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Post-processing raw stream flow forecasts are generally understood as

estimating the univariate predictive density of stage or discharge values at

selected future time steps, which is conditional on a single ormultiple streamflow

forecasts and observations up to the forecast start time to. The predictive density

indicates to a forecaster in the most comprehensive way which flood level is

likely to be expected. To this end, a variety of post-processing methods were

proposed, which have respective strengths and weaknesses. These methods

focus near-exclusively on the probabilistic forecast of the predictand at a

single set future time ti, without addressing the predictive capability over the

sequence of temporal sub-horizons (to, t1] ⊂ (to, t2] ⊂ . . . ⊂ (to, tk] nested

into the overall forecast horizon. Here, we demonstrate the advantages of

time-horizon dependent processing of streamflow forecasts, which evaluates

the evolution of the predictive density over the sub-horizons by considering

the temporal correlation among forecast ensemble members in addition to their

cross-correlation with observations. The resulting probabilistic forecast consists

of a multivariate distribution of stages and/or discharges at lagged forecasting

times. Thesemultivariate predictive distributions have the advantage of providing

the likelihood of exceeding a critical threshold during the forecasting horizon

while simultaneously o�ering valuable insights into the expected time of such

exceedance. This approach supports not only decisions on issuing timely flood

warnings but also the planing and roll-out of mitigating actions.

KEYWORDS

streamflow prediction, ensemble forecasting, post-processing, predictive uncertainty,

multi-horizon, time correlation

1 Introduction

Operational streamflow forecasting is an effective non-structural measure to contain

flood risk and protect human lives. Starting from weather models, which prognosticate

future precipitation to drive stream flow models, one can generate a forecast of

future river flow rates and/or stages. Forecasts of this type are non-deterministic,

notwithstanding Earth-system models, and hydrological simulation tools rest on the

solution of deterministic differential equations. A wide range of sources for uncertainty

affect the forecast and need educated quantification, before being communicated to

decision-makers (Krzysztofowicz, 2001a; Pagano et al., 2014). Streamflow uncertainty

originates mainly from forecasted meteorological forcing and the chaotic nature of the

atmospheric system, but equally from model inadequacies because of the coarse process

parameterization and space-time discretization. Measurement errors play a role as well.

The sources of uncertainty and its diffusion through the modeling system have been amply

investigated in the literature, and comprehensive approaches have been implemented

for forecast error correction and control, among which sequential data assimilation
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of observations into models (Kitanidis and Bras, 1980; Seo et al.,

2003; Vrugt et al., 2005; Kalnay et al., 2007; Clark et al., 2008).

Nevertheless, the residual and irreducible uncertainty, which

remains in each forecast, needs to be assessed in probabilistic terms

through the predictive density, which expresses the uncertainty of

the yet to be observed predictand, conditional on the predictors

(Hamill and Whitaker, 2006).

The theoretical basis for a Bayesian forecasting system

(BFS) has been described in a seminal article by Krzysztofowicz

(1999), which lays out the structure of a probabilistic processor

of uncertainties. The precipitation and flow/river stage random

processes are elaborated by an independent precipitation

uncertainty processor (PUP; Kelly and Krzysztofowicz, 2000) and

a hydrological uncertainty processor (HUP; Krzysztofowicz and

Kelly, 2000), respectively, that are combined through an integrator

of densities into a probabilistic river stage forecast (Krzysztofowicz,

2001b). The dichotomy into PUP and HUP allows for separate

processing of the meteorological uncertainty and the one inherent

to the deterministic rainfall-runoff modeling process. The resulting

river-stage forecasts consist of a sequence of univariate predictive

probability distribution functions f (ht|ho, uo,wo) of water levels ht
for each forecasting time step t = 1, . . . , k, following forecast onset

time to, conditional on the initial water level ho, on hydrologic

states uo, and on a probabilistic quantitative precipitation forecast

wo at to. The cumulative distribution function associated with the

density function f is F(h∗) = P(ht < h∗|ho, uo,wo). The proposed

processor structure is Bayesian as it rests on the convolution of

a prior probability density of future streamflow with a likelihood

function. The likelihood statistically specifies the error structure of

model forecasts. One of the fundamental assumptions underlying

the HUP is modeling the prior distribution of flow forecasts as a

lag-one Markov process. The BFS has been shown to fulfill three

general requirements for the reliability of a forecasting system

(Krzysztofowicz, 1999):

• It quantifies all sources of uncertainty pertaining to the

predictand, i.e., the stage or discharge forecast;

• It possesses a self-calibration property, wherein, in the long

run, the probabilistic forecasts preserve the prior (historic)

distribution of the predictand;

• It possesses a coherence property, wherein the economic value

of the forecast is at least zero or positive, relative to the

economic value of the prior distribution of the predictand.

The Bayesian HUP was applied to the River Rhine forecasting

system for a single deterministic forecast (Reggiani and Weerts,

2008), whereas an ensemble application for the same system was

presented by Reggiani et al. (2009).

In further steps, the BFS was elaborated into a time-horizon

dependent processor with multivariate output. In contrast to the

earlier version, the system now issues a multivariate probabilistic

river stage forecast obtained on the basis of a model of flow

water level changes represented by Markov lag-one transition

densities. The probabilistic water stage forecast consists of a joint

predictive probability density function f (h1, . . . , hk|ho, uo,wo) with

corresponding joint predictive distribution function P(h∗) =

P(h1 ≤ h∗, . . . , hk ≤ h∗) defined through the multiple

integral of f (·|·).

By setting hmax,k = max{h1, . . . , hk}, the maximum stage

reached over the k-step forecast horizon of length tk − to, function

P(h∗) expresses the probability of at least one exceedance of the

threshold value h∗ across the k consecutive steps:

P(hmax,k > h∗) = 1− P(hmax,k ≤ h∗)

= 1− P(h1 ≤ h∗, . . . , hk ≤ h∗) = 1− P(h∗)

(1)

meaning that P(h∗) is equivalent to the joint non-exceedance

probability of the threshold value over the range of temporal

horizons. One also needs to note that the joint distribution P(h∗) is

indirectly defined over a sequence of nested temporal sub-horizons

(to, t1] ⊂ (to, t2] ⊂ . . . ⊂ (to, tk], and therefore also allows

to determine the probability of the time needed for threshold

exceedance to occur. The probability on the time to reach flooding

through exceedance of the threshold h∗, t = t∗(h∗), therefore, is:

P(tk ≥ t∗) = 1− P(tk < t∗) = 1− P(h∗) (2)

Capturing the uncertainty of the time to threshold exceedance is

relevant in an operational setting, as it allows for adaptive decision-

making (Krzysztofowicz, 2014). The original HUP was therefore

adapted into a multivariate precipitation-dependent processor,

which estimates the joint distribution of river stages, given stage

and hydrological initial conditions, and a probabilistic precipitation

forecast (Maranzano and Krzysztofowicz, 2004).

