
Frontiers in Water 01 frontiersin.org

Machine-learning based 
approach to examine ecological 
processes influencing the 
diversity of riverine dissolved 
organic matter composition
Moritz Müller 1*, Juliana D’Andrilli 2, Victoria Silverman 3, 
Raven L. Bier 4, Malcolm A. Barnard 5,6, Miko Chang May Lee 1, 
Florina Richard 1,7,8, Andrew J. Tanentzap 9, Jianjun Wang 10, 
Michaela de Melo 11 and YueHan Lu 12

1 Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak 
Campus, Kuching, Malaysia, 2 Department of Biological Sciences and the Advanced Environmental 
Research Institute, University of North Texas, Denton, TX, United States, 3 Woods Hole Oceanographic 
Institution, Woods Hole, MA, United States, 4 Savannah River Ecology Laboratory, University of 
Georgia, Aiken, SC, United States, 5 Center for Reservoir and Aquatic Systems Research and 
Department of Biology, Baylor University, Waco, TX, United States, 6 Institute of Marine Sciences and 
Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, 
Morehead City, NC, United States, 7 School of the Environment, The University of Queensland, 
Brisbane, QLD, Australia, 8 CSIRO Environment, Brisbane, QLD, Australia, 9 Ecosystems and Global 
Change Group, School of the Environment, Trent University, Peterborough, ON, Canada, 10 State Key 
Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese 
Academy of Sciences, Nanjing, China, 11 Interuniversity Research Group in Limnology (GRIL), University 
of Quebec at Montreal, Montreal, QC, Canada, 12 Molecular Eco-Geochemistry Laboratory, 
Department of Geological Sciences, The University of Alabama, Tuscaloosa, AL, United States

Dissolved organic matter (DOM) assemblages in freshwater rivers are formed 
from mixtures of simple to complex compounds that are highly variable 
across time and space. These mixtures largely form due to the environmental 
heterogeneity of river networks and the contribution of diverse allochthonous 
and autochthonous DOM sources. Most studies are, however, confined to local 
and regional scales, which precludes an understanding of how these mixtures 
arise at large, e.g., continental, spatial scales. The processes contributing to these 
mixtures are also difficult to study because of the complex interactions between 
various environmental factors and DOM. Here we propose the use of machine 
learning (ML) approaches to identify ecological processes contributing toward 
mixtures of DOM at a continental-scale. We related a dataset that characterized 
the molecular composition of DOM from river water and sediment with 
Fourier-transform ion cyclotron resonance mass spectrometry to explanatory 
physicochemical variables such as nutrient concentrations and stable water 
isotopes (2H and 18O). Using unsupervised ML, distinctive clusters for sediment 
and water samples were identified, with unique molecular compositions 
influenced by environmental factors like terrestrial input and microbial activity. 
Sediment clusters showed a higher proportion of protein-like and unclassified 
compounds than water clusters, while water clusters exhibited a more diversified 
chemical composition. We then applied a supervised ML approach, involving a 
two-stage use of SHapley Additive exPlanations (SHAP) values. In the first stage, 
SHAP values were obtained and used to identify key physicochemical variables. 
These parameters were employed to train models using both the default and 
subsequently tuned hyperparameters of the Histogram-based Gradient Boosting 
(HGB) algorithm. The supervised ML approach, using HGB and SHAP values, 
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highlighted complex relationships between environmental factors and DOM 
diversity, in particular the existence of dams upstream, precipitation events, and 
other watershed characteristics were important in predicting higher chemical 
diversity in DOM. Our data-driven approach can now be used more generally 
to reveal the interplay between physical, chemical, and biological factors in 
determining the diversity of DOM in other ecosystems.

KEYWORDS

DOM, river networks, FTICR-MS, molecular composition, random forest, cluster 
analysis, ecosystem properties, unsupervised machine learning

1 Introduction

The movement of water connects not only terrestrial and aquatic 
life but also fresh- and marine water subsidies, transporting, for 
example, large amounts of terrestrial carbon (C) in the form of 
particulate and dissolved organic matter (DOM) along the land-ocean 
aquatic continuum (Drake et al., 2018). During its journey, DOM 
provides nutrients and energy to the aquatic food web (Azam et al., 
1983), undergoing many biotic and abiotic transformations depending 
on its intrinsic composition, as well as extrinsic constraints such as 
microbial community composition and environmental conditions 
(Berggren et al., 2022, Hu et al., 2022). Thus, the DOM pool represents 
a complex blend of numerous compounds with varied compositions 
and quantities (Catalán et  al., 2021) arising from diverse sources, 
transformation processes, and environmental contexts (Cooper et al., 
2022). DOM chemistry also reflects a combination of biogeochemical 
processes (Amon and Benner, 1996; Ward et al., 2017; Ferreira et al., 
2020) occurring across terrestrial and aquatic ecosystems. 
Determining DOM molecular composition and its reactivity within 
and across watershed compartments are central pieces to disentangle 
its role in carbon and nutrient cycles and flux of gasses to the 
atmosphere in a changing world.

