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Introduction: E�cient water resource management in irrigation systems relies
on the accurate estimation of seepage loss from lined canals. This study utilized
machine learning (ML) algorithms to tackle this challenge in seepage loss
prediction.

Methods: Firstly, seepage flow through irrigation canals was modeled numerically
and experimentally using Slide2 and physical models, respectively. Then, the Slide2
model results were compared to the experimental tests. Thus, the model was
used to conduct 600 simulation scenarios. A parametric analysis was performed
to investigate the e�ect of canal geometry and liner properties on seepage loss.
Based on the conducted scenarios, ML models were developed and evaluated
to determine the best predictive model. The ML models included non-ensemble
(regression-based, evolutionary, neural network) and ensemble models. Non-
ensemble models (adaptive boosting, random forest, gradient boosting). There
were four input ratios in these models: bed width to water depth, side slope,
liner to soil hydraulic conductivity, and liner thickness to water depth. The
output variable was the seepage loss ratio. Seven performance indices and k-fold
cross-validation were employed to evaluate reliability and accuracy. Moreover, a
sensitivity analysis was conducted to investigate the significance of each input in
predicting seepage loss.

Results and discussion: The findings revealed that the Artificial Neural Network
(ANN) model was the most dependable predictor, achieving the highest
determination-coe�cient (R2) value of 0.997 and root-mean-square-error (RMSE)
of 0.201. The eXtreme Gradient Boosting (XGBoost) followed the ANN model
closely, which achieved an R2 of 0.996 and RMSE of 0.246. Sensitivity analysis
showed that liner hydraulic conductivity is the most significant parameter,
contributing 62% predictive importance, while the side slope has the lowest
significance. In conclusion, this study presented e�cient and cost-e�ective
models for predicting seepage loss, eliminating the need for resource-intensive
experimental or field investigations.
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1 Introduction

Water scarcity is increasing due to climate change. This

increase underscores the necessity to investigate water losses. It

is essential to improve water management, especially in water-

scarce regions. Irrigation is regarded as one of the most essential

water uses. Water is lost in irrigation canals due to seepage and

evaporation, but evaporation losses are insignificant in comparison

(Waller and Yitayew, 2015). Seepage occurs when water percolates

into the soil through the wetted perimeter of the canal (Jamel,

2016). Seepage can be severe if the soil through which the canal

passes is porous and the canal is unlined. Thus, preventing or

controlling canal seepage loss improves water resource utilization

efficiency (Swamee et al., 2000).

Measuring canal seepage loss involves various methods, such

as field measurements, analytical formulas, empirical equations,

and numerical modeling (Vishnoi and Saxena, 2014; Christian and

Trivedi, 2018). Field measurements include the ponding method,

the inflow–outflow method, and point measurements (Waller and

Yitayew, 2015), but their implementation can be difficult due to

practical constraints (Eltarabily and Negm, 2015). In contrast,

numerical models offer flexibility and speed and require fewer

inputs, making them increasingly popular for estimating canal

seepage loss (Elkamhawy et al., 2021).

To effectively estimate seepage loss using numerical models,

selecting consistent boundary conditions and developing seepage

models based on these conditions is crucial. Previous research has

explored seepage from earthen canals through direct measurements

(Lund et al., 2023) or analytical studies (Sharma and Chawla,

1979; Chahar, 2007; Osman and Rahman, 2008; Ghazaw, 2011;

Carabineanu, 2012; Uchdadiya and Patel, 2014). Empirical

equations have been used and compared in earlier studies (Mowafy,

2001; Saha, 2015), while more recent research increasingly uses

numerical modeling techniques (Salmasi and Abraham, 2020;

El-Molla and El-Molla, 2021a,b; El-Molla and Eltarabily, 2023;

Eltarabily et al., 2023a,b).

Lining irrigation canals is considered one of the most efficient

ways to reduce water losses in water-conveying systems (Abd-Elaty

et al., 2022). Canal lining improves flow characteristics, reduces

seepage loss, controls weeds growing, and minimizes maintenance

costs. Moreover, it mitigates water logging risks in adjacent low

agricultural lands (Abd-elziz et al., 2022). Different lining materials

reduce seepage loss, including compacted earth, concrete, flexible

membranes, asphaltic concrete, and soil cement mixtures (Waller

and Yitayew, 2015).

Studies have explored the impact of different lining materials

on seepage loss. Kahlown and Kemper (2005) evaluated the

reduction of water losses from watercourses of several types of

lining (rectangular brickmasonry and concrete trapezoidal sections

for canal bed and sides). Results showed aminor difference in losses

between earthen and long-term lined watercourses. Bahramlu

(2011) investigated seepage loss in irrigated channels with rock

cement and concrete lining in cold regions, specifically in Hamedan

province, Iran. The results revealed no substantial disparity in the

average seepage loss between the concrete-lined channels and those

covered with rock cement. Aghvami et al. (2013) employed the

SEEP/W model and Evolutionary Polynomial Regression (EPR)

modeling techniques to investigate seepage in the Qazvin and

Isfahan channels in Iran. Results showed that EPR was more

accurate in estimating channel seepage than the SEEP/W model.

Jamel (2016) studied the seepage loss from unlined and lined

triangular channels using the SEEP/W model. Results showed that

the seepage loss increased with higher soil and lining hydraulic

conductivities, freeboard, inner side slopes, and channel height (the

water depth plus the freeboard).

Salmasi and Abraham (2020) used the SEEP/W model to

study the factors affecting seepage from trapezoidal, rectangular,

and triangular earth canals and develop linear and non-

linear multivariate relationships. Results showed that the wetted

perimeter was distinguished as an effective parameter in the seepage

from the canals, while the canal’s inner side slope had a low

impact on the seepage. Sharief and Zakwan (2021) compared the

performance of a low-density polyethylene (LDPE) lined canal with

a random rubble (RR) masonry-lined canal. Results showed that

the seepage loss from LDPE lining was calculated as 2% compared

to 8% from RR lining. Hosseinzadeh Asl et al. (2020) investigated

the impact of hydraulic and geometric parameters on seepage loss

in an unlined channel by the SEEP/W model and the empirical

relationships. Results showed that the SEEP/W model accurately

estimated seepage loss compared to the empirical relationships.

Moreover, the empirical relationships had excessive errors. El-

Molla and El-Molla (2021a) used the SEEP/W model to explore

the impact of compacted earth lining on the amount of seepage

discharges. Results showed that 99.8% of the seepage discharges can

be saved if the soil is highly compacted.

Eltarabily et al. (2023a) utilized the FLOW-3D and Slide2

models to estimate the discharge and seepage loss from the

canal reaches, respectively. Moreover, the effect of lining on the

discharge and seepage loss of the El-Sont Canal in Egypt was

investigated using Cement Concrete (CC) and CC with Low-

Density Polyethylene (LDPE) film. Results showed that by lining

the canal by CC with LDPE film, the discharges of the canal

reaches were averagely increased by 150%, while the seepage loss

was reduced by 97%. Eltarabily et al. (2023b) used the Slide2

model to investigate the effect of lining on seepage loss from

lined irrigation canals. The study considered different groundwater

table (GWT) locations, canal berm widths, and liner properties

(hydraulic conductivity and liner thickness). The results showed

that the liner hydraulic conductivity had the highest effect on

seepage loss, irrespective of the GWT location and the canal

berm width.

