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Water resources planning and management requires the estimation of extreme 
design events. Anticipated climate change is playing an increasingly prominent 
role in the planning and design of long-lived infrastructure, as changes to 
climate forcings are expected to alter the distribution of extremes in ways 
and to extents that are difficult to predict. One approach is to use climate 
projections to force hydrologic models, but this raises two challenges. First, 
global climate models generally focus on much larger scales than are relevant 
to hydrologic design, and regional climate models that better capture small 
scale dynamics are too computationally expensive for large ensemble analyses. 
Second, hydrologic models systematically misrepresent the variance and higher 
moments of streamflow response to climate, resulting in a mischaracterization 
of the extreme flows of most interest. To address both issues, we  propose 
a new framework for non-stationary risk-based hydrologic design that 
combines a stochastic weather generator (SWG) that accurately replicates 
basin-scale weather and a stochastic watershed model (SWM) that accurately 
represents the distribution of extreme flows. The joint SWG-SWM framework 
can generate large ensembles of future hydrologic simulations under varying 
climate conditions, from which design statistics and their uncertainties can 
be estimated. The SWG-SWM framework is demonstrated for the Squannacook 
River in the Northeast United States. Standard approaches to design flows, like 
the T-year flood, are difficult to interpret under non-stationarity, but the SWG-
SWM simulations can readily be adapted to risk and reliability metrics which bare 
the same interpretation under stationary and non-stationary conditions. As an 
example, we provide an analysis comparing the use of risk and more traditional 
T-year design events, and conclude that risk-based metrics have the potential to 
reduce regret of over- and under-design compared to traditional return-period 
based analyses.
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1 Introduction

Water resources infrastructure is generally designed to manage 
hydrologic extremes. Conventionally, such designs have leveraged 
historical extreme events to estimate the magnitude of future 
extremes associated with some annual exceedance probability 
(AEP). For instance, design floods and design storms associated 
with different return periods are commonly used to size 
infrastructure (Haghighatafshar et al., 2020), and such analyses 
form the basis of standard design criteria in many countries (e.g., 
Bulletin 17C). Here, a flood or storm magnitude associated with 
the T-year return period (or recurrence interval) is an event with 
a p = 1/T AEP (Gumbel, 1941). The terms ‘return period’ and 
‘recurrence interval’ arise because T  is the average time until a T
-year event is exceeded, assuming the events are independent and 
stationary (Stedinger et al., 1993).

However, climate change complicates water resources planning 
in general, and the use of design events and return periods in 
particular. Human-induced climate change is expected to have 
various impacts on atmospheric and hydrologic systems, such as 
intensified and intermittent precipitation (IPCC, 2023), changes in 
snow accumulation and timing, unprecedented rates of snow and 
glacier melt (Pörtner et al., 2022), sea level rise (Oki and Kanae, 
2006), and longer droughts and dry periods due to increased 
potential evapotranspiration and decline in soil moisture (Balting 
et al., 2021), among others. These climate impacts are expected to 
alter the distribution of hydrologic extremes over time as the Earth 
continues to warm. Mapping changes in climate drivers to changes 
in hydrologic extremes is challenging because of the complicated 
and nonlinear nature of the hydrologic cycle and the path 
dependence of extreme events (Vogel, 2017).

Even if it is possible to estimate the evolution of non-stationary 
hydrologic extremes, Read and Vogel (2015) raised several concerns 
with the use of return periods and AEPs in hydrologic design in a 
non-stationary world. First, the interpretation of a return period is 
ambiguous when the AEP associated with a design flow is changing 
over time, and alternative definitions have been proposed. Read and 
Vogel (2015) show that the mean and distribution of the actual return 
period of a design event changes substantially as a function of the 
long-term trend in the annual maximum series, its variability, and the 
severity of the design event. If the annual maximum series is 
increasing over time, the relative reduction in the true return period 
of a design flow increases with the extremity of the design flow. For 
example, the true return period of the stationary 100-year flood will 
decrease relatively more than the true return period of the stationary 
10-year flood.

Fernández and Salas (1999) Pielke (1999), and Read and Vogel 
(2015) have also critiqued the use of return periods and AEPs in 
design under stationary conditions. In addition to a general 
misunderstanding of their meaning by practitioners and the public 
alike (Fernández and Salas, 1999; Pielke, 1999; Douglas et al., 2002; 
Cooley, 2012; Serinaldi, 2015; Serinaldi and Kilsby, 2015), return 
periods and AEPs do not account for the design-life of the 
structure (Haghighatafshar et al., 2020), and so do not directly 
relate the risk-of-failure or reliability of a design over its intended 
design life. The lifetime risk of failure is likely of more use to 
planners and engineers than the average return period or 1 year 

AEP. This problem only compounds when the likelihood of 
extremes changes over time under climate change.

An alternative approach for water resources infrastructure 
design that is more suitable under non-stationarity is design-life 
specific risk or reliability. Here risk is defined as the probability a 
critical threshold is exceeded over the design-life, and reliability is 
the probability the critical threshold is not exceeded 
(reliability = 1-risk). Thus, the calculation is tailored toward the 
question: how likely is it that a project will fail over a T-year planning 
horizon? Engineers can then size, design, and manage infrastructure 
to meet a pre-selected level of risk deemed acceptable. Even if the 
probability of extremes evolves over the planning horizon, as is 
expected under climate change, the risk of project failure can still 
be presented as a single design value, assuming the time-varying 
distribution of extremes is integrated into the calculation of risk. 
This is in contrast to the traditional planning approaches that use 
design events for specific return periods. Return periods do not 
account for climate change dynamic impacts on hydrologic processes 
that govern extreme events. Under these approaches, engineers 
would first need to select both a return period and a future target 
year before calculating the associated design event and would still 
face the challenge of resolving the meaning of that return period as 
the likelihood of extremes changes over the planning horizon (e.g., 
Salas and Obeysekera, 2014).

