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An active learning convolutional
neural network for predicting
river flow in a human impacted
system

Scott M. Reed*

Department of Chemistry, University of Colorado Denver, Denver, CO, United States

The South Platte river system contains a mixture of natural streams, reservoirs, and

pipeline projects that redirect water to front range communities in Colorado. At

many timepoints, a simple persistence model is the best predictor for flow from

pipelines and reservoirs but at other times, flows change based on snowmelt and

inputs such as reservoir fill rates, local weather, and anticipated demand. Here

we find that a convolutional Long Short-Term Memory (LSTM) network is well

suited to modeling flow in parts of this basin that are strongly impacted by water

projects as well as ones that are relatively free from direct human modifications.

Furthermore, it is found that including an active learning component in which

separate Convolutional Neural Networks (CNNs) are used to classify and then

select the data that is then used for training a convolutional LSTM network is

advantageous. Models specific for each gauge are created by transfer of parameter

from a base model and these gauge-specific models are then fine-tuned based a

curated subset of training data. The result is accurate predictions for both natural

flow and human influenced flow using only past river flow, reservoir capacity,

and historical temperature data. In 14 of the 16 gauges modeled, the error in the

prediction is reduced when using the combination of on-the-fly classification by

CNN followed by analysis by either a persistence or convolutional LSTM model.

The methods designed here could be applied broadly to other basins and to

other situations where multiple models are needed to fit data at di�erent times

and locations.
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1. Introduction

Machine learning methods for numerical prediction of streamflow have recently been

utilized alongside traditional hydrological models. CNNs have been used to predict flow in

rivers (Duan et al., 2020; Shu et al., 2021) and in urban areas prone to flooding (Chiacchiera

et al., 2022). Recurrent Neural Networks (RNNs) have also been used to predict flow (van

der Lugt and Feelders, 2020). These and other deep learning methods have been recently

reviewed (Sit et al., 2020; Le et al., 2021) including the role of deep learning methods in

predicting flow in urban areas (Fu et al., 2022). LSTM models are particularly well-suited to

time-series forecasting (Sagheer and Kotb, 2019) as they retain time-dependent connections

and a number of studies have shown that LSTM models incorporating hydrological inputs

can successfully predict rainfall runoff (Kratzert et al., 2018; Poornima and Pushpalatha,

2019; Xiang et al., 2020) over both short and medium timescale (Granata and Di Nunno,

2023). However, the consensus is that innovation in deep learning models will be required

to further improve forecasting over numerical models (Schultz et al., 2021).
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The convolutional LSTM (Shi et al., 2015) is based on a fully

connected LSTM but uses convolution outputs directly as part of

reading input into the LSTM units. This approach is appealing to

weather forecasting as it enables the patterns identified within past

data, to be identified across time points in past data and projected

forward in future predictions. Convolutional LSTMs have been

used in applications as varied as predicting stock prices (Fang et al.,

2021) and air cargo transport patterns (Anguita andOlariaga, 2023)

and have recently been used for rainfall nowcasting (Liu et al., 2022)

and flood forecasting (Moishin et al., 2021).

Here a river system that has a complicated combination of

features many of which are highly impacted by human influence

is modeled using both a CNN and a convolutional LSTM. Transfer

learning, which has been successfully applied to benchmarked time

series forecasting improving accuracy (Gikunda and Jouandeau,

2021), is used here to create gauge specific models after initial

training on all gauges with a single model. This is combined

with an active learning (Ren et al., 2021) approach to efficiently

utilize the data available for training. Specifically, a CNN based

classifier is used to select a subset of data most suitable for training

the convolutional LSTM models and individual models for each

predicted gauge are created through transfer learning from the base

model. This same classification model is used to determine if a

given set of input data is better modeled by a persistence model or

the Convolutional LSTM for that gauge to provide on-the-flymodel

selection. This work uses a novel combination of transfer learning

and active learning to account for the variability between the

different streamflows being predicted. This combination improves

the prediction accuracy of both the highly variable snowmelt driven

gauges and the flows from water projects that have less variability

over time. This method of combining classification and active

learning approaches could be extended to combine other types

of models.

2. Materials and methods

2.1. Model

The upper region of the South Platte river basin (Figure 1)

serves as a water source for numerous communities. Colorado

front range communities draw water from the South Platte and

other nearby rivers to meet their water needs throughout the year.

