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Water quality is deteriorating in the world’s freshwater bodies, and Lake Tana

in Ethiopia is becoming unpleasant to biodiversity. The objective of this study

is to retrieve non-optical water quality data, specifically total nitrogen (TN) and

total phosphorus (TP) concentrations, in Lake Tana using Machine Learning (ML)

techniques applied to Landsat 8 OLI imagery. TheMLmethods employed include

Artificial Neural Networks (ANN), Support Vector Regression (SVR), Random

Forest Regression (RF), XGBoost Regression (XGB), AdaBoost Regression (AB),

and Gradient Boosting Regression (GB). The XGB algorithm provided the best

result for TN retrieval, with determination coe�cient (R2), mean absolute error

(MARE), relative mean square error (RMSE) and Nash Sutcli� (NS) values of 0.80,

0.043, 0.52, and 0.81 mg/L, respectively. The RF algorithm was most e�ective for

TP retrieval, with R
2 of 0.73, MARE of 0.076, RMSE of 0.17 mg/L, and NS index

of 0.74. These methods accurately predicted TN and TP spatial concentrations,

identifying hotspots along river inlets and northeasters. The temporal patterns of

TN, TP, and their ratios were also accurately represented by combining in-situ, RS

and ML-based models. Our findings suggest that this approach can significantly

improve the accuracy of water quality retrieval in large inland lakes and lead to

the development of potential water quality digital services.
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1 Introduction

Of the largest freshwater resources, the African continent hosts the Nile and the Congo

River (Laraque et al., 2020) and three of the 10 largest freshwater lakes, namely Victoria,

Tanganyika and Malawi lakes (Hastie et al., 2021). The 21st century’s global challenge

of ensuring water quality is escalating due to the growing global freshwater crisis. The

combined effect of climate change, environmental alterations, and anthropogenic pressures

has threatened freshwater availability in terms of quantity and quality in Africa. It has

become one of the major concerns, yet it remains one of the least studied.

Eutrophication, mainly caused by anthropogenic activities of freshwater water

ecosystems has consequences that include changes in phytoplankton species composition

and increase in bio-volume that are accompanied by oxygen depletion, decreases in

water transparency, and loss of biodiversity (Bunting et al., 2005). Phosphorus has

long been identified as the ultimate limiting nutrient attributed as the main driver of

eutrophication when received in excess within freshwater ecosystems. Most previous

management strategies to reverse eutrophication have been based on asserting that P
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is the limiting nutrient in most freshwater ecosystems (Schindler,

2012). However, there is growing evidence of N limitation

(Bunting et al., 2005) or NP co-limitation (Sterner, 2008) of

primary production within various freshwater ecosystems. A

similar phenomenon in Lake Tana, where the lake has been shifting

from P-limited to N-limited, was observed (Dersseh et al., 2022).

Consequently, the lake is at risk with strong evidence that its

ecological health is highly toxic for invertebrates and fish from

agricultural inputs (Sishu et al., 2022).

Thus, continuous monitoring of water bodies’ nutrients and

the nutrient-limited condition of the water bodies are essential to

devising an appropriate management strategy for the protecting

the lake and other water bodies in Africa. However, long-term

continuous water quality monitoring in most African inland

waterbodies is lacking due to limited monitoring infrastructure,

financial constraints, and limited technical capacity. In these

regards, it is crucial to look for an alternative approach for

monitoring water quality parameters, such as non-optically

active water quality parameters (TN and TP concentrations) of

waterbodies. Remote Sensing (RS) based monitoring allows for

the routing of broad regions in a short amount of time and on a

representative basis and is a cost-effective method of water quality

monitoring (Zhang H. et al., 2022).

Current methods for estimating water quality parameters

from Remote Sensing (RS) mainly include physical and empirical

models. However, these methods make it difficult to solve

the complex non-linear relationship between the water quality

parameters and the spectral indices of RS data (Lan et al., 2023).

Machine learning (ML) algorithms on the contrary have become

a best option for retrieving water quality parameters in the

inland lake (Cao et al., 2020; Bygate and Ahmed, 2024; Tesfaye,

2024). The premises to retrieve TN and TP from RS images

have been based on the strong correlation that these non-optical

parameters have shown with optically active substances (Guo et al.,

2020; Sagan et al., 2020). Moreover, studies indicated that RS

integrated with Machine Learning (ML) has been used successfully

to monitor these water quality parameters in various scales

and areas.

A TP concentration prediction in a macrophytic lake with a

spectral characteristic dominated by chlorophyll Lake Baiyangdian

showed a high performance using the partial least square (PLS)

regression model (Zhang L. et al., 2022). A similar study of ML

models for TP and TN concentration inversion using measured

data and satellite imagery band reflectance, in Dongting Lake,

china, showed the established empirical model can accurately

estimate TP (Zhang Y. et al., 2022). Guo et al. (2020) on the other

hand developed an ML-based water-quality monitoring method

for total phosphorous (TP), total nitrogen (TN), and chemical

oxygen demand (COD) for small urban waterbodies from the

recently launched Sentinel-2. The retrieval performances of these

non-optically active parameters were significantly improved by the

optimized machine-learning models and imagery band selections.

The choice of the algorithms largely depends on the modeling

capacity of the algorithm to capture complex phenomena of the

water quality processes, the data availability, the spatio-temporal

representation of the data used, the frequency of data and

others (Guo et al., 2020; Zhang L. et al., 2022; Zhang Y. et al.,

2022). Furthermore, the satellite satellite depends on the spatial

and temporal resolution requirement, availability of extended

data used for trend analysis, and the size of the water body

under investigation.

