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Accurate streamflow prediction in mountainous regions is vital for sustaining 
water resources in downstream areas, ensuring reliable availability for agriculture, 
energy, and consumption. However, physically based prediction models are 
prone to substantial uncertainties due to complex processes and the inherent 
variability in model parameters and parameterization. This study addresses these 
challenges by exploring alternative coupling inputs for data-driven (DD) models 
to optimize daily streamflow prediction in a calibrated SWAT-BiLSTM rainfall-
runoff model within the Astore sub-basin of the Upper Indus Basin (UIB), Pakistan. 
The research explores two standalone models (SWAT and BiLSTM) and three 
alternative coupling inputs: conventional climatic variables (precipitation and 
temperature), cross-correlation based selected inputs, and exclusion of direct 
climatic inputs, in calibrated SWAT-BiLSTM model. The study spans calibration, 
validation, and prediction periods from 2007 to 2011, 2012 to 2015, and 2017 
to 2019, respectively. Based on compromise programing (CP) ranking, SWAT-
C-BiLSTM (QP) and SWAT-C-BiLSTM (T1 QP) showed competent performances 
followed by BiLSTM, SWAT-C-BiLSTM (PTQP), and SWAT. These findings highlight 
that excluding climatic parameters alternative SWAT-C-BiLSTM (QP) enhances 
the couple model’s accuracy sufficiently and underscores the potential for this 
approach to contribute to sustainable water resource management.
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1 Introduction

Streamflow is an integral part of the hydrological cycle that is used 
for water resource planning and flood or drought forecasting, flood 
damage, and water-related risks evaluation. These aspects require 
accurate streamflow prediction to be  managed effectively (Cheng 
et  al., 2020; Cui et  al., 2020). Hydrological models are vital in 
prediction of floods and low-flows, for both academics and 
practitioners in the management of rivers (Pfannerstill et al., 2014). 
However, the major difficulty is in simulating all phases of the 
hydrological process accurately using a consistent set of model 
parameters (Madsen, 2000). This is important so as not to 
underpredict high flows, which will lead to an elevated flooding risk, 
and to not overpredict low flows, which could result in a scarcity of 
water. It has been established that hydrological modeling can 
efficiently estimate streamflow in different ecological settings and the 
overall models can be either process based conceptual or data-driven 
models (Fan et al., 2020; Schoppa et al., 2020).

The process based conceptual hydrological models provide an 
abstract, mathematical representation of activities in the water cycle. 
Soil and Water Assessment Tool (SWAT) (Gassman et  al., 2007), 
Hydrologiska Byråns Vattenbalansavdelning (HBV) (Lindström et al., 
1997), Precipitation-Runoff Modeling System Version IV (PRMS-IV) 
(Markstrom et  al., 2015), Hydrological Predictions for the 
Environment (HYPE) (Lindström et  al., 2010), and Modular 
Integrated Kinetic Equations  – System Hydrologique Europeen 
(MIKE-SHE) (Jaber and Shukla, 2012) are some models that have 
been developed and used internationally. However, challenges persist 
in selecting the appropriate model, configuring it effectively, 
addressing uncertainties in data inputs and their quality, and 
determining related calibrated parameters (Kavetski et  al., 2006; 
Dakhlalla and Parajuli, 2019; Ghaith and Li, 2020). Additionally, a 
significant issue in model calibration is equifinality, where similar 
simulation outcomes can be achieved using different parameter sets. 
Moreover, these models overestimated the peak flows, especially 
during the flood occurrences in several places such as; Pakistan, 
(Haleem et al., 2022; Masood et al., 2023), Norway (Huang et al., 
2019), the US (Shrestha et al., 2019) and other places (Molina-Navarro 
et al., 2014; Bizuneh et al., 2021; Valeh et al., 2021).

Data driven (DD) models, which are often called black box 
models, aim at finding such relations, which can be  nonlinear or 
linear, between informative and target parameters relying only on 
input data. These models do so without necessarily going deep into 
inherent processes of the system. As a category of DD models, one of 
the promoted tools that has been used in many hydrological 
applications is deep machine learning (Maniquiz et al., 2010; Li et al., 
2015; Lee J. et  al., 2020). For instance, long short term memory 
(LSTM), initially used for tasks including machine translation, speech 
to text transformation, sequence or series data processing (Lee T. et al., 
2020), has been applied in various hydrological activities including 
flood forecasting (Hu et al., 2018), prediction of the moisture state in 
the soil, as well as prediction of thee groundwater table level. 
Moreover, Bidirectional long short term memory (BiLSTM), which 
consists of a couple of LSTMs with opposite directionality, has been 
found to enhance the performance of hydrological prediction 
(Ghasemlounia et al., 2021).

Recent advancements in hybrid modeling have further improved 
streamflow prediction by integrating deep learning with physical 

models. CNN-LSTM hybrid models, for instance, have demonstrated 
superior performance in glacier-fed basins by incorporating glacio-
hydrological model outputs, significantly improving flood risk 
assessment and water resource management. A study showed that 
leveraging glacier-derived features enhanced predictive accuracy 
(NSE = 0.83, KGE = 0.88), while multi-scale feature analysis further 
improved high-flow event prediction (NSE = 0.97) (Ougahi and 
Rowan, 2025). These developments underscore the potential of 
AI-enhanced hydrological models in addressing the challenges of 
runoff forecasting.

Combining the strengths of process-based and DD models, the 
SWAT coupled with the LSTM model offers an optimal approach 
for streamflow prediction. This hybrid model leverages various 
inputs, including meteorological data, to improve the accuracy of 
streamflow simulations. The SWAT-LSTM approach integrates the 
interpretability of process-based modeling with the predictive 
power of machine learning, providing a robust solution for long-
duration streamflow simulations in both ungauged and poorly 
gaged watersheds (Chen et  al., 2023). A number of coupling 
options that have been tried in recent studies, including 
uncalibrated model coupled with data driven models, partially 
calibrated model with data driven model and calibrated model with 
data driven models (Yuan and Forshay, 2022), and it is concluded 
that calibrated coupled models perform better as compare to 
partially and uncalibrated coupled models (Yuan and Forshay, 
2022; Noori and Kalin, 2016; Senent-Aparicio et al., 2019; Zhang 
et  al., 2023a; Wang et  al., 2023; Yang et  al., 2023; Jeong 
D. S. et al., 2024).

