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The risk of more frequent and intensified extreme events is expected to increase

with climate change. In semi-arid regions, particularly, both increased flooding

and prolonged droughts pose a threat as the water resources system must

be prepared for both types of extremes. To understand how future extremes

may be altered, however, past extremes must be understood. For this reason,

this study employs three physically based models to simulate the atmospheric,

snow, and hydrologic conditions in the American River Watershed: the Weather

Research and Forecasting Model and the Watershed Environmental Hydrology

Hydro-Climate Model with the addition of a SNOW Module. Each model is

individually calibrated and validated against either gauge data or data provided

by the Parameter-Elevation Regressions on Independent Slopes Model for two

10-year periods before a full 169-year daily reconstruction is performed for

the period from 1852 through 2020. To analyze the model performance under

hydrologic extremes, three flood years (1997, 2006, and 2017) and two drought

periods (1987–1992 and 2012–2016) are further analyzed. The reconstruction

outputs are found to successfully simulate historical conditions at both daily

and monthly scales. Results highlight the importance of fully accounting for the

role of temperature in snow processes and the subsequent flow conditions. By

understanding how the models perform under historical extreme conditions,

future extreme events can be compared, and necessary adaptation plans can

be conceived to ensure that the watershed is prepared for future wet and dry

conditions. Additionally, the created reconstruction dataset is comprehensive,

simulating conditions across the hydroclimate, at a finer spatial and temporal

scale than is typically available from observation data alone. The dataset can be

further analyzed to assess changes in the trends and the potential trajectory of

extreme events within the American River Watershed.
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atmospheric reconstruction, hydrologic reconstruction, WRF, WEHY-HCM, physically

based, semi-arid catchment, flood, drought

Frontiers inWater 01 frontiersin.org

https://www.frontiersin.org/journals/water
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://doi.org/10.3389/frwa.2024.1445722
http://crossmark.crossref.org/dialog/?doi=10.3389/frwa.2024.1445722&domain=pdf&date_stamp=2024-10-01
mailto:edsnider@ucdavis.edu
https://doi.org/10.3389/frwa.2024.1445722
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frwa.2024.1445722/full
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Snider et al. 10.3389/frwa.2024.1445722

1 Introduction

Climate change is widely accepted to be impacting global

atmospheric mechanisms and contributing to changes that alter

the hydrologic response to atmospheric conditions (Young et al.,

2009; Singh et al., 2018; Moustakis et al., 2021; Welty and Zeng,

2021; Lee et al., 2023). Preparing the current water management

system to be flexible and adaptable to the consequences of climate

change is vital, especially in regions where the occurrence of

extreme events is expected to increase (Facincani Dourado et al.,

2024). While the definition of an extreme event is location-specific

and likely to change as severe storms become more common,

understanding past atmospheric and hydrologic conditions for

an area is important before attempting to understand how these

characteristics may change in the future (Ishida and Kavvas,

2017; Pendergrass, 2018). As such, this study aims to reconstruct

historical atmospheric, snow, and hydrologic conditions using

three physically based models. Daily simulations for the period

from 1852 to 2020 are conducted for the American RiverWatershed

(ARW) using the Weather Research and Forecasting (WRF)

model and the SNOW Module and hydrologic components of

the Watershed Environmental Hydrology Hydro-Climate Model

(WEHY-HCM). Following the calibration and validation of each

of the three physically based models, overall output performance

is compared to historical observations. With the reconstruction

dataset, important extreme events, for precipitation, flooding, and

drought, can be further analyzed and model performance assessed.

The target watershed for the application of the proposed

methodology is the American River Watershed (ARW). Located

in the Sierra Nevada Mountain range to the east of Sacramento,

California, ARW drains ∼5,440 km2 into Folsom Reservoir at the

outlet of the watershed through three main river forks. Operational

in 1956, as part of the Central Valley Project, Folsom Reservoir

has a total capacity of ∼1.2 billion m3, providing both flood

protection and water supply to the Sacramento area (Bureau of

Reclamation). As a heterogenous, mountainous watershed, the

elevation within ARW ranges from 120m near Folsom Reservoir to

close to 3,000m in the headwaters of the Sierra Nevada (Figure 1A).

The higher elevations in the headwaters provide important snow

cover and contribute spring and summer snowmelt to streamflows

when precipitation is not typically available. Land use and land

cover (LULC) over the watershed is primarily forest with the low

elevations near Folsom Reservoir, and extending up the mountain

along the stream reaches, consisting mostly of deciduous broadleaf

forest (Figure 1B; California Department of Forestry and Fire

Protection, 2015). Around Folsom also contains shrubland and

grassland, in addition to concentrated zones of urban areas and

irrigated cropland. At mid elevations, between 1,000 and 2,200m,

coverage is mostly evergreen needleleaf forest with some pockets

of shrubland and deciduous broadleaf forest along the high slope

stream reaches (Figure 1C). Finally in the highest elevations, above

2,500m, the mountain tops are barren or sparsely vegetated.

ARW climatology can be characterized as a modified

Mediterranean climate, with essentially a wet season and a dry

season (National Research Council et al., 1999; Swain et al., 2018).

The wet season, typically October through March of a water year,

is defined by precipitation building through the late fall before

peaking in the winter months and subsiding into the early spring.

Similarly, snowpack will peak around the end of March with

melting occurring from April through July following the rise in

temperature. The dry season, typically April through September,

is defined by rare late spring precipitation declining through the

summer and early fall.

Flooding will generally occur in the wet season, coinciding

with precipitation events, and often as a result of persistent

onshore atmospheric flow patterns, namely atmospheric rivers

(Dettinger, 2011; Ishida et al., 2015; Ralph et al., 2019). Though

the landfall location of an atmospheric river can create variability

in the precipitation that a given watershed will receive, both the

antecedent soil conditions and local topography are crucial in the

hydrologic response that will follow (National Research Council

et al., 1999; Chen et al., 2018; Swain et al., 2018). Soil moisture

is a key land condition controlling the hydrologic response to

a precipitation event, as an already saturated watershed can

significantly increase streamflow as all precipitation is converted

to runoff (Ohara et al., 2011; Ralph et al., 2013). Orographic

precipitation is another critical mechanism in the Sierra Nevada

range, and particularly ARW, as the incoming high-moisture

flows are forced upward when they collide with the mountain

range, causing the moisture to precipitate out (Ohara et al., 2011;

Moustakis et al., 2021). Under certain conditions, such as a rain-

on-snow (ROS) event, flooding is possible as warm precipitation

falls on a persistent snowpack, contributing to increased streamflow

beyond the precipitation rate alone (Welty and Zeng, 2021).

In terms of a changing climate, intensifying precipitation and

drought are of particular concern, as the potential increase in

whiplash events between extreme wet and extreme dry conditions

make managing competing water demands more difficult (Swain

et al., 2018; Facincani Dourado et al., 2024). As with many

California watersheds, an increase in the frequency of extreme

precipitation, in conjunction with aging infrastructure, increases

the potential hazard for the loss of life and property damage

in communities downstream of large reservoirs, such as Folsom,

should dam failure or levee breaches occur (Concha Larrauri et al.,

2023). The effects of a warmer atmosphere also have implications

for snow processes, which often control spring and summer runoff

(Dettinger et al., 2004). Snow accumulation may be relegated to

high elevations, where air temperatures still get cold enough for

precipitation to fall as snow (Trinh et al., 2017; Ishida et al.,

2018). Warmer temperatures may ultimately change the frequency

and timing of ROS events depending on the elevation and snow

distribution (Clavet-Gaumont et al., 2017; Singh et al., 2018; Li

et al., 2019). At elevations above ∼2,000m, a risk for an increase

in the frequency of ROS events is predicted, should warmer

atmospheric flows quickly melt any previously accumulated

snowpack. However, below this approximate elevation, ROS

events may decrease as warmer temperatures lead to diminished

snowpack. Beyond flooding, the risk of long-term droughts is also

present with both societal and economic consequences, should

multiyear periods of below average precipitation occur (Abatzoglou

and Williams, 2016; Swain et al., 2018; Konapala and Mishra,

2020).

Even if extreme wet and dry periods are expected to increase, it

is possible that on average the expected yearly volume of streamflow
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FIGURE 1

Characteristics of the American River watershed including (A) the location within CA and the elevation, (B) land use and land cover, (C) slope, (D)

WEHY model computational unit and stream reach delineation.

may not change much into the future (Dettinger et al., 2004).

Temperature alone does not directly control runoff changes, and

in a complex non-linear system, there is still inconsistency in

future streamflow trends depending on the projections and models

used as well as variation across regions and seasonality (Tang and

Lettenmaier, 2012; Elbaum et al., 2022; Douville, 2024). However,

even slight changes to the timing of streamflow can impact

current reservoir operations which have to balance flood control

and drought storage (Dettinger et al., 2004). Larger increased

winter streamflow from increased liquid precipitation can lead

to higher reservoir releases for maintaining flood control space

but results in less water available for spring and summer water

supply and riverine ecosystem needs. Though much uncertainty

remains in how exactly future extreme events will change, in terms

of sustainable water resources management and dam operations,

decision-makers need to be prepared for the variety of changes

and risks that are hypothesized, to be able to maintain adequate

flood protection while also preserving storage for downstream

demand during drought periods (Facincani Dourado et al., 2024).

