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This study assesses the performance of the Soil and Water Assessment Tool 
(SWAT) in simulating streamflow and sediment for the Song River watershed, with 
a focus on calibration, validation, and sensitivity analysis. Thirteen parameters 
were selected for calibration, with eight identified as highly sensitive, reflecting 
key hydrological processes of the area. The model was calibrated for the period 
1974–1995 and validated from 1996 to 2004, with additional testing using field 
data collected in 2022–2023 through Acoustic Doppler Current Profiler (ADCP) 
measurements. Key model adjustments, such as the baseflow recession constant 
(ALPHA_BF) and channel roughness coefficient (CH_N2), were set to 0.05 and 
0.04, respectively, to capture the area’s groundwater dynamics and channel 
characteristics. The calibration results indicated a strong fit, with R2 values of 
0.77, NSE of 0.70, and PBIAS of 17.06, demonstrating good agreement between 
observed and simulated streamflow. Validation showed slightly lower but acceptable 
performance, with R2 of 0.75 and NSE of 0.68. Further ADCP validation from field 
data showed R2 values of 0.79 and 0.78 for two monitoring sites, confirming the 
model’s reliability. Sediment yield simulations at site-2 yielded R2 values of 0.70 
and 0.59 for calibration and validation, with NSE values of 0.53 and 0.52, indicating 
the model’s capability to simulate both streamflow and sediment accurately. These 
results demonstrate SWAT’s practical utility for water resource management in 
similar data-limited regions.
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1 Introduction

Accurate estimation of streamflow and sediment generation is crucial for effective water 
resources management. Hydrological models serve as fundamental tools for simulating these 
processes and have been extensively utilized for both change detection and attribution in 
catchment systems (Folton et  al., 2015; Hassan et  al., 2010; Vandenberghe et  al., 2006). 
Inappropriate application of these models may result in erroneous understanding and 
suboptimal policy recommendations. Daggupati et al. (2015) assert that the requisite modeling 
accuracy may vary for different applications, contingent upon the risk associated with actions 
that follow model implementation (e.g., explanatory, planning and/or regulatory).

Surface water resources, particularly rivers, are essential for sustaining ecosystems, human 
settlements, and economic activities worldwide (Mishra and Saxena, 2024; Kumar and Sen, 
2023). Global warming-induced changes in weather patterns, urban expansion, industrial 
growth, and agricultural chemical use are transforming water resources (Joseph et al., 2018; 
Kaur and Sinha, 2019). Numerous areas face freshwater shortages or contamination issues. 
Hydrological elements such as evaporation, transpiration, soil moisture, and runoff are highly 
responsive to slight changes in temperature and precipitation (Brutsaert and Parlange, 1998; 
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Seneviratne et al., 2010). Consequently, addressing water resource 
challenges, including the effects of urban development, alternative 
management approaches, and future climate variations on streamflow 
and water quality, necessitates a comprehensive understanding and 
accurate modeling of Earth surface processes at the catchment level 
(Kumar and Paramanik, 2020; Iwanaga et al., 2020; Gassman et al., 
2014; Koltsida et al., 2023). Examining various components of the 
hydrological process is necessary to evaluate and quantify sediment 
and auricular chemical yields (Ghoraba, 2015).

