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Introduction: Rising concerns about climate change underscore the need to 
understand precipitation and evapotranspiration variability across multiple 
temporal scales.

Methods: This study evaluates historical simulations from Phase Six of the 
Coupled Model Intercomparison Project (CMIP6) for precipitation (Pr), 
evapotranspiration (ET), and its components—soil evaporation (Es), transpiration 
(Et), and interception loss (Ei)—from 1981 to 2014, focusing on the temporal 
agreement of the mean seasonal cycle and interannual variability. We assess 
these variables using observation-based estimates from three Pr datasets 
(CRU4.0, GPCP v2.3, ERA5) and four land surface flux datasets (GLEAM v3.3a, 
GLDAS v2.0, ERA5-Land, MERRA-Land). Pearson’s correlation coefficients (r) are 
used to identify “consensus regions”.

Results and discussion: The results indicate that consensus regions of the mean 
seasonal cycle for Pr cover 92.9% of global land area, decreasing to 81.7% at 
the interannual scale. For ET and its components, the consistency of the mean 
seasonal cycle is observed over 79.0% of land area for ET, 55.5% for Es, 57.7% 
for Et, and 65.1% for Ei, with values dropping to 38.1%, 11.7%, 23.4%, and 21.2%, 
respectively, at the interannual scale. The multi-model means generally correlate 
better with observations than individual CMIP6 models. Across latitudes, Pr and 
ET exhibit the highest performance in reproducing the observed mean seasonal 
cycle, while Es and Et demonstrate the lowest performance. CESM2 shows 
the highest consistency in reproducing the mean seasonal cycle for Pr, while 
CMCC-CM2-HR4 performs best for ET and its components. Despite relatively 
high correlations with the observed mean seasonal cycle, the individual models 
and multi-model mean underestimates Pr in tropical regions and overestimates 
ET, Es, and Ei, while underestimating Et in general. The agreement between 
CMIP6 simulations and observational datasets deteriorates at the interannual 
scale. These findings highlight the need to improve Pr and ET simulations in 
CMIP6 models, particularly in tropics.
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1 Introduction

The growing concerns over climate change have highlighted the 
importance of understanding precipitation variability across multiple 
temporal scales. As the primary source of moisture driving terrestrial 
hydrological processes (Bellucci et  al., 2015; Wang et  al., 2017), 
precipitation’s temporal patterns are crucial in hydrological studies 
(Abed-Elmdoust et al., 2016; Singhal et al., 2024). Observation-based 
precipitation datasets, however, can differ significantly depending on 
their origin, whether they come from ground-based gauges (e.g., 
CRU; Harris et al., 2020), satellite remote sensing (e.g., GPCP; Adler 
et al., 2003), or reanalysis products (e.g., ERA5 data; Hersbach et al., 
2020). Each source has inherent limitations—such as varying 
measurement accuracy, spatial resolution, and temporal coverage—
which can lead to temporal inconsistencies across datasets. These 
variations can ultimately introduce substantial uncertainty in 
hydrological assessments and climate analyses.

A high-quality simulation of historical precipitation is fundamental 
to the effective use of climate models for future projections, as it builds 
confidence in the models’ ability to capture temporal variability. However, 
models such as those from the CMIP5 (Taylor et al., 2012) and CMIP6 
(Eyring et al., 2016) frameworks still exhibit significant uncertainties. 
These uncertainties stem from factors such as initial condition errors, 
parameterization schemes, and model structure limitations (Rivera and 
Arnould, 2020; Tian and Dong, 2020; Li J. et al., 2021). Specifically, the 
ability of General Circulation Models (GCMs) to simulate interannual 
and longer-term precipitation variability remains particularly challenging, 
which may be attributable to the difficulties in representing complex 
ocean–atmosphere interactions (Brown et al., 2016; Dieppois et al., 2016) 
and land-surface processes (Granato-Souza et al., 2020). Consequently, 
even the latest CMIP5 and CMIP6 models tend to underestimate 
precipitation variability across various time scales (Ault et  al., 2012; 
Martin et al., 2014; Zhu and Yang, 2021). Therefore, validations of model 
simulations against observation-based datasets provide basis for 
identifying biases and could lead to potential improvements on future 
climate projections.

Similar to precipitation, considerable uncertainties also persist in ET 
datasets derived from various sources. Currently, direct measurements of 
global land fluxes, including ET, are lacking, resulting in substantial 
uncertainties in the available datasets. Widely-used ET datasets are 
typically generated either by numerical algorithms assimilated with 
observational data (e.g., ERA5-Land in Hersbach et al., 2020), data-driven 
products (e.g., FLUXCOM-X-BASE in Nelson et al., 2024), or model-
assisted products (e.g., GLDAS v2.0 in Kumar et al. (2006); MERRA-Land 
in Reichle (2012); GLEAM v3.3a in Martens et al. (2017)). Model-assisted 
flux products rely on land process schemes or models, which could 
be soil-vegetation-atmosphere transfer schemes (SVAT-based models in 
Kumar et al. (2006)), energy-balance models (Martens et al., 2017), or 
catchment-scale water-balance models (Koster et al., 2000; Reichle, 2012). 
The choice of numerical schemes could significantly influence the 
variability of these ET products (Miralles et al., 2016).

