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Optimizing Height Above Nearest
Drainage parameters to enable
rapid flood mapping in North
Carolina

Colin A. Richardson* and R. Edward Beighley

Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States

Surface water flooding represents a significant hazard for many infrastructure

systems. For example, residential, commercial, and industrial properties, water

and wastewater treatment facilities, private drinking water wells, stormwater

systems, or transportation networks are often impacted (i.e., in terms of damage

or functionality) by flooding events. For large scale events, knowing where to

prioritize recovery resources can be challenging. To help communities throughout

North Carolina manage flood disaster responses, near real-time state-wide rapid

flood mapping methods are needed. In this study, Height Above Nearest Drainage

(HAND) concepts are combined with National Water Model river discharges to

enable rapid flood mapping throughout North Carolina. The modeling system is

calibrated using USGS stage-discharge relationships and FEMA 100-year flood

maps. The calibration process ultimately provides spatially distributed channel

roughness values to best match the available datasets. Results show that the

flood mapping system, when calibrated, provides reasonable estimates of both

river stage (or corresponding water surface elevations) and surface water extents.

Comparing HAND to FEMA hazard maps both in Wake County and state-wide

shows an agreement of 80.1% and 76.3%, respectively. For the non-agreement

locations, flood extents tend to be overestimated as compared to underestimated,

which is preferred in the context of identifying potentially impacted infrastructure

systems. Future research will focus on developing transfer relationships to

estimate channel roughness values for locations that lack the data needed

for calibration.
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1 Introduction

Throughout the US and globally, flood disasters are one of the worst natural disasters

in terms of loss of life and damage (Jonkman, 2005; Wing et al., 2020). Climate change

and urbanization are likely to further exacerbate the impacts of flooding (Shao et al., 2020;

Rashid et al., 2023). For assessing locations that have potential to flood, flood hazard maps

published as part of the Federal Emergency Management Agency (FEMA) National Flood

Insurance Program are generally available. These maps are useful indicators of flood risk

throughout the United States (US) as they provide the expected flood boundaries of the 1%

annual exceedance probability (AEP) (i.e., 100-year return period) events, and are based

on well-established hydrologic and hydraulic modeling frameworks such as the Hydrologic

Engineering Center’s River Analysis System (HEC-RAS) developed by the US Army Corps

of Engineers (USACE, 2016). While these maps provide a general flood hazard assessment
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across the US, they require detailed input data (e.g., LIDAR or

cross-sectional surveys and river discharge/stage observations) and

do not provide hazard information for specific flooding events.

For event specific flood mapping, efforts using remote sensing

techniques such as those used by the Dartmouth FloodObservatory

(Brakenridge, 2023) and showcased in numerous studies (Syifa

et al., 2019; DeVries et al., 2020; Shahabi et al., 2020; Kalantar et al.,

2021; Tripathi et al., 2021; Ammirati et al., 2022). These mapping

efforts make use of a variety of earth observation data products

from sources including Landsat 8, Sentinel 1, and MODIS, and

through change detection algorithms they allow for the creation

of event specific flood maps and continuous monitoring. However,

cloud cover, data latency, and spatial-temporal resolution impacts

can be significant challenges to these methods in terms of providing

near-real-time flood maps.

In cases where near-real-time or forecasted flood mapping is

needed for mitigation and recovery efforts, hydrodynamic models

can be used. Many hydrodynamic models have been employed for

flood mapping such as 1 and 2 dimensional HEC-RAS models

(Farooq et al., 2019; Salman et al., 2021; Tamiru and Dinka, 2021;

Namara et al., 2022; Vashist and Singh, 2023), LISFLOOD-FP

(Amarnath et al., 2015; Rahimzadeh et al., 2019; Rajib et al., 2020;

Nandi and Reddy, 2022), and FLO-2D (Haltas et al., 2016; Erena

et al., 2018; Cruz et al., 2019; Li et al., 2021) to name a few.

These models are commonly used in practice and provide the

basis for some of the flood risk information sources mentioned

above. Due to the large amount of input data and time required

to develop, run, and validate these types of models, as well as

the significant computational requirements, they generally lend

themselves to smaller scale and more detailed modeling efforts.

Leveraging recent advances in large scale model systems such as

NASA’s North American Land Data Assimilation System (NLDAS)

and the US National Weather Service’s National Water Model

(NWM), a suite of applications have been developed to allow for

near real-time and short-term forecasts across the US (Xia et al.,

2012; Kumar et al., 2017; Abdelkader et al., 2023). These platforms

are both powerful and valuable due to their extents covering the

entirety of the US, and their abilities to provide information on the

current and future hydrologic conditions. These platforms do not,

however, include flood mapping and must be coupled to some sort

of flood mapping method to provide more actionable information

related to flood extents.

In contrast to hydrodynamic models, geomorphic modeling

methods relating basin geomorphology to floodplain extents using

morphometric relationships have been widely developed and

applied in the past for floodplain delineation (Noman et al.,

2001; Gallant and Dowling, 2003; Dodov and Foufoula-Georgiou,

2006; Nardi et al., 2006; Manfreda et al., 2011; Degiorgis et al.,

2012; Jalayer et al., 2014; Samela et al., 2016). These methods

leverage the landscape shaping effect of floods and terrain analysis

to generate simplified relationships for floodplain identification

based on a basin’s morphology. By combining simplified hydrologic

methods for estimating flood depths with geomorphic terrain

analyses, hydrogeomorphic methods are born which can be used

for floodplain delineation in areas where hydrologic observations

(e.g., stage, discharge, etc.) are scarce. Multiple hydrogeomorphic

methods have been developed under this paradigm including the

GFPLAIN algorithm (Nardi et al., 2006, 2018, 2019), and the

Geomorphic Flood Index (GFI) (Manfreda et al., 2015; Samela

et al., 2016, 2017). Both GFPLAIN and GFI inform the varying

flood depth used for floodplain delineation using a contributing

drainage area scaling relationship based on the work of Leopold

and Maddock (1953), but GFPLAIN flags floodplain cells as

those with elevations less than the maximum flood elevation,

while GFI classifies floodplain cells by comparing the natural

logarithm of the ratio between the maximum flood depth and the

height above the nearest hydrologically connected river cell to a

specific threshold value for binary classification. One geomorphic

method used for mapping flood extents from large scale models

such as the NWM is Height Above Nearest Drainage (HAND)

(Afshari et al., 2018; Garousi-Nejad et al., 2019; Johnson et al.,

2019; Aristizabal et al., 2023). HAND is a geomorphic method

that takes a digital elevation model (DEM) as an input and

converts the elevation data into a relative elevation wherein every

cell represents the local height above the nearest hydrologically

connected drainage channel (Rennó et al., 2008; Nobre et al., 2011).

In 2018, CyberGIS computation schemes have allowed for the

generation of HAND data products across the Conterminous US

(Liu et al., 2018). Additionally, coupling reach-averaged channel

geometries extracted from DEM’s, Manning’s Equation for open

channel flow, and an assumed Manning’s roughness value allows

for the generation of synthetic rating curves (SRCs) at the reach

scale where a given discharge can be converted to depth of water

for a particular reach (Zheng et al., 2018). Herein lies the rapid

aspect of the HAND method compared to conventional hydraulic

models, since the only required input to generate a flood map is a

discharge, which can be converted to a water depth using a SRC

and subtracted from the preprocessed HAND layer to create an

inundation map for an area of interest. Recently, HAND has been

coupled with the NWM to allow for near-real-time and forecasted

flood mapping across the Conterminous US (Johnson et al., 2019).

