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This study investigates quantifiable and explicable changes in Land Use and 
Land Cover (LULC) within the context of a freshwater wetland, Hakaluki Haor, 
in Bangladesh. The haor is a vital RAMSAR site and Ecologically Critical Area 
(ECA), which needs to be monitored to investigate LULC change patterns for 
future management interventions. Leveraging Landsat satellite data, the Google 
Earth Engine Database, CART algorithm, ArcGIS 10.8 and the R programming 
language, this study analyses LULC dynamics from 2000 to 2023. It focuses 
explicitly on seasonal transitions between the rainy and dry seasons, unveiling 
substantial transformations in cumulative LULC change patterns over the study 
period. Noteworthy changes include an overall reduction (~51%) in Water 
Bodies. Concurrently, there is a significant increase (~353%) in Settlement areas. 
Moreover, vegetation substantially declines (71%), while Crop Land demonstrates 
varying coverage. These identified changes underscore the dynamic nature 
of LULC alterations and their potential implications for the environmental, 
hydrological, and agricultural aspects within the Hakaluki Haor region. The 
outcomes of this study aim to provide valuable insights to policymakers for 
formulating appropriate land-use strategies in the area.
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1 Introduction

Wetlands are areas of natural or man-made, permanent or temporary, static or flowing 
fresh, brackish, or salt water bodies (Convention on Wetlands, 2021). These are highly valued 
ecosystems for providing significant services to humanity, ranging from freshwater supply, 
food, groundwater recharge, flood control and climate change mitigation (Sieben et al., 2018). 
In addition, wetland ecosystems are vital in supporting floral and faunal diversity (Xu et al., 
2020; Kumar et al., 2023). However, wetlands are facing degradation due to the conversion of 
wetland areas to croplands and human settlements to support the demands of rapidly growing 
population (Zekarias et  al., 2021; Abdulmalik et  al., 2022). In addition, infrastructural 
expansion and water extraction for agriculture reduce wetland areas (Prigent et al., 2012). 
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Increases in greenhouse gases and air temperature can alter 
precipitation patterns, cause drought or increase water levels. These 
changes can either reduce water levels in wetland areas or flooding 
and affect the biodiversity of wetland ecosystems (Choudhury et al., 
2021; Nayak, 2022).

Both anthropogenic and natural phenomena drive the land use 
and land cover (LULC) changes in wetland ecosystems, which 
significantly impacts the ecology of wetlands (Bakr and Afifi, 2019; 
Assefa et al., 2021). Imran et al. (2023) reported that human activity 
is one of the key reasons for fish decline in the Hakaluki Haor. 
Research conducted on Tanguar Haor, a RAMSAR site, found that 
between 1989 and 2017, around 33% of the vegetation cover was 
converted into agricultural land due to rapid population increase 
(Haque et al., 2021). Climate change through increasingly erratic 
weather patterns that include temperature rises, unpredictable rainfall 
and flash floods impacts fish ecology and diversity in the haor 
ecosystems in Bangladesh (Majumder et al., 2013; Pandit et al., 2023).

Monitoring wetlands can offer significant insights into their 
functioning and responses to anthropogenic and environmental shifts 
(Stratford, 2018). Thus, understanding and identifying these changes 
in wetland ecosystems is crucial for effective environmental 
management, resource planning and decision-making processes 
(Gokce, 2018). Traditional labor-intensive field-based and satellite-
based monitoring strategies have been employed for monitoring 
wetland ecosystem. However, globally, satellite-based remote sensing 
has become an inevitable tool for monitoring and evaluating LULC 
change patterns, thereby contributing to the long-term sustainability 
of wetland resources (Hossain et al., 2021; Kavhu et al., 2023).

The commonly used method of classifying remotely sensed 
images, for example, the Maximum Likelihood approach, requires 
downloading and managing large datasets, which results in higher 
computational requirements and comparatively longer processing 
times. As a result, there is an increasing inclination toward using 
machine learning algorithms in cloud-based platforms worldwide to 
analyze LULC classifications and estimate long-term changes because 
of their effectiveness (Lary et al., 2016; Biswas et al., 2023). Cloud-
based platforms, e.g., Google Earth Engine, allow researchers to use 
different Machine Learning algorithms, i.e., CART, Random Forest 
(RF) and Support Vector Machine (SVM), which are gaining 
popularity in this regard (Shaharum et al., 2020; Loukika et al., 2021).

