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The Lukosi River catchment plays a crucial role in the economic and ecological 
framework of the country, serving as a major contributor to the Great Ruaha 
River (GRR). This study aimed to assess the impact of human activities on the 
health of the Lukosi River by analyzing key water parameters. Three sampling 
sites across the catchment were selected, and water samples were collected 
and analyzed using the American Public Health Association technique. A 
one-sample t-test was used to measure the significance of the difference 
between the measured water quality parameters and the water quality criteria 
established by the Tanzania Bureau of Standards (TBS) and the World Health 
Organization (WHO). The results revealed mean values for various parameters: 
pH (8.67  ±  0.57), temperature (24.803  ±  1.361°C), EC (93.30  ±  3.34  mgL−1), BOD 
(14.85  ±  1.49  mgL−1), TDS (46.95  ±  1.55  mgL−1), total hardness (27.53  ±  1.28  mgL−1), 
DO (3.4  ±  0.53  mgL−1), turbidity (109.83  ±  40.99  mgL−1), NO2 (79.04  ±  0.73  mgL−1), 
Cu (6.07  ±  0.60  mgL−1), Ca (7.88  ±  0.36  mgL−1), Mn (0.16  ±  0.07  mgL−1), Cl 
(7.58  ±  3.97  mgL−1), F (0.12  ±  0.0008  mgL−1), SO4 (20.42  ±  4.12  mgL−1), Mg 
(1.92  ±  0.13  mgL−1), Zn (0.14  ±  0.11  mgL−1), Fe (3.56  ±  0.15  mgL−1), and NH3 
(4.67  ±  0.51  mgL−1). Parameters such as DO, turbidity, NH3, NO3, and BOD 
significantly (p  =  0.05) exceeded the permissible limits set by the TBS and the 
WHO. Furthermore, elements including Fe and Cu exceeded allowable limits. 
Moreover, the WQI was used to indicate that the water in the catchment is 
unsuitable for sustaining aquatic organisms and is unfit for domestic use. 
Household questionnaires and direct observations identified key human 
activities in the catchment: gardening (78.3%), agriculture (68%), livestock 
keeping (50%), sand mining (21%), and brick-making (21%). Less prevalent were 
car washing (7%) and fishing (4%). These findings underscore the urgent need 
for conservation efforts and sustainable management practices to safeguard the 
Lukosi River catchment (LRC).
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1 Introduction

Globally water catchments are the sources of freshwater resources 
that sustain life and provide various social and economic needs 
(Koleka et al., 2023). However, the increasing demand for water poses 
significant challenges for water management (Greve et al., 2018). The 
destruction and misuse of natural resources as well as pollution of the 
aquatic environment caused by human activities have been on the rise 
in our planet (Uherek and Gouveia, 2014). Most of the environmental 
impacts associated with water catchment degradation are primarily 
caused by different human activities that are taking place along the 
catchment areas (Khatri and Tyagi, 2015). These activities affect the 
distribution, quantity, and chemical quality of water resources and 
their flow regimes (Liyanage and Yamada, 2017). Water catchment 
degradation affects not only stream flow regimes but also the ecology 
and the livelihoods of those who depend on it (Gereta et al., 2002). As 
a result, many countries have adopted rules to conserve the 
environment from anthropogenic risks and to ensure that water 
resources are used appropriately (Oliveira and Callisto, 2010).

Over the recent years in many African countries, considerable 
population growth has taken place, leading to rapid urbanization, 
industrialization, and expanded agricultural practices (Kanu and 
Achi, 2011). Consequently, this has led to a substantial increase in the 
discharge of various pollutants into water bodies, causing adverse 
impacts on aquatic ecosystems (Kanu and Achi, 2011). It is now 
widely recognized at national, regional, and global levels that the 
management and preservation of natural resources must be enhanced 
and substantial efforts are needed to reduce pollution resulting from 
human activities on a large scale (Kanu and Achi, 2011).

Water quality is assessed by examining its chemical, physical, and 
biological components (Lawson, 2011). The suitability of water for its 
intended purposes and the improvement of existing conditions hinge 
on the quality of these parameters (Ali et al., 2004). Key physical and 
chemical factors such as temperature, pH, salinity, dissolved oxygen 
(DO), total suspended, dissolved particles, total alkalinity, and heavy 
metal contaminants play a significant role in shaping the aquatic 
ecosystem (Lawson, 2011). These criteria, as elucidated by Lawson 
(2011), exert a crucial influence on the survival of aquatic flora and 
fauna. The composition, distribution, abundance, migrations, and 
variety of aquatic species are significantly influenced by the 
interactions between the physical and chemical properties of water 
(Deepak and Singh, 2014). In addition, poor water quality causes 
ecosystems to deteriorate, aquatic biodiversity to decline, and fisheries 
to become less productive (Ngor et al., 2018), which reduces local 
livelihood options and slows down national economic growth (Lynch 
et al., 2020).

Tanzania has experienced significant population growth, with its 
population quadrupling over the past 50 years. According to the 2022 
national population and housing census, the country has 61,741,120 
people [Tanzania National Bureau of Statistics (NBS), 2023]. The 
country relies on its surface and groundwater resources to supply clean 
water and livelihoods to its people. Additionally, Tanzanian surface 
water resources play crucial roles in tourism, agriculture, electricity 
generation, and industry. Moreover, they serve as vital habitats for 
aquatic flora and fauna. However, like most developing countries, 
economic activities in industry, energy production, mining, agriculture, 
and livestock keeping depend largely on these resources, exerting 
significant pressure on them, including potential contamination by 

various microcontaminants (Hellar-Kihampa, 2011). Only a few studies 
have been conducted to evaluate the quality of the water in this country, 
despite the harm that water pollution causes to the environment and 
human health. Water quality monitoring accounts for less than 2% of 
the total water management budget, according to a review of the 2015–
2020 WSDP budget (Republic of Tanzania Ministry of Water, 2020).

