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A sequential ensemble smoother
for multiple data assimilation in
hydrogeological modeling

Thomas Béraud†, Maxime Claprood*† and Erwan Gloaguen

Institut National de la Recherche Scientifique, Eau Terre Environnement Centre, Quebec City, QC,

Canada

Groundwater is essential for drinking water and economic development,

yet its availability and quality are threatened by climate change, pollution,

and rising demand. E�ective groundwater management relies on accurate

numerical models for flow and contaminant transport. Traditional calibration

techniques often struggle with the uncertainty and spatial variability inherent

in hydrogeological data. Although geostatistical simulations can represent this

variability, their computational complexity limits their use in large-scale models.

To overcome these challenges, ensemble methods like the Ensemble Kalman

Filter (EnKF) and Ensemble Smoother (ES) have been introduced for model

updates using spatiotemporal data. However, they face limitations in high-

dimensional systems with sparse observational data, common in hydrogeology.

This paper introduces an innovative data assimilation method combining Well-

by-Well (WbW) and observation Type-by-observation Type (TbT) techniques.

This approach utilizes local analysis to e�ectively calibrate large, complex

groundwater models with limited observations, resulting in a more stable and

accurate calibration process. The method is tested on a synthetic 3D model

and a real regional groundwater flow model, showing significant improvements

in calibration and predictions. A 3D synthetic model of a coastal aquifer

with saltwater intrusion was developed to evaluate the WbW & TbT updates

within the Ensemble Smoother with Multiple Data Assimilation (ES-MDA 4x)

method. The results indicate improved calibration and reduced errors in

hydraulic head and salt concentration predictions. This study demonstrates the

robustness of the WbW & TbT method in calibrating the Ville Mercier regional

hydrogeological model, showcasing its potential for complex hydrogeological

settings. By updating parameters locally around each observation well, the WbW

& TbT method addresses high-dimensional challenges while preserving data

amplitude and managing the complexity of regional hydrogeological systems.

Results confirm that this method enhances the accuracy and reliability of

groundwater flow models, making it a vital tool for resource management amid

environmental challenges.

KEYWORDS

ensemble smoother, data assimilation, hydrogeological modeling, local analysis,

Kalman, location updating

1 Introduction

Groundwater plays a primordial role to sustain access to safe drinking water and

support economic development (Gleeson et al., 2020). However, this resource is in

continuous threat due to climate changes, pollution and increasing demand (Kummu et al.,

2016). Climate change alters precipitation patterns, leading to changes in recharge rates,
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groundwater storage and groundwater flow, while pollution

from agricultural, industrial and urban source can contaminate

aquifers, making water unsafe for consumption. Increasing water

demand due to population growth and economic development

intensifies the stress put on groundwater systems. Achieving

reliable forecasts of hydrogeological processes is crucial to better

manage the groundwater resources and predict the availability and

quality of groundwater resources, while considering the different

scenarios possible in the face of climate change, pollution and

increasing water demand. The protection and evaluation of the

water resource require building and calibrating reliable numerical

models to simulate and predict hydrogeological processes such as

groundwater flow or transport of contaminants (Davamani et al.,

2024).

Conventional calibration of groundwater flow models uses

an iterative Marquard-Levenberg approach to build the Jacobian

matrix for evaluating the calibration direction. This approach

requires running a deterministic groundwater flow model as many

times as the number of hydraulic parameters to calibrate. These

models, based on a deterministic representation of the hydraulic

parameters, fail to consider the heterogeneity and uncertainty

of hydrogeological data (Boucher et al., 2011), and often lead

to poor predictions of groundwater flow, especially in complex

geological settings. To address this issue, geostatistical simulations

were developed to represent the spatial distribution of hydraulic

properties by assigning stochastic yet spatially sound values at all

cells of a numerical hydrogeological model (Rubin and Hubbard,

2005; Blouin et al., 2013). However, geostatistical simulations are

impractical for conventional calibration of hydrogeological models

due to their inherent complexity and the computational resources

they demand. Hydrogeological models can contains hundreds of

thousands of cells and require numerous realizations to capture the

spatial variability of hydraulic properties. Geostatistical simulations

generate multiple equally probable realizations of these properties

to account for uncertainty, but calibrating each realization against

observed data (e.g., hydraulic head or contaminant concentration)

is time-consuming. Conventional calibration methods, which

typically involve iterative parameter adjustment, would need to

be applied on every cell of each realization, drastically increasing

computational costs and making the process inefficient for large-

scale hydrogeological studies.

Ensemble methods were introduced by Evensen (1994) through

the Ensemble Kalman Filter (EnKF) to deal with complex non-

linear systems with large amount of parameters. The uncertainty

is represented by a set of model realizations rather than an

explicit covariance matrix, limiting the number of runs needed

during the optimization process. Ensemble methods use physical

models to mimic the behavior of the model over time to update

an ensemble of equi-probable numerical models (Evensen, 1994).

As new data become available, ensemble methods improve the

previous parameters state by looking at the difference of prediction

between an ensemble of models and the measured data, and then

computing the residual error and the covariance between each

parameters realization. Ensemble methods are used to assimilate

spatio-temporal data and update numerical models in many

geoscientific fields, as they are applicable to every physical problem

which can be described by numerical solutions. For example, EnKF

was applied by Dong et al. (2006) to assimilate four-dimensional

(4D) seismic reservoir and by Johns and Mandel (2008) to model

fire propagation, while ensemble methods were used by Crestani

et al. (2013) for 2D tracer data test and by Bauer et al. (2015) for

weather forecasting.

