
Frontiers in Water 01 frontiersin.org

Reinforcement learning for 
watershed and aquifer 
management: a nationwide view 
in the country of Mexico with 
emphasis in Baja California Sur
Roberto Ortega 1*, Dana Carciumaru 2 and Alexandra 
D. Cazares-Moreno 3

1 Centro de Investigación Científica y de Educación Superior de Ensenada-Unidad La Paz, La Paz, 
Mexico, 2 CONAHCYT-Centro de Investigacion Cientifica y de Educacion Superior de Ensenada-Unidad 
La Paz, La Paz, Mexico, 3 Universidad Autónoma de Baja California Sur, Posgrado en Ciencias Marinas y 
Costeras, La Paz, Mexico

Reinforcement Learning (RL) is a method that teaches agents to make informed 
decisions in diverse environments through trial and error, aiming to maximize 
a reward function and discover the optimal Q-learning function for decision-
making. In this study, we apply RL to a rule-based water management simulation, 
utilizing a deep learning approach for the Q-learning value function. The trained 
RL model can learn from the environment and make real-time decisions. Our 
approach offers an unbiased method for analyzing complex watershed scenarios, 
providing a reward function as an analytical metric while optimizing decision-
making time. Overall, this work underscores RL’s potential in addressing complex 
problems, demanding exploration, sequential decision-making, and continuous 
learning. External variables such as policy shifts, which are not readily integrated 
into the model, can substantially influence outcomes. Upon establishing a model 
with the requisite minimal states and actions, the subsequent learning process is 
relatively straightforward, depending on the selection of appropriate RL model 
algorithms. Its application depends on the specific problem. The primary challenge 
in this modeling approach lies in model definition, specifically in devising agents 
and actions that apply to complex scenarios. Our specific example was designed 
to address recent decision-making challenges related to constructing dams due 
to water scarcity. We present two examples: one from a nationwide perspective 
in Mexico and the other focused on Baja California Sur, the state with the highest 
water stress. Our results demonstrate our capability to prioritize watersheds 
effectively for the most significant benefits, particularly dam construction.
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1 Introduction

Water management plays a crucial role in ensuring the sustainability of cities and 
addressing various challenges related to water use, scarcity minimization, and sustainability 
performance. Water distribution networks encompass a complex web of components and 
activities, from aqueduct planning to leak repair and modeling, all aimed at efficiently 
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transporting water to households, businesses, and public facilities. The 
management of water resources is a global concern, with implications 
for policy and stakeholders worldwide (Savenije and Van Der Zaag, 
2005; Gorelick and Zheng, 2015; Ingold and Tosun, 2020; Ramos 
et al., 2020).

Particularly critical is the management of aquifers in arid regions, 
given their pivotal role in maintaining water availability and quality. 
Effective policies are essential for sustainable aquifer use, mitigating 
depletion risks (Chichilnisky and Heal, 1993; Mohtadi, 1996) and 
preserving ecosystems dependent on groundwater resources (Huang 
and Uri, 1990). Aquifer management often involves navigating legal 
obligations, environmental regulations, socioeconomic factors, and 
ethical considerations, making it a complex task. Traditional static or 
rule-based strategies may fall short in adapting to changing conditions 
or capturing the intricate dynamics of aquifer systems.

In response to these challenges, new technologies such as RL have 
emerged as a promising avenue for optimizing public policy (Binas 
et al., 2019; Strnad et al., 2019; Chen et al., 2021; Skirzyński et al., 2021; 
Emamjomehzadeh et al., 2023; Ghobadi and Kang, 2023; Sivamayil 
et al., 2023). RL allows computers to learn from experience, enabling 
intelligent decision-making in complex environments (Lee et  al., 
2022). In this context, we focus on simulating a water management 
system that allows an autonomous agent the opportunity to learn 
through trial-and-error interactions driven by reward signals.

The primary objective of this study is to explore the application of 
RL techniques in groundwater management, specifically in 
determining the necessity of investigating an aquifer for dam 
construction in arid regions while addressing internal issues and 
striving to maintain a delicate balance between water network 
maintenance, the construction of dams, and the development of 
aqueducts, all while optimizing these efforts to ensure efficient water 
management. Incorporating the assessment of technical, economic, 
and ecological factors into dam projects aligns well with an RL 
approach. RL can adaptively balance these diverse considerations, 
optimizing dam planning, especially in arid regions where benefits 
often surpass ecological concerns, ensuring effective and sustainable 
strategies. We  propose a reward structure and state-action 
representations that capture the dynamics and tradeoffs within aquifer 
systems using rule-based environments that directly validate 
agent decisions.

Reinforcement learning is well-suited for sequential decision-
making to maximize cumulative rewards (Santoro et al., 2016; Strnad 
et  al., 2019; Sivamayil et  al., 2023). It leverages the Q-learning 
algorithm to enable the agent to learn an optimal strategy by 
estimating the action value function (Q-function) through 
environmental interactions. For temporal problems, RL employs 
temporal difference learning, allowing the agent to learn from 
experience over time. The Q-function iteratively updates based on the 
difference between predicted and observed rewards, continuously 
refining the agent’s decision-making capabilities.

Notably, RL has found applications in various water-related 
domains, including water distribution, heating, water metering, and 
reservoir operation (Castelletti et al., 2010; Ruelens et al., 2018; Hu 
et  al., 2020, 2022; Amasyali et  al., 2021; Chen and Ray, 2022; 
Khampuengson and Wang, 2022). However, integrating rule-based 
environments within RL for water management simulations is new. It 
offers several advantages, enhancing adaptability and learning 
capacity, such as: (a) Incorporating Expert Knowledge: Rule-based 

environments encapsulate domain-specific expertise, preventing 
catastrophic errors and accelerating learning. (b) Safety and 
Compliance: Enforcing regulations and safety measures ensures 
ethical and environmentally responsible decision-making. (c) 
Providing a Baseline: Rule-based environments offer a foundational 
understanding for RL agents before exploring more complex 
strategies. (d) Rapid Prototyping and Testing: Rule-based systems 
enable quick prototyping and testing, as they do not rely on deploying 
complex city sensors, saving time and resources.

The most significant difficulty in this type of modeling is defining 
the model itself that is, creating agents and actions that are useful and 
applicable to a problem of this complexity. For example, we might 
be tempted to use states like lithology, permeability, and hydraulic 
conductivity, but these states could be encompassed in a single state 
called “modeling.” On the other hand, a state that cannot be included, 
such as changes in the city’s external policies, could have a considerable 
impact. The learning part is relatively straightforward once the model 
has been defined and the minimum number of states and actions has 
been determined. It simply requires choosing the appropriate 
algorithms to solve the RL model.