Due to the complexity of hydrological processes, various models 
have been developed over time to facilitate the comprehension of the 
hydrological system (Arnold and Allen, 1996; Sahu et al., 2016). These 
hydrological models are essential tools for evaluating catchment 
behavior, informing decisions on water resource projects, flood 
control, pollution management, and numerous other applications 
(Gupta et al., 2024; Pérez-Sánchez et al., 2019; Kumar and Sen, 2024). 
Among these, semi-distributed hydrological models can simulate 
water balance spatially by accounting for various soils, land uses, 
topographical features, and climate conditions (Rafiei Emam et al., 
2017). The semi-distributed hydrologic model SWAT is renowned for 
providing detailed information on water resources in a river basin and 
projecting the impact of land use changes and management practices 
on water quantity and quality (Janjić and Tadić, 2023; Gelete et al., 
2023; Narsimlu et  al., 2015). Researchers have applied the SWAT 
model across various regions, from arid and semi-arid to humid and 
tropical (Nguyen and Kappas, 2015; Samimi, 2020). Schuol et  al. 
(2008) assessed the distribution of blue and green water in Africa; 
Phuong et al. (2014) utilized SWAT to estimate surface runoff and soil 
erosion in a small part of Vietnam. Understanding runoff and 
sediment yield dynamics in watersheds is crucial for effective 
management, especially in data-scarce regions such as the Western 
Himalayan area. Jain et al. (2010) employed SWAT to estimate runoff 
and sediment yield in the Suni to Kasol watershed, achieving 
satisfactory R2 coefficients for both daily and monthly values. 
Similarly, Agrawal et al. (2011) simulated surface runoff and sediment 
yield in the Chhokranala watershed, emphasizing the impact of 
calibrated Manning’s “n” values on sediment yield. Aawar and Khare 
(2020) utilized the SWAT model to analyze the climate change impact 
on the streamflow of the Kabul River; Bouslihim et al. (2016) opted 
for the SWAT model to access the hydrological components of the 
Sebou watershed (Morocco). The SWAT model can also simulate 
basin hydrology in terms of both quantity and quality by incorporating 
agricultural practices, point sources, and non-point sources. Thus, the 
primary objective of this study is to apply the SWAT model to simulate 
the hydrological processes and sediment yield in the Song 
River watershed.

2 Methods

2.1 Study area

The Song River, originating from various small streams in the 
Dhanolti mountain range and merging with Sahastradhara streams, 
flows down to the Doon valley basins before eventually joining the 
Ganga River. Known for its picturesque surroundings, the Song River 
in Dehradun is particularly renowned for its plentiful natural sulphur 
springs. These springs emerge from mountain fissures and feed into 

the main watercourse, enriching the river with sulphur. Visitors flock 
to immerse themselves in the mineral-rich waters, as sulphur baths 
are thought to alleviate various health issues, particularly skin 
conditions. Situated at 30°28′ latitude and 78°8′ longitude, the Song 
River is vital to the communities of Raiwala, Doiwala, Chiddarwala, 
and Lacchiwala, serving as their primary water source along its 
107 km journey. It converges with the Ganga River at 78° 14′ 54″ 
longitude and 30° 02′ 02″ latitude, just upstream of Haridwar near the 
Satyanarayan G&D station maintained by CWC, after passing through 
the Satyanarayana area (Figure 1).

A significant tributary of the Song River is the Suswa River, which 
originates in the clayey depression of the Mussoorie range. It drains 
the eastern part of Dehradun city and joins the Song River southeast 
of Doiwala. The catchment area includes two major urban settlements: 
Dehradun and Doiwala. The Rispana and Bindal, two primary 
drainage networks, carry municipal sewage from these urban areas 
and discharge into the Song River via the Suswa River. The region 
experiences an average annual rainfall of approximately 1,451 mm, 
with about 1,181 mm (81%) occurring during the monsoon season. 
Consequently, July and August are the wettest months of the year.

