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Introduction: Rapid urbanization in coastal areas worldwide, combined with

intense precipitation events and coastal flooding exacerbated by climate change,

poses an existential challenge for many coastal communities. Floodwater in

coastal urban areas contains non-point source pollutants, such as trace metals

and fecal coliforms, but the presence of fecal coliforms resistant to antibiotics

poses an additional threat to human health and has yet to be reported.

Methods: In this study, floodwater samples were collected from four locations

in Charleston, SC, a medium-sized coastal city in the southeastern United

States. All sites were impacted by flooding: two by tidal and rainfall flooding,

one by tidal flooding, and one by stormwater runo�. Since ampicillin is a

commonly-prescribed antibiotic for both humans and animals, this study aimed

to analyze the patterns of ampicillin-resistant coliform (AmpRC) concentrations

as correlated to flood-source and land-use patterns.

Results: Floodwater from all areas contained AmpRC and trace metals, with

varying contaminant concentrations based on the flood source. No correlations

were observed between coliform and trace metal concentrations. Analysis

of land-use patterns demonstrated a positive correlation between percent

coverage of impervious surfaces and coliform concentrations at all the sites.

Discussion: Overall, the results suggest that land-use patterns increase the

prevalence of antibiotic-resistant coliforms and increase the likelihood of

human exposure to these potential pathogens. Climate change is expected to

exacerbate the presence of antibiotic-resistant bacteria in floodwater generated

from rainfall and tidal flooding in coastal cities. Cities like Charleston, SC are

experiencing rapid urbanization and increased coastal flooding, making this

research particularly relevant.
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Introduction

A global increase in urbanization has led to a rise in population living in flood-

prone areas. In 2015, 11.3% of the population lived in such areas (Neumann et al.,

2015; Rentschler et al., 2023). Increased urbanization is of particular interest in the

United States because of the increased migration of people from rural areas to cities,

resulting in the redevelopment of more than 40 million hectares of land from 1978 to

2012 (Bounoua et al., 2018; USDA, 2019). This increase in urbanization accounts for

53% of the US population, particularly in coastal areas, with 40% of these individuals
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relocating to the coast (NationalWeather Service and NOAA, 2024;

Office for Coastal Management and NOAA, 2024). This increase in

urbanization can harm the environment and human health (Adams

et al., 2014; Kulp and Strauss, 2019; Tellman et al., 2021).

Increased urbanization increases impervious land surface,

leading to increased flooding (Khan, 2005; O’Driscoll et al.,

2010; Zhang et al., 2018). Flooding from either heavy rainfall or

high tides can occur, and in some instances, compound flooding

may occur when both co-occur (Hendry et al., 2019; Salarieh

et al., 2023). During heavy rainfall or high tide, gutters become

overwhelmed and block water from leaving the streets through

stormwater drains, which usually discharge water into nearby

waterbodies (Despotovic et al., 2005; Qin, 2020). Floodwaters

contain different nonpoint source pollutants, particularly coliforms

and trace metals of concern (Petrucci et al., 2014; Chithra

et al., 2015). These coliforms in natural waters can be resistant

to antibiotics, such as ampicillin, typically due to wastewater

discharge into streams (Niemi et al., 1983; Akiyama and Savin,

2010; Allen et al., 2010; Rizzo et al., 2013). These nonpoint

source pollutants have a deleterious impact and are entering the

waterbodies, negatively impacting marine and aquatic ecosystems

(McCoy et al., 2015). The transfer of pollutants from runoff

into coastal streams is exacerbated by increased flooding caused

by rising sea levels and coastal inundation (Blair et al., 2014b;

Spanger-Siegfried et al., 2014). In addition to rising sea levels,

increasing frequency of storm surges and off-shore storms can

create frequent higher-than-normal tides (Jongman et al., 2012;

Sweet and Park, 2014). According to the National Oceanic and

Atmospheric Administration (NOAA), by 2050, there will be an

average of 45–85 days of high-tide flooding events across the US

(Silverstein and NOAA, 2023). Runoff-related pollution is expected

to be exacerbated by the increased frequency of compound flooding

in coastal areas (Bevacqua et al., 2020; Ghanbari et al., 2021; Yang

et al., 2021).