The definition of states and actions in any policy is inherently 
driven by its specific goal, and this goal cannot be universally applied 
to all management scenarios. For instance, when the aim is to 
construct a dam, the focus naturally shifts toward defining states and 
actions that optimize the construction process. However, this 
approach is not directly applicable to other objectives, like reducing 
water consumption. In this new scenario, strategies should focus on 
conservation measures, monitoring usage, and encouraging reduced 
consumption behaviors. Varying goals demand distinct plans. 
We must make particular strategies for each goal and understand 
the problem.

We used an example that was custom-made for a specific situation. 
This example was designed to address the challenges that emerged 
when the government of Mexico started building aqueducts, but 
we need to study aquifers to manage water resources effectively. The 
main idea is to demonstrate how a particular method can benefit 
stakeholders. So, this specific case illustrates our approach to tackling 
complex issues, showing its potential applicability in various situations.

First, this paper presents the mathematical formalism in the 
methodology section. Then, we  have three main sections: 
“Environment,” “Deep Q-Learning” (DQN), and “ε-Greedy.” These 
sections focus on mathematical algorithms related to rule-based RL 
presented in the methodology section. We offer two examples: one 
showcasing a nationwide application in Mexico and the other 
demonstrating a more detailed focus on Baja California Sur.

2 Methodology

Reinforcement learning can be  explained mathematically as 
Markov Decision Processes (MDPs, Bellman, 1957). An MDP is an 
extension of Markov chains that involves decision-making and actions 
taken by an agent to maximize cumulative rewards over time. Like 
Markov chains, MDPs are based on a fixed set of states, where each 
represents the current environment situation. With MDPs, the agent 
can take actions to influence state transitions and achieve specific 
goals. The agent’s actions determine the probability of transitioning to 
different states. MDPs contain rewards associated with state transitions 
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and actions. The agent’s goal is to learn a strategy that maximizes the 
cumulative rewards achieved over time.

In RL, we  formalize the process as a MDP with the 
following components:

 1 A set of states, S, and a distribution of initial states, p s( ).
 2 A series of actions, A a∈ .
 3 Dynamics of transitions, T s s at t t+( )1|, |, , which is the probability 

distribution of the next state at time t +1 taking into account 
the state and the action at time t .

 4 An immediate reward function, R s a st t t, , +( )1 specifies the 
reward that is obtained when moving from state st  to st+1 after 
execution of the action at .

 5 A discount factor, γ ∈[ ]01,  with lower values favoring 
immediate rewards.

The value of a state s under the policy ,π  abbreviated as V sπ ( )
is the expected return on investment in the state s and under the 
policy .π  The discounted model with an infinite time horizon can 
be expressed as follows:
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Thereby γ  is a discount factor and Eπ ⋅{}  is an optimal value, k  
stands for time steps, rt k+  denotes the rewards to be gained in the 
transition to the state st and the expected value is related to the 
policy .π

Similarly, a state action value function Q S A: × →   can 
be defined as the expected yield starting from the state s with the 
action a, and then the following policy π :
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where at  denotes the action to be taken in the next state s after the 
policy π .

A fundamental property of value functions is their recursive 
nature. For each policy π  and each state s, the expression in 
Equation (2) can be defined recursively using the Bellman equation 
(Bellman, 1957):
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The Bellman equation states that the expected value of a state is 
defined by the immediate reward and the values of possible following 
states, weighted by their transition probabilities and by a discount 
factor. πV  is the only solution to these equations. It is worth noting 

that several strategies can have the same value function, but for a given 
strategy π, πV  is unique. It follows that the optimal strategy is:

 
V s T s s s R s a s V s
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(4)

This expression is known as the Bellman optimality equation, 
which states that the value of a state under an optimal policy must 
equal the expected return for the best action in that state. For 
organizational purposes, the terms are T s s s R s a s, , , ,π ( )( ) ( )′ ′ are 
elaborated in a section labeled Environment, while the γ πV s′( ) and 
the final calculation V s∗ ( )  is performed in another section called 
Agent. However, R s a s, , ′( ) which is the reward function where the 
environment receives the action, is not always a deterministic function, 
but in the real world behaves like a stochastic function with a 
probability of
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(5)

P r s a s| , , ′( )  is the probability of receiving a reward r when the 
agent takes action from the state s and transitions to state s′. r is a 
specific reward value that can be received.

Several challenges in RL deserve attention. (1) Discovering the 
optimal strategy requires trial-and-error interactions with the 
environment, and the agent’s learning signal is the reward it receives. 
(2) Its actions influence the agent’s observations and can have 
significant temporal correlations. (3) Agents must deal with extensive 
temporal dependencies, where the consequences of an action may 
only become apparent after several environmental transitions. This is 
referred to as the temporal credit allocation problem.

We examine these challenges in building a dam to supply water to 
a city. While the end goal of aquifer investigation and dam design may 
be clear, the exact sequence of actions required is uncertain. Long-
term processes involve challenges such as population growth and 
severe droughts that could affect decision-making. To find the optimal 
course of action, we must balance exploration with learning from the 
consequences of our experiments over time.

3 Environment

The environment manages rules for actions. At its core, the 
primary function of the environment is to receive an action from the 
agent, which is implemented as a neural network along with a learning 
algorithm. The main task of the environment is to check the validity of 
the action provided by the agent and then generate the corresponding 
new state. This process is illustrated in Figure 1. Five state variables 
were deliberately chosen because they can distinguish different levels 
that contribute to the evaluation of the state of the aquifer and the 
environment, including the population center. We encapsulated the 
environment in a class that uses the OpenAI Gym framework 
(Brockman et  al., 2016). This class provides a structured and 
standardized way to interact with the environment, allowing seamless 
integration with other components and facilitating an organized and 
efficient implementation.

Starting from scratch could lead to excessive work and a higher 
chance of errors. Instead, using OpenAI Gym saves time by providing 
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ready-to-use tools. This platform was chosen for its thorough testing, 
accessibility, universality, scalability, and ease of debugging. However, 
no hard-coded routines were used; only the provided framework was 
utilized. Other platforms, such as Sci-Kit Learn or Tensorflow (Abadi 
et al., 2016), have the capabilities of Deep Learning, but none of them 
have coded agent-environment interactions. We  wrote all the 
necessary functions so our results would be the same on any platform. 
The only difference is the organization of the code.

Essentially, the environment is designed to simulate a natural 
physical environment. This environment relies on sensors that 
measure changes such as temperature or pressure for smart home 
appliances. In the case of ruled-based, the environment is simulated 
with clear and well-structured relations with states and actions.

