
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Water
Sec. Water and Hydrocomplexity
Volume 7 - 2025 | doi: 10.3389/frwa.2025.1558218
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Accurate streamflow prediction in mountainous regions is vital for sustaining water resources in downstream areas, ensuring reliable availability for agriculture, energy, and consumption. However, physically based prediction models are prone to substantial uncertainties due to complex processes and the inherent variability in model parameters and parameterization. This study addresses these challenges by exploring alternative coupling inputs for data-driven (DD) models to optimize daily streamflow prediction in a calibrated SWAT-BiLSTM rainfall-runoff model within the Astore sub-basin of the Upper Indus Basin (UIB), Pakistan. The research explores two standalone models (SWAT and BiLSTM) and three alternative coupling inputs: conventional climatic variables (precipitation and temperature), cross-correlation based selected inputs, and exclusion of direct climatic inputs, in calibrated SWAT-BiLSTM model. The study spans calibration, validation, and prediction periods from 2007 to 2011, 2012 to 2015 and 2017 to 2019, respectively. Based on compromise programing (CP) ranking, SWAT-C-BiLSTM (QP) and SWAT-C-BiLSTM (T1 QP) showed competent performances followed by BiLSTM, SWAT-C-BiLSTM (PTQP), and SWAT. These findings highlight that excluding climatic parameters alternative SWAT-C-BiLSTM (QP) enhances the couple model’s accuracy sufficiently and underscores the potential for this approach to contribute to sustainable water resource management.
Keywords: advancement in rainfall-runoff1, bilstm2, inputs selection3, Streamflow Pprediction4, SWAT-Bilstm modeling5, supervised machine learning6
Received: 09 Jan 2025; Accepted: 12 Mar 2025.
Copyright: © 2025 Ahmad, Iqbal, Tariq, Khan, Nadeem, Usanova, Almujibah, Alyami and Abid. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Mudassar Iqbal, Centre of Excellence in Water Resources Engineering, University of Engineering and Technology, Lahore 54890, Pakistan, Lahore, Pakistan
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.