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The temporal dynamics of solute export from catchments are challenging to 
quantify and model due to confounding hydrological and biogeochemical 
processes and sparse measurements. Conventionally, the concentration-
discharge relationship (C-Q) and statistical approaches to describe it, such 
as the Weighted Regressions on Time, Discharge and Seasons (WRTDS), 
have been widely used. Recently, deep learning (DL) approaches, especially 
Long-Short-Term-Memory (LSTM) models, have shown predictive capability 
for discharge, temperature, and dissolved oxygen. However, it is not clear if 
such advances can be expanded to water quality variables driven by complex 
subsurface biogeochemical processes. This work evaluates the performance 
of LSTM and WRTDS for 20 water quality variables across ~500 catchments in 
the continental US. We find that LSTM does not markedly outperform WRTDS 
in our dataset, potentially limited by the current measurement capabilities of 
water quality across CONUS. Both models present similar performance patterns 
across water quality variables, with the LSTM displaying better performance 
for nutrients compared to weathering-derived solutes. Additionally, the LSTM 
does not benefit from flexibility in the inputs. For example, incorporation 
of climate data that constrains streamflow generation, does not significantly 
improve the LSTM performance. We  also find that data availability is not a 
straightforward predictor of LSTM model performance, although higher 
availability tends to stabilize performance. To fully assess the potential of the 
LSTM model, it may be necessary to use a higher frequency dataset across the 
CONUS, which does not exist today. To evaluate the dynamics of C-Q patterns 
relative to model performance, we  introduce a “simplicity index” considering 
both the seasonality in the concentration pattern and the linearity in the C-Q 
relationship, or the C-Q-t pattern. The simplicity index is strongly correlated 
with model performance and differentiates the underlying controls on water 
quality dynamics. Further DL experiments and model-intercomparison highlight 
the strengths and deficiencies of existing frameworks, pointing to the need for 
further hydrogeochemical theories that are amenable to complex basins and 
solutes.
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Highlights

 • Two models for water quality prediction were developed and 
applied to 20 water quality variables across 482 basins.

 • Despite the additional inputs provided, a deep learning model 
could not outperform a traditional statistical model for 
most variables.

 • The simplicity index, a measure of the dependence of 
concentrations on discharge and season, explains 
model performances.

1 Introduction

Chemical export from catchments provides a comprehensive 
measure of how water travels through and interacts with the 
subsurface, is influenced by human activities, and modified within the 
stream network. However, distinguishing between biogeochemical 
processes and catchment characteristics, including the role of 
topography, subsurface structure and composition, stream routing, 
land use/land cover, and climate as controls on chemical export is 
complicated by underlying correlations that create non-unique 
relationships (Anderson et al., 1997; Moatar et al., 2017; Roelandt 
et al., 2010; Li et al., 2021). As a result, simulating dynamic chemical 
export requires detailed representation of processes unfolding across 
a watershed — from how rainfall or snow becomes streamflow, to 
geochemical reactions happening along the flow paths and in the 
stream. To date, only a few spatially explicit multi-component reactive 
transport models have been applied at the catchment scale, and only 
for small domains and limited reaction networks (Bao et al., 2017; Li 
et al., 2017). Despite advancements in reactive transport modeling of 
solute export, direct simulation at scale and across diverse catchments 
remains an outstanding problem (Maher and Navarre-Sitchler, 2019; 
Xu et al., 2022).

To diagnose chemical export, relationships between concentration 
and discharge (C-Q) are used to infer the underlying processes 
(Godsey et al., 2009; Johnson et al., 1969; Langbein and Dawdy, 1964; 
Thompson et al., 2011; Torres and Baronas, 2021). In general, the slope 
of the C-Q relationship indicates the extent to which concentration is 
a function of discharge, based on the premise that discharge is itself a 
variable that integrates across multiple auxiliary characteristics (e.g., 
climate, subsurface heterogeneity, land use, etc.). Myriad different 
approaches have been used to examine C-Q relationships, including 
power law models (e.g., Godsey et al., 2009), a piecewise approach 
based on segmentation of the hydrograph (e.g., Meybeck and Moatar, 
2012), and a hyperbolic approach based on concentration thresholds 
(e.g., Maher, 2011; Maher and Chamberlain, 2014; Ibarra et al., 2016; 
Wymore et  al., 2017). As an extension of the approaches above, 
statistical methods, such as the WRTDS (Weighted Regressions on 
Time, Discharge and Season), provide accurate regressions of solute 
concentrations based on C-Q relationships (Hirsch et  al., 2010; 
Hirsch, 2014). However, a limitation to all these methods is that they 
cannot capture the full dynamics of solute behavior, particularly for 
parameters with substantial coefficients of variation (Godsey et al., 
2009; Hirsch et  al., 2010; Musolff et  al., 2015; Knapp et  al., 2020; 
Ebeling et al., 2021). Currently, the reasons for high variance in C-Q 
relationships remain poorly understood, limiting the widespread use 

of data-driven models. Furthermore, auxiliary characteristics whose 
temporospatial heterogeneity are difficult to quantify, such as human 
impacts from land use or water management, are difficult to integrate 
into data-driven models.

Diagnosing the auxiliary characteristics that drive chemical 
export, in addition to discharge, would thus improve our ability to 
build parsimonious yet effective models of solute export and identify 
underlying processes that control water quality. The development of 
both process models and data products to support large-scale water 
quality models would benefit from increased knowledge of how 
watershed auxiliary characteristics interact with the hydrologic, 
biogeochemical and anthropogenic processes that collectively drive 
water quality dynamics. For example, conceptual approaches, 
including INCA (Wade et al., 2002), SimplyP (Jackson-Blake et al., 
2017), and HYPE (Lindström et al., 2010) simplify the catchment 
system into lumped parameters and fixed spatial domains. These 
models also rely extensively on parameter calibration, which limits 
their use across multiple solutes and a broad geographic distribution 
of basins. Although land use, especially agricultural practices, are 
known to partly control export of P and N species (Basu et al., 2010; 
Thompson et al., 2011; Ebeling et al., 2021), for other elements the link 
to auxiliary characteristics are not established but may contribute to 
the high variance observed in C-Q relationships. Establishing 
connections between watershed characteristics and solute dynamics 
may guide development and application of existing water quality 
models to a wider range of water quality variables.

An alternative approach to modeling water quality may leverage 
recent advances in hydrological modeling using deep learning (DL) 
approaches. In particular, long-short-term memory (LSTM) is shown 
to be  a powerful tool in modeling watershed-scale streamflow 
(Kratzert et al., 2018; Kratzert et al., 2019a; Feng et al., 2020; Nearing 
et al., 2021). These results suggest that LSTM models are capable of 
linking rainfall or snowfall to streamflow generation, which is also a 
fundamental control on solute export. Hence, as recently summarized 
by Varadharajan et al. (2022), DL approaches like LSTM are expected 
to advance our capability in modeling water quality, not only by 
connecting streamflow and solute generating processes, but also by 
identifying auxiliary characteristics. Indeed, recent work 
demonstrates the advantage of LSTM for modeling stream water 
temperature (Rahmani et al., 2021) and dissolved oxygen (Zhi et al., 
2021) over hundreds of basins. However, both dissolved oxygen and 
temperature in streams are strongly linked to local temperature 
(Edinger et al., 1968), whereas other solutes are more strongly linked 
to subsurface processes, from weathering (e.g., Ca, Mg, Na, K, 
Gaillardet et al., 1999) to biogeochemical reactions (e.g., N, P, Basu 
et al., 2010). For those solutes, applications of LSTM or other DL 
approaches are limited to sites along a river (Liu et al., 2019; Baek 
et al., 2020; Yan et al., 2020), or single variables across nearby basins 
(Jung et al., 2020; Saha et al., 2023). Although these authors highlight 
the promising performance of DL models, the potential to capture 
complex and spatially heterogeneous linkages has not been evaluated. 
These linkages include both intra-element dependencies on 
catchment attributes, such as slope, lithology, as well as element-
element linkages that constrain the system of solutes. The DL models 
also have not been evaluated against commonly used data-driven 
approaches across variable environmental conditions. Given the 
difficulty of measuring water quality parameters, the potential for the 
LSTM to draw connections across a range of solutes would 
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be advantageous. On the other hand, data density is low for most 
parameters, potentially limiting the LSTM capabilities. Although 
neither model explicitly models processes, model intercomparisons 
between LSTM and WRTDS may further indicate additional controls 
on solute generation.

Here, we develop and evaluate two promising models for water 
quality modeling and prediction: (1) an LSTM that integrates auxiliary 
characteristics into water quality prediction, and (2) a WRTDS model 
that uses time, discharge and seasonality as additional weighting 
functions, but does not allow for the model to build relationships to 
auxiliary catchment characteristics. Hence, the LSTM model is trained 
to retain knowledge of the catchment attributes while also learning the 
signals inherent in the temporal variations in climate forcings, 
discharge and 20 analytes. The data used to test the models comprises 
data for ~500 catchments across the continental U.S. (CONUS), 
covering a broad range of climatic and geological provinces. A series 
of experiments is used to further refine the application of the LSTM 
to continental-scale data sources. The objectives are to (1) evaluate the 
capability of the LSTM relative to the conventional WRTDS model 
across diverse environments, (2) determine the statistical indicators 
that explain both the similarity and differences between modeled 
analyte behaviors; and (3) provide guidance for future applications of 
DL methods based on the model performance.