There is an urgent need to monitor the nutrient status of the

freshwater, and making it critical to evaluate the effectiveness of

the methods for retrieval of non-optical water quality parameters

such as TN and TP concentrations in Africa particularly in

the study area. Recently, ML-based RS retrieval approach was

applied for Lake Tana to retrieve an optically active water quality

parameters: chlorophyll, turbidity, and transparency, and it had

worked reasonably well (Leggesse et al., 2023). Accordingly,

this study suggested Random Forest Regression (RF), Adaboost

Regression (AB), Gradient boost regression (GB), support vector

regression (SVR), Extreme gradient boosting regression (XGB)

and ANN algorithms to retrieve non-optically active parameters

from Landsat 8 OLI imagery for Lake Tana. Most suggested ML

algorithms were ensemble learning algorithms that could not only

obtain a better fitting search space, but also reduces the risk of

overfitting (Sagi and Rokach, 2018; Leggesse et al., 2023).

The ML method to retrieve non-optically active parameters

(TN and TP) from remotely sensed data was based on the

correlation of in situ measurement of TN and TP concentrations

with the bands available in the satellites and derived spectral

indices. Point-based TN and TP concentrations measurements

were used for some of the months between 2016–2022. Google

Earth Engine (GEE), a cloud computing platform was used to

extract the primary bands of Landsat 8 OLI for the corresponding

sampling points. In addition, a large set of spectral indices were

calculated to provide the ML algorithms and Recursive Feature

Elimination with Cross Validation (RFECV) technique (Kim et al.,

2014) was employed to select the optimum features. Due to the

limited field-based water quality samples, k-fold cross validation

approached was used to improve the ML algorithms performance

(Wieczorek and Guerin, 2022).

The study further evaluated the spatiotemporal variations

and influencing factors of TN and TP concentrations to

provide scientific references for preventing the pollution and

eutrophication of Lake Tana and other water bodies.

2 Materials and methods

2.1 Study area

Lake Tana is situated at an elevation of 1,786m above sea

level (Figure 1) and has a surface area of ∼3,050 km2 during

the dry season and 3,600 km2 toward the end of the rainy

season. Its drainage basin covers an area of 15,054 km2, lying

between 10◦56
′

and 12◦45
′

north latitude and 36◦44
′

to 38◦14
′

east longitude. The Lake surface area accounts for 20% of the

drainage area. The United Nations Educational, Scientific and

Cultural Organization (UNESCO) has designated the lake as a

biosphere reserve (Vijverberg et al., 2009). The climate around

the lake is a warm-temperate tropical highland monsoon with

high diurnal temperature variation between daytime extremes of

30◦C and nighttime lows of 6◦C, a mean temperature of 21.7◦C,

significant diurnal but small seasonal changes of 5◦C, and two

temperature peaks around May/June and October/November.

It is a dry season between November and May, while between

June and October, it is a distinct rainy season (kiremt) (Wondie
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FIGURE 1

Study area and the sampling locations; sampling location 1 indicate the 143 sampling locations and sampling location 2 indicates the 27 sampling

points.

and Mengistou, 2014). The average annual rainfall in the Lake is

1,355mm. Over 60 rivers and streams feed Lake Tana. The main

tributary rivers are Gilgel Abay, Gumera, Ribb, Gelda, Megech, and

Dirma. According to Taye et al. (2021), the dominant land use of the

basin was cultivated land which accounts for 67% of the drainage

basin. The second dominant land cover was the lake surface area

with coverage of 20.5%, and the third dominant is the forest area,

which covers 4.8%. The remaining 7.3% of the drainage basin is

covered by grassland, shrubs, built-up and bare land. The lake also

receives urban runoff and domestic waste effluents from the three

major cities of Bahir Dar, Gonder, and Debre Tabor (Abera et al.,

2021).

2.2 Water samples collection and
laboratory analysis

A monthly dataset of two non-optically active water quality

parameters, TN and TP concentrations of the lake, was obtained

both from Dersseh et al. (2019) for the years before 2020 and

from primary data collection in the years 2021 and 2022. The

dataset was collected from 170 sampling locations across the lake

at a 5 km resolution from the top water surface at a depth of

50 cm in the months of August 2016, December 2016, March

2017 and from 143 sampling locations in the months of October

2021, April 2022 and October 2022 (Figure 1: sampling_locations1)

and data collected from 27 sampling locations in June 2019, July

2019, August 2019, September 2019, December 2019, and March

2020 (Figure 1: sampling_locations2). For each of the two water

quality variables, there were 1,101 data points during the seven

years. The sampling dates for both TN and TP concentration were

chosen to represent the primary rainy season (July–September),

the dry season (December–April), and the pre-rainy season

(May–June) to understand how seasonality influences the water

quality parameters.

The water quality parameters were analyzed in the Bahir

Dar Institute of Technology water quality laboratory. The TP

concentration was determined based on ammonium molybdate

spectrophotometry. The oxidant potassium persulfate was added

to the water sample, and the phosphorus in the water sample

was oxidized to orthophosphate at a temperature of 120◦C. Then,

sodium hydroxide solution was added to the cooled water sample

to adjust it to neutrality, and finally, ascorbic acid and molybdic

acid solution were added andmixed thoroughly. After the complete

reaction, a blue complex was formed, and the absorbance was
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measured with a spectrophotometer at a 700 nm wave-length. The

concentration of TP was calculated by comparing experiments with

blank water samples.

The TN concentration was determined using an alkaline

potassium persulfate digestion ultraviolet spectrophoto-metric

method. First, sodium hydroxide was added to the water sample

to adjust it to an alkaline environment and then the alkaline

potassium persulfate was added. The nitrogen in the water sample

was converted into nitrate at 120◦C. Hydrochloric acid was added

to adjust the water sample to acidity and measure the absorbance

of the water sample at 220 nm and 275 nm in an ultraviolet

spectrophotometer. Then, the concentration of TN was calculated

by comparing experiments with blank water samples.

