)2

σj(t)2

︸ ︷︷ ︸
track random trajectories

+
Weffort

16

16∑

i=1

ui(t)
2

︸ ︷︷ ︸
muscular effort

)
dt

+WregJreg (1a)

subject to

xL ≤ x ≤ xU (1b)

uL ≤ u ≤ uU (1c)

f(x(t), ẋ(t), u(t)) = 0 (1d)

x(0)+ vTex − x∗(T) = 0. (1e)

The objective function J(x(t), u(t)) consisted of a tracking, an
effort, and a regularization term with the weights Weffort = 0.1
and Wreg = 0.00001. The weighting was chosen empirically so
that tracking and effort term had about the same magnitude and
the regularization term was of lower magnitude. In the tracking
term, the quadratic deviation of simulated trajectory s(t) to the
prescribed trajectory m(t), normalized to the measured variance
σ (t), was minimized. Average muscular effort, the mean squared
value of muscle excitations, was minimized to resolve muscle
ambiguity and to allow the model to deviate from the random
trajectories finding a more efficient and potentially more natural
movement path. In the regularization term, Jreg, the integral of
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TABLE 1 | Architecture of convolutional neural networks with tuned hyperparameters.

Layer Name Hyperparameter Search space Selected value Size of output

1 Convolution-ReLU Kernel_size1, filters1 {3×1, 5×1, 7×1, 3×3, 5×3, 7×3}×{8, 16, 32, 64, 128} 5×3, 64 100×12×64

2 Max-Pooling Pool_size1 {2×1, 2×2} 2×2 50×6×64

3 Convolution-ReLU Kernel_size2, filters2 {3×1, 5×1, 7×1, 3×3, 5×3, 7×3}×{16, 32, 64, 128, 256} 5×3, 128 50×6×128

4 Max-Pooling Pool_size2 {2×1, 2×2} 2×2 25×3×128

5 Flattening - - - 9600

6 Dense-ReLU - - - 100

7 Dense l2_reg {0.01,0.001,0.0001} 0.001 100

TABLE 2 | Hyperparameters related to training the convolutional neural networks.

Parameter Considered values Selected value

Batch size {32,64,128,256,516} 64

Learning rate {0.01,0.001,0.0001} 0.001

Number of epochs {500,1000,2000,3000} 1000

the sum of squares of the time derivatives of all state and control
variables was minimized helping the optimization to converge
more quickly.

Equations (1b) and (1c) were the lower (L) and upper (U)
bounds of the state vector x and the control vector u ∈ [0, 5] [the
same bounds as in Dorschky et al. (2019)]. Dynamic equilibrium
was constrained in Equation 1d. To do so, the dynamic equations,
which were the multi-body dynamics, muscle dynamics, and
contact dynamics (Van den Bogert et al., 2011; Dorschky et al.,
2019), were formulated implicitly. In constraint Equation 1e,
we enforced symmetry of the right and left leg with a forward
translation in direction ex, where v is the randomly sampled
speed (see section 2.2) and x∗ is the mirrored state vector of the
right and left leg. The optimal control problem, Equation (1), was
solved using direct collocation. The state and control vector were
sampled to 50 time points using the Backward Euler method. We
used the open source optimizer IPOPT (Wächter and Biegler,
2006) and ran the simulations on a high performance cluster.

The simulation results were expanded to a whole symmetric
walking/running cycle with 100 time points. We used the
simulated biomechanics of the right leg for training the CNNs
in section 2.5. Given the simulated movements, we could extract
accelerometer and gyroscope signals at any position of the
models. In this work, we used the measured sensor position for
each subject from section 2.1 and calculated virtual inertial sensor
data as introduced in Dorschky et al. (2019). Gyroscope signals
were computed from global trunk orientation and relative joint
angular rates. Accelerometer signals were computed from the
segment accelerations adding gravity and centrifugal acceleration
dependent on sensor position.

2.4. Convolutional Neural Network
We trained CNNs to learn amapping between inertial sensor data
and sagittal plane biomechanical variables for walking/running
cycle defined from initial contact to initial contact sampled

at 100 time points. The sampling was chosen to match the
simulated data. We trained eight separate CNNs, one for
each output variable, namely the right hip, knee, and ankle
angles and moments and A-P and vertical GRFs. As input,
we used the sagittal plane sensor data of the hip sensor, right
thigh sensor, right shank sensor and right foot sensor. We
used two accelerometer axes (A-P and longitudinal) and one
gyroscope axis (medial-lateral) of each sensor, resulting in an
input dimension of 100 × 12. We scaled the data using min-
max normalization.

The CNN architecture is based on previous work
performing gait analysis from inertial sensor data of segmented
strides (Hannink et al., 2017; Zrenner et al., 2018). They used
two or three 1D convolutional layers to extract temporal features
from accelerometer and gyroscope data. We found that 2D
convolutional layers filtering over time and sensor channels
were superior to 1D convolutional layers performing just
temporal convolutions. They estimated single spatio-temporal
gait parameters instead of biomechanical variables over gait
cycles. Thus, the number of output nodes was adapted to 100
time points in our work.

Table 1 provides an overview of the network, which consisted
of two convolutional layers for feature extraction with zero
padding, a stride length of one, and a rectified linear activation
function. After each convolutional layer, max-pooling was
applied. Two convolutional layers seemed to yield superior
performance in comparison to one or three convolutional layers
because underfitting occurred in the first case and overfitting
in the other case. The data was flattened before passing it to
two dense layers for non-linear multivariate regression. The first
dense layer had a non-linear rectified linear activation function
and 100 nodes. The output layer was a dense layer with linear
activation function and 100 nodes. To prevent the model from
overfitting, we used L2 kernel regularization. During cross-
validation (CV), we inspected the learning curves for overfitting
verifying that the validation error did not increase with the
number of iterations. We used the ADAM optimizer (Kingma

and Ba, 2015) and the mean squared error loss function to
train the CNNs. The batch size, learning rate, number of
epochs, and L2 regularization factor were empirically set based
on the measured training dataset considering specifically the
values in Table 2. The number of filters, kernel size, and max-
pooling were tuned using leave-one-subject-out CV within the
seven training subjects (S4-S10) testing the hyperparameters
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FIGURE 3 | Measured (black dotted) and simulated (green solid) accelerometer (acc) and gyroscope (gyro) data in the sagittal-plane of one subject running at fast

speed. The inertial sensors were located at the lower back, the lateral right thigh, the lateral right shank, and at the span of the right foot.

in Table 1. The network was implemented in Python using
Keras with Tensorflow backend (Chollet, 2015; Abadi et al.,
2016). Our implementation of the CNN can be found in the
Supplementary Material.

2.5. Evaluation
The chosen hyperparameters were fixed for all further
evaluations. We trained every CNN with 10 random seeds
to test the robustness of results with respect to different random
samples of simulated data and random initializations of CNN
layers. For comparison purposes, we used the same random
seeds for all different training sets. First, we trained the CNNs
using only measured data of subjects S04-S10 (training dataset)
and tested them with the data of subjects S01-S03 (test dataset).
Then, we evaluated how simulated data influences the resulting
evaluation metrics. Therefore, we subsequently added simulated
data to the training dataset (418 samples) to obtain twice
(836 samples), four times (1,672 samples), eight times (3,344
samples), and 16 times (6,688 samples) the amount of training

samples. Simulated data was picked randomly and equally from
the 1,000 simulations of each training subject of the walking
and running simulations. Thus, the same amount of simulated
data was taken from each normal distribution in section 2.2. We
used the Python’s random module to randomly pick simulated
data (Matsumoto and Nishimura, 1998). As we trained every
CNN 10 times with different random samples, we made sure
that results were robust to random sampling. We trained the
networks jointly on simulated and measured training data, which
was randomly shuffled at each epoch.

Secondly, we evaluated the model when using less training
subjects. We used only four subjects (S07-S10) and two subjects
(S09 and S10) for training and tested it with the same three
test subjects (S01-S03). For each amount of training subjects,
we expanded the respective measured dataset to obtain twice,
four times, eight times, and 16 times the amount of training
samples. The simulated data was used from the training subjects
only: from four subjects (S07-S10) and two subjects (S09 and
S10), respectively.
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FIGURE 4 | Simulated biomechanics data (green) created from a measured training dataset of seven subjects (blue). Simulated and measured data were used to train

data-based models which were tested using the measured data of three independent subjects (red). The anterior-posterior (A-P) and vertical ground reaction force

(GRF) are normalized to the bodyweight (BW) of each subject.

For evaluation, we computed the root mean square error
(RMSE) and the Pearson correlation coefficient between
estimated biomechanics and reference biomechanics. The RMSE

was expressed in degrees for joint angles, in BW times BH
in percent for joint moments, and in BW percent for GRFs.
GRFs were only evaluated over the stance phase using the
time points from force plate measurements. For evaluating
individual results, performance metrics were computed using all
100 samples of all walking and running cycles of each individual
subject and the results were averaged over the 10 random seeds.
We used the Fisher-transform to estimate the mean of the
Pearson correlation coefficient. For evaluating overall results,
performance metrics were computed using all test samples

without separating the results of individual subjects and averaged
over the 10 random seeds.

3. RESULTS

Each simulation had a mean CPU time of (3.6± 2.0)min on
Intel Xeon processors E3-1240, whereas multiple simulations ran
in parallel on a cluster. Figure 3 shows the simulated inertial
sensor data and the corresponding measured data. The pattern is
similar, while the simulated data is smoother than the measured
data. Figure 4 shows the joint angles, moments, and GRFs
of measurements and simulations used for training and the
measured data used for testing. The simulated data covers a wider
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range than measured data and is more dense. The simulated
joint moments show more oscillations, especially in the hip
flexion moment. Testing data lies outside of the training data
distribution for hip joint angle for S01, knee angle during stance
for S02 and peak knee moment for S02.

Training all CNNs including the hyperparameter search took
about two weeks on a Nvidia GeForce GTX 1080 Ti. However,
inference time of each CNN was less than 1ms per gait cycle.

Tables 3, 4 summarize the individual results of the test
subjects for training with the data of all seven training subjects
and a different amount of simulated data. In addition, the results
of the leave-one-subject-out CV of the seven training subjects are
presented using the selected hyperparameters from Tables 1, 2.
For all three test subjects, the performance of the CNNs for
joint angles increased adding simulated data to the training
dataset. The estimation of the hip joint moment was best without
using simulated data. Simulated data improved the RMSE of
the knee joint moment for all test subjects, whereas the Pearson
correlation coefficient only slightly improved for test subjects S01
and S03. The A-P and vertical GRF improved for test subject S01
and S02 adding simulated data, while the performance decreased
for test subject S03. Adding more simulated data led to a decrease
in performance. Looking at results of the CV, the RMSE of joint
angles is lower and Pearson correlation coefficients are higher
when simulated data is added. Simulated data did not increase
performance for joint moments and vertical GRFs in the CV.

Figure 5 shows the estimated biomechanics for S03 running
at fast speed using no simulated data and using seven times
more simulated than measured data. The estimated hip angle,
ankle angle, and knee moment are closer to the reference when
simulated data was added to the training dataset. For example, the
peak knee extension moment is higher and the estimated ankle
angle is closer to the reference during swing phase.

Figure 6 summarizes the overall results for the cases where the
number of training subjects was decreased from seven to four
and to two subjects. Reducing the amount of training samples
led to higher RMSE values except for the hip angle when training
with four instead a seven subjects. Simulated data improved the
results for joint angles independent of the amount of training
subjects. When increasing the dataset by 16 times, the RMSE
of hip, knee, and ankle angle decreased by 17 , 27 , and 23%
for training with all seven subjects. In the case of training with
four subjects, the RMSE of the knee joint angle could even be
reduced by 31%. Moreover, the RMSE of the hip and ankle joint
angle was lower when training with simulated andmeasured data
of four subjects compared to training with only measured data
of seven subjects. The RMSE of the knee joint angle was lower
when training with simulated and measured data of two subjects
compared to training with only measured data of seven subjects.
However, hip flexion moment was worse for all training data
configurations using simulated data. The knee extensionmoment
and vertical GRF improved using simulated data for testing all
training data configurations. The RMSE of ankle moment and A-
P GRF improved using simulated data, unless data of only two
subjects was used for training. When doubling the dataset, the
RMSE of knee and ankle moment and vertical GRF decreased by
about 6% for training with all seven subjects. When increasing

the dataset by four times, the RMSE of A-P GRF decreased
by about 2% for training with all seven subjects. Adding more
simulated data worsen the estimation of joint kinetics and GRFs.

We added heat-maps, like Figure 6, for the Pearson
correlation coefficient to the Supplementary Material. When
increasing the dataset by 16 times, Pearson correlation
coefficients increased from 0.967 to 0.975 for the hip angle,
from 0.988 to 0.992 for the knee angle, and from 0.956 to 0.976
for the ankle angle when training with all seven subjects. The
correlations of kinetics were above 0.97 without using simulated
data when training with all seven subjects, except for the hip
moment with 0.94. Correlations above 0.90 can already be
classified as excellent (Taylor, 1990) and are higher than previous
work (Dorschky et al., 2019). Correlation coefficients only
increased for knee joint moment from 0.970 to 0.971 and for
vertical GRF from 0.983 to 0.985 when adding simulated data.

We added individual results of all subjects to the
Supplementary Material comparing the RMSE, relative
RMSE (Ren et al., 2008), and the Pearson correlation coefficient
for a different amount of simulated data. We differentiated
between walking and running to allow a better comparison to
other work which only focuses on walking or running.

4. DISCUSSION

In this work, we presented a machine learning approach
to extract joint angles, joint moments, and GRFs from a
combination of simulated and experimental inertial sensor data.
The goal was to combine the benefits of physics-based and data-
driven approaches: We used simulated data from a physics-based
model to reduce exhaustive collection of training data and used
this to train data-driven models which can provide low-latency
feedback on biomechanics.

The simulated data decreased the generalization error (here
RMSE) of the joint angles by up to 31%. Pearson correlation
coefficients of joint angles were already between 0.96-0.99
without using simulated data and were ≥0.98 with simulated
data. Simulated data had a greater effect on RMSE than on
correlation coefficients as the RMSE is more sensitive to outliers,
and simulated data improved especially the results of outlying
subjects. For example, the RMSE of the knee angle improved
by 38% for S03 whose ankle dorsiflexion angle was smaller
at toe-off compared to the other subjects (compare Figure 4

and Figure 5). For joint moments, the simulated data decreased
the generalization error only partly when estimations based on
measured data were above average (i.e., above the mean CV
error). Simulated data worsened the performance for hip joint
moment estimates. This could be explained by the discrepancy
between simulated hip joint moments and its reference. This
difference is visible in Figure 4, which shows noisy oscillating
joint moments for the simulations. One reason may be that only
joint angles and GRFs, and no joint moments, were tracked
by the musculoskeletal model in Equation 1. Thus, the model
tried to follow the predefined joint angles and GRFs using
unrealistic (min-max switching) muscle activation patterns. This
likely led to the noisy joint moment estimations. A higher
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TABLE 3 | The root mean square error (RMSE) of sagittal plane joint angles, joint moments, and anterior-posterior (A-P) and vertical ground reaction force (GRF) is

presented for varying ratios between simulated (sim) and measured (meas) data.

Sim/meas Hip angle Knee angle Ankle angle Hip moment Knee moment Ankle moment A-P GRF Vertical GRF

data degree degree degree BWBH% BWBH% BWBH% BW% BW%

C
V

0 5.38 (1.57) 5.22 (1.22) 5.50 (1.64) 1.62 (0.23) 1.14 (0.13) 1.32 (0.42) 4.33 (0.48) 14.44 (2.08)

1 5.19 (1.36) 4.95 (1.38) 5.00 (1.52) 1.66 (0.20) 1.21 (0.08) 1.38 (0.42) 4.36 (0.49) 14.75 (4.58)

3 5.08 (1.77) 4.81 (1.19) 4.86 (1.53) 1.75 (0.23) 1.27 (0.08) 1.35 (0.39) 4.51 (0.31) 15.28 (3.55)

7 5.17 (1.44) 5.09 (1.65) 4.72 (1.35) 1.76 (0.29) 1.35 (0.16) 1.36 (0.37) 4.35 (0.41) 15.10 (3.06)

15 5.37 (1.57) 4.93 (1.20) 4.60 (1.32) 1.78 (0.30) 1.28 (0.15) 1.39 (0.34) 4.63 (0.52) 16.07 (3.75)

S
0
1

0 9.42 (0.48) 4.45 (0.41) 3.29 (0.25) 1.71 (0.11) 1.21 (0.12) 0.88 (0.12) 4.52 (0.26) 11.74 (0.88)

1 8.98 (0.59) 4.28 (0.55) 3.54 (0.47) 1.88 (0.12) 1.07 (0.07) 0.98 (0.07) 4.70 (0.28) 10.46 (0.86)

3 9.11 (0.26) 3.87 (0.31) 3.23 (0.38) 1.97 (0.13) 1.31 (0.12) 1.00 (0.12) 4.23 (0.18) 9.99 (0.76)

7 8.94 (0.55) 3.57 (0.27) 3.49 (0.23) 2.01 (0.10) 1.30 (0.11) 1.03 (0.10) 4.22 (0.13) 12.33 (0.80)

15 8.77 (0.49) 3.31 (0.34) 2.87 (0.30) 2.07 (0.11) 1.36 (0.15) 1.05 (0.10) 3.76 (0.31) 13.53 (1.04)

S
0
2

0 6.49 (0.59) 10.44 (1.31) 4.40 (0.57) 1.44 (0.10) 2.06 (0.25) 1.86 (0.21) 4.41 (0.38) 13.24 (1.20)

1 6.32 (0.89) 8.69 (0.49) 4.24 (0.28) 1.71 (0.20) 2.04 (0.21) 1.59 (0.14) 4.03 (0.46) 12.16 (0.77)

3 5.39 (0.57) 7.70 (0.44) 4.24 (0.46) 1.81 (0.06) 2.08 (0.20) 1.67 (0.15) 4.21 (0.18) 13.67 (1.01)

7 4.47 (0.46) 7.26 (0.45) 4.47 (0.32) 1.89 (0.10) 2.27 (0.13) 1.78 (0.15) 4.40 (0.30) 12.42 (0.83)

15 3.69 (0.19) 7.29 (0.40) 4.18 (0.50) 1.95 (0.12) 2.39 (0.25) 1.73 (0.17) 4.21 (0.15) 15.34 (1.21)

S
0
3

0 3.71 (0.24) 5.52 (0.56) 6.31 (0.49) 1.32 (0.04) 1.96 (0.08) 1.05 (0.07) 4.29 (0.23) 12.91 (0.62)

1 3.43 (0.31) 4.82 (0.39) 4.43 (0.24) 1.61 (0.13) 1.76 (0.15) 1.11 (0.03) 5.10 (0.29) 13.75 (0.93)

3 3.10 (0.18) 4.47 (0.23) 4.30 (0.31) 1.62 (0.07) 1.79 (0.09) 1.24 (0.11) 4.36 (0.25) 14.25 (1.17)

7 3.00 (0.14) 4.36 (0.34) 4.01 (0.35) 1.72 (0.09) 1.75 (0.13) 1.20 (0.09) 4.83 (0.27) 14.75 (0.72)

15 3.06 (0.19) 4.62 (0.12) 3.94 (0.38) 1.78 (0.11) 1.77 (0.08) 1.21 (0.04) 4.95 (0.21) 16.24 (1.08)

Joint moments and GRFs are normalized to bodyweight (BW) and bodyheight (BH). The first rows show the mean RMSE and its standard deviation of the leave-one-subject-out

cross-validation (CV) on the training dataset for the chosen hyperparameter. The subsequent rows show the mean RMSE and standard deviation over 10 random seeds for the three

test subjects S01-S03 using the data of seven subjects for training. Bold highlighting indicates the lowest mean value in the respective column.

weighting of the effort term in the optimal control simulation
might lead to smoothermuscle activations and thusmuscle forces
and joint moments. Joint moments could also be tracked in
the optimal control simulations. However, the results for joint
angles and GRFs might get worse. Another reason may be that
the reference joint moments are too smooth, as filtering of
marker data and force plate data was applied before computing
joint moments (Dorschky et al., 2019). Overall, the reference
joint moments were not directly measured but estimated using
inverse dynamics. Thus, error accumulation lead to inaccuracies
especially for the hip joint moment.

The estimation result of GRFs was already better without
simulated data compared to previous work with Pearson
correlations >0.97. In Dorschky et al. (2019), the RMSE of A-
P and vertical GRF was 5% BW and 15% BW. In this work,
the mean RMSE of A-P and vertical GRF was about 3% BW
and 10% BW using only measured data (analyzing the GRFs
over the complete cycle). The simulations were created using
the same musculoskeletal model as in Dorschky et al. (2019),
who reported errors in the estimation of GRFs and ankle joint
moments due to model inaccuracies, as the foot was modeled
with a single rigid segment. Consequently, simulated data only
partly enhanced the estimation of GRFs and ankle joint moments
in Tables 3, 4.

A direct comparison to previous work is difficult as different
datasets of varying number of sensors, sensor positions, subjects,

and movements were used for evaluation. Machine learning
models dedicated to one single task, for example, for estimating
single joint angles or specialized for walking only, will probably
outperform our machine learning models which were jointly
tuned for different output variables. In order to fairly compare
different approaches, they would all need to be tested using
the same datasets. The presented machine learning approach
outperforms our previous physics-based approach (Dorschky
et al., 2019) evaluated on the same data-set. In contrast to
physics-based approaches, machine learning models require
representative training data. Combining simulated andmeasured
data seems a promising approach (Mundt et al., 2020a). In
this work, we focused on the comparison between learning
on measured and learning on simulated data to evaluate
whether simulations can decrease the generalization error by
incorporating variations of movement. Future work should
expand this method to 3D analysis and evaluate against
state of the art methods (Stetter et al., 2019; Mundt et al.,
2020a). 3D biomechanical optimal control simulations are more
expensive to compute, but are advancing recently (Falisse et al.,
2019).

The network architecture was specialized for pre-segmented
walking and running cycles and a fixed input and output
dimension. The segmentation and sampling was chosen to
match with the simulation with a fixed number of collocation
nodes. We trained the CNNs separately in order reduce
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TABLE 4 | The Pearson correlation coefficient of sagittal plane joint angles, joint moments, and anterior-posterior (A-P) and vertical ground reaction force (GRF) is

presented for varying ratios between simulated (sim) and measured (meas) data.

