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Introduction: In complex mountain basins, hydrological forecasting poses a

formidable challenge due to the intricacies of runo� generation processes and

the limitations of available data. This study explores the enhancement of short-

term runo� forecastingmodels through the utilization of long short-termmemory

(LSTM) networks.

Methods: To achieve this, we employed feature engineering (FE) strategies,

focusing on geographic data and the Soil Conservation Service Curve Number

(SCS-CN) method. Our investigation was conducted in a 3,390 km2 basin,

employing the GSMaP-NRT satellite precipitation product (SPP) to develop

forecasting models with lead times of 1, 6, and 11h. These lead times were

selected to address the needs of near-real-time forecasting, flash flood prediction,

and basin concentration time assessment, respectively.

Results and discussion: Our findings demonstrate an improvement in the

e�ciency of LSTM forecasting models across all lead times, as indicated by

Nash-Sutcli�e e�ciency values of 0.93 (1 h), 0.77 (6 h), and 0.67 (11h). Notably,

these results are on par with studies relying on ground-based precipitation data.

This methodology not only showcases the potential for advanced data-driven

runo� models but also underscores the importance of incorporating available

geographic information into precipitation-ungauged hydrological systems. The

insights derived from this study o�er valuable tools for hydrologists and

researchers seeking to enhance the accuracy of hydrological forecasting in

complex mountain basins.

KEYWORDS

hydrological forecasting, SCS-CNmethod,machine learning, feature engineering,GSMaP,

tropical Andes

1. Introduction

Hydrological modeling and forecasting are essential for effective water resources
management (Wang and Xie, 2018). These tools can be used to develop early warning
systems for floods and droughts (Muñoz et al., 2021), or for optimizing hydropower
generation through water level forecasting (Hasan andWyseure, 2018; Falchetta et al., 2020).
However, hydrological forecasting remains a challenge in complex hydrological systems.
These systems exhibit high spatial variability in geomorphology, topography, and landscape
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composition, and high temporal variabilities of the main runoff
driving forces, such as precipitation and soil moisture. In
such complex systems, multiple hydrological processes and
runoff generation mechanisms are encountered, making accurate
forecasting difficult (Zubieta et al., 2015; Hasan and Wyseure,
2018). The tropical Andes, with their high spatial and temporal
variability in climatic conditions and heterogeneity of mountain
regions, is an example of a complex basin where accurate
hydrological forecasting is crucial for effective water management
(Mulligan et al., 2010).

In addition, monitoring hydrometeorological conditions in
complex mountain basins, particularly at high elevations, poseses a
significant challenge. It is common to find insufficient monitoring
networks in such basins, which fail to adequately capture the
main drivers of runoff generation (Mulligan et al., 2010; Palomino-
Ángel et al., 2019; Llauca et al., 2021). Previous studies have
demonstrated that satellite precipitation data can be effectively
used for hydrological applications showing promising results.
Some of the most-employed satellite precipitation products around
the world, are the Integrated Multi-satellitE Retrievals for GPM
(IMERG) (Wulf et al., 2016; Palomino-Ángel et al., 2019; Llauca
et al., 2021), the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks (PERSIANN) (Ma
et al., 2018; Palomino-Ángel et al., 2019), and the Global
Satellite Mapping of Precipitation (GSMaP) (Huffman et al., 2020).
However, while satellite precipitation products can accurately
capture spatial-temporal precipitation at large scales, their ability
to support reliable hydrological models is limited due to the lack
of ground observations in complex systems for validation purposes
(Ma et al., 2018; He et al., 2021).

In this context, precipitation-runoff modeling can be addressed
using either physical-based or data-driven approaches. Physical-
based models use mathematical equations to describe the
hydrological process and require detailed system information
(Clark et al., 2017). In contrast, data-drivenmodels such asmachine
learning (ML) models rely on statistical methods to relate input
variables with output variable(s) and generally do not provide
information about the physical behavior of the system (Solomatine
et al., 2008). In recent decades, ML models have become popular
among hydrologists due to their advantages, including shorter
simulation times, the possibility of computationally inexpensive
real-time operation, and less overfitting compared to models based
on physical processes (Solomatine and Ostfeld, 2008; Muñoz et al.,
2018; Kwon et al., 2020; Adnan et al., 2021; Huang and Lee, 2021;
Moreido et al., 2021). The Random Forest (RF) algorithm and
the Long Short-Term Memory (LSTM) networks are among the
most commonly used ML techniques for hydrological time-series
forecasting (Muñoz et al., 2018, 2023; de la Fuente et al., 2019;
Campozano et al., 2020; Li et al., 2022; Zhou et al., 2023). Recent
studies have shown the superiority of LSTM over RF models for
sub-daily runoff forecasting (Zhou et al., 2023). However, regardless
of the ML technique used, these models have been criticized for
their black box nature, which hinders interpretability and fails to
provide a clear roadmap for model enhancement (Shen et al., 2018).

In this sense, the current research trend for achieving model
improvement involves the utilization of Feature Engineering
(FE) strategies. FE strategies aimed to develop specialized ML

forecasting models by strategically integrating process-based
hydrological knowledge of the system (Fang et al., 2021; Moreido
et al., 2021). FE is a preprocessing step that transforms, creates,
and normalizes new inputs into features that can be utilized
in ML algorithms. Some FE strategies are for instance the
creation of new inputs based on geomorphological factors and
hydrometeorological monitoring using Geographic Information
System (GIS) techniques (Mahmoud, 2014; Huang and Lee,
2021), and the improvement of precipitation inputs to improve
model accuracy (Mahmoud, 2014; Asadi et al., 2019). However,
information about the system provided by empirical methods, such
as the Soil Conservation Service Curve Number (SCS-CN) (Mishra
and Singh, 2003), have been limited and not yet tested in complex
basins to add hydrological knowledge to ML models.