In recent years, machine learning and soft computing

techniques have proven robust and reliable in modeling hydraulic

and hydrologic processes (Nourani et al., 2012; Elshaarawy and

Hamed, 2023). These techniques can handle large, complex, and

noisy datasets, making them suitable for simulating seepage when

the physical relationships are not fully understood. Balkhair (2002)

conducted an ANN to approximate an aquifer’s transmissivity

and storage coefficient, yielding highly accurate results. Lallahem

et al. (2005) conducted an ANN model that effectively simulated

groundwater levels within an unconfined sedimentary aquifer

in France, highlighting the advantages of utilizing ANN for

groundwater level modeling. Samani et al. (2007) developed

an ANN for estimating parameters in a non-leaky confined
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aquifer, providing a simpler and more accurate surrogate than

traditional methods. Najafzadeh and Barani (2011) conducted a

comprehensive study on predicting scour depth around bridge

piers using two methods: Group Method of Data Handling

(GMDH) networks developed with Genetic Programming (GP)

and Back Propagation (BP) algorithms. The study revealed that

while the GMDH-GPmodel is more time-consuming and complex,

it yields more accurate predictions than the GMDH-BP model.

Taormina et al. (2012) developed an ANN for predicting

groundwater levels in an unconfined coastal aquifer in

Italy. They examined the relationship between groundwater

fluctuations and factors such as marine tide, rainfall recharge,

and evapotranspiration. The study demonstrated the efficacy of

ANN in simulating shallow aquifer groundwater levels. Mohanty

et al. (2013) conducted an assessment comparing the predictive

capabilities of MODFLOW (a finite difference method) and

the ANN model for groundwater flow prediction in an alluvial

aquifer. The findings showed that the ANN model outperformed

the MODFLOW in predictive accuracy and efficiency. Fallah-

Mehdipour et al. (2013) demonstrated the effectiveness of

GEP in deriving the governing groundwater flow equations

for two aquifers in Iran, highlighting its superior performance.

Najafzadeh and Tafarojnoruz (2016) employed neuro-fuzzy-based

group method of data handling (NF-GMDH) improved with

particle swarm optimization (PSO) to estimate the longitudinal

dispersion coefficient in rivers. The results revealed that NF-

GMDH-PSO had the highest efficiency for predicting longitudinal

dispersion coefficients.

Najafzadeh et al. (2018) explored the impact of debris on scour

depth around bridge piers using NF-GMDH models enhanced

with various evolutionary algorithms. The results highlighted the

significance of the blockage ratio in scour depth prediction, with

NF-GMDH-PSO providing the most accurate results among the

tested models. Najafzadeh and Saberi-Movahed (2019) utilized the

group method of data handling (GMDH), incorporating gene-

expression programming (GEP), to predict three-dimensional

free-span expansion rates around pipelines affected by waves.

The GMDH-GEP model performed well against other models,

emphasizing the role of sediment size, pipeline geometry, and

wave characteristics in scour rate predictions. Gad et al. (2023)

utilized ANN and GEP models to analyze and predict seepage

loss. They created new relations using variables such as Manning’s

coefficient, the Froude number, and the hydraulic radius. The

GEP method showed more promising results than ANN in

forecasting seepage loss for lined and unlined canal conditions.

They reported high determination coefficients, correlation factors,

and low RMSE values, signifying the models’ robustness for

predicting seepage loss.

Based on the above, limited research has addressed seepage

loss from lined irrigation canals. Accurate prediction of seepage

loss is critical for increasing water efficiency, especially in water-

scarce regions. ML models provide a viable alternative by learning

complex data-driven relationships between influential factors like

canal geometry and liner properties to predict seepage loss.

Hence, this study was conducted to predict seepage loss from

lined irrigation canals using both ML models (non-ensemble

and ensemble). The non-ensemble models were Multiple Linear

Regression (MLR), Multiple Non-linear Regression (MNLR),

Support Vector Regression (SVR), Gene Expression Programming

(GEP), and Artificial Neural Network (ANN). The ensemble

models were Adaptive Boosting (AdaBoost), Random Forest (RF),

and eXtreme Gradient Boosting (XGBoost).

Furthermore, the performance of themodels was assessed using

seven performance indices to gauge the accuracy and dependability

of the models. Finally, a sensitivity analysis was employed to

examine the relationship between input variables in estimating

seepage loss from lined irrigation canals. This study can enable

water resources specialists and designers to evaluate the effect of

the investigated parameters on predicting seepage loss quickly and

more economically than costly experimental studies.

2 Materials and methods

Figure 1 shows the research methodology used in this study.

Firstly, experimental tests were implemented in a physical model

for unlined and lined canals with different configurations. The

Slide2 numerical model was then used to estimate the seepage loss,

and its results were compared with the physical one. Moreover, the

Slide2 model was used to perform multiple scenarios considering

different canal geometries and liner properties for estimating

seepage loss from lined canals. Based on these scenarios,MLmodels

were developed. Finally, the adopted ML models were evaluated

to determine the best predictive model of seepage loss from lined

canals.

The prediction methodology included: (1) dataset was gathered

from the Slide2 model scenarios. This data was then assessed for

statistical properties using a heatmap and histograms; (2) both non-

ensemble and ensemble ML methods were utilized. Results from

these models were measured against select performance indices;

(3) the data was split into training and test subsets, followed by

k-fold cross-validation; and (4) finally, the model’s accuracy was

determined using specific performance indicators, and a sensitivity

analysis was conducted.

2.1 E�ective parameters

This research examined various geometric and hydraulic

factors influencing seepage loss from lined irrigation canals

(Eltarabily et al., 2023b). The parameters studied included seepage

loss per unit length of the canal (q), soil’s hydraulic conductivity

(k), width of the canal bed (b), depth of water in the canal (y),

slope of the canal sides (z), thickness of the liner (tL), and the

hydraulic conductivity of the liner (kL). Equation 1 was derived

using dimensional analysis, as presented below:

f
(

q, b, y, z, kL, k, tL
)

= 0 (1)

The executed functional relation by applying Buckingham’s π

theorem (Evans, 1972) was shown in Equation 2 as follows:

(

q

k.y
,
b

y
, z,

kL
k
,
tL
y

)

= 0 (2)
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FIGURE 1

Flowchart of the methodological approach adopted in this study.
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The π terms can be expressed in Equation 3 as follows:

(

q∗,b∗,z, k∗,t∗
)

=0 (3)

Where q∗ is the seepage losses ratio (q/k. y), b∗ is the canal

geometry ratio (b/y), k∗ is the liner hydraulic conductivity ratio

(kL/k), and t∗ is the liner thickness ratio (tL/y).

2.2 Physical modeling

A physical model was constructed in the Irrigation and

Hydraulic Laboratory at the Faculty of Engineering, Horus

University in Egypt, New Damietta, Egypt. The model was installed

inside rectangular tanks made of securit glass of thickness of 1 cm

with a length of 100 cm, a width of 50 cm, and a height of 100 cm.