Flooding is also caused by intense rainfall associated with

climate change, and rain across the United States has increased

by an average of 13% since 1970 (Climate Central, 2023). In the

southeastern United States, there is an annual precipitation of

1,260–1,530mm, consisting mostly of liquid precipitation, with

higher intensity in warmer seasons (Qian et al., 2021). Short-

duration high-intensity rainfall has become more frequent in the

United States and globally since 1950 (Degaetano, 2009; Skeeter

et al., 2019) and the resulting coastal flooding is exacerbated by sea

level rise (Ekmekcioglu et al., 2022). Compound flooding occurs

when tidal and rainfall flooding co-occur, exacerbating flooding

and causing impassable streets (Coz et al., 2021). There are typically

two routes for transferring nonpoint source pollution from the

urban environment to the waterways: stormwater discharge and

tidal flooding.

Coliforms and other bacteria are commonly found in the

natural environment and floodwaters. Escherichia coli is widely

used as an indicator organism for identifying the presence

of possible fecal contamination in water (Edberg et al., 2000;

Odonkor and Ampofo, 2013). Antibiotics, such as ampicillin,

as prescribed to humans, livestock, and pets to treat bacterial

infections, are used for inhibiting the growth of bacteria and

can either quickly degrade or persist for long periods in the

environment (Bhattacharjee, 2016; Scott et al., 2016). Antibiotic

resistance, or the decrease in the effectiveness of a specific

antibiotic against bacteria, has become an urgent issue in public

health and environmental biology (Manaia et al., 2012; Murray

et al., 2022; Velazquez-Meza et al., 2022). Approximately 15

million deaths were attributed to antimicrobial resistance in

2019 (Murray et al., 2022), making antimicrobial resistance

a leading cause of death globally. Furthermore, antibiotic-

resistant infections can lead to limited pharmaceutical treatment,

extended hospital stays, and increased financial burdens (Cosgrove,

2006).

Trace metals are also found in floodwater environments in

trace amounts and can be toxic to aquatic organisms depending

on the concentration and uptake rates (Bezerra et al., 2019).

At high concentrations, these metals are toxic to environmental

bacteria, but at lower doses, the bacteria can adapt and become

resistant to those metals during chronic exposure (Biswas et al.,

2021). Along with developing resistance to metals, the bacteria

can become antibiotic-resistant simultaneously due to continuous

stress tolerance by efflux pumping through the bacterial cell

membrane (Wright et al., 2006; Biswas et al., 2021).

During urban flooding events, people often wade through

the waters, unaware of the potential risk of bacterial infection

(Ashley and Ashley, 2008). Exposure to coliforms by ingestion

of contaminated water can cause many types of infections and

diseases (Rock and Rivera, 2014; Perkins and Trimmier, 2017;

Holcomb and Stewart, 2020). In 2019, there were at least 2.8 million

microbial-resistant infections in the United States, with more than

35,000 mortalities, and these numbers will continue to increase

if preventative measures are not utilized (CDC, 2019). When

chronically exposed to antibiotics, coliforms can become antibiotic-

resistant (Harwood et al., 2000). Antibiotic-resistant coliforms

(ARC) will continually evolve and develop resistance to multiple

antibiotics (Hamad et al., 2019), making this a long-term health

issue (Domingues et al., 2021).

The purpose of this study was to evaluate urban floodwater

quality in a rapidly growing coastal city in the southeastern

US. Specifically, our objective was to quantify the prevalence

of ampicillin-resistant coliforms (AmpRC) and to identify any

relationships with other water quality parameters. We had three

hypotheses: (i) the coliforms present in the floodwaters are resistant

to ampicillin, (ii) there is a positive correlation between AmpRC

and trace metal concentrations in the floodwater samples, and

(iii) the growth of AmpRC is affected by water quality parameters

such as pH and water temperature. To evaluate these hypotheses,

floodwater samples were collected at sites that experience localized

flooding due to heavy rainfall, tides, or compound flooding.

Factors such as automobile and pedestrian traffic patterns were

also considered for our choice of sampling sites. For this study,

the term “floodwaters” encompasses tidal, rainfall, or compound

flooding events.

