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The Nile Nyabarongo, which is Rwanda’s largest river, is facing stress from both
human activities and climate change. These factors have a substantial contribution
to the water processes, making it di�cult to e�ectively manage water resources.
To address this issue, it is important to find out the most accurate techniques
for simulating hydrological processes. This study aimed to calibrate the SWAT
model employing various algorithms such as GLUE, ParaSol, and SUFI-2 for the
simulation of hydrology in the basin of the Nile Nyabarongo River. Di�erent data
sources, such as DEM, Landsat images, soil data, and daily meteorological data,
were utilized to input information into the SWAT modeling process. To divide
the basin area e�ectively, 25 sub-basins were created, with due consideration
of soil characteristics and the diverse land cover. The outcomes point out that
SUFI-2 outperformed the other algorithms for SWAT calibration, requiring fewer
computingmodel runs and producing the best results. ParaSol established residing
the least e�ective algorithm. After calibration with SUFI-2, the most sensitive
parameters for modeling were revealed to be (1) the E�ective Channel Hydraulic
Conductivity (CH K2) measuring how well water can flow through a channel,
with higher values indicating better conductivity, (2) Manning’s n value (CH
N2) representing the roughness or resistance to flow within the channel, with
smaller values suggesting a smoother channel, (3) Surface Runo� Lag Time
(SURLAG) quantifying the delay between rainfall and the occurrence of surface
runo�, with shorter values indicating faster runo� response, (4) the Universal
Soil-Loss Equation (USLE P) estimating the amount of soil loss. The average
evapotranspiration within the basin was calculated to be 559.5 mma-1. These
calibration results are important for decision-making and updating policies related
to water balance management in the basin.
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1. Introduction

In the boundaries of the Nile Nyabarongo River Basin, there

are significant challenges related to unexpected occurrences of

flood alongside the erosion of soil caused by land and climate

characteristics (Uwacu et al., 2021). This degradation of the soil

negatively affects agriculture in the region, particularly in drylands

where unsustainable intense rainfall and land use contribute to

erosion and soil loss (Kabirigi et al., 2017; Rutebuka et al., 2019).

Basin operators must have a precise comprehension of soil loss and

surface water outflow in sequence to properly control and secure

natural resources, especially soil, and water (Kuria et al., 2019).

Integrated hydrological models with a process-based approach

emerged to be essential appliances for managing water resources

and environmental challenges, enabling the examination of the

impacts resulting from changes in the boundaries within nature

and human activities on various ecosystems (Wolka et al., 2018; Ma

and Sb, 2020). The current calibration approaches primarily focus

on refining outcomes while refining the models’ depiction of these

tasks. It has been observed that calibration with single hydrological

variables may not accurately simulate additional outward and

sub-surface hydrological instabilities (Adams, 2017). To improve

the process representation, it is necessary to employ effective

calibration techniques that utilize simultaneously measurable basin

indicates and sensitive information (Bagheri et al., 2020). However,

uncertainties in input data, model structure, and parameters pose

challenges to detailed calibration and estimate of hydrological

processes in basin models. Some studies suggest that incorporating

streamflow, rainfall, and soil moisture data can enhance rainfall-

runoff modeling. Wasko and Nathan (2019) have noted that using

a particular hydrological indicator for calibration may not provide

an accurate representation of other surface- and sub-surface-level

hydrological instabilities (Giordan et al., 2020). The latter can be

done by applying the combined use of delicate data and measurable

hydrological indicators for efficient calibration procedures that

enhance model demonstration of the approach (Baird and Low,

2022). Nevertheless, the accurate calibration and estimation of

hydrological processes in a basin design is restricted by the

input data, model framework, and variables (Zuecco et al., 2016).

Various methods are used for hydrological modeling, including

the Water Evaluation and Planning (WEAP) system, Agricultural

Non-Point Source Pollution (AGNPS) system, and Soil and Water

Assessment Tool (SWAT) (Yuan et al., 2020). Among these,

the SWAT model, established by the United States Department

of Agriculture (USDA) Agricultural Research Service (ARS), is

frequently used for estimating hydrological and sediment yields

(Liu et al., 2016; Fard and Sarjoughian, 2021). It distributes a

geographically appropriate and consistent framework to estimate

how different methods for managing land will affect runoff, soil

loss, and crop production (Martínez-Mena et al., 2020). The

procedure and the alignment of the SWAT model’s calibration are

essential to modify parameters that influence its outputs (Zhang

et al., 2009). Numerous parameters related to soil disintegration,

runoff, and water quality need to be calibrated to ensure accurate

hydrological modeling using SWAT (Akoko et al., 2021). However,

this calibration process encounters uncertainties that require

careful consideration. The various techniques and algorithms were

initially established for SWAT uncertainty and calibration analysis,

including sequential uncertainty fitting Version 2 (SUFI-2), SWAT-

CUP, cloud computing infrastructure, artificial neural network

(ANN), particle swarm optimization (PSO), generalized likelihood

uncertainty estimation (GLUE), parallel solution (ParaSol), genetic

algorithms, and Bayesian models, Mengistu et al. (2019) previous

studies have utilized these algorithms to calibrate and validate

the SWAT model in different basins. The SUFI-2 algorithm has

shown to be effective throughout the SWAT model’s validation

and calibration in the Kunthipuzha basin, while other approaches

have been used in data-scarce semi-arid basins in South Africa

(Mengistu et al., 2019). Additionally, the study conducted a

comprehensive validation and calibration of the SWAT model

using multiple variables and sites in a vast mountainous basin

defined by considerable spatial alterations. Furthermore, Radcliffe

and Mukundan (2017) specifically examined the implications of

using CFSR and PRISM precipitation data on the process of

calibrating and validating SWAT models, ensuring a rigorous

analysis. Abbaspour et al. (2004) and Kumar et al. (2017) used the

SUFI-2 technique to calibrate, validate and analyze uncertainties

of SWAT for streamflow modeling while Khatun et al. (2018)

used the SWAT-CUP to replicate the surface runoff. Singh et al.

(2012) applied the cloud approaches for calibration of the SWAT

model whereas the ANN was utilized by Jahani et al. (2019) and

Pradhan et al. (2020) to evaluate SWAT for hydrologic simulation.

Moreover, exploited algorithms based on genetics and Bayesian

model to calibrate and assess SWAT model uncertainties (Zhang

et al., 2009). Akbari et al. (2022) modeled the runoff management

strategies under climate change scenarios using hydrological

simulation. They found that runoff decreased by 6–23% and 9–52%

for the near and far future, respectively, under the BAU scenario

compared to the baseline period. Antithetically, it increased by 3.5–

21 and 13–55% for the near and far future periods, respectively,

based on the CCP strategy estimated up to 30% higher than the

BAU strategy. Moreover, Rahvareh et al. (2023) assessed the climate

change impacts on the watershed-scale optimal crop pattern using

a set of methods. Their results exhibited that irreparable damage

to groundwater depletion is reduced in the optimum state, and

lower stress is imposed on the aquifer under the climate change

impacts by executing the optimum crop pattern. These techniques

have been used in earlier studies to calibrate and validate the SWAT

model in several basins.

In the process of utilizing these approaches, it is fundamental

to persistently modify the parameters until the predicted effects

and the experimental data are logically consistent. It’s challenging

to choose the appropriate algorithm for calibrating SWAT outputs

from all these options. This study, therefore, applied SUFI-2,

GLUE, and ParaSol, to (1) evaluate the SWAT model’s application

in simulating hydrological processes such as sediment yield

and runoff, (2) compare and unveil the greatest calibration

algorithm following the results of the tests conducted in the Nile

Nyabarongo River basin. Overall, this study aims to compare

different calibration approaches for the SWAT model to improve

its accuracy in the Nile Nyabarongo River Basin. By calibrating

parameters using assessed estimates and measured estimations,

it will be possible to augment the model’s ability to forecast the

outcomes of evapotranspiration, runoff, and other related variables.
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From an extensive literature review, it was evident that existing

studies on hydrologic processes are still deficient in developing

countries where the effects of climate variation on hydrological

processes have not been fully and appropriately understood

(Khaddor et al., 2019). Similarly, this specific subject captured less

attention in Rwanda owing to different difficulties, among which,

the paucity of ground-based weather recordings both in space

and time remains challenging. This situation adds to the intricacy

of understanding the complex relationships between rainfall and

hydrological processes in the area. Consequently, alarming flash

flood incidences are recorded in the area, where the Nyabarongo

catchment is the most affected, as a result of rapid hydrological

responses right after prolonged heavy rainfall (Gatwaza, 2016).

Studies have been conducted in the study area with full attention

on the perceptions of local people on the use of Nyabarongo River

wetland and its conservation in Rwanda (Nsengimana et al., 2017).