Temporal inconsistencies are evident both among observation-
based precipitation datasets from different sources and between model 

outputs and these datasets, highlighting challenges in accurately 
representing precipitation variations at different time scales. 
Akinsanola et  al. (2017) compare five gridded datasets over West 
Africa—GPCC and CRU (gauge-based), CHIRPS (gauge and satellite-
based), TRMM (satellite-based), and PERSIANN (satellite-based)—
using GPCC as the benchmark. They find that while these datasets 
show relative consistency in capturing decadal-scale regional averages, 
significant inconsistencies emerge at annual and seasonal scales, 
particularly for CHIRPS and PERSIANN. Gehne et al. (2016) similarly 
demonstrate that global precipitation datasets, including satellite-
based products (GPCP, CMORPH) and reanalysis datasets 
(ERA-Interim, MERRA), align well when examining broad, 
continental averages, but substantial discrepancies appear at finer 
spatial scales, such as regional or sub-regional areas. Tang et al. (2020) 
further highlight that despite improvements in recent satellite 
products like GPM IMERG, inconsistencies persist in capturing short-
term precipitation patterns in regions like tropical rainforests and 
mountainous areas compared to reanalysis datasets like ERA5 and 
MERRA2. Rivera and Arnould (2020) demonstrate that while CMIP6 
models reasonably capture decade-scale precipitation trends over 
Southwestern South America, they struggle with consistency at 
seasonal and interannual scales compared to observational datasets 
like GPCC and CRU. Li et al. (2022) extend this finding by showing 
that CMIP6 models maintain relative consistency with global land 
precipitation means on an interannual basis but exhibit substantial 
biases at seasonal and monthly scales, particularly in specific regions 
such as the tropics and high latitudes. Such discrepancies underscore 
the ongoing challenges in accurately representing precipitation 
dynamics across different sources and timescales.

The temporal variations in ET also exhibit considerable 
inconsistencies both among observation-based datasets and between 
model outputs and these datasets, presenting challenges in accurately 
representing ET temporal dynamics across different time scales. Bai 
(2023) compares multiple remote sensing ET models and finds significant 
discrepancies particularly at seasonal and monthly scales, with notable 
divergences in regions like arid and semi-arid areas as well as tropical 
zones. Xu et al. (2019) evaluate twelve ET products, including those 
derived from machine learning, remote sensing, and land surface models, 
and reveal substantial inconsistencies at monthly and seasonal time scales 
across the conterminous United States. Miralles et al. (2016) provide a 
comprehensive evaluation of global ET datasets from multiple sources 
(satellite-based, reanalysis, and hybrid), showing that while these datasets 
align reasonably well in capturing the annual time series of global means, 
they exhibit considerable biases in reproducing interannual and seasonal 
variability in specific region including the Amazon and Siberia. Zhang 
et al. (2023) highlight that ET estimates derived from energy-balance and 
water-balance approaches diverge significantly in humid regions like 
Southeast Asia and the eastern United  States, leading to temporal 
discrepancies primarily at monthly and seasonal scales. Wang et al. (2021) 
focus on CMIP6 models and demonstrate that while these models capture 
broad, long-term ET trends when evaluating global means, they fail to 
match the observed seasonal and monthly time scales of ET in specific 
regions such as tropical rainforests (e.g., Amazon, Central Africa), arid 
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and semi-arid zones (e.g., Sahara, Central Asia), high-latitude areas (e.g., 
Northern Europe, Siberia), and monsoon regions (e.g., South Asia, 
Southeast Asia). Analyze both global land averages and regional patterns 
and show that CMIP6 models struggle to simulate land surface energy 
and water fluxes accurately over the historical period, with biases 
becoming evident at interannual and seasonal scales in regions like 
Europe and East Asia. These studies collectively illustrate that temporal 
inconsistencies at different time scales in ET estimates persist across 
various observation-based datasets and between models and observations 
in regions with diverse climate conditions such as tropical rainforests, arid 
zones, and humid areas.

In this study, we  evaluate the performance of CMIP6 historical 
simulations by comparing their variability and mean values against 
multiple observation-based Pr and ET datasets. Specifically, our 
investigation focuses on two primary objectives: (1) to assess the temporal 
consistency among observation-based datasets with respect to the mean 
seasonal cycle and interannual variability on a global scale, and (2) to 
evaluate the ability of CMIP6 historical simulations in capturing temporal 
variations and mean values within regions where observation-based 
estimates exhibit temporal consistency. It should be emphasized that this 
analysis is intended to identify regions where temporal consistency exists 
across datasets, rather than to validate the physical accuracy or 
representativeness of the data. Such agreements reflect the current status 
quo of dataset development and modeling practices; however, alignment 
among datasets may arise from shared limitations or biases rather than 
accurate representation of physical processes.

The remainder of this paper is organized as follows: First, 
we describe the datasets and methodologies employed in our analysis. 
Secondly, we identify “consensus regions” based on observation-based 
estimates and evaluate the performance of CMIP6 models within 
these regions. Finally, we  present our findings and discuss their 
broader implications in the concluding section.

2 Methodology

2.1 Observation-based precipitation 
products

2.1.1 Version 4 of climatic research unit gridded 
time series (CRU4.0)

The CRU TS monthly precipitation time series is derived from 
quality-controlled station precipitation anomalies, which are 
interpolated into grids using the angular distance weighting (ADW) 
method. The gridded actual precipitation is generated by combining 
anomalous and climatological information, resulting in data at a 0.5° 
x 0.5° spatial resolution (Harris et al., 2020).

2.1.2 Global precipitation climatology project 
monthly analysis version 2.3 (GPCP v2.3)

GPCP is a component of the Global Energy and Water Cycle 
Exchanges (GEWEX) program hosted by the World Climate Research 
Program (WCRP). It synthesizes satellite and rain gauge data to 
estimate terrestrial precipitation (Adler et al., 2003). In version 2.3, 
land precipitation estimates have been improved by incorporating 
more sampling datasets in the assimilation process. The original 
GPCP v2.3 data are provided at a spatial resolution of 2.5° x 2.5° 
(Adler et al., 2003).

2.1.3 ECMWF reanalysis version 5 (ERA5)
The ERA5 dataset represents a state-of-the-art precipitation 

dataset developed by the European Centre for Medium-Range 
Weather Forecasts (ECMWF) using a weakly coupled model 
assimilation system constrained by observational data (Bonavita 
et al., 2016; Hersbach et al., 2018). Compared to its earlier versions, 
ERA5 offers improved credibility due to advancements in model 
physics and assimilation techniques. The original dataset is 
available at a spatial resolution of 0.25° x 0.25° (Hersbach 
et al., 2020).