While the work in Johnson et al. (2019) found that the HAND +
NWM method contained some issues with flood extent prediction

in lower order reaches and areas of low relief, the researchers did

find that HAND+NWMwas generally able to distinguish between

areas of lower and higher flood risk, especially in higher order

reaches. It should be noted that the SRCs generated in Zheng et al.

(2018) and used in Johnson et al. (2019) were created using a

uniform Manning’s roughness value of 0.05, and the researchers

note that the performance of the HAND + NWM method could

likely be improved if the SRCs were calibrated using the Manning’s

roughness parameter.

In this study, the HAND methodology is used to enable rapid,

state-wide flood mapping. Central to this study is the calibration

of the SRC relationships for all catchments within NC. Calibration

includes three different approaches for three geographic domains,

with the first entailing the calibration of SRC relationships to best

match rating curve field measurements obtained at United States

Geological Service (USGS) gauges throughout Wake County, NC.

For the second, SRC relationships are calibrated to maximize

agreement with FEMA hazard maps in Wake County using 1%

AEP discharges extracted from the HEC-RAS models used to

create the FEMA maps. Finally, SRC relationships are calibrated

to maximize agreements with FEMA hazard maps across all of
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FIGURE 1

Top: study region extent (North Carolina) with Wake County shown in blue; Bottom: magnified view of Wake County with NHDPlus MR flowlines

shown in blue and USGS gauge locations shown as points labeled according to the Site IDs in Table 1.

NC using 1% AEP discharges generated using USGS regional

regression equations.

2 Methods

2.1 Study area and data sources

The study region for this analysis is shown in Figure 1. All data

included in this study were obtained from publicly available data

sources. The preprocessed HAND, National Hydrography Dataset

MediumResolution (NHDPlusMR) catchment files, NHDPlusMR

flow line files, and SRC tables covering the extent of NC were

obtained from version 0.2.1 of the Continental Flood Inundation

Mapping Data Repository for HAND and Hydraulic Property

Tables maintained by Oak Ridge National Laboratory (Liu et al.,

2020). Version 0.2.1 utilizes a stream etching process which

improves HAND performance at the intersections of streams and

roads where the original DEM may not accurately represent the

flow path of the stream. These data are provided on the USGS

HUC6 unit basis. All HUC6 unit boundaries within or crossing the

state boundary were used to obtain the required input data. The

HAND layers, NHDPlus MR catchments, NHDPlus MR flowlines,

and SRC table files were merged respectively to produce seamless

data layers for the analysis. These data preprocessing steps were

accomplished through the use of QGIS 3.28 for raster and vector

data, and the Pandas Python package for the SRC tables. Ultimately,

a total of 69,071 NHDPlus MR catchments were included in the

statewide analysis, with a subset of 1,995 catchments included in

the Wake County analysis.

The USGS gauges within Wake County (Figure 1) that

possessed stage and discharge field measurements necessary to

generate site specific rating curves were identified using the USGS

Site Web Service (USGS, 2023). Only active gauge sites within
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Wake County, NC with recently updated field measurements and

upstream drainage areas>10 km2 were considered for this analysis,

which resulted in 13 total sites being included. The USGS gauges

included in this study are listed in Table 1.

FEMA hazard maps and related metadata were obtained from

the FEMA Map Service Center (FEMA, 2023). Specifically, the

geodatabase encompassing all of the effective FEMANational Flood

Hazard Layer for NC was acquired, and the statewide flood hazard

boundary for the 1% AEP event as well as the discharge nodes

representing 1% AEP flow change locations within Wake County,

NC were utilized within this study. Ultimately, 1,566 discharge

nodes were available which fell within 707 of the 1,995 NHDPlus

MR catchments present in Wake County. Additionally, FEMA

hazard maps were only available in 49,230 of the 69,071 NHDPlus

MR catchments present in NC. Accordingly, only catchments with

FEMA hazard maps and discharges available within their bounds

were able to be calibrated, and for catchments that possessed

multiple FEMA discharges, a catchment average discharge was

calculated and used in the calibration process. The FEMA 1% AEP

hazard map and the discharge nodes within Wake County are

shown in Figure 2.

Impervious surface land cover data were obtained from the

National Land Cover Dataset (NLCD) for the year of 2021 (Dewitz,

2023). These data were available throughout the entire study area

at a 30 × 30m resolution and represented the percentage of

impervious area in each pixel. By classifying catchments according

to their level of impervious cover, the calibration performance in

urban vs. rural catchments was compared.

2.2 Calibration approach

This section describes the general calibration process and the

metrics used to evaluate the final performance of the calibration.

Central to the calibration process is the development of continuous

rating curves, which are used in all three portions of the calibration

approach. The calibration approach is broken into three separate

analyses: rating curves for gauge locations within Wake County,

flood boundaries with known discharges for Wake County,

and state-wide flood boundaries with discharges estimated from

regional relationships.

2.2.1 Rating curve functions
To allow for direct comparison between USGS and SRC

derived stage-discharge data, continuous rating curves (RCs) were

developed using the USGS field measurements and all NHDPlus

MR reaches included in the analysis. These RCs take the form of

Equation 1, where H represents water stage in m, Q represents

reach discharge in m3/s, and a and b are coefficients specific to each

USGS gauge or NHDPlus MR reach.

H = aQb (1)

Use of continuous RCs also promotes the operational goal

of rapid flood mapping across NC by eliminating the need for

interpolation within the original USGS and SRC tabular data, which

imparts a significant computational load. For the SRC derived RCs,

the underlying stage-discharge data are originally calculated using

Manning’s Equation for open channel flow (Equation 2) where Q

is discharge in m3/s, n is the Manning’s Roughness coefficient, A is

the cross-sectional area of flow in m2, R is the hydraulic radius in

m, and S is the channel slope in m/m.

Q =
1

n
AR

2
3
√
S (2)

Because Equation 2 underlays the SRC derived RCs, the only

parameter available to calibrate these relationships is the Manning’s

n coefficient as the other quantities in Equation 2 are derived

TABLE 1 A list of all USGS gauges included in this study with the gauge ID, station name, total upstream drainage area (km2), channel width (m)

corresponding to the maximum discharge available from the USGS field measurements, and the NHDPlus MR common identifier (COMID)

corresponding to each USGS gauge shown in Figure 1.