Two main categories of inputs have been predominantly used in 
literature. The first category involves conventional inputs, which 
typically consist of climatic variables along with the simulated 
streamflow from process-based models (Yuan and Forshay, 2022; Jin 
et al., 2024; Jung et al., 2022). The second category includes selected 
inputs based on cross-correlation analysis which gave reasonable good 
results in comparison to conventional inputs (Yang et al., 2023; Jeong 
H. et al., 2024; Zhang et al., 2023b; Afshan et al., 2009; Naeem et al., 
2012). While these approaches have not yet explored exclusion of 
climatic parameters during coupling, as data driven model’s may not 
capture non linearity of climate variables in every region significantly 
therefore this study is conducted to evaluate the coupled model’s 
performance under alternate inputs, in streamflow prediction within 
a unified study framework. This gap presents an opportunity to 
address uncertainties associated with model inputs and enhance 
streamflow prediction performance. By advancing the calibrated 
SWAT-BiLSTM model through the exploration of novel coupling 
input combinations, this study aims to enhance daily streamflow 
predictions in hydrology. The inclusion of diverse climate parameters, 
or their deliberate exclusion, will enable a more nuanced 
understanding of their roles in reducing uncertainties and improving 
predictive reliability. Thus, this research contributes to filling a critical 
gap in the current literature and provides a robust methodology for 
advancing rainfall-runoff modeling.

The primary focus of this study is to investigate alternative 
coupling inputs, particularly through the inclusion or exclusion of 
climatic parameters in data-driven models. This exploration is 
conducted within a calibrated SWAT-BiLSTM framework for the 
Astore sub-basin of the UIB, aiming to enhance daily streamflow 
prediction and improve hydrological modeling accuracy.
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2 Description of study area

The Astore sub-basin is located in the northwest part of the 
Himalayan range within the UIB, Pakistan and has an estimated area 
of 3,988 square kilometers (Figure 1). The area altitude varies between 
1,198 m and 8,069 m and is home to 543 square kilometers of glaciers. 
This sub-basin also holds the Nanga Parbat range which holds the 
ninth highest mountain in the world; the mountain is also considered 
to be the highest in Pakistan and the Himalayas (Afshan et al., 2009). 
The basin area is mainly covered by glaciers and accumulated seasonal 
snow which significantly influence the basin’s hydrological processes 
(Naeem et al., 2012).

The precipitation pattern in the region is predominantly shaped 
by westerly circulations in the winter and spring, accounting for 
roughly two-thirds of the total precipitation. The remaining 
one-third is influenced by the monsoon during the summer and 
autumn months (Naeem et al., 2012). In the Astore sub-basin, snow 
cover varies widely, from 7% during the summer to as much as 95% 
in the winter, playing a critical role in the sustainability of 
downstream river systems (Tahir et  al., 2016). This cryo-nival 
regime results in a distinct hydrological cycle, where river flows are 
primarily governed by snow accumulation in winter and subsequent 
meltwater contributions in spring and summer. The delayed release 
of water from snowmelt sustains baseflow during drier months, 
ensuring water availability for agriculture and hydropower 
generation downstream. However, variations in temperature and 
snowfall patterns can significantly impact the timing and 

magnitude of runoff, potentially leading to water scarcity during 
low-snowfall years or excessive flooding during rapid snowmelt 
events. Between 1998 and 2012, the mean annual temperatures 
were recorded at 2.9°C in the Rama valley (elevation 3,179 m) and 
9.9°C in the Rattu valley (elevation 2,718 m) (Farhan et al., 2015), 
highlighting the sensitivity of the region’s hydrology to 
climatic fluctuations.

3 Materials and methods

This section includes a description of the data sources, model’s 
overview, the coupling of models, exploration of various input options 
in the coupling scenario, and statistical evaluation with ranking using 
compromise programming (CP).

3.1 Datasets

Terrestrial data for the study were obtained from various 
sources. The Advanced Space borne Thermal Emission and 
Reflection Radiometer (ASTER) Digital Elevation Model (DEM), 
with a 30 m resolution, was obtained from the National Aeronautics 
and Space Administration (NASA). Land-use data were retrieved 
from the United States Geological Survey (USGS) via the Moderate 
Resolution Imaging Spectroradiometer (MODIS) having resolution 
500 m. Soil data were collected from the Food and Agriculture 

FIGURE 1

Spatial description of study area (Astore Sub-basin), location in world (left panel) and topographic variation along with hydroclimatic stations (right 
panel).
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Organization (FAO). Figure  2 provides spatial distribution of 
MODIS (2020) land use classes while Figure 3 provides a description 
regarding soil.

The MODIS International Geosphere-Biosphere Program (IGBP) 
classification scheme provides a global land cover classification 
system with 17 classes, each representing a distinct land cover type. 
As per these classification, major classes in study area are grass land 
(57.23%), baren/sparsely vegetated (25.8%), snow/ice (6.51%) and 
others (10.46%). As per FAO, the study area consists of three loamy 
soils including I-B-U-3712 (83.1%), Be78-2c-3679 (2.5%), and Be72-
2a-3669 (0.8%), and glaciers-6998 (13.6%). Numerous studies in the 
Upper Indus region have utilized the same land use and soil datasets, 
encountering discrepancies in the percentage of land use classes, 
particularly for the snow/glacier class (Haleem et al., 2023; Khan 
et al., 2023; Mahmood et al., 2024). A possible explanation is the 
difference in scales, with the FAO Soil Map of the World being 
developed at a much coarser scale of 1:5,000,000 compared to the 
finer resolution of the MODIS (500 m) land use dataset and 
temporal variation.

In hydroclimatic data, meteorological including daily 
precipitation, temperature maximum and minimum and daily 
streamflow data, covering the period from 2005 to 2019, were sourced 
from the Pakistan Meteorological Department (PMD) and the Water 
and Power Development Authority (WAPDA), respectively.