Our main goal is to build dams sustainably. Our environment is 
rule-based and includes four states: “Annual Volume,” “Availability,” 
“Distance,” “Necessity,” and “Modeling.” These states have the following 
meanings: (1) Annual volume refers to the amount of water in the 
aquifer, measured in hectometers. This parameter remains nearly 
constant across all actions, except for the transition to “construction 
of dams,” the action that directly affects this state. Although these 
levels change throughout the year and even over several decades, in 
terms of public policy, the source used to analyze the aquifer is based 
on a study called “Mean Annual Availability,” which in turn treats this 
variable as a constant number that assumes that this availability does 
not vary. For this reason, this value is considered constant. (2) 
Availability represents the total amount of water withdrawn from the 
annual water volume of the aquifer. The resulting value represents the 
amount of water remaining in the aquifer and available for various 
purposes such as irrigation, drinking water supply and industrial use. 
This parameter can take either positive or negative values depending 
on whether there is a water deficit or surplus. This calculation is 
essential for managing and maintaining sustainable use of 
groundwater resources. When water withdrawal exceeds the natural 
rate, overuse and depletion of the aquifer occur, leading to serious 
environmental problems and water scarcity in the region. (3) Distance 
is the measurement in kilometers between the water source and 
populated areas. The distance may change after constructing an 
aqueduct, which is a practical value affecting policy. In other words, if 
there is already an aqueduct, this aquifer can be  used similarly if 

another aquifer is nearby. (4) Necessity represents the water demand 
of the nearest heavily populated area, measured in liters per second 
(l/s). (5) Modeling is a level that quantifies the level of understanding 
of the aquifer and is expressed on a scale of 0–100. It reflects progress 
in 3D groundwater modeling, the maturity of studies conducted, and 
advances in geophysical, geologic, and hydrologic research. This 
measure is an abstract representation and is always presented as a 
fraction of the total knowledge required to build a dam. Various 
variables were explored, such as lithology, porosity, and climate, which 
are natural and physical factors influential in the situation. However, 
the aim was to go beyond and directly consider the involved society. 
The goal was to make a decision that not only took into account the 
purely physical aspects of the environment but also those directly 
related to the affected community. This implies understanding how 
the decision would impact people, their specific needs, and concerns. 
In summary, a more holistic approach focused on people, rather than 
solely relying on geological or environmental factors, was sought.

Our model differs from classic RL because the environment can 
sense and decide if an action is valid. This has several important 
reasons. First, in our mathematical framework (Equation 4), there is 
no requirement for a separate function between the environment and 
the agent. Both the environment and the agent play equal roles in the 
MDP. Additionally, the environment plays a crucial role in validating 
actions and determining if they should lead to a new state and reward. 
In our case, the environment is represented as a rule-based physical 
simulation, such as a city with people, sensors, and needs. The actions 
correspond to policy decisions, such as those made by city councils. 
Consequently, the environment can either accept or reject actions. 
This is not unusual because, in real life, various mechanisms exist for 
accepting and validating actions after they have been taken. For 
instance, legal protections may apply to specific political actions, or 
environmental regulations not initially considered may affect the 
agent’s decisions.

The actions are divided into four categories: (a) “Repairing leaks,” 
(b) “Building aqueducts,” (c) “Building dams,” and (d) “Conducting 
studies.” These actions were carefully chosen to influence states while 
serving as common approaches to address water scarcity in the driest 
regions with high water stress.

The environment not only updates the state when receiving 
actions from the agent but also performs essential quality control and 
testing of the action state. This is mathematically and physically 
accepted because the environment constantly interacts with the agent 
in real life. It also computes a reward function that plays a central role 
in controlling the learning process. In some cases, the environment 
contains stochastic elements that introduce random events, simulating 
the variability of the real world. These stochastic factors mimic 
situations where the environment might react differently than rule-
based expectations. For example, dams might be built without proper 
studies, or due to tax policy or leakage. Another example is that repairs 
might be delayed even though they were needed.

However, we want to simulate the optimal solution of Q-learning 
to ensure an accurate representation of the optimal solution. With this 
approach, we can focus on finding the best possible actions and the 
appropriate rewards to achieve the desired Q-learning outcome.

The reward is a simple function that relates the value of the states 
and evaluates them in terms of cost. The reward function considers 
the aspects of volume, availability, distance, necessity, and modeling 
of the environment. It encourages the agent to prefer actions that 

FIGURE 1

Sequence of the reinforcement learning process. At time t, the 
environment receives an action, which is validated and results in a 
change of state “s” with reward function “r.” It is then updated as a 
new state reward input to the agent (DQN). The environment checks 
if the action is valid and sends a signal to the agent.
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increase the volume and availability of water while minimizing the 
distance and necessity. Defined as:

 

reward A volume B availability C distance
D necessity

= × + × − ×( ) −
×( ) + EE modelling×

Where, A B C D E= = = = =1 0 001 10 1 20, . , , , . The differences in 
scale are adjusted to achieve a balanced and consistent reward 
multifactor function in hectometer, lt/s, and percent units. This 
ensures that each factor contributes meaningfully to the total reward 
despite the inherent differences in their scales. Given the Monte Carlo 
and Variance-Based sensitivity analysis results, we observe a dynamic 
interaction between input variables and their impact on the system’s 
output. The Monte Carlo simulation (Figure 2), showcasing a broad 
distribution of rewards, suggests a significant influence on our 
parameters, highlighting the model’s sensitivity. This wide distribution 
is crucial because the reward function can show significant variations 
when selecting an action. Concurrently, the Variance-Based analysis 
provides a deeper understanding of each variable’s contribution to the 
output variance. The first-order sensitivity indices reveal the most 
critical parameters, guiding us toward areas requiring precise 
calibration or robust data collection. These analyses offer a 
comprehensive view of the system’s behavior, enabling targeted 

adjustments to enhance model reliability and decision-making efficacy 
in complex scenarios.

The following sections will incorporate the reward function into 
the learning process. By assigning rewards for different actions and 
states, the agent will be able to identify the most favorable choices that 
lead to higher rewards and, consequently, better performance.

