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Groundwater resource management in arid regions has a critical importance

for sustaining human activities and ecological systems. Accurate mapping of

groundwater potential plays a vital role in e�ective water resource planning.

This study investigates the e�ectiveness of machine learning models, including

Random Forest (RF), Adaboost, K-Nearest Neighbors (KNN), and Gaussian

Process in groundwater potential mapping (GWPM) in the Tan-Tan arid

region, Morocco. Fourteen groundwater conditional factors were considered

following multicollinearity test, including topographical, hydrological, climatic,

and geological factors. Additionally, point data with 174 sites indicative of

groundwater occurrences were incorporated. The groundwater inventory data

underwent random partitioning into training and testing datasets at three di�erent

ratios: 55/45%, 65/35%, and 75/25%. Ultimately, a comprehensive ranking of the

13 models, encompassing both individual and ensemble models, was determined

using the prioritization rank technique. The results revealed that ensemble learning

(EL) models, particularly RF and Adaboost (RF-Adaboost), outperformed individual

models in groundwater potential mapping. Based on accuracy assessment using

the validation dataset, the RF-Adaboost EL results yielded an Area Under the

Receiver Operating characteristic Curve (AUROC) and Overall Accuracy (OA) of

94.02 and 94%, respectively. Ensemble models have been e�ectively applied

to integrate 14 factors, capturing their intricate interrelationships, and thereby

enhancing the accuracy and robustness of groundwater prediction in the Tan-

Tan water-scarce region. Among the natural factors, the current study identified

lithology, structural elements (such as faults and tectonic lineaments), and land

use as significant contributors to groundwater potential. However, the critical

characteristics of the study area showing a coastal position as well as a low

background in groundwater prospectivity (low borehole points) are challenging in

GWPM. The findings highlight the importance of the significant factors in assessing

and managing groundwater resources in arid regions. Moreover, this study makes

a contribution to the management of groundwater resources by demonstrating
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the e�ectiveness of ensemble learning algorithms in the groundwater potential

mapping (GWPM) in arid regions.

KEYWORDS

groundwater potential mapping, machine learning, ensemble learning, arid regions, Tan-

Tan region, Morocco

1 Introduction

Groundwater resource management is a critical component

of sustainable development, particularly in arid regions where

water scarcity poses significant challenges (Elbeltagi et al., 2022;

Orimoloye et al., 2022). To ensure effective water resource planning

and management, accurate mapping of groundwater potential is

essential. A wide range of applications in groundwater resources

has been investigated using Machine Learning (ML). Accordingly,

these applications include groundwater potential prediction (Anh

et al., 2023), groundwater level prediction (e.g., Anh et al.,

2023; Khan et al., 2023), and groundwater quality assessment

(Haggerty et al., 2023). In recent years, machine learning techniques

have emerged as promising tools for analyzing and modeling

complex geospatial data, offering new possibilities for groundwater

potential mapping (Masroor et al., 2023). Machine learning

algorithms have the capability to process large datasets and capture

intricate relationships among multiple variables, enabling more

accurate and efficient predictions (Namous et al., 2021; Garg

et al., 2022; Hajaj et al., 2023; Jari et al., 2023). Among the

machine learning techniques, ensemble learning, which combines

the outputs of multiple models, has shown enhanced performance

and improved prediction accuracy compared to individual models

(Bai et al., 2022). In recent years, major advancements have

been observed in the development, evaluation, and validation

of innovative techniques pertaining to artificial intelligence (AI)

that leverage machine learning (ML) and deep learning (DL)

techniques focused on the domain of GWP mapping (Thanh

et al., 2022). Determination of groundwater potential sites and

various hydrological, hydrogeological, geological, topographic,

and climatic factors is a preliminary step before applying any

modeling approach. Within the aforementioned studies, several

commonly employed models have been utilized, these models

include decision tree (DT) (Naghibi et al., 2019), random forest

(RF) (Rahmati et al., 2016), support vector machine (SVM)

(Anh et al., 2023), naive bayes (NB) (Pham et al., 2021),

AdaBoost (AB) (Naghibi et al., 2017), long short-term memory

(LSTM) (Hakim et al., 2022), convolutional neural network

(CNN) (Hakim et al., 2022), and artificial neural network

(ANN) (Tamiru and Wagari, 2022). Additionally, researchers

have proposed diverse methodologies to enhance the efficiency

and the accuracy of prediction models, including ensemble

models and optimization models. Besides, despite the development

and the efficiency of artificial intelligence algorithms (AIAs),

many researchers prefer to use multi-criteria decision-making as

analytical hierarchy process heuristic model (Ahmad et al., 2023;

Shelar et al., 2023). Indeed, GWPM validation can be supported

with other additional data such as electrical resistivity tomography

(Sangawi et al., 2023).

Around the world, several studies have employed ML and EL

models in GWP mapping, e.g., Arabameri et al. (2021), Sachdeva

and Kumar (2021), and Van Phong and Pham (2023). In the

recent study by Van Phong and Pham (2023), the MBAB-NBT

ensemble model resulted from MultiBoost (MBAB) techniques

and Naïve Bayes Tree (NBT) shows a high performance in

GWPM in the Central Highlands of Vietnam (AUC = 0.741).

Mosavi et al. (2021) evaluated the effectiveness of Boosting

and Bagging EL models for modeling groundwater potential in

the Dezekord-Kamfiruz watershed, Iran. The modeling outcomes

revealed that Bagging models, specifically RF and Bagged CART,

exhibited superior performance with an accuracy of 0.86. The novel

boosting machine learning algorithms (CatBoost, GBDT, XGBoost,

AdaBoost, Random Forest, and LightGBM) were assessed in

mountainous regions by Xiong et al. (2023). As result, XGBoost

revealed relatively the best prediction of GWP zones, with an

AUC of 0.899. In arid regions, Wang et al. (2022) compared RF,

CNN, and deep neural network (DNN) in groundwater potential

mapping within an arid endorheic basin. CNN was reported to

have precise results than the two other models, showing an area

under curve (AUC) of 0.846. Guo et al. (2023) applied six ensemble

models, including RF-C, XGBoost-C, LightGBM-C, RF, XGBoost,

and LightGBM, with (-C) and without considering climatic factors

for GWPM in arid regions. LightGBM-C outperformed the other

models, showing an AUC of 0.921. Morgan et al. (2023) used

the RF EL model to assess GWPM in dry wadis within arid

conditions, focusing on the East Idfu-Esna area in Egypt’s Eastern

desert. The research achieved an impressive accuracy rate of

97%. Subsequently, ROC analysis was employed to identify key

controlling factors, with the RF-based ROC results indicating that

land use, lineament density, soil type, and TWI were the most

influential factors affecting groundwater potential.

In Morocco, a few studies of GWPM were undertaken using

machine learning and ensemble learning algorithms (Namous

et al., 2021; Ouali et al., 2023). RF-LR-DT-ANN ensemble model

demonstrated stable and suitable prediction results in mountainous

karstic region (High Atlas Mountains of Beni Mellal) (Namous

et al., 2021). Additionally, other studies in Toudgha arid oasis

at southeast Morocco reveal the relative effectiveness of boosted

models e.g., Gradient Boosting and the bagged RF to model

groundwater withdrawal (Ouali et al., 2023).

