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Introduction: This study aims to assess the efficacy of Quantile mapping 
(QM) and Delta change (DC) bias correction methods to improve hydrological 
simulations of the Chiffa basin in northern Algeria. The main issue addressed is 
the need for corrected climate data to provide reliable hydrological projections 
in semi-arid climates.

Methods: Hydrological simulations were conducted using the GR2M conceptual 
rainfall-runoff model, recognized for its robustness in Mediterranean climates. 
This model was coupled with precipitation simulations from the Rossby Centre 
regional atmospheric model RCA4 of the Coordinated Regional Climate 
Downscaling Experiment (Cordex-Africa) forced by two global circulation 
models (MPI-ESM-LR and CRNM-CM5). Hydrological projections were 
produced for the future period 20702099 under RCP 4.5 and RCP 8.5 scenarios, 
comparing raw and bias-corrected data.

Results and discussion: The findings indicate that raw precipitation data are 
inadequate for reflecting future rainfall trends and simulating future flows. 
Bias correction methods significantly improved the models performance, with 
the coefficient of determination (R2) increasing from 0.440.53 to 0.830.97. 
Additionally, regional climate models project a 5 to 8% decrease in annual flows 
by the end of the 21st century under RCP 4.5 and RCP 8.5 scenarios. These results 
highlight the importance of bias correction methods for hydrological impact 
studies, and we recommend implementing specific adaptation measures, such 
as improved irrigation efficiency, development of water storage infrastructure, 
and adoption of drought-resistant agricultural practices. Future research should 
focus on employing multivariate bias correction methods, utilizing higher-
resolution climate data (≤10 km), and  implementing ensemble modeling 
approaches to better characterize uncertainties.
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Highlights

 • Coordinated Regional Climate Downscaling Experiment 
(CORDEX)-Africa domain climate model data are used to assess 
the hydrological impacts of climate change on the Chiffa basin in 
northern Algeria.

 • Two bias correction methods are used to improve 
hydrological simulations.

 • Bias correction methods highlight important effects on future 
flow projections.

 • The future flow of the study area will likely decrease by the end 
of the 21st century.

 • This study recommends the implementation of adaptation and 
mitigation measures to ensure the sustainability of water  
resources.

1 Introduction

The climate change assessments and the development of 
adaptation and mitigation strategies are generally based on the 
projection of Global Circulation Models (GCMs) (Sorland et al., 2018; 
IPCC et al., 2019; Parthiban and Amit, 2021). However, the outputs 
from the GCM simulation have a coarse resolution, which is not 
adequate for hydrological applications.

Regional Climate Models (RCMs) provide a dynamic downscaling to 
a finer resolution, making them suitable for hydrological impact studies 
(Smitha et al., 2018; Shin et al., 2019; Dixit et al., 2021). Some studies have 
shown that using downscaled GCM data through RCMs (RCM-GCM) 
can introduce significant uncertainties and biases that can significantly 
reduce the reliability of the results (Smitha et al., 2018; Mendez et al., 2020; 
Mesta and Kentel, 2021; Mengistu et al., 2021).

The climate variables that are simulated by various RCM-GCMs 
generally represent an inadequate distribution of the observed data. 
The gap that exists between simulation and observation, has been 
identified as bias or error (Dimri, 2021; Chelkeba, 2021). Therefore, 
bias correction techniques are applied to enhance the accuracy of 
RCM-GCM simulations (Pastén-Zapata et al., 2020; Miralha et al., 
2021; Tamene and Chala, 2021).

There are several methods of bias correction, depending on 
different approaches. For example, linear scaling (ML) is a method 
that corrects the monthly average and maintains the variability of 
climate model-adjusted data consistent with uncorrected data 
(Teutschbein and Seibert, 2010; Chathuranika et al., 2022).

The Quantile mapping (QM) method is also a bias correction 
technique that adjusts the cumulative distribution function of a 
simulated variable to align with the observed distribution function by 
using a transfer function (Teutschbein and Seibert, 2012; Willkofer 
et  al., 2018; Soriano et  al., 2019; Szabó-Takács et  al., 2019). 
Teutschbein and Seibert (2012), found that all bias correction 
methods are effective; however, Quantile mapping is more reliable, a 
finding also supported by several studies (White and Toumi, 2013; 
Foughali et al., 2015; Maraun, 2016; Emami and Koch, 2018; Tan 
et al., 2020).

Local intensity scaling (LOCI) is a method that corrects both 
precipitation intensity and frequency (Schmidli et al., 2006; Willkofer 
et al., 2018; Satiprasad et al., 2019; Szabó-Takács et al., 2019).

The bias correction can also be done through an approach based 
on power transformation. This method is used to adjust the rainfall 
variance statistics. The simulated monthly precipitation is powered by 
a value “b,” which guarantees that this approach ensures 
correspondence between the coefficient of variance (CV) of the 
simulated daily precipitation and the CV of the observed daily 
precipitation (Rajab et al., 2020; Szabó-Takács et al., 2019).

The Delta change (DC) method is the simplest method. It does not 
propose a correction for RCM-GCM simulations; instead, it acts as a 
perturbation method. It generates future climate projections by 
adjusting the observed climatic series to reflect the differences 
between the reference and future raw RCM-GCM simulations (Räty 
et al., 2018; Eekhout and De Vente, 2018; Beyer et al., 2019). This 
technique was largely used worldwide, especially in the Mediterranean 
region (Macias et al., 2018; François et al., 2020). In addition, this 
method was considered the most efficient compared to other methods 
of bias correction applied at the level of Turkey (Oruc, 2022).

Several studies propose a comparison of bias correction 
techniques for different regions of the Mediterranean basin. Marcos 
et al. (2018) assessed the ability of three bias correction methods two 
linear (mean bias correction (BC), and linear regression (LR)) and a 
nonlinear (model output statistic analogs (MOS-analog)) to improve 
the seasonal feature of precipitation simulated by climate models 
during the period 1981–2100 in the Boadella reservoir (northwestern 
Mediterranean). The results suggest that the analogous (MOS-analog) 
approach to model output statistics and the linear regression method 
generally perform better than other approaches in late autumn and 
early winter. They demonstrate the possibility of introducing bias 
correction methods to improve the seasonal prediction of water 
resources in the climate services system.

Similarly, Martins et al. (2021) have attempted to compare two 
bias correction methods: linear and Quantile mapping. These methods 
were applied to a bias-correct RCM-GCM simulation of temperature 
and precipitation during the reference period 1989–2005 in the Douro 
Wine Region, Portugal. The results indicate that the linear method 
corrects only the location (mean) and the scale (standard deviation) 
of the empirical probability distribution function (EPDF), while the 
Quantile mapping corrects the complete EPDF. The first method 
appears to be less computationally demanding, which makes easier to 
execute in large sets of data.

In Algeria, only a few studies have addressed bias correction when 
using climate model outputs. Taibi et al. (2021b) demonstrated that the 
use of Delta change and Quantile mapping methods for the correction of 
simulated precipitation from the outputs of the Cordex-Africa regional 
climate models yields a superior analysis of precipitation in the Oran 
coastal basin in Algeria. Zeroual et al. (2020) also used the Quantile 
mapping method to identify climate zones based on the Koppen-Geiger 
classification for all of Algeria by the end of the century.

The presence of biases in the climate simulations resulting from 
RCM-GCMs is worth correcting before being used in impact studies 
to allow a better assessment of climate projections. The response of 
hydrological systems to climate change can be carried out according 
to the direct use of runoff simulated by the global climate models of 
the CMIP5 or regional (Alkama et al., 2013; Zheng et al., 2018).

Conceptual Rainfall-Runoff was widely used in hydrological 
impact studies of climate change, due to the limited data they 
require (mainly rain and evapotranspiration). This is true, 
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especially for developing countries suffering from data scarcity. 
This approach is most often used, and it has been the subject of 
many studies. Those studies aimed at simulating future flows at 
the scale of a watershed, using the outputs of climatic models of 
rainfall and temperatures as input data to the hydrological model 
(Ibrahim et al., 2015; Todorovic and Plavsic, 2016; Giuntoli et al., 
2018; Al-Safi et al., 2020; Hadour et al., 2020; Sidibe et al., 2020). 
In Algeria, the GR2M Hydrological model is widely used given its 
simplicity but also its efficacy in conveniently reproducing the 
hydrological functioning of Algerian watersheds (Zeroual et al., 
2013; Ouhamdouche et al., 2018).