Many studies identified the problem of high-dimensionality

as a major restriction using data assimilation by the ensemble

methods. Complex numerical models need to be constrained by a

large amount of observation points to converge toward a reliable

ensemble of solutions. While this may be achievable in some

application fields such as the oil and gas industry which can

deploy considerable resources to characterize a reservoir field, this

constraint often restricts the use of ensemble methods to 2D or

simple 3D models (Dong et al., 2006; Emerick and Reynolds, 2012,

2013; Bauer et al., 2015).

In environmental or hydrogeological studies where large

regional models are developed, tight characterization budgets often

limit the amount of available data for building and calibrating

reliable numerical models. As such, high-dimensional numerical

models need to be calibrated with very little observations,

leading to poor calibration of models and wrong predictions

of hydrogeological processes. Numerous strategies have been

developed to address this problem of high-dimensionality during

data assimilation by ensemble methods. For example, Markovich

et al. (2022) suggested using a paired simplified-complex modeling

approach to reduce the bias during the calibration of complex

hydrogeological models. Several studies combined direct sampling

data with indirect data (geophysics) in order to increase the size of

observations to assimilate. For example, Cui et al. (2020) showed

that GPR data can be assimilated by an ensemble smoother with

multiple data assimilation (ES-MDA) method to calibrate soil

hydraulic parameters and better predict soil moisture. Kang et al.

(2019) showed that joint hydrogeophysical inversion can better

estimate non-Gaussian parameters in spatially heterogeneous

hydraulic conductivity field by assimilating concentration and

electrical resistivity tomography data. Song et al. (2019) introduced

a framework integrating ensemble methods with transition

probability-based geostatistics for assimilation of direct and

indirect data, using reconditioning step to keep spatial continuity

and overcoming overfitting. Tso et al. (2020) presented the first

attempt to estimate solute source parameters by assimilating

time-lapse electrical resistivity tomography measurements for leak

detection. Xu et al. (2021) also used ES-MDA for contaminant

location and hydraulic conductivity field on 3D synthetic model.

One of the most important limits of previous studies on

ensemble methods was the use of small scale synthetic models or

oversimplified representation of true field studies. Developed with

a simple 3D synthetic model, this paper presents an innovative data

assimilation process using successive assimilation steps for every

observation point (well), and every observation type (hydraulic

head, concentration of contaminant). The method developed is

validated for the calibration of a complex regional numerical model

of groundwater flow.

The paper first presents a summary of the conventional ES

method. The proposed innovation, named the Well by Well

(WbW) and observation Type by observation Type (TbT) ES data

assimilation process, is then explained. TheWbW&TbTmethod is
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tested on a 3D synthetic model to better present the improvements

compared to a conventional data assimilation method. The results

obtained by this new data assimilation approach on a real case 3D

groundwater flow model are finally presented, followed by some

discussions and a brief conclusion.

2 Materials and methods

Two classes of ensemble methods exist for data assimilation;

Ensemble Kalman Filter (EnKF) and Ensemble Smoother (ES). The

main difference between both classes is that assimilation takes place

at each time step of the time-dependent process in EnKF, while all

time steps are assimilated in a single operation after the last time

step with ES. Sakov et al. (2010), Skjervheim et al. (2011) and Li

et al. (2018) indicated a great reduction in simulation time using

ES due to the avoidance to stop, store and restart simulator at each

time step. Emerick and Reynolds (2013) introduced the ensemble

smoother with Multiple Data Assimilation (ES-MDA), which

combines the computing efficiency of ES and the performance of

EnKF by iterating many times the whole process after assimilating

observations at each time steps. The approach proposed in this

manuscript is based on the ES-MDA method.

2.1 Ensemble smoother methods

For hydrogeological studies, the objective of a data assimilation

method is to update an ensemble matrix (E) of N realizations, each

realization representing a hydrogeological numerical model built

with a total ofm hydraulic parameters:

E =









x1,1 x1,2 . . . x1,N
...

...
. . .

...

xm,1 xm,2 . . . xm,N









. (1)

Values of x can represent any hydraulic parameters affecting

the outcome of the numerical model; including but not limited

to horizontal or vertical hydraulic conductivity, specific storage

and recharge. Using the constituents of E, simulated values

of time-dependent hydraulic observations (e.g. hydraulic head,

concentration, water temperature) are obtained through numerical

modeling at p observation points. Using the ES approach, the y

observations matrix is built, combining all observation points at all

time steps (p) for all N realizations:

y =









y1,1 y1,2 . . . y1,N
...

...
. . .

...

yp,1 yp,2 . . . yp,N









. (2)

Using Equations 1, 2, the parameters anomalies matrix A and

the observations anomalies matrix Y are respectively computed by

removing the simulated parameters mean (x) and the simulated

observations mean (y) from the original parameter matrix (E) and

observations matrix (y):

A =









x1,1 − x1 x1,2 − x1 . . . x1,N − x1
...

...
. . .

...

xm,1 − xm xm,2 − xm . . . xm,N − xm









, (3)

and:

Y =









y1,1 − y1 y1,2 − , y1 . . . y1,N − y1
...

...
. . .

...

yp,1 − yp yp,2 − yp . . . yp,N − yp









. (4)

Using the anomalies matrices A and Y , the Kalman gain matrix

K is computed to quantify the update direction at each iteration of

the data assimilation process, considering the covariance between

all parameters and all observations:

K = AYT(YYT
+ R)−1,∈ IRm×p. (5)

A measurement errors matrix R is added as a tolerance criteria

when fitting the simulated observations y to the measurements

made on the field. It represents the covariance matrix used to

express the uncertainty on the measured hydraulic values at site.

AYT is the covariance matrix linking the model parameters and

observations anomalies, while YYT is the covariance matrix of

observations anomalies, where the exponent T refers to as the

transpose of a matrix.

