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Deep Convolutional LSTM for
improved flash flood prediction
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Flooding remains one of the most devastating and costly natural disasters. As
flooding events grow in frequency and intensity, it has become increasingly
important to improve flood monitoring, prediction, and early warning systems.
Recent e�orts to improve flash flood forecasts using deep learning have shown
promise, yet commonly-used techniques such as long short term memory
(LSTM) models are unable to extract potentially significant spatial relationships
among input datasets. Here we propose a hybrid approach using a Convolutional
LSTM (ConvLSTM) network to predict stream stage heights using multi-modal
hydrometeorological remote sensing and in-situ inputs. Results suggest the
hybrid network can more e�ectively capture the specific spatiotemporal
landscape dynamics of a flash flood-prone catchment relative to the current
state-of-the-art, leading to a roughly 26% improvement in model error when
predicting elevated stream conditions. Furthermore, the methodology shows
promise for improving prediction accuracy and warning times for supporting
local decision making.
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1 Introduction

Flooding remains one of the most common and devastating natural disasters, causing
billions of dollars of damages annually (Wobus et al., 2017). The timing and severity of
floods are dictated by complex interactions between a region’s hydrology, landscape, and
climatology. Flash flood events, which are characterized by a rapid water level response
which peaks within 6 h of heavy rainfall, are particularly destructive and account for the
majority of flood fatalities in the United States (Ashley and Ashley, 2008; Creutin et al.,
2009). With climatic extremes poised to increase over the coming decades, flood damages
are expected to worsen accordingly (Davenport et al., 2021).

For many municipal planners, the prospect of more extreme flooding demands a better
understanding of where and when flooding will occur. This is especially true for areas
located within small, flashy catchments which have among the fastest basin response times
(Špitalar et al., 2014). One such example is Ellicott City, a historic mill town located in
Howard County, Maryland (Figure 1). In 2016 and 2018, Ellicott City experienced flash
floods which were considered “1-in-1,000 year” storm events, resulting in massive damages
and multiple fatalities (Halverson, 2019). It is estimated that the economic cost of response
and recovery was around $12 million for the 2016 flood and $10.5 million for the 2018
flood, with additional costs for lost revenue and reduced labor in the region (Clinch, 2016;
Viterbo et al., 2020).
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In response, Howard County identified a suite of flood
management measures to reduce risks of future events. In total,
60 possible scenarios were evaluated, including the installation
of new flood retention and diversion infrastructures, floodplain
modification, building reclamation, and improved resilience
measures (U.S. Army Corps of Engineers, 2019). As part of this
comprehensive flood mitigation plan, additional effort has also
been devoted to developing an operational flood forecast system
for Ellicott City’s historic downtown district.

The ability to forecast flash flooding is among the most
challenging prospects in hydrometeorological research (Alfieri
et al., 2011). Commonly used methods involve physical models,
which attempt to capture rainfall-runoff dynamics using
quantitative precipitation patterns, catchment characteristics,
and stream morphology. However, these techniques are often
computationally expensive and can be subject to stream-specific
parameterization (Okuno et al., 2021). Numerous studies have
outlined the advances in flash flood prediction as new techniques
and datasets have been developed (Hapuarachchi et al., 2011;
Gourley et al., 2014; Zanchetta and Coulibaly, 2020) yet in recent
years, data-driven machine learning techniques have emerged as
a promising approach to model flood conditions more efficiently
and on smaller spatial scales.

“Machine learning” is a broad term that encompasses any
number of algorithms that attempt to describe the relationship
between input and output data (Choi et al., 2020). Unlike
numerical or physical models, machine learning approaches can
capture critical non-linearities in a hydrological system without
explicit knowledge of the underlying geophysical processes (Mosavi
et al., 2018). Certain types of models, known as artificial neural
networks (ANN), have proven to be useful tools for time series
problems like streamflow prediction and flood risk assessment
(Alipour et al., 2020). Long short-term memory (LSTM) networks
are a specific subset of ANNs that have broad applications for
rainfall-runoff modeling, due to their ability to process and retain
information from long sequences of data. Such frameworks that
utilize multilayer neural networks to extract features from raw data
are commonly referred to as “deep learning” (Shen et al., 2018).

