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Integrated hydrological model (IHM) forecasts provide critical insights into 
hydrological system states, fluxes, and its evolution of water resources and 
associated risks, essential for many sectors and stakeholders in agriculture, urban 
planning, forestry, or ecosystem management. However, the accuracy of these 
forecasts depends on the data quality of the precipitation forcing data. Previous 
studies have utilized data-driven methods, such as deep learning (DL) during 
the preprocessing phase to improve precipitation forcing data obtained from 
numerical weather prediction simulations. Nonetheless, challenges related to 
the spatiotemporal variability of hourly precipitation data persist, including issues 
with ground truth data availability, data imbalance in training DL models, and 
method evaluation. This study compares three (near) real-time spatiotemporal 
precipitation datasets to be used in the aforementioned IHM forecast systems: 
(1) 24 h precipitation forecast data obtained by ECMWF’s 10-day HRES 
deterministic forecast, (2) H-SAF h61 satellite observations as reference, and 
(3) DL-based corrected HRES precipitation using a U-Net convolutional neural 
network (CNN). As high-resolution data, H-SAF is used both as a reference for 
correcting HRES precipitation data and as a stand-alone candidate for forcing 
data. These datasets are used as forcing data in high-resolution (~0.6 km) 
integrated hydrologic simulations using ParFlow/CLM over central Europe from 
April 2020 to December 2022. Soil moisture (SM) simulations are used as a 
diagnostic downstream variable for evaluating the impact of forcing data. The 
DL-based correction reduces the gap between HRES and H-SAF by 49, 33, and 
12% in mean error, root mean square error, and Pearson correlation, respectively. 
However, comparison of SM simulations obtained from the three datasets with 
ESA CCI SM data reveals better agreement with the uncorrected HRES 24-h 
forecast data. In conclusion, H-SAF satellite-based precipitation data falls short 
in representing precipitation used for SM simulations compared to 24 h lead time 
HRES forecasts. This emphasizes the need for more reliable spatiotemporally 
continuous high-resolution precipitation observations for using DL correction 
in improving precipitation forecasts. The study demonstrates the potential of 
DL methods as a near real-time data pre-processor in quasi-operational water 
resources forecasting workflows. The quality of the preprocessor is directly 
proportional to the quality of the applied observation.
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1 Introduction

Water resources forecasting is important for many sectors. 
Information on the availability and distribution allows for a sustainable 
management of water, for example in agriculture, domestic and 
industrial water supply, or ecosystem functioning. IHMs play a vital 
role in water resources forecasting, predicting the impacts of climate 
change on water availability and assessing risks associated with 
hydrological extremes (Qi et al., 2016; Tuo et al., 2016). The accuracy 
of simulations obtained by these models heavily relies on the quality 
of atmospheric forcing data from numerical weather prediction and 
climate models (Bennett et  al., 2022). Amongst the forcing data, 
precipitation is key, the main driver for the terrestrial surface and 
subsurface water budgets and also impacting the land surface energy 
balances (Fekete et al., 2004; Fersch et al., 2020; Jabbari et al., 2019; 
Pan et al., 2010; Tanhapour et al., 2023). While enhancing precipitation 
accuracy alone does not ensure improved hydrological predictions, 
errors in model-based precipitation data, especially for heavy rainfall 
events, strongly affects the accuracy of hydrological predictions (Li 
et al., 2023; Qi et al., 2016; Saadi et al., 2023a, 2023b).

Operational, near real-time, high-resolution water resources 
forecasting systems that integrate coupled atmosphere-land-
subsurface processes on a (sub-) continental scale offer comprehensive 
information to a wide array of stakeholders by representing a wider 
range of water and energy processes within the terrestrial water cycle 
(Tijerina-Kreuzer et  al., 2021). Two representative examples of 
impact-scale hydrological forecasting systems are the national water 
model (NWM) over the US by National Oceanic and Atmospheric 
Administration (NOAA) based on WRF-Hydro (Cosgrove et al., 2024; 
Gochis et al., 2020; Gochis and Chen, 2003; Senatore et al., 2015; 
Towler et al., 2023; Yucel et al., 2015) and a monitoring and forecasting 
system based on the IHM ParFlow/CLM (Kollet et al., 2010; Kollet 
and Maxwell, 2006; Kuffour et al., 2020) in a setup for subsurface 
water resources over central Europe (DE06) as described by 
Belleflamme et al. (2023). These systems primarily operate with a 
one-way coupling approach, where atmospheric forcings drive land 
and subsurface processes without explicit consideration of feedbacks 
from the land surface and subsurface to the atmosphere.

In flood forecasting and rainfall-runoff studies, the role of 
precipitation accuracy and its correction using conventional, or 
machine learning methods have been explored (Huang et al., 2023; 
Saadi et al., 2023a; Tri et al., 2022; Wijayarathne et al., 2020; Xu et al., 
2023). Yet, there is a notable scarcity of research especially on 
DL-based precipitation correction in water resources forecasting 
systems. For example, the correction of short-term, medium or 
long-term precipitation forecasts used as forcing data within the 
previously mentioned systems is commonly implemented through 
a statistical bias correction or adjustment, or data assimilation (DA). 
For reference, within the context of the forecasting systems 
mentioned above, NWM 2.1 utilizes quantile mapping bias 
correction (adjustment) for long-range precipitation and other 

atmospheric forcing data from Climate Forecast System (CFS) 
forecasts (Cosgrove et  al., 2024; Panofsky and Brier, 1968). The 
ParFlow/CLM DE06 experimental 10-day deterministic forecasts 
use as atmospheric forcing mainly the high-resolution deterministic 
medium-range forecasts (HRES) from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) (refer to Belleflamme 
et al., 2023) that are based on a 4D variational Data Assimilation 
(Bannister, 2001).