2.2 Observation-based ET products

2.2.1 Global land evaporation Amsterdam model 
data version 3.3a (GLEAM v3.3a)

GLEAM v3.3a integrates satellite observations with physically-
based numerical algorithms to estimate land ET and related 
hydrological variables (Martens et al., 2017). The land cover types are 
determined using the Global Vegetation Continuous Fields dataset 
derived from Moderate Resolution Imaging Spectroradiometer 
(MODIS) observations (Hansen and Song, 2017; Song et al., 2018). 
The model adjusts surface soil moisture through assimilation of both 
satellite-based and in-situ observations (Rodell et al., 2004; Wagner 
et al., 2012). The dynamics of root zone soil moisture are computed 
using a multi-layer drainage balance algorithm. ET components such 
as transpiration and soil evaporation are estimated by applying a stress 
factor (S) to potential evaporation (Ep), while interception loss is 
modeled separately (Miralles et al., 2016). The dataset is presented at 
a spatial resolution of 0.25° x 0.25°.

2.2.2 Global land data assimilation system 2.0 
land surface model output (GLDAS v2.0)

GLDAS v2.0 combines observed atmospheric forcings with 
prescribed land configurations—such as soil properties and vegetation 
indices—to run offline land models that generate terrestrial variables 
(Rodell et al., 2004). In this study, the Noah3.6 land model is used, 
which is driven by the Princeton V2.2 meteorological dataset (Kumar 
et al., 2006). The dataset has a spatial resolution of 0.25° x 0.25°.

2.2.3 ERA5-land data (ERA5-land)
The ERA5-Land dataset, developed by the European Centre for 

Medium-Range Weather Forecasts (ECMWF), is designed for 
reconstructing high-resolution land surface variables. It employs a 
loosely coupled land-atmosphere data assimilation system driven by 
observational constraints (Hersbach et al., 2018). The Tiled ECMWF 
Scheme for Surface Exchanges over Land (TESSEL) is utilized to 
simulate land processes, enhanced by improvements in soil hydrology, 
vegetation structures, and snow dynamics (Balsamo et  al., 2015). 
These enhancements lead to better simulations of soil moisture and 
land surface fluxes. The original dataset is available at a spatial 
resolution of 0.1° x 0.1° (Hersbach et al., 2020).

2.2.4 MERRA-land data product (MERRA-land)
The MERRA-Land product is derived from NASA’s Modern Era 

Retrospective-analysis for Research and Applications (MERRA) 
initiative. MERRA-Land’s precipitation forcings are adjusted using 
gauge- and satellite-based data from the NOAA Climate Prediction 
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Center (GPCP version 2.1). Land hydrology simulations are 
performed using the enhanced Catchment land surface model, 
“Fortuna-2.5,” which incorporates improved vegetation interception 
and snow dynamics, leading to better global latent heat fluxes and 
accurate soil moisture and runoff estimates (Reichle et  al., 2011; 
Reichle, 2012). The dataset is available at a spatial resolution of 
0.7° x 0.5°.

2.3 CMIP6 historical experiments (CMIP6)

The CMIP6 represents the latest collaborative effort within the 
scientific community, led by the World Climate Research Programme’s 
(WCRP) Working Group on Coupled Modeling (WGCM). The 
CMIP6 historical simulations aim to reproduce climate variability 
from 1850 to 2014. This extensive project integrates various external 
forcings, including greenhouse gases (GHGs), land-use and land-
cover (LULC) changes, solar irradiance, and volcanic radiative effects, 
based on observational data (Eyring et al., 2016). By incorporating 
these diverse factors, CMIP6 offers a comprehensive framework for 
analyzing the complex drivers of climate dynamics, providing valuable 
insights to the broader climate research community.

In this study, historical outputs from 14 CMIP6 models, listed in 
Table 1, are utilized. Snow sublimation is included within the Es and 
Ei variables. Therefore, the sum of Es (evspsblsoi), Et (tran), and Ei 
(evspsblveg) from the land is expected to closely correspond to the 
total ET (evspsbl) from the atmosphere. Models in which the absolute 
difference between the sum of the three ET components and 
atmospheric ET does not exceed 10% of atmospheric ET are used in 
this analysis, as shown in Table 2. For consistency, the first ensemble 
member (r1i1p1f1) is selected for each model.

2.4 Statistical analysis

We evaluate the CMIP6 model simulations against observation-
constrained reanalysis data using monthly data spanning June 1981 to 
May 2014. To facilitate comparison, both the reanalysis datasets and 
CMIP6 model outputs are re-gridded to a resolution of 1.25° × 0.94° 
using bilinear interpolation. The analysis focuses exclusively on land 
grids where the average of three observation-based Pr datasets exceeds 
100 mm/year, thereby excluding hyper-arid regions (Noy-Meir, 1973). 
Additionally, ocean, lakes, small islands, and ice shelves are excluded 
from the study. The research domain extends from 60°S to 60°N.

The 396-month time series is transformed into two forms: a 
12-month mean time series, representing the mean seasonal cycle, and 
a 33-year annual mean time series, representing interannual 
variability. Temporal performance is then evaluated with respect to 
the mean seasonal cycle and interannual variability using non-lagged 
Pearson correlation coefficients (r). The non-lagged r between each set 
of observation-based estimates, as well as between models (model 
means and individual models) and observation means, is calculated 
as follows:
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In Equation (1), ix  and iy represent the time series values for two 
observation-based estimates or for the observation means and model 
outputs. The terms x  and y  are the means of the respective time series. 
The variable n denotes the number of data points, with 12 for the 
12-month time series and 33 for the annual time series.

The threshold values for the correlation coefficient r for 12-month 
and 33-year time series at a significance level of p < 0.05 is approximately 
0.576 and 0.344. These threshold values are used to identify “consensus 
regions” where all observation-constrained Pr or ET and its three 
components exhibit positive, statistically significant correlations. After 
identifying these regions, the temporal variability of the model means and 
individual models is assessed by comparing their correlations with the 
observed mean seasonal cycle and interannual variability within the 
identified consensus regions by observations. Grids within these 
consensus regions that show significant correlations (p < 0.05) between 
models and observation means are considered temporally consistent.