Sim/meas Hip angle Knee angle Ankle angle Hip moment Knee moment Ankle moment A-P GRF Vertical GRF

data

C
V

0 0.969 0.989 0.962 0.940 0.975 0.981 0.970 0.980

1 0.974 0.990 0.967 0.937 0.969 0.974 0.971 0.979

3 0.973 0.990 0.970 0.931 0.964 0.974 0.968 0.977

7 0.973 0.990 0.972 0.931 0.958 0.972 0.970 0.977

15 0.973 0.990 0.975 0.927 0.958 0.971 0.967 0.975

S
0
1

0 0.953 0.991 0.975 0.920 0.976 0.985 0.979 0.988

1 0.958 0.990 0.981 0.899 0.977 0.983 0.980 0.991

3 0.960 0.992 0.985 0.900 0.970 0.983 0.982 0.991

7 0.962 0.993 0.985 0.880 0.968 0.982 0.980 0.989

15 0.959 0.994 0.987 0.865 0.965 0.982 0.980 0.985

S
0
2

0 0.970 0.989 0.962 0.948 0.947 0.982 0.972 0.979

1 0.972 0.990 0.969 0.932 0.946 0.979 0.966 0.983

3 0.975 0.990 0.975 0.938 0.941 0.973 0.971 0.980

7 0.975 0.992 0.978 0.935 0.946 0.972 0.973 0.981

15 0.975 0.993 0.980 0.936 0.941 0.972 0.974 0.980

S
0
3

0 0.975 0.982 0.910 0.948 0.979 0.978 0.976 0.981

1 0.982 0.988 0.941 0.924 0.981 0.970 0.970 0.981

3 0.984 0.990 0.940 0.918 0.977 0.962 0.971 0.976

7 0.983 0.991 0.948 0.906 0.974 0.961 0.969 0.974

15 0.982 0.990 0.949 0.899 0.973 0.959 0.966 0.974

The first rows show the mean Pearson correlation coefficient of the leave-one-subject-out cross-validation (CV) on the training dataset for the chosen hyperparameter. The subsequent

rows show the mean Pearson correlation coefficient over ten random seeds for the three test subjects S01-S03 using the data of seven subjects for training. Bold highlighting indicates

the lowest mean value in the respective column.

the output dimension and consequently the amount of
trainable parameters in the network to avoid overfitting. It
has been shown that individual CNNs can outperform bigger
networks with multiple output variables (Hannink et al.,
2017). However, the first layers of the different networks,
which act as feature extractors, probably share some common
features such that multi-task learning or transfer learning
might improve results (Caruana, 1997). Future work should
consider different network architectures which avoid pre-
processing (segmentation into walking and running cycles and
resampling) of sensor data like fully (circular) convolutional
networks and allow a continuous estimation of movement
biomechanics using recurrent architectures like long short-
term memory networks (Mundt et al., 2020b). In addition,
the feature extraction using convolutional layers should be
explored. In the CV, two dimensional convolution yielded
superior results compared to one dimensional convolutions over
time which are typically used for inertial sensor data (Hannink
et al., 2017). The 2D convolution was applied over time
and over adjacent sensor axes, where data is likely to be
correlated. The order of sensor axes was not optimized
and data of accelerometers and gyroscopes were not split,
although different feature extractors for different sensor
types may yield better results. As CNNs were tuned on
measured data, we assume that different architectures would not
influence the comparison between learning on measured and
simulated data.

A reality gap was apparent between simulated and measured
inertial sensor data. Simulated inertial sensor data were less noisy
than measured data (e.g., Figure 3 longitudinal acceleration of
foot sensor). We modeled a rigid attachment of virtual sensors
on the musculoskeletal model. In reality, the connection is loose
due to soft tissue, which could be considered by a wobbling
mass model. Another option is to use domain adaptation
learning. For example, generative adversarial networks could be
trained to learn a mapping between simulated and measured
data (Shrivastava et al., 2017). In preliminary work, we
learned a direct mapping between simulated and measured
data using supervised learning. This yielded worse results
which might be explained because end-to-end learning is
typically superior. Further investigations and evaluations are
necessary here.

In this work, we jointly learned from simulated and measured
data. In our case, this approach worked better than training
on simulated data and fine-tuning on real data. We assume
that robust features were learned which were invariant to noise
and movement artifacts. However, overfitting to simulated data
was observed, for example for the vertical GRF where the
performance decreased when adding three to fifteen times as
much simulated as measured data. Instead of random sampling
(see section 2.2), simulated data could only be created for
those points where the current model is least certain. Thus,
outliers could be covered with simulated data, whereas the
performance of data that lies within the measurements would

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 June 2020 | Volume 8 | Article 604271

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Dorschky et al. CNN-Based Estimation of Gait Biomechanics

FIGURE 5 | Results for test subject S03 running at fast speed: reference biomechanics from optical motion capturing (dotted red) compared to estimated

biomechanics from inertial sensor data using no simulated data (blue dashed dotted) and seven times as much simulated as measured data (green solid). The

anterior-posterior (A-P) and vertical ground reaction force (GRF) are normalized to the bodyweight (BW).

ideally not be affected. Future work should consider methods,
where simulated data is generated iteratively during training
within a closed loop. For example, Ruiz et al. (2018) proposed
a meta-learning algorithm to learn how to simulate. The
algorithm should adjust parameters of a simulator to generate
synthetic data such that a machine learning model achieves a
higher accuracy.

Data augmentation is commonly used to artificially expand a
data set for training deep neural networks, but most approaches
use only label-preserving transformations of input data (e.g.,
adding noise or rotating sensor axes, Um et al., 2017). In contrast,
the presented method creates new pairs of input and output data
such that a wider range of movement mechanics is covered. In
this work, we generated the simulated data based on the training
data distribution of the individual training subjects to take into
account intra-subject variability. The simulated data filled the
sparsely populated space of measured training data, as more
variations ofmovements and speeds were included in the training
set. This can be seen in Figure 4 where the simulated data covers
a wider range of biomechanics and less space between curves is

apparent. However, on the one hand not all test data is covered
within the simulated andmeasured data (see e.g., maximum knee
extension moment) because of inter-subject variability. On the
other hand, we surmise that the simulated data was spread too
widely for GRFs as the estimated variance was high especially
for initial contact. When we used simulated data closer to the
mean of measured data for training the CNNs, the estimation of
joint moments and GRFs was slightly better, but the estimation
of joint angles was slightly worse. Future work may consider
to use more light-tailed data distributions than multivariate
normal distributions.

Results depended on the training data distribution. For
example, the hip angle improved when training with four instead
of seven subjects, likely because the testing data distribution
better matched that of the training data distribution of the
four subjects. To cover a wider range of movement variations
and to achieve a representative dataset, different data sources
could be combined using the biomechanical simulation. Public
datasets of movement biomechanics could be tracked with the
musculoskeletal model to obtain corresponding inertial sensor
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FIGURE 6 | Overall results of the root mean square error (RMSE) for the estimated sagittal plane biomechanical variables. The vertical axis indicates the ratio between

simulated (sim) and measured (meas) data used for training. The horizontal axis indicates the number of training subjects whose data were used for training. In

addition, the mean RMSE of the leave-one-subject-out cross-validation (CV) is shown. Joint moments and the anterior-posterior (A-P) and vertical ground reaction

force (GRF) are normalized to bodyweight (BW) and bodyheight (BH).

data. Instead of tracking joint angles and GRFs, video data or
inertial sensor data could be tracked with the model (Heinrich
et al., 2014; Dorschky et al., 2019). This shows the potential
of using optimal control simulations to create labeled training
data (corresponding inertial sensor data and biomechanics).
Simulated inertial sensor data at different sensor positions could
easily be obtained.

While the recording of measured data (without post-
processing) took about two weeks, it only took a few hours
to create the same amount of ready-to-use simulated data
with the implemented simulation framework. As shown in
Figure 6, the estimation of joint angles was even better using

a reduced dataset with simulated data compared to using
all measured data without simulated data. On the one hand,
using simulated data increases the number of samples and
thus minimizes the risk of overfitting. On the other hand,
simulated data includes additional variations of movement
such that unseen data is covered with a higher probability.
Simulated data would be of great advantage for rare events and
abnormal movements where training data is hard to acquire, for
example, for detecting an impending fall. Overall, biomechanical
simulations can supplement time-consuming and expensive
data collections to achieve a better generalization of machine
learning models.
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In summary, we presented a novel approach to generate
an (in principle) infinite set of inertial sensor data with
corresponding biomechanical variables using optimal control
simulations of walking and running. We evaluated training on
simulated data compared to solely learning on measured data.
The simulated data improved the estimation of joint angles. The
simulation-aided estimation of joint moments and GRFs was
limited by inaccuracies of the musculoskeletal model. Improving
the physics-based model or domain adaptation learning may
help to reduce the gap between real and simulated data.
The current method is a first step of using optimal control
simulation for training deep neural networks and was evaluated
for sagittal plane biomechanics only. In future work, this
method should be evaluated for 3D biomechanical analysis. In
addition, different datasets could be combined using the optimal
control simulation in order to create representative datasets of
human movement.

In conclusion, machine learning can benefit from available
domain knowledge on biomechanical simulations to supplement
cumbersome data collections. This enables the training of robust
data-driven models that can provide real-time feedback on
biomechanics “in the wild,” for example, to reduce injury risk,
for rehabilitation movement training, or for controlling active
assisting devices such as exoskeletons.
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Observing, classifying and assessing human movements is important in many applied

fields, including human-computer interface, clinical assessment, activity monitoring and

sports performance. The redundancy of options in planning and implementing motor

programmes, the inter- and intra-individual variability in movement execution, and the

time-continuous, high-dimensional nature of motion data make segmenting sequential

movements into a smaller set of discrete classes of actions non-trivial. We aimed to

develop and validate a method for the automatic classification of four popular functional

fitness drills, which are commonly performed in current circuit training routines. Five

inertial measurement units were located on the upper and lower limb, and on the trunk

of fourteen participants. Positions were chosen by keeping into account the dynamics

of the movement and the positions where commercially-available smart technologies

are typically secured. Accelerations and angular velocities were acquired continuously

from the units and used to train and test different supervised learning models, including

k-Nearest Neighbors (kNN) and support-vector machine (SVM) algorithms. The use of

different kernel functions, as well as different strategies to segment continuous inertial

data were explored. Classification performance was assessed from both the training

dataset (k-fold cross-validation), and a test dataset (leave-one-subject-out validation).

Classification from different subsets of the measurement units was also evaluated

(1-sensor and 2-sensor data). SVM with a cubic kernel and fed with data from 600ms

windows with a 10% overlap gave the best classification performances, yielding to

an overall accuracy of 97.8%. This approach did not misclassify any functional fitness

movement for another, but confused relatively frequently (2.8–18.9%) a fitness movement

phase with the transition between subsequent repetitions of the same task or different

drills. Among 1-sensor configurations, the upper arm achieved the best classification

performance (96.4% accuracy), whereas combining the upper arm and the thigh sensors

obtained the highest level of accuracy (97.6%) from 2-sensors movement tracking.
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We found that supervised learning can successfully classify complex sequential

movements such as those of functional fitness workouts. Our approach, which could

exploit technologies currently available in the consumer market, demonstrated exciting

potential for future on-field applications including unstructured training.

Keywords: automatic classification, inertial measurement unit, sport, on-field testing, activitymonitoring, machine

learning, wearable sensors

INTRODUCTION

The problem of tracking, identifying and classifying human
actions has received increasing interest over the years, as it plays
a key role in many applied contexts, such as human-computer
interface (Popoola and Wang, 2012; Sarig Bahat et al., 2015;
Quitadamo et al., 2017; Bachmann et al., 2018), daily-life activity
monitoring (Mannini and Sabatini, 2010; Cheng et al., 2015;
Chetty and White, 2016), clinical assessment (Rawashdeh et al.,
2016; Arifoglu and Bouchachia, 2017; Howell et al., 2017) and
sports performance (Attal et al., 2015; Ghazali et al., 2018; Hsu

et al., 2018). The development of unobtrusive technologies
for motion capture (e.g., wearable inertial measurement
units—IMUs), their widespread integration in relatively cheap,

commercially available devices (e.g., smartphones, watches,
activity trackers, heart rate monitors, sensorized insoles), and the
push toward healthier, more active life styles, have generated a
multitude of existing and potential applications where automatic

movement classification and assessment is fundamental (Attal
et al., 2015; Cheng et al., 2015; Cust et al., 2019).

Sport coaching and training still largely rely on visual
observation and subjective feedback, and they could benefit
from quantitative input supporting decision making. Having
quantitative real-time information about the amount, quality
and intensity of the work carried out may play an important
role at multiple levels. It could inform coaching and strength
& conditioning planning, help monitoring training load, and
evaluating the quality of movement performance (i.e., the
outcome achieved) and movement execution (i.e., technique).
It could also help improving injury prevention, as continuous
monitoring could enable systematic screening of movement
behavior, help identifying risk factors and mechanisms of injury,
and support decision making in terms of pre- and rehabilitation
programmes (Jones and Wallace, 2005).

Motion capture has traditionally relied on optical-based
solutions, but recent development in microelectronics has
generated increased interest and research efforts into wearable
technologies (Adesida et al., 2019). Wearable systems are
particularly suitable to sport-specific needs (van der Kruk
and Reijne, 2018), since: (1) sport usually takes place in
uncontrolled and unstructured settings, with environmental
conditions difficult to be predicted a priori (e.g., weather,
interaction with equipment and other people) and many possible
measurement interferences (e.g., electromagnetic noise); (2) the
size of the acquisition volume inherently depends on the type of
practiced sport (e.g., team vs. individual, indoor vs. outdoor); (3)
sensors used to capture sports movements should be both robust

and non-obtrusive for the athlete (i.e., ecologically transparent).
Systems based on wearable devices, including low-cost activity
trackers, smartwatches and smartphones (Ahmad et al., 2017),
have kept evolving and are widely available for the consumer
market, including clinical uses and sports applications (Ghazali
et al., 2018; Hsu et al., 2018). Wearable technologies for motion
analysis are predominantly inertial measurement units (IMUs)
(Davila et al., 2017), which, thanks to their low cost and minimal
obtrusiveness, represent an optimal solution for tracking and
assessing sports movement on-field (Hsu et al., 2018; van der
Kruk and Reijne, 2018; Adesida et al., 2019).

Despite the widespread of wearable technology in both
applied and research environments, the use of wearable data
as input of algorithms for the detection and classification of
human actions remains non-trivial, especially in sport. Indeed,
sport activities typically involve a large variety of movements,
execution technique demonstrates inherent inter- and intra-
individual variability, and data is of high-dimensionality (Endres
et al., 2012; Hsu et al., 2018). For this reason, no “one-size-
fits-all” approach exists (Crema et al., 2019), and bespoke
solutions have been reported to address only specific needs,
including: recognition/classification (i.e., “what type” of task a
subject performs) or identification of the achieved performance
(i.e., “how good” the subject performs the task, with respect
to a specific reference). In this perspective, the literature has
focused the analysis on very specific sport activities and tasks
(Cust et al., 2019).

Among fitness activities, functional training combines
aerobic conditioning, weightlifting, interval training, balancing,
gymnastics, and functional fitness movements (i.e., exercises that
mimic daily life requirements, such as lifting weights) performed
at high level of intensity (Liebenson, 2006). Functional fitness
has been shown to improve cardiovascular capacity, muscle tone
and central nervous system efficiency (Barbieri et al., 2019; Singh
and Saini, 2019), but may also increase risk of musculoskeletal
injuries affecting shoulder, lower back and knee joints (Gianzina
and Kassotaki, 2019). It is therefore important to provide athletes
with reliable feedback about their efforts, and guide them toward
safe movement technique. The availability of a quantitative
system for the monitoring of movement completion and overall
performance would aid coaching and judging. Functional fitness
workouts often consist of continuous sequences of movements,
and the identification and assessment of individual elements
within the sequence currently relies on visual observation and
the expertise of the coach. The wide spectrum of situations in
terms of dynamics and body part involved represents a difficult
challenge for the automatic classifications of activities and makes
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it a good proof of concept for the scope of our study. Being able
to identify specific movements within a complex movement
sequence could be the starting point of a number of useful
applications such as counting the number of movement tasks
completed, and hence assessing technique and training load for
both performance and injury prevention purposes.

We aimed to develop and validate a bespoke algorithm for
the automatic recognition and classification of four popular
functional fitness drills, when performed in a continuous
workout. In particular, we wanted to test the capability of
supervised machine learning approaches when fed with data
from a network of five wearable inertial sensors on the body.
Also, we carried out a sensitivity analysis, which could indicate
whether subsets of the available measuring units could still
provide acceptable classification performance.

MATERIALS AND METHODS

Population
Fourteen healthy participants (11 males and three females, age
18–50) with at least 6-months experience in functional training
activities volunteered to take part in this study. All participants
were physically active, free from any neurological disease and
musculoskeletal condition at the time of testing, and familiar
with the movement tasks to be performed. The study protocol
received ethical approval by the local research ethics committee
(reference number EP 17/18 247). Volunteers were informed

about experimental procedures and signed informed consent
before participating. Based on the existing literature (Cust et al.,
2019) and the exploratory nature of the study, a sample size >12
was deemed adequate to address the research objectives.

Experimental Setup
Five wearable units (Trigno Avanti Wireless EMG System,
Delsys Inc., USA) were secured to the participants via double-
sided hypoallergenic tape and elastic straps. IMUs were located
onto specific anatomical landmarks (Figure 1), which included
the left ankle, thigh, upper arm and wrist, and trunk (L5-
S1 level). These positions were chosen to: (a) reproduce the
locations where commercially available devices with embedded
motion monitors (e.g., smart watches, smart phones, shoe-
sensors) could be positioned; and, (b) to capture whole body
information and drill dynamics whilst allowing the natural
execution of movements, avoiding obstruction or discomfort for
the subject. The wearable units embed tri-axial accelerometers,
gyroscopes and magnetometers and were able to synchronously
communicate with the system base station via Bluetooth Low
Energy (BLE) wireless protocol ensuring an acquisition rate of
148.15 Hz.

Accelerations and angular velocities (±16 g, ±2,000◦/s) were
acquired continuously throughout the workout by means of
the wearable units; magnetometer measurements were excluded
due to the presence of ferromagnetic materials, very close to
the acquisition volume. Data coming from the sensors were

FIGURE 1 | Experimental setup and movement tasks, where the position of IMU sensors has been highlighted. (A) “Clean and Jerk,” (B) “Box Jump,” (C) “American

Swing,” and (D) “Burpee”. All the five sensors were worn by the participants throughout the execution of the protocol.
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FIGURE 2 | Schematic representation of the execution stages of the fitness training drills used in this study: (A) “Clean and Jerk,” (B) “American Swing,” (C) “Box

Jump,” and (D) “Burpee”.

synchronized with a commercial video-camera (Oqus Video
210c, Qualisys AB, Sweden; 50Hz) via a dedicated trigger
module (Trigger Module, Delsys Inc. USA) connected to
both systems. The video camera was positioned in front of
workout station, thus allowing the correct acquisition of all the
performed movements.

Experimental Protocol
Participants were asked to execute a workout session including
four popular functional training drills (Figure 2). These
consisted of:

- “Clean and Jerk” (C&J). A weighted barbell is lifted from the
ground to over the head in two subsequent movements: the
“clean,” where the barbell is pulled from the floor to a racked
position across the shoulders, and “jerk,” where the barbell is
raised above the head, and a stable position is achieved by
keeping straight legs and arms, and feet, torso and barbell lie
in the same plane.

- “American Swing” (AS). A kettlebell is grasped with both hands
and swung from below the groin to above the head, keeping
the arms straight. The upward momentum of the kettlebell is
predominantly generated by the explosive extension of the hip.

- “Box Jump” (BJ). The participant start from a standing position
in front of a box, performs a countermovement jump to land
on top of it, achieves a stable upright position, and completes
the task by returning to the start position.

- “Burpee” (BP). A four-stage exercise, where the participant
starts from a standing position, squats placing the hands on
the floor, kicks back into a plank position while keeping the
arms extended, returns in the squat position and, jumps up
extending the upper limbs overhead.

All the movement tasks were illustrated to the participants at
the start of the session, following the standards approved for
competition (CrossFit, 2019; WODstar, 2019). A 50 cm box was
used in the Box Jump exercise for all participants, whereas drills
with an added resistance were differentiated between female and
male participants, and set to, respectively: 20 and 40 kg in the
Clean & Jerk; 12 and 16 kg in the American Swing.

After a self-directed warm up, and some repetitions to
familiarize with the experimental setup, each participant
performed 3 sets of functional fitness activities structured
as follows:

Set 1 (classifier training dataset):

- 3× C&J+ 3× BJ+ 3× AS+ 3× BP

Set 2 (workout simulation session, classifier test dataset):

- 1st Round: 1× C&J+ 1× BJ+ 1× AS+ 1× BP
- 2nd Round: 2× C&J+ 2× BJ+ 2× AS+ 2× BP
- 3rd Round: 3× C&J+ 3× BJ+ 3× AS+ 3× BP
- 4th Round: 4× C&J+ 4× BJ+ 4× AS+ 4× BP

Set 3 (classifier training dataset):

- 3× C&J+ 3× BJ+ 3× AS+ 3× BP

Five-minute recovery was allowed between sets, whereas
movements were executed sequentially with no rest allowed
between repetitions of the same exercise, different exercises
or rounds. This was done to ensure ecological validity with
respect to a real functional fitness training session, and to
challenge the capability of the classifying algorithm to recognize
movements when they are performed without clear breaks
in-between them. The order of movement execution was
randomized between participants, to avoid possible bias due to
repetitive patterns.
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TABLE 1 | Features extracted from each time window of each signal collected

(from accelerometers and gyroscopes), and then used as input of the

classification algorithm.