Despite the potential benefits of design-life specific risk as a 
criterion to guide infrastructure planning under climate change, 
there are several challenges in calculating this risk. Ideally, an 
analyst would have access to a very large ensemble of transient 
climate traces that (1) were unbiased with respect to key 
meteorological characteristics that impact hydrologic extremes 
(e.g., the space–time distribution of precipitation across multiple 
temporal and spatial scales); and (2) encompassed the full range 
of plausible future climate conditions with an accurate 
representation of the likelihood of different climate states in the 
future. If such ensembles were available, they could be used to 
estimate the risk of failure over a planning period of interest. 
Unfortunately, neither of these conditions usually holds.

First, the current generation of global climate models (GCMs) 
remain biased with respect to key aspects of local weather, and 
statistically correcting these biases remains challenging. Changes to 
atmospheric dynamics can play a critical role in regional climate 
change (Lu et al., 2014; O’Gorman, 2015), but there is significant 
bias in the representation of major patterns of atmospheric 
circulation in GCMs, complicating the direct use of precipitation 
projections (Woollings, 2010; Stephenson et al., 2012; Zappa et al., 
2013; Kyselý et al., 2016; Hawcroft et al., 2018; Tan et al., 2018). 
Statistical correction of dynamical biases is difficult since they are 
linked to modeled physical processes that could change under 
warming, thus changing the bias over time (Stephenson et al., 2012; 
Muñoz et  al., 2017; Maher et  al., 2019). In addition, the coarse 
spatial resolution of GCMs can introduce additional biases into 
precipitation extremes. While higher resolution climate models can 
help address these biases (Kendon et  al., 2017), the increase in 
computational expense precludes large enough ensembles for risk-
based planning (Steinschneider et al., 2019; Tebaldi et al., 2022). 
Furthermore, even large GCM ensembles often cannot provide a 
formal estimate of probability of future climate states, as they 
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represent the lower bound of future climate uncertainty (Stainforth 
et al., 2007) and depend on emissions scenarios that are inherently 
non-probabilistic. In response, some have argued for the use of 
stochastic weather generators (SWGs) to efficiently generate very 
large ensembles of future climate (100 s of ensemble members, each 
decades-centuries long) for use in hydrologic design exercises 
(Richardson, 1981; Wilks and Wilby, 1999; Fowler et  al., 2007; 
Steinschneider et  al., 2019). These models, which are trained to 
historical weather data, can produce scenarios that are by design 
unbiased in key attributes of weather such as extreme events, but 
that also can span a very wide but plausible range of future climate 
change to ensure that key vulnerabilities are identified.

Beyond the challenge of future climate data to support design-
life specific risk estimation, there is also the need to use rainfall-
runoff or other hydrologic models to convert future climate into 
hydrologic variables of interest for design. Hydrologic models are 
needed to capture the complicated relationship between changes 
in climatic conditions and hydrologic response, which is a function 
of complicated, non-linear dynamics and depends on other factors 
like antecedent conditions (Sharma et al., 2018). In other words, it 
is not as simple as noting that an increase of X% in rainfall intensity 
will result in an increase of Y% in flood magnitude. However, 
deterministic hydrologic models usually underrepresent the 
variance and asymmetry of daily streamflow, which results in a 
systematic mischaracterization of the hydrologic extremes of most 
interest to engineers and planners (Farmer and Vogel, 2016). As a 
result, hydrologic simulations of future conditions are likely to 
mischaracterize hydrologic extremes under climate change. Farmer 
and Vogel (2016) attribute this systematic error to a general failure 
to account for the variability contained in the model residuals 
when simulating from hydrologic models. Vogel (2017) coined the 
term stochastic watershed models (SWM) for the approach that 
adds stochastic error to hydrologic simulations. SWMs have been 
shown to improve the representation of hydrologic extremes as 
compared to their deterministic counterparts (Shabestanipour 
et al., 2023), and thus present a promising approach for projecting 
future hydrologic extremes under climate change. A hydrologic 
model’s predictive uncertainty is due to model structure, parameter 
uncertainties, calibration, and input data (Moges et al. 2020). 
Shabestanipour et al. (2023) suggest that assuming that the impact 

of all sources of uncertainty are contained in the residuals is an 
effective approach to propagate uncertainty in characterization of 
extreme flows (see also Koutsoyiannis and Montanari, 2022). 
While SWMs are effective at addressing structural uncertainties in 
a hydrologic model, they need to be integrated with multiple input 
scenarios in order to capture changes caused by warmer climates 
or land use change.

In response to the challenges above, this study contributes a 
framework for risk-based decision making for water resources 
infrastructure planning under climate change. This framework pairs 
a stochastic weather generator (SWG) with a stochastic watershed 
model (SWM) to provide large ensembles of streamflow simulations 
reflecting varying levels of potential future warming. Using these 
ensembles, it is possible to compute risk- and reliability-based design 
criterion that reflect the infrastructure’s design life and the appropriate 
risk-of-failure under alternative future climate scenarios. The 
framework also allows planners to project the evolution of key design 
criteria, such as critical flood or low flow statistics, over the 21st 
century under alternative climate scenarios. We apply the proposed 
framework to the Squannacook River in Massachusetts to illustrate 
the changes in critical design statistics under varying levels of climate 
change and the application of risk-based metrics to engineering design.

2 Methodology

The approach detailed in this work is composed of four primary 
components (see Figure 1). First, a SWG is used to develop ensembles 
of future climate scenarios associated with different signals of climate 
change. These ensembles are used to force a deterministic watershed 
model (DWM), creating ensembles of future streamflow. Ensembles 
of hydrologic model error are then sampled and added to each 
streamflow trace from the DWM, to create an ensemble of ensembles 
(or super ensemble) of future streamflow traces that capture various 
signals of climate change as well as the effects of hydrologic model 
uncertainty. Finally, this super ensemble is used to calculate the risk-
of-failure for water resources infrastructure associated with a T-year 
design life. After introducing the case study basin used in this work, 
we describe each of these framework components in more detail in 
the sections below.