2.3 Landsat 8 OLI image acquisition and
preprocessing

The Landsat-8 Operational Land Imager (OLI) was used

in this investigation. On February 11, 2013, NASA successfully

launched Landsat-8. While new sensors, such as the Landsat-8

Operational Land Imager (OLI), lack specific band centers that

are useful for inland water remote sensing, they have improved

signal-to-noise ratios, radiometric and temporal resolution, and

aerosol-specific bands, making them better equipped to handle

the size and complexity of inland waters (Liang et al., 2017).

Landsat-8 OLI sensors are suited to provide remote sensing

data for water quality monitoring because of their radiometric

and temporal resolutions (Claverie et al., 2018). It has a sun-

synchronous orbit, a 705 km orbital altitude, a 98.2 degree orbital

inclination, and a time resolution of 16 days. Landsat 8’s 11 spectral

bands include the instruments OLI and Thermal Infrared Sensor.

Bands 2–4 represent the visible spectrum of blue, green, and

red, which ranges from 0.45 to 0.68m. Bands 5–7, on the other

hand, are infrared, near-infrared, and near-infrared spectrums with

wavelengths spanning from 0.845 to 2.3m. Band 8 is a full-color

band with a spatial resolution of 15m. The other bands have a

spatial resolution of 30m. The Landsat 8 photos were obtained

from the Google Earth Engine (GEE) dataset “USGS Landsat 8

Surface Reflectance Tier 1” with a spatial resolution of 30m. Tier

1 datasets were corrected for atmospheric and geometric errors

(http://earthexplorer.usgs.gov).

With the help of GEE, the spectral band reflectance values were

extracted at each sampling point for the samplingmonths of August

2016, December 2016, March 2017, June 2019, July 2019, August

2019, September 2019, December 2019, March 2020, October 2021,

and March 2022. In addition to bands B1, B2, B3, B4, B5, B6, B7,

B10 and B11, 74 spectral indices were created using various band

combinations using 2D modeling spectral indices such as image

differentiating (DI), ratio remote sensing index (RI), and various

other types of normalized remote sensing indices (NDI), presented

in Supplementary Table 1.

2.4 Data standardization and binning

A significant challenge in machine learning utilizing feature

variables is that the range of variables may differ and do not equally

contribute to ML model fitting. Using the original scale may place

more emphasis on variables with a wide range. A feature rescaling

technique that brings features to nearly the same scale should be

applied to address the issue. A MinMax Scaling was employed in

this study to rescale the data in a specified range of 0 and 1. The

approach subtracts the feature’s minimal value and divides it by

the range. It keeps the original distribution’s shape and does not

affect the information encoded in the original data. Furthermore,

in this work, a technique known as data binning was applied in the

dataset to minimize the cardinality of continuous and discrete data.

The technique splits data from numerical features into discrete

intervals, with each data point assigned to a different bin. This

study employed the equal width or bin size method, which entails

dividing the variable’s range into equal intervals of the same width.

The technique is the most intuitive and simple to apply. It is

implemented by obtaining the distribution’s edges and then evenly

dividing the distribution into N bins.

2.5 Model description and approach

This study selected six widely used machine learning

algorithms: RF, AB, GB, XGB, SVR, and ANN. Figure 2 presents

the general framework of the study. Before partitioning the data

into train and test datasets, the August 2016, December 2016 and

March 2017 data were excluded for validation of predicted TN and

TP concentrations using the best developed ML algorithms for

each parameter. Then, the data was divided into two categories:

training (80%) and testing/validating (20%) datasets. A Recursive

Feature Elimination with Cross Validation (RFECV) with a 10-fold

CV for each ML algorithm (Kim et al., 2014) technique were

then applied on 80% of the dataset in order to reduce the initially

proposed features in to optimum number and determine the best

hyperparameters applicable to each selected ML algorithms. The

20% dataset assessed utilized to assess each model’s performance

based on the tweaked hyperparameters and the features chosen.

The hyperparameter of the base algorithms of the selected ML

models was tuned using Grid search techniques with five cross-

validation (CV) runs on the training dataset. The trained models

were then validated based on different performance evaluation

metrics. Lastly, using the best-trained model, the yearly average

and monthly average reflectance values extracted for the months

August 2016, December 2016 andMarch 2017 on 3,065 points with

1 km resolution, the yearly and monthly TN and TP concentrations

of the Lake were predicted for comparison with previous works

and observed data. The spatial mapping was conducted by

interpolating the 3,065 predicted and the 170 observed water

quality parameters using the inverse distance weightage method.

The following section presents the description of the selected ML

algorithms and performance evaluation metrics.

2.5.1 Adaboost regression
Adaboost regression (AB) is a typically boosting type ensemble

ML algorithm introduced by Freund (2001). AdaBoost algorithm

is a widely used iterative algorithm and a boosting algorithm with

adaptive capabilities. It trains the weak learners and then integrates

the trained weak learners to obtain a final model with enough
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strength level. After each iteration, the weights of the samples

are adjusted, and the samples with more significant fitting errors

will increase the corresponding weight values. The weak learner

obtains a sequence of functions on the predicted values by iterative

operations, and each prediction function is assigned a weight. The

function with better prediction results has a larger corresponding

weight, and, after several iterations, the final strong learner is

obtained by weighing the weak learner function. Themain idea is to

integrate multiple weak learners to get the output of strong learners

and make accurate predictions.

AB begins by fitting a regressor on the original dataset and then

fits additional copies of the regressor on the same dataset but where

the weights of instances are adjusted according to the error of the

current prediction.