Ensemble prediction systems (EPS), in which multiple forecasts

are generated under the assumption that their inherent spread

describes the compound uncertainty of natural phenomena

at different system stages, as well as the uncertainty due to

meteorological and hydrologic model deficiencies, have become

common in the last two decades in virtue of enhanced computing

capabilities. An ensemble forecast in principle requires that a true

random sample of the predictand is sufficiently large to allow for

an adequate approximation of its potential probability distribution

(Herr and Krzysztofowicz, 2015).

Forecast ensembles can be generated, for instance, from

historical data using a single modeling system, which is initialized

with perturbed initial condition vectors, or by combination

of multiple models. Data-based ensembles on the other hand,

which can be generated from reshuffling historical series (Wood

and Schaake, 2008), suffer from the shortcoming that resulting

ensembles are factually small due to strong cross-correlations

among its members, while the non-stationarity of the process

cannot be acknowledged (Schefzik et al., 2013). For model-

generated ensembles, different processing methods have been

devised for statistical post-adjustment. Some authors propose

dressing single ensemble members (Pagano et al., 2013; Verkade

et al., 2013, 2017), while methods such as the Bayesian HUP

(Reggiani et al., 2009), the non-parametric processor by Brown

and Seo (2010), process the whole ensemble of different model

outputs all at once. The listed ensemble forecasting systems have

different strengths and weaknesses, most do not output ensembles

of time series of the predictand (Herr andKrzysztofowicz, 2015) but

the predictive distribution of the predictand instead. In addition,

the ensemble may not pertain to one and the same distribution,

from which nature would sample the predictand and only few
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of the EPS satisfy the requirements of calibration and coherence

mentioned above.

Time-horizon dependent post-processing of streamflow

ensembles using the ensemble model output statistics (EMOS)

technique (Gneiting et al., 2005) has been introduced by Hemri

et al. (2013) using multivariate Bayesian model averaging (Raftery

et al., 2005). Objective of that study was to extend univariate

predictive densities for individual lead times to jointly process the

EMOS output for the entire forecasting horizon encompassing

multiple lead time sub-horizons. The authors further elaborated

time-horizon dependent post-processing by introducing Ensemble

Copula Coupling (ECC) and Gaussian Copula Approach (GCA)

for joining univariate single lead-time marginal EMOS output

distributions with a multivariate time-predictive density covering

the whole range of lead-times (Hemri et al., 2015; Hemri and

Klein, 2017). The output can be expressed as quantile trajectories,

which account for the correlations structure of the ensemble

prediction over the forecast time horizon using a correlogram.

The proposed approach has shown to perform well using classical

performance indicators such as CRPS (Hersbach, 2000) in terms of

calibration and sharpness. In addition to guaranteeing calibration,

the proposed approach remains not necessarily self-calibrating

or coherent.

The model-conditional processor (MCP) of uncertainty

(Todini, 2008) is based on the conditional distribution of

future occurrences given single or ensemble forecasts. As clearly

emerged from Equations (14, 15), the weights multiplying the

members of the forecast ensemble depend directly on the

covariance of each member with observations and inversely on

the increasing mutual covariance. This expresses the fact that

additional information must be independent from the one already

available for producing a gain in knowledge. After standardizing

predictor and predictand, one estimates their mutual variance-

covariance matrix. The elements of the matrix, actually Pearson

correlations in the standard Gaussian space, represent weights

that attribute different importance to members of the ensemble of

predictors based on their statistical similarity with the predictand

over a control period. Because this approach requires the joint

analysis of the covariance structure between predictors and

predictand from data samples, it becomes feasible to process a

whole ensemble of predictors all at once. The MCP has been

developed on the assumption that predictor and predictands

can be transformed into standard Gaussian variates, and their

mutual dependency structure approximated as a Gaussian copula.

Once the dependency structure has been established, conditional

densities can be derived analytically and returned into the space

of origin. An application of the MCP to streamflow ensembles

was presented by Coccia and Todini (2011). This application also

emphasizes the challenge posed by the heteroscedastic of data,

which has been solved by piecewise modeling the region of the

multivariate distribution by truncated Gaussian copulas for sub-

regions with near-homoscedastic dependency. The equivalence

between MCP and the univariate Bayesian HUP (Krzysztofowicz

and Kelly, 2000) was demonstrated for the case, in which one

employs either a Markov lag-one prior distribution or a simple

linear regression model between random samples of observations

and past predictions (Todini, 2012). This inter-comparison also

showed that the Bayesian forecasting system concept (BFS),

albeit theoretically consistent and analytically tractable, runs into

practical limitations once multiple predictors become involved.

Precisely, this drawback of the BFS has been the main driver

for employing the MCP to estimate the predicitve density of

precipitation (Reggiani and Boyko, 2019) in operational weather

forecasting, where up to 50 member ensembles (Toth and Kalnay,

1993; Molteni et al., 1996) are routinely used to approximate the

distribution of the predictand. This study also provides an example

on how imputation of missing data can be used to artificially extend

left-bound samples of a censored variate, therefore enabling the

application of the processor to an intermittent random process

such as precipitation. Barbetta et al. (2017) introduced the joint

probability density concept over a nested set of time horizons

into the MCP and conditioned the predictive density on an

ensemble of streamflow forecasts. The aim of this study is to

revisit the time-horizon dependentMCPwith the following specific

research objectives:

• Explain in more detail the stochastic dependency structure

and corresponding derivations for the time-horizon

dependent case,

• Demonstrate adherence to conditions of self-calibration

and coherence,

• Discuss the advantages of time-horizon dependency in

forecast processing over time-horizon independence,

• Show how the output of the uncertainty processor can be

elaborated into forecasting products for advanced decision-

making in operational settings (Pagano et al., 2014).