The multi-model mean demonstrates superior temporal 
consistency with the observational mean across all examined variables 
when compared to individual model outputs. Within these regions, 
we calculate their relative differences for each of the four seasons: 
June–July–August (JJA), September–October–November (SON), 
December–January–February (DJF), and March–April–May (MAM). 
For each season, the relative difference between the multi-model 
means and observations is determined as follows:

 
6 100CMIPMM OMRelative Difference X

OM
−

=
 

(2)

where MMCMIP6 is model mean from the selected 14 CMIP6 
models and OM is observation mean. The methodology employed in 
this study is comprehensively illustrated in Figure 1.

3 Results

3.1 Temporal consistencies between the 
observation-based datasets

High consistencies among the three Pr datasets are observed across 
92.2% of the studied land areas, with the notable exception in parts of 
northern Europe, as shown in Figure 2. In contrast, ET demonstrates 
consistency in the mean seasonal cycle across only 79% of the land areas 
in study, with significant inconsistencies occurring predominantly in the 
tropics, particularly within regions such as the Amazon basin, central 
Africa, and Southeast Asia. In these tropical zones, considerable disparities 
are also evident in Es and Et across different datasets. Only Ei in the 
tropics shows relatively high correlations between datasets, indicating that 
this component is more robustly represented. Outside the tropics, Es 
inconsistencies are also present in the eastern and southeastern 
United States, eastern Asia, parts of Western Australia, and Patagonia in 
South America. Et inconsistencies extend to central Eurasia and southern 
Asia, the western United States, and Australia. In comparison, Ei exhibits 
inconsistencies mainly in central Eurasia, southern China, southern 
Australia, and the southern extremity of South America.

Interannual consistency among datasets decreases significantly for 
both Pr and ET, reflecting more discrepancies in reconstructing long-
term variability compared to the mean seasonal cycle. While some 
regions, such as most of North America, Eurasia, and Australia, 
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maintain moderate to high correlations for Pr, many tropical areas, 
including the Amazon basin and Central Africa, exhibit low 
consistency among datasets. The decline in interannual consistency is 
even more pronounced for ET, where regions with relatively high 
agreement drop to 38.1%, concentrated in areas like Australia, the 
western and central United  States, and scattered locations across 
Eurasia, South America, and Africa. For Es, Et, and Ei, consistencies 
decrease markedly across most regions, reducing areas of high 
consistency to 11.7, 23.4, and 21.2% of the studied regions, 
respectively. These observed patterns underscore the reduced 
agreements of datasets in capturing variability over longer time scales.

The CRU + GPCP and GPCP+ERA5 pairs dominate for both the 
mean seasonal cycle and interannual variation of Pr, as depicted in 
Figure 3a. Within regions of consistency in the mean seasonal cycle, the 
GPCP+ERA5 pair exhibits the strongest agreement across high-latitude 

regions of North America, the Amazon, southern Africa, middle and 
southern Eurasia, and most of Australia, covering 31.6% of the consensus 
regions. In contrast, the CRU + GPCP pair shows the highest correlations 
in 49.7% of the remaining regions, except for northern Europe, where the 
CRU + ERA5 pair outperforms both of these combinations. The spatial 
distributions of the CRU + GPCP and GPCP+ERA5 pairs at the 
interannual time scale largely mirror their distribution within the 
consensus regions for the mean seasonal cycle, although their absolute 
coverage decreases. Specifically, the CRU + GPCP and GPCP+ERA5 
pairs account for 67.4 and 27.4% of the interannual variation, respectively. 
Only scattered areas in North America, South America, and central 
Eurasia show the highest correlations for the CRU + ERA5 pair, which 
represents a minor 5.2% of the consensus regions.

Overall, for ET, the GLEAM+ERA5 pair demonstrates the most 
robust performance across multiple metrics, particularly for 

TABLE 1 Introduction to observation-based datasets and CMIP6 models.

Variables Datasets or 
model names

Organizations Resolution (longitude 
× latitude)

References

Observation-based 

precipitation datasets

CRU4.0 University of East Anglia, UK 720 × 360 Harris et al. (2020)

ERA5 European Centre for Medium Range 

Weather Forecasts

1,440 × 721 Hersbach et al. (2020)

GPCP v2.3 University of Maryland, USA 144 × 72 Adler et al. (2003)

Observation-based ET 

datasets

ERA5-Land European Centre for Medium Range 

Weather Forecasts

1,440 × 721 Hersbach et al. (2020)

GLEAM v3.3a University of Amsterdam 1,440 × 720 Martens et al. (2017)

GLDAS v2.0 National Aeronautics and Space 

Administration Goddard Space Flight 

Center and the National Oceanic and 

Atmospheric Administration National 

Centers for Environmental Prediction, USA

1,440 × 600 Rodell et al. (2004)

MERRA-Land National Aeronautics and Space 

Administration Global Modeling and 

Assimilation Office, USA

540 × 361 Reichle (2012)

CMIP6 models BCC-CSM2-MR

BCC-ESM1.0

Beijing Climate Center, China 

Meteorological Administration, China

320 × 160

128 × 64

Wu et al. (2019)

CanESM5 Canadian Centre for Climate Modeling and 

Analysis, Canada

128 × 64 Swart et al. (2019)

CESM2

CESM2-WACCM

National Center for Atmospheric Research, 

Climate and Global

Dynamics Laboratory, USA

288 × 192 Oleson et al. (2013)

Danabasoglu et al. (2020)

CMCC-CM2-HR4

CMCC-CM2-SR5

CMCC-ESM2

Fondazione Centro Euro-Mediterraneo sui 

Cambiamenti Climatici, Italy

288 × 192 Cherchi et al. (2019)

INM-CM5-0 Institute of Numerical Mathematics of the 

Russian Academy of Sciences, Russia

180 × 120 Volodin and Gritsun (2018)

IPSL-CM5A2-

INCA

IPSL-CM6A-LR

IPSL-CM6A-LR-

INCA

Institut Pierre-Simon Laplace, France 96 × 96

144 × 143

144 × 143

Cheruy et al. (2020)

MRI-ESM2-0 Meteorological Research Institute, Japan 320 × 160 Seiji et al. (2019)

NorESM2-LM Norwegian Climate Center, Norway 144 × 96 Seland et al. (2020)
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TABLE 2 Means of land Pr, ET, and its components averaged from June 1981 to May 2014 in the unit mm/month from the 60°S to 60°N.