Some of the most recent advances in hydrological deep learning
come in the form of convolutional neural networks (CNN). Unlike
LSTMs, CNNs are an emerging area of research which are designed
to intake image data, allowing them to retain spatial dynamics
that may be instructive to the problem of flash flood prediction
(Shi et al., 2015). Landscape effects like soil moisture “memory”
in the days following a rain event, for instance, can often impact

Abbreviations: ANN, Artificial neural network; ARIMA, Autoregressive

Integrated Moving Average; CNN, Convolutional neural network; CONUS,

Continental United States; ConvLSTM, Convolutional long short-term

memory; GESDISC, Goddard Earth Sciences Data and Information Services

Center; GPM, Global Precipitation Measurement; HRRR, High-Resolution

Rapid Refresh; IMERG, Integrated Multi-satellitE Retrievals for GPM; KLWX,

Sterling, Virginia Doppler radar site; LSM, Land surface model; LSTM, Long

short-term memory; NEXRAD, Next Generation Radar; NLDAS, North

American Land Data Assimilation System; NWM, National Water Model;

RMSE, Root-mean-square error; RNN, Recurrent neural network; SWMD,

Howard County Stormwater Management Division.

the likelihood of a future flood event (McColl et al., 2017).
Incorporating spatiotemporal inputs may therefore have important
implications for flash flood prediction. This is particularly true
for an area like Ellicott City, where current and forecasted stream
conditions are used operationally to trigger emergency public alerts
and evacuations.

Here, we introduce a hybrid Convolutional LSTM
(ConvLSTM) model framework to evaluate how the addition
of spatiotemporal data can potentially improve flash flood
predictions in Ellicott City, Maryland. We use a simple LSTM as
a baseline to predict future stage heights at the Hudson Branch
stream gauge. We then benchmark this baseline against models
driven by hydrometeorological inputs that can reflect the basin’s
specific landscape response.We evaluate bothmodels for predictive
accuracy, the ability to identify elevated stream conditions, and
their performance in modeling the historical floods of 2016 and
2018. The following sections provide an overview of the study area
and previous work in deep learning flood forecasting. Section 3
describes the details of data acquisition and processing, as well
as the baseline and ConvLSTM model formulations. Sections 4
and 5 present the results and discussion, respectively. Finally, we
discuss the specific applications of this model to operational flood
management in Howard County and discuss caveats and future
research needs.

2 Background and previous work

2.1 Ellicott City, Maryland

Ellicott City is a mill town founded in 1772, ∼10 miles west of
Baltimore. It is home to nearly 76,000 people and its downtown
corridor was listed on the National Register of Historic Places
in 1978 (National Park Service, 1978; U.S. Census Bureau, 2020).
Throughout its history, the Ellicott City downtown corridor has
endured numerous major floods due to its complex, and at times,
unpredictable hydrology (The National Academies of Sciences,
Engineering, and Medicine, 2020).

The city is situated at the confluence of several stream systems
which can result in multiple flood mechanisms. The downtown
area sits adjacent to the main stem of the Patapsco River. When
flood waters from upstream cause the Patapsco to overtop, the city
experiences “bottom-up” flooding (Halverson, 2019). The drainage
basin feeding this system consists of nearly 50% developed land
with a high degree of impervious surfaces (Maryland Department
of Natural Resources, 2005). As a result, the basin is also prone
to “top-down” floods, which occur when the Tiber River—which
originates at higher elevations to the west of the city—overtops
and flows downhill. The combination of steep terrain (∼17◦ slope),
shallow hydric soils, and large areas of exposed bedrock results
in floodwaters being channeled directly through the downtown
corridor’s Main Street (The National Academies of Sciences,
Engineering, and Medicine, 2020; Viterbo et al., 2020).

