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The Sudan-Sahel region in West Africa is highly vulnerable to rainfall

variability, which poses significant challenges to agriculture and water resource

management. This study provides an assessment of seasonal rainfall prediction

models in the region, focusing on the West African Regional Climate Outlook

Forum (WARCOF, 1998–2023), the latest generation of the seasonal forecasting

system from the European Centre for Medium-Range Weather Forecasts

(ECMWF SEAS5, 1981-2023), and a novel atmospheric circulation-pattern-

based logistic regression model (1981–2023). The circulation-pattern-based

model, which integrates key atmospheric dynamics like near-surface wind

anomalies, outperforms both WARCOF and SEAS5 in predicting interannual

rainfall variability. While WARCOF and SEAS5 demonstrate some predictive skill,

both models exhibit biases: WARCOF has a dry bias, and SEAS5 displays both

dry and wet biases. The circulation-pattern-based model, despite a slight wet

bias, delivers more accurate categorical predictions and o�ers greater reliability.

An economic value analysis reveals that the circulation-pattern-based model

provides a broader range of positive economic outcomes, making it more

suitable for decision-making across various cost-loss scenarios. By introducing

this novel model and evaluating traditional forecasting techniques, this study lays

the groundwork for more accurate and reliable seasonal rainfall predictions.
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seasonal rainfall prediction, rainfall variability, Sudan-Sahel region, West Africa,
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1 Introduction

The Sudan-Sahel region has experienced significant interannual variability in seasonal

rainfall over recent decades (Nouaceur and Murarescu, 2020; Rauch et al., 2024),

presenting a major challenge due to the high dependence on rain-fed agriculture and

pastoralism (Zampaligré et al., 2014; Coly et al., 2024). Livelihoods are highly vulnerable

to changes in seasonal rainfall patterns (Mertz et al., 2012). Accurate seasonal rainfall

forecasts are therefore critical for reducing vulnerability and enhancing resilience in sectors

such as agriculture and water resource management (Yengoh, 2012). Inaccurate or limited

predictions of droughts, for instance, can have far-reaching effects on food security,

economic stability, and water availability (Wilhite et al., 2007; Hao et al., 2018). Thus,

improving seasonal rainfall predictions would enable stakeholders to better prepare for

such events, mitigating their adverse effects and enhancing disaster preparedness (Portele

et al., 2021).
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In many parts of the world, seasonal predictions are generated

by Regional Climate Outlook Forums (RCOFs), which bring

together climate experts from national, regional, and international

institutions (Semazzi, 2011). These forums aim to develop and

disseminate seasonal climate outlooks, typically once or multiple

times a year, tailored to specific geographic regions. The forum

currently serving the Sudan-Sahel region in West Africa is

known as Prévisions Climatiques Saisonnières en Afrique Soudano-

Sahélienne (PRESASS). This forum is organized by the African

Centre of Meteorological Application for Development (ACMAD)

and the Centre Regional de Formation et d’Application en

Agrométéorologie et Hydrologie Opérationelle (AGRYMET), which

regularly convene in April or May to produce forecasts for the

rainy season (Bliefernicht et al., 2019). These forecasts focus

on June, July, August or July, August, September (JAS) periods

and are disseminated to stakeholders in the form of maps and

advisory documents, which serve as critical tools for decision-

making across various sectors. The forecasting process categorizes

seasonal rainfall into terciles (below-average, near-average, and

above-average), where each tercile represents one-third of the long-

term climatological data (typically 1981-2010). These categories are

communicated through maps that indicate the likelihood of each

category occurring across different regions. This approach helps

simplify complex climate data into actionable insights for local

decision-makers (Figure 1). For a more detailed discussion of this

forecasting methodology, see Bliefernicht et al. (2019) and Pirret

et al. (2020).

Mason and Chidzambwa (2009) conducted the first assessment

of seasonal precipitation forecasts produced by the West African

RCOF (WARCOF) for the period 1998–2007, identifying both

positive skill in predicting below-normal and above-normal

precipitation, as well as several limitations, particularly a lack

of sharpness. Extending this analysis to 2013, Bliefernicht et al.

(2019) confirmed these findings but also highlighted issues

such as overforecasting near-normal conditions, which were

attributed to forecasters’ risk aversion. Similarly, Pirret et al. (2020)

observed a bias in the WARCOF forecasts (1998–2017) toward

underestimating probabilities for the below-normal category,

linked to similar hedging behaviors identified in previous studies.

Houngnibo et al. (2023) identified the temporal aggregation of

forecasts as a significant limitation and proposed a temporal

disaggregation method to address this issue. These forecasting

limitations, including biases and temporal aggregation, hinder

optimal decision-making, particularly in agriculture and water

resource management, where accurate forecasts are critical.

Therefore, further evaluation and development of more advanced

forecasting methods within the WARCOF process are essential.

Operational seasonal forecasting models that support the

WARCOF are relatively rare in West Africa. Many downscaling

studies have primarily focused on developing and evaluating

dynamical approaches (e.g., Siegmund et al., 2015; Klein et al.,

2015; Paeth et al., 2017), which are computationally expensive, or

providing regional climate projections (e.g., Lorenz et al., 2018;

Siabi et al., 2021; Polasky et al., 2024). In contrast, statistical

downscaling frameworks have shown significant promise, offering

a more accessible and efficient alternative. For example, Ndiaye

et al. (2011) used a linear least squares regression based on the

time series of the first empirical orthogonal function from tropical

Atlantic low-level winds as the predictor and the Sahel rainfall

index as the predictand for seasonal rainfall forecasting. Manzanas

(2017) applied the analogmethod for downscaling temperature and

rainfall in Senegal, while Rauch et al. (2019) employed a simple

bias correction (quantile-quantile mapping) to refine rainfall data

for forecasting the onset of the rainy season. A further overview

and examples of downscaling techniques for rainfall in West Africa

is given in Paeth et al. (2011). Moreover, the reconstruction based

on atmospheric circulation patterns (CPs) in combination with a

logistic regression model of the interannual rainfall variability in

West Africa as detailed in Rauch et al. (2024) shows promise in

improving the predictive skill of seasonal rainfall forecasts.