Moreover, a very recent study assessed the hydrological response to

rainfall events giving much focus on the simulation of discharged

flow and volume (Mind’je et al., 2021). However, to the best of

our knowledge after an in-depth review of literature, no study has

so far evaluated the currently most applied model (SWAT model);

which has proved a high level of accuracy in simulating different

hydrological processes. In addition, this study has also considered

to compare concurrent methods for this model calibration and

validation, which is indeed understudied and not explored in the

study area. Recap that, the study area is the largest at national level

well-known to directly respond to a slight variation in its climatic

and land surface characteristics. Therefore, this research comes to

complement the existing few studies by bridging the identified gap

in previously mentioned literature and provide valuable insights

that can guide decision-making and policy updates to better

manage water balance components in the basin.

2. Data collection

The current modeling was established on elevation data, LULC

data, soil data, and daily meteorological datasets (rainfall and

flow). To accurately map the dimension of the basin area for the

Nyabarongo River, we employed elevation informationmined from

a 30-meter resolution Digital Elevation Model (DEM) acquired

from the Shuttle Radar Topographic Mission (SRTM). This

particular DEM dataset was compiled by the National Aeronautics

and Space Administration (NASA) www.dwtkns.com/srtm 30m.

The elevation of the Nyabarongo basin ranges from 1,342m to

4,443m (Figure 1). The geographical area in question encompasses

a hilly terrain characterized by sharp inclines found within the

volcanic area to the north and along the Congo-Nile split to the

west. The Nyabarongo basin’s nature displays a rugged landscape

featuring steep hills interspersed by deep valleys. In the eastern

part, the slopes are more gradual, and there is a large valley

downstream where flooding has become a significant concern in

recent years (Yamashita et al., 2015). Additionally, soil properties

and, LULC play a crucial role in modeling hydrological processes,

particularly in simulating runoff for this study. To obtain LULC

classes for the basin, we processed satellite imagery (Landsat 8

OLI) acquired from the United States Geological Survey (USGS)

EROS data and conducted a supervised classification using the

Maximum Likelihood Classification method. We used ArcGIS 10.8

to extract soil property information from a raster file containing

global soil types. The soil propertiesmapwas carefully created using

data obtained from the World Harmonized Soil Database (HWSD)

(Alawamy et al., 2020). We identified six LULC classes, including

forestland, grassland, built-up areas, wetland, and water bodies

(Table 1). In numerous areas in Rwanda, agriculture dependent

on rainfall is the main economic pursuit in the Nile Nyabarongo

basin, while sizable portions of the basin are covered by forests

and grasslands, predominantly on hill summits. The areas of

urbanization are substantial as the basin includes a significant

portion of the capital city, Kigali, along with other major cities of

Rwanda like Muhanga., Huye, and Musanze (Price, 2019).

In comparison to the highland region of Rwanda, the soil

properties in this area are comparatively younger and naturally

more nutrient-rich (Mashingaidze et al., 2020). The identified soil

types include clay, loam, sand, clay loam, sand clay, and sandy clay

loam (as shown in Figure 1).

To gather meteorological information, data on daily rainfall,

and temperature, were obtained from the Rwanda meteorological

agency for 34 years (Table 2). The distribution of precipitation

in Rwanda is symmetrical, as stated on the official website of

the Rwanda Meteorological Agency (www.meteorwanda.gov.rw).

This distribution is primarily influenced by the Inter-Tropical

Convergence Zone due to the country’s high elevation. In the

research area, the typical yearly precipitation is slightly above

1,200mm, which occurs during two distinct rainy seasons. The

long rains season takes place from March to May, contributing to

approximately half of the total annual rainfall, while the short rains

season occurs from September to December (Fuka et al., 2016).

Within the research area, the temperature typically falls between

the range of 17 to 20◦C, and the way temperature and rainfall are

dispersed across the area fluctuates due to the topography features

of the basin (Kwisanga, 2017; Nsengiyumva and Valentino, 2020).

Meteorological data were collected from three different stations

located within or near the Nile Nyabarongo basin (Water and

Lead, 2017). For the climate data, we considered daily precipitation

in millimeters, as well as the mean, minimum, and maximum

temperature in degrees Celsius (Neitsch et al., 2011). Due to the

historical civil war and genocide in Rwanda, the meteorological

records are incomplete, with significant gaps in the data. However,

the Kanombe station provided nearly complete and continuous

records. Therefore, it was selected as the reference rain gauge to

fill in the missing data from other rainfall gauges in the study area

for the period from 1982 to 2016 (Irankunda et al., 2022).

3. Methods and procedures

3.1. Study area description

Rwanda is a country in East Africa that is surrounded by land

on all sides situated on the eastern side of Africa’s Kivu-Tanganyika

rift. It spans an area of 26,338 km2 and is confined by the

D.R.Congo, Uganda, Burundi, and Tanzania (Karamage et al., 2016;

Nsengiyumva and Valentino, 2020). The basin of the Nyabarongo

River has its location in Rwanda and is known as the source of

the Nile River. This basin comprises of three sub-basins, namely
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FIGURE 1

(A) Elevation (in meters), (B) Slope (in %), (C) LCLU (in meter), and (D) Soil types of the Nile Nyabarongo Basin.

TABLE 1 Land use land cover classes with total area distribution.

N◦ LULC category code Area (ha) Area (sqkm) Area (%)

1 Forest FRST 1,414,050 1272.65 15%

2 Grassland RNGR 735,748 662.173 8%

3 Cropland AGRL 6,681,342 6013.21 71%

4 Buildup SETL 250,431 225.388 3%

5 wetland WETL 124,518 112.066 1%

6 Water bodies WATR 145,114 130.603 2%

TABLE 2 Spatial information of meteorological stations.

Station n◦ Station name Latitude Longitude Elevation Years

1 Kanombe 30.12 −1.96 1,490 1982–2016

2 Gitega 30.05 −1.95 1,474 1982–2016

3 Rutabo 29.85 −1.75 1,480 1982–2016
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FIGURE 2

Placement of the research area near the reservoirs of water, river, Meteo stations and the elevation added.

the Mukungwa sub-basin in the northern region, the Nyabarongo

upstream sub-basin in the southern region, and the Nyabarongo

downstream sub-basin in the eastern region. Together, these sub-

basins play a significant role in Rwanda’s drainage system. With

an area of 8441.21 km2, In Rwanda, the Nyabarongo River stands

as the country’s largest river. It stretches ∼300 km to Lakeside

Rweru from its origins in the west near the boundary with Burundi

in southeastern Rwanda. The river’s main channel is formed by

the Akanyaru River, The Nyabarongo River originates from the

elevated landscapes of the Nyungwe National Park, located on the

border between the Congo and Nile regions. As it advances east, the

river passes through lowland basins and small lakes in the Bugesera-

Gisaka swamps in southern Rwanda. Its course is influenced by

various smaller rivers, such as the Marenge and Rusine rivers, as

well as urbanized areas in Kigali, including Mpazi, Rwanzekuma,

Ruganwa, and Yanze rivers, which all contribute to its volume

(Nsengiyumva and Valentino, 2020; Omara et al., 2020) (Figure 2).

3.2. Soil and water assessment tool

The SWAT is a hydrological simulation designed by the

US Department of Agriculture’s Agricultural Research Service

(ARS). This model is designed to model the manners of water

resources using a daily time step. It is based on physical

principles and incorporates dynamic elements to accurately

represent the behavior of these resources (Neitsch et al., 2011).

According to Neitsch et al. (2011), SWAT proves to be highly

beneficial when it comes to examining agricultural regions and

extensive basins that exhibit diverse soil types, land cover,

and management approaches. Its successful adoption can be

attributed to the availability of detailed documentation, including

theoretical manuals and online tutorials (Heuvelmans et al., 2005;

Neitsch et al., 2011; Arnold et al., 2012) as well as additional

publications, GIS plug-ins, and support from the development team

(Figure 3).

The hydrological cycle of a sub-basin is simulated in SWAT

using the water balance equation below.

TWt = TWo +

t
∑

i=1

(

Rday −Msurf − Ea −Wseep −Mqw

)

(1)

where TWt is the final soil water content; TWo is the initial

soil water content (mm); t is time; Rday is the total quantity of

precipitation; Msurf is the total quantity of surface runoff; Ea is

the total quantity of evapotranspiration; Wseep is the total quantity

of percolation flow exiting the soil, and Mgw is the amount of

return flow.

SWAT simulates the hydrological cycle of a sub-basin using

a water balance equation. The model presents two options

for calculating surface runoff: the SCS curve number method
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FIGURE 3

(A) Average annual and monthly precipitation distribution, (B) Average annual and monthly temperature distribution.