The Chiffa watershed presents specific hydrological challenges 
characteristic of Mediterranean semi-arid regions. Its complex 
topography, ranging from mountainous areas to coastal plains, 
combined with high temporal and spatial variability of precipitation, 
makes it particularly sensitive to climate model biases. The basin 
experiences intense seasonal variations, with dry summers and 
irregular winter rainfall, often resulting in flash floods. These regional 
characteristics make the bias correction of climate models particularly 
important, as uncorrected biases could significantly affect the 
representation of both extreme events and low-flow periods, which 
are critical for water resource management in the region. In addition, 
the size of the Chiffa catchment (316 km2) is smaller than one entire 
RCM grid cell of CORDEX-Africa (50 km × 50 km = 2,500 km2). This 
presents a challenge for using climate model simulations, as they are 
not designed to capture features at spatial scales smaller than their grid 
resolution (Dakhlaoui and Djebbi, 2021). Applying a bias correction 
technique could help downscale climate model outputs to align with 
the study catchment scale (Hakala et  al., 2018; Djebbi and 
Dakhlaoui, 2023).

The aim of this study is to evaluate some bias correction methods 
for the improvement of hydrological simulations in the Chiffa 
watershed. Specifically, we investigate how different bias correction 
methods can better represent the precipitation patterns and 
hydrological processes of this semi-arid Mediterranean basin. For this 
purpose, the precipitation from the Rossby Centre regional 
atmospheric model RCA4 of the Coordinated Regional Climate 
Downscaling Experiment (Cordex-Africa) forced by two global 
circulation models (MPI-ESM-LR and CRNM-CM5) was corrected 
by two bias correction methods, “Quantile mapping (QM)” and “Delta 
change (DC),” before being used as input data to the GR2M 
hydrological model to assess the impact of climate change on the 
hydrological response of the Chiffa basin by 2100, under two 
Representative Concentration Pathways (RCP): RCP 4.5 and RCP 8.5.

2 Methods

2.1 Study area and data set

The Chiffa basin is one of the three sub-watersheds of the Mazafran, 
the most important coastal basin in Algiers. The Chiffa basin is located in 
northern Algeria between latitudes of 36° 10′ and 36°30’N and longitudes 
of 2° 30′ and 3° East. It is bounded to the north by Blida, to the west by 
Hadjout and Djendel, and to the south by Medea (Figure 1). It has an area 
of approximately 316 km2 at the Amont des Gorges hydrometric station, 
with a relatively elongated shape. It has an average altitude of 833 m, with 
a highest point of 1,629 m.

The Chiffa basin presents a complex geological structure 
(Figure 1) dominated by Triassic and Cretaceous formations in its 
central part, with Jurassic and lower Cretaceous deposits in the 
northern section, while Tertiary outcrops are present in the southern 
area. This geological diversity significantly influences the basin’s 
hydrogeological behavior, particularly in terms of groundwater 
storage and surface water-groundwater interactions.

The study area is characterized by a Mediterranean vegetation 
cover, including various forest formations. These formations are 
mainly composed of Atlas cedars, Aleppo pines, and Berberis Tuyas 
(A.P.N.A., 2006). The Chiffa basin belongs to a semi-arid 
Mediterranean climate with a warm season.

The interannual variability of precipitation in the Chiffa basin 
is indeed significant (Figure 2). Over the period 1979–2014, annual 
precipitation varies considerably, ranging from around 400 mm to 
nearly 1,100 mm, which highlights substantial interannual 
variability of precipitation. Such variability directly impacts water 
availability and increases the risk of drought episodes and flood 
events. On average, the basin receives around 800 mm of annual 
precipitation, which is characteristic of semi-arid Mediterranean 
climates. These interannual fluctuations are essential for assessing 
the basin’s resilience to future climate scenarios and underscore the 
importance of water resource management strategies adapted to 
extreme conditions.

The average temperature for the reference period (1979–2014) is 
around 17°C, characterized by marked seasonal contrasts, with hot 
summers and mild winters contributing to high evapotranspiration 
rates during the warm season. Additionally, Northern Africa, 
including the Chiffa basin, has been identified as one of the most 
vulnerable “hot spots” to climate change. Projections indicate that the 
region will experience a significant warming trend, with temperatures 
expected to rise by 0.5°C–2.5°C by the end of the century under 
emission scenarios, leading to an increase in hydrological drought 
(IPCC, 2021).

The hydroclimatic data used in this study correspond to the El 
Hamdania rain gauge and the Amont des Gorges hydrometric gauging 
station that were collected from the National Water Resources Agency 
(ANRH). The temperature data correspond to the climate station of 
Dar el Beida of the National Office of Meteorology (ONM). All hydro-
climatic data are available on a monthly scale during the study period 
1979–2014 (Table 1).

The estimation of the potential evapotranspiration (PET) over the 
historical and projection period is based on the Thornthwaite formula 
given (Thornthwaite and Mather, 1951) in Equation 1.
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Where PET (m) is the mean evapotranspiration of month m 
(m = 1 to 12) in mm, T(m) is the interannual mean temperature of the 
month in °C and F (m, ϕ) is the corrective factor for month (m) and 
latitude, a: 0.016 * I + 0.5, I annual thermal index defined in 
Equation 2.
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FIGURE 1

Geographical location and geological map of the study area.
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FIGURE 2

The interannual variability of precipitation in the Chiffa basin.
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Drouiche et al. (2019) showed that the study area has experienced 
an increase in drought episodes characterized by a reduction in annual 
rainfall of about 16 to 24% during the period 1973–2001. Regarding 
the temperature, Bouderbala (2019) observed an increase in 
temperatures of approximately 6 to 30% in the study area between 
February and June during the period 1974–2010, highlighting 
potential consequences on the availability of water resources.

To estimate future flows in the study catchment, the projected 
monthly precipitation and temperature of the RCM-GCMs RCA4-
MPI-ESM-LR and RCA4-CNRM-CM5 of the Africa-Cordex project 
are used. These two climate models were considered suitable for 
Algeria compared to other available models (Zeroual et al., 2019). 
Thus, these models offer simulations of climatic variables at a monthly 
scale during the period 1981–2100, with a horizontal resolution of 
about 50 km. Two Representative Concentration Pathways are 
considered: RCP 4.5 and RCP 8.5, which represent, respectively, an 
optimistic and a pessimistic greenhouse gas emission scenario.

2.2 GR2M hydrological model

In this study, the GR2M conceptual model (Perrin et al., 2007) was 
selected for simulating hydrological processes in the Chiffa watershed 
after careful consideration of several factors. Although we acknowledge 
that more complex models with finer temporal resolutions exist, 
GR2M’s selection was justified by multiple considerations. GR2M’s 
parsimonious structure, requiring only precipitation and PET as 
inputs, is particularly advantageous in our study context where data 
availability is limited. This parsimony, combined with its proven 
robustness, makes it especially suitable for climate change impact 
studies where the focus is on long-term hydrological changes rather 
than short-term events.

For our study focusing on long-term climate change impacts, the 
monthly resolution proves particularly relevant because it better aligns 
with the reliability of climate projections, whose uncertainties increase 
significantly at finer time scales (Lehner et al., 2020). This temporal 
scale also facilitates the better propagation of uncertainties in climate 
projections while remaining consistent with water resource 
management and planning scales.

The model has demonstrated remarkable performance in semi-
arid Mediterranean contexts, particularly in northern Algeria. 
Previous studies have successfully applied GR2M to similar watersheds 
(Zeroual et al., 2013; Sakaa et al., 2015; Hallouz et al., 2018; Hadour 
et al., 2020; Pulido-Velazquez et al., 2021; Bouguerra and Mansour, 
2023; Mahdaoui et  al., 2024), achieving satisfactory results in 
capturing the dominant hydrological processes at the monthly scale. 
Although we recognize that the monthly time step may not capture 
certain short-term events, such as flash floods (Bargaoui et al., 2008; 
Dakhlaoui et al., 2009), this temporal resolution aligns well with our 

study’s primary objective of assessing long-term climate change 
impacts on water resources.

The model structure consists of two main functions (production 
and routing) organized around two reservoirs. The production 
function operates through a soil reservoir, while the transfer function 
is governed by a gravitational water reservoir. The model also accounts 
for underground water exchange, which is particularly relevant in our 
semi-arid context where groundwater contributions can be significant. 
A detailed description of the model structure and equations is 
available in Perrin et al. (2007).