Sources Pr ET Es Et Ei Snow sublimation Residuals

CRU4.0

ERA5

GPCP v2.3

Means

83.96

95.61

89.92

89.83

N/A N/A N/A N/A N/A N/A

GLEAM v3.3a

ERA5-Land

GLDAS v2.0

MERRA-Land

Means

N/A 55.56

60.03

54.93

57.47

57.00

2.90 (5.2%)

10.19 (17.0%)

14.90 (27.1%)

26.19 (45.6%)

13.55 (23.8%)

42.65 (76.8%)

34.28 (57.1%)

22.61 (41.2%)

25.81 (44.9%)

31.34 (55.0%)

7.13 (12.8%)

13.19 (22.0%)

16.50 (30.0%)

4.57 (8.0%)

10.35 (18.2%)

0.38

0.84

N/A

0.90

N/A

2.50

1.53

N/A

0

N/A

Model means 96.24 62.37 19.37 (31.1%) 26.80 (43.0%) 13.95 (22.4%) N/A 2.25

BCC-CSM2-MR 92.93 60.69 25.44 (41.9%) 19.73 (32.5%) 13.59 (22.4%) N/A 1.93

BCC-ESM1.0 98.01 60.65 22.80 (37.6%) 20.42 (33.7%) 13.88 (22.9%) N/A 3.55

CanESM5 94.56 65.56 24.23 (37.0%) 16.32 (24.9%) 19.99 (30.5%) N/A 5.02

CESM2 92.62 55.78 16.24 (29.1%) 27.32 (49.0%) 10.83 (19.4%) N/A 1.39

CESM2-WACCM 93.27 55.70 16.16 (29.0%) 27.33 (49.1%) 10.87 (19.5%) N/A 1.34

CMCC-ESM2 96.74 62.52 20.61 (33.0%) 31.09 (49.7%) 9.43 (15.1%) N/A 1.39

CMCC-CM2-HR4 98.18 63.68 25.22 (39.6%) 28.15 (44.2%) 9.18 (14.4%) N/A 1.13

CMCC-CM2-SR5 97.58 62.77 20.64 (32.9%) 31.09 (49.5%) 9.40 (15.0%) N/A 1.64

INM-CM5-0 104.08 73.30 8.56 (11.7%) 32.13 (43.8%) 32.31 (44.1%) N/A 0.3

IPSL-CM5A2-INCA 80.41 58.32 15.19 (26.0%) 32.20 (55.2%) 5.91 (10.1%) N/A 5.02

IPSL-CM6A-LR 105.93 64.69 21.08 (32.6%) 27.80 (43.0%) 12.85 (19.9%) N/A 2.96

IPSL-CM6A-LR-

INCA

106.94 65.37 21.14 (32.3%) 28.15 (43.1%) 13.27 (20.3%) N/A 2.81

MRI-ESM2-0 99.54 67.03 17.66 (26.3%) 25.21 (37.6%) 22.66 (33.8%) N/A 1.5

NorESM2-LM 86.60 57.16 16.23 (28.4%) 27.18 (47.6%) 10.56 (18.5%) N/A 3.19

We only include land grids with the mean Pr of observation-based datasets higher than 100 mm/year. The last column represents the truncation errors for observation-based datasets or model 
outputs. Snow sublimation is included in Es and Et in CMIP6 historical outputs. Also snow sublimation is not available for GLDAS v2.0 dataset.

FIGURE 1

A flowchart illustrating the methodology employed in this study.
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consistency in the mean seasonal cycle. Specifically, for ET, Es, and 
Et, the GLEAM+ERA5 pair stands out, providing the highest 
correlations and covering 30.1, 37.8, and 48.3% of the consensus 
regions, respectively. For Ei, GLEAM+ERA5 is only outperformed 
by the GLDAS+MERRA pair, which covers 30.1% of the consensus 
regions. Regarding interannual variations, the highest correlations 
emerge from various combinations: GLEAM+MERRA, GLDAS+ 
ERA5, GLEAM+ERA5, and ERA5 + MERRA, covering 31.1, 27.7, 
39.1, and 66.4% of the consensus regions for ET, Es, Et, and Ei, 
respectively.

A comprehensive summary of the temporal consistencies for each 
dataset pair within the consensus regions shown in Figures 2, 3, is 
provided by Figure 4. In general, the correlation coefficients for the 
mean seasonal cycle across all dataset pairs are higher than those for 
interannual variations. Notably, Pr and ET exhibit the best 
performance in terms of median values and whisker ranges regarding 
the mean seasonal cycle. As depicted in Figure 4a, the CRU + GPCP 
pair shows the highest median and the lowest spread for both the 
mean seasonal cycle and interannual variations in Pr, followed by the 
GPCP+ERA5 pair. However, the differences between these three 