Site ID USGS gauge ID Stream gauge station name Drainage

area (km2)

Channel width
(m)

NHDPlus MR
COMID

1 02087183 Neuse River Near Falls, NC 1,999 49.4 8782659

2 0208726005 Crabtree Cr at Ebenezer Church Rd Near Raleigh, NC 199 18.3 8783277

3 02087275 Crabtree Creek at Hwy 70 at Raleigh, NC 256 32.3 8783339

4 02087324 Crabtree Creek at Us 1 at Raleigh, NC 316 36.0 8783667

5 0208732885 Marsh Creek Near New Hope, NC 19.9 6.0 8783643

6 02087337 Walnut Creek at Buck Jones Road at Raleigh, NC 10.1 11.8 8783945

7 0208734210 Walnut Creek at Trailwood Drive at Raleigh, NC 23.5 9.5 8783959

8 0208734795 Walnut Creek at South Wilmington St at Raleigh, NC 44.7 14.2 8784035

9 02087359 Walnut Creek at Sunnybrook Drive Near Raleigh, NC 77.3 39.0 8784005

10 02087580 Swift Creek Near Apex, NC 55.7 22.3 8785997

11 0208758850 Swift Creek Near McCullars Crossroads, NC 93.5 48.2 8784415

12 02088383 Little River Near Zebulon, NC 146 39.0 8783531

13 0209782609 White Oak Cr at Mouth Near Green Level, NC 31.6 18.7 8894216
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FIGURE 2

FEMA 1% AEP hazard boundary for Wake County with FEMA 1% AEP discharge nodes.

from the HAND layers (i.e., A and R) or the flowlines (i.e., S)

pertaining to each NHDPlus MR reach. Consequently, during the

SRC RC calibration process, only the a coefficient is adjusted as the

b coefficient remains the same for each reach no matter how the

Manning’s n value is adjusted.

Once calibration for a reach has been completed, the a

coefficient for the RC for a given reach is adjusted using a scale

factor c. The c value is calculated using Equation 3 where n-2 is

the calibrated Manning’s Roughness coefficient, n–1 is the original

uniform Manning’s Roughness coefficient of 0.05, and b is the RC

coefficient specific to each NHDPlus MR reach.

c =
(

n2

n1

)b

(3)

The calibrated RC incorporating the scale factor c takes the

form of Equation 4, where H’ is the adjusted reach stage in m, Q is

the reach discharge in m3/s, a and b are the original RC coefficients,

c is the scale factor given by Equation 3, and a’ is the calibrated

leading coefficient.

H
′
= c∗aQb = a

′
Qb (4)

As a precursor to the calibration process, RCs were generated

for each USGS gauge and for each NHDPlus MR reach included

in the study area. For this study, the fifty most recent field

measurements available at each gauge listed in Table 1 were utilized

to generate the USGS RCs. This step ensures that the RCs were

generated using the most relevant field measurement data to the

present while also possessing a sufficient number of measurements

to extract a general rating curve relationship. Of the 50 most recent

measurements, anymeasurements with a quality rating of “Poor” as

determined by the USGS technicians were discarded. Additionally,

because the SRC stage values are referenced to the HAND cells

equal to zero for a certain reach, and the USGS field measurements

are referenced to their respective gauge datum, a standardization

of the two sets of stages was required. This was accomplished

by determining the minimum DEM elevation where HAND was

also equal to zero in the vicinity of the gauge location, and

subtracting this elevation from the USGS water surface elevation

values for that gauge location to create adjusted USGS stage values

which are congruent with the definition of the SRC stages. In this

process, any negative adjusted stage values are discarded before

the generation of the USGS RCs. For the SRC RCs, the entire set

of stage-discharge points available for each NHDPlus MR reach

were utilized to generate the RCs. The function curve_fit() from

the Python package SciPy was utilized to determine the appropriate

values for a and b from Equation 1 for each USGS and SRC RC

using the default function parameters (Virtanen et al., 2020). To

assess the goodness-of-fit for both the USGS and SRC RCs, the R2

value between the original USGS or SRC points and the respective

RC was calculated.

2.2.2 USGS gauge calibration
With RCs developed for each USGS gauge and NHDPlus MR

reach, the NHDPlus MR catchments corresponding to each gauge

location were determined by intersecting the gauge point locations

with the NHDPlus MR catchment polygons. The intersected

NHDPlus MR catchments provided the COMIDs associated with

each intersected catchment which allowed for the corresponding

SRC RC to be associated with each USGS RC. Additionally, the

upstream drainage areas associated with the USGS gauges and the

intersected NHDPlus MR catchments were compared and checked

to match to ensure the USGS field measurements and SRC data

were referring to the same drainage basins.

For each pair of associated USGS and SRC RCs, the SRC RC

was adjusted to best match the USGS RC by holding the SRC

RC b coefficient value constant while employing the curve_fit()

Frontiers inWater 05 frontiersin.org

https://doi.org/10.3389/frwa.2023.1296434
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Richardson and Beighley 10.3389/frwa.2023.1296434

FIGURE 3

Calibration example for USGS gauge #02087183, Neuse River Near Falls, NC.

function again to determine the optimal adjusted a coefficient value

(i.e., a’ in Equation 4) that minimized the residual error when

compared against the stage values produced by the USGS RC.

Figure 3 represents the general process described herein for USGS

Gauge #02087183, Neuse River Near Falls, NC, where the general

intent is to determine the optimal a coefficient for the SRC RC that

results in the closest match to the USGS RC.

To assess the goodness-of-fit, the relative root mean square

error (rRMSE) between the USGS RC and the calibrated SRC RC

were calculated according to Equation 5 where HSRCi is the stage

generated by the SRC RC for each discharge included in the USGS

field measurements for a site in m, HUSGSi is the stage generated

by the USGS RC for each discharge included in the USGS field

measurements for a site in m, HUSGS is the mean of the USGS stage

values for a site, and n is the total number of stage values compared

between the SRC RC and USGS RC.

rRMSE =
1

HUSGS

√

√

√

√

n
∑

i=1

(

HSRC, i − HUSGS, i
)2

n
(5)

2.2.3 Wake county FEMA calibration
The calibration process for Wake County uses the FEMA

discharge nodes, NHDPlus MR reaches, and FEMA hazard maps

shown in Figure 2. The FEMA 1% AEP discharge value for each

NHDPlus MR reach was determined by spatially joining the nodes

to the NHDPlus MR catchments polygons. For catchments in

which more than one node existed, the average discharge value was

assigned to that catchment. Using the uncalibrated RC associated

with each NHDPlus MR reach, the initial water stage in meters

was calculated using the FEMA discharge value assigned to said

reach. A HAND flood map was created for each initial stage value

by determining which cells in the HAND layer for a particular

reach were less than or equal to the initial stage value. Next, the

associated FEMA hazard maps for Wake County were clipped to

the equivalent extent of the created HAND flood maps.

To maximize the spatial agreement between HAND produced

floodmaps and FEMA hazardmaps depicting the samemap extent,

all cells in the two maps being compared were categorized as wet-

wet (WW) for cells inundated in both maps, wet-dry (WD) for

cells inundated in the HAND map but not inundated in the FEMA

hazard map, dry-wet (DW) for cells inundated in the FEMA hazard

map but not inundated in the HAND map, and dry-dry (DD) for

cells shown as not inundated in both the HAND map and the

FEMAhazardmap. Using the relative counts of cells in each of these

four categories, agreement between the HANDmap and the FEMA

hazard map is calculated using Equation 6.

Agreement (A) =
WW

WW +WD+ DW
(6)

The portion of the comparison where the HAND map

overpredicts inundation compared to the FEMA hazard map is

calculated using Equation 7.

Over prediciton (O) =
WD

WW +WD+ DW
(7)

Finally, the portion of the comparison where the HAND map

underpredicts inundation compared to the FEMA hazard map is

calculated using Equation 8.

Under prediction (U) =
DW

WW +WD+ DW
(8)

These AOU metrics have been adapted from Johnson et al.