Although recent studies have shown distinct spatial patterns of 
DOM within and across streams (Riedel et  al., 2016; Garayburu-
Caruso et al., 2020; Stadler et al., 2023; Freeman et al., 2024), the 
intrinsic and/or extrinsic attributes driving such variations are not yet 
fully understood. Research has shown that the composition of DOM 
varies across different scales including in-stream compartments, 
positions in the river networks, and latitude zones (Jaffé et al., 2012; 
Roth et al., 2013; Hawkes et al., 2018). For example, distinct patterns 
of DOM molecules have been observed when comparing surface 
waters and hyporheic zones (Stegen et al., 2022) and in rivers with 
different sizes of upstream catchment areas (Danczak et al., 2023). 
Another study in US rivers showed that molecular richness in river 
sediment decreased with increasing latitude (Cui et  al., 2024). 
Furthermore, the composition of DOM is shaped by its reactivity to 
photochemical and microbial transformations, as well as to solid-
phase sequestration such as flocculation and adsorption (e.g., Lu et al., 
2013; Wen et al., 2022). Currently, the processing rates of organic C 
degradation vary regionally and globally (Tiegs et al., 2019), likely 
arising from the differences in biotic (autotrophic production and 
heterotrophic microbial degradation) and abiotic (e.g., light) 
degradation of DOM across large spatial scales. Specifically, 
environmental factors such as temperature, precipitation, and solar 

irradiation, have been identified as important regulators of DOM 
compositions at both region and continental scales (Du et al., 2022, 
2023). The variation in microbial community compositions, driven by 
environmental factors within and across stream ecosystems, also plays 
a role. The distinct capacities of different microbes for DOM synthesis 
and degradation can contribute to differences in DOM molecular 
composition (Amaral et al., 2016; Logue et al., 2016; D’Andrilli et al., 
2019; Tanentzap et al., 2019; Wang et al., 2022).

Most of the aforementioned studies have characterized DOM and 
its association with physicochemical drivers by employing multivariate 
statistical methods like principal component analysis (PCA) and 
discriminant analysis (see for example Angst et al., 2016; Johnson et al., 
2019 and Lynch et al., 2019). These methods, being primarily linear in 
nature, have limitations in accurately reflecting complex 
biogeochemical processes (e.g., varying stability of molecules under 
different biogeochemical conditions), resulting in a potential 
misinterpretation of meaningful information as noise. Machine 
learning (ML) approaches, on the other hand, are particularly useful in 
ecological studies with complex data where non-linear relationships 
and interactions between various environmental factors and 
parameters of interest such as DOM properties exist. Random Forest 
(RF), an ensemble learning-based ML algorithm proposed by Breiman 
(2001), has been shown to improve accuracy by integrating results 
from numerous decision trees, giving more weight to significant 
variables while minimizing the impact of noise. Additionally, RF can 
assess the importance of different variables that influence model 
accuracy, which is essential for understanding the distinctions between 
different samples. This approach offers a more effective way of handling 
complex molecular DOM data that can further improve interpretation 
of biotic and abiotic controls in diverse ecosystems. Other studies that 
showcase the nuances of identifying molecular DOM composition 
patterns include Spencer et al. (2007) on diurnal variability in riverine 
DOM composition, He et  al. (2016) on the molecular diversity of 
riverine sediment organic matter, and Cuss et al. (2016) on classifying 
DOM using ML and fluorescence signatures. Artificial neural networks 
(ANNs) have also been applied to biogeochemical and ecological 
studies for their efficiency in revealing patterns and predicting 
outcomes. For instance, ANNs have been instrumental in identifying 
the patterns involved in the spatial and temporal variation of the 
abundance and composition of abiotic and biotic variables (Larsen 
et al., 2012; Broullón et al., 2020; Danczak et al., 2020).

Here, we use a ML approach to identify patterns and trends in the 
previously characterized molecular composition of continental-scale 
river and sediment DOM samples collected under the crowdsourced 
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Worldwide Hydrobiogeochemical Observation Network for Dynamic 
River Systems (WHONDRS; see for example Barnard et  al., 2022; 
Borton et al., 2022; Dwivedi et al., 2022; Goldman et al., 2022). The data 
set was created using Fourier Transform Ion Cyclotron Resonance Mass 
Spectrometry (FTICR-MS) which generates highly dimensional datasets 
that largely defy 2D or other linear approaches of data manipulation. 
Given the high dimensional complexity of these data, the use of ML 
methods may help resolve the drivers of DOM composition, reactivity, 
and chemical character across systems. We focus on molecular diversity 
(number of unique molecular formulae per sample, e.g., Danczak et al., 
2023) and composition and address two main questions: (1) how do the 
different classes of DOM and their molecular attributes vary within and 
between sediment and surface waters? and (2) how do the relative 
contributions of biotic and abiotic variables (i.e., watershed 
characteristics, macronutrient ratios, oxidation state, sediment 
metabolism) drive variation in sediment and surface water DOM.

