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Introduction: Best management practices (BMPs) are important tools for

mitigating the impact of non-point source pollutants on water quality. Drivers

of the high variance observed in BMP performance field tests are not well

documented and present challenges for planning BMP construction and

forecasting water quality improvements.

Methods: We conducted a systematic review of published nonpoint source

water quality BMP studies conducted in the United States and used a meta-

analysis approach to describe variance in pollutant removal performance. We

used meta-regression to explore how much BMP pollutant removal process,

influent pollutant concentration, and aridity e�ected BMP performance.

Results: Despite high variance, we found the BMPs on average were e�ective

at reducing fecal indicator bacteria (FIB), total nitrogen (TN), total phosphorus

(TP), and total suspended sediment (TSS) concentrations. We found that influent

concentration and interaction e�ect between the BMPpollutant removal process

and aridity explained a substantial amount of variance in BMP performance in FIB

removal. Influent concentration explained a small amount of variability in BMP

removal of TP and orthophosphate (PO4). We did not find evidence that any of

our chosen variables moderated BMP performance in nitrogen or TSS removal.

Through our systematic review, we found inadequate spatial representation of

BMP studies to capture the underlying variability in climate, soil, and other

conditions that could impact BMP performance.

KEYWORDS

best management practice, water quality, nonpoint source pollution, fecal indicator

bacteria, nutrients, suspended sediment

1 Introduction

In the United States (U.S.), major improvements in water quality have been achieved

under the CleanWater Act of 1972. This progress has been largely attributed to investments

and reductions in point source discharges while reduction in nonpoint source pollutants

remains a substantial challenge (National Research Council, 2001; Benham et al., 2008;

Schramm et al., 2022). Increased pollutant loads and concentrations in runoff resulting

from land use changes are a particular challenge. The impacts of land use change on

hydrology and water quality are well established (Carpenter et al., 1998; Allan, 2004;

Bernhardt et al., 2008; Carey et al., 2013; Freeman et al., 2019). Nonpoint source driven

fecal indicator bacteria (FIB), nitrogen, phosphorus, and suspended sediment remain

major causes of water quality impairments in U.S. rivers and streams despite decades of

work. In 2017, the Environmental Protection Agency (EPA) estimated 41% or more of the

nation’s rivers and streams rated poorly for biological condition due to excess nitrogen or
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phosphorus (EPA, 2017). FIB remains the leading cause of water

body impairment on the Clean Water Act 303 (d) list in the United

States (EPA, 2017). Approximately 15% of river and streams have

excessive sedimentation, which leads to twice the likelihood of a

stream to have poor biological condition (EPA, 2017).

Best management practices (BMPs) have been the primary

suite of tools for addressing nonpoint source pollution. BMPs

are structural or non-structural controls used to mitigate the

effects of increased runoff volume, pollutant loads, or pollutant

concentrations emanating from diffuse nonpoint sources. BMPs

control the delivery of pollutants through a few possible

mechanisms. Structural BMPs (detention pond or vegetated filter

strips as examples) reduce and retard total volume of runoff, thus

reducing both the volume of water and pollutant load. Structural

BMPs may also provide a mechanism for physical, chemical, or

biological removal of pollutant constituents suspended or dissolved

in runoff. Non-structural BMPs (such as nutrient management or

livestock management) are utilized to reduce the generation of

pollutant runoff by avoiding pollutant generation during critical

periods.

Practitioners rely extensively on mechanistic models to plan

and evaluate BMP scenarios and resulting water quality. Lintern

et al. (2020) found 43% of reviewed BMP effectiveness studies

relied completely on modeled outputs, with modeled outputs

almost always predicting water quality improvements following

BMP implementation. However, field studies are much more likely

to demonstrate mixed results including net releases (leaching) of

pollutants under certain conditions (Liu et al., 2017; Lintern et al.,

2020). The disconnect between modeled outcomes and field studies

might be attributed to (1) overly simplified or incorrect estimates

of model parameters that represent management practices (Ullrich

and Volk, 2009; Fu et al., 2019; Lintern et al., 2020), (2) the failure

to incorporate the appropriate types of uncertainty into estimates

(Tasdighi et al., 2018; Fu et al., 2019; Lintern et al., 2020), and (3)

the assumption of static performance over time (Meals et al., 2010;

Liu et al., 2017; Fu et al., 2019).

An underlying source of uncertainty comes from the substantial

variability of performance metrics reported in empirical BMP

studies (Lintern et al., 2020). There have been varied attempts

at synthesizing estimates of BMP efficiency to provide resource

managers with knowledge for improved decision-making

(Agouridis et al., 2005; Barrett, 2008; Simpson and Weammert,

2009; Clary et al., 2011; Kroger et al., 2012; Koch et al., 2014;

Liu et al., 2017; Grudzinski et al., 2020; Horvath et al., 2023).

These reviews generally describe high variability and uncertainty

in nitrogen and phosphorus removal and consistent reduction

in total suspended sediment concentrations across BMP types

(Barrett, 2008; Clary et al., 2011; Koch et al., 2014; Liu et al., 2017;

Grudzinski et al., 2020; Lintern et al., 2020). The review literature

on the effects of BMPs on FIBs are sparse but generally find

extremely high variance in performance across BMPs (Clary et al.,

2011; Grudzinski et al., 2020).