Preparing for hydrologic changes in response to a changing

climate is a complex problem that must be taken at an individual

basin-scale to account for the spatial heterogeneity and non-

linearity of the system (Li et al., 2019; Douville, 2024). Studies

at a global scale can assess trends for regions, however, the

impact of LULC and water management changes at a basin-

scale cannot always be accounted for. Additionally, as mitigation

and adaptation plans are assessed and implemented at state and

local levels, without long term, complete historical records, it

is difficult to distinguish between natural hydrologic variability

and changes due to warming (Dettinger et al., 2004; Facincani

Dourado et al., 2024). By utilizing physically based atmospheric

and hydrologic models in this study, the rare combination

of precipitation, temperature, snow processes, and streamflow

within a watershed that can lead to either extreme flooding or

drought can be simulated. Through reconstructing the 169 years

of historical atmospheric and hydrologic conditions at a daily

and monthly scale, this study is a first step in understanding

and contextualizing estimates for future extreme events and

assessing adaptation strategies. The high spatial and temporal

resolution of the created reconstruction dataset can be used to

constrain climate projection outputs, such as unrealistic basin-

averaged precipitation values, in addition to providing a long-

term dataset to test various adaptation plans that may be

assessed for the Sacramento River system (Douville et al., 2022;

Facincani Dourado et al., 2024). The goal of this study is

to create a comprehensive, physically based reconstruction of

the entire hydroclimate system for ARW, which can provide

a basis for understanding the past and present conditions in

the watershed to compare against projected impacts under a

changing climate.

2 Materials and methods

To simulate the mechanisms that contribute to various types

of extreme events, it is necessary to fully account for the non-

linear processes and feedback loops that occur in and between

the atmosphere and land systems (Kavvas et al., 1998). Heat

and moisture fluxes, in particular, impact atmospheric dynamics

and land surface conditions. Their inclusion, or not, in models

of atmospheric and hydrologic processes significantly impact the

conclusions that are ultimately drawn from results. Additionally,

the heterogeneous, mountainous characteristics of ARW require

fine scale, physical modeling of both atmospheric and land

surface processes.
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As such, to reconstruct the historical atmospheric and

hydrologic conditions in ARW, three physical models are used.

For the atmospheric reconstruction, the Weather Research and

Forecasting (WRF) model is utilized to perform dynamical

downscaling of global reanalysis data. For the hydrologic

conditions, the physically based land hydrologic components

of the Watershed Environmental Hydrology Hydro-Climate

Model (WEHY-HCM) are used. The SNOW Module of WEHY-

HCM is also necessary, to fully account for the role of snow

accumulation and melt processes in the generation of flow

discharge across the watershed. Each of these three models

are individually calibrated and validated against observation

data, where available. The proposed procedure to complete

the ARW atmospheric and hydrologic reconstruction is

as follows:

1. Calibrate and validate the WRF model for two independent

10-year periods;

2. Use the calibrated and validated WRF model to reconstruct

the atmospheric conditions over ARW from 1852 to 2020;

3. Using the WRF outputs for the calibration and validation

periods, calibrate and validate the SNOW Module of WEHY-

HCM;

4. Use the calibrated and validated SNOW Module to

reconstruct the snow conditions over ARW from 1852 to 2020

with inputs provided by the WRF reconstruction outputs;

5. Use the SNOW Module outputs for the calibration and

validation periods to calibrate and validate WEHY-HCM

hydrologic component;

6. Use the calibrated and validated WEHY-HCM hydrologic

component to reconstruct the hydrologic conditions in ARW

from 1852 to 2020 with inputs provided by the SNOW

Module outputs.

2.1 WRF model

Dynamical downscaling, as opposed to statistical downscaling,

is chosen for this study as it can produce comprehensive

atmospheric variables which will be directly used in the WEHY-

HCM reconstruction and is recommended in regions that rely on

orography (World Meteorological Organization, 2009; Ishida et al.,

2018; Toride et al., 2018). Additionally, dynamical downscaling

does not require observation data beyond that needed for

the calibration and validation processes if the global reanalysis

data are available for the period being downscaled. This is

particularly helpful in mountainous watersheds where gauges

are likely not spatially distributed in such a way to sufficiently

represent basin average precipitation and in regions where the

observation network is limited. To perform dynamical downscaling

of global reanalysis data, a regional climate model, like WRF,

is necessary. The WRF model is chosen as it has a variety

of uses in research and forecasting and has been successfully

applied to dynamically downscale global reanalysis/GCM products

in numerous basins in the Sierra Nevada (Ohara et al.,

2017; Toride et al., 2018; Iseri et al., 2021; Mahoney et al.,

2021).

WRF is a mesoscale numerical weather prediction and

atmospheric simulation model with a variety of applications. In

this case, simulations are run using input atmospheric data and the

Advanced Research solver, which uses the integrated compressible,

non-hydrostatic Euler equations in flux form with a terrain

following vertical coordinate (Skamarock et al., 2008). While

computationally intensive, by numerically solving the governing

equations of atmospheric processes through parameterization

of certain processes such as cloud microphysics, cumulus

parameterization, planetary boundary layer physics, and radiation

physics, WRF can produce a detailed representation of orographic

effects, land-sea contrast, and land surface characteristics. This

process also generates finer temporal and spatial resolutions of a

variety of variables than is typically available through observations.

One of two domain configurations is used. The first, used

for calibration and validation is a 3-domain configuration with

horizontal resolutions of 36, 12, and 4 km (Figure 2A). The

second option is a 4-domain configuration, with an additional

outer domain at 108 km horizontal resolution (Figure 2B). This

configuration is primarily used when individual water year

simulations do not sufficiently model observations and will be

further discussed in the following sections.

To run WRF, the main input required is global reanalysis data.

For this study, three global reanalysis datasets are provided as

inputs to WRF depending on the year being reconstructed. The

datasets include the Twentieth Century Global Reanalysis Version

2c (20CRv2c), The European Center for Medium-Range Weather

Forecasts twentieth century reanalysis (ERA20C), and the Climate

Forecast System Reanalysis (CFSR). 20CRv2c is provided by the

Earth System Research Laboratory Physical Sciences Division from

NOAA and the University of Colorado Cooperative Institute

(Compo et al., 2011). The 20CRv2c reanalysis data are computed

by assimilating surface pressure using observedmonthly sea surface

temperature and sea ice distributions as boundary conditions with

an Ensemble Kalman Filter and has a 6-h temporal resolution, 2.0◦

horizontal resolution and 28 vertical atmospheric layers with data

available from 1851 to 2014. ERA20C is provided by the European

Center for Medium-Range Weather Forecasts and is computed by

assimilating surface pressure and marine winds (Poli et al., 2016).

There are 91 vertical atmospheric levels, 4 land surface soil layers,

a horizontal resolution of ∼125 km and a temporal resolution of

either 3- or 6-h depending on the variable. Data are available from

1900 to 2011. Finally, CFSR is provided by the National Centers for

Environmental Prediction and data are computed by assimilating

satellite radiances using a grid- point Statistical Interpolations

Scheme, providing data at a horizontal resolution of ∼38 km with

64 vertical atmospheric layers and a 6-h temporal resolution from

1979 to present (Saha et al., 2010). CFSR is considered to be the

most comprehensive compared to other reanalysis data due to the

use of both ocean and sea ice in its computation and therefore when

available, it is the reanalysis data of choice.

In terms of observation data, the main calibration and

validation output is basin-averaged precipitation from the

Parameter-Elevation Regressions on Independent Slopes Model

(PRISM, PRISM Climate Group, 2014). A parameter-elevation

regression function at each grid cell is calculated using a

precipitation distribution model that interpolates point data,
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FIGURE 2

WRF domain configurations for (A) the 3-domain configuration, and (B) and 4-domain configuration. The 3-domain configuration has an outermost

domain at a resolution of 36 km, followed by a domain at a resolution of 12 km, and an inner domain centered on ARW at a resolution of 4 km. The

4-domain configuration has an additional outermost domain at 108 km with the same three inner domains at resolutions of 36 km, 12 km, and 4 km.

digital elevation maps (DEMs), and spatial data based on the slope

orientation and weighted station data. While able to incorporate

different spatial scales and orographic precipitation mechanisms,

the fundamental assumption within PRISM is that elevation is the

deciding factor in the precipitation distribution. The computed

data allow the finer scale interactions in mountainous regions to

be estimated and considered during the calibration and validation

process beyond what point scale observations typically can capture

(Ishida and Kavvas, 2017). PRISM data are available at daily,

monthly, annual, or event-based periods at a spatial resolution of

4 km. While the main variable used in this study is precipitation,

a variety of attributes are available relating to temperature, dew

point, vapor pressure.