FIGURE 2

Spatial distributions of the mean correlations between each pair of Pr datasets (CRU4.0, GPCP v2.3, ERA5) and each pair of surface fluxes datasets 
(GLEAM v3.3a, GLDAS v2.0, MERRA-Land, ERA5-Land) based on the mean seasonal cycle (a–e) and 33-year annual time series (f–j). Only grid cells 
where mean precipitation of the observation-based datasets exceeds 100 mm/year and all correlation values are both positive and statistically 
significant (p < 0.05) are displayed. The percentages in parentheses indicate the proportion of significant grid cells relative to the total area under study.
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dataset pairs are minimal. In contrast, the CRU + ERA5 pair 
consistently exhibits the lowest values. Although the ranking order of 
these three dataset pairs remains consistent across both time scales, 
the differences between them become more pronounced at the 
interannual time scale, primarily driven by the greater reduction in 
correlation observed for the CRU + ERA5 pair. For ET and its three 
components, Figure 4b reveals that the GLEAM+ERA5 pair ranks 
highest in terms of both the mean seasonal cycle and interannual 
consistencies of ET and Et, as well as the consistency in the mean 
seasonal cycle for Es. However, for Ei at both time scales, and for Es at 
the interannual scale, the top-ranking dataset pairs are 
GLDAS+MERRA, ERA5 + MERRA, and GLDAS+ERA5. The 
GLEAM+GLDAS pair shows the lowest median values for ET and its 
components in the mean seasonal cycle. In contrast, at the interannual 

scale, the dataset pairs with the lowest medians are ERA5 + MERRA 
(ET), GLEAM+MERRA (Es), GLDAS+ERA5 (Et), and 
GLEAM+GLDAS (Ei). While the GLEAM+ERA5 pair emerges as the 
top-ranking dataset for most surface flux variables in terms of the 
mean seasonal cycle, and GLEAM+GLDAS shows the lowest median 
values for all surface flux variables at this scale, no single dataset pair 
consistently exhibits the highest or lowest values across all surface flux 
variables at the interannual time scale.

The relative differences in correlations of the mean seasonal cycle 
and interannual variability for each dataset pair outside the consensus 
regions closely mirror those observed within the consensus regions 
(Supplementary Figures S1, S2). Notably, for surface fluxes, the 
ranking of annual correlations generally corresponds with the ranking 
of mean seasonal cycle correlations for ET, Et, and Ei, except for Es.

FIGURE 3

Spatial distributions of maximum correlation coefficient among the three correlation coefficients between Pr datasets and the six correlation 
coefficients between surface flux datasets based on the mean seasonal cycle (a–e) and annual time series (f–j). Only grids within of the consensus 
regions identified in Figure 1 are shown. The spatial coverage percentages for all dataset pairs are provided in Supplementary Table S1.
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3.2 Evaluations of CMIP6 model 
performance within “consensus regions”

The CMIP6 models analyzed in this study generally capture the 
mean seasonal cycle of observation-assisted Pr and ET means, as 
illustrated in Supplementary Figures S3–S4. For Pr, the CESM2 model 
covers the largest portion (91.5%) of the “consensus region” for 
reproducing the mean seasonal cycle, second only to the multi-model 
mean (95.2%). For ET, the multi-model mean exhibits significant 
consistency with observational data in 96.8% of the consensus regions. 
The two best-performing models for ET are CMCC-CM2-HR4 (95.5%) 
and CMCC-CM2-SR5 (95.0%). However, interannual variability is 
generally poorly represented, as shown in Figures S5 and S6.

The performance of CMIP6 models in reconstructing the mean 
seasonal cycle of Es vary considerably. The spatial coverage ranges 
from 92.5% (CMCC-CM2-HR4) to 58.5% (IPSL-CM5A2-INCA), as 
shown in Figure 5. The multi-model mean shows the highest coverage 
at 97.7%. For models with spatial coverages below 80%, the 
discrepancies between observations and models are primarily due to 
temporal inconsistencies in the western United States, Europe, central 
Eurasia, the Indian Peninsula, and southern Australia. The IPSL-
CM5A2-INCA model shows significant observation-model 

inconsistencies across most of North America and Eurasia, resulting 
in the lowest spatial coverage. Regarding interannual variability, even 
the multi-model mean indicates that only 6.5% of areas show relatively 
high consistency as shown in Supplementary Figure S7.

For transpiration in Figure 6, most CMIP6 models capture the 
mean seasonal cycle based on observation, especially in high latitudes. 
The best-performing models are CMCC-CM2-HR4 and 
BCC-CSM2-MR, which cover 95.4 and 90.9% of the consensus regions, 
respectively. Most models show spatial coverages greater than 80%, 
except for INM-CM5-0 (67.9%) and CanESM5 (73.4%). The most 
noticeable temporal discrepancies in the mean seasonal cycle occur 
primarily in low- and mid-latitude regions, including the Amazon 
border, the Sahel, and the southern border of central Africa. However, 
for INM-CM5-0 and CanESM5, these discrepancies extend into high-
latitude areas within western North America and Eurasia. Regarding 
interannual variability in Supplementary Figure S8, the multi-model 
mean covers 10.7% of the consistency regions. None of the individual 
models achieve more than 10% spatial coverage for observation-model 
consistency at the interannual timescale.

The mean seasonal cycle of Ei is generally well reconstructed in 
most models, as shown in Figure 7. CESM2-WACCM and CESM2 are 
the best-performing models, with observation-model consistency 

FIGURE 4

Boxplots of the correlation coefficients between each pair of Pr datasets and each pair of surface flux datasets within the regions shown in Figure 2. 
Panel (a) corresponds to Figures 2 (a–e) and panel (b) corresponds to Figures 2 (f–j). The boxplots of different colors correspond to different dataset 
pairs. The boxplots illustrate the interquartile range (IQR), with the horizontal lines representing the 25th percentile (Q1), median (Q2), and the 75th 
percentile (Q3). The whiskers extend to the smallest and largest values within 1.5 times the IQR from Q1 and Q3, respectively. This same convention is 
applied to the boxplots in Supplementary Figure S2. Values closer to 1.0 indicate better temporal consistency between these two datasets.
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coverages of 96.6% and 96.5%, respectively. The most challenging 
regions for reconstructing the mean seasonal cycle in interception loss 
are in the Amazon and central Africa. The observation-model 
discrepancies in these areas are especially pronounced in IPSL-
CM5A2-INCA and INM-CM5-0. These two models are the only ones 
with spatial coverages below 90%, at 88.6% and 64.2%, respectively. 
For interannual variations, only scattered grids show significant 
observation-model correlations, and none of the models achieve 
spatial coverages exceeding 10% as shown in Supplementary Figure S9.

