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The significance of this study involves the optimisation of the aeration efficiency 
(AE) of the venturi aerator using an artificial neural network (ANN) technique 
integrated with an optimisation algorithm, i.e., particle swarm optimisation 
(PSO) and genetic algorithm (GA). To optimise the effects of operational 
factors on aeration efficiency by utilising a venturi aeration system, aeration 
experiments were conducted in an experimental tank with dimensions of 
90 55 45cm cm cm× × . The operating parameters of the venturi aerator include 
throat length (TL), effective outlet pipe (EOP), and flow rate (Q) to estimate 
the efficacy of the venturi aerator in terms of AE. A 3–6-1 ANN model was 
developed and integrated with the PSO and GA techniques to find out the best 
possible optimal operating variables of the venturi aerator. The coefficient of 
determination (R2), root mean square error (RMSE), and mean absolute error 
(MAE) determined from the experimental and estimated data were used to 
assess and compare the performance of the ANN-PSO and ANN-GA modelling. 
It is shown that ANN-PSO provides a better result as compared to ANN-GA. 
The operational parameters, TL, EOP, and Q, were determined to have the 
most optimum values at 50  mm, 6  m, and 0.6  L/s, respectively. The optimised 
aeration efficiency of the venturi was found to be 0.105  kg O2/kWh at optimum 
operational circumstances. In fact, the neural network having an ideal design of 
(3-6-1) and a correlation coefficient value that is extremely close to unity has 
validated the results indicated above.
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Highlights

•  Performance evaluation of artificial neural network–particle swarm optimisation (ANN-
PSO) and artificial neural network–genetic algorithm (ANN-GA) techniques to optimise 
the operating variables of venturi.

• Soft computing methods are used for the estimation of aeration efficiency.
• A comparison of the ANN-PSO technique with the ANN-GA approach.
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1 Introduction

India is the third-largest fish producer worldwide, contributing 
7.56% of the world’s food supply, and its production has increased 
consistently over the past 10 years on average. In 2019, the overall 
aquaculture production increased by 1.5% compared to the previous 
year, reaching 4,421.22 thousand metric tonnes (FAO, 2019). In semi-
intensive and intensive aquaculture, applications of aeration practises 
are crucial to maintaining microclimate conditions that are compatible 
with the physiological needs of the cultivated species. Aerators mainly 
distribute gas bubbles that enable oxygen to move to the water. The 
economic viability and productivity of commercial aquaculture 
farming depend significantly on the condition of the water quality. 
Dissolved oxygen (DO) is the most crucial parameter of the water 
quality that might affect aquaculture production and the survival rate 
of all aquatic species. Temperature and DO are interrelated parameters, 
and temperature variations can result in a more significant difference 
in the amount of DO in ponds (Dayıoğlu, 2022). According to a 
thumb rule, the optimal values of DO for the majority of aquatic 
species at sea level are considered as 50% saturation concentration in 
freshwater bodies, or 5 mg/L and 4 mg/L at temperatures of 15°C and 
26°C, respectively (Roy et  al., 2022; Yadav and Roy, 2023). In 
particular, the cold water and warm water species require DO 
concentrations between 7 mg/L and 9 mg/L and between 4 mg/L and 
7 mg/L for proper growth and reproduction (Roy et al., 2021b, 2022). 
The existence possibility of aquatic species can increase using artificial 
aeration techniques in pond culture (Pawar et al., 2009). Aquaculture 
ponds have always used artificial aeration, i.e., surface, diffused, and 
gravity aeration, but in recent years, attention to venturi aeration has 
greatly expanded to generate fine bubbles and microbubbles (Navisa 
et al., 2014; Cheng et al., 2019; Sangeeta and Tiwari, 2019; Roy et al., 
2020, 2021a; Luxmi et  al., 2022). One of the most cost-effective 
aerators for small-scale aqua farmers is the venturi aerator. The venturi 
aeration system is a widely used technique in water engineering 
including aquaculture, which works on Bernoulli’s principle (Baylar 
and Ozkan, 2006). The venturi aeration has a unique design to supply 
an abundant amount of air through entrainment at the narrower 
section of the venturi called the throat section. The venturi aeration is 
a highly efficient technique to increase the oxygen transfer ability 
through the production of many tiny bubbles. The aeration 
effectiveness is defined by the amount of gas and liquid interface area 
of contact that is primarily governed by the size of liquid film between 
gas molecules and liquid film (Yadav et  al., 2020, 2021). Prior to 
inserting into the whole water volume, venturi aerators are primarily 
designed to mix air and water together at the throat of the venturi 
through inserted air holes (Baylar and Emiroglu, 2003; Gupta et al., 
2016; Li et al., 2017; Sun et al., 2017; Sihag et al., 2021). The venturi 
aeration system can be utilised in various fields or industries such as 
water treatment plants, agriculture fields, fertiliser application, 
integrated irrigation systems, hatchery farms, and recirculating 
aquaculture systems (Omary et  al., 2020; Wang et  al., 2022). The 
venturi is highly efficient and provides significant benefits to the 
farmers as low power is needed to operate, is durable and compatibly 
cheaper, and requires less maintenance (Mahmud et al., 2020).