The final step of the ESmethod is to update the ensemblematrix

of parameters. Considering Ef as the ensemble matrix of initial

parameters or parameters evaluated from the previous iteration,

the updated ensemble matrix Ea is computed from the difference

between the measured field data D and simulated observations y

weighted by the Kalman gain matrix K:

Ea = Ef + K
{

D− y
}

(6)

A large Kalman gain indicates a strong covariance between

the observations and parameters, suggesting the update needs to

better consider these measurements and parameters during the

data assimilation. Updated parameters are stored in the updated

ensemble matrix Ea, which becomes the initial ensemble matrix Ef

for the next iteration.

When repeating the process over multiple iterations, it is

expected that the variance between all updated realizations of

the ensemble decreases, and that the error between the hydraulic

measurements and the mean simulated observations of updated

realizations is converging toward a global minimum.

The global ES-MDA approach, which updates all parameters

using all observations at once, is efficient when the ratio of

observations to parameters is high. However, this is rarely the case

in hydrogeological or environmental studies, where large regional

models need to be calibrated with only a few observations points.

A small number of parameters or observations points, either static

or dynamic, has proven to make the assimilation unstable. A small

ensemble size limits the solution space and can introduce spurious

or false correlations between some hydraulic parameters and the

predicted observations. The presence of spurious correlations is

difficult to detect and can lead to wrong updates of parameters.
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Anderson (2007) rightfully mentioned the need to restrain the

range of the parameters update by some sort of localization. Two

principal methods exist to reduce spurious correlations: covariance

localization (Hunt et al., 2007; Chen and Oliver, 2013; Soares

et al., 2019; Lam et al., 2020) and local analysis. Both methods

should yield similar results, and the final choice should be based on

numerical effectiveness and scalability (Sakov and Bertino, 2011).

Local analysis is implemented in the proposed method with a

user-defined distance function.

2.2 Local analysis

Local analysis is commonly used in weather prediction models

and oil and gas reservoir characterization studies. It decomposes

the model into sub-domains, for updating parameters only at grid

cells closer to the observations points (Gaspari and Cohn, 1999;

Watanabe and Datta-Gupta, 2011). Local analysis approximates

the error covariance in a sub-domain of the model for data

assimilation, to physically dampen spurious correlations between

observations and further parameters. A critical distance, which

can vary from an individual cell to the entire model, defines

the local region. The local analysis equals the global assimilation

scheme without local analysis if the critical distance contains the

entire model.

Local analysis is implemented in the proposed method with a

user-defined distance function similar to a 3D variogram ellipsoid

(Chilès and Delfiner, 1999). This function describes the spatial

variation of the assimilation weight with respect to the distance of

every cells of the model to a specific observation well. The model

is then updated only in a neighborhood around the observations,

scaling the amplitude of the update with the user-defined function.

The observation weight is equal to 1 at the center of the ellipsoid,

and decreases following a user-defined function (linear, Gaussian or

exponential) to reach zero or a small defined value at the external

envelope of the ellipsoid (Goovaerts, 1997). This is an analog to a

variogram with a nugget effect in geostatistics (Chilès and Delfiner,

1999). The 3D ellipsoid is based on real physical distances from

the observations data and not numerical tapering, adding to the

robustness of the method.

2.3 Well by Well and observation Type by
observation Type method

Numerical models with large number of parameters and small

number of observations are difficult to assimilate, even when using

covariance localization or local analysis. Conventional ensemble

assimilation methods become numerically unstable when they

process data with several orders of magnitude. This is a typical

challenge for environmental studies as the calibration of large

and complex regional groundwater flow models must often be

completed with a limited number of observation points.

Instead of assimilating all data at once, the proposed WbW

& TbT approach isolates every well and every observation type

during each iteration of parameter updates using the ES-MDA

method. This leads to several successive assimilations using a local

analysis around each observation point. The WbW & TbT method

proposed in this manuscript offers a simple yet rigorous local

analysis approach designed to locally reduce the information ratio

(defined as the number of parameters divided by the number of

observations), and to facilitate the data assimilation of large models

with a limited number of observation points.

If several observation types are available to calibrate the

hydrogeological model (hydraulic heads, concentrations, pressures,

temperatures), every observation type is sequentially assimilated

(TbT) with distinct local neighborhoods. This allows considering

the different spatial structures each observation type might

have. While the idea of assimilating different observations types

separately (TbT component) has been used in previous researches

(Cui et al., 2020; Kang et al., 2019; Shariatinik et al., 2024), theWbW

component goes one step further for preserving the amplitudes

by defining a local weight function around every observation

well using a 3D ellipsoid variogram. This weight function is used

independently on every well to assimilate their data successively.

A distinct ellipsoid function can be defined for each well and

observation type to consider the different spatial structures each

data type may have.

The WbW & TbT approach uses the whole amplitude of

information from each observation point, and for each data type

analyzed. One can thus assimilate different types of observations,

even if the observations are orders of magnitude different, without

the fear of one observation being overshadowed by data of

larger amplitude.

By sequentially defining a distinct set of weights for all

observation types (ntypes) and for all wells (nwells), a weight ellipsoid

matrix (W) is defined as the product of the weight assigned for each

well (wj) and the local update defined at all cells (ui,j):

W =
1

ntypes

ntypes
∑

i=1





1

nwells

nwells
∑

j=1

(

wj ∗ ui,j
)



 , (7)

where the sum of weight at each well is equal to 1:

nwells
∑

j=1

wj = 1. (8)

Considering this new weight matrix, the update Equation 6

then becomes:

Ea = Ef +
(

W ∗ K
) {

D− y
}

. (9)

The assimilation method proposed is based on the ES-MDA

4x originally defined by Emerick and Reynolds (2013) where 4x

refers to the use of 4 iterations, implementing the new WbW &

TbT approach to remove spurious correlation. The WbW & TbT

method is first tested on a small 3D synthetic model, and then

applied on a real 3D regional groundwater flow model.