3.2 Model description

3.2.1 SWAT model
The SWAT is a semi-distributed hydrological model that assesses 

the intricate relationships between land and meteorological 
parameters at the watershed level (Yi and Sophocleous, 2011), 
formulated by Arnold et al. (1998). The main modules consist of a 
weather generator, water quality, hydrology and plant growth (Zhang 
et al., 2023). It includes spatial management practices and agricultural 
chemical use databases that permit the prediction of streamflows in a 
basin that is large and diverse in soil, land cover and management 
conditions (Song et al., 2022; Raihan et al., 2020). The model requires 
a minimal set of input data, including terrestrial information such as 
Digital Elevation Models (DEM), land use, and soil data, along with 
daily meteorological inputs like precipitation, temperature, wind 
speed, relative humidity, and solar radiation (Ficklin and Barnhart, 
2014; Wisal et al., 2020). Due to the unavailability of observed wind 
speed, relative humidity, and solar radiation data, the SWAT model’s 
built-in weather generator was used to simulate these parameters. The 
weather generator estimates missing climate variables based on 
statistical distributions derived from historical data, ensuring that 
meteorological inputs remain consistent with the regional climate 
conditions. This approach allows for a complete dataset while 
maintaining the integrity of hydrological simulations.

FIGURE 2

Description of MODIS land use classes in study area.
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The SWAT model divides the whole watershed into number of 
hydrological response units (HRUs) based on the slope, land use and 
soil type and simulates the spatial changes in the watershed based on 
the hydrological dynamics of each HRU to compute water volume in 
river channels (Arnold et al., 2012). It has computational capability to 
estimate snow and glacier melt contributions using a temperature 
index algorithm (TIA). Astore sub-basin was subdivided into 5 
subbasins and 47 HRUs. To account for the orographic effects, each 
sub-catchment was split into 10 elevation bands. The SWAT model 
simulates hydrological processes using the Soil Conservation Service 
Curve Number (SCS-CN) method for runoff estimation and the 
Muskingum scheme for channel routing. The Penman-Monteith 
equation was selected to estimate evapotranspiration. Since observed 
wind speed, solar radiation, and relative humidity data were 
unavailable, the SWAT model’s built-in weather generator was used to 
estimate these variables based on historical climate statistics. This 
approach ensures that the Penman-Monteith equation remains 
applicable despite missing observed data. The SWAT model is founded 
on the principles of the water cycle, as represented in Equation 1 
(Neitsch et al., 2011):

 
( )0

1

t
t day surf a seep gw i

i
SW SW R Q E W Q

=
= + + − − −∑

 
(1)

Where:
SWt: Final soil moisture content (mm).
SW0: Initial soil moisture content on day 𝑖i (mm).
t: Time (days).
𝑅𝑑𝑎𝑦: Precipitation on day i (mm).
𝑄𝑠𝑢𝑟𝑓: Surface runoff on day i (mm).
𝐸𝑎: Evapotranspiration on day i (mm).
𝑊𝑠𝑒𝑒𝑝: Water entering the vadose zone from the soil profile on 

day i (mm).
gwQ : Groundwater return flow on day i (mm).

The SWAT model estimates surface runoff (𝑄𝑠𝑢𝑟𝑓) using the 
SCS curve number method (Mockus, 1964) and Green-Ampt 
Infiltration method (Winchell et al., 2010). In this study, the SCS 
curve number method was chosen to compute surface runoff by 
Equation 2:

 

( )
( )

2
day

surf
day

R 0.2S
Q

R 0.8S
−

=
+  

(2)

Where Qsurf (mm) is excess rainfall or surface runoff, Rday (mm) 
is the rainfall in a day and S (mm per day) is the maximum 
retention parameter. This parameter varies spatially and temporally 
due to variations in land-use management, slope and soils, and soil 

FIGURE 3

Description of FAO soil classes in study area.
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water content, respectively. The retention parameter is given by 
Equation 3:

 

1000S 25.4 10
CN

 = − 
  

(3)

Where S is defined earlier, and CN denotes the curve number.

3.2.2 BiLSTM deep learning model
The LSTM is a deep learning model type that was developed 

specifically to address the gradient explosion or vanish problems that 
traditional recurrent neural networks (RNNs) experience (Hochreiter 
and Schmidhuber, 1997). Over time, it has demonstrated its 
effectiveness in handling sequentially arranged data processing 
(Winchell et al., 2010; Hochreiter and Schmidhuber, 1997; Lipton 
et al., 2015).

During a specific time(t), a standard LSTM can solely acquire 
knowledge from its preceding inputs. However, through the 
Coupling of two LSTMs operating in opposing directions, a 
BiLSTM analyzes information in both forward and backward 
directions simultaneously, utilizing distinct hidden layers. By 
encompassing input information that precedes and follows each 
input at time t, BiLSTM exhibits the potential to outperform 
unidirectional LSTMs, particularly in scenarios involving time-
series data. BiLSTM structure’s flow chart is demonstrated with 
the basic LSTM structure of cell calculation and equations in 
Figure 4.

The optimal architecture of the BiLSTM model was structured 
with careful consideration of various components to achieve peak 
performance and mitigate overfitting. The first hidden layer was 
comprised of 512 neurons, setting the foundation for subsequent 
layers. The following four dense layers consist of 256, 64, 32, and 1 
neuron, respectively, formed a hierarchical architecture. To prevent 
overfitting, dropout layers with a 0.2 dropout rate were strategically 
placed before and after each fully connected layer (Srivastava 
et al., 2014).

To enhance computational efficiency and avoid gradient 
disappearance, the Rectified Linear Unit (ReLU) was employed as the 
activation function in the hidden layers (Wu et al., 2020). Compared 
to activation functions such as Sigmoid and Tanh, ReLU is 
computationally efficient, prevents vanishing gradients by allowing 
positive gradients to pass unchanged, and promotes faster convergence 
in deep networks. The optimizer of choice was Adaptive Moment 
Estimation (Adam), known for its adaptive learning rates and effective 
optimization capabilities. The learning rate was set at 0.001, 
contributing to the determination of the optimal combination of 
various hyperparameters during training.

The model’s loss function was a weighted sum of Mean Absolute 
Error (MAE) and Mean Square Error (MSE), allowing for a balanced 
evaluation of prediction errors. MAE measures absolute differences 
between predicted and observed values, making it robust to outliers, 
while MSE penalizes larger errors more heavily, encouraging the 
model to focus on minimizing significant deviations. The weights 
assigned to MAE (0.7) and MSE (0.3) were chosen to prioritize overall 
prediction accuracy while preventing excessive sensitivity to large 
errors. This combination ensures that both small and large 
discrepancies are accounted for in the training process, leading to 
improved generalization (Yang et al., 2023).