FIGURE 1

Integrated Stochastic Weather Generator (SWG)-Stochastic Watershed Model (SWM) framework to estimate hydrologic risk under climate change.
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2.1 Study Basin

We demonstrate the proposed framework for the Squannacook 
River basin located in north-central Massachusetts and southern New 
Hampshire in the United  States (see Figure 2). To demonstrate 
SWG-SWM framework’s generalizability, the SWG-SWM procedure 
was applied to a second basin (Shasta River basin, California, 
United  States), with an alternative DWM, and different climate 
realizations. The results of that analysis are reported in the 
supplementary material. Previous studies suggest that the Northeast 
United States will experience the largest temperature increases in the 
contiguous United States (Hayhoe et al., 2018). Furthermore, a recent 
study in the state of Massachusetts projected an increase of more than 
50% in the 100-year 24-h rainfall event for much of the state under 
both RCP4.5 and RCP8.5 emission scenarios (Siddique and Palmer, 
2021). The Squannacook River basin was selected because it contains 
a 72-year continuous daily streamflow record, has relatively low 
regulation and hydrologic disturbance, and served as a pilot study for 
a previous SWM demonstration project (Shabestanipour et al., 2023).

The Squannacook River drains southeasterly into the Nashua River, 
which in turn flows to the Merrimack River watershed and ultimately 
the Atlantic Ocean. The portion of the Squannacook River basin 
modeled in this study corresponds to the USGS streamgage 01096000, 
which has a drainage area of 173.8 km2. The watershed is primarily 
forested and contains more than 28 km2 of state and town forests. There 

are developed areas along key transportation corridors and in the center 
of Townsend, Massachusetts. Less than 8% of this basin area is 
impervious and it contains five dams. The basin topography ranges from 
a hilly upland plateau with maximum elevation of 450 m in the north 
and west to flat coastal plain in the south and east.

The climate in the Squannacook River basin is temperate, with 
mild summers and cold winters. The mean annual air temperature 
during 1981–2010 was about 46°F (7.78°C) with mean monthly air 
temperatures ranging from about 22°F (−5.5°C) in January to 69°F 
(20.5°C) in July (NOAA National Centers for Environmental 
Information, 2022). The mean annual precipitation is 48 inches 
(1,219 mm) (NOAA National Centers for Environmental Information, 
2022), while the basin’s average annual potential evapotranspiration 
for the period of 1981–2010 is 23 inches (584 mm) (Northeast 
Regional Climate Center, 2024).

The DWM used in this pilot study is the USGS National Hydrologic 
Model Precipitation Runoff Modeling System (NHM-PRMS) version 
5.1.0 (Markstrom et al., 2015; Regan et al., 2019). NHM-PRMS is a 
medium-complexity continuous watershed simulation model that is 
calibrated for the entire continental United States (Regan et al., 2019). 
The DAYMET climate dataset (Thornton et al., 2016) and available 
USGS streamflow records were used to configure and calibrate the 
NHM-PRMS. Calibration of NHM-PRMS is accomplished through a 
normalized squared error on streamflow along several calibration steps 
(e.g., high flows, low flows, monthly flows, and daily flows) for 

FIGURE 2

Location of the Squannacook River basin in Massachusetts, United States.
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hydrologic response units. See Regan et al. (2019) for a full description 
of the calibration procedure. Minimal modification to the NHM-PRMS 
calibration was performed for this pilot study, including adjustment 
factors for minimum and maximum temperature, precipitation, 
precipitation-to-snow conversion, monthly air temperature coefficients 
used for potential evapotranspiration, and the groundwater discharge 
coefficient. The performance of the model in the Squannacook is 
adequate, with a Nash Sutcliffe efficiency of 0.64 and a log Nash Sutcliffe 
efficiency of 0.71. This is very similar to the average performance of 
PRMS across the United States (Farmer and Vogel, 2016).

2.2 Stochastic weather generator and 
climate scenarios

Stochastic weather generators provide a computationally efficient 
and complementary alternative to GCMs for hydrologic systems’ 
analysis under climate change. These models are structured based on 
historical meteorological records and are used to generate large 
ensembles of simulated daily weather records that are similar to but not 
bound by variability in past observations (Richardson, 1981; Wilks and 
Wilby, 1999; Fowler et al., 2007). For hydrologic impact assessment 
studies, weather generators must develop timeseries of multiple weather 
variables (e.g., precipitation and temperature) at multiple locations 
while maintaining the persistence and covariance structures associated 
with transient, multi-day storm events and over longer (seasonal-inter-
annual) timescales. After a weather generator has been calibrated to 
historical data, model parameters can be  adjusted to produce new 
realizations of weather, presenting changes in intensity and frequency 
of average and extreme precipitation, heatwaves, and cold spells (Wilks, 
2002; Wilks, 2010; Wilks, 2012) The reasoning behind the specific 
methodological choices in the SWG used in this study are described in 
(Najibi and Steinschneider, 2023).

We adopt the SWG developed for the state of Massachusetts by 
Steinschneider and Najibi (2022a). This SWG is based on the model 
described in Steinschneider et al. (2019), Rahat et al. (2022), and Najibi 
et  al. (2021). An advantage of the SWG over direct use of GCM 
projections, is the ability of the SWG to produce a larger number of 
climate change realizations at a spatial and temporal scale that is 
meaningful for hydrologic simulation, than what is typically available 
through direct use of downscaled GCMs. This weather generator is a 
semiparametric, multivariate, and multisite model that is designed to 
separately model dynamic and thermodynamic atmospheric 
mechanisms of climate variability and change through statistical 
abstractions of these processes. To capture atmospheric dynamics, the 
weather generator uses a non-homogenous Hidden Markov Model 
(NHMM) to identify and simulate sequences of weather regimes 
(WRs), which are recurring large-scale atmospheric flow patterns (e.g., 
upper-level, quasi-stationary blocks and troughs) that organize high-
frequency weather systems (Robertson and Ghil, 1999; Robertson 
et  al., 2015). Precipitation and both maximum and minimum 
temperature are simulated through bootstrapping from the historical 
record conditional on the simulated WRs. Noise is added to resampled 
heavy precipitation events to ensure that simulated extreme events can 
exceed those in the observations. To capture thermodynamic 
mechanisms of climate change, the weather generator post-processes 
simulated precipitation and temperature data to reflect patterns of 
warming and thermodynamic scaling of precipitation rates with that 
warming (i.e., precipitation intensification).

