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This paper presents a synthesis of evidence and implementation gaps in the

application of nature-based solutions (NbS) in agricultural landscapes that

contribute to reduce trade-o�s between food production, climate change and

conservation objectives. The literature and data surveyed relies primarily in peer-

reviewed sources and is organized around an overview of NbS science and

applications in agricultural landscapes in major biomes. To date, the focus

of NbS applications in food production has been predominantly for carbon

sequestration, water quality, and disaster-risk management objectives while

documented examples of NbS benefits in agricultural production are sparse.

Conservation applications of NbS appear to show evidence of e�ectiveness

across multiple objectives in biodiversity, land, soil and water. Evidence and

analysis of NbS to meet climate change mitigation targets has surged in recent

years driven by global community e�orts. Overall, considerable scientific work

remains to refine and reduce the uncertainty of NbS benefit estimates across

production, climate and conservation objectives, and resilience implications.

However, delaying implementation of NbS in agricultural landscapes would likely

increase the costs to meet agricultural production, climate, conservation and

other societally beneficial goals, while degrading the capacity of natural systems

to continue to provide these and other ecosystem services.

KEYWORDS

nature-based solutions, agriculture, resilience, conservation, climate change,

socioeconomics

1 Introduction

In recent years, considerable progress has been made in the area of nature-

based solutions (NbS) that improve ecosystem functions of environments and

landscapes affected by anthropogenic practices and interventions, while enhancing

livelihoods and other social and cultural functions. This has opened a portfolio

of NbS options that offer a pragmatic way forward for simultaneously addressing

climate, conservation, and socioeconomic objectives while maintaining healthy

and productive land and water systems. NbS can mimic natural processes and

build on operational land-water management concepts that aim to simultaneously
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improve water availability and quality and raise agricultural

productivity (Griscom et al., 2017; Sonneveld et al., 2018; Muller

et al., 2021). NbS can involve conserving or rehabilitating natural

ecosystems and/or the enhancement or the creation of natural

processes in modified or artificial ecosystems (Dewi et al., 2013;

WWAP, 2018; Adewopo, 2019). For instance, in agricultural

landscapes, NbS can be applied for soil health, soil moisture, carbon

mitigation (through soil and forestry), downstream water quality

protections, biodiversity benefits as well as agricultural production

and supply chains to achieve net-zero environmental impacts while

achieving food and water security and meet climate goals.

Many examples in the literature on NbS practices have

focused on highlighting the resilience trade-offs in production vs.

conservation, e.g., sparing vs. sharing (Franklin and Mortensen,

2012), intensification vs. sustainable production (Matocha et al.,

2012), agriculture vs. forestry (Adewopo, 2019), production forest

vs. regeneration forest (Meyfroidt and Lambin, 2009; Dewi et al.,

2013), short-term economic gains vs. long-term environmental

benefits (Meyfroidt, 2018), among others. Integration across

multiple objectives and identifying potential tradeoffs between

them remaons a challenge in these investigations. This review

article focuses on the application of NbS in agricultural landscapes

(Muller et al., 2021) that contribute to reducing these deep

uncertainty trade-offs between food production, conservation

objectives and climate change. Specifically, this article provides a

brief synthesis of the evidence and knowledge gaps in applications

of NbS to agricultural landscapes toward achieving co-benefits in

food production, climate change goals, and conservation of land,

water, and biodiversity.

2 Methods

To define and classify NbS in agricultural landscapes, several

typology efforts employed in the literature have been drawn upon.

The Food and Agricultural Organization (FAO) has promoted

a typology for NbS based on levels of human intervention

(Eggermont et al., 2015; Sonneveld et al., 2018). Griscom et al.

(2017) have defined Natural Climate Solutions which capture

several NbS applications that intersect climate change mitigation

and agriculture, while providing co-benefits in land, water, and

biodiversity. This review provides a broader context that is

representative of major efforts in the international community

centered on the application of NbS to a variety of global issues (e.g.,

IPCC for climate change, IPBES for biodiversity, among others).

