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Convolutional long short-term
memory neural network for
groundwater change prediction

Sumriti Ranjan Patra and Hone-Jay Chu*

Department of Geomatics, National Cheng Kung University, Tainan City, Taiwan

Forecasting groundwater changes is a crucial step towards e�ective water

resource planning and sustainable management. Conventional models still

demonstrated insu�cient performance when aquifers have high spatio-

temporal heterogeneity or inadequate availability of data in simulating

groundwater behavior. In this regard, a spatio-temporal groundwater deep

learning model is proposed to be applied for monthly groundwater prediction

over the entire Choushui River Alluvial Fan in Central Taiwan. The combination

of the Convolution Neural Network (CNN) and Long Short-TermMemory (LSTM)

known as Convolutional Long Short-Term Memory (CLSTM) Neural Network

is proposed and investigated. Result showed that the monthly groundwater

simulations from the proposed neural model were better reflective of the original

observation data while producing significant improvements in comparison

to only the CNN, LSTM as well as classical neural models. The study also

explored the performance of the Masked CLSTM model which is designed to

handlemissing data by reconstructing incomplete spatio-temporal input images,

enhancing groundwater forecasting through image inpainting. The findings

indicated that the neural architecture can e�ciently extract the relevant spatial

features from the past incomplete information of hydraulic head observations

under various masking scenarios while simultaneously handling the varying

temporal dependencies over the entire study region. The proposed model

showed strong reliability in reconstructing and simulating the spatial distribution

of hydraulic heads for the following month, as evidenced by low RMSE values

and high correlation coe�cients when compared to observed data.
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1 Introduction

Groundwater is a vital resource of freshwater that is being utilized for a variety

of purposes such as agriculture, drinking, and industrial production (Famiglietti, 2014;

Kulkarni et al., 2015; Megdal et al., 2015; Mukherjee, 2018). Recently, significant global

warming, e.g., rise in global temperature (Sen, 2009; Zhang et al., 2022), rapid unchecked

population growth, and urban expansion (Deacon et al., 2007; Famiglietti, 2014), has

adversely affected these groundwater resources. Monitoring groundwater changes is an

important step for its planning and management (Bai and Tahmasebi, 2023) which

could ultimately lead to its sustainable usage (Solgi et al., 2021). However, developing

spatio-temporal groundwater prediction models that accurately quantify and represent the

complexity of groundwater systems still poses a serious challenge since the fluctuations

are heavily controlled by temporal and spatial variations of rainfall, pumping, and land

cover change.

Using advanced machine learning and deep learning adequately captures the spatio-

temporal dependencies of groundwater levels without requiring any knowledge of the

underlying physical process, making such models more efficient. One of the most popular

neural network models adopted for time series prediction has been the long short-term
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memory (LSTM) (Hochreiter and Schmidhuber, 1997), which

is superior in capturing the long-term dependencies and was

originally created to solve the vanishing gradient problem

in the recurrent neural network (RNN). The LSTM model

has demonstrated great forecasting capabilities in groundwater

research (Solgi et al., 2021; Vu et al., 2021; Wu et al., 2021;

Sun et al., 2022). However, it has been shown to perform poorly

when the modeling involves prediction over a large number of

time series sequences simultaneously (Patra et al., 2023). In this

regard, convolutional neural network (CNN) can capture spatial

features effectively that has also shown tremendous performance

for spatio-temporal modeling in groundwater field (Wunsch et al.,

2021; Hakim et al., 2022). Although the performance of standalone

CNN and LSTM models has been varied across regions and

might not capture spatio-temporal variation effectively. In this

context, the convolution process can be integrated with LSTM as

convolutional long short-term memory (CLSTM) neural network

that provides a great alternative for spatio-temporal modeling

tasks, especially in environmental and hydrological modeling. This

integration showed its superiority for accurate air quality prediction

in comparison to various statistical and deep learning models

(Zhang and Li, 2022). Furthermore, the CNN-LSTM was also

shown to outperform standalone CNN and LSTM models for

a variety of environmental modeling applications such as water

quality (Yang et al., 2021), multiple lakes water level (Barzegar et al.,

2021), and river flow prediction (Li et al., 2022). For groundwater

prediction, the CNN-LSTM model produced more accurate

groundwater simulations than the traditional LSTM and CNN

architecture (Seo and Lee, 2021; Yang and Zhang, 2022). However,

most of these studies relied on various hydrometeorological and

remote sensing variables, making their model applicable with such

complete dataset.

The current literature on groundwater prediction using neural

networks reveals a noticeable gap in the implementation of

spatio-temporal reconstruction, particularly within the context of

the CLSTM model through image inpainting. The fundamental

principle of image inpainting is to explicitly use neural models to

recover missing pixels based on the information in the existing

parts of the image. Image inpainting in the field of computer vision

applications has been gaining great attraction that helps restore

damaged or incomplete images with missing or unknown pixel

values. Advanced neural techniques have been proposed to restore

high-quality images (Zhu et al., 2018; Wang et al., 2021; Quan

et al., 2022; Chen et al., 2023) while also evolving considerably

for spatio-temporal data prediction (Bapaume et al., 2021; Liu and

Liu, 2022; Liu et al., 2023). The primary objective of this research

is to fully embrace the potential of leveraging this innovative

method for data recovery in groundwater monitoring when

facing challenges such as incomplete information in modeling

due to sensory errors or power outages. The integration of

image inpainting into the existing framework could prove to

be a pivotal solution in addressing data availability issues in

groundwater modeling. This novel approach marks a crucial step

forward in introducing a CLSTM technique for enhancing the

reliability of groundwater simulations, which was not considered

in previously related studies (Seo and Lee, 2021; Yang and Zhang,

2022).