The specific hydrological characteristics of the Tiber-Hudson
watershed make it one of the most volatile catchments in the
nation. In a study of the flashiest watersheds in the contiguous
United States (CONUS), two of the top 10 were found to be in
the Baltimore area (Smith and Smith, 2015). A separate study
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FIGURE 1

Ellicott City study domain. Left panel shows connected stream network that contributes to bottom-up flooding along the Patapsco River. Inset
shows Tiber-Hudson with locations for Hudson Branch and Patapsco Ellicott stream gauges.

by Saharia et al. (2016) developed a “flashiness” index, defined
as the difference between the peak and action stage discharges,
normalized by the flood response time and basin area (Saharia et al.,
2016). Using this metric, the full study area would rank third in the
state, while the smaller Tiber-Hudson watershed would have the
highest average flashiness with an index of 0.952 out of 1 (Figure 2).

2.2 Deep learning for flood forecasting

Deep learning using neural networks has been an area of
ongoing research in the hydrological sciences for decades (Daniel,
1991). In particular, LSTMs have been widely applied, due to
their ability to solve the “vanishing gradient” problem present
in earlier recurrent neural networks (RNN), in which the model
training signal diminishes as it propagates through long sequences
(Hochreiter and Schmidhuber, 1997; Shen, 2018). This is achieved
through special structures within the LSTM cell that control which
information is retained as training progresses (Figure 3A). At a
given timestep, t, the model weights are updated based on a given
input, xt , the previous cell output, ct−1, and the previous cell state,

ht−1 (Rahman and Adjeroh, 2019). During the training process, the
input gate, it , controls which inputs should be remembered, while
the forget gate, ft , determines which past state memory should be
discarded and which should be sent on to the output gate, ot (Shen,
2018). Numerous studies have recently demonstrated how LSTM
networks can improve performance relative to other physically-
based hydrological models (Kratzert et al., 2018; Xiang et al., 2020;
Li et al., 2021).

Contrasted with LSTMs, convolutional neural networks can
process data hierarchically in the form of arrays, making them
better suited to image or video classification (LeCun et al., 2015).
Recent studies have demonstrated the applicability of CNNs to
flood susceptibility and extent mapping (Gebrehiwot et al., 2019;
Wang et al., 2020), extreme weather detection (Liu et al., 2016),
and forecasted precipitation estimation (Sadeghi et al., 2019). In
a demonstration on deep learning for precipitation nowcasting,
Shi et al. (2015) proposed a hybrid approach, ConvLSTM, which
replaces matrix multiplication with convolutional operators for
both the input and state-to-state transitions (Figure 3B; Shi et al.,
2015). This hybrid approach has proven to outperform other
neural network frameworks in studies ranging from precipitation
nowcasting (Kim et al., 2017; Weyn et al., 2019; Kumar et al.,
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FIGURE 2

Distribution of flash flood severity (“flashiness”) of Maryland counties, based on data from Saharia et al. (2016). The area located strictly with this
study’s 36x48 kilometer domain is highlighted as the third highest average flashiness in the state, with the red star indicating the average flashiness of
the smaller Tiber-Hudson watershed.

2020; Gamboa-Villafruela et al., 2021), to soil moisture prediction
(ElSaadani et al., 2021), to flood extent mapping (Ulloa et al., 2022).

While ConvLSTM models have been shown to be effective at
several hydrometeorological applications, there is less research
applying these types of models directly to streamflow or stage
forecasts. Moishin et al. (2021) developed a flood forecasting model
based on a Flood Index (IF) derived from daily rainfall across
nine sites in Fiji (Moishin et al., 2021). While the ConvLSTM
model performed best in forecasting daily stream conditions,
the authors note the analysis was limited by only using two
input features and would benefit from hourly observations.
Ha et al. (2021) also presents a ConvLSTM-based flood
forecasting model using monthly streamflow data and an El
Niño–Southern Oscillation (ENSO) index as inputs (Ha et al.,
2021). Here, the individual datasets were 1-dimensional but
were grouped into 2-dimensional inputs for model training.
While both studies have advanced the state-of-the-art in
operational flood forecast modeling, neither explicitly utilizes
spatially-distributed inputs or addresses the specific issue of
flash flooding.