Time domain Frequency domain

Mean value (Magnitude) Mean value

Standard deviation Power

Root mean square Higher frequency

Mean absolute deviation Lower frequency

Max value Median frequency

Min value Mean frequency

Kurtosis Spectral entropy

Skewness

Quartile (25th, 50th, 75th)

The workout simulation (Set 2) was preceded (Set 1) and
followed (Set 3) by a sequence of three repetitions of each task.
The pre- and post-workout session were used as training sets for
the machine learning algorithms, and were both included so that
the classification method could be robust to the possible changes
in movement execution caused by fatigue or learning effects in
the participants.

Data Analysis
The three components of acceleration and angular velocity
from the five IMUs (6 × 5 = 30 continuous timeseries) were
used as input data for the classifying algorithm. Kinematic
quantities were not filtered, and frequency-domain signals were
attained through transforming the time-domain signals via Fast
Fourier Transform. Data features in the time and frequency
domain (Table 1) were extracted from data windows moving
across the original kinematics timeseries. This process aimed
to reduce the signals into distinctive characteristics of specific
movement tasks or part of them. The more each movement can
be separated in feature space, the higher the achieved recognition
and classification performance is Zhang and Sawchuk (2013) and
Hoettinger et al. (2016).

To set suitable ranges for window duration and decide the
amount of window overlap, we analyzed the distribution of
movement durations across the population (Figure 3). Values
between 300 and 600ms (in increments of 100ms) for window
length, and of 0, 10, and 20% for the amount of overlap were
chosen to study the sensitivity of the classification to the choice
of windowing parameters. This allowed to have at least three
time windows covering the execution of each movement or the
transitions between subsequent movements. A [N× 540] feature
matrix was generated for each participant, where N indicates
the number of time windows in each session, and 540 is the
overall number of features included in the analysis (5 sensors× 2
kinematic quantities per sensor × 3 directions per quantity× 18
features per quantity).

Data Labeling
A supervised approach to automatic classification was adopted,
with video-based classification used as the gold standard for

labeling each data window as a transition phase or as a part of
one of the four possible functional fitness movements (Figure 2).
Camera footage was used to identify the start and end of each
movement and for their classification (i.e., labeling), as required
by the supervised learning model. Movement recognition, timing
and labeling were visually carried out by a single expert
operator using freeware video editing software (VirtualDub,
virtualdub.org). When a window spanned between a transition
phase and one of the four movement tasks, a “majory” criterion
was used. This implied assigning a movement label (i.e., “C&J,”
“AS,” “BJ,” or “BP”) to a window where the movement covered
more than 66% of its length. Otherwise, the transition label (i.e.,
“TRANS”) was allocated.

Classifier Training
After the extraction of the features and the labeling of associated
windows, we trained different type of automatic classifiers using
data Set 1 and 3. k-Nearest Neighbors (kNN), with different types
of metrics (Euclidean, cosine, cubic or weighted distance) and
number of neighbors (fine, k= 1; medium, k= 10; and coarse, k
= 100), and Support VectorMachine (SVM) with several types of
kernel functions (i.e., linear, quadratic, cubic and fine-medium-
coarse Gaussian), were selected as the classifying algorithms
to be tested. This choice was driven by the existing literature
in the area of machine learning approaches addressing human
motion (Camomilla et al., 2018; Cust et al., 2019) and sport (Cust
et al., 2019) classification. At this stage, all the reported features
(Table 1) were used to train the models.

Classifier Assessment
Two levels of classifier evaluation were carried out. Firstly (Stage
1), we performed a 5-fold cross-validation on the classifier
training dataset (N = 14 participants, Set 1 and 3); this approach
was used to mitigate the risk of overfitting by partitioning the
dataset into k-folds and estimating the accuracy of each fold
(Taha et al., 2018).We used this stage to select themost promising
algorithm amongst themany tested. Finally (Stage 2), assessed the
classifier performance on new data (i.e., the workout simulation
dataset, Set 2) in a Leave-On-Subject-Out (LOSO) fashion
(Hagenbuchner et al., 2015; Willetts et al., 2018). In this stage, the
classifier was trained with data from Set 1 and 3 (including N-1
participants), and validated against data of the N-th participant,
from Set 2; the N-th participant was iteratively changed, and
results were reported averaging the multiple iterations. This
approach guaranteed having independent data, in terms of both
trials and individuals, between training and testing sets.

Classification accuracy (Equation 1) was evaluated as follows
(Hoettinger et al., 2016; Davila et al., 2017):

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP, TN, FP and FN represent True Positive, True Negative
and False Positive, respectively.

Once the optimal classifier was identified, the corresponding
confusion matrix and Receiver Operating Characteristic (ROC)
curves (in a multi-label “one-vs.-rest” assessment) were analyzed
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FIGURE 3 | Distribution of individual movement durations in the analyzed population. C&J, Clean and Jerk; AS, American Swing; BJ, Box Jump; BP, Burpee.

to assess the ability of the algorithm to recognize and correctly
classify each functional fitness exercise. From the confusion
matrix, for each exercise, we evaluated:

- the Positive Predictive Value (PPV), representing the precision
of the classifier (Equation 2):

PPV =
TP

TP + FP
(2)

- the True Positive Rate (TPR), representing the sensitivity (also
called recall) of the classifier (Equation 3):

TPR =
TP

TP + FN
(3)

Sensitivity Analysis
Two type of sensitivity analysis were carried out: (a) the effect of
window length and overlapping, where all classifier types and all
the features were included; and, (b) the effect of selecting a subset
of the five available IMUs, which was analyzed starting from
the classifier previously identified as giving the best outcome
performance (as highlighted in validation Stage 1). For (b), the
analysis was carried out starting from the data provided by each
sensor in isolation and by considering data from pairs of sensors,
as follows:

- wrist and ankle;
- wrist and lumbar area;
- wrist and thigh;
- wrist and upper arm;
- upper arm and ankle;
- upper arm and lumbar area;
- upper arm and thigh.

Feature Selection Analysis
Once the best performing subset of the five measurement
units was identified, an exploratory analysis of the most
significant features extracted was carried out. We used the
minimum Redundancy Maximum Relevance (mRMR) filter-
based algorithm applied to the standardized feature matrix, due
to its trade-off between performance and efficiency (Peng et al.,
2005; Wang et al., 2016). To compare the overall accuracy, a fixed
number of features was identified starting from the analysis of the
predictor importance scores performed on the training dataset;
these features were then used to train the models and to test them
following Stage 2 validation.

Training of the supervised learning models and analysis of
classification performance were carried out through the Statistics
andMachine Learning Toolbox and bespoke functions developed
in Matlab (v R2019b, The Mathworks Inc.).

RESULTS

k-Fold Cross-Validation of Classifier
Performance and Sensitivity Analysis: Time
Window and Overlap Parameters
When data input included all the five available sensors, both
SVM- and kNN-type classifiers achieved good level of overall
accuracy (Tables 2, 3, respectively). Accuracy ranged from 82.5%
(SVM classifier with fine gaussian kernel, and 300 ms−10%
overlap windows) to 97.8% (cubic kernel SVM classifier, with 600
ms−10% overlap windows).

Testing SVM Performance With Training
and Test Datasets
Considering the overall accuracy, the training time (a ratio of
more than 20 between the slowest and the fastest classifier)
and the computational costs (a ratio of more than 80 between
the fastest and slowest classifiers, in terms of prediction speed),
the SVM with cubic kernel applied to 600 ms−10% overlap
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TABLE 2 | Overall classification performance (accuracy, in %) for Support Vector Machine (SVM) algorithms, as a factor of different kernel functions, window lengths, and

percentage of window overlap.

Overlap [%] Overlap [%] Overlap [%]

0 10 20 0 10 20 0 10 20

Linear Quadratic Cubic

Window [ms] 300 95.6 95.5 95.7 96.7 96.7 96.8 97.1 97.0 97.3

400 95.7 96.0 96.2 97.2 97.1 97.1 97.3 97.3 97.3

500 96.3 96.6 96.4 97.1 97.1 97.1 97.4 97.4 97.2

600 96.2 97.0 96.4 97.0 97.7 97.7 97.0 97.8 97.7

Fine gaussian Medium gaussian Coarse gaussian

Window [ms] 300 82.6 82.5 82.7 95.5 95.5 95.7 93.5 93.7 94.0

400 82.8 82.9 82.8 95.4 95.6 96.0 93.8 94.0 94.0

500 83.6 83.2 83.3 95.2 95.4 95.5 93.6 94.6 94.3

600 83.6 83.7 83.4 95.2 95.8 95.5 93.6 94.6 94.2

Data from all the five IMUs available were used as input. Green bold numbers = best performance; red bold numbers = worst performance.

TABLE 3 | Overall classification performance (accuracy, in %) for k-Nearest Neighbors (kNN) algorithms, as a factor of different kernel functions, window lengths and

percentage of window overlap.

Overlap [%] Overlap [%] Overlap [%]

0 10 20 0 10 20 0 10 20

Fine Class Medium Class Coarse Class

Window [ms] 300 96.4 96.4 96.7 96.3 96.0 96.5 89.2 89.8 90.6

400 96.3 96.3 97.0 96.1 96.5 96.8 89.0 90.1 90.5

500 96.1 97.0 97.0 96.0 96.5 96.1 89.7 89.8 90.4

600 96.2 97.2 96.7 95.7 96.4 96.2 89.0 89.9 90.5

Cosine Cubic Weighted

Window [ms] 300 96.4 96.3 96.6 94.0 93.7 94.1 96.4 96.3 96.8

400 96.3 96.5 96.5 93.9 94.2 94.9 96.4 96.7 96.9

500 96.1 96.7 96.3 94.6 94.7 94.8 96.3 96.6 96.4

600 96.1 97.2 96.5 94.7 94.9 94.8 96.3 96.9 96.5

Data from all the five IMUs available were used as input. Green bold numbers = best performance; red bold numbers = worst performance.

windows appeared as the optimal learning model. The confusion
matrix for this classifier (Table 4) showed that the trained model
yielded to almost no (validation Stage 1) or few (validation
Stage 2) misclassifications between different functional fitness
movements. Specific accuracy ranged from 99.7% for burpees in
the 5-fold cross-validation to 94.3% for the transition phase when
tested on new data. All but one erroneous classification in the
5-fold cross-validation were from movement tasks identified as
transition phases (64, 1.6% of the total) and, less frequently, from
transitions confused for functional fitness drills (19, 0.5%). We
had up to 18.9% of false negative rates in the AS drill, which
reported the lowest level of precision (93.0%) and sensitivity
(81.1%) (Table 5). Similar outcomes, but with lower percentage
values, were reported by the LOSO validation on the test dataset.
Precision and sensitivity values were always highest in the
transitionmovements (94.9 and 97.8%, respectively), whereas the

Clean & Jerk (89.3 and 82.2%) and American Swing (93.0 and
79.3%) showed the lowest performance results (Table 5).

The analysis of ROC curves gives us the power of our
classifier in a multi-label classification problem, as a function
of the Type I error (i.e., 1—specificity), as it was a binary
predictor. Considering the validation stages, the selected SVM
classifier showed an almost null value for FPR in each functional
fitness movement (<1%), with the TPR ranging from 84%
(BJ classification) to 96% (BP classification). The highest
value of TPR was reached in the classification of transition
phases (99%), although, in TRANS the classifier also reported
the highest level of FPR (7%). Finally, the Area Under the
Curve (AUC), which describes the capability of the supervised
learning model to distinguish between one class and the others,
ranged between 0.98 and 1, therefore showing good overall
classification performances.
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TABLE 4 | Confusion matrixes for the cubic kernel SVM algorithm with a 600ms window length and 10% overlap.

Stage 1: 5-fold Cross-Validation – Training Dataset

Predicted class

C&J AS BJ BP TRANS

True class C&J 228 (5.9%) 22 (0.6%)

AS 107 (2.8%) 25 (0.6%)

BJ 92 (2.4%) 13 (0.3%)

BP 1 (0.0%) 138 (3.6%) 4 (0.1%)

TRANS 2 (0.1%) 7 (0.2%) 5 (0.1%) 5 (0.1%) 3215 (83.2%)

Stage 2: LOSO – Test Dataset

Predicted class

C&J AS BJ BP TRANS

True class C&J 434 (8.1%) 4 (0.1%) 90 (1.7%)

AS 3 (0.1%) 214 (4.0%) 2 (0.0%) 51 (0.9%)

BJ 174 (3.2%) 29 (0.5%)

BP 2 (0.0%) 280 (5.2%) 43 (0.8%)

TRANS 47 (0.9%) 12 (0.2%) 12 (0.2%) 20 (0.4%) 3961 (73.3%)

Classification performance is reported from the two stages of validation as total counts and % of total. Blank cells correspond to a count of zero. LOSO = “leave one subject out.”

Training = sensor data from movements of Set 1 and Set 3 of the experimental protocol, used to train the classifier. Test = sensor data from movements of Set 2 of the experimental

protocol, not used to train the algorithm. Results are the average across multiple iterations. Green = correct prediction, red = misclassification.

TABLE 5 | Accuracy (ACC), precision (PPV, Positive Predictive Value) and

sensitivity (TPR, True Positive Rate) for each functional fitness movement, related

to the cubic kernel SVM algorithm with a 600ms length windows and 10%

overlap.

ACC PPV TPR

Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

C&J 99.4 97.3 99.1 89.3 91.2 82.2

AS 99.1 98.7 93.0 93.0 81.1 79.3

BJ 99.5 99.2 94.8 93.5 87.6 85.7

BP 99.7 98.8 96.5 92.7 96.5 86.2

TRANS 97.9 94.3 98.0 94.9 99.4 97.8

Data from all the five IMUs available were used as input. Classification performance is

reported from the two stages of validation as %, and results are the average across

multiple iterations. Stage 1= 5-fold Cross-Validation—Training Dataset; Stage 2 = “leave

one subject out” (LOSO) on test dataset. Green bold numbers = best performance; red

bold numbers = worst performance.

Sensitivity Analysis: Number of Sensors
When considering the data coming from a single sensor, the
selected SVM classifier achieved good values of recognition
rates in most cases (Table 6), with an overall accuracy between
83.2% (data from the ankle sensor, validation Stage 2) and
96.4% (data from the upper arm sensor, cross-fold validation).
Using input data from pairs of IMUs generally improved the
overall classification accuracy, pushing it up of several percentage
point when testing on new data (Stage 2: from 83.2−91.0% to

92.0−93.0%). However, using two sensors did not match the
performances obtained when data from all the sensors were
utilized (93.0 vs. 97.8%).

In relation to the contribution of each sensor to the correct
classification of individual functional drills, including data from
the sensor placed on the upper limb (upper arm or wrist), or from
a combination of a sensor on the upper limb and a sensor on the
lumbar area or thigh, seemed to improve classifier performance,
in at least 3 out of 4 movements and in the transition phases
(Tables 7, 8). Only in the AS, the classifier seemed to perform
relatively better when using data from the sensor placed on the
lumbar spine (single sensor configuration). The worst overall
performance was obtained when considering the data acquired
by the only sensor placed on the ankle. Only for the AS, the
algorithm did worse considering the data registered by the sensor
placed on the wrist.

Feature Selection Analysis
From the sensitivity analysis we identified two configurations to
be further tested by using the feature selection.We considered the
data collected by the sensor on the upper arm (UA configuration,
for a total of 108 features) and by the combination of sensors on
the upper arm and thigh (UA+T configuration, for a total of 216
features). After a qualitative analysis of the trend in prediction
scores, from the most important predictor to the less significant,
we set the number of the features to keep to 20.

The reduction of the number of the features did not
compromise the overall accuracy of the classifier, thus
underlining the reliability of the approach. In particular, the
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TABLE 6 | Overall classification performance (accuracy, in %) for Support Vector Machine (SVM) algorithms, with 600 ms−10% overlap windows.

Validation W UA T A L W+A W+L W+T W+UA UA+A UA+L UA+T

Stage 1 94.5 96.4 93.5 92.4 93.5 96.4 96.5 97.0 96.8 96.8 97.4 97.6

Stage 2 89.3 91.0 86.8 83.2 87.5 92.0 92.0 92.6 92.2 92.2 93.0 93.0

Data from individual or pairs of IMUs were used as input. Stage 1= 5-fold Cross-Validation—Training dataset; Stage 2 = “leave one subject out” (LOSO) on workout dataset. Green

bold numbers = best performance; red bold numbers = worst performance. W, Wrist; UA, Upper Arm; T, Thigh; A, Ankle; L, Lumbar Segment.

TABLE 7 | Accuracy (ACC), precision (PPV, Positive Predictive Value) and sensitivity (TPR, True Positive Rate) for each functional fitness movement, related to the cubic

kernel SVM algorithm with a 600ms length windows and 10% overlap.

W UA T A L

ACC PPV TPR ACC PPV TPR ACC PPV TPR ACC PPV TPR ACC PPV TPR

C&J 96.4 85.7 75.9 96.2 86.7 72.9 93.0 65.1 62.9 90.9 53.6 55.7 93.2 67.6 58.5

AS 96.8 81.3 48.1 97.3 78.5 63.7 97.5 81.7 65.9 97.6 82.6 65.2 97.8 82.1 71.1

BJ 98.6 83.9 76.8 99.1 90.9 83.7 96.9 61.3 45.3 95.4 36.5 28.1 98.1 87.9 57.1

BP 97.0 88.3 58.2 97.9 83.6 81.5 97.5 85.3 69.8 97.1 79.5 69.2 97.0 78.9 68.0

TRANS 89.7 90.2 96.8 91.5 92.7 96.3 88.6 90.6 94.7 85.3 89.0 91.8 89.0 90.5 95.5

Data from individual IMUs were used as input. Classification performance is reported as %. For sake of clarity, only results from the most stringent validation (Stage 2= “leave one subject

out” on test dataset) are reported. Green bold numbers = best performance; red bold numbers = worst performance. W, Wrist; UA, Upper Arm; T, Thigh; A, Ankle; L, Lumbar Segment.

highest value of accuracy was maintained when considering the
UA configuration (99.1% for BJ), whereas UA+T configuration
reported a reduction of only 0.3% (99.1 vs. 98.8%) (Table 9).
Furthermore, in both configurations, all the values of accuracy
were >89.5% (TRANS in UA). Larger differences concerned
precision and recall in classifying the AS task, which decreased
to 59.3% and 49.6% (UA), and 71.9% and 62.6% (UA+T),
respectively. For AS alone, both PPV and TPR decreased by
15–20%, showing risk of misclassification.

Most of the identified features were time-domain features
(15 out of 20 for the UA configuration and 16 out of 20 for
the UA+T configuration), and was information coming from
gyroscope data (13 out of 20 for the UA configuration and 12
out of 20 for the UA+T configuration). In UA+T, the identified
features were equally spread between the sensor placed on the
upper arm and on the thigh (10 out of 20, each).

DISCUSSION

We developed and tested a supervised learning approach
to recognizing and classifying functional fitness movements
within a continuous workout, combining four different drills.
Accelerations and angular velocities from a set of wearable
inertia sensors were used as input of the classifier. Different
machine learning algorithms, time segmentation strategies and
combination of sensors were assessed. Classification accuracy
was generally high in both Support Vector Machine (SVM) and
k-Nearest Neighbors approaches (>82.5% in the worst case);
the SVM model with cubic kernel and applied to 600 ms−10%
overlap data windows gave the best performance overall (94.4–
97.8% accuracy, depending on the type of validation carried

out). Information coming from sensors from the upper limb,
alone or in combination with a wearable unit in the lumbar
area or on the thigh, appeared to be key to achieve optimal
classification performance.

By using SVM on the whole dataset, misclassifications (as
False Negative Rate—NFR) were lower in the “Transition” phase
(0.6–2.2%) and higher in the other four drills, particularly in
the “American Swing” (18.9–20.7%). Ex post analysis highlighted
that the higher percentages of errors could be typically related to
three main factors. (1) The overall smaller number of windows
associated with functional movements as opposed to transitions.
(2) The choice made for the “majority” criterion, whereby up to
34% of a functional movement could still belong to a window
labeled as TRANS. This may have an influence on the capability
of the classifier to assign a window to one of the four drills instead
of TRANS. (3) The difficulty in labeling windows as belonging to
a movement or TRANS between repetitions of the same exercise,
when the dynamics of the task makes it difficult to establish
with certainty the start and end of the movement. Combining
these three items, the problem appeared more evident for
the “American Swing,” possibly for the inherent dynamics of
the task.

When analyzing the contribution of each sensor
independently (1-sensor input) or in combination with another
IMU (2-sensor input), the overall classification performance
decreased of few percentage points, but still achieved an
accuracy >83.2% in the worst case (i.e., IMU on the ankle,
with the most stringent validation approach). Ankle kinematics
may contain less information when feet are not moving;
this situation may happen in a number of movement- and
transition-related situations, such as during the “Clean and
Jerk,” thus explaining the decreased performance of the classifier.
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TABLE 8 | Accuracy (ACC), precision (PPV, Positive Predictive Value) and

sensitivity (TPR, True Positive Rate) for each functional fitness movement, related

to the cubic kernel SVM algorithm with a 600ms length windows and 10%

overlap.

C&J AS BJ BP TRANS

W+A ACC 96.4 98.4 98.8 98.0 92.5

PPV 83.5 91.8 89.1 84.8 93.7

TPR 79.5 74.4 76.8 80.6 96.5

W+L ACC 96.6 98.5 98.7 97.8 92.5

PPV 86.1 91.3 84.5 84.6 93.6

TPR 77.7 77.4 80.8 77.5 96.6

W+T ACC 97.3 98.1 98.7 97.9 93.0

PPV 87.8 90.4 87.7 88.4 93.7

TPR 84.7 69.6 77.3 75.1 97.3

W+UA ACC 97.0 97.8 99.1 98.0 92.4

PPV 89.5 88.1 90.9 87.6 93.0

TPR 79.0 65.6 83.3 78.2 97.2

UA+A ACC 95.9 98.2 99.1 98.6 92.6

PPV 81.2 90.6 92.8 89.1 93.8

TPR 75.4 71.1 82.3 87.7 96.6

UA+L ACC 96.7 98.4 99.0 98.5 93.3

PPV 88.6 93.3 89.0 89.9 93.8

TPR 76.3 72.6 83.7 84.9 97.6

UA+T ACC 96.7 98.2 99.1 98.5 93.3

PPV 84.6 89.2 90.6 91.6 94.4

TPR 80.9 73.7 85.7 83.7 96.9

Data from pairs of IMUs were used as input. Classification performance is reported as %.