2 Data and methods

2.1 Data sources

We trained LSTM and WRTDS models to predict 20 stream water 
quality analytes on a daily basis using 36 years of observations on 482 
sites across the CONUS with relatively complete water quality records 
(see 2.1.1). The input data are aggregated according to the contributing 
catchment of the water quality sites, including the time series for 
runoff, atmospheric forcing, vegetation indexes and rainfall chemistry, 
as well as static geographic attributes of those catchments, as 
described below.

2.1.1 Targets
Our training targets, daily water quality measurements, are 

extracted from the U.S. Geological Survey’s (USGS) National Water 
Information System (NWIS) database. To provide a comprehensive 
overview of water quality, we selected 20 analytes which are important 
to understanding biogeochemical processes and are regularly 
measured by USGS (Table 1). The selected water quality analytes are 
associated with different underlying controls and hence reflect a wide 
variety of dynamics. We  use the following groupings (Moatar 
et al., 2017):

 (1) stream water quality: temperature (Temp), dissolved 
oxygen (DO),

 (2) weathering processes: silica (SiO2), sodium (Na), calcium (Ca), 
and magnesium (Mg),

 (3) nutrients derived from agricultural and urban land use or 
nutrient utilization, such as nitrate (NO3), unfiltered total 
nitrogen (TN), unfiltered organic nitrogen (N-org), 
orthophosphate (PO), unfiltered total phosphorous (TP), 
non-particulate organic carbon (NPOC), and

 (4) mixed behavior, or analytes that are influenced by multiple 
factors, including (1), (2) and (3): potassium (K+), chloride 
(Cl−), sulfate (SO4

2−), suspended sediment concentration (SSC) 
and conductivity (Cond). Stream pH and total dissolved CO2 
are also included here.

As a side note, other variables that are of wide interest, e.g., 
alkalinity, dissolved inorganic carbon (DIC) and HCO3, are not 
included in this work as their measurements were not adequately 
represented in the NWIS database. Additionally, we removed flagged 
measurements, including those below the detection limit. 
Measurements are treated as daily water quality data in this work 
without considering the diurnal variation, as the measuring time is 
generally consistent.

We focused on the water quality dynamics spanning a 36-year 
period, from 1982/01/01 to 2018/12/31, during which the inputs are 
relatively complete (see the section 2.1.2). We selected 482 basins 
following a sequential screening method: (1) the basin is included in 
GAGES-II database (Falcone, 2011), which is used to extract basin 
boundaries; (2) the site contains more than 200 dates where at least 
one of the selected variables is measured; (3) from basins identified in 
(2), we then removed the sites that only measured water temperature 
and specific conductance. Specifically, we  found that more than 
~1,000 sites meet the first two rules, but ~500 only measured water 
temperature and specific conductance. After the screening process, 
482 basins were selected for model training and evaluation.

2.1.2 Inputs
We chose input predictors that could potentially affect chemical 

export at watershed scales, including streamflow, climatic forcing, 
vegetation, rainfall chemistry, basin geographic structures, and land 
use descriptors. We then preprocessed the data to provide informative 
predictors on basin scale. The time series are extracted and 
preprocessed from four data sources:

 (1) Streamflow for each basin (labelled as “Q”), which is the daily 
mean discharge measured by USGS (code 00060 in cubic feet 
per second). For the LSTM we also provided the daily runoff, 
which is the streamflow divided by basin area in [m/d]. Missing 
streamflow is filled by an invalid label (−1).

 (2) Daily climate forcing data (labelled as “F”) was extracted from 
the gridMET product (Abatzoglou, 2013), which contains 
precipitation, temperature, humidity, radiation, and reference 
evapotranspiration, on a daily basis from 1982/01/01 to 
2018/12/31, with a spatial resolution of 1~/24 degree. For each 
targeted USGS site, we extracted the gridMET maps clipped by 
the drainage boundaries from GAGES-II database, and linearly 
aggregated the data for each date.

 (3) Daily remote sensing vegetation indexes (labelled as “V”) 
including leaf area index (LAI), net primary production (NPP) 
and fraction of absorbed photosynthetically active radiation 
(FAPAR) from Global Land Surface Satellite (GLASS) dataset 
(Liang et al., 2013). GLASS products provide 8-day estimates 
with 0.05° spatial resolution. These data were temporally 
interpolated to daily time series using cubic splines. Also, as 
done for climatic forcings described in (2), the vegetation 
indexes are spatially aggregated by basin boundary. The raw 
data of (2) and (3) are spatially distributed, and we aggregated 
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them according to watershed boundaries, such that the spatial 
gradients within the basins are lost, particularly for large 
basins. In addition, any errors in the basin boundary (e.g., 
inter-basin transfer or errors in watershed delineation) will 
be  inherited by those spatially aggregated inputs. This 
preprocessing is similar to that used for CAMELS (Newman 
et al., 2015), which is widely used for LSTM experiments in 
predicting hydrological variables (see, e.g., Kratzert et al., 2018; 
Zhi et al., 2019). Although CAMELS contains ~600 basins, 
most of them do not record water quality variables.

 (4) Chemical composition of precipitation (labelled as “P”) was 
extracted from the National Trends Network (NTN), which 
contains the average wet concentration of Ca, Mg, Na, K, SO4, 
NO3, Cl, NH4 in [mg/L], and pH, at approximately weekly 
intervals. Estimating the rainfall concentrations at basin scale 
is challenging due to the quality of NTN data – there are <200 
NTN stations across CONUS, and most are characterized by 
substantial and irregular gaps in the dates. In addition, those 
NTN stations started to operate in different decades, and their 
weekly measurements respond to different weekdays. Hence, 
we used a new strategy following two steps: (1) for each NTN 

site, we downscale the weekly data to daily by assigning the 
weekly average value to each day and also record the number 
of days from the starting day of this week as an additional 
input; (2) for each basin at each date, we used the measurement 
from the nearest operating NTN site as input. We also record 
the distance between the basin center and corresponding NTN 
site as additional input predictors. As a result, each basin is 
assigned 11 time series from the proximal NTN site with 
available data for that time period – concentrations for nine 
variables, plus two additional time series of observation date 
and distance of site. Ultimately, at each date we only provide 
the nearest measurement rather than multiple of them, as 
we  found that the precipitation chemical data is not of 
significant importance for most basins (see section 4.4).

The rationale for simplifying the precipitation inputs is to provide 
the LSTM model the most comprehensive inputs and then train it to 
utilize that information automatically given the spatial and temporal 
averaging described above. Previous studies have highlighted the 
capability of LSTM-based models in spatial–temporal interpolation, 
especially for air quality data (Ma et al., 2019; Le et al., 2020). Hence, 

TABLE 1 selected water quality variables, average number of observations from 1982 to 2018 and count of sites that meet screening standard.

USGS 
code

Description Abv. Unit #Obsa # sites

selectb Yr5c R20d L20e

00010 Temperature, water Temp deg C 331 350 404 375 345

00095 Specific conductance Cond uS/cm 

@25C

286 311 377 339 310

00300 Oxygen DO mg/l 198 233 315 262 240

00400 pH pH std units 225 282 353 306 279

00405 Carbon dioxide CO2 mg/l 129 119 231 158 123

00600 Nitrogen, mixed forms (NH3), 

(NH4), organic, (NO2) and (NO3)

TN mg/l 193 169 277 207 169

00605 Organic nitrogen N-org mg/l 172 166 267 209 165

00618 Nitrate NO3 mg/l as N 138 131 199 166 140

00660 Phosphate PO4 mg/l as PO4 205 193 287 223 195

00665 Phosphorus TP mg/l as P 267 240 340 275 245

00681 Organic carbon NPOC mg/l 60 49 79 64 52

00915 Calcium Ca mg/l 132 131 219 159 135

00925 Magnesium Mg mg/l 132 131 219 159 135

00930 Sodium Na mg/l 117 110 195 136 119

00935 Potassium K mg/l 115 106 191 132 116

00940 Chloride Cl mg/l 184 157 237 176 162

00945 Sulfate SO4 mg/l 154 146 224 167 144

00955 Silica SiO2 mg/l 116 114 167 134 119

71846 Ammonia and ammonium NHx mg/l as NH3 

NH4

184 180 252 215 187

80154 Suspended sediment concentration SSC mg/l 305 227 258 245 226

aAverage number of observations per site.
bNumber of sites that are selected due to corresponding variable, i.e., contains >200 observations.
cNumber of sites used to calculated error metric in Yr5 experiment (see section 2.3.1).
dNumber of sites used to calculated error metric in R20 experiment (see section 2.3.1).
eNumber of sites used to calculated error metric in L20 experiment (see section 2.3.1).
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we  assume that the LSTM model is capable of aggregating 
measurements from proximal stations into basin averages if given 
the distance.

Other than time series inputs, we selected 17 static geographic 
attributes from GAGES-II database that may impact weathering 
and biogeochemical processes. Those variables describe the 
watershed-aggregated geological and hydrological structures, land 
use, ecological classes, soil properties etc., as listed in 
Supplementary Table S1.