The effectiveness of precipitation correction methods is measured 
through statistical evaluation, e.g., comparing probability 
distributions, error metrics, and spatiotemporal correlations between 
corrected precipitation and observed data (Li et al., 2021; Liu et al., 
2020; Patakchi Yousefi and Kollet, 2023). However, implementing and 
evaluating these correction methods as well as nowcasting, forecasting, 
and downscaling applications of precipitation imposes challenges such 
as the availability and quality of ground truth data, data imbalance 
(e.g., in data-driven methods), and the selection of meaningful 
evaluation metrics, which is well known from flood forecasting 
applications (Hess and Boers, 2022; Lam et al., 2023; Ravuri et al., 
2021; Wang et al., 2021). In the following paragraphs, these challenges 
are explained in greater detail.

High spatiotemporal variability of precipitation necessitates 
reliable ground truth data from in-situ observations, yet conventional 
sources of measuring precipitation have limitations, such as spatial 
representativity issues in rain gauge observations and beam-blockage 
gaps in weather radar data (Kidd et al., 2017; Yaswanth et al., 2023; 
Yousefi et  al., 2023). Although satellite data cover larger areas, 
uncertainties stemming from cloud cover and retrieval algorithms 
affect their accuracy or lead to data gaps (Tian et al., 2009). Addressing 
data gaps involves estimating missing data through statistical or data-
driven algorithms (Sattari et al., 2020; Mital et al., 2020). However, 
many data-driven bias correction or forecasting studies rely on 
reanalysis data sources such as COSMO-REA6, COSMO-REA2, 
ERA5, and ERA-interim, offering consistent and continuous coverage 
but constrained by coarse resolution and model-related errors (Bi 
et al., 2023; Han et al., 2021; Patakchi Yousefi and Kollet, 2023).

There is an inherent data imbalance in precipitation data, where 
heavy rainfall (i.e., larger than 10 mm/h) occurrences are relatively 
rare compared to lighter events. This poses a challenge to traditional 
machine learning loss functions which are commonly designed to 
perform well on balanced datasets (Dablain et al., 2023; You et al., 
2023). Customized loss functions such as treat score, dice loss, and 
weighted loss have shown promise in mitigating data imbalance issues 
and directing model training toward heavy rainfall events (Hess and 
Boers, 2022; Larraondo et al., 2019; Li et al., 2021; Rojas-Campos 
et al., 2023; You et al., 2023).

Typical metrics such as root mean squared error are not ideal but 
useful for training data-driven methods, but evaluation using these 
metrics may not capture a comprehensive assessment. On the other 
hand, temporal metrics averaged over time mapped over space 
overlook the spatial structure in evaluation. Multi-component spatial 
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metrics such as SPAEF address the problem of accounting for the 
spatial and temporal features (Dembélé et al., 2020; Demirel et al., 
2018; Koch et  al., 2018; Yorulmaz et  al., 2023). Such metrics can 
be used for indirect evaluation using hydrological models to simulate 
various states and fluxes within the land and subsurface compartments, 
encompassing variables such as soil moisture (SM) content, 
groundwater levels, surface runoff, streamflow, and other related 
processes. Model results and diagnostics are then compared against 
observed data, serving as a benchmark to estimate the effectiveness of 
precipitation data and/or correction methods (Casanueva et al., 2016; 
Fang et al., 2015; Lafon et al., 2013; Luo et al., 2018; Pan et al., 2010; 
Teng et al., 2015).

Within the ML realm, Deep Learning (DL)-based precipitation 
correction methods using Convolutional Neural Networks (CNNs) 
have gained popularity due to their independence from statistical 
assumptions, and ability to learn complex non-linear error 
relationships (Hess and Boers, 2022; Kim et al., 2021; Ronneberger 
et al., 2015; Sun et al., 2019; Wang et al., 2023; Zhang et al., 2023). 
In this context, Patakchi Yousefi and Kollet (2023) utilized U-Net 
architecture in a merging framework to learn and correct errors 
between model- and reanalysis-based daily precipitation data; in 
this study, U-Net, a type of CNN, was shown to outperform the 
commonly used quantile mapping bias correction (Cannon et al., 
2015; Piani et  al., 2010). However, the impact of DL-based 
precipitation correction on hydrological simulations has not been 
evaluated so far.

This study introduces novelty by integrating U-Net architecture 
known for its efficiency against quantile mapping and versatility 
among DL methods as a corrector of atmospheric forcing data in 
operational IHM forecasting system. We introduce a dynamic mask in 
training the DL network on available space–time grids to address the 
data gaps in satellite-based precipitation. The hydrological impact of 
precipitation data corrected using DL and used as forcing data in 
operational, near real-time, high-resolution hydrological forecasting 
systems. For the impact assessment, the precipitation datasets 
including model-based short-term forecasts, near real-time satellite-
based observations, and DL-based corrected precipitation derived 
from the first two datasets are compared against each other. Our 
analysis primarily focuses on assessing SM as a downstream variable 
due to its immediate hydrological response from precipitation, rather 
than a more complicated variable such as evapotranspiration 
influenced by a larger number of states and fluxes. SM reference data 
is available as a spatial representation for comparison with simulated 
data. The evaluation serves two main objectives: first, to investigate the 
effectiveness of DL-based correction on improving precipitation data, 
and second, to compare the influence of different (DL-corrected) 
precipitation data on the fidelity of hydrological forecasts. Overall, this 
research contributes to advancing our understanding on the role of 
precipitation data in hydrological forecasting—operational or 
experimental—and thereby supports informed decision-making in 
water resource management.

