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Lake water level is an important variable to indicate lake hydrological balances and

climate change impacts. Benefiting from the launch of the laser altimeters ICESat

and ICESat-2, higher spatial-resolution elevation measurements have opened

new possibilities for monitoring lake levels globally over the past two decades.

However, uncertainties on the combined use of two-generation satellite laser

measurements have not yet been investigated specifically. This study aimed to

summarize the important technique notes on water level data processing by

integrating the ICESat and ICESat-2 altimetry measurements. We mainly focused

on the e�ect of geoid height, water masks for extracting altimetry footprints,

and the 9-year data gap between the two generations of satellites on water

level change estimates. We compared the influences of the above three factors

in di�erent situations by selecting typical lakes worldwide as study cases. The

results showed that: (1) In the combination of ICESat and ICESat-2 products,

geoid heights need to be recalculated for each footprint based on its longitude

and latitude in order to replace the geoid values of the original products when

calculating orthometric heights. It is necessary because the default geoids in

both generations of products (ICESat and ICESat-2) exhibit a systematic deviation;

(2) To balance the accuracy and e�ciency, the small water mask in the low-

level year is recommended to extract the potential footprints in comparison with

the laborious processing of time-varying water masks; (3) The 9-year data gap

between ICESat and ICESat-2 observations may cause inevitable overestimations

or underestimations of the long-term change rate of lake levels with a non-

linear trajectory, yet it has few e�ects on lakes with (near) linear trending or

fluctuating changes.
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1 Introduction

Lakes, as the key component of the hydrosphere, participate in the global hydrological

cycle. Climate change and human activities significantly affect lake formation, development,

expansion, and shrinkage. Monitoring the long-term lake variations is important to

understand the climatic and anthropogenic impacts on water resources. Global lakes have

changed rapidly in the past decades, according to growing evidence (Pham-Duc et al., 2020).

However, long-term in situ lake-level data are usually unavailable due to the sparse gauge

observations. Remote sensing techniques have demonstrated great potential for monitoring
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lake-level changes and understanding the driving mechanisms

(Song et al., 2015b; Jiang et al., 2019; Mi et al., 2019; Yao et al., 2019;

Luo et al., 2021; Xu N. et al., 2022).

In the past few decades, numerous studies have investigated

lake water level changes on a regional or global scale via satellite

altimeters (Song et al., 2015a, 2023; Cretaux et al., 2016; Jiang

et al., 2017; Lei et al., 2017; Qiao et al., 2019; Shu et al., 2020;

Chen et al., 2021). Multi-source radar altimetry missions provide

lake elevation measurements with a temporal coverage of more

than 20 years, such as TOPEX/POSEIDON (1992–2005), ERS-

1/2 (1991–2000/1995–2011), Envisat (2002–2012), Jason-1/2/3

(2001–2013/2008-/2016-), CryoSat-2 (2010-), SARAL (2013-), and

Sentinel-3 (2016-) (Schwatke et al., 2015; Shen et al., 2020; Feng

et al., 2023). Radar altimeters are suitable for monitoring large

lakes due to their coarse footprints and large inter-track spacing

gaps. In contrast, the Ice, Cloud, and Land Elevation Satellite

(ICESat) data have been widely applied to monitor global lakes

at a finer scale by benefiting from its small footprint diameter

of ∼70m. However, the investigation time period is impeded by

the short temporal coverage of ICESat data (2003–2009). Thus, it

is rather necessary to seek an approach to synthesizing multiple

altimetry datasets for monitoring global lake dynamics. ICESat-2,

launched in September 2018, is the follow-on mission of ICESat.

Compared to radar altimetry, this satellite has the characteristics

of multi-beam and high-resolution photon-counting observation,

and its laser footprints are ∼17m and separated by ∼0.7m.

Thus, combining the observations of two laser altimetry satellites,

ICESat and ICESat-2, can reveal the temporal and spatial change

characteristics of global lake levels over the past two decades (Feng

et al., 2022; Luo et al., 2022).

