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Groundwater models often require transmissivity (T) fields as an input. These  
T fields are commonly generated by performing univariate interpolation of 
the T data. This T data is derived from pumping tests and is generally limited 
due to the large costs and logistical requirements. Hence T fields generated 
using this limited data may not be representative for a whole study region. 
Groundwater models often require transmissivity (T) fields as an input. These 
T fields are commonly generated by performing univariate interpolation (using 
kriging, IDW etc.) of the T data. This T data is derived from pumping tests and is 
generally limited due to the large costs and logistical requirements. Hence, the T 
fields generated using this limited data may not be representative for the whole 
study region. This study presents a novel cokriging based methodology to 
generate credible T fields. Cokriging - a multivariate geostatistical interpolation 
method permits incorporation of additional correlated auxiliary variables for 
the generation of enhanced fields. Here abundantly available litholog derived 
saturated thickness data has been used as secondary (auxiliary) data given its 
correlation with the primary T data. Additionally, the proposed methodology 
addresses two operational problems of traditional cokriging procedure. The 
first operational problem is the poor estimation of variogram and cross-
variogram parameters due to sparse T data. The second problem is the 
determination of relative contributions of primary and secondary variable in the 
estimation process. These two problems have been resolved by proposing a 
set of novel non-bias conditions, and linking the interpolator with a head based 
inverse problem solution for credible estimation of these parameters. The 
proposed methodology has been applied to Bist doab region in Punjab (India). 
Additionally, base line studies have been performed to elucidate the superiority 
of the proposed cokriging based methodology over kriging in terms of head 
reproducibility.
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1 Introduction

Distributed groundwater flow models are being increasingly used for regional planning 
of groundwater development (McKinney and Lin, 1994; Marino, 2001; Bhattacharjya and 
Datta, 2005; Miller et al., 2009; Ghosh and Kashyap, 2012; Singh et al., 2016; Escriva-Bou et al., 
2020; Zeinali et al., 2020; Maliva et al., 2021; Mamo et al., 2021; Izady et al., 2022; Bailey et al., 
2023). These models invariably require values of transmissivity (T) at the spatial grid cells. 
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Pumping tests can provide data of these values only at a limited 
number of locations due logistical difficulties and large expenses 
involved. The present practice for bridging this data gap is centered 
around two broad strategies viz. interpolation alone, or joining of 
interpolation with an inverse problem (IP) solution. The former 
practice involves interpolating cell values of T (or hydraulic 
conductivity) employing only the available measured values 
(Anderson et  al., 2015; Dickson et  al., 2019). The latter practice 
invokes the interpolator and also a flow model so that more 
information can be used to obtain better estimates of T using historical 
head measurements through the use of an optimizer (Yeh, 2015). 
Employing measured T values and historical head fields, it aims at 
producing hydraulically consistent T field that has better predictive 
capability, than would be obtained using T values alone.

Commonly used interpolation functions include finite element 
linked basis functions (Yoon and Yeh, 1976), spline, polynomial 
(Chapra and Canale, 2010; Yao et al., 2014; Adhikary et al., 2017), and 
geostatistical tools viz. kriging (RamaRao et al., 1995; Kitanidis, 1997; 
Oliver and Webster, 2015; Kavusi et al., 2020; Cui et al., 2021; Kapoor 
and Kashyap, 2021; Senoro et al., 2021; Panagiotou et al., 2022; Júnez-
Ferreira et al., 2023) and cokriging (Aboufirassi and Mariño, 1984; 
Ahmed and de Marsily, 1987; Ahmed et al., 1988; Kitanidis, 1997; 
Wackernagel, 2003; Belkhiri et al., 2020; Zawadzki et al., 2021; Zhao 
et al., 2022; Christelis et al., 2023). The present study centers around 
cokriging, that is a multivariate form of the univariate geostatistical 
tool kriging (Kitanidis, 1997; Oliver and Webster, 2015). Kriging is the 
best linear unbiased interpolator of a regionalized stationary variable 
preserving its measured values. The interpolation is based upon the 
spatial statistics of measured values. The spatial statistics is estimated 
by a variogram which depicts auto-semivariance of the variable as a 
function of the separation distance. The interpolated value is expressed 
as a linear combination of the measured values, and the weights are 
estimated from the requirements of minimized mean square error and 
the unbiasedness of the interpolation.

Cokriging, based upon similar concepts, introduces an additional 
stationary regionalized secondary variable (B) that is a priori known 
to be correlated to the variable subjected to interpolation (termed as 
primary variable). The spatial statistics in this case are defined in 
terms of variograms of the primary and secondary variables, and 
cross-variogram between the primary and secondary variables. The 
latter describes the variation of cross-semivariance between T and B 
as a function of the separation distance. The interpolated value in this 
case is expressed as linear combination of the measured values of the 
primary and secondary variables as expressed in Eq. 1.

 
T T Bo i i j j j� � � �� �

 
(1)

Where To is the interpolated value of primary variable at an 
unsampled location, Ti and Bj is the ith and jth measurements of the 
primary and secondary variable, respectively. The set of weights-α  

and β  appearing there in are derived from the twin requirements of 
minimized mean square error and the unbiasedness of the estimation. 
Cokriging has been used for generating T (or hydraulic conductivity) 
fields with varying secondary variables like hydraulic head (Kitanidis 
and Vomvoris, 1983; Yeh et al., 1995), specific capacity (Aboufirassi 
and Mariño, 1984; Ahmed and de Marsily, 1987), electrical 
conductivity (Ahmed et al., 1988).