2.5.2 Random forest regression
Random forests are a nonparametric and tree-based ensemble

technique proposed by Breiman et al. (2017). The random forest

(RF) is a classification and regression system that uses many weak

classifiers to classify and predict data. The developed classifiers

are diverse and aggregated (Cutler et al., 2007). While continuing

to select different training subsets, the RF selects the bagging

method and produces associated decision trees at random. The

RF algorithms use random attribute selection training techniques

when picking the partition attribute of the node. With this

quality, different data sets may be retrieved fast without repeating

the process, which is preferable for data categorization. Finally,

multiple decision trees are combined to form a random forest.

Its final result is obtained by combining several weak classifiers

by taking the mean. The error of the results depends on the

classification ability of each tree and the correlation between them,

which gives the results of the overall model have high accuracy

and generalization performance. A decision tree used to solve

regression problems is a regression tree divided by the minimal

mean square deviation.

The predicted value of the dependent variable is obtained by

averaging the predictions of all trees. The key to the algorithm

is to determine the number of variables and the number of

decision trees. The algorithm does not overfit as the number

of trees increases, has good generalization performance, is more

robust, and is suitable for dealing with high-dimensional, nonlinear

complex problems.

2.5.3 Gradient boost regression
The Gradient boost regression (GB) is another popular

machine learning algorithm that has the advantages of high

accuracy, a fast training process, short prediction time, and a small

memory footprint in various applications. GB gives a prediction

model in the form of an ensemble of weak predictionmodels, which

are typically decision trees. Like RF, the GB consists of an ensemble

of decision trees, with a sequence of trees created, and each tree

in the sequence focuses on the previous tree’s prediction residuals.

The innovation of the GB is its use of a nonparametric approach

to estimating the basis function and using gradient descent to

approximate the solution in function space. It is a powerful

algorithm that can find any nonlinear relationship between the

target variable and features. It has great usability and can deal with

missing values, outliers, and high cardinality categorical values on

data features (Friedman, 2002).

2.5.4 Support vector regression
Support vector regression (SVR) is a vector-based statistical

learning technique that has proven good prediction. It is a

regression variant of support vector machines. SVR is implemented

using a kernel function, which is a nonlinearmapping function. The

kernel function and a hyperplane linearly separate and transform

the input data points into a high-dimensional space. As a result, the

choice of kernel function significantly impacts model correctness.

Commonly used kernel functions include linear, polynomial,

Gaussian, sigmoid, spectral angle, and radial basis functions. An

optimum solution can be found by iteratively adjusting hyperplanes

based on the errors associated with them. The best way to choose

the kernel function is to change the hyperplanes and reduce the

errors associated with them iteratively (Mountrakis et al., 2011).

2.5.5 Extreme gradient boost regression
Extreme gradient boost regression (XGB), proposed by Chen

and Guestrin (2016), is a scalable artificial intelligence algorithm

for tree boosting. XGB is one of the implementations of this

technique of GB which is one of the best-performing algorithms

for supervised learning. XGB can be used to solve problems

involving regression and classification. XGB improves prediction

performance by reducing model bias and modifying the objective

function of the GB algorithm. XGB is one of the implementations

of GB, one of the best-performing algorithms for supervised

learning. It can be used to solve problems involving regression

and classification.

It is also an integrated learning method, a synthesis method

that combines basis function and weight to form a good data-fitting

effect. A gradient tree-basedmethod that iteratively trains a series of

weak learners (usually decision trees), each iteration attempting to

correct the error of the previous iteration, and eventually combines

these weak learners into a strong learner. Unlike traditional

gradient-boosting decision trees, it adds regularization terms to the

loss function and uses second-order Taylor expansion of the loss

function as a fitting of the loss function, so it is more efficient when

dealing with large data sets and complex models while preventing

overfitting and improving generalization.

2.5.6 ANN
The ANN model is a type of nonlinear regression model that

uses a set of feedforward neural networks to conduct an input-

output mapping. It comprises three layers: an input layer, one

or more hidden levels of computation nodes, and a computation

node output layer. The highly linked framework of ANN models

is recognized for transmitting information from the input layer

through weighted connections and functional nodes known as

transfer functions. These transfer functions make nonlinear data

mapping to high-dimensional hyperplanes easier, allowing for the
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FIGURE 2

The overall study framework used in this study.

separation of data patterns and the formulation of a model output.

ANN is fast and efficient used to handle a wide range of problems

(Deo et al., 2017). We used one of the most common ANN

structures utilized by many researchers is MLP architecture. MLP

architecture has the advantage of being easy to use, and they can

approximate any relationship between input and output through

the typical three layers (Abiodun et al., 2018): the input layer,

hidden layer and output layer. In this study, the most common

transfer function called sigmoid transfer function, was used in the

hidden layer, while a linear activation function was used at the input

and output layers. In addition Adam optimization function and

square error (MSE) loss were used.

2.6 Evaluation of model performance

This study evaluated the performances of ML algorithms by

statistical metrics such as the determination coefficient (R2), Root

Mean Square Error (RMSE) Nash-Sutcliff efficiency (NSE) and

Mean Absolute Relative Error (MARE) (Niazkar et al., 2023).

R2
= 1−

∑n
i=1

(

Y−yi
)2

√

∑n
i=1

(

y−yi

)2
(1)

RMSE =

√

√

√

√

∑n
i=1

(

yi−y
)2

n
(2)

MARE =
1

n

n
∑

i=1

∣

∣

∣

∣

∣

yi−y

yi

∣

∣

∣

∣

∣

(3)

NSE =1−

∑n
i=1

(

yi−y
)2

∑n
i=1

(

y−
∑n

i=1 yi
n

) (4)

where (Y, yi, y, n) are mean true value, truth value, predicted value

and number of data, respectively.
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TABLE 1 Descriptive statistics of each water quality parameters for the month’s data were collected.