4 Deep Q-learning

Learning an optimal strategy can be  done in different ways; 
Bellman’s dynamic programming is the most common way. Bellman’s 
dynamic programming is a fundamental approach in RL that breaks 
down decision-making processes into simpler sub-problems. It relies 
on the principle of optimality, which asserts that the optimal policy 
can be derived by making optimal decisions based on the current and 
future states at each stage. This approach is advantageous for problems 
with a discrete and finite state space, where the entire decision process 
can be  systematically analyzed and solved. The major strength of 
Bellman’s method is its comprehensiveness and precision in finding 
the optimal solution through recursion and backward induction. 
However, its primary drawback is the “curse of dimensionality”; as the 
state and action spaces expand, the computational resources and time 
required to compute the solution increase exponentially, making it 
impractical for complex, high-dimensional problems.

Another option besides dynamic programming is DQN, which 
combines RL with deep neural networks, leveraging the approximation 
capabilities of deep learning to estimate the value function. This 
approach allows handling environments with high-dimensional state 
spaces, making it well-suited for tasks like image-based problems where 
traditional methods falter. DQNs can generalize across states, reducing 
the need to explicitly compute the value of each state-action pair, which 
significantly mitigates the curse of dimensionality. However, DQNs 
introduce challenges, such as the need for large amounts of data to 
effectively train the neural network, the risk of overfitting, and the 
complexity of tuning network architectures and hyperparameters. 
Moreover, the black-box nature of neural networks makes the decision-
making process less interpretable than Bellman’s dynamic programming.

In our case, a neural network model is trained using the 
Tensorflow Keras library (Abadi et  al., 2016) to learn an optimal 
strategy for actions that affect state variables. Figure  3 shows the 
neural network’s architecture that is trained to obtain an action based 
on states. DQNs combine Deep Learning and Q-learning elements to 
handle complex, high-dimensional state spaces, making them 
particularly effective for tasks where traditional Q-learning approaches 
may become impractical or inefficient.

The network consists of four layers with different numbers of 
neurons and activation functions. The first layer includes 16 neurons 
and expects input with five features. The ReLU activation function 
adds nonlinearity to the network and improves its ability to learn 
complicated relationships. The second layer consists of 32 neurons and 
uses ReLU activation. The third layer includes 64 neurons with ReLU 
activation. Finally, the output layer consists of four neurons 
corresponding to the four actions in the environment, respectively. 
Using the activation function “Softmax,” this layer converts the output 
values into a probability distribution for the actions. The neural 
network is designed to accept a state representation with five features 
as input and generate action probabilities from which the agent can 

FIGURE 2

Sensitivity analysis using a Monte Carlo simulation, a broad 
distribution of rewards suggests a significant influence on our 
parameters highlighting the model’s sensitivity.

FIGURE 3

The architecture of the DQN neural network consists of three fully 
connected layers and a final softmax connection. During the training 
process, the network is controlled by a reward function while 
interacting with the environment.
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choose. With ReLU activation when learning complex Q-value 
relationships and softmax activation, the architecture is best suited for 
RL tasks using the DQN methodology.

Figure 4 shows the outlines of a generic training loop for RL. It 
involves iteratively training an agent through multiple episodes in an 
environment. During each episode, the agent selects actions based on 
its current state and a learned strategy. The actions can be selected by 
exploration (random) or exploitation (based on the predictions of the 
strategy). The agent then observes the next state and immediate 
reward from the environment. The rewards are normalized to a 
consistent range. The algorithm updates its internal model or Q-values 
based on the observed transitions to improve the agent’s strategy. The 
process is repeated for a specified number of episodes, storing the 
cumulative rewards achieved in each episode. Ultimately, the training 
loop aims to optimize the agent’s strategy to maximize cumulative 
rewards over time.

5 ε-Greedy

ε-Greedy is an exploration and exploitation strategy agents use to 
make decisions in uncertain environments. ε-Greedy was chosen 
because it can switch to new actions when the agent exploits a 
particular strategy. For example, repair leaking or modeling states were 
often exploited without a balance in the agents’ decisions so needed to 
strike a balance between trying new actions (exploration) and 
exploiting the best-known actions (exploitation) to maximize long-
term rewards. We  added the ε-Greedy strategy to balance all the 
decisions; the ε-Greedy strategy is simple and easy to implement 
(Figure 5). At each time step “t,” the agent selects an action according 
to the following rule:

 1 With a probability of ε (epsilon), the agent chooses a random 
action from the set of available actions. This promotes 

Algorithm: reinforcement learning with e-greedy training loop 

Inputs: 
   num_episodes: Total number of training episodes 
   discount_factor: discount factor (gamma) for future rewards 

Issue: 
   Trained policy or Q-values 

Procedure: 
   total_rewards = empty array to store the cumulative rewards 

   for episode in range(num_episodes): 
      state = reset the environment to the initial state 
      state = preprocessing state for the learning algorithm 

      total_reward = 0 // initialize total reward for this episode 

      for step in range(Maximum number of steps per episode): 
         // Action selection 
         if random number < exploration probability: 
            action = Random selection of an action 
         else: 
            // Selection of the action based on the learned strategy or Q values. 
            action_probs = predicted probabilities of actions for the current state 
            action = select action according to epsilon. 

         // Execute the selected action and observe the next state and reward. 
         next_state, reward, done = perform action in the environment 

         // Handling of invalid or not allowed actions 
         while not done and not Is_action_valid(action): 
            action = select a fallback action // e.g. a random action as a fallback option. 
            next_state, reward, done = perform action in the environment 

         // Normalization of the reward for consistency reasons. 
         normalized_reward = (reward - minimum_reward) / (maximum_reward - minimum_reward) 

         // Update the model with the observed transition. 
         Updating the Q-values or the learning algorithm with the Bellman equation. 

         State = next_state 
         total_reward += normalized_reward 
         if done: 
            Break // End the current episode when an end state is reached. 
      append total_reward to total_rewards // Store the cumulative reward for this episode. 

   Return Trained policy or Q values

FIGURE 4

RL training loop with ε-greedy-exploration-transition.
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exploration by allowing the agent to try different actions and 
learn more about the environment.

 2 With probability (1 − ε), the agent exploits its current 
knowledge and chooses the action with the highest estimated 
reward based on previous experience. Exploitation aims to take 
advantage of the actions shown to yield higher rewards.

By adjusting the value of ε, an agent can control the degree of 
exploration versus exploitation. A higher ε-value encourages more 
exploration, while a lower ε-value tends toward more exploitation. The 
main advantage of ε-Greedy is its simplicity and versatility. It is a 
nonparametric approach that requires no assumptions about the 
underlying environment. In addition, ε-Greedy is computationally 
efficient, making it suitable for a wide range of applications. However, 
ε-Greedy also has some drawbacks. A significant limitation is that it 
treats all actions during exploration as equally uncertain, which may 
not be the case in complex environments. It may be suboptimal in 
situations where some actions are worth exploring more than others.