2.3 Flood forecasting in Ellicott City

Efforts to monitor flood conditions within Ellicott City rely
on observations of current stage heights, discharge, and forecasted
precipitation. The Howard County Stormwater Management
Division (SWMD) monitors these real-time conditions using
an internal web platform, OneRain, which visualizes data from
municipal and federal gauges. SWMD has established several stage
thresholds (Significant, Warning, and Alarm) which use observed
conditions to trigger subsequent flood mitigation measures. Until
recently, the system was unable to forecast future flood conditions
in real-time.

Initial attempts to integrate real-time stage forecasts into this
web platform have shown promising results. Early implementations
focused on generating statistical forecasts using autoregressive
(AR) and autoregressive integrated moving average (ARIMA)
models. These models were driven by times series of upstream
discharge and area-averaged soil moisture and precipitation
data from the North American Land Data Assimilation System
(NLDAS). A subsequent implementation compared these statistical
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FIGURE 3

(A) Schematic of basic LSTM cell, (B) Addition of convolutional structures to produce ConvLSTM cell. Inputs and previous hidden states are
convolved using 3x3 kernel to produce 3-dimensional tensors which pass through network. Figure adapted from Rahman and Adjeroh (2019).

forecasts to those generated by a many-to-one LSTM and
added in-situ precipitation observations. The current OneRain
platform features a sequence-to-sequence encoder/decoder LSTM
that forecasts operational stage height predictions up to 8-h
out (see Supplementary Figure 1). This web interface supports
two separate forecast models: one that relies solely on previous
gauge observations and one which incorporates point estimates
of forecasted precipitation from the National Oceanic and
Atmospheric Administration (NOAA) High-Resolution Rapid
Refresh (HRRR) product (Dowell et al., 2022).

These initial models have demonstrated high accuracy when
predicting across the validation datasets, incurring a root mean
square error (RMSE) of 0.07 feet. However, when evaluating
performance for the elevated flood conditions, the models
demonstrate much higher errors (RMSE = 0.85), indicating
only a moderate ability to forecast flash flood conditions. The
results of the initial model implementations are summarized in
Supplementary Table 1 and are contrasted with the results of this
analysis in the Discussion section. As these stage thresholds are
critical to the flood mitigation practices within SWMD, additional
research is needed to improve predictive accuracy in Ellicott City.

3 Materials and methods

3.1 Baseline model: LSTM

A baseline model was constructed using a simple
implementation of an LSTM with a global attention mechanism
(Luong et al., 2015; Rémy, 2017). Attention mechanisms are used
to help identify relevant information in long sequences of data
by drawing global dependencies between input and response
variables (Vaswani et al., 2017). Data inputs for the baseline model

are stage height observations at previous timesteps at both the
Hudson Branch and Patapsco Ellicott gauge locations (Table 1).
Time series of stream observations with varying input windows (1,
2, 3, 4, 6, and 8 h) were used to predict stage height at time n+1.
Stream observations from January 2016 through October 2020
were acquired from OneRain and resampled to align to hourly
indices for a total of 42,384 samples (2016-01-01 00:00 through
2020-10-31 23:00). The baseline model was trained on data 70%
of the data, from January 2016 through May 2019. It should be
noted that this training period contained both the 2016 and 2018
flood events. A diagnostic test was performed which split the
2016 and 2018 floods into the training and validation sets which
resulted in a 52% increase in RMSE when forecasting elevated flood
conditions. Models were validated against the remaining 30% of
data, from May 2019 through October 2020. The full configuration
parameters for the baseline LSTM can be seen in Table 2.

3.2 ConvLSTM model

3.2.1 Study domain
The performance of the baseline LSTM is compared against

model formulations which include the addition of spatiotemporal
data inputs. The spatial domain for this study was determined
using the U.S. Geological Survey’s (USGS) National Hydrography
Datasets Plus (NHDPlus) High Resolution dataset (Moore et al.,
2019). A stream network analysis was performed using QGIS to
determine the connected channels upstream of Ellicott City. A
36x48 km grid with 1-km horizontal resolution was superimposed
on this stream network to establish a study area that could capture
the potential for top-down and bottom-up flood mechanisms
(Figure 1).
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TABLE 1 Data inputs for baseline (LSTM) and ConvLSTMmodels.