The LRC is found in the Kilolo district of the Iringa region, one of 
the primary rivers that feed into the GRR, which is regarded as the 
most significant river system in Tanzania (Seeteram et al., 2019). GRR 
holds significant importance as a major tributary in the Rufiji Basin, 
Tanzania. It contributes to water flow to support various crucial 
functions, including hydropower production, irrigation, and 
sustaining livelihoods in rural areas (Gervas et al., 2019). According 
to Kadigi et al. (2004), hydropower production from the river accounts 
for 50% of Tanzania’s installed capacity. Furthermore, the GRR flows 
its waters into the Kilombero Ramsar Site, which sustains a diverse 
range of living organisms. Recently, the Kilolo district has seen a 
number of issues that necessitate careful examination and control. 
These challenges include the ongoing conversion of natural vegetation 
into agriculture, forest plantations, and human settlements that are 
allegedly having a negative impact on rainfall trends, water quality, 
and stream flow in the Kilolo district (Mbungu et al., 2021). There is 
also an increase in illegal water abstractions for various purposes, 
including irrigation. In addition, the country is experiencing 
electricity shortages and rationing as a result of the considerable 
reductions in river flow to the Mtera and Kidatu reservoirs brought on 
by the expansion of irrigated land (Gervas et al., 2019). Furthermore, 
population growth, livestock expansion, and poor land management 
practices have caused soil erosion and increased sediment load into 
the Lukosi River. The continuous agriculture and gardening activities 
along the catchment areas pose a pollution risk due to the use of 
fertilizers, herbicides, and pesticides. Despite these challenges, there 
is no current scientific information regarding the impact of human 
activities on the health condition of the Lukosi River. To ensure 
sustainable water management and planning in the LRC, it is crucial 
to understand the specific human activities taking place along the LRC 
and their impact on its health condition. Therefore, the perspective of 
this study was to determine the current status of the Lukosi River by 
examining the specific human activities taking place along the LRC 
and their impact on the river’s health. This study aims to provide 
crucial information on how these human activities affect the LRC, 
which is essential for sustainable water management and planning to 
support aquatic life that depends on the Lukosi River.

2 Materials and methods

2.1 Study area

The study was conducted in the Kilolo district of the Iringa 
region, situated at the north-eastern extremity, approximately 37 km 
from the regional administrative center (Mbungu et  al., 2021) 
(Figure  1). This district covers an area of 7874.6 km2, hosting a 
population of 218,130, with geographic coordinates at 70-8030 S and 
340-370 E (URT, 2012). Its elevation ranges from 900 to 2,700 m 
above sea level, predominantly characterized by alluvial soil. 
Temperatures oscillate between 15 and 27°C, while annual rainfall 
varies from 500 to 1,600 mm. Kilolo district is already home to a 
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diverse array of small- and large-scale agricultural and forest 
plantations (PFP, 2017). The region primarily cultivates maize, 
legumes, fruits, and vegetables, contributing significantly to the 
nation’s breadbasket (URT, 2012).

2.2 Research design

The research used a cross-sectional research design, enabling the 
collection of data at a given time from a selected sample intended to 
accurately represent the entire population.

2.3 Data collection

Data were collected in the field through direct observation, 
household questionnaires, and a physical–chemical analysis of water 
parameters. The water parameter data were collected during the 
month of February 2023, and household questionnaires and direct 
observation were conducted during the month of May 2023.

2.3.1 Household questionnaire
The questionnaires were administered in Mahenge, Ruaha 

Mbuyuni, Mtandika “A,” and Msosa villages to selected households to 
gather data related to human activities taking place along the river and 
their impact on the resources within the river catchment. The study 
used a sample size of 30 respondents per sampled village, as 
recommended by Bailey (1994) and Yurdugul (2008). A total of 120 

respondents were included from all four villages; only one member of 
the household was selected to represent a house.

2.3.2 Direct observation
Direct field observation was used to complement the information 

collected by questionnaire. The observation primarily focused on 
studying how individuals are involved in various human activities 
along the LRC, how they carry out their activities, and what type of 
technologies are used in their activities. Throughout the study, relevant 
observations were documented, and photographs were taken to 
provide visual evidence and support for the findings.

2.3.3 Sampling sites selection for physical–
chemical analysis

The three sampling points of the study area were randomly 
selected using global positioning systems (GPSs) (Table 1). Sampling 

FIGURE 1

Map showing the location of the study area.

TABLE 1 Sampling stations and their corresponding grid references.

Sampling points Coordinates

Kitonga Comfort Hotel 36.21 E Longitude

7.677 S Latitude

Mtandika bridge at Rufiji gauge 

station

36.448 E Longitude

7.538 S Latitude

Msosa at the bridge 36.506 E Longitude

7.474 S Latitude
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points were selected considering that the samples taken are 
representative of the different sources from which water was 
obtained. The choice of the stations was made to better represent the 
quality of the Lukosi River water. The three sampling stations in the 
Lukosi River were designated as follows: Ls1 (upstream), where the 
river enters the villages; Ls2 (midstream), with moderate human 
activities; and Ls3 (downstream), which experiences higher human 
activities and is near the place where the Lukosi River connects with 
the GRR.

2.3.4 Sample collection
Water samples were collected from the Lukosi River following the 

standard procedure described by the American Public Health 
Association (APHA) (1998). Each sample was collected in a 
pre-washed 500 mL PVC plastic container, labeled with relevant codes. 
Triplicate 500 mL of samples were taken from each site. The water 
samples were temporarily stored in an ice-packed cooler while being 
transported and refrigerated at 4°C in the laboratory prior to analysis, 
as outlined by Gangwar et al. (2012).