While it is assumed that site specific conditions are responsible

for some of the heterogeneity in observed BMP performance,

it is not clear how much of that variance is due to any one

specific factor. Influent concentration is likely to have some effect

on certain types of structural BMPs. Barrett (2005) demonstrated

that percent pollutant reduction is often a function of influent

quality. Specifically, for certain types of BMPs percent removal is

low at low influent concentrations, and increases with increasing

influent concentrations. Horvath et al. (2023) found that influent

phosphorus concentrations had some explanatory ability for BMP

performance among grass strips, bioretnetion, and grass swale

BMPs. However, for some types of BMPs, such as media filters

and permanently pooled retention basins (Barrett, 2005), effluent

concentration is unrelated to influent concentration. Second, local

climatic conditions can be expected to influence BMP performance.

BMPs in dry climates have been shown to be more likely to

leach phosphorus than those in wetter climates (Horvath et al.,

2023). However, elucidating possible confounders such as climate

and soil condition has been constrained by the lack of reported

local condition data included in most BMP studies (Koch et al.,

2014; Eagle et al., 2017; Horvath et al., 2023). The age and

upkeep of BMPs is a third factor in BMP performance. On one

hand, the observed effects from BMPs are a function of various

physical and biological processes that vary in the time required

to produce desired reductions, especially as the spatial scale of

the deployed project increases (Meals et al., 2010). These “lag

times” between implementation and effect, which can be multiple

years, have been shown to vary between parameter and BMP type

(Meals et al., 2010). On the other hand the ability of BMPs to

function effectively may also change over time. There has not

been overwhelming published evidence to demonstrate the change

or lack of change in BMP performance over time (Liu et al.,

2017). Many of the papers and data available for assessing BMP

performance are short term monitoring project, typically around

1 year or less in length (Koch et al., 2014; Liu et al., 2017),

suggesting our ability to assess the long-term performance of BMPs

is limited.

Results from BMP studies are often reported as BMP efficiency

(or percent reduction):

BMPeff =
xcontrol − xexperiment

xcontrol
× 100,

where xcontrol is the pre-treatment or control pollutant

concentration and xexperiment is the pollutant concentration

measured after the BMP intervention. Several BMP data synthesis

efforts have applied statistical summaries or regressions using

BMP efficiency as the response variable of interest (Agouridis

et al., 2005; Simpson and Weammert, 2009; Clary et al., 2011;

Kroger et al., 2012; Koch et al., 2014; Liu et al., 2017). There

are several statistical shortcomings (distributional asymmetry,

skewness, and non-additive properties) when using efficiency

to estimate overall effect sizes across multiple studies that are

cause for concern for metrics estimated using this approach (Cole

and Altman, 2017; Nuzzo, 2018). Barrett (2005) demonstrated

the use of effluent concentration directly as a response variable

improved the ability to describe BMP performance. More recently,

researchers have applied effect size calculations more commonly

used in ecological meta-analysis. Horvath et al. (2023) used the

standardized mean difference between influent and effluent,

calculated as the difference in the means divided by the pooled

standard deviation of the two groups (Hedges and Olkin, 1985).

Grudzinski et al. (2020) applied the log ratio of means (ROM) to

summarize performance of livestock BMPs. ROM quantifies the
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difference in means between the control and experimental group

(Hedges et al., 1999):

ROMi = ln

(

xi,control

xi,experiment

)

= ln(xi,control)− ln(xi,experiment),

where xi, control and xi, experiment are the mean pollutant

concentrations for experiment i. The statistical properties of ROM

(normal distribution around zero and additive properties) are

preferable to using BMP efficiency (Osenberg et al., 1997; Hedges

et al., 1999). ROM >0 indicates higher percent reductions and ROM

<0 indicates pollutant leaching. One advantage of ROM is that the

statistical results calculated using ROM are easily transformed to

BMP efficiency for interpretation:

BMPeff =

(

1−
1

eROM

)

× 100

Building on previous work, the objectives of this paper are to (1)

assess the general performance of BMPs in the published literature,

and (2) identify relationships between BMP performance and

potential effect size moderators. To accomplish this, we conducted

a systematic review of relevant published literature and applied

a meta-analytic approaches to develop weighted results across

studies and identify variables that explain heterogeneity in BMP

performance. Based on the existing literature we hypothesized that

influent pollutant concentration, BMP type, and climate condition

are influential in BMP performance and could be used to predict

effluent concentration or percent reductions.

2 Methods

We conducted a systematic review of recent (2000-2022)

literature to compile U.S. field studies documenting the

effectiveness of best management practices on fecal indicator

bacteria, nutrient, and TSS concentrations. Prior meta-analysis

have utilized data reported in the International Stormwater BMP

Database (https://bmpdatabase.org/), which consists of self-

reported and quality checked BMP data (Clary et al., 2011; Koch

et al., 2014; Horvath et al., 2023). The International Stormwater

BMP Database only recently added agricultural BMPs and has

relatively sparse FIB data (Clary et al., 2011; Koch et al., 2014).

Since we had interest in both FIB performance and agricultural

BMPs we chose to utilize a systematic review.

The systematic review followed guidance provided in the

Collaboration for Environmental Evidence systematic review

guidelines (Collaboration for Environmental Evidence, 2018). In

order to maximize the number of studies included in the review, we

included both peer-reviewed studies and unpublished white papers

to reduce potential bias against negative results. The inclusion

criteria filtered out (1) non-field studies, (2) modeling results, (3)

studies that did not evaluate specific BMPs, (4) studies conducted

outside of the U.S. or published in a language other than English.