Addressing the highlighted research gaps, this study primarily

concentrates on achieving the following objectives and making

significant contributions to fill the identified voids in the existing

literature: (1) A hybrid integration of CNN and LSTM, i.e., CLSTM,

was proposed for next-month hydraulic head prediction by solely

using its current observations and compared to its standalone

counterparts, i.e., CNN and LSTM. (2) Spatio-temporal hydraulic

head forecasting task using CLSTM was further formulated as

an image inpainting problem under various masking scenarios to

propose a modified model known as Masked CLSTM. The rest

of this article is compiled as follows. The study area adopted for

this research and a detailed description of the adopted dataset are

introduced in Section 2. Section 3 presents the framework of each

model along with the experimental setup conducted for the image-

based monthly hydraulic head forecasting and its inpainting. The

experimental results and their subsequent discussions are described

in Sections 4 and 5, respectively, whereas the final conclusions are

drawn in Section 6.

2 Materials and study area

2.1 Study area

The hydrological area adopted for this study was the Choushui

River Alluvial Fan (CRAF), situated on the western coast of Central

Taiwan within Changhua and Yunlin County (Figure 1a). The

alluvial fan approximately covers 1,800 km2 area and has primarily

been subdivided into distal, mid, and proximal fans. In general,

the eastern mountainous region is designated as the proximal

fan, where a majority of the aquifer recharge occurs since the

area is predominantly composed of coarse sand and gravel (Jang

et al., 2008b). The west includes mid- and distal fans with a

thicker aquifer system mainly comprising of silt and clay. The

sediments in CRAF, such as quartzite, shale, sandstone, mudstone,

and metamorphic, originate through the rock developments in

the upstream watershed (Liu et al., 2004). CRAF is an important

agricultural hub in Taiwan where groundwater extraction is

conducted for a variety of purposes ranging from irrigation to

aquaculture as well as industrial needs. A long-term survey of

groundwater pumping in the area between 1970 and 1990 revealed

that a total volume of 1.02 billion m3 per year was withdrawn

from the aquifer system (Jang et al., 2008a), while a more recent

study indicated the annual figures to be crossing 3 billion m3 (Lee

et al., 2018). The region regularly suffers from drought (Wang et al.,

2019) and aquifer salinization (Liu et al., 2003), while the most

predominant issues are caused by land subsidence (Tung and Hu,

2012; Wang et al., 2015; Ali et al., 2020; Chen et al., 2021; Chu et al.,

2021b,a; Hung et al., 2021; Ku et al., 2022; Ku and Liu, 2023; Tatas

et al., 2023) due to severe groundwater withdrawals. This issue has

inflicted various socio-economic impacts on the area that alluded

to water security and the safety of critical infrastructures such

as the Taiwan High-Speed Rail. As per the subsurface geological

survey conducted between 1992 and 1998 (Jang et al., 2008a), the

alluvial fan mainly consists of four aquifers, where “Aquifer-I” is

the unconfined layer while the remaining represent confining units,

i.e., “Aquifer-II,” “Aquifer-III,” and “Aquifer-IV” (Figure 1b). The
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Aquifer-II has the largest spatial extent and is the primary source

of freshwater for the local population. Each aquifer is separated by

a thick semi-permeable material known as aquitards and is defined

by T1, T2, and T3. These aquitards are most prevalent in the distal

and mid-fan areas.

2.2 Data

The hydraulic head measurements were collected from an

extensive network of 51 monitoring wells spread across CRAF

(Figure 1a) established by the Water Resource Agency of Taiwan.

The measurements collected in this study spanned 21 years,

starting from January 2001 to January 2022. These near-real-

time monitoring wells measure the head changes within the

aquifer system, particularly in “Aquifer-II.” The monitoring wells

were selected following an initial assessment where <5% of the

data were missing. Since the primary objective of this study

was to conduct monthly spatio-temporal groundwater prediction,

firstly, the daily observations were transformed to monthly

average values. A hydraulic head data cube (monthly image time

series) was generated using the spatial interpolation technique,

i.e., inverse distance weighting (Shepard, 1968). This method

automatically estimates monthly hydraulic heads based on the

nearby observations to appropriately generate images of 500m

× 500m resolution having a grid size of 158 × 105 within the

study area. We employed an adaptive IDWmethod that guarantees

a set number of nearest neighbors as local samples, offering a

more precise representation of spatial variability with less bias (an

average absolute bias: 2.07%). This approach enabled us to generate

a continuous data cube of hydraulic head, which was crucial for

the modeling in this study. The method was chosen due to its

demonstrated success in previous groundwater studies conducted

over CRAF (Ali et al., 2020, 2021; Chu et al., 2021a,b; Tatas et al.,

2022).

A total of 253monthly uninterrupted images of hydraulic heads

spanning over 21 years were prepared in this study for spatio-

temporal groundwater modeling. For proper evaluation of these

spatio-temporal models, the data cube of the hydraulic head was

segregated into a training set that consisted of 180 images (from

January 2001 to December 2015), while the remaining 73 images

(from January 2016 to January 2022) were used as evaluation set,

with further subdivision into validation set (2016–18) and testing

set (2019–22/01).

3 Methods

Figure 2 shows the standalone CNN, LSTM, and hybrid

CLSTM as image-based model structures in the context of

groundwater autocorrelation modeling proposed in this study.

3.1 CNN and LSTM models

A CNN architecture was proposed in this study having

one convolution layer with max pooling followed by a hidden

and an output layer (see Figure 2a). CNN incorporates specific

feature extraction using convolution operations to process high-

dimensional datasets. CNN includes filters with varying sizes or

capacities to extract any relevant features from a particular portion

of the image. Filters have the capability to slide across images to

extract important features from various parts of the image. The

versatility of CNN involves greater control over the size, number,

and movement of these convolution filters across multiple images.