2.2 Models

2.2.1 LSTM description
LSTM is a widely used model in the family of Recurrent Neural 

Network (RNN) models, which makes use of sequential 
information to predict target time series. The basic RNN is not 
capable of appreciating long-term dependencies as the network 
gradient would decrease exponentially through time steps, which 
is also known as the vanishing gradient issue. LSTM introduces a 
memory mechanism, where “memory states” units and “gates” 
decide when and what to remember or forget (Hochreiter and 
Schmidhuber, 1997).

In this work we used the LSTM model implemented by pyTorch 
(Paszke et al., 2019) library, version 1.8.0. The model is of two LSTM 
layers, with 256 hidden size and 0.5 dropout rate. The sequence length 
is 365 days and minibatch size is 500. The model is trained for 500 
epochs, in which the chance that each observation date is included 
during one epoch is greater than 99%. We  have tested different 
hyperparameters, including hidden size, sequence length and training 
epochs (part of the results are presented in Supplementary Figure S1), 
and the model with selected hyperparameters presents decent 
performance. Models trained with longer sequence length or hidden 
size may report slightly higher testing correlation for some water 
quality variables, yet lower for others, resulting in a similar general 
performance pattern. The model was optimized using ADADELTA 
(Zeiler, 2012) which adaptively adjusts the learning rate from 0.01 
during the training. The loss function is defined as root-mean-square 
error (RMSE).

2.2.2 WRTDS description
Weighted Regressions on Time, Discharge, and Season (WRTDS) 

model (Hirsch et al., 2010) has been widely used as an interpolation 
approach for water quality dynamics (e.g., Zhang, 2018; Stackpoole 
et al., 2019; Newcomer et al., 2021). Previous studies have shown 
WRTDS to provide among the most accurate estimates compared to 
other common methods (Hirsch, 2014; Park et al., 2021).

The WRTDS estimates concentrations by weighted fitting of the 
following equation:

 0 1 2 3 4ln log sin 2 cos2β β β π β π β ∈= + + + + +C Q T T T  (1)

where C is solute concentrations, Q is streamflow, and T is the 
time as decimal year. Each of the terms in Equation (1) describes the 
linear C-Q relationship, seasonality, and long-term trend 
correspondingly. This equation is fitted by weighted least squares 
(WLS), and the weights are defined as differences between observation 
and target date for streamflow, seasonality and time. For detailed steps, 

please refer to tS1 in Supporting Information or Hirsch et al. (2010). 
Noting that weights are assigned to each input date based on the target 
date, hence the regressed model values (i.e., iβ ) for each target date are 
different. We reconstructed the algorithm in python using the same 
hyper parameters following EGRET (Hirsch and Cicco, 2015), which 
is the R-package used by almost all WRTDS related applications 
(Hirsch et  al., 2010). Here we  focus on predictive capability over 
relatively long periods of missing data (see Section 2.3.1). Therefore, 
we did not assimilate observations close to the testing date to further 
improve performance, as done in Zhang and Hirsch (2019) and Park 
et al. (2021) for WRTDS, or in Fang and Shen (2020) and Feng et al. 
(2020) for LSTM. Additionally, such assimilation frameworks would 
be problematic in predicting water quality at CONUS scale due to the 
significant and irregular temporal gaps between water 
quality observations.

2.3 Training strategy and experiment

2.3.1 Training and testing set
The data set considered here includes water quality, streamflow 

and climate forcing data for 482 basins from 1982/01/01 to 2018/01/01. 
The models were trained on 4 out of every 5 years and tested on the 
remaining years, i.e., we masked out observations for 1985, 1990, 
1995, 2000, 2005, 2010 and 2015 and used these as the testing data. 
We did not include a validation set considering the low frequency of 
target samples.

We focused on above-mentioned training strategy (referred as “Yr5”) 
for two reasons: (1) most water quality sites across CONUS contain 
measurement gaps extending up to several years, and this model can 
be used to fill those gaps; and (2) the testing dates are orderly ranked, 
which makes the testing time series easier to decipher. In addition, we also 
explored two conventional experiments: “R20,” trained on random 80% 
of the dates with observations; and “L20,” trained on first 80% of 
observation dates for each site. We found that those three experiments 
result in similar patterns of model performance, while the model 
performance for Yr5 is generally between R20 and L20. The design and 
result from R20 and L20 experiment are detailed in Supplementary Text S1 
and Supplementary Figure S2.

2.3.2 Model evaluation and intercomparison
Model performance is evaluated by temporal generalization 

experiments, i.e., the error metrics between observations and 
predictions on testing dates. To evaluate individual model 
performance for different water quality variables, we  report the 
Pearson correlation coefficient (R). The R values are calculated for 
each variable on each site separately. The R values for LSTM and 
WRTDS are referred to as LSTMR  and WRTDSR , correspondingly. As 
R values only account for model performance with respect to temporal 
variance, we also report the Kling-Gupta efficiency (KGE) scores as:

 ( ) ( ) ( )2 2 21 1 1 1KGE R β α= − − + − + −  (2)

where R is the Pearson correlation coefficient above, β is the bias 
term, or the ratio between /P O, and α is the variation error defined 
as the ratio between the standard deviations of prediction and 
observation, i.e., std(P)/std(O).
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We choose R and KGE (Equation (2)) as the error metrics 
because the magnitude of the differences in water quality values 
across individual variables, as well as across basins for the same 
variable, is substantial. Statistics affected by the value scale, e.g., 
root-mean-square error (RMSE) or bias, cannot be used to compare 
the model performance between variables, and will neglect basins 
with relatively small concentrations. In addition, as observed 
concentrations are not normally distributed, the Nash–Sutcliffe 
coefficient (NSE), as well as the β term in KGE, are also problematic. 
For instance, when dealing with numerous measurements at or near 
the lower measuring limit, NSE and β lose their interpretability. 
However, we also present our model results for long-term bias and 
the above-mentioned alternative error metrics in 
Supplementary Figures S4–S6 for comparison.

To compare performance differences between the LSTM and 
WRTDS, we report the L2 norm of R and L1 norm of KGE as:

 
2 2 2

− = − LSTM WRTDS LSTM WRTDSR R R

 − = −LSTM WRTDS LSTM WRTDSKGE KGE KGE  (3)

The signed difference, rather than a ratio, is used in Equation (3) 
to avoid assigning a specific model to the denominator and to enable 
straightforward linear comparisons. The L2 norm of R indicates the 
models’ varying abilities to capture temporal variance. While the 
difference in KGE lacks a specific interpretative meaning, L1 norm 
was chosen for its simplicity and to minimize confusion. We further 
use the Wilcoxon signed-rank test to examine if the performance 
difference is significant, as this work explores whether one model 
outperforms another on each basin, rather than the 
average performance.

In addition, to obtain robust error metrics, we need to guarantee 
that the metrics are calculated from sites that contain adequate 
training and testing samples for corresponding water quality variables. 
Although all selected sites contain more than 200 observation dates 
(section 2.1.1), counts of samples of each water quality variable could 
be much smaller than 200. Here when calculating the error metrices, 
we only included sites with at least 80 training samples and 20 testing 
samples. Also, as the WRTDS model requires streamflow observations 
as input, water quality measurements without same-day streamflow 
observation are also excluded during model evaluation to guarantee a 
fair comparison.

2.3.3 Normalization of data
To train LSTM efficiently, we need to normalize data of different 

ranges of magnitudes into a balanced scale. In comparison, it is not 
necessary to normalize the data for WRTDS. Based on the distribution 
of data, we chose min-max or log-min-max normalization approaches, 
which will linearly convert data to roughly [−1,1] based on their 10 
and 90% percentiles:
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where Y  refers to a variable and Y∗ is the normalized value that is 
used to train LSTM models, 10prec  and 90prec  refer to the function 
for finding the 10th and 90th percentile. The min-max strategy of 
Equations (4) and (5) is more stable than standardization when data 
density is low. The choice of log preprocess was decided by the 
histograms of data variables. Most water quality and rainfall chemistry 
variables (except for Temp, pH and DO), precipitation, and runoff are 
approximately log-normally distributed and are normalized by log 
min-max approach. Other variables are normalized using 
min-max approach.

In contrast, WRTDS does not require the above-mentioned 
normalization steps. During the weight calculation of WRTDS 
(detailed in section 2.2.2), the parameters that are assigned to each 
predictor resolve the magnitude difference so the weighted regression 
will not be affected by normalization of data.

2.3.4 Pool-training strategy
In comparison to the WRTDS approach, we  trained a single 

LSTM model to simulate 20 water quality variables simultaneously, 
rather than training independent models for each. There are two 
reasons to choose this pooling strategy: (1) the model could discover 
the hidden relationships among variables, particularly for strongly 
correlated measurements of nitrogen and phosphorous species. 
Although inter-species correlation may also introduce potential bias 
to the model, our experiments suggest that the multiple-target LSTM 
is better able to predict selected variables compared to independent 
models (see Supplementary Figure S3); and (2) The pooling strategy 
is much more computationally efficient. As the computational cost to 
train an LSTM with multiple targets is of the same magnitude as the 
single ones, the pooling strategy will reduce the computation time 
roughly by 20 times for 20 target variables.