To pursue these objectives, the article is structured in four sections.

The first section describes the methods, the second presents a

numerical application, whereas the third section is devoted to

discussing the approach. The last section concludes.

2 Methods

2.1 Predictive density

The predictive density is defined as the conditional probability

density function (PDF) of an unknown quantity, in our case,

stage or discharge; given all presently available information on that

quantity, here the ensemble of streamflow estimates produced by

a deterministic hydraulic model (Hamill and Whitaker, 2006) is

as follows:

f (h|ĥ) (3)

where h is the vector of values of the predictand at times

t = 1, . . . , n and ĥ is an array containing an m-member

ensemble of synchronous predictors of h, which will be specified

in more detail in Section 2.3. These become the known quantities,

which enhance our knowledge by conditioning the probability

distribution of the observations h. The predictors ĥ act as

error-affected estimates of h and serve as knowledge support

in reducing uncertainty through bias-removal and sharpening of

the predictive density (Equation 3) (Wilks, 1995). The predictive
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distribution can be obtained in different ways, for instance, through

Quantile Regression (Koenker, 2005), the Bayesian hydrologic

uncertainty processor (Krzysztofowicz and Kelly, 2000), Bayesian

model averaging (Raftery et al., 2005), or the model-conditional

processor (Todini, 2008). All these approaches have different

strengths and weaknesses. The main reasons for adopting the MCP

here is the ease with which it allows to include an ensemble of

m predictors, while it is much more cumbersome using alternate

methods. Unlike BMA, it is not restricted by the assumption of

independent forecast errors, which one cannotmake when studying

an auto-correlated process.

2.2 Probabilistic flow forecast

A streamflow ensemble forecast ĥ of the not yet observed

predictand h is generated using a deterministic hydrological model

ĥ = Mh(ho,w, u), which is driven by a meteorological forcing

vector w and depends on past observations of ho and a vector of

hydrological states u. The weather forecast ŵ output by a weather

model ŵ = Mw(wo, v) induces a density π(ŵ|wo, v) conditional

on a vector of atmospheric states v and past wo. Mh(ho,w, u)

together with π(ŵ|wo, v) induce a density γ (ĥ|ho,w, u) of ĥ.

Densities f (h|ĥ) and ξ (w|ŵ) assess the predictive uncertainty

(Equation 3) by processing outputs of models Mw and Mh. The

role of the processor is to de-bias and variance-adjust model

forecasts so that the corrected output distributions better match

those of the unconditional long-term distributions of observed

streamflows. The probabilistic flow forecast is produced by

integrating hydrologic and input uncertainty according to the law

of total probability:

ψ(h|ho,wo, u, v) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞ f (h|ĥ)

γ (ĥ|ho,w, u) ξ (w|ŵ)π(ŵ|wo, v) dĥ dw dŵ (4)

in which the dependency on model outputs of weather and

stage/discharge has been marginalized out. In doing so, we

assume that an output ensemble constitutes a sufficiently sized

sample (Herr and Krzysztofowicz, 2010) for approximating the

true densities of ŵ and ĥ. The probabilistic forecast density

ψ(h|howo, u, v) must be coherent in the sense that it is derivable

from a super-density ζ (h, ho,wo, u, v) which characterizes the

joint natural weather and streamflow phenomena. This requires

the probabilistic flow forecast to be well-calibrated, i.e., truly

representative of the overall natural phenomenon. This means that

marginal densities of selected predicted process variables must

fall back onto those of historical observations. In particular, for

probabilistic flow or stage forecasts, this equates to Krzysztofowicz

(1999):

Ew,u,v[ψ(h|ho,wo, u, v)] = g(h) (5)

where g(h) is the unconditional probability density of observations.

Let us for the purpose of this study suppose the weather to be

fully known or a representative ensemble drawn from a perfectly

calibrated predictive density ξ (w|ŵ). This sample is then used to

generate a streamflow prediction ensemble ĥ, which is a realization

from the distribution γ (ĥ|ho,w, u) for set w and u and fully

specifies the hydrological uncertainty attributable to the model

imperfections and sub-optimal knowledge of system states. From

here onward, we focus exclusively on the predictive density f (h|ĥ)

for streamflow with a time-horizon dependency, while weather

uncertainty is assumed to be perfectly specified and transferred into

the density γ , from which we draw the ensemble ĥ of streamflow

predictions. Equation (4) of the probabilistic river flow forecast

clearly separates relevant sources of uncertainty.

2.3 Time-horizon dependency

The multivariate MCP is a processor of uncertainty, which

is based on mapping variates into standard Gaussian ones and

assuming a linear dependency structure modeled in the Gaussian

space. For this reason, it can also be called meta-Gaussian

processor. If h is a continuous random variate describing a

stochastic process such as stage or discharge, its predictor is

denoted as ĥ. Discrete realizations of the variate are represented by

the following lower-case vectors:

h = (h1, . . . , hn)
‘ (6a)

ĥ = [(ĥ1,1, . . . , ĥn,1), . . . , (ĥ1,m, . . . , ĥn,m)]
‘ (6b)

where 1, ..., n are the number of time steps at which realizations

of h occur and m is the number of synchronous predictors of h,

for instance, (multi-)model ensembles. The mapping of the sample

realizations into their own standard normal images is denoted with

η = 8−1(F(h)) and η̂ = 8−1(G(ĥ)) and respective realizations

with η and η̂. The mapping occurs by matching probabilities of the

empirical CDF with a standard-Gaussian distribution, either via a

non-parametric method referred to as Normal Quantile Transform

(NQT) or by probability matching after fitting the classical

parametric probability distribution functions. F and G denote

the marginal distributions (empirical or parametric) and 8−1 the

inverse standard normal CDF. After organizing observations and

synchronous predictions by m models into k time-horizon bins of

the forecasts, j = 1, . . . , k, indicating the j · 1t time slice of the

forecast horizon counting from to, we introduce Gaussian images

of the predictor and predictand vectors in Equation (6):