Model calibration and validation were performed under the R 
environment using the airGR package (Gader et al., 2020), which 
provides comprehensive outputs including monthly simulated flow 
series, numerical performance criteria, graphical outputs, and internal 
model variables. The calibration process focused on optimizing the 
model’s two parameters to best represent the watershed’s hydrological 
behavior, with particular attention to both high and low flow periods 
to ensure robust performance across different hydrological conditions.

2.3 Performance criteria for hydrological 
model assessment

The estimation of the performance of a hydrological model is one 
of the most important steps in evaluating the quality of the simulation. 
It requires a comparison between observed and simulated flows. There 
is a multitude of criteria to evaluate the performance of the 
hydrological model. Two performance criteria are used in this study: 
the Nash criterion (Nash and Sutcliffe, 1970) and Pearson’s 
correlation coefficient.

2.3.1 Nash criterion
This criterion compares the mean square deviation of the flux 

roots to the variance it has given more precise results compared to the 
other evaluation criteria. This is confirmed by several studies such as 
Nounangnonhou et  al. (2018), Fathi et  al. (2019), Ditthakit et  al. 
(2021a) and Orozco et al. (2021). This criterion is based on the sum of 
the square errors as defined in Equation 3.
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Q0 observed flows, Qc simulated flows with the model, 0Q : average 
observed flow, N: number of observations.

Where:
If Nash ≤ 0: the model is no better than the average of the 

observed flows.

TABLE 1 Geographical and characteristics of the hydro-climatic stations in the study area.

Code Name Source Longitude (°) Latitude (°) Altitude (m) Kind of station Study period

021126 Amont des Gorges ANRH 2.76 36.38 290 Hydrometric 1979–2014

021115 El Hamdania ANRH 2.77 36.36 400 Rainfall 1979–2014

020611 Dar El Beida ONM 3.15 36.43 25 Climatic 1979–2014

ANRH, National Agency of Water Resources; ONM, National Office of Meteorology.
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If Nash > 0: the model is better than the average of the 
observed flows.

If Nash = 1: the model corresponds perfectly to the 
observed flows.

2.3.2 Pearson’s correlation coefficient (r)
The linear regression between the calculated and the observed 

flows, its formulation is as shown in Equation 4.
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Where Q0 and QC are, respectively, the observed and simulated 
flows for i = 1…, N, N the number of inputs 0Q  and cQ  are, respectively, 
the averages of the observed and simulated flows. The value (r) varies 
from −1 to 1. If (r) is positive and close to 1, the relationship between 
the measured flows and the flows calculated by the linear models is 
increasing, and the scatterplot is concentrated around the regression 
line, if (r) is negative and close to −1, indicates a perfect negative 
correlation between the values of observed and predicted flows (Koffi 
et al., 2011; Charifi, 2018; Ditthakit et al., 2021b).

2.3.3 Kling-Gupta Efficiency (KGE)
The Kling-Gupta Efficiency (KGE), developed by Gupta et  al. 

(2009), was designed to enhance the traditional Nash-Sutcliffe 
Efficiency (NSE) metric. KGE addresses certain limitations of NSE, 
particularly its sensitivity to data variability; its formulation is as 
follows in Equation 5:
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22
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where 0Q  represents the observed flows, cQ  represents the 
simulated flows, 0Q  the average of the observed flows, cQ  is the 
average of the simulated flows, R is the Pearson’s correlation 
coefficient, 0σ  is the standard deviation of the observations, and cσ is 
the standard deviation of the simulations.

With KGE, a value close to 1 indicates a high agreement between 
observed and simulated values, while values closer to 0 or negative 
indicate poor performance.

2.3.4 Root-mean squared error (RMSE)
RMSE is calculated from the observation values and then averaged 

for all the simulations made with the different models. It measures the 
difference between simulations and observation flows. The 
formulation is given as shown in Equation 6:
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With CQ . 0Q  is the simulated and observed flow, respectively. 
For i = 1…N; N is the total number of flow data over the 
analysis period.

2.4 Performance criteria for climate model 
assessment

Mostly, climate models have systematic errors in their output. 
Then, to evaluate the performance of regional climate models, a bias 
is estimated between simulated and observed rainfall data during the 
reference period (1981–2010) as shown in Equation 7.

2.4.1 BIAS

 
sim obs
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P PBIAS
P
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=
 

(7)

Where obsP , simP  are, respectively, the average observed and 
simulated rainfall.

2.4.2 Coefficient of determination (R2)
The coefficient of determination (R2) represents the proportion of 

variance in the dependent variable that is predictable from the 
independent variable(s). In hydrology, it measures how well the 
simulated flows match the observed flows as shown in Equation 8.
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With N being the number of observations, for i = 1…N, 0
iQ

represents the observed flows on day i, i
CQ represents the simulated 

flows on day i, 0Q  the average of the observed flows, and CQ  the 
average of the simulated flows.

The R2 values range from 0 to 1, where:

 • R2 = 1 indicates a perfect correlation between observed and 
simulated flows.

 • R2 = 0 indicates no correlation.
 • Values above 0.5 generally indicate acceptable model performance.

2.5 Bias correction methods

The bias correction of climate data is a crucial step in assessing the 
impacts of climate change (Tan et al., 2020). In this study, we have 
carefully selected two widely used bias correction techniques: the 
Delta change (DC) method and the Quantile mapping (QM) method. 
This selection was based on their proven effectiveness in 
Mediterranean and semi-arid regions (Enayati et al., 2021; Taibi et al., 
2021b; Dakhlaoui and Djebbi, 2021; Djebbi and Dakhlaoui, 2023), 
particularly for their distinct but complementary strengths in handling 
different aspects of climate data correction.

The DC method was selected for its robust approach to adjusting 
the observed climatic series based on mean monthly changes between 
reference and future RCM-GCM simulations (Ruelland et al., 2012). 
This method is particularly advantageous for preserving the temporal 
structure of observed data, which is important for hydrological impact 
studies in semi-arid regions. It effectively captures mean shifts in 
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climate variables while maintaining the natural variability patterns 
present in observations, assuming that the regional bias remains 
constant over time (Beyer et al., 2019). In addition, the DC technique 
is recognized for its simplicity of application. The DC method is 
defined by Equations 9 and 10 (Mendez et al., 2020):

 ( ) ( )BC
contr obsP t P t=  (9)

 
( ) ( ) ( )

( )
t. frcm PBC

obsfrc
m contr

P t P t
P t

µ

µ
 

=  
    

(10)

Where contrP (t) and obsP (t) are, respectively, the raw simulated 
and observed precipitation during the control period, frcP (t) is the raw 
projected time series, ( )BC

frcP t  is the bias-corrected projected time 
series, and μm is the long-term monthly mean.

The QM method was chosen as a complementary approach due 
to its efficacy in correcting the entire distribution of climate variables 
by aligning the cumulative distribution functions (CDFs) of observed 
and simulated data. This method is particularly valuable for correcting 
extreme values, which are critical in Mediterranean climates like the 
Chiffa basin, where precipitation patterns show high variability 
(Motlagh et al., 2022). The QM method is expressed by Equation 11 
(Heo et al., 2019):

 ( ) ( )1
0m s sP t F F P t−  =      (11)

Where Pm(t) and Ps(t) are, respectively, the corrected and 
simulated precipitations and Fs and F0

−1 are the cumulative distribution 
function (CDF) of the raw precipitation from the RCM and the inverse 
CDF of the observed precipitation.

3 Results and discussion

3.1 Calibration and validation of the GR2M 
model

Hydrological modeling performance was evaluated through 
calibration and validation steps, using multiple evaluation criteria to 
guarantee a robust assessment of the model’s capabilities. We employed 
four performance metrics: Nash-Sutcliffe Efficiency (NSE), Pearson’s 
correlation coefficient (R), Root Mean Square Error (RMSE), and 
Kling-Gupta Efficiency (KGE), each providing different insights into 
model performance.

The calibration period (January 1981–December 2000) 
encompasses various hydrological conditions, including several 

drought events characteristic of the Mediterranean climate (e.g., in the 
1990s). During this period, the model achieved satisfactory 
performance with an NSE of 77.5% and R of 87.6% (Table  2, 
Figure 3A). The RMSE of 2.97 mm/month indicates a reasonable level 
of accuracy in flow prediction, whereas the KGE is 48%.