However, the accuracy of the synthesized altimetry data from

different instrument measurements and potential elevation bias

is the major concern for monitoring lake changes. There have

been several global-scale lake-level datasets synthesizing multi-

source altimeter observations, such as the River and Lake Database

(Berry et al., 2005), the Global Reservoir and Lake Monitor (G-

REALM) (Birkett et al., 2011), HYDROWEB (Cretaux et al., 2011),

and the Database for Inland Waters (DAHITI) (Schwatke et al.,

2015). These datasets have been successfully applied to tracking the

hydrological dynamics of lakes on regional or global scales (Dubey

et al., 2015; Song et al., 2015a; Tan et al., 2017; Luo et al., 2019;

Schwatke et al., 2020; Liang et al., 2023). These data products all

emphasized the importance of data integration for multi-source

radar altimetry measurements (e.g., correction of inconsistent

geoid heights). For laser altimetry data processing, a few previous

studies have explored the influences of lake water masks on

extracting satellite altimetry potential footprints. For example, Xu

et al. (2020) analyze the effects of using different buffers to obtain

water masks and conclude that the buffer width set at ∼100m for

the narrow lake can obtain the highest altimetry accuracy. However,

the method to join the two-generation satellite laser measurements

has not yet been investigated comprehensively. The inundation

extents of most lakes exhibit strong intra-annual and inter-

annual variations, and accurately extracting lake elevation points

is a critical prerequisite for obtaining reliable water levels. After

thoroughly considering the key processes involved in altimetry

data processing, three crucial aspects were identified for the joint

processing of ICESat and ICESat-2 data: the geoid height, the

water mask used to extract altimetry points, and the 9-year data

gap between the two satellite missions. Through experimentation,

the best method for extracting water levels was selected among

these three key aspects. Other potential influencing factors, such

as the efficient number of altimetry footprints or the water level

data sampling interval, were excluded after initial testing, as their

impacts on water level change rates exist in local-scale lakes or can

be reduced by the setting of statistical thresholds. Therefore, this

study aims to summarize the three important technique notes on

water level data processing by integrating the ICESat and ICESat-2

altimetry measurements.

2 Study data

2.1 Lake water level data

2.1.1 Lake water level time series from laser
altimetry

The ICESat laser altimeter was launched in January 2003, and

its small footprints allow for measuring elevations effectively at

a fine scale. The Release-34 GLAH14 product (February 2003–

October 2009) of the National Snow and Ice Data Center (NSIDC)

is applied in this study. ICESat-2 ATL13, a dataset for inland water

surface height, was applied to monitor lake water level changes in

2018–2020. The version-5 datasets of ICESat-2 ATL13 are available

at NSIDC.

2.1.2 Radar altimetry dataset for cross-evaluating
lake water levels

In this study, the lakes with the HYDROWEB water level data

over the period of 2003–2020 were selected for cross-evaluation

on the synthesized ICESat/ICESat-2 measurements. HYDROWEB,

initiated by LEGOS (Cretaux et al., 2011), is a website that provides

water level time series of global lakes, reservoirs, and rivers based on

multiple altimetry missions, such as TOPEX/Poseidon, ENVISAT,

and Sentinel-3B. In this study, potential instrument biases between

different products (ICESat/ICESat-2 data and the validation data)

and geoid differences were removed by using the validation data as

a reference.

2.1.3 In situ data for lake water level validation
In this study, the available in situ data were applied to validate

the water levels of ICESat/ICESat-2. In situ data for Dauphin Lake

and Lake Erie were collected from the website of the Government

of Canada and the TIDES and CURRENTS websites of the National

Oceanic and Atmospheric Administration, respectively. In situ

water level data for Qinghai Lake were obtained from Xu F. et al.

(2022). The in situ data in this study have been organized to closely

match a monthly temporal resolution.

2.2 Lake masks for extracting altimetry
footprints

Three types of commonly used water mask data were applied

to compare the effects of different water masks on extracting

potential altimetry footprints, including the historically maximum
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water extent, the stationary water body data product (e.g.,

the HydroLAKES dataset), and time-varying dynamic water

inundation masks.

The Global Surface Water (GSW) dataset, which applies

Landsat imageries from March 1984 to the present to identify

changes in the surface water area, was used to obtain the first type of

water mask (Pekel et al., 2016). This study employed surface water

occurrences from GSW to map the maximum water extents (all

locations ever mapped as water during the observation period) of

lakes from 1984 to 2020.