Model Notation Input Source

Baseline LSTM OneRain Observations

Stage height (Hudson
Branch/Patapsco Ellicott)

howardcounty.onerain.com

ConvLSTM A NEXRADMosaic

8-bit Base Reflectivity
mesonet.agron.iastate.edu/docs/nexrad_mosaic

B Noah LSM

Soil Moisture
disc.gsfc.nasa.gov/datasets/NLDAS_NOAH0125_H_002/summary?keywords=noahNoah

C IMERG Final Precipitation L3

Precipitation Rate
disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_06/summary?keywords=imerg

D KLWX Level-III NEXRAD

1-hr Accumulated
Precipitation

console.cloud.google.com/storage/browser/gcp-public-data-nexrad-l3
(public dataset accessible free with Google account authentication)

TABLE 2 Configuration parameters for the baseline LSTM with global attention mechanism.

Layer (type) Output shape Param # Connected to

GAUGE (InputLayer) [(None, 3, 2)] 0

masking_(Masking) (None, 3, 2) 0 GAUGE[0][0]

lstm_(LSTM) (None, 3, 16) 1,216 masking[0][0]

last_hidden_state (Lambda) (None, 16) 0 lstm[0][0]

attention_score_vec (Dense) (None, 3, 16) 256 lstm[0][0]

attention_score (Dot) (None, 3) 0 last_hidden_state[0][0]
attention_score_vec[0][0]

attention_weight (Activation) (None, 3) 0 attention_score[0][0]

context_vector (Dot) (None, 16) 0 lstm[0][0]
attention_weight[0][0]

attention_output (Concatenate) (None, 32) 0 context_vector[0][0]
last_hidden_state[0][0]

attention_vector (Dense) (None, 8) 256 attention_output[0][0]

dropout_3 (Dropout) (None, 8) 0 attention_vector[0][0]

3.2.2 Data selection and processing
Four spatiotemporal datasets were selected for their

temporal resolution (minimum of hourly measurements),
moderate spatial resolution, and applicability for rainfall-runoff
modeling (Table 1). Remotely-sensed precipitation data from the
National Aeronautics and Space Administration (NASA) Global
Precipitation Measurement (GPM) mission was acquired using the
Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm.

Soil moisture data from the NLDAS Noah Land Surface Model
(LSM) was acquired through the Goddard Earth Sciences Data and
Information Services Center (GESDISC; Xia et al., 2012a,b).

Base reflectivity from NOAA’s Next Generation Radar
(NEXRAD) was acquired as a mosaicked product through Iowa
State University’s Iowa Environmental Mesonet. NEXRAD Level
III 1-h accumulated rainfall data was acquired from Google
Cloud public data repositories. Level III radar observations from
the Sterling, Virginia KLWX doppler station were converted
from radial to grid format using the Python ARM Radar Toolkit
(Helmus and Collis, 2016).

All datasets were temporally subsetted to the closest hour
to match the hourly indices of the gauged response data. The
NEXRADMosaic, Noah LSM, and GPM IMERG data are available

at CONUS scales and at regular intervals while the KLWX data
contained several timesteps with no available data. The timesteps
for the missing KLWX data (n = 1,405) were processed using
masked arrays during the training process. All datasets were
then spatially resampled to 1-km horizontal resolution using the
“Nearest Neighbor”method inQGIS to align to the 36x48 kilometer
study domain grid.

3.2.3 ConvLSTM model architecture
ConvLSTM models were constructed using a multi-headed

architecture, where each spatiotemporal data input is processed as
a separate neural network “head.” The output of each ConvLSTM
head is then merged and concatenated with the baseline LSTM
to produce a single output for the stream stage response variable
(Kaushik et al., 2020). This model structure is designed to
train each input more efficiently and help quantify the marginal
effects of including additional spatiotemporal data as predictors.
Model architecture was tuned for dropout rate, learning rate, and
activation function using a hyperparameter grid search. Training
and validation were performed using different combinations of
spatial inputs, resulting in the evaluation of 15 separate ConvLSTM
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TABLE 3 Data input combinations for ConvLSTMmodels.