Bangladesh, a low-lying deltaic country in South Asia, has a vast 
network of wetlands that occupy over 7–8 million hectares, making 
up almost 50% of its total area (Akonda, 1989; Yousuf Haroon and 
Kibria, 2017). Bangladesh is a signatory to the RAMSAR convention, 
an international treaty to sustainably conserve wetlands ecosystems 
from natural and anthropogenic threats (Mulligan and Griffin, 2012; 
DBHWD, 2016). The wetland network of Bangladesh possesses 
various hydrological features, including rivers, floodplains, lakes, 
haors (backswamp), baors (oxbow lake), beels (deepr part of 
floodplain), fishponds, swamps, and low-lying regions, generally 
classified as wetlands, with ‘haors” specifically denoting seasonal/
intermittent freshwater floodplains (Khan et  al., 1994; DBHWD, 
2016). During the monsoon season, haors—essentially bowl-shaped 
depressions nestled between the natural leaves of rivers—receive 
surface runoff and transform into vast water bodies for about 6 months 
of the year (Nishat et al., 1993). According to the DBHWD (2016), the 
haor region comprises 373 haors spanning approximately 859,000 
hectares, constituting 10% of the nation’s overall wetland area. 

Recognizing significance, two freshwater haors have been declared as 
RAMSAR sites: Tanguar Haor and Hakaluki Haor. The importance of 
freshwater wetlands is profound; however, a recent study conducted 
by Waleed et  al. (2023) revealed a concerning trend of wetland 
degradation in the north-eastern part of Bangladesh. This study 
reported about an 80% reduction in some of the wetlands from 
this region.

Hakaluki Haor, a freshwater wetland, is a vital RAMSAR site in 
Bangladesh’s Northeast hydrological region (WARPO, 2001; DBHWD, 
2016). This Ecologically Critical Area (ECA) supports diverse 
biodiversity and fisheries resources (Choudhury and Nishat, 2005). 
About 200,000 people living in the vicinity of the haor directly or 
indirectly depend on the wetland resources (Banglapedia, 2021). 
However, the degradation of land cover in Hakaluki Haor caused by 
natural events like siltation, droughts, human activities, and 
insufficient monitoring and management might affect the entire 
ecosystem. Therefore, these wetlands need constant monitoring. 
While satellite-based techniques are extensively utilized globally, their 
application in Bangladesh for evaluating change and monitoring 
wetlands remains limited. Noteworthy studies include those 
conducted by Waleed et al. (2023) on ML-based study of wetlands in 
the Sylhet region, Haque and Basak (2017) on Tanguar Haor, 
Bhattacharjee et al. (2021) on Lakshibaur-Nalair Haor, and Islam et al. 
(2018) on Hakaluki Haor.

Here, we conduct a comprehensive analysis of LULC dynamics of 
Hakaluki Haor applying a Machine Learning algorithm (CART) and 
Google Earth Engine. While Random Forest is considered to be a 
more robust ML algorithm in Google Earth Engine (GEE), many 
researchers have applied the decision tree-based algorithm, 
particularly Classification and Regression Trees (CART), for 
accurately mapping changes in land cover of wetland habitats (Yao 
et al., 2019; Chen et al., 2021; Aslam et al., 2024). CART is a simple, 
fast, and computationally efficient algorithm with straightforward 
visualization and analysis extensively used for land use change analysis 
(Amani et al., 2017; Sang et al., 2019; Yao et al., 2019; Arpitha et al., 
2023; Iandolo et al., 2024).

Classification and Regression Trees (CART) is particularly useful 
for classifying satellite images to identify different land use patterns 
due to its intuitive and interpretable decision-making process, ability 
to capture complex non-linear relationships, and robustness in 
handling high-dimensional and noisy data. The binary tree structure 
of CART allows it to efficiently select relevant features and make 
accurate classifications based on the hierarchical decision rules, which 
mimic human decision-making processes. This makes CART an 
effective tool for distinguishing between various land use categories in 
satellite imagery, providing clear and actionable insights into land use 
patterns (Blanquero et al., 2021; Biswas et al., 2023). CART also offers 
built-in functionality for handling large geospatial datasets. Although 
Support Vector Machines (SVM) are frequently reliable, their 
black-box nature sometimes restricts the interpretability of decision 
rules. For these reasons, we utilized the CART algorithm in GEE for 
the study.

This study spans a temporal scope from 2000 to 2023, focusing on 
two distinct seasons- rainy and dry. Each season spanned 6 months 
and was chosen to provide a more comprehensive representation of 
the actual conditions. As relying solely on dry or rainy seasons, data 
may not accurately capture the full spectrum of LULC dynamics of the 
haor basin. Employing remote sensing techniques to mosaic imagery 
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across multiple years and seasons, the study aims to detect spatio-
temporal LULC change patterns focusing on differences in the two 
distinct seasons of different land cover types within this critical 
wetland. The study also aims to provide valuable insights into the 
complex interactions between seasonal variations and human-
environment interactions in this freshwater wetland of 
great importance.