To address this constraint, alternatively, different forms of 
ε-Greedy have been suggested, including implementing a decreasing 
ε schedule. The idea is to start with a high ε-value to explore more at 
the beginning of the learning process, gradually decreasing this value 
over time, focusing more on exploitation as the agent gains more 
experience. Although ε-Greedy and Metropolis-Hastings are different 
algorithms used in different contexts (RL and Markov chain Monte 
Carlo methods, respectively), they have some conceptual similarities 
when considering their connections to MDPs and Markov chains. 
Both the ε-Greedy and Metropolis-Hasting methods involve a tradeoff 
between exploration and exploitation. In ε-Greedy, the agent weighs 

between exploring new actions (with probability ε) and using the 
currently known best actions (with probability 1 − ε) during the 
decision process in an MDP. In Metropolis-Hastings, the algorithm 
weighs between exploring new states (by proposing transitions to new 
states with a certain probability) and using states with higher 
probability (by accepting or rejecting the proposed transitions based 
on the acceptance probability) during the sampling process in a 
Markov chain. In ε-Greedy, the agent randomly chooses an action 
(with probability ε) during exploration rather than always choosing 
the best-known action. This stochastic introduces exploration and 
ensures the agent is not stuck in a suboptimal strategy.

In ε-Greedy, the agent’s decision-making is based on the current 
state of the environment, which satisfies the Markov property of 
MDPs. The agent does not need to maintain a history of past states to 
make decisions. In ε-Greedy, as the agent collects more data through 
interactions with the environment, it is expected to converge to the 
optimal action—value function (Q-function) or strategy for the MDP.

The model’s performance is evaluated by testing it in the 
environment and selecting actions based on the highest predicted 
action probability. Our final code can be obtained in Ortega (2024).

6 Implementation

In Figure 6, we depict the states and actions that were illustrated 
in our RL process. The states (1) Annual Volume, (2) Necessity, (3) 
Availability, (4) Distance, and (5) Modeling interact with the actions: 
(a) Repair leaking, (b) Construction of aqueducts, (c) Dam construction, 
and (d) Perform studies. Note that states and actions are intrinsically 

Algorithm: Epsilon-Greedy 
Input: 
- : exploration probability (0 1) 
- F: Table (or function approximation) for storing action value estimates. 
- num_episodes: Number of episodes or time steps for the training. 
Issue: 
- Q: Updated action value estimates after training. 
nitialization: 
For each state-action pair (s, a): 
    Q(s, a) Random small value 
For episode = 1 to num_episodes: 
    Set the current state s to the initial state 
    Repeat this for each time step within the episode: 
        Generate a random number r between 0 and 1 
        If r < : // Exploration 
            Choose a random action a from the set of available actions 
        Otherwise: // Exploitation 
            Choose the action a that maximizes Q(s, a) 

        Performing action a in the environment and observing the next state s' and the corresponding reward r 

        Update the Q-value for the state-action pair (s, a) using the observed reward and the estimated future 
rewards: 
        Q(s, a) Q(s, a) + * (r + * max(Q(s', a')) - Q(s, a)) 

        Set the current state s to the next state s'. 

    End of episode 

End  

FIGURE 5

ε-Greedy. The random part represents the exploration section where different options are searched.
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FIGURE 7

The learning curve illustrates the agent’s performance based on the 
total reward function in each episode. After episode 10, the agent 
shows significant progress, indicating an increased level of learning.

connected, for example, the action Repair leaking with Necessity and 
Construction of aqueducts with Distance.

Unlike other machine learning methods that focus on accuracy 
without guiding the learning process, RL aims to teach the agent how 
to learn and make good decisions in its environment. During training, 
the agent explores the environment and refines its understanding of 
state transitions and action sequences. Thus, in RL, how we learn is 
more important rather than merely focusing on accuracy. The RL’s 
iterative nature and adaptive approach allow for continuous updating 
of strategies based on feedback from the environment, making it 
different from traditional supervised learning. Further research and 
experiments can extend this approach to more complex environments.

The Environment class simulates a water management system 
with five continuous state variables, each with specific ranges. The 
neural network model is built using Tensorflow Keras (Abadi et al., 
2016) and consists of three hidden layers with 16, 32, and 64 neurons, 
respectively, and a final output layer with four neurons corresponding 
to the discrete actions. The model is trained to predict the action 
probabilities based on the current state, learning the optimal 
environmental strategy. In the training loop, episodes are run to gain 
experience and update the model based on the observed transitions. 
Rewards are calculated using the coefficient-based reward function, 
highlighting the importance of each state variable. The model’s 
performance is evaluated by testing it in the environment and selecting 
actions based on the highest predicted action probabilities.

Model complexity is generally strongly related to training stability 
(Hu et  al., 2021). The initial state is chosen for the city of La Paz, 
Mexico, which is the capital city of Baja California Sur. In RL, a step is 
a single interaction between the agent and its environment. During 
each step, the agent selects an action, and the environment responds by 
transitioning to a new state and providing a reward signal. This action-
state-reward cycle is fundamental to RL algorithms, and the agent often 
updates its policy or value function based on the outcomes of these 
steps. In Q-learning, the agent updates its Q-values after each step.

Conversely, an episode refers to a sequence of steps that begins 
with an initial state and concludes when a predefined terminal 
condition is met. Episodes are a way to structure RL tasks and define 

when the agent has completed a specific task or goal. The termination 
of an episode could be due to reaching a goal state (infinite time 
horizon), exceeding a maximum number of steps (finite time horizon), 
or encountering a particular event. Also, epochs pertain to the training 
process of DQN neural networks. During each epoch, the entire 
training dataset is passed through the neural network forward and 
backward. Deep learning models are typically trained over multiple 
epochs to enhance their performance. The number of epochs is a 
hyperparameter that can be  adjusted based on the model’s 
convergence behavior.

In Figure 7, we provide an instance of the total reward function 
across various episodes. Decision changes are significant just before 
the learning trend stabilizes, meaning decision policies compete to 
establish a learning trend. For this reason, episodes 1–7 show 
variability in the four actions. Figure 7 displays all learning episodes 
to demonstrate that the trend has begun to stabilize. The increase in 
rewards signifies that the RL agent is learning from its interactions 

FIGURE 6

Illustration of states and actions of this specific example. The states and actions are intrinsically connected; for example, action “Perform studies” with 
“Modeling” and “Construction of aqueducts with Distance.” The agent receives states and decides an action based on a function DQN. Internally, there 
is a reward function that controls the efficiency of the RL process.
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with the environment and is finding better strategies or policies over 
time. As it accumulates experience, it becomes better at selecting 
actions that lead to higher rewards (exploitation). At the same time, 
the RL process may have found a good balance between exploration 
(trying new actions) and exploitation (choosing known good actions) 
to maximize rewards.