3 3D synthetic model

A 3D synthetic model representing a coastal aquifer with

a salt water intrusion is built to analyse the performance of
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FIGURE 1

Position of all types of wells used in the synthetic model. Orange

dots are the observation wells to monitor water levels and salt

concentration; red pentagons are pumping wells; and green

triforces are pseudo wells used in the reference model to infer the

permeability fields.

the WbW & TbT updates with the conventional ES-MDA 4x

assimilation method.

3.1 Parameters of the synthetic 3D model

The synthetic model consists of a sandy layer aquifer

intersected in its center by a clay layer. The model is

100 m × 100 m horizontally, 20 m thick, and contains a

total of 68,940 cells. Five pseudo wells are randomly set

up to represent points of measurements of permeability

(Figures 1, 2). Permeability values are assigned along the

wells positions using parameters representative of each type of

sediments (Table 1).

One hundred realizations of the permeability field are

simulated by sequential Gaussian simulations [SGS; Goovaerts

(1997)] at all cells of the 3D model, using constraints

from the five pseudo wells and variograms modeled from

Gaussian transformed permeability data at the five reference

wells (Table 2).

One of these realizations is extracted to act as the reference

model, to compute the reference time series of hydraulic head

and salt concentration. The remaining 99 realizations constitute

the initial ensemble of parameters (Ef ) in the synthetic model,

that will be updated in order to calibrate the time series of

hydraulic head and salt concentration simulated from the reference

numerical model.

A hydraulic gradient is induced by setting the hydraulic head of

20.5 m on the left and 20 m on the right border. Recharge is defined

at 150 mm/year on top of the model, and a no flow condition is

applied at the bottom of the model. The salt water intrusion is

FIGURE 2

Position of five pseudo wells with permeability constraints in the 3D

synthetic model.

represented by setting a concentration of 35 g/l in the 0 m to 15

m depth interval in the right part of model.

The transient simulation is run for 2, 000 days. Three pumping

wells (Figures 1, 3) are used to modify the hydraulic heads and

salt concentration distribution in the model between day 200 and

day 1300. The peak salt concentration varies between 0.01 mg/l

and 750 mg/l. These amplitude differences are challenging for a

conventional ES method and will test the WbW & TbT approach

developed in this manuscript.

3.2 Assimilation tests on the synthetic
model

Hydraulic head and salt concentration are monitored at five

observation wells (Figure 1). Three of these wells (wells O0, O1 and

O2) are used as observation wells (matrix y defined in Equation 2)

for calibrating and updating the ensemble of parameters, while the

remaining two wells (wells C3 and C4) are control wells used to

evaluate the performance of the WbW & TbT method.

While hydraulic heads time series are also simulated at all

five observation wells of the model, the results are not presented

to focus the interpretation on salt concentration, which large

amplitude differences better demonstrate the performance of the

WbW & TbT approach. The time series of concentration at these

five wells for the reference model of permeability are shown in

Figure 4. Only data from t = 0 day to t = 1400 days (70% of the

time series) are used to update the ensemble (blue background in

Figure 4). The remaining of the data (t = 1400 to t = 2000 days) is

used for studying the performance of the assimilation on data never

seen (green background in Figure 4).

In addition to the Scenario 0 which is the base case scenario

where simulations are completed on the initial ensemble of
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TABLE 1 Parameters used to simulate the initial permeability (k) at the reference wells.

Region k mean k variance Range X Range Y Range Z
(m/s) (m2/s2) (m) (m) (m)

Sand 4.5× 10−5 8.1× 10−6 15 10 3

Clay 1.1× 10−7 1.8× 10−7 30 30 3

TABLE 2 Modeled variograms of the permeability field in the 3D synthetic

model.

Type Sill Range X Range Y Range Z
(-) (m) (m) (m)

Nugget 0.05 0 0 0

Gaussian 0.75 28 28 3.8

Spherical 0.20 80 80 30

FIGURE 3

Position of three pumping wells in the 3D synthetic model. Orange

dots represent the well screen interval.

parameters, eight scenarios are run to test the impact of different

localization and local analysis schemes:

• 0 : Initial ensemble without any assimilation;

• 1 : Raw ES-MDA 4x global assimilation;

• 2 : TbT assimilation, all wells together, without local analysis;

• 3 : WbW assimilation, hydraulic head only, without local

analysis;

• 4 : WbW assimilation, concentration only, without local

analysis;

• 5 : WbW & TbT assimilation, without local analysis;

• 6 : WbW & TbT assimilation, with local analysis using 100 m

horizontal range and 20 m vertical range;

• 7 : WbW & TbT assimilation, with local analysis using 50 m

horizontal range and 10 m vertical range;

• 8 : WbW & TbT assimilation, with local analysis using 25 m

horizontal range and 5 m vertical range.

3.3 Assimilation results from the synthetic
model

Hydraulic head and/or salt concentration time series are used

to update the ensemble of permeability fields. For all scenarios

tested, results are presented on the salt concentration data only

to avoid repetitions in the interpretation. Figure 5 presents the

root mean square error (RMSE) distribution of salt concentration

computed from all updated realizations of the ensemble, for all

wells, separated for calibration and validation data. As this is a

synthetic model, updates on the permeability data are computed

to validate the actual improvements made by each scenario on the

initial realizations of the permeability field (Figure 6).