For the validation period (January 2002–December 2012), using 
the calibrated parameters (X1 = 347.234 mm and X2 = 0.682 mm), the 
model showed notably high-performance metrics with an NSE of 99% 
and R of 99.8% (Table 2, Figure 3B). The RMSE improved to 1.01 mm/
month, and the KGE increased to 60%.

The hydrological response presented in Figure 4 demonstrates 
that the model effectively captures the general flow dynamics driven 
by precipitation inputs, though with varying performance across 
different hydroclimatic conditions. The model’s performance during 
both wet and dry periods suggests its capability to simulate the 
watershed’s hydrological behavior under various climatic conditions.

3.2 Evaluation of regional climate models 
over the reference period

3.2.1 Evaluation of raw RCM-GCM precipitation 
over the reference period (1981–2010)

The performance of RCM-GCMs during the reference period 
(1981–2010) was assessed using multiple statistical metrics: bias, Root 
Mean Square Error (RMSE), and correlation coefficient (R) between 
observed and simulated precipitation data (Table 3).

On the annual scale, results show that the two raw RCM-GCMs 
strongly underestimate precipitation. The bias between observations 
and RCA4-CNRM-CM5 and RCA4-MPI-ESM-LR is, respectively, 
about −57.03% and −55.92%. This substantial underestimation is 
further confirmed by high RMSE values of 2102.47 mm and 
2061.47 mm, respectively, while the weak correlation coefficients 
(R = −0.14 and −0.25) indicate poor temporal agreement between 
simulated and observed precipitation patterns.

The representation of observed and simulated mean monthly 
precipitation during the control period (1981–2010) shows 
distinct seasonal patterns. During the wet season (October–May), 
both models exhibit significant biases, with maximum negative 
biases occurring in December and January (−71.45% and 
−66.03%, respectively, for RCA4-CNRM-CM5). These months 
also show the highest RMSE values (421.91 mm and 394.10 mm, 
respectively), indicating substantial uncertainty in wet season 
precipitation simulation. During the dry season (June–
September), while relative biases are lower (e.g., −14.5% and 
−24.5% in June and July for RCA4-CNRM-CM5), the models still 
struggle to accurately capture the limited rainfall events 
characteristic of this period, as evidenced by the poor 
correlation coefficients.

TABLE 2 Performance of GR2M over calibration and validation periods.

Periods Nash (%) R (%) RMSE (mm/month) KGE (%)

Calibration period (January 1981–

December 2000)
77.5 87.6 2.97 48

Validation period (January 2002–

December 2012)
99.0 99.8 1.01 60
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FIGURE 3

Hydrological simulation of the rainfall-runoff process using the GR2M model in the Chiffa basin during the calibration and validation periods.

FIGURE 4

Result of hydrological simulation rainfall-runoff of the GR2M model on the Chiffa basin during the (A) calibration period (1981–2000), and 
(B) validation period (2002–2012).

TABLE 3 Estimated bias between observed and simulated monthly and annual rainfall over the reference period 1981–2010.

RCA4-CNRM-CM5 RCA4-MPI-ESM-LR

BIAS (%) RMSE (mm) R BIAS (%) RMSE (mm) R

January −66.03 394.09 −0.01 −61.50 367.057 0.02

February −63.36 322.04 0.20 −62.12 315.71 −0.09

March −34.09 118.12 0.11 −39.65 137.32 −0.25

April −47.34 166.56 0.00 −64.48 226.87 0.25

May −56.34 136.88 −0.05 −44.68 108.56 0.04

June −14.51 9.45 −0.07 −47.92 31.16 0.08

July −24.49 7.90 −0.01 −62.56 20.19 0.18

August −61.30 31.71 0.09 −72.56 37.53 0.14

September −67.98 105.07 0.14 −64.44 99.59 0.21

October −44.05 124.48 −0.20 −46.22 130.60 0.06

November −56.96 264.20 −0.10 −47.89 222.20 0.21

December −71.53 421.90 −0.33 −61.81 364.63 0.07

Annual −57.03 2102.46 −0.14 −55.92 2061.47 −0.25
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The high bias obtained during the dry season can be explained by 
the low quantity of precipitation in this season. However, for the wet 
season, the precipitation simulated by the climate models depends on 
processes represented by each model. Indeed, some studies have 
highlighted that climate models generally fail to estimate rainfall 
correctly during wet periods (Taibi et al., 2019, 2022; Dunning et al., 
2018). This is because the resolution of climate models makes them not 
able to consider more phenomena that occur at a spatial scale smaller 
than the grid size of climate models, such as convective precipitation and 
orographic rainfall, which are highly dependent on local relief (Ouatiki 
et al., 2019; Gu et al., 2022). The location of the Chiffa catchment at the 
Blidean Atlas downstream, which is characterized by its relief, could 
be one of the origins of such underestimation.

These significant biases and errors in precipitation simulation could 
substantially affect hydrological forecasts in the Chiffa basin, particularly 
affecting seasonal water availability predictions, extreme event 
forecasting, and long-term water resources planning. This is particularly 
crucial in the semi-arid context of the Chiffa basin, where accurate 
precipitation estimates are essential for reliable hydrological modeling. 
According to the results above, both RCM-GCMs, RCA4-CNRM-CM5, 
and RCA4-MPI-ESM-LR, cannot reproduce correctly rainfall at the 
Chiffa basin. A bias correction technique is then necessary to improve 
the rainfall data simulated by the climate models.

3.2.2 Evaluation of raw RCM-GCM temperature 
over the reference period (1981–2010)

The performance assessment of temperature simulations was 
conducted using bias, RMSE, and correlation coefficient (R) at both 
annual and monthly scales (Table  4). At the annual scale, the 
temperature bias between observations and simulations data of RCA4-
CNRM-CM5 and RCA4-MPI-ESM-LR over the reference period 
(1981–2010) was about −0.8°C and 0.1°C, respectively. The annual 
RMSE values (52.35°C for RCA4-CNRM-CM5 and 2.21°C for RCA4-
MPI-ESM-LR) and correlation coefficients (R = −0.11 and −0.08, 
respectively) suggest that RCA4-MPI-ESM-LR shows better overall 
temperature simulation capability.

At the monthly scale, results show that generally, temperature 
variation simulated by the two RCM-GCMs is almost similar.

The RCA4-CNRM-CM5 model shows good performance in 
winter months, reproducing exactly the monthly temperatures 
observed in December, January, and February (Bias = 0°C, RMSE 
<0.5°C). However, it underestimates temperatures during other 
months, with estimated biases ranging from −0.2°C to −2.2°C. The 
highest discrepancies are observed in June and October, with RMSE 
values of 10.48°C and 12.13°C, respectively, suggesting significant 
model uncertainty during these seasons.

The RCA4-MPI-ESM-LR model demonstrates more consistent 
performance across seasons. The analysis shows average biases of 
about 1°C in winter (December–January–February [DJF]), 0.2°C in 
spring (March–April–May [MAM]), 0.5°C in summer (June–July–
August [JJA]), and −0.6°C in autumn (September–October–
November [SON]). The RMSE values are lower compared to RCA4-
CNRM-CM5, ranging from 0.05°C in July to 5.38°C in June, 
indicating better overall temperature simulation capability.

The correlation coefficients of both models exhibit weak to 
moderate correlations with observed temperatures, varying from 
−0.41 to 0.33, indicating limitations in capturing temperature 
variability patterns. This performance variability across seasons and 
models has important implications for hydrological modeling, 
particularly for processes sensitive to temperatures such as 
evapotranspiration and snowmelt in the elevated parts of the 
catchment. While the biases are smaller than precipitation, 
temperature corrections might still be necessary to ensure reliable 
hydrological simulations, especially during seasons with 
larger discrepancies.

3.2.3 Seasonal analysis of raw RCM-GCM 
precipitations and temperatures over the 
reference period (1981–2010)

The analysis of raw RCM-GCM outputs reveals significant 
systematic biases in both temperature and precipitation simulations 
across seasons (Figure 5).

TABLE 4 Estimated bias between observed and simulated monthly and annual temperatures over the reference period 1981–2010.