2.3.5 Water quality analysis
The water quality parameters were analyzed using standard 

analytical methods [American Public Health Association (APHA), 
1998; Gebreyohannes et al., 2015; Omary et al., 2023]. Temperature, 
pH, electric conductivity (EC), total dissolved solids (TDSs), and DO 
were measured on-site using a portable multi-parameter analyzer, the 
HANNA HI 9829 (Hanna Instruments company, Loveland, USA), 
while turbidity was determined on-site using a Turner designs 
AquaFluor 8000-001 turbidity meter (Figure 2A). Biochemical oxygen 
demand (BOD) was measured in the laboratory as oxygen consumed 
over a 5-day test period (BOD5) at 20°C [American Public Health 
Association (APHA), 1998]. Using the Hach Lange kits (Hack 
company, Loveland, USA), nitrate (NO3) and ammonium (NH3) 
concentrations were measured (Gebreyohannes et  al., 2015). The 
examination of total hardness, calcium (Ca), magnesium (Mg), 
manganese (Mn), zinc (Zn), iron (Fe), copper (Cu), fluorine (F), and 
chlorides (Cl) was also conducted in the laboratory in accordance with 
standard American Public Health Association (APHA) (1998) 
protocols (Figure 2B). A nephelometric turbidity meter was used to 
measure the concentrations of sulfate (SO4) (TAHP, 1999). All 

chemicals used were of high purity and analytical grade. In order to 
avoid chemical contamination, fresh reagents were used, and great 
care was taken throughout the experiment.

2.4 Data analysis

The data were statistically analyzed using the Statistical Package for 
Social Sciences (SPSS), version 20. A one-sample t-test was used to 
measure the significance of the difference between the measured water 
quality parameter and the water quality criteria established by the WHO 
(2017) and the TBS (2006), with significance determined at a level of 
p < 0.05. Microsoft Excel software was used for additional data analysis.

In order to obtain a comprehensive picture of the entire surface 
water quality within the catchment, the water quality index (WQI) was 
used to determine the overall water quality status of the catchment. 
The WQI is used to simplify and convey scientific water quality 
information by combining the influence of various water quality 
parameters into a single-digit score that describes the overall water 
quality in a watershed (Koleka et al., 2023). Policymakers and the 
general public can obtain scientifically based information on river 
quality status through the index, which provides meaningful and 
comprehensible information on water quality (Wong et al., 2021). The 
weighted arithmetic index method was used to calculate the WQI. The 
method categorizes water quality based on purity levels by analyzing 
commonly measured water quality variables (Kizar, 2018; Paun et al., 
2016). This approach has been extensively utilized by researchers 
(Singh et  al., 2013). The obtained results were assigned to the 
classification of water quality based on the calculated WQI (Table 2).

2.5 WQI calculation

Step  1: Calculation of the unit weight (Wn) factors for each 
parameter by using the formula:

 
KWn
Sn

=
 

(1)

where:

FIGURE 2

(A) Onsite measurement. (B) Laboratory analysis of physicochemical parameters.
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Sn = Standard desirable value of the nth parameters.
On summation of all selected parameters unit weight factors, 

WN = 1 (unity).
Step  2: Calculation of the sub-index (QN) value by using 

the formula.
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where:
Vn = Mean concentration of the nth parameters.
Sn = Standard desirable value of the nth parameter.
Vo = Actual value of the parameters in pure water (generally 

Vo = 0, for most parameters except for pH and DO).
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Step 3: Combine steps 1 and 2. The WQI was calculated as follows:

 
WnQnOverall WQI

Wn
∑

=
∑  

(6)

3 Results and discussion

3.1 Human activities identified along the 
LRC

The identified human activities along the LRC were gardening, 
agriculture, livestock keeping, sand mining, brick-making, car 
washing, and fishing (Figures 3, 4). These results were consistent with 
Munishi et al. (2011), who found that agricultural production was 
practiced by over 98% of the population in the GRR basin, followed 
by livestock grazing and fishing. Agriculture involves the large-scale 
cultivation of crops and livestock for food, fiber, and other products, 

typically involving mechanized processes and often conducted for 
commercial purposes. In contrast, gardening is the cultivation of 
plants, typically on a smaller scale, for personal purposes. Farmers in 
the LRC heavily relied on inorganic fertilizers, pesticides, and 
irrigation to enhance their crop yields. The majority of respondents 
reported using inorganic fertilizers (95% in agriculture and 86% in 
gardening) and pesticides (91% in agriculture, 72% in gardening) 
(Tables 3, 4), highlighting the extensive use of these chemicals along 
the LRC. The chi-square test results for both agriculture and gardening 
activities indicated highly statistically significant associations between 
these activities and the use of inorganic fertilizers and pesticides 
(p = 0.000***). The pesticide and inorganic fertilizer applications on 
crops contributed to chemical deposits in the soil, which are carried 
through runoff and leaching into rivers, lakes, and groundwater; these 
bring about adverse effects to the living organisms and the 
environment in general (Massawe and Nyoki, 2019). Moreover, 
irrigation practices, which were adopted by 90% of agricultural 
operations and 83% of gardening activities (Table 5), were aligned well 
with the observations made during data collection; both pumping and 
scheme-based irrigation methods were observed in the field 
(Figure 5). Due to these practices, the water supply from the Lukosi 
River to the GRR either ceases or becomes minimal during the dry 
season, leading to the complete drying up of the GRR during the dry 
season over the past 10 years (Cour et al., 2005). This dryness had 
implications for the livelihood of the people, the economy, and 
significant biodiversity.

Livestock keeping was also identified along the LRC, and this 
activity can cause different environmental challenges such as water 
pollution, habitat degradation, and biodiversity loss. Similar to our 
findings, Kumar et  al. (2013) emphasized the environmental 
challenges posed by livestock keeping, such as water pollution and 
habitat degradation due to manure runoff, resulting in eutrophication 
and harmful algal blooms. George et al. (2004) also reported that 
unrestricted livestock access to rivers results in direct deposition of 
waste, introducing harmful pathogens, nutrients, and sedimentation, 
adversely impacting water quality, and aquatic health (George et al., 
2004). Additionally, overgrazing practices led to soil erosion, 
compaction, and habitat degradation, diminishing ecosystem 
resilience and biodiversity (Matano et al., 2015).