In this study, 2D convolution filter was utilized. Equation 1 is

provided to illustrate the 2D convolution operation (Yang and

Zhang, 2022):

F
(

i, j
)

= (I∗K)
(

i, j
)

=
∑

m

∑

n

K(m, n)I(i+m, j+ n) (1)

where F
(

i, j
)

is the feature map at a specific position
(

i, j
)

after

convolution; K and I represent the size of the convolution filter

and input image array, respectively. As the convolution filters slide

across the image to extract relevant features, the corresponding

feature elements are multiplied and summed. The feature map is

then processed by an activation function to make it non-linear.

Following the convolution process, the ReLU activation function

introduces non-linearity into the network, enabling it to capture

andmodel complex patterns and relationships. A pooling operation

is conducted to downscale the feature map to preserve the most

important information. Later, the downscaled 2D featuremap array

is flattened into a 1D vector before feeding it to a fully connected

layer. Finally, the reshape function was used to transform the 1D

prediction vector to a spatial image of next-month hydraulic heads

(Figure 2a).

The LSTM models are critically acclaimed in various research

works dealing with time series prediction, especially in the realm

of groundwater (Solgi et al., 2021; Vu et al., 2021; Sun et al., 2022;

Patra et al., 2023). A representation of the standalone LSTMmodel

structure in the context of groundwater modeling proposed in this

study is provided in Figure 2b. The LSTM architecture proposed in

this study has one LSTM cell, a hidden and an output layer. The

2D image array was first flattened into a 1D vector before being

fed to the LSTMmemory cell and subsequent hidden layer. Finally,

a reshape function was added to transform the output 1D vector

to the original 2D array representing the spatial images of next-

month hydraulic heads. Through its exclusive memory cell, LSTM

has been known to handle long dependencies over large sequences

(Hochreiter and Schmidhuber, 1997). This memory cell includes a

gating mechanism that regulates the flow of information within a

conveyor-belt-like structure known as cell state that gets updated

based on the information that was kept or removed. The gating

mechanism consists of a forget gate, an input gate, and an output

gate, each involved in a specific task of regulating the information

that is being fed within the LSTM memory cell. A brief description

of the working principle of these gates is provided in the Appendix.

3.2 CLSTM hybrid model

For spatio-temporal time series prediction involving many

multivariate sequences, it would be advantageous to consider

the ability of CNN to extract useful spatial information, and
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FIGURE 1

Choushui River Alluvial Fan (CRAF) in Central Taiwan with (a) locations of monitoring wells and (b) geological profile of the aquifer system (A–A
′
)

(Hung et al., 2010).

incorporate it with a dynamic LSTM memory cell for handling

temporal dependencies that would serve the purpose of accurate

and reliable spatio-temporal prediction of groundwater. A hybrid

integration of convolution operation with LSTM in the form

of CLSTM model (Seo and Lee, 2021; Yang and Zhang, 2022)

was tasked with autoregressive forecasting of monthly images
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FIGURE 2

Groundwater model architectures of (a) CNN, (b) LSTM, and (c) CLSTM.

of hydraulic head distribution that simultaneously considers

the spatial interaction and temporal change in hydraulic head

fluctuations. Through this, the model can generalize over a

variety of hydraulic head sequences simultaneously, making

the task of spatio-temporal groundwater modeling much more

efficient. In this study, a comprehensive assessment of the CLSTM

architecture is proposed in comparison to the standalone LSTM

and CNN models for spatio-temporal groundwater forecasting.

Additional assessments were also conducted with traditional

multilayered perceptron (MLP) and RNN models (Müller et al.,

2021). The primary objective of this groundwater model was to

simulate the next month’s (t + 1) hydraulic heads based only

on the current month’s (t) hydraulic head (Equation 2). This

approach was finalized following a stepwise feature analysis that

examined lags of up to 4 months (t, t – 1, t – 2, t – 3). By

retraining sample models with the successive consideration of

each lag and comparing the resulting error metrics (RMSE and

r) (Figure A1), it was determined that lags beyond the current

month’s input (ht) did not significantly contribute to the model’s

predictive accuracy.

ht+1 = f
(

ht
)

(2)

where ht and ht+1 are the current and next month’s hydraulic

heads, respectively. The CLSTM model in this study uses a single

convolution layer followed by a max pooling layer for extracting

the most relevant spatial features pertaining to groundwater over

CRAF. Feature maps were then flattened and given to the LSTM

layer for handling the temporal change followed by a single hidden

layer. Finally, an output layer alongside the reshape function was

used to transform the 1D prediction vector to a spatial image of

next-month hydraulic heads (see Figure 2c).

3.3 Masked CLSTM

This study further analyzes the data recovery ability of

Masked CLSTM through spatio-temporal image inpainting for

time-varying groundwater simulation. The model was designed to

generate a complete next month (t+ 1) image of the hydraulic head

using the incomplete or masked current month (t) hydraulic head

image as inputs. TheMasked CLSTM expression can be represented

by the image inpainting problem proposed here, as shown below:

hct+1 = f (hmt ) (3)
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where hmt represents a masked (no-data) current month (t)

hydraulic head image; hct+1 represents a complete next month (t +

1) image of the hydraulic head.

This Masked CLSTM was inspired by the previously proposed

encoder–decoder architecture, a type of scalable vision learners

trained on masked random patches of input images to reconstruct

the missing pixels (He et al., 2022). In the context of Masked

CLSTM, the convolution unit acts like a spatial encoder for visible

subset (excluding masked tokens), which extracts spatial features

from the available data. The LSTM layer plays a pivotal role

of temporal decoder, reconstructing missing parts for the future

hydraulic head image from latent representation and masked pixels

from the input image through temporal variation (Figure 3). For

this, chosen wells were completely masked (red circles in Figure 1)

followed by IDW interpolation. Then, two masking scenarios

were further conducted over the resulting sequence of hydraulic

head images to introduce additional sporadic behavior in the

incomplete dataset: (1) random point masking and (2) regional

masking (Figure 4). Both scenarios evaluate the extrapolative ability

of the Masked CLSTM model on incomplete temporal images

and its precision to generate accurate spatio-temporal estimation.