3.3 Input selection for BiLSTM standalone 
model

Input selection for standalone deep learning BiLSTM was carried 
out by cross correlation analysis to determine the most relevant 
meteorological factors influencing daily streamflow in the Astore 
sub-basin. This analysis involved computing correlation coefficients 
between daily streamflow and three key variables over different lag 
times: daily rainfall on the antecedent nth day (Pt − n), total rainfall in 
the preceding n days (Pn), and daily temperature on the antecedent nth 
day (Tt-n). These variables were chosen based on their hydrological 
significance, as rainfall contributes to direct runoff, cumulative rainfall 
accounts for delayed responses in the watershed, and temperature 
plays a critical role in snowmelt-driven streamflow, particularly in 
mountainous regions like Astore. The correlation analysis was 
performed for lag times ranging from 0 to 50 days, allowing the 
identification of the most influential time delays for each variable.

3.4 Coupling of calibrated SWAT-BiLSTM

Calibrated SWAT and BiLSTM coupling was carried out in such 
a way that preliminary streamflow obtained from calibrated SWAT 
model used as one of the inputs in data driven BiLSTM model along 
with the three different alternate inputs scenarios as shown in 
Schematic diagram of methodology (Figure 5). These scenarios were 
designed to explore different levels of input reliance and optimize 
predictive performance by integrating process-based and data-driven 
modeling approaches. In the SWAT-C-BiLSTM (PTQp) model, three 
input parameters were used for BiLSTM: precipitation, temperature 
(without any selection analysis), and preliminary flow from the 
calibrated SWAT model. This scenario serves as a baseline model, 
leveraging conventional meteorological inputs that are commonly 
used in hydrological modeling. The SWAT-C-BiLSTM (T1 Qp) model 
included only two input parameters: temperature with a one-day lag 
(based on cross-correlation analysis) and preliminary flow from the 
calibrated SWAT model. This scenario was developed based on cross-
correlation analysis, which identified the most relevant climate 
variable with the highest correlation to daily streamflow. The selection 
of Tt−1 is particularly relevant in snowmelt-driven basins like Astore, 
where delayed temperature effects significantly influence streamflow. 
The SWAT-C-BiLSTM (Qp) model utilized only one input parameter, 
the preliminary flow from the calibrated SWAT model without 
including precipitation or temperature. This scenario was designed to 
evaluate whether simulated streamflow alone, without meteorological 
inputs, could sufficiently drive BiLSTM predictions, effectively testing 
the strength of SWAT’s hydrological representation in a hybrid 
modeling framework.

3.5 Calibration, validation, and prediction 
of models

The standalone SWAT model was calibrated and validated using 
the SWAT Calibration and Uncertainty Program (SWAT-CUP), 
following the approach of Garee et  al. (2017). Model parameter 
uncertainty and performance were evaluated through the Sequential 
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Uncertainty Fitting (SUFI-2) method in SWAT-CUP. To obtain the 
best-fit values for sensitive parameters, SWAT-CUP was run for 10,000 
iterations during the calibration phase. The 2 years (2005–2006) were 
warm up period for model stability. Daily flow data observed at the 
Doyian station from 2007 to 2011 was used for calibration, while data 
from 2012 to 2015 served to validate the simulation results. On the 
other hand, based on cross correlation analysis input that was 
temperature at 1 day lag used as input to train and test the standalone 
BiLSTM data driven model at daily time scale. Keeping standalone 
DD model architecture same, three alternate inputs were used to train 
and test the models (coupled one) individually (Figure 5). Following 
calibration and validation, all five models including two standalone 
and three coupled alternate input scenarios based, were used to 
predict daily streamflow from 2017 to 2019.

3.6 Statistical evaluation and ranking using 
compromise programing

The evaluation of the each modeled daily streamflow with respect 
to observed daily streamflow was conducted using statistical matrices 
including coefficient of determination (R2), Nash Sutcliffe efficiency 
coefficient (NSE), percent bias (PBIAS) and root mean square error to 
the standard deviation ratio (RSR). Ideal value for R2 and NSE is 1 
while PBIAS and RSR is 0. Table  1 shows the statical matrices 
mathematical expression along with their possible ranges.

Compromise Programming (CP) involves combining various 
statistical measures, as highlighted by Iqbal et al. (2021) and Khan 

et  al. (2023). In this study, CP was applied to assess and rank 
hydrological models using four core performance indicators: R2, 
NSE, PBIAS and RSR which collectively gage the model 
effectiveness. Within the CP framework, researchers computed a 
specialized distance measure known as the LP metric, as 
demonstrated by Shiru and Chung (2021). The LP metric is defined 
by Equation 4:
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Here, the parameter m is set to 1, Wn represents the actual value 
of a statistical performance measure, and nW∗ denotes the ideal value 
of the performance measure achieved when model simulations 
perfectly align with observed data. The Lp metric is always positive, 
and lower Lp values are preferred as they signify superior 
model performance.

4 Results

This section includes results description of the selection of the 
input for standalone data driven model, calibration and validation 
performance of models, prediction performance and lastly 
ranking using compromise programing based on statistical  
evaluations.

FIGURE 4

LSTM and BiLSTM basic structures along with equations.
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4.1 Selection for standalone data driven 
model input

Input selection for deep learning standalone BiLSTM model 
was carried out by cross correlation analysis. Figure 6 illustrates 
the correlation coefficients between daily streamflow and daily 

rainfall, total rainfall and temperature factors, respectively, at 
daily lag time from 2005 to 2015. These factors include daily 
rainfall on the antecedent nth day (Pt − n), total rainfall in the 
preceding n days (Pn), and daily temperature on the antecedent 
nth day (Tt-n). The maximum daily rainfall and total rainfall 
exhibited correlations of 0.12 and 0.10, respectively. In contrast, 
the analysis showed that the temperature on the preceding day 
(Tt-1) had the highest correlation of 0.69 with the basin’s daily 
streamflow. As a result, Tt-1 was chosen as the covariate in the 
BiLSTM model to simulate daily streamflow in the Astore 
sub-basin.

4.2 Sensitivity analysis, calibration, and 
validation performances of models

The performance of the two standalone models (SWAT and 
BiLSTM) and three coupled models (SWAT-C-BiLSTM (T1Qp), 
SWAT-C-BiLSTM (Qp), and SWAT-C-BiLSTM (PTQp)) was evaluated 
during the calibration (2007–2011) and validation (2012–2015) 
periods at the Doyian station on the Astore River. A warm-up period 
of 2 years (2005–2006) was used to stabilize the physically based 
SWAT model.

