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Climate change is increasingly affecting the water cycle, with droughts and floods 
posing significant challenges for agriculture, hydropower production, and urban 
water resource management due to growing variability in the factors influencing 
the water cycle. Reinforcement learning (RL) has demonstrated promising potential 
in optimization and planning tasks, as it trains models on historical data or through 
simulations, allowing them to generate new data by interacting with the simulator. 
This systematic literature review examines the application of reinforcement 
learning (RL) in water resource management across various domains. A total of 
40 articles were analyzed, revealing that RL is a viable approach for this field due 
to its capability to learn and optimize sequential decision-making processes. The 
results show that RL agents are primarily trained in simulated environments rather 
than directly on historical data. Among the algorithms, deep Q-networks are 
the most commonly employed. Future research should address the challenges 
of bridging the gap between simulation and real-world applications and focus 
on improving the explainability of the decision-making process. Future studies 
need to address the challenges of bridging the gap between simulation and real-
world applications. Furthermore, future research should focus on the explainability 
behind the decision-making process of the agent, which is important due to the 
safety-critical nature of the application.
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Highlights

 • Climate change affects water systems, and RL provides solutions for resource management.
 • This research uses a systematic literature review to explore RL in water 

resource applications.
 • RL models are mainly trained in simulated environments.
 • Model-based RL could enhance planning by predicting future states in water 

resource management.
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1 Introduction

1.1 Background

Water resource management involves managing and regulating 
the use of scarce water resources, such as managing reservoir water 
levels amid uncertain inflows. Climate change significantly affects 
water resources and the water cycle (Ciampittiello et al., 2024). Rising 
evapotranspiration, more frequent droughts and floods, shifts in the 
timing of spring floods due to snowmelt (Ciampittiello et al., 2024; 
IEA, 2021), and changing precipitation patterns are among the key 
consequences (Kahaduwa and Rajapakse, 2021). These changes in the 
water cycle are expected to impact multiple sectors, including 
hydropower (IEA, 2021; IPCC, 2023), agriculture (IPCC, 2023), urban 
water resource management, and overall water flow dynamics (IPCC, 
2023; Li et al., 2023).

In wastewater treatment, climate change is expected to have an effect 
due to increased uncertainty in precipitation patterns, resulting in 
reservoirs becoming overburdened when a large amount of rain occurs, 
resulting in untreated water discharge, but also increased energy use in 
the treatment of the larger volume of water (Li et al., 2023). Similarly, 
urban drainage systems are also expected to be  at risk of failure to 
manage increased bodies of water with increased precipitation, resulting 
in disruption in transportation systems, flood damage, and increased risk 
to people’s health and safety (Kourtis and Tsihrintzis, 2021). Due to the 
rising uncertainty in the water cycle caused by climate change, effective 
water resource management is essential.

In the field of machine learning (ML), there are three paradigms: 
supervised learning, unsupervised learning, and reinforcement 
learning (RL) (Bishop, 2006). In datasets that consist of a corresponding 
target for each input, the task falls under the supervised learning 
paradigm (Bishop, 2006). Deep learning (DL) is a set of supervised 
learning methods capable of learning a representation from raw data 
required to solve a prediction task (LeCun et al., 2015). In unsupervised 
learning, the target is missing for each input. Instead, unsupervised 
learning can be used to find groupings in the input data, such as cluster 
analysis (Bishop, 2006). RL is the third paradigm in ML, where an 
agent, acting as the decision-maker, learns which actions to take in an 
environment by selecting those that yield the highest rewards from the 
environment (Sutton and Barto, 2018; Bishop, 2006).

By allowing the agent to interact and train within the environment, 
it learns a policy, which is a strategy that tells the agent which decision 
to make given the current circumstances in the environment (Sutton 
and Barto, 2018). RL, combined with the representation learning 
capacity of DL, had a breakthrough in video games, namely the Atari 
games, in which the agent learned to reach human-level performance 
(Mnih et al., 2015; Mnih et al., 2013). Another breakthrough with RL 
combined with DL won over the world champion in the board game 
Go (Silver et  al., 2016). Other examples of RL applications are in 
transportation (Haydari and Yılmaz, 2020), autonomous driving 
(Kiran et al., 2021), and power and energy systems (Cao et al., 2020).

Previous literature reviews explored the application of ML and DL 
in hydrological processes (Croll et al., 2023; Sit et al., 2020; Ahmed 
et  al., 2024; Tripathy and Mishra, 2023; Krechowicz et  al., 2022; 
Villeneuve et al., 2023; Bernardes et al., 2022; Zhu et al., 2022; Ortiz-
Lopez et al., 2022; Mohammed et al., 2022); however, few have focused 
on the application of RL across multiple domains of water resource 
management. Croll et al. (2023) investigated the potential applications 

of RL in wastewater treatment. Ortiz-Lopez et al. (2022) and Zhu et al. 
(2022) have analyzed how ML can be used for water quality prediction. 
Mohammed et al. (2022) reviewed how ML can be used to predict 
water levels in watersheds. Multiple reviews perform a wider 
comparison by investigating how ML has been applied in multiple 
topics in hydrology and water resource management (Tripathy and 
Mishra, 2023; Sit et al., 2020; Ahmed et al., 2024). Previous literature 
reviews have addressed ML applications in hydropower planning 
(Bernardes et al., 2022; Krechowicz et al., 2022).

Water resource management is a sequential decision-making task 
and shares common challenges, such as uncertainty in reservoir inflow, 
managing weather conditions, and planning water levels. By allowing 
an RL agent to train on various climate scenarios to manage water, the 
possibilities for efficient water management using ML and RL in 
unpredictable and changing weather conditions caused by climate 
change need to be further explored. Therefore, a thorough investigation 
of how RL has been applied in water resource management allows for 
a comparison of how the aforementioned challenges are treated.

1.2 Research purpose and contribution

Although previous review articles have explored the potential of 
ML in topics related to water resource management, a review 
specifically focused on the application of RL in this field is still lacking. 
Water resource management can be classified as a sequential decision 
task, where previous decisions will affect future decisions. Therefore, 
careful consideration must be taken before making such decisions. 
Moreover, RL algorithms are designed in various ways, affecting the 
training and convergence of policies and resulting in different 
sequential decision-making. Therefore, it is important to assess the 
current status of algorithm selection and how the agents are trained 
in relation to water resource management. The article aims to examine 
how RL has been applied across various domains of water resource 
management, with objectives such as minimizing the energy use of 
water pumps and managing water level constraints. This systematic 
review aims to answer the following research questions (RQs):

 - RQ1: What are the most common RL algorithms applied in water 
resource management and in each specific domain?