(2019) to allow for comparison between the two flood maps. Note

that the three AOU statistics sum to 100% indicating the relative
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proportions of agreement, overprediction, and underprediction in

the flood mapping extent being analyzed. The initial AOU statistics

(i.e., before calibration) were calculated for each reach according to

Equations 6–8. These initial AOU values were saved for each reach

to allow for comparison with the final AOU values to determine the

improved agreement between the HAND and FEMA hazard maps

following calibration.

For the actual calibration, the minimum and maximumHAND

values present in a HAND layer corresponding to a particular

reach were determined and a sequence of stage values incremented

by 0.025 meters was generated between the minimum and the

maximum values. For each stage in this sequence, a HAND flood

map was generated, then AOU values between the HAND map

and the FEMA hazard map were calculated, and the corresponding

stage andAOUvalues were cataloged for each reach. Themaximum

HAND vs. FEMA agreement was determined from the cataloged

stage and AOU values, and the corresponding optimal stage value

for each reach was determined to be the stage associated with the

maximum agreement for each reach.

Using the initial and optimal stage values, the calibrated

Manning’s n value was determined using Equation 9, where n2 is

the calibrated Manning’s Roughness coefficient, A2 is the cross-

sectional flow area from the SRC table associated with the optimal

stage (H’ in Equation 4) in m2, R2 is the hydraulic radius from the

SRC table associated with the optimal stage in m, A1 is the cross-

sectional flow area from the SRC table associated with the initial

stage inm2, R1 is the hydraulic radius from the SRC table associated

with the initial stage in m, and n1 is the original uniformManning’s

Roughness of 0.05.

n2 =
A2 R2

2
3

A1 R1
2
3

∗

n1 (9)

Lastly, the SRC RC scale factor was calculated using Equation 3

and the updated SRC RC was created using Equation 4 in which

the original a coefficient value was multiplied by the scale factor

c value so that the optimal stage value H’ is generated when the

FEMA 1% AEP discharge is input to the calibrated SRC RC. For

reaches in which no FEMA discharge nodes were available, the

calibration was not performed to ensure only flood maps derived

from known discharges were compared. Figure 4 shows an example

HAND vs. FEMA flood map comparison for NHDPlus MR reach

8783261, where the general intent of the calibration scheme is to

maximize the areas where both flood maps agree by adjusting the

stage generated by the SRC RC.

2.2.4 North Carolina FEMA calibration
The statewide FEMA calibration scheme was nearly identical

to the Wake County calibration scheme described in Section 2.2.3,

with the only difference being the method for determining the 1%

AEP discharge associated with each NHDPlus MR reach. Due to

the FEMA discharge nodes not being available for all NHDPlus

MR reaches in which a FEMA hazard map was published, 1% AEP

discharge values were estimated using USGS regional regression

equations for the State of NC (Feaster et al., 2023). To determine

the 1% AEP discharges, Equation 10 [from Table 2 in Feaster et al.

(2023)] was used whereQ1% is the 1%AEP discharge inm3/s; PCT1,

PCT2, PCT3, and PCT5 are the drainage area percentages falling

within hydrologic regions 1, 2, 3, and 5 in % from Feaster et al.

(2023), and DA is the total upstream drainage area in square miles.

Q1% = 0.238[2.64 + 0.00218∗PCT1−0.00311∗PCT3+0.00309∗PCT5]

DA[0.605+0.00161∗PCT2] (10)

2.3 Urban vs. rural calibration comparison

As identified in Di Baldassarre et al. (2020) a common

drawback of hydrogeomorphic flood mapping methods, like those

employed in this study, is that they cannot account for the

role of hydraulic structures and other artificial alterations on the

determination of the floodplain extents in a basin. To examine

the effect of this drawback, the calibration results were classified

into urban and rural categories using NLCD imperviousness data

(Dewitz, 2023). First, the percentage of impervious cover in each

catchment was calculated using the Zonal Statistics tool in QGIS

3.28, and a threshold of 20% impervious cover was selected based

on the low end of the developed land classification from the full

NLCD dataset. Catchments with >20% impervious cover were

classified as urban and catchments below 20% impervious cover

were classified as rural. Using this breakdown of urban and rural

catchments, the relative calibration performance was examined

to evaluate the effect of artificial catchment modifications on the

efficacy of the calibration.

3 Results and discussion

3.1 USGS gauge calibration results

The results of initially fitting the USGS and uncalibrated SRC

RCs as described in Section 2.2.1, and adjusting the SRC RC a

coefficient as described in Section 2.2.2, are shown in Table 2, where

the values for the number of USGS field measurements used to fit

the USGS RC, the USGS a and b coefficients, the R2 value of the

USGS RC, the uncalibrated SRC a and b coefficients, the R2 value

of the uncalibrated SRC RC, the calibrated SRC -a’ coefficient (i.e.,

c ∗ a in Equation 4), and rRMSE for the calibrated SRC RC are

shown. Generally, the USGS RCs fit the field measurements well

with USGS R2 values at or above 0.9, though sites 6 and 13 yield

lower values of 0.74 and 0.56, respectively. In contrast, the SRC R2

values are all very near 1 indicating close adherence of the SRC RCs

to the original SRC points. Note that the SRC RCs were expected

to fit the relationship well given they were derived from Manning’s

Equation and reach-averaged quantities that were developed by

systematically increasing stage values (i.e., HAND values).

The overall results of the USGS gauge calibration scheme are

shown in Figure 5, where the USGS field measurements, original

SRC points, USGS RC, uncalibrated SRC RC, and the calibrated

SRC RC are all shown for each for each site listed in Table 1.

The resulting mean RMSE value is 0.41m, ranging from 0.085m

to 0.80m (Figure 5). While RMSE has units of meters, the stages

across the 13 sites are roughly the same order of magnitude. Thus,

rRMSE, RMSE normalized by the range in stages used for the

calibration (Table 2), is used for comparisons. The median rRMSE
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FIGURE 4

Example HAND vs. FEMA flood map comparison used in calibration for NHDPlus MR reach 8783261.

TABLE 2 RC generation results for USGS, uncalibrated SRC, and calibrated SRC RCs according to the Site ID shown in Table 1.

Site ID NUSGS USGS a USGS b USGS R2 SRC a SRC b SRC R2 Calibrated
SRC a’

Calibrated SRC
rRMSE (%)

1 49 0.453 0.234 0.99 0.397 0.557 0.99 0.116 31.7

2 48 1.231 0.222 0.95 0.840 0.570 0.99 0.569 37.4

3 47 1.230 0.237 0.89 0.297 0.480 0.99 0.709 33.7

4 47 0.148 0.689 0.99 0.543 0.407 0.99 0.357 58.7

5 42 1.373 0.081 0.94 0.285 0.457 0.99 1.976 50.5

6 33 0.961 0.175 0.74 0.247 0.411 0.99 0.823 54.6

7 44 2.094 0.106 0.89 0.304 0.371 0.99 1.819 43.6

8 38 0.649 0.335 0.95 0.189 0.462 0.99 0.509 26.7

8 48 1.187 0.261 0.95 0.465 0.338 0.99 1.002 16.4

9 32 1.212 0.218 0.90 0.548 0.343 0.97 1.051 24.0

11 37 0.994 0.302 0.92 0.391 0.342 0.99 0.945 9.6

12 38 0.853 0.183 0.93 0.977 0.400 0.99 0.475 45.1

13 24 1.876 0.156 0.56 0.215 0.382 0.99 1.255 44.5

Shown below are the number of USGS field measurements used to create the USGS RC (NUSGS), a and b coefficients from Equation 1 for the USGS and SRC RCs, R2 (goodness-of-fit) for the

USGS and SRC RCs, the resulting a’ from Equation 4, and the rRMSE for the calibrated SRC RC.

is 37% ranging from 10% to 59%. A key finding is that rRMSE tends

to increase as channel width decreases (Table 1). This is likely due

to resolution issues as the reach-averaged HAND values are based

on 10m resolution DEM values as compared to the survey-based

cross-sectional data used at the gauge locations.

