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The Qinling Mountains, the so-called “central water tower,” are extremely important 
water resource hubs in China. The influence of the forest ecological environment 
on water quality is complicated. Therefore, to investigate the spatiotemporal 
variations in water quality, we employed a random forest model to integrate multiple 
key water quality indicators into one overall ranking value. Monthly monitoring 
data of surface runoff and atmospheric precipitation events (2003–2022) for the 
Huodigou stream in the Qinling Mountains were used. The results revealed that 
after atmospheric precipitation entered the forest ecosystem, the coefficients of 
variation of surface runoff for most of the selected indicators decreased, but there 
were significant differences among the six indicators (NO3

−, Mg2+, Na+, pH, K+, 
Ca2+). Most of the indicators within surface runoff were positively correlated, such 
as those in atmospheric precipitation. However, some indices of surface runoff 
were negatively correlated with those of atmospheric precipitation, and there 
was a significant negative correlation between Ca2+ in atmospheric precipitation 
and Ca2+ in surface runoff and between NO3−in atmospheric precipitation and K+ 
and Na+ in surface runoff (p  <  0.01). The water quality grade of the surface runoff 
generated by atmospheric precipitation through forest ecosystems was significantly 
improved (p  <  0.001), among which the average water quality grade of surface 
runoff was approximately 3.6, that is, between Grade I-3 and Grade I-4, whereas 
the average water quality grade of atmospheric precipitation was approximately 
4.5, that is, between Grade I-4 and Grade I-5. The order of improved water quality 
was NO3

−  >  Mg2+  >  Na+  >  pH  >  K+  >  Ca2+. Overall, our assessment revealed that from 
2003 to 2022, the water quality grade in the Huodigou stream improved and 
was more stable. In summary, the forest ecosystem in the Huodigou stream has 
a significant water quality purification effect on the atmospheric precipitation it 
receives. Our novel criterion-based approach for categorizing the water quality 
of atmospheric precipitation and surface runoff offers a new tool for examining 
spatiotemporal stream water quality variations in the Qinling region and other 
mountainous areas.
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1 Introduction

At present, the rapid growth in population, urbanization, 
industrialization, agriculture and deforestation have led to increasingly 
serious global water shortages (UN-Water, 2018). Nearly one-third of 
the world’s population resides in countries facing severe water 
shortages, highlighting the critical issue of water scarcity, which 
hampers both quality of life and economic development (Misaghi 
et al., 2017; Mishra et al., 2016). As a global resource, water is vital in 
the natural water cycle and international trade. Many of the products 
consumed in the European Union (EU28) are produced abroad, so the 
European economy is particularly dependent on water resources 
elsewhere; if the production of products in these places decreases due 
to water shortages, the supply of these imported products, particularly 
those that rely on water, will be at great risk (Ercin et al., 2016). The 
scope of environmental impact has expanded to the global level. 
Quantitative indicators, including the criticality ratio (water stress) 
(Alcamo et  al., 2003), water footprint-based assessment, the 
cumulative abstraction-to-demand ratio (Hoekstra and Hung, 2002), 
the LCA-based water stress indicator (Pfister et  al., 2009), the 
quantity–quality–environmental flow requirement (QQE) indicator 
(Liu et al., 2017; Zeng et al., 2013) and model analysis (Boulay et al., 
2014; Dalezios et al., 2018), have been used in previous research to 
evaluate water shortages, but the regional water shortages caused by 
water quality changes have not been fully discussed. Every 1% 
improvement in water quality can result in critical savings in 
processing costs to ease water shortages (Klemeš, 2012) and create 
significant ecological benefits (Griffiths et al., 2012). In the natural 
water cycle, the function of forests for water conservation and quality 
improvement is recognized. There is research that increased overall 
forest cover decreases water yield in sub-watersheds, thereby likely 
increasing nutrient retention and decreasing the export of potentially 
harmful nitrogen and phosphorus (Delphin et al., 2014). Therefore, 
exploring changes in water quality after atmospheric precipitation 

enters forest ecosystems is critical to ensuring a sustainable 
water supply.