The SCS-CN method is an approach used to estimate the
amount of runoff from a specific area from precipitation based
on the principle that the runoff depends on the characteristics of
the soil, antecedent moisture condition, land use/cover (LULC),
and topography. For this, empirical equations, along with basin
precipitation data, are then used to estimate runoff depth data.
This information is critical for understanding the amount of water
that will reach nearby streams, rivers, and other water bodies.
The applicability of the SCS-CN method to basins with limited
ground monitoring stations has made it a popular choice in
hydrological modeling since it uses just a single parameter, called
curve number (CN), which is derived from established tables of
the National Engineering Handbook, section 4 (NEH-4) (Mishra
and Singh, 2003). This CN parameter is conditioned by terrain
characteristics (LULC, soils, and topography), and represents the
infiltration capacity of soils. In this context, GIS plays an important
role in developing the SCS-CN method, which allows the handling
of the geographical information of soils, LULC maps, and digital
elevation model (DEM) to estimate the parameters of the SCS-
CN method (Meresa, 2019; Al-Ghobari et al., 2020; Jahan et al.,
2021). The SCS-CN method has been assessed globally in multiple
basins with varying conditions and characteristics. However, its
integration with data-driven models for runoff forecasting has not
yet been tested.

In this context, this study aims at developing specialized LSTM
runoff forecasting models based on geographic data and the SCS–
CN method for a complex basin representative of the Ecuadorean
Andes. To achieve this aim, we compare the efficiencies of LSTM
specialized and referential (without FE integration) models for
lead times of 1, 6, and 11 h, which accounts for near-real-
time forecasting, flash floods, and the concentration-time of the
basin, respectively.

2. Materials and methods

2.1. Study area

The Jubones basin is located in the southern Andes of Ecuador
and has an estimated area of 3,390 km2 when delineated upstream
of theMinas-San Francisco (MSF) hydropower plant (see Figure 1).
The basin is part of the Andean western slope and ranges in
altitude from 771 to 4,100m above sea level (m.a.s.l.). The Jubones
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FIGURE 1

The Jubones basin in southern Ecuador delineated upstream of the Minas-San Francisco hydropower dam.

basin has extremely variable climatic conditions with multiple
ecosystems and landscapes, influenced by the Andes Mountain
range, ocean currents from the Pacific Ocean, and trade winds
from the southeast (Hasan and Wyseure, 2018). Consequently, the
climate in the basin varies from humid to semi-arid, with annual
precipitation regions ranging from 290 to 925mm (Muñoz et al.,
2023).

2.2. Dataset

The dataset is composed of three components: (i) hourly
satellite precipitation, (ii) hourly runoff at the entrance of the MSF
hydropower plant, and (iii) geographic information of the Jubones
basin. Below, we describe each one of these components. The study
period runs from Jan/2019 to Dec/2022. For training and testing
purposes we split the data from Jan/2019 to Dec/2021 and from
Jan/2022 to Dec/2022, respectively.

2.2.1. Global satellite mapping of precipitation
The Global Satellite Mapping of Precipitation (GSMaP) is

a satellite precipitation product from the JAXXA Precipitation
Measuring Mission (PMM) Science Team. The values are
estimated by utilizing multi-band passive microwave and
infrared radiometers from the GPM (Global Precipitation
Measurement) Core Observatory satellite and other satellites in

orbit (Kubota et al., 2020). The GSMaP near-real-time (NRT)
product uses a simplified processing algorithm and offers
spatial coverage ranging from 60◦N to 60◦S, with a spatial
resolution of 0.1◦ x 0.1◦, (∼11 x 11 km), and hourly temporal
resolution.

The GSMaP-NRT has a latency time of 5 h, which is defined
as the amount of time it takes for end-users to access the latest
data. We retrieved the GSMaP-NRT version 7 dataset for this study,
and present in Figure 2 the spatial distribution of the mean annual
precipitation (from 299.4 to 750.8mm) for the period from 2019
to 2021. The GSMaP-NRT data was acquired from the GSMaP
directory using an FTP connection.

2.2.2. Geographical information of the Jubones
basin

Three main geographical data were used in the methodology:
(i) a Digital Elevation Model (DEM), (ii) a soil type map, and
(iii) LULC maps. The spatial resolution of the DEM data is 50m
and was freely accessed from Shuttle Radar Topography Mission
(SRTM) Global (2013). Whereas, the soil type and LULC maps
were obtained from the geoportal of the Ministry of Agriculture,
Livestock, Aquaculture and Fisheries (MAGAP) of Ecuador. The
corresponding maps have been updated to 2015. Moreover, all
geographic information was processed using the software QGIS
version 3.18.2 together with the GRASS complement version 7.8.5.
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2.2.3. Runo� at the entrance of the MSF
hydropower plant

Hourly runoff time series were accessed in real-time through
the website of the Corporación Eléctrica del Ecuador (CELEC-
SUR), the company that manages of MSF hydropower plant. The
gauge station is located at the entrance of the dam of MSF. The
mean hourly runoff at the entrance is 53.73 m3/s. We present

FIGURE 2

Spatial distribution of GSMaP-NRT data for the Jubones basin.

in Figure 3, the runoff and the mean GSMaP-NRT time series
averaged for the entire basin for the study period.

2.3. Methodology

The methodological scheme of this study is presented in the
flowchart of Figure 4. This methodology can be divided into four
principal steps. The first step involved data processing and the
development of referential models; the second step contemplated
the development of FE strategies based on geographic data and
the SCS-CN method; the third step consisted of the development
of specialized models with the FE strategies, and the four-step was
the evaluation and comparison between specialized and referential
models (without FE strategies). All models were developed for lead
times of 1, 6, and 11 h.