According to the results found from past studies, a venturi aerator 
performs best amongst all aeration systems with a standard aeration 
efficiency (SAE) value of 0 5 3 0 2. . /to kg O kWh . The optimum SAE 
was reported using venturi in a circular geometry tank as 

1 7 2 05 2. . /to kg O kWh  (Zhang et al., 2020). Both geometrical and 
dynamic characteristics may affect the aeration system’s performance. 
It was found that the rate of oxygen entrainment and its transmission 
efficiency increase with pipe diameter and water velocity for all ratios 
of venturi throat to inlet and outlet diameter (Yadav et al., 2019). 
Ghomi et al. (2009) investigated several varying geometrical limits of 
venturi to regulate the SAE value. The maximum SAE value for each 
depth (20 40 60, ,and cm) and the angle (0 22 5 45, . ,and

ϒ) of aeration 
was found to be at 14 mm diameter along with the coefficient value 
(R2) of 0.958. Sanghani et  al. (2014) examined the impact of 
geometrical factors of venturi on the throat length, the inlet and outlet 
angles, and the diameter ratio of the inlet, throat section, and pressure 
gradient. Baylar and Ozkan (2006) observed that the pressure was 
reduced at the throat by increasing the inlet pressure. The increased 
inlet pressure and contraction ratio lead to frequent increases in mass 
flow rates, and the reverse flow occurs in the contracted segment of 
the venturi (Zhang, 2017).

Recently, according to the review of literature, several research 
studies have been conducted on soft computing techniques based on 
artificial neural network (ANN), particle swarm optimisation (PSO), 
and genetic algorithm (GA) modelling in a variety of applications of 
aeration system (Bagatur and Onen, 2014; Kumar et al., 2018; Garg 
and Jain, 2020; Roy et  al., 2021b). The ANN is a useful tool for 
simulating complex processes with dynamic interaction between the 
components that affect outcomes (Omid et al., 2009; Pareek et al., 
2021). The ANN techniques can be  utilised to identify the most 
effective process variables for maximising output. Roy et al. (2022) 
worked on the hybrid ANN-PSO approach to improve the geometric 
and dynamic characteristics of the designed cascade aerator pooled 
circular type to increase the aeration efficiency. Dayev et al. (2022) 
worked on soft computing methods to evaluate the capability of 
advanced computing approaches to accurately find out the air flow 
rate in a wet gas mixture, mainly in circumstances when the 
monitoring of such quantities using conventional models is actually 
difficult to adopt practically. Furthermore, ANN models have been 
employed by Mjalli et al. (2007) to evaluate the efficacy of the aeration 
system adopted in wastewater treatment facilities. When it comes to 
application, developed ANN models are far superior to response 
surface methodology (RSM) (Roy et al., 2021a). Garg and Jain (2020) 
investigated that the ANN outperforms the RSM for evaluating 
performance and analysis of variables of extracting biofuel via 
seaweed. In comparison with regression analysis, artificial neural 
networks are more generalisable, less susceptible to variability and 
anomalies, and can manage flawed information or data (Luk et al., 
2001; Haykin, 2009). The literature cited above demonstrates that the 
ANN modelling may be effectively applied to simulate the operational 
characteristics of the aquaculture aeration system (Pareek et  al., 
2023a,b). However, a number of statistical approaches were 
successfully used for the optimisation of the aeration system, whereas 
the PSO and other comparatively more sophisticated optimisation 
algorithms have not yet been the subject of research. This optimisation 
method has been successfully used to solve a variety of issues in the 
physical world (Roy et al., 2022). In addition, other soft computing 
methods such as genetic expression programming (GEP), multiple 
linear and non-linear regressions, neuro-fuzzy, neural network, 
artificial intelligence (AI) models, and Gaussian process regression 
(GPR) models have been utilised to assess the effectiveness of AE of 
weirs and water jet system (Onen, 2014; Pareek et al., 2023a,b).
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According to the research study that is currently available, past 
research was primarily used to estimate oxygenating characteristics 
and capacity. In contrast, a recent study supports the development of 
ANN, based on soft computing models, which draws their power to 
increase the AE of venturi. Furthermore, to improve the AE, the 
venturi aerator’s operational variables were further combined with an 
ANN model using PSO and GA gradient techniques. The geometrical 
design and operating variables of the proposed venturi aerator might 
affect aeration performance. No analogous studies using soft 
computing techniques on venturi aeration for the primary aim of 
aquaculture have been found. In order to attain the greatest possible 
aeration efficiency, the present study aimed to identify the design 
parameters (throat length and extended outlet pipe length) and 
operative parameter (flow rate) of the venturi aeration system.

Furthermore, the present study assesses to optimise the aeration 
efficiency of the venturi aeration system in terms of aeration efficiency 
using the ANN model integrated with PSO and GA techniques. 
Furthermore, the effectiveness of the ANN-PSO and ANN-GA 
techniques has been examined and compared.

1.1 Paper representation

This article is organised as follows: Section 2 presents a theoretical 
analysis based on the two-film theory to determine the overall oxygen 
mass transfer rate, standard oxygen transfer rate, and standard 
aeration efficiency.