Materials and methods

Study area

Charleston is located on the South Carolina coast and

sits on a peninsula with the adjacent Ashley River to the
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west and Cooper River to the east (Figure 1). Charleston

Harbor is south of the peninsula and acts as an estuarine

buffer between the rivers and the Atlantic Ocean (Purcell

et al., 2020). The Charleston peninsula had undergone extensive

urban development, which involved filling or draining marshes

and other natural areas (Butler, 2020), increasing the volume

of stormwater runoff draining into the coastal waterways

(Blair et al., 2014a).

Floodwater was sampled within the Charleston peninsula at

four sites: (i) Hagood Ave. at Fishburne St. (HF) (32◦47′30.0′′N

79◦57′22.9′′ W), (ii) Coming St. at Calhoun St. (CC) (32◦47′6.0′′N

79◦56′22.6′′ W), (iii) East Bay St. at HWY 17 (EB17) (32◦48′01.9′′N

79◦56′10.9′′ W), and (iv) Magnolia Cemetery (MC) (32◦49′3.3′′N,

79◦56′37.0′′ W). The MC site is a tidal creek next to a historic

cemetery and was designated as the control site as this site did

not receive stormwater runoff and was only impacted by tidal

flow from the Cooper River (Figure 1). These sites were chosen

based on the updated flood hazard data from the US Federal

Emergency Management Agency (FEMA) Flood Hazard and Risk

Data Viewer (FEMA, 2020). The viewer provided a flood zone

map of where potential areas in Charleston would be inundated

by a flood event (FEMA, 2020). The MC, HF, and EB-17 sites

experience sunny-day tidal flooding where the flood tide height is

at least 2.1m MLLW (Coz et al., 2021). Our observations during

sampling confirmed commonly flooded sites during stormwater

and tidal flooding.

Floodwater sampling methodology

Floodwater sampling was conducted from December 2021 to

December 2022 as outlined: (i) the MC site from March 2022 to

September 2022, (ii) the HF site from December 2021 to July 2022,

(iii) the EB17 site during June 2022, July 2022, and December 2022,

and (iv) the CC site from June 2022 and December 2022. At all

sites, floodwater samples were collected near stormwater drains or

culverts. The CC site was only sampled during rainfall events due

to the site being farther inland and not impacted by tidal flooding.

The HF and EB17 sites were sampled during both rainfall and high

tide flooding events due to the proximity of the Ashley River and

Cooper River, respectively.

When at least 1 cm depth of water was flowing into the drain,

a floodwater sample was collected with either water flowing into

the mouth of a sampling container or completely submerging the

container while tightening the cap. Water samples for trace metal

and coliform analyses were collected using 50mL sterile centrifuge

tubes and stored in a cooler for transport. Bright vests were worn

during sample collection for visibility and personal protection and

sample contamination was minimized. Measures were taken to

prevent bed sediment collection and minimize turbid conditions

by gently sampling water from the stormwater drain. This method

is based on the United States Environmental Protection Agency

(USEPA) standard method for industrial stormwater sampling

(USEPA, 2021).

Tidal height and precipitation data were obtained from the

NOAA online portals (Center for Operational Oceanographic

Products and Services and NOAA, 2023; National Weather Service

and NOAA, 2024). Tide data from the tide gauge station closest

to the sampling site was used to record the most representative

tide height.

Watershed delineations and impervious
surface coverage

Watershed delineations were created to identify the boundaries

surrounding the floodwater sites where stormwater runoff would

flow toward lower elevations. ArcGIS Pro (version 3.1, ESRI,

Redlands, CA) and the built-in Hydrology Tools were used to

perform watershed delineations. A 1-m resolution digital elevation

model (DEM) created using the available Light Detection and

Ranging (LiDAR) data was used to determine the elevation

contours of the peninsula. The errors in the DEM were corrected

by using the Fill tool in the Hydrology Toolset to allow for

a better representation of the flow direction (Arifjanov et al.,

2022). Streamlines were generated after the filling of the sinks

to determine where the stormwater runoff would flow and if

the water would flow toward the floodwater sites by using the

Flow Direction tool. Finally, a watershed boundary for all the

streamlines was created for each sampling site by converting

the raster to a polygon (Villines et al., 2015; Goji Tumba and

Amusuk, 2017). The polygons at each site were all spatially joined

to make all the watersheds into one layer. The impervious surface

layer was obtained from the United States Geological Survey

(USGS) National Land Cover Database (NLCD) (USGS, 2021)

which provides impervious surface percentages for the Charleston

peninsula in 2019. This layer was joined with the watershed

boundaries layer.