For sake of clarity, only results from the most stringent validation (Stage 2 = “leave one

subject out” on workout dataset) are reported. Green bold numbers = best performance;

red bold numbers=worst performance. W=Wrist, UP=Upper Arm, T= Thigh, A= Ankle,

L= Lumbar Segment.

In fact, collecting upper arm kinematics alone yielded 91.0–
96.4% accuracy (depending on the validation approach). Also,
adding information from a second sensor generally improved
the capability of the algorithm to identify classes correctly,
narrowing the performance gap between using two IMUs or
the whole sensor network. The best combinations resulted from
adding one further IMU to one sensor on the upper arm, i.e.,
upper arm and lumbar area (93.0–97.4%) or thigh (93.0–97.6%),
which further confirms the need for the system to cover the
widest range of movement dynamics. Similarly to what observed
for the whole sensor network, misclassifications were more
common in the “American Swing” (31.8–36.3% and 21.2–26.3%
FNR for the UA and UA+T configurations, respectively).

To explore the translation of the selected algorithm into more
easily applicable framework, a subset of features, consisting of
the best 20 identified through a filter-based algorithm (mRMR),
was used in a 1-sensor or 2-sensor configuration, and its
classification ability tested (LOSO validation on the test dataset).
The overall accuracy resulted better than 90% for all the
performed task, although the confusion matrixes highlighted
difficulties in distinguishing “similar” gestures (AS misclassified
with TRANS). Further analysis of feature selection suggested that
the most informative characteristics of the dataset were mainly
related to time domain (i.e., kurtosis and skewness). Although

TABLE 9 | Accuracy (ACC), precision (PPV, Positive Predictive Value) and

sensitivity (TPR, True Positive Rate) for each functional fitness movement, related

to the cubic kernel SVM algorithm with a 600ms length windows and 10%

overlap.

ACC (%) PPV (%) TPR (%)

UA C&J 95.4 79.6 70.8

AS 95.8 59.3 49.6

BJ 99.1 90.0 84.2

BP 97.3 78.8 75.4

TRANS 89.5 91.7 94.6

UA+T C&J 96.0 79.3 80.5

AS 96.9 71.9 62.6

BJ 98.8 85.5 81.3

BP 97.5 82.7 75.1

TRANS 91.9 93.9 95.4

Data from the IMU placed on the upper arm (UA) and the combination of upper arm and

thigh (UA+T) were used as input. Classification performance is reported from the only

Stage 2= “leave one subject out” (LOSO) validation on test dataset. Green bold numbers

= best performance; red bold numbers = worst performance in each stage.

these preliminary findings support the use of feature reduction
in the pipeline of data processing, a more in-depth analysis
of feature selection and outcomes derived thereof is advisable,
especially for 1-sensor solutions with lower-end technology (Fan
et al., 2019).

Supervised machine learning appeared a suitable tool for the
automatic classification of different functional fitness exercises.
Our study addressed a scenario that for number and type of
movements involved appears more challenging than what has
been assessed by other works in the field. Also, we located
our sensors according to where existing consumer technologies
would be placed, and not thinking of what the best configuration
for motion capture would be. Despite these added complexities,
our approach obtained similar performance to what reported
by the literature as the current state of the art. Ghazali et al.
(2018) achieved 91.2% accuracy in tracking several common
sporting activities such as walking, sporting, jogging sprinting
and jumping. Using wearable sensors and SVM/kNN methods,
Mannini and Sabatini (2010) were able to distinguish between
elementary physical activities such as standing, sitting, lying,
walking, climbing and identify activities within sequences
of sitting-standing-walking-standing-sitting with an accuracy
between 97.8 and 98.3%.

Within fitness activities, Adelsberger and Troster (2013),
studied 16 participants performing a squat press, and via
SVM managed to detect movements with 100% accuracy
and differentiate between expert and beginner performance
(94% accuracy). Research on weightlifting has used different
approaches, mainly aiming at recognizing the type of exercise
performed (Pernek et al., 2015; Hausberger et al., 2016; O’Reilly
et al., 2017), or identifying performance metrics (e.g., quality
of execution, intensity, deviation from a standard pattern) for
each exercise (Pernek et al., 2015; O’Reilly et al., 2017a,b,c).
Approaches looking at performance metrics focus on the
possibility of using personalized classifiers to monitor the quality
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of movement execution; they are more complex and demanding
in terms of computational resources and sample sizes than what
we presented in our study. On the other hand, the solutions
presented in literature to address the movement recognition
problem are very similar to what we have proposed. Different
algorithms (such as the Random Forest—RF—and the Linear
Discriminant Analysis—LDA) have been explored in the existing
literature, but the overall accuracies appear comparable to the
values we obtained. For the size of our dataset, SVM resulted
optimal in terms of both classification accuracy and training
costs. RF represented an optimal solution in multi-class problem
in terms of performance and computational costs, despite
requiring larger datasets (O’Reilly et al., 2017), whereas LDA
was reported to perform well in simple drills classification, even
allowing real-time applications, when considering a single sensor
(Crema et al., 2019).

One of the main limitations of the presented work was
the reduced number of involved subjects, compared to some
validated machine learning approaches found in scientific
literature (O’Reilly et al., 2017,a,b). Our study was exploratory,
and the observed sample was relatively homogeneous in terms
of sporting abilities. Having access to a larger and more varied
group of participants would allow covering a wider spectrum
of individual characteristics and, possibly, making the classifier
more robust to inherent intra- and inter-subject variability
(Preatoni et al., 2013) in movement execution. It could also allow
to distinguish between expert and novice performance and/or
between different level of movement intensity. Although our
sample size was relatively small for typical machine learning
studies, our method achieved a classification performance not
inferior to equivalent approaches applied in different sports
scenarios, including simple tasks, such as walking or running,
and even more complex exercise including fitness training.
Another potential limit lies in the labeling procedures, which
relied in the use of footage from a single 50Hz camera.
A single plane of view for four distinguished movements
could make establishing their exact start and finish time more
difficult. Differences in sampling rates between different systems
could also add minor discrepancy in time line reconstruction.
Finally, a potential bias to the assessment of classification
performance could be the disproportion between the periods
of transition and of functional movement execution, with
the former being an order of magnitude more numerous
(>3,000 transition windows vs. ∼100–200 windows per each
functional movement). Arguably, in our application, transitions
are not static, easily detectable situations, and rather contain a
spectrum of movement features that are as or even more varied
than the four movements of interest. Thus, high prevalence
of transition intervals should not decrease the value of the
solution proposed.

CONCLUSIONS

Our study addressed a novel issue in the area of automatic activity
tracking. We used wearable sensor data of the same kind of what
could be provided by modern smart technologies and obtained
from body locations similar to where those technologies could
be secured. Classifying functional fitness movements within a

continuous workout is a non-trivial task that, to the best of
our knowledge, no other research had investigated. Despite the
relatively small dataset used to train the algorithm, the accuracy
achieved in detecting and recognizing four popular training drills
was encouraging, even considering a simpler 1-sensor or 2-sensor
configuration. Reducing input data to accelerations and angular
velocities provided by a single sensor did not degrade excessively
the classification ability of the algorithm, which still generated
an overall level of accuracy similar to what obtained from the
whole dataset available. These findings are particularly interesting
as commercially available devices such as smart watches and/or
phones contain inertial sensors and are typically worn in similar
locations (i.e., upper arm and wrist) to where IMUs were
attached in our study. This work perfectly fits the current
technological trend on the combined use of wearable devices
and artificial intelligence to track human activities automatically
(Attal et al., 2015) and support sports activities (Cust et al., 2019).
In the longer perspective, the proposed approach could drive
the development of software and applications to aid on-field
coaching and judging and provide a more objective, quantitative
way to evaluate movement technique and correct/safe execution
of specific drills.
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The aim of this study is comparing the accuracies of machine learning algorithms to
classify data concerning healthy subjects and patients with Parkinson’s Disease (PD),
toward different time window lengths and a number of features. Thirty-two healthy
subjects and eighteen patients with PD took part on this study. The study obtained
inertial recordings by using an accelerometer and a gyroscope assessing both hands
of the subjects during hand resting state. We extracted time and temporal frequency
domain features to feed seven machine learning algorithms: k-nearest-neighbors (kNN);
logistic regression; support vector classifier (SVC); linear discriminant analysis; random
forest; decision tree; and gaussian Naïve Bayes. The accuracy of the classifiers was
compared using different numbers of extracted features (i.e., 272, 190, 136, 82, and
27) from different time window lengths (i.e., 1, 5, 10, and 15 s). The inertial recordings
were characterized by oscillatory waveforms that, especially in patients with PD, peaked
in a frequency range between 3 and 8 Hz. Outcomes showed that the most important
features were the mean frequency, linear prediction coefficients, power ratio, power
density skew, and kurtosis. We observed that accuracies calculated in the testing phase
were higher than in the training phase. Comparing the testing accuracies, we found
significant interactions among time window length and the type of classifier (p < 0.05).
The study found significant effects on estimated accuracies, according to their type
of algorithm, time window length, and their interaction. kNN presented the highest
accuracy, while SVC showed the worst results. kNN feeding by features extracted from
1 and 5 s were the combination with more frequently highest accuracies. Classification
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using few features led to similar decision of the algorithms. Moreover, performance
increased significantly according to the number of features used, reaching a plateau
around 136. Finally, the results of this study suggested that kNN was the best algorithm
to classify hand resting tremor in patients with PD.

Keywords: Parkinson’s disease, inertial sensors, accelerometer, gyroscope, hand resting tremor, machine
learning

INTRODUCTION

More than 6.1 million people worldwide are affected by
Parkinson’s disease (PD) (Gbd 2016 Parkinson’s Disease
Collaborators, 2018) – this number is expected to rise with the
increasing of the population life expectancy (Wanneveich et al.,
2018). PD has very heterogeneous clinical features, but tremor
at rest, akinesia, and rigidity are considered the clinical cardinal
motor signatures of this disease (Kalia and Lang, 2015; Poewe
et al., 2017). It is hard to diagnose PD, both in its early stages
and during its progression. Its diagnosis is usually carried out
by clinical observation or by using scales such as the Unified
Parkinson’s Disease Rating Scale (UPDRS) or the Hoehn and
Yahr scale (H-Y) (Hoehn and Yahr, 1967; Rizek et al., 2016;
Holden et al., 2018).

Literature has proposed alternative ways to quantify PD
symptoms in order to assist its diagnosis and progression (Jilbab
et al., 2017). Inertial measures of the hand resting tremor
associated to machine learning algorithms have been extensively
investigated to distinct data from healthy people and patients
with PD (Jeon et al., 2017a,b), to quantify the progression of
the disease (Pedrosa et al., 2018), and to evaluate the effect of
therapeutics on hands’ tremor (LeMoyne et al., 2019).

Although many investigations have evaluated the machine
learning classifier performance to precisely categorize the
inertial measurements from patients with PD, there are few
methodological studies concerning the influence of the technical
parameters of this kind of approach. Parameters like the
time interval of the inertial sensor readings, type of features
extracted from the inertial sensor readings, the number of
features used, the type of machine learning classifier, and
the type of inertial sensor used have potential to increase or
decrease the accuracy of the algorithm (Jeon et al., 2017a;
Rovini et al., 2017; Ramdhani et al., 2018; Wang et al., 2018;
Nurwulan and Jiang, 2020). Table 1 lists examples of studies
that associated inertial measurements with machine learning
approaches and their methodological choices. It displays a
large variability of methodological settings and few explanations
justifying such choices.

Several investigations have used a number of machine learning
algorithms to classify and/or to quantify the resting hand tremor
of patients with PD, obtaining high accuracy levels (Kostikis
et al., 2015: 78–94%; Jeon et al., 2017a: 80–85%; Pedrosa et al.,
2018: 92.8%). There is no consensus about what machine learning
algorithms are preferable to classify features of inertial readings
or what are the optimal conditions to use any of the algorithms.

Several studies have segmented inertial recordings in different
window size durations to extract dozens or hundreds of features

that fed a machine learning algorithm (Jeon et al., 2017a).
Short-term inertial readings could be good to get a fast evaluation,
but they lead to high false positive detection. On the other hand,
long-term recordings may potentially prolong the recording
process, adding redundant information (Nurwulan and Jiang,
2020). In the same way, using a few features may not be enough
to bring clear information about the differences among patients
with PD; and an excessive number of features may overload
the computing process. It is important to select the best set of
features in order to potentialize algorithm classification and to
avoid collinearity among data.

The present study aimed to compare the performance of
machine learning algorithms to classify recordings of inertial
sensors as healthy people or patients with PD considering
different numbers of features extracted from a variety of
window length duration of inertial recordings. Those results may
contribute in the decision making of the best parameter for the
classification of inertial sensor measures analyzed by machine
learning algorithms.

MATERIALS AND METHODS

Ethical Considerations
All individual participants included in this study gave us their
informed and written consent. Every procedure carried out in
the present study was in accordance with the ethical standards
of the Ethics Committee in Research with Humans from the
University Hospital João de Barros Barreto (report #1.338.241)
and with the 1964 Helsinki Declaration and its later amendments
or comparable ethical standards.

Subjects
Our sample comprised of 50 right-handed participants grouped
into healthy control participants (n = 32 individuals, 16 females
and 16 males) and participants with PD (n = 18 individuals, 8
females and 10 males). Participants’ handedness was established
according to the hand they use to handwrite. Healthy participants
ranged from 41 to 79 years (mean ± standard deviation:
64.3 ± 11.1 years), while patients with PD ranged from 48
to 73 years (mean ± standard deviation: 60.2 ± 8.4 years).
Control participants were recruited by convenience. They had
no history of neurological or systemic diseases, no self-reported
tremor of the hands nor difficulties in carrying out daily activities.
All patients with PD were diagnosed by a neurologist in the
Neurology Department of the University Hospital João de Barros
Barreto, Brazil, according to the clinical diagnostic criteria of
the United Kingdom Parkinson’s Disease Society Brain Bank
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TABLE 1 | References that used inertial sensors features to feed machine learning to evaluate the hand tremor of PD patients.

References Hand activity Sensor (AR) Recording
duration

Methods of classification Accuracy

Alam et al. (2016) Resting tremor Acc and gyros (200 Hz) 25–30 s Support vector machine 59–88.9%

LeMoyne et al. (2015) Kinetic tremor Acc (100 Hz) 5 s Support vector machine 100%

Butt et al. (2017) Kinetic tremor Gyros (100 Hz) 10 s Support vector machine, logistic regression, neural
network classifier

76.2–83.1%

Stamatakis et al. (2013) Finger tapping Acc (167 Hz) Free Ordinal logistic regression 87.2–96.5%

Jeon et al. (2017a) Resting tremor Acc (125 Hz) 10 s SVM, decision tree, random forest, discriminant analysis 80.9–85.6

(Hughes et al., 1992). For each patient, the severity of PD was
scored by using the Hoehn and Yahr (H-Y) scale. All patients
with PD had disease diagnosed within the less 6 years; except by
one subject (H-Y 3), all other patients were staged as functionally
independent (H-Y 1 or 2). All patients were using levodopa or
dopamine agonist therapy for over a year.

Inertial Measurement Unit Recordings
We used a wearable device MetaMotionC (mbientlab,
San Francisco, United States), with on-board sensors,
such as a triple-axis gyroscope and an accelerometer (16
bits, ± 2000◦/s, ± 16 g). Researchers positioned a wearable
device over each patient’s third metacarpal bone at their midway
between the carpal and the digital extremities of their metacarpal
(Figure 1) – with their forearm supported on a table, and their
hand relaxed over its edge. Researchers recorded the patients in
resting state with the acquisition rate at 100 Hz and 16-bit analog
to digital conversion resolution. An Android app (MetaBase,
mbientlab, United States) controlled the sensors via Bluetooth.
Bluetooth also transmitted their signals to an ordinary computer.
The study delivered 2-min recordings. One trial was carried out
for each one of the hands of all participants.

Data Analysis
To carry out data analysis, researchers programmed Python
scripts (Python v3.7.4) by using SciPy (version 1.3.1), NumPy
(version 1.17.2), PyWavelets (version 1.0.3), and LibROSA
(version 0.7.2) tools. SciPy is a Python-based ecosystem of
open-source software for mathematics, science, and engineering;
NumPy is a library for the Python programming used to
operate on arrays; LibROSA is a Python package that provides
the building blocks necessary to create music information
retrieval systems; and PyWavelets is an open source wavelet that
transforms software for Python.

Our sequence of analysis consisted of: (1) inertial recordings;
(2) raw data filtering; (3) segmentation of the time series in
different sets of waveform lengths; (4) data normalization; (5)
extraction of features; (6) selection of the best features; (7–
8) performing machine learning algorithms with training and
test phases; and (9) measuring machine learning performance.
Figure 2 illustrates data analysis summary.

Raw Data Filtering
We computed a magnitude vector from each sensor dimension
(x, y, and z) using Eq. (1), which is less sensitive to orientation

changes (Janidarmian et al., 2017). The recordings were filtered
by a fourth-order bandpass digital Butterworth filter between 1
and 30 Hz to exclude low and high frequency artifacts.

v =
√

x2 + y2 + z2 (1)

where vis the magnitude vector, x, y, and z represented the 3-D
readings of the inertial sensor.

After this, we applied the scipy.signal.detrend function using
its linear list squared fit to detrend the inertial readings.

Segmentation of the Time Series
We segmented the inertial recordings in fixed sized windows,
with no inter-window gaps and non-overlapping between
adjacent windows. We also segmented these time series in sets
of waveforms with 1, 5, 10, and 15 s window sizes.

Extraction of Features
We extracted features from time and temporal domains for
each sensor dimension. Table 2 presents a list of features
extracted from inertial data, as well as Python main codes related
to them.

The study extracted 272 features from each one of our
participants, considering data extracted: (a) from each one of
their hands (dominant and non-dominant); (b) from each inertial
sensor parameter (accelerometer and gyroscope); and, (c) from
the four dimensions of each sensor (x, y, z, and magnitude).

Data Normalization
The study applied sklearn.preprocessing package and its
StandardScaler function to standardize features by removing
their mean and scaling them to unit variance, as shown in Eq. (2).

z_score =
(x− µ)

s
(2)

Selection of Features
The study used algorithm SelectKBest to select the k most
important features based in a score which was the ANOVA
F-value. The chosen selection of the most important features
to feed the machine learning algorithms in this study where:
272 features (100%), 190 features (70%), 136 features (50%), 82
features (30%), and 27 features (10%).

Splitting Data
To validate the predictive models, we applied the tenfold cross-
validation method by using the Scikit-learn library (version
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FIGURE 1 | IMU Positioning in the hand of the participant. (A) Lateral view. (B) Frontal view. The patient was instructed to keep the hand in rest for 120 s, while the
experimenter controlled the recording using a mobile app.

FIGURE 2 | Flow chart of the data analysis steps.

0.21.3) and ShuffleSplit function. The study randomly split data
into 80% for model training and 20% for model testing.

Machine Learning Algorithms
We applied seven types of machine learning algorithms to
classify the data from both healthy and PD groups. The

algorithms were: k-nearest-neighbor (kNN); support vector
classifier (SVC); logistic regression (LR); linear discriminant
analysis (LDA); random forest (RF); decision tree (DT); and
Gaussian Naïve Bayes (GNB).

The next sentences describe the Python functions used
to proceed the machine learning algorithms, as well as the
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TABLE 2 | Features extracted from the inertial readings.

Features Python code

Time domain

Range range = values.max() - values.min()

Standard deviation std = values.std()

Root mean square rms = numpy.sqrt(numpy.mean(values∗∗2))

Skewness sk = scipy.stats.skew(values)

Kurtosis kt = scipy.stats.kurtosis(values)

Linear prediction coefficients lp_coefs = librosa.lpc(values, 3)

Wavelet transform detail
coefficients (cD)

_, cD = pywt.dwt(values, ’db3’)

cD variance variance = numpy.var(cD)

cD entropy def approximate_entropy(U, m = 2, r = 3):

U = numpy.array(U)

N = U.shape[0]

def phi(m):

z = N - m + 1.0

x = numpy.array([U[i:i + m] \

for i in range(int(z))])

x_ = numpy.repeat(x[:, \

numpy.newaxis], 1, axis = 2)

C = numpy.sum(numpy.absolute(x - \

x_).max(axis = 2) < = r, \

axis = 0)/z

return numpy.log(C).sum()/z

entropy = abs(phi(m + 1) - phi(m))

Third order cumulant third_order_cum = scipy.stats.moment(values,
moment = 3)

Temporal frequency (tf) domain

Peak of energy p_tf = frequency_values.max()

Frequency at the peak energy xf = numpy.linspace(0, af/2,

frequency_values.size)

tf_p = xf[numpy.argmax(frequency_values)]

Skewness_tf sk_tf = scipy.stats.skew(frequency_values)

Kurtosis_tf kt_tf = scipy.stats.kurtosis(frequency_values)

Mean frequency def mean_frequency(frequency_values):

xf = numpy.linspace(0, af/2,

frequency_values.size)

xf = xf[xf > = 1]

total_area = numpy.trapz(frequency_values, xf)

for i, x in enumerate(xf):

partial_area = numpy.trapz(frequency_values[:i],

xf[:i])

if partial_area > total_area/2:

mean_freq = xf[i-1]

Power ratio (1–6 Hz/6–12 Hz) xf = numpy.linspace(0, af/2,

frequency_values.size)

num = frequency_values[(xf > = 1) &

(xf < = 6)]

den = frequency_values[(xf > = 6) &

(xf < = 12)]

power_ratio = num.mean()/den.mean()

values, inertial measures in the time domain vector; frequency_values, inertial
measures in the temporal frequency domain vector; af, the acquisition frequency;
and, xf, frequency values vector.

parameters that differed from default values. These parameters
were changed to protect the model from overfitting.

(a) k-Nearest-Neighbor (kNN): the function
sklearn.neighbors.KNeighborsClassifier was applied to
proceed an kNN algorithm considering the Minkowski
distance metrics, k-value ranging from 5 to 10. We applied
a grid search using the GridSearchCV function to find
which k-nearest-neighbor would deliver the best accuracy,
then chosen as the best k-value.

(b) Support Vector Classifier (SVC): were applied an SVC
algorithm (sklearn.svm.SVC function) with radial basis
function kernel with gamma parameter equal to 1 and the
C penalty parameter equal to 10.