The tank bottom was drilled into eight slots of ½ inch diameter

and attached with a drainage configuration consisting of a pipe

system containing two pipelines ¾ inch diameter with four slots

per line. Figure 2 depicts the longitudinal and transverse directions

of the physical model and illustrates the inner tank dimensions

and the pipe system. The tests were conducted for a half cross-

section of unlined and lined symmetrical canals, as shown in

Supplementary Figures 1A, B, respectively.

Firstly, a sand barrier was placed at the tank bottom. Then,

the soil was placed and compacted in layers of 20 cm. The canal

side slope was compacted to fit the slope 2H:1V. The soil hydraulic

conductivity was 0.00825 cm s−1, as determined by laboratory tests.

Firstly, the canal section shape was created in the physical model

with varying b∗ ratio. The canal was filled with water to the desired

level and maintained at that level to achieve soil saturation with a

constant seepage rate. Then, the water was allowed to pass through

the channel bed and side slopes by opening the valve at the water

outlet of the pipe system. Considering a constant time interval, the

water level is lowered, and the final depth is obtained. The seepage

losses (Q) were then calculated in cm3 s−1 (Equation 4) using the

volumetric method given by Moghazi and Ismail (1997) as follows:

Q =
WL

(

y1 − y2
)

P t
(4)

Where W is the average top canal width (cm), L is the canal

length (cm), y1 is the initial water depth (cm), y2 is the water depth

after time T (cm), P is the average wetted perimeter (cm), t is the

time interval between y1 and y2 (s).

For lining experiments, the canal was lined by a cement mixture

of thickness 2 cm covering the canal bed and inner side slope.

The cement mixture consists of sand, cement, and water in a

2:1:½ ratio (Alrefaei et al., 2023). The sorptivity test was conducted

to determine the hydraulic conductivity of the cement mixture

(Alsaadawi et al., 2022). The sorptivity test evaluates the water

absorption rate by monitoring the increase in sample mass vs.

time when only one surface is exposed to water entry via capillary

suction. The liner hydraulic conductivity kL was determined from

laboratory tests as 1.04× 10−6 cm s−1 (ASTM C185-13, 2013).

2.3 Numerical modeling

2.3.1 Model description and setup
The Slide2 model was used to estimate the seepage losses

from unlined and lined canals (Eltarabily et al., 2023b). It can

simulate seepage flow through a porous medium using a built-

in finite element groundwater seepage analysis (Rocscience, 2002).

The Laplace equation (Equation 5) is the governing equation

in the Slide2 model describing steady-state seepage through an

isotropic, homogenous porous medium with a constant hydraulic

conductivity in two directions (x and y). The equation was given by

Harr (1991) as follows:

∂2H

∂x2
+

∂2H

∂y2
= 0 (5)

where H is defined as the potential head.

2.3.2 Slide2 model calibration
The Slide2 model was calibrated by conducting ten

experimental tests, i.e., five for unlined and five for lined

canals, by varying the canal geometry ratio (i.e., b∗ = 1, 2, 3, 4,

and 5). Due to symmetry, only half of the domain was modeled

(Supplementary Figure 2). Mesh refinement was used during

discretizing the simulation domain to capture any slight change

in fluxes within the simulation domain (Rocscience, 2002). The

simulation domain was built by 3,000 mesh elements of 3-noded

triangles elements type. However, this element size yielded accurate

results with less analysis time.

The hydraulic conductivities (k and kL) were obtained from

the laboratory tests and defined in the model. The liner thickness

(tL) was taken as 2 cm. According to Eltarabily et al. (2023a,b),

boundary conditions in the model were set as follows: The

perimeter of the canal was assigned a “Total Head” condition. In

contrast, the right edge of the domain was set as an impervious “No

flow” boundary. At the bottom edge, a “Nodal flow rate” boundary

represented the seepage exit face. These boundary conditions are

visualized in Supplementary Figure 2. A discharge section was

defined at the desired location within the model to estimate

seepage loss. With these boundary settings, the seepage analysis was

carried out, and the seepage loss was obtained from the discharge

section output.

2.3.3 Simulation scenarios
After the calibration process, 600 simulation scenarios were

performed using the Slide2 model. The scenarios included five

canal geometry ratios (b∗ = 1, 2, 3, 4, and 5), three values for

the inner side slope (z = 1, 1.5, and 2), eight ratios for the liner

hydraulic conductivity to soil (k∗= 0.0005, 0.001, 0.005, 0.01, 0.05,

0.1, 0.3, and 0.5), and five ratios for the liner thickness to water

depth (t∗= 0.01, 0.05, 0.1, 0.15, and 0.2). The boundary conditions

were defined similarly to the model calibration process. These

scenarios were conducted to (1) explore the combined effect of

lining and can geometry on the seepage loss; (2) develop both non-

ensemble and ensemble ML models to estimate the seepage loss
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FIGURE 2

Schematic representation of the implemented physical model in longitudinal and transverse directions.

from lined canals; and (3) determine the best accurate model in

predicting seepage loss.

2.4 Description of database

2.4.1 Statistical description
The prediction models were formulated using the conducted

600 scenarios. The b∗, z, k∗, and t∗ ratios were designated as

the inputs to the models, while the q∗ ratio was designated as

the output. Table 1 provides a detailed statistical overview of the

dataset, highlighting the minimum and maximum values, standard

deviation (SD), and mean values for input and output variables.

For best predictive modeling, developing within these parameter

ranges is essential. This analysis underscores the extensive range

of parameters captured by the dataset, with the SD indicating how

the data is distributed around the mean. As the SD values rise,

the distribution becomes more enhanced. Supplementary Figure 3

displays a histogram of various input variables. This histogram

reveals that the dataset’s seepage loss ratio (q∗) varies between 0.01

and 12.67. These values indicate that the models can predict the q∗

ratio within this range. The wide range of variables in the database

proved the dataset’s credibility. Thus, based on this dataset, the

proposed models are prepared to offer accurate predictions for the

q∗ ratio.

2.4.2 Correlation analysis
Variables unrelated to the seepage loss ratio (q∗) should

be excluded from the dataset, a determination made through

correlation analysis. Correlation analysis, by definition, evaluates

the relationship between two or more variables. Pearson’s

correlation coefficient (rxy) is the most recommended and common

index (Williams et al., 2020). It is calculated as the ratio of the

TABLE 1 Descriptive statistics of the inputs and output.

Descriptive
statistics

b∗ z k∗ t∗ q∗

Minimum 1.00 1.00 0.0005 0.02 0.01

Maximum 5.00 2.00 0.5000 0.20 12.67

Mean 3.00 1.50 0.1208 0.10 3.50

Standard

deviation

1.42 0.41 0.1718 0.06 3.78

covariance (cov) of two variables (x, y) to the product of their

standard deviations, as represented in Equation (6).

rxy =
cov

(

x, y
)

σx σy
=

∑n
i=1 (xi − x)

(

yi − y
)

√

∑n
i=1 (xi − x)2

√

∑n
i=1

(

yi − y
)2

(6)

Where x and y are the mean of two variables (x, y). The ranges

of (rxy) are between [−1, 1]. High absolute values of r suggest

a strong relationship between the variables and their influence

on the outcome. A coefficient of rxy = −1 signifies an inverse

linear correlation between the variables. However, a rxy = 0 does

not necessarily imply a lack of correlation. When the value of

rxy is zero, it does not necessarily imply a lack of correlation

because the Pearson correlation coefficient specifically denotes

linear relationships.