2.2 Model input

2.2.1 Spatial database
Digital Elevation Model (DEM) are critical tools in hydrological 

modeling as they provide detailed topographical data necessary for 
analyzing basin characteristics (Figure 3A). DEM are utilized to generate 
key hydrological parameters, including flow direction, flow accumulation, 
stream networks, and watershed boundaries. In this study, the FABDEM 
(Forest and Buildings Removed Copernicus DEM), a state-of-the-art 
dataset available at a 1 arc-second resolution (approximately 30 m), was 
employed (Figure  3B). This dataset, freely accessible through the 
University of Bristol website, offers refined elevation data critical for 
accurate terrain analysis. Alongside the DEM, Land Use Land Cover 
(LULC) and soil maps were utilized as essential inputs for hydrological 
modeling using the SWAT model. The LULC map was developed using 
Landsat 8 satellite imagery at a 30 m resolution, sourced from the USGS 
Earth Explorer platform. A supervised classification technique, specifically 
the Maximum Likelihood Classification method, was applied using 
ERDAS IMAGINE software to categorize the basin into five land cover 
classes: water bodies, forest, built-up areas, agricultural land, and riverbed/
wasteland. Validation of the LULC map was conducted using ground 
truth data collected via portable GPS devices during field surveys, 
revealing that 68% of the catchment is forested and 14% is under 
agricultural use (Figure 3C).

The soils property data were obtained from the Harmonized World 
Soil Database (HWSD) version 1.2, available from the Food and 
Agriculture Organization (FAO). Based on this data, soils in the basin 
were classified as clay loam and loam, providing crucial information for 
modeling soil-water interactions (Figure  3D). Additionally, Figure  2 
illustrates the hydrological modeling framework of the study area, 
demonstrating the interaction of inputs such as precipitation and land use 
with watershed attributes like soil, topography, and river systems. This 
flow diagram emphasizes how these elements converge to generate 
outputs such as streamflow and sediment yield, as simulated by the SWAT 
model, offering an integrated perspective on the hydrological dynamics 
of the Song River watershed (Figure 3).
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FIGURE 1

Map of Song River basin, drainage network and selected sites.

FIGURE 2

Flow diagram emphasizing the essential elements and processes involved in the hydrological modelling for the study area.
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2.2.2 Hydro-meteorological database
In hydrological modeling, precipitation and air temperature are the 

fundamental meteorological datasets required for model setup. This 
study utilized gridded precipitation and minimum and maximum air 
temperature data on a daily scale, obtained from the India 
Meteorological Department (IMD), with spatial resolutions of 0.25° x 
0.25° and 1° x 1°, respectively.

The observed streamflow data required for calibrating the SWAT 
hydrological model. The Central Water Commission (CWC), India’s 

central water resource management organization maintained a 
Gauging and Discharge (G&D) station on the Song River until 2004 
at Satyanarayana, located just before the song river’s confluence with 
the Ganga near Rishikesh. For this study, daily streamflow data 
spanning 44 years (1971–2004) was obtained from the CWC’s 
Satyanarayana gauging site, designated as site-2.

Accurately simulating streamflow and sediment dynamics in 
recent scenario, a weekly monitoring program was conducted at Site 
1 and Site 2 over a period of two monsoon years (June 2022 to 

FIGURE 3

(A) Digital elevation model (DEM) map; (B) Slope map; (C) Land cover map; (D) Soil map used as topographical and spatial input for SWAT model.
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November 2023). During this period, weekly discharge measurements 
were carried out using an Acoustic Doppler Current Profiler (ADCP) 
instrument to ensure high accuracy. Additionally, one-liter water 
samples were collected during each site visit for laboratory analysis. 
Water quality analyses were performed at the National Institute of 
Hydrology, Roorkee water quality laboratory to determine Total 
Suspended Solids (TSS) concentrations, expressed in mg/L. These 
analyses provided critical data for calibrating and validating the 
suspended sediment component of the SWAT model (Table 1).

2.2.3 Field survey and investigation
In the present study, discharge data were available only up to 2004. 

To address this data gap and validate the model’s applicability for 
recent conditions, river discharge measurements were conducted for 
more recent periods, specifically 2022–2023. The process of site 
selection and the methodology employed for discharge measurement 
are delineated in sections 3.1.4 and 3.1.5. This approach was essential 
to ensure that the model’s predictions remain relevant and accurate 
for contemporary river conditions, considering potential changes in 
discharge patterns over time.