This model was developed for 20 separate river basins across the 
entire state of Massachusetts (at the 8-digit Hydrologic Unit Code: 
Huc8 level), using gridded (~6 km) daily precipitation and maximum 
and minimum temperature between January 1, 1950 and December 
31, 2013 from the dataset developed by Livneh et al. (2015). For every 
HUC8 watershed, the model was used to simulate 100 ensemble 
members, each 64-years long (the length of the instrumental record), 
for temperature changes that range from 0°F to 8°F (0°C to 4.44°C) 
warming at 0.5°F (0.28°C) increments (17 warming scenarios 
altogether). This was the range of warming projected in the CMIP5 
ensemble of future projections across the state of Massachusetts for all 
emission scenarios.

For each level of warming, extreme precipitation simulated by the 
model was scaled upwards using a quantile mapping approach. 
Specifically, the daily, non-zero precipitation distribution for each grid 
cell was stretched such that the 99.9th percentile was increased at the 
theoretical Clausius-Clapeyron (CC) scaling rate (~7% per °C 
warming), which is the rate at which the water holding capacity of the 
atmosphere increases with warming (Held and Soden, 2006). If all other 
factors controlling precipitation intensity remain unchanged, it is often 
assumed that extreme precipitation will scale with temperature at this 
same rate (Allen and Ingram, 2002; Allan and Soden, 2008). The 
reasoning is that under conditions that lead to extreme precipitation 
(i.e., near saturated atmospheric conditions; intense surface convergence 
and uplift), changes in atmospheric moisture content will translate 
directly to changes in precipitation amount. A separate analysis of 
extreme precipitation scaling across the Northeast US was used to 
support this choice (Najibi et  al., 2022; Steinschneider and Najibi, 
2022a). Mean precipitation was held at historical levels in these scenarios.

The climate change mechanisms that lead to hydrologic impact 
are categorized into thermodynamic or dynamic impacts of climate 
change. Thermodynamic impacts are directly related to the 
temperature change of the atmosphere. Thermodynamic modes 
include snow accumulation and melt, higher evapotranspiration, and 
more intense precipitation due to an increase in the moisture holding 
capacity of atmosphere. Dynamic atmospheric mechanisms refer to 
the frequency of weather regimes (i.e., shifts in atmospheric 
circulation) (Steinschneider and Najibi, 2022b), which are significantly 
more uncertain than thermodynamic change (Shepherd, 2014; Pfahl 
et al., 2017). The climate scenarios included in this analysis only reflect 
mechanisms of thermodynamic climate change, which are direct 
responses of the climate to warming and are often deemed some of the 
most credible projections of future climate (Pfahl et al., 2017). In this 
study we used the SWG simulations over the Squannacook River basin 
as the forcing to our hydrologic model, described next. Steinschneider 
and Najibi (2022a) found a substantial increase in the extreme rainfall 
intensity in the scenarios used for this study.

2.3 Stochastic watershed model

In this work we  employ a SWM to translate scenarios of 
climate from the SWG into streamflow simulations. SWMs use a 
deterministic watershed model (DWM) to simulate the hydrologic 
response to climate, and then re-introduce errors back into the 
DWM prediction to address the bias in extreme flows (Vogel, 
2017). In this work, we  adopt the SWM developed in 
Shabestanipour et al. (2023), which was verified and validated for 
the Squannacook River basin. As described above, the USGS 
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National Hydrologic Model Precipitation Runoff Modeling System 
(NHM-PRMS) (Regan et al., 2019) segment for the Squannacook 
River was used as the core DWM.

To add error back to the DWM predictions, the SWM in 
Shabestanipour et al. (2023) fits an autoregressive [AR(3)] model to 
the log-ratio (denoted 𝜆) of simulated and observed streamflow from 
the NHM-PRMS. Simulations of new log-ratios are then generated by 
first bootstrapping residuals from the fitted AR model, then using 
those resampled residuals in the AR model to re-introduce 
autocorrelation, and finally using those simulated log-ratios to adjust 
DWM simulated flows into a stochastic trace of simulated streamflow. 
There is also a separate bias correction factor (BCF) applied to address 
biases that can arise when operating on log-transformed flows. All 
equations for this model can be found in Figure 1.

We note that the PRMS model and the SWM in Shabestanipour 
et al. (2023) were both calibrated using observed meteorological data 
from the Daymet dataset (Thornton et  al., 2016), but the SWG 
produces weather traces based on the meteorological data in Livneh 
et  al. (2015). This change in input data introduces a bias to our 
simulated streamflows, which we address using a quantile mapping 
bias correction calibrated over the historical period (see Supporting 
Information; Teegavarapu et al., 2019).

Ultimately, we  force the DWM with the 17 different warming 
scenarios from the SWG, each containing 100 ensemble members, for a 
total of 1,700 separate time series of deterministic streamflow 
predictions. We  then used the SWM to simulate 10,000 stochastic 
streamflow traces for each of these 1,700 realizations, producing a super 
ensemble of 17,000,000 streamflow traces. Here, each of the 17 warming 
scenarios (which capture future climate change uncertainty) have 
1,000,000 hydrologic simulations that capture both natural climate 
variability and hydrologic model uncertainty.

2.4 Risk-of-failure design criterion

By integrating the SWG and SWM above, we can simulate a super 
ensemble of streamflow traces associated with 17 separate levels of future 
warming. However, these traces (which are each 64 years long) reflect a 
different step change in temperature rather than gradual, transient 
scenarios of warming. Therefore, the ensemble of 1,000,000 streamflow 
traces associated with each level of warming can be used to calculate the 
stationary risk of infrastructure failure for a particular level of warming, 
but they cannot be directly used to calculate the risk of failure over a 
T-year planning horizon during which temperatures gradually warm.