According to the heatmap of the relationship between two

variables (Supplementary Figure 4), k∗ had the highest effect on q∗,

as evidenced by its high Pearson correlation coefficient value (r =

0.8). In contrast, the q∗ ratio is least affected by z, with a correlation

of r = 0.07. The figure also shows that the b∗, z, and k∗ ratios

positively correlate with the q∗ ratio. However, the t∗ ratio was
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inverse to q∗ (r = −0.2), suggesting seepage loss decreases with

increasing liner thickness. Notably, no uncorrelated parameters

indicate that all four input factors can be used to predict seepage

loss in lined irrigation canals.

2.4.3 Data normalization
When the scale of input data is inconsistent, some machine

learning algorithms may not work efficiently. As illustrated in

Table 1, the range of the k∗ ratio varied between 0.0005 and 0.5,

while the t∗ ratio varied from 0.02 to 0.2. This range suggests

significant variation in input values. Data normalization, often

rescaling, aligns all input features to a consistent scale. This process

accelerates computation and enhances the model’s accuracy and

robustness. The method primarily employs the max-min mapping

technique and can be expressed as in Equation 7:

Xn =
X − Xmin

Xmax + Xmin
(7)

Where Xn represents the normalized data, while Xmin and

Xmax denote the smallest and largest values of every input feature,

respectively, and X stands for the original data set undergoing the

rescaling process.

2.5 Development of non-ensemble ML
models

This study employed five non-ensemble ML models: MLR,

MNLR, SVR, GEP, and ANN. These models were developed using

the Statistical Package for the Social Sciences (SPSS) and Matrix

Laboratory (MATLAB). The description of eachmodel is illustrated

in the following subsections.

2.5.1 Multiple linear regression
Regression models estimate the degree of correlation. These

models also determine the relationships between input and output

variables. Most Multiple Linear Regression (MLR) models are fitted

using the least squares methods. MLR assesses the correlation

between a dependent variable and various independent variables,

yielding a linear relationship (Neter et al., 1996; Elshaarawy et al.,

2023). The formulation for MLR is depicted in Equation 8.

Y = a0 +
m

∑

j=1

aj Xj (8)

Where Y is the output of a model, a0, a1, a2, . . . , and am are

partial regression coefficients, and Xj’s are the input variables.

2.5.2 Multiple non-linear regression
Non-linear models are simple, interpretable, and predictive

(Verma, 2012; Archontoulis and Miguez, 2015). These models

can accommodate a wide variety of mean functions. However,

they can be less flexible than linear models regarding the data

they can describe. However, non-linear models appropriate for

a given application can have fewer parameters and are more

interpretable. Interpretability comes from associating parameters

with a biologically meaningful process.

MNLR model is applied in the following steps: (1) defining the

dependent variable, (2) proposing a non-linear equation in which

the dependent variable is a function of the independent variables,

(3) entering the estimation parameters of the proposed non-linear

equation by assuming the starting value; Levenberg-Marquardt was

the used estimation method, (4) Finally, the MNLR analysis was

started, and the model results were shown in the output log. The

expression of MNLR is shown in Equation 9 as follows:

Y = a0 +
m

∏

j=1

Xj
aj (9)

Where Y is the output of a model, a0, a1, a2, . . . , and am are

partial estimation parameters, and Xj’s are the input variables.

2.5.3 Support vector regression
The Support Vector Machine (SVM) model is commonly

utilized in data mining. It is called Support Vector Regression

(SVR) when applied to regression problems. SVR has become

a widely used tool for classification, prediction, and regression

(Cortes and Vapnik, 1995). As a supervised learning method, SVR

is particularly suited for tasks involving non-linear regression,

limited data sets, and high-dimensional input spaces. The method

converts the input data into a higher-dimensional space via a

non-linear transformation.

2.5.4 Gene expression programming
The GEP model was introduced for developing computer

programs (Ferreira, 2001). GEP resembled genetic algorithms

and genetic programming. GEP output was typically presented

as mathematical equations, decision trees, polynomial structures,

neural networks, or logical expressions (Ferreira, 2006). Random

population chromosomes started the procedure. Expression

of the chromosomes determined each individual’s fitness.

Individuals were selected for their ability to reproduce after

genetic modification, producing offspring with novel properties.

Consecutively, the individuals of this new generation were

subjected to the same developmental process: expression of

the genomes, encounter with the selective environment, and

reproduction with an alteration (Ferreira, 2006). The genome was

replicated and passed to the next generation. Only the remaining

operators’ actions added genetic diversity. These operators

randomly select the chromosomes to be changed. GEP allows

several operators to alter or leave a chromosome unchanged.

To develop an equation for the seepage loss from lined canals

by considering all the investigated parameters using the Gene-

expression programming (GEP) method (Whigham and Crapper,

2001) utilizing GeneXproTools 5.0 (Ferreira, 2006), where models

were generated based on training and validation dataset fitness, to

recreate the selected models, the GEPmodel used genetic operators

like mutation and recombination. This study presumed that the
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seepage loss ratio (q∗) depended on the investigated parameters

(i.e., b∗, z, k∗, and t∗). The required dimensionless equation can

be obtained from Equation 10 as:

q∗ = f
(

b∗, z, k∗, t∗
)

(10)

2.5.5 Artificial neural network
ANN draws inspiration from the human brain’s biological

architecture. ANN can simulate linear and non-linear systems,

bypassing certain constraints of traditional statistical methods

(Whitley et al., 1990; Aljarah et al., 2018). These networks learn

and adapt from given datasets to predict new data (Deng et al.,

2013). Structurally, an ANN consists of input and output layers

connected by one or more hidden layers that identify the hidden

patterns and relationships in input data (Schmidhuber, 2015). The

interconnected neurons utilize activation functions such as step,

sigmoid, and tanh to compute their outputs. These functions ensure

that the neuron’s output, whether linear or non-linear, is passed on

to subsequent layers (Flood and Kartam, 1994).

2.6 Development of ensemble ML models

Ensemble models are advanced learning algorithms that

construct an array of classifiers, and their collective predictions

are aggregated using a weighted voting system (Dietterich,

2000). The method of Bayesian averaging initially pioneered

ensemble methods, which later expanded to include techniques

such as boosting, bagging, and error-correcting output coding,

all of which have become staples in machine learning. The

advantage of ensemble models lies in their ability to yield highly

precise classifiers by integrating those with lesser precision. Their

superiority over singular classifiers can be attributed to three

primary factors: statistical, representational, and computational

dimensions (Dietterich, 2000).

This study employed three ensemble models: AdaBoost,

Random Forest, and XGBoost. The models were developed using

MATLAB and Anaconda software. Ensemble methods can enhance

the effectiveness of predictivemodels, leading to reduced error rates

and higher R2 values. This situation may arise from several factors,

such as inadequate fitting, excessive fitting, or a mismatch between

the model and the data. The models were tuned using different

numbers of sub-models/trees to obtain the best accuracy.