We chose the HydroLAKES dataset, which includes 1,427,688

lakes (>0.1 km²), to obtain the small water mask of lakes at

low water levels. Lake polygons (including all attributes) of

HydroLAKES are available in a shapefile format (Messager et al.,

2016). One of the primary sources of HydroLAKES is the Shuttle

Radar Topography Mission (SRTM) Water Body Data, which

provided the extent of the water inundation in February 2000.

As there are many lakes that have been expanding in the past 20

years (Luo et al., 2022), their water extents from HydroLAKES

data can be used as small water masks for conservatively extracting

on-lake footprints.

The monthly water frequency data produced by the Global

Land Analysis and Discovery Laboratory (Pickens et al., 2020)

were used to derive dynamic lake water masks. The water mask

corresponding to the ICESat/ICESat-2 measurements data in the

same month was chosen to filter on-lake altimetry footprints.

3 Methods

Lake water levels can be obtained from on-lake footprint

elevations by an overlay analysis of the lake water mask and

altimetry tracks. The averaging elevations of footprints are

calculated based on ellipsoid and geoid heights. After obtaining the

orthometric height of each observation date, the lake-level change

rate is calculated via the linear fitting of the water level time series

during the observation periods (e.g., 2003–2009 and 2018–present

of ICESat/ICESat-2). Therefore, we focused on investigating the

influences of three key data-processing procedures on estimating

lake water levels based on ICESat/ICESat-2 observations, including

the selection of geoid models, different water masks for filtering

footprints, and the 9-year data gap (2010–2018) of water level time

series (Figure 1).

As shown in Figure 1, the orthometric height based on the geoid

(H) is calculated by subtracting the geoid height relative to the

ellipsoid system (N) from the ellipsoid height (h). The geoid is the

shape that the ocean surface would take under the Earth’s gravity

without considering other effects such as winds and tides. This

surface is recombined with the mean ocean surface and extends

into the continent’s interior (Gauss, 1828). The EGM, published

by the National Geospatial-Intelligence Agency (NGA), is a series

of geopotential models of the Earth. The EGM reference frames

include EGM84, EGM96, EGM2008, and EGM2020 (Barnes et al.,

2015). Both EGM96 and EGM2008 are the commonly used geoid

reference systems. Therefore, the geoids of these two reference

systems are adopted and compared in this study.

The procedure for obtaining the long-term lake water levels

based on ICESat/ICESat-2 is summarized as follows. First, water

masks were used to extract potential lake footprints from

the laser altimeter. Second, the normalized median absolute

deviation (NMAD) method was applied to remove the errors

from the clouds, lake surface waves, snow, or saturated reflected

signals (Hoehle and Hoehle, 2009). Data processing using the

NMAD method includes the following steps: (1) calculating the

median of all water levels within 1 day, (2) computing the

absolute deviations of each factor from the median value, (3)

determining the median of these absolute deviations (MAD), and

(4) multiplying by a constant of 1.4826, and removing water

levels that exceed the range ([median-MAD, median+MAD]). We

excluded lake levels with fewer than five altimetry footprints on

each observation date to reduce the height bias derived from

insufficient measurement times. To further eliminate potential

outliers in water levels, we tested the water level processing

results of multiple lakes and chose a threshold of 0.3m. Then,

lakes with the water level standard deviation of each observation

date larger than 0.3m (depending on the uncertainty range

relative to lake-level changes) were also removed. Third, we

computed the lake water level on each observation date by

averaging the remainder of the footprint elevations. Finally,

the water level change rate based on the time series data was

obtained via the robust fitting method (Holland and Welsch,

1977).

4 Results and analyses

4.1 The e�ect of geoid selection on
estimating lake levels and change rates

Orthometric height is approximated by subtracting geoid

height from ellipsoid height. An accurate geoid model is needed

for converting ellipsoidal heights to orthometric heights. Therefore,

the main function of the geoid is deemed to be a reference

surface for the water level in geodesy, and the geoid heights at

different locations of one lake may be quite different (Li and

Gotze, 2001). This height difference is more obvious in large

water bodies because large lakes span more spatial domains.