(Boughton, 1989) and an additional method (Ogden and Saghafian,

1997). In this research, we utilized SWAT 2012 for hydrological

modeling and employed ArcGIS 10.8 software with the Arc SWAT

extension. Using the river basin’s distinct soil properties, LULC,

and elevation, sub-basins were split into Hydrologic Response

Units. The HRU serves as the unit for determining hydrologic

characteristics, with the water budget driving the simulation. The

modeling process incorporates two phases: an in-stream phase,

where the model calculates basin loadings from each sub-basin

along the stream network, and a land phase, where SWAT simulates

the flow, sediment, and nutrient contributions from each HRU,

which are then aggregated at the sub-basin level (Shivhare et al.,

2018).

3.3. Sequential uncertainty fitting version 2

SUFI-2 is a probabilistic algorithmic approach commonly

used by scientists to assess uncertainty (Kumar et al., 2017). It

evaluates both efficiency and parameter uncertainty. The measure

of uncertainty in efficiency is determined in accordance with

the 95PPU (95 percent accuracy of predictions band), which is

calculated in accordance with the cumulative distribution of output

variables in SUFI-2 at the 2.5 percent and 97.5 percent thresholds.

Parameter uncertainty is captured by utilizing a parametric basis

function within a parameter hypercube (Wu et al., 2019). To

establish the calibration efficiency, we employ the R-factor, which

is determined by scaling the measured data’s standard deviation

by the 95PPU band’s average width. The P-factor represents the

percentage of simulations that accurately match the observed

data, ranging from 0 to 100 percent, while the R-factor can

range from 0 to infinity. When a simulation yields a P-factor

of 1 and an R-factor of 0, it signifies a complete alignment

with the observed data. SUFI-2, akin to GLUE (Generalized

Likelihood Uncertainty Estimation), encompasses all forms of

uncertainty by considering parameter uncertainty within the

hydrological model. In this research, we employed SWAT-CUP

to combine the simulated values from SWAT 2012 with observed

data for uncertainty analysis and calibration using the SUFI-2

algorithm (Wu and Chen, 2015). The SUFI-2 technique is as

follows:

In the first phase, the goal function (gi) is considered. Next,

the minimum and maximum absolute ranges (θj) of the physically

significant parameters being optimized are defined.
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In the second phase, the preliminary uncertainty estimates are

restricted to the parameters for the first round of Latin hypercube

testing after a sensitivity assessment for each of the parameters

is performed.

In the third phase, Latin hypercube testing is performed, and

the equivalent objective functions are assessed. The sensitivity

matrix J ij and the following formulas are used to calculate the

correlation grid C parameter:

J ij =
1gi

1θj
v = 1, 2 . . . ,Cm, w = 1, 2, . . . , k (2)

C = s2g ( JT J )−1 (3)

where Cm is the total count of rows in the sensitivity matrix, and p

is the total count of parameters to be estimated?

where s2g is the variance of the coefficients of the desired

functional resulting from the m model runs?

In the fourth step, the 95PPU is identified. The p-factor (the

percent of observations bracketed by the 95PPU) and the r-factor,

respectively, are then evaluated:

r − Factor =

1
n

∑n
ti=1

(

yMti,97,5% − yMti,2,5%

)

σobs
(4)

where yMti,97,5% and yMti,2,5% indicate the 95PPU’s upper and

lower boundaries, and threatens to indicate the observed data’s

standard deviation.

3.4. Parallel solution

ParaSol is a revised sort of the UA-SCE global optimization

method that aims to incorporate estimate uncertainty during a

mechanism of analysis through simulations. ParaSol utilizes the

comprehensive exploring space for attributes of UA-SCE, focusing

on layouts that are close to optimal (Kan et al., 2017). ParaSol

follows the following procedure:

1. The reconstructions are divided into “boundless” and “not

boundless” depending on the limit’s evaluation of the objective

function, similar to GLUE. The application of the revised

UA-SCE is accelerated, increasing the range of parameters

exploration. This results in separate sets of “boundless” and “not

boundless” parameters.

2. Uncertainty prediction is generated by assigning appropriate

weights to each “boundless” reconstruction. The regression’s

sum of squares, referred to as ParaSol (SSQ), is used as the

target work:

SSQ =

n
∑

i=1

(yi,M (∅) − yi,s
2) (5)

The correlation between SSQ and NS is:

NS = 1−
1

∑n
ti=1

(yti − y)2
.SSQ (6)

where
∑n

ti=1
(yti − y)2 represents a set rate for certain

observations. All ParaSol objective function values are converted

to NS for better comparison with GLUE. ParaSol primarily

accounts for parameter uncertainty based on x2-statistics and

assumes consistent variability. For comparison purposes, the

same sensitivity as GLUE is employed, referred to as “enhanced

ParaSol (Zhao et al., 2018).

3.5. Generalized likelihood uncertainty
estimation

GLUE is employed to address non-uniqueness of parameter sets

across model parameters and scenarios (Zhao et al., 2018). This

approach acknowledges that no specific parameter arrangement

substantially enhances the goodness-of-fit criterion for over-

parameterized models. GLUE consideration throughout potential

parameter uncertainty. The estimation of probabilities linked to a

parameter set consideration throughout potential sources of error

and the influences of parameter covariation on the performance

of the model (Zhang et al., 2016). An analysis using the GLUE

methodology consists of three primary stages:

1. The “generalized likelihood measure” H(∅), is defined,

and a majority of parameter sets are haphazardly selected

from the probability distributions. Each set is classified as

“behavioral” or “non-behavioral” due to a comparison with a

predefined threshold.

2. Each set of behavioral parameters is assigned a “likelihood

weight, Ri, due to the subsequent formula:

Ri= H (∅i) /

n
∑

k=1

H (∅k) (7)

where n is the number of interactive parameters sets.

3. Finally, the estimated uncertainty is represented as a forecast

quintile derived from the aggregated distribution of weighted

behavioral parameter sets. The Nash-Sutcliffe coefficient of

efficiency (NSE) is commonly used as the likelihood measure

for GLUE.

NS = 1−

∑n
ti=1

( yMti (∅)− yti )
2

∑n
ti=1

( yti − y)2
(8)

In this context, n corresponds to the total count of recorded

data points and the variables yti and y
M
ti
(∅) symbolize the observed

data and the model’s simulated output using parameters∅ at a time

ti, respectively, and y denotes the mean value of the annotations.

For more information on the SWAT-CUP, ParaSol, SUFI-2

and GLUE model components, you can look up the SWATCUP

instruction request by Abbaspour (2014) or the SWAT model

utilization, validation, and calibration document by Tejaswini and

Sathian (2018).

3.6. Validation and calibration results

As mentioned earlier, the calibration method involves

modifying the parameters that impact the SWAT model’s

results, such as observed values and estimated values of runoff,
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TABLE 3 Evaluation of model performance in simulated and observed flow during the (2011–2013) calibrating and 2 years (2014–2015) validation

periods.

Method Period p-factor R-factor R2 NSE bR2

SUFI2 Calibration 0.67 0.76 0.86 0.83 0.86

Validation 0.65 0.74 0.87 0.80 0.83

Parasol Calibration 0.39 0.19 0.96 0.93 0.52

Validation 0.37 0.18 0.55 0.64 0.49

GLUE Calibration 0.75 0.69 0.76 0.82 0.61

Validation 0.70 0.68 0.72 0.78 0.60

evapotranspiration, and other outputs (Mapes and Pricope, 2020).

Validation, on the other hand, involves comparing the SWAT

model’s results with observed data without making any changes

to the factors that influence the model’s outcomes (Devia et al.,

2015; Mapes and Pricope, 2020). Calibration is a crucial step in

ensuring the accuracy of hydrologic models (Beven and Smith,

2015). The calibration parameters for soil erosion and runoff

utilized in this investigation are shown in Table 3, along with the

related lowest and highest relative SWAT outcomes. To be able

to analyze uncertainty, calibrate, and validate the hydrological

modeling outcomes, we employed SWAT-CUP as a bridge between

SWAT and the calibration algorithms. The TxtInOut directory of

the SWAT model was imported into the SWAT-CUP tool for input

drives. These figures were employed for comparisons and system

calibration. The necessary modifications were made to the input

files of the SWAT-CUPmodel. Figure 4 depicts the flowchart of the

following section. We compared the capabilities of ParaSol, SUFI2,

and GLUE in capturing the optimal parameter sets (in terms of

the evaluation criteria) during both the calibration and validation

periods in the basin. A 3-year (2011–2013) record of monthly

streamflow at the basin outlet was used for calibration and another

2-year (2014–2015) dataset was used for validation. The three

sets of the calibrated parameter values derived from the methods

were listed in Table 4 and the graphical comparisons (scatterplots)

between the observed streamflow and the best simulation were

shown in Figure 4. It can be seen from Table 3 and Figure 4 that the

calibrated parameter sets of the three methods were not completely

in accordance with each other, implying that the three algorithms

could recognize the different parameter sets that were able to

produce similarly good performance.