We ran search queries in Texas A&M Library Catalog, Web of

Science, and Google Scholar. Although results fromGoogle Scholar

are not always replicable, we utilized the service to maximize

search results for studies not published in academic journals

and presumably increase the chance of identifying studies with

negative effects. Fecal indicator bacteria study searches included

the following query: “fecal indicator bacteria” OR “E. coli” OR

“Escherichia coli” OR “enterococci” OR “enterococcus” AND

“best management practices” OR “BMPs” AND “effectiveness” OR

“performance”. Nutrient BMP studies utilized a similar query:

“nutrient” OR “nitrogen” OR “phosphorus” OR “sediment” OR

“TSS” AND “best management practices” OR “BMPs” AND

“effectiveness” OR “performance”.

Results from each database were first filtered to remove

duplicates. After removal of duplicates, each member of the

research team (n = 4) was assigned a subset of studies to

evaluate if they should be included (Table 1). Each study was

reviewed by two team members and differences in opinion

were collectively discussed and agreed upon before progressing.

The remaining studies were split among team members for

data extraction (Table 2), again with at least two team members

reviewing each study. Study locations were recorded as latitude

and longitude coordinates as described in studies. If coordinates

were not provided, the study team used Google Maps to locate

approximate study location using site descriptions (county, city,

municipal buildings, etc.) from the study and recorded the

coordinates. If data was provided in figures, the data was extracted

with the WebPlotDigitizer tool (Rohatgi, 2022). Searches, review,

and data extractions were conducted separately for FIB and

nutrient related parameters. See Supplementary Figures S1, S2 for

RepOrting standards for Systematic Evidence Syntheses (ROSES)

diagram. BMP data from the systematic review is available in

Kikoyo et al. (2024).

2.1 Statistical models

We used the “rma.mv” function in the metafor R package (R

version 4.3.1) to fit multilevel random effects regression models

with ROM as the effect variable (Viechtbauer, 2010; R Core Team,

2023).We fit separatemodels for FIB, total nitrogen (TN), dissolved

inorganic nitrogen (DIN), total phosphorus (TP), orthophosphate

(PO4), and total suspended sediment (TSS). Our models specified a

nested random effects term accounting for heterogeneity between

effect sizes from the same study and for heterogeneity between

studies. ROM was used as the effect size which required the

exclusion of studies that only provided measures of BMP efficiency

and not the underlying data used to derive the metric. A key feature

of meta-analysis is the weighting of effects using sampling variance

of individual effect sizes. Fifty-nine percent of 222 effect sizes

were missing standard deviations required to estimate sampling

variance. Removal of studies due to missing variance information

can introduce substantial bias (Kambach et al., 2020). Missing

standard deviations were imputed using the pooled ratio of the

mean effect size to coefficient of variation (CV) (Bracken, 1992).

Sampling variance was estimated utilizing the average squared CV

across all studies divided by sample size for each effect (Doncaster

and Spake, 2018; Nakagawa et al., 2023a):

v(ROM) =

∑K
i=1 (CV

2
control,i

)/K

ncontrol
+

∑K
i=1 (CV

2
experiment,i)/K

nexperiment
,

where v represents the sampling variance, CV2
control,i

and

CV2
experiment,i are the squared coefficients of variation from the ith

study for studies 1, 2, . . . , K. ncontrol and nexperiment are the number
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TABLE 1 Criteria applied for including or excluding studies within the review database.

Attribute Inclusion criteria Exclusion criteria

Study type Journal articles, book chapters, conference papers, unpublished research

reports, thesis and dissertations, organizational and agency white papers.

Synopsis or review studies, reports with reductions based on modeled

or other estimated reductions (e.g. TMDLs, watershed plans, or

modeling studies.

Outcomes Field studies with measured effects on fecal indicator bacteria or nutrient

concentrations.

Studies not explicitly linking concentration reductions to a specific

BMP or insufficient information to quantify reductions.

Geographical context Studies conducted within the United States. Studies outside of the United States.

Timeframe Studies published from 2000 through 2022. Studies published prior to 2000 or after 2022.

TABLE 2 Study and e�ect variables extracted for review.

Variable Description

Publication Year Year the study was published

Parameter The specific pollutant measured

Runoff source Dominant source of runoff (crop fields, livestock pasture,

commerical, residential)

Source type Major categorization of runoff source: agricultural or

urban

BMP BMP evaluated

BMP Classification BMP description based on NRCS conservation practice

standards and EPA BMP fact sheets

BMP Category BMP categorization based on structural or management

BMP Subcategory BMP subcategorization based on pollutant removal

processes

Study scale Spatial scale of the study area (lot/field, community,

watershed)

Location Location name used in the study description

State State where the study was conducted

Study area Drainage area in hectares

Longitude Approximated or reported latitude coordinate

Latitude Approximated or reported longitude coordinate

Study years Year or years when data were collected

N control Number of control measurements

N experiment Number of experiemental measurements

X control Mean concentration for control measurements

X experiment Mean concentration for experiemental measurements

SE control Standard error of control measurements

SE experiment Standard error of experimental measurements

Minimum control Minimum control measurement

Minimum experiment Minimum experiment measurement

Maximum control Maximum control measurement

Maximum experiment Maximum experiment measurement

SD control Standard deviation of control measurements

SD experiment Standard deviation of experimental measurements

Units Units reported by the study

Percent reduction BMP efficiency for studies that only reported efficiency

of samples in the control (pre-treatment) trial or experimental

(post-treatment) trial respectively.