The T fields emanating from interpolation approach may not 
always be capable of simulating realistic heads and velocity fields due 
to limited number of measurements, and inaccuracies in the 
measurements themselves. This problem is overcome by taking 
recourse to the joined interpolator- inverse problem (IP) solutions. IP 
solutions are typically based upon linked simulation optimization 
(LSO) approach (Gannett et al., 2012; Alam and Umar, 2013; Davis 
et al., 2015). The simulator component of the IP is further joined to 
the chosen interpolator treating nodal transmissivities as the unknown 
IP decision variables. The associated dimensionality problem (Yeh, 
2015) is overcome by restricting the number of unknown nodal 
transmissivities to a manageable limit in the context of non-linear 
optimization. The chosen nodal points may be the sites of measured 
T values (pumping test sites) or un-sampled locations termed as pilot 
points (RamaRao et  al., 1995; Anderson et  al., 2015). The former 
strategy permits moderation of the measured values as per prescribed 
plausibility criteria (RamaRao et al., 1995) to render them optimally 
consistent with the historical heads and the flow equation. The 
reported studies invoking interpolator-IP joining have generally used 
kriging (Certes and de Marsily, 1991; LaVenue and Pickens, 1992; 
RamaRao et al., 1995; Jazaei et al., 2019) treating the geostatistical 
parameters to be known a priori. These solutions typically aim at 
reaching optimal estimates of the decision variables that yield least-
squares of the mismatch between the simulated and the observed head 
fields (RamaRao et al., 1995; Anderson et al., 2015). The estimates are 
expected to provide a transmissivity field that is optimally consistent 
with the observed head fields and the governing differential equation, 
and hence is capable of producing credible heads and velocity fields. 
Yeh et  al. (1995) has presented an alternative form of the 
interpolator-IP joining for ensuring this consistency wherein 
transmissivity is cokriged by employing T and heads as primary and 
secondary variables, respectively. Consistency of the T field with the 
flow equation is ensured by iteratively simulating additional heads, 
treating the measured values as constant heads. The T field is 
re-cokriged iteratively employing the measured T and the enhanced 
data base of head values. This approach is similar to the interpolator-IP 
methodology that permits generation of consistent head and 
transmissivity fields.

Although cokriging has been in vogue for some time, the authors 
came across two major operational problems while implementing it 
for the generation of T fields treating B as the secondary variable. The 
first one relates to generation of the geostatistical parameters. The 
parameters essentially emanating from the spatial statistics of 
measured values of T and B, comprise variogram parameters of T and 
B, and cross-variogram parameters of the cross variogram between T 
and B. Variograms depict variation of auto-semivariance (say of T or 
B) with the separation distance. Variograms of T and B are typically 
derived from the respective measured values, and the cross-variogram 
from co-located measurements of T and B. It may be recalled that 
cokriging essentially permits supplementing sparse data of primary 
variable (say T) by abundantly available measurements of the 

Abbreviations: BL, baseline; ESA, European space agency; IADI, iterative alternating 

direction implicit; IP, inverse problem; LSO, linked simulation optimization; LULC, 

land use land cover; SHD, secondary hydrogeological data; SUMT, sequentially 

unconstrained minimization technique; SC, specific capacity; T, transmissivity 

(primary variable); OW, observation well.
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correlated secondary variable (say B). This pattern of data availability 
inherently inhibits a robust development of the variogram of the 
primary variable due to sparseness of its data. In addition, the 
development of the cross-variogram also gets compromised on 
account of still sparser co-located measurements of the primary and 
secondary variables. This conjecture is well honored by the variogram 
of T and cross variogram of T-SC (specific capacity – chosen as the 
secondary variable) presented by Aboufirassi and Mariño (1984). 
Results from the present study (presented subsequently) are also 
consistent with it. This problem to some extent has been addressed by 
Ahmed et al. (1988) by supplementing the poorly available data of the 
primary variable through univariate interpolation – which may 
jeopardize the advantage of the multivariate interpolation. The 
variograms and cross-variograms may also be generated analytically 
(Yeh et al., 1995), but the underlying assumptions may not always hold.

The other problem with the implementation of cokriging arises 
from the requirement of setting up/formulating unbiasedness 
conditions. These conditions, requiring the expectation of the 
interpolated value (Eq. 1) to be equal to the mean value of the primary 
variable (T ), is expressed by the following equation by Eq. 2.

 
E i j� � ��� �� �� �i i j jTP BP T

 
(2)

Where TP and BP are the measured data of primary and 
secondary variable. Assuming both TP and BP to be  first order 
stationary, the unbiasedness condition is simplified to the following 
form by Eq. 3.

 
� � � �i j� �i jTP BP T

 
(3)

Under a common scenario of the primary and secondary variables 
having different means and dimensions (or having indeterminate 
dimensions due to the log-transformation), the only way Eq. 3 can 
be satisfied with dimensional propriety is to split it into following two 
equations (Isaaks and Srivastava, 1989; Wackernagel, 2003).

 
� �i �i 1

 
(4)

 
� �j � j 0

 
(5)

Eq. 5 read with Eq. 1 essentially implies that the mean contribution 
of the secondary variable values towards the interpolation is 
constrained to zero on account of the dimensional inconsistency. This 
may trivialize the role of secondary variable in the interpolation 
process. Further, it may also lead to unexpected/unrealistic negative 
estimates (Isaaks and Srivastava, 1989).