To address these challenges, the present study applies the

CP-based logistic regression downscaling method developed by

Rauch et al. (2024) to seasonal rainfall predictions for the first

time. This approach integrates physically meaningful atmospheric

processes to enhance forecast reliability and reduce errors. By

employing advanced verification tool like the ranked probability

skill score (e.g., Weigel et al., 2007), the multicategory reliability

diagram (Hamill, 1997), and an economic value framework (e.g.,

Bliefernicht et al., 2019), the study provides deeper insights into the

models’ reliability, accuracy, and practical decision-making value.

Furthermore, by incorporating atmospheric circulation patterns

into the logistic regression model, this work offers an objective, and

more physically grounded method.

In addition, it presents a more comprehensive and current

evaluation of the WARCOF performance compared to previous

studies like Mason and Chidzambwa (2009), Bliefernicht et al.

(2019), and Pirret et al. (2020). Within this extended context,

the study provides a comprehensive assessment of forecasting

capabilities by comparing three approaches over their respective

validation periods: the CP-based logistic regression forecasts from

Rauch et al. (2024) (1981-2023), WARCOF’s regional forecasts

(1998-2023), and the global seasonal forecast system SEAS5 from

ECMWF (1981-2023).

2 Material and methods

This section outlines the target region, materials and methods

used for the preprocessing, development, and evaluation of the

selected seasonal rainfall prediction models for the Sudan-Sahel

region. An overview of the workflow is provided in Figure 3.

2.1 Target region

For this evaluation, we focus on the Sudan-Sahel region (5.5◦W

11◦N to 2.4◦E 13.5◦N, Figure 2) as the target area, following a

similar domain as Bliefernicht et al. (2019). This region was chosen

due to its relatively high density of in-situ rainfall stations (see

Figure 3 in Bliefernicht et al., 2019), which likely improves the

reliability of the remote sensing precipitation products. This region

experiences a single, short rainy season spanning from June to

September with a peak in August (Bliefernicht et al., 2022; Rauch

et al., 2024).
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FIGURE 1

An example of the West African Regional Climate Outlook Forum rainfall outlook for JAS 2022 (ACMAD, 2022).

2.2 CHIRPS

Due to the lack of access to recent observational data and the

goal of developing an operational framework, we use the Climate

Hazards Group Infrared Precipitation with Stations (CHIRPS)

product (Funk et al., 2015). CHIRPS combines satellite rainfall

estimates with gauge and station data corrections, providing a

relatively reliable dataset that balances the wide coverage of satellite

data with the accuracy of ground-based measurements. This

product offers rainfall data on a 0.05◦ grid, covering the period

from 1981 to the present. Furthermore, CHIRPS is selected for

its proven performance, long-term availability, and frequent use

in West Africa for studies on rainfall variability and its impacts

(Dembélé and Zwart, 2016; Rauch et al., 2019; Pirret et al., 2020;

Kouakou et al., 2023).

We select all grid points within the target area of Figure 2,

average them spatially to extract a single daily time series, and

then aggregate this to standardized annual JAS sums (denoted

hereafter as RA). RA is then discretized into ordinal classes using

two quantile thresholds (q1 and q2), where q1 represents the

first and q2 the second tercile. This classification results in three

categories: RA ≤ q1 (Class 1, below-average condition), q1 <

RA < q2 (Class 2, near-average condition), and RA ≥ q2 (Class

3, above-average condition). These categorizations serve as the

target variables in a multi-class logistic regression model (similar to

Rauch et al., 2024), ensuring consistency with the regional nature of

WARCOF outputs through spatial aggregation and the categorical

probabilistic forecast method.

As illustrated in Figure 4, the standardized JAS annual

rainfall amounts from 1981 to 2023 capture the severe droughts

of the 1980s, followed by a recovery in rainfall extending

into the early 2020s (Hagos and Cook, 2008; Descroix et al.,

2018). This figure not only highlights these climatic trends

but also delineates the target evaluation categories used in

our analysis.

2.3 West African Regional Climate Outlook
Forum

WARCOF provides seasonal rainfall forecasts tailored for

the main rainy season (JAS). The forecasts use tercile-based

probabilities to categorize rainfall as below-average, near-average,
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FIGURE 2

The dashed domain indicates the predictor domain (30◦W 5◦S to 40◦E 40◦N), the smaller domain (solid) highlights the target area (5.5◦W 11◦N to

2.4◦E 13.5◦N).

FIGURE 3

Workflow for seasonal rainfall prediction model evaluation in the Sudan-Sahel region. The process involves three prediction models: WARCOF (West

African Regional Climate Outlook Forum), SEAS5 TP (“raw” total precipitation output from SEAS5), and CP-based logistic regression (Rauch et al.,

2024). Each model is validated against observed CHIRPS (Climate Hazards Group InfraRed Precipitation with Stations) data using the ranked

probability skill score, multicategory reliability diagram, and economic value.

or above-average (Figure 1). We use the WARCOF forecast maps

from 1998 to 2017 archived by Pirret et al. (2020) and manually

archived maps from 2018 to 2024 (see Supplementary Figures S1–

S7). For each year, we digitized these tercile-based probabilities

to create a consistent benchmark dataset for model comparison.

Although WARCOF does not have a defined spatial resolution

like gridded datasets, its outputs are represented as regional

forecasts that can be interpreted spatially, reflecting variability

across broader areas rather than specific grid cells. This dataset

represents the initial standard against which the predictive skill

is evaluated.

2.4 Seasonal prediction system from
ECMWF

The fifth version of ECMWF’s seasonal prediction system

(SEAS5) is based on amedium-range atmosphericmodel integrated
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FIGURE 4

The standardized interannual rainfall variability for the target region (x = 552.38mm, σ = 78.01mm) and the period from 1981 to 2023 based on

CHIRPS. The solid black line indicates the actual values of standardized annual rainfall sums (JAS). The two dashed lines mark the first and second

tercile, dividing the data into three categories: below-average (yellow circle, below the first dashed line), near-average (red square, between the two

dashed lines), and above-average (blue diamond, above the second dashed line).

with ocean, sea ice, land, and wave models (Johnson et al., 2019).

SEAS5, operational since November 2017, generates a 51-member

ensemble, with hindcasts available from 1981 to 2016, consisting of

25 ensemble members initialized on the first of each month. The

model data can be downloaded from the Climate Data Store of the

Copernicus Climate Change Service in a horizontal resolution of 1◦

x 1◦.