2.4 Model comparison: simplicity index

To explore the differences in model performance between basins 
and between variables, we develop an additional set of indexes that 
characterize the dominant signals associated with concentrations. 
Concentration-discharge dynamics are extremely complex, with 
many different patterns noted (e.g., Maher, 2011; Moatar et al., 2017; 
Musolff et al., 2015; Thompson et al., 2011). Accordingly, numerous 
methods have been developed to characterize C-Q relationships 
including the exponent, b, of the power law describing the relationship 
between discharge and concentration (e.g., Godsey et al., 2009), the 
ratio of coefficients of variation for concentration and discharge 
(CVC/CVQ) (Thompson et al., 2011), thresholds in C-Q slopes (Moatar 
et al., 2017) and combinations of the above (Musolff et al., 2015). 
Although some studies have binned the data according to 
characteristic intervals (Fazekas et al., 2021), in general these methods 
do not capture the temporal patterns embedded in C-Q relationships, 
which is important for evaluating model approaches (Kirchner and 
Neal, 2013). To provide a metric for model intercomparison, 
we  introduce a simplicity index (referred as simplicity in the 
following), to quantify the extent to which water quality signals can 
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be  explained by a linear C-Q relationship and annual cycle. 
The simplicity index is computed from a least square linear regression 
for each water quality time series using (1) streamflow (Q), (2) sine 
and cosine day of year as predictor:

 ( ) 0 1 2 3simplicity log sin 2 cos2β β β π β π ∈= + + + +C Q t t
 (6)

where C is solute concentrations, Q is streamflow, and t is the time 
as decimal year. The coefficient of determination (R2) from 
Equation (6) is reported as the simplicity index. Similarly, we also 
report the R2 using only streamflow, or sine and cosine of date 
separately, and refer them as linearity and seasonality, respectively, as 
per the following two equations:

 ( ) 0 1linearity logβ β ∈= + +C Q
 (7)

 ( ) 0 1 2seasonality sin 2 cos2β β π β π ∈= + + +C t t
 (8)

Linearity from Equation (7) is equivalent to the coefficient of 
determination of Q to concentrations, and seasonality from 
Equation (8) is equivalent to the signal power of the one-year 
frequency, which is found to be the dominating frequency for water 
quality dynamics (Kirchner and Neal, 2013).

By combining linearity and seasonality, the simplicity index 
describes the proportion of variance of a water quality dynamic that 
can be explained by the linear C-Q relationship and annual cycle, i.e., 
C-Q-t. For example, high simplicity could be  characterized by a 
strongly seasonal and linear C-Q relationship (Figure  1A), low 
linearity but high seasonality (Figure 1B) and high linearity but low 
seasonality (Figure 1C). Thus, water quality constituents that show a 
general lack of structure with respect to discharge or time of year 
typically have high ratio between the coefficient of variation of C over 
Q (or CVC/CVQ, following Thompson et al., 2011), resulting in an 
inverse correlation between simplicity and CVC/CVQ. We also present 

the map of simplicity, linearity and seasonality of each water quality 
variable across selected sites in Supplementary Figures S8–S10.

As noted above (section 2.3.3) the underlying distributions of 
water quality analytes are variable and thus various alternative indices 
were considered. Here, we do not log-transform any variables based 
on both the underlying distributions and to maintain consistency 
across variables but note that in certain circumstances log 
transformation of C and inclusion of an additional time-dependency 
term may be warranted. For instance, a simplicity index defined using 
log-transformed C rather than C increases the correlation with model 
performance for nutrient variables, but weakens the correlation with 
model performance for other variables. Also, a simplicity index that 
includes a time term to capture long-term trends provides more power 
in estimating model performance. However, the contribution to 
simplicity from such long-term predictors is minor compared to 
linearity and seasonality, and introduces an additional analysis 
dimension. For this work, we  adhere to the simplest form of the 
simplicity index. In practice, especially when focusing on a smaller 
subset of C variables and catchments, alternative simplicity index 
should be considered based on the underlying distribution and long-
term trend of C.

3 Results

3.1 Overall performance of LSTM and 
WRTDS models

The performances of the LSTM and WRTDS are highly correlated 
across water quality variables (Yr5 experiment in Figure 2, R20 and 
L20 in Supplementary Figure S2) indicating an analyte that is well 
predicted by LSTM will also be similarly predicted by WRTDS, and 
vice versa. In general, model performances are better for variables that 
tend to be  dominated by in-stream processing (Temp, DO) and 
weathering processes (e.g., Ca, Mg, Na, and SiO2). On the other hand, 
analytes that are affected by agriculture, nutrient utilization, or 
municipal wastewater, such as TN, TP, PO4, NO3, are challenging for 

FIGURE 1

Examples of variations in a concentration or property (e.g., temperature) as a function of discharge corresponding to different combinations that result 
in high simplicity. The color scale is indicated in (A) with red corresponding to winter months, spring as blue, summer as green and fall as orange and 
the width of the lines approximates the scatter observed in individual measurements. (A) High simplicity case of a strongly linear and seasonal C-Q 
pattern, (B) examples of different characteristic patterns that result in low linearity but strong seasonality, and (C) high linearity but low seasonality. All 
of these patterns result in high to moderate simplicity.
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both models. By comparison with WRTDS, LSTM performance is on 
par or worse than WRTDS for weathering solutes but is generally 
better for biogeochemically cycled species. Out of 20 variables, 
significant differences are observed in nine variables for R, and eight 
variables for KGE, based on a p-value below 0.01 in the Wilcoxon test. 
Those two numbers rise to 13 given p < 0.05 (see Supplementary Table S2 
for details). In general, it is not apparent that one model demonstrably 
outperforms the other, considering all the selected variables.

The simplicity indices (see section 2.4) manifest a clear and 
interesting pattern among the models (Figure  3). In general, the 
simplicity index increases from nutrient variables to weathering 
variables to those dominated by in-stream processes. This trend is 
reflected in the performances of both LSTM and WRTDS, which 
increase with simplicity for all variables (Figures 2, 3). Across the range 
of variables, the correlation between the median simplicity and the 
respective performance metrics (R, KGE) are notable, with values of 
0.88 and 0.98 for LSTM, and 0.90 and 0.95 for KGE with respect to 
WRTDS. Consequently, these findings suggest that simplicity can 
serve as a reference index to assess the relative difficulty level of 
modeling different variables.

Concurrently, the advantage of LSTM over WRTDS generally 
diminishes as the simplicity of variables increases (Figure 3). This 
general trend exhibits strong consistency across most variables 
(highlighted in Figure 3), with correlation of 0.88 for ∆R2

LSTM-WRTDS. In 
the case of ∆KGELSTM-WRTDS, this trend is less pronounced with a 
correlation of 0.71 and appears to reveal two distinct groups of 
variables exhibiting parallel trends. Notably, there are more variables 
with a positive ∆KGELSTM-WRTDS compared to ∆R2

LSTM-WRTDS, 
highlighting LSTM’s advantage in capturing long-term variance and 

mean. Nevertheless, there are exceptions to this overarching trend, 
including DO, Temp, NPOC, as well as CO2 and pH for R, and SiO2 and 
SSC for KGE. Noting that DO and Temp, CO2 and pH form pairs of 
variables with strong interconnections. For DO, Temp, NPOC and 
SiO2, LSTM presents an exceptionally strong performance relative to 
the general trend. However, LSTM fails to capture the dynamic 
variance of CO2 and pH and suffers from significant bias in SSC 
prediction (Supplementary Figure S4). These outcomes highlight the 
use of simplicity index not only as an initial estimate of model 
performance but also as a guide in selecting the appropriate modeling 
approach. LSTM, a relatively complex model, may overfit weathering 
variables that show a simple dilution pattern (as detailed in 3.3) but 
can identify hidden connections between nutrient dynamics and 
additional input features (as detailed in Section 3.4).

Below, we present the basin-level results for each group of analytes 
as illustrated in Figures 2, 3. To examine model behaviors, we will 
present and discuss time series of typical sites where (1) both LSTM 
and WRTDS perform well; (2) LSTM outperforms WRTDS; (3) 
WRTDS outperforms LSTM. We only selected sites with median data 
availability to rule out the effects of data density (which will 
be discussed in section 4.2). See Supplementary Figure S7 for the 
detailed selection procedure.

3.2 Water temperature and dissolved 
oxygen

Water temperature (Temp) and DO, which are predominantly 
associated with in-stream processes, correspond to the strongest 

FIGURE 2

Testing R (A) and KGE (B) of LSTM and WRTDS model for 20 selected water quality variables. Ordered by median simplicity index. Variables with 
significant performance difference (p  <  0.01) between LSTM and WRTDS are bolded.
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model performance for both LSTM and WRTDS. Across individual 
basins, Temp and DO are strongly dominated by seasonal cycles: the 
seasonality is over 0.8 for 80% of basins for Temp, and over 0.5 for 75% 
of basins for DO (Figures 4A, 5A). When the seasonality is strong, 
both models show promise in predicting the Temp and DO 
(Figures 4A, 5A).

For Temp, both models capture the observed temperature patterns 
across a large number of basins, with better model performance as 
seasonality increases (Figure 4A) and slightly better performance for 
the LSTM as seasonality decreases. The seasonality for Temp is strong 
for most basins across CONUS, but weaker along the western coast of 
CONUS (Supplementary Figure S10), a trend that is mirrored in the 
model performance (Figure 4B). For basins with high seasonality, 
both models can capture the sine-shaped curve, but the LSTM model 
typically predicts greater short-term fluctuations (e.g., Figure 4D). The 
average RLSTM of 0.94 and median of 0.96 compares to values of 0.94 
and 0.92 for WRTDS, a difference which is significant (p-
value = 3e-40 in a Wilcoxon test).