It follows from the preceding discussion that the data derived 
variogram of T and cross-variogram of T-B may not be credible due to the 
data sparseness. Accordingly, these spatial statistics parameters are treated 
as the IP decision variables in the proposed interpolator-IP method. 
Alternative non-biasedness conditions are proposed that ensure an 
optimal role for the primary as well as the secondary variable. The relative 

roles of the participating variables are quantified by introducing a 
distribution parameter. This unknown parameter is also treated as a 
decision variable. For the sake of dimensional propriety, the cokriging is 
conducted without taking log transforms of the participating variables. 
This may to some extent compromise the maximum likelihood of the 
solution since log transformed variables may follow Gaussian distribution 
more closely. Nevertheless, the solution with somewhat compromised 
Gaussian distribution requirement may be  viewed as based upon 
minimization of the weighted sum of squares of the interpolation errors 
(Hoeksema and Kitanidis, 1985). This compromise may be considered as 
a tradeoff between the requirement of assigning optimal role to abundant 
data of secondary variable and ensuring likelihood of the solution. The 
deterioration of the solution on account of some loss of likelihood may 
be compensated by improved solution by way of by letting the secondary 
variable measurements play their due role in the interpolation process. 
This is amply illustrated in the model application wherein a much larger 
role (70%) of the BP data is depicted by the optimized weighing parameter 
– quite consistent with its data size (58 BP data points against only 15 TP 
measurements). The solution may also improve by way of avoiding 
negative weights of secondary variables and the consequent deterioration 
of the solution (Isaaks and Srivastava, 1989). Although mostly the 
IP-kriging joining studies require the geostatistical parameters to 
be known a priori, a few studies have incorporated their estimation in the 
IP solution (terming them as hyperparameters) in the context of 3-D 
transient hydraulic tomography (Cardiff and Barrash, 2011) and 
estimation of aquifer diffusivity and Richard’s equation parameters (Rai 
and Tripathi, 2019).

Alternate IP decision variables/parameters are proposed 
notwithstanding the current practice of considering the nodal 
transmissivities as the IP decision variables treating the geostatistical 
parameters of the interpolator to be known a priori. However as shall 
be demonstrated subsequently, the geostatistical parameters, especially 
in the context of cokriging may not always be known credibly. As 
such, the present study essentially explores another option regarding 
choice of the IP decision variables in the framework of the 
interpolator- IP method. Invoking cokriging as the interpolator, the 
proposed method treats certain poorly known (or unknown) 
structural parameters of the interpolator as the IP decision variables. 
This approach thus, simultaneously calibrates the interpolator and 
provides the desirable hydraulic consistency between the 
transmissivity and the observed head fields, without modifying the 
data base of measured T or head values. However, the approach is 
based on the assumption of a good correlation between Transmissivity 
and saturated thickness. The correlation between the two is honored 
as long as the hydraulic conductivity of the conducting material is 
more or less lies in a close range.

The methodology has been illustrated by applying it to Bist doab 
which is an interbasin falling in the state of Punjab (India). The area 
has a relatively sparse transmissivity data base that is supplemented by 
abundantly available well logs. Therefore, it is quite suitable for 
illustrating the proposed cokriging based model.

2 Present study

The present study focuses on developing a model for generating 
T fields employing a multivariate geostatistical interpolation technique 
cokriging, joined with a head based inverse problem (IP) solution. The 
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joining aims at estimation of poorly known/unknown parameters of 
cokriging, ensuring optimal consistency between the transmissivity 
field and the heads. The model has been designed to interpolate T 
using the measured values of transmissivity and the correlated variable 
(B) representing the permeable part of the saturated-thickness 
(termed from now on as saturated thickness for the sake of brevity). 
In accordance with cokriging nomenclature, T and B are treated as the 
primary and the secondary variable, respectively. This multivariate 
approach is useful since a T field generated exclusively from pumping 
test values of transmissivity (TP data) may not be hydrogeologically 
realistic due to the sparseness of pumping tests. On the other hand, a 
T field interpolated compositely from sparse TP data and usually 
abundant values of the saturated thickness (BP data) may turn out to 
be more realistic. The interpolated value (To) in this case is expressed 
as linear combination of the measured values of T and B as per the 
following equation.

 
T TP BPo i i j j� � � �i j� �

 
(6)

The set of weights-α  and β  appearing there in are derived from 
the twin requirements of minimized mean square error and the 
unbiasedness of the estimation. These requirements appear in the 
form of set of equations that are also known as cokriging equations.

2.1 Model development

Two segments of the proposed model viz. T-B cokriging and its 
joining with IP are discussed in the following Sections.

2.1.1 Proposed T-B cokriging
In the present study, cokriging has been employed to generate the 

transmissivity field treating pumping test derived transmissivities (TP) 
as primary variable data and lithologs derived saturated thickness (BP) 
as secondary variable data. Recalling that cokriging is essentially 
applicable to the first order stationary data only (Olea, 2018), it is 
necessary to identify the trends (if any) in (TP) and (BP) data and 
subtract them from the respective raw data to arrive at the de-trended 
data (TPD and BPD) respectively (this step has been illustrated 
subsequently). The envisaged cokriging interpolates detrended 
transmissivity (TDo) at an unsampled/target location (xo) as a weighted 
sum of TPD and BPD data as follows.