As a second benchmark, we use the total precipitation (TP)

variable from the forecast system initialized from 1 May. We select

all available grid points within the target domain (Figure 2) to

obtain an areal average of the JAS rainfall sums. This average is then

categorized into ordinal classes: below-average, near-average, and

above-average conditions, similar to the CHIRPS preprocessing

(Section 2.2) but using mean and standard deviation of the system

itself. However, each ensemble member is categorized individually

to create probabilities for each tercile-based category. The results

can be found in Supplementary Table S2.

2.5 The CP-based logistic regression
model

The CP-based logistic regression model employed here closely

aligns with that outlined in Rauch et al. (2024) for reconstructing

interannual rainfall anomalies in West Africa. The pre-selection

of predictor variables (Table 1) in this study is based on existing

literature, aligning with the studies by Moron et al. (2008), Guèye

et al. (2011), Guèye et al. (2012), and Bliefernicht et al. (2022).

To capture dominant regional-scale features of the West African

Monsoon we use a domain spanning from 30◦W to 40◦E and

5◦S to 40◦N (see Figure 2). This domain covers most regions in

Africa north of the equator, consistent with the domain size used by

Bliefernicht et al. (2022). To maintain consistency with WARCOF,

the forecast runs are initialized from 1 May from ECMWF

SEAS5, and the JAS period is selected. For data preparation,

standardized daily anomalies, denoted as z(i, t, e), were derived

from the predictor data x(i, t, e) according to:

z(i, t, e) =
x(i, t, e)− x(i)

s(i)
(1)

In this equation, i = 1, ..., L represents the grid points, t =

1, ...,T denotes the time steps in days, e = 1, ...,E indicates the

ensemble members, x(i) signifies the long-termmean over time and

all ensemble members, and s(i) indicates the standard deviation

of the time series over time and all ensemble members. This

standardized unfiltered daily anomalies are then used to generate

daily CPs with cluster counts ranging from 5 to 15 using k-

means, and the respective clusters’ annual occurrence frequencies

are computed for each ensemble individually. These frequencies

serve as predictor variables in a multi-class logistic regression

model. The predictants in this regression are the classes: below-

average, near-average, and above-average conditions (as described

in Section 2.2 and shown in Figure 4). The logistic regression

model predicts the category of each rainfall condition for every

ensemble, generating probabilistic forecasts similar to those used in

WARCOF by assigning probabilities to each tercile-based category.
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TABLE 1 Atmospheric variables from SEAS5, ECMWF: Listing of

abbreviations, associated atmospheric pressures, units, and input

variables for computation.

Name Abbreviation Levels Units Input

Pressure-level variables

U-component

of wind

U All levels m s−1 -

V-component

of wind

V All levels m s−1 -

Wind

direction

WD All levels degrees U, V

Wind speed WS All levels m s−1 U, V

Single-level variables

10 m U wind

component

10U - m s−1 -

10 m V wind

component

10V - m s−1 -

Mean sea level

pressure

MSLP - Pa -

The designation “all levels” includes atmospheric pressures at 200hPa, 700hPa, 850hPa, and

925hPa.

Methodological details about the different components (e.g., k-

means or logistic regression) and the general workflow can be

found in Rauch et al. (2024).

2.6 Validation and performance measures

The models are trained on the SEAS5 hindcast period (1981

to 2016) and validated using the operational forecast period

(2017–2023). The RPSS is calculated separately for the training

(t) and validation (v) periods using this split-sampling approach,

with further analysis performed using multicategory reliability

diagrams, and the economic value and comparisons made to

WARCOF and the raw TP output from SEAS5. The evaluation

measures are further explained in the subsequent sections.

2.6.1 Ranked probability skill score
To evaluate the performance of our proposed model, one

key metric is the Ranked Probability Score (RPS), which

is widely used for probabilistic forecast verification (Kumar

et al., 2001; Christensen et al., 2015). The RPS evaluates the

accuracy of probabilistic predictions by measuring the cumulative

squared differences between the predicted and actual cumulative

probabilities across all categories, as implemented by Wilks (2006).

The formula for the RPS is given by:

RPS =
1

N

N
∑

i=1

K
∑

k=1

(

Fi,k − Oi,k

)2
(2)

where N is the total number of forecasts, K is the number

of cumulative categories (e.g., below, near-average, above), Fi,k
represents the cumulative forecast probability for the i-th event

up to and including category k, and Oi,k represents the cumulative

observed outcome for the i-th event up to and including category

k (1 if the event is in or below category k; 0 otherwise). A lower

RPS indicates better forecast accuracy, reflecting a closer alignment

between predicted probabilities and observed events.

To further assess the forecast skill, we calculate the Ranked

Probability Skill Score (RPSS), which measures the performance of

our forecasts relative to reference forecasts. The RPSS is computed

as follows:

RPSS = 1−
RPS

RPSref
(3)

where RPSref is the RPS of the reference forecast. An RPSS value

greater than 0 indicates that the model outperforms the reference

forecast, while a value of 1 indicates a perfect forecast.

In this study, we first calculate the RPS for two types

of reference forecasts: a persistence forecast, which assumes

that decadal variability strongly influences interannual rainfall

variability, and a uniform distribution forecast, which assigns equal

probabilities to each category (0.33, 0.33, 0.33) for each year.

Given that the uniform distribution forecast has a lower RPS value

(0.45 compared to 0.93 for the persistence forecast), indicating

better baseline performance, we use it as the reference forecast for

calculating the skill score.

While the RPSS provides a single metric of improvement over

a reference forecast, additional diagnostic tools are required to

understand the nature of the forecast errors. In the literature,

reliability diagrams are often used to assess quality for seasonal

forecast products to determine conditional biases in the forecast

product (Mason and Chidzambwa, 2009; Bliefernicht et al., 2019;

Pirret et al., 2020).