The scale factors and calibrated Manning’s roughness

coefficients (n2) associated with each USGS gauge site are shown in

Table 3. In summary, the USGS calibration results in a mean scale

factor of 2.75 ranging from 0.29 to 6.93. In terms of roughness

values, the mean value is 1.38 ranging from 0.0054 to 6.22 across

all sites. The wide range of scale factor and corresponding n2

values suggest that the SRC RCs calibrated under this method

require significantly different adjustments depending on the gauge

location, highlighting the potential mismatch between high-

resolution cross-sectional vs. coarser resolution reach-averaged

quantities. Ideally, the scale factor would be close to one with

variations leading to more reasonable increases/decreases in

roughness from the baseline value of 0.05. Here, 10 of 13 sites

have resulting roughness values between 0.01 and 1.0. Given

the scaling between cross-sectional vs. reach-averaged hydraulic

characteristics, the resulting range in effective roughness seems

reasonable at those 10 sites. The high values at the remaining 3
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FIGURE 5

USGS calibration results with each plot Site ID corresponding to the gauges listed in Table 1. The vertical axes show water stage in meters, with the

horizontal axes showing discharge in m3/s. The RMSE between the SRC RC and the USGS RC is shown in the bottom right corner of each plot.

sites need further investigation (e.g., limited range in H-Q pairs,

unique hydraulic controls at the gauge locations, uncertainty in the

DEM data along the reach, etc.) Two of the three sites (5 and 7)

with high n2 values have widths <10m (Table 1). The remaining

site (13) with a high n2 value only had an R2 value of 0.56 for the

USGS RC suggesting the H-Q relationship is not well defined at

this location. Additional challenges include the range of USGS

field measurement pairs used to conduct the calibration. For

example, the USGS RC for site 13 was generated for a relatively

small range in stage (1.5–3.2m) and discharge (0.02–11.7 m3/s)

and only achieved an R2 value of 0.56. For sites like this, an

expansion of the field measurements used to generate the USGS

RC may be beneficial to the calibration process to include a wider

range of stage-discharge pairs in the subset of field measurements.

While no definitive relationship was found between available

gauge site characteristics (e.g., reach averaged slope or width)

and calibrated roughness, the above rationale suggests that with

additional research it may be possible to develop transfer functions

to estimate roughness values for ungauged locations.

In general, calibration for each USGS gauge site resulted in

SRC RCs adhering much closer to the USGS field measurements

as compared to the uncalibrated SRC RCs. However, it is clear

Frontiers inWater 09 frontiersin.org

https://doi.org/10.3389/frwa.2023.1296434
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Richardson and Beighley 10.3389/frwa.2023.1296434

TABLE 3 Scale factors and calibrated Manning’s roughness coe�cients (n2) across all USGS gauge sites according to the three calibration methods

explained in Sections 2.2.2–2.2.4.

Site ID USGS gauge
scale factor

USGS gauge n2 Wake county
scale factor

Wake
county n2

Statewide
scale factor

Statewide n2

1 0.29 0.0054 - - 0.35 0.0037

2 0.67 0.025 0.56 0.012 0.43 0.0064

3 2.38 0.31 - - 1.19 0.081

4 0.66 0.018 1.22 0.09 1.21 0.085

5 6.93 3.45 1.47 0.14 1.79 0.25

6 3.34 0.94 1.89 0.23 1.94 0.25

7 5.98 6.22 1.97 0.23 2.24 0.31

8 2.69 0.43 2.31 0.39 2.01 0.28

9 2.15 0.48 2.02 0.32 1.70 0.20

10 1.92 0.33 1.68 0.17 2.58 0.45

11 2.42 0.66 1.62 0.14 1.33 0.092

12 0.49 0.0082 0.51 0.0065 0.53 0.0076

13 5.85 5.12 - - 3.37 0.69

Table fields with (-) indicate NHDPlus MR reaches without a known FEMA 1% AEP discharge, so no calibration was conducted in these reaches under the Wake County scheme.

that error is generally present in the lower and upper ranges of

discharge values for each set of USGS field measurements. This

error persists due to the unchanging b coefficient between the

uncalibrated and calibrated SRC RCs, which remains constant

because Manning’s Equation (Equation 2) is used to create the SRC

RC approximations. Because the constant b coefficient effectively

dictates the shape of the RC, there is a built-in limitation to the

calibration process which prevents the SRC RC from more closely

matching the USGS RC unless their two b coefficients happen to

be similar.

Since the USGS field measurements are collected in-situ and

more accurately reflect the localized hydraulic controls dictating the

stage-discharge relationship at a gauge, and the SRC relationships

are approximated from 10m resolution DEMs using an empirical

formula (Equation 2), it is not surprising that there would be some

level of inherent incongruency between the SRC and USGS RCs.

In the context of this work supporting rapid flood mapping, it

must be determined whether or not this inherent incongruency

truly matters when attempting to project impacted areas before,

during, or after flooding events. With the USGS gauge calibration

focused on matching SRC RCs to the USGS stages (i.e., water

surface elevation measurements if the gauge datum is applied), it

is crucial to evaluate these calibrated relationships in contrast to

the flooding extent-based calibrations encompassed in the Wake

County and Statewide FEMA calibration results discussed next.

3.2 Wake County FEMA calibration results

Figure 6 shows the final agreement between the calibrated

HAND and FEMA flood maps generated from the Wake County

calibration. First, we look at AOU statistics aggregated over all 707

of the 1995 NHDPlus MR catchments in the Wake County study

area. The AOU statistics given by Equations 6–8 resulted in an

initial agreement of 62.4%, an initial underprediction of 24.8%, and

an initial overprediction of 12.8%. The final calibration resulted

in a final agreement of 80.1%, a final underprediction of 5.4%,

and a final overprediction of 14.5%. These values indicate a 28.4%

increase in agreement (17.7 percentage points improvement), a

78.2% decrease in underprediction (19.4 percentage points), and a

13.3% increase in overprediction (1.7 percentage points). Overall,

this calibration significantly improved the agreement between the

HAND and FEMA flood maps, supporting the cause of improving

the prediction of flood extents for large events like the 1% AEP

flood. Additionally, the decrease in underprediction and increase

in overprediction appears preferrable in the operational context of

this work related to rapid flood hazard mapping. This is because

a moderate overprediction can be translated to a larger population

designated as at risk of flooding, while a moderate underprediction

can be translated to a smaller population designated as at risk

of flooding. To a certain extent, overprediction is preferred

since underprediction could result in some populations not being

notified of flood risk when they potentially should be. In addition,

locations overpredicted are likely near the actual flood boundary

and only separated by a modest elevation gradient. Thus, there is

still potential for flood water to enter wells via shallow subsurface

flow paths.