Since the DQN starts without knowledge, the reward function 
slowly performs better until it has the optimal behavior. However, 
we found that the reward function does not always behave the same 
way because it depends on the initial random state. We can estimate 
the Q-value (Figure 8) at each episode depending on the different 
actions. Decision changes are significant just before the learning trend 
stabilizes, meaning decision policies compete to establish a learning 
trend. For this reason, episodes 1–7 show variability in the four 
actions. Note that Figure  7 displays all learning episodes to 
demonstrate that the trend begins to stabilize, but Figure 8 enhances 
those changes.

We note that in all cases, the learning process behaves similarly. 
First, performing studies is constantly growing as the most important 
activity until it reaches its highest value, then repair leaking starts. 
While performing studies is decreasing, it reaches a level where 
construction of aqueducts begins; this is because the studies are solid 
enough that modeling the aquifer has reached robust results. Then, 

the dam construction starts. Note in Figure 8 that dam construction 
has an opposite trend because it is defined in that way in the reward 
function construction.

The reward function in RL plays a pivotal role in governing the 
efficiency and optimization of a process. It essentially serves as the 
guide that directs an agent toward its goals. This function encapsulates 
the objectives and priorities of an experienced group, defining what 
they seek to maximize in their chosen task, thereby shaping the agent’s 
decision-making to reach those goals.

Designing the reward function in RL is crucial because it guides the 
learning process, shaping the agent’s behavior to achieve desired goals. 
However, crafting an effective reward function can be challenging.

Learning can be  slow or stall if the agent receives infrequent 
feedback. Striking the right balance between rare and frequent rewards 
is essential, so we found that 20 steps is a good balance. We tried 
exponential and complex linear behavior, but we found that a simple 
linear combination helps to converge to solutions. Reward engineering 
requires deep domain knowledge and an understanding of the task. A 
poorly designed reward function can lead to suboptimal or 
undesirable agent behavior. Moreover, reconciling conflicting 
objectives can be tough. Different stakeholders may have different 
goals, so designing a reward function that balances these objectives 
is challenging.

FIGURE 8

Q-values for different actions.
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FIGURE 9

Global map of physical water scarcity. The red square shows the study region [Adapted and modified from World Water Assessment Program (WWAP), 
March 2012].

A well-designed reward function should also generalize to various 
situations, allowing the agent to adapt to new scenarios without 
extensive manual adjustments.

Our example represents one of the different variants of politics 
that can be  implemented. In our case, we  have focused on the 
construction of dams since this corresponds to an immediate need. 
The phases and actions in the RL process are, therefore, presented only 
for the purpose of a simple exercise and test. Our computer code is 
published at https://github.com/rortegaru/DQNWATER.

Once we have implemented the RL process, we can use it for 
various purposes. The different ways to use this methodology include:

(a) Classification: Benefit serves as a measure to classify the 
aquifer most beneficial to society’s needs. In our case, the benefit is the 
reward function when compared to all the different aquifers. (b) 
Optimal Sequences: Another more traditional approach is to analyze 
each aquifer separately, attempting to understand the RL learning 
process. This helps us determine how to apply the relationships 
between actions and states for each case. (c) Complexity: We can 
introduce additional elements, like a complex water network system 
and observe the decision-making behavior. We have provided some 
examples of these analyses.

7 Application to the Mexican aquifers

According to the World Water Assessment Program (Water, 
2012), Mexico is in a region that is quickly approaching absolute 
physical water scarcity (Figure 9). Climate change, urban growth, and 
farming needs drive Mexico’s water scarcity. The country’s diverse 
climates, ranging from arid in the north to humid in the south, make 
managing water problems difficult. As development increases, so does 

the pressure on water supplies, raising concerns about ensuring clean 
water for everyone. This urgent issue challenges policymakers to find 
ways to save and manage water to avoid a crisis.

Suppose we want to classify the aquifers requiring immediate 
attention. In that case, we can utilize the entire database of the Federal 
Commission of Water (CONAGUA, from the Spanish acronym 
Comisión Nacional del Agua). In Figure 10, we depict the 564 aquifers 
of Mexico with the four initial states. The Mexican aquifers comprise 
a combination of the United States Hydrological Unit Codes (HUC) 
6 and 8 (Seaber et al., 1987). Data were collected from the repositories 
of CONAGUA and the Mexican Census 2020 (Instituto Nacional de 
Estadística, Geografía e Informática, 2020; Comisión Nacional del 
Agua, 2023). Figure 10 depicts four distinct states for each watershed.

Next, we selected only deficit watersheds (Figure 11). Notably, 
desert and highland regions are in deficit, while the northern part of 
the country faces more significant availability challenges than the 
southern part. We refer to watersheds in deficit as critical watersheds.

In Figure 12, we compare critical and non-critical watersheds. 
Based on availability, we display the highest and lowest values for four 
states in critical watersheds. Out of 653 watersheds, 56 are considered 
critical due to deficits. In the Electronic Supplement, we present that 
table. Critical watersheds, accounting for merely 8.6% of the total, 
span 41% of Mexico’s land area. This emphasizes the crucial 
importance of studying these critical watersheds. We have excluded 
modeling values, assuming most studies start from scratch without 
prior modeling.

Next, we evaluated critical watersheds using our RL process and 
illustrated the benefits in Figure 13. Aquifers with the highest benefit 
scores receive the highest reward function values. This includes 
aquifers that are in proximity, have nearby populations, are in critical 
condition, and can address issues through water infrastructure repairs.
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Finally, we analyzed only the watersheds of Baja California Sur. In 
Figure 14, we show the watersheds in a similar way to what we presented 
in Mexico. According to the latest available data, Baja California Sur 
stands out as the state with the highest water stress levels in Mexico. This 

situation mirrors challenges seen in other countries across the American 
continent, such as Chile. Addressing the pressing issues in Baja 
California Sur is crucial. However, it is essential to note that while this 
case highlights a significant concern; our approach should not be overly 

FIGURE 10

Maps representing the watersheds of Mexico based on four different states. (A) Availability in hectometers, (B) necessity in hectometers. (C) shortest 
distance to population and (D) Annual volume in hectometers.