The multi-model means generally perform well and also 
demonstrates the highest performance compared to individual models 
across most latitudinal bands, as shown in Figure 8. However, for all 
five variables, the latitudinal band south of approximately 30°S 
consistently shows low agreement with observational data in several 
individual models. This inconsistency may be due to the complex 
topography of the high-altitude mountainous regions in South 
America, where models struggle to accurately capture the mean 
seasonal cycle of Pr and surface flux. Outside these latitudinal bands, 
the Pr simulations generally perform well across most CMIP6 models. 
The simulations of ET and Ei also show better performance than those 
of Es and Et overall, with only a few models displaying inconsistencies 
in the tropics and midlatitudes. For Es, the most noticeable 
inconsistencies occur within the latitudinal range of approximately 
20°S to 40°N. In contrast, ET exhibits the most pronounced issues 
primarily between 20°S and 20°N. Overall, Es is the variable with the 
lowest consistency among the simulated outputs when compared to 
observational data.

In regions where the multi-model means demonstrate significant 
and positive correlations with observational means in terms of the 
mean seasonal cycle, Pr exhibits substantial underestimation in the 
tropics, particularly during the JJA season, where it exceeds 50% as 
shown in Figure 9. Conversely, the most severe overestimation occurs 
in southern Africa and Australia, surpassing 70%. In the remaining 
three seasons, the underestimation of Pr diminishes, and most 
consensus regions display overestimations. For ET, notable 
overestimations persist in southern Africa and Australia across all four 
seasons, with the Sahel region experiencing ET overestimations 
exceeding 70% during the MAM season. Es generally shows 
overestimations across most consensus regions in all four seasons. In 
contrast, Et demonstrates underestimation in most regions throughout 
all four seasons, with exceptions noted in southern Africa and the 
southern tip of South America during the JJA and SON seasons. For 
Ei, the consensus region is predominantly characterized by 
flux overestimations.

4 Discussion

4.1 Temporal inconsistency of the mean 
seasonal cycle in Pr and ET

CMIP6 models generally show a relatively inadequate 
representation of the mean seasonal cycle of precipitation in deep 
tropics (Figure 8), despite a high degree of consistency among 

FIGURE 5

Spatial distribution of correlation coefficients between the mean seasonal cycle of observation-based Es datasets and CMIP6 models [including the 
multi-model mean in subplot (a) and individual models from subplots (b) to (o)] within the Es consensus regions identified in Figure 2 (c). Gray areas 
represent regions where correlations between observation-based datasets and models are not statistically significant (p ≥ 0.05). The values in 
parentheses indicate the percentage of the consensus region area where significant model-observation correlations (p < 0.05) are shown.
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observation-based datasets shown in Figure 2a. This inadequacy 
in reconstructing the average annual cycle of tropic precipitation 
persists in three main generations of CMIP models, as 
demonstrated by Fiedler et  al. (2020). Alternative modeling 
approaches, such as high-resolution storm-resolving models, 
might provide an alternative in precipitation variability 
reconstruction in the tropics (Segura et al., 2022; Paccini and 
Stevens, 2023; Tian et al., 2024).

Consistency in mean seasonal cycle is largely absent, even 
among observation-based ET datasets, across most tropical regions. 
This may be attributed to the limitations of the land surface schemes 
employed, which inadequately capture the complexity of ET 
dynamics in the tropics. These dynamics are shown to be influenced 
by a combination of climatic and terrestrial factors (Burnett et al., 
2020). In the Amazon Basin, seasonal ET variations derived using a 
water-balance approach are driven by both water and energy 
availability. During the dry season, ET rates are elevated due to 
deep-rooted vegetation accessing groundwater to compensate for 
reduced rainfall and soil moisture, combined with increased solar 
radiation (Miguez-Macho and Fan, 2012; Maeda et al., 2017; Swann 
and Koven, 2017). Conversely, in the Congo Basin, a data-driven 
approach reveals that ET peaks during the MAM season rather than 
the wetter SON season. This pattern arises from higher net radiation, 
an optimal balance of diffuse and direct photosynthetically active 
radiation, and vegetation adaptations that enhance water-use 
efficiency, beyond the influence of soil water availability. These 
physical processes, critical to accurately representing ET dynamics, 

are inadequately accounted for in the land surface schemes used to 
generate these observation-based datasets.

Discrepancies in the physical processes employed in generating 
different datasets may be exacerbated in tropical regions compared with 
regions outsides of the tropics, which are characterized by the highest 
radiation levels, the highest precipitation rates, and the most densely 
vegetated areas on Earth. For instance, GLEAM v3.3a explicitly accounts 
for vegetation dynamics and incorporates observation-constrained 
surface soil moisture (Martens et al., 2017), a feature that is absent in 
other datasets. In contrast, GLDAS v2.0 is more model-driven, 
computing surface fluxes primarily based on soil water availability using 
the Noah3.6 land surface model (Kumar et al., 2006). ERA5-Land derives 
surface fluxes through a complex data assimilation process that integrates 
model outputs with observational data (Hersbach et al., 2020). Similarly, 
MERRA-Land, employing the enhanced catchment land surface model, 
accounts for topography and subgrid-scale features, thereby providing a 
more explicit representation of smaller-scale hydrological processes 
(Reichle et al., 2011). These variations in the physical representation of 
land hydrology processes are likely to contribute to differences in ET 
simulations among the datasets.