The behaviors of LSTM and WRTDS depart when the seasonality 
of Temp is low (Figure 4A). Both models can capture the seasonal 
trends of Temp. However, deviations from these trends lead to 
divergent model performances. For example, the basin shown in 
Figure 4E experiences an unusual Temp spike in February. LSTM 
captures this anomaly, whereas WRTDS does not. Conversely, in 
Figure  4F, where there are significant year-to-year magnitude 
differences, LSTM incorrectly predicts a time shift rather than a 
magnitude shift. Overall, LSTM generally outperforms WRTDS across 
the northeastern US but is slightly worse than WRTDS along the west 
coast and in Florida (Figure 4C).

The LSTM and WRTDS predictions for DO also show a strong 
dependence on seasonality (Figure 5A) resulting in similar pattern to 
Temp. In basins with strongly seasonal DO, both LSTM and WRTDS 
can reproduce the DO with high correlations (Figures 5B,C), while 

LSTM predicts more frequent fluctuations along the smooth cosine 
curve reported by WRTDS (Figure 5D). When seasonality is weaker, 
the behavior of LSTM and WRTDS departs and their performances 
decrease (e.g., Figures 5E,F). It is not apparent why model performance 
decreases on some basins, although there is an apparent shift away 
from purely sinusoidal DO patterns that may reflect increased 
biogeochemical processing (Zhi et al., 2021).

In summary, stream water Temp and DO dynamics are strongly 
seasonal and well described by both modeling approaches, even 
though WRTDS was not designed to model Temp. When the seasonal 
Temp pattern is complex, such as the bimodal pattern in Figure 4E, the 
LSTM tends to better capture the dynamics. For DO, both models 
have difficulty capturing sites with low seasonality. In agreement with 
prior studies (Rahmani et al., 2021; Zhi et al., 2021), the capability of 
LSTM in modeling Temp and DO is confirmed by this experiment, 
although LSTM performance is only slightly better than WRTDS for 
Temp and nearly identical for DO.

3.3 Weathering variables

In this section, we examine the prediction of solutes that are 
predominantly associated with weathering processes, including 
Ca, Mg, Na, and SiO2, and those partly controlled by weathering 
processes, including K, Cl, SO4, and Cond. These variables are 
characterized by a relatively strong linear C-Q relationship 
(linearity) and median seasonality (Supplementary Figures S9, S10). 
Both LSTM and WRTDS achieve relatively high R and KGE, with 
the LSTM generally underperforming compared to WRTDS 
(Figure  2). Among those variables, RLSTM is only higher than 
RWRTDS for SiO2, and the difference is not significant. KGELSTM is 
significantly higher than KGEWRTDS for SiO2 and Cond, but lower 
for Mg and SO4.

FIGURE 3

Comparison between simplicity and ΔR2
LSTM-WRTDS (A) and ΔKGELSTM-WRTDS (B) for each element. The locations of bubbles represent the mean of 

corresponding data, and the line segments are from the 25 to 75%. The bubble size is proportional to average LSTM testing R (A) and KGE (B) of each 
element. The line at simplicity  =  0.31 is the median simplicity of 20 variables.
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Across the weathering solutes, model performance is best for 
Ca, with half of the basins of an R higher than 0.7 for both LSTM 
and WRTDS models. Model performance is correlated with 
linearity (Figure 6A), although to a weaker extent than observed 
between Temp and DO and seasonality. As a result, the spatial 
gradient in model performances (Figures 6B,C) generally agrees 
with the simplicity (Supplementary Figure S8), with high R values 
in the central Rocky Mountains and northeastern coast. For those 
mountainous and snowmelt-dominated basins, for example 
Figure  6D, LSTM predicts a temporal pattern that is nearly 
identical to WRTDS, especially during high streamflow events. 
Across the Mississippi River Basin, especially downstream parts of 
Arkansas basin (HUC11) and upper Mississippi (HUC07), many 
sites report low linearity. The C-Q relationship may be confounded 
by mixing of tributaries upstream and agricultural/land use 
practices, leading to more variable model performance across the 
central US.

In analyses of basins with median data availability, WRTDS 
outperforms LSTM at more sites, as shown in 
Supplementary Figure S7. LSTM’s primary advantage lies in its 
ability to capture the peaks in Ca concentrations more accurately, 
such as Figure 6E. These peaks are reflective of low flow hysteresis 
within a generally linear C-Q pattern (Figure 1A), indicating that 
LSTM is adept at identifying outliers within a linear context. 

However, in simpler basins where a strong linear C-Q relationship 
exists, LSTM tends to predict a shifted pattern, which significantly 
reduces its performance. For instance, in Figure 6F, LSTM predicts 
an increasing long-term trend, leading to an overestimation of Ca 
concentrations in 2010 and 2015. Additionally, at the same basin, 
LSTM incorrectly predicts that drops in Ca concentration will 
occur days after high-flow events —a prediction not made by 
WRTDS or other statistical models that rely on direct C-Q 
relationships. Overall, both models demonstrate limited 
effectiveness in the absence of both seasonality and linearity in the 
C-Q-t relationship. WRTDS better describes the linear C-Q pattern, 
while LSTM more effectively identifies non-linear outliers.

To further examine the importance of linearity for modeling of 
the weathering variables, we equally divided basins into “linear” or 
“non-linear” groups based on the median linearity index for each 
solute, and separately plotted model performances for each group 
(Figure  7). On “linear” basins, WRTDS is significantly better 
(p < 0.05) for most weathering variables except for K and SiO2, 
which have the lowest median linearity among selected variables. 
On the other hand, LSTM outperforms WRTDS (p < 0.05) on 
“non-linear” basins for most variables except for Cond and SO4. For 
basins with high linearity, the weathering solute concentrations are 
strongly affected by dilution at high discharge. In contrast, low 
linearity indicates relatively complex solute generating processes, 

FIGURE 4

Model behaviors of Temp. The top three panels show (A) R comparison between LSTM and WRTDS for each basin, colored by seasonality; (B) map of 
RLSTM; (C) map of ΔR2

LSTM-WRTDS. Three typical basins are selected as both LSTM and WRTDS perform well (D), or one significantly outperforms the other 
(E,F). Their locations are circled in top three panels and their time series for the testing period are presented in (D–F). Selecting procedure are detailed 
in Supplementary Figure S3. Note the variation in scale for temperature.
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e.g., seasonal flow paths or more chemostatic behavior. Thus, when 
the C-Q pattern results from dilution from baseflow concentrations, 
LSTM is likely to be  less skillful at predicting the variations. 
However, when the solute generating process is too complex to 
be captured by a linear C-Q relationship, the advantage of LSTM 
over WRTDS is highlighted. Arguably, the weathering solute 
generation process typically unfolds over decades or even centuries, 
greatly exceeding the LSTM model’s training sequence length. In 
addition, the extent of weathering is linked to variations in water 
age and mixing, which may complicate temporal dynamics (as 
reviewed in Maher and Navarre-Sitchler, 2019). As a result, trying 
to map the dilution process from a relatively short sequence of 
historical forcings may perplex the LSTM model, leading to 
overfitting rather than accurate predictions.

3.4 Nutrient variables

For most nutrient variables, including NPOC, NO3, TN, N-org, 
NHx, TP and PO4, LSTM outperforms WRTDS. These variables are 
affected by biogeochemical processes and human activities like land 
use practices and agricultural inputs, and both LSTM and WRTDS 
predictions are characterized by relatively low R and KGE values. CO2 
and pH are particularly challenging for both approaches (Figure 2), 
with LSTM generally worse than WRTDS. Unlike Temp, DO or 

weathering solutes, most basins are characterized by low simplicity, 
i.e., nutrient dynamics are not determined by strong seasonality or a 
linear C-Q relationship.

For NO3, the overall simplicity index is still strongly correlated 
with model performance (Figure 8A)—a trend also observed at other 
nutrient variables. The LSTM outperforms WRTDS, achieving a 
median R of 0.71 compared to 0.67 for WRTDS (p = 1.4E-02). There 
is also minimal spatial structure in model performance as basins with 
relative high RLSTM and ΔR2

LSTM-WRTDS are clustered together 
(Figures  8B,C). However, we  did not find any single geophysical 
attribute controlling this spatial pattern.

LSTM and WRTDS models predict markedly different NO3 
dynamics, even in basins with a high simplicity index where both 
models perform well—a divergence not seen in previously presented 
stream and weathering variables. For instance, in the basin presented 
in Figure 8D, although both models achieve high performance, the 
LSTM model reveals an evolving seasonal pattern while WRTDS 
does not. LSTM predicts a shift from pronounced early fluctuations 
with transient peaks to a more uniform declining trend in recent 
years. This pattern is noticeable during the training period; however, 
due to the limited data from those early years, we  cannot fully 
confirm this trend. In cases where LSTM significantly outperforms 
WRTDS, such as the one shown in Figure 8E, its advantage comes 
from accurately capturing extreme events, notably the peak of 
summer 2005 and the trough of autumn 2010. Conversely, WRTDS 

FIGURE 5

Model behaviors of DO, with same style as Figure 4. The top three panels show (A) R comparison between LSTM and WRTDS for each basin, colored 
by seasonality; (B) map of RLSTM; (C) map of ΔR2

LSTM-WRTDS. Three typical basins are circled in top three panels and their time series for the testing period 
are presented in (D–F).
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tends to outperform LSTM at sites with data density concerns, such 
as those illustrated in Figure  8F, which show constant readings 
indicative of a potential measurement issue. A notable number of 
sites (~10) suffer from this data quality issue, yet because they lack 

corresponding quality flags we  cannot exclude them without 
subjective data manipulation. In these instances, while LSTM displays 
a tendency to overfit these consistently flat measurements, WRTDS 
is more adept at approximating them.