η = (ηto+1t , . . . , ηto+k1t
)‘ = (η1, . . . , ηk)

‘ (7a)

η̂ = [(η̂to+1t ,1, . . . , η̂o+k1t,1), . . . , (η̂o+1t,m, . . . , η̂o+k1t,m)]
‘ (7b)

= [(η̂1,1, . . . , η̂k,1), . . . , (η̂1,m, . . . , η̂k,m)]
‘

Next, we assume that the Gaussian predictand η relates to

predictors η̂ through the following linear model:

η = µη + B · (η̂ − µη̂)+ ω (8)

where B is a k×m · kmatrix of multi-linear regression coefficients,

µη is a k × 1 vector of means E(η), µη̂ an m · k × 1 vector of

means E(η̂), while ω is a k × 1 vector of errors with probability

distribution N(0,6ω), typically a Gaussian noise, statistically

independent of η and η̂. The conditional mean is modeled as a

multi-linear regression:

E(η|η̂) = µη|η̂ = µη + B · (η̂ − µη̂) (9)
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whereas the variance is conditional on η̂ as follows:

Var(η|η̂) = 6η|η̂ = E[(η − µη|η̂)(η − µη|η̂)
T] (10)

Assumption: The joint k × (m + 1)-sized sample of NQT-

transformed observations and predictions (η, η̂) is multivariate

normal distributed (MVND):

(η, η̂) ∼ Nk·(m+1) (µ,6) (11)

with density

φ(η, η̂) =
exp

{

− 1
2 [(η, η̂)− µ]T 6−1 [(η, η̂)− µ]

}

√

(2π)k·(m+1) ||6||
(12)

where 6 is the covariance matrix of the joint sample (η, η̂) and

µ = E(η, η̂) the k · (m+1)-sized row vector of sample means, equal

to zero for standard-normal distributed variables. We note that

assuming the joint distribution multivariate normal is equivalent

to assigning a Gaussian copula dependence to the standard normal

variates η and η̂. If so, conditional densities can be obtained

as follows:

φ(η|η̂) =
φ(η, η̂)

φ(η̂)
∼ Nk·(m+1)

(

µη|η̂ ,6η|η̂

)

(13)

with φ(η̂) the 1, . . . ,m standard normal marginal densities of

Equation (12). Equation (13) represents a family of standard

normal predictive densities with conditional mean and variance:

µη|η̂ = µη + 6ηη̂ ·6
−1
η̂η̂

· (η̂ − µη̂) (14a)

6η|η̂ = 6ηη − 6ηη̂ ·6
−1
η̂η̂

·6η̂η (14b)

with 6ηη the k-sized matrix of observations covariances, 6η̂η̂ the

k ·m-sized covariance matrix of η̂, and 6ηη̂ the k ·m× k covariance

matrix of η and η̂.

Because observations h as well as model forecasts ĥ are mapped

into standard Gaussian variables, i.e., η and η̂ ∼ N(0, 1), the vectors

of means µη = µη̂ = 0, whereas 6ηη and 6η̂η̂ have diagonal terms

equal to unity variances. Equations (14) therefore simplify:

µη|η̂ = 6ηη̂ ·6
−1
η̂η̂

· η̂ (15a)

6η|η̂ = 6ηη − 6ηη̂ ·6
−1
η̂η̂

·6η̂η (15b)

The adequacy of the meta-Gaussian model assumption is relatively

easy to verify in the uni- or bivariate case, but less so with

multiple variates and can only be assessed a posteriori by verifying

the predictive distribution against the one of observations. The

conventional case of a forecast for a single time horizon, for

instance, when assessing the predictive density of one and only one

future value ηto+j1t given the predictions issued at time to by a

single or m predictors, Equation (15) reduces to scalar conditional

mean and variance of the Gaussian univariate predictive density for

said forecast time:

µη|η̂ = σ ηη̂ · 6−1
η̂η̂

· η̂ (16a)

σ 2
η|η̂ = 1− σ ηη̂ · 6−1

η̂η̂
· σ η̂η (16b)

where σ ηη̂ is them× 1 covariance vector between the predictand η

and them predictors η̂, whereas6η̂η̂ is them×m covariancematrix

of predictors.

The cumulative distribution function (CDF) of density

(Equation 13) is obtained by multiple integration over the semi-

infinite domain (−∞, η̂∗) with η̂∗ a single Gaussian threshold value

common to all forecasting time steps:

8(η1 ≤ η∗, . . . , ηk ≤ η∗|η̂) =

∫ η∗

−∞

. . .

∫ η∗

−∞

φ(η|η̂) dη (17)

where once again the subscript j = 1, . . . , k abbreviates to + j1t.

The corresponding conditional CDF image in the real space is:

P(h1 ≤ h∗ . . . hk ≤ h∗|ĥ)

=

∫ h∗

−∞

. . .

∫ h∗

−∞

f (h1, . . . , hk|(ĥ1,1, . . . , ĥk,1), . . . , (ĥ1,m, . . . , ĥk,m))

dh1 . . . dhk (18)

A possible wider dependency f (h|ĥ, u,w) on initial conditions

and/or hydrological states or weather input as indicated in

Equation (4) is omitted because it is irrelevant to the topic of

time-horizon dependency.

The full multivariate conditional probability density φ(η|η̂)

given by Equation (13) is essential for determining the probability

of threshold exceedance within the forecasting horizon and

the expected time of occurrence, but there is no need for its

full backtransformation into the real space. Instead, the single

predictions and their predictive densities can be back-transformed

into the real space using the inverse NQT via their marginal

conditional distributions φ(ηj|η̂); ∀j = 1, . . . , k, easily obtained

from the multivariate Gaussian conditional distribution.

