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Due to the impact of climate change on agriculture and the emergence of

water security issues, proper irrigation management has become increasingly

important to overcome the challenges. The Internet of Things (IoT) technology

is being utilized in agriculture for collecting field information and sharing it

through websites in real time. This study discusses the e�orts taken to develop

an IoT-based sensor station, a user-friendly website, and a smartphone app for

irrigation management. In addition, the demonstration of the IoT-based sensor

station and its e�ectiveness are discussed. Before deploying the sensor station,

soil moisture sensor calibration was conducted using a laboratory experiment.

Overall, the calibrated soil moisture sensors met the statistical criteria for both

sand [root mean squared error (RMSE) = 0.01 cm3/cm3, index of agreement

(IA) = 0.97, and mean bias error (MBE) = 0.01] and loamy sand (RMSE = 0.023

cm3/cm3, IA= 0.98, and MBE=−0.02). This article focuses on case studies from

corn, blueberry, and tomato fields in Michigan, USA. In the corn and blueberry

fields, the evaluation of irrigation practices of farmer’s using an IoT-based

sensor technology was considered. In the tomato field, a demonstration of

automation irrigation was conducted. Overirrigation was observed using the

IoT-based sensor station in some fields that have sandy soil and use a drip

irrigation system. In the blueberry demonstration field, the total yield per plant

(p = 0.025) and 50-berry weights (p = 0.013) were found to be higher with the

recommended irrigation management than the farmer’s existing field. In the

tomato demonstration field, there were no statistical di�erences in the number

of marketable tomatoes (p = 0.382) and their weights (p = 0.756) between the

farmer’s existing method and the recommended irrigation strategy. However,

30% less water was applied to the recommended irrigation strategy plot. Thus,

the result showed that the IoT-based sensor irrigation strategy can save up to

30% on irrigation while maintaining the same yields and quality of the product.
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1 Introduction

Irrigation is a crucial practice followed in agriculture for centuries and

plays a significant role in developing economies worldwide. Irrigation is the

process of supplying water to the crops using an artificial means to provide

moisture, which helps in the growth and produces higher yields in crops. It is

particularly important in regions with low precipitation and limited water resources.
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Irrigation also significantly impacts local rural economies by

affecting the production of crops, creating jobs, increasing

carbon sequestration, and boosting economic growth. Climate

change poses a threat to agriculture. Erratic and unpredictable

precipitation patterns, rising global average temperatures, and

water scarcity can compromise food security (Rosa, 2022). Crop

health is affected by rainfall trends, such as wetter springs, and

drier summers with temperature anomalies, such as cold or heat

waves (Alam et al., 2021). These flooding and drought events,

without precision irrigation, can decrease the yield and quality of

the product. In addition to these precipitation changes, average

global temperatures are expected to increase by around 2◦C each

year until the year 2100. Higher temperatures lead to alterations in

evapotranspiration (ET) and weed growth, affect pollination, and

decrease photosynthesis rate, source-sink relationship, and crop

duration, all of which can affect plant health and productivity

(Malhi et al., 2021). Precision irrigationmanagement practices have

the potential to increase water use efficiency while minimizing the

effects of climate change on farms.

Irrigation scheduling is a well-established strategy to manage

crop water needs throughout the growing season. This method

involves monitoring the water requirements of crops and

determining whether the existing soil moisture and any additional

water from precipitation and irrigation can fulfill them. Irrigation

scheduling also considers economic and environmental variables.

Every day, farmers face the challenge of making decisions that

balance the cost of applying water (labor and energy) against

the goal of achieving a high yield, enhanced crop quality, and

the efficient use of water resources. Several types of irrigation

scheduling have been demonstrated in the past, including ET-,

soil moisture-, and artificial intelligence (AI)-based irrigation

scheduling (Aguilar et al., 2015; Goap et al., 2018; Yang et al., 2020;