2.6.2 Multicategory reliability diagram
In this chapter, we extend the traditional reliability diagram to

evaluate probabilistic forecasts using the Multicategory Reliability

Diagram (MCRD; Hamill, 1997). This approach is particularly well-

suited for multicategory forecasts and has been chosen for the

following reasons: a conventional reliability diagram is typically

applied to binary events (e.g., rain or no rain). However, seasonal

rainfall forecasting often involves multiple categories. For this

type of multicategory forecast, three separate diagrams would

be needed to capture each class. If we focus solely on one

specific class, the sample size may be too small to generate

meaningful insights (potentially N/3 due to the tercile-based

approach). Furthermore, WARCOF has already been extensively

evaluated using traditional methods like reliability diagrams or

receiver operating characteristics (Mason and Chidzambwa, 2009;

Bliefernicht et al., 2019; Pirret et al., 2020). For the purpose of

thoroughness, the traditional reliability diagrams have also been

included in Supplementary Figures S8–S10.

The following explanations are strongly based onHamill (1997)

adapted to the tercile-based seasonal forecasting process. For

each forecast season, the forecaster provides a probability vector

predicting the likelihood that the seasonal rainfall will fall into one

of three categories: below-average, near-average, or above-average

rainfall. Let yi = [yi1, yi2, yi3] represent the forecasted probabilities

Frontiers inWater 06 frontiersin.org

https://doi.org/10.3389/frwa.2024.1523898
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Rauch et al. 10.3389/frwa.2024.1523898

for year i. For example, a forecast for a given year might look

like yi = [0.4, 0.4, 0.2], indicating a 40% probability of below-

average rainfall, a 40% probability of near-average rainfall, and a

20% probability of above-average rainfall. To perform reliability

analysis with a MCRD, we discretize the forecast probabilities into

quantiles. Specifically, we divide the forecast probability space into

preset quantiles: q ∈ {0.10, 0.20, 0.30, . . . , 0.90}. For each forecast

yi, the probability vector is transformed into a category vector zi,

which assigns forecast categories to each quantile. For example, for

the forecast yi = [0.4, 0.4, 0.2], the corresponding category vector

would be zi = [1, 1, 1, 1, 2, 2, 2, 2, 3, 3].

The calibration (or reliability) at a given quantile q, denoted as

Cq, is defined as the probability that the observed rainfall category

oi is less than the forecast category z
q
i . This metric allows us to

quantify how well the forecasted categories align with the actual

observations across different quantiles. Formally, the calibration for

a given quantile q is computed by averaging over allN forecast years

as follows:

Cq =
1

N

N
∑

i=1

P(oi < z
q
i ), (4)

For any given year, one of three calibration scenarios will occur:

1. Observed category is less than the forecast category (oi < z
q
i ):

The observed category is lower than the forecast category, so

P(oi < z
q
i ) = 1.

2. Observed category equals the forecast category (oi = z
q
i ): In

this case, we interpolate between the minimum and maximum

quantiles where the forecast and observed categories match. The

calibration is determined using the following formula:

P(oi < z
q
i ) =

q− qmin

qmax − qmin
, (5)

where qmin and qmax are the lowest and highest quantiles where

oi = z
q
i .

3. Observed category is greater than the forecast category (oi >

z
q
i ): The observed category exceeds the forecast category, so

P(oi < z
q
i ) = 0.

For perfect calibration, Cq should equal the quantile q, meaning

that, for example, 25% of observations should fall below the 25th

percentile of the forecast distribution. The MCRD is generated

by plotting Cq against q, with an uncertainty range representing

the 95% confidence interval derived from bootstrap resampling,

repeated 1,000 times.

In addition to the calibration plot, the MCRD includes a

checkerboard plot that visualizes the mean absolute category

error across quantiles. This helps identify systematic biases or

inconsistencies in forecast performance. The checkerboard plot

complements the calibration diagram by revealing sharpness and

skill across the full range of potential outcomes. For instance,

significant deviations between forecast and observed categories at

certain quantiles could indicate overconfidence or underprediction

in the probabilistic forecasts.

2.6.3 Economic value
Besides to forecast skill and quality, it is crucial to address

the economic value of a forecast. Consider a decision maker who

is concerned about a specific weather event, such as the forecast

of rainfall falling into one of the defined tercile categories. For

instance, the event A might be defined as “above-average” or

“below-average” categories in a seasonal forecast. These forecasts

are particularly significant for various sectors, where the amount

of rainfall can have substantial economic and safety implications.

If this unfavorable weather event occurs and no preventative

measures are taken, the decision maker is expected to incur a loss

L. The forecast is valuable only if it enables the decision maker to

take action to reduce or avoid the potential loss. In this simplified

scenario, the decision maker has two options: either continue with

normal activities or take protective measures to mitigate the loss.

Implementing such measures would incur an additional cost C

beyond the usual expenses.

A deterministic binary forecasting system provides a

straightforward yes/no prediction regarding the occurrence

of a specific weather event A. The decision maker opts to take

protective measures if the forecast indicates that event A will

occur and takes no action if the forecast suggests otherwise. The

usefulness of such forecasts for a series of past events can be

evaluated by analyzing a contingency table compiled from those

previous events (see Richardson, 2000; Wilks, 2001; Richardson,

2011; Bliefernicht et al., 2019; Portele et al., 2021 for further

explanation and examples).

To compute the economic value V of the forecast, we first

established the cost-loss ratio α = C/L, which represents the cost of

taking preventive action divided by the potential loss incurred if the

event occurs without any action. This ratio is critical as it quantifies

the decision-maker’s trade-off between the cost of action and the

potential loss, influencing whether protective measures should be

taken based on the forecast.

In probabilistic forecasts, for each probability threshold pt , the

hit rate H and false alarm rate F can be derived from a contingency

table, reflecting the system’s ability to correctly predict events.

Here, a represents the number of correct predictions of the event

occurring, b the false alarms, c the missed events, and d the correct

predictions of the event not occurring. The total number of events

observed, n, is n = a+ b+ c+ d (Wilks, 2006).

The economic value V was then calculated using the following

formula:

V =
min(α, s)− F · (1− s) · α + H · s · (1− α)− s

min(α, s)− s · α
(6)

where s = a+c
n represents the baseline probability (Richardson,

2011). The numerator reflects the difference between the benefits

of the forecast (correct predictions adjusted for the cost-loss ratio)

and the baseline probability, while the denominator normalizes this

value by the baseline scenario without the forecast.