2 Materials and methods

To conduct this study, we analyzed previously published data from 
the WHONDRS Summer 2019 Sampling (S19S) campaign (Stegen 
et al., 2018) using unsupervised and supervised ML approaches to 
identify the environmental parameters influencing the diversity of 
DOM clusters (Figure 1).

2.1 Data sources

The samples we analyzed were collected and processed in 2019 as 
part of the WHONDRS consortium (Stegen et al., 2018), and the data 

were retrieved from publicly available data packages (Goldman et al., 
2020; Toyoda et  al., 2020). Full details on sample and metadata 
collection are provided in Garayburu-Caruso et al. (2020). In brief, 
during July and August 2019, 97 river corridor systems were sampled 
for surface water and sediment, along with metadata, climate, 
vegetation, and geospatial data. Surface water was collected in 
triplicate, filtered (0.22 μmSterivex), and stored in clean, pre-acidified 
amber VOA glass vials. Sediment samples were collected at sediment 
surface depths (1–3 cm) using a sterilized stainless-steel scoopula. 
Samples were rapidly shipped to the Pacific Northwest National 
Laboratory (PNNL, Richland, Washington United States) and surface 
water samples were frozen at −20°C upon arrival and sediments were 
sieved (<2 mm), subsampled, and stored at −20°C. A 12 Tesla Bruker 
SolariX FTICR-MS (mass resolving power was 220,000 at m/z 
481.185) was used to collect ultrahigh-resolution mass spectra of 
DOM in each surface water and sediment sample (Garayburu-Caruso 
et  al., 2020). The FTICR-MS was equipped with an Electrospray 
Ionization (ESI) source and operated in negative mode at a − 4.2 kV 
voltage. Data collection varied between surface water (0.05 s ion 
accumulation) and sediment (0.1 or 0.2 s ion accumulation), covering 
a m/z range of 100–900 at 4 M. The mass accuracy was less than 1 ppm 
for singly charged ions in the m/z 100–900 range (Garayburu-Caruso 
et al., 2020).

Surface water samples were analyzed for dissolved organic 
carbon (DOC) concentrations, stable water isotopes [oxygen (O) 
and hydrogen (H)], specific conductivity, total nitrogen (TN) 
concentrations, and concentrations of chloride (Cl−), sulfate 
(SO4

2−), nitrate (NO3
−), nitrite (NO2

−), and fluorine (F−); see 
Toyoda et al. (2020) for details of these measurements. Sediment 
samples were assessed for non-purgeable organic carbon as 
sediment, water extractable organic carbon (WEOC) 

FIGURE 1

Overview of the multifaceted data analysis framework employed in this study [Steps (A–D)]. The framework begins with (A) the prevalence data for 
molecular (chemical) formulae (CF) across all sites, represented in a binary matrix format used to determine observed richness. Next (B) a diversity 
index based on the Jaccard similarity coefficient is calculated, yielding an N x N symmetrical matrix that captures the pairwise similarity between sites. 
Then (C) unsupervised machine learning techniques are applied, starting with dimensionality reduction via PCA (Principal Component Analysis) and 
followed by K-means clustering to identify inherent groupings in the data (water and sediment clusters). Lastly (D) a supervised machine learning 
approach, Histogram-based Gradient Boosting (HGB), is applied to obtain a deeper understanding of the environmental variables influencing 
molecular diversity of the dissolved organic matter (DOM) clusters.
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concentrations, microbial respiration rates, and X-ray 
fluorescence; details can be  found in Goldman et  al. (2020). 
Additional information on WHONDRS and methods used can 
be found at https://whondrs.pnnl.gov. Some of the metadata for 
the continental United  States sites are from the StreamCat 
database accessed through https://waterfolk.shinyapps.io/
streamcat/ (Hill et al., 2016; Powers et al., 2023).

2.2 Fourier transform ion cyclotron 
resonance mass spectrometry data 
processing

The WHONDRS dataset has been discussed in other 
publications (i.e., Garayburu-Caruso et al., 2020) In the following, 
we provide a brief overview of the original data processing. Data 
were pre-processed (Garayburu-Caruso et  al., 2020) using the 
BrukerDaltonik Data Analysis software (version 4.2), which 
allowed the conversion of raw spectra to a list of m/z values by 
applying a signal-to-noise ratio (S/N) of 7 and mass measurement 
error < 0.5 ppm. Peaks were then aligned, and molecular formulae 
assigned using Formularity software (Tolić et al., 2017). The initial 
assignments were post-processed using the R package 
ftmsRanalysis (Bramer et al., 2020), removing results outside of a 
high confidence m/z range (200–900) and/or with a 13C isotopic 
signature for further DOM characterization analysis. The 
ftmsRanalysis package calculates molecular formula properties and 
chemical classes (Kim et  al., 2003; Koch and Dittmar, 2006; 
LaRowe and Van Cappellen, 2011). Molecular formulae were then 
classified into amino sugar-like, carbohydrate-like, condensed 
aromatic-like, lignin-likes, lipid-like, protein-like, tannin-like, and 
unsaturated hydrocarbon-like compounds using the assign_class() 
function (see Kim et al., 2003 for chemical class descriptions and 
elemental properties). Such chemical compound classes are 
determined based on the atomic O/C and H/C ratios from the 
assigned formulae, which have shown to be consistent with other 
analytical techniques (Kim et al., 2003).

