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This research paper explores the implementation of machine learning (ML) 
techniques in weather and climate forecasting, with a specific focus on predicting 
monthly precipitation. The study analyzes the efficacy of six multivariate machine 
learning models: Decision Tree, Random Forest, K-Nearest Neighbors (KNN), 
AdaBoost, XGBoost, and Long Short-Term Memory (LSTM). Multivariate time 
series models incorporating lagged meteorological variables were employed to 
capture the dynamics of monthly rainfall in Rabat, Morocco, from 1993 to 2018. 
The models were evaluated based on various metrics, including root mean square 
error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). 
XGBoost showed the highest performance among the six individual models, 
with an RMSE of 40.8 (mm). In contrast, Decision Tree, AdaBoost, Random 
Forest, LSTM, and KNN showed relatively lower performances, with specific 
RMSEs ranging from 47.5 (mm) to 51 (mm). A novel multi-view stacking learning 
approach is introduced, offering a new perspective on various ML strategies. 
This integrated algorithm is designed to leverage the strengths of each individual 
model, aiming to substantially improve the precision of precipitation forecasts. 
The best results were achieved by combining Decision Tree, KNN, and LSTM 
to build the meta-base while using XGBoost as the second-level learner. This 
approach yielded a RMSE of 17.5 millimeters. The results show the potential 
of the proposed multi-view stacking learning algorithm to refine predictive 
results and improve the accuracy of monthly precipitation forecasts, setting a 
benchmark for future research in this field.
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1 Introduction

The effects of climate change on water resources are increasingly important and concern 
various aspects of life in many countries. Studies on the impacts of climate change have gained 
great importance in recent years (Krysanova et al., 2017; Zhang et al., 2018; Wunsch et al., 
2022). The objective is to comprehend the alterations in climate patterns (Trenberth, 2011; Liu 
et al., 2022; Verma et al., 2023; Gohil et al., 2024) and their consequences on water availability 
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for future climates (Näschen et  al., 2019). Several countries are 
experiencing severe climate conditions, and the least-developed 
countries are facing the most significant impacts. The IPCC’s 2022 
report highlights its widespread implications for vulnerable 
populations, specifically in Africa (Parmesan et al., 2022). The severity 
and frequency of changes vary across regions. For example, some arid 
regions will experience extended periods of drought, while others may 
be affected by high levels of precipitation (Ahsan et al., 2022; Javan and 
Movaghari, 2022). Consequently, the prediction of climatic variables 
should consider these variabilities.

Climate change has significantly impacted Morocco’s 
development, especially in the agricultural sector, which contributes 
significantly to Morocco’s Gross Domestic Product (GDP), making it 
acutely vulnerable to climate shifts. Changes in precipitation patterns 
are among the major concerns of Moroccan scientists, as they affect 
water resource management, agricultural activities, and flood 
mitigation (Mehta et al., 2023). Accurate precipitation forecasts are 
crucial; however, they are becoming increasingly challenging due to 
climate change and human actions (Patel et  al., 2024). Rainfall is 
recognized to be one of the most complicated variables to forecast in 
the hydrological cycle (e.g., Zounemat-Kermani et  al., 2021; El 
Hafyani and El Himdi, 2022) due to the dynamic nature of 
environmental parameters and random fluctuations, both in terms of 
space and time. As a result, efforts have been made to reduce this 
non-linearity, employing techniques like wavelet analysis, singular 
spectral analysis, and empirical mode decomposition (Bojang et al., 
2020). The mathematical and statistical models applied, however, call 
for very considerable processing power and can be time-consuming 
with little return (Singh and Borah, 2013). The emergence of wireless 
technologies, which sped up the development of affordable and 
effective methods for acquiring satellite images and historical radar 
data, was one factor that significantly contributed to the widespread 
use of ML in this field. Different studies indicate that ML-based 
models can be employed to identify nonlinear systems in multiple 
engineering sectors and can be applied in precipitation forecasting 
(Hung et al., 2009; Abhishek et al., 2012; Kumar et al., 2023).

It is essential to produce a precipitation forecast that is more 
reliable and easily comprehensible. Currently, meteorological 
prediction studies are increasingly incorporating artificial intelligence, 
like ML and neural networks. The findings of the research exhibit the 
high accuracy of prediction of precipitation, storms, and droughts for 
both short-term and long-term periods (Huntingford et al., 2019). ML 
can be  categorized into two principal classifications. The first is 
“classical” techniques like multivariate linear regression (MLR), RF, 
KNN, support vector machines (SVM), and artificial neural networks 
(ANN). The second category is recognized as deep learning methods 
such as convolutional neural networks (CNN) and LSTM. Deep 
learning algorithms are widely used among short-term data sets; they 
generally call for large data sets to avoid overfitting. The use of time 
series models like LSTMs to take into consideration the time 
dimension of the data is usually recommended. Input factors in these 
models can comprise time lags (e.g., Dash et al., 2018; Danandeh 
Mehr et al., 2019; Kumar et al., 2019; Bojang et al., 2020) or geophysical 
features such as temperature, humidity, wind speed, and air pressure 
(Garg and Pandey, 2019; Baudhanwala et al., 2024). Various metrics 
are proposed with respect to the nature of the problem to evaluate the 
efficiency of ML models. As each study employs its own data sets, 
parameters, and pre-processing, it is practically impossible to proceed 

to a direct comparison of these results across multiple studies. 
However, some ML algorithms are most frequently mentioned as 
being better performers. Garg and Pandey (2019) forecast the rainfall 
using support vector regression (SVR), SVM, and KNN machine 
learning algorithms. They show that SVM proves to be  the most 
effective in predicting rainfall. Other studies concluded that the 
multiple linear regression machine-learning algorithm was highly 
effective in predicting rainfall using dependent weather-related 
variables like temperature, humidity, moisture content, and wind 
speed (Balan et al., 2019; Gnanasankaran and Ramaraj, 2020). They 
show that the use of deep learning models could further improve the 
accuracy of rainfall prediction Tharun et al. (2018) performed the 
accuracy measurement to compare statistical modeling and regression 
algorithms (SVM, RF, and DT) for predicting rainfall using 
environmental variables. Results indicate that regression algorithms 
are more efficient at predicting rainfall than statistical modeling. The 
experimental findings demonstrated that the RF model outperformed 
and made more accurate predictions than the SVM and DT.