 - RQ2: What is the most common method for training an agent 
across various domains?

The research contributions of this study are twofold. First, it 
provides a comprehensive analysis of how RL has been applied across 
various domains of water resource management, examining the 
choice of algorithms, training and evaluation methods, and the 
handling of constraints such as water level management. Second, it 
offers a comparative review of approaches across these domains to 
identify gaps and potential areas for improvement. The findings of 
this study provide insights into how RL can be utilized for water 
resource management in the presence of uncertainties across multiple 
variables affecting the water cycle. This study provides a thorough 
analysis of how RL is applied in water resource management by 
examining, for example, the choice of algorithm and how the agent 
is trained, which are important topics not addressed in previously 
published articles. This research is valuable for various stakeholders, 
including urban planners, energy companies, and agricultural 
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enterprises seeking more efficient water resource management. 
Furthermore, the study contributes to one of the United Nations’ 
Sustainable Development Goals, namely the sixth goal, the clean 
water and sanitation goal, by supporting efforts to ensure access to 
clean water, improve sanitation, and optimize the efficient use of 
water resources (United Nations, 2022).

1.3 Outline of the article

Chapter 2 introduces the general theory of RL, describes a sample of 
algorithms commonly found in this systematic literature review (SLR), 
and outlines general approaches for training RL models and selecting 
hyperparameters. Chapter 3 describes the methodology and details how 
the systematic review was conducted. Chapter 4 presents the results and 
analysis, where the selected articles are investigated and discussed. 
Chapter 5 discusses the results presented in Chapter 4, and Chapter 6 
provides the conclusions and suggests directions for future research.

2 Theory

This section presents a general theory of RL, common algorithms 
found in the SLR, training the agents, and challenges with 
hyperparameter selection and how it affects the performance of 
the algorithms.

2.1 RL preliminaries

RL is learning what to do given the state of nature in a defined 
environment (Sutton and Barto, 2018). Following the notation and 
definitions presented by Sutton and Barto (2018), an agent is a 
decision-maker who interacts with the environment. Through the 
interaction, the agent will receive rewards from the environment, 
which the agent aims to maximize. At time point t , the agent will 
receive a description of the environment, which is called the state 
ts  and possible states of the environment create the state space 
ts S∈ . Given ts , the agent decides upon an action ta A∈ , which is 

the action space, to interact with the environment and receive the 
reward tR R∈  (Sutton and Barto, 2018).

To provide an example related to water resource management. In 
urban drainage systems (further discussed in section 4.4), RL is a 
method used to manage water levels in the systems. The states can 
be water levels in a water tank and water inflows; the action could 
be how to run the pumps; and finally, the reward can be related to the 
energy used when running the pumps, which should be as small 
as possible.

A finite Markov Decision Process (MDP) is one where the sets of 
states, actions, and rewards are finite. The objective of the agent is to 
maximize the expected discounted reward presented in Equation 1,
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where 0 1γ≤ ≤  is the discount factor and k  the number of steps 
from t  until the end of an episode. A policy π  provides a mapping 

from the state to the probabilities of each possible action that the agent 
can perform in the given state. The value function of a state provides 
the expected return when the agent begins in a state ts  and then 
proceeds to follow the policy. In Equation 2, let the observed state 
be denoted as s. Then, the value function is defined as follows:
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A policy π  is better than or equal π ′ if the value function 
( ) ( )v s v sπ π ′≥  for all states. An optimal policy is a policy that has a 

better value function than all other found policies in the MDP (Sutton 
and Barto, 2018).

RL algorithms can further be classified into categories depending 
on how the policy is derived: value-based and policy-based learning. 
Value-based RL algorithms find the value function for a given state 
and then derive the policy by selecting the action that returns the 
highest value of the value function. Value-based RL algorithms only 
work for discrete action spaces because they select the action that 
provides the highest return of the value function. In contrast, policy-
based learning learns a parameterized policy using, for example, a 
neural network that predicts which action to select given the state. 
Furthermore, policy-based methods work for both continuous and 
discrete action spaces (Plaat, 2022).

In single-objective RL, the reward signal is a scalar value, 
whereas, in multi-objective RL, the reward is a vector , 2,d d ≥  
which provides a signal on each objective given the action made by 
the agent in a state (Hayes et  al., 2022). Furthermore, in multi-
objective RL, there are multiple optimal value functions, whereas 
there is only a single optimal value function as defined in Equation 2, 
which can be used to identify the optimal policy in single-objective 
RL. A utility function u  provides a mapping of : du →  and is the 
user’s preference regarding each objective and is central in 
determining whether a solution is optimal or not. An example of a 
utility function is a linear utility function where the weighted sum of 
all objectives equals one (Hayes et al., 2022).

2.2 Q-learning

The action value function, defined in Equation 3, is the expected 
return when an agent has observed a state s, selects an action ,a  and 
then proceeds to follow the policy (Sutton and Barto, 2018). The 
Q-learning algorithm utilizes the action value function.
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which defines the expected return from taking an action in any 
given state and then proceeds to follow the policy (Sutton and Barto, 
2018). The Q-learning algorithm aims to find the optimal action-value 
function in each state by updating in Equation 4
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in each observed state. To ensure that the action value functions 
are all updated, a method called epsilon greedy is used, which balances 
the challenge of exploration or exploitation (i.e., use the learned policy 
to receive the most expected reward or attempt other actions that may 
result in more reward). The epsilon greedy strategy states that in each 
observed state, pick a random action with probability ∈  or exploit the 
policy with probability ( )1 ∈−  (Sutton and Barto, 2018). Based on the 
updating rule in Equation 4, an optimal policy can be derived by 
choosing the action in each state that maximizes ( ),t tQ s a  (Sutton and 
Barto, 2018).