Sand mining and brick-making activities were also identified 
along the LRC, and these activities may cause riverbank erosion, 
alteration of flow, and disturbance to aquatic organisms. Similar to our 
findings, Dufour et  al. (2018) and Raphael and Makarius (2022) 
highlighted the environmental impacts of these activities, such as 
riverbank erosion, alteration of flow, and disturbance to 
aquatic organisms.

Car washing and fishing, though less identified, also can 
contribute to environmental harm through chemical use and 

TABLE 2 Classification of water quality based on the calculated WQI (Al-Mashagbah, 2015).

No WQI range Water type

1 <50 Excellent water

2 50.1–100 Good water

3 100.1–200 Poor water

4 200.1–300 Very poor water

5 >300.1 Unfit for consumption
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wastewater generation. Our study identified car washing as a 
contributor to water pollution, which aligns with Powell et al. (2011), 
who noted the presence of pollutants such as petroleum hydrocarbons 
and heavy metals in car wash effluents.

3.2 Physico-chemical water parameters

pH serves as a critical indicator of the acidic or basic character 
of a solution, determined by the chemical compounds and 
biochemical reactions within it. In aquatic environments, pH 
levels hold paramount importance in governing physiological 
functions. These encompass vital aspects such as enzyme activity, 
metabolic rates, and ion exchange. Hence, maintaining an optimal 
pH range is crucial for ensuring the overall health and well-being 
of aquatic life forms. The measured mean pH values were 
7.76 ± 0.006 for Ls1, 7.47 ± 0.01 for Ls2, and 7.47 ± 0.006 for Ls3. 
The pH values observed at all three sampling sites consistently fall 
within the acceptable range as recommended by both TBS and 
WHO standards (Table  6). This alignment indicates favorable 
conditions for the majority of aquatic organisms. The pH of an 
aquatic system is an important indicator of the water quality and 
the extent of pollution in the watershed areas. This finding was 
consistent with studies by Tembo (2009) and Turner and Chislock 
(2010) that emphasized the importance of pH in 
aquatic environments.

An increase in temperature brought on by climate change could 
alter the composition of species and lead to the extinction of endemic 
species (Carr and Rickwood, 2008). According to David et al. (2017), 
a change in temperature can alter the chemical properties of a wide 
range of parameters. Numerous studies (Koch et al., 2013; Pansch and 
Hiebenthal, 2019) reported that temperature variations were the most 

FIGURE 3

Human activities identified along IRC.

FIGURE 4

Some of human activities identifies along the LRC. (A) Paddy 
cropping; (B) Livestock grazing; (C) Vegetable gardening.
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frequent and potent driver of changes in marine systems. The 
temperature measurements for Ls1, Ls2, and Ls3 were recorded as 
22.47 ± 0.058°C, 22.73 ± 0.058°C, and 22.77 ± 0.12°C, respectively. 
The mean water temperature of the Lukosi River was within the 
acceptable range for aquatic life according to both TBS and WHO 
standards (Table  6). This indicates that the river’s temperature is 
suitable for supporting aquatic organisms. These findings are 
consistent with previous research, which reported temperature ranges 
of 20.5–22°C (Chiroma et  al., 2012) and 19.01–23.93°C 
(Okweye, 2013).

Dissolved oxygen serves as a regulator of organisms’ metabolic 
processes, which in turn controls the metabolism of the entire 
biological community (Khan et al., 2012). Due to the fact that DO 
is essential for respiration, enough DO levels are absolutely 
necessary for the survival of aquatic species. The DO levels in the 
water samples collected from Ls1, Ls2, and Ls3 locations exhibited 
noticeable variations. The measured mean DO values were as 
follows: 3.57 ± 0.06 mg/L for Ls1, 2.61 ± 0.41 mg/L for Ls2, and 
1.81 ± 0.25 mg/L for Ls3. The highest DO levels were observed in the 
Ls1 area, while the lowest DO levels were recorded in the Ls3 area. 
The obtained Do levels in all three sampling sites were found to 

be below the recommended limits set by both TBS and WHO, as 
indicated in Table  6. Our study observed DO levels below 
recommended limits, posing challenges for aquatic organisms. This 
aligns with findings by Mugidde et al. (2005) and Addo et al. (2013), 
who reported that low DO levels lead to hypoxia, endangering 
aquatic life and disrupting ecosystem dynamics. This shows that 
aquatic organisms may face difficulties surviving in the Lukosi 
River due to lower oxygen levels. The obtained DO level was due to 
human activities such as agriculture, livestock, and gardening 
activities, primarily occurring in the midstream and downstream 
areas of the river. In addition, according to Aiyesanmi et al. (2006), 
organic wastes and other nutrient inputs from industrial and sewage 
discharges, agricultural runoff, and urban runoff might also cause 
lower oxygen levels. Thus, the DO values measured in the Lukosi 
River were not suitable for the life of the aquatic organisms. Aquatic 
life is negatively impacted by DO concentrations below 5.0 mg/L 
(Sinha and Biswas, 2011).