The literature and data surveyed relies primarily in peer-

reviewed sources and is organized around an overview of NbS

science and applications in agricultural landscapes in major biomes

(forests, grasslands and croplands, and wetlands). These sources

have been complemented with selected gray literature sources that

provide evidence-based case study applications. For peer-reviewed

literature, focus has been placed on theweb of science, google scholar

and science direct portals. Additionally, gray literature sources

were obtained from organized literature outlets such as the World

Overview of Conservation Approaches and Technologies (WOCAT),

which focuses on documenting case study applications and best

practices on NBS for sustainable land management. The Economics

of Ecosystems and Biodiversity (TEEB) synthesis reports (TEEB,

2018a,b) were consulted to complement this review along the lines

of economic considerations of ecosystem services in agriculture

and food production. FAO’s recent extensive report on The State

of the World’s Biodiversity for Food and Agriculture (FAO, 2019)

was drawn from as a source of information linking biodiversity

conservation to ecosystem services, provision of food security,

resilience of food systems and support of livelihoods in agriculture.

This process yielded a significant body of peer-reviewed and

gray literature and data sources with NbS applications across

agricultural landscapes for a variety of objectives. Because of

this abundance in available published work, this review has been

structured by separately grouping the co-benefits provided by NbS

into: (i) agricultural production; (ii) conservation (biodiversity,

land, water); (iii) climate change; and (iv) socioeconomic

considerations of NbS in agricultural landscapes. Synergies and

trade-offs in resilience of these systems (production, land, water,

biodiversity, climate, socioeconomics) has been noted in some

of the sources surveyed to highlight NbS as a connector across

multiple co-benefits; this occurs particularly in the climate-

related references, which often encompass conservation and

other co-benefits.

3 NbS and agricultural production

Case studies and quantification of co-benefits of NbS

in agricultural landscapes have had a dominant focus on

carbon sequestration, water quality, and disaster-risk management

(Cohen-Shacham et al., 2016; FOLU, 2019), while specific examples

of NbS benefits in agricultural production are sparse. For instance,

in the Special Report on Climate Change and Land (IPCC, 2019)

while forestry and water management are featured among the

five NbS response options on “land management”, none explicitly

stated agriculture, and in the same report, urban agriculture is

reported under management of supply rather than of land, focusing

NbS away from agricultural landscapes.

Examples of experiences in implementation of NbS in

agricultural landscapes do suggest however a variety of co-benefits

specific to resilience in agricultural production. For instance,

some production-oriented practices make use of the multiple

ecosystem functions of trees, plants and (wild or domesticated)

animals for agricultural production, while minimizing the negative

environmental impacts of the production (Daryanto et al., 2018)

such as regenerative agriculture and conservation agriculture.

Other documented practices are aimed at retaining or increasing

available nutrients or improving the microclimate. For example,

trees in alley cropping can provide shade among other roles, e.g.,

tree crops for food and fodder production, perennial alley crops,

trees for crop facilitation via shade, within-system tree diversity

(Wolz and DeLucia, 2018).

Many resilience-oriented practices drawing on agroecological

principles (Altieri, 1992; FAO, 2018) or collectively referred to as

climate-smart agriculture (FAO, 2013; Rosenstock et al., 2019),

would also fall into this category. Specifically, in agroforestry and

sloping agriculture land technologies, in addition to production

contributions, plants may also perform NbS functions if, for

example, planted as grass strips, or nitrogen-fixing legumes used as
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green mulch and fruit trees, planted along contours (Aguiar et al.,

2015; McIvor et al., 2017; Are et al., 2018).

When agricultural species play the role of vegetation in NbS,

multiple functions are rendered. For example, grass strips control

soil erosion and return crop yields (Rosenstock et al., 2019) and

vetiver grass can act as phytoremediation to trap phosphorous

(Huang et al., 2019) while providing cut for animal feed. The

efficiency of a catch crop also depends on physical elements, such

as slope gradient (Novara et al., 2019) and root structure. Some

research has reported on microterraces and built terraces as NbS

for agriculture (Zuazo et al., 2011; Liu et al., 2018). In northern

India for example, simple weed strips and weed mulch also created

microterraces, which resulted in reduced soil erosion and higher

yields (Lenka et al., 2017).

