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Supervised Deep Learning (DL) methods have shown promise in monitoring the

floating litter in rivers and urban canals but further advancements are hard to

obtain due to the limited availability of relevant labeled data. To address this

challenge, researchers often utilize techniques such as transfer learning (TL) and

data augmentation (DA). However, there is no study currently reporting a rigorous

evaluation of the e�ectiveness of these approaches for floating litter detection and

their e�ects on the models’ generalization capability. To overcome the problem

of limited data availability, this work introduces the “TU Delft—Green Village”

dataset, a novel labeled dataset of 9,473 camera and phone images of floating

macroplastic litter and other litter items, captured using experiments in a drainage

canal of TU Delft. We use the new dataset to conduct a thorough evaluation

of the detection performance of five DL architectures for multi-class image

classification. We focus the analysis on a systematic evaluation of the benefits

of TL and DA on model performances. Moreover, we evaluate the generalization

capability of these models for unseen litter items and new device settings, such

as increasing the cameras’ height and tilting them to 45◦. The results obtained

show that, for the specific problem of floating litter detection, fine-tuning all layers

is more e�ective than the common approach of fine-tuning the classifier alone.

Among the tested DA techniques, we find that simple image flipping boosts model

accuracy the most, while other methods have little impact on the performance.

The SqueezeNet and DenseNet121 architectures perform the best, achieving an

overall accuracy of 89.6 and 91.7%, respectively. We also observe that bothmodels

retain good generalization capability which drops significantly only for the most

complex scenario tested, but the overall accuracy raises significantly to around

75% when adding a limited amount of images to training data, combined with

flipping augmentation. The detailed analyses conducted here and the released

open source dataset o�er valuable insights and serve as a precious resource for

future research.

KEYWORDS

artificial intelligence, computer vision, image classification, environmental monitoring,

pollution, plastics

1 Introduction

Litter accumulation in water bodies is a challenging environmental issue that affects

global ecosystems, human health and the economy (Panwar et al., 2020). Plastic accounts

for most litter pollution in the oceans, due to its widespread use and its persistence in

aquatic environments (Lebreton et al., 2018; Borrelle et al., 2020; Bellou et al., 2021). Recent

studies suggest that rivers are responsible for transferring most plastics from land to the
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oceans (Meijer et al., 2021), while concurrently acting as plastic

reservoirs (Weideman et al., 2020; van Emmerik et al., 2022).

Regardless of the type of waste and its destination in the

environment, urban areas are the main source of litter pollution

in water bodies. For instance, recent estimates for the city of

Amsterdam suggest that around 2.7 million items enter the closely

connected IJ river annually (Tasseron et al., 2023).

The detection and quantification of floating litter in urban

waterways is thus essential for evaluating pollution levels and

informing mitigation actions (van Lieshout et al., 2020). Common

methods include human visual counting (van Emmerik et al.,

2018; van Calcar and van Emmerik, 2019) and debris sampling

(Lechner et al., 2014; Dris et al., 2018). Recently, researchers

have suggested using Deep Learning (DL) methods based on

Convolutional Neural Networks (CNNs) to replace the time-

consuming and labor-intensive traditional approaches (Jakovljevic

et al., 2020; van Lieshout et al., 2020; Garcia-Garin et al., 2021). DL

is a family of representation learning techniques, that involves using

artificial neural networks to learn from and make decisions on vast

amounts of unstructured data. DL models can automatically learn

feature representation from raw data, avoiding manual feature

extraction. This allows DL algorithms to reach state-of-the-art

performances in various complex tasks, e.g., image recognition and

natural language processing (LeCun et al., 2015). Several previous

studies showed the effectiveness of DL-based computer vision for

litter detection, including studies on image classification (IC) (Wolf

et al., 2020), object detection (van Lieshout et al., 2020; Lin et al.,

2021; Putra and Prabowo, 2021; Tharani et al., 2021; Maharjan

et al., 2022; Tomas et al., 2022) and image segmentation (Jakovljevic

et al., 2020). For example, Wolf et al. (2020) developed two CNN

models, PLD-CNN and PLQ-CNN, to classify litter on beaches and

rivers using airborne imagery. PLD-CNN classified images into six

classes (water, sand, vegetation, litter-low, litter-high, and other),

while PLQ-CNN further divided litter items into 11 sub-classes

(e.g., water bottles and cups). Both models achieved high overall

accuracies of 83 and 71%, respectively. van Lieshout et al. (2020)

collected images using cameras mounted on bridges in Jakarta,

Indonesia, and employed the Faster R-CNN with InceptionV2 to

detect plastic litter with a precision of 68.7%. Jakovljevic et al.

(2020) applied a semantic segmentation algorithm to accurately

detect three types of plastic material (OPS, Nylon, and PET) from

airborne imagery, obtaining high F1-scores of 0.86, 0.88, and

0.92 for OPS, Nylon, and PET, respectively. Tharani et al. (2021)

demonstrated that the M2Det(VGG) model could accurately detect

trash objects of various sizes from camera images. Four studies

(Lin et al., 2021; Putra and Prabowo, 2021; Maharjan et al., 2022;

Tomas et al., 2022) showed that models belonging to the YOLO

(You Only Look Once) family can successfully detect litter in rivers

from camera images, airborne imagery or phone images.

