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Flood events have the potential to impact every aspect of life, economic loss and

casualties can quickly be coupledwith damages to agricultural land, infrastructure,

and water quality. Creating flood susceptibility maps is an e�ective manner that

equips communities with valuable information to help them prepare for and

cope with the impacts of potential floods. Flood indexing and forecasting are

nonetheless complex because multiple external parameters influence flooding.

Accordingly, this study explores the potential of utilizing artificial intelligence

(AI) techniques, including clustering and neural networks, to develop a flooding

susceptibility index (namely, NeuralFlood) that considers multiple factors that are

not generally considered otherwise. By comparing four di�erent sub-indices, we

aim to create a comprehensive index that captures unique characteristics not

found in existing methods. The use of clustering algorithms, model tuning, and

multiple neural layers produced insightful outcomes for county-level data. Overall,

the four sub-indices’models yielded accurate results for lower classes (accuracy of

0.87), but higher classes had reduced true positive rates (overall average accuracy

of 0.68 for all classes). Our findings aid decision-makers in e�ectively allocating

resources and identifying high-risk areas for mitigation.

KEYWORDS

AI-driven index, Artificial Neural Network (ANN), clustering, deep learning, flood

susceptibility index

1. Introduction and motivation

The dangers of flooding are widespread and can leave communities vulnerable within

a few hours of occurrence (Smith, 2023). In the United States alone, $177.9 billion has

been lost to inland flooding events that exceed $1 billion in cost from 1980 to 2022 (Smith,

2023). These statistics disregard the costs of less severe floods that can still cause harm to

human health and infrastructure (Environmental Protection Agency, 2022). Every aspect

of a community’s lifestyle is at risk during flooding events. On agricultural land, flooding

can cause the loss of crops, equipment, and valuable soil quality (Warner et al., 2017). In

urban settings, household items, electrical utilities, and public transportation services can

be damaged or destroyed (Micu, 2022). The sediment, bacteria, and pesticides captured

inside cities can be transported to neighboring water-bodies and ecosystems, potentially

carrying pollution to water with both anthropogenic and natural uses. On a societal level,

besides causing fatalities, flooding can introduce high-stress levels among individuals that

continue after the disaster (Stanke et al., 2012). Relationships and welfare suffer even after

the water recedes.

In recent years, flood events have experienced changes in frequency and severity. In

the United States, river and stream flooding have grown in magnitude in the Northeast

and Midwest regions (Mallakpour and Villarini, 2015). Similarly, the Northeast, Pacific

Northwest, and Northern Great Plains have experienced more frequent large floods. Other

regions, such as the West, southern Appalachia, and northern Michigan, have had less
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flooding frequencies, thus further bolstering the coincidence of

floods fluctuations with changes in heavy rainfall events. Overall,

flooding disasters have increased by 134% since 2000 compared

to the two previous decades (World Meteorological Organization,

2021). The dangers of climate change are evident–flood risks are

predicted to increase with each degree of global warming (IPCC,

2021). If these trends continue, communities will require novel

strategies for preparing for flooding disasters.

Flood susceptibility maps can be invaluable tools for

understanding an individual’s possibility of experiencing a

flood event based on their geographic location. Most flood maps

(i.e., indices) that are readily available to the public will show

“risk” zones and indicate that risk from “low” to “high,” such

as the National Risk Index (NRI) from the Federal Emergency

Management Agency (FEMA, 2023). Some maps consider the

effects of climate change on disaster events, like the First Street

Foundation Flood Model (Bates et al., 2021). However, the issue

stands that these maps can take monumental effort, time, and

funding. As the public searches for accurate (and data-driven)

flood risk maps, confusion can grow about which source presents

the most accurate results. Each published mapping system utilizes

different qualities and quantities of data, as well as different

modeling strategies. Maps can utilize only hydrological data,

including Digital Elevation Models (DEMs), river hydrology

networks, and land cover, or they can also include community

data, like population density and wealth factors. The final challenge

lies in accurately analyzing the numerous data.

1.1. The need for AI

The power of artificial intelligence (AI) has proven invaluable

as the technology has advanced (Batarseh and Freeman, 2022). As

emphasized by Batarseh and Kulkarni, integrating explainable AI

into the water sector is crucial. In contrast to other models, AI

models can (1) use increasing amounts of data (i.e., big data) and

(2) identify patterns and correlations between data where humans

cannot. Many researchers have agreed and even experienced the

difficulties of using AI for the geo-sciences. Mainly, data collection

and validity limitations create obstacles (Batarseh and Freeman,

2022). Nevertheless, as data improve and grow, the discovery of

geo-science data relationships using AI technologies could have

significant results. AI has already begun to establish a foothold in

designing flood susceptibility maps (Tien Bui et al., 2016; Rahman

et al., 2019; Priscillia et al., 2021). This study applies an Artificial

Neural Network (ANN) to three hydrologically independent states

in the United States: Kansas, Nevada, and Virginia; to produce

a flood susceptibility index map. By considering locations with

three different geographies, land uses, hydrology networks, and

population densities, the model is tested for its ability to transfer

classification accurately. In previous literature, AI was mainly

applied to case studies, generally a watershed or sub-watershed.

In doing so, the data collected must be more detailed and, thus,

generally more time-consuming to collect and clean. In contrast,

the data collected for this study are on a county-level scale

to expedite the data collection rate and examine how coarser

data will affect the output susceptibility map results. Although

precise susceptibility maps ideally require data and information

obtained at spatial resolutions finer than that of counties, our

model operates based on data availability (public sources). Given

the accessibility of county-level data, the model is designed to

leverage this information for its data-driven approach. Given the

input boundaries, the outputs were determined within counties.

The output flood susceptibility map was then presented as an

index using the historical flood events. During validation, the

results were analyzed against the NRI riverine flooding risk indices

due to FEMA’s quality of methodology and ability to reach

the public.