(c) Logistic Regression (LR): a binary logistic regression
algorithm sklearn.linear_model.LogisticRegression function
was used considering the parameter penalty equal to “l1,”
and solver equal to “liblinear.”

(d) Linear Discriminant Analysis (LDA):
the study applied the function
sklearn.discriminant_analysis.LinearDiscriminantAnalysis
to proceed the LDA algorithm considering the parameter
solver equal to “svd,” and store_covariance as true.

(e) Random Forest (RF): we used the function
sklearn.ensemble.RandomForestClassifier to implement
random forest algorithm considering the parameter
“criterion” the value “gini impurity” as a measure of the
split quality, the parameters n_estimators equal to 50, and
max_depth equal to 6.

(f) Decision Tree (DT): similarly to the random forest
classifiers, the tree algorithm was proceed using the
sklearn.tree.DecisionTreeClassifier function considering
“gini impurity” to the parameter “criterion,” and
the parameters n_estimators were set to 50, and
max_depth equal to 6.

(g) Gaussian Naïve Bayes (GNB): the function to
proceed a Gaussian Naïve Bayes algorithm was the
sklearn.naive_bayes.GaussianNB.

Measuring Machine Learning Performances
Equation (3) calculated accuracy in order to measure the success
levels of the classifiers, as follows:

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(3)

where TP is the true positive value; TN is the true negative value;
FP is the false positive value; and, FN is the false negative value.

Statistics
The study applied the unpaired t-test with Welch’s correction
to compare the accuracies obtained from training and testing
phases for each classifier using features extracted from different
time window lengths. For each percentage of features feeding the
algorithms, we conducted a two-way ANOVA on the influence
of the classifier type and the time window length of the
accuracy of such classifier. The classifier type includes seven
levels (SVC, GNB, RF, kNN, LR, LDA, and DT) and the time
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window length consisted of five levels (1, 5, 10, and 15 s).
As the two-way ANOVA test was significant, we computed
the Tukey HSD for performing multiple pairwise-comparison
between mean accuracies of both groups. We counted the
number of times in which an algorithm presented a better
performance when compared to the others (here named victory),
by means of significant multiple comparisons at the different
time window lengths and number of features. Thus, we used the
chi-square goodness of fit (equal proportions) to compare the
observed distribution of significant comparisons to the expected
distribution considering the number of algorithms or of time
window length. All the statistical tests were carried out by
using R software (version 3.6) and considering the level of
significance of 5%.

RESULTS

Selection of Recordings and Features
Figure 3 shows examples of the accelerometric and gyroscopic
recordings for the 5-s time windows as a function of time
and temporal frequency from representative subjects from both
groups. The results for the 5 s time windows were qualitatively
similar to the other time windows the study investigated. We
characterized the inertial recordings by oscillatory waveforms
that, especially in participants with PD, defined their peak in
frequencies ranging between 3 and 8 Hz.

Regardless time window length, the most important features
detected were mean frequency, linear prediction coefficients,
power ratio, and the power density skew and kurtosis. Figure 4
shows the 15 most important features selected from extracted
data concerning time windows of 15 s (Figure 4A), 10 s
(Figure 4B), 5 s (Figure 4C), and 1 s (Figure 4D).

Machine Learning Classifiers
Comparison Between Training and Testing
Accuracies
Most of the comparisons had significant differences between
training and testing phases. Whenever statistical significance
(p < 0.05) was reached, testing accuracy was higher than training
accuracy – except in two comparisons (random forest and
kNN algorithms) – when using 30% of the features in the 1 s
time window. Supplementary Files 1–5 present tables with the
training and testing phases of the machine learning.

The comparisons with no statistical significance were in time
windows of:

(i) 1 s: random forest algorithm using all features and 70% of
them, GNB using 50 and 10%;

(ii) 5 s: GNB with all features, 70 and 50% of them, kNN and
LR using 30% of the features;

(iii) 10 s: GNB using 30 and 10% of the features;
(iv) 15 s: GNB using all features, 70, 50, and 10% of them,

SVC using all features, 70 and 50% of them, LDA using all
features and 70% of them, LR using 50% of the features,
and RF using 30% of the features.

Figure 5 illustrates the comparisons between the accuracies
obtained by the different classifiers using extracted features in
different time windows considering 70, 50, 30, and 10% of the
features, respectively.

Comparing Test Accuracies Obtained From the
Different Supervised Machine Learning Algorithms
In general, the effects of the machine learning phases on the
accuracies were statistically significant. The main effect for
classifier type yielded an F ratio of F(6, 252) = 639.14, p < 0.0001
for all the features; F(6, 252) = 727.74, p < 0.0001 for 70%
of the features; F(6, 252) = 478.15, p < 0.0001 for 50% of the
features; F(6, 252) = 171.41, p < 0.0001 for 30% of the features;
and F(6, 252) = 36.8, p < 0.0001 for 10% of the features. The
proportion of victories in the multiple comparisons significantly
differed by algorithm for all numbers of features conditions.
kNN was the algorithm that more frequently delivered high
accuracy when compared to the others algorithms. SVC delivered
the lowest frequency of victories among all tested algorithms.
Table 3 shows the number of “victories” of each algorithm
in the significant multiple comparisons for each number of
feature condition.

The main effect for time window length yielded an F ratio of
F(3, 252) = 51.7, p < 0.0001 for all the features; F(3, 252) = 47.4,
p < 0.0001 for 70% of the features; F(3, 252) = 25.5, p < 0.0001
for 50% of the features; F(3, 252) = 5.5, p < 0.0001 for 30% of
the features; and F(3, 252) = 14.8, p < 0.0001 for 10% of the
features. The proportion of victories in the multiple comparisons
was similar by time window length for all numbers of feature
conditions, except for 10% of the features. Table 4 displays the
number of “victories” from time window length in the significant
multiple comparisons for each number of feature condition.

The interaction effect was significant for all numbers of
features conditions (for all the features: F(18, 252) = 19.04,
p < 0.001; for 70% of the features: F(18, 252) = 15.23, p < 0.001;
For 50% of the features: F(18, 252) = 7.61, p < 0.001; and for
10% of the features: F(18, 252) = 2.959, p < 0.001), except for
30% of the features condition that yielded in a F ratio of F(18,
252) = 2.959, and p = 0.29.

Figures 6A–E shows tile plots representing the statistical
significance of the post hoc multiple comparisons between
the testing accuracies from any two classifiers. White tiles
represent comparisons with significant differences, while dark
tiles represent non-significant differences. The red line indicates
the orientation of the significant difference. Horizontal lines
represent higher accuracies for the classifiers in the row when
compared to the classifiers in the column, while vertical
lines represent the opposite situation. We observed that
the number of significant differences between two classifiers
(number of white tiles) was dependent of the number
of features. For a low number of features (10% of the
features we extracted, 27 features) the number of significant
differences between two classifiers was also low and increased
linearly up to reach a plateau level of 70% of the features
(136 features). The combinations between classifier and time
window length with highest accuracies were kNN and time
windows of 1 and 5s.
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FIGURE 3 | Accelerometric and gyroscopic recordings as a function of the time (upper rows) and temporal frequency (lower row) from representative participants of
the control and PD groups, using the time window of 5 s. Recordings were carried out on the non-dominant and dominant hands (red and green lines, respectively).

DISCUSSION

This paper assessed the hand tremor in individuals with PD and
healthy controls by using machine learning algorithms based on
inertial sensor recordings. Our objectives were: (i) identifying the
best machine learning algorithms to classify hand tremor by using
inertial data; (ii) describing the best recording duration to be used
by classification methods; (iii) stablishing the number of features
necessary to the best performance of the algorithms.

Concerning these objectives, the results of this study showed
that the kNN algorithm as the best classifier, followed by LR, and

RF algorithms respectively. On the other hand, research pointed
out that SVC and GNB delivered the worst performances among
all classifiers. Also, some classifiers had better performances with
short time windows, while others needed long recordings to
deliver more accurate performances. Our results also showed
that the performance of the classifiers became more similar
when using less features; and, with more features, differences
between classifiers increased linearly until a maximum value
(using around 136 features), reaching a plateau. Regardless the
most important feature selected, the time window length was
similar across tested conditions. Whereas, the more common
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FIGURE 4 | Most important features extracted from recordings lasting 1 s (A), 5 s (B), 10 s (C), and 15 s (D).
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FIGURE 5 | Comparison of the classifiers’ performance in the training (solid bars) and testing (empty bars) phase according the number of features and time window
length.

features selected were mean frequency for both accelerometer
and gyroscope sensors; linear prediction coefficients for the
accelerometer; skewness, power ratio, and the power density
skewness and kurtosis for the gyroscope.

Many types of machine learning classifiers have been used to
analyze PD tremor (Bind et al., 2015). We used 7 out of the
most common algorithms used in the field. kNN was the best
classifier across multiple comparisons, together with LR and RF
algorithms, which had accuracy level above 90%.

The kNN algorithm groups similar classes of data based in
the value of k nearest neighbors. Low values of k increase the
accuracy of the classifier in the training phase, but difficult the
generalization of the model for a new data (Li and Zhang, 2011).
The k was used between 5 and 10 to facilitate the generalization
of the model during test phase. Previous investigations – such
as Jeon et al. (2017b) – have also found high accuracies using
kNN algorithms. They assessed 85 PD patients to predict UPDRS
results by using a wrist-watch-type wearable device for measuring
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TABLE 3 | Number of victories of each classifier in the significant multiple
comparisons for each number of feature condition.

Number of features

Algorithm 100% 70% 50% 30% 10%

SVC 5 5 3 0 4

GNB 12 16 16 13 2

RF 40 40 39 31 27

kNN 54 58 61 50 50

LR 53 48 41 31 6

LDA 34 38 35 27 3

DT 36 37 34 28 5

Number of significant
multiple comparisons

234 242 229 180 97

X2 63.53 57.72 63.50 57.38 142.51

P <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

TABLE 4 | Number of victories per time window length in the significant multiple
comparisons for each number of feature condition.

Number of features

Time window length 100% 70% 50% 30% 10%

1 s 58 61 54 39 12

5 s 64 68 66 52 35

10 s 60 62 60 47 27

15 s 52 51 49 42 23

Number of significant
multiple comparisons

234 242 229 180 97

X2 1.28 2.46 2.84 2.17 11.33

P 0.73 0.48 0.51 0.53 <0.01

tremors and found an accuracy level close to 84% for kNN
and RF algorithms. Also, kNN algorithm delivered performance
improvement as we decreased the number of features, while other
algorithms delivered impaired outcomes.

Random Forest is a combination of multiple tree predictors
that make decisions based in random vectors of features. The RF
decision is the more common decision of the collection of tree
classifiers (Breiman, 2001). Previous studies have demonstrated
the ability of RF models to detect freezing in the gait of
patients with PD or the switching on and off state of deep
brain stimulation in these patients (Tripoliti et al., 2013;
Kuhner et al., 2017).

Logistic Regression is a classification algorithm that uses
a logistic sigmoid function to transform observations in two
or more classes. LeMoyne et al. (2019) used LR algorithms
to distinguish inertial readings associated with on and off
modes from deep brain stimulation in PD patients, getting an
accuracy level of 95%.

Both GNB and SVC with the worst outcomes. When
compared with other algorithms, the GNB classifier delivered
lower (Susi et al., 2011) and higher (Bazgir et al., 2018)
accuracies to detect human motion. GNB is an algorithm
that evaluates the probability of events within different classes
(Theodoridis et al., 2010; Bazgir et al., 2018). SVC aims to

find an optimal separation hyperplane in order to minimize
misclassifications (Vapnik, 1979). SVC has been widely used
to detect tremor in PD patients. The accuracy level of its
classifiers has ranged between 80 and 90% to quantify PD
tremor (Alam et al., 2016; Jeon et al., 2017b). We used a radial
compared to the best SVC used by Jeon et al. (2017b) finding
similar results.

It is important to highlight that directly comparing the
performance of the classifiers in different studies must be careful.
Each study implements different parameters in the algorithms,
which are not always fully described. Furthermore, the number
and type of features may influence the classifier accuracies.
The present study observed that few features make classifiers’
decisions more similar, while an increased number of features
enable the classifiers’ performance to be distinguished, reaching
a plateau around 176 features. One must find a trade-off between
the number of features and the cost of computational processing
for each algorithm especially when trying to implement such
method with wearable or mobile devices.

The use of machine learning algorithms to recognize patterns
of human motion requires the segmentation of motion recording
time series. Previous studies have segmented time series in
different lengths for pattern recognition tasks (Bussmann et al.,
2001; Dehghani et al., 2019). Although, short lengths accelerate
the duration of the recordings, their random nature can present
negative influence on the classifiers’ performance (Mannini et al.,
2013). Short duration recordings in the scale of 100 ms have been
successfully used to recognize human motion. At the same time,
long-term recordings also returned high accuracy when detecting
PD tremor as we can observe in Table 1.

This study evaluated the accuracy of classifiers by using
different time window lengths. We observed that recordings
lasting 5s or 1s delivered the highest accuracy levels. The
study also noticed some interaction between the window time
length and classifiers, indicating that some classifiers were
better to analyze short recordings (i.e., kNN algorithm), while
others showed higher accuracies when using long recordings
(i.e., GNB). There is no rule concerning the length of inertial
readings for the predictive modeling problem. Banos et al. (2014)
investigated the effects of the windowing procedures on the
activity recognition process using inertial data. They observed
that intervals between 1 and 2 s offered the best trade-off between
recognition speed and accuracy.

The more common features extracted from inertial readings
express amplitude of oscillatory series, their spectral content,
regularity, and coherence (Meigal et al., 2012; Twomey et al.,
2018). The present study observed that mean frequency for
both accelerometer and gyroscope sensors, linear prediction
coefficients for the accelerometer, and skew power ratio,
and the power density skew and kurtosis for the gyroscope
frequently figure among the fifteen top features. Frequency
domain features have been successfully employed in the machine
learning algorithms by other researchers (Bazgir et al., 2018;
Pedrosa et al., 2018).

We based our approach exclusively on accelerometer and
gyroscope sensors, though other sensors are reported in
the literature to quantify PD hand tremor using machine
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FIGURE 6 | Comparison of the classifier’s performance in the testing phase when using all the features (A), 70% (B), 50% (C), 30% (D), and 10% (E) of the features.
White squares represent the significant difference between the classifiers on the respective row and column, while black squares represent non-significance for the
comparison. The line in the white squares represent the direction of the difference, horizontal lines indicates that the classifier on the row had higher accuracy than the
classifier on the column, and vertical lines represent the opposite. (F) Number of significant differences between two classifiers as a function of number of features.
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learning algorithms. For example, Lonini et al. (2018) used
the MC10 BioStampRC sensor, a sensor tape that records
electromyographic signals to accelerometers and gyroscopes in
6 body positions. Even considering that additional sensors can
contribute to increase the accuracy of a classifier, there is a high
cost in its implementation that can reduce the applicability of the
proposal. Inertial sensors are inexpensive instruments that are
available in a wide variety of wearable equipment.

This study has some potential limitations that deserve further
comments. To date, research on this topic has been exploratory.
There are no guidelines regarding the use of machine learning
approach to quantify hand tremor in PD patients, as well as
no established parameters for the choice of inertial sensors.
A larger sample size and longitudinal follow-up could reinforce
the present interpretations.

CONCLUSION

The present study suggested kNN using hundreds of features
extracted from short-term inertial recordings as the best settings
for machine learning configuration to classify hand tremor in
PD patients. Our results can be used to assist the diagnosis and
follow up of PD patients. We consider that our results are robust,
because (i) of the high accuracy level obtained with the classifiers,
(ii) the study could separate patients in the early stage of the PD
(low H-Y score) from healthy people.
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Movement screens are frequently used to identify differences in movement patterns such
as pathological abnormalities or skill related differences in sport; however, abnormalities
are often visually detected by a human assessor resulting in poor reliability. Therefore,
our previous research has focused on the development of an objective movement
assessment tool to classify elite and novice athletes’ kinematic data using machine
learning algorithms. Classifying elite and novice athletes can be beneficial to objectively
detect differences in movement patterns between the athletes, which can then be used
to provide higher quality feedback to athletes and their coaches. Currently, the method
requires optical motion capture, which is expensive and time-consuming to use, creating
a barrier for adoption within industry. Therefore, the purpose of this study was to assess
whether machine learning could classify athletes as elite or novice using data that
can be collected easily and inexpensively in the field using inertial measurement units
(IMUs). A secondary purpose of this study was to refine the architecture of the tool to
optimize classification rates. Motion capture data from 542 athletes performing seven
dynamic screening movements were analyzed. A principal component analysis (PCA)-
based pattern recognition technique and machine learning algorithms with the Euclidean
norm of the segment linear accelerations and angular velocities as inputs were used
to classify athletes based on skill level. Depending on the movement, using metrics
achievable with IMUs and a linear discriminant analysis (LDA), 75.1–84.7% of athletes
were accurately classified as elite or novice. We have provided evidence that suggests
our objective, data-driven method can detect meaningful differences during a movement
screening battery when using data that can be collected using IMUs, thus providing a
large methodological advance as these can be collected in the field using sensors.
This method offers an objective, inexpensive tool that can be easily implemented in
the field to potentially enhance screening, assessment, and rehabilitation in sport and
clinical settings.

Keywords: inertial measurement units, machine learning, artificial intelligence, principal component analysis,
pattern recognition, athletics, movement screening
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INTRODUCTION

Movement screens are widely used across many disciplines
including in ergonomic, clinical, and athletic settings to identify
aberrant movement patterns in hopes of decreasing risk of
injury and/or improving performance (Donà et al., 2009; Kritz
et al., 2009; Padua et al., 2009; Cook et al., 2014; McCall
et al., 2014; McCunn et al., 2016). Most commonly, during a
movement screen, an individual’s movement is evaluated based
on visual appraisal (McCunn et al., 2016); however, there is
agreement within the literature that inter-rater and inter-session
(participants tested during two separate sessions) reliability
of these subjective movement screens are poor (Onate et al.,
2012; Smith et al., 2013; Gulgin and Hoogenboom, 2014).
Therefore, our previous research focused on the development and
application of an objective framework as a data-driven alternative
to objectively classify movement strategies and quality during
a movement screen (Ross et al., 2018), known as the Objective
Movement Assessment Tool (OMAT).

The previously published technique with optical motion
capture, herein referred to as OMAT-OPT, uses principal
component analysis (PCA) (Troje, 2002; Federolf et al., 2014;
Young and Reinkensmeyer, 2014) in conjunction with linear
discriminant analysis (LDA) to objectively differentiate and
score whole-body movement patterns between desired binary
classifiers (Ross et al., 2018). For OMAT-OPT, the data input
into the PCA are time-series trajectories of joint centers
and select anatomical markers, representing the whole-body,
captured using an optical motion capture system. During
a non-sport-specific movement screening battery consisting
of seven unique dynamic movements that challenge stability
and mobility across all major joints, between 70.7% and
82.9% of athletes were appropriately classified as either
elite or novice depending on the movement (Ross et al.,
2018). Although OMAT-OPT provides an objective, data-
driven method that can detect meaningful movement pattern
differences during a movement screening battery for binary
classification, it requires optical motion capture technology,
which is expensive and time-consuming to set up, capture and
post-process data, reducing the accessibility and feasibility of
the current technique in clinical, ergonomic, and sport settings
(Hadjidj et al., 2013).

The use of wearable systems are increasing in popularity in
clinical, sport, and ergonomic settings (Patel et al., 2012; Hadjidj
et al., 2013), offering an inexpensive alternative to optical motion
capture systems. The wearable systems are easily transportable,
require minimal post-processing, are able to collect data in
larger capture volumes compared to optical systems, and are
immune to problems associated with optical systems such as
occlusion and line-of-sight problems (Zhou and Hu, 2008).
A common type of sensor used is the inertial measurement
unit (IMU). IMUs contain an accelerometer, gyroscope, and
magnetometer, allowing measurement of linear accelerations and
angular velocities in three axes and the triaxial magnetic fields
of the earth. IMUs are susceptible to drift, especially when close
to metal, although more robust algorithms are continuously
being developed to mitigate these effects (Madgwick et al.,

2011; Wittmann et al., 2019), making them more suitable for
use in the field.

IMU data have been used to objectively classify movement
based on different classifiers during non-sport specific tasks (Sgro
et al., 2017; Johnston et al., 2016, 2019; Zago et al., 2019). Machine
learning with IMU data as the input has been able to objectively
identify children of different motor development levels during
a standing long jump (Sgro et al., 2017), rugby players at a
higher risk of a sport-related concussion based on a Y-balance
test (Johnston et al., 2019), Australian football players at different
levels of fatigue during a Y-balance test (Johnston et al., 2016),
and to predict change of direction, speed, and mechanical work
during cutting maneuvers (Zago et al., 2019), to name a few.
Although these studies only looked at a single IMU placed on the
low-back of the participant, these findings suggest that IMUs can
be used as an inexpensive alternative to optical motion capture to
characterize and classify motion.

Although research using machine learning to classify elite
and novice athletes is limited, discriminant analysis has been
previously used to classify novice, good, and elite rowers during
ergometer testing (Smith and Spinks, 1995). The ability to
objectively differentiate movement patterns between novice and
elite athletes is useful to highlight emergent differences in
movement performance. Guided by those differences, coaches
can improve quality of feedback to their athletes (Smith and
Spinks, 1995). We chose skill level as the dichotomous factor to
initially assess due to its likelihood to influence movement quality
and performance, with the intention of in the future expanding to
sex, sport played, and injury history or risk.