Known as the central water tower in the hinterland of China, the 
Qinling Mountains are among the most important water resource 
hubs in China. The water quality of the Hanjiang River Basin, which 
originates in the Qinling Mountains, is very important for ensuring 
the production and domestic water consumption of 34.68 million 
people in North China (Zhang, 2007). It also serves as a crucial water 
supply for the central section of China’s South-to-North Water 
Diversion Project (Zhang et al., 2022), and directly affects the water 
quality of many water sources and tributaries. In recent years, most 
studies on forest and water quality in the Qinling Mountains have 
focused mostly on the water quality effects of various levels of forest 
ecosystems (Chen et al., 2018; Zhang and Liang, 2012) and the effects 
of thinning intensity on the hydrological system of forest ecosystems. 
Most of these studies were limited to a few years of individual forest 
areas on the southern or northern slopes of the Qinling Mountains 
(Zhao et al., 2015). Studying water quality change on a larger time 
scale can further clarify its complexity and make hydrological 
predictions more accurate and reliable. Hence, it becomes imperative 
to conduct research on forest water quality changes in the Qinling 
Mountains over a large time scale.

Water quality evaluation has become a popular research topic 
worldwide due to the water quality decline caused by the competition 
between the supply and demand of water resources and their pollution 
(Hurk et al., 2014; Yan et al., 2022; Zhou et al., 2013). There are many 
methods for assessing water quality, such as the single element 
assessment, comprehensive pollution index, water pollution index, 
graded weighted average, fuzzy evaluation, and random forest 
methods (Li et al., 2017; Yang et al., 2023). The random forest model 
can be used to evaluate water quality accurately, and the method has 
high training efficiency, objectivity and stability (Jena et al., 2023; 
Xiong et  al., 2023). Thus, it can be  used in future water quality 
monitoring and timely warning systems (Chen et al., 2020). There are 
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very few reports on water quality evaluation in the Qinling Mountains 
thus far. Previous studies adopted principal component analysis 
(PCA) (Gao, 2018), single factor evaluation and the comprehensive 
pollution index method (Wei, 2023) to evaluate water quality in the 
Qinling Mountains. Although the single attribute and comprehensive 
attribute of water were considered to achieve a comprehensive 
evaluation, the accuracy of the evaluation was affected by the 
limitation of the pollution index. It is essential to use more accurate 
methods to provide a theoretical basis for water quality evaluation, 
water pollution prevention and management in the Qinling Mountains.

In this study, we used a random forest model to construct a water 
quality assessment model for the Houdigou stream in the Qinling 
Mountains. Different water quality indices of atmospheric 
precipitation and surface runoff in the Huodigou stream over the last 
20 years were used to evaluate the water quality levels of the stream 
during different periods. With less reference adjustment, high 
prediction accuracy and good generalization ability, the random forest 
model can be used to fully study the water quality in the Huodigou 
region of Qinling on a large time scale and analyze the temporal and 
spatial characteristics of regional water quality under the influence of 
forest ecosystems. We then identified the influencing factors, which 
can provide a scientific decision-making basis for the sustainable 
development of water resources and the evaluation of water resource 
security in the Qinling Mountains.

2 Materials and methods

2.1 Study area

As one of China’s most important water diversion projects and 
one of China’s national strategic projects, the South-to-North Water 
Diversion Middle Route Project has attracted much attention (Zhang 
and Liang, 2012). The Qinling Mountains are a mountain range that 
extends from east to west in central China and are important water 
conservation areas in China (Yan, 2011). Among them, the middle 
mountain area on the southern slope of the Qinling Mountains 
represents the core water source forest area of the middle route of 
China’s South-to-North Water Diversion project. The Huoditang 
natural forest region is located within the middle section of the 
mid-mountain zone on the southern slope of the Qinling Mountains 
and has typical characteristics in terms of climate, forest vegetation, 
soil, topography, etc. Furthermore, the Huodigou stream has a 
dendritic water system in the middle mountain zone on the southern 
slope of the Qinling Mountains. The selection of the Qinling 
experimental site in Huodigou Valley has good representativeness.

The administrative division of the Huoditang natural forest region 
is Ningshan County, Shaanxi Province. The longitude and latitude 
coordinates are 33°25′–33°29′N, 108°25′–108°30′E (Figure 1a). The 
forest area is 22.25 km2, the altitude is 1,470–2,473 m, and the area has 
a warm temperate moist montane climate. The Huodigou stream, 
which is approximately feather shaped, is the largest natural water 
catchment area in the Huoditang forest region, covering an area of 729 
hm2. The surface runoff from this area is channeled into the Ziwu 
River, which is a feeder stream of the Han River (Lu et al., 2014). The 
Danjiangkou Reservoir serves as the water supply hub for China’s 
South-to-North Water Diversion Middle Route Project, with more 
than 70% of its water originating from the Han River. The annual 

average temperature near the watershed is 8–12°C, the annual 
precipitation is between 900 and 1,200 mm, the average relative 
humidity is approximately 77%, and the frost-free period is 199 days. 
The major soil types are mountain chestnut soil, dark chestnut soil, 
and meadow soil, with the parent rocks for soil formation primarily 
consisting of granite, gneiss, metamorphic sandstone, and slate. The 
forests in the stream area have been being cut down since the 1960s. 
In 1998, the country banned the logging of natural forests and 
implemented stream protection measures. The existing forest is a 
natural secondary forest where the original vegetation was restored 
after logging, with a vegetation coverage rate of more than 90%. The 
major tree species include Quercusaliena var. acuteserrata, Pinus 
tabuliformis, Pinus armandii, Betula albosinensis, Betula luminifera, etc.