Bulk water quality measurements

The Manta+20 EurekaTM Water Probe (EurekaTM Water

Probes, Austin, TX) was used to collect water quality parameters,

including water temperature (◦C), pH, conductivity (µS/cm),

and dissolved oxygen (mg/L). After all the readings for each

parameter remained stable, measurements were recorded, and the

probe was rinsed with deionized water (18 M�.cm) before and

after measurements to prevent cross-contamination. Conductivity

measurements obtained from the Water Quality Data Portal for

Ashley River and Cooper River were averaged from 1981 to 2021

(National Water Quality Monitoring Council, 2023). The mean

conductivity values for the Ashley River and Cooper River are

31,745 µS/cm and 30,867 µS/cm, respectively. The conductivities

from the sampling sites that had tidal influences were compared

to the corresponding river conductivity value to identify if the

floodwater was brackish.

Bacterial enumeration

Bacterial analysis began within 4 h of collection to enumerate

coliforms and ampicillin-resistant coliforms. All bacteria culture

plates were filled with 1mL sample volume. This was either
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FIGURE 1

The floodwater sampling sites on the Charleston Peninsula are shown. The HF site is at the intersection of Hagood Ave. and Fishburne St.; the CC site

is at the intersection of Calhoun St. and Coming St.; the EB 17 site is near the junction of East Bay St. and HWY 17; and the MC site is in Magnolia

Cemetery.
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achieved with sterile water, ampicillin solution, or a mix of

site water with sterile water or ampicillin solution depending

on the site. For the MC site, the Compact Dry EC plates

(Hardy Diagnostics, Santa Maria, CA) were rehydrated with either

ampicillin (32 mg/L) or sterile water for the membrane filtration

using a sterile 0.45µm filter of floodwaters since this site had lower

bacterial concentrations (APHA et al., 2018). The Compact Dry

EC plates contain chromogenic enzyme substrates, so E. coli will

form blue colonies whereas other coliforms will turn pink-purple

(Kodaka et al., 2006). For the other three sampling sites (HF, EB17,

and CC), floodwater samples were diluted with either sterilized

water or a solution of ampicillin directly applied to the plate. Plates

were incubated at 35◦C ± 2◦C, and after 18–24 h, the colony-

forming units (CFUs) were enumerated. One CFU equals one

bacterium, therefore, a high number of bacteria in the floodwaters

would result in high CFUs. E. coli and coliforms were enumerated

to yield total coliform (TC) count and reported in CFU/100mL.

If the CFUs counted on the plates prepared with a sample were

>150 CFUs, that sample was coded as Too Numerous To Count or

TNTC (SC DHEC, 2019). If a 150-CFU threshold was reached for a

sample, a value of 150 CFU/100mL was reported as a conservative

estimate of TC coliform concentration.

Trace metals analysis

Total concentrations of dissolved trace metals (Al, Sb, As, Ba,

Be, Cd, Cr, Co, Cu, Pb, Mn, Mo, Ni, Se, Ag, Tl, Th, U, V, and

Zn) in the water samples were determined using an inductively

coupled plasma mass spectrometer (ICP-MS) (iCAP RQ ICP-MS,

Thermo Fisher Scientific, Waltham, MA) based on the revised

USEPA Method 200.2 Revision 2.8 (Martin et al., 1994). The

water samples were filtered using 0.45µm polyethersulfone (PES)

syringe filters and acidified to 2% v/v using nitric acid. A multi-

element standard mix (High Purity Standards, North Charleston,

SC) was diluted to calibrate the inductively coupled plasma mass

spectrometer (ICP-MS) consisting of serial dilutions from 10−4 to

10 mg/L. Check standards and blanks were incorporated for each

set of water samples.