2.2.4 Design of monitoring programme
The Song River and its primary tributary, the Suswa River, were 

monitored across two monsoon seasons (June 2022 to November 2023) 
at two strategically selected sites along the Song River. These stations were 
situated upstream and downstream of the confluence of the Suswa River, 
adjacent to road bridges, ensuring accessibility during the monsoon 
season. Discharge measurements were conducted weekly during the 
monsoon (June to September), biweekly during the post-monsoon period 
(October to November), and monthly during the lean seasons (December 
to May). Table 2 provides details of the monitoring stations.

2.2.5 Observed streamflow and sediment data
Flow velocity and discharge measurements were conducted using 

two instruments: the SonTek FlowTracker2 and the Acoustic Doppler 
current profiler (ADCP). The SonTek FlowTracker2, an Acoustic 
Doppler Velocimeter (ADV), utilizes the Doppler effect to measure 
velocities ranging from 0.001 to 4 m/s. For low-flow conditions, the 
ADV was employed to measure velocity, while the mid-section 
method was utilized to calculate river discharge. In flood scenarios, a 
boat-mounted ADCP was deployed to measure both velocity and 
discharge (Figure 4).

Water samples for sediment analysis were collected during each 
site visit. At all monitoring locations, river water samples were 
collected using the grab sampling technique. One liter of river water 
sample was collected in high-density polyethylene (HDPE) containers 
and transport to the National Institute of Hydrology, Roorkee water 
quality lab for examination. To ensure uniformity, the collected 
samples were vigorously agitated. Subsequently, one liter of each 
sample was filtered through a 0.45-micron gridded cellulose nitrate 
membrane using an electric vacuum pump to extract suspended 
sediments. The filter paper containing the captured sediments was 
then dried in a hot oven to determine the total suspended sediment 
(TSS) concentration. The TSS concentration in the water sample was 
calculated by measuring the dry weight difference of the filter paper 
before and after the filtration process.

2.3 Model setup

The eco-hydrological model Soil and Water Assessment Tool 
(SWAT) is a versatile hydrological model capable of simulating diverse 
environmental conditions and scales (Arnold et  al., 1998). The 
establishment of a SWAT model requires spatially distributed data, 
including Digital Elevation Models (DEMs), soil data, land use land 
cover maps, and weather data. The model operates exclusively on this 
data and does not necessitate prior knowledge of catchment behavior 
or flow processes. SWAT simulates water balance, a fundamental 
driver of watershed processes, to accurately predict runoff, sediment, 
and nutrient movement. The model comprises two primary 
components: the land phase and the routing phase. For surface runoff 
estimation, the Curve Number method is utilized.

2.4 Model calibration and validation and 
sensitivity analysis

The SWAT model encompasses numerous hydrological 
parameters whose effectiveness is affected by variables such as soil 
type, slope, and land cover. To identify the most influential 
parameters and reduce the number needed for calibration, sensitivity 
analysis is essential. This research employed the SUFI-2 algorithm 
within the SWAT-CUP interface to perform sensitivity analysis on 13 
crucial parameters, including ALPHA_BF (baseflow alpha factor), 

TABLE 1 Summary of the dataset used in this study.

Data set Source Scale/Time 
series

Data description/Properties

DEM FABDEM V1-0 30 m https://data.bris.ac.uk/data/dataset/25wfy0f9ukoge2gs7a5mqpq2j7

Land cover Landsat 8 30 m https://earthexplorer.usgs.gov/

Soil FAO/HWSDv1.2 1:1,000,000 https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-

soil-database-v12/en/

Rainfall (mm) IMD Gridded Daily (0.25° × 0.25°) Rainfall data (1971–2023)

Temperature (°C) IMD Gridded Daily (1°x1°) Max. and Min. temperature (1971–2023)

Discharge CWC

Observed data

Daily/(1971–2004)

Weekly/(2022–2023)

CWC Satyanarayana site.

Weekly discharge measured using ADCP and FlowTracker2 instrument.