Wang et al. (2021) incorporated the MultiLLR machine learning 
model to forecast precipitation 2–6 weeks in advance, employing 21 
climatological predictors. Pressure and Madden-Julian Oscillation are 
indicated to be the most potential variables, with varying predictive 
skills in different seasons. The study illustrates that incorporating 
supplementary factors such as the Arctic Oscillation and Western 
North Pacific Monsoon indices can improve the precision of 
predictions. According to Chhetri et al. (2020), several ML methods 
were used to predict the monthly rainfall in Bhutan. These included 
linear regression, multi-layer perceptron, CNN, LSTM, gated 
recurrent unit, and bidirectional LSTM. Among the six models, the 
LSTM model reached a first-rate mean square error (MSE) value of 
0.0128. However, the proposed combination of BLSTM and GRU 
layers outperformed the other models, resulting in a significantly 
better MSE score of 0.0075, which was 41.1% better than 
LSTM. Moreover, this model also exhibited a stronger correlation 
value of 0.93. Chen et al. (2022) explored using a deep-learning-based 
LSTM model to predict monthly rainfall data. They evaluated its 
efficiency by comparing it with a RF data-driven approach. The 
authors use various window sizes to find the optimal lag times for the 
rainfall time series data. They assess the performance of the models 
using five statistical metrics and two visual means, namely Taylor and 
violin diagrams. Results show that the LSTM model outperforms the 
RF model in terms of rainfall prediction, demonstrating a notable 
enhancement in root mean square error (RMSE).

Stacking methods have not been extensively utilized in rainfall 
prediction. This technique is a specific type of ensemble method 
where the outputs of multiple base models are used as input to a 
higher-level “meta-model” to make the final prediction. This allows 
the meta-model to learn from the strengths and weaknesses of the 
base models and generate a more reliable prediction. Recent studies 
highlight the growing use of stacking methods in rainfall prediction. 
For instance, Gu et al. (2022) integrated four distinct ML algorithms: 
KNN, XGB, SVR, and ANN as their base models. This model is 
distinctive for its exploitation of a diverse set of predictors, such as 
climatic indices and local meteorological data. The findings from this 
study demonstrated that the utilization of a stacking strategy 
significantly boosts the predictive performance of the individual 
models, especially in spring and winter, underscoring the method’s 
potential to adjust to seasonal variability in rainfall patterns effectively. 
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Similarly, Zandi et  al. (2022) focused on the comparison of the 
performance of a stacked generalization ensemble approach with a 
locally weighted linear regression (LWLR) algorithm in estimating 
high-resolution monthly precipitation. Their ensemble model 
combines a multilayer perceptron neural network (MLP), SVM, and 
RF through a meta-learning algorithm. The stacking model 
demonstrates superior performance over both the best individual 
models, RF and LWLR, in terms of MAE, RMSE, and relative bias 
(rBias).

Predicting rainfall is a critical factor for agriculture in the Indian 
region. A novel stacking ensemble model has been introduced 
integrating various machine learning algorithms, including linear 
regression, RF, logistic regression, XGBoost, and SVR, with a second-
layer learner synthesizing the predictions from these base models to 
generate more accurate rainfall forecasts. The research demonstrates 
a significant increase in predictive performance, achieving a maximum 
accuracy of 81.2%. This underscores the capacity of hybrid models to 
enhance the accuracy of rainfall prediction, indicating that such 
approaches can provide a versatile and adaptable framework for 
forecasting in different climates.

To our knowledge, unlike stacking techniques, multi-view 
stacking (MVS) learning has not yet been explored in precipitation 
forecasting. Multi-view learning focuses on constructing models from 
different “views” of the data. This approach assumes that each view 
can sufficiently train a good classifier, provided that the views are 
conditionally independent given the target class. One of the earliest 
works in this direction is the one by Blum and Mitchell (1998), which 
was developed primarily for semi-supervised learning tasks. Garcia-
Ceja et al. (2018) and Van Loon et al. (2020) employed it lately in the 
context of supervised learning to enhance the performance of 
classification tasks. Nonetheless, this technique also holds potential 
for application in regression scenarios, particularly in our context of 
multivariate time series. This study marks a significant advancement 
in the accuracy of rainfall prediction. While previous studies have 
explored the prediction of monthly precipitation patterns, our 
research introduces a variety of innovative insights. The paper’s key 
contributions encompass:

 1 The primary aim of our work is to assess and compare the 
performance of multiple ML techniques in the task of 
predicting monthly rainfall in Morocco. These techniques 
include DT, RF, AdaBoost, XGBoost, KNN, and LSTM.

 2 The study intends to improve the accuracy of the predictions 
with the use of the innovative MVS technique, which allows for 
a more comprehensive understanding of the complex 
interactions among different “view” or meteorological factors 
and their impact on precipitation, ultimately resulting in more 
accurate rainfall forecasts.

 3 Our adaptation of the novel technique of multi-view learning 
stacking, originally developed for classification purposes, to 
our context of multivariate time series regression is a unique 
contribution that has not been explored in previous machine 
learning research on this dataset.

 4 The incorporation of lagged meteorological variables using the 
cross-correlation function (CCF) to identify the most relevant 
variables utilized as inputs for various ML models. These 
include lagged values for precipitation, maximal and minimal 
temperatures, and insolation, which are pivotal in 

understanding the temporal dynamics influencing 
rainfall patterns.

 5 The findings of this study will serve as a baseline for subsequent 
investigations into rainfall prediction. Furthermore, this study 
is the first to apply advanced machine learning techniques, 
specifically multi-view stacking learning, to rainfall prediction 
in Rabat. This study offers valuable insights into the region and 
highlights the potential impacts of climate change on local 
precipitation patterns.

Our research not only fills a critical gap by providing valuable 
regional insights but also emphasizes the importance of regional 
climate studies to inform more nuanced and effective policy responses, 
both locally in Rabat and in similar urban contexts globally, where 
accurate prediction and understanding of rainfall patterns are crucial 
for sustainable urban planning and climate resilience.

The paper is structured as follows: The weather data set and the 
pre-processing steps taken to prepare it for experimentation are 
described in detail in the next section, which also provides an 
overview of six prediction models (DT, RF, KNN, AdaBoost, XGBoost, 
and LSTM) and the MVS learning technique, the hyperparameter 
optimization process, and the evaluation metrics used. Section 4 
discusses the analytical and empirical outcomes. The final section 
concludes the work, summarizes the findings, and offers suggestions 
for future insights.