In the first step, we composed the input feature space of
the models using current-time and lagged precipitation and
runoff information. Runoff-lagged information was determined
using the autocorrelation function (ACF) and the partial
autocorrelation function (PACF). Whereas, the number of
precipitation lags was determined using the cross-correlation
function (CCR) between precipitation and the runoff time
series. For this, the CCR analysis was applied to the time
series of each GSMaP-NRT pixel in the basin. With this
information, we developed referential LSTM models for all
lead times.

In the second step, we used the geographical data described
in Section Materials and methods, which was processed using
GIS to derive the necessary parameters for the SCS-CN method.
This step involved processing the soil types and LULC maps
according to the guidelines of the SCS-CN method. As a
result of the map processing, we obtained a CN map, which
was then corrected according to a slope map derived from
the DEM of the basin. The slope-corrected CN map served

FIGURE 3

Runo� (black lines) and GSMaP-NRT precipitation (blue lines) time series for the study period (January 2019 to December 2022).
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FIGURE 4

Scheme of the methodology for developing and evaluating referential and specialized runo� forecasting models.

to calculate a potential maximum water retention map,
and this information was resampled to match the spatial
resolution of the GSMaP-NRT product (0.1◦ x 0.1◦). Finally,

the hourly runoff depth data was estimated using GSMaP-
NRT precipitation data and the resampled map of potential
maximum retention.
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TABLE 1 Search space of LSTM hyperparameters.

Hyperparameters Value

Num_layers 1–10

Num_units 1–200

Drop_out 0.2–0.5

Learning_rate 0.0001–0.1

Epoch 10–1,000

Batch_size 32–128

The third step involved the enrichment of the input
feature space of the referential models with the features
(pixel-based information) derived from the runoff depth map.
Then, in the fourth step, the specialized models were then
evaluated and compared to the corresponding referential models
using a combination of three efficiency metrics to analyze
if the performance improved through the application of FE
strategies. In the following, we provide a detailed description of
our methodology.

2.3.1. LSTM networks
The LSTM networks proposed by Hochreiter and Schmidhuber

(1997) are a type of recurrent neural networks (RNNs) that
specifically include memory cells that store information over
long periods. The LSTM networks present a cyclical structure
that transfers the output of a hidden layer to this same
layer to locate features through relationships of the previous
time series. The assimilation in each cell can be compared to
a state vector in dynamic systems models. For this reason,
the LSTM networks have gained significant attention among
hydrologists due to the potential for modeling dynamical systems
like hydrological basins (Kratzert et al., 2019; Lees et al.,
2021).

Similar to RNN, the LSTM structure consists of an input layer,
a hidden layer, and an output layer but the difference is that the
latter replaces the basic unit with a memory cell that contains
three gate functions (input, forget, and output gate). The input gate
indicates the information will update the present memory cell state
and the new datasets for inputs, the forget gate is the controller for
keeping or discarding information, and the output gate controls the
output activations.

For the implementation of LSTM models, we used the
TensorFlow library (Abadi et al., 2016) for Python version 3.7.
The main LSTM hyperparameters are the number of layers,
number of units, learning rate, dropout, epochs, batch size,
and activation function. We initially set the transfer function
of the output layer to linear as suggested by de la Fuente
et al. (2019). The architecture and the search space used
for the hyperparameterization task are shown in Table 1. For
the hyperparameterization task, we employed a randomized-
grid search together with a 10-fold cross-validation scheme to
avoid overfitting.

2.3.2. Development of LSTM referential runo�
forecasting models

First, we checked the runoff and precipitation data for gaps
(<1%) or inconsistent values (<1%). To determine the influence
of lagged information on precipitation and runoff, we conducted
lag analyses using the ACF, the PACF for runoff, and the CCR
function for precipitation. For runoff, the number of lags for
the runoff time series was determined by analyzing the ACF and
PACF functions using a 95% confidence interval. Whereas, for
the precipitation time series, we used the CCR function with a
correlation threshold of around 0.2 as recommended by Muñoz
et al. (2018). This is because the correlations between non-validated
satellite precipitation and runoff tend to be low yet the idea is to
rater exploit the spatial variability of this information. For this,
the obtained GSMaP-NRT data was clipped to the Jubones basin
using the centroids of the cells in the satellite product that match
the basin’s coordinates. As a result, each cell corresponds to an
independent precipitation time series, which can be associated with
the Jubones basin as a uniform precipitation network. With this
information, we developed LSTM referential models for lead times
of 1, 6, and 11 h. Referential models were aimed at providing a
benchmark for evaluating the improvement achieved by LSTM
specialized models using FE strategies.

2.3.3. Development of specialized LSTM runo�
forecasting models

We first implemented the FE strategies based on geographic
data and the SCS-CN method, which together with GSMaP-NRT
data, served to derive runoff depth in the basin. Second, we
used the new features (cells) of the runoff depth map to enrich
the input feature space of the referential LSTM models. The
LSTM specialized models were developed using enriched input
feature space.

2.3.3.1. FE strategies based on geographical information

and the SCS-CN method

The first strategy consists in using geographic information (soil,
LULC, and slope maps) to derive a CN map of the basin. Then, in
the second strategy, the CN map is used to estimate the amount
of precipitation that will become direct runoff (runoff depth) from
the SCS-CN method and GSMaP-NRT data. This information
was derived from the same temporal and spatial resolution of
GSMaP-NRT. In summary, the FE strategies proposed in this study
consisted in integrating geographical information and the SCS-
CN method to derive runoff depth values for enriching the input
feature space of LSTM referential models. In the next subsections,
we expand on the steps involved.