While reported results are encouraging, DL-based detection of

floating litter faces several challenges, as recently highlighted by

Gnann et al. (2022) and Jia et al. (2023). One major challenge is

the need of large annotated datasets to train and validate robust

DL models. Acquiring a sufficiently large dataset can be time-

consuming, tedious, and costly. To partially address this challenge,

researchers often utilize techniques such as transfer learning (TL)

and data augmentation (DA).

Transfer learning involves transferring knowledge from a

related task to a new task (Pan and Yang, 2009). When applied to

DL models, TL involves the reuse of a previously trained model on

a large dataset such as ImageNet dataset (Deng et al., 2009), often

requiring the assistance of powerful computing resources. Then,

the model is fine-tuned from the pre-trained model on the desired

dataset to conduct the object task. One common TL strategy is

to use the pre-trained model as the feature extractor, where the

parameters are kept frozen, while the rest of the model’s parameters

are updated during fine-tuning. This can reduce the training time

and prevent overfitting by providing a better starting point for

training. Data augmentation can reduce model overfitting and

improve robustness by increasing the quantity of available training

data through the transformation of images in the original training

dataset (Shorten and Khoshgoftaar, 2019).

Several studies have applied TL and DA methods to

develop better DL models for floating litter detection. For

example, van Lieshout et al. (2020) and Maharjan et al. (2022) pre-

trained the DL models on COCO dataset (Lin et al., 2014) and

then fine-tuned models on floating litter datasets on object

detection tasks. Jakovljevic et al. (2020), Wolf et al. (2020), and

Tharani et al. (2021) pre-trained models using ImageNet, CIFAR-

10 (Recht et al., 2018), and Pascal VOC (Everingham et al., 2010)

datasets, respectively. On the other hand, van Lieshout et al. (2020)

and Wolf et al. (2020) performed horizontal and vertical flipping

augmentation to improve model performance. Lin et al. (2021)

usedmosaic data augmentation and Copy-Paste augmentation, and

Tomas et al. (2022) used rotation augmentation (Jia et al., 2023).

However, only few studies (van Lieshout et al., 2020; Maharjan

et al., 2022) evaluated their benefits compared to alternatives (e.g.,

training models from scratch or with non-augmented datasets).

TL and DA are particularly important to develop models with

good out-of-domain generalization capability, which is essential

for deploying large scale monitoring campaigns (Jia et al., 2023).

Despite the significance of model generalization across locations

and device setups (e.g., camera heights and viewing angles), only a

few studies considered it (van Lieshout et al., 2020; Maharjan et al.,

2022). For example, van Lieshout et al. (2020) found that a model

that performed well for one location in Jakarta, Indonesia, did not

generalize well to a different location of the same city, resulting

in a drop in precision from 68.7 to 54.0%. This degradation in

performance was attributed to the presence of a large amount of

organic material (e.g., leaves and branches) in the new images,

which was not accounted for during training.

To the best of our knowledge, no study exists on DL-based

litter detection reporting a rigorous comparison of TL strategies,

DA techniques and their effects on generalization. In this work,

we contribute to closing this gap and reduce the issue of data

availability by performing a thorough analysis on a novel dataset

of floating litter.

The key contributions of this paper can be summarized

as follows:

1. We release the “TU Delft—Green Village” (TUD-GV) dataset,

a novel labeled dataset of camera and phone images of floating

litter collected from semi-controlled experiments in a drainage

canal of the TU Delft Campus, the Netherlands;
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2. We train and test five deep learning architectures for multi-class

image classification (ResNet50, InceptionV3, DenseNet121,

MobileNetV2, and SqueezeNet), and evaluate the benefits

of multiple TL strategies and DA techniques on detection

performance;

3. We perform tailored experiments to investigate and improve the

out-of-sample generalization capability of the best performing

architectures, considering unseen litter items and new device

settings (i.e., increasing the cameras’ height and tilting the

viewing angle to 45◦).

This study is aiming primarily at researchers developing

novel DL methods for improved detection and quantification of

floating litter in rivers and canals. The insights summarized above

can contribute to other stakeholders such as various technology

providers, consultants, governmental organizations, and Non-

Governmental Organizations (NGOs) to develop more robust DL

models for cleaning up campaigns andmitigation of environmental

pollution (Jia et al., 2023).

The remainder of the paper is structured as follows. Section

2 describes the novel dataset. Section 3 presents the methodology

used in this study, including the DL architectures, TL methods, DA

techniques, and proposed approaches to improve generalization

capability. Section 4 describes three sets of experiments, including

the datasets used, the experimental setup, and performance

evaluation. In Section 5, we present and discuss the experimental

results. Finally, we summarize the conclusions in Section 6.

2 The TU Delft-Green Village dataset

We created the “TU Delft-Green Village” (TUD-GV) dataset

from experiments conducted during 10 days in February and April

2021 in a small drainage canal at The Green Village —a field lab

facility in the TU Delft Campus, the Netherlands. Figure 1 shows

the monitoring setup. We captured data using two action cameras

(GoPro HERO4 and GoPro MAX 360) and a phone (Huawei

P30 Pro) mounted on four different locations on a bridge. All

devices recorded videos with a resolution of 1,080 p, a linear

field of view, and a FPS (frame per second) of 24 (for the action

cameras) or 30 (for the phone). We opted for data collection in a

semi-controlled environment as it is time-saving and cost-effective.

First, we collected the litter objects from canals in Alkmaar (the

Netherlands) with the help of volunteers, as well as from household

waste from nearby neighborhoods. In total, we gathered 626 items,

including plastic bottles, plastic bags, miscellaneous plastic objects,

as well as metal tins, paper and cardboard items. Examples of litter

objects can be found in Supplementary material. Then, we placed

the collected litter on the water surface of the canal at The Green

Village and captured images as the floating litter moved on the

water surface due to wind. Finally, we used floating barriers (see

Figure 1A) to intercept floating litter after data collection to prevent

water pollution.