The value score ranges from −∞ to 1, where a score of 1

indicates perfect forecast performance and a score of 0 represents

no added value over climatology. Negative values suggest that the

forecast system is less effective than the climatological baseline, i.e.,

increase the decision-maker’s costs compared to simply ignoring

the forecast and using historical climatology.
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TABLE 2 Top three performing configurations of the CP-based logistic

regression according to RPSSt,v .

Configuration CP
count

RPSSt RPSSv RPSSt,v

WS925 13 0.218 0.310 0.233

V925 11 0.212 0.298 0.226

V10 12 0.226 0.212 0.223

WARCOF∗ - 0.051 0.122 0.070

TP - 0.051 -0.022 0.039

The table shows RPSS values for the training, validation, and combined periods, along with

the count of CPs for each configuration. The benchmarks WARCOF and TP from SEAS5 are

also included. ∗Note that the WARCOF period is from 1998-2023, while the SEAS5 period is

from 1981-2023, and thus they are not directly comparable.

3 Results

3.1 Ranked probability skill score

Table 2 presents the top three performing configurations of

the CP-based logistic regression model based on the combined

(RPSSt,v) for both training and validation periods. The table

also includes the RPSS for the training (RPSSt , 1981-2016) and

validation (RPSSv, 2017-2023) periods, along with the number of

CPs used. Benchmark results for WARCOF and the TP variable

from SEAS5 are also shown. The WS925-based model, using 13

CPs, outperformed the other configurations with an RPSSt,v of

0.233. It showed a good training performance (RPSSt = 0.218)

and reasonable validation skill (RPSSv = 0.310). The WARCOF

and SEAS5 TP benchmarks performed worse, with RPSSt,v values

of 0.070 and 0.039, respectively. These three solutions are further

discussed and evaluated in the subsequent sections of this results

section. It should be noted here that the WARCOF period is from

1998 to 2023, while the SEAS5 period is from 1981 to 2023, and thus

they are not directly comparable.

3.2 Multicategory reliability diagram

The performance of the probabilistic seasonal rainfall forecasts

is further evaluated using a MCRD which is presented on the

left-hand side of each row, with the corresponding checkerboard

plots on the right-hand side (Figure 5). Each row represents the

performance of one forecasting model: WARCOF model (top row,

1998–2023), SEAS5 TP dynamical model (middle row, 1981–2023),

and CP-based logistic regression model (bottom row, 1981–2023).

The WARCOF forecasts exhibit good calibration at lower

quantiles (below 0.20), where the predicted probabilities align

closely with the observed frequencies. However, there is notable

under-prediction between quantiles 0.20 and 0.90 (dry bias). This

may be because forecasters often assign a higher probability

to near-normal conditions to minimize the risk of incorrectly

predicting one of the other two categories. This is also shown

by Mason and Chidzambwa (2009), Bliefernicht et al. (2019),

and Pirret et al. (2020). At higher quantiles (above 0.90), the

forecasts again align well with observed frequencies. Overall, the

calibration is low, with relatively narrow 95% confidence intervals

in the lower and upper quantiles, though they widen slightly

in the middle quantile range. The benchmark model exhibits a

relatively broad spread of errors, particularly in the mid-quantiles

(e.g., 0.30–0.70). A significant portion of forecasts remain near

zero error (dark regions), though light shading at the top and

bottom of the plot indicates that WARCOF sometimes predicts

two categories away from the observed values, particularly for

extreme quantiles. The average category error for WARCOF is 0.86

(95% CI: [0.79, 0.92]).

The SEAS5 TP model exhibits the best overall calibration,

with a slight over-prediction in the lower quantiles (0.10–0.40)

and under-prediction in the higher quantiles (above 0.60). The

95% confidence intervals are narrower than those for WARCOF,

particularly in the mid-range quantiles, suggesting higher certainty.

This may be attributed to the larger sample size, which provides

more reliable estimates across the forecast distribution. SEAS5

TP shows slightly better performance in terms of categorical

error compared to WARCOF. There is a larger concentration of

darker shading near zero error, particularly in the mid-quantiles,

indicating more frequent correct predictions in these ranges or

just an error of one category. However, in the low and high

quantiles, there is some spread, with errors of one or two categories

being more frequent. The average category error for SEAS5 TP is

0.83 (95% CI: [0.74, 0.91]), representing a modest improvement

over WARCOF.

The CP-based logistic regressionmodel shows good calibration,

particularly in the lower quantiles (up to 0.40), with slight over-

prediction beyond this point. The confidence intervals are the

narrowest of the three models, especially for mid-range quantiles

(0.40–0.70). The CP-based logistic regression model shows the

best performance in the category error, with the darkest regions

concentrated around zero category error, especially in the mid-

quantiles (0.20–0.60), where this model consistently performs well.

Errors of two categories are rare, particularly in the mid-quantiles.

The average category error for this model is the lowest, at 0.72 (95%

CI: [0.63, 0.82]), indicating fewer category mismatches than the

other models.

All three models show generally moderate to good calibration,

with the SEAS5 TP model performing the best overall, followed

by CP-based logistic regression, and then WARCOF. However,

the CP-based model consistently provides more accurate category

predictions, as indicated by the lower mean category error

and clustered errors around zero. SEAS5 TP shows modest

improvement over WARCOF which suffers from slightly larger

deviations from perfect calibration and more frequent category

mismatches, particularly in the mid-quantile range (0.20–0.80).

3.3 Value of the forecast system

Figure 6 presents a comparison of the economic values (V) for

the three models across two rainfall categories: below-average and

above-average. V is plotted against the cost-loss ratio, representing

the trade-off faced by decision-makers between the cost of

preventive measures and the potential loss incurred if no action

is taken. On the vertical axis, economic value ranges from 0 to 1,

with 1 indicating perfect forecast performance and 0 indicating no
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FIGURE 5

Multicategory reliability diagrams for WARCOF (1998-2023), SEAS5 TP (1981–2023), and CP-based logistic regression (1981–2023). The left column

shows the observed frequency vs. forecast quantiles, with perfect calibration as the diagonal dashed line and 95% confidence interval (CI) shaded.

The right column displays checkerboard plots of forecast errors, where darker shades indicate more accurate predictions (zero error).

added value over climatology. The horizontal axis denotes the cost-

loss ratio (α), where lower values suggest a relatively small cost

of action compared to potential loss, and higher values indicate a

higher relative cost.