The random point masking was set at 10% through 90% (see

Figures 4a–i). Here, the masking was temporally varying, i.e., each

image had different location pixels that were masked out. The

random masking scenario here is a preliminary case study where

the masking was temporally dynamic in nature. Each hydraulic

head image in the training or evaluation set had a unique masking

pattern, making it more representative of a real-world scenario

since intermittent sensor failures, data transmission issues, or

other unpredictable events are sporadic in nature. For the regional

masking, square-shaped mask windows of size (10, 10) were

appended to the hydraulic head images over locations in upstream

and downstream areas (Figures 4j, k) that removed the entire time

series sequence for those locations. This masking scenario mimics

issues when sensor or monitoring failure occurs for a prolonged

period. The time series at selected wells were visualized having been

masked consistently in all scenarios to assess model simulations

under the masking scenarios. These masked sequence of hydraulic

head images were being fed into CLSTMmodel for training, having

the target images that included the original dataset interpolated

through all groundwater monitoring wells. The parameter tuning

of the Masked CLSTM model through grid search was conducted

wherever necessary to evaluate their sensitivity to missing data

while training and improving its accuracy. The quality of the model

output, i.e., the completed image, was evaluated using root mean

squared error (RMSE) and correlation coefficient (r).

3.4 Data normalization, model calibration,
and its assessment

The data dimensionality significantly impacts the convergence

rate of deep learning models. The piezometric records from the

confined aquifer over CRAF had varying ranges owing to the

significant elevation change observed in the area. These piezometric

readings were normalized to a common range of [0, 1] for

accelerated model calibration and its convergence for accurate

predictions. Normalization was applied separately to the training

and evaluation datasets to prevent data leakage. The evaluation

dataset (2016–22/01) was normalized using the minimum and

maximum values derived from the training period (2001–15). For

this study, the normalization was carried out using minimum and

maximum values of a given pixel from the time series of hydraulic

head images (Equation 4).

h
′

(i,j) =
h(i,j) − hmin

(i,j)

hmax
(i,j)

− hmin
(i,j)

(4)

where h(i,j) and h
′

(i,j)
are the original and normalized hydraulic

heads at a given pixel location (i, j) in the hydraulic head image.

hmin
(i,j)

and hmax
(i,j)

define the minimum and maximum value obtained

at the given pixel location (i, j) based on the sequence of hydraulic

head images.

The model calibration was conducted over 15 years (2001–

15) of the training data for 200 epochs and the corresponding

assessment on the remaining 6 years (2016–22/01) of the evaluation

dataset that includes both validation (2016–18) and testing (2019–

22/01) sets. The objective (loss) function was set to mean squared

error (MSE) with “Adam” (Kingma and Ba, 2015) as the optimizer

for monitoring the status of model performance during the

calibration and parameter optimization process. The training was

conducted with an early stopping criterion to prevent overfitting, in

which it was set to terminate when no improvement in loss function

over the validation set was observed for 10 epochs. Subsequently,

two standard statistical criteria, i.e., RMSE (Equation 5) and r

(Equation 6) were used that adequately described the model’s

prediction skill for the hydraulic head. The RMSE and r values

at a given pixel location (i, j) were computed from the sequence

of hydraulic head images. Spatial error maps of RMSE and r

were generated for each model to provide a clear visualization

of the hydraulic head prediction accuracy at each location over

CRAF. The models discussed in this study were generated using

TensorFlow and Keras (Joseph et al., 2021) open-source libraries

(Python-3.9) on a laptop configured with Nvidia GeForce RTX

3070ti GPU with 8 GB GDDR6 memory coupled with an Intel
R©

CoreTM i9-12900H @ 3.80 Ghz CPU, 32 GB RAM, and Windows

11 home 64-bit operating system. The hyperparameter tuning of

the models was carried out using a grid search approach where

a set of values for each parameter was first given, and then all

possible combinations were tested out, and the combinations with

the lowest error were chosen as the final parameter values. The

parameter tuning was mainly focused on a number of nodes

and hidden layers, activation function, and number and size of

convolution filter.

RMSE(i,j) =

√

∑n
k=1

(

ho,k − hs,k
)2

n
(5)

r(i,j) =

∑n
k=1 (ho,k − ho)(hs,k − hs)

√

∑n
k=1

(

ho,k − ho

)2
∑n

j=1

(

hs,k − hs

)2
(6)

Here, ho,k and hs,k represent the observed and simulated

hydraulic head values, respectively, Similarly, ho and hs are
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FIGURE 3

Spatio-temporal image inpainting in groundwater modeling using Masked CLSTM based on masked dataset scenarios such as random point masking

and regional masking.

the mean values of the observed and simulated hydraulic head

sequence, respectively.