Table 1 shows the details of the TUD-GV dataset, including

device specifications, weather condition, litter class and the number

of images. We recorded a total of 165 videos, from which we

selected 9,473 images (703 phone images and 8,770 camera images)

to create the TUD-GV dataset. These images contain canal and

household floating litter under two different weather conditions

(sunny and cloudy), taken from two device heights above the water

surface (2.7 and 4.0 m) and two viewing angles (0 and 45 degrees).

Figure 2 provides examples of images from different device settings

(device height and viewing angle). The collected images reflect all

possible combinations of device used, device settings, type of litter,

and environmental conditions. The set of household litter from the

2.7 m/45◦ setup is comprised solely of cloudy weather images, while

some images from the 4 m/45◦ and 4 m/0◦ setups contain sun

glints, as shown in Figures 2C, D. Images from the 4 m/0◦ setup

were cropped to exclude the bridge, as shown in Figure 2C. Inspired

by the categorization scheme of CrowdWater (van Emmerik et al.,

2020), we manually labeled the images in the TUD-GV dataset into

four classes: no litter (0 items), little litter (1–2 items), moderate

litter (3–5 items), and lots of litter (6–10 items) according to the

number of litter items in images (see Figure 2).

The TUD-GV dataset described above is one of the most

complete and accessible datasets for detecting floating litter using

computer vision, and a much needed supplement to existing

datasets made available by other researchers (van Lieshout et al.,

2020; Wolf et al., 2020).

3 Methodology

3.1 Deep learning architectures

We framed the problem of floating litter detection as a

multi-class image classification task. We employed five major

CNN architectures that have demonstrated good performance on

ImageNet classification: ResNet50 (25.6 M parameters) (He et al.,

2016), InceptionV3 (23.9 M) (Szegedy et al., 2016), DenseNet121

(8.1 M) (Huang et al., 2017), MobileNetV2 (3.5 M) (Sandler

et al., 2018), and SqueezeNet (1.2 M) (Iandola et al., 2016).

The reader is referred to the literature for more details on the

employed architectures.

A typical CNN for image classification consists of several

convolutional blocks and a classifier. The convolutional blocks are

made up of convolutional and pooling layers, which are used to

extract features from images. The classifier typically consists of

fully connected dense layers that are used to classify images based

on the features extracted by the convolutional base (Subramanian

et al., 2022). For the purpose of this study, we replaced the

original classifier in each CNN architecture with a global average

pooling layer followed by a dense layer with a softmax activation

function for multi-class classification (i.e., four classes). Global

average pooling summarizes the feature maps produced by the

convolutional base to reduce overfitting and computational costs.

3.2 Transfer learning

We evaluated the benefits of the most common transfer

learning strategies (Guo et al., 2020): (1) fine-tuning the classifier

alone (FTC), and (2) fine-tuning all layers (FTAL). We evaluated

the effect of transferring features learned on the ImageNet IC task to

floating litter detection, a common approach in the field (Jia et al.,

2023). The ImageNet dataset is a widely used benchmark dataset
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FIGURE 1

Monitoring setup at The Green Village: (A) view from the top with the four di�erent filming locations (1–4) on the bridge; (B) details of some camera

installation on Locations 1 and 2.

TABLE 1 TUD-GV dataset details.

Device Device
degree

(◦)

Device
height
(m)

Weather
conditions

Litter
class

No. images per class No.
images

No litter Little
litter

Moderate
litter

Lots of
litter

GoPro HERO4,

GoPro MAX 360,

Huawei P30 Pro

0 2.7 Sunny,

cloudy

Canal litter,

household

waste

1,151 1,429 1,971 1,305 5,856

0 4 555 331 350 124 1,360

45 2.7 399 293 348 166 1,206

45 4 302 246 298 205 1,051

for IC tasks, with more than 20,000 categories (e.g., balloon and

strawberry) and over 14 million images. In the FTC strategy, we

first loaded the model pre-trained on ImageNet, then replaced and

fine-tuned the classifier on the TUD-GV dataset while freezing the

convolutional base (i.e., weights remain fixed during training). In

the FTAL strategy, we fine-tuned all layers of the model on the

TUD-GV dataset after loading the ImageNet weights as the starting

point and replacing the classifier. We compared the effectiveness of

FTC and FTAL against the performances obtained by training the

models from scratch, that is with random weight initialization.

3.3 Data augmentation

Data Augmentation normally includes automated procedures

performing geometric and color transformations on images. In this

study, we evaluated the benefits of four different DA techniques

separately, including (1) flipping, (2) brightening, (3) darkening,

and (4) adding random salt and pepper noise; we also tested (5)

mixing all the four aforementioned techniques, an approached

hereafter identified as MIX DA. Flipping has been shown to be

effective on benchmark datasets, such as ImageNet and CIFAR-10
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FIGURE 2

Examples of images from the TUD-GV dataset captured from four device setups including (A) 2.7 m/0◦, (B) 2.7 m/45◦, (C) 4 m/0◦, and (D) 4 m/45◦.

The captions for the four images are (A) no litter, (B) little litter, (C) moderate litter, and (D) lots of litter, respectively. The image (C) was cropped to

omit the bridge.