2.2 Water sampling

Sampling was conducted in the Huodigou stream of the Qinling 
Mountains. In 2003, 2004, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 
2016, 2017, 2018, 2020, and 2022, precipitation water samples and 
runoff water samples were collected from the Huodigou stream. 
Surface runoff water samples were collected at the lower part of the 
Parshall flume, and 500 mL was collected each time and placed in 
polyethylene water sample bottles. The four collection sites of 
atmospheric precipitation are in the open area next to the Huodigou 
stream, approximately 100 m from the Parshall flume (Figure 1b).

The water samples were collected via eight rain gauges, each with 
a radius of 10 cm and a height of 20 cm, positioned two per site. The 
bucket openings were secured with gauze mesh, which allowed the 
entry of rainfall while blocking insects and plant debris and helped 
minimize the impact on water quality of element loss due to 
evaporation. The precipitation collected from all the samples was 
mixed on the second morning after each rain shower, and 500 mL was 
collected with a polyethylene water sample bottle. The runoff water 
samples were collected at the same time.

2.3 Laboratory methods for chemical 
analysis

After sampling, the samples for various projects were stored in a 
sample bottle with the lid tightened to ensure that the samples were 
kept sealed, refrigerated at 0°C and sent to the laboratory for analysis 
on the same day. The sample determination methods and standards 
used were as follows.

2.3.1 pH value: electrode method
A laboratory pH meter (PHSJ-6 L) was used for testing the 

samples. A standard solution that differed from the pH of the sample 
by no more than 2 pH (pH = 4, 25°C) units was chosen as the first 
standard calibration solution. The electrodes were removed, rinsed 
thoroughly, and blotted dry with filter paper. A standard solution that 
was approximately 3 pH (pH = 9.18, 25°C) units different from the 
first standard calibration solution was chosen as the second standard 
solution. The electrode was rinsed carefully with distilled water, and 
the surface of the electrode was blotted with the edge of a filter paper. 
Immediately after the sample was poured into a 100 mL beaker along 
the wall of the cup, the electrode was immersed in the sample and 
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stirred slowly and horizontally to prevent bubbles. We measured the 
pH when the readings stabilized. After sample detection, the 
electrodes were flushed with distilled water.

2.3.2 Determination of NO3
−: ion chromatography 

analysis
The 100 mL shaken sample was accurately measured and placed 

in a 250 mL polytetrafluoroethylene beaker. The sample was passed 
through a 0.45 μm cellulose acetate membrane for filtration and then 
stored at a temperature of 4°C for preservation. The NO3

− content was 
determined via ion chromatography. The standard NO3

− solution was 
removed, and the mass concentrations of NO3

− were 0.40, 1.00, 2.00, 
4.00, 10.00, 20.00 and 40.00 mg/L. The calibration curve was drawn 
with the mass concentration of each ion as the horizontal coordinate 
and the peak area as the vertical coordinate. The results revealed that 
all the ions had a good linear relationship in the corresponding 
concentration range, and the correlation coefficient was r > 0.999. The 
sample to be measured was injected into the ion chromatography 
instrument via a manual or automatic sampler.

2.3.3 Determination of metal elements (K+, Na+, 
Ca2+, Mg2+): inductively coupled plasma–mass 
spectrometry

Mixed standard solutions of K+, Na+, Ca2+ and Mg2+ were prepared. 
The standard curve series concentrations of the elements to 
be  measured were 0.00 mg/L, 0.50 mg/L, 2.00 mg/L, 4.00 mg/L, 
10.00 mg/L, and 20.00 mg/L, and the medium contained 1% nitric 
acid. Before sample atomization, the internal standard solution was 
automatically added through the peristaltic pump so that the 
concentration of the internal standard solution was 40 μg/L, and a 
standard curve was drawn.