2.3 Deep Q-networks

The success of DL (LeCun et al., 2015) has enabled complicated 
control tasks in RL research with large action and state spaces to 
be solved (Mnih et al., 2015; Mnih et al., 2013). Mnih et al. (2013) 
introduced Deep Q-networks (DQN), which combine Q-learning 
with DL and have shown impressive results in Atari games. In DQN, 
DL is used to parameterize the action value function, which predicts 
the Q-value for each action in each state. The network is trained by 
minimizing the loss function in Equation 5:

 
( ) ( )( )2, ; ,j j jL y Q aθ φ θ= −

 (5)

by sampling minibatches from a replay buffer, which stores 
previous environmental transitions. ja  is the : thj action in the 
minibatch. In Equation 6, jy , is the target and is defined as calculated 
as follows:
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A challenge in minimizing the objective function presented in 
Equation 5 is the moving target value jy . Mnih et al. (2015) used a 
separate neural network, called a target network, to predict the target 

jy  in which the weights of the target network are infrequently updated.
Continuous improvements have been made with DQN to improve 

performance and training stability. Dueling networks predict a state 
value function and the advantage in a state, which improves policy 
evaluation in states where actions are similarly valued (Wang et al., 
2016). Van Hasselt et al. (2016) introduced double DQN (DDQN) to 
address challenges with overestimation of the Q-value under certain 
conditions by introducing an action selection and action evaluation 
network to minimize the overestimation that occurs in the max operator 
in Equation 6. Originally, uniform sampling from the replay buffer, in 
which each previous transition has an equal probability of being 
included in the minibatch, was utilized for DQN (Mnih et al., 2013; 
Mnih et al., 2015). Prioritized sampling, which samples states in which 
most training can be  achieved (Schaul, 2015). Finally, Hessel et  al. 
(2018) found that combining techniques that improve DQN 
outperformed DQN or the single improvements (such as dueling 
networks or DDQN) on many common benchmark environments used 
in RL research.

2.4 Proximal policy optimization

Proximal policy optimization (PPO) was introduced to combat 
multiple challenges, such as implementing algorithms to combat 
challenges with hyperparameters and training stability (Schulman 
et al., 2017). PPO uses a clipped objective function to minimize the 
risk of moving too far away from a good policy in the previous 
iteration of training the actor-network. One loss function in PPO 
utilizes a clipped loss defined in Equation 7:
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the previous iteration and the new updated policy, ˆtA  is a truncated 
version of generalized advantage estimation. In addition to the clipped 
loss, Schulman et  al. (2017) proposed an additional loss using 
KL-divergence [see Bishop (2006) for a definition of KL-divergence] 
for training the agent, as defined in Equation 8. The penalty based on 
the KL-divergence uses the same ratio as in Equation 7 but adds an 
additional term to prevent deviation from the old policy and is defined 
as follows:
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2.5 Deep deterministic policy gradient

Deep deterministic policy gradient (DDPG) aimed to address the 
challenges that DQN has in tasks with continuous action spaces. 
DQN requires the action space to be discrete, and one method is to 
discretize the action space. However, this may result in a large space 
for action, resulting in difficulties in exploration and, thus, the 
training of the agent (Lillicrap, 2015). DDPG utilizes an actor-
network, which is the parameterized policy, and a critic network, 
which estimates the action value function. Similarly to the original 
DQN presented in Sec 2.5, the target networks are infrequently 
updated. However, Lillicrap (2015) introduced a soft update 

( )1θ τθ τ θ← + −′ ′  where θ  are the weights in the online network, 
and θ′ are the weights in the target network.

The loss functions in DDPG minimize the squared loss for the 
critic network in Equation 9 and for the policy utilizing the sampled 
policy gradient in Equation 10. The critic loss is defined as

 
( ) ( )( )2Q1 , ; ,i i i

i
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where 
Qθ  are the weights of the critic network. The sampled 

policy gradient is defined as
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2.6 Methods to train an agent and learn a 
policy

Training the behavior of RL agents can be achieved through trial-
and-error interaction with the environment (Sutton and Barto, 2018). 
Based on the response from the environment, the agent will adapt and 
learn a better policy based on the feedback. However, depending on 
the task, directly interacting with the environment could be expensive 
and result in dangerous outcomes (Salvato et al., 2021). Learning the 
policy can be  achieved in multiple ways. For example, creating a 
simulation of the environment and letting the agent interact with the 
simulation is one alternative, and then transferring the learned policy 
into the real environment. Transfer learning involves learning policies 
in a set of source environments, which are later used to learn an 
optimal policy in the target environment (Zhu et al., 2023).

Kober et al. (2013) addressed the challenges of using RL in robotics 
and stated that allowing the agent to train in the real environment can 
be beneficial if the task is difficult to simulate correctly. However, real 
environment training is often more costly due to the need for human 
supervision to reset the elements of the environment when the robot 
finishes or fails to solve the task. Furthermore, potential damages to the 
hardware can be  very costly if the robot fails to solve the task. 
Simulation training solves these problems and can easily generate 
samples to train the agent to solve the task.

In the context of learning policy in a simulator, sim-to-real transfer 
can be interpreted as a form of transfer learning in which the policy 
learned in the simulation is applied and tuned in a real-world 
environment. However, a challenge in training a simulation remains, and 
that is called the reality gap. If the simulator incorrectly describes the real 
world, the agent may learn how to interact with the environment; 
however, when the policy is applied in a real-world setting, then it may 
fail the task due to incorrect representation of the real-world 
environment inside the simulator. The issue with the RL agent managing 
to solve the given task in the simulator but not in the real-world 
environment is called the reality gap (Salvato et al., 2021). A presentation 
of methods to perform sim-to-real transfer and methods for minimizing 
the reality gap is out of the scope of this study; however, the methods are 
discussed in Salvato et al. (2021) and Zhao et al. (2020).

In contrast to creating a simulator of the real-world environment, 
offline RL (ORL) utilizes previous interactions with the environment, i.e., 
states, actions, rewards, and state transitions. Given the static dataset, the 
goal in ORL is to utilize the dataset to identify a better policy compared 
to the one observed (Levine et al., 2020). However, there are challenges 
in offline RL. When an agent is trained in simulation through trial and 
error, it allows the agent to explore states and actions, potentially 
identifying high-reward states. In ORL, however, if no high-reward states 
and actions are observed, then it may be challenging for the agent to 
identify those states and actions on its own (Levine et al., 2020). Another 
challenge in ORL is the distributional shift in which the agent is trained 
under one distribution but evaluated under a different distribution due 
to the exploitation policy, resulting in the agent acting in states not 
previously observed in the static dataset (Levine et al., 2020).