Feature selection approaches and machine learning algorithms
may also influence the accuracy of classification between elite
and novice athletes using IMU data and are therefore important
secondary considerations. Previously, the OMAT-OPT used the
first 35 principal component (PC) scores as the input data
for the LDA; however, alternative feature selection approaches
could provide an objective method to best decide which PC
scores to use as input data to maximize classification. Ensemble
feature selection, which is based on the same ideology of
ensemble supervised classifiers, is a useful approach to evaluate.
Ensemble feature selection includes the use of multiple feature
selection algorithms to select features and has been found to
have greater stability (i.e., less likelihood of features changing
if data are added or removed) and better generalizability
than using a single feature selection technique (Saeys et al.,
2008). In addition, the OMAT currently uses LDA, which was
selected due to superior performance during testing. However,
it is unknown whether LDA would still garner the highest
classification rates when using PC scores selected by an ensemble
feature selection approach, rather than the first 35 PC scores
and/or when using IMU data. Alternative machine learning
algorithms including binary logistic regression (BLR), decision
trees (DT), K-nearest neighbors (kNN), naïve Bayes (NB),
support vector machine with a linear kernel (SVM), and support
vector machine with a radial basis function kernel (RBF) may
strengthen classification accuracy relative to our existing LDA
approach. As a result, while investigating the utility of IMUs
to classify movements between novice and elite athletes, it
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remains important to concurrently evaluate the underlying
machine learning model architecture required to generate the
best possible classification.

Therefore, the purpose of this study was to assess the ability of
the previously developed framework to differentiate whole-body
movement patterns between novice and elite athletes performing
a non-sport-specfic movement screening battery when using data
extractable from an IMU (i.e., simulated IMU data; OMAT-
sIMU), which can be collected easily and inexpensively in the
field. Although data in the current study are simulated IMU data
based on optical motion capture, this study provides proof-of-
concept that IMU-based data can provide enough information
to successfully classify athletes’ movement patterns based on
skill level. A secondary purpose of this study was to refine the
architecture of the OMAT to optimize classification rates by
incorporating feature selection and multiple machine learning
algorithms (i.e., BLR, DT, KNN, LDA, NB, SVM, and RBF) for
both the OMAT-OPT and OMAT-sIMU.

MATERIALS AND METHODS

Participants
Kinematic data were collected on 542 athletes by Motus Global
(Rockville Centre, NY, United States). The sample included
athletes competing in 11 different sports (i.e., baseball, basketball,
soccer, golf, tennis, track and field, squash, cricket, lacrosse,
football, or volleyball) and ranging in skill level from recreational
to professional (e.g., NBA, MLB, NFL, PGA, FIFA). The athletes
were assigned to either the novice or elite group based on
previous research that found that those athletes accruing over
10,000 h of deliberate practice are experts in their sport (Helsen
et al., 1998; Baker et al., 2003). Therefore, athletes competing
at the inter-collegiate, semi-professional, and professional level
were considered elite athletes and those competing at less
competitive levels (e.g., high-school, youth, recreational, etc.)
were considered novices. Before data collection, each athlete read
and signed an informed consent form permitting Motus Global
to use the data for future research. The Health Sciences Research
Ethics Board at the University of Ottawa approved the secondary
use of the data for research purposes (file no: H-08-18-1085).

Protocol
Upon arrival to the Motus Global laboratory, each athlete read
and signed an informed consent form, provided information on
injury history for the previous 10 years, and had their height (with
shoes on) and weight recorded. The athlete was then outfitted
with 45 passive, reflective markers (B&L Engineering, Santa Ana,
CA) to capture whole-body motion (Mcpherson et al., 2016;
Ross et al., 2018). After being outfitted with the markers, the
athlete completed a static and dynamic calibration trial (Ross
et al., 2018). The static calibration trial was used to develop a
whole-body biomechanical model for each athlete.

After the calibration trials, each athlete completed a
movement battery consisting of 21 unique movements testing
athletes’ range of motion at each joint, stability, power and
balance. However, only seven movements were used in the

analysis due to their dynamic nature and ability to challenge
the athletes’ coordination, stability, and mobility across all
major joints. The seven tasks included: drop jump, bird-dog,
hop-down, lunge, step-down, L-hop, and T-balance (Figure 1).
Each movement was performed bilaterally on the left and
right side except for the drop jump which was performed
symmetrically, resulting in a total of 13 movement trials (Ross
et al., 2018). The athlete performed each task until they believed
they did it to the best of their ability with only the trial
that was deemed the best being retained for each athlete.
Full-body motion data were captured at 120 Hz using an 8-
camera Raptor-E (Motion Analysis Corporation, Santa Rosa, CA)
motion capture system.

Data Analysis
Pre-processing
Motion capture data were collected, labeled, and gap-filled using
Cortex (Motion Analysis Corporation, Santa Rosa, CA). Data
from anatomical landmarks and the tracking markers during the
calibration trial were used to develop a whole-body 3D kinematic
model in Visual3D v6 (C-Motion, Inc., Germantown, MD). The
model was then applied to all motion trials outputting joint
centers bilaterally for the wrist, elbow, shoulder, foot, ankle, knee,
and hip; centers of gravity for the trunk, head, and pelvis; marker
positional data for the left and right heel, T2, T8, sternum, and
the back, front and sides of the head for the OMAT-OPT model
and segment angular velocities and center of gravity (CoG) linear
velocities of the head, trunk, pelvis, upper arms, forearms, thighs,
shanks, and feet for the OMAT-sIMU model. Data were then
exported and analyzed using Python 3.0. All trials were trimmed
to specific start and end-point criteria (Ross et al., 2018), and
filtered using a dual-pass, low-pass Butterworth filter with a
cutoff of 15 Hz. Since elite athletes were significantly taller than
novices (F = 138.25, p < 0.001), all data for each movement were
normalized by each athlete’s individual height by dividing each
raw data point by their own height. Normalization ensured that
differences in PC scores between groups were not strictly due to
variation in size.

OMAT-OPT data
The 3D positional data of the joint centers and markers retained
in the OPT model for each participant were rotated so that the
local coordinate system of the trunk was aligned with the global
coordinate system. The data were then translated so that the
midpoint between the left and right hip of the first frame of data
was aligned with the global origin (i.e., midpoint of left and right
hip equaled 0,0,0 for x, y, and z coordinates, respectively). The
rotated 3D data were then time normalized to 500 frames using
Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
interpolation to control for differences in absolute movement
time for each participant. An [n × 39,000] matrix for each
movement was then constructed, where n was the number of
subjects and 39,000 was the time-normalized x, y, and z data
for each joint center, center of gravity, and retained markers
mentioned above (26 positions × 3 axes × 500 time points). Due
to marker occlusion and some athletes not performing all tasks, n
was dependent on the movement task (Table 1).
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FIGURE 1 | Schematic drawings of the seven unique movements performed by the athletes: drop-jump, hop-down, L-hop, bird-dog, lunge, step-down, and
T-balance.

TABLE 1 | OMAT-OPT: The number of athletes broken down by sex and skill level and the overall classification accuracy, hit rate, miss rate, false alarm (FA) rate, correct
rejection (CR) rate, D’ and C when the optimal number of PCs were retained for each movement task.

Male Female

Movement n Elite Novice Elite Novice # of PCs Accuracy (%) Hit Miss FA CR D’ C

Bird-Dog Left 380 242 83 12 43 10 82.63 0.91 0.09 0.34 0.66 1.75 −0.46

Bird-Dog Right 387 244 88 11 44 18 80.88 0.90 0.10 0.36 0.64 1.62 −0.46

Drop Jump 275 168 64 7 36 12 80.36 0.88 0.12 0.33 0.67 1.61 −0.37

Hop-Down Left 396 242 99 10 45 14 77.27 0.87 0.13 0.40 0.60 1.39 −0.45

Hop-Down Right 396 242 97 11 46 9 74.24 0.84 0.16 0.43 0.57 1.17 −0.40

L-Hop Left 266 159 67 6 34 15 83.83 0.89 0.11 0.25 0.75 1.91 −0.27

L-Hop Right 267 160 67 6 34 14 79.03 0.87 0.13 0.34 0.66 1.54 −0.35

Lunge Left 399 246 97 12 44 11 78.20 0.87 0.13 0.38 0.62 1.43 −0.40

Lunge Right 401 248 97 12 44 17 78.30 0.88 0.12 0.39 0.61 1.44 −0.44

Step-Down Left 399 246 98 12 43 17 75.94 0.84 0.16 0.40 0.60 1.28 −0.38

Step-Down Right 399 247 96 11 45 16 74.19 0.83 0.17 0.42 0.58 1.16 −0.37

T-Balance Left 392 244 92 11 45 13 77.30 0.89 0.11 0.45 0.55 1.37 −0.56

T-Balance Right 395 244 94 12 45 18 73.16 0.83 0.17 0.45 0.55 1.08 −0.41

Average 365.54 225.54 87.62 10.23 42.15 14.15 78.10 0.87 0.13 0.38 0.62 1.44 −0.41

STD 55.17 36.14 13.11 2.31 4.38 3.02 3.26 0.03 0.03 0.06 0.06 0.25 0.07

Bold values represent the average and standard deviation across all movement tasks.
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OMAT-sIMU data
In order to simulate IMU accelerometer data, we extracted the
segment CoG linear velocities of each segment retained in the
model and then differentiated the data once to calculate segment
linear accelerations, and to simulate the IMU gyroscope data, we
extracted the segment angular velocities of the same segments.
Once all data were extracted and calculated, the data were time
normalized to 500 frames as per the OMAT-OPT. In anticipation
of the future implementation of the method in clinic or industry,
the Euclidean norm (i.e., square root of the sum of squares) of the
x, y, and z axes of the linear segment accelerations and segment
angular velocities were taken to minimize the effect of sensor
brand or orientation (Clouthier et al., 2020) and to reduce the
dimensionality of the data (Bergmann et al., 2014).

A matrix for each movement was then constructed with
the Euclidean norm of the linear segment accelerations and
segment angular velocities for each segment and each participant.
Segment linear accelerations and angular velocities were chosen
to mimic outputs collected via IMUs. Each matrix was n (number
of participants; Table 2) × 13000 (Euclidean norm × 2 data
features × 13 body segments × 500 time points). Because
the units were different between the data features (i.e., linear
accelerations in m/s2, angular velocities in rad/s), the scale of
the data between the two data features varied widely, which
would lead to classification being driven primarily by the data
feature with the larger scale. Therefore, the data were feature
scaled to be between 0 and 1 for each movement using scikit-
learn Robust Scaler (Pedregosa et al., 2011), which removes
the median from each feature and scales the data according to
the 1st and 3rd quartile of the data, mitigating the effect of
outliers during scaling.

Feature Selection
For both OMAT-sIMU and OMAT-OPT, PCA was applied to
each matrix, resulting in a unique model per task per data type
(i.e., OMAT-sIMU, OMAT-OPT). Using the PC scores as features,
ensemble feature selection, consisting of six common feature
selection techniques (Pearson correlation, chi-squared, recursive
feature elimination, lasso, random forest, and LightGBM), was
used to rank the PCs based on contribution to the model
for each movement task and data type. Ensemble feature
selection has been found to improve the robustness of feature
ranking and feature subset selection as well as increase the
generalizability of the features selected (Saeys et al., 2008).
The scikit-learn library was used for the chi-squared, recursive
feature elimination, lasso, and random forest (Pedregosa et al.,
2011). The top 25 features per data type were retained for
each technique. The features were then sorted based on the
number of techniques where they ranked in the top 25 features.
PC scores that ranked in the top 25 for at least 50% of the
techniques (i.e., 3) were retained for the classifier (Table 1;
OMAT-OPT and 2; OMAT-sIMU). To minimize overfitting
of the models, the maximum number of features retained
was the square root of the number of samples for each
movement task (Hua et al., 2005) (e.g., lunge right had 401
samples, therefore a maximum of 20 PC scores could be
retained for that task).

Classification
To refine the architecture of the OMAT, seven different kinds of
classifiers were used: BLR, DT, kNN, LDA, NB, SVM, and RBF to
classify athletes based on skill level (elite vs. novice). All classifiers
were employed using the scikit-learn library (Pedregosa et al.,
2011). For all classifiers, PC scores retained from feature selection
were used as predictors and leave-one-out cross-validation was
used for validation. Each model was rerun to use between 1
and the total number of PCs retained to determine the optimal
number of PCs to retain for each classifier for each movement
task. The model with the highest classification rate was deemed
the optimal model. Due to a lack of a testing dataset, leave-one-
out validation was used where one of the athletes’ data were taken
out (test athlete) and the PCA, feature selection, and classifier
models were computed on the remaining athletes (training
athletes). After computing the new PCA, feature selection, and
classifier models, the test athlete was projected into the PCA,
feature selection, and classifier model spaces computed on the
training athletes. The procedure was repeated until all athletes
had been left out and projected back into the PCA, feature
selection, and classifier models (Troje, 2002; Ross et al., 2018).

Signal Detection Theory
For the best classifier for each data type, to test the separation
between the signal and the noise and to determine the strategy
used by the frameworks, a signal detection theory (SDT) model
was used for each optimal model retained. In SDT, there are four
types of classification: (1) Hit, (2) Miss, (3) False alarm (FA),
and (4) Correct rejection (CR) (Abdi, 2007). For this study, a
hit was when an elite athlete was correctly classified as an elite
(equivalent to sensitivity), a miss was when an elite athlete was
misclassified as a novice, a FA was when a novice athlete was
misclassified as an elite, and a CR was when a novice athlete
was correctly classified as a novice (equivalent to specificity).
Parameter D’ is calculated subtracting the probability (z-score)
of a false alarm from the probability (z-score) of a hit and tells
the distance between the two peaks (e.g., elite and novice) in
standard deviations; the higher the score the more separable the
two groups are with a score of 0 representing chance (Abdi, 2007).
Parameter C is calculated by taking the average probability (z-
score) of a hit and false alarm and represents the strategy used by
the framework. A positive value represents the framework being
conservative (e.g., more likely to classify an athlete as novice),
where as a negative value represents the framework being liberal
(e.g., more likely to classify an athlete as elite) (Abdi, 2007). The
closer the value is to 0, the closer the framework is to being the
ideal observer (e.g., not more likely to classify as either elite or
novice) (Abdi, 2007).

RESULTS

OMAT-OPT
For all tasks the linear classifiers (i.e., BLR, LDA, and SVM)
outperformed DT, kNN, and RBF, except RBF performed as well
as the linear classifiers for the lunge left and step-down left
(Figure 2). For the drop-jump, hop-down left, L-hop left, and
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TABLE 2 | OMAT-sIMU: The number of athletes broken down by sex and skill level and overall classification accuracy, hit rate, miss rate, false alarm rate, correct
rejection rate, D’ and C when the optimal number of PCs were retained for each movement task.

Male Female

Movement n Elite Novice Elite Novice # of PCs Accuracy (%) Hit Miss FA CR D’ C

Bird-Dog Left 380 242 83 12 43 6 81.22 0.92 0.08 0.45 0.55 1.56 −0.66

Bird-Dog Right 387 244 88 11 44 7 81.98 0.90 0.10 0.49 0.51 1.34 −0.64

Drop Jump 275 168 64 7 36 14 84.67 0.89 0.11 0.27 0.73 1.81 −0.29

Hop-Down Left 396 242 99 10 45 10 81.75 0.88 0.13 0.36 0.64 1.51 −0.40

Hop-Down Right 396 242 97 11 46 13 79.70 0.89 0.11 0.40 0.60 1.49 −0.50

L-Hop Left 266 159 67 6 34 12 83.15 0.87 0.13 0.29 0.71 1.70 −0.29

L-Hop Right 267 160 67 6 34 15 82.71 0.90 0.10 0.33 0.67 1.71 −0.41

Lunge Left 399 246 97 12 44 18 80.70 0.93 0.07 0.50 0.50 1.47 −0.74

Lunge Right 401 248 97 12 44 18 81.25 0.91 0.09 0.38 0.62 1.62 −0.51

Step-Down Left 399 246 98 12 43 12 75.19 0.87 0.13 0.52 0.48 1.07 −0.60

Step-Down Right 399 247 96 11 45 6 76.37 0.88 0.12 0.50 0.50 1.17 −0.60

T-Balance Left 392 244 92 11 45 14 76.47 0.90 0.10 0.55 0.45 1.15 −0.71

T-Balance Right 395 244 94 12 45 10 75.13 0.87 0.13 0.50 0.50 1.14 −0.58

Average 365.54 225.54 87.62 10.23 42.15 11.92 80.02 0.89 0.11 0.43 0.57 1.44 −0.53

STD 55.17 36.14 13.11 2.31 4.38 4.03 3.19 0.02 0.02 0.10 0.10 0.25 0.15

Bold values represent the average and standard deviation across all movement tasks.

FIGURE 2 | OPT: The percent of correctly classified athletes as either elite or novice for when 1 to the total number of PCs retained were retained for binary logistic
regression (BLR), decision tree (DT), linear discriminant analysis (LDA), k-nearest neighbors (kNN), naïve Bayes (NB), support vector machine with a linear kernel
(SVM), and support vector machine with a radial basis function kernel (RBF) with leave-one-out validation for OPT. See number of PCs retained in Table 1.

lunge left, NB performed as well as the linear classifiers, however,
for all other tasks, they performed in between the linear classifiers
and DT, kNN, and RBF. Since there were minimal differences
(<0.5%) on the average classification rates for all tasks between
BLR, LDA, and SVM, and to be able to compare the current
results to previous results (Ross et al., 2018), LDA was selected for
further analysis. When using LDA, the optimal number of PCs

retained ranged from 9 (hop-down right) to 18 (bird-dog left,
T-balance right) with an average of 14.15 ± 3.02 PCs retained
(Table 1). The OMAT-OPT accurately classified between 73.1%
(T-balance right) to 83.8% (L-hop left) of athletes as either elite
or novice (Table 1). The average classification rate across all tasks
was 78.1% ± 3.26%. For SDT, on average, OMAT-OPT had a hit,
miss, FA, and CR rate of 0.87 ± 0.03, 0.13 ± 0.03, 0.38 ± 0.06, and
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FIGURE 3 | sIMU: The percent of correctly classified athletes as either elite or novice for when 1 to the total number of PCs retained were retained for binary logistic
regression (BLR), decision tree (DT), linear discriminant analysis (LDA), k-nearest neighbors (kNN), naïve Bayes (NB), support vector machine with a linear kernel
(SVM), and support vector machine with a radial basis function kernel (RBF) with leave-one-out validation for sIMU. See number of PCs retained in Table 2.

0.62 ± 0.06, respectively (Table 1). The average D’ was 1.44 ± 0.25
and the average C was −0.41 ± 0.07 (Table 1).

OMAT-sIMU
Similar to OMAT-OPT, for all tasks the linear classifiers (i.e., BLR,
LDA, and SVM) outperformed all the other classifiers (i.e., DT,
kNN, NB, and RBF), except KNN performed as well as the linear
classifiers in the bird-dog left and right, hop-down left, and step-
down left (Figure 3). Since there were again minimal differences
between the average classification rates for all movement tasks
between BLR, LDA, and SVM, LDA was selected for further
analysis. When using segment linear accelerations and angular
velocities, data available from an IMU system, the optimal
number of PCs retained ranged from 6 (bird-dog left, step-down
right) to 18 (lunge left and right) with an average of 11.92 ± 4.03
PCs retained (Table 2). The OMAT-sIMU accurately classified
between 75.1% (T-balance right) to 84.7% (drop-jump) of athletes
as either elite or novice (Table 2). The average classification rate
across all tasks was 80.0% ± 3.19%. For SDT, on average, OMAT-
sIMU had a hit, miss, FA, and CR rate of 0.89 ± 0.02, 0.11 ± 0.02,
0.43 ± 0.1, and 0.57 ± 0.1, respectively (Table 2). The average D’
was 1.44 ± 0.25 and the average C was −0.53 ± 0.15 (Table 2).

When comparing the OMAT-OPT and OMAT-sIMU
classification rates on average, OMAT-sIMU had higher
classification rates than OMAT-OPT by 1.92%. OMAT-sIMU
outperformed OMAT-OPT in the bird-dog right (1.1%), drop-
jump (4.31%), hop-down left (4.48%) and right (5.46%), L-hop
right (3.68%), lunge left (2.50%) and right (2.95%), step-down
right (2.18%), and T-balance right (1.97%), whereas OMAT-OPT

had a higher classification rate than OMAT-sIMU for bird-dog
left (1.41%) (Figure 4). The two models performed relatively the
same (< 1% difference) for the L-hop left, step-down left, and
T-balance left.

DISCUSSION

The primary purpose of this study was to assess the ability
of the OMAT to differentiate whole-body movement patterns
between novice and elite athletes performing a non-sport-specific
movement screening battery using data able to be collected via
an IMU. The secondary purpose of this study was to refine the
architecture of the OMAT by incorporating feature selection and
testing multiple classifiers. For both the OMAT-OPT and OMAT-
sIMU, BLR, LDA, and SVM, on average, outperformed all other
classifiers tested. These findings suggest that the data can be
separated using a linear plane; and therefore, the use of more
complicated, computationally expensive non-linear classifiers is
not only not required, but can be detrimental. There were
minimal differences between BLR, LDA, and SVM, so therefore
in order to easily compare the current results with previous work,
LDA was chosen as the classifier to report the results.

OMAT-OPT with feature selection outperformed the
previously published results on 7 of the 13 tasks (i.e., bird-dog
left and right, hop-down left, L-hop left, lunge left and right,
and T-balance left) and OMAT-sIMU was able to outperform
the previously published results of the OMAT-OPT in all tasks
except the step-down left (Ross et al., 2018). This in part is due
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FIGURE 4 | The percent of correctly classified athletes as either elite or novice for when 1 to the total number of PCs retained were retained for the linear
discriminant analysis with leave-one-out validation when using OPT and sIMU data.

to the introduction of feature selection into the methodology,
reinforcing the value of this approach for future work aiming
to objectively classify movement patterns. Compared to the
previous study, where PCs 1–35 were retained (Ross et al.,
2018), using feature selection, we are now able to have greater
classification rates using fewer PCs, which requires fewer
computational resources and decreases the risk of overfitting
for 7 of the 13 tasks. OMAT-sIMU outperformed or performed
equally to OMAT-OPT in all movements except the bird-dog left.
These findings suggest that the OMAT-sIMU approach better
captures movement pattern differences between novice and elite
athletes compared to OMAT-OPT data. This is thought to be
due to the different types of data analyzed for OMAT-OPT and
OMAT-sIMU. OMAT-OPT uses joint center trajectories, which
due to the constrained nature of the tasks, may be capturing
more gross motor patterns that are unrelated to skill. In contrast,
the OMAT-sIMU uses linear acceleration and angular velocity
that are more likely to capture the smoothness of the movement,
which may be a better indicator of skill level than gross motor
patterns. However, for both the OMAT-OPT and OMAT-sIMU,
when looking at trends in individual athlete data across tasks, if
there were differences in how the athlete was classified between
tasks, athletes tended to be classified the same on all tasks that
were targeting the same skill set (e.g., trunk stability, jumping,
balance) and if there were discrepancies on how the left/right
tasks were classified, the dominant side was usually classified as
elite. This suggests that relevant differences between elite and
novice-like movement patterns can be detected using both data
types. A combined approach of using both sIMU and OPT data
may provide even better classification rates than using sIMU or
OPT alone due to the two types of data potentially capturing
different movement features.