FIGURE 6

Model behaviors of Ca, with same style as Figure 4. The top three panels show (A) R comparison between LSTM and WRTDS for each basin, colored by 
linearity; (B) map of RLSTM; (C) map of ΔR2

LSTM-WRTDS. Three typical basins are circled in top three panels and their time series of testing period are 
presented in (D–F). Note the variation in scale for concentrations.

FIGURE 7

LSTM and WRTDS performance of weathering and mixed variables. The median linearity of each variable is presented under the variable name, which 
separates the basins into linear and non-linear groups for plotting.
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4 Discussion

Below we examine the associations among seasonality, linearity, 
and simplicity, and among basin characteristics and model 
performance. In addition, we  explore the differences and 
commonalities among LSTM models trained with different strategies 
and predictors in order to (1) understand basic drivers of LSTM 
performance and (2) provide a practical guide for future model use 
and development in water quality prediction.

4.1 The role of seasonality and linear C-Q 
relationships in model predictions

By comparing results from two different data-driven modeling 
approaches, LSTM and the WRTDS, we find that both approaches show 
similar performance across a broad spectrum of analytes (Figure 9). The 
most challenging variables for the models are the nutrients, followed by 
weathering-derived solutes, and then Temp and DO.

For Temp and DO, WRTDS achieved decent performance 
although it is not designed to model them. LSTM results for Temp and 
DO agree with prior work that found strong model performance for a 
smaller set of data-rich and dam-free basins (Rahmani et al., 2021; Zhi 
et al., 2021; Sadler et al., 2022), performance that generally exceeds 
that of statistical stream temperature models (e.g., Gallice et al., 2015). 

Similarly, we also observe the performance of the WRTDS and LSTM 
to decrease at low seasonality and/or for non-sinusoidal DO patterns. 
Overall, the strong performance of both model types for Temp and DO 
can be  explained by the representation of seasonal patterns, 
supplemented by discharge dependencies.

In contrast to Temp and DO, the weathering solutes are 
characterized by linearity over seasonality and lower overall simplicity. 
Both models perform moderately well on these analytes, with WRTDS 
significantly better for Ca, Mg, and SO4 (Supplementary Table S2). 
Although numerous models have been presented for these patterns, 
including WRTDS (and related variants), no studies have yet to apply 
LSTMs to predict a range of water quality variables across 
heterogeneous catchments. However, LSTMs have shown considerable 
promise for modeling water stable isotopes (Sahraei et  al., 2021), 
urban discharge (Zhang et al., 2022), and individual water quality time 
series (Jung et  al., 2020). Hence, the lack of distinction in LSTM 
performance relative to WRTDS is surprising.

All nutrient variables are characterized by complex C-Q-t patterns 
(low simplicity), and poor model performances. The inherent 
complexity of nutrient C-Q patterns is well established. The complexity 
is evidenced both in the decline of CVC/CVQ with increasing export 
load (Thompson et al., 2011), lower power law exponents (Musolff 
et al., 2015) and positive precipitation anomalies (Fazekas et al., 2021). 
Thompson et  al. (2011) attributed decreasing CVC/CVQ to an 
increasingly homogeneous distribution of mass stores within the 

FIGURE 8

Model behaviors of NO3, with same style as Figure 4. The top three panels show (A) R comparison between LSTM and WRTDS for each basin, colored 
by simplicity; (B) map of RLSTM; (C) map of ΔR2

LSTM-WRTDS. Three typical basins are circled in top three panels and their time series of testing period are 
presented in (D–F). Note the variation in scale for concentrations.
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catchment due to anthropogenic inputs, also resulting in more 
chemostatic tendencies. Here, we do not see a consistent relationship 
between nutrient CVC/CVQ and model performance. Although CVC/
CVQ is weakly anti-correlated with simplicity (Supplementary Figure S11), 
it does not consider the coherence of the seasonal pattern, which is an 
important component of the overall behavior for nutrients (Figure 8).

The strong correlation between simplicity and model 
performance also indicates that we  have not captured all of the 
drivers of C-Q-t behavior. Even though we  provided more 
comprehensive predictors to the LSTM, including climate forcing, 
vegetation dynamics and numerous catchment attributes from 
GAGES-II, in general the LSTM does not outperform the WRTDS 
(Figure 2). However, temporally and spatially resolved human inputs, 
such as fertilizer applications and point source loads, were not 
available as additional predictors. We  also did not find strong 
relationships between the simplicity index and the non-climatic basin 
attributes (Supplementary Figure S10), except in a few instances 
discussed below. The inability of the LSTM to gain an advantage 
indicates that the connection between those additional predictors 
and target dynamic is either less important compared to the C-Q-t 
relationship, or extremely hard to quantify with existing predictors.

Collectively, our results present a paradox: a model architecture 
(LSTM) designed to inherently detect hidden patterns performs 
similarly to a statistical model built on assumptions of the dominant 
patterns (WRTDS), and their performance strongly agrees with trends 
revealed by the simplicity index. At the same time, in complex basins 
the LSTM shows slightly better performance suggesting that it may 
have established “auxiliary characteristics,” or temporal dynamics not 
directly provided in the inputs. Below (section 4.4), we  examine 
several instances that may explain these additional “hidden” inputs.

4.2 The role of data quality in model 
predictions

The availability of water quality observations is surely a limiting 
factor in the performance of both LSTM and WRTDS models; 
however, the correlation is complex (Figure  10, see 
Supplementary Figure S12 for all 20 variables). When the number of 
training samples is relatively small, the testing R exhibits considerable 
variability, with some sites showing strong performance even in spite 

of low data availability. As the number of training samples increases, 
the scatter in performance values contracts to relatively high and 
consistent values suggesting that adequate training samples will result 
in relatively consistent model performance across most sites. In 
general, this stabilization of performance is guaranteed when the size 
of training samples is larger than 500, which includes, unfortunately, 
less than 4% of the sites. This pattern suggests that as the data quality 
increases, the performance of LSTM tends to approach a relatively 
high and stable level. However, given the scarcity of sites with frequent 
observations, the question of whether this pattern will hold for even 
larger data sizes remains unclear. For the same reason, the execution 
of a leave-samples-out experiment to validate this inference is 
also challenging.

While an increased number of training samples significantly 
reduces performance variations, the overall median performance 
remains relatively constant or exhibits a mild upward trend. The slopes 
of testing R and KGE with respect to number of training samples are 
generally small for most variables. Agricultural variables, such as K, 
NO3, PO4, and NPOC, are exceptions, presenting a notable surge in 
model performance as the number of training samples increases. This 
observation implies that the LSTM model benefits from a more 
frequent sampling to effectively capture the intricate patterns arising 
from human activities. Expanding the collection of water quality 
samples has the potential to enhance the stability of model 
performance, as supported by previous work with local but high 
frequency measurements (Saha et al., 2023). Yet it remains uncertain 
whether an increase in data alone could effectively address the 
challenges presented by basins characterized by lower levels 
of simplicity.

In summary, there is no clear evidence to conclude that the size of 
the training sample is a dominant control on model performance, 
evidenced by the close to zero correlation between training sample 
size and testing R or KGE. On the other hand, the correlation between 
simplicity and model performance is much stronger. Nevertheless, the 
overall count of training samples only partly indicates the quality of 
training data. For example, some sites exhibit a high frequency of 
water sample collection but for only a limited number of years or 
months. This situation results in a relatively dense yet low-count 
training data scenario. For a more comprehensive understanding of 
data quality, a thorough analysis of the distribution of the measuring 
time stamp is needed.

FIGURE 9

Median testing R2 of LSTM model vs. similarity index for selected water quality variables. Blue line present WRTDS R2 and red line is LSTM. The green 
dash line shows the performance of LSTM model with local normalization discussed in section 4.2.
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4.3 The effect of local normalization on 
LSTM performance

Given the apparent uniqueness of water quality behavior across 
basins, we further explore model assumptions to determine their 
impact on model performance. In the model experiments 
described above, we  used a global normalization strategy (see 
section 2.3.3), which normalizes target variables based on pooled 
values across all basins. Hence, the local temporal dynamics of 
water quality are dampened. Accordingly, we tested an alternative 
local normalization strategy on water quality targets that 
exaggerates local variations while relegating inter-basin 
connections. For each basin, we standardize each water quality 
variable by:

 

( )( )
( )

k k
k

k

Y mean Y
Y

std Y
∗ −
=

 
(9)

where kY  is water quality observation at site k, with mean and 
standard derivation (std) calculated using only data from the training 
set. The mean and std for each site and each variable as per Equation (9) 
are recorded and provided to the LSTM model as additional static 
inputs. Noting that we  did not log transform kY  as the site-wise 
concentrations are not log-distributed for most sites and variables.