Scenarios 0 and 8 show the highest RMSE mean value and

the greatest variance on the salt concentration data for all wells

(Figure 5). This is expected for Scenario 0 which is not calibrated,

and this suggests that Scenario 8 is using a update range which is

too small to properly assimilate some of the observations.

While scenarios 1 and 2 show significant decrease in RMSE on

salt concentration data for all wells (Figure 5), their mean average

error (MAE) on permeability field increases with the iterations

(Figure 6), suggesting spurious correlation and over-fitting of the

assimilation on later iterations.

While using only the hydraulic head (Scenario 3) or the salt

concentration data (Scenario 4) on a WbW approach improves

the predictions on the salt concentration (Figure 5) or hydraulic

head (not presented), results suggests that using both types of

data (Scenario 5) is preferable in order to lower the MAE on

the updated permeability field (Figure 6). It is interesting to

note that the assimilation of hydraulic head alone is able to

improve the hydraulic head and the salt concentration RMSE

(Scenario 3). This is an important result because environmental

studies often include hydraulic head data alone without

concentration data.

Scenarios 5, 6, and 7, using the WbW & TbT assimilation

method with different update ranges, show improvements in the

RMSE computed (Figure 5) at all five wells. All three scenarios

also show good improvements on the permeability field, with a

permeability MAE change of 28% and 27% for Scenarios 5 and 6,

respectively (Figure 6).

Using the assimilation Scenario 6, the measured time series

of salt concentration at 5 wells (thick red line) are compared

to the simulated time series of the initial and final ensembles
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FIGURE 4

Salt concentration observed in the five wells of the reference permeability field of the 3D synthetic model (surface location in Figure 1). Blue

background depicts calibration data and green background depicts validation data.

of realizations, corresponding to models before and after the

calibration, respectively (Figure 7). Each realization is presented

in thin lines while the mean of all realizations is shown as thick

dashed lines (blue for the initial ensemble and orange for the final

ensemble).

Improvements between the initial and final ensemble reach

one order of magnitude for wells O1, O2 and C4 on the

mean and variance of individual realizations, which proves the

effectiveness of the WbW & TbT method proposed. Well O0

shows no improvement toward the measured data following

the calibration. When the realizations of the initial ensemble

do not include the measured salt concentration, the ensemble

method can’t learn the appropriate corrections to apply to the

simulated time series, which makes it impossible to fit the

observed concentration during the assimilation process. The

assimilation shows little improvement for well C3, which was

already satisfying.

Results suggest the WbW & TbT updates on conventional ES-

MDA 4x method improves the assimilation of hydraulic head and

salt concentration data to update the permeability fields of a 3D

synthetic model. The approach allows the user to compute an

update range based on physical parameters to help stabilizing the

calibration process and limit spurious correlation.

4 Application to Ville Mercier site

The WbW & TbT method is tested for the calibration of the

Ville Mercier regional hydrogeological model, which represents

a complex and challenging site for conventional ensemble

assimilation methods. Ville Mercier is located at proximity to

the city of Montreal in southern Quebec, Canada. Contaminants

have been released for several years in a local aquifer made of

coarse sediments at site. These contaminants have traveled toward

a regional fractured bedrock aquifer used for groundwater supply

and irrigation in the region. The site has been investigated for

several decades, and a complete set of geological, hydrogeological,

and geophysical data are available to build the conceptual and

hydrogeological models, and to calibrate the latter (Claprood et al.,

2022, 2023).
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FIGURE 5

Root mean square error of salt concentration for eight schemes at the end of the 4th data assimilation. Blue bars denominate calibration time

window, green bars are the validation time window.

4.1 3D hydrogeological model

The numerical model represents 6 major hydrostratigraphic

units controlling the groundwater flow in the region (Figure 8).

From top to bottom, these units are: recent organic sediments

and filling materials, fine grained marine sediments from the

Marine Clay unit, coarse glaciofluvial sediments from the Esker

Sand & Gravel unit, regional Till unit, fractured bedrock
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FIGURE 6

Mean average error of log10 permeability for 8 methods versus the reference permeability field.

FIGURE 7

Initial individual realizations of salt concentration in blue, final salt concentration in orange with the 100/20 local analysis method.
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FIGURE 8

3D geomodel of hydrostratigraphic units at Ville Mercier site. Regional view has a vertical exaggeration of 40x, local view has a vertical exaggeration

of 20x. Figure modified from Claprood et al. (2023).

and intact bedrock. The esker unit is further divided into

two distinct hydrofacies (F1 and F2), with different spatial

distributions of the hydraulic conductivity. The model covers

an area of 226 km2 and has a mean thickness of 56.6m.

The model contains 3,974,915 elements on 35 layers (113,569

elements per layer). Elements size varies from 5m locally

to 150m regionally.

The Esker Sand & Gravel unit and the fractured bedrock

unit are local and regional aquifers, and they both have major

roles in characterizing the local and regional groundwater flow

in the region. The numerical model is used to represent the

spatial heterogeneity of hydraulic conductivity in the two major

aquifer units to predict the contaminant path. The heterogeneous

sand and gravel materials from the esker unit have high and

variable hydraulic conductivity, which varies from 1× 10−6 ms−1

to 1× 10−3 ms−1. The fractured bedrock unit shows even greater

heterogeneity, with recorded hydraulic conductivity ranging

between 1× 10−10 ms−1 and 1× 10−4 ms−1.

4.2 Regional deterministic calibration

Hydraulic properties to be updated at site are the hydraulic

conductivity (Kxy andKz) and, to a lesser degree, the specific storage

(Ss) of the different units. Many observations of Kxy have been

recorded locally at Ville Mercier site, but few data are available

regionally. Minimum, maximum and mean values computed for

each unit are reported in Table 3.