Water quality
parameter

Statistical
metrics

Aug.
2016

Dec.
2016

Mar.
2017

Dec.
2019

Jun.
2019

Jul.
2019

Aug.
2019

Sept.
2019

Mar.
2020

Oct.
2021

Apr.
2022

Oct.
2022

No. sample 170 170 170 27 27 27 27 27 27 143 143 143

TN (mg/L)

Max 8.96 8.78 5.44 3.19 1.20 2.29 3.03 3.03 3.01 4.77 4.47 6.54

Min 0.31 0.10 0.10 1.03 0.66 0.76 0.97 0.97 0.42 0.31 0.30 0.36

Mean 2.75 2.26 1.95 2.05 0.93 1.59 2.10 2.09 1.89 2.07 2.66 2.95

SD 1.57 1.47 1.28 0.52 0.09 0.39 0.52 0.52 0.61 0.76 0.93 1.4

TP (mg/L)

Max 0.63 0.76 0.67 2.39 1.20 2.07 2.13 2.16 2.43 5.87 0.99 0.63

Min 0.02 0.001 0.02 0.58 0.07 0.24 0.19 0.21 0.9 0.03 0.04 0.01

Mean 0.21 0.20 0.21 1.33 0.52 0.93 0.87 0.88 1.75 0.52 0.37 0.17

SD 8.96 8.78 5.44 0.46 0.38 0.51 0.50 0.51 0.46 4.77 4.47 0.09

Statistical metrics used were: Maximum value (Max), Minimum value (Min), Mean, and Standard deviation (SD).

TABLE 2 Selected features for the di�erent algorithms.

Water quality
parameters

Models Number of features
selected

Selected features

TN

AB 13 B2, B3, B11, CI, GNDVI_4, GNDVI_6, MNDWI_2, PPR, IF, SRWIR1/NIR, SRSWIR2/NIR, (B4

+ B3)/2, (B2+ B4)/2

RF 13 B3, B10, B11, GDVI_4, GNDVI_5, GNDVI_6, TWI_2, PPR, I, SRSWIR2/NIR, (B4+ B3)/2, (B4

+ B2)/2, (B2+ B3+ B4)/3

GB 10 B1, B2, B3, B4, B5, B6, B7, B10, B11, BWDRVI

SVR 12 B3, B7,B10, GNDVI_4, GNDVI_5, GNDVI_6, MNDWI_1, MNDWI_2, TWI_2, PPR, I, MVI,

SRSWIR2/NIR, (B3+ B4)/2

XGB 12 B3, B11, CI, GNDVI_4, GNDVI_5, GNDVI_6, TWI_2, PPR, I, MVI, IF, SRSWIS2/NIR

ANN 83 See Supplementary Table 1

TP

AB 13 B1, B2, B3, B10, B11, CI, DVIMSS, TWI_2, Laterite, NDSI, IF, ABI, (B2+ B3+ B4+ B5)/4

RF 13 B1, B2, B3, B10, B11, CI, GDVI_4, GDVI_5, GDVI_6, H, MVI, IF, SRSWIS2/NIR

GB 12 B1, B2, B3, B11, CI, DVIMSS, EVI, TWI_2, Laterite, IF, ABI, FAI

SVR 13 B3, B4, B10, B11, GNDVI_5, GNDVI_6, I, MVI, SRSWR1/NIR, SRSWIR2/NIR, (B4+ B3)/2,

(B3+ B2)/2, (B2+ B3+ B4)/3

XGB 12 B1, B2, B3, B11, CI, DVIMSS, EVI, TWI_2, Laterite, H, IF, SRSWIR2/NIR

ANN 83 See Supplementary Table 1

3 Results

3.1 Water quality of Lake Tana

Table 1 shows the water quality data used in the analysis.

The maximum monthly average TN within the recording period

was 2.95 mg/L in October 2016 at the end of rainy period,

while the maximum monthly average observed TP was 1.75 mg/L

observed in March 2021 during dry period. The seasonal variation

of TN and TP are different. The data also showed that the TN

concentration changes in Lake Tana between the minimum value

of 0.1 mg/L during the dry period and the maximum value of 8.96

mg/L during the rainy period. For TP concentration, the range

is between the minimum of 0.001 mg/L in December and 5.87

mg/L in October. Based on the TN and TP indicators, there is

a potential risk of eutrophication incidence provided there is a

coincidence of other relevant factors (temperature, chlorophyll,

water transparency, oxygen level, etc.) (Yang et al., 2008; Li et al.,

2015).

3.2 Feature selection

Table 2 presents the best-selected features for each ML model

for both considered water quality parameters. The analysis for the

optimum number feature selection for TN and TP concentrations

for other algorithms was shown in Supplementary Figures 1–10. It

is evident from the result that the accuracy of most ML algorithms

for both TN and TP concentrations increases from a minimum

of five numbers of features to an optimum number of 10–13. A

further increase in the number of features does not affect improving
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TABLE 3 The performance of six machine learning algorithms without

binning applied on the dataset for predicting non-optical water quality

parameters for both TN and TP using R
2, MARE, RMSE, and NSE.

Water
quality
parameters

Algorithm R
2 MARE RMSE NSE

TN (mg/L)

ANN 0.54 0.104 0.71 0.58

XGB 0.69 0.064 0.50 0.77

SVR 0.61 0.110 0.65 0.61

GB 0.72 0.140 0.50 0.74

AB 0.70 0.143 0.56 0.71

RF 0.65 0.126 0.50 0.72

TP (mg/L)

ANN 0.22 0.128 0.25 0.21

XGB 0.68 0.175 0.15 0.73

SVR 0.57 0.178 0.20 0.55

GB 0.70 0.153 0.14 0.68

AB 0.67 0.027 0.14 0.69

RF 0.71 0.106 0.13 0.71

TABLE 4 The performance of six machine learning algorithms with

binning applied on the dataset for predicting non-optical water quality

parameters for both TN and TP using R
2, MARE, RMSE, and NSE.