Peak intensities were transformed into presence-absence data, 
with sediment samples from different river segments of the same river 
treated as replicates (Dorazio et al., 2011). Peaks that were assigned 
the same molecular formula due to minor mass differences were 
merged (0.5 ppm threshold). Only peaks with an assigned molecular 
formula and with an elemental combination of C1–130, H1–200, O1–50, N0–4, 
S0–2, and P0–1 were retained (Riedel and Dittmar, 2014). The Compound 
Identification Algorithm in Formularity was used with the following 
criteria: S/N > 7 and mass measurement error < 0.5 ppm. This 
algorithm takes into consideration the presence of C, H, O, N, S, and 
P and excludes other elements. Molecular formulae in the range of 
0.3 ≥ H/C ≤ 2.2 and O/C ≤ 1.2 (Hawkes et al., 2020) and double bond 
equivalents minus oxygen ≤10 were considered reliable based on 
chemical feasibility (Herzsprung et al., 2014).

The molecular properties and chemical character of the molecular 
formulae were calculated, including their nominal oxidation state of 
C (NOSC) (unitless; Garayburu-Caruso et  al., 2020), Gibbs Free 
Energy GFE (in kJ/mol C; according to LaRowe and Van Cappellen, 
2011), double bond equivalent DBE (unitless; according to Koch and 
Dittmar, 2006), and degree of aromaticity AImod (unitless; according 
to Koch and Dittmar, 2006).

2.3 Machine-based learning examination of 
DOM composition

Our analysis focused on three categories: DOM data (matrix of 
assigned DOM molecular formulae), relevant environmental 
metadata, pertinent to biological and/or chemical DOM processes 
(including pH, water temperature, concentrations of Cl−, F−, and 
nitrate, isotopic composition, δ18O, δ2H, and mean annual 
temperature, MAT, among others), and DOM molecular properties 
and chemical character. Molecular formulae present in less than 10% 
of samples were categorized as “rare” and excluded.

The drivers of DOM molecular composition across diverse sites 
having similar characteristics can be difficult to interpret. To obtain a 
deeper understanding of differences and drivers of potentially small 
differences across the continental-scale dataset (Step A in Figure 1), 
we first reduced the dimensionality by applying molecular diversity 
indices (representing the composition of each sample) and counted 
observed richness as the number of unique molecular formulae per 
sample. Jaccard pairwise similarity coefficients were then calculated 
and used in Step B (Figure 1), resulting in a N x N engineered DOM 
dataset for both water (n = 265) and sediment (n = 239). Diversity 
metrics were calculated using the R package “vegan” (Oksanen et al., 
2020) in the R environment (R Development Core Team, 2008). 
We  then applied an unsupervised k-means clustering on the 
transformed data using PCA and the number of clusters decided by 
examining the distortion, inertias, and silhouette score for number of 
clusters ranging from 2 to 10 (Supplementary Figure S1). Each sample 
type was best characterized by 3 distinct clusters, referred to as Sed-0, 
Sed-1, Sed-2, Wat-0, Wat-1, and Wat-2 (see Figure 2 for clustering 
following PCA-k-means). The clustering is based on the Jaccard index 
(commonly used to determine how similar sample sets are), and likely 
represents similar ecological influences on DOM formation and 
diversity (Step C). After the removal of rare molecular formulae 
(present in less than 10% of samples) and unsupervised k-means 
clustering, we observed 4,936 molecular formulae in the 265 water 
samples and 4,053 molecular formulae in the 239 sediment samples 
with an overlap of 2,109 molecular formulae in both datasets. In total, 
6,880 unique molecular formulae were found across water and 
sediment samples (Supplementary Table S1).