This research is dedicated to assessing the effectiveness of

machine learning and ensemble learning models in groundwater

potential mapping in Morocco’s Tan-Tan region. The Tan-Tan

region serves as a representative arid region characterized by

limited water resources and the necessity for sustainable water

managing strategies. However, prior to this study, groundwater

potential in this region remained unexplored. By integrating

a diverse set of remotely sensed and geospatial data, i.e.,
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topographic, hydrological, climatic, and geological data, alongside

well point data indicating groundwater presence, this study as

well aims to provide valuable insights into the complex factors

influencing groundwater potential in Tan-Tan arid region. The

employed machine learning models in this investigation include

K-Nearest Neighbors (KNN), Adaboost, Random Forest (RF),

and Gaussian Process (GP). These models have been chosen

due to their capability to handle diverse data types, flexibility in

capturing non-linear relationships, and their proven success in

various geospatial applications. Additionally, the ensemble learning

techniques applied, such as combining RF and Adaboost, aim

to further improve the accuracy and reliability of groundwater

potential predictions. The current study provides an opportunity

to compare the above-mentioned models individually and their

potential ensemble models in the specific context of the study area,

characterized by an arid climate, a coastal location, and a limited

training dataset.

The objectives of this study are 3-fold: first, to evaluate the

performance of individual machine learning models and ensemble

learning models in groundwater potential mapping, where

several ensembles of K-Nearest Neighbors (KNN), Adaboost,

Random Forest (RF), Gaussian Process classifier (GPC) are

tested; and second, to identify the key influential factors

contributing to groundwater potential in the Tan-Tan region.

Thirdly, to provide decision-makers with valuable, easy-to-use and

inexpensive methods.

2 Study area geography and
hydrological sitting

The study area is located northeast of the Tan-Tan province,

Morocco (Figure 1). The region climate is arid with De Martonne

aridity index values between 2.7 and 3.5, as well as a minimum

and maximum temperatures of 9.6 and 29.6◦C, respectively. The

average annual rainfall in Tan-Tan region is around 90mm (Jari

et al., 2022). The land in this region is mainly used for industrial

and residential purposes, the study area covers most of urbanized

regions within the Tan-Tan province, as well as for subsistence

farming and the planting of cacti. As a result of the rural exodus

and demographic growth, the province’s urban centers have seen

a significant increase in their population (from 8,079 in 1994 to

86,088 in 2014). This demographic conditions change results in an

analogous increase in drinking water requirements.

Study area pedology is characterized by the abundance of eolian

erosion soils. They are classified as poor quality soils with a high

salt content; consequently, the agricultural production potential of

these soils is very week. Well as, these soils present the absence of

forest cover. Besides, the hydrographic network in the study area

is characterized by seasonal and inter-annual irregularity of the

inflows. The flow regime of the latter is considered as torrential

and rapid. In order to limit the risks of flooding and contribute to

the artificial recharge of the surface alluvial aquifers, the Moroccan

government has built more than ten hill dams on several rivers.

However, the majority of these rivers are not perennial and dry up

for most of the year due to the arid climate of the province.

2.1 Geological setting of Tan-Tan area

The used geological map in this study (Figure 2) was derived

from the Tan-Tan geological map (Scale of 1: 250, 000) provided by

the Ministry of Energy Transition and Sustainable Development of

Morocco, published last year. From a geological point of view, the

study area is part of the Saharan coastal plateau located in south-

west Morocco. The latter is located on the Atlantic coast, dipping

westwards. The study area is formed of lithounits from Cambrian

to Quaternary, which cover as well as show the outcropping

of Neoproterozoic formations extended from the western Anti-

Atlas (Choubert, 1963). Figure 2 shows also two cross-sections

demonstrating the dominance of cretaceous formations in Tan-Tan

region, which appears in the coastal domain.

Proterozoic lithounits are mainly formed by the quartzites

from Neoproterozoic, which is ended by Adoudou formations. In

general, the Precambrian and Triassic terrains are impermeable

formations that have been discovered at depths of over 4,000

meters by drilling activities in the area. These formations form

the bedrock of strategic aquifers located at considerable depths;

the Cambrian is essentially formed by sandstone and pelite

intercalations; the Ordovician shows in its bottom pelitique

sandstone intercalations and mudstone, then topped by sandstone;

Devonian period is essentially calcareous, formed by Riches

formations (see Figure 2). Rich 1 showing Bluish Orthoceras

limestone, quartzose sandstones, and interbedded pelitique layers,

then, Rich 2 showing Crystalline lumachelles limestone, quartzose

sandstones, and interbedded pelitique layers; the Lower Cretaceous

strata are made up of two distinct lithological series: The first

series corresponds to the continental Cretaceous, characterized by

the presence of conglomerates, sands, sandstones, red clays and

gypsum. These deposits have been identified at Oued Chebika

by oil drilling. The second series corresponds to the marine

Cretaceous, whose formations are widely exposed in the Hameidia,

Telia and El Gueblia slopes. The lithology of this last series

is mainly made up of detrital sedimentary rocks, in particular

marly limestones which sometimes alternate with sandy marls.

There are also coarse sediments such as sandstone and sand,

which follow one another in the sequence. Both rock series

have medium to high permeability, although they may contain

significant groundwater reservoirs; the Neogene consists mainly of

very impermeable limestone crusts. It outcrops in the Hamaidias

hills. The coastal zone to the north of Tan-Tan is covered by a

conglomeratic formation of Moghrebian age (Plio-Villafranchian),

surmounted by permeable Quaternary formations comprising

alluvial deposits, scree, alluvial fans and highly permeable limestone

crusts. Recent alluvial deposits, which fill watercourses, are

commonly considered to be alluvial aquifers, provided they

are underlain by impermeable substrates and are of significant

thickness. It is important to note that these two stratigraphic series

constitute the different levels of surface aquifers in the study area

(Bentayeb and Leclerc, 1977).

3 Materials and methods

Groundwater potential mapping is intrinsically dependent

on a complex set of conditioning factors. In this study, a
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FIGURE 1

Location of study area within Tan-Tan province; (A) regional geographic location, (B) digital elevation map of study area.

total of thirteen controlling groundwater-related factors

are selected and grouped into four distinct categories:

topographical, hydrological, geological and climatological

factors. To assess the groundwater potential in this

study area, the methodology summarized in the Figure 3

is adopted.

This analysis begins with (i) the preparation of data

for modeling. This stage includes the setting up of layers

representing the influencing factors and a layer listing the

boreholes present in the study area. Then, in order to effectively

select the factors contributing to the occurrence of groundwater

(Multicolinearity), a technique based on the calculation of

the variance inflation factor (VIF) was applied; (ii) The

RF, Adaboost, KNN and GPC models were used to model

groundwater potential; different sets of models were then

tested to find the best prediction in the generated GWP maps;

(iii) Several statistical parameters were applied to assess the

precision of the results of applying the models, and an overall

comparison was made on the basis of assessing the accuracy of

the models.