As can be seen from Table 3, in calibration, the p-factor and

r-factor yielded by ParaSol (0.39 and 0.19) were less than those

generated by SUFI2 and GLUE (0.67 and 0.75 for SUFI2 and GLUE,

respectively). Also, the NSE and R2 in ParaSol (0.93 and 0.96) were

higher than those yielded by SUFI2 (0.83 and 0.86) and GLUE (0.82

and 0.76), suggesting that ParaSol had its advantage on accurately

seeking the optimized parameter set compared to SUFI2 andGLUE.

In addition, based on the evaluation criteria (Table 3) and according

to Moriasi et al. (2007), the overall model performance can be rated

as “good” in both the calibration and validation periods.

In the SWAT model, the target watershed is divided into sub-

basins linked by the channel network, each sub-basin is further

subdivided into several hydrological response units (HRUs) of

homogeneous land-use, slope, and soil characteristics. Hydrological

components, nutrients, and sediment yield are simulated at the

HRU level and then aggregated for each sub-basin. The detailed

model description is found in Neitsch et al. (2011). The suitability

of the SWAT model to estimate hydrologic processes to land-use

change in Gumara watershed was assessed by Teklay et al. (2021).

In this study, the SWAT model set-up followed a similar setting in

Teklay et al. (2021). Therefore, this study presented only a sum-

many of the model set-up and evaluation results. The watershed

area was discretized into 22 sub-basins. These sub- basins were

further discretized into HRUs by setting a zero percent threshold

level for land-use, slope, and soil. The Penman-Monteith method

was chosen to calculate reference evapotranspiration (Gebre et al.,

2015). The Soil Conservation Service Curve Number and the

variable storage method were used to calculate surface runoff

and flow routing, respectively. Based on the previous studies in

the region and literature survey (Setegn et al., 2008; Gebremicael

et al., 2013; Dile et al., 2016), ten SWAT model parameters were

considered in this research. The ranges of model parameters and

fitted values are shown in Table 4. The model parameters were

calibrated and validated using the Sequential Uncertainty Fitting

version 2 (SUFI-2) in the SWAT-Calibration and Uncertainty

Procedure (SWAT-CUP) pack- age (Arnold et al., 2012), the model

was calibrated using monthly streamflow data for a period of 15

years from 1990 to 2004. The calibration was performed through

a “trial and error” process by manually adjusting the parameter

ranges based on published literature (Arnold et al., 2012; Dile

et al., 2016; Fentaw et al., 2018). After calibration, the model was

validated using streamflow data from 2005 to 2015.

3.7. Methodology and criteria for
assessment

When examining calibration methods for water and soil

modeling, numerous difficulties emerge. We emphasized

addressing the more important concerns, which include:

1. Differences in theories and subjective decisions: Most

algorithms used in calibration have their unique theories

and require subjective decisions regarding prior parameter

dispersals and objective functions. To overcome this issue,

we selected objective functions that are commonly used in

hydrological applications for each algorithm. As a result,

this method led to various subjective processes for several

algorithms. When analyzing the results, we specifically

mention if any challenges arise from the theoretical
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FIGURE 4

Scatterplot between the best simulation and observation with 95 confidence intervals.

TABLE 4 Calibration-related variables and their absolute values.

NO Parameter Description Scale of input min max

1 CN2 Curve number for moisture condition II HRU 35 98

2 ALPHA_BF Baseflow recession constant (days) Basin 0 1

3 GW_DELAY Groundwater delay (days) Basin 0 500

4 SURLAG Surface runoff lag coefficient (days) Basin 0.05 24

5 SOL_K Soil saturated hydraulic conductivity (mm/hr) HRU 0 2,000

6 SOL_AWC Available soil water capacity (mm H2O/mm soil) HRU 0 1

7 USLE_P USLE equation supports parameter HRU 0 1

8 USLE_K USLE equation soil erodibility (K) factor HRU 0 0.65

9 CH_N2 Main channel Manning’s n Reach −0.01 0.3

10 CH_K2 Main channel hydraulic conductivity (mm/hr) Reach −0.01 500

SCS, soil conservation service; USLE, universal soil loss equation.

Frontiers inWater 09 frontiersin.org

https://doi.org/10.3389/frwa.2023.1268593
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Gasirabo et al. 10.3389/frwa.2023.1268593

FIGURE 5

SWAT model calibration flowchart.

framework of a particular algorithm or the selection

of the function.

2. Lack of comparability due to different concepts and objective

functions: Each algorithm is built on its fundamental concept

and employs specific objective functions. This makes it difficult

to compare them directly. To be able to address this problem,

we calculated the value of each objective function for every

algorithm. This allowed a reasonable accordance among the

different techniques.

3. Evaluated the measurements of efficiency of computation

and assessed the conceptual basis criteria to enhance the

comparison process.

4. Each algorithm generates distinct outcomes. To tackle this issue,

we carefully examined the results of all the algorithms for

various criteria. We fully outlined these outcomes, allowing the

reader to form their own conclusions in accordance with the

provided information.

Moreover, we acknowledged that the outcomes of the

comparison are inherently influenced by the specific applications.

To resolve this concern, we separated the specific results of each

algorithm application from the general ones, ensuring a more

accurate evaluation.

The five important criteria were used to compare the three

calibration algorithms (GLUE, ParaSol, and SUFI-2): Numerous

parameters were incorporated into the calibration procedures.

Every technique produces unique estimations and levels of

uncertainty for these parameters. Therefore, the initial comparison

centers around the optimal estimate, minimum and maximum

uncertainty ranges, and parameter correlation for each algorithm

(Jahani et al., 2019). As different algorithms utilize various objective

functions, the second evaluation is based on metrics such as

NSE (Nash-Sutcliffe Efficiency), R², and other objective functions.

The third requires consideration of the R-factor, which represents

the standard deviation of the band’s mean width derived from

the corresponding measured variable, and the P-factor, which

indicates the percentage of data contained within the 95PPU (95%

Prediction Performance Uncertainty) band of each algorithm. The

fourth assessment was made as a result of theoretical principles,

readability, and statistical criteria being met. The final assessment

was made as a result of implementation difficulties (Figure 5).

4. Results and discussion

4.1. SWAT modeling

The basin area and drainage channel are both included in the

basin, creating a morphometric division. It’s a basin unit with

naturally occurring boundaries that are characterized by similar

physical characteristics, topographic patterns on the land, and

climatic circumstances (Adnan et al., 2019). Basin delineation

involves marking the margins of a basin on a map, typically using

data from a DEM or contour maps. In SWATmodeling, the process

begins with defining the basins, where the DEM serves as the input.

Streams and outlet points are produced by considering the basin’s

slope (Sisay et al., 2017). The researcher identifies the basin’s outlet

locations. Additional input, such as reservoir data and designated

streams, can be provided by the user. In this particular study, the

area of the basin was separated into 25 smaller basins.
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In Figure 6, the depicted image showcases the specified research

region’s allocated basin, streams, and observation locations. The

subsequent step involves analyzing HRUs. The area of basin was

separated into units by the HRU analysis that has topographic

features, soil types, and similar land types. In this particular

research, the area of basin was split into 30,70 HRUs using the soil

map, and user soil data, The research area was analyzed using a

map of LULC and a slopemap (Figure 1). Afterward, the model was

enhanced by integrating the climate database. In the final stages, the

evapotranspiration, runoff, and particle outputs for each sub-basin

and HRU during 35 years were calculated using the SWAT model.

4.2. SWAT output

In this particular research, the Nile Nyabarongo River basin

was assessed by using the SWAT model. The basin was divided

into 25 sub-basins and 3,070 hydrologic HRUs to ensure accurate

and efficient modeling. The annual average amount of rainfall

in the basin was measured at 798.4mm, with no snowfall or

snowmelt. The surface runoff (Q) amounted to 81.46mm, while

the lateral discharge was measured at 105.32mm. The deep and

shallow reservoirs contributed 53mm and 8.53mm of groundwater

discharge, correspondingly. The typical recharge for aquifers,

water yield, and evapotranspiration were determined as 71.79mm,

243.18mm, and 559.5mm respectively. Figure 7 presents a visual

illustration of the SWAT model’s productivity, focusing on runoff

and evapotranspiration. The particular outcomes indicate that

more than 50% of the whole precipitation is lost through

evapotranspiration and runoff. Table 4 displays the average

monthly values of various characteristics in the basin, such as

precipitation, snowstorm, surface runoff, lateral runoff, water yield,

and evapotranspiration.