Data inputs were used from the major reservoirs (Stronita Springs,

Cheesman, and Chatfield) along the South Platte, tunnels including

ones that bring water across the Continental Divide (Roberts and

Moffat tunnels) or move water within the drainage (homestake),

and gauges representative of the many un-dammed streams (south

fork of the South Platte, middle fork of Prince, and South Platte

above Spinney), as well as gauges that are located below reservoirs

(Eleven mile outflow, Antero outflow, below Brush creek, and

Deckers), and the pipes (conduit 20 and 26) that send water from

the reservoirs into Denver. Gauges were also included in the model

that are outside of the South Platte drainage but are a part of

the Denver Water system including South Boulder creek which

supplies water to Denver and the Blue River below Dillon Reservoir

which reflects releases of water into the Colorado that are therefore

unavailable for transfer to the front range. Finally, gauges were

included that do not directly supply water to the front range but

that are connected indirectly because they are managed by Denver

Water and governed by the Colorado River Compact of 1922

(MacDonnell, 2023) which sets the total amount of water that must

be sent to downstream states. Transfers of water eastward across

the Divide are often offset by releases into the Colorado River to

comply with this compact.

Gauges were selected for the final model by examining which

gauges in this region showed strong correlations to each other

within this river basin (Figure 2). Some strong correlations are

due to close geography. For example, the majority of the flow

out of Strontia Spring reservoir flows directly into Chatfield

reservoir and these gauges have a 0.969203 Pearson correlation

coefficient. In contrast, a correlation of −0.126896 is seen between

the Roberts tunnel which brings water from Dillon reservoir across

the continental divide to be used in Denver and the inflow to

Cheesman reservoir, which feeds Denver from other sources east

of the divide. When water is available east of the divide, water is not

transported from west of the divide.

The homestake pipeline stands out as being negatively

correlated with many of the other gauges. This project takes water

from the South Platte basin and delivers it further south, to the

city of Colorado Springs. Similarly, two other gauges that were

geographically within this region but delivered water to the town

of Aurora likewise had weaker correlations.

2.2. Data inputs

Data from 1996 through 2021 was collected using the

Colorado Division of Water Resources (https://dwr.state.co.us/

Rest/) Application Programming Interface. Outlier datapoints 2

times above the 95th percentile or below the 10th percentile in flow

or capacity were removed. Historical weather data was obtained

from the National Centers for Environmental Information (https://

www.ncdc.noaa.gov/cdo-web/datasets) for the city of Lakewood,

Colorado which is close to the region of study, receives water from

this river system, and has a long and continuous set of temperature

readings through the period of study. Training was performed on

all days available where 21 prior days are included in the model and

7 future days are predicted.

2.3. Seasonality adjustments

While any river flow data is likely to have seasonal variation, the

data used here presents unique challenges. In a river system heavily

influenced by anthropogenic activity, not all gauges follow a similar

pattern of seasonality. Some gauges on unmodified streams have

seasonality expected for natural rivers with increased flow during

spring snowmelt. Other gauges are inactive for long periods of

time, and some have absolutely no variability for the majority of

the year. Some of the gauges that are largely inactive become active

during spring runoff, but others are countercyclical, changing little

during the spring, but becoming more active at other times of year.

For example, several tunnels bring water across the continental

divide and are often most active in the fall when water demands
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FIGURE 1

Map showing region including location of the gauges examined in this study.

in the front range cannot be met with natural flow from streams

into reservoirs.

Winter data was removed because flow is negligible at most

of the gauges, however, this creates a discontinuity in the data.

While careful selection of start and end dates can avoid using data

that crosses this discontinuity, it is desirable to have flexibility in

data handling and training of the neural network. Ideal flexibility

would allow for selecting gauges, past and future window lengths,

and setting weights prior to editing out data that contains such

discontinuities. Under these circumstances, a final step must be

performed to remove data that crosses the discontinuity. Since

there are no column labels on data used for training and validation,

another method is needed for identifying data that crosses this

discontinuity. For this reason, a unique identifier is created by

multiplying two arbitrarily selected column values. This product

acts as a unique identifier of discontinuities and it is used to identify

datasets containing discontinuities to be removed immediately

before training.

After combining all seasons, the data was split into three

sets. The first set was used for training the neural networks.