3.1 Materials

3.1.1 Groundwater data
Over the last few decades, the province of Tan-Tan has

been the scene of intense hydrogeological prospecting activity.

A considerable amount of drilling works with a total of about

70,000meters have been carried out, resulting in 1,500 groundwater

potential sites. In this study, data relating to groundwater collection

points and boreholes were collected from the Sakia El Hamra-

Oued Eddahab hydraulic Basin Agency (AHB SHOE), Tan-Tan

Provincial Directorate of Agriculture (DPA Tan-Tan) and [the

National Agency for Drinking Water (ONEP)]. The groundwater

potential was determined by analyzing the results of pumping tests

carried out during the development phase of each water point by

the organizations mentioned above. Consequently, boreholes with

a flow rate >10.0 m3/s have been categorized as having a high

potential for groundwater resources. In this context, more than

174 groundwater potential sites have been identified as having high

potential. On the other hand, 133 water points are considered to be

non-potential or to have limited potential in terms of groundwater
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FIGURE 2

Geological map of Tan-Tan region and cross-sections.

supply (Figure 4). Due to the low frequency of non-productive or

very low-yielding boreholes in the study area, we have included

sampling data from areas where no groundwater abstraction has

been carried out, in order to balance the input data set (Manna

et al., 2022). The selection of non-potential sampling sites was based

on in-depth geological and geophysical studies carried out as part

of the groundwater prospecting programs. Boreholes considered

to be productive were assigned a value of 1, indicating a high

potential for water supply. On the other hand, low-yield boreholes,

listed dry boreholes and sampling sites with non-groundwater

potential were assigned a value of 0, indicating very limited

groundwater potential.
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FIGURE 3

Flowchart applying single machine learning and ensemble learning techniques in groundwater potential mapping in the study area.

3.1.2 Conditioning factors
3.1.2.1 Hydrological factor

In order to assess surface water run-off and determine

groundwater infiltration, it is necessary to take into account

various hydrological factors, including drainage density and

distance from the watercourse. The drainage process is controlled

by hydrogeomorphological parameters such as geological

composition, bedrock structure, soil permeability, type of

vegetation cover and land topography (Razandi et al., 2015).

Drainage density is quantified by the ratio between the total length

of watercourses and the unit area of the study zone (Magesh et al.,

2012).

3.1.2.2 Climatic factor

Precipitation is the main source of freshwater supply, which

can either infiltrate aquifers or flow through watercourses. This

depends on the specific topographical features of each region.

This precipitation plays a fundamental role in the aquifer recharge

process (Maity and Mandal, 2019). Various previous studies have

revealed a positive correlation between precipitation levels and

groundwater potential (Adiat et al., 2012). In this study, annual

precipitation mapping was carried out using a time series of annual

precipitation estimates from 2004 to 2014 in the Geotiff format of

the PERSIANN-CSSCDR (Precipitation Estimation from Remotely

Sensed Information Using Artificial Neural Networks—Climate

Data) product and data measured at 20 existing weather stations

around the study area. Next, annual precipitation was estimated

using a polynomial model that was applied to satellite precipitation

data (CCS-CDR PERSIANN). The data was then specialized using

the raster calculator algorithm integrated into the ArcGIS 10.5

software. According to the rainfall map produced, average annual

rainfall varies between 73 and 104 mm/year in the study area. The

highest values are found in the northern part, while in the south

precipitation decreases intensely (Figure 5A).

3.1.2.3 Geological factor

Lithology plays a crucial role in the permeability of aquifers

(Jari et al., 2022) and geological faults increase the infiltration

of rainwater due to the presence of highly permeable weathered

materials. Faults can act as productive underground reservoirs by

inducing the formation of an alteration zone around them (Jari

et al., 2022). Accurate mapping of faults and surrounding areas
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FIGURE 4

Groundwater potential and non-potential point’s location. GWP,

groundwater potential.

is essential to identify potentially productive regions and discover

new reservoirs in fractured zones (Jari et al., 2022). Lineaments are

linear or curvilinear geological structures associated with various

geomorphological or tectonic features (Adiri et al., 2017; Hajaj et al.,

2022). Their orientation, density, and connectivity are important

factors in their characterization (Hajaj et al., 2022). Lineament

density is used as a hydrodynamic indicator to assess groundwater

resources and identify productive zones (Razandi et al., 2015).

The proximity of lineaments is also important for identifying

hydrogeological zones of interest, generally near geological faults.

In this study, the lithology and faults were mapped using the

Tan-Tan geological map at a scale of 1:125,000. The maps were

digitized in ArcGIS 10.5 software, where the fault density and

Euclidean distance from the faults were calculated. The lineaments

were mapped by filtering Landsat 8 OLI satellite images, and their

accuracy was checked by comparing them with the fault maps from

the Tan-Tan geological map.

3.1.2.4 Topographic factor

Topographic factors play a key role in regulating hydrological

conditions, including groundwater flow and soil moisture. In this

study, we used five topographic factors, namely elevation, slope,

curvature, profile curvature, and plane curvature, as well as the

topographic moisture index (TWI). These topographic factors

were obtained from a digital terrain model and processed using

the ArcGIS 10.5 environment, as illustrated in Figure 5. The

topographic moisture index (TWI) is a parameter widely used

to describe spatial moisture patterns and to explain the impact

of topographic conditions on these patterns (Moore et al., 1991).

The TWI influences the movement and accumulation of flows.

When the TWI was calculated for the study area, it revealed the

influence of topography on flow generation and flow accumulation.

In general, high TWI values favor increased groundwater potential.

Elevation and slope factors generally have a negative impact on

groundwater potential, since in flat, low-lying areas rainwater has

more time to infiltrate and recharge groundwater reserves (Jari

et al., 2022).

3.1.2.5 LULC factor

Hydrological processes are strongly influenced by land

use/cover factors (LULC), thereby exerting a significant impact

on groundwater potentiality. Within the scope of this study,

the study land cover map was performed: land use/land cover

(LU/LC) layer was generated using supervised classification and the

maximum likelihood algorithm in the ENVI software, based on the

Sentinel-2A data. Concurrently, the resulting LULC map exhibited

three distinct classes, including Water body, Built-up, Bare soil,

Vegetation, Agriculture, and Forest (Figure 5). Table 1 shows the

data sources used to generate the layers associated with each GW

controlling Factor.

3.2 Methods

3.2.1 Random forest
The random forest (RF) (Breiman, 2001) is an ensemble

classifier consisting of various individual decision trees which

operate as an ensemble. Within the Random Forest, these

individual trees partition class predictions, and the class with the

highest number of votes is adopted as the model’s prediction. This

randomization helps to overfitting reduction and improves the

generalization capabilities of the model. The final prediction of the

Random Forest is achieved by aggregating the predictions of all

the individual trees. This ensemble approach allows Random Forest

to handle complex relationships and interactions between variables

(see Supplementary Figure S1).

The description of the RF algorithm with a training dataset “d”

and “n” features can be described as follows:

1. Use the bagging algorithm to create k random subsets (d1; d2; ...;

dk) from the training dataset d.

2. For each training subset dk, a decision tree model is created.

3. Combine the k trees h1(x1); h2 (x2); ...; dk (xk) into a random

forest ensemble, and determine the final classification results by

aggregating majority votes from the individual trees.