Looking at the HAND vs. FEMA agreement at the catchment

scale, the initial catchment average agreement was 57.2%, while

the final catchment average agreement is 72.7%, resulting in

a 27.1% improvement (15.5 percentage points) in agreement

following calibration. Additionally, the standard deviation of the

optimal agreement throughout all catchments was 25.0%, while the

minimum, median, and maximum agreement values were 0.17%,

81.8%, and 100%, respectively. This wide range of agreement values

indicates that the FEMA hazard map extent-based calibration

approach varies in efficacy from catchment to catchment, with

some catchments able to match FEMA bounds nearly identically
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FIGURE 6

Final HAND vs. FEMA agreement for the 707 NHDPlus MR catchments included in the Wake County calibration.

and others not coming close. Judging by the final catchment average

agreement and the overall Wake County calibrated agreement, it

is clear that the majority of catchments possess good calibration

results, though the calibrated SRC RCs associated with very low

catchment agreementmust be further examined. In some instances,

the FEMA hazard map and the HANDmap did not cover the same

extent of a catchment, with the FEMA map generally covering a

smaller portion of the catchment extent. This is likely due to where

the creators of the FEMA map decided to delineate their study

area in lower order reaches, thus resulting in a somewhat uneven

comparison between the HAND and FEMA maps in these reaches.

In summary, these edge cases will be further investigated in future

work, with alternative methods of determining the optimal scale

factor for these cases being a focus.

The spatial distribution of SRC scale factors for all NHDPlus

MR catchments included in the Wake County calibration is shown

in Figure 7 with areas of white indicating catchments that were

not calibrated as part of this analysis. Additionally, the specific

scale factors for the NHDPlus MR catchments associated with

the USGS gauges are shown in Table 3, though three catchments

associated with USGS sites 1, 3, and 13 did not possess FEMA 1%

AEP discharges. Thus, no scale factors were determined for these

catchments. Of the 707 catchments for which scale factors were

determined, 24% have values within the range of 0.75–1.25 (i.e.,

minimal scaling) and 40% have values within the range of 0.25–

0.75 or 1.25–1.75 (i.e., moderate scaling). However, there does not

appear to be any spatial pattern in the scale factors. By examining

the correlation of catchment scale factors with different catchment

characteristics (i.e., drainage area, soil type, average HAND value,

land use, etc.), it may be possible to develop regional relationships

that can determine SRC RC scale factors in catchments where no

calibration could occur. This would allow for a seamless collection

of SRC RCs to be generated across Wake County or all of NC,

which could allow for gapless forecasted flood maps when coupling

HAND and the NWM. This would also be particularly useful in the

context of the Wake County calibration since less than half of the

NHDPlus MR catchments included in Wake County were able to

be calibrated using this method.

Since a lack of FEMA 1% AEP discharges was the main reason

for excluding so many catchments from this calibration scheme, it

is possible that discharge interpolation based on the flow network

provided with the NHDPlus MR dataset could fill in the data for

catchments missing discharges. Though this method would still not

allow for determination of a RC scale factor for catchments in which

a FEMA hazard map has not been published.

3.3 North Carolina FEMA calibration results

Figure 8 shows the final agreement between the calibrated

HAND and FEMA flood maps generated from the statewide

calibration. For the statewide study area encompassing 49,230 of

the 69,071 NHDPlus MR catchments, the AOU statistics given by

Equations 6–8 resulted in an initial agreement of 47.2%, an initial

underprediction of 38.9%, and an initial overprediction of 13.9%.

The final calibration resulted in a final agreement of 76.3%, a

final underprediction of 5.4%, and a final overprediction of 18.3%.

These values indicate an overall 61.7% increase in agreement (29.1

percentage points), an 86.1% decrease in underprediction (33.5
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FIGURE 7

Scale factors for all catchments included in the Wake County calibration with the NHDPlus MR flowlines shown in blue.

FIGURE 8

Comparison between FEMA and calibrated HAND flood maps for all 49,230 NHDPlus MR reaches included in the statewide calibration of North

Carolina.

percentage points), and a 31.7% increase in overprediction (4.4

percentage points), generally following the trend set by the Wake

County calibration results. The lower initial agreement and higher

initial underprediction from the statewide calibration compared to

the Wake County calibration suggest that the 1% AEP discharges

generated using the regional regression equations from Feaster

et al. (2023) are underestimated compared to the FEMA 1% AEP

discharges used in the Wake County calibration. It would make

sense for the FEMA discharges to be more accurate since they

are generated from hydrologic models (i.e., HEC-HMS) or more

localized regression equations specific to the area encompassed in

the FEMA hazard map. However, since the final agreement in the

statewide calibration is comparable to the final agreement in the

Wake County calibration, it appears that the calibration process

was able to account for the differences in the source of the 1% AEP

discharges. The discrepancy between the two sources of 1% AEP
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discharges will need to be examined to understand the effect of

using these discharges on the RC scale factors generated, and on

the operational forecasting of flood extents.

The distribution of the HAND vs. FEMA agreement and the

optimal scale factor across all NHDPlus MR catchments included

in the statewide calibration is shown in Figure 9. However, note

that only the bottom 95% of the optimal scale factor data is shown

in Figure 9 as a few extreme outlier scale factors prevented the

distribution from being legible otherwise. Additionally, the specific

scale factors and calibrated Manning’s roughness coefficients (n2)

for the NHDPlus MR catchments associated with the USGS gauge

sites are shown in Table 3.

Looking to the HAND vs. FEMA agreement distribution,

58.6% of catchments included in the statewide calibration show

an agreement ≥0.75, with the remaining catchments possessing

agreements <0.75 spread in a mostly uniform distribution.

Building off the scale factor regionalization concept discussed in

Section 3.2, it may be useful to build regionalization relationships

using this subset of catchments which possess higher agreement.

This could allow for higher quality scale factors to be developed for

catchments which did not result in high agreement values in this

current calibration scheme. The optimal scale factor distribution

appears to be skewed to the left with a long and tapering tail to

the right side. This tail represents increasingly large and rare scale

factors ranging all the way to a maximum scale factor of 6,823

(not shown for legibility). These exceedingly high scale factors are

another indication that the statewide calibration process seems to

work well in many catchments, but in others the efficacy of the

calibration is called into question. Additionally, the large number

of catchments with scale factors close to or equal to 0 indicate

scenarios where the calibration scheme is essentially attempting to

turn flooding off for these catchments. This is similar to the Wake

County calibration results where the FEMA map does not cover as

much of the catchment as the HANDmap. Thus, the resulting scale

factors are excessively low as result of this process. For example,

Figure 10 shows results for one catchment (scale factor = 0) where

the FEMA flood map is only defined for a small portion of the

catchment. In this case, the optimal stage is zero as this provides

the maximum HAND vs. FEMA agreement, and the resulting scale

factor prevents any river stage from being produced given the 1%

AEP discharge input.