Other experiences are illustrative of agriculture-derived

resilience co-benefits of NbS. For instance, trees in croplands or

agroforestry (Gliessman, 2006) are an increasingly prominent

example of a working landscape practice that can provide multiple

economic, cultural and ecological benefits (FAO, 2005; World

Agroforestry Centre, 2008). Agroforestry’s diversified cropping

systems mimicking natural forests form an important part of

indigenous food production systems around the world and are

also being used as a contemporary agricultural best management

practice in non-traditional contexts. These systems tend to be

resilient, productive, pest resistant, nutrient-conserving, and

biodiverse, providing multiple economic, cultural and ecological

benefits (Ewel, 1999). For example, they can provide fuelwood,

cultivated foods, timber andmedicinal plants for local communities

(Junsongduang et al., 2013; Thaman, 2014), while also supporting

high levels of biodiversity (Jose, 2009; Asfaw and Lemenih, 2010).

These systems have also been shown to reduce sediment and

nutrient runoff into adjacent watercourses and enhance carbon

sequestration and storage (Montagnini and Nair, 2004; Bruun et al.,

2009). Agroforestry systems also support a diversity of wild foods

and provide pollinator habitat, both of which can help to combat

malnutrition and micronutrient deficiencies (Johns, 2003; Steyn

et al., 2006; DeClerck et al., 2011; Chaplin-Kramer et al., 2014; Ellis

et al., 2015). A subset of agroforestry, silvopasture, integrates trees

with pasture with the intention of increasing pasture quality and

producing fodder while also protecting soils and vegetation.

Another type of NbS in agricultural landscapes, conservation

agriculture, is defined by a combination of conservation tillage,

crop rotations, and cover crops has gained traction in many parts

of the world. In some regions, variations on the principles of

conservation agriculture have been part of traditional agricultural

systems for generations. Friedrich et al. (2012) reviews conservation

agriculture applications around the world, with the greatest

concentrations by far in United States, Brazil, Argentina, Australia,

and Canada. The broad extent of this adoption has been cited as

evidence of its implicit benefits for farmers (Brouder and Gomez-

Macpherson, 2014).

There is evidence that conservation agriculture increases soil

organic matter and a range of associated processes including

improved sediment retention; however, crop yield outcomes vary

based on practices employed, climate, crop type, and biophysical

conditions (Palm et al., 2014). Available evidence on actual changes

in crop yields suggests that conservation agriculture has the

greatest potential to increase crop yields when implemented as

a set of integrated practices in rainfed systems in water-limited

or water-stressed regions, including potentially on millions of

hectares in Sub-Saharan Africa and South Asia. Decisions to

adopt conservation agriculture practices can go beyond immediate

changes in crop yield, though. For example, a review of farmer

adoption of conservation agriculture, identified reduction in farm

operation costs, nutrient use and efficiency, water savings, and crop

yield stability as additional factors beyond increased crop yield that

motivated adoption (FAO, 2011).

Intensification of agriculture is a common policy intervention

worldwide, both from a perspective of increased production and

conservation perspectives, the latter in terms of the millions of

hectares of forests which otherwise would be converted into

farmland, provision of ecosystem services, and of some 590 billion

tons of carbon prevented from being released into the atmosphere

(Burney and Lobell, 2010). Rockström et al. (2017) describe the

conditions and the elements of mainstreaming resilient agricultural

intensification to reposition agriculture from being themajor driver

of global environmental change to a major contributor to the

transition to sustainability through incorporating double objectives

of increasing yields and enhancing the ecosystem services.

While a detailed characterization of agriculture-derived

resilience provided by NbS, particularly in socioeconomic

terms, remains to be done, it is anticipated that upscaling NbS

implementation will need to adapt practices and strategies to the

local biophysical, economic, and socio-cultural context and work

to integrate local knowledge for effective results. Where they do so,

existing sustainable agricultural systems can be supported, and less

resilient practices shifted toward mutually beneficial outcomes for

farmers and broader society.