As discussed previously, because parameterizations of some

atmospheric mechanisms are required, WRF needs to be calibrated

and validated for the target area. In this case WRF is calibrated for

the period from 1997 through 2006 using CFSR input data, and

validation is performed from 2007 through 2016, also using CFSR

input data and the 3-domain configuration.

2.1.1 WRF calibration
To perform calibration, manual optimization is performed

based on different parameterizations of the physics options within

WRF for the 3-domain configuration, and outputs are compared

to PRISM data. The physics options evaluated include the

microphysics, cumulus, surface layer, land surface, and boundary

layer parameterizations. The selected options that were ultimately

chosen include the SBU-YLin scheme (Lin and Colle, 2011) for the

microphysics processes, the New SAS Scheme (Han and Pan, 2011)

for the cumulus parameterization, the Eta Similarity Scheme (Janić,

2001) for the surface layer scheme, the RUC Scheme (Smirnova

et al., 2016) for the land surface scheme, and the BouLac (Bougeault

and Lacarrere, 1989) option for the boundary layer scheme. The

calibration period for WRF is from water year 1997 through water

year 2006 (October 1, 1996–September 30, 2006). This period

encompasses 2 water years that experienced flooding, 1997 and

2006, and eight low to average precipitation water years, 1998

through 2005 (California Nevada River Forecast Center, 1997,

2006). This 10-year period ensures that the WRF configuration

is capable of simulating both wet and dry years and is not over

calibrated for a certain precipitation regime. CFSR reanalysis data

are available for this period, ensuring the highest quality and

highest resolution input data are used to calibrate the model.

To evaluate WRF outputs against PRISM data, the Nash-

Sutcliffe Efficiency Index (NSE) is used (Nash and Sutcliffe,

1970). NSE has widely been applied as a performance assessment

tool for hydrologic models and, in this study, an NSE above

0.5 is considered sufficient in evaluating WRF outputs at both

daily and monthly scales. The root mean square error (RMSE)

and Pearson correlation coefficient (r) are also considered

in the calibration procedure. Final calibration results were

successful when comparing both daily and monthly basin-averaged

precipitation WRF outputs against PRISM daily and monthly

basin-averaged precipitation (Figure 3). At a daily scale, an NSE of

0.82 and an RMSE of 4.3mm were achieved. At a monthly scale, an

NSE of 0.95 and an RMSE of 30.3mm were achieved. Both results

indicate a successful calibration of WRF.

Looking first at the daily scale, a correlation coefficient of 0.91

indicates a strong positive linear relationship betweenWRF outputs

and PRISM data. WRF slightly overestimates the largest daily peak

in precipitation in 1997. At a precipitation of around 100mm, the

datasets either match well or PRISM is slightly larger compared

to WRF. At lesser daily precipitation values, however, there is a

fairly even spread centered around a 1:1 relationship even if the

precipitation values do not match perfectly. At the monthly scale, a
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FIGURE 3

WRF calibration results for the 10-year period from water year 1997 through water year 2006 for (A) daily time series, (B) daily scatter plot, (C)

monthly time series, and (D) monthly scatter plot. At the daily scale, a NSE of 0.82 and a RMSE of 4.3mm was achieved with a correlation coe�cient

of 0.91. At the monthly scale, a NSE of 0.95, a RMSE of 30.3mm, and a correlation coe�cient of 0.98 was achieved for the cumulative basin-averaged

precipitation.

correlation coefficient of 0.98 is achieved, indicating an excellent

match between WRF monthly basin-averaged precipitation and

PRISMmonthly basin-averaged precipitation. Though, it should be

noted that at monthly values greater than about 350mm, PRISM is

tending to overestimate results compared to WRF outputs. At both

time scales, the NSE values exceed the 0.5 threshold, the RMSE is

sufficiently small, and the high correlation coefficients establish that

the WRF configuration is appropriate, and the model is considered

calibrated for ARW.

2.1.2 WRF validation
Following the successful calibration ofWRF, the model must be

validated against additional data with the 3-domain configuration.

The validation period is an additional 10-year period from water

year 2007 through water year 2016 (October 1, 2006–September 30,

2016). CFSR data are available for this entire period and are thus

used as the input atmospheric data. The validation results for both

the daily and monthly scales of basin-averaged precipitation are

again successful (Figure 4). The daily basin-averaged precipitation

against PRISM data resulted in an NSE of 0.85 and an RMSE of

3.7mm. For the monthly cumulative basin-averaged precipitation,

an NSE of 0.95 and an RMSE of 24.6mm were achieved. With NSE

values >0.5, the WRF model is considered sufficiently validated.

As with the calibration a strong positive relationship is seen

for the validation with a daily correlation coefficient of 0.92 and

a monthly correlation coefficient of 0.98. While there is similar

spread in the daily precipitation under about 70mm between the

calibration and validation results, more variability is seen at higher

precipitation values. The most apparent being the underestimation

by WRF for the 2011 and 2014 peak daily precipitation in addition

to the overestimation by WRF in 2008 and to a lesser extent

2013. At the monthly scale, results are again excellent. Whereas,

calibration results underestimated WRF monthly basin-averaged

precipitation at values >350mm, validation results indicate that

WRF tends to match or overestimate precipitation compared to
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FIGURE 4

WRF validation results for the 10-year period from water year 2007 through water year 2016 for (A) daily time series, (B) daily scatter plot, (C) monthly

time series, and (D)monthly scatter plot. At the daily scale, a NSE of 0.85, a RMSE of 3.7mm, and a correlation coe�cient of 0.92 was achieved. At the

monthly scale for the cumulative basin-averaged precipitation, a NSE of 0.95, a RMSE of 24.6mm, and a correlation coe�cient of 0.98 was achieved.

PRISM data. Even with these slight differences, WRF is considered

sufficiently validated, and outputs can be used as inputs to run the

WEHY-HCM system.

2.2 WEHY-HCM SNOW Module

The SNOW Module of WEHY-HCM is necessary as it has

been estimated that for ARW snowmelt contributes between 50

and 80% of spring and summer streamflow as the temperatures

rise and the precipitation stored in the snowpack is released

(Stewart et al., 2004). Fully accounting for the snow regime is thus

critical to successfully simulate flow both as it accumulates and

later melts. However, the complex interactions between the non-

stationary atmospheric forcings and the changing snow structure

are difficult to model and computationally intensive as a fine spatial

and temporal resolution is required (Welty and Zeng, 2021). As

such, the WEHY-HCM SNOW Module is implemented as it can

further simulate the land-atmosphere interactions controlling the

snow regime as ARW is a snow driven watershed.

The SNOWModule was developed to understand and simulate

the non-uniform vertical temperature profile of the snowpack,

which is dictated by atmospheric interactions in the top, skin layer

of the snowpack (Ohara and Kavvas, 2006). As a physically based,

energy budget model, the module uses input atmospheric and land

data to estimate the energy exchange between the snowpack and the

surrounding environment by numerically solving the conservation

of mass and energy equations in the snowpack. At every node

in the grid network, the snowpack is divided into three layers.

The top, skin layer incorporates the atmospheric forcings. Below

that is the active layer, above the evolving freezing depth, where

a linear temperature profile is assumed. Finally, the lowest level,

below the freezing depth, is isothermal at 0◦C and disconnected

from any atmospheric interactions. To account for topography and

elevation effects at each grid point, DEMs provide land data to

compute the solar angle and calculate the incoming solar radiation

which is used to solve the energy budget. Across the domain, these

point scale processes are vertically integrated over the snowpack

depth and numerically upscaled to produce a spatially distributed

model which contains both the atmospheric forcings and the
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solar geometry, accounting for the spatial heterogeneity of snow

accumulation and melting processes.

Input data required by the SNOWModule include atmospheric

data provided by WRF, DEM data, vegetation and LULC data, and

geomorphological data (Figures 1A–C). To incorporate the spatial

heterogeneity in the mountainous region of ARW, fine scale DEM

data, at a resolution of 30m, is used, provided by the USGSNational

Elevation Dataset. Similarly, fine resolution LULC, provided

by the California Department of Forestry and Fire Protection,

and geomorphological data, provided by the US Department of

Agriculture’s Web Soil Survey, are also required. Following the

delineation of the land characteristics of the watershed, the SNOW

Module needs to be calibrated and validated specifically for ARW

before reconstruction can be done.

2.2.1 SNOW Module calibration
For calibration of the SNOW Module, outputs are again

compared to observation data related to snow conditions, with

the focus being on snow water equivalent (SWE). Snow cover

observation data are limited and thus for the calibration and

validation process, point scale observations are instead used. The

California Data Exchange Center (CDEC) publishes a variety of

observation data at different time scales. Within ARW, there

are six CDEC observation stations that collect daily SWE in the

period used for calibration and validation (Figure 1A). Physical

characteristics and the start date of daily SWE observations for

each of the six stations are noted in Table 1. The expected snow

cover over the winter is greatly dependent on the elevation of the

station. Three of the stations (ALP, CAP, and LOS) are in the higher-

elevation headwaters of ARWwhere significant and persistent snow

cover is expected through the winter months compared to the three

mid-elevation stations (BLC, GKS, and RBP) where the snowpack

is expected to have a lower magnitude and be more variable over

the winter months.