In the training process, tuning hyperparameters for RF

algorithm include n_estimators: number of trees in the forest;

Criterion: in a decision tree, criterion dictates the method for

measuring the split quality. Criterion, on the other hand, offers

options as “entropy” for information gain or “gini” for Gini

Impurity; Bootstrap: method for sampling data points is used in

trees building. If “bootstrap” is set to “false”, the entire dataset is

utilized for building each tree.
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FIGURE 5 (Continued)
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FIGURE 5 (Continued)

Used environmental factors for GWP modeling, (A) precipitation, (B) distance to faults, (C) fault density, (D) distance to lineaments, (E) lineament

density, (F) land use/land cover, (G) TWI, (H) elevation, (I) distance to rivers, (J) rivers density, (K) slope, (L) plan curvature, (M) profile curvature and

(N) lithology (refer to the geological map in Figure 2 for the abbreviations).
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TABLE 1 Spatial database of the study area.

Influencing
factors

Data layers Data source

Boreholes Inventory Borehole sites provided by the

Agency of the Hydrological

Basins

Topographic factors Elevation ASTER-digital elevation mode

(spatial resolution 30m)

Slope https://earthexplorer.usgs.

gov/

Curvature Pixel size of 30m× 30m.

Profile curvature

Plan curvature

TWI

Geologic factors Lithology Geological map of Tan-Tan at

the scale 1:100,000

Distance to Faults Geological map of Tan-Tan at

the scale 1:100,000
Faults Density

Distance to

lineaments

Prepared from Landsat 8 OLI

(spatial resolution 30m)

(https://earthexplorer.usgs.

gov/)Lineaments density

Hydrological

factors

Distance to rivers Digital Elevation Model

(ASTER DEM) was

downloaded from the https://

earthexplorer.usgs.gov

website.

River’s density

Climatic factors Rainfall Prepared form a

PERSIANN-CSS-CDR time

series (0.04 Degrees) and data

measured at 20 metrological

stations.

3.2.2 AdaBoost
The AdaBoost algorithm, known as Adaptive Boosting, was

proposed by Freund and Schapire (1996). It has gained significant

popularity as an iterative boosting algorithm for enhancing

the performance of decision tree methods. AdaBoost effectively

addresses the limitations of weak learners by iteratively correcting

their errors and bolstering their abilities. The approach employed

by AdaBoost involves sequentially adding weak learners to a

model. These weak learners are trained on a training dataset

that is weighted based on their performance. By incorporating

this iterative procedure, AdaBoost transforms these initially weak

models into strong ones. To create a robust final model, multiple

weak learners are combined using a weighted voting scheme.

The weights assigned to each weak learner reflect their individual

contributions to the overall model’s accuracy. In this manner,

the final output model generated by AdaBoost benefits from the

collective wisdom of the diverse weak learners. To formally depict

The AdaBoost algorithm (Supplementary Figure S2), consider a

training set denoted as dn = (x1, y1), ..., (xn, yn). The

algorithm proceeds for k iterations. During each iteration, for

t = 1, ..., k we select a base classifier h(k) from a set H of

classifiers and assign it a coefficient α(k). In the basic version of

the algorithm, H represents a finite collection of binary classifiers

of the form h : R
d → (−1, 1), and the base learner performs

a comprehensive search within H during each iteration. The

work of Freund and Schapire (1997) further emphasizes the

effectiveness of AdaBoost, solidifying its standing as a powerful

ensemble learning technique. In training process, adjustable

hyperparameters include “n_estimators” for the quantity of weak

learners trained iteratively and “learning_rate” that controlling

each classifier’s contribution. Balancing “learning_rate” with

“n_estimators” significantly influences the model’s performance

and learning behavior.

3.2.3 K-nearest neighbor
The KNN algorithm is a non-parametric method. It is based

on the principle that similar data points tend to have similar class

labels or output values. For a given data set, the algorithm identifies

its K nearest neighbors from the training dataset (Fix and Hodges,

1952; Cover and Hart, 1967) (see Supplementary Figure S3). The

proximity between data points is typically determined using a

distance metric, such as Euclidean distance or Manhattan distance.

The K nearest neighbors are the K data points in the training

set that have the smallest distances to the new data point. For

classification, KNN employs a majority voting scheme among the

K nearest neighbors to assign the class label to the new data point.

The class label that occurs most frequently among the neighbors

is considered the predicted class for the new data point. The

K parameter in KNN determines the number of neighbors to

consider. It is a crucial hyperparameter that needs to be carefully

chosen. A smaller K value makes the model more sensitive to local

variations, potentially leading to overfitting. Conversely, a larger K

value can smooth out predictions but may lose local details.

3.2.4 Gaussian Process classification
Gaussian Process is probabilistic model used for regression and

classification tasks. It is based on the concept of modeling functions

as random variables, where any finite set of function values follows

a joint Gaussian distribution (Hensman et al., 2015). Gaussian

Process defines a distribution over functions, where each function

is represented by its mean and covariance. The mean function

provides the average behavior of the process, while the covariance

function captures the relationships between different points in

the input space. The choice of covariance function, also known

as a kernel function, determines the smoothness, periodicity, and

other properties of the functions generated by the GPC. The GP

is determined by the mean function m(x) and the covariance

function k(x, x′); f (x) ∼ gp
(

m (x) , k
(

x, x
′
))

. GPC often referred

to as a normal random process, represents a mathematical model

that quantitatively characterizes the evolving connections among

a sequence of stochastic events. GP relies on the utilization of

the kernel function, which plays an important role in predictive

and classification tasks by incorporating the hypothesis of the

function to be acquired. In the training task, the hyperparameters

configuration for the GPC model must be performed. The primary

hyperparameter, crucially managed through the “kernel” argument,

dictates the covariance function in Gaussian Processes (GP).

Examples of frequently used kernels include RBF, WhiteKernel,

Matern, DotProduct, and RationalQuadratic.
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FIGURE 6

Correlation matrix of the fourteen GIFs for Multicolinearity analysis.

3.2.5 Ensemble machine learning
Ensemble learning is a method that involves training multiple

machine learning models to produce enhanced predictions

(Supplementary Figure S4), thereby boosting the performance

compared to individual models. The term “ensemble” pertains to

these predictors trained to collectively improve overall performance

and predictive accuracy (Sagi and Rokach, 2018). Ensemble models

work on the principle of the “wisdom of the crowd,” where

diverse models contribute their unique perspectives, and their

combined predictions often outperform any individual model.

The underlying idea is that different models may have different

strengths and weaknesses, and by combining their predictions,

we can reduce biases and errors. Ensemble methods can be

implemented by different types, including bagging, boosting, and

stacking. Bagging is the approach used in the current research,

multiple prediction models are trained on various subsets of the

training dataset following bootstrapping. Then, the outputs of

these models are combined using voting soft (for classification)

in the final prediction. Bagging works well when the models used

are diverse in nature and prone to overfitting. The choice of the

ensemble in this study was based on a weighted aggregation of

the individual RF, AB, GB and KNN models to determine the best

possible combination. Three different combinations were tested:

two models, three models and four models.