2.6.1 Adaptive boosting
Boosting is a prominent machine-learning algorithm initially

proposed by Schapire (1990). To combine weak classifiers from

the training phase into a robust one, Freund (1995) introduced

Adaptive Boosting (AdaBoost). While also optimizing the training

dataset to facilitate the development of these weak classifiers

(Chengsheng et al., 2017).

TABLE 2 Comparison between the estimated seepage losses from

physical (QExp) and Slide2 (QNum) models before and after lining process.

b∗ Unlined canal Lined canal

QExp(cm3

s−1)

QNum(cm3

s−1)
QExp(cm3

s−1)

QNum(cm3

s−1)

1 1.14 0.96 0.46 0.32

2 1.39 1.04 0.70 0.57

3 1.51 1.11 0.85 0.64

4 1.58 1.16 0.95 0.71

5 1.63 1.20 1.02 0.87

2.6.2 Random forest
The Random Forest (RF) model is commonly used for superior

outcomes in classification and regression tasks. Functioning as

supervised learning, it employs an ensemble learning technique for

regression. Essentially, it aggregates decision treemodels structured

within the bagging framework. It comprises root, intermediary,

and terminal nodes, which lack further subdivisions. Each node

operates on criteria defined by the given input attributes. As the

algorithm progresses from the root to the terminal node, it assesses

the validity of these criteria. This RF approach was developed

by Breiman (2001), integrating the concepts of random feature

selection (Ho, 1995) and bootstrap aggregation (Breiman, 1996).

2.6.3 Extreme gradient boosting
The eXtreme Gradient Boosting (XGBoost) represents a

different and widely adoptedmachine learning technique dedicated

to tree boosting. Its scalability attributes can be traced back to

its unique features. According to Chen and Guestrin (2016),

these features include parallel and distributed computation,

an innovative tree-learning approach suited for sparse data,

and several algorithmic enhancements. The decision to utilize

XGBoost in this study from its array of relevant features: (1)

it claims regularization, (2) it employs second-order gradients

to accelerate convergence, (3) it incorporates sparsity-aware split

detection, (4) it utilizes stochastic gradient descent to foster

diversity while reducing overfitting, and (5) It applies shrinkage

to counteract overfitting further. Additionally, using an ensemble

of system-oriented characteristics, such as cache optimization and

parallelization, can improve efficiency and scalability.

2.7 Evaluation of models

2.7.1 Statistical analysis
The dataset was divided into 70 and 30% for the training and

testing stages, respectively. Furthermore, the model outcomes were

evaluated using performance indices to make a robust judgment

about the performance of models (Najafzadeh et al., 2016; Saberi-

Movahed et al., 2020; Selim et al., 2023). The performance indices

included the coefficient of determination (R2), Willmott Index

(WI), Root Mean Square Error (RMSE), Scatter Index (SI), Mean

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE),
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FIGURE 3

Correlation between actual and predicted values based on the MLR model.

and Mean Bias Error (MBE). The equations for calculating these

indices are presented in Equations 11–17 as follows:

R2 = 1−

∑n
i=1

(

xi − yi
)2

∑n
i=1 (xi − x)2

(11)

WI = 1−

∑n
i=1

(

xi − yi
)2

∑n
i=1

(

|xi − x| +
∣

∣yi − x
∣

∣

)2
(12)

RMSE =

√

∑ n
i=1

(

xi − yi
)2

n
(13)

SI =
RMSE

xi
(14)

MAE =
1

n

n
∑

i=1

∣

∣xi − yi
∣

∣ (15)

MAPE =
1

n

n
∑

i=1

∣

∣

∣

∣

xi − yi
xi

∣

∣

∣

∣

(16)

MBE =
1

n

n
∑

i=1

(

xi − yi
)

(17)

Where n is the number of a dataset; xi is the actual values; xi
is the average of the actual dataset; yi is the predicted discharge

coefficient from the proposed models. Supplementary Table 1

shows the ideal value of each performance index. Such a predictive

model should have indicators near or equal to the ideal values.

2.7.2 k-fold cross-validation
One prevalent method for validating ML algorithms is k-fold

cross-validation. Here, “k” denotes the number of partitions into

which the dataset is split for training and testing. The number of

partitions is usually 10-fold, as commonly used in previous studies.

This approach randomly divided the dataset into 10 subsets, with

one subset reserved for testing in each iteration. The 10-fold

strategy reliably captures variance within an optimal computational

time frame (Kohavi, 1995). During the 10 validation rounds, a

unique subset was designated for testing, with the remaining

subsets used for training. The average accuracy was derived from

the results of these 10 rounds. This cross-validationmethod bolsters

the efficacy of the ML models during training and minimizes the

risk of omitting crucial datasets. This study trialed different “k”

values to identify the optimal “k” with the highest performance.

3 Results and discussion

3.1 Slide2 model calibration results

Table 2 shows the seepage losses obtained from the physical

(QExp) and the Slide2 (QNum) models. The estimated seepage losses

from the Slide2 model were close to those from the physical model.

However, the Slide2model performedwell withR2 = 0.96 andMAE

= 0.36 cm3 s−1 for the unlined cases. For the lined cases, the values

of R2 andMAE were 0.98 and 0.17 cm3 s−1, respectively.

The difference between the physical and Slide2 results was due

to systematic errors affecting the seepage loss values. These errors

could be instrumental (e.g., high water pressure on the bottom and

sides of the physical model may cause unsoldering between the

tank walls), theoretical (e.g., adding more water at the beginning

of the test may increase the initial depth), observational (e.g., the
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FIGURE 4

Correlation between actual and predicted values based on the MNLR model.

FIGURE 5

Correlation between actual and predicted values based on the SVR model.

misread of the final depth), and environmental (e.g., some water

may evaporate due to temperature instability during the test).

Considering the lined canal, the results revealed the effectiveness

of the liner in decreasing the seepage loss by an average percentage

of 57%. Thus, the Slide2 model showed its ability to calculate the

seepage loss from unlined and lined canals.

3.2 Prediction of seepage loss via
non-ensemble ML models

3.2.1 MLR model
By trial and error, obtaining the best form of the linear equation

developed by the MLR for the seepage loss ratio (q∗), Equation 18
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FIGURE 6

Correlation between actual and predicted values based on the GEP model.

is proposed as follows:

q∗ = 0.579 b∗ + 0.670 z + 17.798 k∗ − 12.051 t∗ − 0.137 (18)

Figure 3 shows the comparison between the actual and

predicted values using the MLR model. The figure shows that

the MLR model yielded an adjusted R2 value of 0.785, and most

predicted values exceeded a 20% error rate. Supplementary Figure 5

shows the error distribution between predicted and actual values.

The maximum error in the q∗ ratio was 5.392. The results showed

that the MLR had reduced prediction accuracy with a notable error

distribution.