FIGURE 11

Deficit and available watersheds in Mexico. The watersheds in deficit are used for further analysis in the RL process.
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FIGURE 12

Percentage of critical watersheds: (A) based on numbers, (B) Based on area, (C) Maximum and minimum values of four different states representing 
critical watersheds.

generalized. Instead, we should tailor our strategies and actions to the 
specific circumstances of each case. By maintaining a critical perspective 
and focusing on localized solutions, we can effectively address water 
stress issues and inform targeted public policies.

In this case, we proceeded in the same way as we did in the entire 
country; however, we  added a simple simulation that includes a 
“repair leaking” based on the distribution of the streets in the major 
cities of Baja California Sur. Instead of using a simple percentage of 
30% (Jornada, 2023), we used the number of streets and buildings and 
performed our steps based on that number. In Figure 15, we show the 
water network that we constructed to simulate that number.

In Figure 16 and Table 1, our results reveal a complex trade-off 
among the states and actions defining the final benefit value. Notably, 
proximity to population centers and needs plays a crucial role in 
hierarchical definitions. Consequently, as requested by the Mexican 
Consejo Nacional de Humanidades, Ciencias y Tecnologías 
(CONAHCYT) in the 10-year project Researchers for Mexico, we have 

successfully derived an unbiased value to prioritize the study of 
watersheds, considering social, technical, and beneficial aspects. 
Following our analysis, we recommend prioritizing the study of four 
watersheds (Todos Santos, Melitón Albañez, Cañada Honda, and 
Plutarco Elias Calles) due to their highest benefit scores.

8 Discussion

It is necessary to have an intrinsic connection between states and 
actions in the RL framework for water management Annual Volume, 
Necessity, Availability, Distance and Modeling are crucially linked with 
actions such as Repair leaking, Construction of aqueducts, Dam 
construction, and Perform studies, requiring a tailored approach to 
address specific aspects of water management. The success of water 
management depends more on the specific model we create than on 
the RL technique itself. Although RL is used for optimization, the real 
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challenge is building a model that accurately represents water 
management issues through its states and actions. Essentially, how 
well RL works depends on how good the model is, making the model’s 
design crucial for addressing real-world problems.

This integrated setup underscores RL’s unique capability to guide 
learning processes toward making informed decisions, distinguishing it 
from other machine learning methods that might prioritize accuracy 
without steering the learning. RL’s adaptability and iterative nature, 

FIGURE 13

Watersheds with highest benefits.

FIGURE 14

Maps of Baja California Sur based on four different states. (A) Availability in hectometers, (B) annual volume in hectometers, (C) shortest distance to 
population, and (D) necessity in hectometers.
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FIGURE 15

Water grids of the five cities with population higher to 10,000 habitants. (A) Cd. Constitución, (B) Loreto, (C) La Paz, (D) Cabo San Lucas, and (E) San 
José del Cabo.

guided by continuous feedback, enable dynamic strategy updates, 
starkly contrasting conventional supervised learning paradigms. Our 
exploration further delves into the practical application within a 
simulated water management system, emphasizing the role of a carefully 
designed reward function and the challenge of balancing complex state-
actions relationships to foster efficient learning and decision-making.

Our findings highlight the delicate balance between exploration and 
exploitation in the RL process, where the agent progressively refines its 
strategy to achieve greater rewards. However, this aspect of learning is not 
the most critical component because, ultimately, the key factor is the 
score of the reward function. Even if learning becomes stagnant, it is 
essential to continually evaluate the reward function, as its performance 
is the ultimate measure of success in this context. In some cases, having 
a robust evaluation metric, such as the score of the reward function, is 
more important than the specific steps taken to reach the optimal decision.

The finite-infinite time horizon problem deals with limiting the 
number of steps; using a high number of steps, say 10,000, is a useful 
practice in certain cases. However, limiting the number of steps can 
be problematic because we do not know if the goal will be reached. 
Therefore, waiting for the RL to reach its final target is better. For this 
reason, we have not limited the number of steps; instead, we have 
carefully revised the penalty rules so that it will always reach its target, 
no matter if it is thousands of steps. Remember that the optimization 
mechanism will oversee finding the best solution.

Calibrating the hyperparameters (ε, η) is a work in progress and is 
currently out of our reach. An example is the discount factor η 
(Equation 1), which balances the previous rewards with the current one. 
A low value favors the immediate rewards, while a high value favors the 
long-term values; that is, it controls the “memory” of the rewards of 
each state. Although we have decided to use high values to give weight 

https://doi.org/10.3389/frwa.2024.1384595
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org


Ortega et al. 10.3389/frwa.2024.1384595

Frontiers in Water 15 frontiersin.org

to all the values using a factor that allows us to remember the previous 
states, a detailed study is necessary to find the optimal value.

Reinforcement learning offers a multitude of advantageous facets 
beyond mere optimization in complex systems like water management. 
Its adaptability allows it to tackle unforeseen challenges and dynamic 

changes within an environment, making it an invaluable tool for long-
term planning and decision-making. Moreover, RL’s ability to learn 
from interactions and feedback enables the development of strategies 
that improve over time, thereby enhancing efficiency and effectiveness 
in achieving goals. This iterative learning process, grounded in trial 
and error, fosters innovation by encouraging the exploration of new 
solutions. Furthermore, RL’s versatility extends its applicability across 
various domains, from robotics and automation to healthcare and 
finance, demonstrating its potential to provide tailored, impactful 
solutions in diverse settings.

Our study demonstrates how RL can effectively address key water 
management challenges, as shown in our analysis of Mexican aquifers 
and the distinction between critical and non-critical watersheds. By 
using RL to assess watersheds for potential benefits, we gain a deeper 
understanding of these complex issues. Our findings lead to 
recommending specific watersheds for focused study, considering 
their impact on society, technology, and benefits to guide future water 
management strategies.

Traditional water management methods, such as the Analytic 
Hierarchy Process (AHP) and others, have offered structured 
frameworks to address complex decision-making by deconstructing 
problems into more straightforward, hierarchical elements. These 
methods stress systematic analysis and prioritization grounded in 
expert judgment and pairwise comparisons, enabling a more 
deterministic approach to decision-making. While effective for static 
and well-defined problems, these conventional methods may lack the 
flexibility and adaptability to confront dynamic environmental 
conditions and evolving water management challenges. Their 

FIGURE 16

Benefit map of Baja California Sur. All the numbered watersheds are 
in a deficit state. The assessment of benefits is quantified using the 
reward function. Watersheds correspond to Table 1.

TABLE 1 Benefit value defined a complex trade-off among the states and actions.