We address this challenge by first calculating the stationary risk 
of failure for each warming scenario generated by the SWG-SWM 
ensemble, and then integrate this risk of failure over transient 
pathways of warming projected by GCMs. To demonstrate this 
approach, let A be a particular flood magnitude of concern (e.g., the 
flood level that would exceed the capacity of a planned infrastructure 
project). We then define the probability that the flood magnitude A 
will not be exceeded for a particular warming scenario W ∊ [0°F 
(0°C), 8°F (4.44°C)] as:

 

P A W|
Number of years in warming scenario W that flow A is no
( ) =

tt exceeded

Number of all years in scenario W  
(1)

For a planning horizon of T years, we can then calculate the risk 
of infrastructure failure over that horizon as follows:

  
Risk P A WT

t

T

tA ( |( ) = −
=
∏1

1
)

 
(2)

Here, Risk A T( ) is the risk associated with flood A over T years, 
and Wt  is the amount of warming at year t over the planning horizon.

There are two considerations in the formulation above that 
require discussion. First, the transient warming Wt  for each year 
t in the planning horizon needs to be specified. For illustration, 
we do this using a transient projection of temperature from the 
GFDL-ESM2G GCM forced with two separate emission scenarios 
(RCP  4.5 and RCP8.5) and downscaled using the Multivariate 
Adaptive Constructed Analogs approach (MACA; Abatzoglou and 
Brown, 2012). For each RCP, we  compare the historical 
temperatures from this model to the predicted future temperatures 
and set Wt  to the warming level at the end of each decade out to 
2,100. That is, annual values of Wt  increase upwards once every 
decade over a planning horizon of T = 77 years (assuming a 
starting year of 2025). In this step, we used the decadal time steps 
in order to both decrease the noise from interannual variability 
and the necessary computational power.

Second, the probability P(A|W) is only available for the discrete 
levels of warming generated by the SWG (0°F to 8°F at 0.5°F 
increments), but Wt  can reflect any level of warming occurring at 
year t in the planning horizon. Therefore, if Wt  is between one of the 
increments of warming produced by the SWG, the probability 
P A Wt( | )  is estimated by linearly interpolating between the 
probabilities P(A|W) for SWG-informed warming levels that are 
directly above and below Wt .

3 Results and discussion

The integrated SWG-SWM framework described in Section 2 
allows planners and engineers to track the impacts of climate change 
on the distribution of key design statistics for varying levels of 
warming or over climate change scenarios, or alternatively to evaluate 
the risk of a given flow being exceeded over the intended design life of 
a project. We  address each of these two cases in turn for the 
Squannacook River in Sections 3.1 and 3.2 below.

3.1 Non-stationary design events

Figure 3 compares the distribution of several common drought 
and flood design statistics under vary levels of warming to the 
observed values over the historical period (1950–2013). Observed 
values are derived by fitting a log-Pearson Type III distribution to the 
annual maximum or 7-day low flow series (Chowdhury and Stedinger, 
1991). For each of the flood statistics, the SWG-SWM simulations for 
0°F /0C warming closely match the observational record, producing 
similar median and 90% confidence intervals. This indicates that the 
SWG-SWM framework can replicate flood characteristics under 
historical conditions and suggests the model should provide 
reasonable projections of flood characteristics under warming 
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conditions. The SWG-SWM framework struggles to capture the 
uncertainty in the estimate of the 7Q10 (minimum annual 7-day 
average flow with 10-year recurrence interval) from the observational 
record, which is likely due in part to the underlaying hydrologic 
model’s poor performance in simulating low flows in the Squannacook 
(Shabestanipour et al., 2023). Despite this, the SWM-SWG median 
7Q10 is close to the observed 7Q10 and is well within the 90% 
confidence interval (see 0°C scenario width of calculated 7Q10s in 
Figure 3A).

The SWG-SWM framework projects that both droughts and 
floods will become more extreme as temperatures increase in the 
Squannacook. For example, under 4°F (2.22°C) warming the 
SWG-SWM projects an increase in the median100-year flood of 19% 
over 0°F (0°C) conditions, and an increase of 68% under 8°F (4.44°C) 
warming. For a fixed AEP flood, the marginal flood magnification 
with respect to an increase in warming also increases, so flood 
magnification is a non-linear function of warming for the 
Squannacook. For a fixed warming level, the flood magnification also 
increases with return period. For example, under 8°F (4.44°C), the 
SWG-SWM projects an increase of 63, 68, and 78% for the 50-, 100-, 
and 500-year floods, respectively. There is significant uncertainty in 
both the observed and projected flood magnitudes, as reflected in the 
wide 90% confidence intervals in Figure 3. The projected median 100- 
and 500-year floods are within the 90% confidence interval of the 
observed historical record, as estimating such extreme flood quantiles 
from a limited historical record includes significant uncertainty. The 
projected distributions of extreme floods are positively skewed, with 
upper tails that extend to extreme flood magnitudes, and this 
asymmetry grows with warming conditions.

While the fixed warming levels in Figure 3 are useful to track the 
basin response to warming, climate change is expected to evolve 