(Recht et al., 2018). Since lighting biases often hinder image

classification and object detection (Shorten and Khoshgoftaar,

2019), we also assessed the effect of variations in brightness on

model performances. Furthermore, adding noise to images can help

CNN models discover more robust features in images (Shorten

and Khoshgoftaar, 2019). Techniques such as cropping, rotation, or

zooming were not assessed because they may cause the omission of

original objects of interest in the new images, leading to undesirable

label transformations (Shorten and Khoshgoftaar, 2019).

Figure 3 shows examples of each DA technique. We adopted

three types of flipping methods: horizontal flipping (i.e., reversing

pixels of an image in the horizontal direction), vertical flipping

(i.e., reversing pixels in the vertical direction), and combined

horizontal and vertical flipping (i.e., reversing pixels in the

horizontal direction and then reversing those in the vertical

direction). Each type of flipping was performed to generate one

new image from one original image. For brightness augmentation,

we used the function provided in the Python Imaging Library

(Hadi et al., 2016) by changing the brightness parameter. We

generated three new images with different brightness levels by

using three random brightness parameters [range (1.1, 1.4)]. A

brightness parameter value of “0” creates an image with a black

color, while a value of “1” returns the original image. Values above

“1” create brighter images. Similarly, we employed three random

brightness parameters [range (0.6, 0.9)] for darkness augmentation.

To add random salt and pepper noise, we used the function

provided in the Scikit-image library (van der Walt et al., 2014)

by changing noise ratio values. We created three new images with

different levels of noise by using three random noise ratio values

[range (0.01, 0.15)]. The noise ratio is the proportion of salt-

and-pepper noise in the range (0, 1). A higher noise ratio value

means that there is more salt noise than pepper noise (Azzeh

et al., 2018). Each DA method mentioned above was applied

to generate three new images for each original training image.

MIX DA includes all images generated by the other four DA

methods, resulting in a total of 12 new images for each original

training image.

3.4 Generalization capability

In this study, we tested the generalization capability of the

trainedmodels to different types of litter from various device setups

(camera height/angle). We trained the models on images of canal

litter from the 2.7 m/0◦ setup, and evaluated their out-of-sample

performances on images of household waste from 2.7 m/0◦, 2.7

m/45◦, 4 m/0◦, and 4 m/45◦ setups, respectively. Next, we applied

three methods to improve the models’ generalization capability,

which are (1) using the best DA method emerging from our study

on data augmentation; (2) adding new images to the training

dataset (ANI); and (3) using the best DA method after adding new

images to the training dataset (ANI-DA). All the new images added

to the original training dataset still featured canal litter, but were

captured from 2.7 m/45◦, 4 m/0◦, and 4 m/45◦ setups to better

represent the out-of-sample distributions.
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FIGURE 3

Examples of data augmentation techniques used. (Left) An original image; (Right) images generated by performing horizontal flipping (top row, left),

vertical flipping (top row, right), combined horizontal and vertical flipping (middle row, left), brightening (middle row, right), darkening (bottom row,

left), and adding salt and pepper noise (bottom row, right).

4 Experiments

In this study, we conducted three experiments to: (1) compare

the performances of the five DL architectures, with and without

transfer learning; (2) assess the performance boost of the five

different DA approaches on the two best performing models from

(1); and (3) evaluate and improve the generalization capability

of the best models for unseen litter (e.g., household waste)

and different device setups. Figure 4 shows the flowchart of

three experiments.

4.1 Experiment 1: architectures
comparison and transfer learning

With the first experiment we compared the detection

performances of the five chosen DL architectures (i.e., ResNet,

InceptionV3, DenseNet121, MobileNetV2, and SqueezeNet) and

we assessed the benefits of the FTC and FTAL strategies

described in Section 3.2. We used a shuffled subset of 4,005

images with canal litter for model development, subdivided into

training, validation, and test datasets following the 80/10/10

split detailed in Table 2. Ratios between the different classes

is kept constant across the different datasets. All images

have been recorded from the action cameras with the 2.7

m/0◦ setup.

4.2 Experiment 2: data augmentation
techniques

We applied the five different DA techniques in Section 3.3 to

the two top performing baselinemodels emerging fromExperiment

1. These were retrained on the augmented datasets yielded by

applying each DA techniques, resulting in 12,812 or 41,639 training

images (MIX DA). For a fair comparison against the baselines, we

used the same Validation and Test datasets of Experiment 1 (see

Table 2).

4.3 Experiment 3: generalization capability

To assess the generalization capability to unseen litter items

and different device setups, we evaluated the two selected baseline

models on the four test datasets reported in Table 3. These datasets

include camera images of household waste (different from the

canal litter present in the original training dataset), filmed with 2.7

m/0◦, 2.7 m/45◦, 4 m/0◦, and 4 m/45◦ device setups, respectively.

We performed a misclassification analysis for the best performing

baseline model to better understand which features in the test

datasets posed challenges to generalization. Next, we evaluated the

effects of the methods proposed in Section 3.4 to improve the

generalization capability. We implemented the ANI and ANI-DA

methods by retraining the two baseline models on the TrainANI
and TrainANI-DA datasets of Table 3, respectively. We created the
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TrainANI dataset by adding 1,523 images (4,726 total) of canal litter

to the Train dataset of Experiment 1, from the three missing device

setups (2.7 m/45◦, 4.0 m/0◦, and 4.0 m/45◦). The TrainANI-DA
dataset was created by performing DA on TrainANI, resulting in a

total of 18,904 training images. We validated the models for both

ANI and ANI-DA cases on the ValidationANI dataset, obtained

by adding 188 images of canal litter to the Validation dataset of

Experiment 1. We compared these models against the baselines

of Experiment 1 and the best performing models with DA of

Experiment 2.