2 Materials and methods

2.1 Study area

Covering around 8.5% of Bangladesh’s total area, the Sylhet 
Division consists of four districts in the northeastern region: Habiganj, 
Moulvibazar, Sunamganj, and Sylhet. The region is characterized by 
the Surma-Kusiyara floodplains and contains over 6,000 haors. 
Approximately two-thirds of these are permanent, while the rest are 
seasonal, when pre- and monsoon rains flood the area (Climate 
Change Impacts and Adaptation Assessment in Bangladesh, 1999; 
Brammer, 2012; Haque et al., 2017). The present study is conducted at 
Hakaluki Haor, which lies between 24° 34′ N and 24° 47′ N latitudes 
and 92° E and 92° 10′ E longitudes (Figure 1). The total area of the 
study region is approximately 410.56 square km.

The Haor is in a low-lying depression bordered by the Patharia 
and Madhab hills to the East and the Bhatera hills to the West. The 
structure has more than 238 interconnected beels, some permanent 
and others seasonal. The climate of this area is greatly influenced by 
the onset and end of the annual monsoon, leading to the recognition 
of four different seasons (pre-monsoon season, from April to May, is 
characterized by a progressive augmentation in precipitation; the 
monsoon season, from June to September, is characterized by long-
lasting and heavy precipitation; post-monsoon season, from October 
to November, is characterized by a decrease in rainfall; and dry season, 
from November to March, is characterized by limited or no rainfall). 
During post-monsoon season, only a minute portion of 3 to 4% of the 
overall precipitation takes place. During the monsoon season, the haor 
significantly increases water levels, whereas it becomes dry in the dry 
season. This study utilized two distinct seasons, i.e., rainy season 
extends from May to October and the dry season extends from 
November to April.

2.2 Data collection and analysis

This study utilized the Landsat images from 2000 to 2023. The 
detailed procedure, which solely depends on the GEE environment, is 
depicted in Figure 2.

2.3 Data acquisition

The study utilized United  States Geological Survey (USGS) 
Landsat-5 (Collection 2 Tier 1 TOA Reflectance), Landsat-7 
(Collection 2 Tier 1 TOA Reflectance), Landsat-8 (Collection 2 Tier 1 
TOA Reflectance), and Landsat-9 (Collection 2 Tier 1 TOA 
Reflectance) data, along with remote sensing data accessible through 
Google Earth Engine (GEE). The images used in this study were taken 

at five-year intervals in the years 2000, 2005, 2010, 2015, 2020, and 
2023. Due to the dynamic nature of the haor, shorter intervals may not 
adequately capture trends in transitions of LULC patterns. For this, a 
5-year interval was chosen to depict significant shifts in LULC patterns. 
These images represent the surface reflectance data obtained from the 
sensors of Landsat-5 TM, Landsat-7 ETM+, Landsat-8 OLI/TIRS, and 
Landsat-9 OLI/TIRS after undergoing atmospheric correction.

The authors standardized the surface reflectance data obtained from 
the sensors of Landsat-5 TM, Landsat-7 ETM+, Landsat-8 OLI/TIRS, 
and Landsat-9 OLI/TIRS by using Google Earth Engine, which provides 
access to pre-processed datasets that include both radiometric and 
geometric corrections. This directly addresses the concern about 
different radiometric and slight variations in geometric attributes. 
Google Earth Engine’s pre-processed datasets are inherently correct for 
sensor-specific characteristics and acquisition dates, ensuring 
consistency in reflectance values across different Landsat missions. One 
key issue is the variation in spatial resolution among the sensors. 
Landsat-5 TM has a spatial resolution of 30 m for visible, near-infrared 
(NIR), and shortwave infrared (SWIR) bands, and 120 m for the thermal 
infrared (TIR) band. Landsat-7 ETM+ offers 30 m for visible, NIR, and 
SWIR bands, 15 m for the panchromatic band, and 60 meters for the 
TIR band. Landsat-8 OLI/TIRS and Landsat-9 OLI/TIRS both have 
30 m for visible, NIR, and SWIR bands, 15 m for the panchromatic band, 
and 100 m for TIR bands (collected at 100 m and resampled to 30 m).

To address these differences, Google Earth Engine standardizes 
spatial resolution through resampling techniques, ensuring that all 
datasets are harmonized to a common resolution, typically 30 meters 
for most analyses. In addition to radiometric and geometric 
corrections, inherent standardization processes in Google Earth 
Engine include radiometric calibration, atmospheric correction, and 
geometric correction. These processes ensure that the data is 
comparable and reliable across different sensors. To further enhance 
standardization, cloud masking processes were employed to remove 
cloud and cloud shadow pixels, thereby ensuring the quality and 
accuracy of the surface reflectance data.