Statistical analyses

The raw data were organized, and outliers were removed

for the average colony concentrations for E. coli, coliforms,

and TC by using the interquartile range and calculating the

inner and outer fences to identify the boundaries of the data

(Schwertman and de Silva, 2007). After removing the outliers (63%

of total samples removed), principal component analysis (PCA)

was performed on the data using R software. The normalized

data from all the experimental variables were transformed into

principal components (PCs), which are linear projections that are

arranged by the size of the eigenvalue. This analysis reduced the

dimensionality and identified any relationships between multiple

variables (Demšar et al., 2013). Additional R packages, including

factoextra, were used to generate biplots (Kassambara and Mundt,

2020), ggplot2 was used to make plots aesthetically appealing

(Wickham, 2016), and psych was used to calculate the cumulative

variance (Revelle, 2023).

Results

Watershed delineation of sampling sites

The four sampling sites were located on different parts of an

urban peninsula, which had varying percentages of impervious

surfaces. The MC site had the least impervious coverage on the

peninsula, ranging between 1% and 19%. The CC site had the

highest impervious coverage, ranging from 80% to 100%. The HF

and EB17 sites had similar impervious coverages, between 50%

and 79%.

The HF site had the smallest watershed boundary, which was

only 3.23 hectares. The EB17 site, on the other hand, had the

largest watershed boundary of 55.04 hectares. Both these sites were

affected by compound flooding. TheMC site had the second-largest

watershed boundary of 19.02 hectares and was mainly affected by

tidal flooding. Finally, the CC site watershed boundary was 10.52

hectares and experienced only rainfall flooding (Figure 2).

Contaminants in floodwater

Chemical characterization was performed independently for

each site due to their unique geography and flooding influences.

The medians, first and third quartiles, were used because these

water quality data are not normally distributed. The conductivity

data indicated that the MC site had brackish water in the

floodwater with a median conductivity of 27,130 µS/cm. The

median tide height at this site was 1.32m MLLW, and no

rainfall was recorded at this site during the sampling events.

The median TC and AmpRC colony concentrations were 4,259

CFU/100mL and 764 CFU/100mL, respectively, or AmpRC counts

were 17.93% of TC counts for this site. Of trace metals, only

As was detected at this site with a median value of 4 µg/L

(Table 1).

The CC site was only influenced by stormwater runoff, and

the stormwater had a median conductivity of 100 µS/cm and a

median rainfall of 1.82 cm during the sampling events at this site.

The median TC and AmpRC colony concentrations were 33,850

CFU/100mL and 259 CFU/100mL, respectively, or the AmpRC

counts were 0.76% of TC counts at this site. Both As and Cr were

detected in the floodwater at this site with median concentrations

of 3 µg/L and 5 µg/L, respectively (Table 1).

The median conductivity of 6,340 µS/cm confirmed that HF

site was impacted by compound flooding (typical conductivity

maximum values for freshwater and saltwater are 700 µS/cm

and 25,000 µS/cm, respectively). The median rainfall amount and

tide height at this site during sampling events were 1.75 cm and

1.32m MLLW, respectively. The median TC and AmpRC colony

concentrations were 12,300 CFU/100mL and 6,334 CFU/100mL,

respectively or the AmpRC counts were 51.49% of TC counts at this

site. Only As was detected at this site with a median concentration

of 3 µg/L (Table 1).
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FIGURE 2

Watershed delineation was conducted using the USGS National Land Cover Database (NLCD) layer. The impervious surface coverage is shown as a

percentage of total land coverage. The stormwater runo� watershed boundaries for each sampling site are overlain on top of the impervious surface

layer.
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The EB17 site was also impacted by compound flooding like

the HF site, and the floodwater had a median conductivity of 976

µS/cm, which is above the threshold of freshwater conductivity

of 700 µS/cm. The median rainfall amount and tide height at

this site during sampling events were 0.97 cm and 1.32m MLLW,

respectively. The median TC and AmpRC colony concentrations

were 49,500 CFU/100mL and 9,334 CFU/100mL, respectively

or the AmpRC counts were 18.86% of TC counts at this

site. Trace metals, As and Cr, were detected in the floodwater

with median concentrations of 4 µg/L and 8 µg/L, respectively

(Table 1).