 
T TP BPDo i Di

i

n

j Dj
j

m� �� �� �� �
1 1

 
(7)

Where, n, m = number of TPD and BPD data points within a 
prescribed search radius, αi(dimensionless) = unknown weight 
assigned to ith TPD data, and β j(LT−1) = unknown weight assigned to 
jth BPD data. Further, the trended transmissivity at target location (To) 
is estimated by adding the corresponding trend ξo.

 To TDo� ��o (8)

These weights are derived from the criterion of the minimization 
of variance of estimation error and ensuring unbiasedness of the 

interpolation (Kitanidis, 1997). These two criteria jointly lead to a set 
of (n + m) normal equations (Wackernagel, 2003) in terms of 
semivariance (γTT ) of T, semivariance (γ BB ) of B, and cross-
semivariance (γTB ) of T and B.

Discrete point values of the functions γTT , γ BB  and γTB  for 
varying Euclidean distance (h) are obtained by “pairing” the (TPD), 
(BPD) and (TPD-BPD) data points with varying h. Subsequently 
parameters (say θ1, θ2 and θ3 respectively) of the chosen theoretical 
models are estimated by least-squares criterion. The most-commonly 
used theoretical models are Gaussian, exponential and hole-effect 
model (Kitanidis, 1997).

2.1.2 Unbiasedness equations
From the dimensional consideration, the coefficients (αi ) 

appearing in the interpolation equation (Eq. 1) are dimensionless. 
And the other set of coefficients (β j) have dimension of hydraulic 
conductivity (LT−1). Accordingly, following two equations are 
presented to ensure the unbiasedness of the interpolation.

 
� �i � �i

 
(9)

 
� � �� � �j � �j K1

 
(10)

Where, λ = an unknown dimensionless parameter and K* = a 
representative local hydraulic conductivity. In the present study 
K* has been indexed as (TPD/BPD). Where, TPD , BPD  = 
arithmetic means of TPD  and BPD values invoked in the 
interpolation equation (Eq.  6). The parameter λ  (value lying 
between 0 and 1) is viewed as a distribution factor indexing the 
relative contributions of TP and BP data (as TPD and BPD) towards 
the estimation of TDo and hence To.

The corresponding expectation (TDo) of interpolated detrended 
transmissivity (Eq. 6) is as follows by Eq. 11.

 
T TP BPDo i D

i

n

j D
j

m� �� �� �� �
1 1

 
(11)

Where TPD = mean detrended transmissivity and BPD= mean 
detrended saturated thickness Eq. 12.

Using Eqs. 8, 9 the expectation is rewritten as follows by Eq. 12.

 T TP K BPDo D D� � �� � �� �1  (12)

Recalling that TPD= K*BPD, the expectation turns out to be equal 
to the mean value.

 T TPDo D=  (13)

Thus, Eqs. 9, 10 apart from ensuring the dimensional consistency, 
lead to unbiased interpolation by preserving the mean transmissivity. 
Further, they ensure data-driven flexible weighting of the relative 
contributions from (T) and (B) data towards the interpolation. 
Optimal value of the distribution parameter (λ) is arrived at through 
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the envisaged inverse problem solution – as discussed in the 
subsequent Section.

2.1.3 Joining of cokriging with IP
As discussed earlier, sparseness of (TP) data may lead to 

relatively unreliable estimation of parameters of T variogram (θ1) 
and T-B cross-variogram (θ3). Further, the distribution parameter 
(λ) incorporated in the unbiased equations also needs to 
be  estimated. In the present model these issues have been 
addressed by joining the T-B cokriging with a head-based IP 
solution. The IP is designed to yield optimal estimates of these 
poorly known/unknown hyperparameters (θ1, θ3 and λ), 
designating them henceforth as IP parameters/decision variables 
(Ω). The proposed IP model comprising a head simulator linked 
to an optimizer, aims at arriving at such estimates of the IP 
parameters which minimize the mismatch (quantified by Z – 
refer Eq. 1) between the observed and simulated head fields. The 
simulated head field (h) is generated by solving an appropriate 
differential equation governing groundwater flow (e.g., 
MODFLOW). The simulation requires T field and other data 
comprising recharge/withdrawals, boundary conditions, aquifer 
parameters etc. Further, historical head fields are required for 
computing the mismatch function (Z). These related data (other 
than T field) are termed herein as secondary hydrogeological data 
(SHD) and are assumed to be known a priori. The T field can 
in-turn be  derived from discrete point (TP, BP) data and the 
cokriging parameters. The latter may comprise known parameters 
(θ2) and poorly determined/unknown ones (Ω = θ1, θ3 and λ). 
Therefore, for given set of [(SHD), θ2 and (TP and BP) data] Z 
would be  an exclusive function of (Ω). As such the inverse 
problem is posed as optimization problem presented in Eq. 14.

 
Minimize Z h hi i

i
� �� ( )



2

 
(14)

with respect to Ω.
Where, hi



= observed head at ith space–time point, and hi= 
corresponding simulated head. This minimization requires linkage of 
a simulator with an optimizer within the framework of LSO (linked 
simulation optimization) approach. In this approach, an optimizer is 
linked to a simulator. The optimizer algorithmically generates trial 
set of decision variable and this trial set is employed by simulator to 
compute state variables. This process is continued until the objective 
function is minimized (or maximized) as per the criteria adopted. 
The simulator comprises three components viz. computation of T 
field, simulation of corresponding head fields, and finally 
computation of Z.