Our initial models included log transformed influent

concentration, BMP subcategory (drainage modification, crop

field management, livestock management, filtration, treatment,

detention, or infiltration), aridity index (mean-centered), influent

concentration× BMP subcategory interactions, and aridity index×

BMP subcategory interactions were included as fixed effect terms.

Aridity index was the only moderator not obtained directly

in the systematic review (Table 2). We mapped study location

coordinates to aridity index values published in the “Global Aridity

Index and Potential Evapotranspiration Database - Version 3”

(Global-AI_PET_v3) which provides gridded 30 arc-second annual

average (annually averaged from 1970-2000) precipitation and

potential evapotranspiration estimates (Zomer et al., 2022). The

aridity index is calculated as the ratio of mean annual precipitation

to mean annual potential (or reference) evapotranspiration with

values between 0 and 0.5 considered hyper to semi-arid, and values

above 0.65 as humid.

We used an information-theoretic approach to select the most

parsimonious model from the subset of candidate models based

on corrected Akaike information criterion (AICc) estimated with

maximum likelihood (Cinar et al., 2021). Candidate models used

for variable selection were fit with maximum likelihood (ML). The

final model was selected from candidate models, which included

all combination and subsets of the full model, by selecting the

model with the lowest AICc score (Burnham et al., 2011; Cinar

et al., 2021). Regression coefficients of the selected model were

estimated using restricted maximum likelihood (REML). Relative

heterogeneity between and within studies were calculated using the

I2 metric described in Nakagawa and Santos (2012). Marginal R2

was used to describe the amount of variance explained by fixed

effects (Nakagawa and Schielzeth, 2013).

We tested for evidence of publication bias, in the form of small

study effect, by using the extension of Egger’s regression applied to

the multilevel model framework that included adjusted sampling

error as a moderator (Nakagawa et al., 2023b). We did not identify

evidence of publication bias in the surveyed studies (FIB: ROM

= 1.19, 95% CI [-3.23, 5.61]; TN: ROM = 0.31, 95% CI [-1.15,

1.78]; DIN: ROM = -2.4, 95% CI [-6.14, 1.59]; TP: ROM = -

1.97, 95% CI [-5.18, 1.23]; PO4: -0.05, 95% CI [-2.82, 2.72]; TSS:

ROM: 0.31, 95% CI [-1.15, 1.78]; Supplementary Figures S3–S8);

therefore, adjustments for publication bias were not included in the

final models. We conducted a sensitivity analysis of the robustness
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of overall effect sizes to individual studies using leave-one-out

analysis (Nakagawa et al., 2023b). This approach repeatedly fits

the selected model leaving out an individual value each time. The

overall effect and 95% CI from each refit model is compared to the

overall effect and 95% CI of the model fit to the full dataset. We did

not identify evidence of outliers or overly influential studies for any

of our models (Supplementary Figures S9–S14). We also applied a

sensitivity analysis to runoff source (agriculture and urban) and

study catchment scale (community, lot, and watershed) and did not

find evidence that these factors were especially influential to our

results (Supplementary Figures S21–S32).

3 Results

3.1 Summary of BMP literature

Our systematic review identified a total of 33 studies and 125

effect sizes on FIB, 24 studies and 50 effect sizes on TN, 31 studies

and 88 effect sizes for DIN, 31 studies and 61 effect sizes for

TP, 17 studies and 36 effect sizes for PO4, and 33 studies with

125 effect sizes for TSS. The majority of studies were identified

as smaller scaled lot or field studies (Figure 1A). FIB studies had

a roughly equal proportion of large watershed/catchment studies

and studies conducted at the community/farm scale or smaller.

We also identified that the majority of studies (all parameters)

were conducted on urban or non-agricultural runoff (Figure 1B).

We did identify a wide variety of BMPs in the review, but it did

not appear that any particular type of BMP was responsible for

the majority of studies for any given parameter (Figure 2). Our

review was restricted to studies published from 2000 through 2022.

The number of studies published for each parameter were roughly

uniformly distributed over time (Figure 3A) and are not indicative

of increases or decreases in the number of published studies. Study

length was strongly skewed for all parameters (Figure 3B). Median

study lengths were 3 (DIN), 2 (FIB), 2.5 (PO4), 2.5 (TN), 2.5

(TP), and 2 (TSS) years. There appears to be a strong clustering of

BMP studies in the mid-Atlantic region (North Carolina, Virginia,

Maryland) with other states sparsely represented or completely

absent from the review (Figure 4).

3.2 Regression models

3.2.1 Fecal indicator bacteria
There were only 19 studies and 63 FIB effect sizes available

to model after removal of studies and effects that only reported

BMPeff. The overall mean effect (estimated with the intercept

only multilevel random effects model) showed significant mean

reductions in FIB (ROM = 0.85, 95% CI [0.36, 1.34]; BMPeff =

57.4%, 95% CI [30.4%, 73.9%]; Figure 5) resulting from BMPs.