4 NbS and conservation in agricultural
landscapes

The recognition of NbS toward conservation co-benefits

has been increasingly documented in the literature in recent

years. For consistency, a taxonomy of conservation actions

developed by the International Union for Conservation of Nature

(IUCN) and the Conservation Measure Partnership (IUCN-CMP,

2006) was used to connect literature on NbS with a known

set of conservation activities. These activities represent specific

conservation, restoration, and improved land management actions

that practitioners may take that are nature-based. Following this

approach, co-benefits in biodiversity are defined as any increases in

alpha, beta, and/or gamma diversity as described in the Convention

on Biological Diversity (United Nations, 1992). For freshwater

conservation, co-benefits relate to NbS applications in water

resources management (e.g., flood and drought management),

extreme weather events, developing drought-tolerant crops,

choosing tree species and forestry practices less vulnerable to

storms and fires, and other similar activities. Interventions here

include source water protection, water flow regulation, water

quality, and protection from droughts and flooding. Soil-related

conservation co-benefits are characterized by improvement in

metrics of soil quality that enhance productivity, maintain nutrient
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cycling, and improve plant growth (Shukla et al., 2006) as well as

the improved potential food provision and reduced soil erosion

services described in the Millennium Ecosystem Assessment

(2005).

Various agricultural landscape approaches have been

documented to achieve multiple conservation goals from

ecological intensification of crop production with biodiversity

focus (Garibaldi et al., 2019) to ecosystem services within payment-

for-ecosystem-services (PES) schemes (Holt et al., 2016). A key

objective with NbS practices in this category has been to ensure

ecological connectivity of conservation agriculture on field-units

across larger landscapes (Karabulut et al., 2019). Furthermore,

species diversity plays important roles for recovery after disaster

and preventive disaster risk reduction, such as mangroves

protecting against storm surges (van Noordwijk et al., 2019).

Other cases in the literature illustrate the integration of

practices to connect patches in the landscape. A number of

cases across Europe implemented agrobiodiversity approaches,

where permanent grassland and crop diversification within

ecological focus areas involved a certain percent of arable land

set aside to be used for field margins, hedges, trees, fallow land,

landscape features, biotopes, buffer strips, and afforested areas

(Delbaere et al., 2014). Similarly, connectivity was achieved with

ecological infrastructure such as woodland hedges, grass strips,

wildflower strips, and field margins (Rosas-Ramos et al., 2018).

In Pakistan, an example of NbS practices include crop rotation,

intercropping, agroforestry, crop diversification, live fencing, and

wind barriers by trees (Shah et al., 2019). These examples illustrate

a combination of practices that build up multiple conservation

objectives, and also contribute to climate change emissions

reduction.

Other NbS efforts have focused on source water protection

in the provision of climate and conservation co-benefits (Vogl

et al., 2017; Abell et al., 2019; Kroeger et al., 2019). Source water

protection has broad geographic relevance for achieving multiple

conservation objectives. An analysis of return on investment in

NbS in watersheds around the world was performed as part of

assessing enabling conditions formultiple climate and conservation

objectives (biodiversity, water, soil). This analysis focused on

estimation of potential water quality treatment savings (reduction

in concentrations of sediments and Phosphorus) relative to

upstream watershed NbS implementation costs. This information

was used to classify “high-opportunity” watersheds for investments

in NbS for source water protection. Figure 1 shows results

generated from this analysis.

In a recent review, Miralles-Wilhelm et al. (2023) explore

the concept of resilience in watersheds, linking ecological, social,

engineering, and integrative approaches to define and apply

systems thinking across multiple co-benefits. In this review,

knowledge gaps are identified through an assessment of this

literature and compilation of a set of research questions through

stakeholder engagement activities. A research agenda describing

key areas of inquiry such as identifying resilience variables and their

interactions, leveraging watershed natural properties, processes,

and dynamics to facilitate and enable resilience through application

of NbS; analytical methods and tools including monitoring,

modeling, metrics, and scenario planning, and their applications

to watersheds at different spatial and temporal scales, and infusing

resilience concepts as core values in watershed management. Given

the spatial coincidence of watersheds and agricultural landscapes

around the world, some of the concepts in this review are applicable

to this work.