4.4 Implementation of deep learning
architectures

We resized the RGB images from their original size of 1,980 ×

1,080 × 3 to 224 × 224 × 3 pixels to match the input dimensions

of the original pre-trained models. Similarly, we rescaled the input

values from a range of 0 to 255 per pixel to a range of 0 to 1.

After preliminary trials, we trained all models using a batch size

of 16 for 100 epochs. To prevent overfitting, we selected the model

parameters from the epoch with the highest validation accuracy.

In Experiment 1, we compared five different learning rates (0.1,

0.01, 0.001, 0.0001, and 0.00001) for each model architecture, and

only used the best learning rate in Experiments 2 and 3. We

introduced class weights to the cross-entropy loss function used

during training to address the slightly imbalanced datasets we

created (Wolf et al., 2020). The weight of each class was calculated

as the ratio of the total number of images to the number of images

in that particular class.

To minimize the effect of randomization, we repeated the

training 10 times for each model in all experiments. All the results

reported in Section 5 are mean values calculated from these runs,

unless we discuss the outcomes of misclassification analysis, which

we conducted on the best performing models out of the 10 runs.

FIGURE 4

The flowchart of three experiments. FTC, fine-tuning the classifier alone; FTAL, fine-tuning all layers; OA, overall accuracy; MIX DA, mixing all the four

aforementioned techniques; DA, data augmentation; ANI, adding new images to original training dataset; ANI-DA, adding new images and

performing DA.

TABLE 2 Datasets for Experiment 1.

Dataset
name

Device setup
(device height/angle)

Litter
source

No.
images

No. images per class

No litter Little litter Moderate
litter

Lots of litter

Train 2.7 m/0◦ Canal litter 3,203 508 752 1,088 855

Validation 2.7 m/0◦ Canal litter 399 63 94 136 106

Test 2.7 m/0◦ Canal litter 403 64 95 136 108
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TABLE 3 Datasets for Experiment 3.

Dataset
name

Device setup (device
height/angle)

Litter
source

No.
images

No. images per class

No litter Little litter Moderate
litter

Lots of litter

TrainANI Alla Canal litter 4726 1,099 1,106 1,500 1,021

TrainANI-DA Alla Canal litter 18,904 4,396 4,424 6,000 4,084

ValidationANI Alla Canal litter 587 136 138 187 126

Test2.7 m/0◦ 2.7 m/0◦ Household

waste

574 145 126 207 96

Test2.7 m/45◦ 2.7 m/45◦ Household

waste

689 242 193 173 81

Test4.0 m/0◦ 4.0 m/0◦ Household

waste

610 213 163 165 69

Test4.0 m/45◦ 4.0 m/45◦ Household

waste

376 61 71 121 123

a“All” device setups includes 2.7 m/0◦ , 2.7 m/45◦ , 4.0 m/0◦ , and 4.0 m/45◦ .

We implemented the DL architectures using the Python

programming language (version 3.8.5) and the Keras DL

framework (version 2.6.0). We used the implementations and

pre-trained weights from tf.keras.applications for all architectures,

except for SqueezeNet.1 Model development was performed on a

local NVIDIA GeForce RTX 3090 GPU (24GB).

4.5 Performance evaluation

To evaluate model performances of floating litter detection,

we used four metrics commonly employed in multi-class IC tasks:

overall accuracy (OA), precision, recall, and F1-score (Jia et al.,

2023). We used OA to summarize model performance across all

classes. This metric measures the percentage of correctly identified

images out of the total images in the dataset. It is calculated

as follows:

OA =

∑K
i=1 Ci,i

N
(1)

where N is the total number of images; K represents the number of

classes; and Ci,i denotes the number of images that are actually in

class i and identified as such.

We used precision, recall and F1-score to assess the

performances for each class. Precision for class i is written

as follows:

Precisioni =
TPi

TPi + FPi
(2)

where TPi (True Positive) represents the number of correctly

classified images of class i; and FPi (False Positive) represents the

number of images misclassified as class i.

Recall for class i is expressed as follows:

Recalli =
TPi

TPi + FNi
(3)

1 https://github.com/rcmalli/keras-squeezenet

where FNi (False Negative) represents the number of images that

are actually in class i but classified as other classes. Precision

reflects how accurate is the model in identifying relevant samples.

It identifies the percentage of correctly identified positive samples

over the total identified positive samples. On the other hand, recall

represents the model’s ability to identify all relevant samples. It is

the percentage of correctly identified positive samples over the total

positive samples. F1-score combines the two metrics by computing

their harmonic mean. It is expressed as follows:

F1-scorei =
2 ∗ Precisioni ∗ Recalli

Recalli + Precisioni
(4)

5 Results and discussion

5.1 Experiment 1: architectures
comparison and transfer learning

Table 4 reports the average training time and OA on the Test

dataset for the five architectures trained from scratch or fine-tuned

after transfer learning. In this table, we only reported the learning

rate that yields the best average OA on the validation set for

each architecture. The full evaluation of the five architectures with

all tested learning rates can be found in Supplementary material.

The FTAL method consistently outperforms the other methods

regardless of the architecture. When using the FTAL method,

we obtained OA ranging from 85.0 to 87.6% on the Test set.