Total heterogeneity was moderate with a relatively large amount

of heterogeneity observed due to differences within studies (I2total
= 53.54, I2study = 10.03, I2effect = 43.51).

AICc scores included log transformed influent concentration

and the aridity index× BMP subcategory interaction as moderators

for the FIB model (Table 3). Moderator terms and interactions

explained a high proportion of effect size variance (R2marginal =0.89)

in the FIB model. Increased influent concentrations (β = 0.25, 95%

CI [0.14, 0.37]) resulted in significantly larger ROM effect for FIB

(Figure 6). Compared to the baseline aridity index× detention BMP

subcategory interaction, infiltration (β = -29.90, 95% CI [-50.34, -

9.47]), livestock management (β = -30.37, 95% CI [-50.93, -9.81]),

and treatment (β = -30.33, 95% CI [-49.62, -11.03]) interactions

had significantly smaller slopes. However, the data had uneven

coverage of BMP subcategories across the aridity index. Effects for

detention BMPs were clustered in humid climates (aridity index >

0.65) and the resulting estimate for the baseline interaction (β =

32.63, 95% CI [12.57, 52.69]) may not be reliable when extrapolated

to low-humidity regions.

3.2.2 Nitrogen
We identified 13 eligible TN studies and 14 DIN studies and

31 and 44 effect sizes respectively that could be included in the

regression model. Overall effects showed that BMPs resulted in

significant mean reductions in TN (ROM = 0.42, 95% CI [0.21,

0.62]; BMPeff = 34.0%, 95% CI [18.7%, 46.4%]; Figure 5) but not

in DIN (ROM = 0.64, 95% CI [-0.08, 1.35]; BMPeff = 47.1%, 95%

CI [-8.1%, 74.1%]; Figure 5). Heterogeneity was high for TN with a

large proportion of heterogeneity attributed to within study effect

(I2total = 77.12, I2study = 23.2, I2effect = 53.92). The DIN model

had even higher heterogeneity with a larger proportion attributed

between studies (I2total = 99.51, I2study = 83.53, I2effect = 15.97). AICc

scores indicated that none of the moderators resulted in substantial

improvement over the intercept only model (Table 3).

3.2.3 Phosphorus
We found 17 TP studies with 37 effect sizes and 9 PO4 studies

with 21 effect sizes for inclusion in regression models. There was

a significant overall reduction found for TP (ROM = 0.40, 95%

CI [0.03, 0.76]; BMPeff = 32.7%, 95% CI [3.4%, 53.2%]) but no

evidence of negative or positive effect for PO4 (ROM = -0.18,

95% CI [-0.56, 0.19]; BMPeff = -20.1%, 95% CI [-75.3%, 17.7%]).

For both the TP and PO4 models, heterogenity was high, with

moderate to high within study variance and low to moderate

between study variance (TP: I2total = 96.13, I2study = 32.15, I2effect
= 63.99; PO4: I

2
total = 97.28, I2study = 33.36, I2effect = 63.92).

The best model for both parameters only included influent as

a moderator (Table 3). Moderators explained a relatively small

amount of variance for both models (TP: R2marginal =0.12, PO4:

R2marginal =0.35). Influent concentration (β = 0.23, 95% CI [-0.035,

0.49]) was not significant at the 95% confidence level for the TP

model (Figure 7; Supplementary Table S4). Influent concentration

(β = 0.27, 95% CI [0.085, 0.44]) was significant for the PO4 model

(Figure 7; Supplementary Table S5).

3.2.4 Sediment
There were 12 eligible TSS studies with 26 effect sizes for

regression modeling. We found a significant and large reduction

in TSS concentrations across studies (ROM = 1.65, 95% CI [0.96,

2.34]; BMPeff = 80.9%, 95% CI [61.9%, 90.4%]). Heterogeneity was

high for TSS with a large proportion of heterogeneity attributed to

within study effect (I2total = 99.57, I2study = 0, I2effect = 99.57). Similar

to nitrogen, we did not find strong evidence linking any of the tested

moderators to BMP performance (Table 3).
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A B

FIGURE 1

Summary of (A) study scale and (B) dominant runo� source. Water quality parameters include total suspended sediment (TSS), total phosphorus (TP),

total nitrogen (TN), orthophosphate (PO4), fecal indicator bacteria (FIB), and dissolved inorganic nitrogen (DIN).

TABLE 3 Sumary of AICc values used for model selection.

AICc

Candidate models FIB TN DIN TP PO4 TSS

∼ Int 208.9 37.7 112.6 96.7 42.1 103.9

∼ Int+Influent 197.4 39.8 114.6 96.3 36.8 106.4

∼ Int+AI 209 40.3 114.8 98.2 45.2 106.5

∼ Int+AI+Influent 195 42.5 116.9 98.9 40.2 109.4

∼ Int+BMP 209.1 47.3 121 101.8 51.8 115.3

∼ Int+BMP+Influent 196.7 48.9 124 102.3 45.6 120.4

∼ Int+AI+BMP 210.1 50.8 124.1 104.8 56.4 120.7

∼ Int+AI+BMP+Influent 195.6 52.9 127.3 105.6 50.8 126.6

∼ Int+BMP× Influent 201.3 67.5 133.7 121.5 62.9 174.1

∼ Int+AI× BMP 208.1 75.1 137.6 121 67.7 175.5

∼ Int+Influent+AI× BMP 193.7 77.2 141.4 121.6 70.7 191.4

∼ Int+AI+BMP× Influent 202 83.2 145.9 127.3 72.9 191.9

∼ Int+AI× BMP+BMP× Influent 201.9 116.8 156.2 142.7 94.8 188.5

Bolded values indicate the selected candidate model. Int, intercept; AI, ariditiy index; BMP, BMP subcategory.