4 Results

4.1 Performance of CNN, LSTM, and
CLSTM models

Evaluation of model performances was carried out using

RMSE and correlation coefficient (r) for spatio-temporal hydraulic

head prediction. Figure 5 provides the spatial error distribution

maps obtained for the MLP, RNN, CNN, LSTM, and CLSTM

models. For the sake of brevity, we primarily focused on

analyzing model results over the evaluation dataset, which was

the unseen period (2016–22/01). The relative performance of

the hybrid CLSTM model showed much wider improvements

across the alluvial fan in comparison to the baseline models, i.e.,

MLP, RNN, LSTM, and CNN. The RMSE for the next month’s

hydraulic head simulations dropped from almost 2m to well

below 1m in coastal areas of Changhua County. Similarly, the

r value also jumped significantly from 0.6 to over 0.85 in many

locations as well here. Widespread enhancements in predictions

were also observed across areas of proximal fan and mid-fan

regions. RMSE values fell from 1m to nearly 0.6m here, while
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FIGURE 4

Randomly masked (a) 10%, (b) 20%, (c) 30%, (d) 40%, (e) 50%, (f) 60%, (g) 70%, (h) 80%, and (i) 90% for previous timestep; regionally masked (j)

downstream and (k) upstream of hydraulic head images.
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some areas close to mountains exhibited a remarkable drop

of almost 50% drop. The CLSTM (RMSE ∼3.3m) model also

demonstrated strong predictive skill in the southwest coastal

area (drawdown-dominated) of Yunlin County in comparison to

the MLP, RNN, LSTM (RMSE ∼5m), and CNN (RMSE 4–5m)

models. Consequently, r values also improved remarkably from

roughly 0.8 (MLP, RNN, and LSTM) and 0.7 (CNN) to 0.95 in

CLSTM model here. The nearby Central Yunlin area having severe

subsidence (Ali et al., 2020; Chen et al., 2021; Chu et al., 2021b;

Hung et al., 2021) witnessed noticeable improvements over several

locations RNN/LSTM (∼4m) and MLP/CNN (∼3m) to (2–2.5m)

in CLSTM model. However, the uncertainties are still prevalent in

this region, which could be attributed to the complexities inflicted

by geological changes due to significant vertical deformation as a

consequence of high groundwater abstraction. In some cases, the

r values from MLP, RNN, and LSTM (Figures 5f–h) were slightly

higher than the CLSTM model (Figure 5j), which indicates that

these models were still able to reasonably capture the overall trend

of groundwater fluctuations but had poor estimation accuracy

as per RMSE over many locations. Across the alluvial fan, all

models demonstrated relatively better predictive skills over the

Changhua region rather than Yunlin. This area has much more

extensive groundwater pumping than Changhua County, making

the spatio-temporal modeling a challenging endeavor by inflicting

several anthropogenic uncertainties. The RMSE values remained

well within 1m over most of the locations in Changhua, while

Yunlin witnessed an RMSE value >1.5m and sometimes even

crossing 3m from the best model, i.e., CLSTM proposed in this

study. This phenomenon could be explained by high variation

in groundwater in Yunlin where the standard deviation over

most locations ranges between 2 and 5.5m (variance: 10–35 m2)

and is significantly higher with respect to Changhua County

(0–2.5m). Currently, groundwater exploitation may not be a

serious issue in Changhua, which could be the primary reason for

such low groundwater variation and low RMSE values obtained

here. However, the CLSTM model can reasonably simulate the

groundwater changes across the alluvial fan simultaneously with

respect to baseline models for better water resource planning of

the whole groundwater basin, which are interconnected with one

another to some extent. Additionally, the optimal parameters for

the models are given in Table 1.

For the sake of brevity, the comparative analysis of the CLSTM

model from here on is mainly emphasized with CNN and LSTM,

as the performance of RNN was drastically poorer than LSTM,

whereas the MLP consistently underperformed compared to the

CNN, especially in terms of RMSE. The time series plots are

depicted in Figure 6 for the three models (CNN, LSTM, and

CLSTM) over six arbitrarily chosen wells spread across CRAF. It

is clearly observed that the peaks and troughs simulated by the

CLSTM model were the best reflections of the observations. The

residual plots for the evaluation set from CLSTM model nearly

followed a normal distribution (see Figure 7c) due to their strong

spatio-temporal contextual learning ability, and a slight skewness

was witnessed for both LSTM and CNN (Figures 7a, b). While

the LSTM model showed slightly better r values in comparison

to CNN and CLSTM models, through the graphical visualization,

it can be inferred that the CLSTM model adequately captured

the seasonal variability of the groundwater system and provided

the best estimation. This can also be further evidenced through

the simulated spatial distribution of hydraulic heads illustrated in

Figure 8, representing the recent winter (January 2021), summer

(July 2021), and fall seasons (October 2021). The summer and fall

periods are usually dominated by frequent downpours in Taiwan.

The spatial distribution of hydraulic heads simulated by the CLSTM

model was more accurate in representing the spatial distribution

of next-month groundwater condition. Overestimations were

witnessed in the summer season (July 2021) from the standalone

LSTM and CNN models in the southwest coastal area (drawdown-

dominated) of Yunlin County, as was evident from the RMSEmaps.

Furthermore, stepwise feature assessment on lags of up to 4 months

indicated that the current month (ht) input (Figures 5e, j) was the

best feature in driving the precision of model estimations, where

its removal considerably increased RMSE (>5m) and decreased

r (<0.1) (Figure A1) across the region. In addition to this, the

proposed CLSTM model outperformed and showed widespread

improvements in RMSE and r in comparison to other traditional

models such as MLP and RNN (Figures 5a, b, f, g). Additional

evaluation was also conducted bymodifying the periods considered

in training (2007–22/01) and evaluation (2001–2006) sets formodel

training. The spatial error maps for the evaluation set during 2016–

22/01 (Figure 5) or 2001–2006 (Figure A2) aremostly identical, and

CLSTM model manages to outperform the standalone CNN and

LSTM models. This shows the superiority of CLSTM while dealing

with image time series prediction of groundwater that combines the

relevant spatial features extracted by the convolution filter together

with the power of LSTM memory cell to simultaneously handle

various temporal dependencies, thereby improving the adaptability

and robustness of the combined model. Moreover, it is worth

pointing out that the CLSTMmodel was trained only using the past

observation of hydraulic head which could be a reliable surrogate

for the regional variability of rainfall and anthropogenic activities.