Section 3 encompasses materials and methods, including the 
experimental setup, experimental design, and procedure to evaluate the 
performance of venturi aeration. In addition, this section discusses the 
artificial neural network integrated with particle swarm optimisation and 
genetic algorithm technique and the performance analysis.

A detailed summary of the results and discussions is discussed in 
Section 4, which includes performance evaluation of the developed 
models, ANN modelling, PSO, a comparison between the integrated 
models, and the effects of operating parameters on aeration efficiency.

Section 5 discusses the conclusion of this article, including the 
authors’ perspectives on the subject of the study and potential 
directions for further research.

2 Theoretical analysis

The two-film theory is the most frequently employed technique 
to determine the oxygen transfer rate, which is applicable in the 
two-phase system consisting of a gas phase and a liquid phase (Lewis 
and Whitman, 1924; Treybal, 1985). The variation in the oxygen 
concentration affects the transfer rate of oxygen mass from the 
atmosphere into the water interface with respect to time can 
be represented by Equation 1 (Metcalf et al., 1979).
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where Cs = steady saturation concentration (mg/l) of DO in 
water bodies at standard temperature and pressure, C = oxygen 
content in water, and A
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The oxygen transfer coefficient at T°C, KLaT may be  stated as 
follows using the two-film theory as Equation 4.
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−( ) − −( )ln ln
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(4)

where ln = natural logarithm, Cs = saturation concentrations of 
dissolved oxygen (mg/l), C0 and Ct = oxygen concentration at initial 
time, t = 0 and t, respectively. The graph between ln Cs Ct−( )  and t 
represents a linear slope, which determines the KLaT value (ASCE, 
2007), and can be represented by Equation 5.

 K a K aL L T

T

20

20= × −( )θ ,  (5)

where K aL 20  = coefficient of mass transfer at a standard 
temperature of 20°C (h−1), K aL T = coefficient of mass transfer at T 
°C (h−1), θ = constant for pure water as 1.024 (Boyd, 1998; ASCE, 
2007), and T = temperature of water (°C). Efficiency and durability 
are the most important factors to take into account whilst selecting 
an aerator for daily use in aquaculture farms. The standard oxygen 
transfer rate (SOTR) and standard aeration efficiency (SAE) 
measurements can be  used to evaluate the proposed aerator’s 
performance (Boyd and Ahmad, 1987). The SOTR is the amount of 
oxygenation capacity of an aeration system with respect to time at 
a standard pressure of 1.01325 bar and a standard temperature of 
20°C, the primary DO concentration level of 0 mg/L, and clear tap 
water (APHA, 1985). The SAE is the ratio between SOTR and the 
required power (P, kW) to run the aerator (Lawson and Merry, 
1993). Both the SOTR and SAE can be calculated by Equations 6, 7, 
respectively.
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The following Equations 8, 9 may be used to derive the oxygen 
transfer rates (OTR) and aeration efficiency (AE) from SOTR and 
SAE, respectively (Boyd, 1998):
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where α  and β are the correction factors.

3 Materials and methods

3.1 Experimental setup and approach

A 220 L volume of an experimental tank with measurements of 
90 55 45cm cm cm× ×  was operated with the venturi for oxygenating 
the full volume of water (Figure 1). The venturi circulates water 
with the help of pipe fittings in a closed-loop system with an 
associated pump, valves, water metre, and pressure gauge. The well-
known sections of the venturi are divided into three distinct parts, 
namely, converging, throat, and diverging. The converging section 
is connected with the narrow section at the neck of the venture, and 
it terminates with the diverging section as an outlet of the venturi. 
Each of the sections of the venturi may be  separated from one 
another. Another extended outlet pipe (EOP) is also connected with 
the diverging section to supply oxygenated water into the full 
volume of the water tank. Both converging and diverging sections 
were fabricated with the same length of 100 mm. The middle section 
of the venture, i.e., throat consists of five sets of different lengths, 

namely, 10 20 30 40 50mm mm mm mm and mm, , , , . In total, four 
different extended outlet pipe lengths were designated in the 
current study to see the performance of aeration efficiency, 
i.e., 2 4 6 8m m m and m, , , .

3.2 Experimental design and procedure

All the experiments were conducted using a 1-HP centrifugal 
pump, which circulates water by venturi in a closed-loop manner 
with connecting extended outlet pipes of various lengths. The 
throat section produces a vacuum and makes it possible for air 
entry from air holes due to the pressure reduction. As a result, the 
air bubbles mix with water that flows via the venturi to the outlet 
pipe and continues to travel in the water tank. The experiments 
were conducted at three different flow rates (Q) of 0.30 L/s, 
0.60 L/s, and 0.90 L/s for all sets of design parameters (throat 
length, TL; and extended outlet pipe, EOP). Table 1 presents the 
planned experiments to improve the venturi aeration system’s 
aeration efficiency. A total of 60 experiments were performed with 
three replicates to optimise the aeration efficiency of the venturi 
aerator. With a 5% threshold of significance, substantial model 
parameters were found using the analysis of variance (ANOVA). 
In the current study, the AE of the venturi aeration system was 
analysed and compared using integrated models, i.e., ANN-PSO 
and ANN-GA. The extended outlet pipe (EOP), throat length 
(TL), and flow rate (Q) are the independent variables, and the 
dependent variable is chosen as AE to determine the 
model response.