Version Input Notation

1 NEXRAD A

2 Noah B

3 IMERG C

4 KLWX D

5 NEXRAD+Noah A+B

6 NEXRAD+IMERG A+C

7 NEXRAD+KLWX A+D

8 Noah+IMERG B+C

9 Noah+KLWX B+D

10 IMERG+KLWX C+D

11 NEXRAD+Noah+IMERG A+B+C

12 NEXRAD+Noah+KLWX A+B+D

13 NEXRAD+IMERG+KLWX A+C+D

14 Noah+IMERG+KLWX B+C+D

15 NEXRAD+Noah+IMERG+KLWX A+B+C+D

All ConvLSTM model versions are concatenated with the baseline LSTM to evaluate the

marginal effects of each combination of spatially-distributed inputs.

model versions (Table 3). A network diagram of the full model
with all spatiotemporal inputs (version 15) included can be
seen in Figure 4. Here, all four hydrometeorological inputs are
processed using the Keras ConvLSTM2D and Conv3D hidden
layers with the Rectified Linear Unit (ReLU) activation function
before being concatenated with the baseline LSTM. Each version
was trained using the same varying input windows as described in
the baseline model.

Both the Baseline LSTM and ConvLSTM neural networks were
constructed using the open-source Keras library for Python with
the TensorFlow backend, developed by Google (Abadi et al., 2015;
Chollet, 2015). All models were trained for 100 epochs on the
NASA Center for Climate Simulation (NCCS) machine learning
cluster using NVIDIA V100 GPUs. Training and validation for
each version were repeated 5 times to account for randomized
initialization conditions, resulting in a total of 480 different
model runs.

3.3 Problem objectives

We evaluate model performance as the ability to accurately
predict observed stage height at time t+1 by seeking to
minimize RMSE:

RMSE =

√

∑N
i=1

(

yi− ŷi
)2

N

where yi and ŷi are the observed and estimated stage heights,
respectively, at the Hudson Branch gauge site.

Model accuracy was evaluated for the full validation set (May
2019 to October 2020), as well as for the historical 2016 and 2018
flood events. Statistical t-tests were used to determine if mean

RMSE values for each model version differed significantly from the
baseline LSTM for each input window (p < 0.05).

In addition to overall accuracy, we consider each model’s ability
to detect elevated flood conditions using a specified threshold.
Based on the full observational record from OneRain, we identify a
threshold stage height of 254.32 feet using the find_peaks function
within Python’s SciPy library and a statistical prominence of
0.75 (Figure 5). This height is ∼1 foot below the “Significant”
level established by the Howard County SWM for the Hudson
Branch site. Timesteps with stage heights above this threshold are
considered “peak indices” (n = 164) and the accuracy at these
timesteps is evaluated as a separate model objective.

4 Results

4.1 Validation accuracy

When evaluating accuracy over the full validation set, the
inclusion of spatiotemporal data generally led to improved
predictions over the baseline LSTM (see Supplementary Figure 2).
Model version 15 (all spatial inputs) produced the lowest
average RMSE (0.069), though none of the values using the 1-
h input window were found to be statistically significant. Model
performance varies depending on which input combinations were
used, with some general trends emerging. Model formulations
using shorter input windows tended to produce lower RMSE
than those which included more hours of data. That said, larger
input windows (4+ h) were more likely to produce statistically
significant improvements over their respective baselines. Model
versions featuring Noah soil moisture (B) and KLWX accumulated
rainfall (D)—either individually or in combination—tended to
result in the lowest, statistically significant errors. A hydrograph
view also shows that the model with the lowest average error
(version 15, 1-h) appears to capture daily and seasonal trends yet
fails to capture the magnitude of larger peaks when predicting on
unseen data (Figure 6).

4.2 Peak index accuracy

Isolating the prediction error for just the peak indices more
clearly reveals the model improvements when incorporating spatial
information (Figure 7). Here too, ConvLSTM version 15 using
a 1-h window produces the lowest RMSE, yet in this case
the improvement was found to be statistically significant. The
majority of ConvLSTMmodel formulations resulted in lower errors
compared to the baseline LSTM of their respective window, with
a few exceptions. The models using a 3-h input window generally
performed worse than the same formulations with either a 2- or 4-h
window. Similar to the results in the full validation set, certain input
combinations resulted in increased predictive accuracy, though
those trends are less consistent.