Number Watershed Population Shortest 
distance

Availability Volume Necessity Benefits

1 Todos Santos 7185.00 7.92 −1.10 4.80 0.26 10.54

2 Meliton Albañez 6221.00 40.29 −0.27 2.37 0.23 10.47

3 Cañada Honda 7185.00 18.85 −0.08 1.08 0.26 10.41

4 Plutarco Elias Calles 7185.00 31.97 0.00 1.00 0.26 10.40

5 San Jose Del Cabo 136285.00 22.08 −5.26 30.36 4.97 7.47

6 La Paz 250141.00 13.53 −7.83 35.63 9.13 6.93

7 Cabo Pulmo 136285.00 32.46 −1.31 1.61 4.97 6.78

8 San Juan B. Londo 16311.00 26.28 −2.35 8.05 0.60 6.33

9 San Lucas 14357.00 18.58 −0.13 0.23 0.52 6.17

10 Los Planes 250141.00 39.23 −4.70 13.10 9.13 5.82

11 El Coyote 250141.00 13.36 −6.11 6.81 9.13 5.78

12 Santa Agueda 14357.00 21.40 −0.20 0.40 0.52 5.67

13 Cabo San Lucas 202694.00 10.19 −14.48 14.98 7.40 5.30

14 San Ignacio 14357.00 69.27 −3.02 7.92 0.52 5.29

15 La Purisima 16311.00 67.66 −1.90 2.60 0.60 5.24

16 Mezquital Seco 16311.00 53.86 −0.17 1.97 0.60 5.22

17 Santo Domingo 43805.00 12.40 −30.37 176.77 1.60 4.88

18 San Marcos-Palo Verde 14357.00 36.41 −1.47 3.37 0.52 4.20

19 Santa Rita 43805.00 57.65 −0.01 1.21 1.60 4.17

20 San Bruno 14357.00 26.59 −0.52 1.12 0.52 4.16
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FIGURE 17

Bibliometric analysis of papers on machine learning and water management from 2020 to 2024. (A) General overview and (B) RL enhancement. The RL 
paradigm is still in its nascent stage.

dependence on predefined criteria and expert input can also constrain 
their capacity to assimilate new data and adapt to unforeseen water 
availability or demand changes.

In contrast, RL presents a more dynamic and adaptive approach 
to water management, capable of continuously learning from the 
environment and optimizing decisions based on real-time feedback. 
Unlike methods such as AHP, RL algorithms can navigate complex 
and uncertain environments through trial and error, adjusting 
strategies based on outcomes and rewards. This capacity for learning 
and adaptation renders RL particularly suited for the complexities of 
water management, where conditions can swiftly change due to 
climatic variability, population growth, and shifting land use 
patterns. RL’s potential to derive optimal strategies through iterative 
learning and its ability to handle high-dimensional data and 
uncertainty positions it as a promising tool for innovative water 
management solutions, marking a significant advancement over 
traditional methods.

In addition to the AHP, traditional water management has 
depended on methods such as Cost–Benefit Analysis (CBA), Linear 
Programming (LP), and Multi-Criteria Decision Making (MCDM). 
CBA evaluates the financial aspects of water projects by comparing 
costs and benefits, focusing on economic efficiency. LP addresses 
water resource allocation problems through mathematical 
optimization, striving for the optimal outcome within specified 
constraints. MCDM, akin to AHP, considers various factors and 
stakeholder preferences to inform decision-making, providing a 
systematic approach to assessing intricate scenarios.

Reinforcement learning represents a departure from these 
traditional methods by adopting a dynamic, feedback-oriented 
approach. Unlike the static, often linear frameworks of CBA, LP, and 
MCDM, RL excels in environments characterized by incomplete 
information and fluctuating conditions. It learns optimal actions 
through trial and error, guided by a reward system aligned with water 
management goals. This adaptability enables RL to address real-world 
complexities, such as sudden water availability or demand patterns, 

rendering it a versatile tool for contemporary water management 
challenges. While traditional methods offer valuable insights through 
structured analysis, RL’s capacity for continuous learning and 
adaptation presents a forward-looking approach to managing water 
resources in an increasingly uncertain world.

This study marks a pioneering effort in Mexico, particularly 
within Baja California Sur, by concentrating on watershed 
management for public use. While previous research (Mendoza et al., 
1997) on climate change and urban studies (Cotler et al., 2022) has 
primarily focused on ecosystems and sustainability, our work stands 
out by applying RL to watershed management. This innovative 
approach represents a growing trend globally in leveraging advanced 
computational techniques for environmental management. Notably, 
to our knowledge, this is the first work employing a rule-based RL 
strategy specifically tailored for watershed management, introducing 
a novel perspective to the field and potentially setting a precedent for 
future studies. We show a global tendency toward water management 
and machine learning, including the paradigm of RL in a more 
graphical way using bibliometric analysis (Figure 17).

In practical terms, implementing RL in water management 
requires the involvement of stakeholders who can influence activities 
and outcomes. Boards of directors and governing bodies should take 
part in formulating strategies and actions, while experts design initial 
prototypes and establish the groundwork for the relationships between 
actions and states. These experts should also contribute to defining the 
reward function, as it will be the basis for optimization.

For instance, if we aim to optimize the design and installation of 
desalination plants using RL, essential factors such as: energy 
requirements (in MWatts), intake water quality (measured by total 
dissolved solids), discharge rate (in l/s), etc., should be identified as 
states. Discussions should then focus on determining appropriate 
reward functions and considering initial states. An optimization 
analysis can show the relationships between states and actions, leading 
to decisions like placing absorption wells or choosing between direct 
intake or well-intake methods.

https://doi.org/10.3389/frwa.2024.1384595
https://www.frontiersin.org/journals/Water
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9 Conclusion

We have developed an RL with the ruled-based system to generate 
a process that defines optimal decision values over time. This process 
allows us to choose the best actions based on different states within a 
complex aquifer system, where we  have integrated physical 
characteristics and changes in social and human factors within an 
artificial intelligence framework. The most important conclusions of 
this work are as follows:

 a Integrating rule-based actions to achieve optimal decisions in 
water management needs specific goals that are not 
universally applicable.

 b Classifying critical watersheds is an effective process for RL.
 c RL tackles the complex connections among its 

constituent elements.

Our research field opens new avenues for the definition of reward 
functions and state-change algorithms to improve continuously. Future 
research should explore integrating rule-based actions alongside RL to 
refine decision-making for specific objectives, like identifying 
watersheds that significantly benefit society, especially in mountainous 
and arid regions that remain a priority. This entails a deeper analysis of 
the intricate relationships within these ecosystems and the urgent need 
for interventions in areas facing acute water scarcity.

In summary, this approach to water management and decision-
making policies forms part of an intricate decision network that can 
expand over time.
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