Training models from scratch performs slightly worse than the

FTAL method, with OA ranging between 77.8 and 83.5%. The

FTC method performs the worst, with OAs varying between 62.3

and 73.3% depending on the architecture. For example, switching

from FTC to FTAL with ResNet50 yields a significant improvement

of +22.7% in OA. Although less performing, the FTC method

consistently takes the least training time, costing between 2 and 9 s

for each training epoch. That is ∼2 to 5 times faster than using the

FTALmethod or training the models from scratch. This is expected
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TABLE 4 Learning rate, training time, and overall accuracy of all architectures for Experiment 1.

Model Scheme Learning rate Training timeper epoch (s) Overall accuracy (%)

ResNet50 From scratch 0.001 22 83.3

FTC 0.01 8 62.3

FTAL 0.001 13 85.0

InceptionV3 From scratch 0.001 21 83.0

FTC 0.0001 7 66.5

FTAL 0.001 20 85.7

DenseNet121 From scratch 0.0001 28 83.5

FTC 0.001 9 73.3

FTAL 0.0001 18 87.6

MobileNetV2 From scratch 0.01 19 81.7

FTC 0.0001 4 72.7

FTAL 0.001 19 86.2

SqueezeNet From scratch 0.00001 5 77.8

FTC 0.0001 2 65.8

FTAL 0.0001 4 87.6

The bold entities are the best results of each model architecture.

since training or fine-tuning the entire network takes significantly

more time than fine-tuning the classifier alone.

These results suggest that, while the features learned from

ImageNet may not fully transfer to the task of classifying floating

litter, initializing model parameters with pre-trained weights on

the ImageNet dataset provides a better starting point for the

models than random initialization. Thus, the FTAL method may

enable models to achieve better performance faster. This aligns

with the findings of other studies demonstrating a decrease in

the transferability of learned features when the base task (e.g.,

classification on ImageNet) differs significantly from the target task

(Yosinski et al., 2014).

Our findings are similar to those reported byMarin et al. (2021)

for a study on CNN architectures detecting underwater litter.

The authors classified images into six classes: glass, metal, plastic,

rubber, other trash, and no trash. Even for this case, the FTAL

strategy proved more successful than resorting to FTC, with best

performance on the test dataset of OA = 91.4% compared to 83.0%.

We found that DenseNet121 outperforms the other

architectures, regardless of the the training procedure adopted,

with a maximum OA of 87.6%. The superior performances of

DenseNet121 may stem from the dense connectivity patterns in

its architecture, which favors feature propagation and reuse across

layers, while reducing the total number of trainable weights (Huang

et al., 2017). Despite having only 1.2 M parameters, SqueezeNet

also achieves the highest OA of 87.6%. Due to its size, SqueezeNet

is the fastest to train, however its detection performance depends

significantly on the training procedure adopted, with a difference

of +21.8% between FTC and FTAL. SqueezeNet requires less

trainable parameters to achieve high accuracy due to its innovative

architecture that makes use of 1×1 filters (9X fewer parameters

than common 3×3 filters) and “fire modules” (Iandola et al., 2016).

These results might have practical implications for distributed

TABLE 5 F1-score per class of all architectures trained using the FTAL

strategy for Experiment 1.

Model F1–score

No litter Little
litter

Moderate
litter

Lots of
litter

ResNet50 0.98 0.83 0.79 0.87

InceptionV3 0.98 0.84 0.80 0.87

DenseNet121 0.97 0.86 0.83 0.89

MobileNetV2 0.97 0.86 0.81 0.86

SqueezeNet 0.98 0.88 0.83 0.87

monitoring of litter on edge computing devices (e.g., Raspberry Pi

or other single-board computers connected to a camera), where

litter recognition is performed locally using with limited resources

(Liu et al., 2021).

Table 5 presents the F1-score per class for the five architectures

using the FTAL method. Precision and recall can be found

in Supplementary material. All models perform similarly across

different classes, showing best performances for “no litter” or “lots

of litter” with F1-scores of up to 0.98 and 0.89, respectively. The

models show good but lower accuracy for the other two classes,

with F1-scores ranging from 0.79 to 0.86. The features for these

two intermediate classes may not be highly distinctive, leading to a

higher probability of misclassification. For example, Table 6 shows

the confusion matrix for DenseNet121 using FTAL. We observed

a relatively high number of errors for images belonging to the

“moderate litter” class, are sometimes confused with “little litter”

(14 case) or “lots of litter” (5 case), resulting in the lowest F1-scores

for this class across all architectures, ranging from 0.79 to 0.83.
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5.2 Experiment 2: data augmentation
techniques

Figure 5 compares the average performance of the best

configurations of SqueezeNet and DenseNet121 from Experiment

1 against the average performances obtained by retraining these

baselines using the different DA techniques in Section 3.3. The

baseline performance is indicated by a horizontal dashed line at

OA = 87.6% since the performances on the Test dataset is the

same for both models. The results show that the flipping technique

is the most effective in improving model performances, with a

significant improvement in OA (+2.0% for SqueezeNet and +4.1%

for DenseNet121) compared to the baseline models. This confirms

that flipping augmentation is recommended as it does not distort

the features in the images with respect to the original label (Jia

et al., 2023). The other techniques show a slight increase or

decrease in OA (from−0.1 to +0.8%), possibly due to the excessive

TABLE 6 Confusion matrix of the best performing DenseNet121 trained

with the FTAL strategy for Experiment 1.