Previously, in order to assess how well the framework was
classifying elite and novice athletes on a group basis, the percent
of correctly classified elites and novices were calculated (Ross
et al., 2018). SDT was chosen for this current study because it
provides classification rates for each group (e.g., hit and correct
rejection) as well as the additional information of response
bias. For all tasks, both OMAT-OPT and OMAT-sIMU had
higher rates of correctly classifying elite athletes (depicted by
the increased hit and decreased miss rates) compared to novice
athletes (depicted by the decreased CR and increased FA rates).
For all tasks, D’ was greater than 1.08 and 1.07 for OMAT-OPT
and OMAT-sIMU, respectively, suggesting that elite and novice
athletes are separable when using both OMAT-OPT and OMAT-
sIMU. However, on average, the data are more robustly classified
when using OMAT-sIMU data compared to OMAT-OPT data.
Lastly, for all tasks, for both OMAT-OPT and OMAT-sIMU, the
framework was more likely to classify the athlete as elite than
the ideal observer. A potential reason for this could be that
some of the novice athletes were attending an elite youth sports
academy, which boasts a high percentage of students continuing
to compete at the collegiate and professional levels. Therefore,
some of the novice athletes were on track to become elite athletes
at the time of testing. On average, OMAT-OPT acted more
closely to the ideal observer than OMAT-sIMU, based on our
definition of a hit and correct rejection; this is represented by the
smaller C value.

Although on average the models using the OMAT-sIMU data
as the inputs, had higher classification rates than OMAT-OPT,
a limitation of the OMAT-sIMU data is that it is more difficult
to interpret differences between elites and novices compared to
OMAT-OPT, making it harder to train individuals to improve
their movement patterns. With only linear accelerations and
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angular velocities, and no video data, it is hard to discern exactly
how the athlete is moving within space to obtain a score more
representative of an elite or novice athlete. IMUs may offer an
inexpensive measurement device to objectively screen movement
abilities, where those individuals identified with weaknesses can
then be tested more in depth with optical motion capture to
inform targeted corrective exercise approaches.

A limitation of this study is the use of camera-based motion
capture to calculate the linear accelerations and angular velocities
for each segment and not raw data collected from IMUs. This
technique has been used in previous research when the desired
database does not contain IMU data (Young, 2010). Although
linear accelerations and angular velocities would change when
using IMUs, due to the inability to place IMUs at the CoG of
segments, previous research has found strong agreement between
IMU outputs and optical motion capture outputs (Mcginnis
et al., 2014; Bolink et al., 2018). Even though the data were
not raw data from an IMU, we purposefully took the Euclidean
norm of the data to increase ecological validity and to remove
the effect of different local coordinate system orientations of
the linear acceleration and angular velocities within the global
coordinate system. In addition, we differentiated positional data,
which introduces noise to the data that would not be present
when collecting data via IMU and were still able to get high
classification rates. We are confident that these classification
results are representative and may be lower than that of what
would be achieved using sensors themselves, which we are in
the process of testing. A second limitation of the study is
the assumption athletes at the collegiate and professional level
completed 10,000 h of deliberate practice. However, athletes
competing at the professional and inter-collegiate levels would
be in the higher echelon of athletes in their sport even if not
completing 10,000 h. Nonetheless, this paper provides proof-of-
concept that the OMAT is able to accurately classify athletes as
novice or elite with consistent or improved accuracy when using
data available from IMUs, relative to whole-body marker data.
Future research should investigate the ability to classify athletes
using OMAT using segment linear acceleration and angular
velocity data collected using IMUs, fine-tuning algorithms to
increase classification rates, and exploring other classifiers such
as sport played, injury risk, and sex.

CONCLUSION

In conclusion, the introduction of feature selection increased
the classification rates compared to using the first 35 PC scores
and BLR, LDA, and SVM produced the highest classification

rates although there were minimal differences (<0.5%) between
the three. Segment linear acceleration and angular velocity
data readily available from an IMU could differentiate athletes’
movement performance based on skill level when using a novel
machine learning approach (Ross et al., 2018) with a level
of accuracy consistent with the use of whole-body motion
capture data. These data suggest that IMUs, in conjunction
with OMAT, may provide an inexpensive and timely way to
objectively characterize and classify movement performance in
the field, providing a feasible method for coaches and clinicians
to objectively measure performance.
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The identification of musculoskeletal impairments from gait analysis in children with
cerebral palsy is a complex task, as is formulating (surgical) recommendations. In
this paper, we present how we built a decision support system based on gait
kinematics, anthropometrics, and physical examination data. The decision support
system was trained to learn the association between these data and the list of
impairments and recommendations formulated historically by experienced clinicians.
Our aim was 2-fold, train a computational model that would be representative of
data-based clinical reasoning in our center, and support new or junior clinicians
by providing pre-processed impairments and recommendations with the associated
supportive evidence. We present some of the challenges we faced, such as the issues of
dimensionality reduction for kinematic data, missing data imputations, class imbalance
and choosing an appropriate model evaluation metric. Most models, i.e., one model
for each impairments and recommendations, achieved a weighted Brier score lower
than 0.20, and sensitivity and specificity greater than 0.70 and 0.80, respectively. The
results of the models are accessible through a web-based application which displays
the probability predictions as well as the (up to) 5 best predictors.

Keywords: decision support system, gait analysis, cerebral palsy, orthopaedics, random forest, peadiatrics

INTRODUCTION

Cerebral palsy (CP) refers to a group of disorders due to a brain lesion that
occurred shortly before or after birth (Graham et al., 2016). CP is the most common
cause of physical disability in children, with a prevalence of around 2.5 per 1000
births in developed countries (McIntyre, 2018). Due to the brain lesion, secondary
musculoskeletal impairments often develop and worsen during childhood and adolescence.
Clinical and physical examinations as well as three-dimensional gait analysis (3DGA)
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are utilized to determine how the musculoskeletal impairments
affect the capacity of an individual to walk (Wren et al., 2011a,b).

Identifying neuro-musculoskeletal problems that impact the
walking function of children with CP is a difficult process that
involves multiple components. The diagnostic matrix (Davids
et al., 2004) includes clinical history and diagnosis, classification
and functional scales, physical examination, such as passive
range of joint motion and muscle strength, and 3DGA which
provides the kinematics and kinetics of the lower limb joints
during walking as curves. In the latter analysis, the effects
of the musculoskeletal impairments on gait may be detected
from abnormal features present in the kinematic and kinetic
curves. Features that might be interpreted include the magnitude
and waveform of the different curves, the difference between
the patient’s curve and those from healthy individuals or the
differences between the left and right limb curves. The final
surgical recommendations also incorporate diagnostic imaging
and examination under anesthesia (Davids et al., 2004).

A clinician needs to invest significant time and energy into
assimilating all the available clinical information to determine
the impairments that affect a child’s capacity to walk. For
example, 3DGA feature interpretation is not straightforward
because: (i) one feature in one curve may relate to several
impairments, (ii) there may be several features corresponding to
several impairments, (iii) one impairment may lead to abnormal
features in several other curves, and (iv) kinematics features
may be primarily related to an impairment, compensatory or
obligatory because of an impairment. Interpretation therefore
requires analyzing the features observed simultaneously in the
24 kinematic and kinetic graphs in conjunction with results
from the physical examinations and information from the
other assessments.

We developed a decision support system to facilitate the
process of identifying musculoskeletal impairments from the
typical gait analysis assessments. Both the complexity of the
identification process and the necessity to support this process
using computerized tools has been recognized in the past, as
early as the 1990s (Weintraub et al., 1990; Johnson et al.,
1996; Simon, 2004), however, with limited uptake in practice by
the clinical gait analysis community. Work to design decision
support systems for gait analysis is continuing (Wagner et al.,
2019). Machine learning concepts and algorithms are now
applied to a range of tasks pertaining to gait analysis thanks
to advancement in computation power and widespread use of
databases to store clinical and gait analysis data. These tasks
range from automated classification (Lai et al., 2009; Rozumalski
and Schwartz, 2009; Sangeux et al., 2015) to predicting outcomes
(Schwartz et al., 2013) to data-driven optimal clinical decision
making (Ries et al., 2014).

The core of the decision support system we developed is
a group of predictive models which use physical examination
and kinematic data to identify impairments and surgical
recommendations. The models were trained on a historical
dataset to predict, based on the current clinical findings
for the current child, what the impairment list and surgical
recommendations would have been identified by the clinicians
in the past. In other words, the predictive models are concerned

about replicating the behaviors of clinicians in the past and may
be viewed as an objective and probabilistic storage of clinical
reasoning. Our objective was to develop models able to support
a clinician by providing an answer to the question: “What
my-past-self, or experienced predecessors in this center, would
have decided based on similar data?” As such, these models may
be particularly useful to clinicians with less clinical experience.

In our gait laboratory, the clinical decision-making process
is separated into two components. Firstly, we identify the
impairments, objectively from the clinical data. Secondly,
management options which may include orthopaedic surgery are
selected. We therefore developed this decision support system
for both components. However, instead of being sequential, we
developed these two decision support components independently
of each other. The surgical recommendation system depends on
the clinical data only not the (machine) identified impairments.
The reason for making these independent is so that the quality
of the surgical recommendation system will not be limited by
the quality of the impairment identification system. Thus, even
if the system fails to return a correct impairment list, there is still
a possibility for the second component of the system to make the
correct surgical recommendation.

This article explains how we developed and evaluated the
impairment identification and surgical recommendation decision
support systems. The decision support system was designed in
tight partnership with clinicians in our center, including how the
outputs are presented.

MATERIALS AND METHODS

Dataset for Impairment Modeling
Data
We collated 3DGA records from the Hugh Williamson
Gait Analysis Laboratory (HWGAL) with the following
inclusion criteria:

(1) A diagnosis of CP as determined by appropriate clinicians,
and registration on the state-wide CP Register.

(2) Data collected from 2008 onward (Prior to 2008, a
set of identified impairments was not a mandatory
reporting requirement).

(3) 3DGA data must contain at least one barefoot, unassisted
walk. No other condition (e.g., orthosis) was included.
Typical data collection includes six walking trials with at
least three with kinetics data, however, sometimes only
the most representative walking trial was uploaded
to the report. Representative trials were chosen
visually before 2015 and computationally after 2015
(Sangeux and Polak, 2015).

(4) Physical Examination data must be available.
(5) The 3DGA report must list a clear set of

identified impairments.

This procedure led to 689 3DGA records being used,
stemming from 423 children (mean (SD) age: 10 years (2.4 years),
range: 2–21 years). However, we modeled each side (left and
right) separately, hence doubling the data to 1378 records. We

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 November 2020 | Volume 8 | Article 529415313

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-529415 November 23, 2020 Time: 15:12 # 3

Chia et al. A Decision-Support-System for Gait Analysis

FIGURE 1 | Example of a dataset from gait analysis: 24 kinematic (3 columns from the left, angles in ◦) and kinetic (3 columns from the right, moments are internal
and in N.m/kg bodyweight, powers are in W/kg bodyweight) graphs for a child with CP. Kinematics and kinetics data are plotted along time t, in % of the gait cycle.
Data from 5 walks were superimposed, the left limb is in red, the right limb in blue, data from typically developed children displayed as a gray band. Vertical lines
denote the timing of the ipsilateral foot off.

initially attempted modeling on the individual level, but we found
the result to be worse than modeling on each side. We suspect
the main reason is that we do not have enough data points to
support accurate estimation of many predictors, so when we
model both sides together, which effectively doubles the number
of predictors, the final predictive accuracy drops. This has been
observed previously (Trunk, 1979).

Predictors
The predictors that we used can be grouped into two sets:
kinematics and physical examination data.

The kinematics were collected using the following protocol.
The children were equipped with the Plug-in-Gait marker set
(Vicon, Oxford Metrics Group) by registered physiotherapists.
During the 3DGA session, children walked barefoot at their
self-selected speed and chose their cadence freely. The three-
dimensional marker trajectories were obtained using Vicon
motion capture systems including 10 cameras (Oxford Metrics
Group, United Kingdom) recording at 100 Hz. The foot
strike events, and ground reaction force were captured from
2 (before 2009) to 6 (after 2009) AMTI force plates (AMTI
Inc, United States) embedded in the floor. Force plate signals
were sampled at 2000 Hz. Lower limb kinematics and kinetics
were calculated with Plug-in-Gait in Nexus software (VICON,
Oxford Metrics Group) after filtering marker trajectories

(Woltring, 1986). We used kinematic data from the lower limbs
only namely: Pelvis (sagittal, coronal, transverse), Hip (sagittal,
coronal, transverse), Knee (sagittal, coronal, transverse), Ankle
(sagittal, transverse), and Foot Progression angle (transverse). All
kinematics and kinetics data were normalized to the gait cycle,
each curve was described from 101 points, one every % of the gait
cycle (Figure 1).

Physical examination data was collected using standard
protocols published elsewhere (Keenan et al., 2004; Thomason
et al., 2014). Not all physical examination measurements were
collected for all children due to difficulty with compliance or
physical ability. In our model, we excluded any predictors that
were not collected for at least 90% of the children.

Table 1 lists the physical examination predictors that we
used in the model.

Impairments
We modeled frequently occurring impairments, with
impairments that were listed with at least 100 occurrences.
Impairments were extracted, tabulated, and added to the
database from the text available in the clinical reports. In 2007,
clinicians at our center agreed to follow a template to report
clinical interpretation of gait analysis. The reporting policy was
in line with the concept of impairment focused interpretation
which was first described by Baker (2013). Specifically, the

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 November 2020 | Volume 8 | Article 529415314

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-529415 November 23, 2020 Time: 15:12 # 4

Chia et al. A Decision-Support-System for Gait Analysis

TABLE 1 | Physical examination measurements which were used as predictors in the impairment model.

Category Measurements

Anthropometric Age, Height, Weight

Strength Knee extensors, Quadriceps lag, Abdominals, Knee flexors, Hip extensors, Hip abductors, Dorsiflexors, Plantarflexors, Invertors,
Hip flexors

ROM/Spasticity (Tardieu fast) True popliteal angle, Popliteal angle, Dynamic popliteal angle (fast), Dorsiflexion (knee flexed), Dorsiflexion (knee extended), Dynamic
dorsiflexion (fast), Hip abduction (knee extended), Hip extension, Duncan-Ely (slow), Duncan-Ely (fast), Hip Internal rotation, Hip
external rotation, Selective Motor Control at the ankle

Bone Femoral anteversion (trochanteric prominence test), Tibial torsion (Bimalleolar axis), Thigh heel angle, Foot posture - Midfoot,
Forefoot, Hindfoot sagittal, Hindfoot coronal

Spasticity measurements were according to Tardieu as the angle of arrest under fast passive range of movement (ROM).

TABLE 2 | List of impairments with at least 100 occurrences and number of
occurrences.

Impairments Number of occurrences

Hamstring spasticity 497

Gastrocnemius spasticity 434

Increased femoral neck anteversion 383

Soleus spasticity 358

Gastrocnemius contracture 342

Increased external tibial torsion 338

Rectus femoris spasticity 243

Soleus contracture 237

Knee fixed flexion deformity 177

Gluteal weakness 129

Soleus weakness 128

Hip fixed flexion deformity 125

Hamstring contracture 117

Gastrocnemius weakness 107

impairments listed in the reports were those deemed to impact
gait function by the clinician who conducted the 3DGA and
completed the interpretation.

Table 2 lists such impairments.

Dataset for Surgical Recommendations
Data
The inclusion criteria for data used for building the dataset for
surgery modeling was the same as for impairment modeling, (1
to 4 listed above) but without the requirement for an impairment
list and the addition of:

(6) The child must have undergone surgery within 2 years of
the recommendations from the 3DGA report.

This led to 384 3DGA analysis records, stemming from 309
children being included. Again, we modeled each side separately
which then doubled the data record number to 618.

Predictors
We went through a similar procedure of removing measurements
that were not collected for at least 90% of the children.
Table 3 lists the physical examination predictors that we
used in this model.

TABLE 3 | Physical examination measurements used for predicting surgical
recommendation in the model.

Category Measurements

Anthropometric Age, Height, Weight

Strength Nil

ROM/Spasticity Hip abduction (knee extended), Dorsiflexion (knee
extended), Duncan-Ely (fast), True popliteal angle, Popliteal
angle, Hip internal rotation, Hip external rotation

Bone Tibial torsion (Bimalleolar axis)

TABLE 4 | Surgical procedures conducted at least 100 times.

Surgeries Number of times conducted

Femoral derotation osteotomy 159

Semitendinosus transfer 143

Gastrocnemius lengthening (Strayer) 142

Adductor longus lengthening 128

Surgical Procedures
Table 4 lists the surgical procedures included in the model, each
of which were conducted at least 100 times.

Modeling
Kinematic Feature Extraction
Forty-nine kinematic binary features, all of the form “has X
or has not X,” were extracted from the raw kinematic curves.
We derived the feature definitions by first using a published
DELPHI consensus study (Nieuwenhuys et al., 2016) as a starting
point, and then we conducted our own discussion session
with clinicians to fine tune the features into the final form as
shown in Table 5.

Computationally, these features are detected by applying some
function to both the curve under consideration and a set of
standard kinematic curves measured from typically developing
children (Pinzone et al., 2014; Sangeux et al., 2016), and then
making some comparison using means and standard deviation
(SD). For example, the feature “Increased Hip extension at Mid
Stance” has a definition “Mean angle at t∈[20,45] < 1 SD of
typical mean.” This translates to a four-step procedure:

(1) Calculate the mean angle for the curve under consideration
at t∈[20,45].
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TABLE 5 | Features extracted from raw kinematic curves.

Structure Plane Features Definition

Pelvis Sagittal Increased ROM (double bump) • ROM > 2 SD of typical ROM, and

• period is 2, and • difference between L&R is <0.25 ROM, and

• Correlation with our reference double bump curves >0.8.

Decreased Pelvic Tilt • Mean angle < 1 SD of typical mean.

Decreased Pelvic Tilt + Increased ROM • Decreased Pelvic Tilt, and

• ROM > 2 SD of typical ROM.

Increased Pelvic Tilt • Mean angle > 1 SD from typical mean.

Increased Pelvic Tilt + Increased ROM • Increased Pelvic Tilt, and

• ROM > 2 SD of typical ROM.

Unilateral Bump • ROM > 2 SD of typical ROM, and

• Not double bump.

Coronal Increased Pelvic ROM • ROM > 2 SD of typical ROM

Pelvic Elevation/Depression • Mean difference between L&R > 1 SD of typical difference.

Transverse Increased Pelvic Rotation ROM • ROM > 2 SD of typical ROM

Pelvic Pro / Retraction • Mean difference between L&R > 1 SD of typical difference.

Reversed ROM • Correlation with reference reversed ROM curves >0.8.

Hip Sagittal Decreased Hip Flexion at Initial Contact • Angle at t = 0 < 2 SD of typical angle.

Hip Extension Deficit • Mean angle in stance > 1 SD of typical angle, and

• ROM < 2 SD of typical ROM.

Hip Hyper-Flexion • Mean angle in stance within 1 SD of typical range, and

• Peak angle in swing > 2 SD of typical peak.

Increased Hip extension at Mid Stance • Mean angle at t∈[20,45] < 1 SD of typical mean.

Increased Hip Flexion • Mean angle in stance > 1 SD of typical mean, and

• All angles > 0.

Increased Hip Flexion + Decreased ROM • Increased Hip Flexion, and • ROM < 2 SD of typical ROM.

Coronal Excessive Hip Abduction • Mean angle in stance < 1 SD of typical mean, and

• Mean angle in swing < 1 SD of typical mean.

Excessive Hip Abduction in Swing • Mean angle in swing < 1 SD of typical mean.

Excessive Hip Adduction • Mean angle in stance > 1 SD of typical mean, and

• Mean angle in swing > 1 SD of typical mean.

Hip Adduction in Stance • Mean angle in stance > 1 SD of typical mean.

Transverse Hip External Rotation • Mean angle < 1 SD of typical mean.

Hip Internal Rotation • Mean angle > 1 SD of typical mean.

Increased Hip Internal Rotation at Late Stance • mean angle in t∈[40,60] > 1 SD of typical mean, and

• peak occurs before t = 70, and

• no pit in t∈[20,80]

Knee Sagittal Reduced Flexion at Loading • Mean angle in t∈[0,20] < 1 SD of typical mean.

Decreased Peak Knee Flexion • Peak in swing < 2 SD of typical peak.

Delayed + Decreased Peak Knee Flexion • Peak occurs after t = 75, and

• Decreased Peak Knee Flexion.

Delayed + Increased Peak Knee Flexion • Peak occurs after t = 75, and • Peak in swing > 2 SD of typical peak

Delayed Peak Knee Flexion • Peak occurs after t = 75.

Knee Flexion in Mid Stance • Mean angle in t∈[20,45] > 1 SD of typical mean.

Knee Hyperextension • Mean angle in t∈[20,45] < 1 SD of typical mean.

Increased Flexion at Initial Contact • Angle at t = 0 > 2 SD of typical angle.

Increased flexion at Initial Contact+ Early Knee Extension • Increased flexion at initial contact, and

• Pit occurs before t = 25, and

• Difference between angle @ IC and at pit > 10, and

• Min angle in t∈[10,25] < mean+1 SD of typical angle

Increased Peak Knee Flexion • Peak angle in swing > 2 SD of typical peak.

Ankle Sagittal Reduced Dorsiflexion • Mean angle in t∈[0,50] < 1 SD of typical mean.

Descending 2nd Rocker • Angle at t = 45 minus the angle at t = 20 < −5, and • Angle at t = 45 < 0

(Continued)
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TABLE 5 | Continued

Structure Plane Features Definition

Dorsiflexion in Swing • Mean angle in swing > 1 SD of typical mean.

Foot Drop • Mean angle in t∈[80,100] < 1 SD of typical mean.