In this analysis, pure tap water was initially deoxygenated 
using non-steady re-aeration experiments (ASCE, 2007). Each 
experiment utilised clean tap water that was deoxygenated to 
reduce the DO of each milligramme per litre employing 10 mg of 
sodium sulphite and 0.1 mg of cobalt chloride as a catalyst per litre 
volume of water (Boyd, 1998). The EXTECH DO metre 407,510 
was used to measure the temperature, and DO level datasets for 
each set of operations were carried out at 1 min of an identical 
interval until 80% of DO saturation was attained. For each DO 
saturation measurement that was acquired, the measurements for 
the DO deficiencies were also produced. Furthermore, the 
graphical representation amongst natural log deficits (ordinate) 
and aeration time (abscissa) represents the best-fit gradient line to 
assess K aL T . The gradient line was additionally improved by a 
20°C temperature correction factor. Moreover, the oxygen transfer 
ability of the venturi has been estimated by KLa20, OTR, and AE 
using Equations 5–7, respectively.
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FIGURE 1

A schematic view of the experimental setup (Yadav and Roy, 2023).

TABLE 1 Experimental schedule to determine the AE of the venturi aeration system.

S. No. Parameters Number of variables Levels

A. Independent parameters

1. Extended outlet pipe (EOP) 4 2, 4, 6, and 8 m with an interval of 2 m

2. Throat length (TL) 5 10, 20, 30, 40, and 50 mm at an interval of 10.0 mm

3. Water flow rate (Q) 3 0.30, 0.60, and 0.90 L/s at an interval of 0.30 L/s

B. Dependent parameters

1. AE (kg O2/kWh) ---
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3.3 Artificial neural network integrated with 
particle swarm optimisation and genetic 
algorithm technique

The artificial neural network (ANN) is a data processing system 
that distributes data uniformly and has certain traits and features that 
are comparable to the neural structure of the human brain (Haykin, 
1999; Mohanty et al., 2010; Yadav and Roy, 2023). An ANN includes 
an input layer (independent variables), a hidden layer, and an output 
layer (dependent variables); each layer contains a variety of processing 
components. An increasingly popular solution to conventional 
modelling methodologies and a more accurate tool to utilise with 
complicated non-linear interactions is the ANN, which relies on the 
idea of real-world neurons as well. An average neural system is fully 
interconnected, meaning that every single neuron in a single layer has 
a link to all the other neurons in each layer above it (Kumar et al., 
2002). The process of the data information modelling approach starts 
using basic analysing units before scaling up to more complicated 
ones, modifying balanced inputs to make neural networks more 
effective. The effectiveness of an ANN multilayer model relies on both 
the number of neurons and connections and is affected by how the 
information is received, processed, and subsequently processed in 
hidden layers (Karri and Sahu, 2018). The available research shows 
that most researchers utilise a gradient-based optimisation technique 
called feed-forward neural network development with a conventional 
back-propagation strategy (Rumelhart et al., 1986).

The AE of the venturi aerator was considered as a result of the 
model with its selected operational parameters, i.e., TL, EOP, and Q, 
which were used as model inputs. A total of 70% of the 60 data points 
were applied for training, whilst the rest of the 30% were employed for 
network setting. In the present study, the experimental dataset of a 
70:30 splitting ratio was used (Roy et al., 2022; Yadav and Roy, 2023). 
The optimal network layout for the ANN model was discovered to 
be 3–6-1 as presented in Figure 2. In the current study, the overfitting 
issue was resolved by standardising the experimental findings using 
min–max normalisation before utilising them for ANN training.

The particle swarm optimisation (PSO) modelling integrated with 
ANN is a cutting-edge, accurate, and experimental approach. A kind 
of meta-heuristic model called ANN-PSO can be utilised to build 
realistic models and deal with non-uniform multi-component 
interactions between dependent and independent variables (Yadav 
and Roy, 2023). The PSO requires fewer parameter adjustments than 
any other optimisation approach available and is simpler to implement 
(Eberhart and Shi, 2001). Furthermore, if the target function includes 
a single attribute and several local minima/maxima, the ideal value 
may be reached using the PSO method (Roy et al., 2021b). As PSO is 
a naturalistic exploration method as opposed to gradient-based 
optimisation, it has the drawback of being a sluggish procedure (Roy 
et al., 2021b). On the other hand, complicated non-linear optimisation 
issues are frequently solved using mathematical techniques such as 
genetic algorithm-based optimisation (ANN-GA) and ANN 
modelling. In the present study, ANN was integrated with PSO and 
GA algorithms separately to generate data of ANN using various 
amounts of neurons in the middle-hidden layer whilst taking into 
account the sample estimates for PSO and GA (Ghose et al., 2023). 
The movement of the points in space may be understood by their 
velocities, which also have the potential to hold their local and global 
best values (Jun et  al., 2020). Each particle kept its location and 

modified velocity based on its own flight performance along with that 
of other elements in the search space to identify the most efficient 
result. The updated velocities and orientations of every single particle 
as it travels to the local optimal point (pbest) and global best point 
(gbest) are computed using the following Equations 10, 11.

 
v wv c r pbest x c r gbest xi
k

i
k

i i
k

i
k+ = + −( ) + −( )1

1 1 2 2 ,
 

(10)

 x x vi
k

i
k

i
k+ += +1 1

, (11)

where, i N= …1 2, , ; N = population size, vik  = flow rate of the 
element i  at iteration k ; xik  = element position i at iteration k ; pbesti 
= personal best of element i; gbest  = best point in the community; w 
= weight of inertia; c1 and c2 = coefficients; and r1 and r2 = random 
numbers uniformly scattered in the range (0, 1) (Figure 3).