To obtain a better understanding of environmental influences 
driving the formation of the DOM clusters, we developed ML models. 
One-hot encoding was used for categorical data pre-processing. Class 
imbalances were addressed by generating additional samples for 
minority classes (clusters with lower sample numbers). Histogram-
based Gradient Boosting (HGB) models were trained with the metadata 
to predict DOM cluster formations (Step D). Hyperparameter tuning 
was undertaken using the BayesSearchCV algorithm in the Scikit-Learn 
framework (Pedregosa et  al., 2011). The hyperparameters 
(Supplementary Table S2) were selected to prevent model overfitting. 
SHapley Additive exPlanations (SHAP) values were computed for each 
set of metadata, ranked, and plotted. Features with positive SHAP values 
positively impact the prediction, while those with negative values have 
a negative impact. The magnitude is a measure of how strong the effect 
is. In each stage, two models were developed for each water and 
sediment sample. During the first stage of the model development, 
using all metadata, the models were developed using default and tuned 
hyperparameters. Metadata with high SHAP values computed from 
Stage 1 were selected for model training in Stage 2. Based on the SHAP 
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values obtained in stage one, 13 metadata parameters were used to train 
the water model (13 for sediment) using HGB’s default hyperparameters 
and then the tuned hyperparameters. All models were evaluated for 
their performance using the 10-fold cross validation (CV), test accuracy 
score and accuracy score-based learning curve (Supplementary Table S3). 
Please see Supplementary Figure S2 (sediment) and 
Supplementary Figure S3 (water) for the accuracy-based learning 
curves for each HGB model and Supplementary Figures S4, S5 for an 
overview of SHAP values from each HGB model.

All data and codes are available at: https://github.com/
WHONDRS-Crowdsourced-Manuscript-Effort/Topic4/tree/main.

3 Results and discussion

3.1 Unsupervised learning reveals diverse 
and distinct DOM clusters

Applying an unsupervised ML method resulted in highly 
distinguishable and unique clusters for the sample types - sediment 
and surface water. The 97 sampled systems and individual replicates 
(504 samples in total) were used as input for cluster analyses. For 
sediment samples, 76 samples were identified in the cluster 0 (Sed-0), 
17 samples in cluster 1 (Sed-1) and the majority, 146 samples in cluster 
2 (Sed-2). For surface water, 147 samples were clustered in the cluster 
0 (Wat-0), 28 samples in the cluster 1 (Wat-1) and 90 in the cluster 2 
(Wat-2). Concerning the prevalence of DOM molecular formulae, 
we found that most molecules identified in sediments were found 
across all clusters (70.1%), and some were exclusively present in Sed-0 
and Sed-2 (29.9%), while a single unique formula was observed in 

Sed-2 and none were exclusively found in Sed-0 or Sed-1 
(Supplementary Figure S6). Similar results were observed in water 
samples (Supplementary Figure S6), as an even higher number of 
molecular formulae were observed across the three clusters (80.5%), 
17.7% in clusters Wat-0 and Wat-2, and just a few exclusively in Wat-0 
only (0.45%) or in both Wat-0 and Wat-1 (1.4%). These results point 
toward homogenization in terms of shared molecular formulae across 
clusters, in both sediments and water habitats and potential variation 
in DOM signatures of individual samples within each cluster (which 
is considered below).

Differences in DOM molecular compositions of sediment and 
water samples belonging to the three identified clusters were expected 
given the potential influence of diverse environmental factors (e.g., 
terrestrial input, microbial activity, human activities, and runoff 
patterns) across the continental-scale dataset (Stegen et al., 2022). 
Using chemical compound classes determined by differences in 
atomic O/C and H/C ratios (Kim et al., 2003), we observed that, in 
general, samples of sediment clusters had a larger relative contribution 
of protein-like and unclassified chemical compound classes compared 
to water clusters. Sediment clusters 0, 1, and 2 had distinct 
compositions, with Sed-0 mostly comprised of lignin- and lipid-like 
compounds, Sed-1 was dominated by concentrated hydrocarbon-like 
(ConHC) and lignin-like compounds, and Sed-2 was dominated by 
lignin- and tannin-like compounds (Figure  3). The diversity in 
molecular composition potentially highlights different sources and 
processes affecting the clusters’ composition. Water clusters also had 
distinct compositions with Wat-0 being dominated by ConHC and 
tannin-like compounds, while that Wat-1 was dominated by amino 
sugar- and protein-like compounds, and Wat-2 by lignin-like 
compounds (Figure 3). Intriguingly, Sed-0 and Wat-1 contained the 

FIGURE 2

Principal component analysis (PCA)-based k-means clustering of the sediment (A) and water (B) samples. Different colors indicate the three different 
clusters found for the three principal components (PC1–PC3).
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most diversified contribution of chemical compound classes. 
Molecular alpha diversity (considering observed richness) was 
significantly different (p < 0.01) across clusters, with diversity indices 

ranging from ~1,000 to 2,000 in sediment and slightly higher values 
between ~1,500 to 3,000 in water clusters (Figure 4).