Suspended sediment Observed data Weekly/(2022–2023) –
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CH_K2 (hydraulic conductivity in the main channel alluvium), CH_
N2 (Manning’s “n” for the main channel), as well as GWQMN, SOL_
AWC, ESCO, and SURLAG. The impact of these parameters on 
hydrological components like discharge, infiltration, baseflow, 
groundwater flow, evaporation, and transpiration were examined by 
methodically altering one parameter at a time while keeping others 
constant. The relationship between parameters and hydrological 
responses was quantified using sensitivity coefficients. To enhance the 
model’s accuracy, both manual and automated calibration techniques 
were utilized. Manual calibration involved visually adjusting 
parameters based on observed and simulated flow patterns, 
considering catchment characteristics. Automated calibration, 
facilitated by SWAT-CUP, systematically optimized uncertain 
parameters by comparing model outputs with measured data through 
an interactive interface. This combined approach ensured effective 
parameter optimization and improved the SWAT model’s ability to 
simulate hydrological processes.

2.5 Performance evaluation

There are multiple efficacy measures that can be used to assess the 
model’s performance. These efficacy metrics show how the 

model-simulated values and the observed values are reconciled. Nash-
Sutcliffe Efficiency (NSE) (Equation 1), coefficient of determination (R2) 
(Equation 2) and PBIAS (Equation 3) are the most widely utilized 
metrics among them (Sane et al., 2020; Swain et al., 2022).

Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970),
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TABLE 2 Descriptive characteristics of the selected monitoring stations.

Name Station code Sampling site 
location name

Stream Latitude (decimal 
degrees)

Longitude (decimal 
degrees)

Elevation (m)

Song U/S Site-1 Song Bridge, Doiwala Song 30.17915 78.13162 486.32

Song D/S Site-2
Song Bridge, Nepali 

Farm, Raiwala
Song 30.05506 78.21517 346.35

FIGURE 4

Discharge measurement using (A) Flow-Tracker2 in low flow condition (B) ADCP in high flow condition.
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Pi and Oi are the simulated and observed values of discharge; n is 
the sample number,

P and O are the average of simulated and observed discharge.

3 Results and discussion

3.1 Model calibration and validation and 
sensitivity analysis

This research utilized previous studies to guide parameter 
selection for calibration, examining 13 parameters in total, with 8 
identified as sensitive at a 0.05 significance level. Table 3 outlines the 
range, fitted values, t-statistics, significance levels, and sensitivity 
rankings for these parameters. The study employed a three-year 
warm-up period (1971–1973), with calibration and validation periods 
spanning 1974–1995 and 1996–2004, respectively. The dotty plots 
generated in SWAT-CUP indicate that the baseflow recession constant 
(ALPHA_BF) and Channel roughness (CH_N2) are the most sensitive 
parameters. This conclusion is evident from the noticeable variation 
in the model’s performance metrics corresponding to changes in their 
values. The ALPHA_BF was calibrated to 0.05, suggesting a 
contribution of groundwater to streamflow, during low-flow periods 
is a critical factor in accurately simulating streamflow. CH_N2 was set 
at 0.04, indicative of a dredged channel, while effective hydraulic 
conductivity (CH_K2) was calibrated to 121.15 mm/h, signifying 
high-permeability conditions. The return flow threshold depth 
(GWQMN) was set at 735 mm, and soil water capacity (SOL_AWC) 
showed a 47% decrease, indicating reduced plant-available water. The 
groundwater “revap” coefficient (GW_REVAP) was calibrated to 0.07, 
suggesting limited water movement to the root zone. Manning’s 
coefficient (OV_N) was determined to be  0.83, and deep aquifer 
percolation (REVAPM) required 404.5 mm of shallow aquifer water. 
Soil evaporation compensation (ESCO) was set at 0.12, indicating 
high demand from lower soil layers. Surface runoff lag time (SURLAG) 
was calibrated to 2.33, and plant uptake compensation (EPCO) 
decreased to −0.29, demonstrating reduced uptake in lower soil layers. 
Groundwater delay (GW-DELAY) was established at 472.5 days, 

indicating a slow aquifer response, while lateral flow travel time (LAT_
TTIME) was set at 22.14 days, representing lateral flow dynamics 
within the hydrological response units (HRUs). These calibrated 
parameters significantly enhanced model performance and improved 
the simulation of hydrological processes.