A second validation set used to periodically check the network

against data that had not yet been seen by the model to protect

against overfitting; when validation data did not improve the

fit, fitting was stopped regardless of whether the training data

was still improving the quality of fit. Finally, a third set of

data was set aside and not used for training or validation but

rather for testing the model. All evaluation reported here is

based on how well the model handled this testing data that

was not used for training or for validation. All the data was

Z-score normalized and the mean and standard deviation for

the training set was used to normalize the training, validation,

and testing data sets to avoid risk of information creeping into

the validation and testing set. A final practical consideration

centered on what years to include in each set. Given that

later years had more gauges available, setting aside only later

years for validation and testing was not practical. Instead, the

training set was constructed from a mixture of older data

(1996–2012) and newer data (2017–2021), validation was based

on 2013–2014 and testing was based on 2015–2016. The total

training data contained 4,558 elements and the validation data

contained 398 elements where each element corresponds to

three prior weeks of data connected to labels composed of the

actual data (flow, temperature, and reservoir capacity) for the

following 7 days.
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FIGURE 2

Correlation heatmap for raw data from all riverflow gauges using data from 1996 through 2021.

2.4. Simulated weather forecasts

Changes to water flow at some gauges are based on

water managers and water users making predictions about

their anticipated needs. For example, a farmer might place a

water rights call when the forecast temperatures are high in

upcoming days. For this reason, the forecast high temperatures

for the next 4 days were included into the model. With

the goal of forecasting based on current conditions, it is

important to keep in mind that more accurate temperature

forecasts are available now than in the past. And records

of past forecasts are not available for as many regions with

as many time points as are currently available. For these

reasons, the past forecast data that was used was simulated.

Specifically, the actual high temperatures recorded were used as

a stand-in for what would have been an accurate prediction

for those temperatures on previous days. With this method,

any location that has accurate historical weather data can be

used also as a source of simulated forecast data. This does

not account for prior inaccurate forecasts that might have

impacted changes to water use since these simulated forecasts are

artificially perfect.

2.5. Neural network

The base and per-gauge neural networks were built using a

tensorflow ConvLSTM2D with data inputs arranged into a two-

dimensional grid. The gauge data was spread across the x and y

axes normally used as image vectors, creating an artificial image

of the data. Two ConvLSTM2D layers were used with a padded

3 by 3 kernel. The first layer encoded input data and the second

layer included future predictions from the input labels. These were

followed by a time-distributed Dense layer.

Optimization of the ConvLSTM2D base model and each per-

gauge model was done with Root Mean Squared Propagation, a

learning rate of 0.003, and a clip value of 1.0. Kernel regularizers,

recurrent regularizers, bias regularizers, and activity regularizer

were all set to 1x10-6. A dropout and a recurrent dropout of 0.3

was used.

The classifier was based on a simple 3D CNN using a

padded kernel of 3 with sigmoidal activation. The categorization

model used a glorot uniform kernel initializer, an orthogonal

recurrent initializer, and a bias initializer of zeros. Kernel

regularizers, recurrent regularizers, bias regularizers, and activity

regularizer were all set to 1x10-6. The recurrent activation
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FIGURE 3

Sequence of model training and testing.

TABLE 1 Description of models used.

Name Base
model

Classification
model

Active
learning
model

Type LSTM CNN-Sigmoid LSTM

Train data 4,558 4,558 2,739–4,524 per

model

Val data 398 398 230–364 per model

Sample

weights

All gauges

equal

Active gauge= 1,

inactive= 0

Active gauge= 1,

inactive= 0

Time weights Uniform with

time

none Decreasing with

time

Epochs

required

33 15/model ∼15/model

Time to train 3min 5min combined 1 min/model

was hard sigmoid, and the model was optimized using adam

while minimizing losses calculated with sparse categorical

cross entropy.

Training was performed in multiple steps (Figure 3), starting

with the base ConvLSTM2D using all available data. Next, this

base model was used to evaluate the training data a second time

with the goal of determining in which cases the base model

performed better than a simple persistence model. The ratio

of mean average error (MAE) for the LSTM model and the

persistence model was recorded and then used as a label for

training the classification model. The classification models for

each gauge were also built with CNNs but with a final sigmoidal

activation producing a single value between 0 and 1 to describe

each data input rather than predicting the future flow. Using

min-max normalization of the ratio of MAE values for each

individual gauge, a label between 0 and 1 was produced for each

input that conveys whether that data was best described using

a persistence model or the base model. A separate classification

model was made for each gauge of interest (Table 1). The

final gauge-specific models were trained on only data that was

rated by the classifier as being modeled better by the base

(convolutional LSTM) model than a persistence model. Each

gauge had its own LSTM model with its weights optimized

during training.