2.3.3.1.1. Geographical data and reclassification of soil and

LULC maps

The soil type and LULC maps were first clipped to the basin
and rasterized. For this, we used categorical information on soil
and LULC, which were encoded according to each class. Then,
these maps were reclassified to the Hydrological Soil Group (HSG)
and land use and cover established by the Soil Conservation
Service (Mishra and Singh, 2003; Natural Resources Conservation
Service, 2004). The HSG is divided into four principal groups
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corresponding to A, B, C, and D (Mishra and Singh, 2003). Group
A includes soils with a high infiltration capacity and a high rate
of water transmissions such as sands or gravels. Soils in group B
have moderate infiltration rates as their rate of water transmission,
like soils with moderately fine to coarse textures. In group C, soils
exhibit a low infiltration rate and poor water transmission when
completely saturated, for example, soils with moderately fine to fine
textures. Finally, group D represents soils with very low infiltration
rates and very low rates of water transmission through their layers.

For the LULC classification, there are some adaptations from
the original method (Mishra and Singh, 2003) since it was
developed for small agricultural catchments. Thus, four principal
classes were generated for the basin, which are agricultural, urban,
forest, and wetlands/water. Having these categories for soils and
LULC, the original raster maps were reclassified into these new
simplified classes, and to have a consistent raster operation, both
raster maps were resampled into the same cell size (0.1◦ x 0.1◦).
These operations were carried out with QGIS software.

2.3.3.1.2. Antecedent moisture condition

The Antecedent Moisture Condition (AMC) is related to the
soil moisture condition before the runoff generation, and according
to the NEH-4 is classified into three principal classes based on
the 5-day antecedent rainfall. AMC I considers that the soils
are practically dry, AMC II represents the average conditions of
moisture, and finally, AMC III represents the condition where
soils are in a constant saturation state (Mishra and Singh,
2006). The original SCS-CN method constructed this classification
based on the dormant and growing season and their effects on
evapotranspiration (Mishra and Singh, 2003). For this study, the
AMC II was selected according to the recommendations of the
literature review for ungauged heterogeneous basins (Mishra and
Singh, 2006; Lal et al., 2019).

2.3.3.1.3. Curve number estimation map

To determine the most appropriate CN, we looked at the
tables from the NEH-4. The CN is a dimensionless parameter with
values between 0 and 100, where 0 represents no runoff generation
and the maximum value of 100 indicates that all precipitation
becomes runoff. For this, a raster operation with the HSG and
LULC reclassified maps of the Jubones basin was performed. The
operation consisted of assigning the value of CN according to the
reclassification classes described before. In this case, each cell of the
resulting raster map of CN constitutes a hydrological unit with a
specific CN parameter according to its soil and LULC information.

2.3.3.1.4. CN correction based on slope

The SCS-CN method was designed for basins with an average
slope of 5%. Therefore, multiple studies have evaluated the
effectiveness of thismethod in steep slope basins and recommended
corrections to the original formulas to improve the representation
of slope in runoff response (Ajmal et al., 2020; Ansari et al., 2020;
Sharma et al., 2022).We employed, the equation proposed by Ajmal
et al. (2020) for steep-slope basins, varying from 7.5 to 53.5%. The
corresponding equation 1 is described below:

CNII∝ =

(

CNIII − CNII

2

)

×

[

1− e−7.125×(∝−0.05)
]

+ CNII (1)

Where CNII∝ is the slope-adjusted CN for the average antecedent
moisture condition, CNIII is the CN for saturated moisture
conditions, and ∝ corresponds to the average slope of the basin
area [m/m]. Through the conversion of CNIII to CNII suggested
by Mishra et al. (2008), equation 1 could also be represented as
equation 2:

CNII∝ =

(

CNII(50−0.5CNII)
CNII+75.43

)

×
[

1− e−7.125×(∝−0.05)
]

+

CNII (2)

Thus, in this equation, the CN corrected by slope is in direct
function of the CN with average antecedent moisture condition
for the basin. To apply this correction, first, the slope map of the
Jubones basin was derived from the DEM with GIS operations.
Then, equation 2 was applied to the CN map using the slope map
values in the raster calculation.

2.3.3.1.5. Potential maximum water retention map

To determine the amount of potential maximum water
retention (S), we used equation 3 below.

S =
25400

CN
− 254 [mm] (3)

Where the CN is the parameter determined before. This value
can theoretically vary between zero to infinite. This equation was
applied to each cell of the CN slope-corrected map with the
raster calculator.

2.3.3.1.6. Resampling of potential maximumwater retention map

The resulting potential maximum water retention map was
resampled to the spatial resolution of the GSMaP-NRT product
(0.1◦ x 0.1◦) to calculate the runoff depth using the precipitation
time series of each cell. The interpolation method selected to
resample was a bilinear interpolation as suggested by Chao
et al. (2022) for continuous hydrological variables. In the bilinear
interpolation, each cell in the new raster is assigned an average value
based on the four nearest original cells. As a result, the averaging is
linear in both the horizontal and vertical directions. This operation
was performed using a raster map of GSMaP-NRT precipitation
data to acquire its same spatial resolution for the new map of
potential maximum retention (S).

2.3.3.1.7. Runoff depth using GSMaP-NRT data

The estimation of runoff depth derived from the SCS-CN
method is based on a water balance concept together with two
hypotheses. The first hypothesis implies that the amount of rainfall
that becomes direct surface runoff depends on the amount of
rainfall that infiltrates the soil and the potential maximum retention
capacity of the soil. The second hypothesis assumes that the amount
of water lost to initial abstraction is proportional to the potential
maximum retention capacity of the soil (Mishra and Singh, 2003).
These hypotheses are equated to form the basic empirical relation
of the SCS-CN method and it is presented in equation 4:

F

S
=

Q

P − Ia
(4)

Where F is the actual retention, S is the potential maximum
retention as mentioned before, Q is the accumulated runoff depth,
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TABLE 2 Metrics used for evaluation of models.

Metric Equation Optimal value

NSE 1−

∑n
i=1 (Oi − Pi)

2

∑n
i=1

(

Oi − O
)2 1

KGE 1−
√

(r − 1)2 + (∝ −1)2 + (β − 1)2 r =
covOP

σO × σP
; ∝=

σP

σO
; β =

P

O
1

PBIAS

∑n
i=1 (Pi − Oi)
∑n

i=1 Oi
x 100% 0

P= predicted value, O= observed value.