through the course of the 21st century and most planning exercises use 
climate scenarios, such as the representative concentration pathways 
(RCPs) (Van Vuuren et al., 2011). Figure 4 plots the evolution of the 
median daily flow, the 100-year flood, and the 500-year flood for 
RCP4.5 and RCP8.5 by decade through 2,100, by mapping the 
GCM-projected temperature change under each emission scenario 
and for each target year to a SWG-SWM warming scenario. The 
no-warming scenario is also shown as a baseline. The SWG-SWM 
framework projects a decline in the median daily flow through 2,100 
under both climate scenarios: a 21% decline for RCP4.5 and a 33% 
decline for RCP8.5. Despite this, extreme flood magnitudes are 
projected to increase under both RCPs. Under RCP4.5 extreme flood 
magnification is modest, with a median flood magnification of 15% 
for the 100-year flood and 17% for the 500-year flood by 2,100. Even 
by the end of the century, under RCP4.5 the median 100- and 500-year 
flood magnitudes are well within the 90% confidence interval for the 
no-warming case, reflecting both the uncertainty in extreme flood 
estimation and the limited impact of modest warming on extreme 
flood quantiles (see also Figure 3). RCP8.5 sees more substantial shifts 
in the distribution of extreme floods by 2,100, with a 67 and 77% 
increase in the 100- and 500-year median floods, respectively. Flood 
magnification quickens after 2050, when RCP8.5 projects a more rapid 
rise in global warming levels. By 2,100 under RCP8.5, the SWG-SWM 
framework projects that the 100-year flood magnitude will exceed the 
estimated 500-year flood over the historical period. This behavior is 
due to the fact that global temperature change of the RCP8.5 scenario 
starts to vary significantly from the RCP4.5 scenario after 2050 
(Ansuategi et al., 2015).

Previous studies in the region project approximately a 30% 
increase in the 100-year flood in western and central Massachusetts 
under RCP8.5 (Siddique et al., 2020; Siddique and Palmer, 2021), 

FIGURE 3

Impact of fixed warming levels on the distribution of the (A) 7Q10, (B) 50-year flood, (C) 100-year flood, and (D) 500-year flood.
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which is less extreme than our results. Both our study and previous 
studies suggest greater increase around the end of the century. Our 
results for RCP4.5 are in general agreement with previous work, which 
estimate an approximate 15% increase of the 100-year flood under this 
warming trajectory (Siddique and Palmer, 2021).

3.2 Risk of failure

Figure 4 provides a useful demonstration of shifting extremes in 
a non-stationary world by tracking changes in common design 
statistics over time for different climate scenarios. Figure  4 also 
highlights the deficiency of the “return period” or the AEP as a 
concept for communicating risk under non-stationarity. The median 
100-year flood can be  expected to change over the design life of 
infrastructure built today due to climate change (Milly et al., 2002). In 
the case of the Squannacook, the 100-year flood is expected to get 
larger over time. Planning for the 100-year flood today risks under-
design, whereas planning for the 100-year flood at the end of the 
planning horizon risks over-design. Non-stationary return periods 
have been proposed (Olsen et al., 1998; Salas and Obeysekera, 2014), 
but their meaning can be difficult to interpret. A more natural design 
criteria is risk (or conversely, reliability), whose interpretation is the 
same under stationary or non-stationary conditions (Read and 
Vogel, 2015).

Figure 5 reports the relationship between risk and various fixed 
return period floods under a range of warming conditions, for a 
50-year design life. Figure  5A illustrates how the risk of the 
no-warming 50-year, 100-year, and 500-year floods change for the 
Squannacook as temperatures increase. As expected from Equation 2, 
the risk of the no-warming 50-, 100-, and 500-year events being 
exceeded in a 50-year design life under the no-warming case are about 
60, 40, and 10%, respectively. As temperatures warm in the 
Squannacook, the risk of each design event being exceeded increases 
substantially, with 4.5°F of warming the risk of the no-warming 
100-year event exceeding the theoretical risk of the 50-year flood in 

stationary conditions. The relationship between risk and warming is 
nonlinear and varies by return period. At low warming levels, the risk 
of the 50-year flood increases more rapidly with temperature in 
absolute terms than risk of the 500-year event. However, the opposite 
is true at high warming levels, with the 500-year flood’s risk increasing 
with temperature faster than the 50-year flood. Figure 5B shows the 
percent change in risk for the three design events under varying 
degrees of warming. For a fixed level of warming, the relative increase 
in risk grows with return period. For example, under 6°F of warming, 
the risk of the 50-year flood has increased 58% while the 500-year 
flood risk has increased 186%. As temperatures increase, the relative 
increase in the risk of the 500-year flood grows rapidly, while the 
relative increase in the risk of the 50-year event stagnates as it 
approaches 100% risk in absolute terms (e.g., near certainty that it will 
be exceeded over the 50-year design life).

Figure 6 reports the accumulated risk of various design floods 
(computed under no warming), being exceeded over time under three 
future climate scenarios: no-warming, RCP4.5, and RCP8.5. Risk 
increases over time, as each year there is a chance the specified design 
flow will be exceeded. The risk increases faster for less-extreme floods 
(e.g., 50-year flood), as each year there is a higher probability that flow 
level will be  exceeded. Risk also grows more quickly for the two 
warming scenarios than for the no-warming case, because the 
SWG-SWM projects that increasing temperatures will increase 
extreme floods. The difference in risk between RCP4.5 and the 
no-warming case is notable, given the SWG-SWM framework projects 
only modest increases in extreme floods under RCP4.5 (see Figure 4). 
This highlights that even small increases in annual flood risk 
compound over time to yield substantial differences in risk over a long 
planning horizon. There is very little difference between RCP4.5 and 
RCP8.5 through 2050, because those two climate scenarios follow 
similar warming trajectories until mid-century. After 2050, risk 
accumulates quicker for RCP8.5 than RCP4.5, as the SWM-SWG 
projects that floods will become more extreme under RCP8.5 than 
RCP4.5. Figure 6 suggests that the choice of climate scenario (RCP4.5 
vs. RCP8.5) does not meaningfully impact flood risk if the planning 

FIGURE 4

Design floods and median daily flows by decade under RCP4.5 and RCP8.5 and under 0°F/°C warming.
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horizon terminates around 2050, but that after 2050 the choice of 
climate scenario can impact the projected flood risk.

To further explore generalizability of this framework 
we implemented the SWG-SWM integration process for the Shasta River 
basin in California, United  States. We  have included the results of 
secondary basin’s analysis in the supplementary material. Implementation 
of the framework on a second basin supports the applicability of this 
method on basins with different hydrologic characteristics.