2.4 Calibration and coherence

It can be shown that the predictive density (Equation 13) is

a well-calibrated uncertainty assessor (Alpert and Raiffa, 1982;

Krzysztofowicz, 1999). For a processor to be well-calibrated, the

expectation Eη̂[φ(η|η̂)] must match the unconditioned historical

distribution of streamflows when evaluated over many consecutive

forecasting instances. The definition of conditional distribution

applied to Equation (13) leads to:

Eη̂[φ(η|η̂)] = φ(η) (19)

and in the space of origin:

E
ĥ
[f (h|ĥ)] = g(h) = f (F−1(φ(η))) (20)

In other words, when integrated over the entire space of
possible predictions ĥ, the predictive probability density function

collapses onto the unconditional density of historic observations

g(h). As a corollary of this property, it follows that if the

predictive information of η̂ is poor, i.e., 6ηη̂ ∼ 0 due to

the predictions becoming fully uncorrelated with observations,

the distribution of the forecast (Equation 13) is guaranteed to

approach the prior density, and hence satisfies a property of

coherence, meaning that the system guards the forecaster from

issuing a forecast that is poorer than relying on statistics of

past observations.
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2.5 Advantages of time-horizon dependent
flow forecasting

The extension of a classical single or multi-model probabilistic

forecast to include time-horizon dependency bears the potential

to considerably improve forecast accuracy, because it allows to

account for the temporal evolution of the forecasting error.

However, this is not the sole benefit of time-horizon dependency.

The family of multivariate time-horizon dependent predictive

densities (Equation 13) allows answering two important questions

that are of particular interest and relevance to decision makers.

In particular, when applying the method to the process h =

(h1, . . . , hn) and a triggering threshold h∗, associated with crossing

a warning level or overtopping a levee by a future flow or water

level, the following is of relevance:

• Which is the likelihood (or probability) that a threshold value

h∗ will be overtopped (or that flooding will occur) within the

next j hours, when tj − to, j = 1, . . . , k hours represents the

length of the forecasting horizon of interest?

• At what time will threshold exceedance most likely occur?

To answer the first question on the probability of h overtopping

h∗ during the whole forecast horizon consisting of k intervals,

one must start estimating the joint probability f (h1, . . . , hk|ĥ) of

future water level occurrence at times j = 1, . . . , k; conditional on

predictor ĥ, the k × m vector of mmodel forecasts at k forecasting

times defined in Equation (6b).

Once density f (h1, . . . , hk|ĥ) is specified, the probability of

having at least one overtopping event in a generic time interval

within the time horizon of interest equals oneminus the probability

of non-exceedance P(hj < h∗|ĥ) j = 1, . . . , k, across all nested

sub-horizons of the forecast lead time (to, t1) ⊂ (to, t2) ⊂ . . . ⊂

(to, tk):

P(h > h∗|ĥ) = 1−

∫ h∗

−∞

. . .

∫ h∗

−∞

f (h1, . . . , hk|ĥ) dh1 . . . dhk (21)

In reply to the second question, Equation (21) must be explicitly

stated in terms of the nested increasing forecasting sub-horizons:

P(hj < h∗|ĥ) =

∫ h∗

−∞

. . .

∫ h∗

−∞

f (h1, . . . , hj|ĥ1,1, . . . , ĥk,m) dh1 . . . dhj

(22)

with P(hj < h∗|ĥ) monotonously increasing with j. Equation (2)

defined the distribution function of the time to flooding, which

equals the probability of threshold water level exceedance, i.e.,

P(t > t∗|ĥ) = P(h(t) > h∗|ĥ). Hence, the time rate of change

of the exceedance probability equals the PDF of time to flooding:

dP(h(t) > h∗|ĥ)

dt
=

P(t > t∗|ĥ)

dt
= f (t) (23)

In discrete terms, f (t) can be approximate by finite probability

increment ratios IR(to + j1t) defined for steps j = 1, . . . , k:

IR(to + j1t) =
P(tj+1 > t∗|ĥ)− P(tj > t∗|ĥ)

1t
(24)

The increment ratios express the time rate of change of

the exceedance probability of the threshold as time elapses.

Equation (24) can be used by a forecaster to identify the probability

at what time the water level exceeds a preset threshold value h∗

and allows for a vivid representation of the threshold exceedance

probability, as will be shown through an example in Section 3.3.

3 Application

3.1 Data

To calibrate and validate the proposed processor, we use

operational flow forecasts for the River Po, Italy, at gauging section

Pontelagoscuro (PLS), which is considered the closure cross-

section of the basin as shown in Figure 1. The Po River encompasses

a drainage basin area of ∼74,000 km2 in correspondence of the

delta and is Italy’s largest river system. Approximately 96% of

the basin is situated within national borders, nearly one-third of

which constitutes the alluvial plain of the River Po Valley. The

remaining 4% lie mostly in Switzerland and, for very a small

section, in France. The annualmean flow recorded at PLS is roughly

1,500 m3/s, with maxima ∼10,000 m3/s reached during extreme

events. ARPA-SIM, the Hydro-Meteorological Service of the

Emilia-Romagna Regional Agency for Environmental Protection,

which operates the real-time River Po flood forecasting system,

supplied hydrological streamflow ensemble forecasts based on

Consortium for Small-Scale Modeling (COSMO) Limited Area

Ensemble Prediction System (LEPS) ensemble members, which are

used to force the process-based hydrological distributed model

TOPKAPI (Liu et al., 2005). Streamflow routing toward gauging

station PLS is performed by the Saint-Venant equation solver

SOBEK (Stelling and Verwey, 2006). COSMO-LEPS is a joint

development effort aimed at the improvement of short-to-medium

range forecast of extreme and localized weather events in Europe.

The system consists of 16 integrations of the COSMO weather

model at 7-km spatial resolution that were launched on the basis

of initial and boundary conditions provided by 16 representative

members of the super-EPS (Molteni et al., 1996) of the European

Centre for Medium-range Weather Forecasts (ECMWF).

Due to the provision of final streamflow forecasts at station PLS,

it is not possible to separately quantify the uncertainties contributed

by the hydrologic model from those induced by the hydraulic flood

wave propagation model. However, Equation (4) indicates a formal

framework for specifying and integrating different individual

sources of uncertainty in the forecasting chain.

Observations and forecasts are sampled at 3-hourly time steps

(1t = 3 h), the latter consisting of an array of hourly streamflow

forecasts over a 120-h horizon. The available data set covers the

period from 9/11/2012 to 28/02/2015, including 842 days and 1,628

forecasting instances in total.