Alibabaei et al., 2021; Dong, 2023; Kelley et al., 2023). ET-based

irrigation scheduling is a method of irrigating a crop using daily

reference ET, particular crop coefficient (Kc) value, and the amount

of precipitation. Kc is determined by crop types and crop growth

stage. This method has been shown to save water by up to 61%

compared to the conventional irrigation application method (Simić

et al., 2023). Soil moisture sensor-based irrigation scheduling

utilizes soil moisture sensors to estimate soil moisture content in

the root zone to ensure optimal moisture levels for crops and

avoid overirrigation. Typically, soil moisture sensors are installed

at multiple depths in the root zone to understand the soil moisture

levels at different depths comprehensively. The changes in soil

moisture at different depths help to estimate the root growth. Many

types of soil moisture sensors are available, including tensiometers,

capacitance sensors, time domain reflectometry (TDR) sensors,

and frequency domain reflectometry (FDR) sensors. A tensiometer

is a soil water tension measuring tool comprised of a porous

ceramic cup with a water-filled tube working on the capillary action

principle, which measures the soil matric potential expressing soil

water energy. Capacitance sensors measure soil dielectric constants

that differ for different moisture regimes, which provide real-time

data for precise irrigation management (Smajstrla and Harrison,

2023). TDR is an approach that works on the principles of sending

an electromagnetic pulse to the soil, and the travel time of the

pulse is directly related to the soil moisture content, and it provides

continuous soil moisture data across different depths, which helps

in understanding efficient irrigation management (He et al., 2021).

In addition to these sensors, FDR is another technique based on

electromagnetic wave reflections that send high-frequency waves

to the soil for measuring dielectric properties, which determines

the soil moisture for precision irrigation management (Choi

et al., 2016). Previously, this soil moisture sensor-based irrigation

scheduling helped to save water by up to 60% compared to

conventional irrigation methods (Muñoz-Carpena et al., 2005;

Grabow et al., 2013; Millán et al., 2019). A study conducted

by Boltana et al. (2023) showed that the soil moisture sensor-

based method saved 18% of irrigation water compared to the ET-

based method in tomato fields (Boltana et al., 2023). Moreover,

the sensor-based irrigation method increased water use efficiency

in soybean and potato fields by 49% and 16%, respectively

(Wood et al., 2020; Dong et al., 2023). The AI-based irrigation

scheduling analyzes multiple input data, such as soil moisture,

soil temperature, air temperature, relative humidity, plant canopy

temperature, crop type, crop growth stage, and yield data, to

develop AI logarithms. Machine learning, deep learning, and

reinforcement learning techniques are typically used for developing

algorithms. These algorithms provide predictive analytics about

optimum irrigation volume, time and frequency of irrigation, and

yield data. These data can be used for the long-term planning

of water usage based on weather forecasts and provide predictive

measures for proactive interventions. This AI-based irrigation

scheduling has been shown to improve the efficiency of water use

for irrigation by up to 50% (Mohammad et al., 2013; Zia et al., 2021)

and save the usage of water by 59% (Jamroen et al., 2020) compared

to the industry standard method.

Of those methods discussed, weather- and soil moisture-based

irrigation scheduling are the most common methods, as they

are relatively cheap, more practical, and easier to use. While the

weather-based irrigation scheduling method uses reference ET

and Kc to determine when and how much to irrigate, the soil

moisture-based irrigation scheduling method utilizes actual in-

field soil moisture data using sensors to estimate the current soil

water available and determine the irrigation decision. Soil moisture

sensors can also be used for monitoring the spatial variation of

soil moisture within the fields, thus allowing precise irrigation

management. Recently, soil moisture sensor adoption in agriculture

in the United States is only 12% (as of 2020) (Kukal et al., 2020). To

increase this adoption rate, systems should be more cost-effective

and easier to use (Dong, 2023). Furthermore, farmers need to

be more educated on how they work to increase the trust in

using them. The cost, difficulty to use, and trust are the major

challenges for adopting the technology by farmers. Therefore,

affordable and easy-to-use technology is needed to increase the

its adoption. In addition, the demonstration of the technology

in agricultural fields to show the potential use in improving the

efficiency of irrigation water use is needed. In this study, we propose

to develop an affordable and easy-to-use sensor monitoring system

for farmers to improve irrigation management. We implement

a low-cost sensor monitoring system (LOCOMOS) to measure

soil moisture at multiple depths and use the data to provide

irrigation recommendations. This article focuses on case studies

using LOCOMOS in corn, blueberry, and tomato fields.
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FIGURE 1

A block diagram for the LOCOMOS system.