When simply comparing the models’ ability to successfully
predict peak indices, the ConvLSTM version 15 also outperforms
the baseline LSTM. A confusion matrix for both shows that the
ConvLSTM correctly predicted an average of two additional flood
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FIGURE 4

Example of full network architecture with all spatiotemporal inputs (Version 15; Table 3) concatenated with LSTM with global attention mechanism.

peaks compared to the baseline model, though both formulations
exhibited high degrees of false negatives (Supplementary Figure 3).

4.3 Historical flood performance

Evaluating the trained model over the historical data shows its
ability to capture the events from 2016 and 2018. Figure 8 shows
a hydrograph of the model version with the lowest average RMSE

in predicting these historical floods. For the 2016 Flood, this was
achieved using version 12 (NEXRAD + Noah + KLWX) with an
input window of 6-h. Despite this version achieving the lowest
error, a general trend shows that a 3-h input window across all
model versions appears to be the most instructive for that event
(Supplementary Figures 4, 5).

For the 2018 Flood, version 11 (NEXRAD + IMERG + Noah)
with a 1-h window achieved the highest accuracy. The performance
of all versions can be seen in Supplementary Figures 6, 7. The
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FIGURE 5

Identification of “peak indices” at the Hudson Branch stream gauge using statistical prominence approach.

FIGURE 6

Predicted vs. observed stage heights at Hudson Branch for the full validation set.

2018 Flood showed similar variability to the 2016 event. For
both historical floods, a number of the ConvLSTM models were
not found to have statistically better performance relative to the
LSTM baseline. However, those that did showed more dramatic
improvements than the marginal gains achieved in either the full
validation or the peak index results. Both the 2016 and 2018 floods
also displayed similar trends for model versions that performed
worse than the baseline. In particular, versions featuring Noah soil

moisture (B) and IMERG precipitation (C) resulted in some RMSE
that were more than double that of the baseline.

5 Discussion and conclusions

We explored how the inclusion of spatiotemporal inputs
can improve the predictive performance of a data-driven
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FIGURE 7

Heatmap of RMSE for predicted stage height at specified “peak indices.” Lower values indicate higher accuracy. Asterisks denote model versions that
were found to have statistically significant di�erences in mean RMSE relative to baseline LSTM (p < 0.05).

flood forecasting model. Overall, we find that the ConvLSTM
models often outperform the baseline LSTM, though the relative
improvements differ according to the objective in question.
When evaluating total accuracy over the full validation data,
the ConvLSTM model with all available inputs (version 15)
achieves the lowest average error. The hydrograph view (Figure 6)
suggests that this comparatively lower error maybe due to the

model’s ability to accurately predict the daily and seasonal
fluctuations that comprise the bulk of the training data. This
trend is most pronounced at timesteps where observed stage
heights were below the peak threshold value, particularly during
the drier winter months. Conversely, model errors appear
systematically larger when predicting higher, more extreme
stream stages.
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FIGURE 8

Observed vs. predicted stage heights for best performing model versions for 2016 (top) and 2018 (bottom) floods. Color bars represent model runs
for di�erent input windows. Dashed line indicates observations from OneRain gauge network.

These results are consistent with previous studies on
hydrological prediction of extreme events. Frame et al. (2022)
demonstrated that across multiple data-driven and process-based
models, prediction error increased with event magnitude. It is
likely that the comparatively small number of peak events available
for training contributed to the model’s poor performance on the
validation set, which is a common challenge when predicting
extreme events (Qi and Majda, 2020).

Despite not capturing the magnitudes of some of the larger
stage heights, model version 15 also performs best on the “peak
index” accuracy metric. Contrasted with the full validation set,
more of the model versions evaluated for these peak indices were
found to produce larger, statistically significant improvements
over the baseline LSTM. Using a 1-h input window the addition
of spatiotemporal inputs resulted in a ∼26% improvement to
the model, yet exhibited only a 6% improvement at correctly
identifying peak indices. The high degree of type II error (i.e., false
negatives) for both the ConvLSTM and baseline models, however,
still reflects an increased need for predictive power at detecting
elevated flood conditions in general.