5 NbS and climate change goals

The intensity of global efforts toward mitigating the effects of

climate change through reduction of emissions of greenhouse gases,

and more recently through carbon sequestration, have resulted in

an increased focus on NbS for climate mitigation. These global

efforts have yielded a rich amount of literature that characterizes

NbS in agricultural landscapes with mitigation in a much more

specific and quantitative way relative to conservation co-benefits

as discussed above. This is in part due to the fact that climate

mitigation has a clear global goal (e.g., limiting to 1.5 or 2 degrees

the increase in mean global temperature) and that vast resources in

research have been invested over the past 3 decades (e.g., IPCC, the

World Climate Research Program, and other global, regional and

national efforts).

Griscom et al. (2017) provide an in-depth analysis of NbS for

climate change mitigation with a particular focus on agricultural

landscapes and avoidance/reduction of emissions through carbon

sequestration. This investigation reports an overall summary of

the potential of NbS toward climate mitigation potential as

23.8 PgCO2e y−1 (95% CI 20.3–37.4) at a 2030 reference year

(Figure 2). This estimate is not constrained by costs, but it is

constrained by a global land cover scenario with safeguards for

meeting increasing human needs for food and fiber. It also

assumes no reduction in existing cropland area but does allow for

grazing lands in forested ecoregions to be reforested, consistent

with agricultural intensification and diet change scenarios. This

potential value is also constrained by excluding activities that

would either negatively impact biodiversity (e.g., replacing native

non-forest ecosystems with forests) or have carbon benefits that

are offset by net biophysical warming (e.g., albedo effects from

expansion of boreal forests).

This analysis includes the tradeoff between costs and benefits

of NbS implementation for climate mitigation. This is approached

through an analysis of published information on the fraction

of maximum mitigation potential that offers a cost-effective

contribution to meeting the Paris Climate Agreement goal of

limiting warming to below 2◦C. This limit of <2◦C is referenced

in the literature as a cost-effective level of mitigation equivalent

to a marginal abatement cost not greater than ∼100 USD MgCO

−1 as of 2030. This ensures that the marginal (per unit) cost

of emissions reductions from NbS does not exceed the marginal

benefit of avoiding carbon emissions. The marginal benefit of

emissions reductions is represented by estimates of the social cost

of carbon, which is the value to society of the avoided marginal

damage of CO2 emissions due to climate change and is obtained

through welfare-maximizing emissions pricing models (Tol, 2005;

Nordhaus, 2014). The social cost of carbon in 2030 is estimated

to be 82–260 USD MgCO2e−1 to meet the 1.5–2◦C climate target

(Dietz and Stern, 2015). This value is consistent with estimates for

the avoided cost to society from holding warming to below 2◦C

(Canadell and Raupach, 2008; Meinshausen et al., 2009).
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FIGURE 1

High opportunity watersheds for investments in nature-based solutions for protection of water sources (blue, highest priority; dark gray, all

watersheds analyzed; black, recipient locations fed by water source); generated from data in Abell et al. (2019).

The proportion of climate mitigation toward a <2◦C outcome

that could be achieved at low cost was also assessed as part of

this analysis. A marginal cost threshold of ∼10 USD MgCO2e−1

was used for this purpose, consistent with the current cost

of emission reductions efforts underway and current prices on

existing carbon markets. The review of published data also

reveals that more than one-third of the <2◦C cost effective

levels for NbS are low cost (<10 USD MgCO2e−1, total of

4.1 PgCO2e y−1; Figure 2). The “low-cost” and “cost-effective”

carbon sequestration opportunities compare favorably with cost

estimates for emerging technologies, most notably bioenergy

with carbon capture and storage (BECCS)—which range from

∼40 USD MgCO −1 to over −121,000 USD per MgCO2.

Furthermore, large-scale BECCS is largely untested and likely to

have significant impacts on water use, biodiversity, and other

ecosystem services.

6 Socioeconomic considerations

Although there is a vast body of literature body documenting

studies of different types of compensations for land use conversion

and PES, few of such studies include NbS. In one study,

Geussens et al. (2019) investigated Uganda farmers’ willingness

to accept eight agricultural practices (some of which intersect

with the NBS focus of this review), e.g., minimum tillage,

mulching, contouring, trenches, grass strips, agroforestry, and

riverbank protection) under nine different compensation levels,

or PES contracts. This study had two important lessons for NbS.