2 Methodology

LOCOMOS, whichwas developed byMichigan State University

Irrigation Lab, was used in this study. LOCOMOS is an IoT-

based sensor monitoring system that measures in-field soil and

environmental conditions. The collected data were sent to the

IoT cloud web server, from which irrigation recommendations

were provided.

2.1 An IoT-based sensor monitoring system

A LOCOMOS system can continuously measure soil moisture

levels at multiple depths, leaf wetness duration, air temperature,

relative humidity, and precipitation. The data were then sent to

a LOCOMOS IoT website (https://www.locomos1.com) to display

the recommended irrigation timing and amount, the location

of the sensor system, the raw sensor data, and the switch to

turn irrigation on and off. The dashboard on the LOCOMOS

IoT website was updated every 15min, allowing the user to

observe and make timely farm management decisions. An SD

card module was utilized for storing and backing up the sensor

data locally. LOCOMOS is powered by a 12V 7A battery, a 12V

solar panel, and a solar battery charging controller. Email and

Text message alert systems were set up through the IoT website.

For example, a user could receive an email and text message

when the soil water available level is at 50% for growing corn.

SoilWatch 10, the soil moisture sensors, manufactured by Pino-

Tech (Stargard, Poland), were utilized for measuring soil moisture

levels. SoilWatch 10 is a relatively cheaper sensor and has provided

reliable soil moisture measurement. PHYTOS 31 Leaf Wetness

Sensor, manufactured by METER Group (Pullmen, WA, USA),

was utilized to record the duration of leaf wetness. An SHT30

temperature and humidity sensor, manufactured by Sensirion

(Chicago, IL, USA), was utilized for measuring the air temperature

and relative humidity. The accuracy tolerance for air temperature

and relative humidity were ± 0.3◦C and ± 3%, respectively. A

rain gauge, manufactured by Davis Instruments (Hayward, CA,

USA), was utilized for measuring the precipitation. The rain gauge

measured every 0.02 cm increment. Hunter ICV valves with DC

latching solenoids were connected to the microcontroller to turn

the valve on and off. Figure 1 shows a block diagram of the

LOCOMOS system.

The LOCOMOS smartphone application (LOCOMOS APP) is

an easy-to-use app designed for farmers to manage irrigation for

their crops. The LOCOMOS APP connects to the LOCOMOS IoT

server to visualize the sensor data on the app. Each user will be

verified using a digital ocean server (Figure 2). Figure 3 shows the

pages of the LOCOMOS APP. To access the app, existing users can

log in using their registered email ID and password. New users

can sign up using their email ID and a unique invitation code,

which is provided by the server. Once logged in, a list of sensor

devices will be displayed. Each device contains its GPS coordinates

and provides real-time available soil water (%) and maximum

recommended irrigation amount. In addition, the LOCOMOSAPP
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FIGURE 2

An overview of the LOCOMOS application.

FIGURE 3

LOCOMOS-APP pages; (A) LOCOMOS login page, (B) Account setup, (C) Device list, (D) Available soil water and maximum recommended irrigation

amount, (E) Weather information from MSU Enviroweather, and (F) LOCOMOS devices on the map.

gathers ET and precipitation information from the Michigan State

University Enviroweather Network. Users can either push the “Use

My Location” button or select the closest weather station to their

field to observe the ET and precipitation data. In addition, the map

page allows users to visualize the precise locations of all deployed

sensors on a map. This bird’s-eye view offers a comprehensive

overview of users’ farmlands, making it easier to identify the

location of each sensor.