As a physically based model, parameters need to be calibrated

within the SNOW Module. The parameters that are changed are

primarily related to albedo. Other parameters are physically based

constants, and typically are not changed during the calibration

process. Using the calibrated WRF model outputs, the SNOW

Module is run, and the point scale outputs are compared to each

of the six CDEC observation points. To maintain consistency, the

calibration period is again the 10-year period from water year 1997

through water year 2006 (Figure 5). NSE values for SWE calibration

are only calculated for the days with available observation data.

Because there is nomodeling involved in the SWE observation data,

there may be significant portions of missing data in the record such

as at ALP, which is missing the entirety of the 2005 water year, at

BLC, which is missing the entirety of the 2001 and 2002 water years,

and at LOS, which is missingmost of the 1997, 1998, 1999, and 2002

water years. Despite this, there is still sufficient observation data to

perform a successful calibration.

First considering the higher elevation stations above 2,000m,

excellent daily NSE values are achieved for the calibration period:

0.92 for ALP, 0.96 for CAP, and 0.78 for LOS. These three stations

have both significant accumulation and persistent snow cover over

each winter period, as expected. At the mid-elevation stations,

between 1,000 and 2,000m, daily NSE values are more variable,

with only one of the three stations passing the 0.5 NSE threshold

set for calibration and validation. The resulting NSE values are

0.48 at BLC, 0.55 at GKS, and 0.14 at RBP. At the two stations

that did not pass the 0.5 NSE threshold, BLC and RBP, SWE is

typically below a peak of 20in and are much more variable over the

winter, with sharp peaks and declines in SWE as accumulation and

melting processes are dependent on the variable temperature at the

station elevation. Given that the point scale daily SWE NSE results

exceed the established threshold for the three higher elevation

stations, where snow accumulation will persist into spring and

contribute to snowmelt driven flow, and significantly lower than

the 0.5 NSE threshold at only one station (RBP) the WEHY-HCM

SNOWModule is considered successfully calibrated for ARW.

2.2.2 SNOW Module validation
Following a successful calibration, the SNOW Module must

also be validated for an independent dataset. As with WRF, the

validation period is from water year 2007 through water year 2016

(Figure 6). Similar trends that are seen in the calibration period

are again apparent in the validation period. The three stations

in the headwaters of ARW perform well, with NSE results >0.8.

Additionally, the BLC and GKS stations also pass the 0.5 NSE

threshold. While the RBP station does not pass the threshold,

with a NSE result of 0.36, results are improved upon compared

to the calibration. With all stations, except one, meeting the NSE

threshold, the point scale validation of the SNOW Module is

considered successful, and outputs can be used as input to the

hydrologic portion of WEHY-HCM.

2.3 WEHY-HCM

The final model used in this study is WEHY-HCM, which has

been applied successfully to numerous mountainous, orographic

precipitation driven watersheds in California and internationally

(Chen et al., 2004; Trinh et al., 2022). As a physically based

hydrology model, WEHY-HCM computes various flow processes

at different temporal and spatial scales by numerically solving

upscaled versions of the conservation of mass, momentum,

and energy equations (Kavvas et al., 2004). Upscaling to the

computational grid scale is done by performing an ensemble

average of the point scale conservation equations. For the target

watershed, the basin is delineated into model computational

units (MCUs) with a fundamental assumption that the land

parameters are spatially stationary over the individual MCUs. At

eachMCU, surface and subsurface processes are computed by using

unsaturated flow to link the overland flow, subsurface flow, and

groundwater flow domains. The upscaled conservation equations

are numerically solved, and the unsteady, non-uniform flow

discharge from each MCU is then routed through the delineated

stream network by the channel flow component of WEHY-HCM to

the watershed outlet point.

Physical land characteristics are needed, including topography,

geomorphology, and LULC, which are used as physically based

parameters in WEHY-HCM to solve the governing equations.
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TABLE 1 CDEC station details for the observation data used to calibrate and validate WEHY-HCM and the SNOWModule.

Station Measurement Time
increment

Start date DEM
elevation

(m)

Aspect (◦) Slope (◦)

Snow stations ALP SWE (in) Daily 01/01/1970 2,308 356 9.18

BLC SWE (in) Daily 01/24/1970 1,609 119 2.21

CAP SWE (in) Daily 01/01/1970 2,439 223 5.45

GKS SWE (in) Daily 01/01/1970 1,713 152 1.37

LOS SWE (in) Daily 01/08/1987 2,600 46 8.15

RBP SWE (in) Daily 01/08/1970 1,560 205 12.2

Flow stations AMF Full natural flow

(AF)

Monthly 10/01/1900 - - -

FOL Reservoir inflow

(cfs)

Daily 01/01/1994 - - -

NAT Full natural flow

(cfs)

Daily 06/29/1987 - - -

FIGURE 5

SNOW Module calibration using daily SWE data compared to CDEC observation data at the (A) ALP, (B) CAP, (C) LOS, (D) BLC, (E) GKS, and (F) RBP

stations. At the stations in the ARW headwaters, NSE values of 0.92 at ALP, 0.96 at CAP, and 0.78 at LOS are achieved. At the mid-elevation stations

NSE values of 0.48 at BLC, 0.55 at GKS, and 0.14 at RBP are achieved. Though all six point-scale daily SWE NSE results do not pass the 0.5 threshold,

the module does perform well in the locations where significant and persistent SWE is expected.

By utilizing high resolution land data, the spatial heterogeneity

of the target watershed can be accounted for. Additionally, the

soil data that are necessary allow the interactions between the

land and atmosphere in the boundary layer to be accounted for

by coupling the dynamic interactions through vertical fluxes at

hillslope scale averages.

The input data required by the hydrologic component of

WEHY-HCM are the same as those of the SNOW Module.
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FIGURE 6

SNOW Module validation using daily SWE data compared to CDEC observation data at six stations (A) ALP, (B) CAP, (C) LOS, (D) BLC, (E) GKS, and (F)

RBP for the period from 2007 to 2016. NSE results of 0.88 for ALP, 0.85 for BLC, 0.89 for CAP, 0.59 for GKS, 0.85 for LOS, and 0.36 for RBP are

achieved. All stations except the RBP station pass the 0.5 threshold, indicating a successful validation.

As with the SNOW Module, surface land data include DEM,

geomorphological, soil, and LULC data (Figures 1A–C). The DEM

data are used to delineate the basin of interest for an outlet point.

For ARW, a total of 54 MCUs and 17 stream reaches are ultimately

selected with the outlet point being Folsom Reservoir (Figure 1D).

SNOWModule outputs combine the necessary snow variables with

the WRF atmospheric data to create a single WEHY-HCM input

file. As with the two previous models, the hydrologic component of

WEHY-HCMmust also be calibrated.

2.3.1 WEHY-HCM calibration
The calibration point for ARW is selected as the delineated

watershed outlet point, which is Folsom Reservoir. Flow

observation data are also published by CDEC, and three

stations are located near Folsom Reservoir, and can be used to

compare against WEHY-HCM outputs during both calibration and

validation periods, detailed in Table 1. The NAT station measures

daily full natural flow (FNF), the FOL station measures daily

inflow, and the AMF station measures monthly FNF volumes.

While FOL inflows are used for calibration and validation, FNF

is preferred as it computes the flow based on the assumption of

no upstream water storage infrastructure, as does WEHY-HCM.

Within ARW, there are limited upstream storage structures, and

thus, inflow and FNF data are similar with variation predominantly

related to flow magnitude.

The main parameters used to calibrate the model are related

to the soil depth, saturated hydraulic conductivity, summer

and winter albedo, and summer and winter roughness. Other

parameters related to land data are used but typically do not need

to be changed to calibrate the model. Daily andmonthly calibration

results for the period from the water year 1997 through the water

year 2006 are successful (Figure 7). At the daily scale, an NSE of

0.72 and an RMSE of 4,357 cfs were achieved for inflow at the

FOL station, and for FNF at the NAT station an NSE of 0.69 and

an RMSE of 4,725 cfs were achieved. The correlation coefficient

for daily inflow is 0.86 and for daily FNF is 0.84. The results for

inflow vs. FNF are better due to the lower magnitude flow of

the inflow observations. During the calibration period, flow into

Folsom is typically under ∼60,000 cfs, and for those values, there

is an even spread around a 1:1 relationship between observations

and WEHY-HCM outputs. Beyond that, the daily peak flows seen

in 1997 and 2006 are again centered around the 1:1 relationship.

The largest daily peak observed for the 1997 flood is overestimated

by WEHY-HCM, though the overestimated daily precipitation and

SWE during the WRF and SNOW Module calibration may have

contributed to that result.