3.2.2 MNLR model
By trial and error, obtaining the best form of the non-linear

equation developed by the MNLR for the seepage loss ratio (q∗),

Equation 19 is proposed as follows:

q∗ = 4.791
(

b∗
)0.423

(z)0.265
(

k∗
)0.422 (

t∗
)−0.166

(19)

Figure 4 shows the comparison between the actual and

predicted values using the MNLR model. The figure shows that the

MNLRmodel yielded an adjusted R2 value of 0.902, andmost of the

predicted values exceeded a 20% error rate. Supplementary Figure 6

shows the error distribution between predicted and actual values.

The maximum error in the q∗ ratio was 3.803. The results showed

that the MNLR had higher prediction accuracy than the MLR

model with low errors.

3.2.3 SVR model
The developed SVR model used the linear kernel, suggesting

a linear relationship between the inputs and the output. However,

this kernel was used after trying different kernel types to ensure

the best prediction accuracy of the model (Najafzadeh and Anvari,

2023). Figure 5 shows the comparison between the actual and

predicted values using the SVR model. The figure shows that

the SVR model yielded an adjusted R2 value of 0.745, and most

predicted values exceeded a 20% error rate. Supplementary Figure 7

shows the error distribution between predicted and actual values.

The maximum error in the q∗ ratio was 7.255. The results showed

that the SVR had a very low prediction accuracy than the MLR and

MNLR models with high error distribution.

3.2.4 GEP model
Initially, a single gene and two head lengths were utilized to

build the GEP model. During each run, genes and heads were

increased by one. Then, the performance of the training and

validation datasets was logged. Noticeably, the training and testing

stages did not improve considerably for head lengths larger than

eight and >3 genes (Najafzadeh et al., 2023). As a result, eight as

the head length and three genes per chromosome were chosen. The

linking function between three genes was the Addition operator.

After 576,590 generations of testing, there was no significant

change in the fitness function and coefficient of determination,

suggesting generations can stop. Supplementary Table 2 shows

general settings, fitness function, program structure, numerical

constants, and genetic operators for developing the GEP model.

The trial-and-error method was used to choose all stated

parameters to produce the optimal model of the GEP in the form

of an algebraic equation between the output variable and input
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variables. The used function set for the model development was

addition (+), subtraction (-), multiplication (∗), division (/), square

root (Sqrt), cube root (3Rt), quintic root (5Rt), absolute value (Abs),

natural logarithm (Ln), Inverse (Inv), addition with three inputs

(Add3), division with three inputs (Div3), and division with 4

inputs (Div4).

The developed GEP model for seepage loss estimation from

lined canals was expressed analytically in Equation 20 as follows:

q∗ =

∣

∣

∣

∣

∣

∣

3

√

14.88 b∗k∗

z (b∗ − 6.58)
+ 2t∗

∣

∣

∣

∣

∣

∣

(20)

+

√

1.27
[

z k∗
(

b∗ + t∗
) (

5.59+ k∗
)]

k∗ + t∗

+
5

√

1

z
+

1

b∗
+

4.527 k∗

t∗
− 5.063

Figure 6 shows the comparison between the actual and

predicted values using the GEP model. The figure shows

that the GEP model yielded an adjusted R2 value of 0.989,

and most predicted values were below the 10% error rate.

Supplementary Figure 8 shows the error distribution between

predicted and actual values. The maximum error in the q∗ratio

was 1.306. The results revealed that the GEP model had a higher

prediction accuracy than the MLR, MNLR, and SVR models, with

the lowest error distribution.

3.2.5 ANN model
The best ANN architecture was obtained as 4-20-1 after many

trials by varying the number of hidden layers and activation

functions. This architecture showed that the ANN model had an

input layer with 4 nodes (the four input ratios), a hidden layer

with 20 nodes, using the sigmoid activation function, and an

output layer with 1 node (the output), using the linear activation

function. However, these functions were commonly used for

regression problems (Haykin, 2009). Moreover, the equation from

the developed ANN model for predicting q∗ ratio was expressed in

Equation 21 as follows:

q∗=

[

W2

{

2
[1+exp[−2(W1 X+B1)]]−1

}]

+B2+1

0.158
+0.011 (21)

where X =






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



0.50
(

b∗ − 1
)

− 1

2.00 (z − 1) − 1

4.00
(

k∗ − 0.0005
)

− 1

11.11 (t∗ − 0.02) − 1
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W2 = [0.022 −0.043 0.003 0.024 0.020 −0.806 1.138 0.032

0.018 0.042 0.031 −0.017 0.026 −4.283 −2.355 0.014 −2.880 0.082

−0.034 2.814]; B2 = [−2.686]

Where X is the input layer matrix, W1 is the weight matrix of

connections between the neurons of the input and hidden layer, B1
is the vector of weights of bias neurons at the hidden layer, W2 is

the weight matrix of connections between the hidden and output

layer, B2 is the vector of weights of bias neurons at the output layer.

Figure 7 shows the comparison between the actual and

predicted values using the ANN model. The figure shows

that the ANN model yielded an adjusted R2 value of 0.997,

and most predicted values were below the 5% error rate.

Supplementary Figure 9 shows the error distribution between

predicted and actual values. The maximum error in the q∗

ratio was 0.709. The results revealed that the ANN model had

the highest prediction accuracy compared to the MLR, MNLR,

SVR, and GEP models, with the lowest error distribution among

them.

3.3 Prediction of seepage loss via
ensemble ML models

The developed ensemble models had 500 trees

obtained from the tuning process, achieving the

highest accuracy with low errors. The results of

each model were explained in the following sub-

sections.

3.3.1 Adaboost model
Figure 8 shows the comparison between the actual and

predicted values using the AdaBoost model. The figure shows

that the AdaBoost model yielded an adjusted R2 value of

0.915, and most predicted values exceeded the 15% error rate.

Supplementary Figure 10 shows the error distribution between

predicted and actual values. The maximum error in the

q∗ratio was 3.355. The results revealed that the AdaBoost

model had a high prediction accuracy with reasonable error

distribution.
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FIGURE 7

Correlation between actual and predicted values based on the ANN model.

3.3.2 RF model
Figure 9 shows the comparison between the actual and

predicted values using the RF model. The figure shows that the

RF model yielded an adjusted R2 value of 0.986 and most of the

predicted values below a 15% error rate. Supplementary Figure 11

shows the error distribution between predicted and actual values.

The maximum error in the q∗ ratio was 1.702. The results revealed

that the RF model had a higher prediction accuracy than AdaBoost,

with a lower error distribution.

3.3.3 XGBoost model
Figure 10 shows the comparison between the actual and

predicted values using the XGBoost model. The figure shows

that the XGBoost model yielded an adjusted R2 value of 0.996

and most of the predicted values below a 5% error rate.

Supplementary Figure 12 shows the error distribution between

predicted and actual values. The maximum error in the q∗ ratio was

1.228. The results revealed that the XGBoost model had a higher

prediction accuracy than AdaBoost and RF models, with the lowest

error distribution among them.