RCA4-CNRM-CM5 RCA4-MPI-ESM-LR

BIAS(°C) RMSE(°C) R BIAS(°C) RMSE(°C) R

January 0 0.09 −0.13 0.9 3.95 −0.12

February 0 0.44 0.33 1 4.92 0.31

March −0.7 3.49 −0.14 0.3 0.82 −0.13

April −0.7 4.10 −0.09 0.3 1.43 −0.12

May −1 5.49 0.16 −0.1 0.94 0.16

June −2 10.48 0.01 −1.2 5.38 −0.01

July −0.6 3.29 −0.16 0 0.05 −0.13

August −0.2 1.08 −0.01 0.3 1.27 0.03

September −1.1 6.03 0.24 −0.2 0.87 0.24

October −2.2 12.13 −0.19 −1.2 5.35 −0.17

November −1.3 6.81 −0.40 −0.3 1.90 −0.41

December 0 0.22 −0.17 1 4.20 −0.19

Annual −0.8 52.35 −0.11 0.1 2.21 −0.08
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The precipitation biases are even more substantial (Figure 5A), 
with both models significantly underestimating rainfall across all 
seasons. Winter shows the most severe underestimation (up to −60% 
for RCA4-MPI-ESM-LR), followed by spring (−40% to −50%), while 
summer and autumn maintain significant negative biases (−30% 
to −60%).

For temperature, RCA4-CNRM-CM5 shows a consistent cold bias 
(Figure 5B), particularly pronounced in winter (−1.5°C) and autumn 
(−1°C), while RCA4-MPI-ESM-LR exhibits a warm bias in 
spring (+1°C).

These systematic biases underscore the critical need for bias 
correction in the Chiffa basin context. The substantial precipitation 
underestimation would lead to unrealistic water availability estimates, 
and temperature biases would affect evapotranspiration calculations, 
both important components in semi-arid hydrological modeling. The 
magnitude of these biases varies seasonally, suggesting that their 
impact on hydrological responses would be pronounced.

3.3 Hydroclimatic projection

3.3.1 Precipitation changes
The RCA4-CNRM-CM5 and RCA4-MPI-ESM-LR models 

provide projected precipitation until 2100 for two representative 
concentration pathways, RCP 4.5 and RCP 8.5. We propose an 
analysis of the change coefficient of future precipitation over the 
period 2070–2099 compared to the reference period 1981–2010, 
calculated at annual and seasonal scales. To highlight the 
efficiency of the bias correction methods (Quantile mapping and 
Delta change), a change coefficient was calculated for raw 
RCM-GCM and bias-corrected RCM-GCM by the two 
correction methods.

The raw RCA4-CNRM-CM5 model, at the annual scale, projects 
a decrease of precipitation of more than 60% under both scenarios 
(RCP 4.5 and RCP 8.5). However, after correcting the bias, the change 
coefficient of precipitation indicates a future decrease of precipitation 
that does not exceed 5 and 27% by 2100, respectively, under RCP 4.5 

and RCP  8.5 (Figures  6A,B). The two bias correction methods 
(Quantile mapping and Delta change) reduced the projected change 
in precipitation by 33 to 55% compared to raw climate models.

At the seasonal scale, the results show a significant future decrease 
in precipitation of more than 70% in winter (December–January–
February [DJF]), according to RCP  4.5 (Figure  6A) and RCP  8.5 
(Figure  6B). For the same season, the results from the rainfall 
corrected by the two bias correction methods—Quantile mapping and 
Delta change—indicate a future decrease in rainfall that does not 
exceed 30%, according to RCP 4.5 (Figure 6A), and 49%, according to 
RCP 8.5 (Figure 6B). For this season, the bias correction methods have 
favored a correction of error with a percentage of 40%.

In spring (March–April–May [MAM]), the results of the raw 
climate model show a decrease in precipitation of 49% under RCP 4.5 
(Figure 6A) and 59% under RCP 8.5 (Figure 6B). Whereas, after the 
correction of this rainfall by the two bias correction methods, the 
results show an increase of the rainfall that exceeds 16%, according to 
RCP 4.5(Figure 6A), while the RCP 8.5 scenario shows a decrease of 
no more than 14% (Figure 6B), yet both methods show a correction 
performance that exceeds 40%.

For the summer season (June–July–August [JJA]), the raw 
rainfall over the projection period (2070–2099) indicates a 
decrease of 20%, according to RCP  4.5 and 45%, according to 
RCP  8.5, while all the results from the Quantile mapping and 
Delta change-corrected data show an increase in rainfall of more 
than 80%, according to RCP  4.5(Figure  6A) and RCP  8.5 
(Figure 6B).

In autumn (September–October–December [SON]), bias 
correction methods reduced the climate predictions simulated by the 
raw RCM-GCM by 42%. Thus, a decrease of 4% is projected after bias 
correction for RCP 4.5 (Figure 6A) and 21% according to RCP 8.5 
(Figure 6B).

The RCA4-MPI-ESM-LR model, RCP 4.5, shows a great decrease 
in rainfall, which exceeds 60% at the horizon of 2099 compared to the 
reference period 1981–2010, for the two RCPs (Figures 7A,B). The 
results obtained after the correction of the biases indicate a reduction 
in precipitation of about 20% according to RCP 4.5 (Figure 7A) and 
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FIGURE 5

Seasonal analysis of raw RCM-GCM (A) precipitations and (B) temperatures over the reference period (1981–2010).
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34% according to RCP 8.5 (Figure 7B). These two methods have made 
it possible to reduce the simulated climatic change by 40% compared 
with the uncorrected future rainfall.

At the seasonal scale, the projected precipitation with raw 
RCM-GCM for the period (2070–2099) shows a significant decrease 

for all seasons, particularly in winter (DJF) which registers a decrease 
of 61% according to RCP  4.5 (Figure  7A) and 70% according to 
RCP 8.5 (Figure 7B). After the correction of rainfall by the two bias 
correction methods (Quantile mapping and Delta change), the 
projected precipitation shows a decrease of 14% according to RCP 4.5 

                                  (a)                                                                                 (b) 

-70%

-49%

-20%

-60% -60%

-23%

16%

89%

-4% -4%

-30%

18%

82%

-7% -8%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

DJF MAM JJA SON An

Ex
ch

an
ge

 c
oe

ffi
ci

en
t(

%
)

Raw RCA4-CNRM-CM5(RCP4.5)

Bias corrected RCA4-CNRM-CM5(RCP4.5) by QM

Bias corrected RCA4-CNRM-CM5(RCP4.5) by Delta
change

-78%

-59%
-45%

-69% -70%

-48%

-14%

84%

-21% -27%

-49%

-5%

30%

-27% -29%

-100%
-80%
-60%
-40%
-20%

0%
20%
40%
60%
80%

100%

DJF MAM JJA SON An

Ex
ch

an
ge

 c
oe

ffi
ci

en
t(

%
)

Raw RCA4-CNRM-CM5(RCP8.5)

Bias corrected RCA4-CNRM-CM5(RCP8.5) by QM

Bias corrected RCA4-CNRM-CM5(RCP8.5) by Delta
change

FIGURE 6

Seasonal and annual projected change in precipitation of raw and bias-corrected (Quantile mapping and Delta change) climate model RCA4-CNRM-
CM5 according to (A) RCP 4.5 and (B) RCP 8.5 over the period (2070–2099).

(a)                                                                             (b)                              

-61% -64% -67%
-57% -61%

-22%

-10%

21%

-19% -16%
-14%

-18%

18%

-4%
-11%

-90%

-70%

-50%

-30%

-10%

10%

30%

50%

DJF MAM JJA SON An

Ex
ch

an
ge

 c
oe

ffi
ci

en
t(

%
)

Raw RCA4-MPI-ESM-LR (RCP4.5)

Bias corrected RCA4-MPI-ESM-LR (RCP4.5) by QM

Bias corrected RCA4-MPI-ESM-LR (RCP4.5) by Delta
Change

-70% -76% -70% -73% -72%

-42%
-51%

18%

-37% -41%

-31%
-45%

22%

-37% -34%

-90%

-70%

-50%

-30%

-10%

10%

30%

50%

DJF MAM JJA SON An

Ex
ch

an
ge

 c
oe

ffi
ci

en
t(

%
)

Raw RCA4-MPI-ESM-LR (RCP8.5)

Bias corrected RCA4-MPI-ESM-LR (RCP8.5) by QM

Bias corrected RCA4-MPI-ESM-LR (RCP8.5) by Delta
Change

FIGURE 7

Seasonal and annual projected change in precipitation of raw and bias-corrected (Quantile mapping and Delta change) climate models. (A) RCA4-MPI-
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(Figure 7A) and 31% according to RCP 8.5 (Figure 7B) compared to 
the reference period. The two bias correction methods have allowed a 
reduction of 47% of the bias calculated before the correction.