Horizontal 2nd Rocker • ROM in t∈[20,45] < 5, and

• Absolute slope of the same period <0.1, and

• Angle at t = 45 < 0.

Increased Dorsiflexion • Mean angle at t∈[20,45] > 1 SD of typical mean.

Increased Max. Dorsiflexion • Max angle in stance > 2 SD of typical stance.

Increased Plantarflexion • Mean angle in t∈[20,45] < 1 SD of typical mean.

Insufficient Pre-positioning • Angle at t = 100 (final) > 2 SD of typical angle.

No 1st Rocker • Angle at t = 1 > angle at t = 0.

Short 2nd Rocker • Peak exists in t∈[0,20], and

• Slope in t∈[20,45] < 0, and

• Correlation with reference short 2nd rocker curves >0.8.

Transverse Ankle Internal Rotation • Mean angle in stance > 1 SD of typical angle.

Foot Progression Transverse External Foot Progression (Wave) in Swing only • ROM in swing > 2 SD of typical ROM, and

• Correlation with referenced External foot progression curve >0.8.

In-toe • Mean angle in stance > 1 SD of typical mean.

Out-toe • Mean angle in stance < 1 SD of typical mean.

ROM, Range of motion; SD, Standard Deviation; R, Right; L, Left.

(2) Calculate the same for each individual curve in the
reference (typically developed) dataset.

(3) Calculate the mean and SD of the mean angles
calculated in step 2.

(4) If the statistics calculated in step 1 is less than the mean
minus 1 SD (as calculated in step 3), then the feature is
deemed present in the curve under consideration.

The R code to detect the default kinematic features and
create custom-designed feature detectors is available here: https:
//github.com/Morgan435/gaitFeature/.

Most features in Table 5 are defined over the entire gait
cycle or a sub-phase of gait, e.g., stance or swing phase, or
at t = 0. Markedly different walking speeds between the mean
of the typically developing reference dataset and that of the
subject under consideration may lead to some time-shift when
the features are considered over a specific time period, e.g.,
t∈[20,45] as above. In this case, it is possible to add a pre-
processing step that apply dynamic time warping to the curves
before features extraction. We did not deem necessary to include
such a pre-processing step in this instance.

Missing Data Imputation
Missing data were imputed just prior to the model training
step. Continuous variables were imputed by their median, and
categorical ones were imputed by the most frequently appearing
category. We acknowledge that such a simple imputation
scheme imposed certain assumptions to the data missing
mechanism, such as missing at random, which is unlikely
true in clinical practice. But we did check that variables
with high missing data did not rank highly in the variable
importance matrix.

Models
There are many different machine learning algorithms that could
be used. We have trained many different models (e.g., support
vector machine, linear discriminant model, partial least square,
naïve bayes), however, here we report the models with the best
overall balance between ease-of-use, computation speed, and
predictive performance.

For each impairment / surgical procedure, a standard random
forest (Breiman, 2001), a stratified random forest (Kuhn, 2008),
and a regularized logistic regression (with elastic net penalty,
a.k.a. “glmnet” (Friedman et al., 2010) were fitted. The stratified
random forest is like the standard one, except that each tree in
the forest is trained on a balanced resample. That is, a resample
where the number of instances in each class is equal. The reason
for using the stratified version is to tackle class imbalance.
However, such stratified resamples are essentially down sampling
techniques, that is, throwing away instances of the majority class.
Therefore, the cost of a balanced training is higher variance.
Hence, the other models were still retained as feasible candidates.

The hyper-parameters were tuned according to the weighted
Brier score as defined in the next section.

Model Evaluation Metric
One way to assess classification models is to see how well they
predict the class of new observations. Metrics such as accuracy,
precision, sensitivity, specificity are all designed to assess this
aspect of the prediction (Altman and Bland, 1994). However, we
advocate moving away from predicting the class to predicting
the probability of class membership. This is because, first,
unlike predicted class, the predicted probabilities also convey the
uncertainty of the prediction. Most of us would probably view
51 and 99% chance of something happening very differently, but
in the class prediction sense they would both be considered the
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same positive prediction, so the uncertainty is lost. Secondly,
unlike many artificial intelligence application (e.g., hand-written
postcode recognition by the post office), the machine (model)
in our clinical setting does not actually have to make any
decision, as this responsibility lies with the clinician. Therefore,
predicting class membership is in a sense one step more than
what is required.

Hence, we decided to use the Brier score (Brier, 1950)
as our model evaluation metric. The Brier score is defined
as
∑

i
(
P̂i − Oi

)2
/N, where P̂i denotes the predicted probability

that child i had the impairment / surgery, Oi is 1 if the child
i had the impairment / surgery and 0 otherwise, and N is
the total number of children. Therefore, Brier score is the
mean-squared-error equivalent for binary classification. Another
advantage of using Brier score is that it is a proper scoring metric
(Harrell, 2015), meaning its expectation is minimized by the true,
unknown, probability.

The weighted Brier score is the weighted version where each
term in the summation is weighted by the reciprocal of their true
class frequency. The reason we used the weighted Brier score is to
tackle the issue of class imbalance. By setting the weight to be the
reciprocal of the class frequency, error in the minority class would
be penalized more heavily, thus forcing us to choose a model that
has a more balanced performance in both classes.

A null model which predicts a constant 50% regardless
of predictors will achieve a Brier score (weighted or not) of
0.25. Therefore, any admissible model should achieve a score
of less than 0.25.

Training and Validation
Training and validation were done using 25 out-of-bag bootstrap
resample. That is, the entire dataset was used to recreate 25
bootstrap resamples, and the models were trained on each
resample, and validated on the portion that did not appear in the
corresponding training sample.

Probability Calibration
Because the predicted probability is our primary output, we
carried out a further step of calibrating the prediction probability,
using an isotonic regression. The procedure is as followed:

(1) From the previous steps (i.e., model training) collect the
prediction made on the out-of-bag (i.e., validation) data,
treat this as our new training dataset.

(2) Train an isotonic regression using the predicted probability
as predictor, and the observed class as response variable.
Such training is also done using the out-of-bag bootstrap
resampling scheme.

(3) Using the predicted probability from the trained isotonic
regression model as the final predicted probability that we
report to the end user.

Probability calibration can sometimes improve the accuracy
of the predicted probability, but sometimes impairs it. To ensure
this step is beneficial, we once again computed the weighted Brier
score and other secondary evaluation metrics and compare them
with those from the uncalibrated models.

Explanation
We tried to make the model’s prediction as transparent as
possible, reasoning that the more transparent the model is, the
more informative, and thus helpful, it will be to the end-user
clinician. A clinician may not trust a black box that simply
declares a certain child has impairment X without providing
reason. But the same clinician will likely find a system which
suggests a child might have impairment X with Y% certainty
because of Z reason(s) more helpful and credible. The reasons
for a decision support tool are at least 2-fold. Firstly, the clinician
can compare and combine the model’s confidence with their own.
If a clinician already has strong belief that impairment X exists,
then a model prediction of 60% confidence is most likely enough
to reinforce that belief. On the contrary, if the clinician’s prior
belief was “highly unlikely,” then even a 60% model confidence
may not sway them in their belief. If, however, the model
output is 90% confidence, then it might prompt the clinician
to further investigate the issue. Secondly, the clinician has the
information to examine the reason underlying the prediction,
which empowers them to agree with or overrule the prediction.
This makes a transparent and trustworthy computer system that
has been the subject of many research papers (Ferri et al., 2002;
Allahyari and Lavesson, 2011; Freitas, 2013; Castelvecchi, 2016;
Lipton, 2016; Ribeiro et al., 2016).

We explain our prediction by firstly, outputting the predicted
probability instead of predicted class. Secondly, we display the
measurement values of the (up to) 5 most important predictors,
where the importance of the predictors is judged by the trained
models. In a typical random forest model, the importance metric
is related to how much node impurity is reduced by a split on that
variable, whereas in a regularized regression, it is related to the
absolute magnitude of the coefficients. We say “up to” 5 because
for some impairments (e.g., hip fixed flexion deformity), most
of the result is explained by less than five predictors (e.g., hip
extension ROM). In these cases, it is only meaningful to retain
the predictors that have enough weight. Thirdly, we constructed
a partial dependence plot, which shows how the models react
to changes in each individual predictor, while holding all other
predictors constant (or averaging over them). If our models
were simply linear regression, these plots would simply be a
straight line with the slope being to the estimated coefficient.
But for algorithms such as random forest, the dependency
can be non-linear.

RESULTS

Impairment Diagnosis Model
Table 6 reports the weighted Brier score of the various
impairment diagnosis models on the validation sample. Recall
that a Brier score can be loosely thought of as the mean squared
error of the predicted probability (thus lower equals better), and
a null model has a score of 0.25. For the calibrated random forest,
we have also reported the mis-classification rate, sensitivity, and
specificity. We have placed the models which fail to give a
weighted Brier score or less than 0.25 at the bottom of the Table.
Overall, the calibrated (standard) random forest is usually the
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TABLE 6 | Weighted (out-of-bag/validation) Brier score for impairment diagnosis model, and the associated important variables.

Impairments Glmnet Stratified R.F. Random Forest Important Predictors

Raw Calibrated Raw Calibrated Raw Calibrated By Random Forest

Hamstring Spasticity 0.186 0.187 0.174 0.169 0.172 0.166
Mis:0.21
Sens:0.71
Spec:0.83

1. Dynamic Popliteal Angle
2. Height
3. Weight
4. Popliteal Angle
5. True Popliteal Angle

Gastrocnemius Spasticity 0.216 0.219 0.198 0.200 0.196 0.195
Mis:0.23
Sens:0.68
Spec:0.80

1. Dynamic Dorsiflexion
2. Height
3. Weight
4. Increased Plantarflexion
5. Dorsiflexion (Knee Flexed)

Increased Femoral-Neck Anteversion 0.176 0.174 0.165 0.168 0.163 0.163
Mis:0.17
Sens:0.70
Spec:0.89

1. Hip Internal Rotation
2. Anteversion
3. Feature: Hip Internal Rotation
4. Weight
5. Hip External Rotation

Soleus Spasticity 0.245 0.246 0.223 0.226 0.220 0.218
Mis:0.22
Sens:0.60
Spec:0.82

1. Dynamic Dorsiflexion
2. Height
3. Weight
4. Dorsiflexion (Knee Extended)
5. Feature: Increased Plantarflexion

Gastrocnemius Contracture 0.140 0.152 0.132 0.147 0.132 0.144
Mis:0.13
Sens:0.74
Spec:0.91

1. Dorsiflexion (Knee Extended)
2. Dorsiflexion (Knee Flexed)
3. Dynamic Dorsiflexion

Increased External Tibial Torsion 0.194 0.197 0.183 0.188 0.183 0.181
Mis:0.17
Sens:0.71
Spec:0.86

1. Tibial Torsion
2. Thigh Heel Angle

Rectus Femoris Spasticity 0.192 0.194 0.176 0.179 0.166 0.158
Mis:0.09
Sens:0.83
Spec:0.92

1. Feature: Increased ROM (Pelvis)
2. Duncan-Ely (Fast)
3. Duncan-Ely (Slow)
4. Weight
5. Height

Soleus Contracture 0.165 0.179 0.158 0.174 0.161 0.174
Mis:0.11
Sens:0.71
Spec:0.92

1. Dorsiflexion (Knee Flexed)
2. Dorsiflexion (Knee Extended)
3. Dynamic Dorsiflexion

Hip Fixed Flexion Deformity 0.184 0.191 0.148 0.186 0.148 0.172
Mis:0.07
Sens:0.71
Spec:0.95

1. Hip Extension ROM

Models Which Are Not Better Than The Null Model (In Terms Of Weighted Brier Score)

Hamstring Contracture 0.296 0.310 0.262 0.291 0.249 0.245
Mis:0.08
Sens:0.62
Spec:0.94

1. Popliteal Angle
2. Dynamic Popliteal Angle
3. Weight
4. True Popliteal Angle
5. Height

Knee Fixed Flexion Deformity 0.277 0.292 0.276 0.298 0.276 0.281
Mis:0.12
Sens:0.64
Spec:0.90

1. Quadriceps Strength
2. True Popliteal Angle
3. Hip Abduction (Knee Extended)
4. Hip External Rotation
5. Popliteal Angle

(Continued)
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TABLE 6 | Continued

Impairments Glmnet Stratified R.F. Random Forest Important Predictors

Raw Calibrated Raw Calibrated Raw Calibrated By Random Forest

Gluteal Weakness 0.307 0.324 0.310 0.333 0.302 0.280
Mis:0.08
Sens:0.71
Spec:0.93

1. Dynamic Popliteal
2. Height
3. Weight
4. Popliteal Angle
5. True Popliteal Angle

Soleus Weakness 0.303 0.315 0.304 0.330 0.297 0.272
Mis:0.08
Sens:0.59
Spec:0.94

1. True Popliteal Angle
2. Hip Abduction (Knee Extended)
3. Hip Extension ROM
4. Weight
5. Anteversion

Gastrocnemius Weakness 0.331 0.342 0.335 0.361 0.325 0.298
Mis:0.07
Sens:0.59
Spec:0.94

1. True Popliteal Angle
2. Popliteal Angle
3. Dorsiflexion (Knee Extended)
4. Hip Extension ROM
5. Hip Abduction (Knee Extended)

For calibrated random forest, the mis-classification rate, sensitivity, and specificity are also reported. RF, random forest; ROM, Range of motion; Mis, mis-classification
rate; Sen, sensitivity; and Spec, specificity.

best model in terms of having the lowest weighted Brier score.
However, for all the muscle weakness impairments, all models
failed to be better than the null model in the weighted Brier score.

Figure 2 shows the partial dependence plot for the
impairment model (Friedman, 2001). The vertical axis is
predicted probability that the impairment is present on the
log scale. Some plots only show a straight line, as the
predictors are binary (most likely one of the kinematic
feature variables).

Surgical Recommendation Model
Table 7 presents the weighted Brier score for the surgical
recommendation prediction model. Similarly, for the calibrated
random forest, the mis-classification rate, sensitivity, and
specificity are also provided. Overall, the two flavors of random
forest perform very similarly, with the standard version being
marginally better.

Figure 3 shows the partial dependence plot for
the surgery model.

System Output
In order to give readers a sense of the decision support system,
Figure 4 shows the output from the impairment model. The
green reflects the predicted probability that the impairment
is present, and the orange is the complement to that. As
can be seen, the predicted probability rather than predicted
class is the primary output, and the explanation behind the
prediction is reported.

DISCUSSION

We have developed two sets of models to facilitate
identification of musculoskeletal impairments and surgical

recommendations. These models are meant to reproduce
the essence of past clinical reasoning to new data. The
models were trained to associate kinematic features and
physical examination data with the list of impairments from
the clinical interpretation report and the list of surgical
treatments. Our approach is original because it proposes
an intermediate step, between the use of computerized
tools using explicit knowledge, e.g., (Wagner et al., 2019),
and data-driven approach to determine which treatment
should be recommended (or should a particular treatment
be recommended) by maximizing the likelihood of good
outcome measures, e.g., (Ries et al., 2014). The primary
output was the calibrated confidence that a certain
impairment is present/absent, together with the values of
the five most important predictors. Partial dependence plots
were also supplied to assist understanding of the general
reasoning of the models.

Physical examination measurements were the most important
predictors for impairments, listed as impacting gait in the
interpretation report, and surgical recommendations. The
partial dependence plots in Figures 2, 3 provide some
indications about the soft threshold values linking certain
physical examination measurements with impairments.
For many impairments and surgeries, these were the only
predictors deemed important by the models. Of note,
only a reduced set of physical examination measurements
could be used for surgical recommendation models
because of missing data. Only three impairments: increased
femoral neck anteversion (feature: increased hip internal
rotation), soleus spasticity (feature: increased plantarflexion)
and rectus femoris spasticity (feature: double bump)
included a kinematic feature as an important predictor.
For models to predict surgical recommendations, only
the femoral derotation osteotomy surgery included a
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FIGURE 2 | Partial dependence plot for the impairment prediction model (black line, 30). The vertical axis is the predicted probability (between 0 and 1) that the
impairment is present, on a log scale. The horizontal axis is the measurement for the predictor. The (blue) smooth line is added for visual aid. For some impairments,
there are less than five important predictors, resulting in blank panels. Finally, the number in parenthesis indicates the importance of that predictor, relative to the
most important predictor (so it always starts from 100 and decreases).
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FIGURE 3 | Partial dependence plot for surgery prediction model (black line, 30). The vertical axis shows the predicted probability (between 0 and 1) that the surgery
is needed, on a log scale. The horizontal axis is the measurement for the predictor. The (blue) smooth line is added for visual aid. For some surgeries, there are less
than five important predictors, resulting in blank panels. Finally, the number in parenthesis indicates the importance of that predictor, relative to the most important
predictor (so it always starts from 100 and decreases).
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TABLE 7 | Weighted Brier score surgery recommendation models.

Surgery Glmnet Stratified R.F. Random Forest Important predictors

raw calibrated Raw calibrated raw calibrated by random forest

Femur derotation osteotomy 0.173 0.172 0.163 0.163 0.163 0.164
mis:0.22
sens:0.78
spec:0.78

1. Internal Rotation
2. Feature: Hip internal Rotation
3. External Rotation
4. Weight
5. Abduction (knee extended)

Gastrocnemius lengthening (Strayer) 0.226 0.227 0.202 0.207 0.201 0.204
mis:0.24
sens:0.67
spec:0.80

1. Dorsiflexion (Knee extended)
2. Height
3. Internal Rotation
4. Abduction (knee extended)
5. Dorsiflexion (Knee flexed)

Semitendinosus transfer 0.196 0.197 0.177 0.176 0.175 0.172
mis:0.20
sens:0.73
spec:0.83

1. Popliteal
2. Abduction (knee extended)
3. True Popliteal
4. Height
5. Weight

Adductor longus lengthening 0.240 0.241 0.223 0.226 0.226 0.223
mis:0.24
sens:0.64
spec:0.79

1. Abduction (knee extended)
2. Internal Rotation
3. External Rotation
4. Weight
5. Height

Tibial derotation osteotomy 0.233 0.235 0.209 0.224 0.208 0.215
mis:0.14
sens:0.67
spec:0.89

1. Tibial Torsion
2. Dorsiflexion (Knee flexed)

Rectus transfer 0.255 0.257 0.226 0.250 0.220 0.219
mis:0.13
sens:0.75
spec:0.88

1. Popliteal
2. Tibial Torsion
3. Weight
4. Abduction (knee extended)
5. Height

For the calibrated random forest, mis-classification rate, sensitivity, and specificity are also provided. The right most column lists the top five important predictors as
judged by the random forest. RF, random forest; ROM, Range of motion; Mis, mis-classification rate; Sen, sensitivity; and Spec, specificity.

kinematic feature (increased hip internal rotation) as an
important predictor.

These results were unexpected and somewhat contrary to
our opinion about the influence of lower limb kinematics
on clinical decision making. One explanation may be that
kinematic data, as curves, are difficult to include in a predictive
statistical model because of their high dimensionality (101
points times 15 curves). We proposed a dimension reduction
process that summarizes the kinematics curves into a set
of kinematic features. We may have lost some important
information during this process. However, we initially also
treated the curves directly and obtained worse weighted Brier
scores for the various models (Chia et al., 2017). Another
explanation may be that kinematic data are essential to confirm
the impact of a physical examination measurement on the
gait pattern, but that decisions ultimately hinge upon physical
examination measurements.

There are arguably more advanced methods to achieve
transparent predictions than those we implemented. For
example, one approach may be to use a comprehensible
model, such as a (single) decision tree to approximate the

behavior of the models, either globally (Domingos, 1998;
Martens et al., 2007) or locally (Ribeiro et al., 2016). The
advantage of this approach is that the full decision pathway
is explained, instead of our current approach which simply
returns the values of some predictors which are deemed
important. However, the problem of all approximation is that
it loses predictive power. In addition, the fact that we calibrate
our model further complicates the process of explaining the
prediction. Another area of challenge is the class imbalance
problem. The class imbalance is both in terms of occurrence,
as well as cost of error. For imbalance in occurrence, we
tried to tackle them with stratified random forest, but the
overall performance was not better than the standard version.
For imbalance in cost, we could have trained cost-sensitive
models, which penalize error in both classes differently, and
according to a pre-specified cost. Eliciting such cost structure
is non-trivial (e.g., what is the cost of missing an impairment
or recommending an unnecessary surgery?) but would be a
worthwhile pursuit.

Our predictive models seek to imitate the past behavior of
the clinicians at our center. The limitation of this approach
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FIGURE 4 | Sample output from the decision support system for a specific patient.

is that past errors will also be learnt by the model, which
is why it is important to constantly refresh and update
the model with new data, which will dilute the influence
of past decisions.

Another limitation is that these predictive models are, by
intent and because the models were trained on data and clinical
reasoning from a single center, not generalizable to other centers.
However, there is also a benefit to this approach. In our gait
laboratory, data are discussed at a team reporting meeting
where recommendations are made. The models capture the
collective, therefore representative, reasoning of the clinical
team. If each center trains their own set of models, the
comparison of these models would highlight the similarities
and differences between the clinical practices objectively. For
example, it would be possible to perform virtual visit(s), whereby
the same clinical and gait analysis data would be fed to
the models from different centers, likely leading to different
conclusions (Noonan et al., 2003). This would initiate fruitful
discussion about the rationale behind the differences in reasoning
and would allow the comparison of outcomes drawn from
independent samples. This could be a key element in making

progress toward the search for evidence-based optimal treatment
recommendations.

CONCLUSION

We presented a decision-support system able to propose a
list of impairments and surgical recommendations based on
past decisions and gait analysis datasets. Machine learning
models were trained and validated to predict the probability
that clinicians, experienced in the interpretation of gait analysis
data in children with CP, recommend an impairment or a
surgical procedure. The random forest algorithm provided the
best evaluation metrics (weighted Brier score) in most cases.
Overall, the models achieved a weighted Brier score lower than
0.20, and sensitivity and specificity greater than 0.70 and 0.80,
respectively. Once trained, these models collectively store the
relationship between clinical decisions and gait data at our centre.
The implementation of similar models in other center would
facilitate objective comparison of clinical decision making, or
“philosophy,” between centers.
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