Sensitivity analysis was conducted during SWAT model 
calibration and 24 parameters were identified as critical for 
simulating daily streamflows, as presented in Table  2 and their 
ranges and fitted values are presented in Figure  7. Table  2 also 
presents the t-test values and p-values derived from Global 
Sensitivity Analyses for selected parameters in the Astore 
sub-basin. Among these, groundwater-related parameters, 
including ALPHA_BF (baseflow recession coefficient), GW_
DELAY (groundwater delay time), GWQMN (threshold depth of 

FIGURE 5

Schematic diagram of methodology showing data collection, development of standalone models, coupling calibrated SWAT with BiLSTM under 
alternate inputs options, and streamflow prediction followed by statistical evaluation and ranking through compromise programing.

TABLE 1 Performance metrics describing mathematical expressions with 
ranges of NSE, R2, PBIAS and RSR.

Mathematical expressions Range

( )

( )
1

2
1

2
1

O S
NSE

O O

n
i ii

n
ii

 − = −  
−  

=

=

∑
∑

[ ],1−∞

( ) ( )

( ) ( )

.

.

2
12

20.5 0.52 2
1 1

O O S S
R

O O S S

n
i ii

n n
i ii i

 − −  =
     − −        

=

= =

∑

∑ ∑

[ ]0,1

( )

( )

.1001

1

O S
PBIAS

O

n
i ii

n
ii

−
= =

=

∑
∑

[ ],−∞ ∞

 
RMSERSR

Standard Deviation
=

[ ]0,1

Where, iO  is observed data at current time i, O is observed data mean, Si  is simulated data at 
current time i, S  is simulated data mean and n is observation’s total number.
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water in the shallow aquifer required for return flow), and 
REVAPMN (threshold depth of water in the shallow aquifer for 
percolation to deep aquifers), played a crucial role in regulating 
baseflow contributions to the river. These parameters influenced 
model performance, particularly in low-flow conditions, 
highlighting the potential interactions between surface water and 
groundwater in the basin.

The most sensitive parameters, SMTMP, SNO50COV, and CH_
N1, were crucial for calibrating the SWAT-T-BiLSTM model. In this 
area, snow cover and glacier melt are the primary water sources (Ayub 
et al., 2020; Ali et al., 2023), which explains SWAT’s sensitivity to 
SMTMP (snowmelt base temperature) and SNO50COV (snow water 
equivalent at 50% snow cover). Additionally, sub-basin, hydraulic 
response unit, and groundwater parameters significantly influenced 
streamflow simulations.

While groundwater parameters were considered during 
calibration, direct observational evidence of river-aquifer 
interactions in the Astore basin is limited. Future studies 
incorporating hydrogeological field measurements, isotopic 
analysis, or groundwater monitoring networks could further 
improve the constraint on these parameters and enhance the 
model’s physical realism.

During the calibration (2007–2011) and validation (2012–2015) 
phases, the coupled models outperformed the standalone models in 
both statistical metrics (Figure  8) and flow simulation (Table  3). 
Among the coupled models, SWAT-C-BiLSTM (T1Qp) and SWAT-C-
BiLSTM (Qp) exhibited comparable performance, demonstrating 

superior accuracy in streamflow prediction. SWAT-C-BiLSTM (Qp) 
achieved an NSE of 0.73 and 0.78, an R2 of 0.83 and 0.85, and a low 
PBIAS of 23.78 and 21.74% during calibration and validation periods, 
respectively. Similarly, SWAT-C-BiLSTM (T1Qp) showed an NSE of 
0.80 and 0.73, R2 of 0.89 and 0.84, and effectively replicated low flows 
with averages of 32.54 m3/s and 32.65 m3/s. Both models effectively 
captured peak and low flows, with SWAT-C-BiLSTM (T1Qp) slightly 
better at simulating peak flows, while SWAT-C-BiLSTM (Qp) exhibited 
slightly lower bias in terms of PBIAS. Given their close performance, 
both models can be  considered equally robust for accurate daily 
streamflow predictions. Line plots of calibration and validation are 
shown in Figures 9, 10.

In contrast, the standalone SWAT model exhibited significant 
biases, with PBIAS exceeding 44 and 48.26% and showed a tendency 
to underestimate both peak and low flows, as reflected in the low flow 
averages of 1.30 m3/s and 1.19 m3/s compared to the observed values 
of 27.58 m3/s and 24.13 m3/s (Table 3). The standalone BiLSTM model 
performed better than SWAT, achieving an NSE of 0.67 and 0.68, and 
producing low flows average of 31.72 m3/s and 31.01 m3/s, yet it still 
lagged behind coupled models. Among the coupled models, SWAT-
C-BiLSTM (PT1Qp) performed the weakest, likely due to uncertainties 
in precipitation and temperature inclusion, resulting in low NSE 
values of 0.23 and 0.27 and a higher PBIAS of 31.45 and 32.06%. These 
results highlight the superiority of SWAT-C-BiLSTM (Qp) and SWAT-
C-BiLSTM (T1Qp) in accurately predicting both high and low flows, 
with no significant advantage over the other, making both valuable 
tools for hydrological modeling (Table 4).

FIGURE 6

Cross correlation analysis between daily streamflow and daily rainfall on the previous nth day, total rainfall in the preceding n-days and daily 
temperature on the previous nth day, respectively in Astore basin for the duration 2005–2015.
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TABLE 2 Sensitive parameters during SWAT model calibration with t-stat, p-value, and ranks.