In spring (MAM), the difference between observed and 
projected raw precipitation over the period (2070–2099) predicts 
a decrease of the order of 64% according to RCP 4.5 (Figure 7A) 
and 76% according to RCP 8.5 (Figure 7B). However, after using 
both bias correction methods, the results indicate a reduction in 
rainfall of about 20% under the RCP 4.5 scenario (Figure 7A) and 
45% under the RCP  8.5 scenario (Figure  7B). Both methods 
reduced the bias of the RCA4-MPI-ESM-LR model outputs by 
31 to 44%.

In summer (JJA), the estimated change in raw precipitation over 
the projection period shows a decrease of more than 60% under 
RCP 4.5 and 70% under RCP 8.5. After bias correction, the results 
show an increase in rainfall of more than 20% under both emission 
scenarios (Figures 7A,B).

In autumn (SON), the projected raw precipitation over the period 
(2070–2099) shows a decrease of 57% under the scenario RCP 4.5 
(Figure 7A) and 73% under the scenario RCP 8.5 (Figure 7B). After 
the application of the bias correction methods, the change in 
precipitation shows a respective decrease of 4 and 37% according to 
RCP 4.5 and RCP 8.5, which present a respective correction of bias 
with percentages of 53 and 36%.

3.3.2 Potential evapotranspiration projection
The projected potential evapotranspiration over the period 2070–

2099 was obtained using the Thornwaite formula forced by the 
monthly bias-corrected projected temperature by the two 
RCM-GCMs.

At the annual scale, the projected PET presents an increase of about 
10 to 32% according to RCP 4.5 and RCP 8.5 for the two climate models, 
compared to the reference period for the 2099 horizon (Figures 8A,B).

At the seasonal scale, the two RCM-GCM (CNRM-CM5 and 
MPI-ESM-LR) present future change in PET and show an increase for 
the four seasons of the year over the 2099 horizon under RCP 4.5 and 
RCP 8.5 (Figures 8A,B).

The RCA4-CNRM-CM5 model shows an increase of PET during 
winter (DJF) of about 15 to 65%, respectively, for the RCP 4.5 and 
RCP 8.5 scenarios (Figure 8A). In spring (MAM), the change in PET 
exceeds +20% according to the two emission scenarios (Figure 8A), 
while in summer (JJA), the projected PET shows a little increase of 3% 
according to RCP 4.5 and 36% according to RCP 8.5 (Figure 8A). In 
autumn (SON), the RCA4-CNRM-CM5 model projects an increase 
in PET of about 13% according to RCP 4.5 and 27% according to 
RCP 8.5 (Figure 8A) by 2099.

The future evolution of PET simulated by the MPI-ESM-LR 
model in winter (DJF) shows an increase of 11% under RCP 4.5 and 
17% under RCP 8.5 (Figure 8B). In spring (MAM), PET estimates a 
small increase of 9%, according to RCP 4.5, and 23% according to 
RCP 8.5 (Figure 8B). The summer (JJA) and autumn (SON) seasons 
are characterized by a high increase in PET by 2099, which varies 
between 12%, according to RCP 4.5and 38%, according to RCP 8.5 
(Figure 8B).

3.3.3 Hydrological projection
The projected flows of the Chiffa basin were simulated using the 

GR2M hydrological model calibrated over the reference period 1981–
2000 and forced by RCM-GCMs projected corrected precipitation 
and PET during the period 2070–2099. The results show that the 
projected change in mean annual and mean seasonal flows is almost 
identical from the two used raw RCM-GCM (Figures  9A, 10A) 
because the simulated precipitation and PET are so close. At the 
annual scale, both RCM-GCM project an increase in the mean 
annual flow of about 11% over the 2070–2099 projection period 
under RCP 4.5 and RCP 8.5 emission scenarios (Figures 9A, 10A), 
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Seasonal and annual projected change in bias-corrected potential evapotranspiration according to (A) RCA4-CNRM-CM5 and (B) RCA4-MPI-ESM-LR, 
under RCP 4.5 and RCP 8.5 over the period (2070–2099).
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while the simulated future raw rainfall is decreasing (see 
section 3.3.1).

At the seasonal scale, the two raw RCM-GCM predict an 
increase in runoff for three seasons—winter, spring, and summer—
of about 4, 26, and 37%, respectively, according to RCP 4.5 and 
RCP 8.5 by 2099 (Figures 9A, 10A). In autumn (SON), the two raw 
climate models simulate a similar decrease in runoff of about 47% 
according to the two emission scenarios (Figures 9A, 10A). From 
these results, it is clear that the future evolution of flows (increasing 
trend) according to the raw climate model is consistent with the 
decreasing trend of precipitation projected by these two raw models 
(see section 3.3.1).

The projected evolution of annual flows simulated based on the 
bias correction by the Quantile mapping method, which is judged to 
be more relevant, indicates a decrease of 5 and 10% at the annual scale, 
respectively, according to the RCP 4.5 and RCP 8.5 emission scenarios 
by 2099, based on rainfall from the RCA4-CNRM-CM5 model 
(Figure 9B). At the seasonal scale, these RCM-GCM projects winter 
(DJF) a decrease of 9 and 13% of the mean seasonal flows, respectively, 

according to the two emission scenarios, RCP  4.5 and RCP  8.5 
(Figure 9B).

In spring (MAM), the model indicates a little increase of 6% 
according to RCP 4.5 and no modification of the hydrological regime 
according to RCP 8.5 (Figure 9B). In summer (JJA), a decrease of 3 
and 14% of the runoff is projected by the model under RCP 4.5 and 
RCP  8.5, respectively (Figure  9B). In autumn (SON), the results 
indicate a significant decrease in runoff of more than 50% under both 
RCP 4.5 and RCP 8.5 scenarios (Figure 9B), which is principally due 
to the significant decrease in runoff in October.

Concerning the RCA4-MPI-ESM-LR model at the annual scale, 
the projected flows at the horizon 2099 show an increase of 11% 
according to the RCP 4.5, whereas the RCP 8.5 predicts a decrease of 
8% (Figure 10B). At the seasonal scale in winter (DJF), the model 
predicts a small increase of 5% according to RCP 4.5, while RCP 8.5 
simulates a decrease of 14% (Figure  10B). In spring (MAM), the 
model projects an increase in runoff of 25% according to RCP 4.5 over 
the period 2070–2099; however, this increase is less important 
according to RCP  8.5 and does not exceed 5% (Figure  10B). In 
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Seasonal and annual projected change in flow at the Chiffa catchment of (A) raw and (B) bias-corrected (Quantile mapping) climate model RCA4-
CNRM-CM5 according to RCP 4.5 and RCP 8.5 over the period (2070–2099).
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Seasonal and annual projected change in flow at the Chiffa catchment of (A) raw and (B) bias-corrected (Quantile mapping) climate model RCA4-MPI-
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summer (JJA), RCP 4.5 shows an increase in runoff that exceeds 20%, 
while RCP  8.5 predicts a decrease of 20% (Figure  10B). For the 
autumn season, the model predicts a significant reduction in runoff 
of 46 and 69% respectively, according to RCP  4.5 and RCP  8.5 
(Figure 10B).

The coefficient of determination (R2) results (Table 5) demonstrate 
the significant improvement in model performance achieved through 
bias correction using the Quantile mapping (QM) method. For the 
raw RCM-CORDEX models, R2 values ranged between 0.44 and 0.53, 
indicating moderate performance in simulating observed flows. 
However, after applying the QM bias correction method, the R2 values 
increased substantially, ranging from 0.83 to 0.97, showing excellent 
agreement between simulated and observed flows. The most notable 
improvement was the market for the RCA4-MPI-ESM-LR model 
under the RCP 4.5 scenario, where R2 increased from 0.45 to 0.97, 
followed by RCA4-CNRM-CM5 under the RCP  4.5 with an 
improvement from 0.53 to 0.95. These results demonstrate the 
effectiveness of the QM bias correction method in enhancing the 
reliability of flow projections from RCM-CORDEX models.