Water
quality
parameters

Algorithm R
2 MARE RMSE NSE

TN (mg/L)

ANN 0.56 0.094 0.77 0.60

XGB 0.80 0.043 0.52 0.81

SVR 0.61 0.090 0.72 0.64

GB 0.78 0.040 0.54 0.78

AB 0.73 0.043 0.60 0.74

RF 0.80 0.046 0.52 0.79

TP (mg/L)

ANN 0.21 0.117 0.28 0.20

XGB 0.71 0.075 0.17 0.72

SVR 0.60 0.088 0.20 0.59

GB 0.72 0.063 0.16 0.70

AB 0.70 0.007 0.17 0.71

RF 0.73 0.076 0.17 0.74

model accuracy except by significantly increasing calculation time.

According to the results, the maximum number of features selected

by AB and RF for TN concentration was 13. While SVR and XGB

used 12 optimal features, GB used 10 features. The AB, RF, and

SVR algorithms used 13 characteristics for TP concentration. GB

and XGB, on the other hand, used only 12 of the best features.

It is also worth noting that if a large number of features with

comparable influence on a given dependent variable are provided

to several ML models, it is less probable that all of the models will

select the same features. As a result, the technique far outweighs

prior approaches centered on offering a limited, smaller number of

predetermined features.

3.3 Evaluation of ML model’s performance

Table 3 presents the results of the model performances analysis

of the ML algorithms without binning technique applied to the

dataset. The result indicated that ML algorithms have fairly good

performances particularly of the ensemble algorithms. According

to the result for TN retrieval modeling, the better performing

models, XGB, GB, AB and RF algorithms had an R2 of 0.69,

0.68, 0.67, 0.65 and NS index of 0.67, 0.69, 0.67, and 0.66,

respectively. Similarly, for TP retrieval modeling, XGB, GB, AB and

RF algorithms had an R2 of 0.68, 0.67, 0.67, 0.68 and NS index

of 0.66, 0.68, 0.69, 0.67, respectively. However, the study further

tried to improve the performances of the ML algorithms to select

the best-performing methods for TN and TP retrieval from RS

imagery. In this study, the unsupervised data discretization method

of equal width (Equal-W) binning in combination with Recursive

Feature Elimination (REF) feature selection method were applied

on the dataset. To search for an optimal bin number k for the

discretization, we explored various bin sizes and chose the bin

numbers of k = 10 for TN and k = 15 for TP as it consistently

achieved good accuracies. The results of the performances of the

ML algorithms after data binning technique was applied on the

dataset are presented in Table 4. Also, Figure 3A shows the scatter

plot between predicted and observed TN concentrations after data

binning. The result indicated that the proposed ML algorithms

caught the complex relationship between TN concentration and

spectral indices of Landsat 8 OLI images with good performance

of above 0.6 regression coefficients for most of the algorithms

except ANN. However, XGB outscored all other algorithms with

comparable performance metrics for TN concentration retrieval

modeling with an R2 of 0.80, NSE of 0.81, MARE of 0.043,

and RMSE of 0.52 mg/L, while RF with an R2 of 0.80, NSE of

0.79, MARE of 0.046, and RMSE of 0.52 mg/L took the second

position with nearly the same values of performance metrics as

XGB. AB and GB were found to perform next to XGB and RF.

Comparing the performance of the MLmodels in terms of retrieval

modeling of one parameter over the other, despite the fact that most

models still performed well, the performance of ML algorithms

for TN concentration was slightly superior than to that for TP

concentration modeling (Table 4 and Figure 3B). The application

of data binning significantly impacts the performance of ML

algorithms. The technique could have been effective in reducing the

impact of minor observation errors if models are not robust enough

to tolerate over-fitting for a given dataset. In particular, for a small

dataset, it may lower the chances of overfitting (Davaasambuu and

Yu, 2015).

Moreover, the correlation matrix results for the highest-

performing algorithms were shown in Figure 4: XGB for TN

concentration (left) and RF for TP concentration (right). The

correlation matrix results for the other selected algorithms

were presented in Supplementary Figures 11–20. Multiple band

combinations were discovered to be the most important features

in the retrieval of the two water quality parameters. Hence, two

single-bands (B3 and B11) were found to be relevant features

in determining TN using the XGB algorithm. In contrast, about

five single-band features (B1, B2, B3, B10, and B11) were found

to be important in features for building sound ML retrieval

algorithm for TP concentration of the lake using RF algorithm.
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The XGB algorithm (Figure 4: left), show there were strong positive

correlations between TN and B3, as well as SRSWIR2/NIR, with a

correlation coefficient, r of around 0.45. Furthermore, TN had a

substantial negative correlation with TWI_2, I, and IF, with r values

around −0.42, respectively. TN also had a negative and substantial

correlation with B3, CI, GNDVI_4, GNDVI_5, andGNDVI_6, with

r ranging from −0.25 to −0.41. The best-performing algorithm

for TP retrieval, the RF algorithm (Figure 4: right), the correlation

between TP and B1, B2, and B3 was between −0.15 and −0.19.

TP with B10, B11, and SRSWIR2/NIR had a positive correlation

with r of 0.20, 0.26, and 0.4, respectively. There was a substantial

negative association between TP and CI, GNDVI_4, GNDVI_5,

GNDVI_6, and IF, with r-value ranging from −0.37 to −0.4.

Overall ML models with selected features that highly positively

or negatively correlated with the target variables (TN and TP

concentrations) performed better. As a result, the correlation

matrix result demonstrates that the selected features (Table 2) have

the potential to be used to build a retrieval algorithms for TN and

TP concentrations from Landsat 8 OLI images.