The 100 mL shaken sample was accurately measured in a 250 mL 
polytetrafluoroethylene beaker and filtered through a 0.45 μm 
cellulose acetate membrane. Then, 2 mL nitric acid solution (1 + 1) and 
1 mL hydrochloric acid solution (1 + 1) were added and dissolved at 
85°C on an electric heating plate. The solution was allowed to stand 
from boiling until the sample had evaporated to 20 mL. The beaker 
was covered with a surface dish, and the solution was slightly reflowed 

for 30 min. After cooling, the samples were transferred to a 50 mL 
volumetric flask with deionized water and shaken well for 
measurement. The sampling amount could be appropriately reduced 
according to the actual situation of the sample. The surrounding 
environment of the fume hood ensured that the sample was not 
contaminated during digestion. If there was insoluble matter in the 
digestion solution, it was left overnight or centrifuged to obtain the 
clarified solution.

2.4 Theory and calculation

2.4.1 Principle of the random forest
The single-factor evaluation method is used to evaluate water 

quality when a certain index in the water exceeds the prescribed limit 
range; that is, when the water quality is judged as unqualified. When 
the water quality of multiple water bodies is unqualified in different 
indicators, the quality of these water bodies cannot be classified. The 
comprehensive pollution index method is only suitable for evaluating 
water quality with low evaluation requirements, and the fuzzy 
comprehensive evaluation method is suitable for evaluating water 
quality with more uncertain factors. The evaluation accuracy of the 
artificial neural network and Grey system theory methods is not high, 
or the results tend to be average. Principal component analysis (PCA) 
is suitable for water quality assessment with many evaluation indices 
and can reduce high-dimensional variables to several factors 
reflecting the information of the original variables. The random forest 
method has the characteristics of high robustness, strong 
practicability and good generalization performance, and the 
evaluation accuracy can reach 100% under certain circumstances 
(Zhang and Gao, 2016), which can be  used to evaluate water 
quality effectively.

The random forest algorithm is an ensemble algorithm that 
integrates N decision trees for classification and regression. It operates 
on the principles of random subspace theory and the bagging method.

The core of the algorithm is to build a regression decision tree 
combination model. A single tree is split downward by the root node 
traversal so that it can grow freely without pruning.

FIGURE 1

Stream location schematic diagram (a) red points represent the locations in this study; sampling site location schematic diagram (b).
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The classification decision in the random forest algorithm is based 
on a majority voting mechanism. For a given input sample, each tree 
independently makes a classification prediction, and the final 
classification result is determined by the most frequently occurring 
category. This collective decision-making approach renders random 
forest highly accurate and robust in handling classification tasks.

The performance of the algorithm partially depends on the 
correlation among the trees and the strength of each individual tree. 
Ideally, the low correlation between trees combined with the high 
predictive power of each tree work together to minimize the model’s 
overall generalization error.

2.4.2 Water quality evaluation standards
The water quality evaluation grading standard is the basis of water 

quality evaluation, which needs to be open, be uniform, and reflect the 
progressive change in water quality. Drawing upon the relevant 
research in the literature and the “Environmental Quality Standards 
for Surface Water” (MEEPRC, 2002), the upper and lower limits of the 
water quality of the corresponding indicators were selected, as shown 
in Table 1. However, since the water quality in the Huodigou stream 
was at level I, Grade I of the water quality level was divided into five 
levels, I-1, I-2, I-3, I-4, and I-5, by scaling in equal proportions, as 
shown in Table 2.

The random interpolation method was used to generate 200 sets 
of sample data within each water quality grade interval in Table 1, and 
there were 1,000 sets of sample data in total for 5 water quality grades. 
A total of 750 groups were randomly selected as training samples, and 
the other 250 groups were selected as test samples. The distribution 
numbers I, II, III, IV, and V represent water quality grades I-1, I-2, I-3, 
I-4, and I-5, respectively. Water quality index data were taken as the 
input variable, and the water quality grade was taken as the 
output variable.

2.4.3 Model parameter optimization
There are two sensitive parameters within the random forest 

algorithm framework: ntree and mtry. The former is the number of 
decision trees, which affects the running speed and classification effect 
of the algorithm. The latter is the number of attributes in the split 
attribute set, which affects the split attribute assignment of nodes. 
These two parameters jointly determine the complexity of the random 
forest model. To establish the optimal model, a grid search method is 
usually used to set the parameters. Changing the parameters results in 
slightly different accuracy of the model. With increasing ntree, the 
error tends to decrease in general. When ntree is >400, the error is 
small and stable. Considering the variation trend of the error 
comprehensively, the error was set to 500, and the error was 0.03067 
(Figure 2a). When mtry = 3, the out-of-bag error (OOB) reached a 

minimum, which was also 0.03067, indicating that the optimal 
parameter of mtry was 3 (Figure 2b).