Statistical analysis

Principal component analysis (PCA) was used to correlate the

physical, chemical, and microbial contaminant data from all the

sites. Eight principal components (PCs) comprising eight variables

(contaminant data), including TC, AmpRC, tide height, rainfall,

conductivity, As, Cr, and Zn, were calculated. The proportion of

variances for each PC were 33%, 21%, 14%, 11%, 9%, 7%, 3%, and

2%, respectively. The first two PCs (PC1 and PC2) were used for

the biplots as they accounted for the two highest variances (33.1%

and 20.6%, respectively). Rainfall, TC, and AmpRC were strongly

and positively correlated with each other. The tide height and

conductivity are strongly correlated to each other and negatively

correlated with rainfall and TC, and less strongly correlated with

AmpRC counts. The trace metals all were strongly correlated with

each other and less correlated with TC and AmpRC concentrations

(Figure 3).

FIGURE 3

The principal component analysis biplot. The biplot has individual

observations (dots) and variables (arrows) for PC1 and PC2. The

variables include AmpRC, TC, tide height, rainfall amount,

conductivity, and three trace metals (As, Cr, and Zn).
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Discussion

This study showed that AmpRC was present in floodwaters

from rainfall and tidal events in Charleston under all rainfall

or tidal conditions and in all locations. The impervious

surfaces and compound flooding impacted both the TC and

AmpRC concentrations. Trace metals were also present in the

floodwaters, but no co-resistance with AmpRC was established

from data analysis.

Impact of precipitation and high tide events

The coliforms (TC) and AmpRC observed in the floodwaters

in this study can originate from many sources, as observed in

similar coastal areas (Selvakumar and Borst, 2006). The detection

of AmpRC in the nearby tidal creeks, Shem Creek and Kushiwah

Creek (DeLorenzo et al., 2012; Emery et al., 2022), also confirms

that one of the main sources of AmpRC in coastal waterways

is the floodwater generated within the urban watersheds. Other

cities in the United States have found coliforms and antibiotic-

resistant bacteria (ARB) in different urban waterbodies from

stormwater discharge (Singh et al., 2019) and antibiotic-resistant

microbes, an emerging public health threat (Scott et al., 2016).

These bacteria are discharged directly into the waterbodies via

stormwater drains, negatively affecting the marine ecosystem and

human health (Parker et al., 2010). In addition, there is the

potential for antibiotic-resistant genes, such as ampicillin-resistant

genes, to be shared among different microbes (Uyaguari et al.,

2011, 2013; Horton, 2022) such as Vibrio spp. which are highly

prevalent and known human health threats to seafood safety and

contact recreation. The mechanism for resistance to ampicillin

is typically due to β-lactamase activity. Genes for this enzyme

are typically encoded on mobile genetic elements allowing for

ease of horizontal gene transfer to other environmental bacteria,

which can impact human health (Uyaguari et al., 2011, 2013).

Increased surveillance of AmpRC as well as these genetic elements

would allow for targeted interventions to prevent environmentally

acquired antibiotic resistance infection (Djordjevic et al., 2023).

Recent studies of urban floodwaters in the aftermath of tropical

cyclones have shown an increased presence of contaminants,

including coliforms and antibiotic genes, which exacerbates

potential AmpRC presence in floodwaters (Presley et al., 2005; Yang

et al., 2021). The possible sources for the transfer of coliforms

during storms and sunny-day flooding include potential septage

leaks from aging sewer lines, dog waste, and wildlife (Whitlock

et al., 2002; DeLorenzo et al., 2012; Almakki et al., 2019; Powers

et al., 2020). The AmpRC analytical method used in this study

may be used to identify pollution sources from pets, as ampicillin

is often prescribed for skin disorders in dogs and cats. Elevated

levels of ampicillin-resistant E. coli were found at sites with high

concentrations of pets, such as urban dog parks (Kelsey et al., 2003).

In this study, the HF site had nearly 51.5% of the TC in the form of

AmpRC bacteria (or, AmpRC/TC ratio was 51.5%) and is near a city

park frequented by pets. The AmpRC/TC ratio was much lower at

the other sites in this study, ranging from 7.6%−18.9%.

The rise in coastal sea level is exacerbating the flooding for

many communities along the coasts across the world, including

the United States. The global average sea level in 2022 was

101.2mm higher than the 1993 level, with high tide flooding

across the United States being over 300–900% more frequent than

it was 50 years ago (Lindsey, 2022). The increased impervious

surfaces in coastal cities, coastal erosion, groundwater pumping,

and subsidence exacerbate flooding and, thus, increase pollution

of floodwater and coastal waterways (Chithra et al., 2015; Lindsey,

2022; Ohenhen et al., 2023). Climate change has been increasing

the number of storms, including short-duration storms and major

storms like hurricanes (Lau et al., 2022), which can also coincide

with high tides as more intense compound flooding (Bevacqua

et al., 2020).