4 Discussion

4.1 Long-term temporal trend of TN, TP,
and TN:TP ratio

To examine the model’s effectiveness for long-term trend

analysis, the yearly spatial average TN and TP concentrations from

2013 to 2021 were predicted using the best-performing algorithms,

XGB and RF, respectively. The ratio of TN and TP was calculated

using the derived TN and TP concentrations. The retrieved data

were compared to TN, TP, and TN:TP ratio data published in the

literatures. Wondie et al. (2007) in 2003 and 2004, Goshu and

Aynalem (2017) in 2010, Ewnetu et al. (2014) in 2014, and Tibebe

et al. (2019) in 2017 provided data on dissolved Nitrate. Dersseh

et al. (2022) provided the TN and TP data, which was partly used

in this study. Even though the retrieved average TN concentration

over the lake varies less from year to year and is roughly equivalent

to 0.8 mg/L (Figure 5), the same was observed in prior findings that

Lake Tana’s yearly spatial average TN concentration did not show

a discernible trend from 2013 to 2021. Our predictions seem to

underestimate the TN concentration when compared to Dersseh

et al. (2022) (the green triangles) in which these data indicate

specific values within particular months. The disparity could,

therefore, be attributed to the use of yearly average reflectance data

in this study unlike the monthly data in Dersseh et al. (2022).

Unlike TN, the yearly spatial average of TP concentration in the

lake has been increased since 2013, rising from 0.075 mg/L in 2013

to about 0.42 mg/L in 2021 (Figure 6). Similarly, the computed TN:

TP ratios from this study were compared with those from Dersseh

et al. (2022). As shown in Figure 7, the TN:TP trend followed an

exponentially dropping trend from 10 in 2013 to a little <2 in

2021, like the finding of Dersseh et al. (2022). Figure 8 informs

that the lake is changing from the phosphorus limiting to nitrogen

limiting based on the Redfield weight ratio (Redfield, 1958). This

confirms that the coupled approach of ML with RS helps to assess

the trend of non-optical water quality parameters in the absence of

in-situmeasurements.

4.2 Spatial monthly TN and TP
concentrations prediction

To assess the ability of the approach to capture the

spatiotemporal patterns under different seasons, predictions were

made for 3 months (August 2016, December 2016, and March

2017), during which in-situ observations were made in previous

studies. The predictive power of the best-performing algorithms

XGB for TN and RF for TN were presented in Figures 8A, B. The

figure shows the observed vs. predicted TN and TP concentrations

in mg/L at all sampling points shown in Figure 1. The plot showed

a relatively a good match between the observed and the predicted

water quality parameters, highlighting the effectiveness of ML

models in predicting them. In addition, we did spatial-temporal

map of observed and predicted TN and TP concentrations for

August 2016, December 2016, and March 2017 in Figures 9, 10

using inverse distance weight approach.

Figure 9B, shows the predicted TN concentrations variation

over the lake using XGB algorithm for August 2016, December

2016, and March 2017. The spatial variations of TN concentrations

showed a clear difference among the 3 months: higher in August,

decreased in December, and lowest in March. Lake Tana water’s

lowest TN concentration level was predicted at 0.35 mg/L, higher

than the observed minimum of 0.1 in December 2016 and

March 2017 (Table 1). On the other hand, the maximum monthly

predicted TN concentration was 6.95 mg/L in October which was

lower than the 8.96 mg/L observed in August 2016 (Table 1).

The result of this study showed the TN concentration of the

lake has two distinct seasonal patterns, one in the southern

part where Gilgel Abay River joins the lake, and one in the

northeastern and eastern part, where Megech, Gumera and Rib

Rivers join the lake. According to the spatial distributions of TN

concentrations mapped by Dersseh et al. (2019) from observed

data (Figure 9A), the western part and northeastern part of the

lake had the highest concentration of TN in all the months with

little or no difference from month to month while the predicted

concentrations ranged from 0.51 to 5.8 mg/L. Our prediction

showed similar results, though the minimum value seemed slightly

overestimated compared to observations. Furthermore, the spatial

seasonal pattern showed an agreement in all 3 months.

Similarly, the predicted TP concentrations using the RF

algorithm for August 2016, December 2016, and March 2017

(Figure 10B) showed similar spatiotemporal patterns across the

lake as shown in Figure 10A: the lake’s southern, northeastern,

and central regions of the lake. The spatial distribution of TP

concentration revealed that TP concentration was lower in August

and increased in December and March. On the other hand, the

TP concentration in the lake’s eastern section increased to the

southeastern part in December before shifting to the northeastern

part in March. For the most central or pelagic part, the TP

concentration remained constant. Thus, the prediction of TP

concentrations revealed that concentrations were higher in the

western portion of the lake than in August, but they were higher

in the northeastern section in March.

The lowest projected TP concentration level in Lake Tana

water was 0.011 mg/L, which is higher than the measured level

of 0.001 mg/L in December 2016. The maximum monthly average

predicted TP concentration in March 2017 was 0.76 mg/L, which
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FIGURE 3

Scatter plot of observed vs. predicted Total Nitrogen (TN) mg/L using six di�erent ML methods (A) and Total phosphorous (TP) in mg/L using six

di�erent ML methods (B).
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FIGURE 4

Correlation matrix of TN using XGB (A) and of TP using RF (B).

FIGURE 5

Available nitrate and total N concentrations in Lake Tana from 2003 to 2020 (Source: Dersseh et al., 2022) and TN trend in Lake Tana retrieved from

Landsat OLI 8 using XGB from the year 2013–2020. The names in the legend refer to the first author of the publication in which the data are listed.

was slightly higher than the 0.67 mg/L recorded at the same time.

Our findings closely matched the ranges and spatial distributions of

TP concentrations (Figure 10A) found by Dersseh et al. (2019) and

Kebedew et al. (2020). The spatiotemporal fluctuations in TN and

TP concentrations could mainly relate to mixing by wind and lake

depth (Kebedew et al., 2023).