We found that local normalization affects weathering variables 
and nutrient variables in opposite ways (Figure 9, green line). For 
weathering variables, local normalization substantially improves the 
model performance, minimizing the difference between the LSTM 
and WRTDS models and overall higher testing correlations for K and 

SiO2, on par for Na, Cl and SO4, and worse for Ca, Mg and Cond. 
However, for all water quality variables where LSTM outperforms 
WRTDS, local normalization decreases LSTM performance. In short, 
local normalization results in greater similarity between the LSTM 
and WRTDS.

Local normalization transforms water quality measurements into 
a relatively uniform distribution; hence the LSTM model can more 
easily fit the target values compared to global normalization. At the 
same time, the information on the magnitude difference between 
basins is missing, preventing the model from learning universal rules 
across different sites. Therefore, the effect of local normalization may 
indicate how LSTM learns the water quality dynamics. In general, 
such cross-site information could be leveraged by LSTM to predict 
nutrient and in-stream dynamics but would undermine predictions of 
weathering variables. This finding may indicate controls on water 
quality variables, where nutrient analytes are determined by a 
common set of factors and the generation of weathering solutes is 
partly determined by local geology. The latter limits the ability of the 
model to transfer knowledge among basins. However, such 
correlations are not straightforward to perceive from the existing 
attributes in our database when compared to the simplicity for each 
parameter. For example, Ca simplicity shows an inverse correlation 
with the fineness of soil texture, whereas Na simplicity does not 
(Supplementary Figure S13). Other studies have found stronger 
correlations between C-Q metrics and catchment attributes across 
Germany, within a much tighter geographic and climatic range 
(Ebeling et al., 2021).

The experiment of local normalization is also useful from a 
practical standpoint: when using LSTM to simulate water quality 
dynamics, local normalization is preferable for weathering variables 

FIGURE 10

Number of training samples vs. testing R for (A) DO, (B) Ca, (C) NO3, and (D) SO4. Each red point represents a basin. The gaussian kernel density 
estimation (KDE) colored based on percentiles of z-values represents the density of points.
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FIGURE 12

The affect of rainfall chemical input on LSTM prediction of SO4. (A) comparison between the testing correlation of LSTM models with and without 
rainfall chemistry (labeled as P) as inputs, colored by long-term averaged rainfall SO4 concentration. (B) example time series on basin 01349150.

but not for others. This preprocessing step could remedy the weakness 
of LSTM in the prediction of weathering variables, and result in an 
enhanced LSTM model that mostly outperforms WRTDS, even if 
we  do not have a clear statistical explanation for the effect of 
local normalization.

4.4 Role of selection of inputs in LSTM 
predictions of water quality

4.4.1 Do additional inputs improve LSTM 
predictions of water quality?

To determine if additional inputs could improve simulations of 
water quality dynamics, we  investigated the contribution of 
additional predictors, including climatic forcing, precipitation 
chemistry and vegetation index. We used a sequence of labels to 
represent models of different inputs, as detailed in section 2.1.2. 
For example, an experiment labelled “QFPV-C” means the input 
of the model contains drainage basin runoff (Q), climatic forcings 
(F), precipitation chemistry (P) and vegetation indexes (V), while 
the target is water quality dynamics (C). We compare the behaviors 
of QFPV-C, model with full inputs; QFP-C, model without 
vegetation indexes; QFV-C, model without rainfall chemistry; 
Q-C, model only using streamflow (same inputs as WRTDS); and 

FPV-QC, which simulates streamflow and water 
quality simultaneously.

In general, additional input data does not significantly improve 
the performance of LSTM, as the experiments with additional input 
variables (QFPV-C, QFV-C and QFP-C) did not significantly 
outperform the model with only streamflow (Q-C) (Figure  11). 
However, there are some exceptions. Climatic forcings do improve 
prediction of Temp and DO; vegetations indexes improve nutrient 
variables, including NO3, PO4 and NHx. Although the model with most 
comprehensive inputs (QFPV-C) reported the highest correlation, the 
differences to other LSTM models with fewer predictors are not 
significant in Wilcoxon test for most variables. The small effect is 
surprising as the connection between those additional variables (i.e., 
climate forcing, rainfall chemicals, and vegetation characteristics) have 
been assumed to influence C-Q patterns.

We found that the insignificant performance difference 
introduced by additional inputs is due to tradeoffs in model 
performance. For example, we compare the SO4 predictions between 
model QFPV-C and QFV-C (i.e., LSTM with precipitation chemistry 
and without), on a northeastern basin that is substantially impacted 
by acid rain (USGS ID is 01349150). As Figure  12 shows, 
precipitation chemical data improved the LSTM predictions of the 
fall peaks in SO4 in 1995 and 2005, but then overestimated in 1995 
spring and 2015 fall. As a result, QFPV-C and QFV-C models 

FIGURE 11

comparison of LSTM testing performance with different input and target, for 20 selected water quality variables ordered by their median simplicity 
index. QFPV-C (black) is the reference model that is trained with complete inputs.
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reported the same testing R (0.93). Although SO4 can be strongly 
affected by the legacy of acid rain as well as marine aerosol inputs, 
rainfall chemistry can both improve and diminish the performance 
of the LSTM model in predicting SO4, which is also evidenced by the 
small improvement from QFV-C to QFPV-C model (SO4 in 
Figure  11, median correlation from 0.7 to 0.72). This example 
highlights both the potential advantage and disadvantage of using 
DL approaches – although more data can be utilized, they may have 
no effect, or worse negatively influence predictions. Compared with 
C-Q relationships, the relationship between those additional flux 
and water quality metrics are less straightforward and cannot 
be fully captured by LSTM in our experiment. It is not clear whether 
this issue can be mitigated by adding more data, including both 
comprehensive inputs and adequate target observations; or if 
we  need more advanced DL models with skillful regulation 
techniques or embedded coupling to physical rules.

4.4.2 Can LSTM link the runoff generating 
processes to the solute dynamics?

In the above experiment, we found that the FPV-QC model, in 
which the LSTM is trained to simulate Q and C simultaneously, results 
in a decline in model performance compared to the other experiments 
where streamflow is used as input (e.g., FQPV-C) (Figure 11). Previous 
studies have shown that LSTM is a promising method for simulating 
streamflow (Feng et al., 2020; Kratzert et al., 2019a; Kratzert et al., 
2018; Gholizadeh et al., 2023). As solute export is highly linked to 
streamflow generation, we  would expect an LSTM model that is 
trained to predict streamflow and water quality at the same time to 
identify and benefit from such relationships. This inability of the 
LSTM to utilize the learned streamflow-generating behavior to model 
water quality dynamics is thus surprising. For weathering variables, 
the FPV-QC model is even worse than the model using only 
streamflow as input (Q-C). On one hand, the FPV-QC model 
presumably uses hidden parameters to successfully predict streamflow 
and to simulate water quality. Those hidden parameters are assumed 
to be a promising representation of the streamflow generating process. 
The streamflow prediction from FPV-QC model is close to the 
rainfall-runoff LSTM model (i.e., F-Q model), which is the state-of-art 
streamflow simulator (Kratzert et al., 2019b). On the other hand, the 
Q-C model does not know how the Q is generated but was provided 
accurate Q as inputs. Surprisingly the latter advantage overrides the 
former one.

We argue that in applications to water quality, the LSTM model 
works as a statistical model extracting the C-Q-t relationship, rather 
than a representation of catchment function as asserted for LSTM 
models of streamflow (Nearing et al., 2021). More specifically, the 
LSTM model cannot extract the flow path and travel time distributions 
of water, then couple the physical and chemical processes to predict 
the dynamics of weathering solutes. This deficiency may result from 
the lack of frequent observations of water quality, although our dataset 
does not contain high-frequency water quality observation to 
investigate thresholds. While streamflow is commonly measured daily, 
solute concentrations are usually measured bi-weekly or monthly, and 
on the outlet of a much smaller number of basins. Nevertheless, data-
driven models are likely to learn the most straightforward relationship 
between concentrations and streamflow. Our results indicate that the 
underlying internal processes are not easily identified by a direct 
implementation of an LSTM.

4.5 Auxiliary controls on water quality 
based on differential LSTM-WRTDS 
performance

On many catchments, LSTM outperforms WRTDS, possibly by 
capturing auxiliary characteristics that affect the solute dynamics, 
beyond seasonality and linear C-Q. Unfortunately, as the LSTM is a 
black-box model, it is hard to interpret LSTM weights as readable 
auxiliary characteristics: those auxiliary characteristics are hidden 
inside the LSTM and hard to extract. To interrogate those hidden 
controls, we examined the relationship between 2

−LSTM WRTDSR  and 
environment conditions. Such analyses provide an indication of 
potential auxiliary characteristics that contribute to the water quality 
variations, and by extension, the means by which LSTM gains an 
advantage. These insights may also inform future modeling efforts.