The manuscript is organized as follows: section 2 presents the 
methodology, including the study domain and data, the DL-based 
precipitation correction, and the hydrological simulations. Section 3 
presents the results and discussion on hyperparameter tuning, on the 
evaluation of precipitation correction, on the comparison of SM 
simulations, and the validation of precipitation products. Section 4 
summarizes the conclusions drawn from the study.

2 Methodology

We begin with a general introduction to our methodology in 
section 2.1 and the study area and data in section 2.2. In section 2.3, 
we explain how we utilize the DL method to correct precipitation 
simulations. In section 2.4, we describe the hydrological model setup. 
Finally, in section 2.5, we describe the evaluation methods used in 
the study.

2.1 General methodology

The goal of this study is to evaluate the hydrological impact of 
various precipitation data, and DL-based precipitation correction in 
an experimental, near real-time, high-resolution hydrological IHM 
forecasting system. We evaluate three precipitation datasets used as 
forcing data: (1) short-term atmospheric forecast data, (2) near real-
time observations, and (3) DL-based corrected precipitation using 
the first two datasets. To achieve these goals, we need short-term 
atmospheric forecast data, near real-time observational precipitation 
data, an operational hydrological forecasting system, a DL 
framework for precipitation correction, and an evaluation method 
to implement and investigate our methodology (Figure 1).

For the atmospheric forecasting and observational data 
(Figure 1A), we choose the HRES forecasts by ECMWF (European 
Centre for Medium-Range Weather Forecasts, 2016) and the near 
real-time satellite-based precipitation product (h61) by Satellite 
Application Facility on Support to Operational Hydrology and Water 
Management (H-SAF) (EUMETSAT, 2021a, 2022; Martins Costa Do 
Amaral et  al., 2018). Apart from ENS (ensemble probabilistic 
forecasts), and SEAS (seasonal forecasts) used for probabilistic and/or 
longer term forecasts, HRES is commonly used for short-term 
forecasts up to 10 days. Our focus is the first 24-h is due to the 
increased complexity and uncertainty associated with longer lead 
times, requiring sophisticated methods to address lead time errors. 
This study focuses on short-term forecasts to assess the immediate 
impact of DL-based correction.

The choice of H-SAF data is motivated by its high resolution 
among satellite data, spatial coverage, and near real-time data 
availability, which makes it a candidate for use in near-real time 
hydrological forecasts. The alternatives, such as lower-resolution data 
from other satellites or radar-based datasets covering only specific 
regions, are deemed less suitable for our study.

As a demonstrator for the hydrological forecasting, we choose the 
ParFlow/CLM IHM with its DE06 setup, tailored to water resources 
forecasts and implemented in an experimental near-real time 
workflow over central Europe (Figure 1D; Belleflamme et al., 2023). 
The ParFlow/CLM model is known for its versatility and applicability 
indicating that our findings can offer insights with broader usefulness 
across different geographical contexts.

We use the DL framework proposed by Patakchi Yousefi and 
Kollet (2023) to learn and correct the mismatches between HRES 
precipitation forecast and H-SAF observations (Figure 1B). The 
method was initially applied to gridded daily reanalysis data 
without space–time gaps. However, here we  implement it with 
satellite-based data at a higher spatial resolution and at hourly time 
scale. This introduces new challenges, such as unavailable data in 
time and space in H-SAF satellite-based observations and more 
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data imbalance because of the higher temporal resolution. To 
manage the gaps and data imbalance problems, we  introduce 
customized loss function.

The evaluation of the hydrological impact of the various 
precipitation datasets and DL-based precipitation correction 
involves comparing the three precipitation datasets against rain 
gauge observations and assessing the SM simulations derived from 
these datasets against ESA CCI SM data used as a reference 
(Figure 1E).

2.2 Study domain and data

The study domain mainly consists of Central Europe, with two 
different grid definitions. The first grid definition is for the 
implementation of the DL-based framework on precipitation forcing 
data (Figure  1C), and the second one is for high-resolution 3D 
ParFlow/CLM simulations (Figure 1D).

The first grid definition (Figure 2A) is a 2D grid with a resolution 
of 0.1° × 0.1°, consisting of 196 × 125 grid points within the 
geographical bounds of 1.1°W–18.4°E and 44.1°N–56.5°N. This grid 
corresponds to a subset of HRES global grid. H-RES, apart from the 
ECMWF’s other ensemble runs, provides a high-resolution and 
deterministic 10-day weather forecast. Data assimilation in HRES 
involves a sequential 4D-Var assimilation scheme that updates a 

previous model forecast with new observations including ground-
based, satellite-based and other meteorological measurements for 
initialisation (Bannister, 2001; Bonavita and Laloyaux, 2020). While 
sharing core characteristics with other forecast ensemble members, 
HRES stands out with its more detailed analysis, higher resolution, 
and improved representation of land-sea processes (Owens and 
Hewson, 2018). HRES data is downloaded for the given study domain 
(Figure  2A) and is preprocessed to be  used for analysis and DL 
training. The preprocessing steps involve converting the precipitation 
units from m to mm, cumulative into instantaneous, and selecting the 
first 24 h forecast for each day, and merging them into a single NetCDF 
file using Climate Data Operators (CDO).

Satellite-based data from H-SAF, P-AC-SEVIRI-PMW (referred 
to as H61B in this section and H-SAF throughout the rest of the 
manuscript) is an hourly accumulated precipitation dataset. H61B is 
derived by integrating Passive Microwave (PMW) sensor and SEVIRI 
(visible and infrared) instrument data. H61B improves prior H-SAF 
precipitation data by classifying rainfall as convective or stratiform 
through adjustments in the rain rate-brightness temperature 
relationship (EUMETSAT, 2021b, 2022). H61B data spans from 
latitude 60°S to 67.5°N and longitude 80°W to 80°E, and is rectified, 
projected, and resampled into a defined grid (Figure 2B). The spatial 
resolution is ~4.8 km at nadir, but it decreases in areas away from the 
nadir point, reaching ~8 km over Europe. To obtain H-SAF data for 
the first domain and grids, a reference algorithm by Mueller et al. 