The conductivity was used as an indicator to identify if

the floodwaters originated from freshwater sources (rainfall) or

brackish (tidal) sources. For freshwater, the conductivity that

was <700 µS/cm was typically associated with rainfall. Brackish

water typically has a range between 700–25,000 µS/cm, which

would come from tidal flooding and not directly from the ocean

(saltwater) (Rusydi, 2018).

Impact of impervious surfaces

The USGS’s land coverage (NLCD raster) data from 2019 was

used to represent the changing landscape of Charleston (USGS,

2021). Combining these land cover data with high-resolution

(1-m) ground elevation (LiDAR), data allowed us to closely

examine the impact of impervious surfaces on the contamination

of floodwater. The percentage of impervious surfaces showed

urbanization surrounding the study sites correlated inversely with

the coliform data. On average, theMC site had fewer coliforms than

the other three study sites which had more impervious surfaces.

This high-resolution LiDARwatershed delineation identified where

stormwater can accumulate and flow toward each of our sampling

sites but did not directly address tidal flooding. Tidal conditions

impacted how quickly the storm drains were emptied or if they

backed up—these aspects were not addressed in our watershed

delineation analysis and would need to be addressed in the future.

The region continues to experience population growth,

according to the 2020 Decennial Census (US Census Bureau,

2023). This urbanization within the greater Charleston region is

expected to increase between 2% and 30% by 2030, with urban

sprawl continuing to impact the region (Dickes et al., 2016). Rising

sea levels in the coastal areas, increasingly intense precipitation,

and the associated rise of the water table increase concerns about

the loss of floodwater’s ability to seep into the ground (Sweet

and Park, 2014; Neumann et al., 2015; Kulp and Strauss, 2019).

Loss of permeable ground surfaces increases local flooding and

the transport of floodwater-associated contaminants into coastal

waterbodies. The HF and MC sites have higher vegetation buffers

and less impervious surfaces than the other two sites, which

allowed increased seeping of floodwater into the ground instead of

localized flooding to some extent. A more systematic study would

be required to confirm this observation. The HF and MC sites also

had lower TC and AmpRC colony concentrations than the CC

and EB17 sites. Studies reported increased fecal coliform and trace

metal concentrations in stormwater after an increase in impervious

surfaces in urban areas (Bhandari et al., 2017; Zhang et al., 2021).
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These studies confirm a positive correlation between the increased

presence of E. coli in stormwater and increasing urbanization.

Trace metals in floodwater

Trace metals are commonly associated with urban runoff under

a variety of conditions—during normal or extreme precipitation

events (Joshi and Balasubramanian, 2010; Barber et al., 2017;

Bhandari et al., 2017; Kirker and Vulava, 2022). There are no

guidelines or regulations that inform safe levels of trace metals in

urban floodwater. Still, there are the USEPA’s published guidelines,

such as the “National Recommended Water Quality Criteria-

Aquatic Life Criteria Table” for acceptable concentrations of

water contaminants (USEPA, 2023). Typically, floodwater and

urban runoff can be more concentrated compared to the final

receiving waterbodies, where contaminants are diluted (Joshi and

Balasubramanian, 2010). Three trace metals (As, Cr, and Zn)

were detected in the floodwater during this study and none

of these trace metals approached levels that would be deemed

concerning from aquatic life criteria (USEPA, 2023). We note that

all floodwater samples in our study were filtered and analyzed—

however, there was a significant suspended sediment load in most

floodwater samples. Analysis of composited water samples would

most likely have shown a significantly higher concentration of trace

metals in the runoff (Jeong et al., 2020). Charleston region has

abundant marine-derived phosphate rock deposits (Malde, 1959)

and a history of phosphate mining, resulting in elevated arsenic in

regional waterbodies of this area and the floodwater in our study.