Notably, V displayed for each model represent the maximum

value obtained using the optimal forecast threshold. This optimal

threshold is determined by evaluating a range of probability

thresholds from 0.1 to 0.9 in increments of 0.01 (similar to

Bliefernicht et al., 2019). This threshold optimization allows

each model to be assessed under conditions most favorable for

decision-making, ensuring the highest possible economic value.

The following sections analyzes the performance at their respective

optimal thresholds for each model.

The left panel of Figure 6 shows the results for below-average

rainfall. The CP-based logistic regression model (green curve)

achieves its maximum economic value at a probability threshold
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FIGURE 6

Economic value V as a function of the cost-loss ratio is shown for two rainfall categories below-average and above-average using the CP-based

logistic regression, SEAS5 TP, and WARCOF at the threshold maximizing VV. The left panels correspond to “below-average” rainfall, while the right

panels correspond to “above-average” rainfall.

of 0.25, suggesting that preventive measures should be taken

when the forecasted probability of below-average rainfall exceeds

25%. This model provides a broad range of positive economic

values across the cost-loss ratio spectrum, indicating its usability in

various decision-making contexts. In contrast, the SEAS5 TPmodel

(orange curve) reaches its maximum economic value at a slightly

higher threshold of 0.28, but its economic value declines rapidly

as the cost-loss ratio increases, indicating limited applicability to

specific scenarios. Similarly, the WARCOF model (blue curve)

peaks at a threshold of 0.26, showing a narrow range of utility with

diminishing economic value at higher cost-loss ratios.

The right panel of Figure 6 presents the results for above-

average rainfall. Here, the CP-based logistic regression model

outperforms the other models, with a maximum economic value at

a threshold of 0.53. This higher threshold suggests that preventive

actions are recommended only when there is greater confidence in

the forecast (i.e., when the probability exceeds 53%). The model

demonstrates robust performance, maintaining positive economic

values across a wide range of cost-loss ratios, making it particularly

suitable for high-cost scenarios. SEAS5 TP peaks at a threshold of

0.21, but, similar to its performance in the below-average category,

its economic value declines sharply beyond this point, indicating

effectiveness only within narrowly defined conditions. WARCOF

performs best at a threshold of 0.36, yet exhibits a similarly narrow

range of utility, especially at higher cost-loss ratios.

One key takeaway from this analysis is the crucial role of

selecting the appropriate probability threshold to maximize the

economic value of each forecasting model. The CP-based logistic

regression model proves to be the most robust across both rainfall

categories, maintaining positive economic values over a wider

range of cost-loss ratios due to its higher optimal thresholds.

This adaptability makes it suitable for various decision-making

scenarios. In contrast, SEAS5 TP and WARCOF, while effective

under specific conditions, show rapid declines in economic value

as the cost-loss ratio increases. SEAS5 TP shows a sharp peak in

economic value when the cost of action is low but diminishes

quickly beyond its optimal threshold. Similarly, WARCOF offers

utility primarily at lower thresholds and cost-loss ratios.

Furthermore, this analysis provides insights for decision-

makers, where rainfall forecasts play a critical role. Understanding

the relationship between probability thresholds, cost-loss ratios,

and economic value helps optimize strategies for taking preventive

action. The threshold selection process is crucial in guiding

when action should be taken. For instance, using the CP-based

logistic regression model, preventive measures are advisable if

the forecasted probability of below-average rainfall exceeds 25%.

This threshold reflects the point at which the benefits of action

outweigh the costs. Lower thresholds, such as 0.25, support a more

conservative approach, appropriate for risk-averse sectors like flood

management or critical infrastructure. Higher thresholds, like 0.53

for above-average rainfall, suggest action should be taken only

when there is greater confidence in the forecast, whichmay bemore

suitable for high-cost industries like large-scale agriculture, where

unnecessary actions are expensive. Additionally, the cost-loss ratio

provides another layer of decision-making support. A lower cost-

loss ratio indicates that taking action is relatively inexpensive

compared to potential losses, encouraging more frequent responses

to forecasted events. Conversely, a higher cost-loss ratio suggests

that preventive actions are more costly, necessitating selective

decisions that rely on higher forecast confidence levels.

This section highlights the value of optimizing probability

thresholds in rainfall forecasting models to maximize their
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TABLE 3 Comparison of the three seasonal rainfall prediction models (WARCOF, SEAS5 TP, and CP-based logistic regression) across key performance

metrics: Ranked Probability Skill Score (RPSS), calibration quality, category error, and maximum economic value (Vmax) for below-average and

above-average rainfall scenarios.

Model RPSS Calibration Category error Vmax

Below average Above average

WARCOF 0.070 Moderate 0.86 0.15 0.15

SEAS5 TP 0.039 Best 0.83 0.34 0.25

CP-based Log. Regr. 0.233 Good 0.72 0.58 0.65

economic usage. While the CP-based logistic regression model

demonstrates robust performance across various scenarios, SEAS5

TP and WARCOF have more limited applications. These findings

underscore the importance of context-specific decision-making in

sectors reliant on accurate rainfall forecasting.

3.4 Summary of performance results

To provide an overview of each performance, we compared key

evaluation metrics across the three prediction models (WARCOF,

SEAS5 TP, and CP-based logistic regression) in Table 3 as a

summary of RPSS, calibration, category error, and economic value

(Vmax) for below-average and above-average rainfall conditions.

The CP-based logistic regression model demonstrated the highest

RPSS, suggesting superior predictive accuracy over the other

models. SEAS5 TP showed the best calibration overall, with a lower

category error compared to WARCOF, but higher than the CP-

based logistic regression model. In economic value analysis, the

CP-based logistic regressionmodel provided substantial advantages

under conditions of below- and above-average rainfall, highlighting

its effectiveness for decision-making applications.

3.5 The CP-based logistic regression
model

Given the necessity of not only achieving strong forecast

evaluation scores but also ensuring a model’s reliability and

meaningfulness in terms of statistical downscaling, it is crucial

to establish a robust connection between large-scale atmospheric

patterns and the target variable, in this case, the rainfall categories

derived through the logistic regression model. Therefore, Figure 7

shows the composites of the spatial CPs derived from WS925

anomalies (the best model, Table 2), which signify changes in wind

speed in the lower troposphere, around an altitude of 700–800 m.