These steps were crucial in mitigating variations and ensuring the 
datasets were consistent for change detection analysis. The overall 
accuracy and kappa coefficient of the classification findings were 
subsequently assessed using ground truthing data obtained via Google 
Earth and GPS, validating the results.

The ground truthing data from 74 locations for the year 2023 was 
collected through field visits using the Global Positioning System (GPS) 
device (Figure 3). For the previous years, 100 reference validation points 
were generated from Google Earth applying random sampling method 
for each map by following the methods of (Rwanga and Ndambuki, 
2017). Features found in the historical images from Google Earth were 
compared with the classified images. Table 1 provides comprehensive 
data regarding satellite imaging. Data were collected for two seasons, 
dry (November to April) and rainy (May to October). In total, 72 images 
were considered for this study (6 images per season × 2 seasons × 6 years).

2.4 Classification scheme

After conducting a comprehensive literature review and drawing 
upon prior knowledge in the study area, a subsequent classification 
system is formulated as depicted (Table 2).
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2.5 Classification and regression tree 
classifier algorithm

Leo Breiman first proposed the Classification and Regression 
Trees (CART) algorithm in 1984. Bittencourt and Clarke (2003) stated 
that CART algorithms use decision trees for non-parametric pattern 
classification. Using if-else decision rules, these trees build a model 
containing Root Nodes, Decision Nodes, and Terminal Nodes. Its 
usefulness is increased by a more robust tree with additional branches. 
Using a cost-complexity parameter, CART prunes a massive tree it 
built using binary decision trees in order to minimize cross-validation 
error (Loh, 2014). Surrogate splits are used to deal with missing data, 
and the model is checked using testing and training samples 
(Shaharum et  al., 2020). Taking into account the limits of high-
dimensional data and the effects of sample size on effectiveness, 
CART’s recursive operation makes simple decisions possible using the 
“classifier.smileCart” method from the GEE library (Loukika et 
al., 2021).

CART is a widely used machine-learning algorithm for image 
classification (Amani et al., 2017; Sang et al., 2019). In this study, 
we used CART algorithms for LULC classification. However, more 
Machine Learning algorithms like SVM and RF could be used to 

assess the changes and find which algorithm best suits these change 
analyses in the context of freshwater wetlands. We will work on these 
research areas in the near future. These research findings could 
significantly assist GIS analyses in haor areas and localized 
investigations. Mitigating the loss of Water Bodies and Vegetation 
requires rigorous conservation measures.

We employed the supervised classification (Smile CART 
classifier) method within Google Earth Engine to delineate the land 
cover within the study area. We manually gathered representative 
training samples for each land cover target class, referenced by 
spectral characteristics observed in high-resolution imagery from 
Google Earth Pro. Training data were collected from various locations 
across the study area, ensuring comprehensive representation for 
each class. We implemented a structured methodology, assigning 
70% of the sample points for training the model and reserving the 
remaining 30% for validation purposes. This partitioning facilitated 
the construction of a robust predictive model, utilizing training 
samples for model development and testing samples for performance 
validation. Before training the Smile CART classifier algorithm with 
the designated data, we defined the model with essential arguments, 
including features, classProperty, and inputProperties. Iterative 
adjustments were made to the sample data to enhance accuracy, 

FIGURE 1

Geographical location of the Study area: (A) Location of Bangladesh, (B) Location of Greater Sylhet region and (lower-right) and (C) Map of the 
Hakaluki Haor, the study area.
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ultimately leading to the effective classification of LULC imagery. This 
classification process significantly contributed to a thorough 
comprehension of land use and cover dynamics in the study area, 
with the Smile CART classifier being instrumental in the actual 
classification process.

2.6 Accuracy assessment

Model evaluation is a crucial phase in the machine learning 
process as it validates the precision and dependability of the model. 
This study employed measures, including overall accuracy (OA) and 
kappa coefficient (k), to perform the classification procedure. The 
ground truthing data from 74 locations for the year 2023 was 
collected through field visits using the GPS device (Figure 3). For 
the previous years, 100 reference validation points were generated 
from Google Earth applying random sampling method (Rwanga and 
Ndambuki, 2017). This information assessed the overall accuracy 
and kappa coefficient of the classification findings. The formulae (1) 
and (2) were used to calculate the overall accuracy (OA) and kappa 

coefficient (K), respectively (Congalton, 1991). These calculations 
were based on the confusion matrix. The formulas for calculating 
the overall accuracy (OA) and kappa coefficient (K) are 
provided below.