3.2.6 Grid search
A hyperparameter is a unique characteristic of a model whose

value cannot be inferred from the data itself. In the context of

any machine learning algorithm, the hyperparameter values must

be established before the training process starts. This process

serves as a means to identify the most suitable hyperparameter

settings for a model, which, in turn, contributes to achieving

higher prediction accuracy. Hyperparameter tuning can be perform

through various methods, including grid search, random search,

and manual exploration/n (Bergstra and Bengio, 2012). Grid

search is a methodical approach for identifying the optimal

hyperparameter configuration by automatically training models

using all conceivable settings, as predefined within specified ranges

of hyperparameter values. In this research, we integrated grid

search into our program. Grid search has been applied to all

machine learning models used in the current study.

3.2.7 Accuracy assessment
Results validation is a necessary stage to check the results

performance as well as the results strength. On the other hand,

by varying the dataset partitions, it is essential to evaluate the

computation stability. In the order to perform this task, we have

examined the following sample divisions: 55/45%, 65/35% and
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75/25%. Thereafter, to assess the effectiveness of various ensemble

methods, we applied statistical measures and calculated the area

under the receiver operating characteristic curve (AUC) on the

testing dataset.

The comparison between models is based on the calculation of

the error criteria, FP-Rate, Kappa, MCC, RMSE, MSE, Sensitivity,

Specificity, Accuracy and Precision. Higher values of Sensitivity,

Specificity, Accuracy, Precision, FP-Rate, andMCC; lower values of

RMSE andMSE; indicate a better performance of a model. A Kappa

index value of 1 indicates a perfect model, whereas 0 represents a

non-reliable model. The equations of the error criteria are written

below (Equations 1–11):

MSE =
1

n

n
∑

i=1

(xp − xa)
2 (1)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(xp − xa)
2 (2)

Sensitivity =
TP

TP+ FN
(3)

Specifivity =
TN

FP+ TN
(4)

Accuracy =
TP+ TN

TP+ FP+ TN+ TP
(5)

Precision =
TP

FP+ TN
(6)

FPRate =
FP

FP+ TN
(7)

F1 = 2∗
Precision∗Sensitivity
Precision+ Sensitivity

(8)

MCC =
TP∗TN− FP∗FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(9)

Kappa =
Accuracy− B

1−B
(10)

Where,

B=
(TP+ FN) (TP+ FP)+ (FP+ TN)(FN+ TN)

√
TP+ TN+ FN+ FP

TP True positive, TN True negative, FP False positive, FN False

negative, n total number of predicted and real values, xp is the

predicted classes, xa is the actual class.

To examine the excellence and the performance of machine

learning models, the ROC curve represents a useful way to validate

the results. The curve is a graphical representation that plots the

true positive percentage in the y-axis and the cumulative false

positive percentage in the x-axis. Finally, the area under the curve

was calculated (AUC) from the ROC curve. The area under the

ROC curve varies between 0 and 1; it can be categorized as low

(0.5–0.6), medium (0.6–0.7), good (0.7–0.8), very good (0.8–0.9),

and excellent (0.9–1.0) (Fawcett, 2006).

AUC =
∑

TP +
∑

TN

P + N
(11)

Where TP is the true positive, TN is the true negative, FP is

the false positive, FN is the false negative, P is positive, and N

is negative.

TABLE 2 Multicolinearity diagnosis for the groundwater influencing

factors using the variance inflation factor (VIF).

Variables VIF Variables VIF

Distance to

lines

5.637 Land use/land

cover

1.044

Distance to

rivers

4.998 Plan curvature 1.911

Distance to

faults

5.807 Profile

curvature

1.895

Faults density 1.154 Rainfall 6.727

Elevation 4.035 Rivers density 6.450

Line density 5.787 Slope 2.050

Lithology 5.831 TWI 8.162

TABLE 3 Summary of the used hyperparameters.

Models Hyperparameters
name

Values Chosen
value

RF n_estimators 100, 300, 500,

800, 1000

300

Criterion Gini, entropy Gini

Bootstrap True, false False

AB n_estimators 10, 50, 100,

500

50

Learning_rate 0.0001, 0.001,

0.01, 0.1, 1.0

0.1

KNN n_neighbors 1, 2, 3, 4, 5, 6,

. . . , 30

5

GP Kernel (DotProduct,

RBF, WhiteKernel,

Matern,

RationalQuadratic)

0.2, 0.5, 1, 2, 3,

5

Matern

length_scale=
0.2

4 Results

4.1 Factors evaluation

GIF Screening and Analysis Following the initial stage of the

analysis, which involved creating an inventory map of springs and

non-springs as the foundational reference for the modeling phase,

a thorough examination of the influential factors was conducted.

This examination aimed to identify and retain the most relevant

GIFs while eliminating those that exhibit no discernible impact

or demonstrate multicollinearity. Multicollinearity analysis results

show that VIF values of fifteen factors were all <10, ranging from

1.044 to 8.162. However, the exact VIF (Variance Inflation Factor)

threshold remains a topic of debate, consensus exists regarding a

maximum threshold. If the VIF value of a factor surpasses 10.0

(or the tolerance drops below 0.1), it indicates a higher level of

multicollinearity, which can potentially diminish the predictive

capability the models (Kutner et al., 2004). The correlation matrix

(CM) (Figure 6) depicted a strong positive correlation between

elevation with line density (0.70), a moderate positive correlation
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between elevation and slope (0.40), line density and slope (0.51),

distance to faults and distance to lines (0.49). A strong negative

correlation was observed between rivers density and distance

to river (−0.72). Indeed, there is no precise threshold as to

what constitutes an acceptable level of correlation between two

variables, although the literature shows that values between 0.4

and 0.85 can be acceptable (Dormann et al., 2013). However, the

multicollinearity analysis demonstrates no required elimination of

any factor, following their acceptable values in both of the VIF and

CM (Table 2; Figure 6).

4.2 GWPM

The primary aim of this investigation was to generate

groundwater potential maps (GPMs) utilizing distinct and

ensemble learning models. A total of thirteen model output

combinations were generated by employing four models

individually (RF, Adaboost, GPC, and KNN) as well as in

ensemble configurations. Table 3 displays the hyperparameters

employed in our models. The obtained GWPMs were subsequently

categorized into five distinct classes using the Jenks’ natural break

classification method based on the calibration results. These classes

were designated as very low, low, moderate, high, and very high.

For the individual models, four groundwater potential maps

are presented in Figure 7, where the GWPMs of RF, AdaBoost,

KNN, and GPC were represented in Figures 7A–D, respectively.

The integration of two or three models concurrently led to

the development of novel GPM models, namely RF-AdaBoost

(e), KNN-GPC, RF-GPC, AdaBoost-GPC, RF-AdaBoost-KNN,

RF-KNN-GPC, Adaboost-KNN-GPC, and RF-AdaBoost-GPC.