Parameter Description t-stat p-value Rank

SMTMP.bsn Snow melt base temperature 18.40 0 1

SNO50COV.bsn Snow water equivalent that corresponds to 50% snow cover −6.99 0 2

CH_N1.sub Manning’s “n” value for the tributary channels −2.93 0.01 3

ALPHA_BNK.rte Baseflow alpha factor for bank storage 2.84 0.02 4

GW_DELAY.gw Groundwater delay (days) 2.47 0.03 5

SNOCOVMX.bsn Minimum snow water content that corresponds to 100% snow cover 2.31 0.04 6

OV_N.hru Manning’s “n” value for overland flow 2.24 0.04 7

ALPHA_BF.gw Baseflow alpha factor (days) −2.01 0.07 8

EPCO.hru Plant uptake compensation factor −1.94 0.08 9

TLAPS.sub Temperature lapse rate 1.74 0.11 10

CH_K2.rte Effective hydraulic conductivity in main channel alluvium 1.66 0.13 11

REVAPMN.gw Threshold depth of water in the shallow aquifer for “revap” to occur (mm) −1.62 0.14 12

SLSUBBSN.hru Average slope length −1.43 0.2 13

ESCO.hru Soil evaporation compensation factor 1.40 0.21 14

LAT_TTIME.hru Lateral flow travel time −1.38 0.21 15

SNO_SUB.sub Initial snow water content 1.25 0.26 16

GWQMN.gw Threshold depth of water in the shallow aquifer required for return flow to 

occur (mm)

−1.17 0.30 17

CN2.mgt SCS runoff curve number 0.96 0.40 18

SMFMN.bsn Minimum melt rate for snow during the year (occurs on winter solstice) −0.89 0.44 19

SMFMX.bsn Maximum melt rate for snow during year (occurs on summer solstice) −0.80 0.50 20

TIMP.bsn Snow pack temperature lag factor −0.71 0.56 21

CH_K1.sub Effective hydraulic conductivity in tributary channel alluvium 0.70 0.56 22

GW_REVAP.gw Groundwater “revap” coefficient −0.63 0.60 23

PLAPS.sub Precipitation lapse rate 0.51 0.64 24

4.3 Model prediction performance

During the prediction period (2017–2019), the coupled models 
continued to outperform the standalone models in terms of statistical 
metrics and flow simulation accuracy (Figure 11a and Table 4). SWAT-
C-BiLSTM (T1Qp) and SWAT-C-BiLSTM (Qp) exhibited nearly 
identical predictive capabilities, with SWAT-C-BiLSTM (T1Qp) 
achieving an NSE of 0.88 and R2 of 0.89, while SWAT-C-BiLSTM (Qp) 
attained an NSE of 0.86 and R2 of 0.87. Both models effectively 
minimized bias, with PBIAS values of 4.06 and 5.04%, respectively. 
These models demonstrated high accuracy in capturing streamflow 
variations, including peak and low flows, with SWAT-C-BiLSTM 
(T1Qp) showing slightly better peak flow predictions, whereas SWAT-
C-BiLSTM (Qp) maintained lower bias in overall flow representation.

In contrast, the standalone SWAT model exhibited considerable 
bias, reflected in its high PBIAS of 41.33% and lower NSE of 0.62. 
It significantly underestimated both peak and low flows, with an 
average peak flow of 251.03 m3/s compared to the observed 
415.47 m3/s and an average low flow of 1.61 m3/s against the 
observed 21.79 m3/s. On the other hand, SWAT-C-BiLSTM (Qp) 
closely matched the observed peak flow with 462.83 m3/s, while its 
low flow predictions (30.54 m3/s) remained highly consistent with 

the observed values. SWAT-C-BiLSTM (T1Qp) followed a similar 
trend, maintaining comparable accuracy across different 
flow conditions.

Among the coupled models, SWAT-C-BiLSTM (PT1Qp) 
performed the weakest, likely due to increased uncertainty from 
additional climate inputs, resulting in the highest bias in low flow 
predictions (42.12 m3/s). The flow duration curve (Figure 11b) further 
illustrates that SWAT-C-BiLSTM (T1Qp) and SWAT-C-BiLSTM (Qp) 
closely follow the observed flow distribution across different 
exceedance probabilities, reinforcing their reliability in predictive 
performance. These findings highlight the effectiveness of coupled 
models, particularly SWAT-C-BiLSTM (T1Qp) and SWAT-C-BiLSTM 
(Qp), in accurately simulating streamflow across different 
hydrological conditions.

4.4 Model ranking using the CP approach 
based on statistical evaluation

The CP approach effectively evaluated the performance of the 
models by aggregating statistical metrics into a single ranking 
criterion, allowing for a holistic comparison across calibration, 
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FIGURE 7

Parameters utilized in standalone SWAT model for calibration showing light green range (minimum and maximum) bar and dark red fitted values.

TABLE 3 Yearly average of daily peak and low flows summary during calibration, validation, and prediction phases, observed and simulated by different 
models.

Model Calibration (2007–2011) Validation (2012–2015) Prediction (2017–2019)

Average peak 
flow (m3/s)

Average low 
flow (m3/s)

Average peak 
flow (m3/s)

Average low 
flow (m3/s)

Average peak 
flow (m3/s)

Average low 
flow (m3/s)

Observed 614.60 27.58 643.40 24.13 415.47 21.79

SWAT 429.36 1.30 443.70 1.19 251.03 1.61

BiLSTM 428.30 31.72 522.47 31.01 260.86 31.23

SWAT-C-BiLSTM 

(T1Qp)

518.18 32.54 488.54 32.65 461.72 31.76

SWAT-C-BiLSTM 

(Qp)

526.00 30.53 531.91 30.51 462.83 30.54

SWAT-C-BiLSTM 

(PT1Qp)

214.29 31.45 245.55 32.06 159.62 42.12
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FIGURE 8

Statistical evaluation of different models during calibration/training, validation/testing, and prediction phase by utilizing R2, NSE, PBIAS, and RSR, 
respectively.

TABLE 4 Difference in metrics and values for ranking of models using compromise programing approach.

Difference in metrics and values Sum Rank

Calibration/training 
(January 2007 to December 

2011)

Validation/testing (January 
2012 to December 2015)

Prediction (January 2017 to 
December 2019)

Model R2 NSE PBIAS RSR R2 NSE PBIAS RSR R2 NSE PBIAS RSR

SWAT 0.06 0.24 22.53 0.22 0.10 0.30 26.52 0.25 0.00 0.25 37.27 0.26 87.99 5

BILSTM 0.10 0.13 2.36 0.12 0.06 0.10 1.76 0.10 0.09 0.14 12.91 0.16 18.05 3

SWAT-C-

BiLSTM 

(T1Qp)

0.00 0.00 0.00 0.00 0.01 0.06 4.64 0.06 0.01 0.00 0.00 0.00 4.77 2

SWAT-C-

BiLSTM 

(Qp)

0.06 0.07 2.30 0.07 0.00 0.00 0.00 0.00 0.02 0.02 0.97 0.02 3.54 1

SWAT-C-

BiLSTM 

(PTQp)

0.14 0.57 21.21 0.43 0.09 0.51 17.82 0.39 0.14 0.53 22.83 0.45 65.11 4
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FIGURE 9

Calibration/training of standalone and coupled models under alternate input options at daily time scale.