4 Discussion

The performance of the GR2M model on the Chiffa basin showed 
that it was able to reproduce the hydrological response adequately 
during both calibration and validation periods. This result was in 
harmony with several previous studies showing successful application 
of this model in Algerian catchments such as the Kebir Rhumul basin 
in Eastern Algeria, where a good simulation of flow by the GR2M with 
a Nash criterion higher than 0.80 is obtained (Sakaa et al., 2015). 
Hadour et al. (2020) report results showing the high performance of 
the GR2M model in the Chellif basin (northern Algeria), with a Nash 
value of 73.6 and 75.8% estimated, respectively, in the calibration and 
validation periods. In the Mitidja basin (northern Algeria), Hallouz 
et al. (2018) showed satisfactory results in the validation of the GR2M 
with a Nash value higher than 60%. The results obtained in this study 
and previous ones could confirm GR2M as a suitable model for 
hydrological application in this region of the world.

A notable finding was the model’s enhanced performance during 
the validation period compared to the calibration period (Nash values 
increasing from 77.5 to 99%). This improved performance can 
be  attributed to the more humid hydrological regime during the 
validation period compared to the calibration period (1981–2000) and 
improved data quality. This behavior aligns with previous research 
demonstrating that rainfall-runoff models calibrated under dry 
conditions often show improved performance during wetter validation 
periods (Dakhlaoui et  al., 2020; Coron et  al., 2012). This pattern 
suggests the model parameters are robust rather than overfitted to 

specific climatic conditions, enhancing confidence in its application 
for future projections.

Overall, the RCA4-CNRM-CM5 and RCA4-MPI-ESM-LR 
models reproduce correctly the seasonality of temperature over the 
Chiffa basin during the reference period, which was confirmed by 
several previous studies that found that temperature does not have a 
significant spatial variability, and climate models are generally able to 
reproduce it correctly over the study area and over Algeria (Meddi and 
Meddi, 2009; Taibi et al., 2013; Bessaklia et al., 2018; Drouiche et al., 
2019; Taibi et al., 2019).

For the RCA4-CNRM-CM5 model, the two bias correction 
methods give similar results in terms of future changes in precipitation. 
Similar results were found in several previous studies that have 
compared different methods of bias correction (e.g., Obada et al., 
2016; Priyanko et al., 2022).

A detailed comparison of the two bias correction methods 
revealed distinctive patterns in their effectiveness for precipitation 
adjustment. For the RCA4-CNRM-CM5 model, both Quantile 
mapping and Delta methods showed comparable performance, with 
similar precipitation change patterns.

The Quantile mapping method demonstrated significant bias 
reduction capabilities, particularly in representing the full range of 
precipitation distribution, which is important for our catchment-scale 
analysis. This effectiveness was evidenced in other regions, such as 
Vietnam, where bias reductions of 3 to 45% were achieved in the 
regional model (RegCM) of the Cordex-SEA project. This project was 
piloted by five global climate models (CNRM-CM5, MPI-ESM-MR, 
EC-Earth, CSIRO, and GFDL-ESM2M) of the CMIP5 phase during 
the period (2046–2065) (Trinh-Tuan et al., 2018). In the Volta basin, 
where biases were reduced by −9 to 5% for the precipitation simulated 
by the raw data under the four Cordex–Africa project models of the 
RCA4 model forced by four global circulation models (MPI-ESM, 
CNRM-CM5, HadGEM2-ES, and CCLM4) at the level of the Volta 
basin (West Africa) on the horizon 2080 (Yeboah et al., 2022).

For the RCA4-MPI-ESM-LR model, the Delta method always 
shows a greater reduction of the change in precipitation, which is 
confirmed by previous studies such as Taibi et  al. (2021b). They 
compared two bias correction methods (Quantile mapping and Delta 
method) on the evolution of precipitation simulated by two models 
(CNRM-CM5 and MPI-ESM-MR) of the Cordex-Africa project at the 
level of the Oran coastal basin during the projection period (2075–
2099). Their results indicate that the Delta method delivered less biased 
results of −27% and −47% for the RCA4-MPI-ESM-LR model. Miralha 
et al. (2021) also found that the Delta method outperformed the other 
bias correction techniques used in this study (Delta, Linear empirical, 
Quantile mapping, and Quantile Delta mapping), and was applied to 
bias correct the four CMIP5 project models (CCSM4, CNRM-CM5, 
IPSL-CM5A-MR, and MPI-ESM-MR) over the period (2046–2065) on 
the Maumee River in the United States (Giuntoli et al., 2018).

In our study, the Quantile mapping method was particularly 
relevant given that the Oued Chiffa catchment (315.68 km2) is smaller 
than one RCM grid cell of Cordex-Africa (~50 km  ×   
50 km = 2,500 km2). This method effectively provided additional 
statistical downscaling of the RCM output to fit the catchment scale, 
complementing the dynamical downscaling from the GCM 
(horizontal grid ~150 km  ×  150 km) to the RCM grid 
(~50 km × 50 km), this could explain the important reduction in 
precipitation change in bias-corrected RCM-GCM compared to 
raw simulation.

TABLE 5 The results of the coefficient of determination (R2) of raw and 
corrected (QM) flows from RCM-Cordex models.

Coefficient of determination (R2)

Models Raw Corrected (QM)

RCA4-CNRM-CM5 RCP 4.5 0.53 0.95

RCA4-CNRM-CM5 RCP 8.5 0.44 0.89

RCA4-MPI-ESM-LR RCP 4.5 0.45 0.97

RCA4-MPI-ESM-LR RCP 8.5 0.53 0.83
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However, we recognize that hydrological modeling in the Chiffa 
catchment is challenging since RCM-GCM is not designed to 
represent precipitation features at a spatial scale smaller than their grid 
(Hakala et al., 2018).

Any bias correction method has limitations. The two bias 
correction techniques used in this study were univariate ones, which 
imply temperature and precipitation and have been corrected 
separately. The technique’s limitation is that they do not take into 
consideration the intervariable dependence between climate variables. 
We propose the use, in future studies, more sophisticated techniques, 
such as multivariate bias correction (Cannon et al., 2020), that take 
into consideration intervariable dependence.

The results of hydro-climatic projection over the Chiffa 
catchment confirm results obtained by previous studies with 
different and/or earlier generations of climate models. For the 
precipitation, the overall results obtained on the future evolution of 
precipitation are concordant with previous studies in the 
Mediterranean region, including the Chiffa catchment (Zanis et al., 
2008; Coppola and Giorgi, 2010; Ceglar et al., 2014; Babaousmail 
et al., 2022). Schilling et al. (2020) reported about a −20% to −40% 
decrease in projected mean precipitation over most parts of the 
Mediterranean region by the end of the 21st century, especially in 
Algeria and Morocco. Indeed, Driouech et al. (2020) showed that the 
Mediterranean area would experience a significant drying up by the 
end of the 21st century according to RCP 8.5, particularly over the 
western part of the MENA region, including Algeria. Their results 
indicate a reduction in total precipitation amounts ranging from 
−5% to −20% and exceeding −40% in the west of the 
Atlas Mountains.

For PET, results in the present study show an important increase 
in the evaporative demand for all seasons, which is in concordance 
with other studies already done in the Mediterranean basin. Indeed, 
Aubé (2016) found a 20% increase in PTE in the Rhone Mediterranean 
and Corsica basin by 2046–2065. Acharki et al. (2019) also showed 
that the autumn season is characterized by a high increase in 
evapotranspiration, which is about 60% over the projection period 
(2021–2050) in northern Morocco. In Algeria, Hadour et al. (2020) 
highlighted a 35 mm increase in PET by the end of the 21st century for 
the four seasons of the year in some basins of northwestern Algeria. 
Taibi et al. (2021a) found an increase in future PET that exceeds 30%, 
particularly in summer by 2100 in the Ain Dalia catchment located in 
eastern Algeria.