4 Discussion

Our systematic review revealed strong spatial disparities in

published BMP studies (Figure 4). Similar spatial disparities have

been identified and discussed in Koch et al. (2014) and Grudzinski

et al. (2020) and can be problematic for extrapolating results to

other regions of interest. Inconsistent spatial coverage presents

a challenge for disentangling confounding spatially correlated

predictors such as climate and soil due to poor representation

within the dataset. Horvath et al. (2023) found overlapping BMP

type and climate groups within their dataset that reduce the

ability to distinguish effects due to either BMP type or climate.

Similarly, we found detention type BMPs clustered only in humid

climates (high aridity index) which reduces our confidence in

extrapolating the interaction between BMP types and aridity

index for FIB (Figure 6). Not only were there spatially disparities,

but we observed that the relative distribution of aridity index

values does not resemble the distribution of aridity values across

the U.S. or the distribution of aridity values for agricultural

and developed land uses across the U.S. (Figure 8). Our review

indicates that BMP studies are over represented in the generally

humid regions of the country and underrepresented the more

arid regions. Study scale, runoff sources and BMP types appeared

well distributed, with the caveat that we are not aware of the

actual distribution of these values in BMPs deployed across the

country.
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FIGURE 2

Summary of BMPs identified in the systematic review by tested parameter. Water quality parameters include total suspended sediment (TSS), total

phosphorus (TP), total nitrogen (TN), orthophosphate (PO4), fecal indicator bacteria (FIB), and dissolved inorganic nitrogen (DIN).

We did not see an obvious trend in the number of published

studies over time. However, there was a clearly skewed distribution

in study length for all of the reviewed parameters. The prevalence

of short-term studies has been observed in similar domains

such as stream/river restoration (Bernhardt, 2005). Given the

nature of funding resources, this is not a surprising result but

does have implications for developing a full understanding of

BMP performance. First, there is strong evidence that certain

BMPs and larger scale projects require extended time to establish

and demonstrate positive benefit (Meals et al., 2010; Grudzinski

et al., 2020). Meals et al. (2010) documented lag times in the

improvement of receiving water ranging from less than 1 year to

upwards of 30 years, in particular sediment associated nutrients

were assumed to have some of the longest effects. Second, BMP

maintenance is an important components of BMP performance

and success (Koch et al., 2014; Heidari et al., 2023). Relatively little

work has been published investigating how the performance of

BMPs change over time, but there is scattered evidence that BMP
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A

B

FIGURE 3

Number of studies identified in the systematic review summarized by (A) publication date and (B) study length. Water quality parameters include total

suspended sediment (TSS), total phosphorus (TP), total nitrogen (TN), orthophosphate (PO4), fecal indicator bacteria (FIB), and dissolved inorganic

nitrogen (DIN).

performance may change as a function of BMP type and pollutant

type (Liu et al., 2017). While securing long term support for BMP

monitoring and maintenance is a substantial hurdle (Heidari et al.,

2023), unmaintained BMPs may see reduced performance (Koch

et al., 2014; Liu et al., 2017).

Study design prevented us from properly assessing BMP

effectiveness as a function of age. Conducting a meta-analysis of

BMP effectiveness over time is hampered both by the lack of long-

term studies and lack of standardized reporting mechanisms. Some

studies simply describe the change in pollutant concentrations

or loads at the beginning and end of the study as a percent

change (Haile et al., 2016) which presents statistical problems,

especially when sampling variance is not reported. Changes in

performance can also be described using a linear regression using

date (transformed as a numeric variable) as an independent variable

and log-transformed water quality as the dependent variable

(Mitsch et al., 2012, 2014; Paus et al., 2014). Slopes are a valid effect

size for use in meta-analysis but the set of covariates used between

studies should be the same since the coefficient of interest is

adjusted to account for other terms in the regression model (Becker

and Wu, 2007). It would be reasonable to assume that regressions

equations vary between studies to adjust results for seasonality,

Frontiers inWater 08 frontiersin.org

https://doi.org/10.3389/frwa.2024.1397615
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Schramm et al. 10.3389/frwa.2024.1397615

FIGURE 4

Distribution of studies identified in the systematic review by state and parameter. Water quality parameters include total suspended sediment (TSS),

total phosphorus (TP), total nitrogen (TN), orthophosphate (PO4), fecal indicator bacteria (FIB), and dissolved inorganic nitrogen (DIN).

flow rates, and other variables. Future efforts for assessing the

performance of BMPs over time would benefit not only from more

studies, but a more standardized method for providing comparable

results.

Meta-analysis indicated that BMPs resulted in significant

overall reductions in FIB, TN, TP, and TSS concentrations. We

did not find strong evidence of leaching or reductions of DIN or

PO4 across BMP studies. The results are in general agreement with

previous reviews that found effective (but highly variable) removal

efficiencies for nitrogen, phosphorus, and sediment (Clary et al.,

2011; Koch et al., 2014; Liu et al., 2017). The FIB results are useful

in particular because FIBs performance by BMPs have been sparsely

reviewed and generally understudied (Hager et al., 2019).