1.2. Flooding indices

In the past decades, the introduction of remote sensing (RS),

GIS, and data-driven tools technology have created an irreplaceable

set of tools in analyzing flood susceptibility and modeling

(Hapuarachchi et al., 2011). Using open-source data, researchers

have used RS and GIS to study natural disasters. According to Duan

et al. (2022) studies of flood susceptibility assessments experienced

an upward trend beginning in 2007. Many of the same variables

used in this study were included in these models, such as land

use, precipitation, and slope. Nevertheless, difficulties arose in the

validity of the data and the appropriate statistical model to use for

accurate results (Collier, 2007). As RS capabilities have improved

with machine learning (ML) assistance and aerospace technology

advancement, various statistical methods for producing flood

susceptibilitymaps have emerged (Wu et al., 2019). After discussing

the literature that utilizes statistical probability strategies, models

that use AI are presented.

A wide range of statistical models have been developed to

produce flood susceptibility maps. Rahmati et al. (2016) proposed

a flood hazard zoning technique that used multi-criteria decision

analysis. A case study of a river basin was again used, but only

four parameters were included–distance to channels, land use,

elevation, and slope. Hydrologists reclassified and weighted the

four factors, producing a normalized rate based on the sum of rates.

This normalized rate resulted in a flood hazard map. Additionally,

the Hydrologic Engineering Center River Analysis System (HEC-

RAS) was used with the DEM to produce 50- and 100-year floods.

Thus, validation was performed by visually overlaying the flood

hazard map with the flood inundation maps from HEC-RAS. The

results from validation indicated a similarity between the flood

hazard map and the inundation maps, indicating that the four

factors included in the model hold significance. However, both the

constraints of a case study and the absence of numerical validation

are to be considered.

In contrast to case studying, Sampson et al. (2015) produced

a global flood hazard model. Using globally available data at

90-kilometer spatial resolution, a near-automated model using

regression-based GIS functions was used to merge the results

from the hydraulic engine to create a flood hazard map. The

results were validated using performance metrics of Hit Rate, False

Alarm Ratio, and Critical Success Index. Given the flood extents

from benchmark Canada and United Kingdom (UK) datasets,

the model captured 66–75% of the area at risk. Also, as data
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resolution increased, the success rates increased significantly. Given

the success rates of the study, factors such as land cover, hydrology

networks, and community factors (i.e., population density) were

established as critical variables in considering flood susceptibility.

Nonetheless, the processing time for a 100 x 100 grid was estimated

to reach 2,000 hours if using a conventional CPU processor (not a

GPU). Other concerns include the coarseness of data used and the

validation techniques that only considered climates within Canada

and the UK.

Cao et al. (2016) introduced a flood susceptibility mapping

approach using frequency ratio (FR) and statistical index (SI)

methods in 2016 that similarly used geographic data in a case

study. However, additional factors such as stream power index

(SPI), topographic wetness index (TWI), and heavy rain events

were included in the parameters. FR and SI used 70% of the flooding

locations in the study area for training, while the other 30% was

used for validation. Based on the validation techniques, the FR

model wasmore appropriate for the study area, presumably because

the FR method better reflected the geographic anomalies of the

area. Since the classification of each parameter was used, as in

the previously mentioned literature, the researchers considered the

benefits of each classification method, concluding that the natural

break method reduced variance within classes and between classes.

In 2018, the Chicago Metropolitan Agency for Planning (CMAP)

developed a regional flooding susceptibility index to evaluate urban

and river flooding in Illinois. After carefully evaluating various

methodologies, CMAP chose the frequency ratio approach as the

most suitable statistical model (Chicago Metropolitan Agency for

Planning, 2018). This approach allows for examining relationships

between the distribution of flooding sites and relevant factors

contributing to flooding. Once the index was formulated, CMAP

conducted tests using a random sample of reported flood locations.

The results demonstrated a strong correlation between the highest

index levels and the actual occurrence of flooding in those locations,

indicating the potential effectiveness of the developed index.

In 2020, a publicly available flood susceptibility map was

released by Bates et al. The First Street Foundation Flood

Model (FSF-FM) resulted from a combined model of fluvial,

pluvial, and coastal flood risks, considering the present and

future climate changes. The FSF-FM’s arrival was coupled with

multiple flood modeling innovations. First, researchers used

the flood frequency analysis method rather than rainfall-driven

hydrological models. In doing so, it was possible to use

regionalization methods to predict the characteristics of un-gauged

locations. Second, the modifications of flooding events caused by

anthropogenic infrastructure were modeled through “gray” and

“green” infrastructure. The “gray” infrastructure simulated levees,

dams, ditches, etc., while the “green” infrastructure simulated

constructed wetlands, living shorelines, etc. The categorization

of flood adaptation infrastructure allowed for more accurate

infiltration and flow rates. Finally, the FSF-FM used cumulative

statistics that combined the fluvial and pluvial hazard layers with

weights unique to each basin based on historical analysis. Given the

amount of incoming data and computational layers in the study,

not every hazard layer could be specifically calculated. Thus, a

non-linear logarithmic relationship was applied to the given data.

Although the FSF-FM yielded Critical Success Index values of

0.69–0.82 when compared to other high-quality models, the project

again required a large team of experts, without consideringmultiple

geographical areas (such as the difference between coasts, cities, and

rural towns).

1.3. Using AI for flood indices—A brief
review

The potential benefits of applying AI to the water sector

have grown immensely (Batarseh and Kulkarni, 2023). In 2016,

an AI algorithm based on a neural fuzzy inference system and

metaheuristic optimization was designed for flood susceptibility

modeling (Tien Bui et al., 2016). In the case study, Tien Bui

et al. examined the Tuong Duong district of Vietnam, an area

with a consistent tropical cyclone season. Ten variables were

chosen as data inputs which were all compiled in a GIS database,

including slope, elevation, rainfall, and other hydrologic factors.