It may be noted that unlike kriging, the cokriging (Eq. 7 along 
with Eq. 8) is not an “exact” interpolator due to participation of BP 
data in the interpolation of T. As such, the IP-cokriged transmissivities 
at the sampling points will not match with the corresponding 
measured values – which nonetheless is quite a common scenario in 
practical calibrations (Davis et al., 2015). The mismatch will increase 
as λ decreases due to associated increasing role of BP data (and 
consequent decreasing role of TP data) in the interpolation process. 
However, with excessively diminished role of TP data the generated T 
field may display large departure from the TP data and hence may not 

be plausible. This situation may be tackled by enforcing an additional 
objective function (Z1) depicting the departure and conducting multi-
objective minimization of Z and Z1. This has been illustrated in the 
example presented in the following “Model Application” Section.

2.2 Model application

The model discussed in the preceding Sections has been illustrated 
by applying it to Bist doab which is an interbasin bounded by 
perennial rivers Satluj and Beas, and Shivalik mountains (Figure 1). 
Details of the illustration are included in the following text.

2.2.1 Study area
The study area spanning over 8,040 km2 is inhabited by 5.26 

million people (Economic and Statistical Organization, Government 
of Punjab, 2016). In terms of Land Use and Land Cover, 
approximately 80% of the geographical area in this region is covered 
by agricultural tracts. The detailed LULC analysis for the study area 
has been performed using ESA WorldCover (Zanaga et al., 2022) 
dataset in Google Earth Engine. ESA WorldCover provides a global 
LULC map for the year 2021 at a 10 m resolution. It provides 11 
classes such as tree cover, shrubland, grassland, cropland, builtup 
area, bare lands, snow etc. Additional details for the same are 
presented in the Supplementary material. The underlying aquifer is 
composed of alluvium deposits consisting dominant sand strata 
with intermittent clay layers. Since the clay layers are nearly 
horizontal and spatially intermittent, the formation may be deemed 
to be  a single horizontally isotropic unconfined aquifer. As per 
reported data, its saturated thickness varies from 42 m to 156 m and 
the transmissivity from 540 m2/day to 1830 m2/day from north-east 
to south-west (Central Ground Water Board, 2009; Singh et al., 
2013). The area is served by southwest monsoon system with 
normal rainfall varying from 432 mm in southwest region to 
759 mm in the north-east. A large part of annual rainfall (about 
77%) occurs during monsoon season extending from June to 
October. The groundwater resource is primarily derived from the 
rainfall recharge with a relatively smaller contribution from two 
canal systems serving the area. The area is subjected to intensive 
groundwater development with about 95% of the withdrawals 
utilized for meeting irrigation demands. Contribution of the canal 
systems towards the irrigation demands is quite small. Rice and 
wheat are major crops of the area, with the former cultivated during 
monsoon season (locally referred as kharif season) and the latter in 
non-monsoon season (locally referred as rabi season). Consequent 
to the intensive agricultural groundwater development, especially 
for water intensive rice crop, the area is experiencing a 
watertable decline.

2.2.2 Data base
The envisaged cokriging requires sample T data (TP) and the 

sample B data (BP). Further, the proposed IP solution requires 
historical head fields and the corresponding withdrawals, 
recharge and boundary conditions. These data were gathered 
from several state and central government water resources 
agencies. Pumping test based TP data from 15 test sites (Figure 1) 
and well-log derived BP data from 58 bore sites were employed 
for the study. The available well logs were rather elementary 
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displaying only “sand” and “clay” layers – broadly referring to 
permeable and non-permeable fractions, respectively. The 
saturated thickness values (BP) were arrived at by adding all the 
‘sand’ thicknesses captured in the respective well logs. A few well 
log sites along with the corresponding values of saturated 
thickness are shown in Figure  1. Lithological profile for a 
representative section (refer Figure 1) along north-east direction 
is shown in Figure 2. Thirteen of the fifteen (TP) points have 
co-located (BP) points – leading to as many co-located (TP-BP) 
data points (Figure 1).

Watertable data comprises observations from 91 wells at six discrete 
times over a period of three years extending from June-2014 to October-
2016. These discrete times represent three pre-monsoon and two post-
monsoon states. River stage data from six locations (three on Satluj, two 
on Beas and one at the confluence) at the same discrete times were 
employed for assigning the boundary conditions (Figure 1). The study 

area comprises 29 administrative blocks (Figure 3) and seasonal blockwise 
recharge/withdrawals and block-wise specific yield data were derived 
from published reports (CGWB, 2013).

2.2.3 Correlation between primary and secondary 
variables

The proposed cokriging model is an interpolator of the 
primary variable transmissivity (T) wherein the saturated 
thickness (B) is incorporated as the secondary variable. Although 
the correlation between variables T and B is depicted by the 
definition of T (i.e., T = KB), additional analyses were conducted 
to establish the necessary correlation between their respective 
sample values. As a first step, the co-located T and B data are 
plotted on linear scales (Figure 4). The scatter-points display a 
consistent rise of T as B increases – implying a positive correlation 
between the two. The points tend to fall between two enveloping 

FIGURE 1

Index map of study area.
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straight lines (TP = 10.2BP, and TP = 13.5BP) – implying that K 
may be varying in the range (10.2 to13.5 m/day) in the region 
encompassed by the measurement points. Further, the correlation 
between T and B was established objectively by developing a 
cross- correlogram (Wackernagel, 2003) between T and B 