 

Overall Accuracy OA

Total Number of Correctly Classified 

� � �
ppixels Diagonal

Total Number of Reference pixel

� �
�100

 
(1)

 

Kappa Coefficient K

TS TCS Column Total Row Total

TS TS

� � �
�� � � � �
�

)

�� � � � �
�

Column Total Row Total)
100

 
(2)

Where, TS = Total Sample and TCS = Total Correct Sample.
An accuracy assessment was conducted to evaluate the credibility 

and reliability of the Land Use and Land Cover (LULC) maps during 
the study period. This assessment procedure involved utilizing various 
tools and methods, including ArcGIS 10.8 (Redlands, 2011), the 
Google Earth website, and on-site data collection within the study 
area. The data were collected from each of the land cover schemes 
(Figure 3).

3 Results

3.1 Accuracy assessment

Table  3 presents the accuracy assessment results, detailing 
Kappa coefficients and reference data percentages for the years 
2000, 2005, 2010, 2015, 2020, and 2023, categorized by rainy and 
dry seasons. The accuracy assessments for the years 2000 to 2020 
used Google Earth as the reference data source, yielding Kappa 
coefficients ranging from 74 to 84%. In 2023, on-site data was 
utilized, resulting in Kappa coefficients of 73% for the rainy season 
and 76% for the dry season. The results indicate varying 
classification accuracy across different years and seasons, with 
generally moderate to substantial agreement. The highest Kappa 
coefficient of 84% was observed in the dry season of 2000 using 
Google Earth data, while the lowest of 73% was recorded in the 
rainy season of 2023 using on-site data.

3.2 LULC change detection

The Hakaluki Haor, our designated research area, was classified 
into five main categories to analyze changes in two distinct seasons 
from 2000 to 2023 with intervals of 5 years. The portrayal (Figure 4) 
highlights an overall decline (~10%) in water bodies in the rainy 
seasons over the 23 years. Hakaluki Haor’s water area may occasionally 
rise during the rainy seasons. This might be due to the inflow of too 
much water from river catchments and precipitation in Meghalaya, 
India’s uplands. So, we also analyzed the changes in the dry season to 
get the actual scenario. During the dry season, the water area originally 
covered approximately 83 km2 in 2000. After that, there was some 
stability until 2010, then a sharp decrease over the next 13 years, such 
that by 2023, it had decreased to nearly 41 km2 (Figure 5). The analysis 

Data Collection
Import Landsat Imagery

Landsat LT 05 - 2000, 2005 
Landsat LE 07 - 2010 
Landsat LC 08 - 2015, 2020 
Landsat LC 09 - 2023

Data Preparation
Input region of interest (ROI).
Data Extraction by ROI and time frame.
Clouds Masking.
Enhance imageries.

Image Classification
Supervised classification
ee.Classifier.smileCart algorithm

LULC DataLULC Map

Change Detection

Accuracy Assessment

FIGURE 2

Flow chart of methodology.
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emphasizes a worrisome overall reduction in water bodies (~51%) 
(Figure 6).

The areal coverage of vegetation had a significant decline, 
decreasing from nearly 58 km2 in 2020 to ~km2 in 2023 during the 
rainy seasons (Figure 4). This observed trend is also evident during 
the dry seasons, with a 71% reduction in vegetation (Figure 5). The 
analysis of land cover variation throughout the designated years and 
seasons unveils variations in the extent of cropland coverage in 
Hakaluki Haor. During both the rainy and dry seasons, the extent of 
cultivable land fluctuates noticeably between 2000 and 2023 
(Figure  6). Significantly, a fluctuating trend in agricultural land 
coverage occurs in the years following the initial increase from 2000 
to 2005.

The study revealed a substantial rise in the settlement areas in 
Hakaluki Haor across the given years and seasons (Figure 6). Between 

2000 and 2023, a significant expansion in the inhabited area was seen 
throughout both the rainy and dry seasons. The habitation area 
increased from nearly 20 km2 in 2000 to ~94 km2 in 2023 during the 
rainy season and from around 22 km2 in 2000 to 94 km2 in 2023 during 
the dry season. Considering the rainy and dry seasons, the total 
percentage growth in settlement areas from 2000 to 2023 is 
around 353%.

The analysis of barren land in Hakaluki Haor during the study 
period showed significant variations in extent in both seasons 
(Figure 6). In 2000, the area of barren land during the rainy season was 
around 13km2, which decreased to nearly 12 km2 during the dry 
season. In 2005, there was a reduction in the barren land area to 
~6 km2, which was then followed by an expansion to nearly 20 km2 
during the dry season. This tendency continues with variations in 
succeeding years.

FIGURE 3

Ground-truthing data points for on-site visits in 2023.
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3.3 Change detection

Change analysis was conducted for Hakaluki Haor from 2000 to 
2023, covering 23 years. This comprehensive approach enabled the 
assessment and evaluation of changes in land use and land cover 
dynamics over the specified timeframe (Figure 7). The analysis reveals 
a notable pattern of persistence, loss, and gain across the categories 
(Figure 8).