2 Materials and methods

2.1 Data and context description

Morocco’s diverse climatic regions are attributed to its 
geographical position in North Africa and the presence of a mountain 
range running from north-east to south-west, with altitudes up to 
4,000 meters. The North Atlantic circulation has a significant impact 
on the climate of Rabat’s northwest coast, which is the wettest region 
in Morocco. The study area is Rabat, the capital of Morocco (Figure 1). 
It is located on the edge of the Atlantic, in the northwest of Morocco. 
It experiences a Mediterranean climate with noticeable seasonal 
variations (Brahim et al., 2016). Rabat has faced the impacts of climate 
change. These consequences incorporate increasing temperatures, 
more irregular rain patterns, and a rising risk of severe climatic events 
like intense rainfall, storms, and flooding. Figure  2 illustrates the 
seasonal precipitation variation in Rabat, with a significant 
concentration of rainfall occurring between November and March, 
peaking in December. This pattern is primarily due to Rabat’s position 
at the southern edge of frontal storm systems that regularly traverse 
the North Atlantic and southwest Mediterranean regions. For further 
details on the region’s climatology, refer to Driouech et al. (2021) and 
Tramblay et al. (2021). The persistence of the climate conditions and 
their effects on the rainfall dataset for Rabat will be analyzed through 
ML algorithms. A brief description of the proposed algorithms is 
given in the following section.

The research involves monthly rainfall records collected by the 
Moroccan General Directorate of Meteorology. The data set represents 
a multivariate time series that describes the monthly rainfall over 
26 years, from 1993 to 2018, in Rabat. It comprises four variables: 
minimum temperature, maximum temperature, sunshine, and the 
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target variable, which is rainfall. To evaluate the models, the first 
24 years of data, from 1993 to 2016, were utilized as the training set. 
The last 2 years, covering 2017 and 2018, serve as the test set. The 
climatic variables considered in the study are detailed in Table 1, along 
with their main statistical characteristics. They include mean, standard 
deviation, minimum, and maximum values, in addition to values at 
the 25, 50% (median), and 75% percentiles. These measurements are 
interesting for understanding the variation and distribution of 
meteorological variables that are used as predictors of precipitation. 
Rainfall values span from 0 mm to 394.3 mm, with a mean of 45.78 mm 
and a high standard deviation of 62.72, indicating considerable variety 
in rainfall totals. Minimum temperatures range from 2.7 to 19.6°C, 
exhibiting a wide range of minimum temperatures, with a mean 

minimum temperature of 12.66°C and a standard deviation of 4.01. 
Maximum temperatures vary from 15.3 to 31°C, showing moderate 
fluctuations in this variable, with a mean of 22.72°C and a standard 
deviation of 3.83. Insolation values vary from 76.3 to 354.9 W/m2, 
illustrating a considerable range of solar energy exposure, with a mean 
insolation of 238.29 W/m2 and a standard deviation of 63.55, revealing 
a significant range in insolation levels.

The first step in using any ML technique is to prepare the raw 
data to make it suitable for model training and testing. Figure 3 
depicts the pipeline of data preprocessing. To handle missing values 
in selected features, the mean of all values for the corresponding 
precipitation amount was calculated and used to estimate the missing 
values. For example, if there was a missing value for sunshine, the 

FIGURE 1

Map of the study area, Rabat, located in the north-western part of Morocco.

FIGURE 2

Time series of mean monthly rainfall data in Rabat, from 1993 to 2018.
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mean of other sunshine values with the same precipitation amount 
is used as an estimation. Then, the most relevant attributes that 
capture the variability of the data set are selected. To identify the 
most significant features, the cross-correlation function (CCF) is 
calculated to investigate the lag-time effects on the relationships 
between monthly precipitations and the meteorological variables. It 
quantifies the similarity between two series based on the lag between 
them. The time series data needs to be  preprocessed to ensure 
stationarity; this step is crucial for using the CCF. Finally, the weather 

parameters are normalized using a min-max scale to obtain the 
new-scaled value y, as shown in Equation (1)

 
y

x x
x x

=
− ( )
( ) − ( )
min

max min
#

 
(1)

Where min x( ) and max x( )  are, respectively, the minimum and 
maximum values of x  as shown in Equation (1).

After completing the pre-processing step, the data is reshaped into 
a tensor representation that is compatible with the requirements of the 
LSTM layer. This transformation ensures that the input data takes on 
a 3D structure, including three distinct dimensions: samples, time 
steps, and the sample dimension.

2.2 Machine learning models

In this section, we  will explore the ML models employed for 
predicting monthly rainfall patterns in Rabat. Various techniques are 
investigated, including DT, RF, KNN, AdaBoost, XGBoost, and 
LSTM. These supervised learning algorithms can handle both 
classification and regression tasks, offering broad applicability across 
numerous predictive modeling contexts. Each of these models has 
distinguishing characteristics and particular areas of application, 
providing researchers with the flexibility to select the most appropriate 
method for their specific issue.

TABLE 1 Features and their main statistics considered to predict 
precipitation.

Precipitation 
(mm)

Min 
temp 
(°C)

Max 
temp 
(°C)

Insolation 
(W/m2)

Data size 312 312 312 312

Mean 45.78 12.66 22.72 238.29

SD 62.72 4.01 3.83 63.55

Min 0.00 2.70 15.30 76.30

25% 1.40 9.17 19.50 191.20

50% 20.20 12.50 22.70 241.30

75% 69.28 16.20 26.20 292.70

Max 394.30 19.60 31.00 354.90

FIGURE 3

Data preprocessing pipeline.
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2.2.1 Decision tree
A decision tree is a powerful predictive modeling tool widely 

used in machine learning, where predictions are presented in the 
form of a tree-structured classifier (Esposito et al., 1997). Decision 
trees are constructed by an algorithmic process that operates by 
recursively dividing the input feature space into subsets, each 
associated with a particular class label or predicted value. The main 
components of DT are internal nodes, which represent the features 
of a dataset, the branches connecting them represent the decision 
rules, and leaf nodes indicate the output of those decisions and do 
not have any further branches. This process iterates, applying 
decision rules at each node based on a feature’s value to split the 
dataset into two or more subsets, until achieving specific stopping 
criteria, such as a maximum tree depth or a minimum number of 
samples per leaf.