True label Predicted label

No litter Little
litter

Moderate
litter

Lots of
litter

No litter 63 1 0 0

Little litter 3 84 8 0

Moderate litter 0 14 117 5

Lots of litter 0 0 12 96

The bold entities are the number of images classified correctly for each class.

transformation of the original images (Shorten and Khoshgoftaar,

2019). Although using brightening and darkening techniques

should increase model robustness to different lighting conditions,

these techniques may not be as effective in this particular case

since the original images in the TUD-GV dataset were taken in

both sunny and cloudy weather. The MIX DA strategy results

in a good increase in OA (+1.9% for SqueezeNet and +3.4% for

DenseNet121), however, these gains are lower than those achieved

by flipping alone. Additionally, the training times for MIX DA are

approximately three times longer (see Supplementary material).

DenseNet121 outperforms SqueezeNet when using flipping or

MIX DA techniques, with an increase in OA of +2.1 and +1.4%,

respectively. The OA of DenseNet121 is also higher when using the

other DA techniques, although the difference is not as significant.

It is generally accepted that a more complex model, such as

DenseNet121, can benefit more when trained on a sufficiently large

dataset, as it has more capacity to learn and capture patterns in

the data. In comparison, a lightweight model like SqueezeNet may

not be able to fully take advantage of additional training data

generated through DA (Zhu et al., 2016). Therefore, it may be

necessary to increase model complexity in order to fully leverage

the benefits of additional training data. However, the training times

for DenseNet121 are five to six times longer than for SqueezeNet

(see Supplementary material). This trade-off should be considered

when choosing a model for a particular specific litter detection task.

5.3 Experiment 3: generalization capability

Figure 6 compares the out-of-sample generalization

performances of the baseline models against that of the models

FIGURE 5

Performances of SqueezeNet and DenseNet121 using di�erent DA techniques for Experiment 2. The horizontal dashed line represents the OA of the

baseline models, trained without DA. DA techniques include (1) flipping, (2) brightening, (3) darkening, (4) adding noise, and (5) mixing the four

above-mentioned techniques (MIX DA).
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FIGURE 6

Out-of-sample generalization performances of SqueezeNet (A) and DenseNet121 (B) on Experiment 3, featuring baseline models and models

leveraging techniques for improved generalization. Comparison performed on datasets of four device setups (2.7 m/0◦, 2.7 m/45◦, 4 m/0◦, and 4

m/45◦) with household litter. DA, data augmentation; ANI, adding new images to original training dataset; ANI-DA, adding new images and

performing DA.

modified using three approaches described in Section 3.4. We

implemented DA and ANI-DA by applying flipping augmentation

alone, due to its demonstrated effectiveness in Experiment 2. The

results show that both SqueezeNet and DenseNet121 trained on

data with canal litter captured with the 2.7 m/0◦ setup (i.e., Train

dataset in Table 2) can generalize well to household waste litter

under the same device setup (i.e., Test2.7 m/0◦ of Table 3), achieving

OA of 84.4 and 85.3%, respectively. Although the generalization

capability in this case is already satisfactory, it can be further

improved. Specifically, DenseNet121 models trained with DA

and ANI-DA show significant increases is OA of +5.4 and +6.2%,

respectively, while ANI alone does not provide a similar boost.

Lesser improvements are also measured for SqueezeNet. Although

ANI-DA performs the best, it requires the time-consuming

and costly collection of new data. Therefore, simple flipping

augmentation may be the most cost-effective method to improve

the generalization capability under the same device setup.

The SqueezeNet and DenseNet121 baselines exhibit good

performances on Test2.7 m/45◦ , with OA of 90.7 and 83.8%,

respectively. Overall, results are similar or better than for the

simpler Test2.7 m/0◦ because Test2.7 m/45◦ consists exclusively of

images taken in cloudy weather. Sunny weather images are harder

to classify due to the presence of sun glints (Jakovljevic et al., 2020).

The three approaches significantly improve the generalization

capability of DenseNet121, with OA = 94.1% for ANI-DA. On the

other hand, we could not improve the performances of SqueezeNet

further, suggesting that this small architecture cannot incorporate

larger amount of data effectively. Nonetheless, SqueezeNet still

retains good generalization capability with OAs above 86.7%.

The generalization of the baseline models drops significantly

for the more complex device setups, i.e., Test4 m/0◦ and Test4 m/45◦ .

SqueezeNet achieves an OA of 69.8 and 63.1% on these test

datasets, respectively; while DenseNet121 obtains an OA of 78.1

and 64.2%. To gain insight into the factors contributing to these

poor performances, we conducted a qualitative inspection of 192

and 147 images misclassified by the best baseline SqueezeNet

model. Figure 7 shows common errors, including (a) identifying

sun glints as extra litter (126 cases in Test4 m/0◦ ), (b) undetected

items of small size (41 and 79 cases in Test4 m/0◦ and Test4 m/45◦ ,

respectively), and (c) unseen objects during training (e.g., a PVC

pipe and a wood stick, 40 cases in Test4 m/45◦ ). DL models are

known to suffer from sun glints, changes in the scale and in the

distribution of items (Singh and Davis, 2018; Jakovljevic et al., 2020;

van Lieshout et al., 2020).