2.7 Hyperparameter selection

Previous studies have shown that the selection of hyperparameters 
(HPs) plays an important role in the performance of the RL agents. In 

ML, a distinction is made between parameters and HPs. A 
parameterized model estimates the parameters with data by 
minimizing an objective function. HPs are model configurations 
manually adjusted prior to executing the algorithms to train the model 
and affect the performance of the final model (Bischl et al., 2023). 
Adjusting HPs manually is a challenging task due to the vast number 
of combinations of HPs resulting in long computation times. 
Hyperparameter optimization (HPO) algorithms are useful in the 
search of HPs. Previous studies have highlighted that the selection of 
HPs has shown to be an important factor in the performance and 
training stability of the agent (Henderson et al., 2018; Engstrom et al., 
2019; Andrychowicz et al., 2021). Factors such as random starting 
values and initialization of underlying neural networks (Henderson 
et al., 2018), code implementation (Engstrom et al., 2019), network 
architecture, advantage estimation, optimizers, and normalization 
techniques (Andrychowicz et al., 2021) affect the final performance of 
the agent. As addressed by Eimer et al. (2023), the selection process of 
HPs is important, and how the selection process is performed is 
important in the final evaluation of the agents. Utilizing HPO to find 
a set of HPs may result in the development of a fair benchmark but 
also ensures reproducibility of the results.

3 Research methodology

SLR is a form of review in which a systematic approach is used to 
gather and analyze a large amount of published research according to 
pre-defined research questions and criteria (Carrera-Rivera et  al., 
2022; Jesson et al., 2011). An SLR includes a clear description of how 
articles are collected, included or excluded, and analyzed by following 
a strict protocol (Carrera-Rivera et al., 2022). An SLR provides well-
defined criteria on which articles are included or excluded from the 
SLR and proper documentation of the search process in databases by 
presenting the search string used, the date on which the search was 
performed, the name of the database, and the number of articles in 
each database (Jesson et al., 2011).

Jesson et al. (2011) describe the SLR process in six phases. (i) The 
first phase begins by performing a wide search in databases to discover 
existing knowledge gaps, what is already known, and how much 
relevant research is available. Furthermore, in this phase, the research 
plan is determined, which consists of defining the research question 
of the SLR, defining the inclusion and exclusion criteria, and 
identifying useful keywords to be used to search for suitable research 
articles. The identified keywords for water resource management are 
for example hydropower, irrigation, flood and water basin. The 
complete search strings are defined in Table 1. The initial search was 
performed in the databases Scopus and Web of Science to assess the 
number of publications relevant to the topic of this SLR. Furthermore, 
an additional search for previous review articles, previously presented 
in section 1.1, was performed to assess the relevance of performing an 
SLR on this topic.

(ii) The second phase involves performing a narrow search using 
the identified keywords and inclusion and exclusion criteria to filter 
the database and identify research articles relevant to the given 
research question. An initial screening of abstracts and titles is 
performed to reduce the number of articles in the search query before 
thoroughly analyzing each article. The initial search results using the 
search strings presented in Table 1 resulted in 678 articles (349 from 
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Scopus and 329 from Web of Science). After screening titles and 
abstracts and removing duplicates, the sample size was reduced to 159 
articles. The search was performed on 2024-05-07 in both Scopus and 
Web of Science.

(iii) The third phase consists of a quality assessment of each article 
included in the sample and a decision on whether the article should 
be included or not in the final sample based on the defined inclusion 
and exclusion criteria. In the sample of 159 articles, only 40 articles 
were found to be relevant according to the inclusion and exclusion 
criteria defined in Table 2.

(iv) The fourth phase is the data extraction phase, where important 
information from each article included in the sample is extracted and 
documented. The information extracted from each article includes the 
names of the authors, year of publication, research purpose, 
methodology, conclusion, how the authors have defined the reward 
function, action space, and state space, the authors’ choice of the 
algorithm in their application and how the agents are trained.

(v) This phase is called synthesis, which involves drawing 
conclusions about all articles and compiling knowledge into a single 
article. This phase is important for drawing conclusions about what is 
currently known and what remains to be studied. (vi) The sixth phase 
is the writing phase, in which all the information from phase (v) is 
combined and presented. The workflow of the SLR process and the 
results are presented in Figure 1.

4 Results and analysis

Table 3 presents an overview of all the optimization objectives by 
describing the purpose of the reward function in a study presented in 
this SLR.

The number of publications in this sample steadily increases over 
the years, as presented in Figure 2. This suggests an increasing trend 
in the number of publications on RL application in water resource 
management and where there is an increasing research interest in how 
RL may be applied in water resource management.

Figure 3 presents the total occurrences of algorithms in the sample 
analyzed in the SLR. Less frequently occurring algorithms (occurring 
only once in the sample) are combined into another category. The first 
RQ, which poses the question of which algorithm is the most common, 
is DQN, followed by PPO, and finally DDPG and Q-learning. In the 
other category, algorithms such as multiagent DDPG, Q-learning, 
SARSA, or REINFORCE are occurring, albeit less frequently.

Continuing the analysis of choice of algorithms, Figure 4 presents 
the choice of algorithms decomposed into various domains established 
in the SLR. Across all domains except for stormwater systems, PPO 
and DQN are utilized. In contrasts, DDPG only occurs in 
stormwater systems.

The trend in choice of algorithms is visualized in Figure 5. The use 
of DQN has steadily increased over time whereas the frequency of 
DDPG, Q-learning and PPO has remained steady.

To further analyze the choice of algorithm based on whether it is 
value-based, policy-based, or actor-critic, Figure  6 presents the 
distribution of the methods among the different domains specified in 
this SLR. The most common choice is the value-based category, as 
supported by Figure 4, where DQN is the dominating choice in many 
of the domains.

To address the second RQ, which poses which method is the most 
common to train an agent, Figure  7 presents the occurrences of 
training the agent in an offline, simulation, or mixed setting (e.g., 
training offline and evaluating in simulation or training in simulation 
and evaluating in a real-world setting). Across all domains, creating a 
simulation of the environment and training the RL agent is the most 
common choice, with the exception of hydropower, where offline 
training is more common.

Figure 8 presents the distribution of study regions in the sample. 
Although multiple studies are trained in simulation, local weather 
conditions are included. Therefore, the case study was conducted in 
the same country where the weather conditions were set. In many 
cases, the study nation or case study is not specified in the given study.