2.4.4 Importance of OOB
In the process of stochastic forest modeling, the collinearity 

between variables and the influence of data noise can be excluded to 
identify the importance of variables. The influence of each index factor 
in the water quality evaluation model can be determined according to 
the importance scores. OOB is one of the methods for measuring the 
importance of variables within the random forest algorithm 
framework (Equation 1). In a single tree, the Gini coefficient is the 
sample purity of each node in the node splitting process. The formula 
is as follows:

 ( )OOB 2p 1 p= −  (1)

where p is the proportion of positive samples allocated to tree 
node k, the proportion of negative samples of nodes is (1-p), and OOB 
is the coefficient value. In the random forest model, the importance of 
a variable is the sum of the decrease in the OOB value from parent to 
child on all nodes (i.e., the decrease in the Gini coefficient, MDG) 
when this characteristic variable is split. The higher the score is, the 
greater the importance of the variable.

2.4.5 Data processing
The water quality and water quality grade data of the monthly 

samples were analyzed in MS Excel for basic statistical processing. 
Correlations and differences between water quality data were 
visualized using Origin (2022). Random forest modeling, water 
quality assessment and Wilcoxon nonparametric testing were 
performed in R for Windows 4.3.1 and RStudio (2023).

3 Results

3.1 Statistical characteristics of water 
quality

The concentrations of K+ and Na+ in surface runoff and Mg2+ in 
atmospheric precipitation decreased linearly with time (Figures 3c,d,f). 
NO3−in surface runoff and pH, Na+, and Ca2+ in atmospheric 
precipitation showed a certain upward trend, whereas the other five 
indices all showed a certain downward trend (Figure 3). The overall 
water quality conditions in the Huodigou stream were favorable. The 
average concentrations of six indices in the process of surface runoff 
formed by atmospheric precipitation after passing through the forest 

TABLE 1 Water environmental quality evaluation criteria.

Water quality 
grade

pH NO3
− (mg/L) K+ (mg/L) Na+ (mg/L) Ca2+ (mg/L) Mg2+ (mg/L)

Level I 6.5–8.5 0–2 0–100 0–100 0–100 0–15

Level II 6.5–8.5 2–5 100–150 100–150 100–150 15–25

Level III 6.5–8.5 5–20 150–200 150–200 150–200 25–35

Level IV 5.5–6.5 or8.5–9.0 20–30 200–300 200–300 200–300 35–45

Level V <6.5 or>9.0 30–200 300–400 300–400 300–400 45–60
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ecosystem increased to varying degrees, among which the average 
concentrations of Ca2+ and Mg2+ increased by approximately 10 times 
at most, and the average concentrations of other indices increased by 
approximately 1–3 times. However, by comparing the dispersion 
coefficients of all the surface runoff and atmospheric precipitation 
indicators, it was evident that, except for Na+ concentration, the 
dispersion coefficients of the other ion concentrations were manifested 
as greater atmospheric precipitation than surface runoff; that is, the 
ion concentration of surface runoff formed after atmospheric 
precipitation passed through forest ecosystems became more stable.

There were significant differences between the six corresponding 
indices of atmospheric precipitation and surface runoff in the 
Huodigou area (p < 0.05, Figure 4). Except for NO3

−, the differences in 
the other indices reached a very significant level (p < 0.001). In the 
process of transforming atmospheric precipitation into surface runoff 
after passing through forest ecosystems, the pH value changed from 
near-neutral and slightly acidic to weakly alkaline, indicating that H+ 
was consumed during the process of atmospheric precipitation passing 
through the three hydrologic layers of forest ecosystems, resulting in 
an increase in the pH value, whereas other ions all increased to varying 
degrees. NO3

−, K+, and Na+ were less affected than Ca2+ and Mg2+.

3.2 Correlation of water quality

There was a positive correlation between surface runoff and 
atmospheric precipitation. There were significant positive correlations 

between pH and Mg2+, NO3
− and Ca2+, Ca2+ and Mg2+ in atmospheric 

precipitation (p < 0.001) and significant positive correlations between 
pH and Na+ (p < 0.01, Figure 5). There were also significant positive 
correlations between pH and NO3

−, K+ and Ca2+, and Na+ and Mg2+ 
(p < 0.05). There were significant positive correlations between K+ and 
Na+, Na+ and Mg2+ in surface runoff (p < 0.001) and between pH and 
Ca2+, K+ and Mg2+ (p < 0.01). There were also significant positive 
correlations between pH and K+, pH and Na+, NO3

− and Na+, and 
NO3

− and Ca2+ (p < 0.05). Each index of atmospheric precipitation in 
the Huodigou stream influenced each other before and after they 
entered the forest ecosystem. That is, there were positive effects among 
most indicators in the water body.