Figures 8E–L presents both the outcomes and spatial distribution

of the distinct potentiality classes. Last, a set of the four models was

used to produce another GPM model, RF-AdaBoost-KNN-GPC

as shown in Figure 7M. Overall the models show that the very

high GWP values are concentrated at the coastal part, and they are

moderately represented in high river density zones. Meanwhile,

the very low GWP values are localized in the central part within

Neogene calcareous formations and the southwestern part of

study area.

For the individual models (Figures 8A–D), the largest areas

with very high GWP in a decreasing order were obtained by

AdaBoost (21%), Gaussian process (14%), Random forest (9%),

and K-nearest neighbor (8%). Besides the largest very low GWP

areas in decreasing order were obtained by KNN (48%), Adaboost

(43%), RF (38%), and Gaussian process (15%). Considering EM of

two or three models (Figures 8E–L), the largest area with very high

GWP was derived from RF-AdaBoost (27%) while the smallest was

derived from RF-GPC (4%). On the other hand, the largest very

low GWP area was derived from KNN-GPC and Adaboost-KNN-

GPC (k) with (46%) while the smallest was obtained by h (21%).

Concerning, the EM RF-AdaBoost-KNN-GPC (Figure 8M), the

results show that the very low, low, moderate, high, and very high

GWP covers 44, 22, 10, 16, and 8% of the study area, respectively.

The EM with four models show a considerable similarity with RF

and KNN, where much close values of GWP area percentages were

revealed by the three models (Figure 8).

The determination of the success rate was based on the

training dataset, providing an assessment of the model’s accuracy in

fitting the observed Groundwater Potential (GWP). Conversely, the

prediction rate was evaluated using testing data, offering insights

into the model’s predictive performance for the GWP. To analyze

the performance of the appliedmodels, success and prediction rates

were investigated across three different training/testing partitions:

55/45%, 65/35%, and 75/25% of the dataset. The corresponding

results can be seen in Figure 9. The higher success rate was obtained

by RF, FR-Adaboost, RF-GPC, and RF-Adaboost-KNN for the

75/25% partition. However, Adaboost and Adaboost-KNN-GPC

displayed high prediction rates (0.95), while the ensemble models

RF-GPC and RF-KNN-GPC showed the lowest prediction rate

(0.92) for the 75/25% partition.

In order to comprehensively evaluate the predictive

performance of the thirteen models in terms of Groundwater

Potential (GWP), various evaluation metrics including MSE,

RMSE, R-square, F1-score, Specificity, kappa, MCC, Sensitivity,

Pre, FFR, Ac, and AUC were assessed using both the training

dataset (75%) and the testing dataset (25%). Moreover, the

assessment of prediction capability for the thirteen models was

accomplished through the examination of congruence between

the training and validation inventories and the Groundwater

Potential Maps (GPMs). Computed metrics for train and test were

gathered in Table 4, respectively. For the training dataset, the RF,

RF-AdaBoost, RF-GPC and RF-AdaBoost-KNN show an excellent

prediction performance, presented by null MSE, RMSE and FPR

(value = 0), and a maximum (value = 1) R square, F1-score, Spe,

kappa, MCC, Sen, Pre, Ac, and AUC. The EMs RF-KNN-GPC,

RF-AdaBoost-GPC, and RF-AdaBoost-KNN-GPC yield a good

performance results following the minor gaps values with MSE =
0.015, RMSE= 0.12, an FPR= 0.01.

Regarding the test dataset, various performance metrics

were assessed. Assessing reliability through the MSE and RMSE

methods, Adaboost andAdaboost-KNN-GPCmodels displayed the

minimum values (MSE = 0.044, and RMSE = 0.21), whereas the

GPCmodel exhibits themaximumvalues (MSE= 0.089, and RMSE

= 0.30). R-squared presents a values range from 0.70 (RF-GPC, and

RF-AdaBoost-GPC) and 0.76 that was achieved with several models

including, RF, KNN, RF-Adaboost, and RF-AdaBoost-KNN-GPC.

The computed F1-score ranges from 0.921 (GPC) and 0.9

(Adaboost and Adaboost-KNN-GPC). Accordingly, the accuracy

values range from 0.91 to 0.95. Similar trends were observed for

sensitivity, that has a maximum value of 0.94 (GPC and RF-

Adaboost), while a minimum value of 0.14 observed in several

models. Specificity varied between 0.93 (RF, RF-Adaboost, RF-GPC

and RF-KNN-GPC) and 1.000 (Adaboost and Adaboost-KNN-

GPC). Precision values ranged from 0.89 (GPC) and 1 (Adaboost

and Adaboost-KNN-GPC).

In order to assess the prediction capability of the thirteen

models, an evaluation was conducted by comparing the train

and validation datasets with the GWPMs. The resulting rate

curves, known as ROC curves, were generated, and the areas

under each curve (AUCs) were computed (see Figure 10). The

Area Under Curve (AUC) is a valuable metric that quantifies

the system’s ability to predict the presence or absence of

“groundwater,” highlighting the significance of its estimation.
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FIGURE 7 (Continued)
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FIGURE 7 (Continued)
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FIGURE 7 (Continued)

GWPM extracted using RF (A), AdaBoost (B), KNN (C), GPC (D), RF-AdaBoost (E), KNN-GPC (F), RF-GPC (G), AdaBoost-GPC (H), RF-AdaBoost-KNN

(I), RF-KNN-GPC (J), Adaboost-KNN-GPC (K), RF-AdaBoost-GPC (L), and RF-AdaBoost-KNN-GPC (M).

Ranging from 0 to 1, AUC values provide insights into the

predictive usefulness and accuracy of the models. Smaller AUC

values indicate more meaningful predictions, while larger values

indicate more precise estimations. The analysis of the train data

(Figure 10 upper curves) revealed that the RF, RF-Adaboost, RF-

GPC and RF-Adaboost-KNN models achieved the highest AUC

value of 1.000, followed by RF-KNN-GPC, RF-Adaboost-GPC, RF-

Adaboost-KNN-GPC and GPC with AUCs values superior to 0.97.

Additionally, when comparing the validation data (Figure 10 lower

curves) with GWPMs, it was observed that all models exhibited

satisfactory performance for groundwater potentiality mapping,

surpassing an AUC threshold of 0.90. Notably, Adaboost and

Adaboost-KNN-GPC demonstrated the highest performance, with

an AUC of 0.95. Almost all the models show an AUC of more

than 0.94.

Figure 11 shows the prioritization rank of all the used

models. Based on the analysis of Figure 11 the best success

rates were revealed by RF, RF-Adaboost, RF-GPC, and RF-

Adaboost-KNN models with (R-test = 1), while the EM

models RF-KNN-GPC, RF-Adaboost-GPC, and FR-Adaboost-

KNN-GPC show a considerable success rate (R-test = 5).

Besides the best prediction rate was achieved by Adaboost,

and Adaboost-KNN-GPC with R-train = 1, whereas a good

prediction rate was observed with numerous models (R-train =
3) including, KNN, KNN-GPC, Adaboost-GPC, RF-Adaboost-

KNN and FR-Adaboost-KNN-GPC. By considering both of

success and prediction rate, prioritization analysis demonstrated

that the best results were achieved by the EMs RF-Adaboost-

KNN and FR-Adaboost-KNN-GPC demonstrating the benefit

of ensemble modeling implementation in models stabilization

(see Figure 11).