3.2 Model performance evaluation

The study employed daily observations from 1974 to 2004, with 
Figure 5 illustrating the temporal comparison between observed and 
simulated discharge during both calibration and validation phases. 
Model effectiveness was assessed using R2, NSE, and PBIAS metrics, 
as presented in Table 4. The observed and simulated flows showed 
strong correlation, with R2 values of 0.79 and 0.66 for calibration and 
validation, respectively. During calibration, both baseflow and peak 
flows aligned well between observed and simulated data. Although the 
validation period showed underestimated goodness of fit, the results 
remained satisfactory. The NSE reached 0.7 during calibration and 
0.62 during validation. PBIAS values fell within acceptable ranges for 
both periods, measuring 17.06 for calibration and 19.60 for validation.

The weekly average simulated and observed flow for the 1974–
2004 period is depicted in Figure 5 as a time series plot. This graph 
reveals a high degree of similarity between the simulated and observed 
discharge, with the model successfully capturing overall flow trends, 
including seasonal fluctuations and high-flow events. The simulated 
flow closely tracks the observed data during the calibration phase, 
demonstrating the model’s precision in replicating both low-flow 
conditions and peak discharge occurrences. Although the validation 
period exhibits minor underestimations of some peak flows, the 
general trend remains aligned, indicating satisfactory model 
performance across the extended timeframe. This sustained 
consistency underscores the model’s dependability for long-term 
hydrological flow simulations.

Figure 6 presents a scatter plot depicting the weekly mean simulated 
versus observed flow during the calibration and validation periods. The 
plot demonstrates a strong linear relationship between the simulated and 
observed flow data, with the majority of points clustering in close 

TABLE 3 Fitted values of the SWAT parameter and statistics of sensitivity analysis.

Parameter name Min. value Max. value Fitted Value t-stat P-value Rank

V__ALPHA_BF.gw 0.0 1.0 0.05 −47.66 0.00 1

V__CH_N2.rte 0.0 0.1 0.04 21.53 0.00 2

V__CH_K2.rte 51.0 127.0 121.15 14.65 0.00 3

V__GWQMN.gw 0.0 5000.0 735.00 −11.80 0.00 4

R__SOL_AWC(..).sol −0.5 0.2 −0.47 10.31 0.00 5

V__GW_REVAP.gw 0.0 0.2 0.07 −10.30 0.00 6

R__OV_N.hru 0.0 1.0 0.83 3.42 0.00 7

V__REVAPMN.gw 0.0 500.0 404.50 2.10 0.04 8

V__ESCO.bsn 0.0 1.0 0.12 1.25 0.21 9

V__SURLAG.bsn 0.1 24.0 2.33 1.02 0.31 10

R__EPCO.bsn −0.5 1.0 −0.29 −0.37 0.71 11

V__GW_DELAY.gw 0.0 500.0 472.50 0.33 0.74 12

R__LAT_TTIME.hru 0.0 180.0 22.14 −0.18 0.86 13
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proximity to the 1:1 line, indicating a high degree of accuracy in the 
model’s predictions. During the calibration period, the scatter plot 
exhibits a tight correlation, reflecting the model’s efficacy in capturing the 
observed flow dynamics. Although the validation period displays a slight 
dispersion from the 1:1 line, the overall alignment remains satisfactory, 
confirming the model’s robustness in simulating streamflow across 
diverse hydrological conditions.