The landcover land use classification in the basin consisted of

five categories (illustrated in Figure 1). The majority of the basin

was identified as cropland. The mean yearly rates for parameters

unique to each land use type are shown in Table 5. The findings

demonstrate that excessive surface runoff may occur in forestland,

wetland, and agricultural land, while in the case of cropland, it

remains below 15% of the water yield for the base flow. Considering

that more than half of the precipitation is lost to drainage, the

sediment production is similarly fairly large.

The loss of sediment from the landscape depends on various

factors. In SWAT, overestimation of sediment often occurs due

to insufficient biomass production, which is particularly common

in certain land use practices. Unfortunately, there is usually no

measurable data can be obtained to differentiate between sediment

from upland areas and sediment in streams. Streams can either

contribute sediment to the overall system or act as sinks for

sediment (Figure 6). The alteration of sediment within streams

is influenced by physical characteristics such as channel slope,

width, depth, cover, and substrate, as well as the total quantity of

sediment and flow coming from upstream. Due to the evaluation

of at least one HRU, the maximum sediment yield was discovered

to exceed 85 thm-2 (Table 6). The collective sediment load of the

entire basin was estimated to be 16.43 t-hm. Figure 8 provides a

FIGURE 6

Basin delineation.
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FIGURE 7

A pictorial illustration of the SWAT output.

TABLE 5 The basin’s characteristics’ mean value per month.

Month Rainfall Snowfall SURQ Lateral Q Water
yield

ET SD PET

Jan 46.43 0.00 4.57 6.36 18.98 34.12 2.24 67.63

Feb 73.54 0.00 11.18 9.23 26.96 42.86 6.42 77.61

Mar 111.14 0.00 16.69 13.67 38.08 72.74 2.28 103.99

Apr 115.86 0.00 12.93 13.94 35.40 83.97 1.28 110.25

May 66.29 0.00 9.91 8.74 27.20 80.52 0.66 129.92

Jun 15.14 0.00 0.29 1.93 7.36 49.43 0.01 140.68

Jul 2.00 0.00 0.01 0.24 2.01 24.39 0.00 156.78

Aug 27.14 0.00 0.14 2.70 3.36 20.87 0.00 142.69

Sept 63.71 0.00 0.93 6.99 8.60 37.29 0.02 113.46

Oct 89.29 0.00 6.55 12.42 20.24 36.72 0.54 89.92

Nov 126.00 0.00 14.38 19.29 35.63 40.71 2.23 62.36

Dec 61.14 0.00 3.76 9.73 19.36 35.46 0.75 58.72

SED is in t·hm-2 and all other values are in mm.

Q, discharge or runoff; ET, evapotranspiration; PET, potential evapotranspiration; SED, sediment yield.
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TABLE 6 Average annual values of the parameters for each land type.

LULC type AREA km CN AWC (mm) USLE-LS PREC (mm) SURQ (mm) GWQ (mm) ET (mm) SED

AGRL 252.82 79 159.29 4.71 798.43 92.06 191.29 503.44 43.08

FRST 2,756.61 79 158.6 6.79 798.43 60.26 162.56 568.96 0.92

CRP 5,008.40 79 154.5 4.98 798.43 90.65 162.09 534.68 24.29

WATR 129.12 79 136.94 0.66 798.43 0 0 1,455.98 0

WETF 112.01 79 155.43 1.86 798.43 81.54 96.78 606.82 20.48

CN, curve number; USLE_LS, universal soil loss equation slope length factor; GW Q, groundwater discharge; AWC, available water content capacity.

FIGURE 8

SWAT output for sediment yield.

visual depiction of the sediment provides results obtained from

SWAT. The highest sediment yield from upland areas is 245.02

Mg/ha, while the average yield is 16.48 Mg/ha, as indicated by the

research findings.

4.3. Comparison output

Table 7 presents a summary of the calibration algorithms

and their comparison. The analysis was conducted across five

categories, and the outcomes are as follows:

1. In the first category, GLUE outperforms SUFI-2 and ParaSol

in terms of uncertainty range. GLUE covers a larger number

of intervals compared to ParaSol and SUFI-2. SUFI-2 takes the

second position in this category.

2. For the second category, ParaSol, which relies on a global

optimization method, achieves the highest value for its objective

function, NSE. From the table values, it is evident that SUFI-2

and GLUE have similar values and hold a comparable position.

3. In the third category, ParaSol performs poorly compared in

addition to the further two-algorithm approach due to its

narrow prediction uncertainty bands. In accordance with the

available data, SUFI-2 surpasses GLUE in this category.

4. When it comes to the fourth category, SUFI-2 and GLUE

account for all unpredictability origins, whereas ParaSol

solely focuses on parameter uncertainty and disregards other

uncertainties. Conceptually, SUFI-2 is preferred over ParaSol

and GLUE as it yields more efficient outcomes.

5. In the fifth category, GLUE stands out as the best option since it

is the simplest among the three algorithms.

After analyzing and comparing the findings in Section 5.3, it

might be described that the outcomes SUFI-2 and GLUE have a

lot in prevalent. Nevertheless, when examining the 95PPU plot

(Figure 9), it becomes evident that SUFI-2 outperforms GLUE

in terms of accuracy and handling uncertainty. SUFI-2 also
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TABLE 7 Comparing calibration methods using the provided criteria in Section 4.5.

Category Sensitive parameter GLUE
(Default parameter

range)

Parasol
(Default parameter

range)

SUFI-2
(Default parameter

range)

1a CN2 15.68 (28.85, 8.90) 20.17 (20.93, 20.08) 25.00 (29.00, 7.23)

ALPHA_BF 0.11 (0.06, 0.97) 0.11 (0.08, 0.13) 0.52 (0.23, 0.74)

GW_DELAY 150.08 (9.52, 279.29) 105.70 (92.23, 114.20) 194.07 (100.04, 300.00)

SURLAG 3.00 (0.05, 24) 4.20 (2.00, 20) 3.00 (0.05, 23)

SOL_AWC 0.12 (0.01, 0.15) 0.08 (0.08, 0.08) 0.08 (0.05, 0.15)

USLE_P 0.40 (0, 1) 0.50 (0, 1) 0.30 (0, 1)

USLE_K 0.17(0.01, 0.64) 0.19 (0.07, 0.60) 0.17 (0.01, 0.63)

CH_N2 0.20 (−0.01, 0.30) 0.20 (0, 0.30) 0.20 (0, 0.30)

CH_K2 75.19 (6.01, 144.82) 30.70 (27.72, 37.67) 80.95 (69.42, 150.00)

Parameter correlations Yes Yes No

2b NSE 0.82 0.76 0.83

R2 0.76 0.65 0.87

bR2 0.73 0.52 0.79

3 P-Factor 0.75 0.39 0.69

R-Factor 0.69 0.19 0.76

4c Source of parameter uncertainty All sources Parameter only All sources

The conceptual basis of parameter

uncertainty

i. Normalization of generalized

likelihood measure ii. Primitive

random sampling strategy

i. Least squares (probability theory)

ii. SCE-UA based sampling strategy

I Generalized objective function ii.

Latin hypercube sampling;

restriction of sampling intervals

Testability of statistical assumption No Yes Yes

5 Difficulty of implementation Very Easy Easy Easy

abest estimate of values of parameters and their minimum and maximum range.
bValues of objective functions.
cUncertainty described by parameter uncertainty.

demonstrates efficiency by utilizing lowered quantities of variables

compared to GLUE, which relies on a large number of simulations.

GLUE’s existence of the fundamental criticism calculation due to

its random sampling approach. Consequently, for this research,

SUFI-2 was selected as the superior algorithm, and only SUFI-2 was

employed for further validation and calibration of sediment yield.

These differences in parameters can be justified by the changing

land surface characteristics and the topographic features of the

basin. The justification for differences in parameter values can be

based on several aspects noting that each basin has its unique

characteristics, such as time stability, topography, soil types, land

cover, and climate, which result in variations in parameter values

(Kelleher et al., 2015). Furthermore, considering experience and

similar work in a basin, model is calibrated for different periods

and the optimal model parameter values vary over these periods,

this can have several causes (Merz et al., 2011; Westra et al.,

2014). Changes in the catchment may have occurred that are not

incorporated in the model. Processes like climate change (Peel

and Blöschl, 2011) land use change (Nanda et al., 2016) and the

construction of hydrological structures like dikes (Weigel et al.,

2014) can affect the hydrological system and, therefore, affect the

optimal model parameter values in different calibration periods if

these processes are not incorporated in themodel (Merz et al., 2011)

determined the time stability of optimal parameter values for six

5-year periods between 1976 and 2006 in 273 Austrian catchments

and found considerable variation in optimal snow and soil moisture

parameter values. However, it’s important to note that regional

variations may exist due to differences in climate, geology, and

hydrological processes.