Feature importance refers to the degree of influence or

relevance of different features or variables on a model performance

(Hooker et al., 2019). It is used to identify which features have

the most impact on the model. The feature with a higher score

means that the specific feature will have a larger effect on the

model performance than others. Negative feature importance

value means that the feature makes the loss go up. Feature

importance allows us to understand the relationship between the

features and the target variable, and also helps to understand

what features are irrelevant for the model. As can be seen in

Figure 12, variables TWI is identified as the important input for

the RF model about 12%. For the KNN model, the variables of

distance to faults, Slope, Rainfall, and LULC (respectively with

the values of 10, 6.5, 6, and 3.5%) had a higher contribution in

the modeling process. Additionally, for AdaBoost model, results

have demonstrated that the variables of lines density, elevation,

and LULC were the most important variables which had the values

of 32, 6.5, 4%. For the GPC model, the variables fault density,

LULC and Lithology had the most importance with the values of

6.2, 3.8, 2%.
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FIGURE 8

Percentage of the area occupied by GWP classes for the used models, RF (A), AdaBoost (B), KNN (C), GPC (D), RF-AdaBoost (E), KNN-GPC (F),

RF-GPC (G), AdaBoost-GPC (H), RF-AdaBoost-KNN (I), RF-KNN-GPC (J), Adaboost-KNN-GPC (K), RF-AdaBoost-GPC (L), and

RF-AdaBoost-KNN-GPC (M).
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FIGURE 9

The success and prediction rates of the used ML and ensemble learning utilized models using 55/45%, 65/35%, and 75/25% partition.

5 Discussion

The investigation described aims to generate groundwater

potential maps (GPMs) using different machine learning models,

both individually and in ensemble configurations. The study

utilized four models: Random Forest (RF), Adaboost, Gaussian

Process Classifier (GPC), and K-Nearest Neighbors (KNN).

Thirteen model output combinations were generated, including

individual models and ensemble models. The generated GPMs

were categorized into five distinct classes: very low, low, moderate,

high, and very high. These classes were determined using the

Jenks’ natural break classification method based on calibration

results. Figures 7A–D presents the groundwater potential maps

for the individual models (RF, Adaboost, KNN, and GPC), while

Figures 7E–M shows the GPMs for the ensemble models. The

distribution of groundwater potential classes is described based

on the GPMs. The very high groundwater potential values are

concentrated in the coastal part of the study area and moderately

represented in high river density zones. Conversely, the very low

groundwater potential values are localized in the central part within

Neogene calcareous formations and the southwestern part of the

study area.

The success and prediction rates of the models were analyzed

to evaluate their performance. Three different training/testing

partitions were used: 55/45%, 65/35%, and 75/25% of the dataset.

The success rate represents the model’s accuracy in fitting

Frontiers inWater 18 frontiersin.org

https://doi.org/10.3389/frwa.2023.1305998
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


J
a
ri
e
t
a
l.

1
0
.3
3
8
9
/frw

a
.2
0
2
3
.1
3
0
5
9
9
8

TABLE 4 Results of validation techniques based on training data and results of validation techniques based on test data.

Performance
indicators

MSE RMSE R-squared F1-
score

Specificity Kappa MCC Sensitivity Precision FPRate Ac AUC

RF 0.000 0.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0000 1.000 1.000000

AdaBoost 0.025 0.158114 0.899840 0.975610 0.989583 0.949980 0.950408 0.961538 0.990099 0.0104 0.975 0.975561

KNN 0.055 0.234521 0.779647 0.945813 0.968750 0.890044 0.891158 0.923077 0.969697 0.0312 0.945 0.945913

GPC 0.050 0.223607 0.799679 0.950495 0.979167 0.900080 0.901702 0.923077 0.979592 0.0208 0.950 0.951122

RF-AdaBoost 0.000 0.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0000 1.000 1.000000

KNN-GPC 0.055 0.234521 0.779647 0.945813 0.968750 0.890044 0.891158 0.923077 0.969697 0.0312 0.945 0.945913

RF-GPC 0.000 0.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0000 1.000 1.000000

AdaBoost-GPC 0.040 0.200000 0.839744 0.960784 0.979167 0.920000 0.920737 0.942308 0.980000 0.0208 0.960 0.96073

RF-AdaBoost-KNN 0.000 0.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0000 1.000 1.000000

RF-KNN-GPC 0.015 0.122474 0.939904 0.985507 0.989583 0.969964 0.970013 0.980769 0.990291 0.0104 0.985 0.985176

Adaboost-KNN-

GPC

0.045 0.212132 0.819712 0.955665 0.979167 0.910036 0.911175 0.932692 0.979798 0.0208 0.955 0.955929

RF-AdaBoost-GPC 0.015 0.122474 0.939904 0.985507 0.989583 0.969964 0.970013 0.980769 0.990291 0.0104 0.985 0.985176

RF-AdaBoost-

KNN-GPC

0.015 0.122474 0.939904 0.985507 0.989583 0.969964 0.970013 0.980769 0.990291 0.0104 0.985 0.985176

Performance
indicators

MSE RMSE R-squared F1-
score

Specificity Kappa MCC Sensitivity Precision Fall
FPRate

Ac AUC

RF 0.059 0.244339 0.760714 0.942857 0.93750 0.880357 0.880357 0.942857 0.942857 0.0625 0.940 0.940179

AdaBoost 0.044 0.211604 0.820536 0.955224 1.00000 0.910627 0.914286 0.914286 1.000000 0.0000 0.955 0.957143

KNN 0.059 0.244339 0.760714 0.941176 0.96875 0.880677 0.882248 0.914286 0.969697 0.0312 0.940 0.941518

GPC 0.089 0.299253 0.641071 0.916667 0.87500 0.820054 0.821533 0.942857 0.891892 0.1250 0.910 0.908929

RF-AdaBoost 0.059 0.244339 0.760714 0.942857 0.93750 0.880357 0.880357 0.942857 0.942857 0.0625 0.940 0.940179

KNN-GPC 0.059 0.244339 0.760714 0.941176 0.96875 0.880677 0.882248 0.914286 0.969697 0.0312 0.940 0.941518

RF-GPC 0.074 0.273179 0.700893 0.927536 0.93750 0.850646 0.851026 0.914286 0.941176 0.0625 0.925 0.925893

AdaBoost-GPC 0.059 0.244339 0.760714 0.941176 0.96875 0.880677 0.882248 0.914286 0.969697 0.0312 0.940 0.941518

RF-AdaBoost-KNN 0.059 0.244339 0.760714 0.941176 0.96875 0.880677 0.882248 0.914286 0.969697 0.0312 0.940 0.941518

RF-KNN-GPC 0.074 0.273179 0.700893 0.927536 0.93750 0.850646 0.851026 0.914286 0.941176 0.0625 0.925 0.925893

Adaboost-KNN-

GPC

0.044 0.211604 0.820536 0.955224 1.00000 0.910627 0.914286 0.914286 1.000000 0.0000 0.955 0.957143

RF-AdaBoost-GPC 0.074 0.273179 0.700893 0.927536 0.93750 0.850646 0.851026 0.914286 0.941176 0.0625 0.925 0.925893

RF-AdaBoost-

KNN-GPC

0.059 0.244339 0.760714 0.941176 0.96875 0.880677 0.882248 0.914286 0.969697 0.0312 0.940 0.941518

AUC, area under curve; Ac, accuracy; FP, false positive; FPRate, rate; GPC, Gaussian Process Classifier; KNN, K-Nearest Neighbors; MSE, mean squared error; MCC, Matthews Correlation Coefficient; RF, Random Forest; RMSE, Root Mean Square Error.
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FIGURE 10

The area under curve (AUC) values for the models.