For example, the LSTM substantially outperforms WRTDS for 
NHx when the basins are heavily affected by agricultural practices. 
Comparison of the nitrogen addition (via fertilizer and manure, 
estimated by Ruddy et al., 2006) to the 2

− LSTM WRTDSR  results in a 
triangular array (Figure 13). When the nitrogen input is more than 
5,000 kg/km2, the average R value for LSTM NHx is 0.66, while the 
WRTDS is 0.48. On the other hand, when the basin is not heavily 
fertilized, LSTM only slightly outperforms WRTDS, with R of 0.5. A 
similar pattern is found for the NO3 models: when agriculture occupies 
more than 25% of the riparian zones, the average R value for NO3 
prediction by LSTM model is 0.71, which is substantially higher than 
for WRTDS (R = 0.63) or LSTM on other basins (R = 0.65) (not 
shown). For PO4, the LSTM correlation reaches 0.70 on basins whose 
phosphorus input is higher than 1,200 kg/km2, while correlation for 
WRTDS on those basins is 0.62, and LSTM on other basins is 0.60 (not 
shown). These examples indicate that LSTM may capture the temporal 
dynamics of agricultural practices, which substantially affect nutrient 
concentrations and exports (Basu et al., 2010), contributing to the 
advantage of LSTM in modeling nutrient dynamics. In general, LSTM 
achieves higher R on fertilized basins over unfertilized ones, which 
implies that the nutrient dynamics produced by human activities are 
easier to model compared to natural biogeochemical processes.

Noting that the agricultural input to the model is constant rather 
than dynamic, reflecting a long-term average, it is more likely that the 
daily inputs of climate and vegetation provided to the LSTM 
contribute to the improved model performance in heavily fertilized 
basins. The improvement of the LSTM in human-impacted basins 
may also reflect the accumulation of mass stores within the catchment, 
resulting in reduced variance in concentrations throughout the year 
(Thompson et al., 2011). Accumulation of P, N and SO4 from excess 
inputs is well established for many catchments (Basu et  al., 2010; 
Green et al., 2014; Zhang, 2018; Stackpoole et al., 2019) and may 
underlie some of the broader trends seen across our results. Detailed 
information on anthropogenic chemical inputs to watersheds (e.g., 
time series of fertilizer or manure applied) could greatly improve 
LSTM model performance. However, nutrient input data, typically 
derived from county-level surveys (e.g., Falcone, 2021), require 
extensive work to be integrated into catchment-scale inputs. Despite 
the recent effort integrating nutrient input into HUC8 scale (e.g., Sabo 
et al., 2019, 2021), the variability in catchment sizes associated with 
USGS gages introduces significant uncertainty. Moreover, nutrient 
input data are generally reported annually, making them incompatible 
with training a daily-based DL model. The future work should 

https://doi.org/10.3389/frwa.2024.1456647
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org


Fang et al. 10.3389/frwa.2024.1456647

Frontiers in Water 18 frontiersin.org

consider developing a new deep learning architecture capable of 
directly handling these spatial and temporal discrepancies, which 
would be more effective than attempting to create a daily basin-level 
product for model input.

Other studies have correlated catchment attributes with C-Q 
behavior. In a study of nine European catchments, Musolff et  al. 
(2015) found that the fraction of drained arable land, available water 
capacity in the root zone, and baseflow, were the most important 
variables for predicting the slope b, although the dominant attributes 
varied across solutes. For CVC/CVQ, the topographic gradient and base 
flow index were most important. Our results point to a similar pattern 
of element-specific correlations in catchment attributes, wherein 
simplicity is correlated with a unique set of attributes 
(Supplementary Figure S10). We also show here that seasonality is an 
important attribute for the nutrient analytes. Furthermore, land use 
practices may not be reflected adequately in the climate and vegetation 
dynamics (as provided to the LSTM here), at least for lower land 
use intensities.

5 Implications

Even with the increased number of inputs and the capability to 
model nonlinear behaviors, we find that the LSTM architecture 
does not capture the diversity of C-Q-t patterns, particularly for 
basins/variables of low simplicity. Our results highlight the need to 
focus on understanding and modeling low simplicity analytes and 
watersheds, as it is clear the predictive power of existing models is 
already substantial for basins that rank highly in simplicity. In 
contrast, complex basins defy predictability, even when paired with 
other assumed drivers (vegetation, climate, land use and basin 
attributes), presenting an outstanding challenge for our 
understanding of water quality. Water quality measurements at the 
scales considered here are also too sparse to evaluate underlying 
signals, such as fractal scaling indicative of multi-scale dispersive 
mixing processes (Kirchner and Neal, 2013). In addition, the 
correspondence between low simplicity and poor LSTM 

performance for highly reactive nutrients may arise from inadequate 
representation of complex reaction networks within the LSTM 
model. Future model frameworks will need to account for both 
dispersive mixing and complex reaction networks.

Our findings above also provide a practical guide for the future 
use of LSTMs to interpolate or forecast water quality dynamics. 
Although the LSTM shows promise for simple parameters (DO and 
Temp), as well as for human-impacted systems, it also is more 
computationally expensive during the training stage, currently 
more labor-intensive, and less interpretable compared to 
WRTDS. In addition, our experiment used 20 variables for nearly 
500 basins across CONUS, whereas an LSTM model focused on a 
smaller number of basins would likely suffer from overfitting, as 
suggested by streamflow LSTM modeling (Fang et al., 2022), and 
require careful hyper-parameter tuning. Hence, for many 
applications WRTDS and related products may provide practical 
advantages over LSTMs, especially when engaging with a relatively 
small dataset. Yet, the spatial gradients of difference between LSTM 
and WRTDS are highly variable, and LSTM may provide superior 
performance on selected local basins. The proposed simplicity index 
provides intuition about the level of performance prior to training 
either model. One important difference is that LSTM can estimate 
water quality on ungauged basins (using the FPV-QC model 
presented in Figure 11), while WRTDS cannot.

Ultimately, we argue that using deep learning approaches to 
simulate water quality is more challenging than for streamflow, for 
the following reasons: (1) the processes generating and/or 
transforming solutes are more complex, (2) observations of water 
quality may be inadequate compared to streamflow observations, 
(3) the necessary forcings required to improve LSTM performance 
are missing or remain to be  discovered. As a result of these 
limitations, it is a challenge for LSTM to learn the patterns of all but 
the simplest water quality dynamics. We acknowledge that, despite 
exhaustive efforts, the LSTM model has yet to attain its maximum 
learning potential. Enhanced performance could potentially 
be  realized through training with high-frequency water quality 
samples, fine-tuning of hyperparameters, or incorporation of 

FIGURE 13

The relation between estimated Nitrogen input and model performance of NHx. (A) comparison between LSTM and WRTDS testing correlation colored 
by N input; (B) comparison between model performance difference and N input; (C) testing correlation of LSTM and WRTDS on heavily fertilized basins 
and others.
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supplementary input features that are distinct from those typical of 
streamflow generating processes. Nevertheless, within the scope of 
our testing, such endeavors are unlikely to induce a dramatical shift 
in the reported gradient across sites and variables, suggesting that 
data availability is not the only limitation.

Considering that forthcoming work concerning large-scale water 
quality dynamics will likely continue to be constrained by the low 
frequency of observations, future studies should consider ways to 
constrain DL by existing theories about solute generation (Zhi et al., 
2024), for example, travel time distributions and storage selection 
functions (Benettin and Bertuzzo, 2018; Harman, 2019; Torres and 
Baronas, 2021) or consideration of the potential for reaction 
networks involving multiple species and the subsurface minerals and 
solids. As noted in Varadharajan et al. (2022), considering the scale, 
complexity and data availability of water quality problems, 
integrating process knowledge into model design is necessary to 
unlock the potential of DL models in handling complex water quality 
dynamics. Additionally, DL models demonstrate promise for 
modeling of variables affected by human activities, even with only 
static inputs describing long-term average inputs. To better model 
these variables, future work should consider incorporating human 
input data by addressing the current spatial and temporal 
discrepancies. Future work could also consider factors related to the 
water samples, e.g., instruments used, the timing of measurements, 
and the quality of samples. Based on our analysis of the model 
performance relative to the simplicity metric, it will also be important 
to focus on complex basins rather than those that are characterized 
by high seasonality and/or linearity, as the latter do not present an 
outstanding challenge for either DL or statistical models.

6 Conclusion

We find that the capability of the LSTM to model water quality 
is comparable to the conventional WRTDS model. Both models 
perform poorly for solutes and basins that classify as low simplicity, 
an indication that high C-Q variance is not directly attributable to 
catchment characteristics or the climate, vegetation and 
precipitation forcings as provided. The differences in performance 
between the models are subtle, with LSTM advantageous for 
modeling Temp and several nutrient analytes (e.g., TN, NO3, TP 
and PO4) and WRTDS advantageous for modeling many 
weathering analytes (Ca, Mg, SO4). Targeted experiments reveal 
additional information underlying inter-model differences. A local 
normalization strategy alleviates the deficiency of the LSTM for 
weathering variables relative to WRTDS, but also negatively 
impacts performance for nutrient variables. Removing climate, 
vegetation and precipitation or moving Q to the prediction have an 
insignificant impact on the LSTM predictions, suggesting the 
LSTM is not able to extract additional information in those 
forcings beyond seasonality and C-Q relationships.

Catchment attributes (e.g., fertilizer additions) are correlated 
with thresholds in model behavior, suggesting that LSTM may detect 
auxiliary characteristics. However, in many cases poor model 
performance cannot be attributed to any single or collective set of 
attributes, suggesting that underlying drivers, potentially including 
subsurface properties, complex reaction networks, tributary mixing, 

and/or human factors, were not captured by the input or training 
data. Collectively, we conclude that to harness the power of DL and 
statistical models for water quality will require consideration of the 
low simplicity end-members in C-Q-t space and less reliance on 
simple basins and water quality constituents, which are robustly 
modeled by both the DL architecture and a comprehensive 
statistical approach.
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