To estimate the amount of flow from the catchment, sensitivity

analysis was done to identify the parameters most relevant in

affecting the streamflow simulation (Mind’je et al., 2021). Table 4

shows the detected parameters to be important in regulating the

streamflow generation for all the simulations. In the study area,

number 1 was “very sensitive,” from number 2 to 5 “sensitive”

while number 6 to 10 was slightly sensitive. From the SWAT

initial estimations, these parameters were related to runoff and

adjusted to suit the model simulations with the observed flow

data. In SWAT, these parameters are usually used to calibrate

the base flow, which was confirmed by Harka et al. (2020). The

entire simulation was performed daily from 2005 to 2007 was a

warm-up period. Data from the period 2011–2013 was used for

calibration, and the data period 2014–2015 was used for validation.

Generally, as confirmed by the previous literature related to model

validations (Chaibou Begou et al., 2016), there are no rules of

thumb for selecting the proportion of calibration and validation
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FIGURE 9

Plot of estimated and observed values after calibration using (A) GLUE, (B) SUFI-2.

datasets depending on the available amount of data. Due to limited

observed data similar to this study, Mourad et al. (2005) suggested

using the larger portion of the data for calibration and the smaller

portion of the data for validation. Chaibou Begou et al. (2016)

also recommended using the split-sample approach, by splitting

the discharge measurement data into two datasets: two-thirds for

calibration and the other one for validation. Therefore, the available

observed data in the study area were split from the period 2011–

2013 was used for calibration, and the data period 2014–2015 was

used for validation (Figure 10). The statistical performance of the

model was considered satisfactory (Moriasi et al., 2007) with 0.87

R2 and 0.87 of the NSE for calibration, and 0.80 of R2 and 0.87 of

NSE for validation.

4.4. SUFI-2 output

Throughout this evaluation, we calibrated the model using

specific parameters listed in Table 3. We identified four factors

that have a substantial influence on modeling the current basin

in accordance with the assessment measures of the implemented

model. These factors are recommended for amonth-to-month time

cycle. They include the effective channel hydraulic conductivity

(CH K2), Manning’s n value for the main channel (CH N2), surface

runoff lag time (SURLAG), and the universal soil-loss equation

(USLE) with a particular focus on the support parameter (USLE P).

To carry out the validation and calibration, we divided the

data into different periods. The period from 2005 to 2007 served

as a warm-up period. We used data from 2007 to 2011 for

calibration and data from 2011 to 2015 for validation (Figure 11).

The outcomes of the validation and calibration procedures are

illustrated in Figure 10, respectively.

Figure 7 depicts a graph depicting the expected and measured

discharge values, while Figure 8 shows a graph depicting the

estimated and measured sediment data values after calibration. The

measured outputs in sub-basin 19 were evaluated at the same outlet

location.

Table 7 provides the values of the coefficients of appraisal for

different objective functions in the research basin, specifically for

the monthly yield of sediment simulation. The table presents the

assessment coefficients for various objective functions and their

corresponding month-to-month sediment yield simulations. The

P-factor, indicating the proportion of observations within the 95%

prediction uncertainty (95PPU), is 0.77, while the R-factor stands

at 0.81. These results suggest that SUFI-2 produced a smaller
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FIGURE 10

(A) Monthly calibration and validation for 2011–2013 and 2014–2015, (B) Comparison of observed and simulated monthly flow calibration and
validation.

FIGURE 11

The graph shows sediment yield numbers, both calculated and measured (mm).
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TABLE 8 Objective function values.

Method p-factor R-factor R2 NSE bR2 PBIAS KGE RSR

SUFI-2 0.67 0.76 0.87 0.83 0.86 1.4× 102 0.85 0.41

Parasol 0.39 0.19 0.65 0.64 0.52 1.2× 102 0.72 0.21

SUFI 0.75 0.69 0.76 0.82 0.61 1.3× 102 0.80 0.32

KGE, Kling-Gupta efficiency.

percentage of the observed sediment yield. Moreover, moderate

indicators such as R2 = 0.87, NSE = 0.83, PBIAS = 1.4 ×

102 (representing percent bias), and RSR = 0.41 (the ratio of

observation standard deviation) indicate a satisfactory level of fit

for themodel, falling within acceptable assessment ranges (Table 8).

The findings demonstrate the model of SWAT effectively replicates

the hydrological landscapes of the Nile Nyabarongo basin, making

it an important tool for next hydrological studies around the basin.

5. Conclusion

The performance of the SWAT model was assessed using

two qualitative statistics recommended by Moriasi et al. (2007):

Nash-Sutcliffe Efficiency (NSE) value and Percent Bias (PBIAS).

The results of the model calibration showed that the simulated

mean monthly streamflow in the calibration period agrees well

with the observed records, with NSE and PBIAS values of 0.89

and 10.7%, respectively. For the validation period, the NSE and

PBIAS model performance of the SWAT model was 0.85 and

8.7%, respectively. These findings are in agreement with previous

studies in the region (Setegn et al., 2008; Gebremicael et al.,

2013; Dile et al., 2016). This research investigated three different

methods for analyzing uncertainties in a hydrological model called

SWAT. The study focused on the Nile Nyabarongo basin and

evaluated the model’s performance in simulating streamflow. The

results indicated that the SWATmodel produced acceptable results,

with NSE and R2 values of 0.81 and 0.83 for calibration, and

0.87 and 0.87 for validation. The sensitivity analysis of four

key parameters showed that ParaSol, SUFI2, and GLUE were

suitable for assessing parameter sensitivity in the study area.

Specifically, CH N2, SURLAG, USLE, and USLE P were found

to have significant impacts on peak flow, average flow, and low

flow, respectively. However, other parameters like ALPHA_BF,

CH_K2, and SOL_AWC had less influence in this particular

region. While ParaSol was effective in identifying the optimal

parameter set, it had limitations in deriving appropriate parameter

and prediction uncertainty ranges due to its narrower 95%

confidence interval (CI), poor P-factor, and R-factor. On the

other hand, SUFI2 and GLUE performed better in predicting

parameter uncertainty, with SUFI2 outperforming GLUE in

terms of the P-factor and R-factor. Overall, the SUFI2 method

proved to be more favorable than the other two methods for

analyzing parameter uncertainty in the SWAT model within

the Nile Nyabarongo basin. It is important to note that these

findings should be validated through further applications in

different areas to ensure their generalizability. Additionally,

apart from parameter uncertainty, it is crucial to consider the

uncertainty associated with model structure and input data for a

comprehensive understanding of the model’s behavior. The results

of this study have practical implications for water management

decision-making in the region. Future research should focus on

determining appropriate cultivation patterns and mitigating their

negative environmental impacts to address the water crisis in the

basin effectively.

Furthermore, this study demonstrates the value of using

simultaneous calibration algorithms for improving SWAT model

performance in data-scarce regions such as the Nyabarongo River

basin. The simultaneous calibration of multiple parameters led to

improved hydrological-considered processes simulation providing

the best model performance. The findings of the calibrated SWAT

model provide a significant tool for water resources planning in the

study area and highlights the benefits of simultaneous calibration

algorithms for developing robust hydrological models in data-

limited regions. Further work should focus on incorporating

additional observed data and testing the calibrated model for

simulations of climate and land use change scenarios.
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Irankunda, E., Török, Z., Mereu?ă, A., Gasore, J., Kalisa, E., Akimpaye, B., et al.
(2022). The comparison between in-situ monitored data and modelled results of
nitrogen dioxide (NO2): case-study, road networks of Kigali city, Rwanda. Heliyon 8,
12. doi: 10.1016/j.heliyon.2022.e12390

Jahani, B., Mohammadi, B. J. T., and Climatology, A. (2019). A comparison
between the application of empirical and ANN methods for estimation of
daily global solar radiation in Iran. Theoret. Appl. Climatol. 137, 1257–1269.
doi: 10.1007/s00704-018-2666-3

Frontiers inWater 18 frontiersin.org

https://doi.org/10.3389/frwa.2023.1268593
https://doi.org/10.2136/vzj2004.1340
https://doi.org/10.1007/s11069-019-03749-3
https://doi.org/10.1016/j.agwat.2022.107508
https://doi.org/10.3390/w13091313
https://doi.org/10.3390/su12114490
https://doi.org/10.13031/2013.42256
https://doi.org/10.1109/TCSI.2020.2985816
https://doi.org/10.1002/hyp.14622
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000991
https://doi.org/10.1071/SR9890511
https://doi.org/10.3390/w8050178
https://doi.org/10.1016/j.aqpro.2015.02.126
https://doi.org/10.1016/j.envsoft.2016.08.004
https://doi.org/10.1016/j.simpat.2020.102199
https://doi.org/10.1007/s41101-018-0057-3
https://doi.org/10.1002/hyp.10899
https://doi.org/10.4236/oalib.1102830
https://doi.org/10.1016/j.jhydrol.2012.12.023
https://doi.org/10.3390/su12020561
https://doi.org/10.1002/hyp.5620
https://doi.org/10.1016/j.heliyon.2022.e12390
https://doi.org/10.1007/s00704-018-2666-3
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Gasirabo et al. 10.3389/frwa.2023.1268593

Kabirigi, M., Mugambi, S., Musana, B. S., Ngoga, G. T., Muhutu, J. C., Rutebuka, J.,
et al. (2017). Estimation of Soil Erosion Risk, Its Valuation, and Economic Implications
for Agricultural Production in Western Part of Rwanda.