2.2 Soil moisture sensor calibration

The calibration of soil moisture sensors to specific soil types was

critical as the accuracy could be varied. A laboratory experiment

was conducted to calibrate the SoilWatch 10 soil moisture sensors

and evaluate their performances in two soil types. The soil types,

including sand and loamy sand, were used in this laboratory

experiment. Two 144-L size polypropylene containers (80 × 41 ×

35 cm) were used. The volumetric water content (VWC) analysis

was performed six times using a 61-cm3 size soil ring during

this laboratory experiment. Detailed information on the procedure

of the sensor calibration can be found in Smajstrla et al.’s study

(Smajstrla and Harrison, 2023).

2.3 Soil moisture sensor-based irrigation
recommendation model

The soil moisture sensor-based irrigation recommendation

was estimated using the field capacity of soil and current soil

moisture content using soil moisture sensors. The irrigation

recommendation was calculated by finding the difference between

the field capacity of the soil and the current soil moisture content.

This recommendation was the maximum amount of irrigation

that could be applied without water being lost through deep

percolation beyond the root zone. The equation of soil moisture

sensor-based irrigation recommendation is shown in Equation (1).

An assumption was made that the volumetric soil water content
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TABLE 1 The physical characteristics of soils in the experiment fields.

Crop Soil depth (cm) Sand (%) Silt (%) Clay (%) Texture classification

Commercial corn 15 76.6 11.8 11.6 Loamy sand

45 72.1 15.3 12.6 Sandy Loam

90 78.6 5.9 15.5 Sandy Loam

Blueberry 15 82.0 8.9 9.1 Loamy Sand

30 83.0 8.4 8.6 Loamy Sand

45 85.5 4.9 9.6 Loamy Sand

60 86.5 4.9 8.6 Loamy Sand

Tomato 6 80.5 9.9 9.6 Loamy Sand

12 80.5 9.4 10.1 Loamy Sand

24 83.5 7.9 7.9 Loamy Sand

for its representative soil layer is uniform and has the same

moisture level.

IR =
(

FCLayeri − θvLayeri

)

∗ DLayeri (1)

where IR is the maximum irrigation recommendation (cm),

FCLayeri is the field capacity of the layer i soil depth (cm/cm),DLayeri

is the representative layer i soil depth (cm), and θvLayeri is the

volumetric soil water content of the layer i soil depth (cm3/cm3).

2.4 Statistical analysis

The performance of the soil moisture sensors was evaluated

using root mean squared error (RMSE), index of agreement (IA),

andmean bias error (MBE). RMSEmeasures the difference between

sensor values and soil sample values and is defined in Equation (2).

The index of agreement was proposed by Willmott (1981), as

defined in Equation (3). MBE is defined in Equation (4).

RMSE =

√

√

√

√

1

N

N
∑

i=1

(Mi − Pi)
2 (2)

IA = 1−

∑N
i=1 (Mi − Pi)

2

∑N
i=1 (

∣

∣Pi −M
∣

∣ +
∣

∣Mi −M
∣

∣)
2

(3)

MBE =
1

N

N
∑

i=1

(Pi −Mi) (4)

where N is the sample size, M is the measured (soil sampling)

value, P is the predicted (sensor measurement) value, and ŕM is the

average measured value. The units for RMSE and MBE are VWC

(cm3/cm3), and IA is dimensionless. A range of IA lies between

0 and 1, and a value of 0 indicates no agreement between the

measured and predicted values. A value of 1 indicates a perfect fit

between the observed and predicted values. The higher value of IA

indicates better agreement between observed and predicted values.

Hignett and Evett (2008) revealed that the sensor measurement

accuracy for most agricultural applications needs to be <0.02

cm3/cm3. Varble andChávez (2011) andDong et al. (2020) reported

that the criteria for MBE and RMSE were ±0.02 cm3/cm3 and

<0.035 cm3/cm3, respectively. Therefore, this study evaluated the

sensor performance using the following criteria: MBE ± 0.02

cm3/cm3 and RMSE < 0.035 cm3/cm3.