P is the accumulated precipitation and Ia is the initial abstraction.
The basic water balance equation 5 is:

P = Ia + F + Q (5)

Combining equations 4 and 5 results in equation 6:

Q =
(P − Ia)

2

P − Ia + S
[mm] (6)

The relationship to estimate the value of Ia is 0.2S according to
a regression analysis based on continuous experiments in multiple
basins (Mishra and Singh, 2003). This initial abstraction also is
represented as Ia = λS, and λ = 0.2 is recommended for general
use (Al-Ghobari et al., 2020). Thus, combining these relationships,
the resulting equation 7 is the precipitation-runoff relationship
used in the SCS-CN method.

Q =
(P − 0.2 S)2

P + 0.8 S
[mm] (7)

Equation 7 allows us to estimate the runoff depth [mm]
from precipitation and the potential maximum retention. The
runoff depth for the Jubones basin was calculated for each
one of the cells of precipitation using the GSMaP-NRT data
at current time. Therefore, given equation 7, the resampled
map of potential maximum retention (S), and the GSMaP-NRT
precipitation datasets, the runoff depth values were derived from
each time step at an hourly scale.

2.3.3.2. Specialized LSTM runo� forecasting models set up

The new inputs derived from the SCS-CNmethod using terrain
information of the Jubones basin and precipitation data from
GSMaP-NRT with lags were added to the new feature space for the
runoff forecasting LSTMmodels (referential) for each lead time.

2.3.4. Models’ evaluation and comparison
We evaluated the forecasting efficiencies of LSTM referential

and specialized models using the most-employed efficiency metrics
in hydrological applications (Contreras et al., 2021; Bhusal et al.,
2022; Chen et al., 2022; Li et al., 2022). These are the Nash-Sutcliffe
efficiency (NSE) (Nash and Sutcliffe, 1970), the Kling-Gupta
efficiency (KGE) (Gupta et al., 2009), and the Percent Bias (PBIAS).
The NSE is usually applied to measure the overall model accuracy
and is less sensitive to high extreme values due to underestimating
runoff peaks (Gupta et al., 2009). The KGE addresses the
shortcomings of NSE (Knoben et al., 2019) and is nowadays,

increasingly used for the evaluation of hydrological models due
to the incorporation of its three components (correlation, bias,
and the relative variability of flows) (Gupta et al., 2009; Li et al.,
2022) and improve the evaluation for runoff peaks. The PBIAS
is a measure that determines the tendency of simulated values to
deviate from observed values. In Table 2 the equations used for each
metric are presented.

For evaluation, in terms of NSE, according to the guidelines for
hydrological model evaluation proposed by Moriasi et al. (2007),
values upper than 0.75 are considered very good. According to the
KGE, it allows the evaluation of error (r), the relative variability
of observed and predicted runoff values (∝), and the bias (β).
For the PBIAS metric, between 0 and 10% values, models are
considered to have a very good adjustment in comparison with
observed data, withminimumoverestimations or underestimations
(Gupta et al., 1999). Also, the performance of these models was
evaluated through graphical inspection with hydrograph plots and
cumulative runoff volumes for a better interpretation of the fit
between the observed and forecasting runoff values.

3. Results

In this section, we first present the obtained composition
of the input feature space for the LSTM referential models.
Second, we show the corresponding maps derived during the
FE implementation thought the SCS-CN method process until
obtaining runoff depth maps for the basin. Lastly, we present the
evaluation of the LSTM specialized models and a comparison with
the corresponding referential models.

3.1. Development of LSTM referential
runo� forecasting models

Figures 5A, B shows the results of the ACF and PACF analyses.
For the ACF with a 95% confidence interval, we found a significant
correlation up to around 700 lags, which corresponds to 29 days.
The correlation decayed rapidly after the highest correlation at first
lag which indicates an autoregressive process. On the other hand,
the PACF with a 95% confidence interval revealed a significant
correlation up to lag 8, and showed a rapid decay of PACF,
confirming the presence of an autoregressive process in the runoff
data. Based on these analyses, we decided to include 8 lags (hours)
of runoff to the input feature space of the forecasting models.

In addition, Figure 5C presents the CCR plot for each one of
the 29 pixels of the GSMaP-NRT in the basin when correlated to
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FIGURE 5

(A) Autocorrelation function (ACF) and (B) partial autocorrelation function (PACF) for runo� values at the entrance of the MSF hydropower plant. (C)

CCR between GSMaP-NRT precipitation data and runo�. The horizontal red line at a cross-correlation of 0.15 and each curve represents the pixel of

GSMaP-NRT data for the Jubones basin.

the runoff time series. Overall, we determined 11 precipitation lags
using the correlation threshold of 0.15. The number of precipitation
lags matches the concentration time of the catchment, which was
estimated as 11 h in the study of Muñoz et al. (2023). The use of 11
precipitation lags and the precipitation at the current time for each
one of the 29 pixels in the basin, together with eight runoff lags and
the runoff data resulted in an input feature space dimension of 356
features. The number of instances was 35,053 for the study period.

3.2. Development of specialized LSTM
runo� forecasting models

In this subsection, we present the results of the FE strategies
using geographic data and the SCS-CN method. Then, the set-up
of specialized LSTMmodels with these strategies by using FE-based
inputs, and finally, the evaluation and comparison of referential vs.
specialized LSTMmodels.