FIGURE 1

Schematic diagram of the overall methodology and data flow path of the study: weather prediction (A) and experimental hydrological forecasting 
systems (D), DL-based correction of precipitation (B), and implementation and evaluation of three types of precipitation data used among the other 
atmospheric forcing data (C,E). mpr, rpr, and mpr represent precipitation data obtained by HRES model, H-SAF satellite observations, and corrected using 
DL method, respectively. mhres, sm, mhsaf, sm, and mhresc, sm represent SM simulations (obtained from ParFlow pressure field outputs) by ParFlow/CLM given 
the three corresponding atmospheric forcings. mtas, mps, mvas, muas, mhuss, mrsds, and mrlds represent the short-term atmospheric forecast obtained from 
HRES for air temperature (tas), surface air pressure (ps), meridional (vas) and zonal (uas) wind speed, specific humidity (huss), visible (rsds) and infrared 
(rlds) downward radiation at the surface, respectively.
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(2018), is used to establish the relationship between the pixel locations 
to geographic coordinates. The data from the full disc area is trimmed 
for size reduction (Figure 2B), resampled to the 0.1° × 0.1° HRES grid 
using remapbil bilinear interpolation function (Figure 2C), and then 
trimmed to fit the study domain (Figure 2A). Resampling is necessary 
to match the input and output dimensions of the data for calculating 
the mismatches in corresponding grids required for the 
U-Net architecture.

The second grid definition (Figure  2D) has a resolution of 
0.0055° × 0.0055° (∼0.611 km × 0.611 km) in the lateral direction, 
covering 2000 × 2000 grid cells. This grid extends over 15 terrain-
following vertical model layers with increasing thickness from the 
land surface to the model bottom. The uppermost layer reaches from 
the surface to 2 cm depth and the lowest layer extends from 42 to 60 m 
below the surface. This is called the DE06 grid in the ParFlow/CLM 
setup, a high-resolution hydrological model that simulates the water 
and energy cycles in the study domain. For more information about 
the DE06 setup, the reader is referred to Belleflamme et al. (2023). All 
the precipitation data are remapped using remapbic bicubic 
interpolation function onto the DE06 grid (Figure 2D) to be used in 
ParFlow/CLM simulations.

2.3 Precipitation correction

2.3.1 DL network setup
We employ a Deep Learning (DL)-based framework introduced 

by Patakchi Yousefi and Kollet (2023). This approach relies on the 
non-linear space–time relationships between the extracted features 
from the input data, and the mismatch between the model-based 
HRES and H-SAF reference data. The framework consists of two steps 
(Equations 1, 2). First step is to learn the mismatch data:

 ( ), , , , , , , , , , , ,DL , : , whereδ δ→ = −pr pr i t pr pr i t pr i t pr i t pr i t pr i tI w I m r
 (1)

where ( ), ,DL ,pr pr i t prI w  represents the DL network with inputs 
, ,pr i tI  to be trained on the mismatch data , ,pr i tδ  for precipitation pr  

as a modeled , ,pr i tm , and observed , ,pr i tr  atmospheric variable over 
time t  and location i.

The second step is to remove mismatches from , ,pr i tm  using the 
trained weights in the network independent from observations:

 , , , ,, ,pr i t pr i tpr i tm m δ= − 

 (2)

where the corrected HRES precipitation (HRES-C) , ,pr i tm  is 
obtained by removing the predicted mismatch , ,pr i tδ  from the 
original modeled data , ,pr i tm .

The U-Net architecture employed in this study for precipitation 
correction follows the work of Patakchi Yousefi and Kollet (2023), featuring 
a U-Net CNN (Ronneberger et al., 2015) with a distinct feature of squeeze-
and-excitation (SE) blocks between the two convolutional functions both 
in the up-sampling and down-sampling steps. The SE blocks contain 
global average pooling followed by convolutional operations with relu and 
sigmoid activations. Global average pooling layer computes the average 
value of all feature maps for each batch and channel, summarizing the 
information into a single representative value. This map is reshaped and 
processed through two 1 × 1 convolutional layers. The SE blocks perform 
channel-wise attention, emphasizing informative features and suppressing 
less useful ones (Hu et al., 2019). The architecture incorporating the layers 
and blocks discussed above is illustrated in Figure 3.

Previous similar studies emphasize including spatiotemporal 
information to improve U-Net predictions (Bastos et al., 2021; Teimouri 
et al., 2019). In our approach, we include a total of seven input channels. 

FIGURE 2

Study domain and grids of HRES (A), H-SAF (B), resampled and trimmed H-SAF (C) data, and DE06 grid (D). Maps shown on panels (A,C) are mapped in 
Plate Carree projection. Panel (B) is shown in geostationary (azimuthal) projection, and (D) is shown in EUR-11 rotated-pole projection as used in the 
DE06 setup.
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These channels include modeled precipitation data at t  and 1t − , 
geographical coordinates (latitude and longitude), altitude maps and 
calendar information specifying year, and day of the year (assigned to 
all pixels in the corresponding image). Each input channel undergoes 
batch normalization layer (Keras library in python), immediately after 
the input layer to standardize each channel’s values by subtracting the 
batch mean and dividing by the square root of the batch variance. This 
normalization step ensures that all channels contribute effectively to the 
learning process by maintaining consistent scaling with trainable 
parameters. All corresponding input and target data with 196 × 125 
dimension are filled with zero padding to obtain images with the 
nearest square dimensions of 256 × 128 for training in U-Net.