Arsenic pollution in urban watersheds and the estuaries of the

southeastern US and many parts of the world is primarily from

the leaching of As from phosphate rocks and industrial activities

(Chirenje et al., 2003; Cotti-Rausch et al., 2018). Similarly, Cr and

Zn in urban floodwaters can be associated with a combination of

rock weathering, industrial activities, automobile wear and tear, etc.

(Joshi and Balasubramanian, 2010; Cotti-Rausch et al., 2018).

Contaminant interrelationships

Identifying relationships between different water quality data

has given insight into the interaction between the variables.

Trace metals as stressors on ARB or the possibility of co-

resistance between the two have been frequently studied (Hamilton

et al., 2020; Biswas et al., 2021; Horton, 2022), however, further

studies are needed in the Charleston region. The relationships

between rainfall amounts and tide height with coliforms (TC and

AmpRC) are well-known, especially in the urban environment (Liu

and Huang, 2012; Kirker and Vulava, 2022). High trace metal

concentrations may be toxic to Vibrio and Enterococcus, while

low chronic doses stimulate growth and possibly induce antibiotic

resistance (Horton, 2022).

The bacteria concentrations at all study sites affirmed the

presence of AmpRC in the urban floodwaters of Charleston.

Additional studies would be required to identify these bacteria

source(s). Coliforms resistant to other common antibiotics may

be present in these floodwaters—an analytical method designed

to identify the resistance to multiple antibiotics would provide

more insights. Multidrug-resistant coliforms have been isolated

from a surrounding waterway (Emery et al., 2022). Future

assessments of urban floodwaters should assess the prevalence

of coliforms resistant to multiple commonly human and animal-

prescribed antibiotics.

The trace metals measured in this study did not positively

correlate with TC or AmpRC concentrations, but other trace metals

that are likely to be associated with suspended sediment may

correlate with both types of bacteria. An extended sampling period

and additional sampling sites would allow more comprehensive

data. Comparisons between trace metal concentrations in tidal

creeks and stormwater ponds within the tidal creek watersheds in

coastal South Carolina confirmed the presence of Cd, Cu, Cr, and

Zn (Sanger et al., 1999; Allen et al., 2019; Horton, 2022).

The PCA method allowed for the simplification of complex

variables while still retaining trends (Lever et al., 2017), but using

other statistical methods would provide more insight into the

relationships with other variables from this study.

While flooding on the Charleston peninsula continues in a

changing climate, the utilization of best management practices

(BMPs) for the stormwater infrastructure would mitigate

contamination of water bodies. For example, bioretention

landscapes or rain gardens that include vegetation, filtration

media, and drains can retain and filter stormwater (Li et al.,

2019). Many people in Charleston are frequently exposed to these

contaminated floodwaters. Installing BMPs may alleviate the

exposure to contamination and help lower the microbial load in

the floodwaters (Ahmed et al., 2019).

To decrease human exposure to these antibiotic-resistant

potential pathogens, members of communities with high levels of

flooding should be informed. Active public educational outreach

about contaminants present in the floodwaters will contribute

significantly to positive health outcomes (Meinhardt, 2006;

MacDonald and Tippett, 2020). For example, the development of

a short one-page fact sheet warning the public of the bacterial and

other pollution hazards posed by floodwater would alert the public

of exposure. The USEPA uses such infographics to warn the public

about pollutants, such as Pb found in drinking water (USEPA,

2017).

Conclusion

TC and AmpRC were present in the floodwaters of peninsular

Charleston during tidal, rainfall, and compound flooding events.

Impervious surfaces exacerbated flooding on the Charleston

peninsula and increased TC and AmpRC concentrations, which

were positively correlated with each other and with rainfall.

However, no correlation was observed with trace metals in

the floodwaters, and there was a negative correlation with the

conductivity of the floodwaters. The population of Charleston

is continuing to grow with more infrastructure and impervious

surfaces, likely leading to more pollution. High concentrations of

bacteria (TC and AmpRC), trace metals, and other contaminants

(e.g., organic compounds) in floodwaters pose a public health risk

for the many residents and visitors to the city. Flooding is an

increasingly common occurrence in coastal areas due to climate
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change, and many people are unaware of the potential health risks

associated with exposure to floodwater. BMPs should be utilized

to improve the stormwater infrastructure to alleviate flooding, and

the public should be made aware of the health risks associated with

exposure to these floodwaters.
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