The term “BOD” refers to the quantity of oxygen that bacteria 
need in order to decompose the degradable organic matter in water 
into simpler compounds (Suthar et al., 2010). Since it indicates the 
level of pollution, BOD is a crucial indicator for the aquatic 
ecosystem (Mbaruku, 2016). From the Lukosi River, the BOD levels 
showed variations across the sampling sites (Ls1, Ls2, and Ls3). In 
Ls1, a low BOD value of 5.33 ± 0.58 mg/L was observed, indicating 
minimal organic pollution. In Ls2, the BOD levels rose to 
9.0 ± 1.0 mg/L, suggesting a moderate level of organic matter. LS3 
had the highest BOD value of 15.33 ± 0.57 mg/L, indicating a high 
level of pollution potentially impacting water quality. The obtained 
values of Ls1 and Ls2 fall within the recommended values set by the 
WHO and TBS, while the values of Ls3 appear to be above the 
recommended value set by the WHO and TBS (Table 6). The high 
BOD value at Ls3 may be caused by agricultural operations, surface 
runoff, livestock keeping, and underground water movement 
containing leachates from a solid waste landfill located near the 
Lukosi River, all of which could exacerbate organic pollution 
(Al-badaii et  al., 2013). A higher BOD indicates a more rapid 
depletion of oxygen in the water body, as microorganisms consume 

TABLE 3 Information on agriculture and gardening activities, specifically focusing on the usage of inorganic fertilizers.

Activity Respondents Percentage Chi-Square test p value

Agriculture 74 95 46.935 0.000***

Gardening 77 86 21.393 0.000***

TABLE 4 Information on agriculture and gardening activities, specifically focusing on the usage of pesticides.

Activity Respondents Percentage Chi-Square test p value

Agriculture 71 91 46.916 0.000***

Gardening 65 72 0.847 0.358

TABLE 5 Information on agriculture and gardening activities, specifically focusing on irrigation practices.

Activity Respondents Percentage Chi-Square test p value

Agriculture 70 90 25.836 0.000***

Gardening 75 83 13.333 0.000***

FIGURE 5

Irrigation method practices along the LRC.
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DO. Similar results were found in previous studies, which 
demonstrated that a high BOD level lowers the amount of DO in 
the river (Omary et al., 2023).

Total dissolved solid is an indicator of the salinity behavior of 
water (Dahiya and Kaur, 1999). The TDS measurements were 
conducted and resulted in an average mean value of 
50.02 ± 0.02 mg/L for Ls1, 45.3 ± 0.2 mg/L for Ls2, and 
45.37 ± 0.32 mg/L for Ls3. All these values were found to be lower 
than the permissible limits stipulated by both TBS and WHO 
(Table  6), which appear to be  unsuitable conditions for aquatic 
organisms. According to Mbaruku (2016), TDS measures the 
capacity of water to dissolve various inorganic and certain organic 
minerals or salts, such as sulfates, magnesium, chlorides, 
bicarbonate, sodium, calcium, and potassium. Furthermore, in 
accordance with Mezgebu et al. (2019), elevated TDS concentrations 
hinder algal productivity and growth, serving as an indicator of 
poor water quality.

Electric conductivity is a measurement of the ability of water to 
carry electric current. It denotes the quantity of all dissolved salts in 
general. Conductivity measures the overall ionic content of water, 
providing an indication of whether the water is fresh or not. 
According to Olatayo (2014), the conductivity of water is directly 
related to its overall salt content. Calcium ion (Ca2+), magnesium 
(Mg 2+), hydrogen trioxocarbonate (HCO 3), trioxocarbonate (iv) 
(CO 3), trioxonitrate (v) (NO 3), and tetraoxophosphate (vi) (PO 4) 
are the main components of the dissolved chemicals in water 
(Olatayo, 2014). The measured EC values were 10.69 ± 0.39 μS/cm for 
Ls1, 13.69 ± 0.49 μS/cm for Ls2, and 13.85 ± 0.59 μS/cm for Ls3. The 
recorded EC values from all three sampling sites were below the 

acceptable range established by the WHO standards (Table  6), 
suggesting unfavorable conditions for the growth and well-being of 
aquatic species.

Turbidity, particularly in water, is a crucial factor in determining 
the quality of the water. The mean measured turbidity values from the 
Lukosi River were 43.33 ± 1.04 NTU for Ls1, 102.67 ± 1.52 NTU for 
Ls2, and 185.33 ± 1.53 NTU for Ls3. The turbidity values in all three 
sampling sites were higher than the recommended limits set by both 
WHO and TBS standards (Table 6). This suggests that the river as a 
whole is generally contaminated and endangering aquatic life. This 
may be due to the daily human activity such as washing of different 
vehicles, surface runoff, and other activities (Alemayehu, 2001). 
Aquatic species' behavior and feeding habits may be affected by this 
rise in turbidity, which may alter light penetration and visibility. 
Similar findings were reported by Joshi et al. (2009) and Murhekar 
(2011), who highlighted the impact of high turbidity on aquatic 
species’ behavior and visibility.

Total hardness is a property of water that hinders lather 
formation with soap and increases the boiling point of water 
(Mezgebe et al., 2015). It primarily depends on the presence of Ca 
or Mg salts, or both (Trivedy and Goel, 1986). Water is divided into 
three groups according to its hardness: soft water (0–75 mg/L), 
moderately hard water (76–150 mg/L), and hard water 
(151–300 mg/L). The measured total hardness values for Ls1, Ls2, 
and Ls3 were found to be 28.8 ± 0.1, 28.5 ± 0.5, and 32.31 ± 0.25, 
respectively. In all sampling sites, total hardness was found to 
be below the acceptable range recommended by the TBS (Table 6). 
The hardness values recorded for this study were within the soft 
classification. Standard total hardness levels are essential for the 

TABLE 6 Physicochemical water parameters recorded at three sampling points along the Lukosi River, and their respective values presented as 
mean  ±  standard deviation.