We recognize that the projected PET by a temperature-based 
formula as the Thornthwaite formula used in this study, could 
overestimate the projected increase in PET compared to a physically 
based formula such as Penman-Monteith that takes into consideration 
the change in the major physical variables leading to the evaporative 
demand (air temperature, vapor pressure, net radiation, and wind 
speed). The Thornthwaite formula’s primary limitation lies in its sole 
reliance on temperature, which may not fully capture the complex 
interactions between climate variables affecting evapotranspiration, 
particularly in a changing climate context. This simplification could 
lead to potential biases in extreme seasons; especially during summer 
when other factors like wind speed and relative humidity play an 
important role in the evaporative process. However, several studies 
showed the low sensitivity of hydrological projection to PET 
formulation, especially for semi-arid regions (Oudin et  al., 2005; 
Dakhlaoui et al., 2020), which is the case of our study catchment. The 

seasonal analysis of flow reduction indicates a more pronounced 
decrease, which is consistent with the projected decrease in 
precipitation. This seasonal pattern of flow reduction has significant 
implications for water resource management, particularly for 
irrigation planning and reservoir operation during the dry season.

For flows, the overall results obtained in this study show a decrease 
in flows by the end of the 21st century in Oued Chiffa. This reduction 
shows significant seasonal variations, with more pronounced 
decreases during the wet season (October–May) compared to the dry 
season. These seasonal patterns have important implications for water 
resource management, particularly regarding storage requirements. 
This projected decrease is in agreement with several studies conducted 
in several regions of the Mediterranean basin. For example, Nerantzaki 
et al. (2019) found a 24.2% decrease in flows in Greece by 2100. In 
Italy, the study by Perra et al. (2018) showed a 31% reduction in flows 
over the period (2041–2070) in the Rio Mannu catchment in southern 
Sardinia, while in France, on the Hérault River located in the south of 
the region that flows into the Mediterranean Sea at Agde, models 
predict a 7% decrease in flows by 2085. This observed impact is 
frequently recorded in the Mediterranean basin due to the sensitive 
vulnerability of this region to variations in rainfall and drier, warmer 
conditions (Coppens et al., 2020).

The hydrological simulation and projection in Oued Chifa were 
performed over a monthly time step; however, northern Algeria is well 
known for its torrential pluvial events. These extreme precipitation 
events are particularly challenging to model as they can generate 
significant flash floods and represent a substantial portion of the 
annual water balance in semi-arid regions. Additionally, it is important 
to consider resilient precipitation events that persist despite overall 
trends toward drier conditions, as they can also significantly 
contribute to the hydrological cycle.

Climate change is likely to affect not only the frequency but also 
the intensity of these events, potentially leading to more severe 
flooding episodes despite an overall decrease in annual precipitation. 
We recognize that any future change in precipitation intensity could 
have a big impact on the hydrological response and affect the proposed 
hydrological projection.

To better consider these complex interactions in future studies, 
we recommend implementing multivariate bias correction methods 
that can preserve the interdependence between different climate 
variables (such as temperature, precipitation, and humidity). These 
methods would be particularly relevant for semi-arid regions where 
the interaction between extreme and resilient precipitation events 
strongly influences the hydrological response. Furthermore, the use of 
high-resolution climate models coupled with event-based hydrological 
modeling could provide more accurate representations of intense 
precipitation events and their impacts on flash floods, which are 
important for water resource management and flood risk assessment 
in the region.

5 Conclusion

The objective of this study was to assess the impact of climate 
change on the flows of the Chiffa basin, which necessitates combining 
a hydrological model with climate model simulations. All the results 
obtained indicate a decrease in rainfall by 2099 at the scale of our 
study area.
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Initial analysis of raw rainfall simulations from two RCM-GCMs 
from the Africa-Cordex project (RCA4-MPI-ESM-LR and RCA4-
CNRM-CM5) during the reference period (1981–2010) indicates an 
important bias of 50%. This is primarily due to the models’ limitations in 
representing regional atmospheric processes and local topographic effects 
characteristic of the Mediterranean region, with particular difficulties in 
reproducing extreme precipitation events and interannual variability. 
They are crucial elements for reliable hydrological modeling. These 
limitations necessitated the implementation of bias correction techniques 
to improve the reliability of future projections.

Following an application of bias correction, it is found that the 
difference between the future simulated rainfall corrected by the two bias 
correction methods (Quantile mapping and Delta change) by 2099 is 
significantly reduced biases in rainfall simulations compared to the 
uncorrected rainfall. This is due to the corrected simulated rainfall 
achieving a closer alignment with observed precipitation patterns. 
We observed significant improvements in model performance, with the 
coefficient of determination (R2) increasing from 0.44–0.53 to 0.83–0.97, 
demonstrating a better representation of observed flow patterns. This 
indicates that the two bias correction methods used (Quantile mapping 
and Delta change) have proven to be effective in adjusting the seasonal 
and annual mean precipitation simulations (2074–2099) of the RCM 
(CNRM-CM5 and MPI-ESM-LR) to the observed precipitation values 
(1981–2010).

However, each correction method presented specific limitations: 
Quantile mapping occasionally introduced physical inconsistencies in 
the relationships between variables, while Delta change, although 
preserving temporal variability, may not fully capture changes in 
future precipitation distribution patterns. Despite these limitations, 
both methods substantially enhanced the model outputs’ reliability for 
future projections.

The projected flows from the bias-corrected RCM-GCM during 
the period (2070–2099) showed a decrease of 5 and 10%, respectively, 
for RCP 4.5 and RCP 8.5 compared to the reference period, with more 
pronounced reductions during the winter and autumn seasons. This 
difference between scenarios (5% vs. 10%) provides a quantifiable 
measure of the uncertainty in future climate projections.

The methodological uncertainty was also present in our bias 
correction approach, though it was significantly reduced through the 
application of multiple correction methods. The seasonal changes in flow 
patterns have significant implications for water resource management in 
the Chiffa basin. The projected decrease in winter and autumn flows 
could particularly impact agricultural activities, since these seasons are 
crucial for soil moisture recharge and winter crop irrigation. Urban water 
supply may experience increased pressure during these periods, 
potentially requiring adaptation measures such as improved storage 
capacity or demand management strategies. Furthermore, the decreased 
flows during these seasons could affect ecosystems, particularly for 
aquatic habitats and riparian vegetation that rely on seasonal flow 
patterns. These findings suggest the need for integrated water resource 
management strategies should consider both human water needs and 
environmental flow requirements.

Therefore, the results obtained in this study are in full agreement with 
previous studies, strengthening our confidence in our findings conducted 
at the scale of the North African and Mediterranean regions. For example, 
De Girolamo et al. (2022) indicate that climate model projections for the 
period 2030–2059 predict reductions in the mean annual flow of up to 21 
and 39% for the Celone River (Southern Italy) under a Mediterranean 
climate. Similarly, the study by Madani et al. (2024) in North Africa 

projects flow reductions ranging from 35 to 43%, with more severe 
impacts under the RCP 8.5 scenario for the period 2069–2099 in the 
Oued Abid catchment (Northern Tunisia).

Based on our findings, we recommend several directions for future 
research and water management: the implementation of multivariate bias 
correction methods (Cannon et al., 2020) would better preserve inter-
variable dependencies, particularly between temperature and 
precipitation; the utilization of higher-resolution climate data (≤10 km) 
would improve the representation of local topographic effects; and the 
application of ensemble modeling approaches using multiple GCMs, 
RCMs, and hydrological models would better characterize uncertainty 
ranges and provide more robust projections.

For practical water management, our results suggest the need for 
specific adaptation strategies, including modified reservoir operation 
rules, drought-resistant crop selection, and enhanced water 
conservation measures. These strategies should be designed to address 
the projected seasonal changes in water availability, especially the 
more pronounced reductions in winter and autumn flows.

In conclusion, this study strengthens the extensive evidence of 
climate change impacts on North Africa and the Mediterranean 
region, underscoring the necessity of robust methodological rigor in 
climate impact assessments. The demonstrated effectiveness of bias 
correction methods, coupled with a comprehensive understanding of 
their limitations, provide valuable insights for future climate impact 
studies. The alignment of our results with other regional studies 
strengthens confidence in our projections while acknowledging the 
continuing challenges of accurately representing local-scale processes.

The integration of more sophisticated modeling approaches, 
combined with robust uncertainty quantification and practical 
adaptation strategies, will be  crucial for effective water resource 
management in the face of climate change.

In order to enhance the robustness of future climate impact 
assessments in the region, we strongly recommend the use of multiple 
climate models and bias correction methods to capture the complete 
range of uncertainties. This comprehensive approach, combined with 
detailed analyses of local conditions and specific adaptation 
requirements, will support better informed decision-making for 
sustainable water resource management in the Chiffa basin and 
similar Mediterranean watersheds.
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