At the monthly scale, FNF volumes at the AMF station

achieve an NSE of 0.85, an RMSE of 129,521AF, and a correlation
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FIGURE 7

WEHY-HCM calibration for the outlet point at Folsom Reservoir compared to three CDEC observation stations: (A) daily inflow time series and (B)

daily inflow scatter plot at the FOL station, (C) daily FNF time series and (D) daily FNF scatter plot at the NAT station, (E) monthly FNF time series and

(F) monthly FNF scatter plot at the AMF station. Daily inflow at the FOL station produces a NSE of 0.72, a RMSE of 4,357 cfs, and a correlation

coe�cient of 0.86. Daily FNF inflow at the NAT station produced a NSE of 0.69, a RMSE of 4,725 cfs, and a correlation coe�cient of 0.84. The

monthly FNF inflow volume at the AMF station produced a NSE of 0.85, a RMSE of 129,521 AF, and a correlation coe�cient of 0.94.

coefficient of 0.94. At this scale, variations at the daily scale are

smoothed out and produce excellent calibration results, particularly

for the 1997 peak monthly volume. It should be noted, however,

that this WEHY-HCM calibration tends to overestimate the

monthly volumes compared to AMF FNFmonthly volume, though

the model still does well in simulating the observed flow. With all

three station comparisons passing the 0.5 NSE threshold, WEHY-

HCM is considered calibrated for ARW.

2.3.2 WEHY-HCM validation
The final step before starting reconstruction is to validate

WEHY-HCM. To include a higher flow water year, the validation

period was extended one year to add the 2017 water year. Thus,

the period is 11 years from water year 2007 through water year

2017. Results are again sufficient, with all three station comparisons

passing the NSE threshold (Figure 8). NSE values are 0.67 for daily

inflow at the FOL station, 0.68 for daily FNF inflow at the NAT

station, and 0.78 for FNF inflow volumes at the AMF station.

Correlation coefficients are 0.85 for both daily inflow and FNF,

and 0.93 for monthly FNF volume. At the daily scale, both results

sufficiently surround the 1:1 relationship though it is apparent the

results are skewed toward WEHY-HCM overestimating the flow

compared to observations. The overestimation by WEHY-HCM

is also seen in the monthly volume results, though the 2017 peak

months are well-represented. With all three models successfully

calibrated and validated, reconstruction can be done for the entire

period from 1852 to 2020.

3 Reconstruction results

Reconstructing the atmospheric and hydrologic conditions of

ARW involves selecting the input reanalysis data and using WRF

and WEHY-HCM with the SNOW Module to simulate each water

year. Atmospheric data are available starting in water year 1852,

and following the validation procedure for WRF, each water year

is individually simulated with the available reanalysis data and

compared to PRISM observation data, when available. This ensures

the individual water years perform well both with the calibrated
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FIGURE 8

WEHY-HCM validation for the outlet point at Folsom Reservoir compared to three CDEC observation stations: (A) daily inflow time series and (B) daily

inflow scatter plot at the FOL station, (C) daily FNF time series and (D) daily FNF scatter plot at the NAT station, (E) monthly FNF time series and (F)

monthly FNF scatter plot at the AMF station. Daily inflow at the FOL station produced a NSE of 0.67, a RMSE of 4,611 cfs, and a correlation coe�cient

of 0.85. Daily FNF inflow at the NAT station produced a NSE of 0.68, a RMSE of 4,619 cfs, and a correlation coe�cient of 0.85. The monthly FNF

inflow volume at the AMF station produced a NSE of 0.77, a RMSE of 170,755 AF, and a correlation coe�cient of 0.93.

WRF model and the 3-domain configuration. From 1980 to 2016,

CFSR reanalysis data are used as WRF inputs, and all years

performed sufficiently with the 3-domain configuration. For 1900

to 1979, both 20CRv2c and ERA20C reanalysis data are available.

Each year in this period is simulated twice, to assess both reanalysis

datasets. The better of the two simulations compared against

PRISM monthly basin-averaged precipitation is selected to be used

in the reconstruction time series. If neither of the two reanalysis

datasets produce an NSE > 0.5, the WRF 4-domain configuration

is then used to rerun the simulations and the better performing

results are then selected for that water year. From 1852 to

1899, only 20CRv2c reanalysis data are available. Additionally, no

observation data are available, so the reconstruction is limited to the

WRF 3-domain configuration. Out of the 169-year reconstruction

period, only 3 years needed the 4-domain configuration: 1910,

1914, and 1922. All other years performed sufficiently with the

3-domain configuration.

Following the WRF atmospheric reconstruction, the outputs

are run through WEHY-HCM and the SNOW Module to

reconstruct the flow conditions. Basin-averaged precipitation and

inflows to Folsom Reservoir are the primary outputs of interest.

The continuous time series at both the daily and monthly scales

are plotted against observation data, where available (Figure 9).

Computing NSE values for the entire period, where observations

are available, indicate that the models can capture historic

atmospheric and hydrologic conditions in ARW. PRISM daily

basin-averaged precipitation is available starting in 1981 and

compared to WRF outputs, an NSE of 0.71 and a correlation

coefficient of 0.86 are achieved. PRISM monthly basin-averaged

precipitation is available starting in 1895, and an NSE of 0.87

and a correlation coefficient of 0.94 are achieved. For the flow

reconstruction, daily FNF data at the NAT station are available

beginning in 1987, and an NSE of 0.56 and correlation coefficient of

0.83 are computed against WEHY-HCM outputs. At the monthly

scale, FNF inflow volume at the AMF station is available starting

in 1900 and an NSE of 0.60 and a correlation coefficient of 0.84

are computed.

Considering the precipitation results, at the daily scale there

is additional spread in the lower values, below ∼100mm,

compared to the calibration and validation periods. At these
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FIGURE 9

Reconstruction results for ARW basin-averaged precipitation (red) and Folsom Reservoir inflows (black) for daily (A) time series, (B) precipitation

scatter plot, and (C) inflow scatter plot and monthly (D) time series, (E) precipitation scatter plot, and (F) FNF volume scatter plot. PRISM observations

and CDEC FNF observations are also plotted. NSE results where observation data available are computed. Daily basin-averaged precipitation

produced an NSE of 0.71 and correlation coe�cient of 0.86, daily FNF inflow produced an NSE of 0.56 and a correlation coe�cient of 0.83, monthly

basin-averaged precipitation produced an NSE of 0.87 and a correlation coe�cient of 0.94, and monthly FNF inflow volume produced an NSE of 0.60

and a correlation coe�cient of 0.84.

lower values, WRF both under and overestimates precipitation

results. However, at the higher daily precipitation values,

above 100mm, WRF tends to overestimate the basin-averaged

precipitation. At the monthly scale, these daily variations are

smoothed, and the correlation coefficient results improved, as

expected. It is also apparent that WRF tends to underestimate

some peak monthly sums, especially further back around 1900.

Despite this, the daily and monthly precipitation results are

acceptable, and the 169-year period is fully reconstructed to

form a continuous, daily basin-averaged precipitation dataset

for ARW.

Similarly, for both daily inflow and monthly inflow volumes,

spread around the lower ranges of the linear relationship between

simulation results and observation values exist. Results follow the

tendencies seen in the calibration and validation periods. For daily

FNF inflow, there is an even spread between WEHY-HCM both

underestimating and overestimating flow compared to the FNF

observed at the NAT station. Additionally, at the monthly scale

for inflow volumes, there is an apparent bias for WEHY-HCM

to overestimate results, particularly between ∼1,000 and 2,000

TAF. Greater than 2,000 TAF, however, WEHY-HCM does well to

capture the monthly peak inflow volumes. It is also seen in the
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monthly time series that early in the reconstruction period where

observations are available, WEHY-HCM underestimates peaks

while seeming to improve, or overestimate, closer to the present.

With NSE and correlation coefficient results being satisfactory,

the WEHY-HCM system has reconstructed the snow and flow

conditions for the full reconstruction period.

Thus, the daily reconstruction of the historical atmospheric,

snow, and hydrologic conditions from 1852 through 2020 using

WRF and WEHY-HCM with the additional SNOW Module are

complete. This continuous, detailed dataset with a long period of

record will allow further analysis on the hydroclimate conditions

in ARW before the current observation network was established.

Analysis can be done across various timeframes, to look at

long term trends, or for specific events. By modeling the entire

hydroclimate system, a better understanding of the interactions

between the land surface and atmosphere that lead to historic

extreme events can be studied. In addition to the time series

dataset that has been created, the spatial data of all variables is also

available. This is particularly useful when ROS events occur, and

the spatial distribution of liquid precipitation and snow cover is

vital to assessing the resulting streamflow. Before using this dataset

in future studies, the results of specific historical events should be

further considered.

4 Discussion

While the full period reconstruction of the atmospheric

and hydrologic conditions in ARW using three physically based

models is successful, it is necessary to consider model results

under specific flow conditions. By analyzing basin averaged

precipitation and temperature, two SWE stations, and the inflow

to Folsom reservoir, the interactions within the hydroclimate

system can be considered together to examine how the watershed

responds to different conditions. The role of temperature in

producing ROS flood events can also be explicitly considered to

provide more insight into the processes leading to these types

of events.