The main strengths of DT are its ability to handle both numerical 
and categorical variables, its resilience to outliers and missing values, 
and its strong skills in capturing nonlinear interactions and 
relationships within the data. Yet, DT is susceptible to overfitting. To 
deal with this, techniques such as pruning and setting constraints on 
tree size or complexity can be implemented.

2.2.2 Random forest
Introduced by Breiman (2001), the Random Forest (RF) algorithm 

marks a significant advancement in ensemble machine learning 
techniques. As an ensemble method, it leverages multiple various 
decision trees to construct a “forest.” The algorithm combines the 
predictions of multiple trees to achieve improved accuracy, which is 
calculated as the average of all tree outputs. An increase in the number 
of trees in the forest enhances accuracy and reduces the risk 
of overfitting.

A RF model is recognized for its robustness and high predictive 
accuracy. It gives successful findings for a multitude of issues, 
including those with non-linear relationships between factors. In 
addition, the model is skilled at handling large data sets, even when 
an important amount of data is missing.

2.2.3 K-nearest neighbors
The K-Nearest Neighbors (KNN) algorithm is a non-parametric 

ML technique designed to identify a group of k objects in the training 
dataset that are nearest to a test data object. It bases its predictions on 
the principle that similar data points tend to yield similar outcomes. 
The KNN framework operates on a training dataset consisting of 
labeled instances, each associated with specific class labels or target 
values. When a new, unlabeled instance is presented, the algorithm 
identifies the K closest neighbors to that instance in the training data 
based on a distance metric (e.g., Euclidean distance) (Zhang, 2016). 
For classification tasks, the class label or target value of the new 
instance is then determined by majority voting, where the most 
common class label among the K nearest neighbors is assigned. In the 
context of regression, it computes the average of the target values of 
the K nearest neighbors.

This method underscores the critical importance of selecting an 
appropriate value for K and the distance metric, as these parameters 
significantly influence the algorithm’s accuracy and performance. In 
practice, the main challenge with KNN is its high sensitivity to 
hyperparameter settings, including the number of nearest neighbors 
(k), the distance function, and the weighting function.

2.2.4 Boosting of multiple decision trees 
(AdaBoost)

AdaBoost, also recognized as the adaptive boosting method, was 
introduced by Freund and Schapire (1997). It was originally developed 
for classification tasks but has been extended to regression due to its 
inherent versatility. This ensemble learning approach boosts the 
performance of multiple weak learners by iteratively adjusting their 
weights based on the accuracy of their predictions, thereby forming a 
stronger predictive model. Often utilizing decision trees as weak 
learners, AdaBoost minimizes weighted error in the training dataset 
at each iteration, leading to the generation of a hypothesis, denoted as 
hi. In regression, the adjustment of weights is based on the magnitude 
of prediction errors. Increasing weights for larger errors and 
decreasing for smaller ones. This approach ensures that the algorithm 
progressively focuses on the most challenging examples. The final 
predictive output hf  , which aggregates the outputs of individual 
learners through a weighted sum, is represented by the Equation (2):

 
h x w h x i Nf i i( ) = ∑ ( ) = …1 #

 (2)

Each learner’s weight, denoted as wi, is determined based on their 
performance, with more accurate learners receiving higher weights in 
the final aggregation. The algorithm operates as follows: Initialization: 
Assign equal weights w_i = 1/N to all N data points in the dataset.

Iteration:

 1 Input this weighted dataset into the model to identify 
prediction errors.

 2 Adjust the weights of the data points, increasing them for larger 
errors and decreasing them for smaller errors.

 3 Termination: Repeat step 2 until the aimed accuracy is obtained 
or the number of iterations is completed; otherwise, go back 
to step 2.

 4 Final Model: Weighted predictions from all weak learners are 
combined to produce the final prediction.

 5 Final prediction.

2.2.5 Extreme gradient boosting
The XGBoost algorithm is an advanced popular algorithm based 

on the gradient boosting machines (GBM) framework. It was 
developed by Chen and Guestrin (2016) and is known for its 
exceptional performance in supervised learning tasks like regression, 
classification, and ranking.

It is built upon the concept of ensemble learning, where multiple 
learners, specifically decision trees, are combined to make predictions. 
In each iteration, a weak classifier is generated by sequentially 
combining residuals from multiple decision trees and then training 
them using gradient descent on the loss function. This process allows 
for a continuous decrease in the loss function and improvement of the 
model. Finally, the weighted sum of all the weak learners is calculated 
to produce the overall prediction.

Data scientists prefer XGBoost due to its fast execution speed and 
ability to perform out-of-core computation. XGBoost offers a range of 
advanced features, including model tuning, computing environment 
optimization, and algorithm enhancement, making it a flexible solution 
that can handle fine-tuning and the addition of regularization parameters.
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2.2.6 Long short-term memory
The LSTM Networks, first presented by Hochreiter and 

Schmidhuber (1997), represent a significant advancement of the 
recurrent neural networks (RNN) cell variant due to their ability to 
learn long-term dependencies within sequential data. It is designed to 
overcome the traditional RNN weakness related to gradient vanishing 
or explosion and less effective learning over extended sequences.

The LSTM extends the RNN architecture of a memory cell with a 
gating mechanism, which controls the information across the network. 
The gating mechanism includes three units, the forget, input, and output 
gates, to determine whether to forget past cell status or to deliver output 
to the last. The input gate It defines the amount of information that can 
be fed into the memory cell to update the cell status. The output gate Ot 
determines the amount of information in the memory cell and outputs 
the most desired information to make predictions for future values. The 
forget gate Ft conditions the amount of information of the internal state 
that passes to the next layer, which allows the LSTM to store and access 
information over long periods. This mechanism is illustrated as:
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where:

 • X t( ): Input vector at time step t .
 • ht−1: Hidden state vector from the previous time step t −1.
 • Ct−1: Cell state vector from the previous time step t −1.
 • Wi, Wf , Wo, Wc : Weight matrices for the input gate, forget gate, 

output gate, and cell candidate vector, respectively.
 • bi , bf , bo, bc: Bias vectors for the input gate, forget gate, output 

gate, and cell candidate vector, respectively.
 • σ : Sigmoid activation function.
 • tanh: Hyperbolic tangent activation function.

This gating mechanism enables LSTMs to effectively mitigate the 
vanishing gradient issue, facilitating the network’s capacity to learn from 
data where dependencies span across long sequences. Consequently, 
LSTMs have become a cornerstone technology in applications requiring 
the analysis and prediction of time-series data, from natural language 
processing to complex sequential prediction tasks.