2.3.2 U-Net training
We employ and compare two loss functions: Mean Squared Error 

(MSE) and Weighted MSE (WMSE). We employ and compare two loss 
functions (Equations 3, 4):

 

2

, ,, , , , ,
1 1

1 ST NN
pr i tT land i avail i t pr i t

T S t i
MSE M M

N N
δ δ

= =

 
= − 

 
∑∑ 

 
(3)

where TMSE  represents the loss during the training period; TN  
and SN  represent the number of data points in time and space; 

,land iM  and , ,avail i tM  represent binary masks for land and H-SAF 
data availability; , ,pr i tδ  and , ,pr i tδ  represent the predicted and actual 
precipitation mismatches over location i and time t . VMSE  TEMSE  are 
similarly defined for validation data, as well. The MSE loss function is 
formulated to reduce the mean squared error between predicted and 
actual precipitation.

The WMSE loss function is defined as

 

2

, ,T , , , , , , ,
1 1

1 ST NN

pr i tpr i t land i avail i t pr i t
T S t i

WMSE W M M
N N

δ δ
= =

= −
 
 
 

∑∑ 

 
(4)

where TWMSE  represents the weighted loss during the training 
period; , ,pr i tW  corresponds to the intensity weights calculated for each 
pixel i and time t  over the training period. VWMSE  TEWMSE  are 
similarly defined for validation data, as well.

The WMSE loss function introduces intensity-based weighting 
to emphasize higher-intensity precipitation events. To calculate 

, ,pr i tW , we obtain the probability of H-SAF precipitation categorized 
into three levels: dry (up to 0.1 mm/h), light (0.1 to 2.5 mm/h), and 
moderate to heavy (more than 2.5 mm/h). Toprioritize moderate to 
heavy over dry and light categories, we calculate the , ,pr i tW  for each 
category such that the sum of inversely weighted probabilities for 
each precipitation category equals to one. The calculated weights are 
presented in Table 1. Furthermore, in both loss functions, we utilize 
a stationary land and a dynamic data availability mask specifically to 
train the loss function over land grids where H-SAF data 
is accessible.

2.3.3 Hyperparameter tuning
A simple hyperparameter tuning (HPT) is employed to optimize 

the performance of U-Net. The tuned parameters include initial 
learning rate (LR), batch size (BS), and the number of filters in the first 
U-Net network layer. The LR values tested are 0.01, 0.001, and 0.0001, 
the considered batch sizes are 2, 4, 8, and 16, and the number of filters 
in the first layer of the U-Net architecture is chosen from 8, 16, 32, and 
64. The possibility of reaching an optimum result with a wider range 

FIGURE 3

Schematic representation of the U-Net convolutional neural network architecture used in this study with Conv2d, SE, Dropout, MaxPool2d, 
Batchnorm2d, GlobalAveragePool2D, ConvTranspose2d, Concat, and Multiply layers from Keras library.

TABLE 1 Probability of occurance (%) for each precipitation intensity over 
the training dataset for HRES, H-SAF and HRES-C.

Intensity 
(mm/h)

Probability 
of HRES

Probability 
of H-SAF

Assigned 
weight(Wpr)

0 < =pr < 0.1 80.167% 79.231% 0.01

0.1 < =pr < 2.5 19.140% 19.980% 0.04

2.5 < =pr 0.685% 0.779% 0.95
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of combinations is possible. However, the current selection of 48 
different combinations is reasonable, given the computational 
resources required for more extensive search.

The study period for precipitation correction is between 2020-
07-01 13UTC and 2023-04-25 12UTC. The data is randomly split 
50/50 into training and validation sets. The validation set consists of 
multiple clusters of 10 consecutive days (240 h) within the study 
period with an equal duration of hours as the training set.

In HPT, the goal is to find the best combination of hyperparameters 
that result in better and robust skill in predicting mismatches, toward 
the final goal of improving HRES data. Therefore, for each parameter 
combination, and in each training epoch, model training is performed 
using the training set and validated with the validation set. If there is 
no improvement in validation loss after 8 epochs, the training is 
stopped (early stopping). If the validation loss does not improve after 
2 epochs, the learning rate is reduced by a factor of 0.5. Following 
these runs, we analyze the results to identify the HPT combination 
that leads to the least validation loss and save it for producing the 
corrected HRES. The results from HPT are provided in Section 3.1.

2.4 ParFlow/CLM simulations

We employ the ParFlow v3.8.0 integrated hydrological model 
which utilizes partial differential equations (PDEs) to simulate variably 
saturated subsurface and groundwater flow, integrated with overland 
flow, which constitutes the upper boundary condition (Kollet and 
Maxwell, 2006; Kuffour et al., 2020; Maxwell et al., 2015). The physics-
based methodology of ParFlow yields consistent results across time 
and space scales, ranging from watershed hydrodynamics to large-
scale continental simulations (Maxwell et al., 2015; Saadi et al., 2023a). 
ParFlow can be run efficiently on large HPC systems, including GPUs 
(Burstedde et al., 2018; Hokkanen et al., 2021; Kollet et al., 2010).

In this study, the model uses the same setup with the same 
external parameter files for slopes, soil hydraulic properties, land 
cover, etc. as in the experimental forecasts runs by Belleflamme et al. 
(2023). The Community Land Model (CLM) in ParFlow/CLM, 
enhances the representation of energy and mass fluxes by adding land 
surface exchange processes such as interception and evapotranspiration 
(Kuffour et al., 2020). We use ParFlow/CLM model outputs from the 
aforementioned study from 2020-06-30 13UTC up to the next 24 h for 
our runs as the initial conditions. From 2020-07-01 13UTC and 
onwards, three different precipitation forcing data are tested with 
dedicated ParFlow/CLM model runs: H-RES, H-SAF, and corrected 
HRES (HRES-C). The model is run on the GPU compute nodes of the 
JUWELS Booster HPC system at the Jülich Supercomputing Centre.