Holland (1992) established the genetic algorithm (GA), a meta-
heuristic optimisation method that utilises the ideas of the natural 
selection process and heredity. It is employed to resolve optimisation 
issues that are both confined and uncontrolled. Using statistical 
modifications, GA may continually adjust the number of distinctive 
approaches whilst searching over enormous solution spaces. The GA 
technique consists of three crucial processes, including the first group 
creation, genetic operator training (reproduction, crossover, and 
mutation), and evaluation according to a group’s fitness value (Yang 
et al., 2020). The genetic algorithm identifies people at random within 
the existing population at each stage, treating them as a pair of parents 
to create progeny for the generations to come. Over succeeding 
generations, the population progresses in the direction of the optimal 
solution. It is possible to choose an adequate goal function by using a 
mixed genetic algorithm. The ability of ANN models to estimate the 
future is improved by the multidirectional searching technique used 
in GA (Figure 4).

In this study, the highest possible swarm size was set at 10 random 
particles produced and 50 iterations. The values taken for w c, 1, and 
c2 are 0.8, 1.05, and 1.05, respectively. The programme was run by 
MATLAB-2013a to execute the ANN-PSO and ANN-GA techniques. 
Although the MATLAB PSO method employs an optimisation 
strategy, its goal is to maximise AE, which is expressed as a similar 
minimising problem, as follows:

 
objective function

F XX X T
 minimise=

( )








∈

1
,

 
(12)

where X X ,X ,X
T= [ ]1 2 3  = selected resolution vector and F X( ) = 

result of the ANN. The limits are specified 
as 10 50 2 81 2≤ ( ) ≤ ≤ ( ) ≤X TL X EOP, ,and 0 3 0 93. .≤ ( ) ≤X Q .

3.4 Performance analysis of the developed 
models

To evaluate the efficacy of the developed ANN and linear 
regression (LR) models, the coefficient of determination (R2), root 
mean square error (RMSE), and mean absolute error (MAE) were 
used as indicators of effectiveness. The variables used in the produced 
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FIGURE 2

Topology of the 3-6-1 ANN model.

PSO ANN

FIGURE 3

Flowchart of the ANN-PSO techniques.
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models were compared, and the algorithm of high coefficients of R2 
and fewer values of MAE and RMSE was determined as the best fit. 
The following Equations 13, 14, 15 were used to calculate R2, RMSE, 
and MAE, respectively:

 R2 = 

i
N

i i

i
N

i i
N

i

O O P P

O O P P

=

= =

∑
∑ ∑

−( ) −( )
−( ) −( )

1

1

2

1

2

,

 

(13)

 RMSE = 
i
N Oi Pi

N
=∑ −( )
1

2

,

 
(14)

 MAE = 
1
N i

N
i iO P

=
∑ −

1

,

 
(15)

where N is the total amount of observations, Oi and Pi are the 
observable and projected values, respectively, and the bar represents 
the variable’s mean.

4 Results and discussion

4.1 Modelling and linear regression analysis 
for AE

The linear regression analysis utilises a total of 60 observed 
responses; the model was developed using the least square method. A 

linear regression model was developed for several responses of AE 
using the investigated dataset. The linear relationship between AE and 
independent operative variables, i.e., TL, EOP, and Q, is depicted in 
the regression Equation 16.

 

AE kg O
kWh

EOP

Q TL

2
0 0173 0 0098 0 0053

0 001 9 317







 = + × +

× + × − ×

. . .

. . 110
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9 525
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2 2

6 2 4

−

− −
× − × +

× × − ×

× × −

EOP Q
TL

EOP Q

. .

.

. ××

× × − × × ×

−

−
10

3 301 10

6

5EOP TL Q TL. .  
(16)

The linear regression Equation 16 specifies the hypothesis 
model that fits well in between the independent variables and 
AE. The linear regression equation is a second-order polynomial, 
which has a high coefficient of correlation (R2) value, demonstrating 
that a significant relationship is feasible. The p-value and the R2 
value were estimated as 0.972 and 0.005, respectively. The above 
findings are supported by the value of the modified coefficient of 
correlation (R2 adj.), 0.976. The 97.25% probability from the analysis 
indicates that the independent variables (TL, EOP, and Q) of the LR 
model are highly significant.

According to the statistical results (Table 2), every component of 
the linear model (TL, EOP, and Q), as well as the quadratic model 
term (TL2, EOP2, and Q2), has statistical significance at the 97.25% 
level of confidence. There is no statistical significance (p > 0.05) for the 
interacting model variables (EOP×Q), (EOP×TL), and (Q×TL).