2.3 Multi-view stacking learning approach

This section introduces a novel approach to multi-view stacking 
learning that combines multi-view learning with stacked 
generalization. We  adapt the work of Garcia-Ceja et  al. (2018), 
designed for classification tasks, to address the challenges of our 
specific problem of multivariate time series regression. A brief 
overview of multi-view learning, stacking theory, and the concept of 
multi-view stacking is provided.

In various applications, observations can often be described by 
multiple “views.” These views can be obtained from various sources, 
such as different types of sensors, modalities, feature sets, or data 
sources. For instance, videos can be represented by both visual content 
and audio, and web pages by their text and incoming hyperlinks. 
Directly combining these features for machine learning may not 
be ideal due to the unique statistical properties of each view. Multi-
view learning addresses this by treating each source of information (or 
“view”) as independent and then combining them. While early multi-
view learning research focused on semi-supervised learning (Blum 
and Mitchell, 1998), recent efforts have expanded its application to 
supervised learning tasks. This includes combining techniques like 
kernel CCA and SVMs for image classification and extending existing 
algorithms like Fisher discriminant analysis to the multi-view setting. 
Overall, multi-view learning provides a powerful framework for 
capitalizing on data with multiple informative representations, leading 
to potentially better machine learning models.

Stacked generalization (also called stacking) is an ensemble 
method introduced by Wolpert (1992) that combines predictions from 
multiple learners (Zhou, 2012). The two key components of training 
any stacked model are (1) training the base learners, which are the 
first-level models trained on the original data, and (2) training the 
meta-learner. The outputs of the first-level learners serve as input to 
train a second-level learner called the meta-learner.

Multi-view stacking involves training multiple models (the “base 
learners”) on separate views of the data and fusing their outputs 
through stacked generalization. The predictions generated by the base 
learners serve as the training data for a final model called the meta-
learner (Figure 4). This allows the meta-learner to identify patterns 
and relationships across the different views, leading to a more robust 
and accurate model. The overall procedure is outlined as follows:

 1 Data preparation: Initialize with the time series views 
X Xt t

V1( ) ( )…, ,  for time points t T= …1, , , where each view X v( ) 
contains distinct features across all time points. The outcomes 
are denoted by y y yT

T= …( )1, , .
 2 Training base learners: For each view v from 1 to V , iterate 

through base learners indexed by b =1 to Bv, training each base 
learner f v b



,  using the view Xt
v( ) alongside the outcomes yt.

 3 Time series validation and prediction generation:

 - For each view v and base learner b, apply time series validation 
by partitioning the dataset chronologically into a series of 
training sets.

 - Each base learner f v b


,  is trained on the respective training set 
and then makes predictions on the subsequent validating set, 
creating prediction vectors zt

v b,( ){ } for each time point t .

4. Constructing the meta-learner’s training set: Concatenate the 
prediction vectors from all base learners for each time point to form 
the matrix Z z zt t t

V BV= …( ) ( )( )11, ,
, , , which will serve as the training data 

for the meta-learner.
5. Meta-learner training: Use the combined predictions matrix Zt  

and the true outcomes yt to train the meta-learner fmeta
 .

6. Final prediction model assembly: Utilize the meta-learner to 
integrate the base learners’ predictions, thus constructing the final 
multi-view stacking model that yields predictions yt  for each 
time point.
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The technique of time series cross-validation is used to prevent 
overfitting, ensuring that meta-models are not predicting on the same 
dataset they were trained with.

2.4 Walk-forward validation

Time series forecasting presents unique challenges compared to 
simpler problems like classification and regression. It involves the 
complexity of temporal dependency between observations, which 
requires specialized handling of data during model fitting and 
evaluation. However, this temporal structure also offers opportunities 
for improved modeling by capturing additional patterns such as trends 
and seasonality, leading to enhanced forecast accuracy.

Conventional ML methods, such as train-test splits and k-fold 
cross-validation, are effective for other types of data but not for time 
series analysis because they do not take into account the time aspects 
of the data. To overcome this limitation, walk-forward validation is 
used. As presented in Figure 5, it consists of splitting the entire dataset 
into two parts: a training set and a validation set. The model is trained 
using the training set, and the forecasted values are then compared 
against the expected values using the validation set. At each time step, 
the forecasted value is incorporated into the training set, and this 
process is repeated iteratively. By continuously updating the model 
with newly forecasted values, the trained model can be effectively 
evaluated using walk-forward validation. This approach provides a 
realistic evaluation of time series data by incorporating the most 
up-to-date information available.

2.5 Hyperparameters optimization

The process of hyperparameter optimization, an important step 
in building a model, significantly impacts algorithmic performance. 
Hyperparameters define the model architecture and the complexity of 
each algorithm. Identifying their optimal values involves iterative 
experimentation with various combinations and assessing each 
model’s effectiveness. Poornima and Pushpalatha (2019) underscore 
the importance of searching for hyperparameters that boost its 
performance. A selective hyperparameter grid search, adapted for 
time series, was employed on the dataset, targeting the reduction of 
RMSE metrics.

Hyperparameters of tree-based models that conventionally need 
to be  optimized include the maximum depth of the tree, the 
minimum number of samples, and the minimum number of samples 
required to create a leaf node. A tree that is too large results in a 
more complex model that can overfit the training data and 
consequently may not generalize well. In the case of RF, 
hyperparameter tuning includes the number of trees in the forest, 
the maximum depth of the trees, and the minimum number of 
samples required to split a node. The number of neighbors k is one 
of the principal hyperparameters of the KNN algorithm. It indicates 
the number of nearest neighbors used for forecasting. The larger k 
is, the more stable the model is. Conversely, smaller values of k 
suggest that the model is more sensitive to single points. Additionally, 
a weighting function is used to weigh the influence of each 
neighborhood on the prediction.

With regards to AdaBoost, some of the hyperparameters subject 
to optimization comprise the number of estimators and the learning 
rate. For XGBoost, the learning rate, max depth, and number of 
estimators are some hyperparameters to be tuned. A smaller learning 
rate requires more training iterations to reach a good model, but it can 
lead to higher accuracy. A larger number of trees can also make the 
model more computationally expensive to train and use.

In the implementation of LSTM models, the usual hyperparameter 
models are as follows:

 • Learning rate: A small learning rate may slow convergence but 
may improve performance.