(Figure 5). This figure depicts the variation of the coefficient of 
correlation between T and B as a function of separation distance 
(h). It may be seen that a strong correlation (0.91) exists between 
co-located (h = 0) T and B values. The correlation vanishes 
asymptotically at a distance of about 35 km.
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FIGURE 2

Lithological profile along the lithological section depicted in Figure 1.
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2.2.4 Detrending raw data
The available data (TP and BP) were detrended to fulfill the 

requirement of first order stationarity. Detrending has been performed 
by fitting least-squares 2-D plane equations in terms of X and Y 
(Figure 3), through TP(X,Y) and BP(X,Y) data points. Parameters of 
these planes viz., intercepts (T0 and B0 respectively) and gradients 
(trends) in x and y directions (IXT and IYT; IXB and IYB respectively) were 
estimated by regression analyses (Table 1). Finally, T and B data were 
detrended by simply subtracting the trend terms derived from the 
respective gradients.

2.2.5 Generation of variograms/cross-variogram
These geostatistical attributes were generated employing the 

detrended data of TPD (15 Nos.), BPD (58 Nos.) and co-located (TPD 
and BPD) (13 Nos.). These data were utilized for developing 
experimental values of semivariances (γ



TT , γ


BBand γ


TB) for an array 

of separating distances (h). These discrete point data of experimental 
variograms/cross-variogram are presented in Figures 6–8 respectively.

Subsequently a theoretical model was fitted to each experimental 
variogram/cross-variogram by the least squares approach. The models 
were selected from an array of reported models (Kitanidis, 1997), on 
the basis of the “best” least-squares fit characterized by highest R2. The 
reported models have two main characteristics viz. sill (σ 2) and range 
(R). Whereas the sill is the limiting value of the semivariance as h 
tends to infinity, the range is the distance (h) at which the semivariance 
equals 95% of the sill. Gaussian and exponential variogram models 
(Kitanidis, 1997) were adopted for T and B, respectively. Gaussian 
cross-variogram model was adopted for T-B cross variogram 
Estimated geostatistical parameters for these models are presented in 
Table 2.

As expected, R2 for the model of B variogram is higher apparently 
on account of large number of sample (BP) points. On the other hand, 
the statistic values for the models of T variogram and T-B 

FIGURE 3

Block Boundaries and adopted initial condition.
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cross-variogram are lower owing to fewer sample points of (TP) and 
(TP-BP) data. This substantiates the need for refining the estimates of 
the model parameters of T variogram (termed as θ1) and those of T-B 
cross-variogram (termed as θ3). As such, the parameters (Ω) of the IP 
solution are defined as follows by Eq. 15.
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��

� � �TT TT TB TB,L , ,L ,
2 2

 
(15)

2.2.6 Interface of cokriging with IP
The cokriging model of T discussed in the preceding Sections 

was linked to a groundwater flow model of the study area for the 
estimation of the envisaged parameters (Ω) of the IP problem. 
The groundwater flow model employed in the present study is 
based upon a numerical solution of the differential equation 

presented in Eq. 16.governing two dimensional horizontal in an 
isotropic confined aquifer Eq. 16.
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Where, T = isotropic transmissivity, h = head, X,Y = orthogonal 
cartesian coordinate, W = sink term, Sy = specific yield. Employing 
“current” values of (Ω), the T term appearing in above equation is 
cokriged as per Eqs. 7, 8 using the sample points (TP and BP) falling 
within the respective search radius (=7/4LTT). This confined flow 
equation incorporating isotropic transmissivity as a time-averaged 
flow parameter has been invoked for modeling the unconfined flow 
assuming (i) horizontal isotropy, (ii) small enough temporal 
fluctuation of h and (iii) flat spatial gradients honoring Dupuit-
Forchheimer assumptions. The adopted flow equation was solved to 

FIGURE 4

Variation in hydraulic conductivity.

FIGURE 5

Cross-correlogram depicting variation in T-B cross-correlation coefficient with separating distance (h).
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simulate the head fields at advancing discrete times using IADI based 
finite difference method. The flow model was externally linked to an 
optimizer based upon SUMT algorithm (Fiacco and McCormick, 
1990) to facilitate the estimation of (Ω).

Adopting a spatial discretization of 1,000 m, a finite difference 
grid (Figure 3) comprising 8,350 active nodes and 418 boundary 
nodes was superposed over the study area. Recalling that the head 
data are available at six discrete times (over a period of three years 
extending from June-2014 to October-2016), the June-2014 head 
field was treated as the initial condition (Figure 3). Head fields at 
the following five discrete times (until October 2016) were 
simulated adopting a time interval of 15 days. The boundary 
conditions at the river boundary nodes were assigned as per the 
available river stage data. Neuman boundary condition was 
assigned along the mountainous boundary. The necessary flux 
rate was derived from the prevailing hydraulic gradients. The 
forcing function vector (W) was derived from the available 
recharge/withdrawal data.

The vector of poorly known/unknown parameters (Ω) was 
estimated by minimizing the mismatch between the observed and the 
simulated head fields of October 2016. Accordingly, the IP is defined 
as the following optimization problem (Eq. 17).

 

Minimize Z h h wrt Five decision variablesi i
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Where, na = number of active nodes, hi


= observed head at ith 
active node at October 2016, and hi=simulated head at ith active node 
at October 2016. Constraints were assigned to ensure non-negativity 
of all the five variables. Further, the fifth decision variable (λ) was 
contrained as in Eq. 18.