These values are used to establish the initial parameters

implemented into the 3D regional numerical model for calibrating

the values of Kxy. The regional model has initially been calibrated

in a steady-state regime through a conventional Marquardt-

Levenbergminimization approach in PEST (White, 2018) to update

the hydraulic parameters. For most units (organic material, Marine

Clay, Till unit, intact bedrock), a single value of Kxy is assigned and

updated to represent its regional contribution. Spatial distribution

of Kxy is assigned in the Esker Sand & Gravel and fractured bedrock

units by kriging, using reported Kxy values as fixed hard data

and spatially distributed pilot-points as hard data points to update

within the two units (Table 4).

The results from this initial calibration (Claprood et al., 2023)

show the limits of the deterministic approach, which doesn’t offer

enough flexibility on the hydraulic parameters to achieve great fit

between the simulated and observed hydraulic heads, particularly

locally in the Esker Sand & Gravel and fractured bedrock

units. The great heterogeneity of hydraulic properties limits its

calibration because the conventional approach can’t represent the

complex spatial behavior of Kxy with single values or interpolated

kriged fields with sufficient precision. A stochastic assimilation

approach is needed to represent the spatial heterogeneity of

hydraulic conductivity in the Esker Sand & Gravel and fractured

bedrock units.

4.3 Hydraulic conductivity heterogeneity

To represent the local spatial heterogeneity of hydraulic

conductivity in the Esker Sand & Gravel F1 and F2 hydrofacies

and the fractured bedrock unit at Ville Mercier site, 200

realizations of Kxy are completed by geostatistical turning

bands simulations. That number of realizations, greater

than the 100 models suggested in the literature (Raanes,

2015; Evensen, 2009), provides enough uncertainty and

variability between the realizations while anticipating the

non-convergence of some models during the multiple

simulations-assimilations iterations.

The Esker Sand & Gravel F1 hydrofacies is sampled by 86

readings of Kxy measured from 18 wells. Following a Gaussian

transformation of the logarithm of Kxy, the modeled variogram

computed in this F1 hydrofacies is:
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TABLE 3 Reported values of horizontal hydraulic conductivity (Kxy ) within the limits of the numerical model at Ville Mercier.

Unit Kxy min Kxy median Kxy max Number
(-) (m/s) (m/s) (m/s) of points

Organic material 3.3× 10−8 2.2× 10−6 1.2× 10−4 10

Marine Clay 4.0× 10−10 N/A 6.4× 10−10 0

Esker local 6.9× 10−8 2.3× 10−5 7.4× 10−4 107

Esker regional 1.4× 10−6 6.6× 10−3 1.4× 10−3 50

Till reworked 2.1× 10−8 5.6× 10−8 4.0× 10−5 8

Till intact 1.8× 10−11 2.0× 10−8 8.2× 10−8 14

Bedrock fractured 1.0× 10−10 7.5× 10−7 1.6× 10−4 73

Bedrock intact 7.4× 10−10 9.0× 10−7 3.9× 10−4 171

TABLE 4 Initial and calibrated values of horizontal hydraulic conductivity (Kxy ) and hydraulic conductivity ratio (Kr = Kxy/Kz) in the deterministic

numerical model at Ville Mercier.

Unit Kxy initial Kr initial Kxy calibrated Kr calibrated
(-) (m/s) (-) (m/s) (-)

Organic material 5.0× 10−5 2 1.4× 10−5 1.0

Marine Clay 6.0× 10−8 10 2.0× 10−7 45.6

Esker F1 2.0× 10−4 10 5.0× 10−3 1.2

Esker F2 2.0× 10−5 10 3.8× 10−4 1.0

Till reworked 2.5× 10−5 100 1.4× 10−4 147.5

Till intact 1.0× 10−7 100 6.1× 10−7 61.4

Bedrock fractured 5.0× 10−5 10 5.6× 10−5 62.6

Bedrock intact 1.0× 10−7 2 2.5× 10−6 2.0

• normalized variance of 1m2 s−2, including a 0.01m2 s−2

nugget effect;

• generalized Cauchy model with 500m horizontal range, 3m

vertical range, and a 0.99m2 s−2 sill.

The Esker Sand & Gravel F2 hydrofacies being sampled by only

37 readings of Kxy in 9 wells, its experimental variogram is too

variable to model. The variogrammodeled for the F1 hydrofacies is

used to represent the Kxy spatial distribution in the F2 hydrofacies.

The fractured bedrock unit is sampled by 111 readings of

Kxy from 15 wells. Following a Gaussian transformation of the

logarithm ofKxy, themodeled variogram computed in the fractured

bedrock is:

• normalized variance of 1m2 s−2, including a 0.01m2 s−2

nugget effect;

• generalized Cauchy model with 500m horizontal range, 10m

vertical range, and a 0.89m2 s−2 sill;

• generalized Cauchymodel with 5000m horizontal range, 50m

vertical range, and a 0.10m2 s−2 sill.

The values of Kxy are simulated independently in F1 and F2

hydrofacies. While both hydrofacies are represented by the same

spatial distribution function (variogram), the hydrofacies represent

different deposition environments and no spatial relation should

exist at the interface between F1 and F2. 200 realizations of Kxy are

simulated at 417655 cells within the F1 hydrofacies, at 322070 cells

within the F2 hydrofacies, and at 355046 cells within the fractured

bedrock unit.

Two realizations of Kxy are presented as cross-sections in

Figure 9 and show the strong lateral and vertical heterogeneity of

hydraulic conductivity simulated in both units.