In the reconstruction period, there have been numerous periods

of extreme flooding and prolonged droughts. Since the three

models have been calibrated and validated, more distant past years

with extremes can be further analyzed. However, for the purpose of

this study, further analysis of extreme conditions is limited to those

years with observation data, to directly compare modeled results

to observed conditions. The goal is to understand how interactions

between the atmosphere and land surface contribute to producing

both wet and dry extremes.

4.1 Performance under flood conditions

To assess the system performance under flood conditions,

three individual water years are considered: 1997, 2006, and 2017.

The three years selected contain the largest daily peak flows

where observation data are available. While previous years also

experienced significant flooding events, such as in 1986, daily flow

data are not available prior to 1987.

4.1.1 Water year 1997: the transition between wet
and dry conditions in a water year

The flood event in early January of 1997 was significant for

ARW, as it was considered the flood of record at that time

(California Nevada River Forecast Center, 1997). A wet December

contributed substantial snowpack and soil moisture across the

watershed, and when a series of atmospheric rivers made landfall,

the flood control system was tested as mid-elevation snowpack

melted and contributed to the rising flows. An additional aspect

of the 1997 water year that must be considered is the fact that

following the January flood, the rest of the year was relatively

dry, with very little precipitation falling after January. The abrupt

transition between wet and dry conditions is especially important

for managing the water supply, as operators must decide how

much to release ahead of a potential flood while not excessively

depleting the supply. With this newly created dataset, potential

adaption options can be explored, to test the system under various

flow alternatives.

The WRF and WEHY-HCM reconstruction of the water

year proves successful. Through WRF, the daily basin-averaged

precipitation and basin-averaged temperature are simulated and

can be compared to PRISM observations. In terms of precipitation,

an NSE of 0.84 and an RMSE of 6mm are computed (Figure 10A).

WRF outputs slightly overestimate the daily peak on January 1,

1997, but for other major peaks WRF outputs either match PRISM

well or slightly underestimate the winter precipitation. Looking

at accumulated monthly sums, a NSE of 0.96 is achieved, though

PRISM estimates December and January sums to be greater than

those simulated by WRF. The overview of the water year is also

well-simulated, with a wet December and January transitioning to

very dry conditions in February and the remainder of the year. In

terms of temperature, a daily NSE of 0.88 and an RMSE of 2.3◦C

are computed (Figure 10B). WRF outputs follow the daily trends

in temperature that are computed from PRISM. On warmer days,

WRF may underestimate the temperature compared to PRISM and

on colder days, such as in mid-January, WRF may simulate cooler

temperatures. However, for the most part, differences are slight,

and the model can capture the trends in both precipitation and

temperature. At themonthly average scale, temperatures are similar

with a resulting NSE of 0.98, though WRF underestimates the

basin-average temperature more significantly in February, March

and to an extent May.

To investigate the SNOW Module performance, two station

locations are further assessed (Figure 10C). For the higher elevation

areas, the LOS station is considered, as it has average, yet persistent

snowpack over the winter. For the mid-elevation areas, the GKS

station is considered. Though snowpack will be smaller, the

temperature dependent variation of accumulation and melting

can be included in the analysis. At the LOS station, observations

are inconsistent after January 1, though prior to that, simulation

results are excellent. Following the peak January precipitation, the

GKS station maintained and later grew the snowpack through

the spring until May. However, the SNOW Module simulated

near complete melting in early January before the snowpack

reaccumulated with the later January storm. While the SNOW

Module does underestimate SWE at the GKS station, the overall

trend is well-modeled for point scale comparisons. Additionally,

though the melting expected with a ROS event is not explicit within
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FIGURE 10

Reconstruction of the 1997 water year against observations for (A) the daily and monthly accumulation of basin-averaged precipitation, (B) the daily

and monthly averaged basin-averaged temperature, (C) daily SWE at the LOS and GKS observation stations, and (D) the daily inflow and monthly

accumulated volume.

the observation data at these two stations, it is noted that snowpack

melting did occur during this flood and contributed to the rise in

streamflow, as modeled by the SNOW Module (California Nevada

River Forecast Center, 1997).

The resulting daily inflow is well-simulated by WEH-HCM

compared to the daily NAT FNF observations, with an NSE of

0.73 (Figure 10D). The initial peak flow in November is modeled

to occur slightly later but the following peaks in December are
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modeled nearly perfectly both in terms of time and scale. The

extreme flood in early January 1997 is again well-simulated, though

WEHY-HCM overestimates the daily peak. The successive peak

in late January is underestimated though that may be due to an

underestimation in the daily precipitation and a cooler basin-

averaged temperature which would not contribute flow from

the snowpack melting. Monthly accumulated simulation inflow

volumes also closely match observed FNF at the AMF station,

with an NSE of 0.94. Though November and December are

overestimated by WEHY-HCM, the January accumulation is a

nearly perfect match. Through the spring months, WEHY-HCM

then underestimates the accumulated volume, with differences

in snowmelt likely playing a role in the underestimation. This

water year is included in the calibration period for all three

models, and thus it is expected that results should surpass the NSE

thresholds established.

4.1.2 Water year 2006: the spatial distribution of
snow processes

Following the 1997 record flood, 2006 was the next year that

saw significant flows (California Nevada River Forecast Center,

2006). Early dry antecedent conditions were alleviated by the wet

November, allowing the watershed to saturate with little increase

to Folsom inflows. The prolonged storm period in December,

combined with the warm temperatures, led to precipitation falling

primarily as liquid with snow limited to the highest peaks in the

watershed above the snow line around 2,600m. The peak rainfall in

late December into early January, ultimately resulted in the largest

daily inflow as many Northern Sierra Nevada reservoirs saw their

rivers rise above the flood stages. However, early reservoir releases

ahead of the major storm allowed the high flows to pass without

any major incidents.

Reconstructing the water year again proved successful for WRF

and the WEHY-HCM system. Daily basin averaged NSE values

of 0.88 for precipitation and 0.89 for temperature are achieved

(Figures 11A, B). The daily precipitation peaks in December and

January are underestimated byWRFwhereas the daily precipitation

peaks in November and March are overestimated. The high daily

variability of this water year is smoothed when considering the

accumulated monthly sums. Excellent results are achieved, with an

NSE of 0.97, and WRF outputs closely match those estimated by

PRISM. The largest differences occur in December and April, where

WRF underestimates the accumulated basin-average precipitation.

In terms of temperature, WRF again tends to underestimate the

warmer days, however, cooler days are well-simulated. At the

monthly averages, across the entire year, WRF underestimates

the basin-averaged temperature, which may play a role in the

SNOW Module simulation results, however, an NSE of 0.97 is

still achieved.

The performance of point scale SWE simulations is mixed

(Figure 11C). The GKS station does not pass the 0.5 NSE threshold

at 0.43 but the LOS station does at 0.60. At themid-elevation station

GKS, SWE accumulation is minimal through the winter until

after the major storm period in early January. Overall, the SNOW

Module does underestimate SWE compared to the observations

which may be due to the underestimation of basin-averaged

precipitation in the storm immediately following the early January

flood and the daily peaks in April. At the higher elevation

station LOS, SWE simulations follow a similar pattern, initially

underestimating SWE compared to the observations. Beginning

in March, however, the SNOW Module overestimates SWE as

the spring precipitation and cooler temperatures allow snow

accumulation to occur.

The simulated daily inflow to Folsom reservoir is again

successful with an NSE of 0.64, though the model underestimates,

in some instances significantly, the peak flows in January, March,

and April (Figure 11D). The initial peak in early December is

well-modeled, though the major flood peak in early January

is significantly underestimated. Following the major flood,

the later, smaller increases in flow in February through the

spring, are well-simulated as the small daily variations in flow

are captured. Despite the underestimation in daily peaks by

WEHY-HCM, the monthly accumulated inflow volumes do not

necessarily follow the same pattern. In December and January,

where the major daily peak is underestimated by WEHY-HCM,

the model simulates larger accumulated volumes. Alternatively,

into the spring, where the daily peaks are again for the

most part underestimated, WEHY-HCM simulates slightly larger

volumes in March but underestimates the sums in April. The

role of snow processes is again likely to contribute to the

major differences. In the winter months, precipitation is well-

simulated, but the higher elevation snow is underestimated,

suggesting that despite the cooler temperatures compared to

PRISM, more precipitation is contributing to streamflow than

is accumulated. One explanation may be the distribution of

precipitation that is simulated by WRF. While the basin averaged

precipitation may be well-estimated, if WRF simulates additional

low elevation liquid precipitation, excessive precipitation will

contribute to streamflow as opposed to the snowpack. Into the

spring, and in April, specifically, the SNOW Module simulates

high elevation snow accumulation whereas observations at the

LOS station suggest snowmelt is occurring. The underestimated

April precipitation is then further reduced from the resulting

streamflow as the snowpack accumulated instead of melting.

However, an NSE of 0.76 is achieved for the water year.

Overall, the three physically based models do well to model

the atmospheric and hydrologic conditions across the watershed

and the importance of the snow processes across the watershed

are highlighted.