4.1 Hydropower

Zeng et al. (2023) applied DQN combined with dueling networks, 
DDQN, and prioritized experience replay for managing dispatch needs 

TABLE 2 Inclusion and exclusion criteria in the third phase of the 
screening process.

Criterion Inclusion Exclusion

Language English All other languages

Availability Available through Scopus or 

Web of Science

Articles not available at 

Scopus or Web of Science

Type of article Peer-review articles and 

conference articles

Grey literature, pre-

prints, blogs, and review 

articles

Machine learning 

method

Reinforcement learning (of any 

kind: single agent, multi-agent, 

policy-based, value-based, and 

so on)

Any other ML method, 

such as supervised or 

unsupervised learning

Relevance The problem formulation must 

handle water of any kind (water 

discharge, water levels, or 

similar)

If water is not an aspect 

included in the models

Description of 

method, data, and 

more

Thorough description of 

training the agents, problem 

formulation, and description of 

the environment (i.e., states, 

actions, and rewards)

Poor description of 

training approach, 

algorithm choice, unclear 

what the state- and 

actions spaces are.

Year 2013 and later Published articles prior 

to 2013

TABLE 1 Search strings used in scopus and web of science.

Scopus (TITLE-ABS-KEY ((“hydropower” OR “lake” OR “water reservoir” 

OR “river basin” OR “water basin” OR “flood” OR “wastewater” OR 

“water retaining” OR “irrigation” OR “water distribution”)) AND 

TITLE-ABS-KEY (“reinforcement learning”)) AND PUBYEAR 

>2012 AND PUBYEAR <2025 AND (LIMIT-TO (DOCTYPE, “ar”) 

OR LIMIT-TO (DOCTYPE, “cp”))

Web of 

science

(“hydropower” OR “lake” OR “water reservoir” OR “river basin” OR 

“water basin” OR “flood” OR “wastewater” OR “water retaining” OR 

“irrigation” OR “water distribution”) (All Fields) and “reinforcement 

learning” (All Fields) and 2024 or 2023, 2022 or, 2021, 2020, 2019 or 

2018 or 2017 or 2014 or 2015 or 2016 (publication years) and article 

or proceeding study (document types)
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for the hydropower plant, such as water dispatch and power generation 
dispatch. Jiang et  al. (2023) investigated how RL can be  used to 
maximize profits in a multi-energy production system by using DQN 
to improve the scheduling of hydropower production when solar and 
wind power production forecasts are included in the model. Xu et al. 

(2020) investigated the potential of DQN in planning cascaded 
hydropower production. The authors mention two challenges: 
uncertainty in reservoir inflow forecast and large action spaces. The 
authors implement an aggregation desegregation model to reduce the 
action space, which allows for the discretization of the action space.

FIGURE 1

Each phase of the SLR. n indicates the number of articles remaining in the sample after each phase.
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Wu et al. (2024) investigated multi-objective RL to train the agent 
to manage power generation, ecological aspects, and water supply 
benefits to nearby neighborhoods. The authors created multiple weight 
combinations for each objective in the reward function and found that 
RL found a policy that improved all objectives compared to baselines. 
Mitjana et al. (2022) investigated how power production in multiple 
reservoirs can be  optimized where uncertainty in the expected 
reservoir inflow causes difficulties in managing constraints, such as 
water levels. The constraints are handled through chance constraints 
and backoffs, which are extended in the REINFORCE algorithm. The 
results show that although the amount of electricity production is 
smaller compared to the baseline, the water level constraints are much 
better handled using chance constraints and backoffs.

Riemer-Sorensen and Rosenlund (2020) used soft actor-critic to 
improve the weekly scheduling of hydropower production to 
maximize profits and reduce spillage water. The authors utilize 
historical weekly data. The authors utilize two different data sets: the 
first one, in which there is a clear correlation between reservoir inflow 
and electricity prices, and the second one, which provides a realistic 
representation of electricity prices and inflows.

4.2 Irrigation

DQN has been applied in irrigation applications with various 
objectives such as maximizing profits (Zhao et al., 2023), optimal 

TABLE 3 A summary of the purpose of the reward function and 
optimization objective in water resource management included in the 
SLR.

Domain Objective

Hydropower Load dispatch: Zeng et al. (2023); Power production: Xu et al. 

(2020), Wu et al. (2024), Mitjana et al. (2022), and Jiang et al. 

(2023); Profits: Riemer-Sorensen and Rosenlund (2020)

Irrigation Maximize profits: Zhao et al. (2023), Sun et al. (2017), and 

Kelly et al. (2024). Minimize water use (Tao et al., 2023; 

Maszuhn et al., 2023; Ding et al., 2022; Chen et al., 2021; 

Campoverde et al., 2021), water use and energy use (Huong 

et al., 2018)

Water 

distribution 

networks

Minimize cost: Zaman et al. (2023), water levels: Xu et al. 

(2021), water levels and energy use: Hu et al. (2023b), Hu et al. 

(2023a), and Donâncio and Vercouter (2022), water 

distribution: Hung and Yang (2021), and minimize pump 

costs: Candelieri et al. (2019b)

Urban drainage 

and stormwater 

systems

Minimize flooding and energy use Zhang et al. (2023). Minimize 

flooding: Wang et al. (2021), Tian et al. (2023b), Tian et al. 

(2023a), Tian et al. (2022b), Tian et al. (2022a), Tian et al. (2024), 

Saliba et al. (2020), Bowes et al. (2021), and Bowes et al. (2022)

Miscellaneous Water levels: Shahverdi et al. (2022), water levels and reducing 

energy use: Seo et al. (2021), Ren et al. (2021c), Ren et al. 

(2021a), and Filipe et al. (2019), Power production: Moreira 

et al. (2022), Water supply: Bertoni et al. (2017)

FIGURE 2

Number of published articles each year in the sample (n = 40). 2024 was removed due to a search conducted in the second quarter of 2024.
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water use for maintaining plant health (Maszuhn et  al., 2023), or 
balancing multiple objectives (e.g., profits, water use and price of 
water) (Tao et al., 2023). Commonly, the actions of the DQN control 
how much water should be added based on different characteristics in 
the soil, such as ground moisture surrounding the crop. Chen et al. 
(2021) incorporated weather forecasts as a state together with DQN 
to plan how much irrigation should be  provided. The agent is 
rewarded by how efficiently the agent provides irrigation conditioned 
on the expected rainfall and how it is expected to affect the ground 
moisture. If excessive irrigation is applied, the agent is penalized.