Parameters Ls1 Ls2 Ls3 TBS (2006) WHO (2017)

PH 7.76 ± 0.006 7.47 ± 0.01 7.47 ± 0.006 6.5–9.2 6.5–8.0

Temperature °C 22.47 ± 0.058 22.73 ± 0.058 22.77 ± 0.12 20–25°C 20–25°C

DO (mg/L) 3.57 ± 0.06 2.61 ± 0.41 1.81 ± 0.25 5–7 8–10

BOD (mg/L) 5.33 ± 0.58 9.0 ± 1.0 15.33 ± 0.57 2–6 10

TDS (mg/L) 50.02 ± 0.02 45.3 ± 0.2 45.37 ± 0.32 1,000 500

EC (μs/cm) 10.69 ± 0.39 13.69 ± 0.49 13.85 ± 0.59 - 25

Turbidity (NTU) 43.33 ± 1.04 102.67 ± 1.52 185.33 ± 1.53 5–25 5

Total hardness 28.8 ± 0.1 28.5 ± 0.5 32.31 ± 0.25 75–300 -

NO3 (mg/L) 12.28 ± 0.64 47.69 ± 0.3 79.04 ± 0.73 10–75 50

NH3 (mg/L) 0.67 ± 0.32 4.24 ± 0.68 5.32 ± 0.095 2.0 -

Ca (mg/L) 8.12 ± 0.16 7.44 ± 0.22 8.22 ± 0.18 50–100 -

Mg (mg/L) 2.06 ± 0.056 1.73 ± 0.065 1.97 ± 0.075 500–1,000 -

Fe (mg/L) 1.59 ± 0.16 2.0 ± 0.11 3.56 ± 0.15 0.3–1.0 0.3

F (mg/L) 0.15 ± 0.053 0.13 ± 0.01 0.19 ± 0.102 1.5–4.0 1.5

Cl (mg/L) 0.22 ± 0.096 8.53 ± 0.56 13.32 ± 0.39 200–800 250

SO4 (mg/L) 14.41 ± 0.32 18.27 ± 0.58 28.32 ± 1.04 200–600 500

Mn (mg/L) 0.059 ± 0.011 0.133 ± 0.004 0.95 ± 0.32 0.5 -

Cu (mg/L) 0.073 ± 0.07 5.01 ± 0.53 6.65 ± 0.48 3 -

Zn (mg/L) 0.14 ± 0.19 0.026 ± 0.038 0.036 ± 0.025 15 -
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health and survival of aquatic organisms, as they provide the 
necessary minerals for their physiological processes. Other studies 
on river water similarly found lower values for total hardness (Joshi 
et  al., 2009; Sharma et  al., 2013), indicating that the water is 
classified as soft and suitable for aquatic organisms.

Ca and Mg are prevalent components found in natural water 
sources, and their respective salts significantly contribute to water 
hardness. In the present study, Ca concentrations were measured 
with average mean values of 8.12 ± 0.16 mg/L for Ls1, 7.44 ± 0.22 mg/L 
for Ls2, and 8.22 ± 0.18 mg/L for Ls3. Conversely, Mg levels were 
measured, resulting in average mean values of 2.06 ± 0.056 mg/L for 
Ls1, 1.73 ± 0.065 mg/L for Ls2, and 1.97 ± 0.075 mg/L for Ls3. The 
recorded values for both Ca and Mg were below the permissible 
limits set by the TBS. Although Ca and Mg are essential minerals for 
the development and health of aquatic organisms, the recorded levels 
were not suitable for their well-being.

NO3 plays a crucial role as a vital nutrient in aquatic ecosystems, 
promoting plant growth, while simultaneously acting as a limiting 
factor for algal growth (Bwalya, 2015). Nitrogen-containing 
elements are essential for all biotic processes in the aquatic 
environment (Bwalya, 2015). The recorded average mean nitrate 
values were 12.28 ± 0.64 mg/L for Ls1, 47.69 ± 0.3 mg/L for Ls2, and 
79.04 ± 0.73 mg/L for LS3. The LS1 and Ls2 sites were within the 
recommended range set by both WHO and TBS; however, at the Ls3 
site, the levels exceeded the limits recommended by both TBS and 
WHO (Table 6). According to Mwangi (2014), human activities 
taking place along the river cause an increase in nitrate levels. Water 
bodies become contaminated when runoff from agricultural activity 
introduces fertilizers to the watercourses during heavy rainfall. The 
increase in nitrate leads to excessive algal growth, which reduces 
oxygen levels as it decomposes and affects certain aquatic organisms 
that cannot withstand anaerobic conditions (Mwangi, 2014).

NH3 and SO4: NH3 levels were measured at 0.67 ± 0.32 mg/L for 
Ls1, 4.24 ± 0.68 mg/L for Ls2, and 5.32 ± 0.095 mg/L for Ls3. Ls1 falls 
below the TBS recommended range, whereas Ls2 and Ls3 exceed it 
(Table  6). The elevated levels of ammonia in Ls2 and Ls3 may 
be attributed to various human activities occurring in those regions. 
For instance, the increased use of fertilizers in agricultural practices 
within Ls2 and Ls3 could be a significant contributor to the higher 
ammonia levels. Monitoring and appropriately managing elevated 
ammonia levels is crucial, as they can pose toxicity risks to aquatic 
organisms. On the other hand, the sulfate (SO4) concentrations 
were determined to be 14.41 ± 0.32 mg/L for Ls1, 18.27 ± 0.58 mg/L 
for Ls2, and 28.32 ± 1.04 mg/L for Ls3. All of these measurements 
fall below the recommended range established by both TBS and 
WHO. Sulfate plays a crucial role in water chemistry, and the 
recorded levels were below the acceptable limit for sustaining 
aquatic life.

The presence of high levels of Cl in river waters may be a sign of 
sewage or industrial waste pollution or the entry of saltwater into 
freshwater systems. The Cl concentrations were measured, resulting 
in an average value of 0.22 ± 0.096 mg/L for Ls1, 8.53 ± 0.56 mg/L for 
Ls2, and 13.32 ± 0.39 mg/L for Ls3. All of these measurements fall 
below the allowable limit stipulated by both TBS and WHO (Table 6). 
The reported amounts of chloride were below acceptable ranges for 
the health of aquatic life, which depends on it as an 
important electrolyte.