2.5 LOCOMOS field
demonstration—Irrigation practice
evaluation

Once the sensors were calibrated and evaluated, LOCOMOS

was deployed in irrigated fields in Michigan farmlands to evaluate

the existing farmer’s irrigation practices. Irrigated corn and

blueberry fields were evaluated. The demonstration irrigated corn

field was located in Manchester, Michigan, USA. A commercial

corn was cultivated in this field and was irrigated with 20–28 cm

of water and 224 kg/ha of nitrogen was applied. The commercial

corn fields were irrigated using a center pivot irrigation system. The

second demonstration field was located in West Olive, Michigan,

USA. The field size was approximately 20 acres, and blueberries

were cultivated in it. These blueberry fields were irrigated using

a surface double-drip line system. Soil samples were collected

to test the soil texture. The physical properties of the soils at

different depths are shown in Table 1. The soils in these fields were

mostly sandy soil, such as loamy sand and sandy loam, which were

the common soil types in irrigated fields in Michigan. Figure 4

shows installed LOCOMOS in the irrigated corn and blueberry

fields in Michigan, USA. Corn roots typically grow up to 90 cm

in this demonstration field. Thus, the soil moisture sensors were

installed at 15, 60, and 90 cm in the irrigated corn field. In the

irrigated blueberry field, the sensors were installed at 15, 30, 45, and

60 cm. All data loggers were programmed to record soil moisture

measurements every 30min. The soil samples were collected three

times during this monitoring period. These samples were analyzed

for texture and volumetric water content. The VWC from the soil

samples was utilized for testing the accuracy of the sensors.
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FIGURE 4

LOCOMOS stations installed in an irrigated corn field in Manchester, MI, USA (left) and an irrigated blueberry field in West Olive, MI, USA (right).

2.6 LOCOMOS field
demonstration—automation irrigation

Automation irrigation using LOCOMOS was demonstrated in

a tomato field in Hart, Michigan, USA. The 9V DC solenoid valves

with Hunter’s ICV valves were utilized to control irrigation. Fresh

tomatoes were cultivated in this field, and plastic mulch was used to

maintain the soil moisture and keep the weeds out. Figure 5 shows

the experimental setup for this tomato field. This tomato field is

irrigated with a surface single drip line system. Two irrigation

strategies, namely, the farmer’s existing irrigation management

and automation irrigation trigger, were evaluated. The farmer’s

existing irrigation management included 1 h of irrigation per day

in June and twice in 1 h of irrigation per day in July and August.

The automation irrigation trigger method was based on the soil

moisture sensor data and used Equation (1). Four replications with

randomized plot designs were utilized for the comparison. The

team has collected the number of marketable tomatoes and their

weights to compare the effectiveness of the treatments. Eight plants

per replication were considered. Statistic software R v4.3.1 was

utilized for running a one-way ANOVA.

3 Results and discussion

3.1 Soil moisture sensor calibration

The calibration of the SoilWatch 10 soil moisture sensor was

conducted for sand and loamy sand. Soil temperature during this

laboratory experiment was kept constant at 22 ± 1◦C. The soil

moisture sensors were powered at 3.3 V, and analog raw counts

were used for the calibration. Figure 6 shows the comparison

of measured VWC and raw count. Based on the curve fitting,

Equation (5) was developed. The calibration of SoilWatch 10 was

FIGURE 5

Automation irrigation demonstration in Hart, MI, USA.

based on a wide range of VWC from 0.04 to 0.4 cm3/cm3.

The calibration of the sensor provided confidence in using it for

field demonstration.

VWC = 2E−13 (RC)3 − 4E−9 (RC)2 + 4E−5 (RC) − 0.0677 (5)

where VWC is the volumetric water content (cm3/cm3) and RC

is the analog raw counts that outputs from the sensor.
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FIGURE 6

The calibration curve for SoilWatch 10.

FIGURE 7

A comparison of the SoilWatch 10 with the soil sampling method for

sand.