The ANI method outperforms simple flipping augmentation

on these harder datasets, with improvements of around +11% for

both architecture in each setup. While flipping grants significant

increases of up to +9.4% in Test4 m/0◦ , it fails to support

generalization for the more complex Test4 m/45◦ . This suggests

that simple data augmentation fails to boost generalization when

the out-of-sample distribution is significantly different from the

training one (e.g., different items, camera heights, and viewing

angle). In these cases, collecting new data from the new setup

is necessary to achieve satisfactory performances. Performing DA

after gathering new images can result in further improvements, as

demonstrated in Test4 m/0◦ for both SqueezeNet and DenseNet121

(i.e., OA of 87.2 and 93.4%, respectively) and in Test4 m/45◦ for

DenseNet121 (OA = 77.7%).

5.4 Limitations

We acknowledge some limitations in our dataset and approach

that necessitate further developments for real-world applications.
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FIGURE 7

Common misclassified examples in the Test4m/0◦ and the Test4m/45◦ datasets for the best baseline SqueezeNet model. Common misclassification

include identifying sun glints as litter, failure to detect small-sized litter, and detection of background objects or external items.

First, although the TUD-GV dataset features items collected from

canals, the level of litter degradation does not fully represent the

situation encountered in many real contexts. Second, the current

research does not account for the interference of vegetation and

natural debris, that are intrinsically present in real-world scenarios.

Similarly, images gathered from our semi-controlled experiments

in a stagnant canal—although representative of urban areas—do

not account for the complexity of dynamic environments such

as rivers and coastal areas where litter interaction with flow,

waves, and other factors is commonplace. Third, the current

dataset does not include images collected during nighttime, thus

it cannot be used for developing models to detect and quantify

the floating litter items during nighttime. Fourth, this study does

not focus on maximizing model performance by pre-processing

the raw input images before data augmentation. Tiling images into

smaller patches (e.g., 224*224) will likely boost performances by

retaining the original image quality (Wolf et al., 2020), although

this would require relabeling all tiles. Lastly, real-world applications

demand more sophisticated computer vision tasks than the

image classification performed here. Object detection and image

segmentation methods are preferred approaches to identify,

quantify and track floating litter in water bodies from images

or videos (Jia et al., 2023). In this regard, the TUD-GV dataset

can be used to pretrain the CNN backbones of methods such as

Faster R-CNN (van Lieshout et al., 2020) and Mask R-CNN (Deng

et al., 2021), providing more meaningful context than ImageNet or

other general purpose datasets. Therefore, the development of these

models can benefit directly from the insights provided by this study.

6 Conclusions and future work

Supervised Deep Learning methods are increasingly used for

automatic detection of floating litter in aquatic environments.

These methods require large amounts of carefully labeled data to

reach satisfactory performances and exhibit strong generalization

capability. However, there is a major lack of available datasets

for researchers and practitioners willing to develop and test their

models. In this work, we introduced the “TU Delft-Green Village”

(TUD-GV) dataset, a collection of almost 10,000 labeled images of

different floating litter recorded from semi-controlled experiments

on a small drainage canal in the TUDelft Campus, the Netherlands.

We demonstrated the usefulness of our data by carrying out

a thorough comparison of different DL architectures, transfer

learning methods, data augmentation techniques, and approaches
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to improve out-of-sample generalization for unseen litter and

device setups. The main findings of our work are as follows:

(1) DenseNet121 and SqueezeNet proves the most successful

architectures thanks to their innovative designs that allow for

efficient feature discovery for floating litter classification with

limited trainable parameters.

(2) We obtained the highest accuracy by loading models pre-

trained on ImageNet, replacing the classifier, and fine-tuning

the entire network on floating litter images. The benefits of

this approach in terms of detection performance outweigh the

shorter training times required by fine-tuning the classifier

alone. Transferring the convolutional base from ImageNet

seems a better approach than training the models from scratch,

at least for our experiments.

(3) We recommend flipping data augmentation (DA) to improve

model detection performances at relatively low cost, since the

additional images are easy to generate, and maintain high

fidelity to the original labels while providing extra training

information. On the other hand, brightening, darkening, and

adding noise do not show a significant improvement in

detecting floating litter.

(4) The trained models generalize well to similar conditions,

such as detecting unseen litter items from images captured

at the same height, but with different viewing angles (i.e.,

45◦). Flipping data augmentation may boost generalization

performance in these circumstances, but it is insufficient when

transferring to more complex scenarios (e.g., different camera

heights and different viewing angle). We demonstrated that

adding a limited amount of images from these new settings

to the original training dataset can substantially improve

generalization in these cases.

We believe the novel TUD-GV dataset is a valuable resource

for the community. To overcome some of the limitations in our

work, we aim to build on the released version by providing

individual labels for each item as well as bounding boxes to

perform object detection for better litter quantification. This should

increase the usability of the TUD-GV dataset for real-world

applications. Nonetheless, we encourage using the released dataset

for pretraining the CNN backbones of models for object detection

and image segmentation such as Faster-RCNN and Mask R-CNN

(van Lieshout et al., 2020; Deng et al., 2021), especially for real-time

detection of floating litter in videos. To accurately estimate litter

fluxes, we need the information of the spatio-temporal variation

of floating litter provided by real-time detection approaches. This

can be realized by combining the CNNs with a tracker such as

DeepSORT (Wojke et al., 2017). The number of such application

is expected to increase in the future. Other explorations could

focus on more advanced DA techniques (Jia et al., 2023). For

instance, scaling and perspective skewing transformations may

improve generalization for the most complex scenario featured in

TUD-GV. This investigation should be paired with an in-depth

analysis to evaluate the variation of litter detection performance

with respect to item size and camera inclination. Multi-scale data

augmentation can also improve generalization performances for

applications using cameras with different resolutions.
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