3.2 Processing

As a first step in data processing, we organize all streamflow

forecast outputted by the 16 member EPS (m = 16) and
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FIGURE 1

River Po basin area. The location of station Pontelagoscuro (PLS) is indicated by a blue triangle.

observations for 1,628 forecasting instances such that each stream-

flow forecast associated with an ensemble member compares

directly against the corresponding observations. The sample of

forecasts and associated observations over all selected k time steps

in the 96 h forecasting horizon includes 1,628 × (m+1) values.

Each sample pair (h, ĥ) is mapped into its standard Gaussian

image (η, η̂) by applying the Normal Quantile Transform (NQT).

The mapping involves matching the probabilities of the empirical

CDF of the original sample with those of the standard Gaussian

distribution. In the standard Gaussian space, it is straightforward

to establish the joint distribution (Equation 12) and the family of

conditional densities (Equation 13). The latter yields k univariate

predictive distributions, which are conditional on the k · m-sized

multivariate distribution of predictions. The image in the real

space is obtained by mapping the k univariate marginal conditional

distributions back into the space of origin by inverse NQT as

φ(ηj|η̂)→f (hj|ĥ); j = 1, . . . , k.

3.3 Results

Next, we present the outcome of the processing in terms

of performance indicators of the time-horizon dependent MPC

(MCP-THD), whereby we compare the predictive mean against

(a) the raw ensemble mean (REM) and (b) the predictive mean

of the time-horizon independent MCP (MCP-THI). The time-

horizon independent MCP-THI (also labeled multivariate MCP;

Coccia and Todini, 2011) was extensively compared by Biondi

and Todini (2018) against the post-processing of forecasts using

Bayesian model averaging (BMA; Raftery et al., 2005) and a

univariate version of MCP. This univariate version is characterized

by reduced mathematical complexity and can be convenient

for applications where hydrological ensembles are provided; it

considers the ensemble mean as the predictor but does not

require the reordering of the ensemble members. This research

demonstrates the advantage of using post-processors over direct

use of raw ensembles in terms of accuracy and reliability. It also

highlights, among other factors, the effects of ensemble member

cross-correlation, which, unlike BMA and univariate MCP, is fully

acknowledged by MCP-THI and MCP-THD.

We inter-compare REM, MCP-THI, and MCP-THD

performances by executing a continuous forecast simulation

over the 842-day simulation period indicated in Paragraph 3.1

and generating 1,628 forecast instances. At each of the k = 32

3-hourly time steps of the 96 h forecast horizon, we compute

the Nash-Sutcliffe efficiency (NSE) and root mean square error

(RMSE) performance indicators. Both indicator values, which

are listed in Table 1 for increasing time horizons, clearly indicate

an improvement of performance when moving from REM to

MCP-THI and finally to MCP-THD. This is also made visible in

Figure 2, wherein the left pane shows the decline of NSE for the

three processing methods with increasing lead time, whereas the

progressive forecast error growth measured in terms of RMSE is

given to the right.

Figure 3 shows the evolution of the discharge forecast for four

different onset times to, which approach a selected flood event on
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TABLE 1 Performance indicators for REM and the predictive means of MCP-THI and MCP-THD, 96 h lead time, 1t = 3 h, shown every 6 h: Nash-Sutcli�e

e�ciency (NSE) and root mean square error (RMSE); the computation is carried out for the entire database including 1,628 forecasting instances.

REM MCP-THI MCP-THD

Lead time
(h)

NSE
(-)

RMSE
(m3/s)

NSE
(-)

RMSE
(m3/s) (-)

RMSE
(m3/s)

6 0.999 45.023 0.999 43.331 0.999 39.906

12 0.995 85.141 0.995 84.053 0.996 73.799

18 0.990 118.588 0.991 114.798 0.993 102.684

24 0.985 148.803 0.985 144.278 0.988 130.202

30 0.978 175.937 0.979 171.972 0.983 155.221

36 0.972 202.215 0.973 197.034 0.978 178.632

42 0.964 225.867 0.967 218.584 0.972 198.840

48 0.958 245.931 0.961 235.659 0.968 214.510

54 0.952 263.015 0.955 253.840 0.964 228.557

60 0.946 278.971 0.95 268.848 0.959 242.608

66 0.941 291.930 0.946 279.178 0.955 253.670

72 0.936 302.661 0.941 290.514 0.951 264.435

78 0.932 313.079 0.937 301.181 0.947 276.194

84 0.927 323.689 0.933 309.840 0.942 288.229

90 0.922 335.482 0.929 318.753 0.938 299.825

96 0.917 344.795 0.925 327.886 0.933 310.835

the 29/11/2012 in 3-hourly time steps. The shaded areas indicate the

90% confidence intervals tracked by the predictive distribution, and

the solid black line are observations. The predictive mean, i.e., the

expected value of the predictive distribution at different forecasting

times, is shown by a dashed red line, whereas the 4,000 m3/s flood

warning threshold is represented by the blue horizontal line.

The very essence of the MCP-THD processor is summarized

in Figure 4 for the selected flood event of Figure 3 and chosen

forecast onset time to = 29/11/2012 09:00. The upper pane

shows the forecast and respective 90% confidence intervals against

observations. The middle pane indicates the cumulative probability

density function (CDF) of threshold exceedance with changing

forecasting horizon j = 1, . . . , k as defined by Equation (22). The

lower pane shows the discrete increment ratios IR(to+ j1t) defined

in Equation (24) for the same temporal increments, which equals

the discrete PDF associated with the CDF. As one would expect,

the probability mass is concentrated around time horizon t = 45 h,

when threshold exceedance actually occurs.

Next, we examine the forecast skill of the time-horizon

dependent processor against the remaining two processing

methods by comparing performance indicators. These include the

Threat Score (TS), Probability of Detection (POD), and False Alarm

Rate (FAR). The definition of the three indicators is recalled in

Appendix A. For this purpose, an event is considered each time

a flow value exceeds a predefined warning threshold (e.g., 4,000

m3/s) within the forecast horizon (from 1 to 96 h following the

forecast onset time to), and performance indices are consequently

estimated. If we consider as flood event the one in which the peak

flow exceeds the threshold value, there have been nine recorded

events with peak values exceeding 4,000 m3/s during the analyzed

period. Just like anymodel, the forecast’s robustness depends on the

diversity, representativeness and completeness of the training and

calibration data. A greater number of events can enable the model

to better understand complex relationships in the data, enhancing

its ability to make more accurate and reliable predictions.