The model consisted of a five-layered feed-forward neural fuzzy

network. Evolutionary Genetic optimization and Particle Swarm

optimization were then used to search for the best values of

antecedent and consequent parameters in the network. The

Pearson correlation with a 10-fold cross-validation process was

also used to analyze the predictive power of the ten variables,

resulting in elevation producing the highest predictive power and

curvature producing the lowest predictive power. By combining

the neural fuzzy network and the two optimization algorithms, a

relatively accurate flood susceptibility map was constructed with

high statistical success. Nonetheless, the drawbacks of the case

study are evident and the validation techniques did not include

a comparison against other flood maps, and the method only

considers one data source.

A different technique using ML and multi-criteria decision

analysis was proposed by Rahman et al. (2019). The flood-

independent variables–DEM, soil tract map, and land use map–

were collected for the country of Bangladesh. Unlike the previously

mentioned model, flood-dependent variables were included by

calculating flood inundation maps using RS data. The study

compared the application of an ANN, analytical hierarchy process

(AHP), logistic regression (LR), and frequency ratio (FR). Since

weak points have been observed in individual models, an integrated

model was also designed based on the validation results of the prior

methods. Overall, the LR model produced the highest prediction

rate, followed by the FRmodel. Eleven integrated model maps were

created and generally presented better predictions. As in Tien Bui et

al.’s research, the value of integrated models is emphasized. Further

testing using the highest-performing model in different locations

could identify any need for optimization.

Though the power of integrated models was demonstrated

by Rahman et al., the efficacy of an individual ANN model in

flood susceptibility assessments was later exhibited by Priscillia et

al. The study compares three models: ANN, k-Nearest Neighbors

(k-NN), and Support Vector Machines (SVM). As in previous

works, hydrologic inputs such as elevation, slope, land cover, soil

type, and precipitation are used. After training the models, the

validation process involved using environmental factors alongside

Frontiers inWater 03 frontiersin.org

https://doi.org/10.3389/frwa.2023.1291305
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Lin et al. 10.3389/frwa.2023.1291305

satellite imagery to back-predict historical flood events. The

Synthetic Minority Oversampling Technique (SMOTE) balanced

both flooded and non-flooded conditions due to the infrequency

of flooded events (Chawla et al., 2002). Validation was evaluated

through classifiers using Precision, Recall, and the F1-score to

account for the shortage of flood instances.

Based on the validation techniques, the ANNmodel performed

the highest. Despite the ANN model performing the best, the

imbalanced dataset produced poor results. Since the researchers

were basing success on the ability of the susceptibility assessment

to predict which villages would be affected by a flood event in

the next month, factors such as position in the monsoon cycle

may have affected the results. Overall, the study emphasized

the importance of rebalancing the dataset but failed to consider

multiple geographical locations or includemultiple external factors,

as we present in the models built into the NeuralFlood index.

1.4. Research questions

Our contribution via this study incorporates numerous novel

factors (twelve) and variables (thirty) into AI models. We leverage

clustering and deep learning to create flooding susceptibility indices

that provide insight for helping policy and decision-making,

emergency response, and identifying high-risk geographical areas

and watersheds.

In this study, the following research questions are formulated:

• RQ#1: How do multiple factors of flooding events contribute

to a neural networks-based flooding susceptibility index?

• RQ#2: Will neural network model(s) have accurate flood

indexing results when applied between three hydrological

unique study areas (i.e., geographical contexts)?

Those two questions are answered via the NeuralFlood

workflow; the experimental design and data used for evaluation are

introduced next.

2. Experimental setup

This section presents the empirical process that we used to

evaluate NeuralFlood.

2.1. Data sources and descriptions

The data collected for the AI model resulted in 11 variables

used as inputs (independent variables). All data are publicly

available (i.e., open access) in the United States. Data used in this

study were collected from the National Oceanic and Atmospheric

Administration (NOAA), the United States Geological Survey

(USGS), and the United States Department of Agriculture (USDA).

Although most of the inputs were geographic data, some factors,

including population density, were societal data. For data that

are not time-bound, such as elevation, slope degree, and so on,

the most recent available source was used. The earliest data are

from 2019. For time-bound data, collections ranged from 2010

to 2022. Each impact factor includes monthly data, average (µ),

standard deviation (std), range, 90th percentile (Pct90), total (sum),

anomalies (anomaly), and county ranking (rank), density and

area. Table 1 illustrates the factors inputted into the model, the

description, the source, and the data format. Regarding the data

format, spatial and non-spatial data distinguish between data

derived from a raster or GIS file vs. a flat, 2-dimensional source.

The DEMs are downloaded from USGS; they are provided by

the 3D Elevation Program (3DEP). 3DEP data serves as an elevation

dataset that consists of seamless layers and a high-resolution

layer that scientists use for hydrologic modeling. The USGS data

download website is open access and available to all users.1 A

1-arc second-resolution, ∼30-meter-resolution, is used, for dates

between 2019 to 2022. Data manipulations applied to the original

DEM files included: merging and trimming datasets to fit their

respective states. Slope degree, curvature, and flow accumulation

were derived from the DEMs using ArcGIS Pro. All spatial data

were stored as raster files that are then analyzed. The county

boundary shapefiles were downloaded from the 2023 TIGER/Line

dataset available through the Census Bureau.2 The shapefiles

represent the 118th Congressional District legal boundaries. Since

spatial data are provided in a format intended for GIS use,

all spatial data are first processed using ArcGIS Pro and its

respective functions. After processing in ArcGIS Pro, spatial data

are converted into a tabular CSV format with county-level numeric

values to be later fed to the model.

2.2. Data preprocessing

Data preprocessing involves the utilization of three primary

techniques: correlation analysis, resampling, and scaling.