More information regarding the molecular composition of the 
clusters can be found in the Supplementary material (section 3). To 
summarize, the composition of sediment clusters indicates significant 
terrestrial inputs, particularly from vegetation. Sed-2 suggests influence 
from fresh plant debris due to its high CHO content. Nitrogen, sulfur, 
and phosphorus present in Sed-0 and Sed-1 point to microbial activity 
and human influences like agriculture and wastewater discharge. In 
water clusters, the abundance of CHO and lignin-like character in 
Wat-2 indicate terrestrial plant and soil inputs, hydrologic connectivity 
among soils and adjacent rivers, and the end-products of in-situ 
heterotrophic microbial degradation of DOM. Higher percentages of 
CHOS in Wat-0 may be attributed to biotic and abiotic sulfurization 
reactions under anoxic conditions or wastewater inputs. The abundance 
of lignin- and tannin-like character in Wat-0 and Wat-2 indicates 
natural and anthropogenic terrestrial sources from runoff and land use 
are also significant contributors. Phosphorus-containing formulae in 
Wat-1 and Wat-2 hints at nutrient cycling as a key process, potentially 
influenced by agricultural runoff (see Supplementary material section 
3 for more details). This ML clustering approach revealed features like 
those obtained by optical fluorescence analyses (excitation emission 
matrices, e.g., Yamashita et al., 2008), and a methodological cross-
validation in future studies could guide researchers toward more cost-
effective methods to characterize DOM pools across spatial, temporal, 
and cross-boundaries scales.

The environmental parameters across sediment and water clusters 
showed distinct profiles for each cluster (see 
Supplementary Figures S8, S9). For the sediment clusters, only 
respiration rate and NPOC showed significant differences between the 
clusters (p-value of 0.01237 and 0, respectively; Supplementary Figure S8). 
In the sediment clusters, Sed-2 displayed significantly lower respiration 
rate, which could be related to the large contributions of lignin- and 
tannin-like classes–the large, structurally complex molecules that are 
considered more recalcitrant or resulting from microbial respiration. 
Sed-1 showed significantly higher NPOC concentrations. This cluster 
also contained more DOM having ConHC character, indicating the 
abundance of low-O containing DOM in the sediments, which may 
be  related to in-situ processing or reflect the signature of previous 
processing in the water column before deposition. In contrast, the water 

FIGURE 3

Overview of the relative contribution (%) of compound classes to the three sediment (left) and water (right) clusters. A heatmap of the key molecular 
formulae contributing to the cluster formation can be found in Supplementary Figure S7.

FIGURE 4

Diversity indices of sediment and water clusters. Observed richness 
for sediment clusters in (A) and for water clusters in (B). Lowercase 
letters a-c indicate significant differences between clusters based on 
Kruskal-Wallis followed by Dunn tests (p  <  0.01). Each boxplot’s upper 
and lower hinges correspond to the first and third quartiles, 
respectively. The whiskers extend from the hinge to the largest and 
smallest value within 1.5 times the interquartile range. Data beyond 
whiskers are displayed as outlier points.
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clusters show a different pattern. For the water clusters, most variables 
showed significant differences, indicating that the clusters are highly 
distinct in terms of these environmental characteristics 
(Supplementary Figure S9). Wat-0 is characterized by greater distances 
from dams and gages and highest median number of days since 
precipitation, indicating DOM molecular composition sources in 
potentially more remote locations having drier climates. The dry 
condition corresponds to the higher proportions of condensed 
hydrocarbons in cluster 0, as fire can be a primary source for these 
compounds. Wat-2 is generally closer to the dam and gage with the least 
variability in distance, and experiences precipitation more frequently. 
This may be linked to higher proportions of lignin-like composition in 
Wat-2, since hydrological events predominantly facilitate the transfer of 
terrestrial DOM into aquatic ecosystems. Across both sediment and 
water clusters, the variability and median values suggest that each cluster 
experiences unique environmental conditions, with some being more 
prone to extremes and others displaying more homogeneity in their 
environmental parameters.

To determine whether the distribution of clusters is statistically 
significant with respect to latitude, longitude, or a combination of 
both, we performed point-biserial correlation and ANOVA (Analysis 
of Variance) tests. Like Cui et al. (2024), we observed a slight but 
statistically significant correlation between sediment cluster 
membership and latitude (Supplementary Table S4). While Sed-1 was 
positively related (p = 0.0029), Sed-2 showed a negative relationship 
with latitude (p = 0.0021). Sed-3 showed no significant correlation 
with latitude and all three clusters had no significant correlation with 
longitude. Water clusters displayed the opposite trend, no signification 
correlation with latitude but with longitude. This was, however, only 
true for Wat-0 which displayed a slight but statistically significant 
negative correlation with longitude (p = 0.091). This analysis suggests 
that while latitude and longitude do have some (weak) predictive 
power for cluster membership, they are not the main factors 
influencing it. More complex models and in-depth knowledge are 
required for a more accurate prediction of cluster membership.

3.2 Supervised machine-based learning 
reveals influence of environmental 
parameters on the molecular richness of 
DOM clusters

To gain deeper insights into how the various environmental 
parameters influenced the formation of DOM clusters in water and 
sediment samples, we applied a supervised ML algorithm (Histogram-
based Gradient Boosting, HGB) using SHAP (Shapley Additive 
exPlanations) values. Sediment and water clusters were the targets and 
all environmental variables used to train the model (see methods for 
more details). The HGB ML model consistently highlighted surface 
water isotopic composition δ18O (‰) and mean annual temperature 
(MAT; °C) as influential across both sediment and water sample types 
(Figure 5). Both water and sediment SHAP values, however, also show 
that certain features have more variable impacts than others on DOM 
cluster formation, as indicated by the spread of the SHAP values along 
the x-axis (Figure  5). For example, NPOC concentration and 
respiration rates for sediment clusters and stream order and variations 
in natural flow in water clusters appear to have highly variable impacts 
(Figure  5). These examples demonstrate the complex, non-linear 
relationships inherent in ecological data.