Maszuhn et  al. (2023) investigated how weather forecasts can 
be  included in the state space to plan for how irrigation should 
be added to maintain a certain level of ground moisture. However, a 
challenge still remains of how time delays affect the properties of the 
soil. Sun et  al. (2017) applied SARSA for irrigation control to 
maximize profits from crop yields. However, the authors argue that 
training with a simulation environment reflecting the irrigation may 
be difficult to integrate with training the agent. Therefore, the authors 
train a neural network on a simulation environment to predict state 
transition, which is later used to train the agent.

Kelly et al. (2024) used PPO to manage profits from crop yields. 
A weather simulation model is used to create new weather conditions 
on which the agent is later tested to assess the performance of the 
learned policy. The authors found that the trained agent performed 
well in states that were observed during training. However, testing it 

on new states resulted in worse performance than the baseline, 
suggesting overfitting. Ding et al. (2022) also investigated PPO to 
minimize water use in irrigation to improve crop health. The authors 
implemented a safety mechanism to prevent the agent from taking 
actions that could harm the crop.

Huong et al. (2018) used the Markov-Decision process (MDP) to 
improve water and energy use in irrigation, where the objective is to 
decide upon the amount of water to achieve a certain level of ground 
moisture, which the authors define as the OK range. The authors 
compared their method with a baseline that provides water until the 
ground moisture is at the upper bound of the OK range. They found 
that the MDP outperformed the baseline in terms of energy and water 
use. A similar investigation was performed by Campoverde et  al. 
(2021), in which the authors applied MDP in managing ground 
moisture surrounding the crop by modeling the MDP with three 
discrete actions in which the agent chose between providing no 
irrigation, little irrigation, and a lot of irrigation.

4.3 Water distribution networks

In larger water distribution networks (WDS), water pumps is the 
major component resulting in high energy use. Hu et  al. (2023b) 
proposed that PPO manage water demands and water level constraints 
while minimizing the water pumps’ energy use. Additional perturbations 

FIGURE 3

Frequency of RL algorithms in the sample. Infrequently occurring (occurring only once) algorithms are grouped together as Other.
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are added to the water demand to reflect realistic daily variations. Zaman 
et al. (2023) proposed using DQN to schedule the use of water pumps to 
reduce the total energy use while simultaneously managing water levels 
in the WDS. Xu et  al. (2021) investigated how PPO training can 
be improved using knowledge-assist (KA), which predicts the maximum 
state value from historical data. The reward structure is modified to 
include KA to better assess when the algorithm converges to its final 
policy, alleviating training instability in environments. Candelieri et al. 
(2019a) utilized Q-learning to manage the energy cost of a pump in the 
WDS. The authors designed the action space to be binary, in which each 
pump is either on or off, and it was found that Q-learning could manage 
the scheduling of pumps, even for larger action spaces (i.e., increasing 
the number of pumps to schedule), but also to manage the uncertainty 
in water demand.

Hu et al. (2023a) investigated how multi-agent RL can be used 
to reduce energy use and minimize water loss in WDS. The authors 

trained MADDPG in simulation to schedule all pumps and valves 
in the network. The authors found that MADDPG outperformed 
the established baseline method used in WDS and that the 
computation times for MADDPG are substantially smaller 
compared to baselines.

Hung and Yang (2021) addressed the challenge of meeting water 
demands in a non-stationary environment where water availability 
may change the water storage. The authors used Q-learning to 
distribute water and meet water demands. Moreover, Donâncio and 
Vercouter (2022) investigated how offline data of historical state-
action transitions may be utilized to improve the exploration of DQN 
to manage water levels and improve pump selection, which is the most 
efficient given the state. Given any state, the authors use k-nearest 
neighbors, a supervised learning algorithm, to identify the states that 
are most similar to the current observed state and then see which 
action was made in similar states.

FIGURE 4

Frequency of RL-algorithm in various domains. Infrequent occurring (occurring only once) algorithms are grouped together as Other.
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4.4 Stormwater systems and urban 
drainage systems

Wang et  al. (2021) investigated how PPO can be  applied in 
stormwater systems to manage flooding. In a simulation, PPO 
performed well. However, a challenge with DRL is that any 
applications of DRL utilize deep neural networks, which make it 
difficult to interpret and understand the underlying logic. Tian et al. 
(2024) proposed a method for better understanding why a decision 
is made in urban drainage systems, how the inputs affect the 
decision, and finally, interpreting the consequences of the given 
action made by the agent. To understand how decisions are affected 
by the inputs, the authors added small perturbations to the inputs 
and found that PPO was more sensitive to the perturbations 
compared to DQN. The authors train a surrogate tree-based model 
on a stored state-action dataset to interpret how a decision is made 
based on the given state. In urban drainage systems, ensuring safety 
and managing constraints are important. Tian et al. (2022b) address 
the safety constraints by implementing a method they call voting. 
They initially train multiple agents such as DQN, DDQN, and PPO 
using clipping loss, KL-loss, and A2C. The voting is then performed 
by selecting the agent whose actions minimize the expected risk, 
given the current state, which the authors define as the average 
water level in the whole system. The authors argue that voting is the 
same as adding constraints to the optimization problem but avoids 

the additional computational cost that may come with adding 
constraints. Instead, an action is picked from one of the 
trained agents.

Saliba et al. (2020) examined how incorrect estimates of states 
affect the performance of the agent in managing flooding in 
stormwater systems using DDPG. Noise is added to the states to 
simulate incorrect forecasts of future states. DDPG managed to deal 
with flooding even though incorrect forecasts of precipitation or 
incorrect estimates of water levels were included as states. Bowes et al. 
(2021) trained three agents with different reward functions to assess 
how the agent can manage flooding in the system. The first agent 
addressed water level constraints and flooding, and the second agent, 
in addition to water levels and flooding, also managed total suspended 
solids from nearby ponds in the systems. The third agent aimed to find 
a balance between the two previous agents’ reward functions. All three 
agents were trained with DDPG, and the authors found that the agents 
converged to different policies, resulting in different performance. 
Bowes et al. (2021) compared DDPG with model predictive control 
(MPC) and rule-based control, which stipulates certain decisions, 
such as water levels and predicted total precipitation. The DDPG agent 
was trained offline and compared to the MPC and rule-based agent in 
a simulation. It was found that both the DDPG and rule-based agents 
performed better than MPC, with the additional benefit of substantial 
reduction in computational cost, suggesting that RL is feasible for real-
time control of stormwater systems.