2.2.1. Pearson correlation
In this analysis, the p-value is employed to assess the

significance of the relationship between variables, particularly in

the context of flood vulnerability. Utilizing a significance level

of 0.05, the p-value helps determine whether the link between

factors like topography, soil type, land use, precipitation, and

flood susceptibility is statistically significant. By calculating the

Pearson correlation coefficient and examining the associated p-

value for each factor, the analysis gauges the strength of these

relationships. A lower p-value indicates stronger evidence of a

meaningful association. In building indexmodels, any variable with

a p-value below 0.05 is excluded from consideration as an input for

that specific index model.

2.2.2. Imbalanced datasets
Imbalanced datasets can pose a challenge for machine learning

models since they tend to favor the majority class, leading to

poor performance in predicting the minority class. In the case of

flooding, a model may be effective at classifying non-flood events

1 https://apps.nationalmap.gov/downloader/

2 https://www.census.gov/data.html
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TABLE 1 NeuralFlood variables (used for modeling) with corresponding descriptions.

Factor Description Data

Elevationa (m) The height above a reference datum. Lower areas are more prone

to flooding due to their proximity to water bodies and natural

drainage patterns.

µ, std,min,max, range, sum, Pct90

Slope degree a (◦) The measure of terrain steepness represents the first derivative of

the terrain model, indicating the rate of elevation change.

Controls the flow velocity.

µ, σ ,min,max, range, sum,Pct90

Curvaturea (rad/m) The measurement of terrain curvature, representing the second

derivative of the terrain model. It characterizes geomorphic

qualities, including flat, concave, and convex shapes.

µ, σ ,min,max, range, sum,Pct90

Flow accumulationa The accumulated weight of all land flows moving downslope.

Dictates the direction of water flow.

µ, σ ,min,max, range, sum,Pct90

Precipitationb ,c (inches) Monthly precipitation record from 2010 to 2022. Increased

precipitation can lead to increased flooding.

PCP, rank, anomaly, µ (from 1901

to 2000)

Temperatureb ,c (◦F) Monthly temperature record from 2010 to 2022. Temperature

changes can alter precipitation and soil moisture levels.

T(min,max,µ), rank(min,max,µ), anomaly(min,max,µ)

Population densityd (persons/km2) The total number of persons in an area divided by the land area in

km2 . Higher density is prone to more flood risk.

density

Drought intensityc ,e Categorical percentages for D0 to D4 indicate drought severity,

ranging from the least to the most intense. It is further evaluated

using the Drought Severity and Coverage Index (DSCI), a

weighted sum of the percentages in D0 through D4.

D0 (0–100%)

D1 (0–100%)

D2 (0–100%)

D3 (0–100%)

D4 (0–100%)

DSCI (0–500)

Land aread (km2) The total area of land in km2 within a jurisdiction. area

Water aread (km2) The total water area in km2 within a jurisdiction. area

Housing densityd (house unit/km2) The total number of house units in an area divided by the land

area in km2 . More housing, higher flood risk, increased

impervious cover.

density

Historical floodingc (model output) The recorded measurements of flooding concerning duration,

frequency, and location.

FTD, FFTD, FOC, FFOC

aU.S. Geological Survey.
bNCEI.
cNOAA.
dU.S. Census Bureau.
eUSDA.

(class 0) but not as effective at classifying flood events (class 1). A

flooding index should be developed in a manner that can identify

all ranges and variations of floods. To address this issue, we use

both oversampling and undersampling techniques to balance the

dataset, recognizing that larger-scale floods are relatively infrequent

compared to smaller ones (Chawla et al., 2002). We consider this

aspect in our experimental design.

2.2.3. Standardization scaling
All data are normalized using standardization before feeding

to the ANN model. Standardization assists in removing the

effects of different data scales. When features in a dataset have

different scales, the model may give more weight to features with

larger values. This can cause biased predictions and inaccurate

results. Standardizing the data ensures that each feature has equal

importance when feeding the model.

The objective standardization scaling function is:

z =
x− µ

σ

Here, µ is set to 0 and σ is set to 1. This ensures that each data

point, denoted as x, is scaled to have both a zero mean and unit

variance. The next section presents this paper’s main contribution,

NeuralFlood.

3. Methodology: NeuralFlood

The diagram in Figure 1 illustrates the high-level procedural

overview of the methodology. NeuralFlood consists of three main

pillars: data-driven indexing, using clustering for labeling, and

deep learning. NeuralFlood consists of four sub-indices, two for

regular and flash flood time durations (FTD and FFTD), and two

for regular and flash flood occurrence counts (FOC and FFOC).

We adopt the definitions the National Weather Service (NWS)

described: floods last longer than flash floods. Flooding can go on

for days or even weeks. On the other hand, a flash flood occurs

when there is a high volume of heavy rain in a short span, usually

<6 h (National Weather Service, n.d).

3.1. Flood susceptibility indexing

The flood history, often referred to as the disaster experience,

suggests that areas with a significant flood history possess a certain
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FIGURE 1

Procedural pipeline for NeuralFlood.

level of adaptation capacity. As a result, these areas also exhibit a

higher probability of experiencing future flood events (Zong and

Tooley, 2003; Chang and Chen, 2016). In this study, the number of

flood occurrences and total duration in minutes within a month are

used to label flood susceptibility using K-means clustering.

Previous research in the study areas exclusively employed

binary variables (Bui et al., 2018; Darabi et al., 2019) to determine

the presence or absence of floods as dependent variables. In

contrast, our study deviates from this approach by employing the

number of flooding occurrences and the total duration of flooding

to determine the flood susceptibility index.

3.2. K-means clustering

The K-means clustering method is advantageous in identifying

regions with similar flood patterns and duration (Zhang, 2022).

By pinpointing these areas, we can prioritize flood prevention

measures and allocate resources to the most vulnerable regions.

Once the k-means clustering has been performed, we can use

the resulting clusters (as labels) to create a Flood Susceptibility

Index. An effective method could include assigning each cluster a

score based on the frequency or severity of flood occurrences in

that cluster.