This makes the model proposed in this research more applicable

over a wider range of groundwater basins for near-real-time

groundwater monitoring and management through reliable spatio-

temporal forecasts of monthly hydraulic heads when adequate

availability of meteorological variables is relatively scarce. The

learning curves associated with the three models’ training are

provided in Figure A3 of the Appendix section. The learning curves

reveal important insights into the training process and performance

of the models. The LSTM model (Figure A3a) shows considerable

fluctuation in both training and validation loss, particularly in the

initial epochs, indicating challenges in stabilizing and generalizing

to spatial heterogeneity associated with regional groundwater

variation. The CNN model (Figure A3b) demonstrates a rapid

reduction in training loss, suggesting efficient learning of spatial

features. However, the greater variation in validation loss highlights

potential issues with temporal generalization. In contrast, the

CLSTM model (Figure A3c) exhibits a rapid and stable reduction

in both training and validation loss, reflecting its ability to

effectively capture both spatial and temporal dependencies. The

close alignment of training and validation losses for the CLSTM

model underscores its robust generalization capabilities, making it

better suited for regional modeling tasks compared to standalone

CNN and LSTMmodels. The spatial maps of RMSE and correlation

coefficient (r) obtained for the training subset through CNN,

LSTM, and CLSTMmodels are given in Figure A4.
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FIGURE 5

Spatial maps of RMSE (a–e) and r (f–j) obtained during the evaluation period (2016–22/01) from MLP, RNN, LSTM, CNN, and CLSTM models.

TABLE 1 Optimal parameters for MLP, RNN, LSTM, CNN, and CLSTMmodels.

Models Layers Filters Nodes Kernel/pool size Activation

MLP First hidden layer – 64 – ReLU

Second hidden layer – 32 – ReLU

Third hidden layer – 16 – ReLU

Fourth hidden layer – 8 – ReLU

RNN/LSTM RNN/LSTM – 64 – ReLU

Hidden layer – 64 – ReLU

CNN Convolution 64 – (3, 3) ReLU

Max pooling – – (2, 2) –

Hidden layer – 32 – ReLU

CLSTM Convolution 64 – (3, 3) ReLU

Max pooling – – (2, 2) –

LSTM – 32 – ReLU

Hidden layer – 32 – ReLU

Optimizer: Adam; loss function: mean squared error (MSE); Epochs: 200; early stopping patience: 10 epochs.

4.2 Spatio-temporal reconstruction in
groundwater forecasting

The Masked CLSTM model was also proposed and evaluated

under various masking scenarios in simulating complete spatial

images of monthly hydraulic heads. The spatial maps for RMSE

and r obtained for all random point masking scenarios over

the evaluation set are depicted in Figures 9, 10, respectively. All

obtained error maps having 10–90% masked pixels are somewhat

identical to the error distributions witnessed under the no masking

condition (Figures 5e, j). However, the model performance starts

to slowly deplete, beginning at 60% masking, especially in terms

of r (Figure 10f) with the most prominent errors observed for

80% (Figures 9h, 10h) and 90% (Figures 9i, 10i). Still, the Masked

CLSTM model showed greater data recovery capability with

80% and 90% missing pixels where over 90% of the data were
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FIGURE 6

Time series plots of the simulated groundwater by LSTM, CNN, and CLSTM models over six distinct wells (a–f) during training (2001–15) and

evaluation (2016–22/01) periods.

FIGURE 7

Distribution of model residue obtained for the evaluation period (2016–22/01): (a) LSTM, (b) CNN, and (c) CLSTM (unit: m).

adequately recovered, which is evident from their error distribution

maps (see Figures 9h, i, 10h, i). The (3, 3) sized convolution

filter developed in this study could still learn the contextual

information even after several missing pixels, which is indicative

of the superiority demonstrated by such advanced CNN-based

deep learning technique in the field of groundwater modeling.

The time series plots observed for six masked wells (red circle in

Figure 1) are also indicative of the high level of spatio-temporal

extrapolative ability of the Masked CLSTMmodel (Figure A5). For

all scenarios, the simulated hydraulic head values were much closer

to the originally recorded fluctuations. However, at 80 and 90%

masking, as previously indicated, the model predictions slightly
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FIGURE 8

Observed vs. simulated spatial distribution of hydraulic head from LSTM, CNN, and CLSTM models in January (a–d), July (e–h), and October (i–l) of

2021.

deviated more from the observation values at some locations.

The peaks and troughs were occasionally under-predicted due

to significant information loss. Still, the model showed potential

signs of adequate learning capabilities under masked scenarios

by authentically capturing the overall seasonal variability of the

masked locations, which is a sign of reliability over its simulated

groundwater conditions when significant dataset is limited. The

results reported in this section for random point masking were

based on the same model parameter values of CLSTM given in

Table 1.

For the regional masking scenario, the downstream region

that was selected from the Yunlin area is primarily used for

aquaculture activities, which induces various uncertainties in the

hydraulic head records. The upstream side is a major recharge

zone where most of the groundwater recharge occurs, thereby

heavy influence from natural hydrological cycles. The model under

two distinct hydrological conditions satisfactorily provides good

data recovery opportunities. The error maps (Figure 11) obtained

under two regions, specifically the masked areas (black squares),

retained relatively close RMSE and r values over most of the

masked pixels compared to the results with nomasking (Figures 5e,

j). However, some parts of the upstream side that were masked

(central) witnessed a slight increase in RMSE (Figure 11b). The

simulated sequences (Figures A6, A7) observed for both cases

within the masked region indicate that the model reasonably

predicts the hydraulic head in the masked coastal parts and the

upstream. There is less variance in the hydraulic head records in the

upstream area having limited pumping and reduced anthropogenic

interference. In contrast, the coastal side that was masked for

this case study is vastly covered with anthropogenic pumping

for aquaculture and several other uncertainties induced by the

infiltration from nearby fish ponds or leakage through the pumping

wells (Liu et al., 2003). However, the model adequately captures

the overall variability in the hydraulic head fluctuations and can

potentially provide reliable groundwater simulations under data-

limited conditions. It is important to point out that the most

influential hyperparameter of the model sensitive to masking

size, especially for the regional scenario, was found to be the

kernel size for convolution operation. The square mask size was

fixed at 10 × 10 pixels; therefore, the model’s image inpainting

performance worsened with any kernel size value lesser than (10,

10). The results reported in this section for the regional masking

scenario were achieved using the kernel size of (11, 11), while

the remaining parameters were left unchanged (Table 1). As a
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FIGURE 9