These changes are often associated with variations in the upper-

air wind patterns. The monsoon winds at 925 hPa are generally

southwesterly during the monsoon season (approximately June

to September) (see Figure 1.19 from Fink et al., 2017), bringing

moisture-laden air from theGulf of Guinea into the interior ofWest

Africa (Lélé et al., 2015). This low-level flow is a key component of

themonsoon system and is strongly correlated with rainfall (Janicot

and Sultan, 2001; Thorncroft et al., 2011).

This relationship is also reflected in our analysis of CPs.

Specifically, CPs exhibiting strong positive anomalies in the

region from 0◦ to 15◦N, where southwesterly winds typically

occur, are associated with wetter-than-average conditions (WI >

1),1 as seen in CP11 and CP12. This suggests an increase in

wind speeds, which in turn enhances the southwesterly flow.

Conversely, CPs characterized by strong negative anomalies in

this region, such as CP6 and CP9, are associated with drier-

than-average conditions (WI < 1). This indicates a decrease in

wind speeds, leading to a slowdown of the southwesterlies. The

association between these wind patterns and rainfall outcomes

may explains these CPs as reasonable predictors for categorizing

rainfall as below or above average in the context of seasonal

forecasting.

The findings from the logistic regression model further support

this hypothesis (Figure 8). The purpose of these coefficients is

to measure the likelihood of each CP occurring under specific

categories, thereby providing a foundation for understanding their

sensitivity in terms of seasonal rainfall forecasting. For CP11

and CP12, the coefficients are positive during wet years (0.15

and 0.20, respectively) but negative during dry years (-0.15 for

CP12), aligning with the observed occurrence of these CPs. This

suggests that these patterns play a role in enhancing rainfall

when they indicate an increase in the southwesterly flow. In

contrast, for CP6 and CP9, the model indicates positive coefficients

during dry years (0.23 for CP6 and 0.11 for CP9) and negative

coefficients during wet years (-0.20 for CP6 and -0.15 for CP9).

This behavior underscores their role in the suppression of rainfall,

indicating how reduced wind speeds in these patterns correlate

with drier conditions. CP4 and CP8 present more neutral roles,

with CP4 showing a slightly positive coefficient in wet years

(0.06) and negative in dry years (-0.19), while CP8 has relatively

small coefficients in both categories (-0.10 for dry and 0.07 for

wet). This suggests a context-dependent influence, potentially

modulated by other atmospheric factors not directly captured in

this model.

These results underline the importance of incorporating

atmospheric dynamics into the statistical downscaling process.

The associations between near-surface wind patterns, and rainfall

outcomes validate the use of the logistic regression model,

emphasizing its ability to capture the physical mechanisms

underlying rainfall variability in the region. This insight enhances

the predictive capability of the model, making it not only

statistically reliable but alsomeaningful in ameteorological context.

1 Wetness Index (WI): Ratio of CP-specified rainfall to the long-term

average.
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FIGURE 7

Atmospheric CPs for the WS925 variable as the chosen solution for the CP-based logistic regression model. The color scale signifies the mean

intensity of the measured variable, where red and blue shades represent positive and negative anomalies, respectively. The Wetness Index (WI) [-] is

defined as the ratio of the conditional rainfall amount of a CP to the unconditional rainfall amount for the studied period.
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FIGURE 8

Heat map of coe�cients from the multi-class logistic regression model. The color coding indicates the importance of each CP for dry, normal, or

wet years.

4 Discussion

This study presents an evaluation of probabilistic seasonal

rainfall forecasts for the Sudan-Sahel region using three models:

WARCOF, SEAS5 TP, and a CP-based logistic regression model.

As highlighted, seasonal rainfall variability poses significant risks

to agriculture and water resource management in the Sudan-

Sahel region, making accurate predictions critical for mitigating

adverse impacts. The results from this study provide valuable

insights into the performance of these models, showcasing their

potential for improving forecast accuracy and decision-making in

vulnerable sectors.

The CP-based logistic regression model demonstrated the

best overall performance, particularly in terms of category error

and economic value. This model is based on WS925 anomalies,

which are strongly associated with southwesterly monsoon winds

that influence moisture transport from the Gulf of Guinea, a

key atmospheric process driving rainfall variability in the region

(Janicot and Sultan, 2001; Thorncroft et al., 2011; Lélé et al., 2015).

By integrating these physically meaningful predictors, the CP-

based logistic regression model captures essential large-scale CPs,

allowing it to provide more accurate and reliable rainfall forecasts.

This aligns with the aim to develop models that improve forecast

reliability through the integration of robust atmospheric processes.

The calibration evaluation with the MCRD analysis further

underscores the usability of all three forecasting products

for seasonal rainfall forecasting. However, the lower average

category error and stronger performance in the economic value

analysis of the CP-based logistic regression model indicate that

it provides more accurate predictions than the other models.

This improvement in category error aligns with the goals

mentioned in previous studies (e.g., Pirret et al., 2020), which

stressed the need for enhancing the sharpness and reliability of

seasonal forecasts in West Africa. The economic value analysis

reveals that the CP-based model maintains a broader range of

positive economic value across different cost-loss ratios, making

it adaptable to a variety of decision-making contexts. This

adaptability is crucial for sectors dependent on rainfall, where the

ability to tailor forecasts to different risk thresholds can reduce

economic losses.

One key aspect affecting model performance is the difference

in temporal coverage between the models. The CP-based logistic

regression model and SEAS5 TP cover the period 1981-2023,

whereas WARCOF covers the shorter period of 1998–2023.

This difference in dataset length makes direct comparisons

between these models more challenging, as the longer time

period likely contributes to the narrower confidence intervals

in SEAS5 TP and the CP-based model, given that a larger

sample size typically enhances forecast reliability. Nevertheless, this

study builds upon and extends previous analyses of WARCOF,

incorporating additional evaluation tools such as the MCRD for

recent time periods (Mason and Chidzambwa, 2009; Bliefernicht

et al., 2019; Pirret et al., 2020). The detection of a dry bias

in WARCOF is consistent with prior studies and may also be

attributed to forecasters’ risk aversion and biases toward near-

normal conditions.
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Despite the strengths of the CP-based logistic regression model,

it is important to acknowledge certain limitations. One key

limitation is the model’s wet bias, which may reduce its ability

to accurately predict droughts and lead to an overestimation of

wetter-than-average years. Given the vulnerability of the Sudan-

Sahel region to both drought and excess rainfall, a bias toward

wet conditions could negatively impact drought management

strategies. This bias might reduce the model’s effectiveness for

sectors like agriculture, where underestimating dry conditions

could result in insufficient preparation for crop failures or water

shortages. Addressing this wet bias is crucial for building resilience

in the region (Mertz et al., 2012; Wilhite et al., 2007).