The objective K-means clustering function is:

J =

m∑

i=1

K∑

k=1

wik‖x
i − µk‖

2

where wik = 1 for datapoint xi if it belongs to cluster k. wik

is otherwise equal to 0. The centroid of the cluster is µk. The

technique involves minimizing J with respect to the other variables,

assigning the data point xi to the closest cluster based on its sum of

squared distance from the cluster’s centroid.
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FIGURE 2

Two elbow diagrams: (left) occurrence count and (right) total duration.

TABLE 2 Flood and flash flood susceptibility index based on total

duration (FTD, FFTD).

FTD Total duration
(minutes)

FFTD Total duration
(minutes)

1 0–1,170 1 0–1,650

2 1,186–3,972 2 1,665–6,000

3 4,320–12,770 3 6,214–15,280

4 17,535–27,359 4 23,039–29,009

5 43,119–45,419 5 43,199–54,718

3.3. ANN for flooding indices

ANNs are a type of deep learning algorithm that are well-

suited for modeling complex, nonlinear relationships between

variables, such as the case at hand (Mijwel, 2018). In the context

of flooding, in our study, ANN is used to create a flood index

by predicting the likelihood of flooding based on the listed 12

factors. The indices range from 1 to 7 (occurrence count) and 1

to 5 (total duration). Additionally, ANN can be trained on large

datasets and can incorporate new data or features as they become

available, allowing for continuous improvement of the flooding

index over time.

To use ANN for finding a flooding index, we first need to gather

data on the variables that affect flood occurrences (Khoirunisa et al.,

2021). These data are used to train the ANN, which involves feeding

the algorithm a set of input data along with the corresponding

output, the flood susceptibility index. The ANN then learns to map

the input data to the output, adjusting its parameters in response to

the training data. Once the ANN has been trained, it can be used to

classify unseen data.

However, there are some potential challenges to using ANN for

finding a flood index (Bentivoglio et al., 2022). One challenge is

that the algorithm may overfit the training data, meaning that it

performs well on the training data but poorly on new data.

TABLE 3 Flash flood and flood susceptibility index based on occurrence

count (FOC, FFOC).

FOC Occurrence count FFOC Occurrence count

1 0 1 0

2 1 2 1

3 2 3 2–3

4 3–4 4 4–6

5 5–7 5 7–10

6 8–12 6 11–18

7 14–20 7 20–31

TABLE 4 NeuralFlood ANNmodel results.

Index Accuracy Precision Recall F1 score

FTD 0.7914 0.3656 0.3256 0.3249

FFTD 0.8697 0.3112 0.3003 0.3052

FOC 0.507 0.3039 0.3163 0.3049

FFOC 0.5348 0.3542 0.3127 0.3216

4. Experimental results

This section presents the outcomes of our NeuralFlood study.

Each index demonstrates distinct and strong correlations with

specific factors, leading to the inclusion or exclusion of different

sets of factors in each index.

Before performing k-means clustering on the number of

occurrences and total flood duration, we used an elbow diagram

to determine the suitable number of clusters for the dataset. In the

elbow diagram, the inertia represents the sum of squared distances

of samples to their closest cluster center. It is a measure of how

compact the clusters are. A lower inertia indicates better clustering.
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FIGURE 3

Receiver operating characteristic curves—per index: (A) FTD, (B) FFTD, (C) FOC, and (D) FFOC.

We used a logarithmic scale instead of a normal scale for the elbow

diagram to better visualize the differences in inertia scores.

The results of the elbow diagrams in Figure 2, indicated that

having seven clusters achieved the best score for the flooding

susceptibility index using the occurrence count, while having five

clusters yielded the best score for the flooding susceptibility index

using the total flood duration. The k-means algorithm silhouette

scores are as follows: 0.7667 for FTD, 0.7991 for FFTD, 0.9426

FOC, and 0.9 for FFOC. To further analyze the results, we created

tables that define the range of the number of occurrences and

total flood duration falling into each flooding susceptibility index.

Tables 2, 3 provide a clear understanding of how the different

indices are categorized.

The four index models vary in architecture performance.

FTD model utilized five layers with varying units (416, 160, 96,

192, and 320) alongside a rectified linear unit (relu) activation

function and a learning rate of 0.01. FOC model, with five

layers and units distributed as (192, 256, 352, 320, and 64), also

employed a relu activation function and a learning rate of 0.01.

FFTD Model, comprising three layers with units (256, 32, and

32), utilized a relu function and a lower learning rate of 0.001.

Lastly, FFOC model featured five layers with units (288, 32,

512, 416, and 128) while using a relu function and a learning

rate of 0.001. Therefore, the FTD and FFTD indices ranged

from Indices 1 to 5. The FOC and FFOC indices ranged from

Indices 1 to 7.

Furthermore, we evaluated the performance of the four

flooding susceptibility indices using metrics such as accuracy,

precision, recall, and F1 score. It was observed that the index

utilizing the number of occurrences for flash floods outperformed

the others in terms of precision and recall (see Table 4).

The ROC graph in Figure 3 was plotted to assess the

performance of the flood susceptibility indices. For FTD, it

performs moderately well for indices 1, 2, and 3, with AUC values

ranging from 0.67 to 0.78. However, index 4 lacks an AUC value

(nan), making its performance interpretation impossible. Index

5 exhibits a comparatively lower AUC value of 0.57, indicating

weaker discrimination ability compared to the other indices.

As for FFTD, it consistently performs well across all

indices, achieving AUC values ranging from 0.73 to 0.96.

All indices demonstrate strong discrimination ability with

high AUC values. Notably, indices 4 and 5 stand out with
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FIGURE 4

Confusion matrices—per index: (A) FTD, (B) FFTD, (C) FOC, and (D) FFOC.

exceptionally high AUC values of 0.95 and 0.96, signifying excellent

classification performance.