3.3 Model performance evaluation with 
field survey data

The model’s applicability to the study area was evaluated by 
comparing its simulated flows with ADCP-measured discharges 
obtained during a field survey. A strong correlation was observed 
between the simulated flows and observed discharge data at both 
upstream (site-1) and downstream (site-2) locations. The model’s 
performance was quantified using statistical indicators R2, NSE, and 

PBIAS, with results presented in Table  5, demonstrating its robust 
performance. The R2 values, ranging from 0.78 to 0.79, indicated a 
strong correlation, while NSE values of 0.79 upstream and 0.68 
downstream showed high agreement between simulated and observed 
flows. PBIAS values of 0.04 upstream and − 16.20 downstream fell 
within acceptable ranges, further confirming the model’s reliability. A 
time series plot comparing weekly mean simulated flows with observed 
flows for 2022–2023 at both sites is shown in Figure 7. The plot reveals 
exceptional alignment at the upstream site, where the model accurately 
captures flow variations and peak flows. Although minor discrepancies 
are noted at the downstream site, the overall flow patterns are well-
represented, highlighting the model’s ability to accurately simulate flow 
conditions in the Song River basin under diverse field conditions.

Figure 8 presents a scatter plot depicting the relationship between 
weekly mean simulated flow and field survey observed flow at both 
the upstream and downstream sections of the Song River. The plot 
demonstrates a strong correlation between the simulated and observed 
data, with data points closely aligned with the line of perfect 
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FIGURE 6

Scatter plot of weekly mean simulated and observed flow during calibration and validation.

FIGURE 5

Time series plot of weekly mean observed and simulated flow (1974–2004) at site 2 maintained by CWC.

TABLE 4 Model performance statistics.

Time series R2 NSE PBIAS

Calibration (1974–1995) 0.77 0.70 17.06

Validation (1996–2004) 0.75 0.68 19.60
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agreement. The upstream section exhibits a marginally higher degree 
of concordance, indicating superior model accuracy in this region, 
while the downstream section, despite displaying some dispersion, 
still demonstrates robust predictive performance. In aggregate, the 
scatter plot corroborates the model’s efficacy in replicating observed 
flow conditions across distinct sections of the river.

3.4 Model calibration and validation for 
weekly sediment load

The pre-calibrated runoff model was subsequently utilized for 
sediment load calibration. Four additional parameters Channel 
erodibility factor (CH_EROD), Peak rate adjustment factor for 
sediment routing in the subbasin (ADJ_PKR), USLE equation 
support practice (P) factor (USLE_P) and Linear parameter for 
calculating the maximum amount of sediment (SPCON) added in 
SWAT-CUP using SUFI2 algorithm for calibrate and validate 

Sediment load, at daily time scale (Table 6). The results of the best 
simulation (based on efficacy measures on daily scale) and its 
comparison with respect to the observed sediment load along with 
the observed discharge at weekly scale for 2 years, i.e., 2023–2024 
are presented in Figure 9. The statistical performance indicators for 
the calibration period (2022) revealed that the model achieved an 
R2 value of 0.70 and a Nash-Sutcliffe Efficiency (NSE) of 0.53. For 
the validation period (2023), the model demonstrated an R2 of 0.59 
and an NSE of 0.52.

Figure 9, comparing observed and simulated daily sediment yields at 
site 2 during the 2022 calibration and 2023 validation periods, elucidates 
both the efficacy and limitations of the SWAT model. In the 2022 
calibration period, observed sediment yields exhibit substantial peaks in 
September and October, with loads reaching up to 1,800 tonnes per day. 
While the SWAT model captures the overall seasonal pattern, including 
the pronounced increase during the monsoon and subsequent decline, it 
underestimates the magnitude of these peaks, particularly during high-
flow events. Similarly, during the 2023 validation period, the observed 

TABLE 5 Performance of calibrated model with field survey data.