2.5 Evaluation methods

To assess the fidelity of the precipitation data, we employ a variety 
of evaluation metrics at hourly and monthly time scales such as Mean 
Error (ME), Root Mean Squared Error (RMSE), and Pearson 
Correlation (COR). ME quantifies the overall bias against the 
reference data, indicating whether the predictions tend to overestimate 
or underestimate actual values. RMSE measures variability and 
magnitude of deviations from reference data. COR is utilized to 
indicate the strength and direction of the linear relationship between 

simulated (or predicted) and reference values. COR and RMSE 
metrics are also used to evaluate simulated SM. These metrics are 
calculated according to Patakchi Yousefi and Kollet (2023).

COR and RMSE metrics are used for comparing simulated against 
observed SM. Additionally, we evaluate the spatial patterns using the 
SPAEF multi-component metric that accounts for the spatial 
correlation, variability rate, and histogram match. For further details 
on the SPAEF metric, refer to Koch et al. (2018).

False Alarm Ratio (FAR) and Probability of Detection (POD) are 
utilized to evaluate the reliability of specific precipitation thresholds 
of 0.1, 2.5, and 10 mm/h by different datasets. FAR measures the ratio 
of falsely identified events above a threshold to the total number of 
identified events above that threshold. POD represents the 
proportion of correctly identified precipitation events above a 
specific threshold out of all events that exceeded that threshold. For 
more information regarding POD and FAR, the reader is referred to 
Amjad et al. (2020).

3 Results and discussion

In this section, we present and discuss key results from calculating 
the intensity weights in section 3.1, network hyperparameter tuning 
in Section 3.2, precipitation correction in Section 3.3, comparing SM 
simulations in Section 3.4, and validation of precipitation products in 
Section 3.5.

3.1 Intensity weights

The inverse intensity weights were calculated by first calculating 
the probability of occurrence for each precipitation category based on 
the H-SAF training dataset. The assigned weight is shown for each 
precipitation category.

3.2 Hyperparameter tuning

While exploring the efficacy of the loss function based on WMSE 
in HPT experiments, a marginal improvement (less than 1%), between 
the WMSE and the MSE was observed for both training and validation 
(not shown). Given the limited impact of the WMSE on overall model 
performance, we proceed with the MSE results in our subsequent 
analyses and discussion.

Figure 4A shows the training (solid colored lines) and validation 
(dotted colored lines) MSE loss over the training epochs for the top 
five HPT settings according to the validation loss. The remaining gray 
lines represent the rest of the experimented HPT settings. We found 
that larger initial filter numbers (IFN) and batch sizes (BS) contribute 
to a smaller training loss and validation loss (i.e., model robustness). 
The best HPT setting (LR = 0.001, BS = 16, LRF = 0.5, and IFN = 64) is 
shown with the blue line.

Figures 4B,C show the mismatch scatter diagram for actual , ,pr i tδ  
against predicted , ,pr i tδ  training and validation datasets. The 
consistency between the training and validation (in terms of 
predicting mismatch) sets is reflected by similar MSE values of 0.183 
and 0.188 mm/h, respectively. Nevertheless, prediction skill is limited 
concerning negative mismatches (i.e., instances where HRES indicates 
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low or zero precipitation) to be  pronounced during seasons 
characterized by increased spatiotemporal variability, such as summer 
and fall, with increased likelihood of convective precipitation 
(Patakchi Yousefi and Kollet, 2023).

Figures 4D,E present the Probability Density Functions (PDFs) for 
mismatch data in the training and validation datasets, ranging from 
−2.0 to +2.0 mm/h. The distribution indicates a bias toward positive 
mismatches, because HRES generally forecasts higher precipitation 
rates than H-SAF observations. Overall, there is notable agreement 
between the actual and predicted mismatches, with the majority of the 
data concentrated between −1 and + 1 mm/h.

3.3 Precipitation correction

In the following, we further discuss our comparison results on the 
corrected HRES data (HRES-C) and the original HRES data against 
H-SAF between 2020-07-01 13UTC and 2023-04-25 12UTC. At this 
point, our assumption is that satellite-based precipitation (H-SAF) 
represents the reference. So, the better the agreement between 
HRES-C or HRES against H-SAF, the better the assumed 
precipitation accuracy.

Figures 5, 6 provide a spatiotemporal assessment of hourly error 
metrics, mean error (ME), root mean squared error (RMSE), and 

FIGURE 4

Training and validation loss comparisons for hyperparameter tuning (HPT) experiments for MSE loss function. Panel (A) shows the training and 
validation loss over training epochs for the top five HPT settings. Panels (B–E), respectively, represent the scatter and probability density function (PDF) 
diagrams for predicted , ,pr i tδ  against actual , ,δ pr i t  data.
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Pearson correlation (COR), across four seasons comparing HRES and 
corrected HRES-C data against H-SAF in the study region over the 
study period. Figure 5A illustrates the initial overestimation by HRES 
against H-SAF, depicting ME >0, while Figure  6A shows a post-
correction improvement with ME ~0. Seasonal variations of RMSE are 
shown in Figures 5B, 6B, with increased error rates during the summer 
season, particularly in the southern regions corresponding to the Alps.