4.1.3 Water year 2017: the di�culty of significant
daily variability

The final flood year in consideration is 2017. Particularly for

northern California, this wet year was vital in terms of alleviating

the long-term drought of the previous 5 years as a record amount

of precipitation fromOctober to February was observed (California

Nevada River Forecast Center, 2017). The unusually wet October

through December provided wet antecedent conditions for the

historical precipitation of January and February. Record snow levels

were also seen across the Sierra Nevada range and ultimately, the

major reservoirs were able to be filled, reducing the threat of water

shortages from the preceding drought period.
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FIGURE 11

Reconstruction of the 2006 water year against observations for (A) the daily and monthly accumulation of basin-averaged precipitation, (B) the daily

and monthly averaged basin-averaged temperature, (C) daily SWE at the LOS and GKS observation stations, and (D) the daily inflow and monthly

accumulated volume.

While the WRF simulation does not pass the NSE threshold of

0.5 at the daily scale, it does capture the high variability of basin-

averaged precipitation throughout the water year (Figure 12A).

For daily peaks below 100mm, WRF simulates the observed

precipitation within the range of the RMSE result. For the two

largest peaks in January and late February, WRF overestimates the

daily precipitation. However, this high variability is again smoothed

at the accumulated monthly scale, with a resulting NSE of 0.99.
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Even though the daily WRF outputs do not simulate the exact

magnitude of peak precipitation, over the month those differences

are reduced. WRF captures the temperature time series well, with

a daily NSE of 0.86 and a monthly NSE of 0.96 (Figure 12B). In

the winter periods, some days are simulated to be warmer than

observations and into the summer WRF generally overestimates

the daily temperature. As opposed to the 2006 water year, in 2017,

WRF overestimates the average monthly temperature. Particularly

in April through the summer, the warmer temperatures likely play

an important role in the snow simulation results.

Unfortunately, SWE observations are not available for the 2017

water year at the LOS station, so high elevation snow cover cannot

be assessed (Figure 12C). For the GKS station, observations are

available, though the SNOW Module underestimates SWE for

the entire year. Through early January the module follows the

observations closely. However, following the early January storm,

the module simulates lower SWE levels and into the spring faster

melting compared to the observations.

The combination of differences in both precipitation and

snow cover may contribute to the differences seen between the

simulated inflow and the AMF FNF observations (Figure 12D).

The overestimation of the flow resulting from the January storm is

likely due to the overestimation of the precipitation. Additionally,

the overestimation of the daily peak flow in early February is

likely due to a combination of larger precipitation and greater

mid-elevation snowmelt than is observed. The second February

peak, while closer to the observed value, is also overestimated,

likely due to WRF again overestimating the daily basin-averaged

precipitation. Despite the underperformance of WRF in terms

of daily basin-averaged precipitation and the SNOW Module in

terms of mid-elevation snow processes, the resulting flow from

WEHY-HCM is still satisfactory with an NSE of 0.73. For the

monthly accumulated inflow volumes, the daily overestimations are

carried over as the fall into winter months also exhibit a general

overestimation compared to the AMF FNF observations. However,

a sufficient NSE of 0.90 is achieved. This water year demonstrates

that even if daily simulation results do not meet the established

threshold, by assessing the cumulative monthly results, much of the

variability can be smoothed to produce sufficient results.

4.2 Performance under drought conditions

In addition to assessing water years that experienced extreme

flooding, it is also necessary to assess how the models perform in

terms of long-term droughts. With the limitations of observation

data, two multi-year periods of droughts in ARW are considered.

The first period is from 1987 through 1992 and the second is from

2012 through 2016.

4.2.1 Water years 1987–1992: modeling the
dampened water supply

This 4-year period of drought across California followed

the record flood for its time in 1986. Precipitation across

the regions was three quarters of the recorded average while

stream flow was only about one-half of the recorded average

(Nash, 1993). As with all droughts, warmer temperatures

combined with reduced and warmer reservoir releases severely

impacted the endangered salmonoids spawning downstream.

Additionally, the diminished streamflow across the region

threatened native and endangered riparian and aquatic species.

This drought emphasized the need to concurrently manage

water resources and natural systems for future droughts. It also

highlighted the need to increase monitoring for environmental

conditions and resources to be able to quantify the impact of

future droughts.

In terms of simulating this 6-year period, WRF performed

well for precipitation, with a daily NSE of 0.72, and temperature,

with a daily NSE of 0.88 (Figures 13A, B). The reduced

precipitation is clearly visible with observations consistently

below daily peaks of 80mm of basin-averaged precipitation.

Simulation results are in line with the lessened daily peaks, except

for December of 1992, where WRF overestimates the basin-

averaged precipitation. At the monthly scale, the accumulated

precipitation is also well-modeled with an NSE of 0.90. The

winter sums are for the most part well-simulated, though

WRF exhibits larger spring sums than is seen in the PRISM

estimations of basin-averaged precipitation. The monthly average

temperature is also well-simulated, though WRF simulations

are slightly smaller compared to PRISM for most of the 6-

year period.

Snow accumulation is also diminished, particularly in the

upper elevations (Figure 13C). At the LOS station, SWE is

only modeled to accumulate above 50 in in 1989, which is

significantly less than during flood years which saw at least

70 in of SWE in the winter. Though observation data are

missing for most years, data that are available are not ever

above 40 in. The SNOW Module does well for the LOS station,

with an NSE of 0.64. At the GKS station, however, the

module underestimates snow for all years, though the timing

of accumulation and melting processes is simulated well for the

most part.

The under simulated mid-elevation snowpack at the GKS

station likely plays a role in the resulting flow not meeting the NSE

threshold at either the daily or monthly scales (Figure 13D). The

daily inflow peaks in 1989 and 1991 are underestimated, though the

monthly accumulated volumes are overestimated byWEHY-HCM.

Additionally, numerous larger and more varied daily peaks are

simulated which are not seen in the observations. These additional

daily peaks contribute to the larger volume that is also simulated

by WEHY-HCM across the entire drought period. This may be

due to a combination of overestimation of precipitation falling

as liquid, which does not contribute to the snowpack and leads

to increased runoff than is observed, especially if an ROS event

occurs. However, the flows are so dampened, for the most part

below 30,000 cfs except in 1989 which peaks near 40,000 cfs, they

are comparable to spring inflow during flood years. While the NSE

does not satisfy the threshold, the RMSE is computed to be 3,373

cfs, which is less than all 3 flood years considered. The RMSE for

the monthly accumulated volume is also comparable to that of the

flood years. The dampened daily flow and the accumulatedmonthly

flow volumemake differencesmore obvious for smaller magnitudes

of flow and highlight that modeling the entire watershed is difficult

when so little water is available.
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FIGURE 12

Reconstruction of the 2017 water year against observations for (A) the daily and monthly accumulation of basin-averaged precipitation, (B) the daily

and monthly averaged basin-averaged temperature, (C) daily SWE at the LOS and GKS observation stations, and (D) the daily inflow and monthly

accumulated volume.

4.2.2 Water years 2012–2016: modeling the
diminished snowpack

Finally, the more recent drought across California from 2012

through 2016 is considered. While shorter drought periods were

experienced in the early 2000’s, this was the longest drought

since the 1987–1992 drought (Lund et al., 2018). Numerous

records were set in terms of dryness and reduced snow cover

and severe consequences were seen. At a society level, emergency
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FIGURE 13

Reconstruction of the drought period from 1987 to 1992 against observations for (A) the daily and monthly accumulation of basin-averaged

precipitation, (B) the daily and monthly averaged basin-averaged temperature, (C) daily SWE at the LOS and GKS observation stations, and (D) the

daily inflow and monthly accumulated volume.

proclamations across the state were issued. The reduced releases

and inability to meet demand resulted in increased groundwater

pumping to maintain the agricultural system in the San Joaquin

Valley. As expected, impacts to the natural environment were seen

throughout the system. Central Valley subsidence was revealed

by satellite imagery, tree mortality increased, wildfires damages
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increased, the occurrence of harmful algal blooms increased, and

endangered salmonoids were further threatened by the reduction in

cold water habitats. However, this drought was not directly related

to an extreme lack of precipitation. The precipitation rates were

similar to that of previous droughts but the warmer temperatures

across the region severely reduced the snowpack and the resulting

spring flows.

Again, the daily basin-averaged precipitation and temperature

were well-simulated by WRF compared to PRISM observations,

with NSE values of 0.82 and 0.87, respectively (Figures 14A, B).

Daily precipitation peaks are similar between the two datasets

expect in 2014, where WRF underestimates the peak by about

20mm. At the monthly scale, the accumulated precipitation is

also well-simulated with an NSE of 0.95. The winter peaks

in precipitation are extremely well-matched, except in 2016

where WRF overestimates the December and January sums.

Average temperature is also well-simulated with an NSE of

0.96. While following the trends seen in PRISM, WRF does

tend to underestimate the basin-averaged temperature, with the

largest differences seen in 2012 and the winter months of the

following years.