RMSE maps for the random point masking scenario in the evaluation set (2016–22/01) in Masked CLSTM considering (a) 10%, (b) 20%, (c) 30%, (d)

40%, (e) 50%, (f) 60%, (g) 70%, (h) 80%, and (i) 90% masking.

whole, the masking experiments conducted in this study provide

evidence of an overarching advantage of incorporating the Masked

CLSTM approach for simulating reliable groundwater conditions

at locations with sensory errors or power outages and thereby

contributing to its effective monitoring.

5 Discussion

5.1 CLSTM for spatio-temporal
groundwater modeling

The study highlights the effectiveness of the CLSTM hybrid

architecture as a superior alternative to the baseline LSTM and

CNN models in groundwater modeling. By extracting relevant

features through convolution filters and downsampling via max

pooling, the trained LSTM layer demonstrated the ability to

generalize across images, resulting in more accurate forecasts of

the future state of groundwater. The CLSTM model outperformed

the standalone LSTM model that is widely adopted for time

series prediction tasks. The standalone LSTM and CNN models

demonstrated extremely poor results in the drawdown-dominated

southwest coast, with RMSE almost touching 5m and r values

0.6–0.7, whereas the CLSTM model reduced RMSE 3.2m and

achieved better r value of about 0.9. The southwest coastal

region is characterized by significant groundwater drawdown due

to extensive pumping, leading to complex and high variance

in groundwater levels. Standalone CNN and LSTM models,

which might excel in capturing spatial or temporal patterns

individually, struggle to accurately model these interactions.

CNNs are primarily designed to capture spatial features but

lack the capability to effectively model temporal dependencies,
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FIGURE 10

Correlation coe�cient (r) maps of the random point masking scenario in the evaluation set (2016–22/01) in Masked CLSTM: (a) 10%, (b) 20%, (c) 30%,

(d) 40%, (e) 50%, (f) 60%, (g) 70%, (h) 80%, and (i) 90% masking.

which are crucial in regions with significant drawdown and

variable groundwater extraction rates. LSTMs are effective at

capturing temporal sequences but are not inherently designed to

model complex spatial heterogeneity, such as varying subsurface

conditions or localized pumping effects. This spatial heterogeneity

is particularly pronounced in drawdown-dominated regions,

leading to suboptimal performance when using LSTM alone.

These limitations resulted in poorer performance from standalone

models in regions where simultaneous consideration of spatial and

temporal dynamics is critical. Moreover, these models showed poor

performance in northern parts of Changhua and nearby coast,

where the improvement in RMSE and r was observed around

20%−50% from CLSTMmodel. Interestingly, the number of nodes

for the LSTM layer and the subsequent hidden layer reduced

from 64 to 32 in CLSTM when compared to the standalone

LSTM model (see Table 1). Such a considerable decrease in node

requirements can be attributed to the decreased complexity of

the LSTM layer after convolution and max pooling operations

since subsequent layers are only trained on downscaled but

essential features. A standalone LSTM model mostly performs

inefficiently for such tasks since it was not designed to handle large

multiple time series sequences simultaneously while considering

their interdependencies. In addition, the CLSTM converged faster

and required relatively less epoch to learn the spatio-temporal

dependencies, making it the most efficient model in our study.

This model also addresses one of the potential limitations in the

Local-LSTM models that were previously proposed (Patra et al.,

2023), each trained on single local well data over the same study

region. However, the trained Local-LSTM model was designed to

make groundwater forecasts on the remaining monitoring wells

in the region, which made its performance vulnerable to abrupt

changes in temporal characteristics over far away, located wells
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FIGURE 11

Spatial maps of RMSE (a, b) and r (c, d) in the evaluation set (2016–22/01) (note: black squares are the regionally masked areas) in Masked CLSTM for

regional masking scenarios at downstream and upstream.

that could make its estimation highly uncertain. This dilemma can

be effectively resolved by incorporating a prior convolution layer

with LSTM, i.e., CLSTM, enabling it to be trained simultaneously

on all locations at once and can effectively handle and generalize

across diverse sets of hydraulic head records with varying temporal

characteristics that are usually attributed to changes concurrently

within a single model. As demonstrated in this research, the

CLSTM model outperformed standalone as well as traditional

models, which is in alignment with the past claims demonstrated

by closely related research works. For instance, Seo and Lee (2021)

reported a 10%−12% improvement in RMSE and r with respect

to standalone LSTM for predicting groundwater storage change

in South Korea. Similarly, Yang and Zhang (2022) noted that

their hybrid integration of CNN and LSTM approach yielded a

significant increase in prediction accuracy, reducing error rates

by almost 33.6% in comparison to LSTM and other traditional

models for predicting groundwater level in middle and lower

reaches of the Heihe River, China. Further improvement in spatio-

temporal groundwater prediction can be achieved by incorporating

data from various sources, such as hydrometeorology and human

activities (pumping), if adequately available, that can in turn be

used to further generate groundwater projections for the long-term

under climate change scenarios.