4.4 Stochastic assimilation approach

Groundwater flow simulations are completed on steady-state

and transient regimes of the Ville Mercier hydrogeological model,

using the regionally calibrated hydraulic parameters from Table 4

and the values of Kxy extracted from the 200 geostatistical

realizations in the Esker Sand & Gravel F1 and F2 hydrofacies and

the fractured bedrock unit. The transient regime is comprised of 2

separate events (Figure 10):

• 1 pumping test conducted locally at site (pumping well PW_A)

with hydraulic head time series recorded at 13 wells in the

esker and fractured bedrock;

• 1 recovery test conducted locally at site (pumping wells PW_B

and PW_C) with hydraulic head time series recorded at 12

wells in the esker and fractured bedrock.
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FIGURE 9

Vertical cross-sections of two realizations of horizontal hydraulic conductivity. Figure modified from Claprood et al. (2023).

FIGURE 10

Pumping rates for the Pumping test and the Recovery test completed at the Ville Mercier site. Pumping test includes data from 2005 shifted to 2021

to simplify the numerical modeling.
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TABLE 5 Root mean square error (RMSE) variations fromWbW ES-MDA 4x

and PESTPP-IES assimilation approaches at Ville Mercier site.

Test Observation
well

RMSE variation (%)

WbW
ES-MDA 4x

PESTPP-IES

Recovery test Obs Well 1 -29.0 -64.6

Recovery test Obs Well 2 -22.1 +568.8

Recovery test Obs Well 3 -11.5 +12.1

Recovery test Obs Well 4 -35.8 -81.3

Recovery test Obs Well 5 -16.3 -45.5

Recovery test Obs Well 6 -11.5 +126.9

Recovery test Obs Well 7 +7.4 -62.3

Recovery test Obs Well 8 -9.8 +15.1

Recovery test Obs Well 9 -14.5 -51.5

Recovery test Obs Well 10 -14.2 +74.2

Recovery test Obs Well 11 -7.4 +41.3

Recovery test Obs Well 12 -8.1 -34.5

Recovery test Median -12.9 -11.2

Recovery test Mean -14.4 +41.6

Pumping test Obs Well 13 -8.5 +0.2

Pumping test Obs Well 14 -29.6 -24.6

Pumping test Obs Well 15 -2.0 -78.2

Pumping test Obs Well 16 -61.5 -34.9

Pumping test Obs Well 17 -44.9 -34.9

Pumping test Obs Well 18 -8.2 -2.1

Pumping test Obs Well 19 -42.8 -30.9

Pumping test Obs Well 20 -3.3 +0.1

Pumping test Obs Well 21 -7.2 +2.6

Pumping test Obs Well 22 -11.8 -6.3

Pumping test Obs Well 23 -8.4 -3.2

Pumping test Obs Well 24 -8.4 -1.7

Pumping test Obs Well 25 -32.4 -31.2

Pumping test Median -8.5 -6.3

Pumping test Mean -20.7 -18.9

Both tests Median -11.5 -6.3

Both tests Mean -17.7 +10.2

Due to the great heterogeneity of Kxy and insufficient

constraints at proximity to the pumping wells, only 106 out of

the initial 200 realizations of Kxy converge when running the

transient groundwater flowmodel with the assigned pumping rates.

These 106 models form the initial ensemble of realizations for

data assimilation. The hydraulic parameters are updated through

the use of iterative ensemble smoother (iES) to assimilate steady-

state and transient hydraulic heads observations for improving the

understanding of local hydrogeological conditions.

This site is considered as a difficult site to assimilate because the

number of parameters to update (total of 1, 094, 774 parameters)

is significantly higher than the number of observations assimilated

(5, 645 hourly hydraulic heads observations from 25 wells). The

amplitudes of the variations in hydraulic heads in response to the

pumping or recovery tests are small, within the order of magnitude

of the convergence threshold at several observation wells.

The stochastic assimilation of the Ville Mercier site is

completed by two approaches, independently. The first approach

uses PESTPP-IES, a software representing a standard in the

industry (White, 2018; White et al., 2020). The second approach

is the proposed WbW & TbT ES-MDA 4x method developed in

this manuscript. The assimilation of hydraulic head time series

by PESTPP-IES is obtained by using standard parameters, no

localization, and the results were considered optimal after one

iteration. The proposed WbW & TbT ES-MDA 4x approach

is simplified as a WbW ES-MDA 4x approach since only

hydraulic head observations type is assimilated at the site.

The proposed WbW approach is used with an optimized

local analysis of 500m horizontally and 20m vertically, and

with 4 iterations with a multiplication factor of 4 between

iterations to artificially increase the update amplitude and limit

numerical instabilities.

4.5 Assimilation results at Ville Mercier site

The results obtained with the proposed WbW ES-MDA 4x

approach are compared with the results obtained using the software

PESTPP-IES in Table 5 to validate the method developed in this

manuscript. Table 5 presents the variations in the root mean square

error (RMSE) computed for each observation well time series.

A negative value indicates an improvement in the fit between

the simulated and observed hydraulic head before and after the

assimilation, while a positive value indicates the fit has worsened

during the assimilation process.

The results fromTable 5 show that theWbWapproach provides

a better assimilation of the hydraulic well time series for a majority

of wells. The median of RMSE variations for the WbW approach

(-11.5%) is lower than that obtained by PESTPP-IES (-6.3%).

The mean of RMSE variations with the WbW approach shows a

strong decrease (-17.7%), while it shows an increase of +10.2%

with PESTPP-IES. These results suggest that the PESTPP-IES

approach, applied with standard parameters, fails dramatically to

assimilate some specific observations (Obs Wells 2-6-10-11). This

is mainly caused by some wells being overlooked with PESTPP-

IES while the global assimilation process focusses on nearby wells

showing opposite variations. The sequential aspect of the proposed

WbW approach forces the full assimilation of every individual

observation, making sure all wells are explicitly taken into account

during the parameters updates.