In the case of FOC, its performance varies across different

indices. Indices 1, 5, and 7 showcase relatively higher AUC values,

ranging from 0.78 to 0.96, indicative of strong discrimination

ability. Conversely, indices 2, 3, 4, and 6 exhibit AUC values

ranging from 0.60 to 0.69, suggesting weaker performance in

classification tasks.

Similarly, for FFOC, performance varies across different

indices. Indices 1, 5, 6, and 7 demonstrate relatively higher

AUC values, ranging from 0.76 to 0.90, indicating effective

discrimination ability. Conversely, indices 2, 3, and 4 display AUC

values ranging from 0.61 to 0.68, suggesting weaker performance in

classification tasks.

In the context of the flood susceptibility index, the confusion

matrix would display the distribution of true positives (TP),

true negatives (TN), false positives (FP), and false negatives

(FN) for each of the five classes. According to Figure 4, the

first two classes appear to have a good number of true

positives, while the remaining classes show relatively lower true

positive rates.

It is important to note that the goal of NeuralFlood is not to

predict floods, rather to be able to classify flooding maps/indices in

a more accurate manner. In consideration of multiple contextual

factors (pointing back to RQ#1), deep learning can provide a viable

solution. The occurrence of a flood, or a high susceptibility score,

is considered to be an outlier since floods are not statistically

common, even in commonly flooding regions. Additionally, if one

observes the performance of the ANN across different sub-indices,

the variety is a strong indicator that not all flood indices should be

created equal, especially when applied across different geographical

contexts (pointing back to RQ#2).

Overall, the results of the NeuralFlood experiment provide

insightful information about the flood susceptibility index.

The research highlights the effectiveness of certain variables

and clustering techniques in assessing flood-prone areas in a

data-driven manner.

5. Conclusion and discussions

In this study, we explored the potential use of AI methods in

developing a flooding susceptibility index. We employed various
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techniques, including clustering and deep learning, and provided

four different sub-indices. Our motivation for using AI was rooted

in the fact that it is a data-driven approach capable of extracting

patterns and relationships from large datasets. We present an

index (NeuralFlood) that has distinct characteristics not present

in existing indices. To implement our approach, we increased the

number of variables and utilized clustering technique and multiple

layers in ANN while fine-tuning parameters through a trial-and-

error process. We also incorporated the total duration time and

the number of occurrences of flooding as key factors for creating

the indices.

By selecting three U.S. states with different geographical aspects

(VA, KS, NV), we leveraged the high variability in our deep learning

model. This approach allowed us to capture the diverse factors

contributing to flooding susceptibility in each state. While other

indices are more geographically specific, our index is intended

to provide more general insights, making it a helpful tool for

decision support at the federal level, standardized across the

country (Huang et al., 2021). Furthermore, we believe that our

findings can be extended to other regions, such as the west

and east coasts, by considering their unique characteristics. For

instance, we can draw examples from the flooding challenges

faced by cities like Miami, FL, where rising sea levels pose a

significant threat.

Nonetheless, the analysis of our study indicates that the

application of AI techniques in developing flooding susceptibility

indices still requires further improvement. For instance, it

seems the first two classes (Index values 1 and 2) in the

four developed sub-indices (FTD, FFTD, FOC, and FFOC)

have a good number of true positives while the remaining

classes (high susceptibility; 3 through 7) show relatively lower

true positive rates. Accordingly, collecting more data from

highly flood-prone areas is expected to improve the quality

of NeuralFlood. Furthermore, carefully validating the model on

independent datasets and using techniques such as regularization

can mitigate overfitting or underfitting. Additional sensors in

different locations, alternative AI models, and more variables

can be also tested to increase the overall robustness of

AI-driven indexing.

In conclusion, our study showcased the effectiveness

of employing AI techniques, including clustering and deep

learning, to create a flooding susceptibility index. NeuralFlood

can assist in comprehending and mitigating flooding risks.

Additionally, our findings can be extended to other regions,

considering their unique geographical aspects. Rising sea

levels pose challenges not only to land-based infrastructure

but also to maritime assets, pointing to the importance of

incorporating such factors into comprehensive and universal

AI-driven flooding susceptibility models. Flooding has both

immediate and long-term economic implications, as it can

disrupt infrastructure and property while also stimulating

economic activity through reconstruction efforts. This index

enables first responders to identify vulnerable areas and

allocate resources more effectively, enhancing overall readiness

and resilience.

5.1. Future work

As part of future work, exploring the variation in results across

different states would be valuable. Research advances could involve

a comprehensive analysis of how the outcomes differed between

states, potentially uncovering patterns or trends that might not be

evident at a broader level of analysis. Surveying relevant experts and

operators might aid in providing outcomes in a more translatable

manner; additionally, experimenting with other AI models and

investigating the impact of aggregating spatial data into county-

level resolutions could provide further insights. Understanding the

implications of this aggregation could contribute to more nuanced

interpretations of the dataset and its overall significance. Lastly,

further experimentation with AI assurance (Batarseh and Freeman,

2022), such as building explainability (i.e., XAI) measures could

increase NeuralFlood’s user adoption and overall trustworthiness.

Data availability statement

The datasets presented in this article are not readily available

because they are sourced frommultiple state and government open

repositories. Requests to access the datasets should be directed to

batarseh@vt.edu.

Author contributions

FB: Conceptualization, Supervision, Validation, Writing—

review & editing. JL: Data curation, Formal analysis, Investigation,

Resources, Validation, Visualization, Writing—original

draft. CS: Conceptualization, Data curation, Investigation,

Methodology, Validation, Visualization, Writing—original draft.

EO: Methodology, Resources, Writing—review & editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inWater 10 frontiersin.org

https://doi.org/10.3389/frwa.2023.1291305
mailto:batarseh@vt.edu
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Lin et al. 10.3389/frwa.2023.1291305

References

Batarseh, F. A., and Freeman, L. (2022). AI Assurance: Towards Trustworthy,
Explainable, Safe, and Ethical AI. Academic Press.