 0 1� ��  (18)

3 Results

Recalling that the poorly known/unknown cokriging parameters 
(Ω) are treated as the IP parameters (and hence decision variables of 
the proposed optimization problem), their initial and the optimized 
values along with the corresponding objective function values are 
presented in Table 3. It may be seen that the parameters undergo a 
substantial variation leading to a reduction of the objective function 
from 1954 m2 to 1,609 m2. The corresponding cokriged-IP T field is 
presented in Figure 9.

It may be noted that the resultant optimal value of λ is quite low 
(0.07)—apparently on account of relatively sparse and some-what 
clustered T data. This implies that the interpolation of T has been 
largely governed by BP data with a relatively smaller role of TP data. 
This in turn has led to large mismatch between the interpolated and 
sampled T values at the sampling points (Figure 9). Although this kind 
of mismatch is quite common in practical calibrations (Davis et al., 
2015), attempt was made to control it as much as possible to enhance 
plausibility (RamaRao et al., 1995) of the cokriged T field without 
significantly compromising upon the optimality of Z. This was done 
enforcing representing T mismatch as expressed in Eq. 19.

 
Minimize Z

n

T TP

TP
n

oi i

i

1
1

100�
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(19)

Where, TPi, Toi = measured and IP-cokriged transmissivity at ith 
sampling location, respectively, and n = number of sampled TP data.

The multi-objective minimization of Z and Z1 was conducted 
by applying the principle of Pareto front optimization (Goodarzi 
et al., 2014; Rao, 2019) which in the present context would imply 

TABLE 1 Detrending parameters.

Parameter To IXT IYT Bo IXB IYB

Value 1,293 m2/day −11 m2/day/km 8.3 m2/day/km 95 m −8.1 m/km 6.7 m/km

FIGURE 6

Experimental, modeled and IP-derived optimal T variograms.
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minimizing Z without undue degradation of Z1. A Pareto front 
depicting variation of Z and Z1 at increasing λ values is presented 
in Figure 10. The front clearly shows that (λ = 0.07) though an 
optimal solution in context of Z compromises on minimization 
of Z1. As λ increases from 0.07 to 0.3, increase of Z is minimal 
(1,609 to 1,631 m2) with a notable decrease in Z1. However, as λ 
increases beyond 0.3, Z increases rapidly with a pronouncedly 
larger gradient. Thus, (λ = 0.3) may be deemed to be the Pareto 
front optimal solution since around it there is no way of 
decreasing Z without increasing Z1 sharply. As such, the optimal 
value of the decision variable λ was modified to 0.3. Incidentally 
this value of λ also nearly equals the ratio of B and T data. The 
corresponding modified T field is superposed over the initial T 
(λ = 0.07) field (Figure 9). The former field though still displaying 
departure from the sampled T values, honors them more closely 
as compared to the latter one. The departure is more pronounced 
in central-south-western region wherein T data are sparse but B 
data are well available.

The contours of the simulated heads corresponding to the 
modified T field at the target time (October 2016) are presented in 
the Supplementary Figure S2. However, since the residuals (h hi i



− ) 
are not discernible in these contours because of the scale effect, the 
spatial distribution of the nodal residuals is depicted explicitly in 
Supplementary Figure S3. The variograms and cross-variogram 

derived from the initial and optimal parameters, along with the 
experimental points, are presented in Figures 6–8.

4 Discussion of results

Results presented in Table  3 reveal that parameters LTT and λ 
change significantly as the cokriging interpolator is joined with the 
envisaged IP solution. The assigned initial value (25.5 km) of LTT 
emanates from regression of limited number of experimental points 
with rather low R2 (0.68). The optimized value (42 km) is significantly 
higher implying a substantially enhanced range (R = 7/4LTT). This 
indicates that the spatial auto-correlation of T extends over much 

FIGURE 8

Experimental, modeled and IP-derived (Optimal) T-B cross-variograms.

TABLE 2 Estimated parameters of models of variograms and cross-
variogram.

Estimated 
model 
parameters

γTT γBB γTB

σ2 6.45 × 10−4 (m2/day)2 101 m2 4.95 × 10−3 m × m2/day

L 25.5 km 15.4 km 27 km

R2 0.68 0.81 0.48

FIGURE 7

Experimental and modeled B variograms.
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longer distance than what is revealed by the limited TP data. The 
distribution parameter (λ) is near- optimized as 0.30 – implying a 
larger weight to the BP data as compared to the TP data. This weighing 
proportion seems to be reasonable in view of the relative sparseness 
of TP data. The transmissivity field emanating from the proposed 
approach has resulted in much improved reproduction of the observed 
head field – evidenced by improved Z (Table 3).

For gaining additional insight, hydraulic conductivity (K) field 
was generated (Figure 11) by dividing the IP-cokriged T field by the 
kriged B field (Figure 12). The K field displays a variation from 7 to 

15 m/day which extends beyond the range of 10.2 to 13.5 m/day 
depicted in Figure  4. Recalling that Figure  4 is derived from the 
limited co-located T-B data, the expansion of the K range is 
accomplished through IP-cokriging assisted interplay between the 
head and (T, B) data including the ones among the latter that are not 
co-located. This facilitates production of more realistic K and T fields. 
For example, this has permitted capture of hydrogeologically 
consistent low K in the interior zone and high K near river Satluj 
(shown as sites A and B in Figure  11) in spite of absence of any 
co-located T-B data there.