 • Number of hidden units: A larger number of hidden units 
permits the model to learn more complex structures in the data 
but also increases the risk of overfitting.

 • Number of layers: A deeper model can learn more complex 
patterns in the data but can also be computationally expensive 
and lead to overfitting.

 • Dropout rate: Dropout is a regularization technique that 
prevents overfitting.

 • Sequence Length: This is the number of time steps in each input 
sequence. Longer sequence lengths permit the model to capture 
long-term dependencies in the data but subject it to overfitting.

 • Mini-batch size: Bigger mini-batch sizes accelerate training but 
make the model more prone to noise in the data.

 • Number of epochs: Training for multiple epochs allows the 
model to continue to enhance, but it can also amplify the risk of 

FIGURE 4

Description of multi-view learning approach steps to combine the predictions of multiple models.

https://doi.org/10.3389/frwa.2024.1378598
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org


El Hafyani et al. 10.3389/frwa.2024.1378598

Frontiers in Water 09 frontiersin.org

overfitting if the model is already performing well on the 
training data.

2.6 Performance evaluation metrics

This section outlines the three commonly used statistical metrics 
for evaluating the performance of precipitation forecasting models:

 1 Root mean squared error (RMSE).
 2 Mean absolute error (MAE).
 3 Coefficient of determination (R2).

RMSE evaluates the difference between observed and predicted 
values by squaring the errors, making it sensitive to large errors. MAE 
is less impacted by extreme values but can still be influenced by the size 
and number of observations. A low MAE value means that the model’s 
predictions are, on average, close to the actual values. R2, on the other 
hand, shows the extent to which the model can explain the variance 
and has a maximum score of 1.0, with a higher score indicating a better 
fit. The formulas for metrics are shown in Equations (3)–(5):

 
RMSE

N
y y

i

N
P i O i= −( )

=
∑1
1

2

, , #

 
(3)

 

MAE = −
=
∑1
1

N y y
i

N
P i O i, , #

 

(4)

 

R
2 1

2

1

2
1= −

−( )
−( )

=

=

∑

∑

i
N

P i O i

i
N P i O i

y y

y y

, ,

, ,

#

 

(5)

where yP i, , and yO i,  design the predicted and observed monthly 
precipitation for test period t, respectively, i represents the month in 
the data set, and N is the length (total of test items in the data set) for 
the period t, yO i,  is the mean values of the series yO i, .

3 Results

3.1 Prediction machine learning models 
results

Six prediction models, including five supervised learning 
algorithms (the DT, RF, KNN, AdaBoost, and XGBoost) and one deep 
learning algorithm (LSTM), were implemented in Python 3.10.9 using 
Keras 2.12.0. To identify the most relevant variables for model input, 
the cross-correlation function (CCF) was employed across lags 
ranging from 1 to 12 months. These include lagged values for 
precipitation, maximal and minimal temperatures, and insolation, 
which are pivotal in understanding the temporal dynamics influencing 
rainfall patterns, with the findings detailed in Table 2.

The selection of a 12-month lag for precipitation (prec-12) suggests 
that the models account for the influence of annual climatic cycles on 
rainfall, a factor especially critical in regions experiencing marked 
seasonal variations, where the amount of rainfall in a specific month 
may be affected by the weather patterns of the same month in the 

FIGURE 5

Walk-forward validation approach.
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previous year. Similarly, the incorporation of lagged temperatures 
(TXMOYM-11, TXMOYM-12 for maximum and TNMOYM-4, 
TNMOYM-11, TNMOYM-12 for minimum temperatures) reflects the 
model’s consideration of both short-term and long-term temperatures 
in predicting current precipitation. This indicates the cyclical or delayed 
impact of temperature on present climatic conditions through factors 
like evaporation rates and soil moisture. Additionally, the integration 
of a 12-month lag for insolation (INSMEN-12) underscores its role in 
current precipitation predictions. This could be due to the influence of 
insolation on the process of evaporation and the patterns of 
atmospheric circulation, which are key factors in rainfall creation.

Consequently, the variables TXMOYM, TNMOYM, and 
INSMEN, enriched by the lagged variables identified through CCF, 
form the inputs of our predictive models. The models are built to 
capture both short-term fluctuations and long-term trends in climatic 
conditions, enhancing their predictive capability in a region 
characterized by its Mediterranean climate and distinct seasonal and 
annual climatic cycles, such as Rabat, Morocco.

To identify the most optimal configuration for each model, a 
hyperparameter search was performed on multiple machine learning 
models. The hyperparameter evaluations are presented in Table 3, 
which details the optimal hyperparameters and their corresponding 
value ranges utilized in the fine-tuning process. The performance 
metrics for the training and test sets are displayed in Table  4. 
AdaBoost, RF, and XGBoost demonstrated good performance on the 
training set, achieving RMSEs of 28.3, 30.5, and 34.7, respectively. 
XGBoost outperforms other models on the test set with an RMSE of 
40.8, implying superior generalization. The significant performance 
gap between training and test sets for all models suggests the presence 
of overfitting. To address this issue, multi-view stacking learning is 
proposed as a potential solution to capture the intricate temporal 
pattern of monthly rainfall with enhanced accuracy and reliability.

3.2 Multi-view stacking learning results

As mentioned in Section 2, multi-view stacking learning is an 
ensemble learning technique where multiple models are trained for 
each feature separately to make first-level predictions. These 
predictions are then aggregated and serve as inputs for the meta-
model, which produces the final prediction. At the first level, a variety 
of models, including Decision Tree (DT), Random Forest (RF), 
K-Nearest Neighbors (KNN), AdaBoost, XGBoost, and Long Short-
Term Memory (LSTM) are trained on the selected input variables, as 
detailed in Table 2. At the second level, the same models involved in 
the first level are trained using the constructed meta-base. This meta-
base can be created in two distinct ways: either by employing the 
same base learner across all views or by integrating a diverse set of 
base learners assigning a unique one for each view. The performance 
outcomes from this training process are displayed in Tables 5, 6.