There was a certain correlation between surface runoff and 
atmospheric precipitation in the Huodigou stream, and there was a 
significant negative correlation between Ca2+ in atmospheric 
precipitation and Ca2+ in surface runoff, NO3-in atmospheric 
precipitation and K+ and Na+ in surface runoff (p < 0.01). However, 
there was a significant positive correlation between NO3

− in 
atmospheric precipitation and NO3

− in surface runoff (p < 0.01) or 
Ca2+ in surface runoff (p < 0.05).

Moreover, a significant positive correlation was observed between 
Mg2+ in atmospheric precipitation and pH in surface runoff (p < 0.05). 
These findings indicate that NO3

− in surface runoff is affected mainly 
by NO3

− in atmospheric precipitation and that the effect on forest 
ecology is relatively small. Mg2+ in atmospheric precipitation affects 
the pH of surface runoff and NO3

− in atmospheric precipitation, Ca2+ 
in surface runoff decreases with increasing Ca2+ in atmospheric 

TABLE 2 Water environmental quality evaluation criteria of Huodigou stream.

Water Quality 
grade

pH NO3
− (mg/L) K+ (mg/L) Na+ (mg/L) Ca2+ (mg/L) Mg2+ (mg/L)

Level I-1 7.43–7.71 0–0.02 0–25.00 0–25.00 0–25.00 0–3.75

Level I-2 7.43–7.71 0.02–0.05 25.00–37.50 25.00–37.50 25.00–37.50 3.75–6.25

Level I-3 7.43–7.71 0.05–0.20 37.50–50.00 37.50–50.00 37.50–50.00 6.25–8.75

Level I-4
7.29–7.43 or 

7.71–7.79
0.20–0.30 50.00–75.00 50.00–75.00 50.00–75.00 8.75–11.25

Level I-5
6.5–7.29 or 7.79–

8.5
0.30–2.00 75.00–100.00 75.00–100.00 75.00–100.00 11.25–15

FIGURE 2

Random forest model parameter settings. The number of trees in a random forest (a); the number of variables preselected by the tree node (b).

https://doi.org/10.3389/frwa.2024.1440411
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org


Zhao et al. 10.3389/frwa.2024.1440411

Frontiers in Water 07 frontiersin.org

precipitation, and K+ and Na+ in surface runoff decrease with 
increasing NO3

− in atmospheric precipitation. Other ions are affected 
mainly by forest ecosystems. Furthermore, the atmospheric 
precipitation in the Huodigou stream series experienced extremely 
complex fluctuations in water quality after entering the 
forest ecosystem.

These correlation analyses help us to better understand the 
correlation between forest ecosystems and atmospheric precipitation, 
improve our understanding of hydrological processes, and better 
predict the factors affecting elemental change.

3.3 Water quality grade evaluation

The random forest model revealed that the water quality 
significantly improved when atmospheric precipitation entered the 
forest ecosystem and formed the Huodigou stream, among which 
the average water quality grade of surface runoff was approximately 
3.6, that is, between Grade I-3 and Grade I-4, whereas the average 
water quality grade of atmospheric precipitation was approximately 

4.5, that is, between Grade I-4 and Grade I-5. Over time, the water 
quality grade and its stability in the Huodigou stream improved 
(Figure 6).

The results showed that forest ecosystems influence purifying water 
quality in the process of converting atmospheric precipitation into 
surface runoff, and with the continuous stability of forest ecosystems, 
the purification effect on water quality is also constantly improving. The 
regression analysis revealed that there was a positive correlation between 
them, which reached a significant level (r = 0.24, p < 0.05; Figure 7).

This illustrated that the water quality of surface runoff increased 
with increasing atmospheric precipitation water quality. The 
importance analysis of the established random forest model revealed 
that the order of influence on water quality in the Huodigou stream 
was NO3

− > Mg2+ > Na+ > pH > K+ > Ca2+ (Figure 8).