5.2 Masked CLSTM in groundwater
modeling

Similar to the Masked Autoencoder (He et al., 2022), the

Masked CLSTM can operate as a spatio-temporal visual learner that

includes a convolution layer acting as spatial encoder extracting

useful features from the subset of hydraulic head images, such

as the patterns, gradients, and edges, that are crucial for filling

the missing pixels. This enables the following LSTM layer, which

is the temporal decoder of essential spatial features within the

hydraulic head fluctuations over time, such as trends, seasonal

variations, cycles, and long-term dependencies. The synergistic

integration of these layers drastically increased the adaptability

of the resulting model, allowing it to infer dynamically missing

information based on learned spatio-temporal dependencies or

self-similarity of groundwater levels. Even with 80% of the masked

pixel, the model achieved good performance, and the resulting

error map closely resembled the results obtained without any

masking. Although the data recovery from the model still starts

to be slightly affected from 60% masking while severe gaps were

observed at 90%. The model successfully recovered and predicted

the hydraulic head values when a considerable portion of pixels

was regionally obscured as a square shape in the upstream and
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the downstream coastal areas. The primary reason for Masked

CLSTM in achieving such reasonable performance was due to its

effective learning of spatial and temporal dependencies in spatio-

temporal image inpainting. The kernel size of the convolution filter

is one of the most influential parameters for spatio-temporal image

inpainting in this case. A larger kernel size enables the model to

learn more spatial contextual information for filling up larger pixel

gaps in the image, as observed in regional masking scenario.

The investigations illustrated in this study imply toward the

potential implementation of an AI-based image inpainting

approach in groundwater monitoring and management,

particularly on the inputs from sensors that are seldomly

obscured by power outages or sensor errors leading to the

unavailability of spatial signatures. This approach can be further

integrated into (1) operationalization of incomplete datasets where

water resource monitoring agencies/industry could benefit from

this research, thereby operationalizing these models that handle

incomplete data effectively which can lead to more efficient use

of available information, and (2) mitigation pertaining to data

collection challenges that usually involve time-consuming field

work, costly equipment, and inaccessible locations. The model can

provide reasonable estimates in the absence of certain information

and can be instrumental in mitigating these challenges and making

predictions possible with partial datasets. Previous studies (Seo and

Lee, 2021; Yang and Zhang, 2022; Moudgil and Rao, 2023) have not

yet explored the possibility of applying a deep learning-based image

inpainting in hydrological modeling, specifically for groundwater

studies. Our study would greatly benefit the groundwater field,

which heavily relies on field data, which may offer a promising

alternative to handle data quality/availability issues and contribute

to more reliable information on locations with missing data.

This study can provide innovative AI-driven model to critical

issues such as data inconsistencies that continue to plague the

groundwater field. Nevertheless, findings discussed in this work for

image inpainting are an indicator of high superiority and versatility

in advanced deep learning models for demonstrating powerful

learning, adaptability, and generalization capabilities under various

masking scenarios. The CLSTM model’s robustness is evident

in its performance across various regions of the Choushui River

Alluvial Fan, which is characterized by a wide range of geological

and climatic conditions. The model has shown strong predictive

capabilities in both high groundwater abstraction areas (e.g.,

Central Yunlin) and regions with less severe exploitation (e.g.,

Changhua County). The ability of the CLSTM to generalize well

across these diverse conditions suggests that it effectively captures

the underlying spatio-temporal patterns governing groundwater

dynamics where certain regions or time periods had missing data.

This would lead to a real-time Masked CLSTM model in capturing

the inter-variable dependencies under complex scenarios when the

locations and the shapes of the masks change temporally.

6 Conclusion

An effective CLSTM architecture was presented for spatio-

temporal prediction of groundwater variations and was then

assessed against the conventional LSTM and CNN models as well

as MLP and RNN. The hybrid model contains great forecasting

capabilities in temporal groundwater changes from LSTM and

captures spatial features of groundwater patterns using CNN.

The statistical evaluation of the simulations generated by these

models involved the use of RMSE and correlation coefficients across

the evaluation dataset. Results revealed that the CLSTM model

significantly outperforms MLP, RNN, CNN, and LSTM models in

most cases. This spatial feature extraction allows themodel to retain

essential spatial information and combine it with the temporal

dynamics processed by the LSTM layer. The model achieved

better simulations over most of the locations within upstream

and southwest pumping-dominated coastal regions of CRAF while

showing commendable improvements in the coastal regions of

Northern Changhua and its nearby coastal area. Moreover, Masked

CLSTM promoted a reliable assessment of the spatial distribution

of hydraulic heads simulated to make a well-informed decision on

the most appropriate approach for subsequent image inpainting

experiments. Consequently, the Masked CLSTM was tasked to

solve the spatio-temporal reconstruction problem using image

inpainting for groundwater prediction. This model demonstrated

greater capabilities in recovering the data under various masking

scenarios and provided acceptable results from the lagged hydraulic

head images with missing pixels, especially with 80% masking.

Results are indicative of the advantages and potential of adopting

Masked CLSTM beyond only groundwater prediction on historical

datasets to recover groundwater information over locations that

suffer from sensory errors or power outage issues.

This study provides a sophisticated study on the CLSTMmodel

for reliable and efficient groundwater forecasting over a wider

spatial extent, even with partial data. This study is an essential step

toward effective groundwater resource planning and sustainable

management that substantially contributes tomitigate groundwater

depletion. Future studies can strive to explore the effects or

sensitivity to missing data over the data recovery capabilities of

the Masked CLSTM model with image inpainting on groundwater

modeling over other regions. Moreover, future studies could

expand upon the use of other iterations of hybrid/generative AI

models such as transformers, generative adversarial networks, and

graph neural networks for groundwater modeling or assessing the

impacts of climate change on groundwater by considering more

hydrometeorological data into the models.
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