For sediment clusters, the SHAP values suggest that NPOC and 
nitrate concentrations help predict the DOM clusters. Features related 
to isotopic composition (δ18O and deuterium, ‰), and mean annual 
temperature (MAT; °C) were also highlighted as influential, which 
indicates the importance of geographic water source and 
thermodynamically favorable hydrological processes. Deuterium 
provides information about the role of precipitation, groundwater, and 
evaporation processes in continental waters, all of which may have 
different outcomes on the molecular composition of DOM (Baskaran 
et al., 2009). McDonough et  al. (2022) discovered that the 
transformation of DOM in groundwater resulted in the elimination of 
oxidized DOM composition, along with an accumulation of both 
reduced photodegradable compounds and aerobically biodegradable 
compounds exhibiting a pronounced microbial signature. Ide et al. 
(2017) found significant variations in the number of DOM molecular 
formulae in rainwater, throughfall, soil water, groundwater, and stream 
water, with a linear correlation between DOM molecular diversity and 
the number of lignin-like molecules. Lignin-like composition was 
particularly high in groundwater samples. Sediment clusters 0 and 2 
were characterized by more lignin-like composition (Figure 3) and 
could potentially be influenced by groundwater discharge.

Nitrate, respiration rate, mean annual precipitation, and grass 
percentage within 100-meter of the river all showed a negative 
influence on DOM cluster formation (Figure 5). The combination of 
respiration rate and water column depth could be interpreted as areas 
with deeper waters and more biological activity, as indicated by 
respiration rates, may harbor more diverse organic molecules within 
the sediment. Variables related to precipitation, in combination with 
nitrate, suggest that rainfall and higher nitrate concentrations may 
be associated with non-biomass building microbial processes leading 
to lower molecular richness in the sediment. Precipitation events have 
been shown to influence the amount and composition of DOM 
transported through river networks by mobilizing terrestrial DOM 
into the river water column and shifting flow paths to flushing upper, 
organic-rich soil horizons (Hong et al., 2012; Wagner et al., 2019). The 
negative influence of high nitrate concentrations could be  due to 
conditions that are not conducive to molecular diversity, for example 
eutrophic conditions favoring the excessive production of algae-
derived DOM. Elevated nitrate concentration is also commonly 
associated with agricultural influences, yet the impact on DOM can 
vary. Agricultural land use has been shown to increase microbially 
derived, protein-like DOM composition with decreased structural 
complexity (Wilson and Xenopoulos, 2008) and/or increase 
terrestrially derived, aromatic DOM composition (Shang et al., 2018; 
Ji et al., 2024). In comparing three types of riparian soils (forested, 
agricultural, and wetland soils) in headwater streams, Ji et al. (2024) 
found that agricultural soil DOM exhibited the lowest molecular 
richness, while agricultural particulate organic matter and DOM 
displayed highest molecular richness.

The water clusters had a broader range of SHAP values, suggesting 
that the model finds a greater variation in how the environmental 
parameters affect water DOM clusters. Physical and chemical 
parameters like MAT and inorganic ions (sulfate and chloride) have a 
substantial influence on the DOM clusters (Figure 5). Chloride has 
been associated with environmental conditions or events that foster a 
diverse array of organic molecules, such as increased groundwater 
discharge (Gue et al., 2018). Research conducted in coastal aquifers 
explored the molecular diversity of DOM in the subterranean estuary, 
revealing a unique ecohydrological interface where marine organic 
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matter mixes with groundwater containing aged C from terrestrial 
sources (Waska et al., 2021). McDonough et al. (2021) used FTICR-MS 
to investigate the molecular composition and character of DOM in 
groundwater and reported that the molecular character of reactive 
DOM in groundwater differs from that of surface water. Fluoride had 
a positive impact on DOM clusters as well, particularly at higher values 
(Figure 5), supporting the potential role of groundwater discharge in 
DOM richness. Liu et al. (2015) explored how geochemical processes, 
including the role of DOM derived from rock weathering and 
biodegradation of organic matter, affect fluoride concentrations in 
groundwater. They showed that competitive adsorption of HCO3− and 
OH− with F− can lead to the release of F− from aquifer matrix into 
solution, increasing groundwater F− concentration. Overall, our ML 
approach can decipher environmental influences on DOM diversity 
that strongly agree with other published work.