FIGURE 10

Validation/testing of standalone and coupled models under alternate inputs options at daily time scale.
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validation, and prediction periods. The rankings (Table 4) identified 
SWAT-C-BiLSTM (Qp) as the best-performing model, achieving the 
lowest aggregate (3.54) due to its consistent superiority across all 
metrics, particularly during validation and prediction periods. It 
exhibited minimal differences in R2, NSE, PBIAS, and RSR compared 
to observed values, reflecting its robust ability to capture both peak 

and low flow dynamics. Similarly, SWAT-C-BiLSTM (T1Qp) secured 
the second rank with an aggregate of 4.77, demonstrating competitive 
performance, although slightly less accurate than SWAT-C-BiLSTM 
(Qp) in some scenarios.

In contrast, the standalone SWAT model ranked at last (87.99), 
with the highest aggregate metric deviations, emphasizing its 

FIGURE 11

(a) Prediction of standalone and coupled models under alternate input options at daily time scale for streamflow simulation; (b) flow duration curve 
during prediction phase.
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limitations in simulating streamflow under complex hydrological 
conditions. The BiLSTM model with an aggregate of 18.05 ranked at 
third 18.05, performing well independently but falling behind the 
coupled models due to its lack of physical hydrological considerations. 
The SWAT-C-BiLSTM (PTQp) model ranked at fourth having an 
aggregate of 65.11, primarily due to higher discrepancies in PBIAS and 
RSR, which impacted on its overall performance.

These results underscore the efficiency of the CP approach in 
ranking models, affirming the superiority of coupled models SWAT-
C-BiLSTM (Qp) and SWAT-C-BiLSTM (T1Qp) for streamflow 
prediction. This ranking provides a clear decision-making framework 
for selecting models tailored to high-performance hydrological 
simulations at daily timescale.

5 Discussion

5.1 Results interpretation and 
comparison

The coupled SWAT-C-BiLSTM (Qp) model, excluding climatic 
variables as inputs to BiLSTM, and The cross correlation-based 
coupling scenario, SWAT-C-BiLSTM (T1 Qp), emerged as the best-
performing scenarios in this study, achieving the highest accuracy and 
lowest bias in streamflow prediction. Conversely, SWAT-C-BiLSTM 
(PTQP), which included both precipitation and temperature, 
performed the poorest. These findings highlight the critical role of 
optimized input selection in enhancing the performance of hybrid 
hydrological models.

The SWAT-C-BiLSTM (Qp) model does not explicitly incorporate 
climate variables such as temperature and precipitation as direct 
inputs to BiLSTM, these variables are inherently embedded within the 
SWAT-simulated flow (Qp). SWAT is a process-based model that 
simulates streamflow based on climatic inputs, land surface 
interactions, and catchment hydrological processes. Thus, Qp 
inherently carries the aggregated influence of precipitation, 
temperature, and other hydrological drivers. Our results indicate that 
using Qp as an input to BiLSTM allows for leveraging SWAT’s 
physically based outputs while reducing additional uncertainties that 
may arise from directly incorporating climate variables into 
BiLSTM. This does not mean that temperature and other climatic 
factors are disregarded; rather, their effects are already encapsulated 
in the Qp variable as simulated by SWAT.

The findings are align with the study Jeong D. S. et al. (2024), 
where the inclusion of climate variable precipitation to hybrid models 
did not make noticeable improvements for streamflow and suspended 
solids simulations. Additionally, the coupled models performed better 
compared to standalone SWAT and data driven models (Yang et al., 
2023; Jeong H. et al., 2024; Mei et al., 2024). Daily temperature showed 
a stronger correlation with streamflow than precipitation, reflecting 
the snow and glacier melt dominated hydrology of the Astore 
sub-basin. This may be attributed to the fact that streamflow in the 
study area is primarily driven by glacier melt, followed by snowmelt 
and rainfall (Ayub et al., 2020; Ali et al., 2023).

The relatively poor performance of the standalone SWAT model, 
as observed in this study, can be attributed to several factors, including 
limited observed climate data and the reliance on default settings for 
critical variables like relative humidity, wind speed, and solar 

radiation. Ghane and Alvankar (2015) highlight how variations in 
these parameters can drastically influence runoff estimations, 
underscoring the importance of accurate meteorological inputs. 
Furthermore, the inadequate coverage of rain gages and the coarse 
resolution data likely exacerbate uncertainties, as demonstrated by 
Anderson and Bingner (2010) and Gao et al. (2017), respectively. The 
SWAT model may struggle to accurately identify the most sensitive 
parameters (Shen et al., 2008; Cibin et al., 2010), including snow-
specific parameters, for each sub-basin due to the coarse resolution of 
land use data, which hinders its ability to capture unique sub-basin 
conditions. High-resolution datasets and improved spatial coverage 
could address these limitations and enhance the model’s ability to 
capture sub-basin characteristics. Additionally, the lack of 
preprocessing and calibration for snow-specific parameters may have 
compounded these challenges, consistent with findings by 
Jajarmizadeh et al. (2017). In future work, leveraging alternative data 
sources such as Climate Forecast System Reanalysis (CFSR) etc. in 
place of default SWAT algorithm should be utilized as Haleem et al. 
(2023) and employing advanced calibration techniques may improve 
model performance and reduce uncertainties in hydrological  
predictions.

These limitations are mitigated by coupling SWAT with BiLSTM, 
which provides enhanced flexibility and adaptability in modeling 
nonlinear hydrological processes. The BiLSTM model, in this study, 
demonstrated its capacity to adapt to dominant hydrological drivers, 
such as glaciers and snowmelt, effectively capturing low-flow 
conditions across all phases. However, as a standalone model, BiLSTM 
faced challenges in simulating peak flows due to the absence of 
physical process representation.

In SWAT-C-BiLSTM (Qp) scenario, BiLSTM leveraged SWAT’s 
physically based outputs to significantly improve peak flow 
simulations while addressing uncertainties associated with coarse-
resolution land use data and limited climatic variables. This coupling 
approach underscores the complementary strengths of BiLSTM, with 
selective variable integration playing a pivotal role. Additionally, since 
SWAT simulates streamflow by incorporating these climatic variables, 
the coupled scenarios we  discuss pertain specifically to BiLSTM’s 
input selection and do not imply that the SWAT-simulated flow (Qp) 
is devoid of climatic influences.