Batarseh, F. A., and Kulkarni, A. (2023). AI for water. Computer 56, 109–113.
doi: 10.1109/MC.2022.3231142

Bates, P., Quinn, N., Sampson, C., Smith, A., Wing, O., Savage, J., et al. (2021).
Combined modeling of US fluvial, pluvial, and coastal flood hazard under current and
future climates.Water Resour. Res. 57, e2020WR028673. doi: 10.1029/2020WR028673

Bentivoglio, R., Isufi, E., Jonkman, S. N., and Taormina, R. (2022). Deep learning
methods for flood mapping: a review of existing applications and future research
directions. Hydrol. Earth Syst. Sci. 26, 4345–4378. doi: 10.5194/hess-26-4345-2022

Bui, D. T., Panahi, M., Shahabi, H., Singh, V. P., Shirzadi, A., Chapi, K., et al. (2018).
Novel hybrid evolutionary algorithms for spatial prediction of floods. Sci. Rep. 8, 15364.
doi: 10.1038/s41598-018-33755-7

Cao, C., Xu, P., Wang, Y., Chen, J., Zheng, L., and Niu, C. (2016). Flash flood hazard
susceptibility mapping using frequency ratio and statistical index methods in coalmine
subsidence areas. Sustainability 8, 948. doi: 10.3390/su8090948

Chang, H., and Chen, T. (2016). Spatial heterogeneity of local flood vulnerability
indicators within flood-prone areas in taiwan. Environ. Earth Sci. 75, 1484.
doi: 10.1007/s12665-016-6294-x

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002).
SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357.
doi: 10.1613/jair.953

Chicago Metropolitan Agency for Planning (2018). Flood Susceptibility Index
Appendix. Availbal online at: https://stargishub01.blob.core.windows.net/cmap-
arcgis-hub01-blob/Open_Data/FloodSusceptibilityIndex_CMAP.zip (accessed May
10, 2023).

Collier, C. G. (2007). Flash flood forecasting: what are the limits of predictability?Q.
J. R. Meteorol. Soc. 133, 3–23. doi: 10.1002/qj.29

Darabi, H., Choubin, B., Rahmati, O., Torabi Haghighi, A., Pradhan, B., and
Kløve, B. (2019). Urban flood risk mapping using the garp and quest models:
a comparative study of machine learning techniques. J. Hydrol. 569, 142–154.
doi: 10.1016/j.jhydrol.2018.12.002

Duan, L., Liu, C., Xu, H., Huali, H., Liu, H., Yan, X., et al. (2022). Susceptibility
assessment of flash floods: a bibliometrics analysis and review. Remote Sens. 14, 5432.
doi: 10.3390/rs14215432

Environmental Protection Agency (2022). Flooding. Available online at: https://
www.epa.gov/natural-disasters/flooding (accessed May 10, 2023).

FEMA (2023). National Risk Index Technical Documentation. Federal Emergency
Management Agency. Available online at: https://www.fema.gov/sites/default/files/
documents/fema_national-risk-index_technical-documentation.pdf (accessed May
10, 2023).

Hapuarachchi, H. A. P., Wang, Q. J., and Pagano, T. C. (2011). A review of
advances in flash flood forecasting. Hydrol. Process. 25, 2771–2784. doi: 10.1002/hyp.
8040

Huang, C.-H., Batarseh, F. A., Boueiz, A., Kulkarni, A., Su, P.-H., and Aman, J.
(2021). Measuring outcomes in healthcare economics using artificial intelligence: with
application to resource management. Data Policy 3, e30. doi: 10.1017/dap.2021.29

IPCC (2021). “Climate change 2021: the physical science basis,” in Contribution
of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel
on Climate Change, eds V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C.
Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell,
E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B.
Zhou (Cambridge; New York, NY: Cambridge University Press), 2391.

Khoirunisa, N., Ku, C.-Y., and Liu, C.-Y. (2021). A gis-based artificial neural
network model for flood susceptibility assessment. Int. J. Environ. Res. Public Health
18, 1072. doi: 10.3390/ijerph18031072

Mallakpour, I., and Villarini, G. (2015). The changing nature of flooding across the
central united states. Nat. Clim. Chang. 5, 250–254. doi: 10.1038/nclimate2516

Micu, E.-A. (2022). Transport Infrastructure Damaged by Floods has a Detrimental
Impact on Recovery - the Irish Experience - aa-Floods. Available online at: https://
aafloods.eu/transport-infrastructure-damaged-by-floods-has-a-detrimental-impact-
on-recovery-the-irish-experience

Mijwel, M. M. (2018). Artificial Neural Networks Advantages and Disadvantages.
Available online at: https://www.linkedin.com/pulse/artificial-neuralnetWork,21

National Weather Service (n.d.). Flood and Flash Flood Definitions. Available online
at: https://www.weather.gov/mrx/flood_and_flash (accessed August 25, 2023).

Priscillia, S., Schillaci, C., and Lipani, A. (2021). Flood susceptibility assessment
using artificial neural networks in indonesia. Artific. Intell. Geosci. 2, 215–222.
doi: 10.1016/j.aiig.2022.03.002

Rahman, M., Ningsheng, C., Islam, M. M., Dewan, A. M., Iqbal, J., Washakh, R.
M. A., et al. (2019). Flood susceptibility assessment in bangladesh using machine
learning and multi-criteria decision analysis. Earth Syst. Environ. 3, 585–601.
doi: 10.1007/s41748-019-00123-y

Rahmati, O., Zeinivand, H., and Besharat, M. (2016). Flood hazard zoning in Yasooj
region, Iran, using GIS and multi-criteria decision analysis. Geomat. Nat. Haz. Risk 7,
1000–1017. doi: 10.1080/19475705.2015.1045043

Sampson, C. C., Smith, A. M., Bates, P. D., Neal, J. C., Alfieri, L., and Freer, J. E.
(2015). A high-resolution global flood hazardmodel.Water Resour. Res. 51, 7358–7381.
doi: 10.1002/2015WR016954

Smith, A. B. (2023). 2022 U.S. Billion-Dollar Weather and Climate Disasters
in Historical Context. Available online at: https://www.climate.gov/news-features/
blogs/beyond-data/2022-us-billion-dollar-weather-and-climate-disasters-historical
(accessed May 10, 2023).