First, it showed that the biggest difference between willing and

reluctant PES-adopters, concerned their perceived benefits of NbS

implementation. Their preferences depended not only on the

intervention, but also on the compensation level, and whether

they received community funds or individual compensation.

Second, among the considerations that the project designers had

to make were willingness to adopt vs. the reduced effectiveness

of practices when they were too scattered; because of this, a

minimum number of farmers were required. The willingness to

accept was high when the need for a different solution had

reached a certain threshold, such as severity of degradation (the

Uganda example), or when farmers have run out of other viable

options. Ultimately, PES schemes would benefit land uses with high

ecosystem values by combining marketable and non-marketable

ecosystem services, such as biomass production and groundwater,
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FIGURE 2

Climate change mitigation potential of NbS in agricultural landscapes; maximum mitigation potential with safeguards has been estimated for the

reference year 2030. Dark-colored portions of bars represent cost-e�ective mitigation levels assuming a global ambition to hold warming to <2◦C

(<100 USD MgCO2e−1 y−1). Light-colored portions of bars indicate medium (<50 USD MgCO2e−1 y−1) and low-cost (<10 USD MgCO2e−1 y−1)

portions of <2◦C levels. Wider error bars indicate empirical estimates of 95% confidence intervals, while narrower error bars indicate estimates

derived from expert elicitation. Conservation co-benefits linked with each NbS are indicated by colored bars for biodiversity, water (quantity and

quality), soil (quality), and air (quality). Asterisks indicate truncated error bars. Source: Griscom et al. (2017).

soil quality, carbon sequestration, and other co-benefits (Kay et al.,

2019).

Adoption of NbS in agriculture is found to be dependent

on perceived benefits to livelihoods. Several studies suggest that

farmers may not adopt NbS despite having witnessed ecosystem

benefits, because of increased initial costs, labor inputs, or customs

and preferences (Chapman and Darby, 2016; McWilliam and

Balzarova, 2017; Cerdà et al., 2018). A combination of economic,

attitudinal and farm structural factors are relevant and apply to a

range of situations from riparian buffer zones in the EU (Buckley

et al., 2012) to coastal zone management in Southeast Asia (Joffre

et al., 2015).

Studies such as these suggest that benefits from NbS will

be prioritized differently by different groups of people. While

there may be diverse societal interests among the immediate

beneficiaries, such as land users and landowners, those interests

may also need to be negotiated with direct and indirect, and often

disconnected, ecosystem services to the wider society. Many of

the people living in the most exposed areas have vital knowledge

about its ecosystems (Simelton and Dam, 2014; van der Wolf

et al., 2016). Despite this, poverty and immediate needs can drive

farmers to put pressure on already degraded ecosystems through

unsustainable practices (IFAD, 2013). NbS design should be guided

by inclusiveness, local needs, knowledge and aspirations as an

integral part of the solutions (Richards, 2011). Improvements of

agroecosystem functions need to be made clear as livelihoods

improvements (Gawith and Hodge, 2019).

Intuitively, NbS interventions need to make an economic

argument for adoption, from the perspectives of both farmers

and decision makers; however, scarce literature includes economic

assessments of NbS practices in agricultural landscapes. The

exception is the climate mitigation literature focusing on land-

based approaches, which has received increasing attention in the

literature. Among the few published studies on economic valuation

of NbS in agriculture are cost-effective assessments of management

approaches to reduce sediment loads and agriculture runoff (Gikas

et al., 2018; Irwin et al., 2018). A study in Tunisia (Mtibaa et al.,

2018) found that while contour ridges alone halved the sediment

yield, the most cost-effective option was a combination of practices,

including buffer strips, conversion to orchard, and grass strip

cropping. Similarly, Gikas et al. (2018) showed that two low-cost

options with plants in constructed wetlands, performed better

when combined with bio-mixtures containing coconut fiber for

bio-purification. Other estimates, such as those by Irwin et al.