FIGURE 5

Frequency of RL-algorithm in various domains over time. 2024 was removed due to a search conducted in the second quarter of 2024.
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Tian et al. (2023a) investigated how state selection affects the 
model performance in managing flooding in drainage systems. Using 
PPO, the authors found that how the state space is defined affects the 
performance of the agent in managing flooding. Tian et al. (2022a) 
addressed how computational times of training an agent in simulation 
can be reduced. The authors utilize the Koopman emulator to learn 
the dynamics of urban drainage systems and train the RL agent based 
on the learned emulator. The authors use PPO and DQN, both of 
which are trained on the Koopman emulator, and then the policies 
are compared to agents trained in a correct simulation. The authors 
found that the agent trained with the Koopman emulator worked well 
but with the additional benefit of a substantial reduction in 
computation cost. Tian et  al. (2023b) applied DQN and PPO to 
manage drainage system water levels. The authors investigated how 
constraints can be included in the model to ensure safety in the final 
RL policy by adding a penalty to the reward signal and applying a 
method called constrained policy optimization (see Tessler et al., 

2018). The authors found that the trained RL agent provided safe 
action to manage water levels; however, the design of suitable safety 
constraints for different drainage systems is not established.

Zhang et al. (2023) compared centralized and decentralized multi-
agent RL (MARL) algorithms for managing flooding in drainage 
systems whilst simultaneously reducing energy use. A challenge is the 
communication among the agents when managing flooding, which 
the authors aimed to address. They found that decentralized systems 
could better manage flooding and that MARL shows promise in real-
time control of drainage systems.

4.5 Miscellaneous

Ren et al. (2021c) utilized Hidden Markov Models (HMM) to 
guide the exploration of the DDPG agent in canal management to 
manage energy use in controlling gates and water level constraints. 

FIGURE 6

Frequency of type of RL algorithm in various domains. Missing indicates that the algorithm can be classified as none of the categories. Both indicate 
that the chosen article has used both Value-based and Policy-based types in their study.
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Due to the large action space, efficient exploring and training are 
difficult. The authors, therefore, utilize HMM and historical data to 
generate the reward and guide the learning process.

Ren et al. (2021a) used DQN for a multi-objective task to optimize 
canal management in regard to multiple objectives such as water 
levels, and the velocity of water, i.e., the time it takes to deliver water 
from the beginning of the canal to the end of the canal and to prevent 
frequent changes in gate opening. Multi-objective RL poses a 
challenge, which is how much each objective should receive in the 
reward function, and to alleviate that challenge, Ren et al. (2021a) 
utilized a reward network that predicts the reward of the actions made 
in a given state. Shahverdi et al. (2022) used double Q-learning for 
irrigation canals to manage water demands while simultaneously 
managing water levels in the canal. The authors’ inutility in 
establishing a state-space model of the canal based on historical data 
allows for a simulation of the dynamics to be performed. Based on the 
simulation, the Double Q-learning agent is trained to learn a policy 
with satisfactory results.

Ren et al. (2021b) applied hierarchical RL to address challenges 
with large action spaces in the management of large-scale canals. The 
authors divide the task into two levels: policy learning and action 
learning. The policy learning learns an abstract state of the canals, and 
the action learning is applied to RL algorithms aimed at managing 
water levels in the individual pools.

Seo et  al. (2021) investigated PPO and DQN in wastewater 
treatment. The challenge in this article is the uncertainty in reservoir 
inflow in order to manage energy use in regard to water pumps and 
water level constraints. The authors develop two types of models: a 
predictive model and an RL model. The predictive model is used to 
forecast the water inflow, and based on the forecast, the agents are 
learning a policy to manage. The authors found that water 
constraints, i.e., water levels, are violated during testing, and they 
concluded that a contributing factor to poor performance is an 
incorrect forecast of future states. Filipe et al. (2019) also investigated 
how PPO can be used for wastewater treatment to control water 
levels and reduce the energy use of pumps in the network. The 

FIGURE 7

Method of training the RL agent in various domains in the sample (n = 40).
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authors used weather forecasts to plan and identify a better policy 
that reduced energy use when the forecasts were incorporated into 
the state space.

Bertoni et al. (2017) used fitted Q-iteration [see Ernst et al. (2005) 
for details of the algorithm] for reservoir management to manage the 
reservoir such that water demand constraints downstream are met. 
External factors, such as reservoir inflow, are assumed to come from 
some probability distribution, which the authors include in their FQI 
model. The challenge is that the reservoir inflow is stochastic and not 
stationary due to climate change. To address this, the authors assessed 
how changes in the parameterization of the probability distribution 
of reservoir inflow affect the model performance. FQI managed to 
meet the water demand when reservoir inflows were normal or 
higher than normal but failed to meet the demand. The authors argue 
that smaller inflows and lack of storage result in the failure to meet 
the demand.

Moreira et al. (2022) investigated the potential of PPO in real-time 
control of pumps in tidal power to optimize the production. The 

authors trained PPO in simulation and found that PPO performed 
well compared to state-of-the-art models used in tidal power 
optimization, with the added benefit of the model not requiring a 
forecast to optimize the production but rather can perform the 
optimization in real time.

5 Discussion

In sequential decision-making, understanding the logic of how 
a decision is made by the agent is important for transparency and 
reliability. Tian et al. (2024) explored how to explain the logic of the 
agent when a decision is made in any given state by utilizing tree 
models and more. Explaining the complicated decision process 
provides insights into the decision-making process and helps better 
understand if and why the agent fails under certain circumstances. 
In sensitive and safety-critical applications such as water resource 
management, understanding why the systems fail to manage 

FIGURE 8

Study regions in the sample (n = 40).
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constraints, e.g., water levels, is important to further improve the 
agent and the final policy. Improvement can later be made by, for 
example, designing other reward functions or collecting more data 
in states that are rarely observed to improve the training of 
the agents.