To mitigate the wet bias and further improve the model’s

accuracy, additional predictors could be incorporated. For instance,

integrating sea surface temperatures (Fontaine and Bigot, 1993;

Losada et al., 2010) or higher-level wind fields, such as the 200 hPa

wind fields as an indicator of the tropical easterly jet (Nicholson

and Klotter, 2021) and the 700 hPa wind fields as indicators of

African easterly waves or the African easterly jet (Bliefernicht

et al., 2022), could enhance the model’s ability to forecast both

extremes of rainfall variability. These additional predictors would

likely improve the model’s representation of atmospheric processes

that drive both drought and excessive rainfall in the region, thereby

reducing prediction errors.

One limitation of this study is the use of CHIRPS rainfall data

as a reference dataset instead of relying directly on ground-based

observations. Although CHIRPS has been validated in numerous

studies and generally shows good performance compared to

ground-based observations (e.g., Garba et al., 2023; Didi et al.,

2020), it is known to underestimate or overestimate rainfall

extremes in certain regions (e.g., Diedhiou et al., 2024). By treating

CHIRPS as directly observed data, this study inherits biases

that could affect the accuracy of model performance evaluations.

Despite these limitations, CHIRPS remains an invaluable resource

for regional-scale analyses due to its consistency, spatiotemporal

coverage, and suitability for operational frameworks in data-scarce

regions like the Sudan-Sahel.

While the CP-based logistic regression model shows promise,

further research is needed to test its applicability in other regions,

such as the Sahel or Guinea zones. Expanding themodel to different

geographic contexts would allow for a better understanding of how

effective it is in regions with different climatic drivers. Moreover,

this statistical downscaling approach could benefit from the

application of more advanced techniques like deep learning, which

have shown potential in capturing non-linear relationships between

atmospheric predictors and rainfall variability (Pan et al., 2022;

Patil et al., 2023; Dotse, 2024). For instance, Glawion et al. (2023)

presents a promising spatio-temporal downscaling approach using

a cGAN method, which could enhance the predictive skill of

seasonal rainfall forecasts. Furthermore, additional aspects of

rainfall variability beyond seasonal totals should also be addressed.

Parameters such as the onset and offset of the rainy season,

dry spells during critical growth stages, and extreme events like

heatwaves are equally important for stakeholders, especially in

agricultural planning and disaster preparedness. Including these

parameters would make the model more comprehensive and better

suited to the needs of end users.

However, the simplicity of statistical downscaling methods like

CP classification in combination with logistic regression makes

them accessible and computationally efficient, particularly for

operational use in developing countries. These advantages should

not be overlooked when considering model improvements, but

integrating more complex techniques may further enhance model

performance and accuracy.

5 Conclusion

This study advances seasonal rainfall prediction forWest Africa

by applying the statistical downscaling method developed by Rauch

et al. (2024), using a logistic regressionmodel based on atmospheric

CPs. Building on the findings of Mason and Chidzambwa (2009),

Bliefernicht et al. (2019), and Pirret et al. (2020), this research offers

an updated assessment of WARCOF and SEAS5 from ECMWF,

providing new insights into the strengths and limitations of these

models in predicting rainfall variability in the Sudan-Sahel region.

The results demonstrate that, while each of the models

evaluated (WARCOF, SEAS5 TP, and the CP-based logistic

regressionmodel) has distinct strengths, the CP-basedmodel shows

the greatest potential for interannual rainfall prediction. This novel

approach effectively links southwesterly monsoon winds to rainfall

variability, providing a robust statistical downscaling framework

that captures the key physical mechanisms driving precipitation

variability in the region.

Calibration analysis based on a multicategory reliability

diagram (Hamill, 1997) revealed that although all models perform

moderately well, the SEAS5 TP model showed the best overall

calibration, followed by the CP-based model and then WARCOF.

However, each model suffers from biases: WARCOF demonstrates

a dry bias, SEAS5 TP exhibits both dry and wet biases, and the CP-

based model also has also a wet bias. Notably, the CP-based model

consistently deliversmore accurate category predictions, with lower

mean category errors and tighter error distributions around zero.

This makes it a more robust option compared to WARCOF, which

exhibits larger deviations from perfect calibration, especially in the

mid-quantile range. The economic value analysis further supports

the potential of the CP-based model, particularly across a broader

range of cost-loss ratios and optimal thresholds. While SEAS5 TP

andWARCOFmay be suitable for more narrowly defined decision-

making contexts, the CP-based model offers greater versatility,

providing decision-makers with a more reliable tool for balancing

cost and risk.

Furthermore, the CP-based model provides significant

potential to enhance existing forecasting frameworks like

WARCOF. While WARCOF has traditionally relied on subjective

expert judgment and reinterpretation of statistical and global

forecasts (Bliefernicht et al., 2019), the CP-based logistic regression

model offers an objective, physically-grounded alternative. By

integrating this model into the WARCOF framework, stakeholders

like farmers and policymakers could benefit from more actionable

and reliable forecasts. Farmers, for instance, could use these

enhanced forecasts for improved planning of planting schedules

and irrigation strategies, while policymakers could leverage the

outputs for disaster preparedness and resource allocation. This
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integration represents a key step toward addressing the need for

more objective methodologies in seasonal forecasting (Pirret et al.,

2020).

In conclusion, this study lays a strong foundation for further

enhancing seasonal forecasting in West Africa. The improved

accuracy and economic value demonstrated by the CP-based

logistic regression model highlight its potential as a reliable

forecasting tool, capable of supporting more informed and

impactful decision-making. As forecasting tools continue to evolve,

the development of adaptable, region-specific models will be

key to improving resilience against climate variability in the

region.
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