The long-standing ecological conceptual model, the “River 
Continuum Concept,” has argued that stream order serves as a general 
predictor of DOM diversity, with the highest diversity appearing in 
low-order streams (Vannote et al., 1980). Evidence from empirical 
data, however, varies geographically and with anthropogenic 
influence. For instance, using FT-ICR MS, Mosher et  al. (2015) 
showed 1st-order streams have the highest molecular formulae 
diversity and compound classes in a forested catchment, while 
Roebuck Jr et al. (2020) showed that the influence of stream order was 
outweighed by land use in regulating DOM compositions along a river 
continuum. Stream order had both negative (blue) and positive (red) 
influence on DOM clusters (Figure  5), which could indicate that 
DOM richness is increased in clusters consisting of samples taken in 
low-order streams and decreased in clusters made up by samples taken 
in higher-order streams.

Primary sources introducing flow variability showed a positive 
impact on DOM clusters (Figure 5). Such features could for example 
be  dams, and the presence of upstream dams indeed showed a 
noticeable cluster of positive SHAP values, indicating that the presence 
of a dam upstream can be  an important predictor for the model 

outcome. Dams showed a mix of positive and negative impacts, 
supporting our finding that Wat-2 is characterized by a close 
association to dams and gages as compared to Wat-0 and Wat-1 as 
being further away. Dams have been shown to affect the structure of 
DOM (Wang et al., 2021). In reservoirs created by dams, certain areas 
experience slower water flow compared to free-flowing river segments. 
This reduction in flow velocity alters the physical, chemical, and 
biological environment of the water, which in turn impacts the 
concentration and composition of DOM. Wang et al. (2021) showed 
that the reservoir area had relatively higher terrestrial input and 
increased abundance of recalcitrant DOM, a consequence of water 
intrusion from the main stem of the stream caused by the construction 
and operation of the reservoir. Dam constructions increase the 
residence time of DOM in the river (Hong et al., 2012) and Sun et al. 
(2017) noted that in slower flow areas of a mid-subtropical drinking 
water source reservoir, there was a higher content of certain DOM 
classes, supporting the notion that altered hydrodynamics can lead to 
variation in the DOM composition (Lynch et  al., 2019). 
Non-anthropogenic organic debris dams in streams trap sediments 
and collect particulate organic matter, which again affects the 
concentration and composition of DOM in stream water (Bilby, 1981).

As observed for sediment clusters, recent precipitation events also 
had a cluster of high positive SHAP values at lower feature values 
(Figure 5) which suggests that rainfall events have a significant impact 
on water DOM clusters. DOM increases in streams during heavy 
rainstorms and snowmelt, mainly due to storm flow flushing through 
upper, organic matter-rich soil horizons (Kaiser and Guggenberger, 2005).

Recent research at the basin level, such as the study by Danczak 
et al. (2023) and Cui et al. (2024), have documented a correlation 
between watershed attributes and the chemical diversity of DOM in 
water. This research revealed that in the Yakima River, DOM chemical 
diversity expands with the growth of the watershed area and fluctuates 
with different types of land cover. While the extent to which findings 
from specific sites can be generalized to larger areas remains uncertain, 
our analysis on a continental scale hints at the possibility that 

FIGURE 5

Summary plots for SHAP values of the two best performing HGB models for sediment (left) and water (right) sample types. Individual points represent 
samples. Features with positive SHAP values positively impact the prediction, while those with negative values have a negative impact. The magnitude 
is a measure of how strong the effect is. Features are arranged along the y axis based on their importance, which is given by the mean of their absolute 
SHAP values. The higher vertical position of the feature in the model, the greater importance it has on the model.
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connections between DOM diversity and watershed traits might 
be widespread. A better understanding of the watershed characteristics 
driving DOM beta diversity and richness could be instrumental in 
forecasting the chemical diversity of riverine DOM across extensive 
geographical regions.

4 Summary and conclusions

Our limited capacities to unravel biogeochemical processes in 
lotic ecosystems worldwide at different spatial and temporal scales, 
combined with a poor knowledge on complex interactions between 
abiotic and biotic drivers, result in an urgent need to develop new 
strategies and tools to study DOM. Such new approaches may allow 
us to identify the major patterns governing ecological processes, so 
we can predict how they might be affected in a changing world. Here, 
we applied unsupervised and supervised ML approaches to analyze 
the diversity and molecular composition of continental-scale river and 
sediment DOM samples of the WHONDRS database. We  then 
assessed the potential influence of environmental parameters on their 
molecular diversity. This data-driven approach provided a mechanism 
to identify common DOM clusters and the key environmental 
conditions that generate these groups of compounds. While both 
sediment and water samples shared some common influential features, 
we  found clear differences in the range and nature of the most 
influential parameters. Supervised ML revealed that features like 
dams, precipitation events, and watershed characteristics had 
significant impacts on the DOM composition and diversity, 
particularly in water samples. The study also underscored the complex 
and non-linear relationships inherent in ecological data, highlighting 
the need for advanced analytical methods like ML to understand 
non-linear correlations in large data sets and bridge relationship gaps 
across carbon cycling scientists in diverse ecological communities.
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