(2018) related the improvement in water quality from reduced

agriculture runoff with an associated value for residents and

recreation users. Here, ten percent improved water quality resulted

in a lifetime cost benefit ratio of 2.9.
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This shortcoming in economic assessments can be explained

by a few reasons. First, there are difficulties in correctly evaluating

ecosystem values. For example, the effects and valuation of

agroforestry ecosystem services were clearer at the farm/plot scale,

whereas attribution easily gets blurred in mixed land uses at

landscape scale. Second, there are difficulties extrapolating results

from smaller empirical studies, e.g., the role of pollinator services

for global scale food production. To overcome this, Melathopoulos

et al. (2015) devised an approach to estimate values of pollinator

services from three different assumptions: (i) the degree of

dependency of crops on pollinators; (ii) pollinators need different

habitats and pollinate different crops (wild vs. domesticated) hence

the cost to retain them will vary; (iii) the degree of alignment

of the price of the ecosystem service with the risk, e.g., the

value depends on the probability of a collapse. Third, underlying

economic assumptions of gray vs. green infrastructure depend

on how risk, investment costs and value of losses are calculated.

For instance, Onuma and Tsuge (2018) tried to determine when

green infrastructure is preferable to gray for disaster risk reduction.

They did this by developing parameters to compare the two

options in view of hazard, population potentially affected, and

associated vulnerability. Although their focus was not primarily on

agriculture, similar valorization principles can have applications for

NbS in agricultural landscapes. For example, gray infrastructure is

designed as defense to one particular natural hazard and breaks at

a certain magnitude, while mixing gray with green infrastructure

as back-up can be more durable. Additionally, costs are often

lower for recovering green infrastructure after an event. Lastly, NbS

interventions need to consider surrounding land use change, such

as increasing land rents on intensive agriculture land, which will

likely drive costs for conservation and carbon credit compensations

(Phelps et al., 2013). Adding a long-term lens is as critical as the

probability of a practice itself to contribute to ecosystem recovery.

7 Discussion

Advancing implementation of NbS in agricultural landscapes

toward improved resilience of climate, conservation an

socioeconomic objectives needs to emphasize gains in agricultural

production and socioeconomic benefits to farmers; this is an area

of opportunity for future analytical work on the general topic of

NbS. With the exception of a limited number of sources exist in the

literature that are largely focused on local case study applications

(e.g., Current and Scherr, 1995; Grieg-Gran et al., 2005; Corbera

et al., 2007; Turpie et al., 2008; Pascual et al., 2010; Hegde and Bull,

2011; Zheng et al., 2013), most published studies that are included

in this review have stopped short of doing the economic analysis

of NbS benefits (outside of climate and conservation, which have

been done by the climate and conservation science communities

rather than the agricultural science one). However, the analysis

could be done to make estimates of these gains and benefits at a

global scale of NbS implementation. Given the conservation and

adaptation benefits documented for NbS, it is likely that economic

benefits to farmers would be realized by NbS implementation, and

further work would systematically quantify them.

The conjunctive realization of multiple resilience co-benefits

through the implementation of NbS in agricultural landscapes is

an area of active research and experimentation in the field; a

myriad of new approaches continue to be investigated and tested.

For instance, recent research reviewed in Backer et al. (2018) has

demonstrated that inoculating plants with plant-growth promoting

rhizobacteria (PGPR) can be an effective strategy to stimulate crop

growth. Furthermore, these strategies can improve crop tolerance

for the abiotic stresses (e.g., drought, heat, and salinity) likely to

become more frequent as climate change conditions continue to

develop. This discovery has resulted in multifunctional PGPR-

based formulations for commercial agriculture, to minimize the use

of synthetic fertilizers and agrochemicals.

Another example that has been receiving increased attention

lately is ecosystem services provided by insects. Examples include

not only pollination, but also other services such as dung burial,

pest control, and wildlife nutrition. A recent review of the value

of ecosystem services provided by insects provides estimations

of the value of each service on projections of losses that would

accrue if insects were not functioning at their current level (Losey

and Vaughan, 2006). This source estimates the annual value of

these ecological services provided in the United States to be at

least $57 billion, an amount that justifies greater investment in the

conservation of these services.

Many of these innovative NbS approaches fall under the

umbrella of bioprospecting, i.e., the exploration of biodiversity

for new resources of social and commercial value (Barrett and

Lybbert, 2000; Beattie et al., 2011). It is carried out by a wide

range of established industries in the food production sector such as

agriculture as well as a wide range of comparatively new ones such

as aquaculture. Much contemporary bioprospecting has multiple

goals, including the conservation of biodiversity, the sustainable

management of natural resources and economic development.