3.2.1. Feature engineering strategies based on
geographic data and the SCS-CN method
3.2.1.1. Soil and LULC reclassification maps

The reclassification process for soil orders of the Jubones
basin was performed according to the soil texture assigned to
each HSG. Results showed the predominance of soils belonging
to group C, which covers 60% of the basin. These soils are Alfisol
and Inceptisol which are characterized by higher clay content
with moderate to lower permeability. Inceptisol is characterized
by a moderate to a low rate of water transmission and the
presence of sandy clay loam and silts, with a high sand content
and usually porous materials used to be present due to volcanic
formation (Larson and Padilla, 1990; Riveras-Muñoz et al., 2022).
The dominance of soils group C was followed by group B, with
Entisol representing 25% of the total area of the basin. This
was followed by group B, which has a loamy-sand to loamy
clay and a moderate permeability (Mejía-Veintimilla et al., 2019).
Finally, Histosol, Mollisol, and Vertisol were classified in group D
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FIGURE 6

(A) Soil and (B) LULC maps and their corresponding reclassification.

with <15% of the basin area. Regarding the classification of the
LULC, the herbaceous and shrub vegetation (46%), pastureland
(28%), and paramo (15%) were the most representative LULC
classes in the Jubones basin. For the application of the SCS-CN
method, the forest and agricultural and cropped land were the most
representative classes in the basin covering 99% of the area. With
the results, we present in Figure 6 the spatial distribution of soil and
LULC classification and their respective reclassification process. In
the Supplementary material, we show two tables summarizing the
reclassification of the soil order map to the Jubones basin into the
HSG and the LULC reclassification.

3.2.1.2. Curve number map and correction based on slope

The CN map was derived from the established tables of NEH-
4, according to the reclassified maps of soil and LULC, and
considering the AMC II (average conditions of soil moisture).
The CN values determined for the Jubones basin range from
58 to 100 (Figure 7A). The highest CN values indicate that a
larger proportion of rainfall will become runoff rather than being

absorbed into the soil (less infiltration capacity). The CN value
of 100 indicates that all rainfall will run off the surface, and no
infiltration will occur, as is the case with water bodies. These highest
values are found in the zone of HSG D, which is characterized
by low infiltration rates and high runoff potential. These soils
are typically composed of heavy clay or fine-grained soils, which
have low permeability and high water-holding capacity, such as
Histosols. The lowest values represent moderate infiltration rates.
These values were found in hydrological soil group B which
corresponds to soils with moderate runoff potential due to the
lack of soil development and low organic matter content. To
the CN map, the slope correction was applied (Figure 7C) using
the equation 2 and the slope map (Figure 7B). With the slope
correction, high CN values became higher, while low values
were reduced. This indicates that the impact of slope on runoff
generation is significant within the basin, largely due to the complex
topography. In particular, areas with steep slopes exhibited higher
CN values, as steeper slopes tend to produce greater amounts
of runoff.
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FIGURE 7

(A) Curve number map in the Jubones basin, (B) slope map, and (C) slope-corrected CN map.

FIGURE 8

(A) The potential maximum water retention map and the (B) resampled map.

3.2.1.3. Potential maximum water retention map

The slope-corrected CN map was used as the input for
the calculation of the maximum potential water retention using
equation 3. As shown in Figure 8A, the values range from 0 to 200,
which is the result of the high variability of CN values and the
combination of soil, LULC, and slope features. Generally, higher
values indicate that the soil has a greater capacity to hold water

and mainly represent infiltration occurring after runoff has started
given the CN values. The values equal to 0 represent completely
impermeable surfaces and in this case, represent water bodies due
to the absence of soil. Then, this map was resampled with the
bilinear interpolation method to the same spatial resolution as
GSMaP-NRT (0.1◦ x 0.1◦) for appropriate runoff depth estimation.
The resampled map (Figure 8B) retained the spatial distribution of
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FIGURE 9

Mean runo� depth map for the study period (Jan/2019- Dec/2022).

the potential water retention map, with the highest values located
in the center near the outlet of the basin, whereas the lowest values
were found in the northern part of the basin.

3.2.1.4. Runo� depth time series

The precipitation data series obtained from GSMaP-NRT, and
the resampled potential maximum water retention map were used
as inputs to calculate the hourly runoff depth using equation 7.
The runoff depth was estimated for each one of the 29 pixels of
the GSMaP-NRT data pixel. The spatial distribution of the mean
runoff depth estimated for the Jubones basin is shown in Figure 9,
with values ranging from 2.78 to 5.18 on an hourly scale for the
study period.

3.2.2. Set-up of specialized LSTM models
We used new features derived from the runoff depth map,

which corresponds to the difference between the amount of
precipitation that fell on a given area (in this case, the pixel area
of approximately 121 km2) and the amount of water that infiltrates
into the soil and is affected by soil type, land cover, and slope. Thus,
in the feature space of the referential models, 29 new inputs were
aggregated for the performance of the specialized models.

To improve the representation of these new features in
the feature space, a Principal Component Analysis (PCA) was
applied to the precipitation inputs (348 inputs) for reducing the
dimensionality while retaining as much of the original information
as possible. We retained 80% of the explained variance with seven
components from the precipitation lags to have a minor number of
inputs in contrast with the inputs derived from FE strategies. This
percentage of variance was determined on a trial-and-error basis
for maximizing forecasting efficiencies.

TABLE 3 Comparison of e�ciencies between referential and specialized

models using FE strategies, and across lead times.

Models NSE KGE PBIAS

LSTM 1h 0.9 0.94 0.82

LSTM+ FE 0.93 0.97 0.35

LSTM 6h 0.74 0.84 1.40

LSTM+ FE 0.77 0.86 0.13

LSTM 11 h 0.65 0.74 2.00

LSTM+ FE 0.67 0.79 0.61

The feature space was composed of the PCA-derived features
of precipitation (7), the runoff lags (8), and the features from the
FE strategies described before (29). The hyperparameters used to
tune the specialized models were the same as those detailed in
Table 1. In Supplementary material we present a table with the
hyperparameters used for these models.