The impact of the drought on snow processes is clearly seen

in the decreased SWE across the 5-year period and the SNOW

Module was able to capture this with NSE values of 0.60 at the GKS

station and 0.50 at the LOS station (Figure 14C). The reduction in

SWE at the GKS station is particularly staggering. All years did not

accumulate more than 20 in, and in 2014 and 2015 SWE did not

accumulate above 10 in. At LOS, observations are missing for 2012

and 2016 and SWE is overestimated in 2013, but the module does

particularly well in 2014 and 2015.

As with the 1987–1992 drought, WEHY-HCM does not

pass the NSE threshold for the 2012–2017 drought at both

the daily and monthly scales (Figure 14D). However, in this

instance, WEHY-HCM better simulates the daily peak flows, likely

because the annual peaks are for the most part, except for in

2015, above 30,000 cfs. The similar precipitation to the previous

drought in conjunction with the decreased snowpack combine

to result in larger daily peak flows. However, for the monthly

accumulated inflow volume, WEHY-HCM again overestimates

compared to the AMF FNF observations, further highlighting the

difficulty in simulating all potential conditions and processes at a

watershed scale.

4.3 Overall model performance and
limitations

By closely considering the model results for individual water

years, general observations can be made about potential model

biases. WRF results at a daily and accumulated monthly scale

do not follow a specific trend in over or underestimating basin-

average precipitation peaks and greatly depend on the year, or years,

being simulated. For the SNOW Module, the results at GKS are

consistently underestimated compared to observations for all years

considered. The results at LOS are more inconsistent, with some

years over simulating SWE and some years under simulating SWE.

However, this station has a significant number of days without

observations, so it is more difficult to draw conclusions. Point scale

comparisons are much more difficult to model as opposed to basin-

averages due to the complex interactions and non-linearity of the

system, in addition to the high resolution necessary, and that is

seen in the SWE comparisons. At the GKS station specifically, any

differences between the simulated precipitation and temperature

against the observations is exacerbated by the smaller SWE

magnitudes and the high daily variability in coverage. The impact of

precipitation falling as liquid, and potentially melting the snowpack

through ROS events, or accumulating and adding to the snowpack

significantly impact the downstream flow results. Inflow peaks

at the daily scale do not necessarily follow a specific trend in

over or underestimating values compared to FNF observations.

However, for the monthly accumulated volumes, particularly

for drought periods, WEHY-HCM overestimates values when

compared against the AMF FNF observations even if the peaks in

daily inflow are underestimated.

These results highlight some important points that must be

kept in mind when using physically based models. Firstly, the

calibration and validation periods that are selected can be vital

for later results. If any model is over calibrated for a particular

condition, any variation from that will likely result in worsened

results. The 10-year calibration and validation periods used in this

study are comprised of both high precipitation, high flow and low

precipitation, low flow water years. By using a period that contains

both extremes, the current model setups can simulate atmospheric

and hydrologic conditions for future flow conditions.

Due to the limited daily flow observation data, direct

comparisons are limited to more recent water years. Thus, it is

difficult to analyze how the model setup performs in the further

past when observations may not be available. Furthermore, any

observation data or global reanalysis data that is available for an

earlier period, such as the early 1900’s and prior, is likely to contain

larger uncertainties compared to more recent periods. However,

absent more comprehensive observation data, this reanalysis data

is a good option to fully understand the hydroclimate of the

past. Additionally, any change to the physical characteristics of

the watershed is not directly considered as a modern DEM and a

single WEHY-HCM set up is used for the entire reconstruction.

ARW, as with many Sierra Nevada watersheds, has been altered

tremendously with the heavy mining and damming in the region

continuing through the early 1900’s. Additionally, Folsom reservoir

was operational starting in 1956, and thus any previous floods

than may have been disastrous for Sacramento would likely not

have the same impact today with the added flood protection

that the reservoir provides. However, by setting up WEHY-HCM

to assess inflows to Folsom, comparisons can be made against

observations that are available prior to the construction of the

reservoir. And because the model parameters are physically based,

any changes to the land characteristics due to climate change can be

accounted for as impacts become more apparent and new land data

become available.

Finally, the impact that air temperature and snow processes

have on the resulting flow conditions is evident and must be

fully considered when doing any watershed modeling. Because

snow processes are highly location specific, with the temperature,
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FIGURE 14

Reconstruction of the drought period from 2012 to 2016 against observations for (A) the daily and monthly accumulation of basin-averaged

precipitation, (B) the daily and monthly averaged basin-averaged temperature, (C) daily SWE at the LOS and GKS observation stations, and (D) the

daily inflow and monthly accumulated volume.

solar angle and aspect of the land controlling the accumulating

and melting mechanisms, a high-resolution watershed model that

directly accounts for snow, is vital. Slight differences between

modeled temperature and the actual conditions across the

watershed ultimately control how any precipitation falls within the

watershed, affecting the resultingmagnitude and timing of flow that
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is simulated. By utilizing WEHY-HCM with the additional SNOW

Module, these complex interactions could be further considered at

a higher resolution beyond those available inWRF outputs directly.

4.4 Study implications

By constructing a daily time series with spatial distributions of

the atmospheric, snow, and flow conditions in ARW from 1852

through 2020, in the future analysis can be done beyond that of

the three flood years and two drought periods presented here.

Because the system has been calibrated and validated individually

for precipitation, snow, and inflow, outputs for conditions across

the hydroclimate system are reliable, which is especially beneficial

when limited observation data are available. The spatial distribution

of all variables across the entire watershed is also produced by this

methodology and can provide further insight into the precipitation

distribution, snow cover, and upstream reach flows. The daily

reconstruction of the spatial distribution of precipitation can be

used to identify regions in the watershed that may be most

susceptible to changes in the existing geomorphology and river

network while the stream reach timeseries across the watershed can

be used to identify areas where environmental monitoring may be

vital to capture real-time changes within the watershed (Tucker

and Slingerland, 1997; Abed-Elmdoust et al., 2016; Sarker et al.,

2019; Singhal et al., 2024). Periods of droughts can also be further

analyzed to assess which areas in the watershed experience the

driest conditions, providing insights that can be used to reduce

wildfire fuel loads in vulnerable areas and assess where flora

and fauna will be the most stressed under low flow conditions

(Dettinger et al., 2004).

In terms of assessing climate change, the long period of

record of the reconstruction data can provide constraints to GCM

climate projections. Especially for basin-averaged precipitation, the

historical data can be used as an indicator to highlight potential

unrealistic projection outputs which may skew analysis (Douville,

2024). Long-term trends can also be assessed to understand the

impacts of a changing climate in ARW. Natural climate variability

can be separated from changes due to a warming climate, and

the driving mechanism responsible for those changes can be

assessed, whether that be climate forcings or geomorphological

changes. Any future extreme events can be compared to similar

historical cases to assess how the watershed may respond. The

reconstruction timeseries can also be directly applied to assess

different climate adaptation options, to understand how the

current watershed would respond to various projects to increase

the resilience of Folsom Reservoir for different time scales and

scenarios. While the models have been calibrated and validated

for daily and monthly scales, the data are output at an hourly

scale. Thus, analysis can be done at an hourly or daily scale for

flood management purposes, to assess the current or potential

reservoir operation rules. Alternatively, at the monthly or water

year scale, analysis can be done for water supply purposes, to

understand how the system may operate under various timing

sequences between extreme wet and dry years. As the methodology

is physically based, with limited reliance on observation data, it can

be applied to watersheds both gauged and ungauged globally. It

may be especially important for watersheds that have insufficient

historical data for water management planning and designing. This

comprehensive historical dataset is the first step in understanding

how ARW may respond to climate change and assessing how

future extreme events may alter the risk of future flood and

drought conditions.

5 Conclusions

This study comprised of calibrating and validating three

physically based models for the American River Watershed before

completing a full reconstruction of the atmospheric, snow, and

hydrologic conditions from 1852 through 2020. To downscale

global reanalysis data, the WRF regional atmospheric model was

utilized. To model the hydrologic response, WEHY-HCM with

the SNOW Module was used. Each of the three models was

individually calibrated and validated against available observation

data. Following the successful calibration and validation processes,

a daily reconstruction of the atmospheric and hydrologic

conditions was completed from 1852 through 2020. To further

analyze the model performance for past extreme events, three

historical flood years and two historical drought periods were

evaluated at daily and monthly scales. The flood years, 1997,

2006, and 2017, are recent water years with available observation

data that contained the largest peak daily inflows. Additionally,

the two drought periods, 1987–1992 and 2012–2016, are two of

the longest and most intense periods of reduced precipitation

and snow cover in recent years. By understanding how the

models perform against historical extreme events, future studies

can be done that apply these model setups for potential future

extremes under a changing climate. The timeseries of the

past 169 years can be used to assess the trajectory of future

conditions and contribute to the understanding of what future

adaptation will be needed for ARW to successfully weather the

intensifying flood and drought periods that are expected. Any

future extreme events can be directly compared to the detailed

historical dataset that was produced for ARW in this study, to

evaluate how either the climate is changing or the watershed, itself,

is changing.
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