3.2 The performance evaluation of the soil
moisture sensor

The performance of the soil moisture sensor in the sand

and loamy sand was evaluated. Figures 7, 8 show the comparison

of sensors with measured VWC using a gravimetric method

for sand and loamy sand, respectively. Table 2 shows the

result of the statistical analysis. The MBE values for the

soil moisture sensor showed that this sensor overestimated

VWC by an average of 0.01 cm3/cm3 in the sand and

underestimated it by an average of 0.02 cm3/cm3 in the loamy

sand. The performance of the soil moisture sensor for sand

and loamy sand satisfied both MBE and RMSE criteria. The

MBE values of the calibrated SoilWatch 10 were similar to

FIGURE 8

A comparison of the SoilWatch 10 with the soil sampling method for

loamy sand.

TABLE 2 A statistical analysis to compare measured values to sensor

values.

Soil Type RMSE IA MBE

Sand 0.010 0.97 0.01

Loamy Sand 0.023 0.98 −0.02

Campbell Scientific’s CS 616 TDR sensors. The MBE of CS

616 for sand and loamy sand were 0.01 and 0.03 cm3/cm3,

respectively (Dong et al., 2020). The calibrated SoilWatch 10

provided reliable performance in measuring moisture content in

sand and loamy sand. This confirmed the satisfaction of the

calibration process.
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FIGURE 9

The volumetric water content at 15, 45, and 90cm soil depths at an irrigated corn demonstration field.

3.3 Demonstration in an irrigated corn field

Figure 9 shows the collected soil moisture sensor data,

precipitation, and irrigation. Appropriate irrigation should

maintain the soil moisture level in the root zone at an optimal level

and ensure the water does not flow below the root zone to save

freshwater and energy, reducing nutrient leaching and maximizing

return on investment. The corn roots in this demonstration field

grew up to 90 cm; thus, the goal of irrigation management was to

moisten only the top 90 cm of soil. During the growing season, five

events affected increasing soil moisture levels at a depth of 90 cm,

which means that the water has reached and passed through the

90 cm depth. In events #1, #3, and #5, soil moisture at a depth of

90 cm increased due to continuous and heavy rainfalls. In events

#2 and #3, the soil moisture level at 90 cm depth was increased

due to the combination of rainfall and irrigation. The corn farmer

in Michigan typically applied irrigation each time between 2.50–

3.20 cm. When heavy rainfall is forecasted, the farmer could reduce

the irrigation application volume to capture the rainfall within

the root zone and minimize the potential leaching of water and

nutrients below the root zone. In addition, the installation of the

SoilWatch 10 soil moisture sensors within the root zone and right

below the root zone helps to evaluate whether the farmer is applying

irrigation adequately or excessively. These sensor data are helpful

in making better-informed decisions on when and how much

to irrigate.

3.4 Demonstration in an irrigated blueberry
field

In the irrigated blueberry field, soil moisture sensors were

installed at 15, 30, 45, and 60 cm depths. The flow rate of the

drip emitter was 41 cm/h and was applied for 60min during each

application. During this monitoring period, there were no rainfalls.

Figure 10 shows the soil moisture changes from the farmer’s

irrigation management practice. Proper irrigation for blueberries

on this farm should ensure that water does not flow below the root

zone, which is the top 45 cm of soil depth. Figure 10 indicates that

the farmer’s existing irrigation management practice provided an

adequate amount of water to the blueberry root system. However,

the overirrigation events were observed because of the spike in

the soil moisture sensor at both 45 and 60 cm depths. Thus, it

was recommended to reduce the irrigation time from 60min to

40min. The farmer tested his part of the field to demonstrate

the reduced and recommended irrigation management practice.

Figure 11 shows the soil moisture monitoring at the reduced and

recommended irrigation plots. The reduced irrigation increased the

soil moisture levels of the depth up to 30 cm, which is the effective

water uptake root zone for blueberries grown in sandy soil. Thus,

the reduced and recommended amount was adequate; however,

when the blueberry was at the significant growth stage (at first blue

fruit) and higher ET, more frequent (three times a day) irrigation

was suggested, if needed. The soil type in this blueberry field is

loamy sand. A smaller amount and more frequent application

might be needed for the fields that have sandy soil. For finer texture

soils, irrigating once a day with large volume application might be

adequate as they have a large water holding capacity.