3.3. Evaluation and comparison of LSTM
referential and specialized models

Table 3 shows the efficiency metrics of both the referential
and specialized LSTM models for the testing period. For the
1 h forecasting, the LSTM specialized models achieved higher
efficiencies with all efficiency metrics when compared to referential
models. We found efficiency improvement in the specialized
models when compared to the referential ones for all efficiency
metrics and for all lead times. For instance, for the 1 h lead
times, the NSE values increased from 0.9 to 0.93, the KGE
values increased from 0.94 to 0.97, and the PBIAS decreased
from 0.82 to 0.35 which indicates a better approximation
to 0.

We found the same pattern for the lead times of 6 and
11 h. Moreover, all the efficiency values in terms of the NSE,
the KGE, and the PBIAS for the LSTM specialized models
lay within the range considered a very good (1 and 6 h) and
good (11 h) model performance according to the criteria of
Moriasi et al. (2007).

We also present the efficiencies of the referential and specialized
LSTM modes in the scatter plots of Figure 10. In this figure,
specialized model forecasts (gray dots) appeared to have less
dispersion and were closer to observations in comparison with
the forecasts obtained with referential models (black dots). This
is especially true for runoff magnitudes up to 200 m3/s. On the
contrary, for more extreme runoffs (>200 m3/s), there is no
significant improvement of the LSTM specialized models when
compared to the referential ones. This indicates that the developed
specialized models are good at estimating runoff values close to the
mean (53 m3/s), up to a threshold of value 200 m3/s. Although the
differences were not considerably higher, we rather demonstrated
the possibility to assimilate geographic data and the derived runoff
depth features in the pursuit of improved runoff forecasts. We are
aware that it is still research for achieving further improvements,
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FIGURE 10

Scatter plots of runo� forecasting models for referential and specialized models. (A) 1 h-lead time, (B) 6 h-lead time, and (C) 11 h-lead time.

principally for extreme runoff events, where information other than
precipitation such as soil moisture dynamics is crucial.

To show the performance of LSTM models, we provide in
Figure 11 the results of LSTM models for the lead times of 6
and 11 h, which showed the greatest improvements when LSTM
specialized models were compared to the referential models. For
this, we highlight in a red rectangle the period from February to
May, which presented runoff values up to 500 m3/s. Overall, the
ability of LSTMmodels to forecast runoff decreased as the lead time
increased. It can be observed that the specialized model for the 6
and 11 h achieved better approximations of the observations when
compared to their corresponding referential models.

In addition, a graphical representation of the cumulative runoff
values for the validation period has been provided in Figure 12. This
figure served to compare and contrast the water volumes obtained
from the developed forecasting models. In this figure, it is clear that
LSTM specialized models perform better than referential models in
predicting observed data, as their curves are closest to the observed
values. This is because LSTM specialized models have lower PBIAS

values, indicating lower underestimations when compared to the
LSTM referential observed models. Therefore, specialized models
are more effective in accurately predicting the amount of runoff
volume compared to referential models.

4. Discussion

This study proposes amethodology for improving the efficiency
of LSTM runoff forecasting models by developing specialized
models using GIS-based FE strategies and the SCS-CNmethod in a
complex basin of Ecuador. We aimed to evaluate the effectiveness
of specialized models by comparing them with conventional LSTM
models. We demonstrated the usefulness and limitations of the
proposed LSTM specialized models across increasing lead times.
The study findings offer valuable insights into the potential of the
LSTM models for runoff forecasting and highlight the significance
of using GIS-based FE strategies and the SCS-CN method in
enhancing the accuracy of the models.
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FIGURE 11

Results for the validation period (January 2022 to December 2022) of referential and specialized LSTM models for lead times of (A) 6 and (B) 11 h.

The results of this study showed that for all runoff
forecasting lead times, FE strategies improve the efficiency
metrics in comparison with the referential models. This indicates
that the proposed strategies using terrain information and
the inclusion of hydrological information were effective for a
complex mountain basin through the use of LSTM models.
Moreover, even though we developed models with a relatively
short data period, we obtained promising efficiencies when
compared to other studies using much longer data records. Despite
the limitations of this study, the proposed methodology can

serve as a valuable guideline for developing runoff forecasting
models in other basins and regions where data limitations
have previously made it impossible. The use of GIS-based
FE strategies and the SCS-CN method in conjunction with
LSTM models has the potential to enhance the accuracy of
runoff forecasting and enable more effective water resource
management in various regions. Further research and development
in this area can lead to improved methodologies and greater
applicability of the models for runoff forecasting in diverse
hydrological systems.
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FIGURE 12

Comparison of cumulative runo� values for referential and specialized models.

The efficiency of the developed LSTM specialized models
achieved NSE values of 0.93, 0.77, and 0.67 for lead times of 1, 6,
and 11 h, respectively. These results are comparable to the results
of Zhou et al. (2023), who used ground precipitation for a 1,758
km2 basin. In that study, the authors obtained NSE values of 0.95
and 0.78 for lead times of 1 and 6 h, respectively. In comparison
with the information used in Zhou et al. (2023), in our study area,
one of the principal challenges (limitations) was the lack of ground
precipitation information for forecasting modeling. However, the
GSMaP-NRT data in conjunction with the FE strategies applied
to the runoff forecasting models allowed for achieving very good
efficiencies in terms of NSE according to Moriasi et al. (2007) due
to these limitations.

Our results can also be compared with the study of Li
et al. (2022), who used a combined approach of LSTM and
Convolutional Neural Networks (CNN) to assimilate spatial
patterns between precipitation radar data and long-term runoff
data. For this, the authors selected high and low water periods
in a period study of 15 years. The authors found NSE values of
0.78 for the high-water period and 0.81 for the low-water period,
respectively. If we compare those results with our results (NSE 1 h
= 0.93, KGE 1 h = 0.97, NSE 6 h = 0.77, KGE 6 h = 0.86), we can
conclude that some clear advantage of our models is the reduction
of data-driven model complexity, the inclusion of hydrological
concepts through the FE applied, and the possibility to implement
our models for real-time operation since we employed near-real-
time satellite precipitation products (SPPs). This opens the path for
replicating this study in other basins/regions experiencing a lack of
ground-based precipitation monitoring.