The broader performance trends across all model formulations
differ depending on which objective is being considered. When
evaluating for peak indices or the full validation data, most
model versions appear to benefit from a shorter input window.
This finding runs counter to what may be expected in a data-
driven model, where additional information about prior conditions
typically leads to improved performance. One possible explanation
could be found in the highly-flashy nature of this particular
catchment. The rainfall-runoff response time in the Tiber-Hudson
watershed is incredibly rapid, and so larger input windows may
offer diminishing returns in predictive ability. Increased granularity
could be achieved using sub-hourly gauge observations (which
are available through OneRain) however the limiting factor is
currently higher-frequency satellite observations. It’s also possible
that additional information about land surface features, such as
elevation or land use/land cover would help to inform how the
rainfall-runoff response propagates through the catchment.

Despite the floods of 2016 and 2018 occurring through
similar top-down mechanisms, the model results reveal different
characteristics for each event. The 2016 storm shows a strong
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preference for models using 3-h input window that isn’t present in
the 2018 event. Both storms produced similar amounts of rainfall
(6.60 vs. 6.56 inches in 2016 and 2018, respectively). However,
while both storms had ∼3-h durations, the 2016 precipitation
was introduced in a single downpour while 2018 had two distinct
intervals of heavy rainfall (Doheny and Nealen, 2021). It’s possible
the differences in the evolution of these events can account for their
respective model performance.

When viewing the contribution of specific datasets, certain
inputs like the IMERG precipitation and Noah soil moisture appear
to perform poorly individually, yet when paired with additional
radar datasets often produce the best predictions for the historical
floods. The higher errors of these individual inputs are likely due
to their comparatively coarser resolution; IMERG and Noah are
produced at 0.1- and 0.125-degree horizontal resolution (∼11–12-
km), while both NEXRAD products are processed at closer to 1-
km horizontal resolution. So, while they are resampled to match
the domain grid, these inputs may not contain enough spatial
information to be as instructive on their own.

6 Caveats and future research needs

The results explored here reflect the specific hydrological
characteristics of a single, highly-flashy watershed, as well as
the targeted applied science needs of flood managers in Howard
County. While some of the improvements demonstrated here
may appear small, they can still potentially have important
implications when planning for flash flood events. This
is especially true for improvements made to peak index
prediction, as these events factor most heavily into their risk
reduction operations.

As is true with any data-driven approach, the framework
presented here is envisaged to continue to improve asmore training
information and potential inputs become available. Additional
datasets such as landcover or time series from upstream gauges
could be incorporated to provide additional predictive accuracy,
particularly if they are available in near real-time. Future plans
to expand this methodology will focus on other stream reaches
within the Howard County gauge network. Additionally, it
will be critical to validate the model on other similarly flashy
watersheds to assess the generalizability of this approach for flash
flood forecasting.

While deep learning approaches like ConvLSTM can offer
certain advantages, it is helpful to benchmark against established
physical alternatives. NOAA’s National Water Model (NWM)
produces high-resolution streamflow forecasts over CONUS. A
recent study by Viterbo et al. (2020) demonstrated how NWM
forecasts were skillful in capturing trends from the 2018 Ellicott
City Flood (Viterbo et al., 2020). However, the authors caution that
the NWM likely underestimates streamflow in the small Ellicott
City basin and note the difficulty in applying a CONUS-scale
to highly-localized events. A comparison of the OneRain gauge
observations to the NWM Reanalysis 2.0 model confirms that
streamflow was indeed under-predicted at the Hudson Gauge site
for both the 2016 and 2018 Floods (see Supplementary Figure 8).

Much of the power of machine learning methods comes
from their ability to uncover non-linear relationships between

inputs and outputs without explicit representations of a specific
catchment. This can be especially useful when evaluating small and
uncalibrated basins. Kratzert et al. (2019) showed that a LSTM
network performed better at predicting streamflow on ungauged
basins than process-based models calibrated on gauged basins.
Ellicott City, due to its highly flashy watershed and long history of
flooding, provides an ideal backdrop for exploring such a difficult
flood management problem.
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