The total yield/plant and 50-berry weights were collected

from this demonstration field for both the farmer’s existing

irrigation method and the reduced/recommended irrigation

management. The yield per plant for the farmer’s irrigation

method and the recommended irrigation management were 552

and 722 g, respectively. There were statistical differences between

the treatments (p = 0.025). 50-berry weights for the farmer’s

irrigation method and the recommended irrigation management

were 87.7 and 93.7 g, respectively. There were statistical differences

between the treatments (p = 0.013). A potential cause of

higher yield in the recommended irrigation management could

be due to proper irrigation application that reduced nutrient

leaching below the root zone in the sandy soil. An IoT-based

irrigation management can help save water while maintaining

the same blueberry quality and yields as the farmer’s typical

irrigation management.
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FIGURE 10

Soil moisture monitoring at the existing blueberry farmer’s irrigation practice at the blue fruit stage.

FIGURE 11

Soil moisture monitoring of adjusted irrigation practice at the blue fruit stage.

3.5 Irrigation automation in a tomato field

Figure 12 shows the number of tomatoes that are marketable

and their total weight from each treatment. The figure shows

that there were no statistical differences among the treatments

in the numbers of marketable tomatoes from the 2022 growing

season (p = 0.382) and their weights (p = 0.756). Thus,

the production and quality of tomatoes were similar from all

treatments, but the amount of applied irrigation was different.

The sensor-based irrigation strategy applied a 30% lower amount

than the farmer’s irrigation scheduling method, which indicates

that the farmer could improve their irrigation water use efficiency

using the sensor technology. An IoT-based automation irrigation

management using a soil moisture sensor’s recommendation can

help to save water by 30% while maintaining the same marketable

yields and quality of tomatoes as the farmer’s typical irrigation

management. In addition to conserving water, saving energy by

pumping less water reduces farm energy costs. Moreover, low

energy usage contributes to reducing greenhouse gas emissions

from agriculture. The primary benefit of an automatic irrigation

system is that it can save farmers’ time and labor costs in operating

the irrigation system.

4 Conclusion

Based on the field demonstration, the IoT-based sensor

technology has proven to improve irrigation water use efficiency

by evaluating the farmer’s existing irrigation practices and

providing recommendations if needed. Providing real-time in-

field soil moisture sensor data is helpful in making day-to-day

irrigation management decisions, especially under unpredictable
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FIGURE 12

The total number of marketable tomatoes (A) and the total weight of marketable tomatoes from each replication (B). T1 is the farmer’s typical

irrigation management. T2 is an IoT soil moisture sensor-based irrigation recommendation.

precipitation patterns. Minimizing overirrigation can reduce

the risk of nutrients leaching below the root zone, ultimately

protecting groundwater quality. In future studies, more on-farm

demonstrations are needed to increase technology adoption. In

addition, a continuation of extension outreach activities to promote

making irrigation management decisions based on scientific data is

needed. Besides irrigation management, this IoT sensor technology

can be utilized to help othermanagement practices such as nutrient,

pesticide, insecticide, frost protection, and plant health monitoring

(heat and water stress). Therefore, continued efforts to explore

the application of IoT-based sensor technology in agriculture to

combat the effect of climate change are needed.

LOCOMOS utilizes cellular networks to communicate;

however, cellular reception may be poor in some rural areas.

Other communication network systems, such as radio, NB-IoT,

and Sigfox, should be explored to overcome the signal issues.

Moreover, the effectiveness of IoT-based technology should

also be evaluated in other crop types. The usability of the

LOCOMOS technology, including the installation technique,

software interface, data accessibility, and alert systems, needs to

be improved to make the technology easy to adopt for farmers.

Additionally, other potential applications of the LOCOMOS

platform, such as wind speed for spray drift reduction, soil

moisture sensors for irrigation management, leaf surface

temperature measurement for plant heat stress, and carbon

dioxide measurement for greenhouse gas emission, should

be considered in the future. Concerns about agricultural

water use have been and will continue to grow due to the

effect of climate change on agriculture. Because water is a

limited resource, technologies that improve irrigation water use

efficiency will play a significant role in increasing agricultural

water sustainability.
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