Figure  7 presents maps illustrating the percent improvement 
achieved through the implementation of correction across four 
seasons as a quantitative comparison of alignment of HRES-C and 
HRES with respect to H-SAF, which is assumed as the ground truth. 
The average improvement in ME, RMSE, and COR is generally 
positive across all seasons when compared to H-SAF. An exception is 
observed in the summer season, where the average improvement in 
ME is negative. This discrepancy can likely be  attributed to the 
presence of convective precipitation during summer, which tends to 
be  more localized and intense, introducing uncertainties in both 
model- and satellite-based data.

3.4 Soil moisture simulations

Volumetric SM is used to study the impact of H-RES, H-SAF, and 
HRES-C precipitation forcing datasets on ParFlow/CLM simulations. 
To evaluate the accuracy and consistency of SM simulations, COR and 
RMSE metrics are used. The comparison is drawn against the ESA 

CCI SM data from 2020-07-01, to 2022-12-31, using daily and 
monthly values for comparison. For this, ParFlow/CLM data 
representing the uppermost soil layer (0–2 cm depth) are aggregated 
(averaged values of all nearest neighbor grids) to the coarser ESA CCI 
grid with a resolution of 0.25°.

The results depicted in Figure 8 surprisingly reveal that the SM 
simulations driven by the HRES 24 h forecast present lower RMSE and 
higher COR than those generated by satellite-based precipitation 
(H-SAF) or the corrected forecast (HRES-C). This unexpected 
outcome is particularly interesting considering the anticipated better 
agreement in SM simulations with ESA CCI through satellite-driven 
precipitation or DL-corrected forecasts. The existing 4D-Var 
assimilation scheme of HRES with a diverse array of observations, 
including in-situ and remotely sensed data, potentially establishes the 
reliability of the HRES 24 h precipitation forecast in representing SM 
dynamics as it appears to closely mirror the trends observed in ESA 
CCI SM data.

Figure 8 reveals consistency in the patterns observed between 
H-SAF and HRES-C simulation outcomes across daily and monthly 
correlations, with a slightly better performance observed in the former 
dataset. This consistency highlights the effectiveness of the DL-based 
correction method in forcing SM simulations that closely mirror the 
SM driven by H-SAF dataset.

The HRES dataset shows the best overall SPAEF performance 
(Figure 9). Both HRES and H-SAF have similar histogram match 
ratios, but H-SAF shows a higher CV ratio, indicating greater 

FIGURE 5

Maps of seasonal mean error (ME, A), root mean squared error (RMSE, B), and Pearson correlation (COR, C) metrics shown for HRES against H-SAF 
over four seasons in hourly scale.
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FIGURE 7

Maps of mean improvement [i.e., reduction in mean error (ME, A) and root mean squared error (RMSE, B) and increase in Pearson correlation (COR, C) 
in hourly scale] of HRES-C over HRES shown in percentage over four seasons.

FIGURE 6

Maps of seasonal mean error (ME, A), root mean squared error (RMSE, B), and Pearson correlation (COR, C) metrics shown for HRES-C against H-SAF 
over four seasons in hourly scale.
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variability mismatch and lower spatial COR, indicating less 
consistency in spatial patterns with ESA CCI SM data. While HRES-C 
dataset achieves the highest spatial COR, indicating accurate spatial 
pattern representation, it does not lead to an overall improvement in 
the SPAEF metric.

3.5 Precipitation data validation

In Section 3.2, the assessment reveals that HRES-C agrees well 
with H-SAF concerning ME, RMSE, and COR. However, as explored 
in Section 3.3, the alignment of SM simulations with observations 
(ESA CCI data) is not consistently improved. This discrepancy 
prompts a re-evaluation of the precipitation data using in-situ 
measurements (i.e., rain gauge station data), focusing on H-RES, 
H-SAF, and HRES-C, to understand the reasons for the observed gaps.

In the re-evaluation, 16 rain gauges were randomly picked across 
Germany with available data from July 2020 to the end of 2022 and 

located the nearest pixel from the precipitation datasets to the station 
locations. The monthly time-series of the three precipitation datasets 
and the rain gauge station data as well as H-SAF data quality index 
(QI) is provided in Figure 10A. Figure 10B shows the locations of 
these stations over the map of H-SAF mean data availability (mean 
ratio of available data during the study period) shown in percentage. 
Figure 10C shows the station locations over the map of mean QI 
provided by H-SAF metadata and averaged over the study period.

According to Figure 10A, the monthly sum of precipitation obtained 
by HRES-C generally matches H-SAF, resembling our findings in 
downstream simulations (Figure 8). However, HRES demonstrates a 
better agreement with rain gauge data. H-SAF underestimates 
precipitation compared to the rain gauge data, in line with findings from 
a validation report noting a slight underestimation in all precipitation 
classes for the H61B H-SAF product (EUMETSAT, 2022).

The H-SAF Quality Index (QI) steadily increases from March to 
July 2022, indicating improved data reliability during this period 
(see the gray lines over time-series in Figure 10A). The mean QI is 

FIGURE 8

Comparison of daily (A–G) and monthly (H–N) uppermost 2  cm volumetric SM simulations obtained by H-RES, H-SAF and HRES-C precipitation 
datasets run by ParFlow/CLM against ESA CCI SM. Panels (A–C) and (H–J) show the distribution of correlation, and panels (D–F,K–M) show the 
distribution of root mean square error of SM values over the study area between 2020-07-01 and 2022-12-31. Panels (G,N) show the daily and 
monthly time-series of SM over six random locations (a–f) pinned on the study area.
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FIGURE 9