Table 2 compares the values of the performance indicators for

MCP-THI and MCP-THD at different probability of threshold

exceedence and three flood warning levels, respectively. In

addition, here we emphasize the higher forecast skill of the time-

horizon dependent approach, which is expressed in terms of

larger Probability of Detection (POD), and smaller false alarm

rates (FAR).

Figure 5 shows a forecast performance diagram. Performance

diagrams were introduced by (Roebber, 2009) and provide a more

concise presentation of the results. The diagram plots success ratio

(SR = 1 - FAR) on the abscissa and probability of detection (POD)

on the ordinate axis, along with isolines representing BIAS and

Threat Score (TS), which can be expressed as functions of these

measures. This type of representation facilitates a clearer visual

assessment of the forecast’s quality and potential biases.

4 Discussion

Biondi and Todini (2018) compared the uni- and multivariate

MCP of uncertainty, with conditional mean and variance specified

by Equation (16), against raw ensemble mean and model averaging
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FIGURE 2

River Po at gauging station PLS: Nash-Sutcli�e e�ciency (NSE) (left pane) and root mean square error (RMSE) (right pane) for (a) raw ensemble mean

forecast, (b) the predictive mean values of MCP-THI, and (c) MCP-THD.

with uniform and non-uniform Bayesian weighting for time-

horizon independent applications. Here, we extend the time

horizon-independent multivariate MCP to allow for time-horizon

dependency. While this concept was adopted earlier by Barbetta

et al. (2017), we revisit the main statistical concepts and provide

more discussion on underlying assumptions.

The relevance of time-horizon dependent forecasting lies in the

informative added value provided to a forecaster by considering

the temporal correlation of the flood peak propagation process

at a site. Instead of outputting just the probability of threshold

exceedance given a prediction, the user is enabled to evaluate how

such likelihood evolves chronologically as the event approaches.

Such insights provide additional support for planning mitigating

measures under operational conditions.

The most important assumption of the MCP lies in the

hypothesis of modeling the dependence structure among predictors

and the predictand over different time horizons as multivariate

Gaussian copula, which is obtainable from standard normal images

of the original marginal distributions of variates. Validating this

hypothesis by measuring the distance between a multivariate

Gaussian density model and the true multivariate distribution

remains difficult in practice (Herr and Krzysztofowicz, 2005),

mainly because of the dimensionality of the problem. However, the

multivariate dependency assumption is attractive due to analytical

tractability of conditional distributions. Its validity has been

assessed indirectly by inter-comparison of performance indicators

RMSE, MAE, and NSE for the time-horizon independent MCP

against those of raw ensemble mean predictions and Bayesian

model averaging (Biondi and Todini, 2018). Here, we show that

the introduction of time-horizon dependency further increases

processor performance as demonstrated through the indicators

in Table 1 and standard skill assessment criteria in Table 2

and Figure 5. In particular, the number of false and missed

alarms of MCP-THD is smaller than for MCP-THI, leading to
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FIGURE 3

River Po at gauging station PLS, 29/11/2012 flood, evolution of the forecast with onset times to = 27/11/2012 21:00, 28/11/2012 09:00, 28/11/2012

21:00, and 29/11/2012 09:00. The shaded area indicate the 90% confidence interval, the solid black curve observations, and the dashed red curve the

MCP-THD predictive mean. The 4,000 m3/s flood warning level is marked by the blue horizontal lines.

an overall higher threat score (TS) defined by Equation (A.2).

The good performance of MCP-THD is corroborated by the

concentration of POD vs. 1-FAR combinations for MC-THD

sited in the upper right corner of the performance diagram

in Figure 5.

In the same context, we also mention that the chosen test bed

system refers to a large Italian river, which is characterized by

a predominantly homoscedastic (constant variance) dependency

relationship among predictors and the predictand. Smaller systems,

however, tend to show a behavior in which the variance changes

across the variable range, and needs to be correspondingly modeled

through the chosen dependency structure (Coccia and Todini,

2011). An further elaboration on this topic for the MCP-THD,

however, lies outside the scope of the present research.

While probabilities of event occurrence do not depend on the

probability space in which the variables are represented, an inverse

transformation of the predictive Gaussian distribution φ(η|η̂) into

its image f (h|ĥ) in the space of origin is important in an operational

setting, because forecasters prefer to work with quantities and

scales they are acquainted with. Although not necessary to assess

the probability of occurrence of a threshold exceedance in the

forecasting horizon, which can be done in the Gaussian space,

where the multivariate joint distribution is known, a multivariate

probability density function in the space of origin would be
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FIGURE 4

River Po at gauging station PLS, 29/11/2012 flood, forecast onset to= 29/11/2012 9:00. (Top) Comparison between observed (solid black line) and

forecasted discharge (dashed red line) processed by MCP-THD. The shaded area indicates the 90% confidence interval; (Center) CDF of exceedance

for the warning threshold of 4,000 m3/s (dashed stepwise line) and step function (solid black line) representing the probability of occurrence of the

real event; (Bottom) incremental ratio IR(to + j1t) ∀j = 1, . . . , k of the exceedance probability, corresponding to the PDF associated with the CDF in

the center pane.

obtainable through Gibbs sampling (Geman and Geman, 1984).

Nevertheless, such density may not be required in practice; whereas

the multivariate analysis of exceedances can be performed in the

Gaussian space, the marginal conditional distribution shown in

Figure 4 yields operationally fully useable probabilistic forecasts of

flow or stage.

The property of self-calibration for the MCP is assured

in virtue of its definition through a joint density φ(η, η̂).

Marginalization of the joint density with respect to predictors leads

naturally to the density of historic streamflow observations, thus

assuring that an MCP always falls back onto the unconditional

long-term distributions of observation in the absence of

informative predictors.

5 Conclusions

The study describes and promotes the use of a statistical

processor designed to estimate the predictive uncertainty for an

ensemble of stream flow preditors over a series of consecutive

time steps across the forecasting horizon. We have demonstrated

that such an extension of the original MCP to a multi-model

and now time-horizon dependent version is straightforward

and allows one to deal with high dimensionality problems. In

the case study presented in this study, the dimension is 17

(1 series of observations plus 16 model ensemble members)

times 32 (96 h forecasting horizon using 3 h time steps). In

addition to the cross-correlations among multiple predictors, the
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TABLE 2 Contingency table showing the forecasting skill for three warning levels. The results refer to di�erent exceedance probability quantiles for

MCP-THI and MCP-THD.