GA ANN

FIGURE 4

Flowchart of the ANN-GA techniques.
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The results of the p values are an easy approach for evaluating the 
importance of various coefficients. The significance of the associated 
coefficient increases with decreasing P. The correlation between the 
variables is extremely significant (F = 196.60; p = 0.000), according to 
the ANOVA (Table 3) of the best-fitted estimated model. According 
to the results of the present study, the model term TL (p = 0.000) is 
significant (p < 0.05), whereas, the other model terms, EOP (p = 0.716) 
and Q (p = 0.040) are not significant (p > 0.005). The quadratic terms 
EOP × EOP (p = 0.000) are significant (p < 0.05), whilst the other 
quadratic terms Q × Q (p = 0.647) and TL × TL (p = 0.292) have a poor 

fit and are considered non-significant (p > 0.05). Additionally, the 
interaction between the independent variables (EOP × Q, EOP × TL, 
and Q × TL) has no apparent impact on the AE (p > 0.005). 
Consequently, it may be  concluded that the proposed model 
satisfactorily matches the results of the experiments (Pareek et al., 
2023a,b).

4.2 Artificial neural network modelling

Artificial neural network (ANN), which gets their inspiration 
from the way the human brain functions, may be used to predict 
outcomes for a variety of activities, including analytical and numerical 
modelling involving a variety of data types. The ANN depends on an 
awareness of the statistical fundamentals of the events underlying the 
procedure, and it has significant benefits over traditional modelling 
approaches (Figure 5). The development of the best back-propagation 
training technique, the establishment of the appropriate number of 
neurons, and verifying and testing the model, all three processes were 
employed to develop the perfect ANN modelling structure (Kedia 
et al., 2022). The ANN aims to predict available capabilities using real 
data by replicating the organic nervous system, which replicates data 
on somebody’s cognitive processes. The ANN often results in an 
inundation of previous experience data. Once the model was 
successfully constructed using the trial and error method, the 
minimum MSE was found between the target value and the ANN 
model’s forecast value of AE (Yadav and Roy, 2023). The neural 
network correlation network indicates the projected and targeted 
datasets, i.e., the training dataset, the testing dataset, and the complete 
experimental dataset for the ANN model as shown in Figure 5. The 
ANN model’s coefficient value of R2 for the training dataset, the 
validation dataset, the testing dataset, and the overall prediction was 
observed to be 0.98855, 0.97891, 0.98320, and 0.98545, respectively 
(Figure 5). From Figure 5, the R2 value between the measured and 
anticipated responses for the data analysis phases (training, validation, 
and testing) is close to 1. Hence, the implementation of the ANN was 
deemed to be very satisfying and robust to estimate the AE values. The 
highest possible AE value of 0.1050 kg O2/kWh was found using the 
expected TL, EOP, and Q values of 50 mm, 6 m, and 0.6 L/s, 
respectively.

The MSE versus the number of epochs is displayed and is 
presented in Figure 6. In epoch 8, the value 0.000016445 represents 
the prime substantial performance. During the training phase, the 
neural network divides the source and target dataset into three 
individual data, i.e., training, validation, and testing samples. Using 
training samples, the network is instructed, and variables are changed 
in response to errors. The network’s ability to make predictions is 
assessed using validation samples, and training ceases when it hits the 
point of saturation. Furthermore, network evaluation is performed 
before, during, and after training using testing data. Figure 6 shows a 
green, blue, and red line for validation, training, and testing, 
respectively. The green colour of the ring circle denotes the network’s 
peak validation effectiveness. On the other hand, the generalisation 
comes to an end and the training is ended after 19 epochs. It changes 
throughout retraining as a result of the network regularly splitting the 
source and target datasets.

Figure  7 displays training state plots for the gradient values, 
mutation (mu), and validation cheques for ANN. A gradient depicts 

TABLE 2 Estimated regression coefficients for AE (kg O2/kWh).

Terms Coefficient SE 
coefficient

T P

Constant 0.075297 0.000964 78.081 0.000

EOP (m) −0.000194 0.000529 −0.367 0.716

Q (L/s) −0.001017 0.000483 −2.109 0.040

TL (mm) 0.022789 0.000557 40.900 0.000

EOP (m)×

EOP (m)

−0.008386 0.000886 −9.460 0.000

Q (L/s)×Q 

(L/s)

−0.000385 0.000836 −0.461 0.647

TL (mm)×

TL (mm)

0.001002 0.000942 1.064 0.292

EOP (m)×Q 

(L/s)

−0.000465 0.000647 −0.718 0.476

EOP (m)×

TL (mm)

−0.000572 0.000748 −0.765 0.448

Q (L/s)×TL 

(mm)

−0.000198 0.000682 −0.290 0.773

*S = 0.00305179, Significance level at R2 = 97.25%, R2 (pred) = 96.02%, R2 (adj) = 96.76%.

TABLE 3 ANOVA for AE (kgO2/kWh).