3.3 Risk-based decision making using the 
SWM-SWG framework

To demonstrate the application of the SWG-SWM framework for 
risk-based decision making, we consider the design of culvert with a 
50-year design life being constructed in 2025. In Massachusetts, the 
recommended design flow for a culvert is the 100-year flood 
(Massachusetts Department of Transportation, 2020). Under 
stationary conditions, this implies a 39.5% risk over the design life. 
When designing a culvert in non-stationary conditions, the planner 
has at least three choices in selecting a design flow: (1) design to the 
current 100-year flood (here represented by the no-warming case), (2) 
design to the 100-year flood at the end of the design life under a 
climate scenario, or (3) design to a flow that matches the desired risk 
implied by current design standards (i.e., 39.5%). Figure 7 plots the 
design-life risk associated with each of those options for RCP4.5 and 
RCP8.5 versus the design flow. For choice 1 and 2 the associated risk 
of the design flow is calculated by Equation (2) and the third design 
flow was found by a grid search for the associated risks of flows in 
between the two initial flows. Here the design flow can be considered 
a proxy for cost, albeit an approximate and non-linear one. Each line 
represents an alternative climate scenario, which is uncertain and 
represents a design choice. An ideal solution (given a climate scenario) 
would be one in the lower left of Figure 7: a low-risk solution with a 
small design flow and consequently a smaller cost. Unfortunately, the 
ideal is not possible, and a compromise must be selected.

The current (no-warming) 100-year flood is roughly 3,800 cfs 
(107 m s3 / ) and corresponds to a life-time risk of about 40% under 

stationary conditions. However, the risk of the current design flow is 
substantially higher under climate scenarios: rising to 48% under 
RCP4.5 and 58% under RCP8.5. Thus, utilizing the current 100-year 
flood results in under-design and unacceptable levels of risk in the 
Squannacook under climate change, according to design standards. 
Instead, planners may opt to design for the 100-year flood at the end 
of the design life, in this case 2075. As the SWG-SWM framework 
projects increasing flood magnitudes through the course of the 21st 
century, this may be  perceived as a sensible, conservative choice. 
However, this will result in significantly lower risk than desired in the 
design codes. Under RCP8.5, the SWG-SWM projects the 2075 
100-year flood to be about 5,000 cfs (141.5 m s3 / ), corresponding to 
a risk of 25.3%. On its face, a lower risk seems desirable, but it also 
represents a significant over design: a flow of about 4,400 cfs (124.6 
m s3 / ) achieves the desired 39.5% risk under RCP8.5. If the actual 
warming is less extreme than RCP8.5, which is likely (Hausfather and 
Peters, 2020; Hausfather et  al., 2022; Voosen, 2022), then the 
overdesign and consequently the regret will be even more extreme. A 
thorough economic analysis of the costs of over- vs. under-design is 
beyond the scope of this simple example, but if the design standards 
reflect societal risk-tolerance, then selecting the 100-year flood at the 
end of the design life reflects over design, and a potential inefficient 
use of resources that might be spent elsewhere in support of other 
societal objectives.

As shown in Figure 4, RCP4.5 projects more moderate changes to 
extreme floods over the 21st century than RCP8.5. The SWG-SWM 
projects the 100-year flood to be about 4,200 cfs (118.9 m s3 / ) in 2075 
under RCP4.5, while the flow required to achieve the desired 39.5% is 
about 4,100 cfs (116 m s3 / ). Thus, designing for the 100-year flood in 
2075 under RCP4.5 represents only a slight overdesign, with an actual 
risk of 35.7%. Of course, the future will not follow exactly the scenario 
selected for planning, so it is instructive to consider the loss or gain of 
risk if an alternative climate scenario occurs than the one planned for. 
For example, if the 2075 100-year flood from RCP8.5 is used for 
planning, but RCP4.5 actually occurs, the associate risk is 19.7% 
compared to the desired 39.5% and the infrastructure would be designed 
for a flow that is nearly 1,000 cfs (28.3 m s3 / ) larger than required to 
achieve the desired risk. The regret of overdesign could be quantified 

FIGURE 5

(A) The impact of warming on the risk of no-warming design events over a 50-year design life. (B) Percent change in risk of no-warming design events 
over a 50-year design life.
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monetarily in a more applied problem. In contrast, if the design flow is 
selected to achieve 39.5% risk under RCP8.5, and RCP4.5 actually 
occurs, the associated risk would be 31.3% rather than the desired 39.5% 
and the infrastructure would be designed to a flow only about 300 cfs 
( 8 5 3. /m s ) larger than required. Thus, if planning for RCP8.5, 
adopting a risk framing rather than the end-of-horizon 100-year flood 
reduces the regret of overdesign substantially. This result arises in part 
because RCP4.5 and RCP8.5 follow similar trajectories through 2050, 
so the flow associated with a life-time risk of 39.5% is quite similar, even 
if their 2075 100-year floods are quite different.

Figure 8 plots risk vs. flow for two planning horizons (50 and 
70 years starting in 2025) and two climate scenarios (RCP4.5 and 

RCP8.5). This diagram can be  used by practitioners to identify a 
design flow associated with a desired risk, planning horizon, and 
climate scenario, or alternatively a practitioner could identify the risk 
associated with a given flow, planning horizon, and climate scenario. 
The 50-year planning horizon risk profiles are similar between RCP4.5 
and RCP8.5, largely because their warming trajectories are quite close 
into the middle of the 21st century. Because both RCP4.5 and RCP8.5 
project rising temperatures through the end of the 21st century, the 
SWM-SWM projects increasing flood magnitudes through 2,100 (see 
Figure 4). Thus, the longer the planning horizon stretches into the 
future, the more the risk-profile shifts to the right (greater flows 
associated with a fixed risk). The relative shift in the risk profile 

FIGURE 6

Accumulated risk of no-warming design events over the 21st century for the RCP4.5, RCP8.5, and no-warming scenarios.

FIGURE 7

Risk over a 50-year design life under RCP4.5 and RCP8.5 for alternative design flows.
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between the 50- and 70-year planning horizon is greater for RCP8.5 
than RCP4.5, reflecting the greater projected late-century warming 
under RCP8.5. Using the simulation ensemble from the SWG-SWM 
framework, Figure 8 can be expanded to include alternative planning 
horizons or new climate scenarios.