Fe, F, and Mn: Fe concentrations were measured at 1.59 ± 0.16 mg/L 
for Ls1, 2.0 ± 0.11 mg/L for Ls2, and 3.56 ± 0.15 mg/L for Ls3. Ls1 and 
Ls2 values were within the TBS and WHO recommended range, but Ls3 
exceeded the limit. Fe is an essential micronutrient for aquatic 
organisms. The elevated levels observed were likely due to soil erosion, 
which was exacerbated by human activities near the river, leading to 
bare soil and subsequent erosion of the riverbanks. It is important to 
assess the level of Fe to ensure it remains within the acceptable standards 
for the health and suitability of aquatic life. F levels were assessed, 
yielding mean values of 0.15 ± 0.053 mg/L for Ls1, 0.13 ± 0.01 mg/L for 
Ls2, and 0.19 ± 0.102 mg/L for Ls3. These measurements fall below the 
range recommended by both TBS and WHO. The Mn concentrations 
measured in Ls1, Ls2, and Ls3 were found to be 0.059 ± 0.011 mg/L, 
0.133 ± 0.004 mg/L, and 0.95 ± 0.32 mg/L, respectively. These values fall 
within the acceptable range recommended by TBS. Mn, an essential 
trace element for aquatic organisms, supports their well-being, and the 
recorded levels provide the necessary support.

Cu and Zn: Cu levels were measured at 0.073 ± 0.07 mg/L for Ls1, 
5.01 ± 0.53 mg/L for Ls2, and 6.65 ± 0.48 mg/L for Ls3. LS1 falls within 
the recommended TBS range, while Ls2 and LS3 exceed the 
recommended limit. Elevated Cu levels in aquatic environments can 
pose a significant threat to the health and well-being of aquatic 
organisms. The obtained results primarily come from agricultural 
runoff, especially due to the use of inorganic fertilizer, pesticide 
applications, and residential waste. Therefore, monitoring and 
effective management strategies are strongly recommended to 
mitigate potential harm. The Zn concentrations in all three areas 
(0.14 ± 0.19 mg/L for Ls1, 0.026 ± 0.038 mg/L for Ls2, and 
0.036 ± 0.025 mg/L for Ls3) were below the acceptable range defined 
by the TBS. The obtained Zn levels were not suitable for aquatic 
species, where it is needed for a number of physiological processes 
such as enzyme activity, growth, and reproduction (Nogawa 
et al., 2004).

3.3 Water quality status based on 
calculated WQI

The calculated WQI was used to assess the overall water quality 
status of the entire catchment. The results revealed a WQI of 300.3252 
for Ls1, 405.7578 for Ls2, and 763.4208 for Ls3 (Tables 7–9). These 
values indicate that the water in the catchment was unsuitable for 
sustaining aquatic organisms and was unfit for domestic use (Table 2).

4 Conclusion

This research provides a comprehensive assessment of the 
impact of human activities on the health of the LRC, utilizing 
selected physico-chemical parameters as indicators of water 
quality. The predominant agricultural and gardening practices 
near the river, coupled with livestock keeping, sand mining, and 
brick-making activities, have collectively contributed to the 
alteration of the water quality. Notably, the excessive use of 
fertilizers, pesticides, and irrigation has raised concerns about 
water pollution, posing a significant threat to aquatic organisms. 
The comprehensive analysis of the various parameters in the 
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Lukosi River reveals concerning levels of pollution. Specifically, 
parameters such as DO, turbidity, BOD, NH3, and NO2, exceed the 
allowable limits established by both the TBS and WHO for water 
quality. Furthermore, metal elements, including Fe and Cu, were 
found to be  higher than the recommended limit set by the 
WHO. On the other hand, TDS, EC, total hardness, Ca, Fe, F, Cl, 

and SO4 were found to be below the recommended limit set by 
both the TBS and WHO for water quality. Moreover, the WQI 
indicated that the water in the catchment was unsuitable for 
sustaining aquatic organisms and was unfit for domestic use. Our 
findings align with various studies in the literature, highlighting 
the significant impact of human activities on water quality and 

TABLE 7 Calculated WQI for the Ls1.

Parameters Sn 1/Sn ∑1/Sn K Wn  =  K/
Sn

Vo Vn Vn/Sn Qn  =  (Vn/
Sn)  ×  100

Wn  ×  Qn

pH 8 0.125 6.711 0.149 0.0186261 7 7.76 0.76 76 1.415586

EC 25 0.04 6.711 0.149 0.0059604 0 10.7 0.4276 42.76 0.254865

TDS 500 0.002 6.711 0.149 0.000298 0 50 0.10004 10.004 0.002981

TH 300 0.003333 6.711 0.149 0.0004967 0 28.8 0.096 9.6 0.004768

Ca 100 0.01 6.711 0.149 0.0014901 0 8.12 0.0812 8.12 0.0121

Mg 500 0.002 6.711 0.149 0.000298 0 2.06 0.00412 0.412 0.000123

Fe 0.3 3.333333 6.711 0.149 0.496697 0 1.59 5.3 530 263.2494

F 1.5 0.666667 6.711 0.149 0.0993394 0 0.15 0.1 10 0.993394

BOD 10 0.1 6.711 0.149 0.0149009 0 5.33 0.533 53.3 0.794218

DO 10 0.1 6.711 0.149 0.0149009 14.6 3.57 2.44 244 3.635822

NO3 50 0.02 6.711 0.149 0.0029802 0 12.3 0.2456 24.56 0.073193

SO4 500 0.002 6.711 0.149 0.000298 0 14.4 0.02882 2.882 0.000859

Turbidity 5 0.2 6.711 0.149 0.0298018 0 43.3 8.666 866.6 25.82626

Zn 15 0.066667 6.711 0.149 0.0099339 0 0.14 0.009333 0.933333 0.009272

Mn 0.5 2 6.711 0.149 0.2980182 0 0.06 0.118 11.8 3.516615

Temperature 25 0.04 6.711 0.149 0.0059604 0 22.5 0.8988 89.88 0.535717

6.711 1 300.3252

TABLE 8 Calculated WQI for the Ls2.