Water bodies in the Rainy season showed a higher persistence 
(~127 km2) than in the dry season (~31 km2) (Figure 8). Additionally, 
in the rainy season, water bodies exhibit losses (~38 km2) and gains 
(~22km2). Meanwhile, the dry season demonstrates substantial losses 
(~48 km2) and gains (~9 km2). The vegetation area had considerable 
persistence but underwent more significant losses (~50 km2) during 
the rainy season than increases (~9 km2). During the dry season, there 
were continuous changes in vegetation cover, as shown by losses of 
nearly 45 km2 and gains of approximately 6 km2. Settlement in the 
region demonstrated notable gains and persistence throughout the 
Rainy and dry seasons. On the contrary, cropland exhibited a 
moderate to high degree of persistence. However, it undergoes 
significant losses, particularly during the dry season. On the contrary, 
barren land showed negligible persistence, as losses exceeded gains 
during both seasons.

4 Discussion

The findings of this study illustrate the evolving environmental 
conditions within this critical freshwater ecosystem through the 
comprehensive analysis of the land use land cover dynamics occurring 
in the Hakaluki Haor from 2000 to 2023. A discerning decline in water 
bodies has been observed in both the rainy and dry seasons, which 
can negatively affect aquatic ecosystems and the availability of water 
resources. The decrease in water bodies also poses a threat to fish 
diversity in Hakaluki Haor, the largest inland freshwater wetland 
ecosystem (Islam et al., 2011; Aziz et al., 2021) Hakaluki Haor, which 
provides habitat for a diverse range of fisheries resources, has declined 
due to the loss of permanent waterbodies and overexploitation. From 

a documented 107 species in 2001, the fish species reduced to only 64 
species in 2018 (Centre for Natural Resource Study, 2003; Imran et al., 
2023). Aziz et  al. (2021) argue that increasingly erratic rainfall, 
temperature rises and siltation in the beel (i.e., deeper portion of 
haor), and fishing practices are also responsible for the decline 
of fisheries.

Overall, the wetlands of the northeastern part of Bangladesh are 
experiencing a reduction in their coverage. In the same region, a 
study by Bhattacharjee et  al. (2021) in Lakshmibaur-Nalair Haor 
revealed that deep water bodies have diminished by ~38% over the 
last three decades. The researchers found that this significant decrease 
in deep waterbodies was caused by the construction of dams in the 
upstream rivers that led to increased siltation and shallow water areas 
were converted into agricultural activities. Furthermore, also 
reported that the deep water bodies of the haor area are becoming 
increasingly scarce in the regionIncreased siltation in deep water 
parts and the conversion of shallow water parts into settlements and 
agricultural lands are critical drivers of this decline. The decrease in 
deep and shallow waterbodies could exacerbate the severity of flash 
floods in the haor basin of the region (Kamruzzaman and 
Shaw, 2018).

A substantial reduction in vegetation coverage in the study area 
has also been observed in the specified time frame, indicating 
significant changes in ecological conditions. Changes in wetland 
vegetation can significantly affect ecological processes within the 
ecosystems (Myneni et al., 1997; Chang et al., 2023). The present study 
found a significant loss (71%) of overall vegetation cover in the region 
from 2000 to 2023 (Figure 6). Polash et al. (2023) reported a similar 
trend of a substantial decline in dense vegetation cover (80%) in the 
Hakaluki Haor region from 2000 to 2019. Decreasing patterns in 
vegetation cover were also observed in other haor regions in the 
greater Sylhet (Haque and Basak, 2017; Bhattacharjee et al., 2021; 
Haque et al., 2021). Hakaluki Haor, recognized as a RAMSAR site and 
an Ecologically Critical Area (ECA), harbors migratory waterfowls, 
resident birds, mammals, amphibians, and reptiles (Choudhury and 
Nishat, 2005; DBHWD, 2016). The ongoing decrease in vegetation 
coverage poses a threat to the biodiversity of wildlife in this region 
(Polash et al., 2023; Waleed et al., 2023). The findings highlight the 

TABLE 1 Data Sources: data for the years 2000 and 2005 were collected from Landsat 5, for 2010 from Landsat 7, for 2015 and 2020 from Landsat 8, 
and for 2023 from Landsat 9.