DQN is the most frequently occurring choice of algorithm in this 
SLR. DQN requires the action space to be discrete, and the action 
space is often designed by discretizing a continuous variable. The 
results often show promising performance. However, what are the 
effects of discretizing a continuous variable? What is the effect of 
border cases, for example, managing river discharges that are almost 
equal but are placed in two different categories due to the 
discretization? A key point of interest is comparing agents with 
discrete action spaces to those with continuous action spaces, focusing 
on cumulative rewards, constraint handling, and computational times 
to assess the impact of discretization on performance.

Figure  4 shows the frequency of algorithms in the various 
domains. In hydropower, PPO and DDPG have not yet been explored 
as an approach for resource management, highlighting a future 
research direction. Similarly, Q-learning only occurs in the water 
distribution network category, suggesting a suitable baseline method 
in all domains when using value-based RL algorithms.

Although multiple studies only use a single type of RL algorithm, 
either policy-based or value-based, and compare them against a 
simpler baseline, only a few studies have benchmarked policy-based 
against value-based RL algorithms (e.g., Tian et al., 2022b; Tian et al., 
2024; Seo et al., 2021). Often, the results show no significant difference 
in the overall performance of the models. However, the RL agents may 
converge to different policies, thus resulting in different behaviors. 
Therefore, future research should encourage the implementation of 
both value-based and policy-based RL algorithms to assess the 
potential of utilizing RL for sequential decision-making in water 
resource management.

The most common way to train an RL agent is to utilize a 
simulator, which allows the agent to explore through trial and error 
which actions are the best to take in a given state. However, as 
addressed in section 2.6, the reality gap is a challenge of training in 
simulations where the simulation is not a fully correct description of 
the environment in which the agent will later interact post-training. 
Moreover, when training agents in a simulated environment, it is 
important to address the challenges associated with this process and 
to outline the measures implemented to minimize the reality gap. 
Similarly, the articles using historical data for training the agents, i.e., 
ORL, need to address challenges with overfitting to a training set and 
to carefully assess the performance on a large data set with a wide 
variety of observed states. As discussed in section 2.7, the 
distributional shift poses a challenge in which the policy will 
be evaluated under a different distribution. Therefore, a large and 
varied test set is required to test the final learned policy. As highlighted 
by Kelly et al. (2024), the overfitting issue appears to occur even in 
simulation, suggesting that a test set and validation set may be required 
when trained in simulation to assess errors made by the agent in new 
unseen states.

Figure  5 presents the frequency of training methods in each 
domain. In hydropower, offline learning is the most frequent method 
of training the agent, whereas in other domains, utilizing a simulation 
environment to train the agent is more common. The future research 
direction is to establish an open-source simulation environment for 

hydropower or similar exploration of offline methods in irrigation, 
stormwater systems, or urban drainage systems to assess the potential 
of RL in sequential decision-making. Although several studies using 
simulation as a method for training the agent have attempted to deal 
with the reality gap by adding uncertainty to states by adding 
perturbations, there is an existing research gap in a more thorough 
analysis of established methods in managing reality gaps.

In Figure  2, the number of articles included after the initial 
screening process is 40, due to either being out of scope or authors 
not properly defining the action space, state space, or the reward 
function. To encourage replicability and enhance the understanding 
of the implementation, thorough documentation of how the RL task 
is defined is crucial. Therefore, it is essential to include comprehensive 
documentation of all components of the modeling process. Moreover, 
the selection of hyperparameters (HPs) is vital, as discussed in 
section 2.7, for both overall performance and training stability. 
Utilizing algorithms to identify a suitable selection of HPs is 
significant for two reasons: performance and reproducibility. Multiple 
studies in this systematic literature review (SLR) do not disclose how 
HPs are selected, highlighting the importance of transparency in HP 
choices. In addition to potentially improving the performance of the 
RL algorithm, a clear explanation of HP selection or utilizing 
Hyperparameter Optimization (HPO) facilitates the reproduction of 
results more effectively.

The reward function controls the learned behavior of the agent by 
providing feedback on the action made in a given state. Often, prior 
knowledge is required to design the reward signal to solve the given 
task in water resource management. In the studies included in the 
SLR, the reward signal was manually designed, potentially missing out 
on important information for training the agent. Preference-based RL 
(Wirth et al., 2017) allows domain experts and stakeholders to assess 
the actions made by agents, resulting in a preferable policy that can 
manage various water resource management tasks without the need 
to manually design the reward signal.

Finally, utilizing RL for sequential decision-making requires 
continuous model evaluation to assess performance and ensure 
constraints are not violated. In critical infrastructure such as water 
distribution networks or hydropower, minimizing risk is an important 
ethical consideration that requires attention and is therefore important 
in future research.

6 Conclusion and future research

This research reveals that most RL models are currently trained in 
simulation environments. While simulations provide a controlled 
setting for model development, there exists a notable research gap in 
transitioning from simulation to real-world applications. Addressing 
this gap is crucial to ensure that RL models can be effectively applied 
in practice, particularly in complex water resource systems. Offline 
RL, an approach that learns from pre-collected datasets rather than 
through direct interaction, is another area that warrants further 
investigation. Given the challenges of gathering real-time data in water 
management systems, offline RL could present a promising alternative, 
facilitating more efficient model training.

In terms of constraint handling, this review identifies that the most 
common method is to integrate constraints directly into the reward 
signal. However, there is a need to develop multi-objective reward 
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functions that can more effectively capture the complexities of water 
resource management. Future research should focus on automating 
reward function design, as the current method relies heavily on trial and 
error, which can be time-consuming and suboptimal. Another significant 
research gap lies in addressing the selection of HPs, which directly affects 
model performance. Numerous studies fail to address or optimize HPs 
adequately, making it challenging to evaluate the reproducibility of the 
results. To address this issue, we  recommend employing HPO 
algorithms. This would help ensure (i) convergence to an optimal 
solution and (ii) enhanced reproducibility of research findings.

Furthermore, scientific investigations have placed limited focus on 
planning models, particularly model-based RL. Most approaches 
emphasize real-time decision-making rather than leveraging models 
that can predict future states of the system. Assessing the use of model-
based RL in future research could provide a pathway to more effective 
and well-informed decision-making in water resource management.

Finally, designing the reward function may require prior 
knowledge of the domain in which RL is applied. Preference-based RL 
is a future research direction in which the preferences of domain 
experts and stakeholders can be incorporated into the training process 
of the RL agents, potentially leading to a safer policy suitable for water 
resource management.
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