The slowest training step was creating the persistence labels

which took 89min. However, once created, these could be used for

many different attempts at optimizing the per-gauge LSTMmodels.

3. Results

3.1. Model analysis

Various methods are commonly used to evaluate river flow

forecast accuracy. Both the Nash and Sutcliffe (1970) method

(Eq 1) and the dimensionless version of the Willmott et al.
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(2011) technique (Eq 2) were utilized here. The shortcomings

of the most common methods including these two have

been documented (Legates and McCabe, 1999; Jackson et al.,

2019). One particular concern that has been raised before for

the Willmott method is that it is benchmarked against the

variance in past data. For the type of data examined here,

this is especially problematic as the past variance can be zero

for gauges near reservoirs and pipes. Unlike natural streams,

reservoir levels, tunnel flows, and gauges directly connected to

reservoir outflows can report zero past fluctuation for substantial

periods of time. The Nash method suffers from lacking a

lower bound and being strongly influenced by extreme outliers.

While neural networks have used Nash as a minimization

function, both Nash and Willmott were unsatisfying as loss

functions for multiple reasons. MAE was found to be a

more satisfying minimization and evaluation criteria although

both Nash:

E = 1−

∑n
i=1 (Pi − Oi)

2

∑n
i=1

(

Oi − O
)2

(1)

and Willmott error analysis:

1−

∑n
i=1 |Pi − Oi|

c
∑n

i=1

∣

∣Oi − O
∣

∣

when
∑n

i=1
|Pi − Oi| ≤ c

∑n

i=1

∣

∣Oi − O
∣

∣

and

c
∑n

i=1

∣

∣Oi − O
∣

∣

∑n
i=1 |Pi − Oi|

− 1 when
∑n

i=1
|Pi − Oi| > c

∑n

i=1

∣

∣Oi − O
∣

∣

(2)

MAE was found to be a more satisfying both Nash (Eq 1) and

Willmott (Eq 2) analysis of the model using the set aside test data

set are provided here. While the MAE is very direct and easily

understandable, one drawback is that it is not scaled. As a result,

gauges that have higher average flows tend to have predictions with

larger MAE values. The impact of this scaling issue on using MAE

for optimization is minimal. Most of the models described here are

specific to a single gauge, so minimizing them based on errors on

that gauge is not problematic. In the base model, all gauges are

weighted equally, and higher flow gauges may disproportionately

impact the gradient descent, but this base model is not used directly

for predictions. Another consequence of using MAE is that when

comparing predictions on the test data it can appear that gauges

with higher average flow have larger errors. One common method

to solve this is to scale errors using the mean absolute scaled

error (MASE) (Hyndman and Koehler, 2006). However, the MASE

would be infinite or undefined when recent historical observations

are all equal in value, which is common for this type of data.

Each final LSTM model used a different number of days of

data (out of a possible 4558) for training. While the initial training

was performed on all 4,558 data sets, the classification allowed

for curating the training set to contain only that data expected to

help the most. The classification method when applied to selecting

data used in the final model for each gauge ranged from 2,739 to

4,524 (Figure 4) out of the possible 4,558 days available. The gauges

nearer water projects used the persistence model more frequently

than the natural streams.

When a 7-day prediction was run on 210 days of test data, the

prediction 1 day into the future was close to that of the persistence

FIGURE 4

Number of days used in training final LSTM models.

model (Figure 5). In cases where there were rapid changes in flow,

typically a rise, the convolutional LSTM model often was slower

to show the increase. The convolutional LSTM models had mixed

results when reservoirs or pipelines had long periods without any

change. In some cases, such as below Dillon reservoir, this model

was very similar to the persistence model. In other cases, such

as homestake pipeline and cheesman reservoir, the convolutional

LSTM model predicted flow at large sections of time when there

was no flow recorded. Natural undammed streams such as below

brush were reasonably accurate although the convolutional LSTM

model was slower to respond to rapid changes. When run on the

test data, the number of weeks labeled as being better modeled with

persistence ranged from 98 to 133 out of the 210 days evaluated

(yellow points in Figure 5).