The FIB reductions generally agreed with our hypothesis

that BMP type, influent concentration, and aridity moderate the

effectiveness. The lower predicted performance in more arid

regions comes with the caveat that data coverage in arid regions

was quite poor, in particular for detention type BMPs. Despite this,

the results are promising considering the major limitations of using

FIB as a water quality criteria. It is important to note that FIB can

originate from non-human source and naturalize in soils, and result

in different underlying risk of illness (Ishii and Sadowsky, 2008;

Schoen and Ashbolt, 2010; Soller et al., 2010; Fujioka et al., 2015).

Since the fate and transport of human pathogens within BMPs can

potentially differ from FIB, BMP choices probably should not be

based on FIB reduction alone as alternative indicators or even direct
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FIGURE 5

Estimated e�ect sizes and intervals from the intercept only multilevel random e�ects model. Individual points represent studies, with size scaled by

sampling variance. The point estimate with uncertaintity bars indicate the estimated overall e�ect, 95% confidence intervals, and 95% prediction

intervals. Here, k indicates the number of overall e�ects with the number of unique studies in parenthesis. Water quality parameters include total

suspended sediment (TSS), total phosphorus (TP), total nitrogen (TN), orthophosphate (PO4), fecal indicator bacteria (FIB), and dissolved inorganic

nitrogen (DIN).

pathogen measurement becomes available (Walters et al., 2009;

Peng et al., 2016). However, relatively few studies have compared

human pathogen and FIB removal rates within BMPs (Rugh et al.,

2022).

While we observed a strong relationship between FIB influent

concentration and FIB removal across all BMPs, we anticipated

this relationship to vary by BMP subcategory. The reliance on

certain removal processes by BMP subcategories was expected to

effect the ability of the BMP to retain FIB at higher or lower

concentrations. We did have some evidence of differing BMP

subcategory removal under different aridity. The impact of aridity

might be due to differential fate and transport processes in arid

versus humid environments. On one hand, we assume that arid

conditions might be less hospitable to FIBs due to increased UV

exposure and osmotic stress. Conversely, these conditions are

also less hospitable to the protozoa, bacteriophages, and micro-

zooplankton that can play a strong role in predating on and

controlling FIB concentrations within BMP media (Zhang et al.,

2010; Burtchett et al., 2017; Dean and Mitchell, 2022). Site specific

conditions (such as retained soil moisture, turbidity, vegetation,

and other factors) play an important role in bacteria survival as well

as for influencing the filtration and attachment processes that retain

FIB within BMP media. For example, the presence or absence of

a submerged zone within a bioretention BMP has a strong effect
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A B

FIGURE 6

Predicted marginal e�ect of influent fecal indicator bacteria [FIB; (A)] and aridity index [conditioned on BMP subcategory; (B)]. Solid lines are the

predicted mean e�ect, dashed lines are the 95% confidence intervals, and the dotted lines are the 95% prediction intervals. Individual dots represent

each e�ect size identified in the literature with the size scaled by sampling variance. Higher aridity index (mean annual precipition/evapotranspiration)

indicates more humid conditions.

A B

FIGURE 7

Predicted marginal e�ect of influent pollutant concentration on total phosphorus [TP; (A)] and orthophosphate [PO4; (B)] reductions. Solid lines are

the predicted mean e�ect, dashed lines are the 95% confidence intervals, and the dotted lines are the 95% prediction intervals. Individual dots

represent each e�ect size identified in the literature with the size scaled by sampling variance.

on FIB removal (Rippy, 2015; Peng et al., 2016). While our models

capture some of the variance due to these differences as between

study effects, including these variables as fixed effect moderators

in a meta-regression model would be valuable but these details are

under reported in BMP studies.

Although we anticipated increases in nitrogen removal rates

with increases in influent concentration, we did not find evidence

to support this. Increased flow rates, which can reduce residence

time and increase BMP flushing, lowers nitrogen retention

(Wollheim et al., 2005; Craig et al., 2008). High nitrogen influent

concentrationsmight be associated with higher flows and decreased

BMP retention times in the included studies. However, we did

not collect associated flow data or discern between flow-weighted

and mean concentration data within this study. Many of the

reviewed studies appear to fail to include associated flow volume

information.

We also did not find evidence that BMP type or aridity

moderated nitrogen removal. This result is largely consistent with

findings in reviews by Koch et al. (2014), Hager et al. (2019), and

Horvath et al. (2023). There are a large number of abiotic and biotic

processes that control nitrogen retention and removal in BMPs and

these processes are moderated by both site specific climate and

design factors (LeFevre et al., 2015; Valenca et al., 2021). It is likely

that these site specific factors (retained soil moisture, submerged

anoxic zones, vegetation, media composition) are not captured by

our broad categorization of BMP types and aridity index values. For

example, Valenca et al. (2021), using data from the International

Stormwater BMP Database, showed that the relative importance
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FIGURE 8

Comparison of the relative distributions (density) of aridity index

values (mean annual precipition/evapotranspiration) across the U.S.,

across U.S. agricultural and developed land uses, and for BMP study

locations. Higher aridity index values indicate more humid

conditions.

of climate and design variables for moderating nitrogen removal

varied by BMP type.