Thus, we chose Lake Erie (25,768 km²), one of the Great

Lakes in North America, as the research case to investigate

the effect of geoid on lake water levels. Then, we considered

four scenarios of the geoid reference, including no use of the

geoid (1), default geoid heights contained in the NASA data

product (2), recalculation of geoid by the EGM96 model (3), or

EGM2008 model (4). The EGM2008/EGM96 geoid heights were

recalculated based on the longitude and latitude of each footprint

by using the NGA tool. To validate the integration of ICESat and

ICESat-2 under various scenarios, we compared the time-series

waveforms and water level change rates with those of in situ water

level data.

The water level time series in the four scenarios show that

the lake levels without considering geoid height are significantly

disorganized (Figure 2A), and the seasonal signal of water level is

not reasonable in both ICESat and ICESat-2 periods (Figure 2B).

As shown in Figures 2A, C, there is an obvious systematic deviation

between the ICESat and ICESat-2 water levels (based on the
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FIGURE 1

Framework of lake-level calculations, including geoid, di�erent water masks, and the 9-year gap between ICESat/ICESat-2.

default EGM 2008 geoids provided by the ICESat and ICESat-

2 products). Therefore, the water level change rate is obviously

overestimated based on the original geoid of the product. From

Figures 2D–F, the water levels based on the EGM2008 and EGM96

geoids have comparable change patterns and the same water level

change rate, which is rather consistent with the in situ data.

According to the user guidebook for ICESat and ICESat-2 raw

products, although both of the datasets were processed with the

EGM2008 geoids, there is a systematic bias when combining

the two-time series (2003–2009 and 2018–present). It could be

due to the inconsistent usage of different spherical harmonic

coefficients of the EGM2008 model applied in ICESat and ICESat-2

products (not stated in the product manual). In previous studies,

deviations in the water levels of some lakes on the Tibetan Plateau

were also mentioned. Zhang et al. (2019) mentioned that for

Qinghai Lake, ICESat aligns well with in situ measurements, and

the lake level derived from HYDROWEB is slightly higher than

both ICESat and station observations. In the case of Selin Co

and Nam Co, the elevations from ICESat/ICESat-2 are slightly

higher than those from HYDROWEB, possibly due to altimeter

instrument biases and geoid variations. Therefore, it is important

to obtain orthometric heights via a consistent geoid model, and it

is necessary to recalculate geoids when obtaining lake water levels

from ICESat/ICESat-2.

4.2 The e�ect of water mask on estimating
lake levels and change rates

Lake levels are calculated generally by averaging on-lake

footprints filtered by water masks. The water mask selection

is a key step that affects altimetry accuracy, especially for

lakes with remarkable changes in water inundation extent. Due

to limitations such as the scarcity of hydrological monitoring

stations, remote locations, and constraints related to data politics,

obtaining long-term and large-scale in situ data on water levels is

challenging, particularly for small lakes. Radar altimetry satellites,

with footprints ranging from 0.3 to 8 km, are well-suited for long-

term water level monitoring of large lakes. However, their coverage

is limited to medium- and small-sized lakes. Small lakes are difficult

to monitor with in situ data or radar altimetry satellite datasets,

but reference data are needed for lake water level verification.

It only makes sense to discuss using different time periods of

lake inundation extents as masks for extracting potential water

levels when the lake area changes are significant. Therefore, we

chose a large lake (Lake Urmia in Central Asia) with obvious

inundation area changes as the study case, to compare the effect

of different water masks on the lake-level estimates. Lake Urmia

is an endorheic salty lake in Iran, and its area was ∼4,600 km²

in 2000. Persistent drought and groundwater pumping cause the
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FIGURE 2

Time series of water levels under four di�erent scenarios and comparison with in situ data (A). H_PDNG: no use of the geoid (B), H_PD: the water

level based on the product-default geoid (C), the in situ water level (D), H_EGM2008: the water level based on recalculated geoid by EGM2008 (E),

and H_EGM96: the water level based on recalculated geoid by EGM96 (F).

continuous shrinkage of the lake. Thus, we set three different types

of water masks historically maximum water extent, a small water

mask (HydroLAKES data, representing the status of ∼2000), and

a monthly dynamic inundation mask. The historically maximum

water extent may obtain as many observation opportunities as

possible and add the observation times for some lakes. The

small water mask (e.g., HydroLAKES data) has the advantages of

easy access and a large number of lakes. The conservative water

mask makes it easy to eliminate the outliers of water level data

in the following process. The dynamic water masks can track

the expansion or shrinkage of the lake and avoid including the

“polluted” footprints of the lakeshore. There is a trade-off between

the temporal-spatial resolution of the water level and the efficiency

of data processing in the mask choice. Therefore, it is important

to compare the water level time series and water level change rate

under the three mask scenarios. In this study, we calculated the

orthometric heights from ICESat/ICESat-2 data for each type of

mask based on the recalculated geoid (EGM2008) and the WGS84.