Terms DF Seq SS Adj SS Adj 
MS

F P

Regression 9 0.016479 0.016479 0.001831 196.60 0.000

Linear 3 0.015622 0.015622 0.005207 559.13 0.000

EOP (m) 1 0.000001 0.000001 0.000001 0.13 0.716

Q (L/s) 1 0.000041 0.000041 0.000041 4.45 0.040

TL (mm) 1 0.015579 0.015579 0.015579 1672.80 0.000

Squares 3 0.000846 0.000846 0.000282 30.28 0.000

EOP × EOP 1 0.000833 0.000833 0.000833 89.49 0.000

Q × Q 1 0.000002 0.000002 0.000002 0.21 0.647

TL × TL 1 0.000011 0.000011 0.000011 1.13 0.292

Interaction 3 0.000011 0.000011 0.000004 0.39 0.757

EOP × Q 1 0.000005 0.000005 0.000005 0.52 0.476

EOP × TL 1 0.000005 0.000005 0.000005 0.58 0.448

Q × TL 1 0.000001 0.000001 0.000001 0.08 0.773

Residual 

Error

50 0.000466 0.000466 0.000009

Total 59 0.016945
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the tangent’s slope on a function graph. It suggests that there is a rapid 
rate of increase in the direction that the parameter under consideration 
is moving. Error convergence is directly influenced by the back-
propagation neural network that was constructed to use the 
controlling parameter called mutation (mu). A validation cheque 
halted the learning process of the neural network. A variety of 
validation tests will be carried out based on how frequently the neural 
network is iterated (Roy et al., 2023). The gradient’s magnitude and 
the number of validation cheques needed to end the training are 
displayed in Figure  7A. As training approaches the performance 
threshold, the gradient becomes very small. The training phase will 
end if the gradient’s magnitude is less than 0.00001, which can 
be  modified by adjusting the parameter. The mutation is shown 
against the increasing number of iterations in Figure 7B. This graphic 
demonstrates how training improves and the network error decreases. 
Based on Figure 7C, the number of validation cheques indicates how 
many rounds the validation performance fails to decline in succession. 
The training will end once this number hits 8 in the current scenario.

FIGURE 5

Training, validation, test, and overall scatter plots of ANN model for various stages.

FIGURE 6

The best validation graph of the network.
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4.3 Particle swarm optimisation

The design parameters (TL and EOP) and operational parameters 
(Q) of the venturi aeration system were optimised using the most 
reliable prediction model and PSO in order to obtain the highest 
acceptable AE. The PSO algorithm scatters its elements all over a 
hyperdimensional search area. Every cluster member serves as an 
alternate solution to the optimisation problem by evaluating the 
desired function at that member’s present location. Engelbrecht (2007) 
defined that the positioning of elements within the search region is 
altered in accordance with people’s social-psychological propensity to 
imitate others’ accomplishments. Every single particle in a cluster is 
therefore driven for movement by fusing some aspect of its previous 
existence with the expertise of those around it.

4.4 A comparison between ANN-PSO and 
ANN-GA models

The developed ANN-PSO and ANN-GA models were 
predicted and compared based on statistical characteristics 

datasets of training and testing by model parameters, i.e., R2, 
RMSE, and MAE. Table  4 displays these model evaluation 
indicators of created models. The high R2 value for training and 
testing and the low value of RMSE and MAE indicate the 
significant performance of two values between experimental 
AE values.

The ANN-PSO model has a high R2 value for training and 
testing and a low value of RMSE and MAE compared to the 
ANN-GA model indicating a better prediction of AE values. 
Therefore, it can be concluded that the performance of ANN-PSO 
is better than ANN-GA. Table 5 displays and compares the optimal 
parameters produced by the combined ANN-PSO and ANN-GA 
methods. The developed models ANN-PSO and ANN-GA are used 
to select the suitable operating conditions and aids to find out the 
AE of the venturi aerator. A maximum deviation of 5.714% of the 
anticipated and actual values of AE from ANN-PSO is presented in 
Table 5.

Table 6 displays the optimum parameters using the combined 
ANN-PSO method, which has been compared with the results of the 
earlier experimental research study (Yadav and Roy, 2023). The 
created ANN-PSO model may be  used to estimate the accessible 

FIGURE 7

Training state plots for (A) gradient, (B) mutation, and (C) validation cheques.

TABLE 4 Performance indicators of the ANN models in the prediction of aeration efficiency.

Model Data Performance standard

R2 RMSE MAE

ANN-PSO Training data 0.988 0.020 0.090

Testing data 0.983 0.029 0.176

ANN-GA Training data 0.972 2.567 1.980

Testing data 0.912 3.675 3.123

https://doi.org/10.3389/frwa.2024.1401689
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org


Yadav et al. 10.3389/frwa.2024.1401689

Frontiers in Water 11 frontiersin.org

aeration effectiveness of the venturi aeration system and to determine 
the proper operating parameters.

4.5 Effects of operating parameters (TL, 
EOP, and Q) on AE

The combined effect of operating parameters as EOP and TL on 
AE is shown in Figure 8, the combined effect of EOP and Q on AE 
is shown in Figure 9, and the combined effect of Q and TL on AE is 
shown in Figure 10. It can be clearly seen from Figure 8 that the AE 
steadily rises with the increase in the extended outlet pipe (EOP) 
from 2 m to 6 m and then drops again to 8 m of EOP. It can also 
be found that the AE rises rapidly with increasing throat length 
(TL) up to 50 mm. This is due to the fact that by increasing the 
throat length (TL = 10 mm to 50 mm), more vacuum is created that 
facilitates the maximum pressure reduction resulting in more 
oxygen transfer rate and aeration efficiency. When the effective 
outlet pipe increases, the air bubbles get dispersed resulting in the 
reduction of aeration efficiency. The maximum AE was found at 6 m 
EOP and 50 mm TL.