P(h > h∗) Hits False alarms Missed alarms Threat score POD FAR

h∗ = 4,000
m3/s

THI THD THI THD THI THD THI THD THI THD THI THD

0.1 232 230 111 64 0 2 0.676 0.777 1.000 0.991 0.324 0.218

0.2 232 226 73 40 0 6 0.761 0.831 1.000 0.974 0.239 0.150

0.3 231 222 52 29 1 10 0.813 0.851 0.996 0.957 0.184 0.116

0.4 227 220 39 22 5 12 0.838 0.866 0.978 0.948 0.147 0.091

0.5 224 217 30 17 8 15 0.855 0.871 0.966 0.935 0.118 0.073

0.6 221 215 18 11 11 17 0.884 0.885 0.953 0.927 0.075 0.049

0.7 212 210 13 6 20 22 0.865 0.882 0.914 0.905 0.058 0.028

0.8 210 208 7 4 22 24 0.879 0.881 0.905 0.897 0.032 0.019

0.9 202 197 3 3 30 35 0.860 0.838 0.871 0.849 0.015 0.015

h∗ = 5,000
m3/s

Hits False alarms Misses Threat score POD FAR

0.1 91 90 70 35 5 6 0.548 0.687 0.948 0.938 0.435 0.280

0.2 90 89 56 12 6 7 0.592 0.824 0.938 0.927 0.384 0.119

0.3 89 87 32 6 7 9 0.695 0.853 0.927 0.906 0.264 0.065

0.4 89 85 13 4 7 11 0.817 0.850 0.927 0.885 0.127 0.045

0.5 86 82 5 2 10 14 0.851 0.837 0.896 0.854 0.055 0.024

0.6 80 78 3 0 16 18 0.808 0.813 0.833 0.813 0.036 0.000

0.7 77 71 1 0 19 25 0.794 0.740 0.802 0.740 0.013 0.000

0.8 69 65 0 0 27 31 0.719 0.677 0.719 0.677 0.000 0.000

0.9 59 60 0 0 37 36 0.615 0.625 0.615 0.625 0.000 0.000

h∗ = 6,000
m3/s

Hits False alarms Misses Threat score POD FAR

0.1 43 43 38 20 0 0 0.531 0.683 1.000 1.000 0.469 0.317

0.2 43 41 24 6 0 2 0.642 0.837 1.000 0.953 0.358 0.128

0.3 43 41 11 3 0 2 0.796 0.891 1.000 0.953 0.204 0.068

0.4 43 41 5 1 0 2 0.896 0.932 1.000 0.953 0.104 0.024

0.5 41 41 3 0 2 2 0.891 0.953 0.953 0.953 0.068 0.000

0.6 41 40 0 0 2 3 0.953 0.930 0.953 0.930 0.000 0.000

0.7 39 37 0 0 4 6 0.907 0.860 0.907 0.860 0.000 0.000

0.8 35 35 0 0 8 8 0.814 0.814 0.814 0.814 0.000 0.000

0.9 31 32 0 0 12 11 0.721 0.744 0.721 0.744 0.000 0.000

processor also exploits the temporal correlations across successive

forecasting time steps. Acknowledging such correlation has proven

to yield multiple advantages with respect to conventional time-

horizon independent processing. These can be summarized

as follows:

• Time-horizon dependent forecasting does not only provide

the probability of threshold exceedance for a predictand at a

set future point in time but also allows tracking the flood wave

across time in probabilistic terms.

• By additionally acknowledging the autocorrelation structure

of the flood process, which is especially strong in highly

predictable river system with slow flood motion, the

forecasting error, measured in terms of RMSE and NSE,

can be reduced considerably over the forecasting horizon in

comparison to time-independent processing.

• Similarly, standard skill measurement indicators, including

the False Alarm Rate (FAR) and the Probability of Detection

(POD), show improvements over time-horizon independent

processing for the selected river system.
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FIGURE 5

Performance inter-comparison diagram (Roebber, 2009) for MCP-THI and MCP-THD, di�erent probability quantiles, and three warning thresholds.

The two axes report the Probability of Detection (POD) against the success rate SR = 1-FAR. The curves connect the loci of equal Thread Scores (TS).

The bisection line indicates equal probability of detection and success rate. The response bias is indicated on the top abscissa and the right ordinate

axes.

• The advantages outlined above may diminish when smaller

river systems with fast flood propagation behavior are

considered. In this case, the dependency structure between

predictors and the predictand becomes heteroscedastic and

characterized by frequent outliers, two properties which lead

do increases of the prediction error.

• To adapt the THD processor to applications with

heteroscedastic behavior, the dependency needs to be

modeled over different sub-ranges of the joint distributions.

While this issue has been addressed preliminarly by Coccia

and Todini (2011) by means of truncation, further research

is needed.
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Appendix A: performance indicators

TABLE A1 Contingency table summarizing possible outcomes of a

forecast.

Observed True False

Predicted

True Correct alarm (CA) False alarm (FA)

False Missed alarm (MA) Correct non-alarm

(CN)

The deterministic performance indicators used in Section (3.3)

for assessing the skill of the probabilistic forecasts are defined

as follows.

Probability of Detection (Hit Rate): POD =
CA

CA+MA
(A.1)

where CA (see Table A1) is the total number of correct alarms

and MA are the missed alarms. The threat score is given by

the ratio:

Threat score (Critical Success Ratio): TS =
CA

CA+MA+ FA
(A.2)

where FA is the total number of false alarms. The False Alarm

Rate is:

False Alarm Rate: FAR =
FA

CA+ FA
(A.3)

while the False Positive Rate is:

False Positive Rate: FPR =
FA

FA+ CN
(A.4)

with CN the number of correct negative forecasts. Finally the

response bias is defined as:

Bias: BIAS =
FA+ CA

CA+MA
(A.5)

All indicators are evaluated over the sample of

forecasts instances.
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