Daily time-series the spatial metrics for SM simulations using HRES (A), H-SAF (B), and HRES-C (C) precipitation datasets against ESA CCI SM. The 
metrics include the Spatial Efficiency (SPAEF) and its components: spatial Pearson correlation coefficient (spatial COR), coefficient of variation (CV) 
ratio, and histogram match ratio. The average values of the metrics are shown in mean  ±  standard deviation. In figure, we analyze the spatial 
performance of the SM simulations driven by the HRES, H-SAF, and HRES-C precipitation datasets using the Spatial Efficiency (SPAEF) metric and its 
components: spatial Pearson correlation coefficient (spatial COR), coefficient of variation (CV) ratio, and histogram match ratio. The SPAEF metric, 
ranging from −∞ to 1, quantifies the agreement between simulated and observed SM, where higher values indicate better spatial performance.
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FIGURE 10

Comparison of H-RES, H-SAF, and HRES-C against rain gauge observations. Panel (A) shows time-series of monthly precipitation sum (mm/month) as 
well as average H-SAF quality index (QI) for 16 randomly selected rain gauge stations across the study domain from July 2020 to the end of 2022. 
Panels (B,C), respectively, show the maps of H-SAF data availability and quality index (H-SAF-QI) across the study domain. Locations of randomly 
selected rain gauge stations are pinned over the maps.
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calculated over all station locations and compared against the COR 
in Figure 11A as well as mean RMSE and ME in Figure 11B. There 
seems to be a positive relationship between the reduction in absolute 
ME and COR as well as increment in RMSE and the mean QI of each 
station. Therefore, the quality and accuracy of HRES-C could 
potentially be attributed to errors and uncertainties in H-SAF both 
before and after July 2022. While assessing changes in performance 
post-July 2022 is possible by training the network after this date and 
evaluating the changes in performance, this is out of the 
study’s scope.

Figure  12 and Table  2 provide an evaluation of hourly error 
metrics for H-RES, H-SAF-O, H-SAF, and HRES-C. H-SAF-O 
represents H-SAF data without preprocessing to account for its effects 
of trimming and remapping on HRES domain and grids. In 
comparison, HRES demonstrates better performance with lower ME 
(in absolute value), reduced RMSE, and higher COR against the 16 
randomly chosen rain gauge stations.

Preprocessing H-SAF grid-wise to align with HRES exhibits 
slightly, but not significantly, higher ME and RMSE and a lower COR 
than H-SAF-O. Moreover, HRES-C shows improvements over both 
H-SAF and H-SAF-O, showing better metrics in ME, RMSE, COR, 
and POD of more than 0.1 mm/h.

For light precipitation events (POD > = 0.1 mm/h), HRES exhibits 
the highest detection rate, followed by HRES-C, while H-SAF and 
H-SAF-O show significantly lower POD. In terms of moderate 
precipitation (POD > = 2.5 mm/h), HRES shows higher detection, 
while the other products have lower detection rates. None of the 

products effectively detect high-intensity precipitation events (POD 
> = 10 mm/h). Regarding FAR, HRES and HRES-C have lower false 
alarm rates for light and moderate precipitation compared to H-SAF 
and H-SAF-O. For high-intensity events, HRES-C stands out with the 
lowest FAR, indicating a much lower rate of false alarms compared to 
H-SAF and H-SAF-O.

4 Conclusion

In this study, we  evaluated the immediate and downstream 
impacts of implementing U-Net CNN DL-based correction on HRES 
precipitation using the satellite-based H-SAF h61 precipitation 
observations toward operational hydrological simulations over central 
Europe. The findings of this study highlight the effectiveness of using 
the DL-based precipitation correction in improving the accuracy of 
precipitation forecast. The corrected precipitation data (HRES-C) 
exhibited greater agreement in mean error, root mean squared error, 
and correlation with the assumed reference data (H-SAF), compared 
to the forecast data (H-RES). This shows the potential of DL-driven 
methods in correcting precipitation data despite the data imbalance 
of hourly precipitation and spatiotemporal gaps in satellite-based data.

For soil moisture (SM) simulations, the HRES 24-h forecast used 
as forcing data shows greater spatiotemporal agreement with the 
referenced ESA CCI SM data compared to both H-SAF and 
HRES-C. The additional evaluation of these three datasets against 16 
rain gauge data supports these findings with higher consistency of 

FIGURE 11

Scatterplots representing the relationship between average H-SAF QI (%) and COR (A) as well as ME and RMSE (B) over 16 rain gauge stations.
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HRES with the rain gauge observations compared to the other datasets. 
This highlights the importance of reference data quality in DL-based 
correction approach and challenges the assumptions on the better 
representativity of H-SAF satellite-based observations as ground truth 
for short-term correction or near real-time application in operational 
hydrological forecasting.

Future research should focus on the limitations related to 
deterministic aspects in DL-based correction methods, e.g., to 
account for uncertainties in the reference data. Furthermore, the 
accuracy of forecast data is expected to diminish over time, 
particularly as the forecast lead time extends. We  focused on 
implementing the correction over the initial 24-h forecast from 

H-RES. Yet, we recognize the potential for improvements in longer-
term forecasts.

Code and data availability

The preprocessed data of this article is made available by the 
authors (Patakchi Yousefi et al., 2024). The codes regarding the data 
preprocessing, precipitation correction, and post-processing of forcing 
data can be found at https://gitlab.jsc.fz-juelich.de/kiste/atmoscorrect. 
ParFlow/CLM documentation and codes are publicly available at 
https://parflow.org/.

FIGURE 12

Boxplot comparison of H-RES, H-SAF, H-SAF-O, and HRES-C against rain gauge observations. H-SAF-O is the non-preprocessed H-SAF data used to 
account for the effect of preprocessing the data on evaluation results. POD and FAR, respectively, represent the probability of detection and false alarm 
ratio for three precipitation rates.
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