Although influent phosphorus concentration was included in

the selected TP and PO4 models, they provided relatively low

explanatory ability. By comparison, Horvath et al. (2023) found

three types of BMPs resulted in differing TP and dissolved inorganic

phosphorus removal rates with influent concentrations explaining

a small proportion of removal rate variance. Again, site-specific

factors not captured in our broad categorizations of BMP type

and aridity index play a role in differential phosphorus removal

rates. Soil physical characteristics and media amendments (iron

for example) can play an critical role in sorption capacity and are

dependent on covariates such as contact time and pH (Hogan and

Walbridge, 2007; LeFevre et al., 2015).

4.1 Study limitations

A few reviews have noted a common trend of insufficient

methodological and site specific data among peer-reviewed BMP

performance studies (Eagle et al., 2017; Liu et al., 2017; Grudzinski

et al., 2020). We confirm that inconsistent reporting among studies

complicates data extraction, effect size calculations, and attributing

important sources of variance. Our desire to evaluate the effects

of specific BMP parameters was hindered by the overall lack of

reporting of relevant parameters such as drainage area, infiltration

media/soil, infiltration volume, riparian/buffer width and area,

and other relevant factors. The lack of BMP specific parameters

certainly contributes to our relatively high model variance. The

International Stormwater BMP Database addresses some of these

concerns through a standardized reporting format. Our future

efforts will incorporate data from the International Stormwater

BMP Database with data retrieved through a systematic review.

Additionally, this study was a broad scale look across BMP types

which limits factors that cannot be compared across different

types of BMPs. For example, livestock management BMPs may not

rely on or report parameters such as vegetative buffer width or

infiltration area. Inclusion of such factors in our meta-regression

approach would necessarily exclude certain types of BMPs. Future

BMP-specific meta-analysis might be more useful and informative

for practitioners by providing effect sizes of parameters that were

necessarily excluded from our study.

One reviewer also noted some examples of missing

studies, attributable to our selection of search terms and

inclusion criteria (Table 1). In particular, our search query

did not include specifc practice names, instead using “BMP”

or “best management practice” as a keyword search. This

choice may have led us to miss studies that only included

the practice name. Our inclusion criteria of concentration

based studies may have also lead to the exclusion of studies

that focused on load reductions (through flow reductions)

but may have included data on relevant concentration

effects.

5 Conclusion

Scaling BMP pollutant reductions to basin wide water quality

improvement remains a substantial challenge. While there are

numerous studies of field scale practices, linking BMPs with large

scale watershed improvements is hindered by lack of adequate

controls, scaling of measurement and analytic uncertainty, and

substantial lags in downstream water quality improvement (Meals

et al., 2010; Tomer and Locke, 2011; Melland et al., 2018).

The major identified challenges include the lack of long term

studies, inadequate data collected on BMP management, and

incomplete understanding of BMP function (Liu et al., 2017;

Lintern et al., 2020). As a result there is strong reliance on

numeric watershed models to assess performance of BMPs at

watershed scales, but Liu et al. (2017) notes there is discrepancy

between rates of water quality improvements found in modeling

studies and empirical studies. There is a clear need to fill

knowledge gaps through additional long-term spatially relevant

BMP studies. However, we emphasize the need for convergent

research approaches that better align study design and reporting

that produces data aligned with data synthesis and modeling

approaches.

Improved reporting and data availability provides opportunity

to improve decision-making through applied numeric modeling

approaches that better represent BMP systems, or to advance

new modeling methods for decision-making with statistical based

approaches such as machine-learning. To improve future data

synthesis efforts, we highly recommend future BMP studies

follow the reporting guidelines provided in Eagle et al. (2017).

In particular, authors should provide clearly defined water

quality parameters, tabular data (either in the manuscript, as

supplementary material, or in an open data repository), and error

estimation at minimum. Control and treatment means should

be made available in reports, not just the transformed efficiency

or percent change values. Furthermore clearly defined controls
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and treatments are fundamental for comparing across studies.

Finally, a major shortcoming in our synthesis was driven by the

lack of reported covariate data. Although data such as soil type

may not be an within study experimental covariate, documenting

of these types of study variables is useful for data synthesis

efforts.

In summary, we used multi-level random effects meta-

regression models to estimate overall BMP effectiveness from

systematically reviewed studies. Although there was relatively

high variance between studies, we found strong evidence that

BMPs reduce overall mean FIB, TN, TP, and TSS concentrations.

These results are generally consistent with results from prior

reviews that used different approaches to synthesize results.

Influent concentrations moderated BMP efficiency for both FIB

and PO4, with larger removal rates at high influent concentrations.

We found that aridity and BMP subcategory moderated BMP

performance for only FIB. We anticipated stronger interaction

effects between inflow concentrations and BMP subcategory

due to differences in influent based performance demonstrated

in prior studies. Most likely, site specific design and climate

variables not captured in our review or by our choice in BMP

classification approach play a more important role in explaining

BMP performance variability. Future efforts should seek to retrieve

more detailed study information. Furthermore, our systematic

review highlights the poor spatial coverage of BMP studies. The

reviewed studies therefore fail to incorporate the range of soil,

climate, and runoff conditions needed to adequately link BMP

performance to local predictors. To adequately estimate the effects

of moderating variable on BMP performance we suggest that

there is a need for additional aligned BMP studies across regions

and conditions.
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