In the same 7-day prediction, the prediction 7 days

into the future was not unexpectedly, less accurate than 1

day into the future (Figure 6). Again, when changes in flow were

rapid, the convolutional LSTMmodel often was slower and did not

rise as high as the actual flow (blue) or the persistence prediction

(red). The convolutional LSTM models again overestimated

flow at times when reservoirs or pipelines had long periods

without any change such as in homestake, underestimated at

other times as in Roberts tunnel, and identified small peaks

below cheesman reservoir when the actual data had no such

spike. Although the reservoir was undergoing repairs during

this time period that may have caused it to deviate from the

model prediction.

The fully trained gauge specific models utilized approximately

half of the available data provided from the classifier. These models

trained on smaller datasets performed well at predicting flow from

all the gauges. The median total error (sum of the absolute value

of the difference between true value and predicted value for 7

future days combined) ranged from 0 cfs to as high as 413.7 cfs
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FIGURE 5

Two hundred and ten days of testing data where each gauge is modeled one day ahead using a persistence model and a gauge-specific convolutional

LSTM for 2015 and 2016. A yellow square on the baseline indicates that the CNN classifier identified the convolutional LSTM as the better model

based on the input past data. Blue line represents actual data, red the persistence model prediction, and green the convolutional LSTM prediction.
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FIGURE 6

Two hundred and ten days of testing data where each gauge is modeled seven days ahead using a persistence model and a gauge-specific

Convolutional LSTM for 2015 and 2016. A yellow square on the baseline indicates that the CNN classifier identified the Convolutional LSTM as the

better model based on the input past data. Blue line represents actual data, red the persistence model prediction, and green the convolutional LSTM

prediction.
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FIGURE 7

Combined absolute value of di�erence between predicted and actual values (in cfs) from 2015 and 2016 for 7 days of forecast combined.

(Figure 7). The models with the higher flow gauges showed larger

errors, as expected.

When analyzing the test data (Figure 3, right) using this

combination of classification CNN and convolutional LSTM

predictor, the median Willmott values for all gauges ranged from

0.801 to 1.0 (Figure 8). Here the lowest values were for pipeline and

reservoir gauges rather than natural river and stream flows.

The median Nash values for each gauge ranged from 0.65 to

−5.39 with gauges close to reservoirs showing worse performance.

Here the Nash values are graphed as a boxplot after removing

outliers one standard deviation beyond the IQR (Figure 9).

Predictions were also made using the base model to allow

for an analysis of the benefit of including the active learning

and transfer learning into the overall model. In almost all cases,

the final model performed better than the base model (Table 2)

despite both being based on convolutional LSTM architecture,

demonstrating that this approach does add to the forecast accuracy.

The total error (over 7 days) was 11 to 196 cubic feet per second

(cfs) better for the final model, all but two gauges had a better

Willmott score, and all but 5 had a better Nash-Sutcliffe score. The

propensity of Nash-Sutcliffe to overweight outliers likely impacted

this result.
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FIGURE 8

Error analysis on test data predictions from 2015 and 2016 using Willmott analysis.

4. Discussion

A novel combination of neural networks was employed and

in combination they provided more accurate predictions than a

single convolutional LSTM model in isolation. The convolutional

LSTM structure was a useful way to aggregate data from

multiple inputs and to find patterns within those data sources

while retaining time-based correlations within the data. The

addition of a CNN based classifier to select data fed into the

convolutional LSTM model training improved the accuracy of

the predictions.

Unlike past ensemble methods, this is an on-the-fly approach

where each dataset is examined to determine whether the

characteristics of that dataset suggest the best method to fit the data.

Two options are available although more could be added. Either

the data is fit to a very simple persistence model or the data is

fit to a convolutional LSTM. Yellow boxes in Figures 5, 6 reveal

the granularity of this approach with model selection sometimes

varying day by day and gauge by gauge.

Selection of an optimal model from among multiple models

has long been performed using cross-validation (van der Laan

et al., 2007). A more recent approach, the super ensemble
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FIGURE 9

Nash-Sutcli�e analysis of test data predictions from 2015 and 2016.

method (Tyralis et al., 2021), combines multiple machine learning

(ML) methods and applies a weighting to each method. This is

computationally expensive as each ML method must be run even if

it is determined that it merits an insignificant weighting. Also, this

is not an on-the-fly method that adapts to different data inputs. If

certain input data being used for a prediction is better suited to one

of the aggregated MLmethods than another, the weightings are not

updated. Furthermore, hybrid methods have been developed (Di

Nunno et al., 2023; Granata and Di Nunno, 2023) that combine

both machine learning and deep learning methods to forecast

streamflow. These also do not adapt to data on the fly.