3.4 Evaluation of models

3.4.1 Statistical analysis
Tables 3, 4 show the estimated statistical indices for the

studied ML algorithms for the training and testing stages,

respectively. The tables show that the ensemble learning models

are significantly better at making predictions than the non-

ensemble models. The statistical analysis revealed that among

the predicted q∗ ratios, the SVR and XGBoost models register

the lowest (0.700) and highest (1.000) R2-value compared to

actual values. Out of the eight ML models applied, RMSE

values ranged from a minimum of 0.073 (XGBoost) to a

maximum of 2.166 (SVR). The MAPE’s range during models

training was 0.066–2.481. The higher R2 and WI indices for

the XGBoost model suggest it outperformed other algorithms

during the training stage. Conversely, based on the lowest R2

(0.700) and WI (0.889) indices, the SVR was inferred to be the

least effective.

During the testing stage, the descriptive statistics reveal that

among the estimated q∗ ratios, the SVR and ANN models register

the lowest (0.751) and highest (0.997) R2-value compared to

actual values. Out of the eight models applied, RMSE values

ranged from a minimum of 0.201 (ANN) to a maximum of

1.994 (SVR). The MAPE’s range during model training was

0.238–2.330. The higher R2 and WI indices for the ANN

model suggest it outperformed other algorithms during the

testing stage. Conversely, the SVR was also inferred to be

the least effective based on the lowest R2 (0.751) and WI

(0.909) indices.

3.4.2 Violin box plots and Taylor diagrams
Figures 11, 12 present violin box plots of the actual and

predicted values of q∗ during the training and testing stages,

respectively. A violin plot is a method of plotting numeric data

and can be thought of as a combination of a box plot and a

kernel density plot. It shows the distribution of the data across

different levels of categorical variables. The “Actual” category likely

represents the actual observed values. The plots display the median
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FIGURE 8

Correlation between actual and predicted values based on the AdaBoost model.

FIGURE 9

Correlation between actual and predicted values based on the RF model.

(central white dot), interquartile range (thick black bar in the

center of the violin), and the full range of the data, excluding

outliers (thin black lines or “whiskers”). The width of each violin

indicates the density of the data at different values, with wider

sections representing a higher density (more data points). During

both training and testing stages, ensemble models (AdaBoost,

RF, and XGBoost) tended to have tighter distributions around

lower seepage loss ratios, suggesting more accurate predictions

compared to non-ensemble models (MLR, MNLR, SVR, GEP,

and ANN).

In addition, Figures 13, 14 show a comparative analysis of

models using the Taylor diagram during the training and testing
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FIGURE 10

Correlation between actual and predicted values based on the XGBoost model.

TABLE 3 Estimated statistical indices of the adopted ML models in the training stage.

Type Model R2 WI RMSE SI MAE MAPE MBE

Non-ensemble MLR 0.733 0.917 1.951 0.156 1.538 4.028 0.014

MNLR 0.907 0.971 1.190 0.095 0.921 2.042 −0.149

SVR 0.700 0.889 2.166 0.174 1.476 2.481 0.574

GEP 0.994 0.989 0.997 0.404 0.032 0.280 0.395

ANN 0.996 0.999 0.232 0.019 0.150 0.284 −0.012

Ensemble AdaBoost 0.893 0.971 1.235 0.099 1.007 4.645 0.000

RF 0.988 0.995 0.489 0.039 0.330 0.548 0.009

XGBoost 1.000 1.000 0.073 0.006 0.046 0.066 0.000

Bold values represent the best and the worst predictive models.

stages, respectively. Taylor diagrams provide a way of graphically

summarizing how closely a pattern matches observations. The

diagrams show the correlation coefficient on the azimuthal axis,

the standard deviation as the radial distance from the origin,

and the centered root mean square difference (RMSD) as the

distance from the reference (observed) point. Points closer to

the reference point indicate better model performance. Models

that are closer to the reference point along the arc with a

higher correlation coefficient (toward 1.0) and a smaller distance

from the reference (smaller RMSD) are considered to have

better performance. During the training stage, the XGBoost and

SVR models were found to be the closest and furthest to the

actual point, respectively. Consequently, it was indicated that the

XGBoost model had performed best among all eight ML models

to estimate seepage loss from lined canals. While in the testing

stage, the ANN model was the best predictor among all eight

ML models.

3.4.3 k-fold cross-validation
Employing the k-fold cross-validation technique reduces the

chance of the model overfitting to a specific dataset partition,

offering a more accurate assessment of the model’s performance.

Typically, cross-validation serves as a technique to refine and

enhance a model. The motivation for using k-fold cross-validation

is to obtain a more precise assessment of the model’s efficacy and

to reduce the potential for overfitting associated with a single train-

test partition. Thus, the results from this cross-validation approach

validate the reliability and precision of the examined algorithms.

Supplementary Table 3 shows the R² values for the adopted

ML models across 10 folds. The R² is a statistical measure

that represents the proportion of the variance for a dependent

variable that’s explained by an independent variable or variables

in a regression model. A higher R² value indicates that

the model explains a higher proportion of the variance in

the data. Supplementary Table 4 shows the WI values for the
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TABLE 4 Estimated statistical indices of the adopted ML models in the testing stage.

Type Model R2 WI RMSE SI MAE MAPE MBE

Non-ensemble MLR 0.790 0.938 1.740 0.137 1.347 3.369 −0.038

MNLR 0.904 0.971 1.217 0.096 0.986 1.948 −0.306

SVR 0.751 0.909 1.994 0.157 1.354 2.330 0.512

GEP 0.989 0.997 0.404 0.032 0.300 0.379 −0.024

ANN 0.997 0.999 0.201 0.016 0.140 0.238 -0.002

Ensemble AdaBoost 0.917 0.977 1.095 0.086 0.893 2.852 −0.004

RF 0.986 0.994 0.556 0.044 0.397 0.599 0.022

XGBoost 0.996 0.999 0.246 0.019 0.150 0.121 0.009

Bold values represent the best and the worst predictive models.

FIGURE 11

Violin boxplot of the adopted ML models during the training stage.

adopted ML models across 10 folds. The WI is a standardized

index that measures the degree of model prediction error and

ranges from 0 (no correlation) to 1 (perfect fit). Similar to

Supplementary Table 3, it shows high values close to 1, which

indicates good model performance. Ensemble models generally

showed higher R² and WI values, indicating better performance.

Also, the results showed that the ANN and GEP models

had the highest R² and WI values among the non-ensemble

models.

Supplementary Table 5 shows the RMSE values for the adopted

ML models across 10 folds. RMSE is a measure of the differences

between values predicted by a model and the values observed.

The lower the RMSE, the better the model’s performance.

Supplementary Table 6 shows the SI values for the adopted ML

models across 10 folds. SI is a dimensionless performance indicator,

with lower values indicating better model performance. Consistent

with previous results, ensemble models generally showed lower

RMSE and SI values, indicating better performance.

Supplementary Table 7 shows the MAE values for the adopted

ML models across 10 folds. The MAE measures the average

magnitude of the errors in a set of predictions without

considering their direction. Lower MAE values suggest better

model accuracy. Again, ensemble models, particularly XGBoost,

tended to have lowerMAE values, indicating superior performance.
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FIGURE 12

Violin boxplot of the adopted ML models during the testing stage.