Year Season Time frame Satellite Image ID Bands

2000 Rainy Season May–October LANDSAT 5 LANDSAT/LT05/C02/T1_TOA 13

Dry Season January–April and November–December LANDSAT 5 LANDSAT/LT05/C02/T1_TOA 13

2005 Rainy Season May–October LANDSAT 5 LANDSAT/LT05/C02/T1_TOA 13

Dry Season January–April and November–December LANDSAT 5 LANDSAT/LT05/C02/T1_TOA 13

2010 Rainy Season May–October LANDSAT 7 LANDSAT/LE07/C02/T1_TOA 15

Dry Season January–April & November–December LANDSAT 7 LANDSAT/LE07/C02/T1_TOA 15

2015 Rainy Season May–October LANDSAT 8 LANDSAT/LC08/C02/T1_TOA 17

Dry Season January–April & November–December LANDSAT 8 LANDSAT/LC08/C02/T1_TOA 17

2020 Rainy Season May–October LANDSAT 8 LANDSAT/LC08/C02/T1_TOA 17

Dry Season January–April & November–December LANDSAT 8 LANDSAT/LC08/C02/T1_TOA 17

2023 Rainy Season May–October LANDSAT 9 LANDSAT/LC09/C02/T1_TOA 17

Dry Season January–April & November–December LANDSAT 9 LANDSAT/LC09/C02/T1_TOA 17

The band numbers on the right side are different for variations in the satellites’ band configurations. We used six images per season according to the specified months.
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need for this information to be  considered and for authorities to 
design and implement effective conservation strategies.

The potential causes for the observed fluctuations in cropland 
coverage within the Hakaluki Haor region may include alterations in 
land management practices, environmental circumstances, or 
something related to agricultural methodologies. By performing a 
more comprehensive examination and interpretation of these patterns, 
substantial insights can be obtained concerning the complexities of 
land use dynamics and human-environment interactions within this 
crucial wetland ecosystem.

Consistent with prior research that has documented the effects of 
human activities on wetland ecosystems, including settlements (Hu 
et  al., 2017; Berkessa et  al., 2023) and agricultural expansion 
(Convention on Wetlands, 2022), the results presented in this study 
support this notion. The study revealed a substantial rise in settlement 
areas in Hakaluki Haor from 2000 to 2023, with a significant 

expansion observed in both the rainy and dry seasons. According to 
the Bangladesh Bureau of Statistics (Bangladesh Bureau of Statistics, 
2021), the population in the Sylhet region, where Hakaluki Haor is 
located, has been steadily increasing. This population pressure likely 
necessitated the conversion of land for residential purposes, leading 
to the observed rise in settlement areas. Rapid population growth may 
also accelerate settlements in the region, leading to the conversion of 
barren land, vegetation, shallow water bodies, into agricultural lands 
negatively impacting the ecosystem. For instance, earlier, the haor 
regions in the study area had freshwater swamp forests that are now 
nearly destroyed due to overexploitation and conversion for 
agriculture (Bokhtiar et al., 2024).

A recent study on the Tanguar Haor, another RAMSAR site, 
unveiled a notable decline in fish diversity, with recorded species 
decreasing from 122 to 58 within 9 years (2012–2021). 
Anthropogenic factors, such as overfishing, illegal fishing gear, 

TABLE 2 LULC classification categories, brief description, and images (Image by Authors).

LULC category Description

Barren Land This region lacks vegetation and is highly prone to soil 

degradation, yet it is frequently left uncultivated for 

agricultural production.

Crop Land These areas are typically utilized for cultivating crops.

Settlement This region includes solid edifices, networks of roads 

with different levels of compactness (low, medium, and 

high), dwellings for residents, facilities for industries 

and businesses, temporary settlements, educational 

establishments, transit infrastructure, uncovered 

concrete constructions, and other artificial structures.

Vegetation These areas are covered by forest and evergreen trees 

that naturally grow inland regions.

Water Bodies Water bodies, including rivers, reservoirs, haor, baor, 

beels, jheel, lakes, ponds, and streams.
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infrastructure development, and swamp forest degradation, were the 
primary drivers contributing to the decline (Sultana et al., 2022). 

Moreover, the extent of the substantial increase in settlement area in 
the Hakaluki Haor region is highly dynamic in nature. In some 
instances, settlements disappear to appear in other landforms such 
as barren land, agricultural lands, etc. (Figure  5). Several 
implications may be drawn from this. These include an increase in 
the frequency of flooding in such areas, shifts in economic 
opportunities, or the relocation of people to places close to newly 
constructed roads for better communications. In addition, in 
Figure 7, it seems some water parts have changed to settlements. In 
this case, probable implications could be increasing sedimentation 
(Polash et al., 2023), building embankments or roads, or filling up 
shallow water parts by dredging (as seen in ground truthing) to 
create habitable settlements as the population is increasing. This 
practice is not uncommon in regions experiencing rapid population 
growth and urbanization, as seen in other parts of Bangladesh 
(Rahaman et al., 2023). The lack of effective land use planning and 
management has been identified as a key issue in other studies of 
land cover change in Bangladesh. Nevertheless, as witnessed in 
Hakaluki Haor, these patterns or shifts underscore the necessity for 
additional multidisciplinary research approaches concerning the 
precise catalysts and mechanisms that govern these changes. Lastly, 
several natural and anthropogenic activities, such as land-use 
changes and agricultural techniques, sedimentation, and erosion, 

FIGURE 4

Changes in LULC during the Rainy season from 2000 to 2023.