We validated the integration of ICESat and ICESat-2 data under

different water masks by comparing the absolute difference in water

levels and change rate with validation data. The water level data

obtained from three different masks have all been processed to

remove outliers using the NAMD method. During the satellite

mission periods (2003–2009 and 2018–2020), the historically

maximum water extent, small water mask, and dynamic water

inundation mask for Lake Urmia derived observations 110 times

(717,701 footprints), 109 times (710,340 footprints), and 106 times

(584,666 footprints), respectively (Table 1). The comparison of the

water level change rate shows that the result from maximum water

extent (−0.17 ± 0.01 m/year in Figure 3B) is the most deviated

from the reference value (−0.14 ± 0.01 m/year in Figure 3E). The

results from the small water mask and dynamic water inundation

mask are roughly consistent (Figure 3).

Furthermore, we compared the number of footprints and

water levels from the three masks on the same observation

date in Lake Urmia. The results under three different mask

scenarios show that footprints derived from historically

maximum water extent are nearly twice the number from

small water masks and dynamic water inundation masks (Table 2;

Figure 4). Specifically, the water level from the maximum

water extent (1,274.61m) is far from the reference value

(1,272.69m) under the same geographical reference system

(see), while the water level results acquired in October 2005

based on the HydroLAKES lake mask (1,272.79m) and dynamic

mask (1,272.57m) were basically consistent. The absolute

difference between the water level results of three water masks

and the reference value (HYDROWEB) is 1.92, 0.10, and

0.12m, respectively.
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TABLE 1 Statistics of lake-level monitoring results from three water masks in the period of 2003–2009 and 2018–2020 in Lake Urmia.

Mask Historically maximum
water extent

Small water mask
(HydroLAKES)

Dynamic water
inundation mask

HYDROWEB (reference)

Observation dates 110 109 106 -

Footprints 717,701 710,340 584,666 -

Water level change rate −0.17± 0.01 m/yr −0.15± 0.01 m/yr −0.16± 0.01 m/yr −0.14± 0.01 m/yr

FIGURE 3

(A–E) Time series of water levels under three di�erent water masks. HYDROWEB-S (e) means the sparse HYDROWEB based water level time series.

The intermediate period is removed, and the monitoring period is consistent with ICESat/ICESat-2.

4.3 The e�ect of the 9-year data gap on
estimating lake levels and change rates

The advantages of ICESat and ICESat-2 mainly lie in their

capability to monitor small and medium-sized lakes with high

accuracy. Combining the two generations of laser altimetry

satellites can achieve the two-decade monitoring of ∼7,000 lakes

over 10 km² globally (Luo et al., 2022). However, there is a 9-

year data gap between the two satellites from 2010 to 2018, which

inevitably induces some uncertainties in estimating the water level

change rates. Therefore, to quantify the influence of the 9-year

data gap on the water level change rate, we selected lakes with

different time-series patterns for comparison. Considering that

different lakes are experiencing varying impacts due to the data

gap, we selected lakes with relatively stable water levels, seasonal

fluctuations, and drastic inter-annual or decadal trending changes.

Correspondingly, Dauphin Lake, Garabogazkol Lake, Hulun Lake,

Qinghai Lake, and Migriggyangzham Co were selected as the study

cases for investigating the effect of the 9-year data gap on estimating

the water level change rate. We applied the HydroLAKES dataset,

a small water mask, to extract the footprints and finally obtained

the water level time series referred to as EGM2008 and WGS84.

We assessed the influence of the 9-year data gap on deriving water

level time series through the integration of ICESat and ICESat-2

data by comparing water level change rates with validation data.

The results indicate that the correlation between the validation

data and ICESat/ICESat-2 data for the five lakes is consistently

above 0.99. The average absolute error between these five datasets
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TABLE 2 Statistics of lake-level monitoring results from three water masks on the same observation date in Lake Urmia.