Kan, G., He, X., Ding, L., Li, J., Liang, K., Hong, Y., et al. (2017). A heterogeneous
computing accelerated SCE-UA global optimization method using OpenMP, OpenCL,
CUDA, and OpenACC.Water Sci. Technol. 76, 1640–1651. doi: 10.2166/wst.2017.322

Karamage, F., Zhang, C., Ndayisaba, F., Shao, H., Kayiranga, A., Fang, X., et al.
(2016). Extent of cropland and related soil erosion risk in Rwanda. Sustainability 8,
609. doi: 10.3390/su8070609

Kelleher, C., Wagener, T., and McGlynn, B. (2015). Model-based analysis
of the influence of catchment properties on hydrologic partitioning across
five mountain headwater subcatchments. Water Resour. Res, 51, 4109–4136.
doi: 10.1002/2014WR016147

Khaddor, I., Achab, M., Ben Jbara, A., and Hafidi Alaoui, A. (2019). Estimation
of peak discharge in a poorly gauged catchment based on a specified hyetograph
model and geomorphological parameters: Case study for the 23–24October 2008 flood,
KALAYA basin, Tangier, Morocco. Hydrology 6, 10. doi: 10.3390/hydrology6010010

Khatun, S., Sahana, M., Jain, S. K., Jain, N. J., and Environment. (2018). Simulation
of surface runoff using semi distributed hydrological model for a part of Satluj Basin:
parameterization and global sensitivity analysis using SWAT CUP. Model. Earth Sys.
Environ. 4, 1111–1124. doi: 10.1007/s40808-018-0474-5

Kumar, N., Singh, S. K., Srivastava, P. K., and Narsimlu, B. (2017). SWAT Model
calibration and uncertainty analysis for streamflow prediction of the Tons River Basin,
India, using Sequential Uncertainty Fitting (SUFI-2) algorithm. Model. Earth Sys.
Environ. 3, 30. doi: 10.1007/s40808-017-0306-z

Kuria, A. W., Barrios, E., Pagella, T., Muthuri, C. W., Mukuralinda, A., Sinclair, F.
L., et al. (2019). Farmers’ knowledge of soil quality indicators along a land degradation
gradient in Rwanda. Geoderma Reg. 16, e00199. doi: 10.1016/j.geodrs.2018.e00199

Kwisanga, J. M. P. (2017). Assessing Flood Risk And Developing A Framework For A
Mitigation Strategy Under Current And Future Climate Scenarios In Nyabarongo Upper
Catchment, Rwanda.

Liu, R., Xu, F., Zhang, P., Yu, W., and Men, C. (2016). Identifying non-point source
critical source areas based on multi-factors at a basin scale with SWAT. J. Hydrol. 533,
379–388. doi: 10.1016/j.jhydrol.2015.12.024

Ma, T., and Sb, T. (2020). Soil and water conservation activity on crop production
and productivity in Ethiopia: a review paper. Soil Sci. 2, 122.

Mapes, K. L., and Pricope, N. G. (2020). Evaluating SWAT model performance for
runoff, percolation, and sediment loss estimation in low-gradient watersheds of the
Atlantic coastal plain. Hydrology 7, 21. doi: 10.3390/hydrology7020021

Martínez-Mena, M., Carrillo-López, E., Boix-Fayos, C., Almagro, M., Franco,
N. G., Díaz-Pereira, E., et al. (2020). Long-term effectiveness of sustainable land
management practices to control runoff, soil erosion, and nutrient loss and the role
of rainfall intensity in Mediterranean rainfed agroecosystems. Catena 187, 104352.
doi: 10.1016/j.catena.2019.104352

Mashingaidze, N., Ekesa, B., Ndayisaba, C. P., Njukwe, E., Groot, J. C., Gwazane,
M., et al. (2020). Participatory exploration of the heterogeneity in household
socioeconomic, food, and nutrition security status for the identification of nutrition-
sensitive interventions in the rwandan highlands. Front. Sustain. Food Sys. 4, 47.
doi: 10.3389/fsufs.2020.00047

Mengistu, A. G., van Rensburg, L. D., and Woyessa, Y. E. J. J. o. H. R. S.
(2019). Techniques for calibration and validation of SWAT model in data scarce
arid and semi-arid catchments in South Africa. J. Hydrol. Reg. Stud. 25, 100621.
doi: 10.1016/j.ejrh.2019.100621

Merz, R., Parajka, J., and Blöschl, G. (2011). Time stability of catchment model
parameters: implications for climate impact analyses. Water Resour. Res. 47, 2.
doi: 10.1029/2010WR009505

Mind’je, R., Li, L., Kayumba, P. M., Mindje, M., Ali, S., and Umugwaneza, A. (2021).
Integrated geospatial analysis and hydrological modeling for peak flow and volume
simulation in Rwanda.Water 13, 2926. doi: 10.3390/w13202926

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel,
R. D., Veith, T. L., et al. (2007). Model evaluation guidelines for systematic
quantification of accuracy in watershed simulations. Transact. ASABE 50, 885–900.
doi: 10.13031/2013.23153

Mourad, M., Bertrand-Krajewski, J. L., and Chebbo, G. (2005). Calibration and
validation of multiple regression models for stormwater quality prediction: data
partitioning, effect of dataset size and characteristics. Water Sci. Technol. 52, 45–52.
doi: 10.2166/wst.2005.0060

Nanda, R., Chow, L. Q., Dees, E. C., Berger, R., Gupta, S., Geva, R., et al. (2016).
Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib
KEYNOTE-012 study. J. Clin. Oncol. 34, 2460. doi: 10.1200/JCO.2015.64.8931

Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R. (2011). Soil and Water
Assessment Tool Theoretical Documentation Version 2009.

Nsengimana, V., Weihler, S., and Kaplin, B. A. (2017). Perceptions of local people
on the use of Nyabarongo River wetland and its conservation in Rwanda. Soc. Nat. Res.
30, 3–15. doi: 10.1080/08941920.2016.1209605

Nsengiyumva, J. B., and Valentino, R. (2020). Predicting landslide
susceptibility and risks using GIS-based machine learning simulations, case
of upper Nyabarongo catchment. Geom. Nat. Hazards Risk 11, 1250–1277.
doi: 10.1080/19475705.2020.1785555

Ogden, F. L., and Saghafian, B. (1997). Green and Ampt
infiltration with redistribution. J. Irrig. Drain. Engin. 123, 386–393.
doi: 10.1061/(ASCE)0733-9437(1997)123:5(386)

Omara, T., Nteziyaremye, P., Akaganyira, S., Opio, D.W., Karanja, L. N., Nyangena,
D. M., et al. (2020). Physicochemical quality of water and health risks associated
with consumption of African lung fish (Protopterus annectens) from Nyabarongo
and Nyabugogo rivers, Rwanda. BMC Res. Notes 13, 66. doi: 10.1186/s13104-020-
4939-z

Peel, M. C., and Blöschl, G. (2011). Hydrological modelling in a changing world.
Prog. Phys. Geography 35, 249–261. doi: 10.1177/0309133311402550

Pradhan, P., Tingsanchali, T., and Shrestha, S. (2020). Evaluation of soil
and water assessment tool and artificial neural network models for hydrologic
simulation in different climatic regions of Asia. Sci. Total Environ. 701, 134308.
doi: 10.1016/j.scitotenv.2019.134308

Price, R. (2019). Climate Compatible Development and Rapid Urbanisation
in Rwanda.