4.3 Performance of ML Algorithms

The attempt to retrieve TN and TP concentrations from RS

using six selected ML algorithms for Lake Tana water resources

showed a reasonable accuracy with most of the ML algorithms

particularly with the ensemble models. However, these water

quality prediction models based on ML algorithms still have some

issues arising from the lack of appropriate data representation

and resolution for model training. And due to the “shallow”

learning mechanism of these models, their ability to address input

features and capture the long-term correlation of time series is

very limited (Wang et al., 2021). Furthermore, the uncertainty of

TN and TP concentration prediction in the rainy season could be

affected by weather conditions, especially cloud cover. As such poor

data quality affects mostly ANN and SVR models more than the

ensemble ML types.

In general, the result indicated that boosting-based regressions

were shown to have superior accuracy when compared to the

performances of ANN and SVR for both water quality metrics,

similar to the findings in Leggesse et al. (2023) and Gao et al.

(2024). The out performances of the boosting-based algorithms

RF, AB, GRB, and XGB was most likely owing to their ability to

deal with intricate pathways and perform predictions without the

need for regular huge datasets. ML-based solutions are determined

by the nature and qualities of the data and the performance of

the learning algorithms. If the data is unsuitable for learning,
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FIGURE 6

Published and observed concentrations of orthophosphate (PO4), soluble reactive phosphorus (SRP), total dissolved phosphorus (TDP) on filtered

samples, and total phosphorus (TP) on unfiltered samples in lake Tana from 2003 to 2020 (Source: Dersseh et al., 2022) and TP trend in Lake Tana

retrieved from Landsat OLI 8 using RF from the year 2013–2021. The names in the legend refer to the first author of the publication in which the data

are listed.

FIGURE 7

Calculated nitrogen phosphorus ratios on a weight basis in Lake Tana retrieved from Landsat 8 OLI image from 2013 to 2021.

FIGURE 8

Observed vs. Predicted TN (A) and TP (B) in mg/l at the 170 sampling points (The sampling points are shown in Figure 1).
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FIGURE 9

(A, B) Predicted TN (mg/L) for the months of August 2016, December 2016 and March 2017 using XGB algorithm.

such as incompleteness or non-representativeness, inaccuracy,

inconsistency, duplication, or insufficient amount for training,

the machine learning models may become ineffective or generate

incorrect results (Zhang Y. et al., 2022).

While ML algorithms do not explicitly consider physical

processes, they often require large datasets to operate effectively

(Noori et al., 2020). Our dataset, consisting of intermittent monthly

data, could be categorized as low frequency compared to higher-

frequency daily or hourly data. When compared to less frequent

field sampling, the more frequent water quality monitoring allows

for amore comprehensive understanding of water quality dynamics

and extremes, potentially enhancing the accuracy of ML models

(Chen et al., 2020).

Table 1 was gathered from 27 sampling points for certain

months, and from 170 locations in others. This variability in

data collection may not adequately represent yearly, seasonal,

and monthly time scales, which are typically assumed to

capture temporal variability at different sampling frequencies.

We implemented a data binning technique to address potential

issues related to data imbalance, ultimately enhancing the model’s

accuracy. This technique was employed to mitigate the impact of

minor observation errors.

Future research should focusing on enhancing the accuracy of

the ML algorithms, with a comprehensive in-situ data gathering

and selection of other remote sensing products such as sentinel-

2. As a result, current dynamics and future changes should
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FIGURE 10

(A, B) Predicted TP (mg/L) for the months of August 2016, December 2016, and March 2017 using RF algorithm (b).

be strategically captured in the in-situ data with less cost to

improve spatial and temporal water quality dynamics of the lake

of nutrients, which is strongly advised. In addition, the research

should concentrate on the proper selection of ML algorithms with

strong temporal predictive potential, such as LSTMs (Hochreiter

and Schmidhuber, 1997). Because of their higher convergence

speed and ability to capture long-term correlation of time series,

such ML methods may even perform better. They are also

more stable and accurate, providing ideas for future research on

water quality prediction. Another alternative is a hybrid model,

which has received a lot of interest from AI researchers. These

models have the advantage of integrating various models via an

effective combination. Data preparation, parameter selection and

optimization are two commonly utilized methods (Bai et al., 2021)

for integrating various ML models.

5 Conclusions

Based on remote sensing image from Landsat 8 OLI and

the in-situ water quality data of Lake Tana, this study assessed

six machine learning algorithms (AB, RF, GB, SVR, XGB, and

ANN) for retrieval of two not-optically active water quality

indicators, TN and TP concentrations. In conclusion, most

algorithms performed reasonably well for TN prediction and

only the ensemble type and SVR algorithms performed well for

TP prediction. Despite some inconsistencies, the results show

that the ML models seemed to capture the spatio-temporal

variability of the TN and TP concentrations. This confirms that

the data derived using ML from remote sensing can inform

researchers and decision-makers about the status and behavior of

the lakes.
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This study also discovered the advantages of image

enhancement. Most of the features selected by the feature

selection method were derived from or enhanced indices from the

primary bands (Band 1–Band 11) of the Landsat 8 imagery. These

derived or enhanced indices exhibited a correlation with observed

Total Nitrogen (TN) and Total Phosphorus (TP) concentrations,

surpassing the predictive power of the primary bands alone.

Integrating in-situ data, remote sensing-based earth

observation, and ML-based modeling data plays a pivotal

role in deriving the most approximate and up-to-date baseline

or prediction for Lake Tana water quality. This comprehensive

approach combines real-time measurements from in-situ data

with the wealth of information obtained through remote sensing

technologies (especially with image enhancement) and ML

modeling techniques. The ultimate goal is to provide a holistic and

precise understanding of the Lake Tana’s current state of water

quality. Beyond this, it also fosters future active engagement with

stakeholders to co-design demand-driven water quality services

such as digital services for Lake Tana and beyond.
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