The evaluation metrics for the first approach are presented in 
Table 5. It revealed that the DT, as a base learner, shows promising 
results, achieving RMSEs that range from 20.2 mm to 44.4 mm. 
Notably, the integration of XGBoost as a meta-learner consistently 
amplifies the performance of DT, underscoring the robustness and 
effectiveness of XGBoost in synthesizing insights from the base 
learners. RF performs optimally when combined with XGBoost, KNN, 
AdaBoost, or itself, yielding corresponding RMSEs of 38.5 mm, 
38.8 mm, and 39.1 mm. KNN achieves good results when combined 
with XGBoost, itself, RF, and AdaBoost, with corresponding RMSEs of 

29.9 mm, 31.2 mm, 31.5 mm, and 33.3 mm, respectively. Both AdaBoost 
and XGBoost achieve optimal performance when paired with KNN, 
achieving respective RMSEs of 40.1 mm and 41.1 mm. However, they 
underperform when combined with other models. When LSTM is 
used with itself, AdaBoost, KNN, and Random Forest, it achieves its 
best level of performance, with respective RMSEs of 29.9 mm, 31.2 mm, 
31.5 mm, and 33.3 mm. Overall, DT stands out as the top-performing 
base learner in terms of overall performance, followed by 
KNN. Conversely, RF, AdaBoost, XGBoost, and LSTM exhibit 
comparatively lower performance compared to other base learners. 
Among the meta-learners, XGBoost emerged as the most efficient 
meta-learner. The outcomes presented in Table 6 show that the second 
approach yields the optimal performance (Figure 6). A mixed-base 
learner, created using the combinations illustrated in Figure 7, coupled 
with the meta-learner XGBoost (Mix-XGB), achieves the best RMSE 
of 17.5 mm. Boxplots, scatterplots, violin plots, and Taylor diagrams 
further solidify these results. The boxplot graph (Figure 8A) confirms 
XGBoost’s superior alignment with the observed distribution. 
Conversely, the wider distributions of DT, Adaboost, and LSTM 
suggest greater variability in their predictions. Scatterplots (Figure 8B) 
reveal that while most models follow the overall pattern, there are 
deviations, especially at higher precipitation levels. This suggests that 
most models perform well for low to moderate rainfall predictions but 
struggle with significant rainfall events. The Taylor diagram (Figure 9A) 
reinforces these observations. The models are clustered in the areas 
exhibiting high correlation coefficients. However, the spread of these 
models suggests divergent degrees of accuracy, as indicated by their 
varying distances from the reference point. Notably, the Mix-XGB 
model stands out, reflecting a high correlation and a smaller centered 
RMS difference when compared to models like Mix-LSTM. Violin 
plots (Figure 9B) offer another perspective. Although Mix-RF displays 
a wider spread, suggesting its ability to capture a wide range of 
precipitation, including extremes, Mix-XGB’s distribution maintains a 
balance between encompassing variability and maintaining a 
concentrated focus around the average real precipitation.

The findings of this study demonstrate the potential of multi-view 
stacking learning. By combining different perspectives on the data 
(multi-view) and leveraging the strengths of multiple models 
(stacking) at two levels, this approach significantly improves the 
accuracy of rainfall predictions, setting the stage for a deeper 
understanding of complex fields like climate data analysis.

4 Discussion

The results evoke the complex relationship between 
meteorological factors and intensities, a dynamic increasingly 
affected by climate change. These trends are driven by a mixture of 
distinct local weather conditions, such as temperature and sunshine, 

TABLE 2 The variables and their time lagged values used as input features 
for the selected models to predict monthly precipitation.

Variables Lagged variables

Precipitation prec-12

TXMOYM TXMOYM-11, TXMOYM-12

TNMOYM TNMOYM-4, TNMOYM-11, TNMOYM-12

INSMEN INSMEN-12
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which are also influenced by changes in global climate dynamics. The 
superior performance of multi-view stacking learning techniques, 
particularly the combination of Decision Tree, LSTM, and XGBoost, 
can be explained by the complementary nature of these algorithms. 
As mentioned by Bamisile et al. (2022), each algorithm has different 
strengths. While decision trees provide understandable models and 
handle nonlinear data efficiently, LSTM captures sequential 
dependencies and recognizes time-dependent structures, and 

XGBoost incentivizes weak learners to develop a robust model. Their 
combination effectively captures both temporal patterns and 
nonlinear relationships with covariates. The results highlight the 
importance of preserving and combining algorithm performance 
across different dimensions of the dataset. Ignoring these unique 
perspectives could result in the loss of crucial information that can 
guide the model toward more accurate predictions. This technique 
contrasts with traditional methods, which may not account for the 
multidimensional nature of climate data, often leading to overfitting 
and poor generalization. The proposed multi-view stacking 
technique effectively addresses this challenge, particularly for the 
examined study, which is characterized by stays that will mainly take 
place from November to March with strong spatial and 
temporal variability.

Numerous studies have explored the prediction of monthly 
precipitation patterns, such as those conducted by Tharun et al. 
(2018), Chhetri et al. (2020), Chen et al. (2022), Gu et al. (2022) and 
Zandi et al., (2022). Typically, their focus was on using single-model 
approaches or ensemble methods. While these strategies can 
be effective in specific scenarios, they may encounter difficulties with 
the complex, multidimensional nature of climate data. The present 
study investigates the application of a multi-view learning strategy, 
which has not been thoroughly studied. A key aspect of the present 
work is the incorporation of lagged variables, which are essential in 
capturing the delayed effects of climatic factors on rainfall and 
predicting the intricate temporal dynamics inherent in meteorological 
data. This research is distinctive in its use of multiple base learners, 
including the LSTM network. The integration of meta-learners, 
particularly XGBoost and AdaBoost, to incorporate information from 
diverse sources further enriches the research. This work is among the 
few that centers its focus on Morocco, offering specific insights for the 
region and underscoring the potential impacts of climate change on 

TABLE 3 List of the hyperparameters for model tuning and the sets of 
their expected values.