4 Discussion

The impact of forests on water quality has been widely studied in 
Europe and North America (Grace, 2005; Matías and Juha, 2021; 

FIGURE 3

Linear regression plots of indicators of atmospheric precipitation and surface runoff over time. CVp, Coefficient of variation for atmospheric 
precipitation; CVr, Coefficient of variation for surface runoff. Indicators include: pH (a); NO3

− (b), K+ (c), Na+ (d), Ca2+ (e), and Mg2+ (f).
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Shepard, 1994). It mostly includes two aspects. First, the forest itself 
absorbs and lixiviates multiple chemical components in natural 
precipitation, followed by a change in the composition and content of 
the chemical components in natural precipitation; second, the impact 
of the forest ecosystem on river water quality increases. We analyze 
and discuss the above two aspects.

Observations in Shaoshan Forest, Central-South China watershed, 
indicated that the content of chemical components changes during the 
process of precipitation passing through the tree canopy or reaching 
the ground along the tree trunk to form surface runoff. The contents 
of OH−, Na+, K+, Ca2+, Mg2+, NO3

− and other ions in forest rainfall and 
tree trunk runoff have increased. When precipitation passes through 
a forest watershed, various chemical components can increase (Zhang 
et  al., 2006). Some of our results were highly consistent with the 
changes in ion content in surface runoff found in this study. These 
findings indicate that the significant changes in the chemical 
composition of precipitation in the study area are caused mainly by 
forest precipitation penetrating the canopy. This may be due to the 
washing away of some substances when they contact the leaf surface 
and the leaching or absorption process of nutrients by the canopy.

One of the studies on pH variations revealed that the increase in 
pH observed when rainwater filtered through the canopy can 
be attributed to two main factors. The first is the exchange of base 
cations found in leaf tissue for hydrogen ions (H+) present in the rain; 
this process is particularly active during the growth season when 
leaves have a high concentration of exchangeable base cations  

(Li et  al., 2010). The second factor is the neutralization of acidic 
cations in rainwater by weakly basic anions that are leached from 

FIGURE 4

Box plots illustrating differences in corresponding indicators 
between atmospheric precipitation and surface runoff. pHr, pH value 
in surface runoff; pHp, pH value in atmospheric precipitation; NO3

−
r, 

K+
r, Na+

r, Ca2+
r, and Mg2+

r, Concentrations of NO3
−, K+, Na+, Ca2+, and 

Mg2+ in surface runoff; NO3
−

p, K+
p, Na+

p, Ca2+
p, and Mg2+

p, 
Concentrations of NO3

−, K+, Na+, Ca2+, and Mg2+ in atmospheric 
precipitation. The levels of statistical significance are as follows: 
*p  <  0.05, **p  <  0.01, ***p  <  0.001.

FIGURE 5

Heatmap depicting the correlation of indicators in atmospheric precipitation and surface runoff. pHr, pH value in surface runoff; pHp, pH value in 
atmospheric precipitation; NO3

−
r, K+

r, Na+
r, Ca2+

r, and Mg2+
r, Concentrations of NO3

−, K+, Na+, Ca2+, and Mg2+ in surface runoff; NO3
−

p, K+
p, Na+

p, Ca2+
p, 

and Mg2+
p, Concentrations of NO3

−, K+, Na+, Ca2+, and Mg2+ in atmospheric precipitation. The levels of statistical significance are as follows: *p  <  0.05, 
**p  <  0.01, ***p  <  0.001.
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leaves (Tao et al., 2007). However, in this study, the pH decreased after 
atmospheric precipitation was converted into surface runoff at almost 
all time points, especially when the precipitation pH was relatively low, 
and the study area effectively neutralized acidic precipitation. This 
increase in pH may be due to the involvement of weak acid anions in 
the forest canopy in the neutralization of H+.

Davis (2014) reported that the content of NO3
− in streams 

decreased significantly after 5 years of afforestation. This result is 
exactly opposite to our results. However, studies have shown that 
increased atmospheric nitrogen deposition due to fossil fuel 
burning or agricultural activities leads to nitrogen saturation in 
forest ecosystems, and when forest ecosystems reach nitrogen 
saturation, the remaining nitrogen oxides seep into surface runoff 
(Crowley and Lovett, 2017). In recent years, rural tourism in the 
Qinling Mountains has developed rapidly, and more tourists and 
local residents choose to drive by themselves in the countryside, 
which leads to the congestion of tourist traffic in some areas on 
weekends and holidays (Zhou et  al., 2024). The highways are 
located in the mountain valleys of the Qinling Mountains, and the 
air does not easily flow; however, high concentrations of nitrogen 

oxides from vehicle exhaust accumulate near highways, causing the 
forest ecosystem to reach nitrogen saturation (Zhang, 2007). The 
increase in NO3

− in surface runoff relative to atmospheric 
precipitation in this study may have occurred because the forest 
ecosystem in the watershed is in the nitrogen saturation state 
mentioned above.