TABLE 3 Accuracy assessment results (Kappa Coefficients in percentage 
and ground-truthing on-site data in percentage).

Year Season Reference 
data

Kappa 
coefficient (%)

2000 Rainy season Google Earth 78

Dry season Google Earth 84

2005 Rainy season Google Earth 78

Dry season Google Earth 74

2010 Rainy season Google Earth 76

Dry season Google Earth 75

2015 Rainy season Google Earth 77

Dry season Google Earth 75

2020 Rainy season Google Earth 76

Dry season Google Earth 74

2023 Rainy season On-Site Data 73

Dry season On-Site Data 76
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FIGURE 5

Changes in LULC during the dry season from 2000 to 2023.

FIGURE 6

LULC change pattern in the Hakaluki Haor from 2000 to 2023 in both distinct seasons.
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may be responsible for the observed variations in the covering of 
barren land.

The haor regions have been consistently lagging behind 
Bangladesh’s steady-paced national development progress (CEGIS, 
2012). Bangladesh Haor and Wetland Development Board 
(BHWDB), established in 2000, is a coordinating and leading 
institution for sustainable development and enhancing resilience in 
the regions. According to the BHWDB Master Plan (2012–2032), the 
haor regions are unique ecosystems and are regulated by a substantial 
number of policies, including water, fisheries, jolmohal (deep water 
portions), environment, land use, tourism, agriculture, forestry etc. 
(CEGIS, 2012). The ecosystem, environment, and biodiversity of 
Hakaluki Haor are gradually declining due to anthropogenic factors 
(diverse human activities) and natural factors (siltation, unpredictable 
rainfall patterns, etc.) (Uddin et al., 2013; Aziz et al., 2021; Polash 
et al., 2023).

The present study in the LULC change analysis of Hakaluki Haor 
indicated a substantial decline in water bodies (~51%) and vegetation 

cover (71%) while a dramatic increase in the settlement areas (~353%) 
(Figure 6). Our findings about these significant losses of waterbodies, 
vegetation and increasing settlements are consistent with other LULC 
change analysis studies for Hakaluki Haor and other adjacent haor 
regions (Haque and Basak, 2017; Islam et al., 2018; Bhattacharjee et al., 
2021; Haque et al., 2021; Polash et al., 2023; Waleed et al., 2023). So, 
to conserve the ecological integrity in the Hakaluki Haor region, a 
crucial habitat, more investigation and interpretation of such LULC 
dynamics and interdisciplinary approaches may provide insights into 
better management practices. These holistic approaches may 
illuminate the ecological and biological dynamics with socioeconomic 
drivers governing wetland ecosystems. Further research may include 
socio-ecological assessments to explore complex interactions among 
human activities and environmental processes. From a broader 
perspective, the present study contributes to monitoring, sustainable 
conservation, ensuring resilience, and management strategies 
highlighting the transformations and patterns of the critical freshwater 
wetland ecosystem, Hakaluki Haor.

FIGURE 7

Land cover change detection from 2000 to 2023 in the study region.
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5 Conclusion

The study introduces a Machine learning approach utilizing 
Landsat data in Google Earth Engine and ArcGIS 10.8 to discern 
Land Use and Land Cover (LULC) changes in Bangladesh’s 
RAMSAR site freshwater wetland, Hakaluki Haor. The study 
demonstrated the potential of the CART algorithm in cloud-based 
GEE platform with efficient computation in analyzing LULC changes 
in the context of a freshwater wetland in Bangladesh. An analysis 
spanning 2000 to 2023 via Landsat satellite data revealed consistent 
alterations in Water Bodies, Vegetation, Barren Land, Settlement, 
and Crop Land throughout both rainy and dry seasons. The drivers 
of observed declines in water bodies and vegetation alongside 
variable Crop Land are considered to arise from climate change (e.g., 
warming, more erratic rainfall) and human activity such as 
development and agricultural expansion. Notably, settlement 
experienced rapid growth during this period. These persistent 
patterns underscore potential implications for the region’s ecosystem 
and agriculture. Despite escalating human settlements, substantial 
declines were noted in water bodies, dense vegetation, barren land, 
and crop land. Understanding the spatial distribution and LULC 
change patterns is critical for effective land-use strategies for the 
Hakaluki Haor.
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