Supplementary Table 8 shows the MAPE values for the adopted

ML models across 10 folds. The MAPE expresses the accuracy

as a percentage, with lower values indicating higher accuracy.

The results show that ensemble models have lower MAPE values

compared to non-ensemble models, with XGBoost consistently

having the lowest values. Supplementary Table 9 shows the MBE

values for the adopted ML models across 10 folds. The MBE

measures the average of the residuals (errors) in the predictions. A

value close to 0 indicates no bias. The table shows that somemodels

have positive or negative biases, but ensemble models tended to

haveMBE values closer to zero, suggesting less bias in predictions.

Based on the k-fold cross-validation, a higher performance

was detected when employing ensemble models (AdaBoost, RF,

and XGBoost) across various performance indices (R², WI, RMSE,

SI, MAE, MAPE, and MBE). XGBoost appeared to be the most

consistent top performer with highR² andWI values, lowRMSE, SI,

MAE, and MAPE scores, and MBE values close to zero, indicating

its strong predictive ability and generalizability. However, The

ANN outperforms all models with higher correlation values and

lower errors. So, while XGBoost was a strong performer, the ANN

model stood out as the top predictor.

3.5 Parametric analysis

To explore the effect of lining on the seepage loss ratio (q∗),

the ratios of k∗ and t∗ were selected to be 0.1 and 0.2, respectively.

The k∗ ratio of 0.1 was chosen because it is neither too low nor too

high within the investigated range. Moreover, the effect of lining

on seepage loss was slightly reduced at a higher k∗ ratio ≈ 1.

While, at an extremely low ratio of (k∗) ≤ 0.01, seepage loss almost

vanished. The t∗ ratio of 0.2 was selected because a thicker liner is

typically more effective in reducing seepage loss than a thinner one

(t∗ ratio< 0.2). Moreover, it provides a greater barrier to water flow

(Eltarabily et al., 2023a,b).

Supplementary Figure 13A shows the q∗ values under different

k∗ and b∗ ratios when the t∗ ratio equals 0.20 and z equals 1. At a

t∗ ratio of 0.20, seepage losses were reduced by a mean percentage

of 8.9, 20.4, 67.9, 82.6, 96.2, 97.4, 99.4, and 99.7% for the k∗

ratios of 0.50, 0.30, 0.10, 0.05, 0.01, 0.005, 0.005, 0.001, and 0.0005,

respectively. Supplementary Figure 13B shows that as t∗ increases,

seepage losses considerably decrease. At the k∗ ratio of 0.1 and z

equals 1, the average percentage of seepage losses was reduced by

10, 23, 41, 61, and 68% for t∗ ratios of 0.02, 0.05, 0.10, 0.15, and

0.20, respectively.

Supplementary Figure 14A shows the average seepage

reduction at each k∗ ratio corresponding to the investigated z

values. It can be noted that as the z-values increase, the q∗ ratio

increases. At t∗ ratio of 0.20, every increase in the value of z by 0.5

caused a reduction in the mean percentage of seepage losses by

12.1, 23.3, 67.8, 84.5, 96.1, 97.3, 99.3, and 99.7% for the k∗ ratios

of 0.5, 0.3, 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005, respectively.

Supplementary Figure 14B shows the average seepage reduction

at each t∗ratio corresponding to the investigated z-values. At a

Frontiers inWater 17 frontiersin.org

https://doi.org/10.3389/frwa.2023.1287357
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Eltarabily et al. 10.3389/frwa.2023.1287357

FIGURE 13

Taylor diagram of the adopted ML models during the training stage.

k∗ ratio of 0.10, every increase in the value of z by 0.5 caused a

reduction in the mean seepage losses by 9.93, 22.6, 41.4, 61.1, and

67.8% for the t∗ ratios of 0.02, 0.05, 0.1, 0.15, and 0.2, respectively.

Generally, when the side slopes were flat, there was more seepage

than when the canal had steep side slopes.

Based on the results of the parametric analysis, the liner

hydraulic conductivity positively correlates with the seepage

losses. The liner hydraulic conductivity played a crucial role

in determining the seepage losses. A liner with high hydraulic

conductivity allows more water to pass through it, leading to higher

seepage losses. Conversely, a low hydraulic conductivity liner resists

seepage flow and reduces seepage losses.Moreover, regardless of the

b∗ ratio, as the k∗ ratio gets lower and the t∗ ratio gets higher, the

seepage losses decrease at all z-values.

3.6 Sensitivity analysis

The sensitivity analysis can help to further analyze the data

type and explore the importance of each input parameter for the

corresponding output. Figure 15 shows the importance of each

input parameter. It illustrates that the seepage loss ratio (q∗) was

affected by 17, 5, 62, and 16% for b∗, z, k∗, and t∗, respectively.

Results showed that the q∗ ratio was highly affected by the k∗ ratio

but was lightly affected by the b∗ and t∗ ratios. However, the side

slope (z) was the least important to the seepage loss estimation

compared to the other investigated parameters. These results

concurred with El-Molla and El-Molla (2021b) and Eltarabily et al.

(2023a,b).

4 Conclusions

This study demonstrated effective modeling and prediction

of seepage loss from lined irrigation canals using physical and

Slide2 models as well as ML techniques. The Slide2 model

was calibrated using experimental data and used to generate

datasets on seepage loss considering different canal geometries

and liner properties. Both non-ensemble and ensemble ML

models were developed and evaluated for predicting seepage

loss. The non-ensemble models were MLR, MNLR, SVR, GEP,

and ANN, whereas the ensemble models included AdaBoost, RF,

and XGBoost.

The high concordance between actual and predicted results

underscores the efficacy of these models. All developed models,

excluding the SVR and MLR models, are identified as highly

reliable predictive tools with R2 values exceeding 0.85. The

ensemble MLmodels showcased a pronounced edge, demonstrated

by higher R2 values and diminished errors (RMSE, SI, MAE,

MAPE, and MBE), suggesting reduced differences between the

actual and predicted values. The ANN model was superior
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FIGURE 14

Taylor diagram of the adopted ML models during the testing stage.

FIGURE 15

Importance of input parameters for estimating the output (q*).

among the non-ensemble models, while the SVR model lagged

in accuracy. For ensemble models, the XGBoost emerged as the

top predictor.

Further evaluation revealed the ANN model as the overall

most reliable model, characterized by the highest accuracy and

lowest errors. Sensitivity analysis highlighted liner hydraulic

Frontiers inWater 19 frontiersin.org

https://doi.org/10.3389/frwa.2023.1287357
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Eltarabily et al. 10.3389/frwa.2023.1287357

conductivity as the crucial parameter influencing seepage loss

prediction. In summary, the study effectively demonstrated the

dependability of data-driven modeling in delivering quick, cost-

effective, and reasonably accurate predictions of seepage loss from

lined irrigation canals.

Moreover, this study primarily utilized essential geometric

and hydraulic parameters of irrigation canals. By integrating

additional parameters such as soil characteristics, liner positions,

and groundwater table variations, there is potential to further refine

the accuracy and flexibility of the developed models. Although

the ANN model demonstrated strong predictive capabilities, more

precise field-based validation is recommended, especially for

enhancing insights into real-world irrigation canal systems.
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