The marginal accuracy difference between the excluded-variable 
scenario (SWAT-C-BiLSTM (Qp)) and the cross correlation based 
included variable scenario (SWAT-C-BiLSTM (T1 Qp)) highlights the 
importance of carefully curating input variables rather than including 
all climatic data. For glacier-fed basins like Astore, where precipitation 
has limited daily correlation with streamflow, excluding it from the 
coupling process yielded enhanced performance.

5.2 Implications for hydrology and model 
development

The findings of this study underscore the critical importance 
of optimizing input selection and leveraging hybrid modeling 
approaches in hydrology. The superior performance of the 
SWAT-C-BiLSTM (Qp) scenario, which excluded climatic 
variables from direct BiLSTM input, demonstrates that selective 
integration of variables aligned with dominant hydrological 
drivers can enhance model accuracy while reducing uncertainty. 
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This is particularly relevant for glacier-fed basins like Astore, 
where streamflow is primarily influenced by glacier and snowmelt 
rather than precipitation. The results highlight the 
complementary strengths of physically based models, like SWAT, 
and data-driven approaches, such as BiLSTM, in addressing the 
limitations of standalone models. By combining physical process 
representation with nonlinear adaptability, coupled models offer 
a promising pathway for improving hydrological predictions in 
data-scarce and complex environments, paving the way for more 
robust water resource management strategies under changing 
climatic conditions.

5.3 Operational relevance for water 
resource management

The findings of this study offer practical implications for water 
resource management, particularly in streamflow forecasting for flood 
and drought preparedness. The superior performance of the SWAT-
C-BiLSTM (Qp) model suggests that integrating process-based 
hydrological models with machine learning can enhance predictive 
accuracy without requiring direct climate inputs. This is particularly 
beneficial in data-scarce regions where real-time climate data may 
be limited.

Improved streamflow predictions can aid water managers in 
optimizing reservoir operations, flood risk mitigation, and drought 
preparedness by providing more reliable forecasts. The study’s 
approach could be  further explored for operational hydrological 
forecasting systems, ensuring robust water resource planning under 
changing climatic conditions.

5.4 Limitations and future directions

This study faced several limitations that could influence the 
outcomes. The use of coarse resolution land use data, such as 
MODIS, introduced uncertainties in sub-basin parameterization, 
potentially affecting the accuracy of hydrological simulations. 
Limited preprocessing of hydroclimatic data impacted the ability 
to accurately simulate peak and low-flow conditions. The reliance 
on cross-correlation for lag selection between climatic variables, 
while effective as a preliminary step, may not fully capture the 
nonlinear relationships inherent in hydrological processes, 
potentially leading to suboptimal lag time identification. 
Additionally, considering only precipitation and temperature as 
climatic variables may not fully capture the hydrological 
complexities of the Astore sub-basin, particularly in a glacier-fed 
system. Also, the findings are specific to the Astore sub-basin, 
and their generalizability to other regions with varying 
geographic and climatic contexts remains unexplored.

Meteorological data were obtained from the Pakistan 
Meteorological Department (PMD) and the Water and Power 
Development Authority (WAPDA); however, these datasets may have 
limited spatial coverage. Future studies could explore the use of 
alternative data sources, such as ERA5 or Climate Forecast System 
Reanalysis (CFSR) datasets, to supplement observed meteorological 
inputs and potentially enhance model accuracy. The integration of 
high-resolution reanalysis datasets could improve spatial 

representation and reduce uncertainties in hydrological simulations, 
particularly in data-scarce mountainous regions.

Additionally, while groundwater parameters were considered 
during calibration, direct observational evidence of river-aquifer 
interactions in the Astore sub-basin is limited. Future studies 
incorporating hydrogeological field measurements, isotopic analysis, 
or groundwater monitoring networks could further improve the 
constraint on these parameters and enhance the model’s physical 
realism. Groundwater contributions, particularly in low-flow 
conditions, may play a more significant role than currently represented 
in the model, warranting further investigation.

Moreover, future studies should incorporate high-resolution 
land use data to enhance parameter sensitivity and simulation 
accuracy. Expanding the range of climatic inputs to include 
additional variables, such as precipitation variables, humidity and 
solar radiation, could provide a more comprehensive 
understanding of hydrological processes. Incorporating more 
robust and exhaustive methods, such as cross-validation, grid 
search, or advanced feature selection techniques, is recommended 
to systematically optimize lag times and better align with the 
nonlinear capabilities of machine learning models. Thorough 
preprocessing of hydroclimatic data is critical to minimize 
uncertainties, especially for extreme events. Additionally, testing 
the exclusion or inclusion approach in diverse geographic and 
climatic regions will help assess its broader applicability and 
effectiveness in coupled modeling scenarios.

6 Conclusion

This study explored alternate coupling inputs of a data-driven 
model to enhance daily streamflow prediction in a calibrated SWAT-
BiLSTM rainfall-runoff modeling framework for the Astore sub-basin 
of the Upper Indus Basin, Pakistan. Five modeling scenarios were 
analyzed, including standalone SWAT and BiLSTM models and three 
alternate coupling configurations that utilized conventional climate 
variables (precipitation and temperature), cross-correlation-based 
variable selection (temperature or precipitation), and a scenario 
excluding direct climatic inputs while incorporating SWAT-simulated 
streamflow. Model calibration, validation, and prediction were 
conducted for the periods January 2007 to December 2011, January 
2012 to December 2015, and January 2017 to December 2019, 
respectively. Model performance was evaluated using statistical 
metrics (R2, NSE, PBIAS, and RSR), and a ranking was established 
through Compromise Programming. The key findings of this study 
are as follows:

Cross-correlation analysis identified temperature as the most 
influential input (maximum correlation of 0.69 at 1-day lag), 
emphasizing the need for optimized input selection in 
coupled modeling.

The SWAT-C-BiLSTM (Qp) model, which excluded direct 
climate inputs, emerged as the best-performing configuration, 
followed closely by the cross correlation based SWAT-C-BiLSTM 
(T1Qp) model. These models exhibited minimal bias and high 
predictive accuracy.

The compromise programming ranking confirmed the 
superiority of coupled models, except for SWAT-C-BiLSTM 
(PTQp), over standalone SWAT and BiLSTM models, 
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demonstrating the benefits of integrating physically based and 
machine-learning approaches.
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