Mask Historically maximum
water extent

Small water mask
(HydroLAKES)

Dynamic water
inundation mask

HYDROWEB (reference)

2005_10_25_footprints 650 348 304 -

2005_10_25_water_level 1,274.61m 1,272.79m 1,272.57m 1,272.69 m

FIGURE 4

Altimetry footprints of Lake Urmia by three di�erent water masks based on the observations carried out on October 25, 2005.

and the validation data is 0.01 m/year, which is lower than the

typical calculation error for water level change rates. The specific

comparison results are shown in Figure 5. For the relatively stable

water level pattern in 2010–2018, such as Dauphin Lake, or the

water level pattern in Garabogazkol Lake with seasonal fluctuation,

the 9-year data gap had a limited effect on the change rate

estimation. For the water level pattern with large fluctuations in

2010–2018 such as Hulun Lake, the data gap led to an obvious

underestimation of the results. For the water level pattern with

small fluctuations in 2010–2018, such as Qinghai Lake, the data

gap caused an overestimation of the water level change rate. For

the water level pattern with a near-linear increase in 2010-2018,

such as Migriggyangzham Co, there is little effect on the change

rate estimation.

5 Summary and concluding remarks

The development of satellite laser altimetry opens new

possibilities for monitoring global lake levels at a finer scale. The

joint use of ICESat and ICESat-2 laser altimetry data can facilitate

the near two-decade detection of lake water level changes. In this

study, we summarize three primary data-processing procedures

(geoid height, water mask for extracting potential footprints,

and the 9-year data gap between the two generations of laser

altimetry satellites) impacting lake-level estimates when integrating

the ICESat and ICESat-2 altimetry measurements. The major

conclusions and suggestions are organized as follows.

Geodetic reference needs to be considered when constructing

the time series of lake water levels. We suggest recalculating the

geoid heights of ICESat and ICESat-2 altimetry data using the

consistent geoid model (e.g., EGM2008 and EGM96) rather than

the default geoid heights of product data. The comparison results

of different water masks for extracting altimetry footprints showed

that the maximum water extent would introduce larger errors,

while the results based on the dynamic mask and the small water

mask are basically comparable. However, the mapping of dynamic

water masks is a laborious task, especially for the investigation

of lakes at regional or global scales. The smaller water mask is

recommended to extract the potential on-lake altimetry footprints

when the lake is at lower water level. The lake mask should be

selected according to the different hydrological characteristics of

the study regions. For example, for the expanding lakes on the

Tibetan Plateau, it is suitable to choose the water extent around the

year 2000 to extract the on-lake footprints during the period 2003–

2020. However, in Central Asia, where most lakes are shrinking, it

would be better to obtain water extents derived from more recent

satellite imagery.

The 9-year data gap between ICESat and ICESat-2 observations

may result in an overestimation or underestimation of the water

level change rate for lakes with non-linear expansion/contraction.

However, it has a limited effect on lakes with (near-) linear change

or seasonal fluctuation. Thus, it is very crucial to develop methods

for filling the data gap. For example, we can establish the lake

hypsometric curve by fitting the lake area and water level changes

and reconstructing the missing water levels from the consecutive
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FIGURE 5

E�ect of a 9-year data gap on the water level change rate from lakes with di�erent water level change patterns. Dauphin Lake, Garabogazkol Lake,

Hulun Lake, Qinghai Lake, and Migriggyangzham Co represent the stable, seasonal, large, small, and linear fluctuation patterns of water levels in

2003–2020, respectively.

time series of lake areas. In addition, integration of the water levels

from other altimetry satellites, such as CryoSat-2 (2010–present), is

also an effective solution. However, this method is more suitable for

large lakes due to the coarser footprints of CryoSat-2. In addition,

overlaying lake shorelines on DEMs can be applied to extract lake

levels for supplementing the data gap. It should be mentioned

that there could be other possible data-processing procedures

affecting the accuracy of lake level and change rate estimates when

integrating ICESat and ICESat-2 data, for instance, the linear fitting

method, data sampling intervals (e.g., the monthly or seasonal data

composite), and methods of removing height outliers. All of these

procedures should be considered cautiously for generating accurate

lake-level estimates from the altimetry satellite observations.
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