TABLE 3 Initial and optimal geostatistical parameters.

Parameter
σTT

2 LTT σTB
2 LTB λ Z

Initial value 6.45×104 (m2/day)2 25.5 km 4.95×103 (m × m2/day) 27 km 1 1954 m2

Optimal value 7.87×104 (m2/day)2 42 km 3.01×103 (m × m2/day) 26 km 0.07 1,609 m2

FIGURE 9

Optimal and pareto-front (near-optimal) transmissivity fields.
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FIGURE 10

Computed pareto front.

FIGURE 11

K field emanating from proposed model and B field (refer Figure 12).

https://doi.org/10.3389/frwa.2024.1380761
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org


Kapoor and Kashyap 10.3389/frwa.2024.1380761

Frontiers in Water 14 frontiersin.org

5 Validation of T field

It may be recalled that while solving the envisaged IP, the head 
field of the June 2014 was treated as the initial condition and the fields 
of the following five discrete times (until October 2016) were 
simulated. However, the head based IP solution was defined in terms 
of the mismatch between the observed and the simulated fields of 
October 2016 only—not using the observed head fields of four 
intervening discrete times. As such, October 2016 and the four 
preceding simulation times are henceforth termed as target and 

non-target times, respectively. Validity of the optimal parameter 
estimates (and hence of the resulting T field) has been linked to the 
reproduction of the observed fields at the non-target times.

Values of the mismatch parameter Z (Eq. 13) at the target as well 
as non-target times are presented in Table 4. It may be seen that Z 
values at the non-target times are not conspicuously higher than the 
optimized value (1,631 m2) corresponding to the target time. The time 
series of the observed and simulated heads at four typical locations 
OW1, OW2, OW3, OW4 (Supplementary Figure S3) are presented in 
Supplementary Figure S4. Again, the observed head time series are 
quite well reproduced at the target as well as non-target times. These 

FIGURE 12

B Field obtained by kriging the BP data.

TABLE 4 Z (m2) at target and non-target times.

Discrete time Oct-14 Jun-15 Oct-15 Jun-16 Oct-2016 
(target time)

Proposed model (λ = 0.30) 758 1,670 2,360 2,279 1,631

BL1 949 1783 2,411 2,437 1928

BL2 893 1811 2,416 2,435 1921
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inferences validate the parameter estimation and the consequent 
transmissivity field.

6 Baseline studies

The proposed model for generation of T field invokes a cokriging-IP 
based solution. However, there could be  relatively simpler/practice-
oriented modeling options viz. (i) kriging of TP and (ii) kriging of K(=TP/
BP) and BP, and multiplying the two to obtain T field. Performance 
metrics of these baseline options (termed, respectively, as BL1and BL2) 
were compared with those of the proposed model. As a first step towards 
the comparison, an alternative T field was generated using the baseline 
model under reckoning. This was subsequently employed for simulating 
the head fields at five discrete times viz. four non-target times and the 
target time (October 2016) referred to in the Validation Section.

The transmissivity fields emanating from the proposed model, 
BL1 and BL2 are presented in Figure 13. Corresponding values of 
the mismatch parameter (Z) were derived from these head fields 

(Table  4). It may be  seen that compared to BL1 and BL2, the 
proposed model yields significantly reduced Z values at all 
discrete times including the non-target ones. This clearly 
demonstrates superiority of the proposed model over BL1 and 
BL2. It may also be seen that in spite of using additional data, BL2 
does not lead to significantly lower Z values in comparison to 
those from BL1. It may be seen that BL1 and BL2 lead to almost 
similar transmissivity fields (Figure 13). It may be inferred that 
independent usage of T and B data does not provide any value 
addition over using only T data. It is the synergic and simultaneous 
deployment of both T and B data that improves the credibility of 
resulting T fields.

The generated T field has also been informally validated by 
invoking the corresponding K field (Refer Figure  12) that was 
computed by dividing the proposed T field by B field. The field displays 
K variation from 7 to 15 m/day which falls in the broad range for sands 
(Domenico and Schwartz, 1990). Recalling that B represents 
cumulative ‘sand’ thickness, this may be deemed to be an elementary 
validation of the generated T field.

FIGURE 13

Transmissivity fields (proposed model, BL1 and BL2).
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7 Conclusion

The proposed IP-joined cokriging interpolator permits 
credible generation of transmissivity fields even when the 
primary T data are sparse. The data sparseness is overcome by 
simultaneously invoking data of other T-correlated secondary 
variable B, and moderating the unknown/poorly known cokriging 
parameters. In the present study, combination of sparse T data 
with abundantly available saturated thickness values has been 
shown to be work well. However, recourse can be taken to other 
secondary variables like formation loss parameter (derived from 
step-drawdown tests), geophysical resistivity etc. The prevalent 
practice of IP solution is generally aimed at moderating the 
available T data or estimating T values at stipulated un-gauged 
locations. However, as has been demonstrated in this study, the 
IP solution can also be used for modification of poorly known 
geostatistical parameters of cokriging, apart from estimating the 
unknown ones. The study reveals that adopting IP- joined 
cokriging in place of kriging may lead to a substantial 
improvement in the reproduction of the observed head fields. 
This in turn may imply enhanced head prediction capability of 
the generated transmissivity fields.
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