Another comparison can be done with the study Mejía-
Veintimilla et al. (2019), who used the SCS-CN method in the
Runoff Prediction Model and obtained NSE values of 0.82 using
a physically-based model fed by high-resolution meteorological
radar data for a small area (5 km2) Andean basin. Although

the authors employed physically-based models and more precise
precipitation information, the NSE values derived from our
models demonstrate the utility of our methodology for developing
forecasting models in precipitation-ungauged basins through the
exploitation of non-validated satellite precipitation products. This
finding matches with the insights provided in the study of Kratzert
et al. (2019), which indicates that physically based models and data-
driven models are both effective for predicting runoff. However,
data-driven models have the added advantage of being able to
transfer model parameters to other ungauged basins that share
similar biophysical characteristics. This allows for a more efficient
and cost-effective approach to runoff forecasting in ungauged
basins, where ground observations are often limited or unavailable.

Furthermore, the efficiency evaluation of our models indicated
that the main differences between the LSTM specialized, and
referential models were found in the calculated PBIAS, a
critical parameter for preventing underestimation of forecasted
runoff values. This finding is particularly significant for closing
hydrological balances, given that the LSTM specialized models
produced accumulated water amounts that were close to the
observed runoff values. These results suggest that it may not be
necessary to add mass conservation equations to LSTM models,
as concluded by Frame et al. (2022) who found that adding
mass balance constraints actually reduced the model’s skill during
extreme events. These findings contribute to the ongoing debate
about the most effective ways to incorporate physical constraints
into data-driven models and can guide future research in this area.

Another important finding is related to the practical and simple
method for improving the runoff forecastingmodels using the SCS-
CNmethod which could be derived from open-source geographical
information and GIS tools. The inclusion of information about
the soil types, LULC, and topography, among other features
related to runoff generation, showed important improvements in
hydrological modeling and runoff forecasting (Mahmoud, 2014;
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Asadi et al., 2019; Huang et al., 2019; Meresa, 2019; Kwon
et al., 2020). Here, the performance of the specialized models
reflected the importance of the inclusion of this information in
an interpretable way for data-driven models, in this case through
the SCS-CN method. However, according to the limitations of
the SCS-CN method due to is considered under an empirical
approach, its application in complex basins should be reviewed
to avoid inconsistencies. Furthermore, future research can be
focused on improving the inputs for developing these FE
strategies proposed with more recent and better resolution of
geographical information.

Finally, the use of satellite precipitation data continues to be
an important alternative for precipitation-ungauged systems, and
thus exploiting additional SPPs is a promising future direction for
overcoming detection failures in a given SPP. However, in addition
to the forecasting lead time, consideration of the latency time of
the SPP employed (5 h in the case of the GSMaP-NRT product)
must be taken into account since this represents an additional
source of uncertainty, especially when relying on physically-based
hydrological models. This is evidenced in the study of Llauca et al.
(2021), where the uncertainty arising from the latency of SPP led to
the finding that SPPs with shorter latency times do not guarantee
effectiveness in runoff modeling when using a reservoir-based
hydrological model. Therefore, this highlights another compelling
reason for employing deep learning techniques like LSTM neural
networks, which have the capability to effectively relate available
precipitation data (accounting for lead time and latency time)
to predict future runoff. Utilizing more than one SPP using a
modular approach for SPP data usage, as described in Muñoz
et al. (2023), can lead to a more accurate spatial characterization
of precipitation and therefore more accurate runoff forecasts. This
approach could be particularly useful in areas with complex terrain,
where precipitation patterns can vary greatly across short distances.

5. Conclusions

This study aimed to improve the efficiency of the runoff
forecasting model by developing FE strategies based on geographic
data and the SCS-CN method in a 3,340 km2 precipitation-
ungauged basin representative of complex hydrological systems
in the Andes of Ecuador. We proposed a stepwise methodology
for developing and evaluating forecasting models that exploit
readily available satellite precipitation data, assisted by FE strategies
for LSTM networks. The developed models accounted for lead
times of 1, 6, and 11 h to enable near-real-time forecasting, flash
floods, and a lead time equal to the concentration-time of the
basin, respectively. The success of developing accurate short-
term runoff forecasting models using LSTM networks can be
first attributed to their ability to capture temporal dependencies
between features. Second, the application of FE strategies, including
the incorporation of thematic maps such as soil types, LULC,
slope information, and the SCS-CN method, was found to be
effective for integrating process-based hydrological knowledge into
LSTMmodels.

The NSE values across increasing lead times varied from 0.93 to
0.67 for lead times between 1 and 11 h, respectively. The KGE values
were higher than NSE values for all lead times, which demonstrated

that models are also able to forecast peak runoff values. Although
this study did not aim to outperform physically-based models, the
obtained efficiencies are comparable to that modeling approach and
other studies employing higher resolution data such as ground-
based weather radars and rain gauges. Thus, this study proposes
a solution for the cases of precipitation-ungauged basins and has
the potential to be replicated in other hydrological systems in the
Andes and/or regions where geographic data is available.

We recommend future research focused on assessing the
developed methodology with other deep learning techniques such
as convolutional neural networks for adding spatial patterns
that can represent the runoff processes generation by regions.
Additionally, we recommend exploring the use of additional
precipitation data sources, such as soil moisture and vegetation
indices, to further improve runoff forecasting performance in
complex mountain basins. Ultimately, the development of accurate
and efficient runoff forecasting models using machine learning and
FE strategies can greatly benefit the management of water resources
in mountainous regions.
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