For metal cations, Ca2+ is more likely to be intercepted by the 
canopy, whereas K+ and Mg2+, which are more mobile, appear in 
higher proportions in penetrating rain (Béjar et  al., 2018). For 
example, Jaramillo (2003) reported that rainfall has a K+ concentration 
increase of nearly 10 times when rain reaches the ground. However, 
other studies have shown that Ca2+ also has a canopy leaching effect 
(Hou and Wei, 2001). The increase in metal cations in the precipitation 
in the forest may have resulted from the transpiration liquor of the cell 
wall, and the cell protoplasm selectively absorbs only the nutrients 
needed at that time from the liquid flow. The remaining nutrients are 
condensed in the cell wall and cuticle, and they are exchanged by 
hydrogen ions when precipitation occurs. This is highly consistent 
with the findings in this study that the metal cation content increased 
as the pH increased.

Furthermore, a study has shown that the dissolution of various 
types of organic matter in soil rock weathering materials, plant and 
animal remains and the degree of water erosion all increase the 
contents of various chemical components in the water (Bogdał et al., 
2019). Oulehle et al. (2017) reported that geological weathering is the 
main reason for the increased contents of Na+, Ca2+ and Mg2+ 
in streams.

Because the precipitation water quality output by forests is often 
partially purified, different vegetation types affect the water quality of 
streams differently. Many studies have hypothesized that broad-leaved 
tree species in vegetation types positively affect the chemical 
composition of surface runoff (Lopes et al., 2019; Matías and Juha, 
2021; Vardon et  al., 2019) and that mixed forests have the best 
purification effect on water quality. However, some studies have 
shown that the concentrations of organic matter, N, P, and Ca2+ in 
surface runoff in mixed forests significantly increase (Klimaszyk et al., 
2015). Similar phenomena were found in surface runoff in this study, 
namely, significant increases in the concentrations of NO3

−, K+, Na+, 
Ca2+, and Mg2+.

In terms of studies on the role of forests in protecting water 
sources and preventing pollution, Fujii et al. (2001) researched the role 
of forests in purifying runoff in the Lake Biwa watershed. The results 
revealed that forests have a certain purifying effect on nitrogen and 
organic matter, but they are also the source of most ion species (Fujii 
et al., 2001). It has also been reported that the coefficient of variation 
of various ions in atmospheric precipitation continues to decrease 
during the process of passing through the forest canopy to form 
in-forest precipitation and that the entire forest ecosystem forms 
surface runoff (Raat et al., 2023). In the water quality evaluation of 
atmospheric precipitation and surface runoff in this study, it was also 
found that the forest ecosystem has a purifying effect on water quality 
and increases the stability of pH, K+, Ca2+, Mg2+, and NO3

−.
Although the forest ecological system in Huodigou Stream in this 

study has been continuously losing a variety of basic cations and 
nitrate nitrogen in the past two decades, there are almost no signs of 
forest destruction. The mechanisms that control nutrient cycling and 
regulate forest development are unknown. Therefore, there is an 
urgent need to elucidate nutrient cycling throughout forest ecosystems 

FIGURE 6

Topographic chart illustrating the distribution of water quality health 
grades across different years.

FIGURE 7

Linear regression plot of water quality grades between atmospheric 
precipitation and surface runoff. Levelp, Water quality grade of 
atmospheric precipitation; Levelr, Water quality grade of surface 
runoff.
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and the impact of these elements on forest productivity in future 
studies in this region.

5 Conclusion

This paper studies the changes in water quality in the Qinling 
Mountains of China over the past 20 years and constructs a random 
forest model using the R language to evaluate water quality. The results 
revealed that most of the indicators in surface runoff are positively 
correlated with those in atmospheric precipitation. Some surface 
runoff indices were negatively correlated with atmospheric 
precipitation indices. It has long been known that forest ecosystems 
affect the water quality of atmospheric rainfall, but notably, the degree 
of impact on water quality is different. The order of improvement in 
water quality was NO3

− > Mg2+ > Na+ > pH > K+ > Ca2+. The coefficient 
of surface runoff variation decreased for most of the indicators, but 
there was a significant difference among the six indicators. Previous 
studies have shown that different indicators change due to 
environmental changes in tree species and forest ecosystems, but the 
internal complex mechanism of these changes is worth 
studying further.
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