FIGURE 11

Prioritization graph extracted for the thirteen applied models.
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FIGURE 12

Importance of the input variables for the used machine learning algorithms.

the observed groundwater potential, while the prediction rate

indicates the model’s predictive performance. Figure 9 displays

the success and prediction rates for each model and partition.

The performance indicators, including MSE, RMSE, R-squared,

F1-score, specificity, Kappa, MCC, sensitivity, precision, fall

FPRate, Accuracy and area AUC, were calculated for each

model. Table 4 presents the results of the validation techniques

based on training and test data. From the results, it can be

observed that RF consistently achieved a high success rate (1)

across all partitions. Adaboost and EN Adaboost-KNN-GPC

demonstrated high prediction rates (0.95), while the ensemble

models RF-GPC and RF-KNN-GPC had the lowest prediction

rate (0.92) for the 75/25% partition. The AUC values, shown

in Figure 10, provide further insights into the performance of

the models.

The Random Forest model (RF) alone also performs well,

achieving the lowest prioritization rank on the test data (R-

test = 1.00). It demonstrates strong predictive capabilities and

generalization power. The AdaBoost model performs exceptionally

well on the train data (R-train = 1.00) but shows a slightly

higher prioritization rank on the test data (R-test = 8.00),

suggesting some degree of overfitting. Even, the inclusion of

Adaboost with RF has no significant improvement in increasing

the prioritization of RF in terms of prediction performance. The

prediction rate rank of RF remain week (R-train =8.00) after

applying the EM RF-Adaboost. Additionally, the inclusion of the

K-Nearest Neighbors (KNN) in the two EM as RF-AdaBoost-KNN

combination further enhances the model’s stability. It achieves

competitive results on both test and train data, indicating a

good balance between generalizations and fitting the training

data. This combination is likely to provide accurate predictions

and maintain stability across various datasets, making it a

reliable choice for practical applications. Although KNN alone

has relatively a weak prioritization ranks on test data (R-test

= 12.00), its incorporation into the ensemble contributes to a

more robust prediction as well as permitted the optimization

of RF prediction rate. The RF-AdaBoost-KNN ensemble model

superior performance can be attributed to the strengths of its

constituent models. RF excels in identifying complex patterns,

and providing variable importance measures. RF when used

individually demonstrated a good performance in GWP studies

in other Moroccan areas, outperforming Linear regression (LR),

decision trees (DT), and artificial neural networks (ANN) models

in High Atlas Mountains (Namous et al., 2021). KNN captures

local patterns and relationships in an unknown data distribution

(Liu et al., 2019). Adaboost enhances accuracy by combining

multiple weak learners and adjusting weights based onmisclassified

instances (Carty, 2011).

By leveraging the strengths of these models, the ensemble

model achieves high performance in GWP mapping accuracy.

Accordingly, numerous studies demonstrated the stability and

the high prediction capability of ensemble learning, compared
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to individual ML algorithms (Tiwari and Chatterjee, 2010). It’s

important to note that model selection should also consider

other factors such as computational efficiency, interpretability,

and specific requirements of the problem. Additionally, it’s

recommended to further validate the performance of the chosen

combination using cross-validation or additional evaluation

metrics to ensure its effectiveness in real-world scenarios. Following

a comprehensive analysis of factors influencing groundwater, our

results align with previous research emphasizing the significant role

of land use, lithology, and fault density in predicting groundwater

spatial potentiality (Senanayake et al., 2016; Senthilkumar et al.,

2019; Jaafarzadeh et al., 2021).

As limitation, the used of the totality of the factors that were

reported in bibliography in the same area is a challenging task.

The application of ML algorithms should be with caution in the

order to avoid misclassifications and overfitting issues. However,

in our study the evapotranspiration factor (i.e., evaporation) has

been avoided. The non-integration of evaporation layer is explained

by the geographical location of the studies area. Indeed, the

proximity to the ocean often means that seawater intrusion can

be a significant concern for groundwater resources. Additionally,

the variable salinity of coastal groundwater systems can complicate

the relationship between evaporation and groundwater. The

coming studies by the authors will consider this thematic.

In arid region, it has been empirically established that the

evaporation factor exerts a pronounced influence on groundwater.

This influence is particularly pronounced due to evaporation

rates in these areas, which can exceed rainfall rates by several

times or even by an order of magnitude, thereby significantly

impacting groundwater reserves (Wang et al., 2022). On the

other hand, the training dataset presents only 174 GWP sites.

The amount of the used data can limit the application of

DL models within the study area. However, the ML and EL

algorithms show a satisfactory findings in terms of accuracy

(see Table 4). Overall, the investigation utilized ensemble learning

models to generate groundwater potential maps and evaluate

their performance using various metrics. The results highlight the

potential of these models for assessing groundwater potential and

can provide valuable information for water resource management

and planning.

6 Conclusion

This study employed a diverse range of methodologies in

GIS environment, based on remote sensing, as well as individual

and ensemble machine learning algorithms to assess Groundwater

Potential (GWP) in extensive Saharan coastal water-scarce region.

The unique characteristics of the study area, characterized by

its coastal position and a low background in groundwater

prospectivity as evidenced by low well points, posed distinct

challenges in groundwater potential mapping (GWPM). These

challenges led us to explore the utility of ensemble models for a

more robust assessment. Multiple machine learning algorithms,

including RF, AB, KNN, and GPC models, were employed for

GWP mapping, chosen due to their satisfactory performance in

other global regions. Individual model application revealed that

RF exhibited the highest success rate, while not achieving a

very high prediction rate. Besides the Adaboost model shows the

inverse with a high prediction rate and a not showing a very

high success rate. To further enhance prediction accuracy and

robustness, ensemble models with two, three, and four algorithms

have been applied. The RF-AB -KNN and RF-Adaboost-KNN-GPC

were developed to explore their capacity to accurate prediction

of groundwater potential zones in the study area, showing their

high stability. The AUC (Area Under the Curve) metric showed

notable improvement, with the ensemble model achieving the

highest value of AUC = 0.94. Furthermore, various statistical

metrics were applied to assess the efficiency and dependability of

the various ensembles and individual models, culminating in a

prioritization rank. The RF-AB-KNN ensemble model yielded the

most promising results. This study’s methodology holds potential

for identifying groundwater potential zones, particularly in

challenging-to-access mountainous regions, where implementing

geophysical exploration methods remains costly and logistically

demanding for vast areas. The outcomes of this study hold

great importance for authorities and decision-makers for planning

and managing groundwater resources, especially for urban and

agricultural needs.
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