3.4 Comparing calibration results

Scale factors and calibrated Manning’s roughness coefficients

(n2) associated with each USGS gauge site and across all three

calibration schemes are shown in Table 3. When interpreting the

scale factors it is helpful to note that values less than one indicate

SRC RCs need to decrease the magnitude of stage required for a

given discharge, while scale factors greater than one indicate SRC

RCs need to increase the magnitude of stage required for a given

discharge. A similar relationship is present for the n2 values where

roughness values >0.05 indicate that the stage magnitude should

be increased for a given catchment, and it should be decreased for

roughness values <0.05. When the three scale factors associated

with a particular USGS site are all either greater than or less than

one, this indicates that the three methods generally agree in how

the SRC RC should be modified. However, varying scale factors of

greater than or less than one between calibrationmethods at a given

site indicate that the methods disagree in how the SRC RC should

be modified. Taking site 2 as an example, all three scale factors are

less than one and all three n2 values are <0.05 indicating that the

three calibration methods concur in how this particular SRC RC

should be adjusted. Additionally, all three scale factors are rather

close together when compared to the rest of the values in Table 3.

Overall, this provides good confidence that the adjustment of the

SRCRC associated with site 2 should result in lower stages at a given

discharge as compared to the original uncalibrated RC. In contrast

to site 2, site 4 possesses a scale factor<1 from the USGS calibration

but has scale factors greater than one for the Wake County and

Statewide calibrations. This discrepancy may be related to the fact

that the USGS field measurements’ maximum discharge for this site

is 125 m3/s, while the 1% AEP discharges for the Wake County

and statewide calibrations were 308 and 373 m3/s, respectively.

Since the magnitude of discharges is quite different between the

calibration methods, it is possible that the reach may have quite

different stage responses to these large discharges, thus resulting in

the varied scale factors based on the different calibration methods.

Comparing the n2 values between the Wake County and

statewide calibration results in Table 3 clearly shows that there is

some discrepancy amongst these values. Since the only difference

between these two calibration schemes is the method for generating

the input discharge, these discrepancies are closely linked to the

differences in the 1% AEP discharges employed in each calibration.

Figure 11 shows the relationship between the ratio of the Statewide

and Wake County 1% AEP discharges (QState/QWake), and the

ratio of the Statewide and Wake County calibrated n2 values

(nState/nWake). Strikingly, nearly all sites where the QState/QWake

value is <1 correspond to a nState/nWake value >1, while the inverse

is true for QState/QWake values >1. This makes sense since a QState

value < aQWake value would result in a proportionally higher nState
value compared to the nWake value because a lower discharge at

the same optimal stage would force a higher Manning’s roughness

value to meet that optimal stage. However, there are outliers in

Figure 11 in which this relationship does not seem to hold. For

example, the point in which the nState/nWake value is equal to 1,

but the QState/QWake value is nearly equal to 4. This and other

outliers occur due to discontinuities present in the underlying

SRC tabular data used to generate the SRC RCs. The SRC tabular

data are determined for a maximum stage value of roughly 25m,

and the initial stages generated by the uncalibrated SRC RCs are

capped to this maximum value in order to keep the RC output

within the stage range originally calculated for each SRC table. In

the case of this example, both the Q-State and QWake discharges

resulted in initial stage values above the maximum stage of 25m,

thus both were reduced to the maximum value. Thus, the initial

stages and the corresponding optimal stages were equal for both

calibration methods. Since the initial and optimal stage values

were equal for each method, the final n2 value was also equal due

to Equation 9. This type of discrepancy appears to only occur in

catchments with SRC RCs that are particularly sensitive to the

discharge input, resulting in stages above the 25m limit. Other
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FIGURE 9

Histograms showing the distribution of the HAND vs. FEMA agreement and the optimal scale factors for the catchments included in the statewide

calibration. The optimal scale factor histogram only includes the bottom 95% of scale factor data as extreme outliers in the top 5% (e.g., a scale factor

of 6,823) prevented the plot from being legible.

FIGURE 10

Flood mapping results for NHDPlus MR reach 8784365 showing a non-continuous FEMA flood map along a river.

noise in the points shown in Figure 11 also appears to arise from the

RC approximations used as a substitute to the raw SRC tabular data.

While the RCs are very close approximations of the underlying

SRC tables, they are still approximations introducingminor sources

of error to the calibration process. Combining this minor error

with the differences in the discharge inputs to both calibration

schemes results in the slight shifts from the expected relationship

between the ratios observed in Figure 11. Overall, there do appear

to be edge cases where the efficacy of the SRC RC calibration is

questionable, but the vast majority of cases show that the calibration

scheme works as intended. In terms of future work, these edge

cases will be addressed alongside catchments with low optimal

agreement values and catchments with extreme scale factors in the

development of a regionalization scheme for scale factors based on

the catchment characteristics.

3.5 Urban vs. rural calibration results

For the Wake County calibration, 210 of 707 catchments were

classified as urban. Within this breakdown, urban catchments

possessed an average optimal agreement of 63.0%, compared to

76.8% in catchments designated as rural indicating an overall

better calibration performance in rural vs. urban catchments. The
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FIGURE 11

The ratio of the 1% AEP discharges between the Statewide calibration and the Wake County calibration (QState/QWake) vs. the ratio of the calibrated

Manning’s roughness coe�cient between the statewide calibration and the Wake County calibration (nState/nWake).

mean calibrated Manning’s n value in urban catchments is 0.45

compared to 0.28 in rural catchments indicating a tendency for

urban catchments to produce higher stages in general due to

the heightened roughness coefficient. These results taken together

illustrate a limitation of this calibration approach in urban

catchments where the effects of hydraulic control structures and

other human influence on the waterways are more pronounced.

Since HAND coupled to a SRC is a hydrogeomorphic method, it

cannot account for the effect of hydraulic control structures, so the

effect of this infrastructure on the FEMA flood extents is bundled

into the Manning’s n coefficient during the HAND calibration.

For the Statewide calibration, 2,082 of 49,230 catchments were

classified as urban. As discussed in Section 3.3, some catchments

in the Statewide calibration resulted in extremely high scale factors

and calibrated Manning’s n values. These outlier values appear to

result from combining the USGS estimated discharge inputs with

poorly fit RC functions that overcorrect the calibrated Manning’s

n value and resulting scale factor. These outliers do not reflect

efficacious calibration results, and will be addressed in future

work, but for the sake of the current urban vs. rural comparison

their effect is negated by only examining the bottom 90% of the

Statewide output based on the scale factor of catchments. Using

this subset, the urban catchments possessed an average optimal

agreement of 62.5% compared to 68.3% in rural catchments. The

mean calibrated Manning’s n value in urban catchments is 0.35

compared to 0.28 in rural catchments. Similar to the Wake County

results, these results reinforce the limitation of this calibration

approach, and hydrogeomorphic methods in general, when applied

in urban catchments.

By identifying this limitation in urban catchments, future

work will focus calibration on non-urban catchments in order

to minimize the effect of flood control infrastructure on

the final calibration results. However, one upside for using

hydrogeomorphic methods identified in Di Baldassarre et al.

(2020) is that these methods can identify floodplains as if no

flood protection were in place, thus producing more conservative

estimates of flood plain extent. Taking this with the tendency of

both the Wake County and Statewide calibrations to overpredict

flooded area compared to the FEMA extents, we would rather

more conservative flood bounds be generated when estimating the

potential impacted population. This equates to a larger number

of individuals designated as impacted which is preferable to

underprediction and potentially missing impacted individuals.

Building off recent findings (Di Baldassarre et al., 2020;

Lindersson et al., 2021), hydrogeomorphic methods can be valuable

for the estimation of flood-prone areas, especially in data scarce

regions, though, where available, they should be used in concert

with more data intensive hydrologic flood mapping methods to

better inform flood-prone area estimation. In the context of this

research, hydrogeomorphic methods are intended to serve as a

rapid and approximate estimation of flood hazards to people

and infrastructure, though where data availability allows, these

estimations will be supplemented and compared with hydrologic

and remotely sensed flood extents to further inform the flood

hazard estimation.