Sites Coefficient of determination (R2) NSE PBIAS

Song upstream 0.79 0.79 0.04

Song downstream 0.78 0.68 −16.20

FIGURE 7

Time series plot of the weekly mean simulated flow and field survey observed flow (2022–2023) at the upstream and downstream sections of the Song 
River.

FIGURE 8

Scatter plot of weekly mean simulated flow and field survey observed flow at upstream and downstream of Song River.
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sediment yield peaks in July, exceeding 6,000 tonnes per day, followed by 
a rapid decline and smaller peaks in subsequent months. The simulated 
sediment yield generally follows this trend but significantly underestimates 
the July peak, reaching only approximately 4,000 tonnes per day, and fails 
to capture some of the acute fluctuations observed in the following 
months. These results demonstrate the model’s capacity to replicate the 
general seasonal dynamics of sediment transport but also underscore 
challenges in accurately simulating extreme events. To enhance the 
model’s performance, particularly during high-flow periods, further 
refinement of parameters or the incorporation of additional factors may 
be necessary.

4 Conclusion

The present study demonstrates the efficacy of the SWAT model in 
simulating streamflow and sediment yield within the Song River 
watershed, establishing its reliability for hydrological modelling in 
comparable basins. A comprehensive runoff calibration and validation 
process refined 13 critical parameters, with 8 identified as highly 
sensitive, significantly enhancing the model’s accuracy. During the 
calibration phase (1974–1995), the model achieved an R2 of 0.79 and a 
NSE of 0.70, indicating a robust correlation between simulated and 
observed discharge capture both baseflow and peak flow dynamics 
with high precision. Although a slight decrease in performance 
occurred during the validation period (1996–2004), with R2 and NSE 
values of 0.66 and 0.62, demonstrating its robustness across varying 
conditions suggesting the model maintains efficacy under changing 
conditions, such as alterations in land use and climate. The Percent Bias 
(PBIAS) values of 17.06% during calibration and 19.60% during 
validation indicated underestimate the model. Furthermore, real-time 

observed field data from 2022–2023 reinforced the model’s accuracy, 
with strong correlations (R2 = 0.79 upstream and 0.78 downstream), 
validating its applicability for watershed management and planning.

In addition to streamflow, the model was evaluated for sediment 
transport, successfully capturing seasonal trends in sediment dynamics. 
The R2 and NSE value for weekly sediment yield at site 2 was obtained 
as 0.70 and 0.53, respectively, for the calibration period and 0.59 and 
0.52, respectively, for the validation period. However, the model 
underestimated sediment yields at site 2 during high-flow events, 
indicating the necessity for further refinement to enhance predictions 
under extreme weather conditions, such as floods. Notwithstanding 
this limitation, the model’s capability to simulate sediment 
transport remains valuable for comprehending sediment dynamics and 
addressing sediment-related issues in watershed management.

The calibration and validation results indicate that the model 
performs well in simulating streamflow and provides satisfactory 
results for sediment transport. However, the limited availability 
of observed suspended sediment data remains a significant 
challenge for achieving a more reliable and persuasive model 
application. The calibrated model has also been utilized to 
simulate nonpoint source pollution loads in the Song River 
catchment. With ongoing refinement and the incorporation of 
additional field data, the model exhibits substantial potential to 
improve hydrological modelling and support more effective water 
resource management strategies in the future.
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FIGURE 9

Sediment load calibration and validation plot at Song D/S.

TABLE 6 Fitted values of the SWAT parameter for sediment analysis.

Parameter 
name

Definition Min. 
value

Max. 
value

fitted 
value

V_CH_EROD.rte Channel erodibility factor 0.0 0.304 0.007

V_ADJ_PKR.bsn Peak rate adjustment factor for sediment routing in the subbasin 0.5 1.0 0.79

V_USLE_P.mgt USLE equation support practice (P) factor 0.6 1.0 0.76

V_SPCON.bsn Linear parameter for calculating the maximum amount of sediment 0.0001 0.01 0.003
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