Radcliffe, D. E., and Mukundan, R. (2017). PRISM vs. CFSR precipitation data
effects on calibration and validation of SWATmodels. JAWRA J. Am.Water Res. Assoc.
53, 89–100. doi: 10.1111/1752-1688.12484

Rahvareh, M., Motamedvaziri, B., Moghaddamnia, A., and Moridi, A. (2023).
Modeling runoff management strategies under climate change scenarios using
hydrological simulation in the Zarrineh River Basin, Iran. J. Water Clim. Change. 4,
511. doi: 10.2166/wcc.2023.511

Rutebuka, J., Kagabo, D. M., and Verdoodt, A. (2019). Farmers’ diagnosis
of current soil erosion status and control within two contrasting agro-ecological
zones of Rwanda. Agric. Ecosyst. Environ. 278, 81–95. doi: 10.1016/j.agee.2019.
03.016

Setegn, S. G., Srinivasan, R., and Dargahi, B. J. T. O. H. J. (2008). Hydrological
modelling in the Lake Tana Basin, Ethiopia using SWAT model. Open Hydrol. J. 2,
1. doi: 10.2174/1874378100802010049

Shivhare, N., Dikshit, P. K. S., and Dwivedi, S. B. (2018). A comparison of swat
model calibration techniques for hydrological modeling in the ganga river watershed.
Engineering 4, 643–652. doi: 10.1016/j.eng.2018.08.012

Singh, A., Imtiyaz, M., Isaac, R., and Denis, D. J. A. W. M. (2012).
Comparison of soil and water assessment tool (SWAT) and multilayer perceptron
(MLP) artificial neural network for predicting sediment yield in the Nagwa
agricultural watershed in Jharkhand, India. Agricult. Water Manag. 104, 113–120.
doi: 10.1016/j.agwat.2011.12.005

Sisay, E., Halefom, A., Khare, D., Singh, L., and Worku, T. (2017). Hydrological
modelling of ungauged urban watershed using SWAT model. Model. Earth Sys.
Environ. 3, 693–702. doi: 10.1007/s40808-017-0328-6

Tejaswini, V., and Sathian, K. (2018). Calibration and validation of swat model
for Kunthipuzha basin using SUFI-2 algorithm. Int. J. Curr. Microbiol. Appl. Sci. 7,
2162–2172. doi: 10.20546/ijcmas.2018.701.260

Teklay, A., Dile, Y. T., Asfaw, D. H., Bayabil, H. K., and Sisay, K. (2021).
Impacts of climate and land use change on hydrological response in Gumara
Watershed, Ethiopia. Ecohydrol. Hydrobiol. 21, 315–332. doi: 10.1016/j.ecohyd.2020.
12.001

Uwacu, R. A., Habanabakize, E., Adamowski, J., and Schwinghamer, T. D.
(2021). Using radical terraces for erosion control and water quality improvement
in Rwanda: a case study in Sebeya catchment. Environ. Develop. 4, 100649.
doi: 10.1016/j.envdev.2021.100649

Wasko, C., and Nathan, R. J. (2019). Influence of changes in rainfall
and soil moisture on trends in flooding. J. Hydrol. 575, 432–441.
doi: 10.1016/j.jhydrol.2019.05.054

Water, R., and Lead, M. (2017). Republic of Rwanda.

Weigel, F. K., Hazen, B. T., Cegielski, C. G., and Hall, D. J. (2014). Diffusion
of innovations and the theory of planned behavior in information systems
research: a metaanalysis. Commun. Assoc. Inform. Sys. 34, 31. doi: 10.17705/1CAIS.
03431

Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson,
F., et al. (2014). Future changes to the intensity and frequency of short-
duration extreme rainfall. Rev. Geophy. 52, 522–555. doi: 10.1002/2014RG
000464

Wolka, K., Mulder, J., and Biazin, B. (2018). Effects of soil and water
conservation techniques on crop yield, runoff and soil loss in Sub-Saharan
Africa: a review. Agricult. Water Manag. 207, 67–79. doi: 10.1016/j.agwat.2018.
05.016

Wu, H., and Chen, B. (2015). Evaluating uncertainty estimates in distributed
hydrological modeling for the Wenjing River watershed in China by GLUE,
SUFI-2, and ParaSol methods. Ecol. Eng. 76, 110–121. doi: 10.1016/j.ecoleng.2014.
05.014

Frontiers inWater 19 frontiersin.org

https://doi.org/10.3389/frwa.2023.1268593
https://doi.org/10.2166/wst.2017.322
https://doi.org/10.3390/su8070609
https://doi.org/10.1002/2014WR016147
https://doi.org/10.3390/hydrology6010010
https://doi.org/10.1007/s40808-018-0474-5
https://doi.org/10.1007/s40808-017-0306-z
https://doi.org/10.1016/j.geodrs.2018.e00199
https://doi.org/10.1016/j.jhydrol.2015.12.024
https://doi.org/10.3390/hydrology7020021
https://doi.org/10.1016/j.catena.2019.104352
https://doi.org/10.3389/fsufs.2020.00047
https://doi.org/10.1016/j.ejrh.2019.100621
https://doi.org/10.1029/2010WR009505
https://doi.org/10.3390/w13202926
https://doi.org/10.13031/2013.23153
https://doi.org/10.2166/wst.2005.0060
https://doi.org/10.1200/JCO.2015.64.8931
https://doi.org/10.1080/08941920.2016.1209605
https://doi.org/10.1080/19475705.2020.1785555
https://doi.org/10.1061/(ASCE)0733-9437(1997)123:5(386)
https://doi.org/10.1186/s13104-020-4939-z
https://doi.org/10.1177/0309133311402550
https://doi.org/10.1016/j.scitotenv.2019.134308
https://doi.org/10.1111/1752-1688.12484
https://doi.org/10.2166/wcc.2023.511
https://doi.org/10.1016/j.agee.2019.03.016
https://doi.org/10.2174/1874378100802010049
https://doi.org/10.1016/j.eng.2018.08.012
https://doi.org/10.1016/j.agwat.2011.12.005
https://doi.org/10.1007/s40808-017-0328-6
https://doi.org/10.20546/ijcmas.2018.701.260
https://doi.org/10.1016/j.ecohyd.2020.12.001
https://doi.org/10.1016/j.envdev.2021.100649
https://doi.org/10.1016/j.jhydrol.2019.05.054
https://doi.org/10.17705/1CAIS.03431
https://doi.org/10.1002/2014RG000464
https://doi.org/10.1016/j.agwat.2018.05.016
https://doi.org/10.1016/j.ecoleng.2014.05.014
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Gasirabo et al. 10.3389/frwa.2023.1268593

Wu, H., Chen, B., Snelgrove, K., and Lye, L. (2019). Quantification of uncertainty
propagation effects during statistical downscaling of precipitation and temperature to
hydrological modeling. J. Environ. Inform. 34, 139–148.

Yamashita, S., Watanabe, R., and Shimatani, Y. (2015). Smart adaptation to flooding
in urban areas Proc. Engin. 118, 1096–1103. doi: 10.1016/j.proeng.2015.08.449

Yuan, L., Sinshaw, T., and Forshay, K. J. J. G. (2020). Review of watershed-
scale water quality and non-point source pollution models. Geosciences 10, 25.
doi: 10.3390/geosciences10010025

Zhang, D., Chen, X., Yao, H., and James, A. (2016).Moving SWATmodel calibration
and uncertainty analysis to an enterprise Hadoop-based cloud. Environ. Modell.
Software 84, 140–148. doi: 10.1016/j.envsoft.2016.06.024

Zhang, X., Srinivasan, R., and Bosch, D. J. (2009). Calibration and
uncertainty analysis of the SWAT model using genetic algorithms and
bayesian model averaging. J. Hydrol. 374, 307–317. doi: 10.1016/j.jhydrol.2009.
06.023

Zhao, F., Wu, Y., Qiu, L., Sun, Y., Sun, L., Li, Q., et al. (2018). Parameter uncertainty
analysis of the SWATmodel in a mountain-loess transitional watershed on the Chinese
Loess Plateau.Water 10, 690. doi: 10.3390/w10060690

Zuecco, G., Penna, D., Borga, M., and van Meerveld, H. (2016). A
versatile index to characterize hysteresis between hydrological variables at
the runoff event timescale. Hydrol. Proc. 30, 1449–1466. doi: 10.1002/hyp.
10681

Frontiers inWater 20 frontiersin.org

https://doi.org/10.3389/frwa.2023.1268593
https://doi.org/10.1016/j.proeng.2015.08.449
https://doi.org/10.3390/geosciences10010025
https://doi.org/10.1016/j.envsoft.2016.06.024
https://doi.org/10.1016/j.jhydrol.2009.06.023
https://doi.org/10.3390/w10060690
https://doi.org/10.1002/hyp.10681
https://www.frontiersin.org/journals/water
https://www.frontiersin.org

	SWAT model calibration for hydrological modeling using concurrent methods, a case of the Nile Nyabarongo River basin in Rwanda
	1. Introduction
	2. Data collection
	3. Methods and procedures
	3.1. Study area description
	3.2. Soil and water assessment tool
	3.3. Sequential uncertainty fitting version 2
	3.4. Parallel solution
	3.5. Generalized likelihood uncertainty estimation
	3.6. Validation and calibration results
	3.7. Methodology and criteria for assessment

	4. Results and discussion
	4.1. SWAT modeling
	4.2. SWAT output
	4.3. Comparison output
	4.4. SUFI-2 output

	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