3.6 Limitations

The analysis and results presented in this study are not without

limitations. The statewide calibration scheme relies upon estimated

discharge inputs derived from regional regression equations

(Equation 10). Since these equations are based solely on geographic

region and basin drainage area, their use allows for a potential

mismatch between the 1% AEP discharge and FEMA flood extent
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utilized in this calibration scheme, unlike in the Wake County

calibration where flood extents were directly tied to the discharge

inputs used for calibration. While this potential mismatch could

reduce the efficacy of some catchment calibrations, the strength

of the regional relationship lies in its ability to provide discharge

inputs throughout the entirety of NC. One method of addressing

this limitation could be further reliance on FEMA published 1%

AEP discharge nodes available in other areas of NC. While the

published nodes do not cover the entirety of NC, future work

could also leverage data from the Flood Risk Information System

(FRIS) published by the North Carolina Department of Public

Safety (NCDPS, 2023). The FRIS provides engineering models

used to generate FEMA hazard maps throughout NC, so further

discharge nodes across NC could be extracted from these models,

thus increasing the scope of catchments in which the 1% AEP

discharge is directly associated with the FEMA hazard boundary

being calibrated to.

The use of Manning’s equation for steady open channel flow

(Equation 2) to estimate flood stage is certainly an approximation

of dynamic hydraulic processes and represents another limitation

for a few reasons. Defining flood depth as a single uniform

value per reach often serves as a good approximation, though

this assumption may breakdown in longer reaches with greater

elevation change from the high to low points. Assigning a single

Manning’s n value to each reach also introduces uncertainty since

the roughness profile of the floodplain may vary depending on

the magnitude and extent of the flood. Manning’s equation is

unable to account for unsteady flows and their varied flood stage

effects. These limitations could be mitigated through the use of a

compound uniform flow equation to differentiate between in-bank

and overbank flows, by varying the Manning’s n value throughout

the reach, or by employing a more complex flow equation to

account for unsteady flow effects. However, in concurrence with

Zheng et al. (2018), the current use of Manning’s equation is

sufficient for approximate inundation mapping intended to screen

flood risk rapidly at large scales.

Related to the use of Manning’s equation to calculate flood

depth, the original SRC data were calculated in a stage range of

0–25 meters. Following calibration and when using the 1% AEP

discharge as an input, some RCs can produce stage values above

the maximum value of 25 meters. Specifically, 11 of the 707 Wake

County catchments and 395 of the 49,230 Statewide catchments

produce this behavior, so in these cases the flood stage is limited

to the 25-meter maximum value so as to not leave the range

originally defined by the SRC tabular data. This limitation could

be addressed by extending the range of stages included in the SRC

tables to encompass more of the range of HAND values present in

each catchment.

The number, extent, and data record of USGS gauges is also

limited in this study. The gauges employed in this analysis were

kept to those within Wake County as an initial venture into using

these data for SRC RC parameter calibration, and to provide a

means to compare water surface elevation-based RC calibration

with the extent-based calibration employed in the rest of the

study. After examining the performance of the USGS calibration,

the limited degree to which the SRC RC could be modified to

better match the USGS RC, and the limited number of active

USGS field measurement stations we realized this method would

not be suitable for wide calibration application unlike the extent-

based calibration. Use of historical annual peak flow and stage

measurements, which are generally more available, could serve as

an alternative to the field measurement data used herein. This

would also shift this calibration scheme to be more focused on

higher return period events, which would be beneficial for mapping

extents of larger and more destructive flood events.

Another limitation of this study is the geographic area in

which it is currently applicable. Data availability varies across

the various inputs to this analysis. The FEMA hazard boundaries

and preprocessed HAND products (HAND layer, catchment layer,

SRC tables, etc.) are available throughout the entirety of the

conterminous US, though the 1% AEP discharge nodes are only

partially available throughout the US where they have been

published by FEMA. These data sources limit the current analysis to

the bounds of the US, though other data sources could be employed

to conduct a similar analysis elsewhere in the world. For terrain

and hydrography, preprocessed global products likeMERIT-Hydro

(Yamazaki et al., 2019) or FABDEM (Hawker et al., 2022) could

be used anywhere outside of the US with the HAND layer and

SRC tables able to be generated from the underlying elevation

data. Discharge inputs may not be available in-situ throughout

much of the world, but remotely sensed discharge estimation

techniques could be employed to provide discharges in data scarce

regions (Brocca et al., 2020; Huang et al., 2020; Tarpanelli et al.,

2023). The Surface Water Ocean Topography (SWOT) satellite

launched in 2022 will also provide discharge estimates along

with measurements of water surface extent for large rivers at a

global scale, which could respectively serve as powerful inputs and

calibration data in this optimization scheme (Revel et al., 2021;

Durand et al., 2023). Additionally, crowdsourced or citizen science

produced data could serve as other sources of information used to

inform both discharge inputs and flood extents during real events

(Le Coz et al., 2016; Weeser et al., 2019). Ultimately, the HAND

optimization and rapid flood mapping scheme presented herein is

flexible in that it could be applied elsewhere in the world provided

data are available for the terrain, hydrography, discharge, and water

surface extent inputs to this method.

4 Conclusion

In this study, the HAND method was implemented to generate

100-year flood hazard maps throughout NC as a first step to enable

dynamic flood mapping based on National Water Model discharge

estimates for given storm events. Three different cases were

investigated to assess the performance of HAND for rapid flood

mapping throughout NC. These three cases included fitting SRC

relationships to USGS stage-discharge measurements at 13 stream

gauge locations within Wake County, maximizing agreement with

FEMA hazard map flood extents for 707 of the 1995 NHDPlus

MR reaches within Wake County using FEMA 1% AEP discharges

as inputs, and maximizing agreement with FEMA hazard map

flood extents for 49,230 of the 69,071 NHDPlus MR reaches within

NC using regional regression equations to estimate the 1% AEP

discharge inputs.
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The results show that the three calibration schemes improved

the ability of HAND to produce river stages similar to gauge

observations in Wake County and flood extents similar to the

1% AEP FEMA hazard maps published throughout the State

of North Carolina. The USGS calibration scheme improved the

ability of the HAND process to replicate field measured stage-

discharge relationships, while the Wake County and statewide

calibration schemes resulted in final agreements of 80.1% and

76.3%, respectively when compared with corresponding FEMA

hazard maps. This equates to a 28.4% and 61.7% improvement in

agreement from the uncalibrated results for Wake County and the

statewide calibrations, respectively.

While the state-wide calibration is expected to provide

reasonable performance for predicting flood extents for large

discharge events (i.e., 100-year floods), future work is needed

to address the limitations of this calibration for smaller events,

and to provide scale factors for catchments without FEMA flood

maps. Specifically, scale factor and Manning’s n regionalization

relationships will be sought to fill in the gaps for catchments in

which no calibration was able to be conducted or catchments which

resulted in low quality calibrations. Ultimately, we intend to create

gapless parameter sets across the entire State of North Carolina,

supporting the future goal of rapid forecasting of flood extents

throughout NC to support local agencies and residents inmanaging

their surface flooding disaster mitigation and response efforts.
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