Models Selected 
hyperparameters

Range of variability

Decision 

tree

max_depth = 10 [3, 5, 7, 9, 10, 15, 20]

min_samples_leaf = 6 [2, 4, 6, 8, 10, 15]

min_samples_split = 4 [1, 3, 4, 5, 7, 10, 15]

Random 

forest

n_estimators = 1,000 [10, 50, 100, 200, 500, 1,000, 1,500]

max_depth = 15 [3, 5, 7, 10, 15, 30, 50]

min_samples_split = 2 [2, 4, 6, 8]

min_samples_leaf = 3 [1, 3, 5, 7]

Adaboost learning_rate = 0.04 [0.01, 0.02, 0.03, 0.04, 0.1, 0.5, 1.0, 

2.0]

n_estimators = 30 [10, 50, 100, 200]

XGBoost max_depth = 5 [3, 5, 7, 9]

learning_rate = 0.03 [0.01, 0.02, 0.03, 0.04, 0.1, 0.5, 1.0, 

2.0]

n_estimators = 50 [10, 50, 100, 200]

KNN n_neighbors = 9 [3, 5, 7, 9]

weights = distance [uniform, distance]

metric = manhattan [euclidean, manhattan]

LSTM Sequence Length = 4 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

Number of hidden units = 60 [10, 20, 30, 50, 64, 80]

Number of layers = 2 [2, 3, 4, 5, 6]

kernel_regularizer = 0.02 [0.001, 0.005, 0.008, 0.01, 0.02, 0.1]

Learning rate = 0.001 [0.001, 0.005, 0.008, 0.01, 0.1]

Mini-batch size = 50 [10, 20, 30, 50, 80, 100, 150, 200]

Number of epochs = 50 [50, 80, 100, 150, 200, 300, 500, 

1,000]

TABLE 4 Performance metrics (RMSE, MAE, R2) for individual prediction 
models (DT, RF, KNN, AB, XGB, LSTM).

Metrics Models

DT RF KNN AB XGB LSTM

Train RMSE(m) 49.8 30.5 42.9 28.3 34.7 46.1

MAE 34.8 19.4 26.7 17.6 19 29.1

R2 0.30 0.74 0.48 0.77 0.66 0.4

Test RMSE(m) 47.5 48.8 51 48.3 40.8 50

MAE 34.5 35.2 35.6 30.3 27.3 35.3

R2 0.28 0.24 0.16 0.25 0.47 0.20

The bold values highlight optimal values or key findings.

TABLE 5 Comparative RMSE_test(mm) values for different combinations 
of base learners (DT, RF, KNN, AB, XGB, and LSTM) and meta-learners (DT, 
RF, KNN, AB, XGB, and LSTM).

RMSE_
test 
(mm)

Base-
learner

Meta-learner

DT RF KNN AB XGB LSTM

DT 28.9 25.5 32.1 25.5 20.2 44.4

RF 47.9 40.3 38.8 39.1 38.5 49.4

KNN 41.8 31.5 31.2 33.3 29.9 49.3

Adaboost 73.3 65.4 40.1 66.0 55.5 62.9

XGBoost 58.3 65.7 41.1 66.2 52.2 81.2

LSTM 56.8 45.9 44 43.6 55.7 41.2

The bold values highlight optimal values or key findings.

TABLE 6 Performance metrics for mixed-base learners for each meta-
learner (DT, RF, KNN, AB, XGB, LSTM).

Mix-
DT

Mix-
RF

Mix-
KNN

Mix-
AD

Mix-
XGB

Mix-
LSTM

RMSE(mm) 28.2 26.4 28.7 24.6 17.5 45.7

MAE 20.9 21 20.6 16.8 13.9 34.7

R2 0.7 0.8 0.7 0.8 0.9 0.3

The bold values highlight optimal values or key findings.
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FIGURE 6

Graph of observed and predicted precipitations: Models with mixed-base learners and (RF, DT, KNN, AdaBoost, XGBoost) as meta-learners.

FIGURE 7

Base learner associated with each relevant variable to create the mixed base.
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localized precipitation patterns, which are essential for the 
development of local strategies.

5 Conclusion

This study investigated the application of machine learning 
models to monthly rainfall data in Rabat, Morocco, aiming to 
enhance forecast accuracy using a multi-view stacking learning 
technique. Historical weather data from Rabat was employed to 
assess the effectiveness of the forecast models. The evaluation 
process included multiple important steps: data preprocessing to 
handle missing values and normalize the data, selection of the 
most relevant variables using the cross-correlation function 

(CCF) to analyze lag effects, and hyperparameter grid search to 
optimize model performance. Five ML algorithms (DT, RF, KNN, 
AdaBoost, and XGBoost), as well as an LSTM network, 
were tested.

The optimal performance resulted from integrating the relevant 
variables (prec-12, TXMOYM, TXMOYM-11, TXMOYM-12, 
TNMOYM, TNMOYM-4, TNMOYM-11, TNMOYM-12, INSMEN, 
INSMEN-12) within a mixed meta-base that leveraged a combination 
of base learners (DT, KNN, LSTM). These results emphasized the 
critical importance of choosing appropriate core learners and 
combining relevant variables. The study also underscores the 
promising potential of XGBoost and AdaBoost as meta-learners to 
integrate and leverage information from multiple sources, resulting in 
predictive performance enhancement.

FIGURE 8

(A) Box Plot (B) Scatter Plot for DT, RF, KNN, Adaboost, Xgboost, and LSTM models using multi-view stacking learning approach based on mixed-base 
learners.

FIGURE 9

(A) Taylor Diagram (B) Violin Plot for DT, RF, KNN, Adaboost, Xgboost, and LSTM models using multi-view stacking learning approach based on mixed-
base learners.
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While multi-view stacking learning techniques have enhanced 
prediction accuracy, they have also introduced complexity into the 
model development and training processes. This complexity can 
increase the risk of overfitting. Despite employing techniques like 
cross-validation adapted for time series to mitigate this risk, achieving 
a balance between model complexity and generalization remains a 
challenging aspect that must be carefully managed. Furthermore, the 
capacity to generalize and adapt these models to other geographical 
regions and climatic types is still a potential area requiring further 
investigation, especially given the limitations of the dataset size used 
for training these models. More investigation is needed to examine the 
model’s effectiveness using larger and more diverse sources of datasets 
to improve its potential to generalize and capture future climate 
variability, particularly as climate change accelerates.

Focusing on the specific context of Morocco—a region that 
frequently experiences strong El Niño-Southern Oscillation (ENSO) 
events and, less frequently, La Niña episodes—underscores the 
complexity of its climate. This complexity, coupled with the critical 
need for precise precipitation forecasts, suggests that the Moroccan 
climate requires more in-depth investigation. The proposed 
approaches could be considered on a broader spatial scale beyond the 
scope of the present study. Further investigation of several Moroccan 
stations with varying meteorological characteristics and additional 
relevant factors would improve our understanding of the variability of 
precipitation patterns and climate change in the country. Additionally, 
further exploration of other promising ML models and techniques, 
including transformers, is crucial for a comprehensive understanding 
of regional precipitation patterns and the impacts of climate change.
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