Stanke, C., Murray, V., Amlôt, R., Nurse, J., and Williams, R. (2012). The effects
of flooding on mental health: outcomes and recommendations from a review of the
literature. PLoS Curr. 4, e4f9f1fa9c3cae. doi: 10.1371/4f9f1fa9c3cae

Tien Bui, D., Pradhan, B., Nampak, H., Bui, Q.-T., Tran, Q.-A., and Nguyen,
Q.-P. (2016). Hybrid artificial intelligence approach based on neural fuzzy
inference model and metaheuristic optimization for flood susceptibility modeling
in a high-frequency tropical cyclone area using gis. J. Hydrol. 540, 317–330.
doi: 10.1016/j.jhydrol.2016.06.027

Warner, B. P., Schattman, R. E., and Hatch, C. E. (2017). Farming the
floodplain: ecological and agricultural tradeoffs and opportunities in river and
stream governance in New England’s changing climate. Case Stud. Environ. 1, 1–18.
doi: 10.1525/cse.2017.sc.512407

World Meteorological Organization (2021). 2021 State of Climate Services (WMO-
No. 1278).

Wu, X., Xiao, Q., Wen, J., You, D., and Hueni, A. (2019). Advances in quantitative
remote sensing product validation: overview and current status. Earth Sci. Rev. 196,
102875. doi: 10.1016/j.earscirev.2019.102875

Zhang, Y. (2022). “Urban flood disaster prediction based on k-means clustering
and gru network,” in 2022 6th Annual International Conference on Data Science and
Business Analytics (ICDSBA) (Changsha: IEEE), 83–88.

Zong, Y., and Tooley, M. (2003). A historical record of coastal floods
in britain: frequencies and associated storm tracks. Nat. Hazards 29, 13–36.
doi: 10.1023/A:1022942801531

Frontiers inWater 11 frontiersin.org

https://doi.org/10.3389/frwa.2023.1291305
https://doi.org/10.1109/MC.2022.3231142
https://doi.org/10.1029/2020WR028673
https://doi.org/10.5194/hess-26-4345-2022
https://doi.org/10.1038/s41598-018-33755-7
https://doi.org/10.3390/su8090948
https://doi.org/10.1007/s12665-016-6294-x
https://doi.org/10.1613/jair.953
https://stargishub01.blob.core.windows.net/cmap-arcgis-hub01-blob/Open_Data/FloodSusceptibilityIndex_CMAP.zip
https://stargishub01.blob.core.windows.net/cmap-arcgis-hub01-blob/Open_Data/FloodSusceptibilityIndex_CMAP.zip
https://doi.org/10.1002/qj.29
https://doi.org/10.1016/j.jhydrol.2018.12.002
https://doi.org/10.3390/rs14215432
https://www.epa.gov/natural-disasters/flooding
https://www.epa.gov/natural-disasters/flooding
https://www.fema.gov/sites/default/files/documents/fema_national-risk-index_technical-documentation.pdf
https://www.fema.gov/sites/default/files/documents/fema_national-risk-index_technical-documentation.pdf
https://doi.org/10.1002/hyp.8040
https://doi.org/10.1017/dap.2021.29
https://doi.org/10.3390/ijerph18031072
https://doi.org/10.1038/nclimate2516
https://aafloods.eu/transport-infrastructure-damaged-by-floods-has-a-detrimental-impact-on-recovery-the-irish-experience
https://aafloods.eu/transport-infrastructure-damaged-by-floods-has-a-detrimental-impact-on-recovery-the-irish-experience
https://aafloods.eu/transport-infrastructure-damaged-by-floods-has-a-detrimental-impact-on-recovery-the-irish-experience
https://www.linkedin.com/pulse/artificial-neuralnetWork,21
https://www.weather.gov/mrx/flood_and_flash
https://doi.org/10.1016/j.aiig.2022.03.002
https://doi.org/10.1007/s41748-019-00123-y
https://doi.org/10.1080/19475705.2015.1045043
https://doi.org/10.1002/2015WR016954
https://www.climate.gov/news-features/blogs/beyond-data/2022-us-billion-dollar-weather-and-climate-disasters-historical
https://www.climate.gov/news-features/blogs/beyond-data/2022-us-billion-dollar-weather-and-climate-disasters-historical
https://doi.org/10.1371/4f9f1fa9c3cae
https://doi.org/10.1016/j.jhydrol.2016.06.027
https://doi.org/10.1525/cse.2017.sc.512407
https://doi.org/10.1016/j.earscirev.2019.102875
https://doi.org/10.1023/A:1022942801531
https://www.frontiersin.org/journals/water
https://www.frontiersin.org

	NeuralFlood: an AI-driven flood susceptibility index
	1. Introduction and motivation
	1.1. The need for AI
	1.2. Flooding indices
	1.3. Using AI for flood indices—A brief review
	1.4. Research questions

	2. Experimental setup
	2.1. Data sources and descriptions
	2.2. Data preprocessing
	2.2.1. Pearson correlation
	2.2.2. Imbalanced datasets
	2.2.3. Standardization scaling


	3. Methodology: NeuralFlood
	3.1. Flood susceptibility indexing
	3.2. K-means clustering
	3.3. ANN for flooding indices

	4. Experimental results
	5. Conclusion and discussions
	5.1. Future work

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