Figure 11 shows the results for four selected observations

wells, showing how the proposed WbW method compares with

the results obtained by PESTPP-IES. The figure shows the mean

simulated time series of hydraulic heads variations for the initial

and final ensemble of realizations.
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FIGURE 11

Mean of simulated hydraulic heads variations with respect to initial value at beginning of pumping tests at four selected observations wells.

Obs Well 3 presents a time series with very low amplitude

hydraulic head variations (total of fifteen centimeters), within

the numerical model’s convergence tolerance, showing poor

response to the induced stress caused by the recovery test.

The WbW approach shows no improvement nor deterioration

of the fit between the simulated and observed data, which is

expected considering the low amplitude variations. However, the

assimilation with PESTPP-IES shows a deterioration of the fit with

increasing variations of hydraulic heads being predicted.

The combined analysis of Obs Well 5 and Obs Well 6 shows

the advantages of using the sequential WbW approach and the

limits of the global assimilation approach used by PESTPP-IES.

Both observation points are in the same well, Obs Well 5 being

screened in the Esker Sand & Gravel unit and Obs Well 6

being screened in the deeper fractured bedrock unit. While the

assimilation is better with PESTPP-IES in the esker unit (Obs

Well 5), it can not assimilate appropriately the variations in the

bedrock unit (ObsWell 6). The is a direct consequence of the global

assimilation approach used in PESTPP-IES, the algorithm being

unable to assimilate both intervals separately. The WbW approach

assimilating both intervals sequentially, the algorithm recognizes

the different amplitude variations in both aquifers and is able to

converge toward the correct solutions for both wells while still

having some issues to reach a perfect calibration.

The amplitude of the RMSE reduction at Obs Well 12 is

greater with PESTPP-IES than with the proposed WbW ES-MDA

4x method. However, only the proposed approach succeeds at

assimilating the temporal aspect on the hydraulic head time series

for this well located nearby the pumping wells of the recovery test.

5 Discussion

The construction and calibration of numerical models for

groundwater flow or contaminant transport are essential to ensure

that model predictions align with real-world observations. The

sequential approach proposed, which integrate observations data

type by data type and well by well, is an innovative advancement

in ensemble methods. This approach enhances the predictive

capability of models, especially in environmental studies where

data is limited. Its effectiveness is demonstrated in a real-world

application involving a complex geological model and decades

of hydraulic head data. This sequential strategy is particularly

important in environmental studies where wells are sparsely

distributed, making their influence critical, though sometimes

conflicting with wells that have higher data amplitudes.

Accurately calibrated groundwater flow models can then

be used to predict the spread of contaminants or changes in
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groundwater flow patterns under various boundary conditions,

including those driven by climate change. By employing ensemble

methods, researchers can generate a range of realistic future

scenarios, providing a probabilistic assessment of different

outcomes. The proposed sequential approach reduces prediction

uncertainty by incorporating all observation data more effectively

during the calibration process. This leads to greater confidence in

the models ability to simulate complex environmental processes

and offer reliable predictions, whether for climate change

scenarios, environmental protection programs, or contaminant

transport pathways.

6 Conclusion

In hydrogeological studies, complex groundwater flow

models that include a large number of parameters have to be

calibrated with relatively small number of observations. Iterative

ensemble smoother methods proved efficient to reduce the

computational burden when calibrating complex groundwater

flow models. However, the conventional approach of assimilating

all observations together with a global update can lead to two

undesired effects: (1) variance collapse where updated hydraulic

conductivity fields from all realizations of the ensemble are

updated toward a unique model and (2) spurious correlations

which randomize the assimilation and limit the optimization.

The conservation of sufficient variance from the ensemble

realizations is needed to converge toward the global minimum

in the next iteration. A variance collapse is seen from the results

obtained after the first iteration by PESTPP-IES on the 3D

Ville Mercier model. The second iteration (results not presented)

provokes a complete collapse of the variance. The proposed WbW

& TbT approach generally allows a better reduction of median and

mean RMSE, while keeping sufficient variance within the ensemble

to evaluate the uncertainty. Regardless of the local analysis scheme

selected for the assimilation, no variance collapse is observed with

the WbW & TbT approach, suggesting the sequential approach

allows keeping the level of variability high enough to pursue

multiple iterations of assimilation.

Local analysis improves the assimilation on the ensemble of

realizations on the 3D synthetic model. Before running the final

assimilation, tests should be completed to select the appropriate

range for the local update of hydraulic parameters around each

observation point. If the range is too small, the update is difficult

because it involves too little parameters; if the range is too large,

spurious correlations can take control of the assimilation and

limit the optimization. The updating range should allow each cell

of the model to be updated by at least one observation point.

To reduce uncertainty and further limit spurious correlations,

the model elements should be updated sequentially by several

observation points.

The WbW & TbT sequential approach proposed has proven

to be optimal to properly assimilate observations with different

orders of magnitudes. The sequential approach ensures every

observation point is equally considered during the assimilation

process, regardless of its amplitude and data type. This is essential

in groundwater studies as observation types and different wells may

have data that span over several orders of magnitudes. Since the

sequential approach proposed assimilates one observation well at

the time, it limits the risk of divergence during calibration which

occur when multiple observation data suggest opposite updates in

the hydraulic parameters.

Further research would allow testing an adaptive neighborhood

around observation wells, which would vary at each iteration. This

would allow using a global approach on the first iteration for

a general update of all elements, and progressively reducing the

neighborhood distance to assimilate only local parameters around

the observation wells during the final iterations of the assimilation.
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