Parameters Sn 1/Sn ∑1/Sn K Wn  =  K/
Sn

Vo Vn Vn/Sn Qn  =  (Vn/
Sn)  ×  100

Wn  ×  Qn

pH 8 0.125 6.711 0.149 0.0186261 7 7.47 0.93375 93.375 1.739215

EC 25 0.04 6.711 0.149 0.0059604 0 13.7 0.5476 54.76 0.32639

TDS 500 0.002 6.711 0.149 0.000298 0 45.3 0.0906 9.06 0.0027

TH 300 0.003333 6.711 0.149 0.0004967 0 28.5 0.095 9.5 0.004719

Ca 100 0.01 6.711 0.149 0.0014901 0 7.44 0.0744 7.44 0.011086

Mg 500 0.002 6.711 0.149 0.000298 0 1.73 0.00346 0.346 0.000103

Fe 0.3 3.333333 6.711 0.149 0.496697 0 2 6.666667 666.6667 331.1313

F 1.5 0.666667 6.711 0.149 0.0993394 0 0.13 0.086667 8.666667 0.860941

BOD 10 0.1 6.711 0.149 0.0149009 0 9 0.9 90 1.341082

DO 10 0.1 6.711 0.149 0.0149009 14.6 2.61 0.261 26.1 0.388914

NO3 50 0.02 6.711 0.149 0.0029802 0 47.7 0.9538 95.38 0.28425

SO4 500 0.002 6.711 0.149 0.000298 0 18.3 0.03654 3.654 0.001089

Turbidity 5 0.2 6.711 0.149 0.0298018 0 103 20.534 2053.4 61.19505

Zn 15 0.066667 6.711 0.149 0.0099339 0 0.03 0.001733 0.173333 0.001722

Mn 0.5 2 6.711 0.149 0.2980182 0 0.13 0.266 26.6 7.927284

Temperature 25 0.04 6.711 0.149 0.0059604 0 22.7 0.9092 90.92 0.541916

6.711 1 405.7578
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aquatic life along the LRC. These findings underscore the urgent 
need for continuous and vigilant monitoring of the Lukosi River 
water quality. Implementing strict protective measures is crucial 
to reducing pollution in the Lukosi River and ensuring compliance 
with standards. This proactive approach safeguards community 
health, supports aquatic life, and promotes long-term viability 
through sustained pollution control and environmental 
conservation efforts.

Based on the findings, the following recommendations are proposed 
by the authors to mitigate the impact of human activities on the health 
condition of the Lukosi River:

 1. Control the pollution source identified: To control the 
identified sources of pollution, especially those responsible for 
excessive nutrient loading, heavy metal contamination, and 
organic matter discharge into the river.

 2. Continuous monitoring: To establish a robust and regular water 
quality monitoring program to track changes and trends over time.

 3. Restoration of Riparian zones: Rehabilitating and protecting the 
riparian zones along the Lukosi River can help stabilize the 
ecosystem, reduce erosion, and filter pollutants before they enter 
the water.

 4. Community engagement and awareness: Engaging local 
communities and stakeholders in the conservation efforts is 
essential. Raising awareness about sustainable agricultural 
practices and the overall importance of preserving the Lukosi 
River will contribute significantly to long-term improvements.

 5. Collaborative efforts: Encouraging collaboration between 
governmental bodies, non-governmental organizations, 
research institutions, and local communities will foster a more 
comprehensive and effective approach to tackling water 
quality issues.
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TABLE 9 Calculated WQI for the Ls3.

Parameters Sn 1/Sn ∑1/Sn K Wn  =  K/
Sn

Vo Vn Vn/Sn Qn  =  (Vn/
Sn)  ×  100

Wn  ×  Qn

Ph 8 0.125 6.711 0.149 0.0186261 7 7.47 0.93375 93.375 1.739215

EC 25 0.04 6.711 0.149 0.0059604 0 13.9 0.554 55.4 0.330204

TDS 500 0.002 6.711 0.149 0.000298 0 45.4 0.09074 9.074 0.002704

TH 300 0.003333 6.711 0.149 0.0004967 0 32.3 0.1077 10.77 0.005349

Ca 100 0.01 6.711 0.149 0.0014901 0 8.22 0.0822 8.22 0.012249

Mg 500 0.002 6.711 0.149 0.000298 0 1.97 0.00394 0.394 0.000117

Fe 0.3 3.333333 6.711 0.149 0.496697 0 3.56 11.86667 1186.667 589.4137

F 1.5 0.666667 6.711 0.149 0.0993394 0 0.19 0.126667 12.66667 1.258299

BOD 10 0.1 6.711 0.149 0.0149009 0 15.3 1.533 153.3 2.284309

DO 10 0.1 6.711 0.149 0.0149009 14.6 1.81 0.181 18.1 0.269706

NO3 50 0.02 6.711 0.149 0.0029802 0 79 1.5808 158.08 0.471107

SO4 500 0.002 6.711 0.149 0.000298 0 28.3 0.05664 5.664 0.001688

Turbidity 5 0.2 6.711 0.149 0.0298018 0 185 37.066 3706.6 110.4634

Zn 15 0.066667 6.711 0.149 0.0099339 0 0.04 0.0024 0.24 0.002384

Mn 0.5 2 6.711 0.149 0.2980182 0 0.95 1.9 190 56.62345

Temperature 25 0.04 6.711 0.149 0.0059604 0 22.8 0.9108 91.08 0.54287

6.711 1 763.4208
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Transboundary Water Management at Sokoine University of 
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