The approach described here is a unique ensemble method

although the selection is simply between two possible models

(persistence or convolutional LSTM). Here only one of the two

models is selected as opposed to the super ensemble approach

which might be more suitable for combining multiple machine

learning approaches. Here, if conditions are expected to result

in no flow changes, a simple persistence model is the best
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TABLE 2 Average di�erence between LSTM base and final models in three

metrics for all testing data.

Gauge Total
error

Willmott Nash

cfs_roberts −115.5 0.12 −8.79

cfs_deckers −33.5 −0.03 −29.79

cfs_grant −59.0 0.07 −1.18

cfs_below_brush −45.0 0.03 −28.28

cfs_below_dillon −86.1 0.06 −103.81

cfs_waterton −6.6 0.00 13.71

cfs_bailey −56.6 0.08 2.92

cfs_cheesman_inflow −28.19 0.01 8.44

cfs_above_chatfield −7.42 0.10 8.17

cfs_below_strontia −15.98 −0.08 −20.00

cfs_cheesman_res 2.41 0.26 0.46

cfs_homestake_pipeline −33.71 0.14 −7.78

cfs_above_spinney 0.06 0.04 0.89

cfs_11mile_outflow −40.32 0.05 2.54

cfs_11mileinflow −26.21 0.07 4.79

cfs_tarryall_borden −18.46 0.00 −127.63

possible predictor, so mixing in other methods might reduce

the performance.

This approach is unique in that CNN convolutions of the data

in the two dimensions the data is assembled and in the third

dimension (time) are used to classify and thereby select a model

to fit the data. This captures the same variability in data that is used

in the LSTM based forecast. Unlike past ensemble methods, this is

an on-the-fly approach where each analyzed dataset is examined

to determine whether the characteristics of that dataset suggest

the best method to fit the data with. Two options are available

although more could be added. Local neighbors within the past

states of the data determine the future states. In isolation, a CNN

may seem like a heavy-handed method for characterizing data and

selecting a model, however, the work of arranging the data into the

structure necessary for analyzing by a CNN is already completed in

preparation for analysis by the convolutional LSTM. We have not

directly compared this classifies to other ensemble methods, which

would be a worthwhile comparison, however, a more standard

dataset may be more suitable to that analysis.

These models provide accurate predictions of flow both upriver

and downriver of reservoirs and pipelines. These predictions could

be useful to water users and water managers in modeling how

individual decisions in one area effect other areas. Models of

reservoir impacted streamflow have been proposed as a guide to

support reservoir operations (Zhao and Cai, 2020) and have been

modeled usingmachine learning (Huang et al., 2021). In addition to

predicting flows, this method could be useful for modeling how to

make changes to reservoir operations to account for climate change

and other factors.

Other combinations could be used where a classifier selected

data to be used in training later models in an active learning step.

LSTM is one of many neural networks that can be used to predict

future flows and classifier could be used to select between many

different models.

5. Conclusions

The approach described here could be most suitable to

forecasting in circumstances with large variation in inputs, such

as extreme weather events. Combining multiple models that

work under different circumstances allows monitoring for large

changes while still using the best model available for more

normal circumstances.

Predicting flow in rivers where human decision making is

involved can only succeed when similar decisions were included

in the training data. Singular events, such as repairs to a tunnel,

or draw down of a reservoir for repairs may occur too infrequently

to be modeled within the training data. One missing variable, in

particular, are water calls made by downstream users. These calls

may be made based on weather conditions far outside the river

basin and add to uncertainty in these predictions.

The approach used here improves prediction accuracy but

does so with an increase in complexity. Many different neural

networks are used, and the process of transfer learning increases

this complexity. Making changes to the data processing in this

format can be challenging. It is not possible for example to drop

a single gauge part way through the process, although weights can

be used to minimize the influence of that gauge.

Optimizing a combination of neural networks such as this

is complicated. Relatively minimal effort has been made to

fully optimize all the possible hyperparameters because of this.

Specifically, a few different regularization values and batch sizes

were explored in the base LSTM model. Once selected, these

values were used throughout with all subsequent models. Methods

are available to systematically explore hyperparameters (Dumont

et al., 2021), however, it would take significant adaptation to

use these approaches and to allow the hyperparameters to vary

between models.

This approach could be employed recursively by creating a new

classifier not from the base LSTM but from the active-learning

improved LSTMs. In turn, these LSTMs could again be used to

create new classifiers to better select training data to be used in

another round of training in a recursive manner.
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