4 Conclusion

Climate change is expected to alter the distribution and arrival of 
hydrologic extremes, and this presents a significant challenge to long-
term water resources planning and management. Mapping the 
hydrologic response to changing climate drivers is challenging, in part 
because of a mismatch in the scale and focus of common climate and 
hydrologic models with the needs of local planners. More 
fundamentally, non-stationarity renders the interpretation of common 
design statistics, like the 100-year flood, technically ambiguous and of 
dubious practical value. To address both issues, this work presents a 
computational framework for risk-based decision making at the 
basin-scale, composed of a Stochastic Weather Generator (SWG) and 
a Stochastic Watershed Model (SWM). The SWG is used to produce 
many synthetic weather sequences reflecting different levels of 
warming and associated intensification of extreme precipitation, while 
using abstractions of dynamic atmospheric mechanisms to capture 
key signals of natural climate variability. The SWM captures the 
hydrologic response to changing climate forcing, correcting bias in the 
deterministic hydrologic models’ representation of extreme flows by 
properly capturing the variance of daily streamflow. The integrated 
SWG-SWM framework is applied to the Squannacook River basin in 
Massachusetts to illustrate the impact of climate change on the 

distribution of hydrologic extremes and use of risk in 
hydrologic design.

For the Squannacook, the SWG-SWM framework projects that 
warming temperatures will produce more extreme floods and low flow 
events. The increase in flood magnitude is non-linear with respect to 
warming: the marginal increase in flood magnitude with respect to an 
increase in temperature increases with the warming level. The increase 
in flood magnitude with warming is also greater for more extreme 
floods: the relative increase of the 500-year flood is greater than the 
relative increase of the 100-year flood for a fixed warming level. Still, 
the uncertainty in extreme floods under no warming is sufficiently 
large to encompass median estimates of extreme flooding under a 
high degree of warming.

A similar non-linear pattern is seen for the risk of failure of a 
specified flood magnitude over a given planning horizon. For smaller 
flood magnitudes, the risk saturates toward unity for moderate 
horizons (e.g., T = 50 years) as it becomes near certain that those 
events will be  exceeded, while for larger floods the risk grows 
exponentially (on a percentage basis). Importantly, the accumulated 
risk associated with flooding is similar between moderate and high 
emission scenarios during the first half of the 21st century because the 
two scenarios follow similar warming trajectories until around 2050. 
This result has large implications for reducing regret in hydrologic 
design. Our results show that basing hydrologic designs on return 
period estimates at either the beginning or the end of a planning 
horizon can lead to large regret (under- or over-design), especially if 
a different climate future occurs than the one used to guide design. 
This regret can be reduced if design is based on a risk framing, largely 
because different emission scenarios (RCP4.5 and RCP8.5) follow 
similar warming trajectories through mid-century, so the flow 

FIGURE 8

Risk versus flood magnitude for infrastructure built in 2025 with either a 50-year or 70-year design life, under (A) RCP8.5 and (B) RCP4.5.
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associated with a given life-time risk of failure is more similar than the 
end-of-horizon return period events.

While the SWG-SWM framework to support risk-based 
hydrologic design proposed in this work shows promise, several 
limitations of the method require discussion. First, the SWG is 
designed to propagate key signals of climate change into large 
ensembles of future weather for risk analysis, but the model is not 
governed by the physical laws of the climate system and therefore may 
produce weather ensembles that are not physically plausible, especially 
for extreme climate change scenarios. In addition, the SWG was only 
used in this study to create scenarios of warming and extreme 
precipitation intensification, without consideration of other signals of 
potential climate change (e.g., shifts in seasonality, changes in mean 
precipitation, etc.). A more in-depth analysis could use the SWG to 
expand the set of scenarios tested, or alternatively, multiple single 
model initial condition large ensembles (SMILES, Lehner et al., 2020) 
could be used as the basis for the weather ensembles in our risk-based 
framework. In either case, multiple signals of future climate change 
beyond just warming could interact to influence hydrologic risk-of-
failure, and these effects should be disentangled (e.g., using variance 
decomposition); (Steinschneider et  al., 2023) to understand the 
relative importance of different climate change signals on risk. This 
effort will be the focus of future work.

A second important limitation of this work is the assumption 
in the SWM that the error structure observed historically can 
be  used to propagate hydrologic model uncertainty under new 
climate conditions. Climate change will alter the frequency, timing, 
and intensity of hydrologic model states, activate model 
components in configurations not seen in the historical record, and 
change the way meteorological forcing is converted to streamflow. 
These changes could alter the structure and distribution of 
hydrologic model errors, although it is difficult to anticipate these 
changes because no future observations are available against which 
to estimate shifts in the error distribution. One promising approach 
to address this challenge is to link the error distribution in SWMs 
to hydrologic model state variables, so that changes in the 
frequency of different states under climate change trigger an 
associate shift in the error distribution. This is an active topic of 
ongoing research. Another limitation of this work is we do not 
consider any land-use change for future scenarios. Future work for 
long-term decision making should consider various combinations 
of land-use change scenarios and warming scenarios.

More broadly, we argue that there is a need for practitioners in 
hydrologic engineering to move away from conventional 
approaches to design such as return period-based design event 
estimation. These techniques, while suitable in the past, are no 
longer justified given the accelerating rate at which the risk of 
extreme events is changing, and the propensity of these methods 
to lead to the future under- or over-design of infrastructure. 
Instead, we  argue that risk-based approaches like the one 
forwarded in this work and advocated elsewhere (Read and Vogel, 
2015) provides an intuitive approach that is well-suited for a future 
in which risk is highly uncertain and dynamic. We recognize that 
the legacy of return period event-based design is entrenched in the 
current state of practice for hydrologic engineering. Therefore, as 
new methodologies emerge to support risk-based approaches, 
we argue that equal or more effort is needed to advocate for their 

use in practice, including the introduction of such alternative 
approaches in undergraduate and graduate school curricula.
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