4.2 Temporal inconsistency in interannual 
variation in Pr and ET

At the interannual time scale, our study reveals significant 
discrepancies among gauge-based (CRU4.0), gauge-satellite-combined 

FIGURE 6

Spatial distribution of correlation coefficients between the mean seasonal cycle of observation-based Et datasets and CMIP6 models [including the 
multi-model mean in subplot (a) and individual models from subplots (b) to (o)] within the Et consensus regions identified in Figure 2 (d). Gray areas 
represent regions where correlations between observation-based datasets and models are not statistically significant (p ≥ 0.05). The values in 
parentheses indicate the percentage of the consensus region area where significant model-observation correlations (p < 0.05) are shown.
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(GPCP v2.3), and reanalysis (ERA5) precipitation datasets in their 
ability to reconstruct interannual precipitation variations in tropical 
regions as shown in Figure 2a. These findings are consistent with 

previous research on the estimation of tropical rainfall variability 
using gridded precipitation datasets from different sources. For 
example, Negrón Juárez et al. (2009) reported notable disagreements 

FIGURE 8

Latitudinal averages of the correlations between model means (or individual models) and observational means within the consensus regions identified 
in Figure 2, corresponding to subplots (a–e), respectively. The dashed lines at X = 0.546 indicate the threshold for statistical significance at p ≥ 0.05.

FIGURE 7

Spatial distribution of correlation coefficients between the mean seasonal cycle of observation-based Ei datasets and CMIP6 models [including the 
multi-model mean in subplot (a) and individual models from subplots (b) to (o)] within the Ei consensus regions identified in Figure 2 (e), Gray areas 
represent regions where correlations between observation-based datasets and models are not statistically significant p < 0.05. The values in 
parentheses indicate the percentage of the consensus region area where significant model-observation correlations (p < 0.05) are shown.
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in interannual variability between gauge-based and gauge-satellite-
combined products in the Amazon and Central Africa, highlighting 
the ongoing challenges in accurately reconstructing tropical rainfall. 
Similarly, Camberlin et al. (2019) demonstrated that seven gauge-
satellite-combined products face difficulties in capturing interannual 
variations in Central Africa based on station observations. The sparse 
distribution of rainfall measurements across the tropics further 
complicates the comprehensive validation of observation-based 
precipitation data in these regions (Padrón et al., 2020).

Et dominates ET not only in densely vegetated, humid regions such 
as the Amazon and Congo Basins (Mu et al., 2013; Wang et al., 2014), 
but also across most regions globally in general, as indicated by 
observation-based estimates summarized in Table  2. Studies have 
demonstrated that Et rates are highly sensitive to plant hydraulic traits, 
including xylem vulnerability, stomatal conductance, and water 
potential (Kennedy et al., 2019; Jiménez-Rodríguez et al., 2024; Sun 
et  al., 2024). Observational evidence further highlights the strong 
influence of groundwater storage on ET, which plays a critical role in 
regulating interannual variations in tropical regions (Aguilos et al., 
2018; Sun et al., 2019; Lee et al., 2023).

Incorporating plant hydraulic processes and groundwater 
dynamics into land models has been shown to significantly 
enhance the representation of ET at both seasonal and interannual 
time scales in land surface models (LSMs) (Yan et  al., 2020; 
Baldocchi et al., 2021; Li L. et al., 2021). Additionally, the long-
term memory of soil moisture and the dynamic vegetation are 
crucial drivers of interannual variability in surface fluxes 
(Bellucci et al., 2015; Smith et al., 2019). Improved representations 
of soil moisture dynamics across different layers and vegetation 
processes in LSMs have the potential to not only improve the 
interannual variability of ET (Song et al., 2018) but also enhance 

precipitation simulations in GCMs through land-atmosphere 
interactions (Gao et al., 2020).

4.3 Limitations and implications

Our study focuses on regions where temporal consistency exists 
among observation-based estimates and state-of-the-art GCMs. However, 
alignment among datasets may also result from shared limitations or 
biases rather than an accurate representation of physical processes. For 
instance, in regions with precipitation-driven wet and dry seasons, the 
widely-used soil hydraulic schemes (SHSs) can misrepresent seasonality 
by overestimating Et during wet seasons and underestimating it during 
dry seasons due to excessive reliance on soil water availability (Sun et al., 
2024; Sun and Verseghy, 2019). This highlights the need for caution when 
interpreting agreements as indicators of dataset reliability and underscores 
the importance of addressing these limitations in future research.

5 Conclusion

With respect to the mean seasonal cycle and interannual variability, 
this study evaluates the temporal consistency of Pr, Et, and their 
components—Es, Et, Ei. We  utilized three observation-assisted 
precipitation datasets—gauge-based, satellite-based, and reanalysis data—
along with four ET datasets encompassing energy-balance products, 
reanalysis data products, offline model outputs, and water-balanced 
model outputs. Our analysis revealed that Pr exhibited the highest spatial 
consistency, while Es demonstrated the lowest. Most CMIP6 models 
effectively captured the mean seasonal cycles of Pr, Et, and its three 
components, particularly within the consensus regions, with the 

FIGURE 9

Relative differences (%) between the multi-model mean and observational mean, computed using Equation (2), for the regions shown in Figure S3 (a).
(Pr), S4 (a). (ET), Figure 5 (a) (Es), Figure 6 (a) (Et), and Figure 7 (a) (Ei), excluding the gray-shaded areas. Subplots (a–d) correspond to Pr, (e–h) to ET, 
(i–l) to Es, (m–p) to Et, and (q–t) to Ei.
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multi-model mean showing the highest overall performance. However, 
Es had the lowest spatial coverage in these consensus regions, highlighting 
the challenges associated with accurately simulating this component. At 
the interannual time scale, the agreement between CMIP6 simulations 
and observation-based estimates was inconsistent and statistically 
non-significant. These findings underscore the urgent need for improved 
representation of interannual variability in both observational datasets 
and CMIP6 model outputs. Addressing the significant underestimation 
of Pr in tropical regions across all seasons and the overestimation of Es, 
and Ei, along with the underestimation of Et in other regions, could 
enhance the representation of seasonal variations and improve the 
accuracy of long-term variability modeling in the hydrological cycle.
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