Figure  9 shows a relation between EOP and Q on AE. It can 
be seen from Figure 9 that AE increases with the increasing EOP up 
to 6 m. However, after 6 m of EOP, the AE values decline when it 
reaches to the maximum EOP of 8 m. In addition, it was found the AE 
values are influenced by varying the flow rate (Q). The AE value 
increases with an increase in Q value up to 0.6 L/s. For further increase 
in the Q from 0.6 L/s to 0.9 L/s, the AE starts to decrease mainly at the 
EOP of 8 m. This is due to the fact that the increasing discharges create 
more turbulence and aid in enhancing the transfer rate of oxygen. 
Furthermore, at the maximum 8 m EOP, inserted air bubbles get 
dispersed without affecting the oxygen transfer, which reduces the AE 
of the venturi. Therefore, it can be concluded that the Q is primarily 
responsible for transferring air into the water (Yadav et al., 2021).

Furthermore, the effect of Q and TL on AE is presented in 
Figure 10. Figure 10 indicates very clearly that with an increase in the 
TL of the venturi, the AE increases at every increasing Q. The 
maximum AE value was found at 50 mm of TL for all increasing flow 
rates (Q = 0.3 L/s, 0.6 L/s, and 0.9 L/s). The reason behind that the 
increasing TL provides a high air entrainment rate, that obvious 
improves the oxygen transfer capability of the venturi with the 
increasing Q. The maximum SAE value was determined to be 0.105 kg 

TABLE 5 Optimised limits by ANN-PSO and ANN-GA.

Model TL EOP Q (L/s) Aeration efficiency (kg O2/kWh)

Predicted Observed Deviation (%)

ANN-PSO 5.026 48.0100 0.601 0.996 0.105 5.714%

ANN-GA 5.426 50.0000 0.68 0.993 0.105 5.714%

TABLE 6 A comparison of the SAE values of the integrated ANN-PSO technique with the previous dataset.

SAE (kg O2/kWh) value using the ANN-PSO algorithm Deviation (%)

Present study Previous study (Yadav and Roy, 2023)

0.996 0.902 7.09

FIGURE 8

Interactive response surface plot of EOP and TL on SAE.
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O2/kWh, when operating at 0.6 L/s flow rate with a 6 m effective 
output pipe and a 50 mm throat length of the venturi.

5 Future scope

The venturi aeration system and its applications have been 
constrained by several challenges related to air entrainment in water 
and wastewater treatment. The challenges associated with air bubble 
formation limit the ability to produce stable fine bubbles in large 
quantities as existing techniques sometimes require expensive 
specialist equipment (Yuan et al., 2024). Furthermore, this study 

may be expanded to highlight the restrictions on turbulence that 
occurs in the throat section of the venturi, by capturing the intricate 
cavitation phenomena. By clarifying the difficulties encountered in 
applying turbulence models to air entrainment via venturi systems, 
this study offers a foundation for further research endeavours 
focussed on optimising mathematical expressions (Devkota et al., 
2024). This methodical technique can significantly increase 
numerical simulation accuracy and bring computational findings 
more closely aligned with empirical data. The results of this study 
will assist in simulating aeration efficiency through venturi aeration 
by helping to choose the most suitable venturi settings in the fields 
of aquaculture and wastewater treatment. This may help to enhance 

FIGURE 10

Interactive response surface plot of Q and TL on SAE.

FIGURE 9

Interactive response surface plot of EOP and Q on SAE.
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the functionality and design of the venturi. The results of this study 
might be  helpful in the design and improvement of industrial 
systems that employ the aeration phenomena. Furthermore, this 
study might serve as a starting point for further investigations into 
the technical and industrial uses of venturi systems and their design 
and optimisation.

6 Conclusion

The effectiveness of the venturi aeration system has been 
introduced as an effective optimisation strategy for evaluating the 
aeration efficiency (AE) using hybrid prediction modelling 
techniques, i.e., artificial neural network–particle swarm 
optimisation (ANN-PSO) and artificial neural network–genetic 
algorithm (ANN-GA). From the developed ANN integrated with 
PSO and GA, the operating parameters, i.e., TL, EOP, and Q, were 
optimised at 50 mm, 6 m, and 0.6 L/s, respectively, in order to 
maximise the AE. The highest AE was found as 0.105 kgO2/kWh to 
exist under optimal operating circumstances. From the overall 
finding, it can be concluded that the performance of ANN-PSO is 
better than ANN-GA, due to the accuracy of ANN-PSO being more 
based on a 5.714% deviation. The suggested hybrid model is also 
easy to use and can take into consideration an inclusive range of 
factors affecting the efficacy of aerators. The developed ANN-PSO 
and ANN-GA models may be utilised to determine the optimal 
operating parameters for different aerators and anticipate the 
aeration efficiency of the venturi aerator. Notably, the integrated 
model’s primary constraint is its applicability to particular regions 
that are similar or that have only slight variations under any of 
the circumstances.
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