With respect to NbS in agricultural landscapes, the science aspects

of bioprospecting continue to evolve in three vital ways. First, the

discovery of new ecosystem services provided by biodiversity (such

as the ones provided in this review). Second, carrying out field

studies to confirm and quantify the co-benefits of these NbS. Third,

demonstrating the value of millions of mostly microscopic species

to local, regional and global economic activities.

With respect to climate change, the quantification of potential

contribution of NbS to meeting global goals is conservative in three

ways. First, payments for ecosystem services other than carbon

sequestration have not been analyzed in the literature reviewed

and could spur cost-effective implementation of these solutions

beyond the levels identified in this document. NbS can enhance

conservation benefits which have high monetary values. Improved

human health from dietary shifts toward plant-based foods

reduce healthcare expenses and further offset implementation

costs (Springmann et al., 2016). Second, these findings are

conservative because this review only includes activities where

data available in the literature are sufficiently robust for global

extrapolation. For example, no-till agriculture (Conservation
Agriculture), improved manure management in concentrated
animal feed operations (Nutrient Management), adaptive multi

paddock grazing (Grazing), and soil carbon emissions that may
occur with the conversion of forests to pasture (Avoided Forest
Conversion) are excluded from the NbS reviewed here. Future

research may reveal a robust empirical basis for including such

activities and fluxes within these pathways. Third, the Paris
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Agreement and more recent efforts in climate goals focus on

limiting warming to “well below 2◦C” and pursuing “efforts to

limit the temperature increase to 1.5◦C”. Additional investment in

all mitigation efforts (i.e., beyond ∼100 USD/MgCO2e), including

NbS, would be warranted to keep warming to well-below 2◦C, or to

1.5◦C, particularly if a likelier chance of success is desired.

Feedbacks from climate change on terrestrial carbon stocks

are uncertain in the scientific literature. Increases in temperature,

drought, fire, and pest outbreaks could negatively impact

photosynthesis and carbon storage, while CO2 fertilization has

positive effects. Unchecked climate change could reverse terrestrial

carbon sinks by midcentury and erode the long-term climate

benefits of NbS. Thus, climate change puts terrestrial carbon

stocks at risk. Cost-effective implementation of NbS, by increasing

terrestrial carbon stocks, would slightly increase (by 4%) the

stocks at risk by 2050. However, the risk of net emissions

from terrestrial carbon stocks is less likely under a <2◦C

scenario. As such, overall NbS slightly increase the total risk

exposure, yet it will be a large component of any successful

effort to mitigate climate change and thus help mitigate this

risk. Further, most NbS pathways can increase resilience to

climate impacts. Rewetting wetlands reduces the risk of peat

fires. Reforestation that connects fragmented forests reduces

exposure to forest edge disturbances. Fire management increases

resilience to catastrophic fire. On the other hand, some of our

pathways assume intensification of food and wood yields—and

some conventional forms of intensification can reduce resilience

to climate change. All of these challenges underscore the urgency

of aggressive, simultaneous implementation of mitigation from

both nature-based solutions and fossil fuel emissions reductions,

as well as the importance of implementing NbS and land use

intensification in locally appropriate ways with best practices that

maximize resilience.

Overall, considerable scientific work remains to refine and

reduce the uncertainty of NbS benefit estimates and resilience

implications. Recent work (DeFries et al., 2015; Wood et al.,

2015; Reguero et al., 2018; Oldfield et al., 2019; Bossio et al.,

2020) has focused on aspects of improved quantification of

ecosystem services in agricultural landscapes, particularly in

generating evidence of transforming agricultural practices toward

multiple co-benefits. Work also remains to refine methods for

implementing pathways in socially and culturally responsible ways

while enhancing resilience and improving food security for a

growing human population. However, delaying implementation of

NbS in agricultural landscapes reviewed here would likely increase

the costs tomeet agricultural production, climate, conservation and

other societally beneficial goals, while degrading the capacity of

natural systems to continue to provide other ecosystem services.
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